Science.gov

Sample records for event-related fmri investigation

  1. Material-dependent and material-independent selection processes in the frontal and parietal lobes: an event-related fMRI investigation of response competition

    NASA Technical Reports Server (NTRS)

    Hazeltine, Eliot; Bunge, Silvia A.; Scanlon, Michael D.; Gabrieli, John D E.

    2003-01-01

    The present study used the flanker task [Percept. Psychophys. 16 (1974) 143] to identify neural structures that support response selection processes, and to determine which of these structures respond differently depending on the type of stimulus material associated with the response. Participants performed two versions of the flanker task while undergoing event-related functional magnetic resonance imaging (fMRI). Both versions of the task required participants to respond to a central stimulus regardless of the responses associated with simultaneously presented flanking stimuli, but one used colored circle stimuli and the other used letter stimuli. Competition-related activation was identified by comparing Incongruent trials, in which the flanker stimuli indicated a different response than the central stimulus, to Neutral stimuli, in which the flanker stimuli indicated no response. A region within the right inferior frontal gyrus exhibited significantly more competition-related activation for the color stimuli, whereas regions within the middle frontal gyri of both hemispheres exhibited more competition-related activation for the letter stimuli. The border of the right middle frontal and inferior frontal gyri and the anterior cingulate cortex (ACC) were significantly activated by competition for both types of stimulus materials. Posterior foci demonstrated a similar pattern: left inferior parietal cortex showed greater competition-related activation for the letters, whereas right parietal cortex was significantly activated by competition for both materials. These findings indicate that the resolution of response competition invokes both material-dependent and material-independent processes.

  2. Overt sentence production in event-related fMRI.

    PubMed

    Haller, Sven; Radue, E W; Erb, Michael; Grodd, Wolfgang; Kircher, Tilo

    2005-01-01

    The use of syntactic structures on a sentence level is a unique human ability. Functional imaging studies have usually investigated syntax comprehension. However, language production may be performed by different neuronal resources. We have investigated syntax generation on a sentence level with functional magnetic resonance imaging (fMRI). BOLD contrast was measured while subjects articulated utterances aloud. In the active condition 'sentence generation' (SG), subjects had to produce subject verb object (SVO) sentences (e.g. "The child throws the ball") according to syntactically incomplete stimuli (e.g. "throw ball child") presented visually. In the control condition 'word reading' (WR), subjects had to read identical stimuli without completing the syntactic structure, while in a second control condition 'sentence reading' (SR), subjects had to read complete sentences. The semantic meaning of all expressions was obvious despite the syntactically incomplete structure in conditions SG and WR. In both contrasts, SG minus WR and SG minus SR, activation was mainly present in the left inferior frontal (BA 44/45) and medial frontal (BA 6) gyri, the superior parietal lobule (BA 7) and the right insula (BA 13). A region of interest analysis revealed significantly stronger left-dominant activation in BA 45 compared to BA 44. Our data illustrates the crucial involvement of the left BA 45 in syntactic encoding and is in line with more recent imaging and brain lesion data on syntax processing on a sentence level, emphasizing the involvement of a distributed left and right hemispheric network in syntax generation. PMID:15721193

  3. Decreased Parahippocampal Activity in Associative Priming: Evidence from an Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Yang, Jiongjiong; Meckingler, Axel; Xu, Mingwei; Zhao, Yanbing; Weng, Xuchu

    2008-01-01

    In recent years, there has been intense debate on the neural basis of associative priming, particularly on the role of the medial temporal lobe (MTL) in retrieving associative information without awareness. In this study, event-related fMRI was used while healthy subjects performed a perceptual identification task on briefly presented unrelated…

  4. Event-Related fMRI of Category Learning: Differences in Classification and Feedback Networks

    ERIC Educational Resources Information Center

    Little, Deborah M.; Shin, Silvia S.; Sisco, Shannon M.; Thulborn, Keith R.

    2006-01-01

    Eighteen healthy young adults underwent event-related (ER) functional magnetic resonance imaging (fMRI) of the brain while performing a visual category learning task. The specific category learning task required subjects to extract the rules that guide classification of quasi-random patterns of dots into categories. Following each classification…

  5. A Semi-parametric Nonlinear Model for Event-Related fMRI

    PubMed Central

    Zhang, Tingting; Li, Fan; Gonzalez, Marlen Z.; Maresh, Erin L.; Coan, James A.

    2014-01-01

    Nonlinearity in evoked hemodynamic responses often presents in event-related fMRI studies. Volterra series, a higher-order extension of linear convolution, has been used in the literature to construct a nonlinear characterization of hemodynamic responses. Estimation of the Volterra kernel coefficients in these models is usually challenging due to the large number of parameters. We propose a new semi-parametric model based on Volterra series for the hemodynamic responses that greatly reduces the number of parameters and enables “information borrowing” among subjects. This model assumes that in the same brain region and under the same stimulus, the hemodynamic responses across subjects share a common but unknown functional shape that can differ in magnitude, latency and degree of interaction. We develop a computationally-efficient strategy based on splines to estimate the model parameters, and a hypothesis test on nonlinearity. The proposed method is compared with several existing methods via extensive simulations, and is applied to a real event-related fMRI study. PMID:24742917

  6. Improvement of spectral density-based activation detection of event-related fMRI data.

    PubMed

    Ngan, Shing-Chung; Hu, Xiaoping; Tan, Li-Hai; Khong, Pek-Lan

    2009-09-01

    For event-related data obtained from an experimental paradigm with a periodic design, spectral density at the fundamental frequency of the paradigm has been used as a template-free activation detection measure. In this article, we build and expand upon this detection measure to create an improved, integrated measure. Such an integrated measure linearly combines information contained in the spectral densities at the fundamental frequency as well as the harmonics of the paradigm and in a spatial correlation function characterizing the degree of co-activation among neighboring voxels. Several figures of merit are described and used to find appropriate values for the coefficients in the linear combination. Using receiver-operating characteristic analysis on simulated functional magnetic resonance imaging (fMRI) data sets, we quantify and validate the improved performance of the integrated measure over the spectral density measure based on the fundamental frequency as well as over some other popular template-free data analysis methods. We then demonstrate the application of the new method on an experimental fMRI data set. Finally, several extensions to this work are suggested. PMID:19535208

  7. Assessment of Cortical Visual Impairment in Infants with Periventricular Leukomalacia: a Pilot Event-Related fMRI Study

    PubMed Central

    Yu, Bing; Fan, Guoguang; Liu, Na

    2011-01-01

    Objective We wanted to investigate the usefulness of event-related (ER) functional MRI (fMRI) for the assessment of cortical visual impairment in infants with periventricular leukomalacia (PVL). Materials and Methods FMRI data were collected from 24 infants who suffered from PVL and from 12 age-matched normal controls. Slow ER fMRI was performed using a 3.0T MR scanner while visual stimuli were being presented. Data analysis was performed using Statistical Parametric Mapping software (SPM2), the SPM toolbox MarsBar was used to analyze the region of interest data, and the time to peak (TTP) of hemodynamic response functions (HRFs) was estimated for the surviving voxels. The number of activated voxels and the TTP values of HRFs were compared. Pearson correlation analysis was performed to compare visual impairment evaluated by using Teller Acuity Cards (TAC) with the number of activated voxels in the occipital lobes in all patients. Results In all 12 control infants, the blood oxygenation level-dependent (BOLD) signal was negative and the maximum response was located in the anterior and superior part of the calcarine fissure, and this might correspond to the anterior region of the primary visual cortex (PVC). In contrast, for the 24 cases of PVL, there were no activated pixels in the PVC in four subjects, small and weak activations in six subjects, deviated activations in seven subjects and both small and deviated activations in three subjects. The number of active voxels in the occipital lobe was significantly correlated with the TAC-evaluated visual impairment (p < 0.001). The mean TTP of the HRFs was significantly delayed in the cases of PVL as compared with that of the normal controls. Conclusion Determining the characteristics of both the BOLD response and the ER fMRI activation may play an important role in the cortical visual assessment of infants with PVL. PMID:21852907

  8. Event-Related fMRI Studies of Episodic Encoding and Retrieval: Meta-Analyses Using Activation Likelihood Estimation

    ERIC Educational Resources Information Center

    Spaniol, Julia; Davidson, Patrick S. R.; Kim, Alice S. N.; Han, Hua; Moscovitch, Morris; Grady, Cheryl L.

    2009-01-01

    The recent surge in event-related fMRI studies of episodic memory has generated a wealth of information about the neural correlates of encoding and retrieval processes. However, interpretation of individual studies is hampered by methodological differences, and by the fact that sample sizes are typically small. We submitted results from studies of…

  9. Flexible algorithm for real-time convolution supporting dynamic event-related fMRI

    NASA Astrophysics Data System (ADS)

    Eaton, Brent L.; Frank, Randall J.; Bolinger, Lizann; Grabowski, Thomas J.

    2002-04-01

    An efficient algorithm for generation of the task reference function has been developed that allows real-time statistical analysis of fMRI data, within the framework of the general linear model, for experiments with event-related stimulus designs. By leveraging time-stamped data collection in the Input/Output time-aWare Architecture (I/OWA), we detect the onset time of a stimulus as it is delivered to a subject. A dynamically updated list of detected stimulus event times is maintained in shared memory as a data stream and delivered as input to a real-time convolution algorithm. As each image is acquired from the MR scanner, the time-stamp of its acquisition is delivered via a second dynamically updated stream to the convolution algorithm, where a running convolution of the events with an estimated hemodynamic response function is computed at the image acquisition time and written to a third stream in memory. Output is interpreted as the activation reference function and treated as the covariate of interest in the I/OWA implementation of the general linear model. Statistical parametric maps are computed and displayed to the I/OWA user interface in less than the time between successive image acquisitions.

  10. Neural correlates of conceptual object priming in young and older adults: An event-related fMRI study

    PubMed Central

    Ballesteros, Soledad; Bischof, Gérard N.; Goh, Joshua O.; Park, Denise C.

    2012-01-01

    In this event-related fMRI study, we investigated age-related differences in brain activity associated with conceptual repetition priming in young and older adults. Participants performed a speeded “living/non-living” classification task with three repetitions of familiar objects. Both young and older adults showed a similar magnitude of behavioral priming to repeated objects and evidencing repetition-related activation reductions in fusiform gyrus, superior occipital, middle and inferior temporal cortex, as well as inferior frontal and insula regions. The neural priming effect in young adults was extensive and continued through both the second and third stimulus repetitions, whereas neural priming in older adults was markedly attenuated and reached floor at the second repetition. In young adults, greater neural priming in multiple brain regions correlated with greater behavioral facilitation whereas in older adults, only activation reduction in the left inferior frontal correlated with faster behavioral responses. These findings provide evidence for altered neural priming in older adults despite preserved behavioral priming, and suggest the possibility that age-invariant behavioral priming is observed as a result of more sustained neural processing of stimuli in older adults which may be a form of compensatory neural activity. PMID:23102512

  11. Brain Correlates of Phasic Autonomic Response to Acupuncture Stimulation: An Event-Related fMRI Study

    PubMed Central

    Napadow, Vitaly; Lee, Jeungchan; Kim, Jieun; Cina, Stephen; Maeda, Yumi; Barbieri, Riccardo; Harris, Richard E.; Kettner, Norman; Park, Kyungmo

    2013-01-01

    Autonomic nervous system (ANS) response to acupuncture has been investigated by multiple studies; however, the brain circuitry underlying this response is not well understood. We applied event-related fMRI (er-fMRI) in conjunction with ANS recording (heart rate, HR; skin conductance response, SCR). Brief manual acupuncture stimuli were delivered at acupoints ST36 and SP9, while sham stimuli were delivered at control location, SH1. Acupuncture produced activation in S2, insula, and mid-cingulate cortex, and deactivation in default mode network (DMN) areas. On average, HR deceleration (HR–) and SCR were noted following both real and sham acupuncture, though magnitude of response was greater following real acupuncture and inter-subject magnitude of response correlated with evoked sensation intensity. Acupuncture events with strong SCR also produced greater anterior insula activation than without SCR. Moreover, acupuncture at SP9, which produced greater SCR, also produced stronger sharp pain sensation, and greater anterior insula activation. Conversely, acupuncture-induced HR– was associated with greater DMN deactivation. Between-event correlation demonstrated that this association was strongest for ST36, which also produced more robust HR–. In fact, DMN deactivation was significantly more pronounced across acupuncture stimuli producing HR–, versus those events characterized by acceleration (HR+). Thus, differential brain response underlying acupuncture stimuli may be related to differential autonomic outflows and may result from heterogeneity in evoked sensations. Our er-fMRI approach suggests that ANS response to acupuncture, consistent with previously characterized orienting and startle/defense responses, arises from activity within distinct subregions of the more general brain circuitry responding to acupuncture stimuli. PMID:22504841

  12. Analysis of speech-related variance in rapid event-related fMRI using a time-aware acquisition system.

    PubMed

    Mehta, S; Grabowski, T J; Razavi, M; Eaton, B; Bolinger, L

    2006-02-15

    Speech production introduces signal changes in fMRI data that can mimic or mask the task-induced BOLD response. Rapid event-related designs with variable ISIs address these concerns by minimizing the correlation of task and speech-related signal changes without sacrificing efficiency; however, the increase in residual variance due to speech still decreases statistical power and must be explicitly addressed primarily through post-processing techniques. We investigated the timing, magnitude, and location of speech-related variance in an overt picture naming fMRI study with a rapid event-related design, using a data acquisition system that time-stamped image acquisitions, speech, and a pneumatic belt signal on the same clock. Using a spectral subtraction algorithm to remove scanner gradient noise from recorded speech, we related the timing of speech, stimulus presentation, chest wall movement, and image acquisition. We explored the relationship of an extended speech event time course and respiration on signal variance by performing a series of voxelwise regression analyses. Our results demonstrate that these effects are spatially heterogeneous, but their anatomic locations converge across subjects. Affected locations included basal areas (orbitofrontal, mesial temporal, brainstem), areas adjacent to CSF spaces, and lateral frontal areas. If left unmodeled, speech-related variance can result in regional detection bias that affects some areas critically implicated in language function. The results establish the feasibility of detecting and mitigating speech-related variance in rapid event-related fMRI experiments with single word utterances. They further demonstrate the utility of precise timing information about speech and respiration for this purpose. PMID:16412665

  13. A Mixed L2 Norm Regularized HRF Estimation Method for Rapid Event-Related fMRI Experiments

    PubMed Central

    Tong, Li; Yan, Bin

    2013-01-01

    Brain state decoding or “mind reading” via multivoxel pattern analysis (MVPA) has become a popular focus of functional magnetic resonance imaging (fMRI) studies. In brain decoding, stimulus presentation rate is increased as fast as possible to collect many training samples and obtain an effective and reliable classifier or computational model. However, for extremely rapid event-related experiments, the blood-oxygen-level-dependent (BOLD) signals evoked by adjacent trials are heavily overlapped in the time domain. Thus, identifying trial-specific BOLD responses is difficult. In addition, voxel-specific hemodynamic response function (HRF), which is useful in MVPA, should be used in estimation to decrease the loss of weak information across voxels and obtain fine-grained spatial information. Regularization methods have been widely used to increase the efficiency of HRF estimates. In this study, we propose a regularization framework called mixed L2 norm regularization. This framework involves Tikhonov regularization and an additional L2 norm regularization term to calculate reliable HRF estimates. This technique improves the accuracy of HRF estimates and significantly increases the classification accuracy of the brain decoding task when applied to a rapid event-related four-category object classification experiment. At last, some essential issues such as the impact of low-frequency fluctuation (LFF) and the influence of smoothing are discussed for rapid event-related experiments. PMID:23762193

  14. Is Broca's Area Involved in the Processing of Passive Sentences? An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Yokoyama, Satoru; Watanabe, Jobu; Iwata, Kazuki; Ikuta, Naho; Haji, Tomoki; Usui, Nobuo; Taira, Masato; Miyamoto, Tadao; Nakamura, Wataru; Sato, Shigeru; Horie, Kaoru; Kawashima, Ryuta

    2007-01-01

    We used functional magnetic resonance imaging (fMRI) to investigate whether activation in Broca's area is greater during the processing of passive versus active sentences in the brains of healthy subjects. Twenty Japanese native speakers performed a visual sentence comprehension task in which they were asked to read a visually presented sentence…

  15. Origins of Spatial Working Memory Deficits in Schizophrenia: An Event-Related fMRI and Near-Infrared Spectroscopy Study

    PubMed Central

    Lee, Junghee; Folley, Bradley S.; Gore, John; Park, Sohee

    2008-01-01

    Abnormal prefrontal functioning plays a central role in the working memory (WM) deficits of schizophrenic patients, but the nature of the relationship between WM and prefrontal activation remains undetermined. Using two functional neuroimaging methods, we investigated the neural correlates of remembering and forgetting in schizophrenic and healthy participants. We focused on the brain activation during WM maintenance phase with event-related functional magnetic resonance imaging (fMRI). We also examined oxygenated hemoglobin changes in relation to memory performance with the near-infrared spectroscopy (NIRS) using the same spatial WM task. Distinct types of correct and error trials were segregated for analysis. fMRI data indicated that prefrontal activation was increased during WM maintenance on correct trials in both schizophrenic and healthy subjects. However, a significant difference was observed in the functional asymmetry of frontal activation pattern. Healthy subjects showed increased activation in the right frontal, temporal and cingulate regions. Schizophrenic patients showed greater activation compared with control subjects in left frontal, temporal and parietal regions as well as in right frontal regions. We also observed increased ‘false memory’ errors in schizophrenic patients, associated with increased prefrontal activation and resembling the activation pattern observed on the correct trials. NIRS data replicated the fMRI results. Thus, increased frontal activity was correlated with the accuracy of WM in both healthy control and schizophrenic participants. The major difference between the two groups concerned functional asymmetry; healthy subjects recruited right frontal regions during spatial WM maintenance whereas schizophrenic subjects recruited a wider network in both hemispheres to achieve the same level of memory performance. Increased “false memory” errors and accompanying bilateral prefrontal activation in schizophrenia suggest that the

  16. Single trial classification for the categories of perceived emotional facial expressions: an event-related fMRI study

    NASA Astrophysics Data System (ADS)

    Song, Sutao; Huang, Yuxia; Long, Zhiying; Zhang, Jiacai; Chen, Gongxiang; Wang, Shuqing

    2016-03-01

    Recently, several studies have successfully applied multivariate pattern analysis methods to predict the categories of emotions. These studies are mainly focused on self-experienced emotions, such as the emotional states elicited by music or movie. In fact, most of our social interactions involve perception of emotional information from the expressions of other people, and it is an important basic skill for humans to recognize the emotional facial expressions of other people in a short time. In this study, we aimed to determine the discriminability of perceived emotional facial expressions. In a rapid event-related fMRI design, subjects were instructed to classify four categories of facial expressions (happy, disgust, angry and neutral) by pressing different buttons, and each facial expression stimulus lasted for 2s. All participants performed 5 fMRI runs. One multivariate pattern analysis method, support vector machine was trained to predict the categories of facial expressions. For feature selection, ninety masks defined from anatomical automatic labeling (AAL) atlas were firstly generated and each were treated as the input of the classifier; then, the most stable AAL areas were selected according to prediction accuracies, and comprised the final feature sets. Results showed that: for the 6 pair-wise classification conditions, the accuracy, sensitivity and specificity were all above chance prediction, among which, happy vs. neutral , angry vs. disgust achieved the lowest results. These results suggested that specific neural signatures of perceived emotional facial expressions may exist, and happy vs. neutral, angry vs. disgust might be more similar in information representation in the brain.

  17. How Brooding Minds Inhibit Negative Material: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Vanderhasselt, Marie-Anne; Baeken, Chris; Van Schuerbeek, Peter; Luypaert, Rob; De Mey, Johan; De Raedt, Rudi

    2013-01-01

    Depressive brooding--a passive ruminative focus on one's problems, negative mood and their consequences--is a thinking style that places individuals at a greater risk to develop future psychopathology. In this study, we investigated whether inter-individual differences in depressive brooding are related to neural differences underlying the…

  18. How brooding minds inhibit negative material: an event-related fMRI study.

    PubMed

    Vanderhasselt, Marie-Anne; Baeken, Chris; Van Schuerbeek, Peter; Luypaert, Rob; De Mey, Johan; De Raedt, Rudi

    2013-04-01

    Depressive brooding - a passive ruminative focus on one's problems, negative mood and their consequences - is a thinking style that places individuals at a greater risk to develop future psychopathology. In this study, we investigated whether inter-individual differences in depressive brooding are related to neural differences underlying the inhibition of a dominant response towards negative information in favor of the concurrent (positive) response. To exclude the possibility that information processes would be confounded by sustained negative mood or enhanced stress responses, a sample of thirty never-depressed healthy individuals was selected. The Cued Emotional Control Task (CECT) was used to index the ability to enhance cognitive control when encountering a negative stimulus associated with an incompatible stimulus-response mapping. Individual brooding scores were not related to behavioral performances on the CECT. On the other hand, whole brain analyses demonstrated that trait depressive brooding scores were positively associated with activation in the posterior parts of the dorsal anterior cingulate cortex (pdACC) while successfully inhibiting a response to negative relative to positive information. These findings demonstrate that brooding minds need to recruit more pdACC activation when inhibiting a dominant response towards negative information (in favor of a response towards positive), although they are performing similarly as low brooders at the behavioral level. Future research should investigate whether and how these brooding related neural adjustments in healthy volunteers are related to future psychopathology. PMID:23485025

  19. Effects of Aversive Stimuli on Prospective Memory. An Event-Related fMRI Study

    PubMed Central

    Rea, Massimiliano; Kullmann, Stephanie; Veit, Ralf; Casile, Antonino; Braun, Christoph; Belardinelli, Marta Olivetti; Birbaumer, Niels; Caria, Andrea

    2011-01-01

    Prospective memory (PM) describes the ability to execute a previously planned action at the appropriate point in time. Although behavioral studies clearly showed that prospective memory performance is affected by the emotional significance attributed to the intended action, no study so far investigated the brain mechanisms subserving the modulatory effect of emotional salience on PM performance. The general aim of the present study was to explore brain regions involved in prospective memory processes when PM cues are associated with emotional stimuli. In particular, based on the hypothesised critical role of the prefrontal cortex in prospective memory in the presence of emotionally salient stimuli, we expected a stronger involvement of aPFC when the retrieval and execution of the intended action is cued by an aversive stimulus. To this aim BOLD responses of PM trials cued by aversive facial expressions were compared to PM trials cued by neutral facial expressions. Whole brain analysis showed that PM task cued by aversive stimuli is differentially associated with activity in the right lateral prefrontal area (BA 10) and in the left caudate nucleus. Moreover a temporal shift between the response of the caudate nucleus that preceded that of aPFC was observed. These findings suggest that the caudate nucleus might provide an early analysis of the affective properties of the stimuli, whereas the anterior lateral prefrontal cortex (BA10) would be involved in a slower and more deliberative analysis to guide goal-directed behaviour. PMID:22022589

  20. Neuroanatomical Correlates of Malingered Memory Impairment: Event-related fMRI of Deception on a Recognition Memory Task

    PubMed Central

    Browndyke, Jeffrey N.; Paskavitz, James; Sweet, Lawrence H.; Cohen, Ronald A.; Tucker, Karen A.; Welsh-Bohmer, Kathleen A.; Burke, James R.; Schmechel, Donald E.

    2010-01-01

    Primary objective Event-related, functional magnetic resonance imaging (fMRI) data were acquired in healthy participants during purposefully malingered and normal recognition memory performances to evaluate the neural substrates of feigned memory impairment. Methods and procedures Pairwise, between-condition contrasts of neural activity associated with discrete recognition memory responses were conducted to isolate dissociable neural activity between normal and malingered responding while simultaneously controlling for shared stimulus familiarity and novelty effects. Response timing characteristics were also examined for any association with observed between-condition activity differences. Outcomes and results Malingered recognition memory errors, regardless of type, were associated with inferior parietal and superior temporal activity relative to normal performance, while feigned recognition target misses produced additional dorsomedial frontal activation and feigned foil false alarms activated bilateral ventrolateral frontal regions. Malingered response times were associated with activity in the dorsomedial frontal, temporal, and inferior parietal regions. Normal memory responses were associated with greater inferior occipitotemporal and dorsomedial parietal activity, suggesting greater reliance upon visual/attentional networks for proper task performance. Conclusions The neural substrates subserving feigned recognition memory deficits are influenced by response demand and error type, producing differential activation of cortical regions important to complex visual processing, executive control, response planning, and working memory processes. PMID:18465389

  1. Emotional and temporal aspects of situation model processing during text comprehension: an event-related fMRI study.

    PubMed

    Ferstl, Evelyn C; Rinck, Mike; von Cramon, D Yves

    2005-05-01

    Language comprehension in everyday life requires the continuous integration of prior discourse context and general world knowledge with the current utterance or sentence. In the neurolinguistic literature, these so-called situation model building processes have been ascribed to the prefrontal cortex or to the right hemisphere. In this study, we use whole-head event-related fMRI to directly map the neural correlates of narrative comprehension in context. While being scanned using a spin-echo sequence, 20 participants listened to 32 short stories, half of which contained globally inconsistent information. The inconsistencies concerned either temporal or chronological information or the emotional status of the protagonist. Hearing an inconsistent word elicited activation in the right anterior temporal lobe. The comparison of different information aspects revealed activation in the left precuneus and a bilateral frontoparietal network for chronological information. Emotional information elicited activation in the ventromedial prefrontal cortex and the extended amygdaloid complex. In addition, the integration of inconsistent emotional information engaged the dorsal frontomedial cortex (Brodmann's area 8/9), whereas the integration of inconsistent temporal information required the lateral prefrontal cortex bilaterally. These results indicate that listening to stories can elicit activation reflecting content-specific processes. Furthermore, updating of the situation model is not a unitary process but it also depends on the particular requirements of the text. The right hemisphere contributes to language processing in context, but equally important are the left medial and bilateral prefrontal cortices. PMID:15904540

  2. Fast joint detection-estimation of evoked brain activity in event-related FMRI using a variational approach

    PubMed Central

    Chaari, Lotfi; Vincent, Thomas; Forbes, Florence; Dojat, Michel; Ciuciu, Philippe

    2013-01-01

    In standard within-subject analyses of event-related fMRI data, two steps are usually performed separately: detection of brain activity and estimation of the hemodynamic response. Because these two steps are inherently linked, we adopt the so-called region-based Joint Detection-Estimation (JDE) framework that addresses this joint issue using a multivariate inference for detection and estimation. JDE is built by making use of a regional bilinear generative model of the BOLD response and constraining the parameter estimation by physiological priors using temporal and spatial information in a Markovian model. In contrast to previous works that use Markov Chain Monte Carlo (MCMC) techniques to sample the resulting intractable posterior distribution, we recast the JDE into a missing data framework and derive a Variational Expectation-Maximization (VEM) algorithm for its inference. A variational approximation is used to approximate the Markovian model in the unsupervised spatially adaptive JDE inference, which allows automatic fine-tuning of spatial regularization parameters. It provides a new algorithm that exhibits interesting properties in terms of estimation error and computational cost compared to the previously used MCMC-based approach. Experiments on artificial and real data show that VEM-JDE is robust to model mis-specification and provides computational gain while maintaining good performance in terms of activation detection and hemodynamic shape recovery. PMID:23096056

  3. Functionally integrated neural processing of linguistic and talker information: An event-related fMRI and ERP study.

    PubMed

    Zhang, Caicai; Pugh, Kenneth R; Mencl, W Einar; Molfese, Peter J; Frost, Stephen J; Magnuson, James S; Peng, Gang; Wang, William S-Y

    2016-01-01

    Speech signals contain information of both linguistic content and a talker's voice. Conventionally, linguistic and talker processing are thought to be mediated by distinct neural systems in the left and right hemispheres respectively, but there is growing evidence that linguistic and talker processing interact in many ways. Previous studies suggest that talker-related vocal tract changes are processed integrally with phonetic changes in the bilateral posterior superior temporal gyrus/superior temporal sulcus (STG/STS), because the vocal tract parameter influences the perception of phonetic information. It is yet unclear whether the bilateral STG is also activated by the integral processing of another parameter - pitch, which influences the perception of lexical tone information and is related to talker differences in tone languages. In this study, we conducted separate functional magnetic resonance imaging (fMRI) and event-related potential (ERP) experiments to examine the spatial and temporal loci of interactions of lexical tone and talker-related pitch processing in Cantonese. We found that the STG was activated bilaterally during the processing of talker changes when listeners attended to lexical tone changes in the stimuli and during the processing of lexical tone changes when listeners attended to talker changes, suggesting that lexical tone and talker processing are functionally integrated in the bilateral STG. It extends the previous study, providing evidence for a general neural mechanism of integral phonetic and talker processing in the bilateral STG. The ERP results show interactions of lexical tone and talker processing 500-800ms after auditory word onset (a simultaneous posterior P3b and a frontal negativity). Moreover, there is some asymmetry in the interaction, such that unattended talker changes affect linguistic processing more than vice versa, which may be related to the ambiguity that talker changes cause in speech perception and/or attention bias

  4. Frontolimbic dysfunction in response to facial emotion in borderline personality disorder: an event-related fMRI study

    PubMed Central

    Minzenberg, Michael J.; Fan, Jin; New, Antonia S.; Tang, Cheuk Y.; Siever, Larry J.

    2007-01-01

    Clinical hallmarks of borderline personality disorder (BPD) include social and emotional dysregulation. We tested a model of frontolimbic dysfunction in facial emotion processing in BPD. Groups of 12 unmedicated adults with BPD by DSM-IV and 12 demographically-matched healthy controls (HC) viewed facial expressions (Conditions) of neutral emotion, fear and anger, and made gender discriminations during rapid event-related functional magnetic resonance imaging (fMRI). Analysis of variance of Region of Interest signal change revealed a statistically significant effect of the Group-by-Region-by-Condition interaction. This was due to the BPD group exhibiting a significantly larger magnitude of deactivation (relative to HC) in the bilateral rostral/subgenual anterior cingulate cortex (ACC) to fear and in the left ACC to fear minus neutral; and significantly greater activation in the right amygdala to fear minus neutral. There were no significant between-group differences in ROI signal change in response to anger. In voxel-wise analyses constrained within these ROIs, the BPD group exhibited significant changes in the fear minus neutral contrast, with relatively less activation in the bilateral rostral/subgenual ACC, and greater activation in the right amygdala. In the anger minus neutral contrast this pattern was reversed, with the BPD group showing greater activation in the bilateral rostral/subgenual ACC and less activation in the bilateral amygdala. We conclude that adults with BPD exhibit changes in fronto-limbic activity in the processing of fear stimuli, with exaggerated amygdala response and impaired emotion-modulation of ACC activity. The neural substrates underlying processing of anger may also be altered. These changes may represent an expression of the volumetric and serotonergic deficits observed in these brain areas in BPD. PMID:17601709

  5. The functional organization of trial-related activity in lexical processing after early left hemispheric brain lesions: An event-related fMRI study

    PubMed Central

    Fair, Damien A.; Choi, Alexander H.; Dosenbach, Yannic B.L.; Coalson, Rebecca S.; Miezin, Francis M.; Petersen, Steven E.; Schlaggar, Bradley L.

    2009-01-01

    Children with congenital left hemisphere damage due to perinatal stroke are capable of acquiring relatively normal language functions despite experiencing a cortical insult that in adults often leads to devastating lifetime disabilities. Although this observed phenomenon accepted, its neurobiological mechanisms are not well characterized. In this paper we examined the functional neuroanatomy of lexical processing in 13 children/adolescents with perinatal left hemispheric damage. In contrast to many previous perinatal infarct fMRI studies, we use an event-related design, which allowed us to isolate trial related activity and examine correct and error trials separately. Using both group and single subject analysis techniques we attempt to address several methodological factors that may contribute to some discrepancies in the perinatal lesion literature. These methodological factors include making direct statistical comparisons, using common stereotactic space, using both single-subject and group analyses, and accounting for performance differences. Our group analysis, investigating correct trial related activity (separately from error trials), showed very few statistical differences in the non-involved right hemisphere between patients and performance matched controls. The single subject analysis revealed atypical regional activation patterns in several patients; however, the location of these regions identified in individual patients often varied across subjects. These results are consistent with the idea that alternative functional organization of trial-related activity after left hemisphere lesions is in large part unique to the individual. In addition, reported differences between results obtained with event-related designs and blocked designs may suggest diverging organizing principles for sustained and trial-related activity after early childhood brain injuries. PMID:19819000

  6. Event-related fMRI studies of false memory: An Activation Likelihood Estimation meta-analysis.

    PubMed

    Kurkela, Kyle A; Dennis, Nancy A

    2016-01-29

    Over the last two decades, a wealth of research in the domain of episodic memory has focused on understanding the neural correlates mediating false memories, or memories for events that never happened. While several recent qualitative reviews have attempted to synthesize this literature, methodological differences amongst the empirical studies and a focus on only a sub-set of the findings has limited broader conclusions regarding the neural mechanisms underlying false memories. The current study performed a voxel-wise quantitative meta-analysis using activation likelihood estimation to investigate commonalities within the functional magnetic resonance imaging (fMRI) literature studying false memory. The results were broken down by memory phase (encoding, retrieval), as well as sub-analyses looking at differences in baseline (hit, correct rejection), memoranda (verbal, semantic), and experimental paradigm (e.g., semantic relatedness and perceptual relatedness) within retrieval. Concordance maps identified significant overlap across studies for each analysis. Several regions were identified in the general false retrieval analysis as well as multiple sub-analyses, indicating their ubiquitous, yet critical role in false retrieval (medial superior frontal gyrus, left precentral gyrus, left inferior parietal cortex). Additionally, several regions showed baseline- and paradigm-specific effects (hit/perceptual relatedness: inferior and middle occipital gyrus; CRs: bilateral inferior parietal cortex, precuneus, left caudate). With respect to encoding, analyses showed common activity in the left middle temporal gyrus and anterior cingulate cortex. No analysis identified a common cluster of activation in the medial temporal lobe. PMID:26683385

  7. Re-Evaluating Dissociations between Implicit and Explicit Category Learning: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Gureckis, Todd M.; James, Thomas W.; Nosofsky, Robert M.

    2011-01-01

    Recent fMRI studies have found that distinct neural systems may mediate perceptual category learning under implicit and explicit learning conditions. In these previous studies, however, different stimulus-encoding processes may have been associated with implicit versus explicit learning. The present design was aimed at decoupling the influence of…

  8. Quantifying learning-dependent changes in the brain: Single-trial multivoxel pattern analysis requires slow event-related fMRI.

    PubMed

    Visser, Renée M; de Haan, Michelle I C; Beemsterboer, Tinka; Haver, Pia; Kindt, Merel; Scholte, H Steven

    2016-08-01

    Single-trial analysis is particularly useful for assessing cognitive processes that are intrinsically dynamic, such as learning. Studying these processes with fMRI is problematic, as the low signal-to-noise ratio of fMRI requires the averaging over multiple trials, obscuring trial-by-trial changes in neural activation. The superior sensitivity of multivoxel pattern analysis over univariate analyses has opened up new possibilities for single-trial analysis, but this may require different fMRI designs. Here, we measured fMRI and pupil dilation responses during discriminant aversive conditioning, to assess associative learning in a trial-by-trial manner. The impact of design choices was examined by varying trial spacing and trial order in a series of five experiments (total n = 66), while keeping stimulus duration constant (4.5 s). Our outcome measure was the change in similarity between neural response patterns related to two consecutive presentations of the same stimulus (within-stimulus) and between patterns related to pairs of different stimuli (between-stimulus) that shared a specific outcome (electric stimulation vs. no consequence). This trial-by-trial similarity analysis revealed clear single-trial learning curves in conditions with intermediate (8.1-12.6 s) and long (16.5-18.4 s) intervals, with effects being strongest in designs with long intervals and counterbalanced stimulus presentation. No learning curves were observed in designs with shorter intervals (1.6-6.1 s), indicating that rapid event-related designs-at present, the most common designs in fMRI research-are not suited for single-trial pattern analysis. These findings emphasize the importance of deciding on the type of analysis prior to data collection. PMID:27153295

  9. Pain and non-pain processing during hypnosis: a thulium-YAG event-related fMRI study.

    PubMed

    Vanhaudenhuyse, A; Boly, M; Balteau, E; Schnakers, C; Moonen, G; Luxen, A; Lamy, M; Degueldre, C; Brichant, J F; Maquet, P; Laureys, S; Faymonville, M E

    2009-09-01

    The neural mechanisms underlying the antinociceptive effects of hypnosis still remain unclear. Using a parametric single-trial thulium-YAG laser fMRI paradigm, we assessed changes in brain activation and connectivity related to the hypnotic state as compared to normal wakefulness in 13 healthy volunteers. Behaviorally, a difference in subjective ratings was found between normal wakefulness and hypnotic state for both non-painful and painful intensity-matched stimuli applied to the left hand. In normal wakefulness, non-painful range stimuli activated brainstem, contralateral primary somatosensory (S1) and bilateral insular cortices. Painful stimuli activated additional areas encompassing thalamus, bilateral striatum, anterior cingulate (ACC), premotor and dorsolateral prefrontal cortices. In hypnosis, intensity-matched stimuli in both the non-painful and painful range failed to elicit any cerebral activation. The interaction analysis identified that contralateral thalamus, bilateral striatum and ACC activated more in normal wakefulness compared to hypnosis during painful versus non-painful stimulation. Finally, we demonstrated hypnosis-related increases in functional connectivity between S1 and distant anterior insular and prefrontal cortices, possibly reflecting top-down modulation. PMID:19460446

  10. Event-Related Fmri Evidence of Frontotemporal Involvement in Aberrant Response Inhibition and Task Switching in Attention-Deficit/hyperactivity Disorder.

    ERIC Educational Resources Information Center

    Tamm, Leanne; Menon, Vinod; Ringel, Jessica; Reiss, Allan L.

    2004-01-01

    Objective: Response inhibition deficits are characteristic of individuals with attention-deficit/hyperactivity disorder (ADHD). Previous functional magnetic resonance imaging (fMRI) studies investigating the neural correlates of this dysfunction have used block designs, making it difficult to disentangle activation differences specifically related…

  11. The Temporal Lobes Differentiate between the Voices of Famous and Unknown People: An Event-Related fMRI Study on Speaker Recognition

    PubMed Central

    Bethmann, Anja; Scheich, Henning; Brechmann, André

    2012-01-01

    It is widely accepted that the perception of human voices is supported by neural structures located along the superior temporal sulci. However, there is an ongoing discussion to what extent the activations found in fMRI studies are evoked by the vocal features themselves or are the result of phonetic processing. To show that the temporal lobes are indeed engaged in voice processing, short utterances spoken by famous and unknown people were presented to healthy young participants whose task it was to identify the familiar speakers. In two event-related fMRI experiments, the temporal lobes were found to differentiate between familiar and unfamiliar voices such that named voices elicited higher BOLD signal intensities than unfamiliar voices. Yet, the temporal cortices did not only discriminate between familiar and unfamiliar voices. Experiment 2, which required overtly spoken responses and allowed to distinguish between four familiarity grades, revealed that there was a fine-grained differentiation between all of these familiarity levels with higher familiarity being associated with larger BOLD signal amplitudes. Finally, we observed a gradual response change such that the BOLD signal differences between unfamiliar and highly familiar voices increased with the distance of an area from the transverse temporal gyri, especially towards the anterior temporal cortex and the middle temporal gyri. Therefore, the results suggest that (the anterior and non-superior portions of) the temporal lobes participate in voice-specific processing independent from phonetic components also involved in spoken speech material. PMID:23112826

  12. Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis.

    PubMed

    Abdulrahman, Hunar; Henson, Richard N

    2016-01-15

    Functional magnetic resonance imaging (fMRI) studies typically employ rapid, event-related designs for behavioral reasons and for reasons associated with statistical efficiency. Efficiency is calculated from the precision of the parameters (Betas) estimated from a General Linear Model (GLM) in which trial onsets are convolved with a Hemodynamic Response Function (HRF). However, previous calculations of efficiency have ignored likely variability in the neural response from trial to trial, for example due to attentional fluctuations, or different stimuli across trials. Here we compare three GLMs in their efficiency for estimating average and individual Betas across trials as a function of trial variability, scan noise and Stimulus Onset Asynchrony (SOA): "Least Squares All" (LSA), "Least Squares Separate" (LSS) and "Least Squares Unitary" (LSU). Estimation of responses to individual trials in particular is important for both functional connectivity using "Beta-series correlation" and "multi-voxel pattern analysis" (MVPA). Our simulations show that the ratio of trial-to-trial variability to scan noise impacts both the optimal SOA and optimal GLM, especially for short SOAs<5s: LSA is better when this ratio is high, whereas LSS and LSU are better when the ratio is low. For MVPA, the consistency across voxels of trial variability and of scan noise is also critical. These findings not only have important implications for design of experiments using Beta-series regression and MVPA, but also statistical parametric mapping studies that seek only efficient estimation of the mean response across trials. PMID:26549299

  13. Effect of trial-to-trial variability on optimal event-related fMRI design: Implications for Beta-series correlation and multi-voxel pattern analysis

    PubMed Central

    Abdulrahman, Hunar; Henson, Richard N.

    2016-01-01

    Functional magnetic resonance imaging (fMRI) studies typically employ rapid, event-related designs for behavioral reasons and for reasons associated with statistical efficiency. Efficiency is calculated from the precision of the parameters (Betas) estimated from a General Linear Model (GLM) in which trial onsets are convolved with a Hemodynamic Response Function (HRF). However, previous calculations of efficiency have ignored likely variability in the neural response from trial to trial, for example due to attentional fluctuations, or different stimuli across trials. Here we compare three GLMs in their efficiency for estimating average and individual Betas across trials as a function of trial variability, scan noise and Stimulus Onset Asynchrony (SOA): “Least Squares All” (LSA), “Least Squares Separate” (LSS) and “Least Squares Unitary” (LSU). Estimation of responses to individual trials in particular is important for both functional connectivity using “Beta-series correlation” and “multi-voxel pattern analysis” (MVPA). Our simulations show that the ratio of trial-to-trial variability to scan noise impacts both the optimal SOA and optimal GLM, especially for short SOAs < 5 s: LSA is better when this ratio is high, whereas LSS and LSU are better when the ratio is low. For MVPA, the consistency across voxels of trial variability and of scan noise is also critical. These findings not only have important implications for design of experiments using Beta-series regression and MVPA, but also statistical parametric mapping studies that seek only efficient estimation of the mean response across trials. PMID:26549299

  14. Sex differences in the response to emotional distraction: an event-related fMRI investigation.

    PubMed

    Iordan, Alexandru D; Dolcos, Sanda; Denkova, Ekaterina; Dolcos, Florin

    2013-03-01

    Evidence has suggested that women have greater emotional reactivity than men. However, it is unclear whether these differences in basic emotional responses are also associated with differences in emotional distractibility, and what the neural mechanisms that implement differences in emotional distractibility between women and men are. Functional MRI recording was used in conjunction with a working memory (WM) task, with emotional distraction (angry faces) presented during the interval between the memoranda and the probes. First, we found an increased impact of emotional distraction among women in trials associated with high-confidence responses, in the context of overall similar WM performance in women and men. Second, women showed increased sensitivity to emotional distraction in brain areas associated with "hot" emotional processing, whereas men showed increased sensitivity in areas associated with "cold" executive processing, in the context of overall similar patterns of response to emotional distraction in women and men. Third, a sex-related dorsal-ventral hemispheric dissociation emerged in the lateral PFC related to coping with emotional distraction, with women showing a positive correlation with WM performance in left ventral PFC, and men showing similar effects in the right dorsal PFC. In addition to extending to men results that have previously been reported in women, by showing that both sexes engage mechanisms that are similar overall in response to emotional distraction, the present study identifies sex differences in both the response to and coping with emotional distraction. These results have implications for understanding sex differences in the susceptibility to affective disorders, in which basic emotional responses, emotional distractibility, and coping abilities are altered. PMID:23293019

  15. Motor Readiness Increases Brain Connectivity Between Default-Mode Network and Motor Cortex: Impact on Sampling Resting Periods from fMRI Event-Related Studies.

    PubMed

    Bazán, Paulo Rodrigo; Biazoli, Claudinei Eduardo; Sato, João Ricardo; Amaro, Edson

    2015-12-01

    The default-mode network (DMN) has been implicated in many conditions. One particular function relates to its role in motor preparation. However, the possibly complex relationship between DMN activity and motor preparation has not been fully explored. Dynamic interactions between default mode and motor networks may compromise the ability to evaluate intrinsic connectivity using resting period data extracted from task-based experiments. In this study, we investigated alterations in connectivity between the DMN and the motor network that are associated with motor readiness during the intervals between motor task trials. fMRI data from 20 normal subjects were acquired under three conditions: pure resting state; resting state interleaved with brief, cued right-hand movements at constant intervals (lower readiness); and resting state interleaved with the same movements at unpredictable intervals (higher readiness). The functional connectivity between regions of motor and DMNs was assessed separately for movement periods and intertask intervals. We found a negative relationship between the DMN and the left sensorimotor cortex during the task periods for both motor conditions. Furthermore, during the intertask intervals of the unpredictable condition, the DMN showed a positive relationship with right sensorimotor cortex and a negative relation with the left sensorimotor cortex. These findings indicate a specific modulation on motor processing according to the state of motor readiness. Therefore, connectivity studies using task-based fMRI to probe DMN should consider the influence of motor system modulation when interpreting the results. PMID:26414865

  16. An Event-Related Potential Investigation of Fear Generalization and Intolerance of Uncertainty.

    PubMed

    Nelson, Brady D; Weinberg, Anna; Pawluk, Joe; Gawlowska, Magda; Proudfit, Greg H

    2015-09-01

    Fear generalization is a key process in the development and maintenance of anxiety disorders. Psychobiological investigations of fear generalization have predominantly focused on defensive system activation (e.g., startle reflex), and it is unclear whether aberrant attentional processing contributes to fear generalization. The late positive potential (LPP) is an event-related potential component that indexes sustained attention and elaborative processing of motivationally salient information, and is larger in response to arousing compared to nonarousing stimuli. In the present study 48 participants completed a fear generalization paradigm using electric shocks. The LPP and retrospective risk ratings of shock likelihood were measured in response to the conditioned stimulus (CS+) and multiple generalization stimuli (GS) that varied in perceptual similarity to the CS+. In addition, intolerance of uncertainty (IU) was examined in relation to fear generalization. The LPP was enhanced for the CS+relative to the GS, but the GS did not differ from one another. Thus, overall the LPP did not reflect fear generalization. However, the LPP to the GS differed as a function of IU, such that high Prospective IU was associated with an attenuated LPP to the GS, and this was independent of trait anxiety. Risk ratings tracked fear generalization irrespective of IU. We discuss the potential influence of IU and attentional processing on fear generalization. Overall, the present study supports the LPP as a useful tool for examining individual differences in fear generalization. PMID:26459846

  17. Investigating letter recognition in the brain by varying typeface: an event-related potential study.

    PubMed

    Keage, Hannah A D; Coussens, Scott; Kohler, Mark; Thiessen, Myra; Churches, Owen F

    2014-07-01

    We aimed to investigate the contributions of visual letter form and abstract letter identity to the time course of letter recognition, by manipulating the typeface (i.e. font) in which letters were presented. Twenty-six adult participants completed a modified one-back task, where letters where presented in easy-to-read typefaces ("fluent" letter stimuli) or difficult-to-read typefaces ("disfluent" letter stimuli). Task instructions necessitated that participant's focus on letter identity not visual letter form. Electroencephalography was collected and event-related potentials (ERPs) were calculated relative to letter stimuli. It was found that typeface affected both early-mid (N1 amplitude and P2-N2 amplitude and latency) and late processing (450-600ms), thereby including time points whereby it is theorised that abstract identity is extracted from visual letter form (that is, 300ms post-stimulus). Visual features of the letter therefore affect its processing well beyond the currently theorised point at which abstract information is extracted; which could be explained by a feedback loop between abstract letter representations and lower-level visual form processing units, which is not included in current cognitive reading models. PMID:24880492

  18. An event-related potential investigation of sentence processing in adults who stutter.

    PubMed

    Murase, Shinobu; Kawashima, Takashi; Satake, Hirotaka; Era, Seiichi

    2016-05-01

    The purpose of this study was to investigate characteristics of the semantic processing of sentences' final verbs in stutterers using event-related potential (ERP). ERPs elicited from semantically violating and non-violating verbs in Japanese sentences were compared between 13 adults who stutter (AWS) and 13 adults who do not stutter (AWNS). The stimulus sentences elicited the N400 and the late positive component (LPC) in both groups. The amplitude of the N400, however, was attenuated in AWS. Regarding the LPC, the LPC in the 450-700ms time window (the early LPC) was evident in both groups, but the LPC in the 700-850 time window (the late LPC) was only apparent in AWS. Because AWS judged sentence congruency as accurately as AWNS did, it is assumed that AWS depended more on the LPC for semantic processing, resulting in the enhancement of the late LPC. We speculate that semantic processing of sentences for AWS is more time consuming than that for AWNS. PMID:26477716

  19. Implicit and Explicit Measures of Sensitivity to Violations in Second Language Grammar: An Event-Related Potential Investigation

    ERIC Educational Resources Information Center

    Tokowicz, Natasha; MacWhinney, Brian

    2005-01-01

    We used event-related brain potentials (ERPs) to investigate the contributions of explicit and implicit processes during second language (L2) sentence comprehension. We used a L2 grammaticality judgment task (GJT) to test 20 native English speakers enrolled in the first four semesters of Spanish while recording both accuracy and ERP data. Because…

  20. An Event-Related Potential (ERP) Investigation of Filler-Gap Processing in Native and Second Language Speakers

    ERIC Educational Resources Information Center

    Dallas, Andrea; DeDe, Gayle; Nicol, Janet

    2013-01-01

    The current study employed a neuro-imaging technique, Event-Related Potentials (ERP), to investigate real-time processing of sentences containing filler-gap dependencies by late-learning speakers of English as a second language (L2) with a Chinese native language background. An individual differences approach was also taken to examine the role of…

  1. Modulation of cognitive control levels via manipulation of saccade trial-type probability assessed with event-related BOLD fMRI.

    PubMed

    Pierce, Jordan E; McDowell, Jennifer E

    2016-02-01

    Cognitive control supports flexible behavior adapted to meet current goals and can be modeled through investigation of saccade tasks with varying cognitive demands. Basic prosaccades (rapid glances toward a newly appearing stimulus) are supported by neural circuitry, including occipital and posterior parietal cortex, frontal and supplementary eye fields, and basal ganglia. These trials can be contrasted with complex antisaccades (glances toward the mirror image location of a stimulus), which are characterized by greater functional magnetic resonance imaging (MRI) blood oxygenation level-dependent (BOLD) signal in the aforementioned regions and recruitment of additional regions such as dorsolateral prefrontal cortex. The current study manipulated the cognitive demands of these saccade tasks by presenting three rapid event-related runs of mixed saccades with a varying probability of antisaccade vs. prosaccade trials (25, 50, or 75%). Behavioral results showed an effect of trial-type probability on reaction time, with slower responses in runs with a high antisaccade probability. Imaging results exhibited an effect of probability in bilateral pre- and postcentral gyrus, bilateral superior temporal gyrus, and medial frontal gyrus. Additionally, the interaction between saccade trial type and probability revealed a strong probability effect for prosaccade trials, showing a linear increase in activation parallel to antisaccade probability in bilateral temporal/occipital, posterior parietal, medial frontal, and lateral prefrontal cortex. In contrast, antisaccade trials showed elevated activation across all runs. Overall, this study demonstrated that improbable performance of a typically simple prosaccade task led to augmented BOLD signal to support changing cognitive control demands, resulting in activation levels similar to the more complex antisaccade task. PMID:26609113

  2. Individual Differences in Auditory Sentence Comprehension in Children: An Exploratory Event-Related Functional Magnetic Resonance Imaging Investigation

    PubMed Central

    Yeatman, Jason D.; Ben-Shachar, Michal; Glover, Gary H.; Feldman, Heidi M.

    2009-01-01

    The purpose of this study was to explore changes in activation of the cortical network that serves auditory sentence comprehension in children in response to increasing demands of complex sentences. A further goal is to study how individual differences in children’s receptive language abilities are associated with such changes in cortical responses. Fourteen children, 10 to 16 years old, participated in an event-related functional magnetic resonance imaging experiment using a cross modal sentence-picture verification paradigm. We manipulated sentence difficulty and length in a 2 × 2 factorial design. Task-related activation covered large regions of the left and right superior temporal cortex, inferior parietal lobe, precuneous, cingulate, middle frontal gyrus and precentral gyrus. Sentence difficulty, independent of length, led to increased activation in the left temporal-parietal junction and right superior temporal gyrus. Changes in activation in frontal regions positively correlated with age-standardized receptive vocabulary scores and negatively correlated with reaction time on a receptive grammar test outside the scanner. Thus, individual differences in language skills were associated with changes in the network in response to changing task demands. These preliminary findings in a small sample of typically developing children suggest that the investigation of individual differences may prove useful in elucidating the underlying neural mechanisms of language disorders in children. PMID:20053431

  3. An Event-Related Potential Investigation of the Effects of Age on Alerting, Orienting, and Executive Function

    PubMed Central

    Kaufman, David A. S.; Sozda, Christopher N.; Dotson, Vonetta M.; Perlstein, William M.

    2016-01-01

    The present study compared young and older adults on behavioral and neural correlates of three attentional networks (alerting, orienting, and executive control). Nineteen young and 16 older neurologically-healthy adults completed the Attention Network Test (ANT) while behavioral data (reaction time and error rates) and 64-channel event-related potentials (ERPs) were acquired. Significant age-related RT differences were observed across all three networks; however, after controlling for generalized slowing, only the alerting network remained significantly reduced in older compared with young adults. ERP data revealed that alerting cues led to enhanced posterior N1 responses for subsequent attentional targets in young adults, but this effect was weakened in older adults. As a result, it appears that older adults did not benefit fully from alerting cues, and their lack of subsequent attentional enhancements may compromise their ability to be as responsive and flexible as their younger counterparts. N1 alerting deficits were associated with several key neuropsychological tests of attention that were difficult for older adults. Orienting and executive attention networks were largely similar between groups. Taken together, older adults demonstrated behavioral and neural alterations in alerting, however, they appeared to compensate for this reduction, as they did not significantly differ in their abilities to use spatially informative cues to aid performance (e.g., orienting), or successfully resolve response conflict (e.g., executive control). These results have important implications for understanding the mechanisms of age-related changes in attentional networks. PMID:27242511

  4. When encoding yields remembering: insights from event-related neuroimaging.

    PubMed Central

    Wagner, A D; Koutstaal, W; Schacter, D L

    1999-01-01

    To understand human memory, it is important to determine why some experiences are remembered whereas others are forgotten. Until recently, insights into the neural bases of human memory encoding, the processes by which information is transformed into an enduring memory trace, have primarily been derived from neuropsychological studies of humans with select brain lesions. The advent of functional neuroimaging methods, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI), has provided a new opportunity to gain additional understanding of how the brain supports memory formation. Importantly, the recent development of event-related fMRI methods now allows for examination of trial-by-trial differences in neural activity during encoding and of the consequences of these differences for later remembering. In this review, we consider the contributions of PET and fMRI studies to the understanding of memory encoding, placing a particular emphasis on recent event-related fMRI studies of the Dm effect: that is, differences in neural activity during encoding that are related to differences in subsequent memory. We then turn our attention to the rich literature on the Dm effect that has emerged from studies using event-related potentials (ERPs). It is hoped that the integration of findings from ERP studies, which offer higher temporal resolution, with those from event-related fMRI studies, which offer higher spatial resolution, will shed new light on when and why encoding yields subsequent remembering. PMID:10466153

  5. Auditory Verb Perception Recruits Motor Systems in the Developing Brain: An fMRI Investigation

    ERIC Educational Resources Information Center

    James, Karin Harman; Maouene, Josita

    2009-01-01

    This study investigated neural activation patterns during verb processing in children, using fMRI (functional Magnetic Resonance Imaging). Preschool children (aged 4-6) passively listened to lists of verbs and adjectives while neural activation was measured. Findings indicated that verbs were processed differently than adjectives, as the verbs…

  6. Investigating the impact of parental status and depression symptoms on the early perceptual coding of infant faces: an event-related potential study.

    PubMed

    Noll, Laura K; Mayes, Linda C; Rutherford, Helena J V

    2012-01-01

    Infant faces are highly salient social stimuli that appear to elicit intuitive parenting behaviors in healthy adult women. Behavioral and observational studies indicate that this effect may be modulated by experiences of reproduction, caregiving, and psychiatric symptomatology that affect normative attention and reward processing of infant cues. However, relatively little is known about the neural correlates of these effects. Using the event-related potential (ERP) technique, this study investigated the impact of parental status (mother, non-mother) and depression symptoms on early visual processing of infant faces in a community sample of adult women. Specifically, the P1 and N170 ERP components elicited in response to infant face stimuli were examined. While characteristics of the N170 were not modulated by parental status, a statistically significant positive correlation was observed between depression symptom severity and N170 amplitude. This relationship was not observed for the P1. These results suggest that depression symptoms may modulate early neurophysiological responsiveness to infant cues, even at sub-clinical levels. PMID:22435403

  7. Experience of negative emotions in Parkinson’s disease: An fMRI investigation

    PubMed Central

    Schienle, Anne; Ille, Rottraut; Wabnegger, Albert

    2015-01-01

    Objective Amygdala abnormalities have been discussed as a possible mechanism underlying reduced reactivity to negative stimuli in Parkinson’s disease (PD). Methods The present investigation used functional magnetic resonance imaging (fMRI) in order to test this hypothesis. We compared brain activation of 17 nondepressed and nondemented PD patients with 22 healthy controls during the elicitation of negative affective states. The patients suffered from moderate motor symptoms for an average of 75 months and had stopped their antiparkinson medication 10–12 h prior to the fMRI testing. All participants were shown images which depicted disgusting, fear-relevant and neutral contents and they answered self-report scales for the assessment of disgust proneness and trait anxiety. Results Both groups did not differ from each other in affective state and trait ratings. In line with the self-report, the fMRI data showed similar activation (including the amygdala) in both groups during disgust and fear elicitation. Conclusion This fMRI investigation found no indication of diminished disgust and fear experience in PD. Significance: Previously reported affective processing deficits in PD might be due to insufficiently controlled confounding variables (medication, depression, cognitive impairment). PMID:26497912

  8. Using fMRI to Investigate Memory in Young Children Born Small for Gestational Age

    PubMed Central

    de Bie, Henrica M. A.; de Ruiter, Michiel B.; Ouwendijk, Mieke; Oostrom, Kim J.; Wilke, Marko; Boersma, Maria

    2015-01-01

    Objectives Intrauterine growth restriction (IUGR) can lead to infants being born small for gestational age (SGA). SGA is associated with differences in brain anatomy and impaired cognition. We investigated learning and memory in children born SGA using neuropsychological testing and functional Magnetic Resonance Imaging (fMRI). Study Design 18 children born appropriate for gestational age (AGA) and 34 SGA born children (18 with and 16 without postnatal catch-up growth) participated in this study. All children were between 4 and 7 years old. Cognitive functioning was assessed by IQ and memory testing (Digit/Word Span and Location Learning). A newly developed fMRI picture encoding task was completed by all children in order to assess brain regions involved in memory processes. Results Neuropsychological testing demonstrated that SGA children had IQ’s within the normal range but lower than in AGA and poorer performances across measures of memory. Using fMRI, we observed memory related activity in posterior parahippocampal gyrus as well as the hippocampus proper. Additionally, activation was seen bilaterally in the prefrontal gyrus. Children born SGA showed less activation in the left parahippocampal region compared to AGA. Conclusions This is the first fMRI study demonstrating different brain activation patterns in 4-7 year old children born SGA, suggesting that intrauterine growth restriction continues to affect neural functioning in children later-on. PMID:26132815

  9. Combining a semantic differential with fMRI to investigate brands as cultural symbols

    PubMed Central

    Rotte, Michael

    2010-01-01

    Traditionally, complex cultural symbols like brands are investigated with psychological approaches. Often this is done by using semantic differentials, in which participants are asked to rate a brand regarding different pairs of adjectives. Only recently, functional magnetic resonance imaging (fMRI) has been used to examine brands. In the current work we used fMRI in combination with a semantic differential to cross-validate both methods and to improve the characterization of the basic factors constituting the semantic space. To this end we presented pictures of brands while recording subject's brain activity during an fMRI experiment. Results of the semantic differential arranged the brands in a semantic space illustrating their relationships to other cultural symbols. FMRI results revealed activation of the medial prefrontal cortex for brands that loaded high on the factor ‘social competence’, suggesting an involvement of a cortical network associated with social cognitions. In contrast, brands closely related to the factor ‘potency’ showed decreased activity in the superior frontal gyri, possibly related to working memory during task performance. We discuss the results as a different engagement of the prefrontal cortex when perceiving brands as cultural symbols. PMID:20080877

  10. Concurrent fMRI and optical measures for the investigation of the hemodynamic response function.

    PubMed

    Kennerley, Aneurin J; Berwick, Jason; Martindale, John; Johnston, David; Papadakis, Nikos; Mayhew, John E

    2005-08-01

    Functional magnetic resonance imaging (fMRI) signal variations are based on a combination of changes in cerebral blood flow (CBF) and volume (CBV), and blood oxygenation. We investigated the relationship between these hemodynamic parameters in the rodent barrel cortex by performing fMRI concurrently with laser Doppler flowmetry (LDF) or optical imaging spectroscopy (OIS), following whisker stimulation and hypercapnic challenge. A difference between the positions of the maximum blood oxygenation level-dependent (BOLD) and CBV changes was observed in coronal fMRI maps, with the BOLD region being more superficial. A 6.5% baseline blood volume fraction in this superficial region dropped to 4% in deeper cortical layers (corresponding to total hemoglobin baseline volumes Hbt0 = 110 microM and 67 microM, respectively), as inferred from maps of deltaR2*. Baseline volume profiles were used to parameterize the Monte Carlo simulations (MCS) to interpret the 2D OIS. From this it was found that the optical blood volume measurements (i.e., changes in total hemoglobin) equated with CBV-MRI measurements when the MRI data were taken from superficial cortical layers. Optical measures of activation showed a good spatial overlap with fMRI measurements taken in the same plane (covering the right hemisphere surface). Changes in CBV and CBF followed the scaling relationship CBV = CBF(alpha), with mean alpha = 0.38 +/- 0.06. PMID:16032695

  11. Investigations on spinal cord fMRI of cats under ketamine.

    PubMed

    Cohen-Adad, J; Hoge, R D; Leblond, H; Xie, G; Beaudoin, G; Song, A W; Krueger, G; Doyon, J; Benali, H; Rossignol, S

    2009-01-15

    Functional magnetic resonance imaging (fMRI) of the spinal cord has been the subject of intense research for the last ten years. An important motivation for this technique is its ability to detect non-invasively neuronal activity in the spinal cord related to sensorimotor functions in various conditions, such as after spinal cord lesions. Although promising results of spinal cord fMRI have arisen from previous studies, the poor reproducibility of BOLD activations and their characteristics remain a major drawback. In the present study we investigated the reproducibility of BOLD fMRI in the spinal cord of cats (N=9) by repeating the same stimulation protocol over a long period (approximately 2 h). Cats were anaesthetized with ketamine, and spinal cord activity was induced by electrical stimulation of cutaneous nerves of the hind limbs. As a result, task-related signals were detected in most cats with relatively good spatial specificity. However, BOLD response significantly varied within and between cats. This variability was notably attributed to the moderate intensity of the stimulus producing a low amplitude haemodynamic response, variation in end-tidal CO(2) during the session, low signal-to-noise ratio (SNR) in spinal fMRI time series and animal-specific vascular anatomy. Original contributions of the present study are: (i) first spinal fMRI experiment in ketamine-anaesthetized animals, (ii) extensive study of intra- and inter-subject variability of activation, (iii) characterisation of static and temporal SNR in the spinal cord and (iv) investigation on the impact of CO(2) end-tidal level on the amplitude of BOLD response. PMID:18938251

  12. Semantic divergence and creative story generation: an fMRI investigation.

    PubMed

    Howard-Jones, Paul A; Blakemore, Sarah-Jayne; Samuel, Elspeth A; Summers, Ian R; Claxton, Guy

    2005-09-01

    The aim of this fMRI investigation was to identify those areas of the brain associated with approaching a story generation task creatively and to investigate the effects upon these correlates of incorporating a set of words that were unrelated to each other-a strategy considered to encourage semantic divergence. Preliminary experiments were undertaken to investigate the possible confounding effects of the scanner environment upon creativity and to reveal the effects of creative effort and word relatedness upon the creativity of those who would be participating in the fMRI scan. In the final part of the investigation, a factorial fMRI design was used to elucidate brain regions involved in increased creative effort and also the effect upon activity in these regions when participants incorporated words that bore little semantic relationship with each other. Results support the notion that areas of the right prefrontal cortex are critical to the types of divergent semantic processing involved with creativity in this context. PMID:15993573

  13. The Dynamics of Deductive Reasoning: An fMRI Investigation

    ERIC Educational Resources Information Center

    Rodriguez-Moreno, Diana; Hirsch, Joy

    2009-01-01

    Although the basis for deductive reasoning has been a traditional focus of philosophical discussion, the neural correlates and mechanisms that underlie deductive reasoning have only recently become the focus of scientific investigation. In syllogistic deductive reasoning information presented in two related sequential premises leads to a…

  14. Spatial embedding of fMRI for investigating local coupling in human brain

    NASA Astrophysics Data System (ADS)

    Deshpande, Gopikrishna; LaConte, Stephen M.; Peltier, Scott; Hu, Xiaoping

    2005-04-01

    In this paper, we have investigated local spatial couplings in the human brain by applying nonlinear dynamical techniques on fMRI data. We have recorded BOLD-contrast echo-planar fMRI data along with high-resolution T1-weighted anatomical images from the resting brain of healthy human subjects and performed physiological correction on the functional data. The corrected data from resting subjects is spatially embedded into its phase space and the largest Lyapunov exponent of the resulting attractor is calculated and whole slice maps are obtained. In addition, we segment the high-resolution anatomical image and obtain a down sampled mask corresponding to gray and white matter, which is used to obtain mean indices of the exponents for both the tissues separately. The results show the existence of local couplings, its tissue specificity (more local coupling in gray matter than white matter) and dependence on the size of the neighborhood (larger the neighborhood, lesser the coupling). We believe that these techniques capture the information of a nonlinear and evolving system like the brain that may not be evident from static linear methods. The results show that there is evidence of spatio-temporal chaos in the brain, which is a significant finding hitherto not reported in literature to the best of our knowledge. We try to interpret our results from healthy resting subjects based on our knowledge of the native low frequency fluctuations in the resting brain and obtain a better understanding of the local spatial behavior of fMRI. This exploratory study has demonstrated the utility of nonlinear dynamical techniques like spatial embedding in analyzing fMRI data to gain meaningful insights into the working of human brain.

  15. Material specific lateralization of medial temporal lobe function: An fMRI investigation.

    PubMed

    Dalton, Marshall A; Hornberger, Michael; Piguet, Olivier

    2016-03-01

    The theory of material specific lateralization of memory function posits that left and right MTL regions are asymmetrically involved in mnemonic processing of verbal and nonverbal material respectively. Lesion and functional imaging (fMRI) studies provide robust evidence for a left MTL asymmetry in the verbal memory domain. Evidence for a right MTL/nonverbal asymmetry is not as robust. A handful of fMRI studies have investigated this issue but have generally utilised nonverbal stimuli which are amenable to semantic elaboration. This fMRI study aimed to investigate the neural correlates of recognition memory processing in 20 healthy young adults (mean age = 26 years) for verbal stimuli and nonverbal stimuli that were specifically designed to minimize verbalisation. Analyses revealed that the neural correlates of recognition memory processing for verbal and nonverbal stimuli were differentiable and asymmetrically recruited the left and right MTL respectively. The right perirhinal cortex and hippocampus were preferentially involved in successful recognition memory of items devoid of semantic information. In contrast, the left anterior hippocampus was preferentially involved in successful recognition memory of stimuli which contained semantic meaning. These results suggest that the left MTL is preferentially involved in mnemonic processing of verbal/semantic information. In contrast, the right MTL is preferentially involved in visual/non-semantic mnemonic processing. We propose that during development, the left MTL becomes specialised for verbal mnemonic processing due to its proximity with left lateralised cortical language processing areas while visual/non-semantic mnemonic processing gets 'crowded out' to become predominantly, but not completely, the domain of the right MTL. PMID:26700110

  16. Taking one’s time in feeling other-race pain: an event-related potential investigation on the time-course of cross-racial empathy

    PubMed Central

    Meconi, Federica; Castelli, Luigi; Dell’Acqua, Roberto

    2014-01-01

    Using the event-related potential (ERP) approach, we tracked the time-course of white participants’ empathic reactions to white (own-race) and black (other-race) faces displayed in a painful condition (i.e. with a needle penetrating the skin) and in a nonpainful condition (i.e. with Q-tip touching the skin). In a 280–340 ms time-window, neural responses to the pain of own-race individuals under needle penetration conditions were amplified relative to neural responses to the pain of other-race individuals displayed under analogous conditions. This ERP reaction to pain, whose source was localized in the inferior frontal gyrus, correlated with the empathic concern ratings of the Interpersonal Reactivity Index questionnaire. In a 400–750 ms time-window, the difference between neural reactions to the pain of own-race individuals, localized in the middle frontal gyrus and other-race individuals, localized in the temporoparietal junction was reduced to nil. These findings support a functional, neural and temporal distinction between two sequential processing stages underlying empathy, namely, a race-biased stage of pain sharing/mirroring followed by a race-unbiased stage of cognitive evaluation of pain. PMID:23314008

  17. Investigating Inhibitory Control in Children with Epilepsy: An fMRI Study

    PubMed Central

    Triplett, Regina L.; Velanova, Katerina; Luna, Beatriz; Padmanabhan, Aarthi; Gaillard, William D.; Asato, Miya R.

    2014-01-01

    SUMMARY Objective Deficits in executive function are increasingly noted in children with epilepsy and have been associated with poor academic and psychosocial outcomes. Impaired inhibitory control contributes to executive dysfunction in children with epilepsy; however, its neuroanatomic basis has not yet been investigated. We used functional Magnetic Resonance Imaging (fMRI) to probe the integrity of activation in brain regions underlying inhibitory control in children with epilepsy. Methods This cross-sectional study consisted of 34 children aged 8 to 17 years: 17 with well-controlled epilepsy and 17 age-and sex-matched controls. Participants performed the antisaccade (AS) task, representative of inhibitory control, during fMRI scanning. We compared AS performance during neutral and reward task conditions and evaluated task-related blood-oxygen level dependent (BOLD) activation. Results Children with epilepsy demonstrated impaired AS performance compared to controls during both neutral (non-reward) and reward trials, but exhibited significant task improvement during reward trials. Post-hoc analysis revealed that younger patients made more errors than older patients and all controls. fMRI results showed preserved activation in task-relevant regions in patients and controls, with the exception of increased activation in the left posterior cingulate gyrus in patients specifically with generalized epilepsy across neutral and reward trials. Significance Despite impaired inhibitory control, children with epilepsy accessed typical neural pathways as did their peers without epilepsy. Children with epilepsy showed improved behavioral performance in response to the reward condition, suggesting potential benefits of the use of incentives in cognitive remediation. PMID:25223606

  18. Distinct neural correlates for pragmatic and semantic meaning processing: an event-related potential investigation of scalar implicature processing using picture-sentence verification.

    PubMed

    Politzer-Ahles, Stephen; Fiorentino, Robert; Jiang, Xiaoming; Zhou, Xiaolin

    2013-01-15

    The present study examines the brain-level representation and composition of meaning in scalar quantifiers (e.g., some), which have both a semantic meaning (at least one) and a pragmatic meaning (not all). We adopted a picture-sentence verification design to examine event-related potential (ERP) effects of reading infelicitous quantifiers for which the semantic meaning was correct with respect to the context but the pragmatic meaning was not, compared to quantifiers for which the semantic meaning was inconsistent with the context and no additional pragmatic meaning is available. In the first experiment, only pragmatically inconsistent quantifiers, not semantically inconsistent quantifiers, elicited a sustained posterior negative component. This late negativity contrasts with the N400 effect typically elicited by nouns that are incongruent with their context, suggesting that the recognition of scalar implicature errors elicits a qualitatively different ERP signature than the recognition of lexico-semantic errors. We hypothesize that the sustained negativity reflects cancellation of the pragmatic inference and retrieval of the semantic meaning. In our second experiment, we found that the process of re-interpreting the quantifier was independent from lexico-semantic processing: the N400 elicited by lexico-semantic violations was not modulated by the presence of a pragmatic inconsistency. These findings suggest that inferential pragmatic aspects of meaning are processed using different mechanisms than lexical or combinatorial semantic aspects of meaning, that inferential pragmatic meaning can be realized rapidly, and that the computation of meaning involves continuous negotiation between different aspects of meaning. PMID:23103410

  19. The effects of musical training on movement pre-programming and re-programming abilities: an event-related potential investigation.

    PubMed

    Anatürk, Melis; Jentzsch, Ines

    2015-03-01

    Two response precuing experiments were conducted to investigate effects of musical skill level on the ability to pre- and re-programme simple movements. Participants successfully used advance information to prepare forthcoming responses and showed response slowing when precue information was invalid rather than valid. This slowing was, however, only observed for partially invalid but not fully invalid precues. Musicians were generally faster than non-musicians, but no group differences in the efficiency of movement pre-programming or re-programming were observed. Interestingly, only musicians exhibited a significant foreperiod lateralized readiness potential (LRP) when response hand was pre-specified or full advance information was provided. These LRP findings suggest increased effector-specific motor preparation in musicians than non-musicians. However, here the levels of effector-specific preparation did not predict preparatory advantages observed in behaviour. In sum, combining the response precuing and ERP paradigms serves a valuable tool to examine influences of musical training on movement pre- or re-programming processes. PMID:25666744

  20. Neuroimaging measures of error-processing: Extracting reliable signals from event-related potentials and functional magnetic resonance imaging.

    PubMed

    Steele, Vaughn R; Anderson, Nathaniel E; Claus, Eric D; Bernat, Edward M; Rao, Vikram; Assaf, Michal; Pearlson, Godfrey D; Calhoun, Vince D; Kiehl, Kent A

    2016-05-15

    Error-related brain activity has become an increasingly important focus of cognitive neuroscience research utilizing both event-related potentials (ERPs) and functional magnetic resonance imaging (fMRI). Given the significant time and resources required to collect these data, it is important for researchers to plan their experiments such that stable estimates of error-related processes can be achieved efficiently. Reliability of error-related brain measures will vary as a function of the number of error trials and the number of participants included in the averages. Unfortunately, systematic investigations of the number of events and participants required to achieve stability in error-related processing are sparse, and none have addressed variability in sample size. Our goal here is to provide data compiled from a large sample of healthy participants (n=180) performing a Go/NoGo task, resampled iteratively to demonstrate the relative stability of measures of error-related brain activity given a range of sample sizes and event numbers included in the averages. We examine ERP measures of error-related negativity (ERN/Ne) and error positivity (Pe), as well as event-related fMRI measures locked to False Alarms. We find that achieving stable estimates of ERP measures required four to six error trials and approximately 30 participants; fMRI measures required six to eight trials and approximately 40 participants. Fewer trials and participants were required for measures where additional data reduction techniques (i.e., principal component analysis and independent component analysis) were implemented. Ranges of reliability statistics for various sample sizes and numbers of trials are provided. We intend this to be a useful resource for those planning or evaluating ERP or fMRI investigations with tasks designed to measure error-processing. PMID:26908319

  1. An fMRI investigation of responses to peer rejection in adolescents with autism spectrum disorders

    PubMed Central

    Masten, Carrie L.; Colich, Natalie L.; Rudie, Jeffrey D.; Bookheimer, Susan Y.; Eisenberger, Naomi I.; Dapretto, Mirella

    2011-01-01

    Peer rejection is particularly pervasive among adolescents with autism spectrum disorders (ASD). However, how adolescents with ASD differ from typically developing adolescents in their responses to peer rejection is poorly understood. The goal of the current investigation was to examine neural responses to peer exclusion among adolescents with ASD compared to typically developing adolescents. Nineteen adolescents with ASD and 17 typically developing controls underwent fMRI as they were ostensibly excluded by peers during an online game called Cyberball. Afterwards, participants reported their distress about the exclusion. Compared to typically developing adolescents, those with ASD displayed less activity in regions previously linked with the distressing aspect of peer exclusion, including the subgenual anterior cingulate and anterior insula, as well as less activity in regions previously linked with the regulation of distress responses during peer exclusion, including the ventrolateral prefrontal cortex and ventral striatum. Interestingly, however, both groups self-reported equivalent levels of distress. This suggests that adolescents with ASD may engage in differential processing of social experiences at the neural level, but be equally aware of, and concerned about, peer rejection. Overall, these findings contribute new insights about how this population may differentially experience negative social events in their daily lives. PMID:22318914

  2. The Brain Effects of Laser Acupuncture in Depressed Individuals: An fMRI Investigation

    PubMed Central

    Quah-Smith, Im; Wen, Wei; Chen, Xiaohua; Williams, Mark A.

    2012-01-01

    Abstract Background The 2010 Cochrane Collaboration Review reported laser acupuncture as being effective in depression. The treatment was on LR 8, LR 14, CV 14, and HT 7 over 12 sessions within a 2-month period. Objective The aim of this study was to investigate the biological plausibility of low-intensity laser acupuncture as an antidepressant treatment. Design Randomized stimulation with a fiber-optic infrared laser on these acupoints and KI 3 acupoint. We used a blocked design, alternating laser and placebo laser/rest blocks, while the blood oxygenation level-dependent (BOLD) fMRI response was recorded from the whole brain on a 3T MRI scanner. Setting This study took place at the research institute. Subjects Ten subjects were studied, as confirmed by the Hamilton Depression Rating Scale (HAM-D17). Intervention Low-intensity laser acupuncture. Main outcome measures Significant brain patterns for each acupoint greater than the other acupoints and placebo. Results Each acupoint laser stimulation condition resulted in a different activation size and pattern of neural activity. Regions with significantly increased activation and deactivation compared to placebo included fronto-limbic-striatal brain regions. There was no significant activation or deactivation with KI 3. Blinding was afforded with the block design and the infrared laser. Conclusions There is positive biological evidence to support the empirical evidence for laser acupuncture in the treatment of depression. With its minimal adverse effect profile and ease of application, laser acupuncture should be included in depression management strategies.

  3. An fMRI investigation of memory encoding in PTSD: influence of symptom severity.

    PubMed

    Dickie, Erin W; Brunet, Alain; Akerib, Vivian; Armony, Jorge L

    2008-04-01

    Previous studies have shown memory deficits in Post-Traumatic Stress Disorder (PTSD) patients, as well as abnormal patterns of brain activity, especially when retrieving trauma-related information. This study extended previous findings by investigating the neural correlates of successful memory encoding of trauma-unrelated stimuli and their relationship with PTSD symptom severity. We used the subsequent memory paradigm, in the context of event-related functional magnetic resonance imaging, in 27 PTSD patients to identify the brain regions involved in the encoding of fearful and neutral faces. Symptom severity was assessed by the Clinically Administered PTSD Scale (CAPS) scores. It was found that memory performance was negatively correlated with CAPS scores. Furthermore, a negative correlation was observed between CAPS scores and ventral medial prefrontal cortex (vmPFC) activity elicited by the subsequently forgotten faces. Finally, symptom severity predicted the contribution of the amygdala to the successful encoding of fearful faces. These results confirm the roles of the vmPFC and the amygdala in PTSD and highlight the importance of taking into account individual differences when assessing the behavioural and neural correlates of the disorder. PMID:18321537

  4. Dimensionality of ICA in resting-state fMRI investigated by feature optimized classification of independent components with SVM

    PubMed Central

    Wang, Yanlu; Li, Tie-Qiang

    2015-01-01

    Different machine learning algorithms have recently been used for assisting automated classification of independent component analysis (ICA) results from resting-state fMRI data. The success of this approach relies on identification of artifact components and meaningful functional networks. A limiting factor of ICA is the uncertainty of the number of independent components (NIC). We aim to develop a framework based on support vector machines (SVM) and optimized feature-selection for automated classification of independent components (ICs) and use the framework to investigate the effects of input NIC on the ICA results. Seven different resting-state fMRI datasets were studied. 18 features were devised by mimicking the empirical criteria for manual evaluation. The five most significant (p < 0.01) features were identified by general linear modeling and used to generate a classification model for the framework. This feature-optimized classification of ICs with SVM (FOCIS) framework was used to classify both group and single subject ICA results. The classification results obtained using FOCIS and previously published FSL-FIX were compared against manually evaluated results. On average the false negative rate in identifying artifact contaminated ICs for FOCIS and FSL-FIX were 98.27 and 92.34%, respectively. The number of artifact and functional network components increased almost linearly with the input NIC. Through tracking, we demonstrate that incrementing NIC affects most ICs when NIC < 33, whereas only a few limited ICs are affected by direct splitting when NIC is incremented beyond NIC > 40. For a given IC, its changes with increasing NIC are individually specific irrespective whether the component is a potential resting-state functional network or an artifact component. Using FOCIS, we investigated experimentally the ICA dimensionality of resting-state fMRI datasets and found that the input NIC can critically affect the ICA results of resting-state fMRI data. PMID

  5. Chemosensory anxiety cues moderate the experience of social exclusion - an fMRI investigation with Cyberball.

    PubMed

    Wudarczyk, Olga A; Kohn, Nils; Bergs, Rene; Gur, Raquel E; Turetsky, Bruce; Schneider, Frank; Habel, Ute

    2015-01-01

    Recent evidence suggests that the experience of stress can be communicated between individuals via chemosensory cues. Little is known, however, about the impact of these cues on neurophysiological responses during a socially threatening situation. In the current investigation we implemented a widely used paradigm to study social exclusion-Cyberball-to examine whether chemosensory cues signaling anxiety modulate the neuronal effects of ostracism. In a double-blind, within-subjects design, 24 healthy, normosmic participants were presented with chemosensory cues of anxiety (or control samples) and completed the Cyberball task while in a 3T fMRI scanner. Axillary sweat collected from male students awaiting an oral examination served as the anxiety cues while the chemosensory control stimuli consisted of sweat collected from the same individuals participating in an ergometer training session. The neuroimaging data revealed that under the control chemosensory condition, exclusion from Cyberball was associated with significantly higher orbitofrontal cortex and anterior cingulate cortex activity, which is consistent with previous studies in the field. However, when participants were primed with the anxiety sweat, the activity in these regions was not observed. Further, under exposure to anxiety cues during ostracism the participants showed deactivations in brain regions involved in memory (hippocampus), social cognition (middle temporal gyrus, superior temporal gyrus) and processing of salience (inferior frontal gyrus). These results suggest that successful communication of anxiety via the chemosensory domain may moderate the experience of social exclusion. It is possible that the anxiety signals make it easier for the individuals to detach from the group, pointing to the communicative role of chemosensory anxiety cues in enhancing adjustment mechanisms in light of a distressing situation. PMID:26500572

  6. Social economic decision-making across the lifespan: An fMRI investigation.

    PubMed

    Harlé, Katia M; Sanfey, Alan G

    2012-06-01

    Recent research in neuroeconomics suggests that social economic decision-making may be best understood as a dual-systems process, integrating the influence of deliberative and affective subsystems. However, most of this research has focused on young adults and it remains unclear whether our current models extend to healthy aging. To address this question, we investigated the behavioral and neural basis of simple economic decisions in 18 young and 20 older healthy adults. Participants made decisions which involved accepting or rejecting monetary offers from human and non-human (computer) partners in an Ultimatum Game, while undergoing functional magnetic resonance imaging (fMRI). The partners' proposals involved splitting an amount of money between the two players, and ranged from $1 to $5 (from a $10 pot). Relative to young adults, older participants expected more equitable offers and rejected moderately unfair offers ($3) to a larger extent. Imaging results revealed that, relative to young participants, older adults had higher activations in the left dorsolateral prefrontal cortex (DLPFC) when receiving unfair offers ($1-$3). Age group moderated the relationship between left DLPFC activation and acceptance rates of unfair offers. In contrast, older adults showed lower activation of bilateral anterior insula in response to unfair offers. No age group difference was observed when participants received fair ($5) offers. These findings suggest that healthy aging may be associated with a stronger reliance on computational areas subserving goal maintenance and rule shifting (DLPFC) during interactive economic decision-making. Consistent with a well-documented "positivity effect", older age may also decrease recruitment of areas involved in emotion processing and integration (anterior insula) in the face of social norm violation. PMID:22414593

  7. Differences in Processing of Taxonomic and Sequential Relations in Semantic Memory: An fMRI Investigation

    ERIC Educational Resources Information Center

    Kuchinke, Lars; van der Meer, Elke; Krueger, Frank

    2009-01-01

    Conceptual knowledge of our world is represented in semantic memory in terms of concepts and semantic relations between concepts. We used functional magnetic resonance imaging (fMRI) to examine the cortical regions underlying the processing of sequential and taxonomic relations. Participants were presented verbal cues and performed three tasks:…

  8. An fMRI Investigation of the Neural Correlates Underlying the Processing of Novel Metaphoric Expressions

    ERIC Educational Resources Information Center

    Mashal, N.; Faust, M.; Hendler, T.; Jung-Beeman, M.

    2007-01-01

    The neural networks associated with processing related pairs of words forming literal, novel, and conventional metaphorical expressions and unrelated pairs of words were studied in a group of 15 normal adults using fMRI. Subjects read the four types of linguistic expressions and decided which relation exists between the two words (metaphoric,…

  9. The EEG and fMRI signatures of neural integration: An investigation of meaningful gestures and corresponding speech.

    PubMed

    He, Yifei; Gebhardt, Helge; Steines, Miriam; Sammer, Gebhard; Kircher, Tilo; Nagels, Arne; Straube, Benjamin

    2015-06-01

    One of the key features of human interpersonal communication is our ability to integrate information communicated by speech and accompanying gestures. However, it is still not fully understood how this essential combinatory process is represented in the human brain. Functional magnetic resonance imaging (fMRI) studies have unanimously attested the relevance of activation in the posterior superior temporal sulcus/middle temporal gyrus (pSTS/MTG), while electroencephalography (EEG) studies have shown oscillatory activity in specific frequency bands to be associated with multisensory integration. In the current study, we used fMRI and EEG to separately investigate the anatomical and oscillatory neural signature of integrating intrinsically meaningful gestures (IMG; e.g. "Thumbs-up gesture") and corresponding speech (e.g., "The actor did a good job"). In both the fMRI (n =2 0) and EEG (n = 20) study, participants were presented with videos of an actor either: performing IMG in the context of a German sentence (GG), IMG in the context of a Russian (as a foreign language) sentence (GR), or speaking an isolated German sentence without gesture (SG). The results of the fMRI experiment confirmed that gesture-speech processing of IMG activates the posterior MTG (GG>GR∩GG>SG). In the EEG experiment we found that the identical integration process (GG>GR∩GG>SG) is related to a centrally-distributed alpha (7-13 Hz) power decrease within 700-1400 ms post-onset of the critical word. These new findings suggest that BOLD response increase in the pMTG and alpha power decrease represent the neural correlates of integrating intrinsically meaningful gestures with their corresponding speech. PMID:25900470

  10. Processing of zero-derived words in English: an fMRI investigation.

    PubMed

    Pliatsikas, Christos; Wheeldon, Linda; Lahiri, Aditi; Hansen, Peter C

    2014-01-01

    Derivational morphological processes allow us to create new words (e.g. punish (V) to noun (N) punishment) from base forms. The number of steps from the basic units to derived words often varies (e.g., nationalityinvestigated derivational processes in which morphological complexity is related to a change in surface form. It is therefore unclear whether the effects reported are attributable to underlying morphological complexity or to the processing of multiple surface morphemes. Here we report the first study to investigate morphological processing where derivational steps are not overtly marked (e.g., bridge-N>bridge-V) i.e., zero-derivation (Aronoff, 1980). We compared the processing of one-step (soakingfMRI experiment. Participants were presented with derived forms of words (soaking, bridging) in a lexical decision task. Although the surface derived -ing forms can be contextually participles, gerunds, or even nouns, they are all derived from verbs since the suffix -ing can only be attached to verb roots. Crucially, the verb root is the basic form for the one-step words, whereas for the two-step words the verb root is zero derived from a basic noun. Significantly increased brain activity was observed for complex (one-step and two-step) versus simple (zero-step) forms in regions involved in morphological processing, such as the left inferior frontal gyrus (LIFG). Critically, activation was also more pronounced for two-step compared to one-step forms. Since both types of derived words have the same surface structure, our findings suggest that morphological processing is based on underlying morphological complexity, independent of overt

  11. Brain correlates of discourse processing: An fMRI investigation of irony and conventional metaphor comprehension

    PubMed Central

    Eviatar, Zohar; Just, Marcel Adam

    2006-01-01

    Higher levels of discourse processing evoke patterns of cognition and brain activation that extend beyond the literal comprehension of sentences. We used fMRI to examine brain activation patterns while 16 healthy participants read brief three-sentence stories that concluded with either a literal, metaphoric, or ironic sentence. The fMRI images acquired during the reading of the critical sentence revealed a selective response of the brain to the two types of nonliteral utterances. Metaphoric utterances resulted in significantly higher levels of activation in the left inferior frontal gyrus and in bilateral inferior temporal cortex than the literal and ironic utterances. Ironic statements resulted in significantly higher activation levels than literal statements in the right superior and middle temporal gyri, with metaphoric statements resulting in intermediate levels in these regions. The findings show differential hemispheric sensitivity to these aspects of figurative language, and are relevant to models of the functional cortical architecture of language processing in connected discourse. PMID:16806316

  12. The relationship between fMRI adaptation and repetition priming.

    PubMed

    Ganel, Tzvi; Gonzalez, Claudia L R; Valyear, Kenneth F; Culham, Jody C; Goodale, Melvyn A; Köhler, Stefan

    2006-09-01

    Neuroimaging investigations of the cortically defined fMRI adaptation effect and of the behaviorally defined repetition priming effect have provided useful insights into how visual information is perceived and stored in the brain. Yet, although both phenomena are typically associated with reduced activation in visually responsive brain regions as a result of stimulus repetition, it is presently unknown whether they rely on common or dissociable neural mechanisms. In an event-related fMRI experiment, we manipulated fMRI adaptation and repetition priming orthogonally. Subjects made comparative size judgments for pairs of stimuli that depicted either the same or different objects; some of the pairs presented during scanning had been shown previously and others were new. This design allowed us to examine whether object-selective regions in occipital and temporal cortex were sensitive to adaptation, priming, or both. Critically, it also allowed us to test whether any region showing sensitivity to both manipulations displayed interactive or additive effects. Only a partial overlap was found between areas that were sensitive to fMRI adaptation and those sensitive to repetition priming. Moreover, in most of the object-selective regions that showed both effects, the reduced activation associated with the two phenomena were additive rather than interactive. Together, these findings suggest that fMRI adaptation and repetition priming can be dissociated from one another in terms of their neural mechanisms. PMID:16854597

  13. Investigating virtual reality navigation in amnestic mild cognitive impairment using fMRI.

    PubMed

    Migo, E M; O'Daly, O; Mitterschiffthaler, M; Antonova, E; Dawson, G R; Dourish, C T; Craig, K J; Simmons, A; Wilcock, G K; McCulloch, E; Jackson, S H D; Kopelman, M D; Williams, S C R; Morris, R G

    2016-01-01

    Spatial navigation requires a well-established network of brain regions, including the hippocampus, caudate nucleus, and retrosplenial cortex. Amnestic Mild Cognitive Impairment (aMCI) is a condition with predominantly memory impairment, conferring a high predictive risk factor for dementia. aMCI is associated with hippocampal atrophy and subtle deficits in spatial navigation. We present the first use of a functional Magnetic Resonance Imaging (fMRI) navigation task in aMCI, using a virtual reality analog of the Radial Arm Maze. Compared with controls, aMCI patients showed reduced activity in the hippocampus bilaterally, retrosplenial cortex, and left dorsolateral prefrontal cortex. Reduced activation in key areas for successful navigation, as well as additional regions, was found alongside relatively normal task performance. Results also revealed increased activity in the right dorsolateral prefrontal cortex in aMCI patients, which may reflect compensation for reduced activations elsewhere. These data support suggestions that fMRI spatial navigation tasks may be useful for staging of progression in MCI. PMID:26234803

  14. An investigation of working memory rehearsal in multiple sclerosis using fMRI.

    PubMed

    Hillary, F G; Chiaravalloti, N D; Ricker, J H; Steffener, J; Bly, B M; Lange, G; Liu, W C; Kalnin, A J; DeLuca, J

    2003-10-01

    The present study examined patterns of cerebral activation during a working memory (WM) rehearsal task in individuals diagnosed with multiple sclerosis (MS) and in healthy adults. BOLD functional magnetic resonance imaging (fMRI) was performed using a 1.5 T GE scanner to assess activation during a WM task adapted from the Sternberg paradigm (Sternberg, 1969). Participants included 8 individuals diagnosed with MS, and 5 healthy controls (HCs) matched for age and education. Task difficulty was manipulated by increasing the length of time that strings of letters were to be rehearsed. Findings revealed increased right prefrontal cortex activation and increased right temporal lobe activation in individuals diagnosed with MS compared to HCs. The potential explanations for increased right hemisphere activation in persons with MS are discussed. PMID:13680443

  15. An fMRI Investigation of Cerebellar Function During Verbal Working Memory in Methadone Maintenance Patients

    PubMed Central

    Marvel, Cherie L.; Faulkner, Monica L.; Strain, Eric C.; Mintzer, Miriam Z.; Desmond, John E.

    2011-01-01

    Working memory is impaired in opioid-dependent individuals, yet the neural underpinnings of working memory in this population are largely unknown. Previous studies in healthy adults have demonstrated that working memory is supported by a network of brain regions that includes a cerebro-cerebellar circuit. The cerebellum, in particular, may be important for inner speech mechanisms that assist verbal working memory. This study used functional magnetic resonance imaging (fMRI) to examine brain activity associated with working memory in 5 opioid-dependent, methadone-maintained patients and 5 matched, healthy controls. An item recognition task was administered in two conditions: 1) a low working memory load “match” condition in which participants determined whether target letters presented at the beginning of the trial matched a probe item, and 2) a high working memory load “manipulation” condition in which participants counted two alphabetical letters forward of each of the targets and determined whether either of these new items matched a probe item. Response times and accuracy scores were not significantly different between the groups. FMRI analyses indicated that, in association with higher working memory load (“manipulation” condition), the patient group exhibited hyperactivity in the superior and inferior cerebellum and amygdala relative to that of controls. At a more liberal statistical threshold, patients exhibited hypoactivity in the left prefrontal and medial frontal/pre-SMA regions. These results indicate that verbal working memory in opioid-dependent individuals involves a disrupted cerebro-cerebellar circuit, and shed light on the neuroanatomical basis of working memory impairments in this population. PMID:21892700

  16. Event-Related Brain Potential Correlates of Emotional Face Processing

    ERIC Educational Resources Information Center

    Eimer, Martin; Holmes, Amanda

    2007-01-01

    Results from recent event-related brain potential (ERP) studies investigating brain processes involved in the detection and analysis of emotional facial expression are reviewed. In all experiments, emotional faces were found to trigger an increased ERP positivity relative to neutral faces. The onset of this emotional expression effect was…

  17. Neural responses to rigidly moving faces displaying shifts in social attention investigated with fMRI and MEG.

    PubMed

    Lee, Laura C; Andrews, Timothy J; Johnson, Sam J; Woods, Will; Gouws, Andre; Green, Gary G R; Young, Andrew W

    2010-01-01

    A widely adopted neural model of face perception (Haxby, Hoffman, & Gobbini, 2000) proposes that the posterior superior temporal sulcus (STS) represents the changeable features of a face, while the face-responsive fusiform gyrus (FFA) encodes invariant aspects of facial structure. 'Changeable features' of a face can include rigid and non-rigid movements. The current study investigated neural responses to rigid, moving faces displaying shifts in social attention. Both functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) were used to investigate neural responses elicited when participants viewed video clips in which actors made a rigid shift of attention, signalled congruently from both the eyes and head. These responses were compared to those elicited by viewing static faces displaying stationary social attention information or a scrambled video displaying directional motion. Both the fMRI and MEG analyses demonstrated heightened responses along the STS to turning heads compared to static faces or scrambled movement conditions. The FFA responded to both turning heads and static faces, showing only a slight increase in response to the dynamic stimuli. These results establish the applicability of the Haxby model to the perception of rigid face motions expressing changes in social attention direction. Furthermore, the MEG beamforming analyses found an STS response in an upper frequency band (30-80 Hz) which peaked in the right anterior region. These findings, derived from two complementary neuroimaging techniques, clarify the contribution of the STS during the encoding of rigid facial action patterns of social attention, emphasising the role of anterior sulcal regions alongside previously observed posterior areas. PMID:19833143

  18. The neural bases of cooperation and competition: an fMRI investigation

    PubMed Central

    Decety, Jean; Jackson, Philip L.; Sommerville, Jessica A.; Chaminade, Thierry; Meltzoff, Andrew N.

    2013-01-01

    Cooperation and competition are two basic modes of social cognition that necessitate monitoring of both one’s own and others’ actions, as well as adopting a specific mental set. In this fMRI, study individuals played a specially designed computer game, according to a set of predefined rules, either in cooperation with or in competition against another person. The hemodynamic response during these conditions was contrasted to that of the same subjects playing the game independently. Both cooperation and competition stances resulted in activation of a common frontoparietal network subserving executive functions, as well as the anterior insula, involved in autonomic arousal. Moreover, distinct regions were found to be selectively associated with cooperation and competition, notably the orbitofrontal cortex in the former and the inferior parietal and medial prefrontal cortices in the latter. This pattern reflects the different mental frameworks implicated in being cooperative versus competitive with another person. In accordance with evidence from evolutionary psychology as well as from developmental psychology, we argue that cooperation is a socially rewarding process and is associated with specific left medial orbitofrontal cortex involvement. PMID:15488424

  19. Lexical Processing in Deaf Readers: An fMRI Investigation of Reading Proficiency

    PubMed Central

    Corina, David P.; Lawyer, Laurel A.; Hauser, Peter; Hirshorn, Elizabeth

    2013-01-01

    Individuals with significant hearing loss often fail to attain competency in reading orthographic scripts which encode the sound properties of spoken language. Nevertheless, some profoundly deaf individuals do learn to read at age-appropriate levels. The question of what differentiates proficient deaf readers from less-proficient readers is poorly understood but topical, as efforts to develop appropriate and effective interventions are needed. This study uses functional magnetic resonance imaging (fMRI) to examine brain activation in deaf readers (N = 21), comparing proficient (N = 11) and less proficient (N = 10) readers’ performance in a widely used test of implicit reading. Proficient deaf readers activated left inferior frontal gyrus and left middle and superior temporal gyrus in a pattern that is consistent with regions reported in hearing readers. In contrast, the less-proficient readers exhibited a pattern of response characterized by inferior and middle frontal lobe activation (right>left) which bears some similarity to areas reported in studies of logographic reading, raising the possibility that these individuals are using a qualitatively different mode of orthographic processing than is traditionally observed in hearing individuals reading sound-based scripts. The evaluation of proficient and less-proficient readers points to different modes of processing printed English words. Importantly, these preliminary findings allow us to begin to establish the impact of linguistic and educational factors on the neural systems that underlie reading achievement in profoundly deaf individuals. PMID:23359269

  20. An fMRI investigation of the cultural specificity of music memory

    PubMed Central

    Morrison, Steven J.; Stambaugh, Laura A.; Beken, Münir; Richards, Todd L.; Johnson, Clark

    2010-01-01

    This study explored the role of culture in shaping music perception and memory. We tested the hypothesis that listeners demonstrate different patterns of activation associated with music processing—particularly right frontal cortex—when encoding and retrieving culturally familiar and unfamiliar stimuli, with the latter evoking broader activation consistent with more complex memory tasks. Subjects (n = 16) were right-handed adults born and raised in the USA (n = 8) or Turkey (n = 8) with minimal music training. Using fMRI procedures, we scanned subjects during two tasks: (i) listening to novel musical examples from their own culture and an unfamiliar culture and (ii) identifying which among a series of brief excerpts were taken from the longer examples. Both groups were more successful remembering music of their home culture. We found greater activation for culturally unfamiliar music listening in the left cerebellar region, right angular gyrus, posterior precuneus and right middle frontal area extending into the inferior frontal cortex. Subjects demonstrated greater activation in the cingulate gyrus and right lingual gyrus when engaged in recall of culturally unfamiliar music. This study provides evidence for the influence of culture on music perception and memory performance at both a behavioral and neurological level. PMID:20035018

  1. An fMRI investigation of expectation violation in magic tricks

    PubMed Central

    Danek, Amory H.; Öllinger, Michael; Fraps, Thomas; Grothe, Benedikt; Flanagin, Virginia L.

    2015-01-01

    Magic tricks violate the expected causal relationships that form an implicit belief system about what is possible in the world around us. Observing a magic effect seemingly invalidates our implicit assumptions about what action causes which outcome. We aimed at identifying the neural correlates of such expectation violations by contrasting 24 video clips of magic tricks with 24 control clips in which the expected action-outcome relationship is upheld. Using fMRI, we measured the brain activity of 25 normal volunteers while they watched the clips in the scanner. Additionally, we measured the professional magician who had performed the magic tricks under the assumption that, in contrast to naïve observers, the magician himself would not perceive his own magic tricks as an expectation violation. As the main effect of magic – control clips in the normal sample, we found higher activity for magic in the head of the caudate nucleus (CN) bilaterally, the left inferior frontal gyrus and the left anterior insula. As expected, the magician’s brain activity substantially differed from these results, with mainly parietal areas (supramarginal gyrus bilaterally) activated, supporting our hypothesis that he did not experience any expectation violation. These findings are in accordance with previous research that has implicated the head of the CN in processing changes in the contingency between action and outcome, even in the absence of reward or feedback. PMID:25699001

  2. An fMRI investigation of the cognitive reappraisal of negative memories

    PubMed Central

    Holland, Alisha C.; Kensinger, Elizabeth A.

    2013-01-01

    Episodic memory retrieval can be influenced by individuals’ current goals, including those that are emotional in nature. Participants underwent an fMRI scan while reappraising, or changing the way they thought about aversive images they had previously encoded, to down-regulate (i.e., decrease), up-regulate (i.e., increase), or maintain the emotional intensity associated with their recall. A conjunction analysis between down- and up-regulation during the entire 12-sec recall period revealed that both commonly activated reappraisal-related regions, particularly in the lateral and medial prefrontal cortex (PFC). However, when we analyzed a reappraisal instruction phase prior to recall and then divided the recall phase into the time when individuals were first searching for their memories and later elaborating on their details, we found that down- and up-regulation engaged greater neural activity at different time points. Up-regulation engaged greater PFC activity than down-regulation or maintenance during the reappraisal instruction phase. In contrast, down-regulation engaged greater lateral PFC activity as images were being searched for and retrieved. Maintaining the emotional intensity associated with the aversive images engaged similar regions to a greater extent than either reappraisal condition as participants elaborated on the details of the images they were holding in mind. Our findings suggest that down- and up-regulation engage similar neural regions during memory retrieval, but differ in the timing of this engagement. PMID:23500898

  3. Bi-Directional Tuning of Amygdala Sensitivity in Combat Veterans Investigated with fMRI

    PubMed Central

    Brashers-Krug, Tom; Jorge, Ricardo

    2015-01-01

    Objectives Combat stress can be followed by persistent emotional consequences. It is thought that these emotional consequences are caused in part by increased amygdala reactivity. It is also thought that amygdala hyper-reactivity results from decreased inhibition from portions of the anterior cingulate cortex (ACC) in which activity is negatively correlated with activity in the amygdala. However, experimental support for these proposals has been inconsistent. Methods We showed movies of combat and civilian scenes during a functional magnetic resonance imaging (fMRI) session to 50 veterans of recent combat. We collected skin conductance responses (SCRs) as measures of emotional arousal. We examined the relation of blood oxygenation-level dependent (BOLD) signal in the amygdala and ACC to symptom measures and to SCRs. Results Emotional arousal, as measured with SCR, was greater during the combat movie than during the civilian movie and did not depend on symptom severity. As expected, amygdala signal during the less-arousing movie increased with increasing symptom severity. Surprisingly, during the more-arousing movie amygdala signal decreased with increasing symptom severity. These differences led to the unexpected result that amygdala signal in highly symptomatic subjects was lower during the more-arousing movie than during the less-arousing movie. Also unexpectedly, we found no significant inverse correlation between any portions of the amygdala and ACC. Rather, signal throughout more than 80% of the ACC showed a strong positive correlation with signal throughout more than 90% of the amygdala. Conclusions Amygdala reactivity can be tuned bi-directionally, either up or down, in the same person depending on the stimulus and the degree of post-traumatic symptoms. The exclusively positive correlations in BOLD activity between the amygdala and ACC contrast with findings that have been cited as evidence for inhibitory control of the amygdala by the ACC. The

  4. Identifying brain systems for gaze orienting during reading: fMRI investigation of the Landolt paradigm

    PubMed Central

    Hillen, Rebekka; Günther, Thomas; Kohlen, Claudia; Eckers, Cornelia; van Ermingen-Marbach, Muna; Sass, Katharina; Scharke, Wolfgang; Vollmar, Josefine; Radach, Ralph; Heim, Stefan

    2013-01-01

    The Landolt reading paradigm was created in order to dissociate effects of eye movements and attention from lexical, syntactic, and sub-lexical processing. While previous eye-tracking and behavioral findings support the usefulness of the paradigm, it remains to be shown that the paradigm actually relies on the brain networks for occulomotor control and attention, but not on systems for lexical/syntactic/orthographic processing. Here, 20 healthy volunteers underwent fMRI scanning while reading sentences (with syntax) or unconnected lists of written stimuli (no syntax) consisting of words (with semantics) or pseudowords (no semantics). In an additional “Landolt reading” condition, all letters were replaced by closed circles, which should be scanned for targets (Landolt's rings) in a reading-like fashion from left to right. A conjunction analysis of all five conditions revealed the visual scanning network which involved bilateral visual cortex, premotor cortex, and superior parietal cortex, but which did not include regions for semantics, syntax, or orthography. Contrasting the Landolt reading condition with all other regions revealed additional involvement of the right superior parietal cortex (areas 7A/7P/7PC) and postcentral gyrus (area 2) involved in deliberate gaze shifting. These neuroimaging findings demonstrate for the first time that the linguistic and orthographic brain network can be dissociated from a pure gaze-orienting network with the Landolt paradigm. Consequently, the Landolt paradigm may provide novel insights into the contributions of linguistic and non-linguistic factors on reading failure e.g., in developmental dyslexia. PMID:23908615

  5. Stop-signal response inhibition in schizophrenia: behavioural, event-related potential and functional neuroimaging data.

    PubMed

    Hughes, Matthew Edward; Fulham, William Ross; Johnston, Patrick James; Michie, Patricia Therese

    2012-01-01

    Inhibitory control deficits are well documented in schizophrenia, supported by impairment in an established measure of response inhibition, the stop-signal reaction time (SSRT). We investigated the neural basis of this impairment by comparing schizophrenia patients and controls matched for age, sex and education on behavioural, functional magnetic resonance imaging (fMRI) and event-related potential (ERP) indices of stop-signal task performance. Compared to controls, patients exhibited slower SSRT and reduced right inferior frontal gyrus (rIFG) activation, but rIFG activation correlated with SSRT in both groups. Go stimulus and stop-signal ERP components (N1/P3) were smaller in patients, but the peak latencies of stop-signal N1 and P3 were also delayed in patients, indicating impairment early in stop-signal processing. Additionally, response-locked lateralised readiness potentials indicated response preparation was prolonged in patients. An inability to engage rIFG may predicate slowed inhibition in patients, however multiple spatiotemporal irregularities in the networks underpinning stop-signal task performance may contribute to this deficit. PMID:22027085

  6. Neural Dynamics Underlying Event-Related Potentials

    NASA Technical Reports Server (NTRS)

    Shah, Ankoor S.; Bressler, Steven L.; Knuth, Kevin H.; Ding, Ming-Zhou; Mehta, Ashesh D.; Ulbert, Istvan; Schroeder, Charles E.

    2003-01-01

    There are two opposing hypotheses about the brain mechanisms underlying sensory event-related potentials (ERPs). One holds that sensory ERPs are generated by phase resetting of ongoing electroencephalographic (EEG) activity, and the other that they result from signal averaging of stimulus-evoked neural responses. We tested several contrasting predictions of these hypotheses by direct intracortical analysis of neural activity in monkeys. Our findings clearly demonstrate evoked response contributions to the sensory ERP in the monkey, and they suggest the likelihood that a mixed (Evoked/Phase Resetting) model may account for the generation of scalp ERPs in humans.

  7. [EVENT-RELATED POTENTIALS AND CLINICAL SYMPTOMS IN SCHIZOPHRENIA].

    PubMed

    Domján, Nóra; Csifcsák, Gábor; Janka, Zoltán

    2016-01-30

    The investigation of schizophrenia's aetiology and pathomechanism is of high importance in neurosciences. In the recent decades, analyzing event-related potentials have proven to be useful to reveal the neuropsychological dysfunctions in schizophrenia. Even the very early stages of auditory stimulus processing are impaired in this disorder; this might contribute to the experience of auditory hallucinations. The present review summarizes the recent literature on the relationship between auditory hallucinations and event-related potentials. Due to the dysfunction of early auditory sensory processing, patients with schizophrenia are not able to locate the source of stimuli and to allocate their attention appropriately. These deficits might lead to auditory hallucinations and problems with daily functioning. Studies involving high risk groups may provide tools for screening and early interventions; thus improving the prognosis of schizophrenia. PMID:26987236

  8. A perfusion fMRI investigation of thematic and categorical context effects in the spoken production of object names.

    PubMed

    de Zubicaray, Greig; Johnson, Kori; Howard, David; McMahon, Katie

    2014-05-01

    The context in which objects are presented influences the speed at which they are named. We employed the blocked cyclic naming paradigm and perfusion functional magnetic resonance imaging (fMRI) to investigate the mechanisms responsible for interference effects reported for thematically and categorically related compared to unrelated contexts. Naming objects in categorically homogeneous contexts induced a significant interference effect that accumulated from the second cycle onwards. This interference effect was associated with significant perfusion signal decreases in left middle and posterior lateral temporal cortex and the hippocampus. By contrast, thematically homogeneous contexts facilitated naming latencies significantly in the first cycle and did not differ from heterogeneous contexts thereafter, nor were they associated with any perfusion signal changes compared to heterogeneous contexts. These results are interpreted as being consistent with an account in which the interference effect both originates and has its locus at the lexical level, with an incremental learning mechanism adapting the activation levels of target lexical representations following access. We discuss the implications of these findings for accounts that assume thematic relations can be active lexical competitors or assume mandatory involvement of top-down control mechanisms in interference effects during naming. PMID:24657924

  9. P 300 EVENT RELATED POTENTIAL IN DEPRESSION

    PubMed Central

    Singh, R.; Shukla, R.; Dalal, P.K.; Sinha, P.K.; Trivedi, J.K.

    2000-01-01

    P300 component of the event related potential (ERP) provides one neurophysiological index of cognitive dysfunction in depression. Forty subjects fulfilling DSM-III criteria for depression were compared to 40 age and sex matched normal controls. The P300 was recorded using the auditory odd-ball paradigm. Depressives had a significantly prolonged P300 latency and reduced P300 amplitude as compared to the controls. The P300 latency showed a significant positive correlation with age of the patient and severity of depression while P300 amplitude showed a significant negative correlation with age. The clinical subcategory of depression, duration of illness and sex did not show any relationship with P300 abnormality. Twelve out of 40 depressives (30%) had an abnormal P300. The mean Hamilton Rating Scale for Depression (HRSD) score was significantly high in those with an abnormal P300. PMID:21407978

  10. Event related potentials in children of alcoholics.

    PubMed

    Naziel, B; Yavaş, G; Arikan, Z; Ozon, O; Aksoy Ozmenek, O; Irkeç, C

    2007-09-01

    Assessment of ERPs (Event Related Potentials) is a special area of interest in research on vulnerability to alcoholism in human subjects. ERP not only provide information about potential neurofunctional anomalies in healthy individuals, but also relate those neurofunctional characteristics to the cognitive process involved. The aim of the present study is to evaluate the effects of chronic alcoholism and alcoholism risk on children of alcoholic fathers by using ERP parameters. 24 children of alcoholic fathers (9 boys, 15 girls) with a mean age of 18 +/- 3 (range: 15-25) and 17 control subjects (children of non-alcoholic fathers with out a family history of alcoholism) were included to the study. The age range was from 15 to 25 (mean: 21 +/- 3). N200 potential latency recorded from the parietal electrode position was significantly prolonged (p = 0.032) and amplitudes of P200 potential also recorded from the parietal region was significantly low (p = 0.043) relative to controls. However, the rest of the event-related potential parameters including P300 latency and amplitudes recorded from FZ, CZ, PZ electrode positions did not differ significantly from the children of non-alcoholic fathers. The difference in our results from the previous studies may be due to various factors. Genetic, gender, environmental, educational and social factors may have an overall effect on ERP and we believe these factors may be the cause of the differences seen in our study when compared to the previous ones. We believe the gender differences in our group may have had effected the overall results. Consecutive studies with more subject participation are needed to confirm and settle this issue. PMID:17918508

  11. Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions

    PubMed Central

    Luijten, Maartje; Machielsen, Marise W.J.; Veltman, Dick J.; Hester, Robert; de Haan, Lieuwe; Franken, Ingmar H.A.

    2014-01-01

    Background Several current theories emphasize the role of cognitive control in addiction. The present review evaluates neural deficits in the domains of inhibitory control and error processing in individuals with substance dependence and in those showing excessive addiction-like behaviours. The combined evaluation of event-related potential (ERP) and functional magnetic resonance imaging (fMRI) findings in the present review offers unique information on neural deficits in addicted individuals. Methods We selected 19 ERP and 22 fMRI studies using stop-signal, go/no-go or Flanker paradigms based on a search of PubMed and Embase. Results The most consistent findings in addicted individuals relative to healthy controls were lower N2, error-related negativity and error positivity amplitudes as well as hypoactivation in the anterior cingulate cortex (ACC), inferior frontal gyrus and dorsolateral prefrontal cortex. These neural deficits, however, were not always associated with impaired task performance. With regard to behavioural addictions, some evidence has been found for similar neural deficits; however, studies are scarce and results are not yet conclusive. Differences among the major classes of substances of abuse were identified and involve stronger neural responses to errors in individuals with alcohol dependence versus weaker neural responses to errors in other substance-dependent populations. Limitations Task design and analysis techniques vary across studies, thereby reducing comparability among studies and the potential of clinical use of these measures. Conclusion Current addiction theories were supported by identifying consistent abnormalities in prefrontal brain function in individuals with addiction. An integrative model is proposed, suggesting that neural deficits in the dorsal ACC may constitute a hallmark neurocognitive deficit underlying addictive behaviours, such as loss of control. PMID:24359877

  12. An fMRI Investigation of Covertly and Overtly Produced Mono- And Multisyllabic Words

    ERIC Educational Resources Information Center

    Shuster, Linda I.; Lemieux, Susan K.

    2005-01-01

    Studies suggest that the left insula may play an important role in speech motor programming. We used functional magnetic resonance imaging to investigate the role of the left insula in the production of monosyllabic or multisyllabic words during overt and covert speech conditions. The left insula did not show a BOLD response for multisyllabic…

  13. The Effect of Sublexical and Lexical Frequency on Speech Production: An fMRI Investigation

    ERIC Educational Resources Information Center

    Shuster, Linda I.

    2009-01-01

    There is no consensus regarding the fundamental phonetic units that underlie speech production. There is, however, general agreement that the frequency of occurrence of these units is a significant factor. Investigators often use the effects of manipulating frequency to support the importance of particular units. Studies of pseudoword production…

  14. The Event-Related Low-Frequency Activity of Highly and Average Intelligent Children

    ERIC Educational Resources Information Center

    Liu, Tongran; Shi, Jiannong; Zhao, Daheng; Yang, Jie

    2008-01-01

    Using time-frequency analysis techniques to investigate the event-related low-frequency (delta: 0.5-4 Hz; theta: 4-8 Hz) activity of auditory event-related potentials (ERPs) data of highly and average intelligent children, 18 intellectually gifted children, and 18 intellectually average children participated the present study. Present findings…

  15. Modeling event-related heart period responses.

    PubMed

    Paulus, Philipp C; Castegnetti, Giuseppe; Bach, Dominik R

    2016-06-01

    Cardiac rhythm is generated locally in the sinoatrial node, but modulated by central neural input. This may provide a possibility to infer central processes from observed phasic heart period responses (HPR). Currently, operational methods are used for HPR analysis. These methods embody implicit assumptions on how central states influence heart period. Here, we build an explicit psychophysiological model (PsPM) for event-related HPR. This phenomenological PsPM is based on three experiments involving white noise sounds, an auditory oddball task, and emotional picture viewing. The model is optimized with respect to predictive validity-the ability to separate experimental conditions from each other. To validate the PsPM, an independent sample of participants is presented with auditory stimuli of varying intensity and emotional pictures of negative and positive valence, at short intertrial intervals. Our model discriminates these experimental conditions from each other better than operational approaches. We conclude that our PsPM is more sensitive to distinguish experimental manipulations based on heart period data than operational methods, and furnishes a principled approach to analysis of HPR. PMID:26849101

  16. Chemosensory anxiety cues moderate the experience of social exclusion – an fMRI investigation with Cyberball

    PubMed Central

    Wudarczyk, Olga A.; Kohn, Nils; Bergs, Rene; Gur, Raquel E.; Turetsky, Bruce; Schneider, Frank; Habel, Ute

    2015-01-01

    Recent evidence suggests that the experience of stress can be communicated between individuals via chemosensory cues. Little is known, however, about the impact of these cues on neurophysiological responses during a socially threatening situation. In the current investigation we implemented a widely used paradigm to study social exclusion—Cyberball—to examine whether chemosensory cues signaling anxiety modulate the neuronal effects of ostracism. In a double-blind, within-subjects design, 24 healthy, normosmic participants were presented with chemosensory cues of anxiety (or control samples) and completed the Cyberball task while in a 3T fMRI scanner. Axillary sweat collected from male students awaiting an oral examination served as the anxiety cues while the chemosensory control stimuli consisted of sweat collected from the same individuals participating in an ergometer training session. The neuroimaging data revealed that under the control chemosensory condition, exclusion from Cyberball was associated with significantly higher orbitofrontal cortex and anterior cingulate cortex activity, which is consistent with previous studies in the field. However, when participants were primed with the anxiety sweat, the activity in these regions was not observed. Further, under exposure to anxiety cues during ostracism the participants showed deactivations in brain regions involved in memory (hippocampus), social cognition (middle temporal gyrus, superior temporal gyrus) and processing of salience (inferior frontal gyrus). These results suggest that successful communication of anxiety via the chemosensory domain may moderate the experience of social exclusion. It is possible that the anxiety signals make it easier for the individuals to detach from the group, pointing to the communicative role of chemosensory anxiety cues in enhancing adjustment mechanisms in light of a distressing situation. PMID:26500572

  17. Weed or Wheel! fMRI, Behavioural, and Toxicological Investigations of How Cannabis Smoking Affects Skills Necessary for Driving

    PubMed Central

    Thomas, Aurélien; Mall, Jean-Frédéric; Chtioui, Haithem; Appenzeller, Monique; Annoni, Jean-Marie; Favrat, Bernard

    2013-01-01

    Marijuana is the most widely used illicit drug, however its effects on cognitive functions underling safe driving remain mostly unexplored. Our goal was to evaluate the impact of cannabis on the driving ability of occasional smokers, by investigating changes in the brain network involved in a tracking task. The subject characteristics, the percentage of Δ9-Tetrahydrocannabinol in the joint, and the inhaled dose were in accordance with real-life conditions. Thirty-one male volunteers were enrolled in this study that includes clinical and toxicological aspects together with functional magnetic resonance imaging of the brain and measurements of psychomotor skills. The fMRI paradigm was based on a visuo-motor tracking task, alternating active tracking blocks with passive tracking viewing and rest condition. We show that cannabis smoking, even at low Δ9-Tetrahydrocannabinol blood concentrations, decreases psychomotor skills and alters the activity of the brain networks involved in cognition. The relative decrease of Blood Oxygen Level Dependent response (BOLD) after cannabis smoking in the anterior insula, dorsomedial thalamus, and striatum compared to placebo smoking suggests an alteration of the network involved in saliency detection. In addition, the decrease of BOLD response in the right superior parietal cortex and in the dorsolateral prefrontal cortex indicates the involvement of the Control Executive network known to operate once the saliencies are identified. Furthermore, cannabis increases activity in the rostral anterior cingulate cortex and ventromedial prefrontal cortices, suggesting an increase in self-oriented mental activity. Subjects are more attracted by intrapersonal stimuli (“self”) and fail to attend to task performance, leading to an insufficient allocation of task-oriented resources and to sub-optimal performance. These effects correlate with the subjective feeling of confusion rather than with the blood level of Δ9-Tetrahydrocannabinol

  18. Can Machines Think? Interaction and Perspective Taking with Robots Investigated via fMRI

    PubMed Central

    Krach, Sören; Hegel, Frank; Wrede, Britta; Sagerer, Gerhard; Binkofski, Ferdinand; Kircher, Tilo

    2008-01-01

    Background When our PC goes on strike again we tend to curse it as if it were a human being. Why and under which circumstances do we attribute human-like properties to machines? Although humans increasingly interact directly with machines it remains unclear whether humans implicitly attribute intentions to them and, if so, whether such interactions resemble human-human interactions on a neural level. In social cognitive neuroscience the ability to attribute intentions and desires to others is being referred to as having a Theory of Mind (ToM). With the present study we investigated whether an increase of human-likeness of interaction partners modulates the participants' ToM associated cortical activity. Methodology/Principal Findings By means of functional magnetic resonance imaging (subjects n = 20) we investigated cortical activity modulation during highly interactive human-robot game. Increasing degrees of human-likeness for the game partner were introduced by means of a computer partner, a functional robot, an anthropomorphic robot and a human partner. The classical iterated prisoner's dilemma game was applied as experimental task which allowed for an implicit detection of ToM associated cortical activity. During the experiment participants always played against a random sequence unknowingly to them. Irrespective of the surmised interaction partners' responses participants indicated having experienced more fun and competition in the interaction with increasing human-like features of their partners. Parametric modulation of the functional imaging data revealed a highly significant linear increase of cortical activity in the medial frontal cortex as well as in the right temporo-parietal junction in correspondence with the increase of human-likeness of the interaction partner (computer

  19. Altered Hemodynamic Activity in Conduct Disorder: A Resting-State fMRI Investigation

    PubMed Central

    Zhou, Jiansong; Yao, Nailin; Fairchild, Graeme; Zhang, Yingdong; Wang, Xiaoping

    2015-01-01

    Background Youth with conduct disorder (CD) not only inflict serious physical and psychological harm on others, but are also at greatly increased risk of sustaining injuries, developing depression or substance abuse, and engaging in criminal behaviors. The underlying neurobiological basis of CD remains unclear. Objective The present study investigated whether participants with CD have altered hemodynamic activity under resting-state conditions. Methods Eighteen medication-naïve boys with CD and 18 age- and sex- matched typically developing (TD) controls underwent functional magnetic resonance imaging (MRI) scans in the resting state. The amplitude of low-frequency fluctuations (ALFF) was measured and compared between the CD and TD groups. Results Compared with the TD participants, the CD participants showed lower ALFF in the bilateral amygdala/parahippocampus, right lingual gyrus, left cuneus and right insula. Higher ALFF was observed in the right fusiform gyrus and right thalamus in the CD participants compared to the TD group. Conclusions Youth with CD displayed widespread functional abnormalities in emotion-related and visual cortical regions in the resting state. These results suggest that deficits in the intrinsic activity of resting state networks may contribute to the etiology of CD. PMID:25816069

  20. Default distrust? An fMRI investigation of the neural development of trust and cooperation.

    PubMed

    Fett, Anne-Kathrin J; Gromann, Paula M; Giampietro, Vincent; Shergill, Sukhi S; Krabbendam, Lydia

    2014-04-01

    The tendency to trust and to cooperate increases from adolescence to adulthood. This social development has been associated with improved mentalizing and age-related changes in brain function. Thus far, there is limited imaging data investigating these associations. We used two trust games with a trustworthy and an unfair partner to explore the brain mechanisms underlying trust and cooperation in subjects ranging from adolescence to mid-adulthood. Increasing age was associated with higher trust at the onset of social interactions, increased levels of trust during interactions with a trustworthy partner and a stronger decline in trust during interactions with an unfair partner. Our findings demonstrate a behavioural shift towards higher trust and an age-related increase in the sensitivity to others' negative social signals. Increased brain activation in mentalizing regions, i.e. temporo-parietal junction, posterior cingulate and precuneus, supported the behavioural change. Additionally, age was associated with reduced activation in the reward-related orbitofrontal cortex and caudate nucleus during interactions with a trustworthy partner, possibly reflecting stronger expectations of trustworthiness. During unfair interactions, age-related increases in anterior cingulate activation, an area implicated in conflict monitoring, may mirror the necessity to inhibit pro-social tendencies in the face of the partner's actual levels of cooperation. PMID:23202661

  1. The Neurotopography of Written Word Production: An fMRI Investigation of the Distribution of Sensitivity to Length and Frequency

    ERIC Educational Resources Information Center

    Rapp, Brenda; Dufor, Olivier

    2011-01-01

    This research is directed at charting the neurotopography of the component processes of the spelling system by using fMRI to identify the neural substrates that are sensitive to the factors of lexical frequency and word length. In spelling, word frequency effects index orthographic long-term memory whereas length effects, as measured by the number…

  2. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation

    PubMed Central

    Hames, Elizabeth’ C.; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C.; Baker, Mary; Zupancic, Stephen; O’Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20–28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  3. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation.

    PubMed

    Hames, Elizabeth' C; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C; Baker, Mary; Zupancic, Stephen; O'Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20-28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  4. Event-related brain potentials - Comparison between children and adults

    NASA Technical Reports Server (NTRS)

    Courchesne, E.

    1977-01-01

    The reported investigation shows that nontarget stimuli which are infrequently presented and deviate from the background elicit Nc and Pc waves in children. The same stimuli elicit P3 waves in adults. The scalp distribution of P3 waves in adults appears to vary with the ease of stimulus recognition or the degree of stimulus novelty. However, the Nc and Pc distributions in children do not seem to vary with these factors. The differences between children and adults in event-related potentials suggest corresponding differences in the mode of processing employed by each when rare, deviant stimuli are encountered

  5. fMRI adaptation revisited.

    PubMed

    Larsson, Jonas; Solomon, Samuel G; Kohn, Adam

    2016-07-01

    Adaptation has been widely used in functional magnetic imaging (fMRI) studies to infer neuronal response properties in human cortex. fMRI adaptation has been criticized because of the complex relationship between fMRI adaptation effects and the multiple neuronal effects that could underlie them. Many of the longstanding concerns about fMRI adaptation have received empirical support from neurophysiological studies over the last decade. We review these studies here, and also consider neuroimaging studies that have investigated how fMRI adaptation effects are influenced by high-level perceptual processes. The results of these studies further emphasize the need to interpret fMRI adaptation results with caution, but they also provide helpful guidance for more accurate interpretation and better experimental design. In addition, we argue that rather than being used as a proxy for measurements of neuronal stimulus selectivity, fMRI adaptation may be most useful for studying population-level adaptation effects across cortical processing hierarchies. PMID:26703375

  6. Pitch discrimination without awareness in congenital amusia: evidence from event-related potentials.

    PubMed

    Moreau, Patricia; Jolicœur, Pierre; Peretz, Isabelle

    2013-04-01

    Congenital amusia is a lifelong disorder characterized by a difficulty in perceiving and producing music despite normal intelligence and hearing. Behavioral data have indicated that it originates from a deficit in fine-grained pitch discrimination, and is expressed by the absence of a P3b event-related brain response for pitch differences smaller than a semitone and a bigger N2b-P3b brain response for large pitch differences as compared to controls. However, it is still unclear why the amusic brain overreacts to large pitch changes. Furthermore, another electrophysiological study indicates that the amusic brain can respond to changes in melodies as small as a quarter-tone, without awareness, by exhibiting a normal mismatch negativity (MMN) brain response. Here, we re-examine the event-related N2b-P3b components with the aim to clarify the cause of the larger amplitude observed by Peretz, Brattico, and Tervaniemi (2005), by experimentally matching the number of deviants presented to the controls according to the number of deviants detected by amusics. We also re-examine the MMN component as well as the N1 in an acoustical context to investigate further the pitch discrimination deficit underlying congenital amusia. In two separate conditions, namely ignore and attend, we measured the MMN, the N1, the N2b and the P3b to tones that deviated by an eight of a tone (25 cents) or whole tone (200 cents) from a repeated standard tone. The results show a normal MMN, a seemingly normal N1, a normal P3b for the 200 cents pitch deviance, and no P3b for the small 25 cents pitch differences in amusics. These results indicate that the amusic brain responds to small pitch differences at a pre-attentive level of perception, but is unable to detect consciously those same pitch deviances at a later attentive level. The results are consistent with previous MRI and fMRI studies indicating that the auditory cortex of amusic individuals is functioning normally. PMID:23434917

  7. Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect.

    PubMed

    Folia, Vasiliki; Petersson, Karl Magnus

    2014-01-01

    In this event-related fMRI study we investigated the effect of 5 days of implicit acquisition on preference classification by means of an artificial grammar learning (AGL) paradigm based on the structural mere-exposure effect and preference classification using a simple right-linear unification grammar. This allowed us to investigate implicit AGL in a proper learning design by including baseline measurements prior to grammar exposure. After 5 days of implicit acquisition, the fMRI results showed activations in a network of brain regions including the inferior frontal (centered on BA 44/45) and the medial prefrontal regions (centered on BA 8/32). Importantly, and central to this study, the inclusion of a naive preference fMRI baseline measurement allowed us to conclude that these fMRI findings were the intrinsic outcomes of the learning process itself and not a reflection of a preexisting functionality recruited during classification, independent of acquisition. Support for the implicit nature of the knowledge utilized during preference classification on day 5 come from the fact that the basal ganglia, associated with implicit procedural learning, were activated during classification, while the medial temporal lobe system, associated with explicit declarative memory, was consistently deactivated. Thus, preference classification in combination with structural mere-exposure can be used to investigate structural sequence processing (syntax) in unsupervised AGL paradigms with proper learning designs. PMID:24550865

  8. Free Language Selection in the Bilingual Brain: An Event-Related fMRI Study

    PubMed Central

    Zhang, Yong; Wang, Tao; Huang, Peiyu; Li, Dan; Qiu, Jiang; Shen, Tong; Xie, Peng

    2015-01-01

    Bilingual speakers may select between two languages either on demand (forced language selection) or on their own volition (free language selection). However, the neural substrates underlying free and forced language selection may differ. While the neural substrates underlying forced language selection have been well-explored with language switching paradigms, those underlying free language selection have remained unclear. Using a modified digit-naming switching paradigm, we addressed the neural substrates underlying free language selection by contrasting free language switching with forced language switching. For a digit-pair trial, Chinese-English bilinguals named each digit in Chinese or English either on demand under forced language selection condition or on their own volition under free language selection condition. The results revealed activation in the frontoparietal regions that mediate volition of language selection. Furthermore, a comparison of free and forced language switching demonstrated differences in the patterns of brain activation. Additionally, free language switching showed reduced switching costs as compared to forced language switching. These findings suggest differences between the mechanism(s) underlying free and forced language switching. As such, the current study suggests interactivity between control of volition and control of language switching in free language selection, providing insights into a model of bilingual language control. PMID:26177885

  9. Brain activity during simulated deception: an event-related functional magnetic resonance study.

    PubMed

    Langleben, D D; Schroeder, L; Maldjian, J A; Gur, R C; McDonald, S; Ragland, J D; O'Brien, C P; Childress, A R

    2002-03-01

    TheGuilty Knowledge Test (GKT) has been used extensively to model deception. An association between the brain evoked response potentials and lying on the GKT suggests that deception may be associated with changes in other measures of brain activity such as regional blood flow that could be anatomically localized with event-related functional magnetic resonance imaging (fMRI). Blood oxygenation level-dependent fMRI contrasts between deceptive and truthful responses were measured with a 4 Tesla scanner in 18 participants performing the GKT and analyzed using statistical parametric mapping. Increased activity in the anterior cingulate cortex (ACC), the superior frontal gyrus (SFG), and the left premotor, motor, and anterior parietal cortex was specifically associated with deceptive responses. The results indicate that: (a) cognitive differences between deception and truth have neural correlates detectable by fMRI, (b) inhibition of the truthful response may be a basic component of intentional deception, and (c) ACC and SFG are components of the basic neural circuitry for deception. PMID:11848716

  10. Common and Segregated Neural Substrates for Automatic Conceptual and Affective Priming as Revealed by Event-Related Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Liu, Hongyan; Hu, Zhiguo; Peng, Danling; Yang, Yanhui; Li, Kuncheng

    2010-01-01

    The brain activity associated with automatic semantic priming has been extensively studied. Thus far there has been no prior study that directly contrasts the neural mechanisms of semantic and affective priming. The present study employed event-related fMRI to examine the common and distinct neural bases underlying conceptual and affective priming…

  11. [fMRI study of deliberate deception].

    PubMed

    Kireev, M V; Korotkov, A D; Medvedev, C V

    2012-01-01

    The aim of the present research was to study the deliberate deception. Event related functional magnetic resonance (fMRI) imaging technique was used to assess the changes in functional brain activity by virtue of recording blood oxygen level dependant signal (BOLD-signal). 12 right-handed healthy volunteers aged 19-44 participated in the study. BOLD images were acquired in three different experimental trials. There were deliberate deception, manipulative honest and control truthful trials (catch trials). The main finding of the present study is that the deliberate deception and manipulative honest actions in comparison with instructed truthful responding was characterized by BOLD signal increase within the anterior cingulated cortex (ACC), frontal and parietal areas as well. Comparison of present fMRI data with results demonstrated in our previous research implemented with event related potentials technique points to the involvement of the brain mechanism of error detection to brain processing of deliberate deception. PMID:22567835

  12. An event-related analysis of P300 by simultaneous EEG/fMRI

    NASA Astrophysics Data System (ADS)

    Wang, Li-qun; Wang, Mingshi; Mizuhara, Hiroaki

    2006-09-01

    In this study, P300 that induced by visual stimuli was examined with simultaneous EEG/fMRI. For the purpose of combine the best temporary resolution with the best special resolution together to estimate the brain function, event-related analysis contributed to this methodological trial. A 64 channel MRT-compatible MR EEG amplifier (BrainAmp: made of Brain Production GmbH, Gennany) was used in the measurement simultaneously with fMRI scanning. The reference channel is between Fz, Cz and Pz. Sampling rate of raw EEG was 5 kHz, and the MRT noise reduction was performed. EEG recording synchronized with MRI scan by our original stimulus system, and an oddball paradigm (four-oriented Landolt Ring presentation) was performed in the official manner. After P300 segmentation, the timing of P300 was exported to event-related analysis of fMRI data with SPM99 software. In single subject study, the significant activations appear in the left superior frontal, Broca's area and on both sides of the parietal lobule when P300 occurred. It is suggest that P300 may be an integration carried out by top-down signal from frontal to the parietal lobule, which regulates an Attention-Logical Judgment process. Compared with other current methods, the event related analysis by simultaneous EEG/IMRI is excellent in the point that can describe the cognitive process with reality unifying further temporary and spatial information. It is expected that examination and demonstration of the obtained result will supply with the promotion of this powerful methods.

  13. A Critical Review of ERP and fMRI Evidence on L2 Syntactic Processing

    ERIC Educational Resources Information Center

    Kotz, Sonja A.

    2009-01-01

    The current review focuses on recent event-related brain potential (ERPs) and functional magnetic resonance imaging (fMRI) in L2 syntactic processing data. To this end, critical factors influencing both the dynamics of neural mechanisms (ERPs) and critical functional brain correlates (fMRI) are discussed. These entail the critical period…

  14. Study of Object Substitution Masking Using Event-related Potential

    NASA Astrophysics Data System (ADS)

    Nuruki, Atsuo; Yamada, Masafumi; Kawabata, Takuro; Shimozono, Tomoyuki; Yunokuchi, Kazutomo

    We make use of especially visual information though we are using a lot of information among modality in daily life. However, there is a difference between the real world and the perception of visual world. For instance, conscious perception of a briefly presented target can be reduced by a subsequent dot mask that does not touch it. However, the theory of this phenomenon, called Object Substitution Masking (OSM), is not clear. We investigated this issue by examining the effect of OSM on the N170 component of the event-related potential (ERP). As expected, subsequent dot mask significantly reduced accuracy in identifying the target. The N170 amplitude of P4 was also diminished by OSM. It was suggested that OSM is concerned in right posterior parietal cortex.

  15. When memory meets beauty: Insights from event-related potentials.

    PubMed

    Marzi, T; Viggiano, M P

    2010-05-01

    Facial attractiveness plays a key role in human social and affective behavior. To study the time course of the neural processing of attractiveness and its influence on recognition memory we investigated the event-related potentials (ERPs) elicited in an old/new recognition task in response to faces with a neutral expression that, at encoding, were rated for their attractiveness. Highly attractive faces elicited a specific early positive-going component on frontal sites; in addition, with respect to less attractive faces, they elicited larger later components related to structural encoding and recognition memory. All in all, our results show that facial attractiveness, independently from facial expression, modulates face processing throughout all stages from encoding to retrieval. PMID:20109520

  16. Neural correlates of perceiving emotional faces and bodies in developmental prosopagnosia: an event-related fMRI-study.

    PubMed

    Van den Stock, Jan; van de Riet, Wim A C; Righart, Ruthger; de Gelder, Beatrice

    2008-01-01

    Many people experience transient difficulties in recognizing faces but only a small number of them cannot recognize their family members when meeting them unexpectedly. Such face blindness is associated with serious problems in everyday life. A better understanding of the neuro-functional basis of impaired face recognition may be achieved by a careful comparison with an equally unique object category and by a adding a more realistic setting involving neutral faces as well facial expressions. We used event-related functional magnetic resonance imaging (fMRI) to investigate the neuro-functional basis of perceiving faces and bodies in three developmental prosopagnosics (DP) and matched healthy controls. Our approach involved materials consisting of neutral faces and bodies as well as faces and bodies expressing fear or happiness. The first main result is that the presence of emotional information has a different effect in the patient vs. the control group in the fusiform face area (FFA). Neutral faces trigger lower activation in the DP group, compared to the control group, while activation for facial expressions is the same in both groups. The second main result is that compared to controls, DPs have increased activation for bodies in the inferior occipital gyrus (IOG) and for neutral faces in the extrastriate body area (EBA), indicating that body and face sensitive processes are less categorically segregated in DP. Taken together our study shows the importance of using naturalistic emotional stimuli for a better understanding of developmental face deficits. PMID:18797499

  17. fMRI investigation of response inhibition, emotion, impulsivity, and clinical high-risk behavior in adolescents

    PubMed Central

    Brown, Matthew R. G.; Benoit, James R. A.; Juhás, Michal; Dametto, Ericson; Tse, Tiffanie T.; MacKay, Marnie; Sen, Bhaskar; Carroll, Alan M.; Hodlevskyy, Oleksandr; Silverstone, Peter H.; Dolcos, Florin; Dursun, Serdar M.; Greenshaw, Andrew J.

    2015-01-01

    High-risk behavior in adolescents is associated with injury, mental health problems, and poor outcomes in later life. Improved understanding of the neurobiology of high-risk behavior and impulsivity shows promise for informing clinical treatment and prevention as well as policy to better address high-risk behavior. We recruited 21 adolescents (age 14–17) with a wide range of high-risk behavior tendencies, including medically high-risk participants recruited from psychiatric clinics. Risk tendencies were assessed using the Adolescent Risk Behavior Screen (ARBS). ARBS risk scores correlated highly (0.78) with impulsivity scores from the Barratt Impulsivity scale (BIS). Participants underwent 4.7 Tesla functional magnetic resonance imaging (fMRI) while performing an emotional Go/NoGo task. This task presented an aversive or neutral distractor image simultaneously with each Go or NoGo stimulus. Risk behavior and impulsivity tendencies exhibited similar but not identical associations with fMRI activation patterns in prefrontal brain regions. We interpret these results as reflecting differences in response inhibition, emotional stimulus processing, and emotion regulation in relation to participant risk behavior tendencies and impulsivity levels. The results are consistent with high impulsivity playing an important role in determining high risk tendencies in this sample containing clinically high-risk adolescents. PMID:26483645

  18. Neuromarkers of fatigue and cognitive complaints following chemotherapy for breast cancer: a prospective fMRI investigation.

    PubMed

    Askren, Mary K; Jung, Misook; Berman, Marc G; Zhang, Min; Therrien, Barbara; Peltier, Scott; Ossher, Lynn; Hayes, Daniel F; Reuter-Lorenz, Patricia A; Cimprich, Bernadine

    2014-09-01

    The aim of this study is to use functional magnetic resonance imaging (fMRI) to prospectively examine pre-treatment predictors of post-treatment fatigue and cognitive dysfunction in women treated with adjuvant chemotherapy for breast cancer. Fatigue and cognitive dysfunction often co-occur in women treated for breast cancer. We hypothesized that pre-treatment factors, unrelated to chemotherapy per se, might increase vulnerability to post-treatment fatigue and cognitive dysfunction. Patients treated with (n = 28) or without chemotherapy (n = 37) and healthy controls (n = 32) were scanned coincident with pre- and one-month post-chemotherapy during a verbal working memory task (VWMT) and assessed for fatigue, worry, and cognitive dysfunction. fMRI activity measures in the frontoparietal executive network were used in multiple linear regression to predict post-treatment fatigue and cognitive function. The chemotherapy group reported greater pre-treatment fatigue than controls and showed compromised neural response, characterized by higher spatial variance in executive network activity, than the non-chemotherapy group. Also, the chemotherapy group reported greater post-treatment fatigue than the other groups. Linear regression indicated that pre-treatment spatial variance in executive network activation predicted post-treatment fatigue severity and cognitive complaints, while treatment group, age, hemoglobin, worry, and mean executive network activity levels did not predict these outcomes. Pre-treatment neural inefficiency (indexed by high spatial variance) in the executive network, which supports attention and working memory, was a better predictor of post-treatment cognitive and fatigue complaints than exposure to chemotherapy per se. This executive network compromise could be a pre-treatment neuromarker of risk, indicating patients most likely to benefit from early intervention for fatigue and cognitive dysfunction. PMID:25138546

  19. Electrodermal Recording and fMRI to Inform Sensorimotor Recovery in Stroke Patients

    PubMed Central

    MacIntosh, Bradley J.; McIlroy, William E.; Mraz, Richard; Staines, W. Richard; Black, Sandra E.; Graham, Simon J.

    2016-01-01

    Background Functional magnetic resonance imaging (fMRI) appears to be useful for investigating motor recovery after stroke. Some of the potential confounders of brain activation studies, however, could be mitigated through complementary physiological monitoring. Objective To investigate a sensorimotor fMRI battery that included simultaneous measurement of electrodermal activity in subjects with hemiparetic stroke to provide a measure related to the sense of effort during motor performance. Methods Bilateral hand and ankle tasks were performed by 6 patients with stroke (2 subacute, 4 chronic) during imaging with blood oxygen level-dependent (BOLD) fMRI using an event-related design. BOLD percent changes, peak activation, and laterality index values were calculated in the sensorimotor cortex. Electrodermal recordings were made concurrently and used as a regressor. Results Sensorimotor BOLD time series and percent change values provided evidence of an intact motor network in each of these well-recovered patients. During tasks involving the hemiparetic limb, electrodermal activity changes were variable in amplitude, and electrodermal activity time-series data showed significant correlations with fMRI in 3 of 6 patients. No such correlations were observed for control tasks involving the unaffected lower limb. Conclusions Electrodermal activity activation maps implicated the contralesional over the ipsilesional hemisphere, supporting the notion that stroke patients may require higher order motor processing to perform simple tasks. Electrodermal activity recordings may be useful as a physiological marker of differences in effort required during movements of a subject’s hemiparetic compared with the unaffected limb during fMRI studies. PMID:18784267

  20. Investigating Effective Brain Connectivity from fMRI Data: Past Findings and Current Issues with Reference to Granger Causality Analysis

    PubMed Central

    2012-01-01

    Abstract Interactions between brain regions have been recognized as a critical ingredient required to understand brain function. Two modes of interactions have held prominence—synchronization and causal influence. Efforts to ascertain causal influence from functional magnetic resonance imaging (fMRI) data have relied primarily on confirmatory model-driven approaches, such as dynamic causal modeling and structural equation modeling, and exploratory data-driven approaches such as Granger causality analysis. A slew of recent articles have focused on the relative merits and caveats of these approaches. The relevant studies can be classified into simulations, theoretical developments, and experimental results. In the first part of this review, we will consider each of these themes and critically evaluate their arguments, with regard to Granger causality analysis. Specifically, we argue that simulations are bounded by the assumptions and simplifications made by the simulator, and hence must be regarded only as a guide to experimental design and should not be viewed as the final word. On the theoretical front, we reason that each of the improvements to existing, yet disparate, methods brings them closer to each other with the hope of eventually leading to a unified framework specifically designed for fMRI. We then review latest experimental results that demonstrate the utility and validity of Granger causality analysis under certain experimental conditions. In the second part, we will consider current issues in causal connectivity analysis—hemodynamic variability, sampling, instantaneous versus causal relationship, and task versus resting states. We highlight some of our own work regarding these issues showing the effect of hemodynamic variability and sampling on Granger causality. Further, we discuss recent techniques such as the cubature Kalman filtering, which can perform blind deconvolution of the hemodynamic response robustly well, and hence enabling wider

  1. Investigating the field-dependence of the Davis model: Calibrated fMRI at 1.5, 3 and 7T.

    PubMed

    Hare, Hannah V; Blockley, Nicholas P; Gardener, Alexander G; Clare, Stuart; Bulte, Daniel P

    2015-05-15

    Gas calibrated fMRI in its most common form uses hypercapnia in conjunction with the Davis model to quantify relative changes in the cerebral rate of oxygen consumption (CMRO2) in response to a functional stimulus. It is most commonly carried out at 3T but, as 7T research scanners are becoming more widespread and the majority of clinical scanners are still 1.5T systems, it is important to investigate whether the model used remains accurate across this range of field strengths. Ten subjects were scanned at 1.5, 3 and 7T whilst performing a bilateral finger-tapping task as part of a calibrated fMRI protocol, and the results were compared to a detailed signal model. Simulations predicted an increase in value and variation in the calibration parameter M with field strength. Two methods of defining experimental regions of interest (ROIs) were investigated, based on (a) BOLD signal and (b) BOLD responses within grey matter only. M values from the latter ROI were in closer agreement with theoretical predictions; however, reassuringly, ROI choice had less impact on CMRO2 than on M estimates. Relative changes in CMRO2 during motor tasks at 3 and 7T were in good agreement but were over-estimated at 1.5T as a result of the lower signal to noise ratio. This result is encouraging for future studies at 7T, but also highlights the impact of imaging and analysis choices (such as ASL sequence and ROI definition) on the calibration parameter M and on the calculation of CMRO2. PMID:25783207

  2. Schizophrenia symptom and functional correlates of anterior cingulate cortex activation to emotion stimuli: An fMRI investigation.

    PubMed

    Nelson, Brady D; Bjorkquist, Olivia A; Olsen, Emily K; Herbener, Ellen S

    2015-12-30

    Schizophrenia is a chronic mental illness characterized by distinct positive and negative symptoms and functional impairment. The anterior cingulate cortex (ACC) is a region of the brain's limbic system that is hypoactive during emotion processing in schizophrenia. Recent evidence suggests the hypoactive ACC in schizophrenia is due to negative (and not positive) symptoms. However, this finding has not been replicated and the functional significance of this relationship remains unclear. The present study examined the association between positive and negative symptoms, ACC activation to emotional images, and functional outcome in schizophrenia. Specifically, 16 schizophrenia/schizoaffective disorder (SZ/SZAF) and 15 control (CON) participants underwent an fMRI scan while completing an emotional picture-rating task. SZ/SZAF participants also completed clinician-rated measures of positive and negative symptoms and functional abilities. SZ/SZAF participants with high negative symptoms had reduced ACC activation to pleasant images relative to those with low negative symptoms and CON, who did not differ. Furthermore, amongst all SZ/SZAF participants poorer social functioning was associated with decreased ACC activation to pleasant images. Finally, ACC activation partially mediated the relationship between negative symptoms and social dysfunction. These results provide evidence of the functional significance of the relationship between negative symptoms and ACC dysfunction in schizophrenia. PMID:26596521

  3. Precursors of insight in event-related brain potentials.

    PubMed

    Lang, Simone; Kanngieser, Nadine; Jaśkowski, Piotr; Haider, Hilde; Rose, Michael; Verleger, Rolf

    2006-12-01

    Event-related potentials (ERPs) were investigated to find precursors of insightful behavior. Participants had to process successive pairs in strings of digits to obtain a final response in each trial. Within the sequence of five responses required in each trial, the last two responses mirrored the two preceding ones. This hidden regularity, allowing for shortcutting each trial from five to two responses, was discovered by 6 out of 26 participants. Both groups, solvers and nonsolvers, implicitly learned the regularity, reflected by faster responses to the repeated, predictable responses, but this differential effect was larger in solvers, whereas nonsolvers became unspecifically faster with all responses. Several ERP components were larger in solvers than in nonsolvers from the outset: slow positive wave, frontocentral P3a, anterior N1 to those digits that triggered the critical repeating responses, and P3b to the digit that evoked the immediately repeating response. Being already present in the first block, these effects were early precursors of insightful behavior. This early occurrence suggests that participants who will gain insight may be distinguished beforehand by their individual characteristics. PMID:17129197

  4. Agency attribution: event-related potentials and outcome monitoring.

    PubMed

    Bednark, Jeffery G; Franz, Elizabeth A

    2014-04-01

    Knowledge about the effects of our actions is an underlying feature of voluntary behavior. Given the importance of identifying the outcomes of our actions, it has been proposed that the sensory outcomes of self-made actions are inherently different from those of externally caused outcomes. Thus, the outcomes of self-made actions are likely to be more motivationally significant for an agent. We used event-related potentials to investigate the relationship between the perceived motivational significance of an outcome and the attribution of agency in the presence of others. In our experiment, we assessed agency attribution in the presence of another agent by varying the degree of contiguity between participants' self-made actions and the sensory outcome. Specifically, we assessed the feedback correct-related positivity (fCRP) and the novelty P3 measures of an outcome's motivational significance and unexpectedness, respectively. Results revealed that both the fCRP and participants' agency attributions were significantly influenced by action-outcome contiguity. However, when action-outcome contiguity was ambiguous, novelty P3 amplitude was a reliable indicator of agency attribution. Prior agency attributions were also found to influence attribution in trials with ambiguous and low action-outcome contiguity. Participants' use of multiple cues to determine agency is consistent with the cue integration theory of agency. In addition to these novel findings, this study supports growing evidence suggesting that reinforcement processes play a significant role in the sense of agency. PMID:24504195

  5. Multiple Component Event-Related Potential (mcERP) Estimation

    NASA Technical Reports Server (NTRS)

    Knuth, K. H.; Clanton, S. T.; Shah, A. S.; Truccolo, W. A.; Ding, M.; Bressler, S. L.; Trejo, L. J.; Schroeder, C. E.; Clancy, Daniel (Technical Monitor)

    2002-01-01

    We show how model-based estimation of the neural sources responsible for transient neuroelectric signals can be improved by the analysis of single trial data. Previously, we showed that a multiple component event-related potential (mcERP) algorithm can extract the responses of individual sources from recordings of a mixture of multiple, possibly interacting, neural ensembles. McERP also estimated single-trial amplitudes and onset latencies, thus allowing more accurate estimation of ongoing neural activity during an experimental trial. The mcERP algorithm is related to informax independent component analysis (ICA); however, the underlying signal model is more physiologically realistic in that a component is modeled as a stereotypic waveshape varying both in amplitude and onset latency from trial to trial. The result is a model that reflects quantities of interest to the neuroscientist. Here we demonstrate that the mcERP algorithm provides more accurate results than more traditional methods such as factor analysis and the more recent ICA. Whereas factor analysis assumes the sources are orthogonal and ICA assumes the sources are statistically independent, the mcERP algorithm makes no such assumptions thus allowing investigators to examine interactions among components by estimating the properties of single-trial responses.

  6. Bootstrap analysis of the single subject with event related potentials.

    PubMed

    Oruç, Ipek; Krigolson, Olav; Dalrymple, Kirsten; Nagamatsu, Lindsay S; Handy, Todd C; Barton, Jason J S

    2011-07-01

    Neural correlates of cognitive states in event-related potentials (ERPs) serve as markers for related cerebral processes. Although these are usually evaluated in subject groups, the ability to evaluate such markers statistically in single subjects is essential for case studies in neuropsychology. Here we investigated the use of a simple test based on nonparametric bootstrap confidence intervals for this purpose, by evaluating three different ERP phenomena: the face-selectivity of the N170, error-related negativity, and the P3 component in a Posner cueing paradigm. In each case, we compare single-subject analysis with statistical significance determined using bootstrap to conventional group analysis using analysis of variance (ANOVA). We found that the proportion of subjects who show a significant effect at the individual level based on bootstrap varied, being greatest for the N170 and least for the P3. Furthermore, it correlated with significance at the group level. We conclude that the bootstrap methodology can be a viable option for interpreting single-case ERP amplitude effects in the right setting, probably with well-defined stereotyped peaks that show robust differences at the group level, which may be more characteristic of early sensory components than late cognitive effects. PMID:22292858

  7. An fMRI study investigating effects of conceptually related sentences on the perception of degraded speech.

    PubMed

    Guediche, Sara; Reilly, Megan; Santiago, Carolina; Laurent, Patryk; Blumstein, Sheila E

    2016-06-01

    Prior research has shown that the perception of degraded speech is influenced by within sentence meaning and recruits one or more components of a frontal-temporal-parietal network. The goal of the current study is to examine whether the overall conceptual meaning of a sentence, made up of one set of words, influences the perception of a second acoustically degraded sentence, made up of a different set of words. Using functional magnetic resonance imaging (fMRI), we presented an acoustically clear sentence followed by an acoustically degraded sentence and manipulated the semantic relationship between them: Related in meaning (but consisting of different content words), Unrelated in meaning, or Same. Results showed that listeners' word recognition accuracy for the acoustically degraded sentences was significantly higher when the target sentence was preceded by a conceptually related compared to a conceptually unrelated sentence. Sensitivity to conceptual relationships was associated with enhanced activity in middle and inferior frontal, temporal, and parietal areas. In addition, the left middle frontal gyrus (LMFG), left inferior frontal gyrus (LIFG), and left middle temporal gyrus (LMTG) showed activity that correlated with individual performance on the Related condition. The superior temporal gyrus (STG) showed increased activation in the Same condition suggesting that it is sensitive to perceptual similarity rather than the integration of meaning between the sentence pairs. A fronto-temporo-parietal network appears to consolidate information sources across multiple levels of language (acoustic, lexical, syntactic, semantic) to build, and ultimately integrate conceptual information across sentences and facilitate the perception of a degraded speech signal. However, the nature of the sources of information that are available differentially recruit specific regions and modulate their activity within this network. Implications of these findings for the functional

  8. Impaired target detection in schizophrenia and the ventral attentional network: Findings from a joint event-related potential–functional MRI analysis

    PubMed Central

    Wynn, Jonathan K.; Jimenez, Amy M.; Roach, Brian J.; Korb, Alexander; Lee, Junghee; Horan, William P.; Ford, Judith M.; Green, Michael F.

    2015-01-01

    Schizophrenia patients have abnormal neural responses to salient, infrequent events. We integrated event-related potentials (ERP) and fMRI to examine the contributions of the ventral (salience) and dorsal (sustained) attention networks to this dysfunctional neural activation. Twenty-one schizophrenia patients and 22 healthy controls were assessed in separate sessions with ERP and fMRI during a visual oddball task. Visual P100, N100, and P300 ERP waveforms and fMRI activation were assessed. A joint independent components analysis (jICA) on the ERP and fMRI data were conducted. Patients exhibited reduced P300, but not P100 or N100, amplitudes to targets and reduced fMRI neural activation in both dorsal and ventral attentional networks compared with controls. However, the jICA revealed that the P300 was linked specifically to activation in the ventral (salience) network, including anterior cingulate, anterior insula, and temporal parietal junction, with patients exhibiting significantly lower activation. The P100 and N100 were linked to activation in the dorsal (sustained) network, with no group differences in level of activation. This joint analysis approach revealed the nature of target detection deficits that were not discernable by either imaging methodology alone, highlighting the utility of a multimodal fMRI and ERP approach to understand attentional network deficits in schizophrenia. PMID:26448909

  9. Impaired target detection in schizophrenia and the ventral attentional network: Findings from a joint event-related potential-functional MRI analysis.

    PubMed

    Wynn, Jonathan K; Jimenez, Amy M; Roach, Brian J; Korb, Alexander; Lee, Junghee; Horan, William P; Ford, Judith M; Green, Michael F

    2015-01-01

    Schizophrenia patients have abnormal neural responses to salient, infrequent events. We integrated event-related potentials (ERP) and fMRI to examine the contributions of the ventral (salience) and dorsal (sustained) attention networks to this dysfunctional neural activation. Twenty-one schizophrenia patients and 22 healthy controls were assessed in separate sessions with ERP and fMRI during a visual oddball task. Visual P100, N100, and P300 ERP waveforms and fMRI activation were assessed. A joint independent components analysis (jICA) on the ERP and fMRI data were conducted. Patients exhibited reduced P300, but not P100 or N100, amplitudes to targets and reduced fMRI neural activation in both dorsal and ventral attentional networks compared with controls. However, the jICA revealed that the P300 was linked specifically to activation in the ventral (salience) network, including anterior cingulate, anterior insula, and temporal parietal junction, with patients exhibiting significantly lower activation. The P100 and N100 were linked to activation in the dorsal (sustained) network, with no group differences in level of activation. This joint analysis approach revealed the nature of target detection deficits that were not discernable by either imaging methodology alone, highlighting the utility of a multimodal fMRI and ERP approach to understand attentional network deficits in schizophrenia. PMID:26448909

  10. From prosodic structure to acoustic saliency: A fMRI investigation of speech rate, clarity, and emphasis

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, Elisa

    Acoustic variability in fluent speech can arise at many stages in speech production planning and execution. For example, at the phonological encoding stage, the grouping of phonemes into syllables determines which segments are coarticulated and, by consequence, segment-level acoustic variation. Likewise phonetic encoding, which determines the spatiotemporal extent of articulatory gestures, will affect the acoustic detail of segments. Functional magnetic resonance imaging (fMRI) was used to measure brain activity of fluent adult speakers in four speaking conditions: fast, normal, clear, and emphatic (or stressed) speech. These speech manner changes typically result in acoustic variations that do not change the lexical or semantic identity of productions but do affect the acoustic saliency of phonemes, syllables and/or words. Acoustic responses recorded inside the scanner were assessed quantitatively using eight acoustic measures and sentence duration was used as a covariate of non-interest in the neuroimaging analysis. Compared to normal speech, emphatic speech was characterized acoustically by a greater difference between stressed and unstressed vowels in intensity, duration, and fundamental frequency, and neurally by increased activity in right middle premotor cortex and supplementary motor area, and bilateral primary sensorimotor cortex. These findings are consistent with right-lateralized motor planning of prosodic variation in emphatic speech. Clear speech involved an increase in average vowel and sentence durations and average vowel spacing, along with increased activity in left middle premotor cortex and bilateral primary sensorimotor cortex. These findings are consistent with an increased reliance on feedforward control, resulting in hyper-articulation, under clear as compared to normal speech. Fast speech was characterized acoustically by reduced sentence duration and average vowel spacing, and neurally by increased activity in left anterior frontal

  11. Iconic Meaning in Music: An Event-Related Potential Study

    PubMed Central

    Luo, Qiuling; Huang, Hong; Mo, Lei

    2015-01-01

    Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners’ experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360ms and 410-460ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music. PMID:26161561

  12. Iconic Meaning in Music: An Event-Related Potential Study.

    PubMed

    Cai, Liman; Huang, Ping; Luo, Qiuling; Huang, Hong; Mo, Lei

    2015-01-01

    Although there has been extensive research on the processing of the emotional meaning of music, little is known about other aspects of listeners' experience of music. The present study investigated the neural correlates of the iconic meaning of music. Event-related potentials (ERP) were recorded while a group of 20 music majors and a group of 20 non-music majors performed a lexical decision task in the context of implicit musical iconic meaning priming. ERP analysis revealed a significant N400 effect of congruency in time window 260-510 ms following the onset of the target word only in the group of music majors. Time-course analysis using 50 ms windows indicated significant N400 effects both within the time window 410-460 ms and 460-510 ms for music majors, whereas only a partial N400 effect during time window 410-460 ms was observed for non-music majors. There was also a trend for the N400 effects in the music major group to be stronger than those in the non-major group in the sub-windows of 310-360 ms and 410-460 ms. Especially in the sub-window of 410-460 ms, the topographical map of the difference waveforms between congruent and incongruent conditions revealed different N400 distribution between groups; the effect was concentrated in bilateral frontal areas for music majors, but in central-parietal areas for non-music majors. These results imply probable neural mechanism differences underlying automatic iconic meaning priming of music. Our findings suggest that processing of the iconic meaning of music can be accomplished automatically and that musical training may facilitate the understanding of the iconic meaning of music. PMID:26161561

  13. Evaluating Models of Object-Decision Priming: Evidence from Event-Related Potential Repetition Effects

    ERIC Educational Resources Information Center

    Soldan, Anja; Mangels, Jennifer A.; Cooper, Lynn A.

    2006-01-01

    This study was designed to differentiate between structural description and bias accounts of performance in the possible/impossible object-decision test. Two event-related potential (ERP) studies examined how the visual system processes structurally possible and impossible objects. Specifically, the authors investigated the effects of object…

  14. Gender Differences in Memory Processing: Evidence from Event-Related Potentials to Faces

    ERIC Educational Resources Information Center

    Guillem, F.; Mograss, M.

    2005-01-01

    This study investigated gender differences on memory processing using event-related potentials (ERPs). Behavioral data and ERPs were recorded in 16 males and 10 females during a recognition memory task for faces. The behavioral data results showed that females performed better than males. Gender differences on ERPs were evidenced over anterior…

  15. Early Processing of Emotional Faces in Children with Autism: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Batty, Magali; Meaux, Emilie; Wittemeyer, Kerstin; Roge, Bernadette; Taylor, Margot J.

    2011-01-01

    Social deficits are one of the most striking manifestations of autism spectrum disorders (ASDs). Among these social deficits, the recognition and understanding of emotional facial expressions has been widely reported to be affected in ASDs. We investigated emotional face processing in children with and without autism using event-related potentials…

  16. SUGGESTIONS FOR COLLECTION AND REPORTING OF CHEMOSENSORY (OLFACTORY) EVENT-RELATED POTENTIALS

    EPA Science Inventory

    Chemosensory event-related potentials hold great promise for furthering understanding of the olfactory system and the processing of olfactory information. ollection of this type of data has been difficult and suggestions are presented to aid investigators new to this field. ugges...

  17. Similar Neural Correlates for Language and Sequential Learning: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Christiansen, Morten H.; Conway, Christopher M.; Onnis, Luca

    2012-01-01

    We used event-related potentials (ERPs) to investigate the time course and distribution of brain activity while adults performed (1) a sequential learning task involving complex structured sequences and (2) a language processing task. The same positive ERP deflection, the P600 effect, typically linked to difficult or ungrammatical syntactic…

  18. Pitch Processing in Tonal-Language-Speaking Children with Autism: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Yu, Luodi; Fan, Yuebo; Deng, Zhizhou; Huang, Dan; Wang, Suiping; Zhang, Yang

    2015-01-01

    The present study investigated pitch processing in Mandarin-speaking children with autism using event-related potential measures. Two experiments were designed to test how acoustic, phonetic and semantic properties of the stimuli contributed to the neural responses for pitch change detection and involuntary attentional orienting. In comparison…

  19. Event Related Potentials in the Understanding of Autism Spectrum Disorders: An Analytical Review

    ERIC Educational Resources Information Center

    Jeste, Shafali S.; Nelson, Charles A., III

    2009-01-01

    In this paper we critically review the literature on the use of event related potentials (ERPs) to elucidate the neural sources of the core deficits in autism. We review auditory and visual ERP studies, and then review the use of ERPs in the investigation of executive function. We conclude that, in autism, impairments likely exist in both low and…

  20. An Event-Related Potentials Study of Mental Rotation in Identifying Chemical Structural Formulas

    ERIC Educational Resources Information Center

    Huang, Chin-Fei; Liu, Chia-Ju

    2012-01-01

    The purpose of this study was to investigate how mental rotation strategies affect the identification of chemical structural formulas. This study conducted event-related potentials (ERPs) experiments. In addition to the data collected in the ERPs, a Chemical Structure Conceptual Questionnaire and interviews were also admin-istered for data…

  1. (De-)Accentuation and the Processing of Information Status: Evidence from Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Baumann, Stefan; Schumacher, Petra B.

    2012-01-01

    The paper reports on a perception experiment in German that investigated the neuro-cognitive processing of information structural concepts and their prosodic marking using event-related brain potentials (ERPs). Experimental conditions controlled the information status (given vs. new) of referring and non-referring target expressions (nouns vs.…

  2. Developmental Changes in Memory Encoding: Insights from Event-Related Potentials

    ERIC Educational Resources Information Center

    Rollins, Leslie; Riggins, Tracy

    2013-01-01

    The aim of the present study was to investigate developmental changes in encoding processes between 6-year-old children and adults using event-related potentials (ERPs). Although episodic memory ("EM") effects have been reported in both children and adults at retrieval and subsequent memory effects have been established in adults, no…

  3. Cognitive Association Formation in Episodic Memory: Evidence from Event-Related Potentials

    ERIC Educational Resources Information Center

    Kim, Alice S. N.; Vallesi, Antonino; Picton, Terence W.; Tulving, Endel

    2009-01-01

    The present study focused on the processes underlying cognitive association formation by investigating subsequent memory effects. Event-related potentials were recorded as participants studied pairs of words, presented one word at a time, for later recall. The findings showed that a frontal-positive late wave (LW), which occurred 1-1.6 s after the…

  4. Brain Event-Related Potential Correlates of Concept Learning.

    ERIC Educational Resources Information Center

    Federico, Pat-Anthony

    An irrelevant auditory probe procedure was used to evoke brain event-related potentials (ERPs) in 56 Navy recruits while they learned pulsed radar concepts presented to them in study booklets. A mastery test was administered to assess concept acquisition. The research issue was whether brain ERPs recorded while students are in the process of…

  5. Event-Related Potentials and the Stroop Effect

    PubMed Central

    Sahinoglu, Babur; Dogan, Gamze

    2016-01-01

    In this manuscript, the researches on the Event-Related Potentials (ERP) elicited by the standard Stroop effect were reviewed. For the sake of clarity, only the parts of the manuscripts that reported the standard Stroop effect - ERPs relation were taken into consideration. PMID:27026765

  6. MULTIDISCIPLINARY PERSPECTIVES IN EVENT-RELATED BRAIN POTENTIAL RESEARCH

    EPA Science Inventory

    The volume is the Proceedings of the Fourth International Congress on Event-Related Potentials of the Brain (EPIC-IV) held in Hendersonville, North Carolina in April 1976. It contains 118 manuscripts including critical reviews and data reports in the following areas of ERP resear...

  7. Event-Related Potentials and the Stroop Effect.

    PubMed

    Sahinoglu, Babur; Dogan, Gamze

    2016-02-01

    In this manuscript, the researches on the Event-Related Potentials (ERP) elicited by the standard Stroop effect were reviewed. For the sake of clarity, only the parts of the manuscripts that reported the standard Stroop effect - ERPs relation were taken into consideration. PMID:27026765

  8. Event-Related Potentials Index Segmentation of Nonsense Sounds

    ERIC Educational Resources Information Center

    Sanders, Lisa D.; Ameral, Victoria; Sayles, Kathryn

    2009-01-01

    To understand the world around us, continuous streams of information including speech must be segmented into units that can be mapped onto stored representations. Recent evidence has shown that event-related potentials (ERPs) can index the online segmentation of sound streams. In the current study, listeners were trained to recognize sequences of…

  9. Detection of the brain response during a cognitive task using perfusion-based event-related functional MRI.

    PubMed

    Yee, S H; Liu, H L; Hou, J; Pu, Y; Fox, P T; Gao, J H

    2000-08-01

    Event-related (ER) fMRI has evoked great interest due to the ability to depict the dynamic features of human brain function during various cognitive tasks. Thus far, all cognitive ER-fMRI studies have been based on blood oxygenation level-dependent (BOLD) contrast techniques. Compared with BOLD-based fMRI techniques, perfusion-based fMRI is able to localize the region of neuronal activity more accurately. This report demonstrates, for the first time, the detection of the brain response to a cognitive task using high temporal resolution perfusion-based ER-fMRI. An English verb generation task was used in this study. Results show that perfusion-based ER-fMRI accurately depicts the activation in Broca's area. Average changes in regional relative cerebral blood flow reached a maximum value of 30.7% at approximately 6.5 s after the start of stimulation and returned to 10% of the maximum value at approximately 12.8 s. Our results show that perfusion-based ER-fMRI is a useful tool for cognitive neuroscience studies, providing comparable temporal resolution and better localization of brain function than BOLD ER-fMRI. PMID:10943717

  10. A comparison of brain activity evoked by single content and function words: An fMRI investigation of implicit word processing

    PubMed Central

    Diaz, Michele T.; McCarthy, Gregory

    2009-01-01

    Content and function words have different roles in language and differ greatly in their semantic content. Although previous research has suggested that these different roles may be mediated by different neural substrates, the neuroimaging literature on this topic is particularly scant. Moreover, fMRI studies that have investigated differences between content and function words have utilized tasks that focus the subjects’ attention on the differences between these word types. It is possible, then, that task-related differences in attention, working memory, and decision-making contribute to the differential patterns of activation observed. Here, subjects were engaged in a continuous working memory cover task while single, task-irrelevant content and function words were infrequently and irregularly presented. Nonword letter strings were displayed in black font at a fast rate (2/sec). Subjects were required to either remember or retrieve occasional nonwords that were presented in colored fonts. Incidental and irrelevant to the memory task, content and function words were interspersed among nonwords at intervals of 12 to 15 sec. Both word types strongly activated temporal-parietal cortex, middle and anterior temporal cortex, inferior frontal gyrus, parahippocampal gyrus, and orbital frontal cortex. Activations were more extensive in the left hemisphere. Content words elicited greater activation than function words in middle and anterior temporal cortex, a sub-region of orbital frontal cortex, and the parahippocampal region. Words also evoked extensive deactivation, most notably in brain regions previously associated with working memory and attention. PMID:19465009

  11. Imaging of oscillatory behavior in event-related MEG studies

    NASA Astrophysics Data System (ADS)

    Pantazis, Dimitrios; Weber, Darren L.; Dale, Corby L.; Nichols, Thomas E.; Simpson, Gregory V.; Leahy, Richard M.

    2005-03-01

    Since event-related components in MEG (magnetoencephalography) studies are often buried in background brain activity and environmental and sensor noise, it is a standard technique for noise reduction to average over multiple stimulus-locked responses or "epochs". However this also removes event-related changes in oscillatory activity that are not phase locked to the stimulus. To overcome this problem, we combine time-frequency analysis of individual epochs with corticallyconstrained imaging to produce dynamic images of brain activity on the cerebral cortex in multiple time-frequency bands. While the SNR in individual epochs is too low to see any but the strongest components, we average signal power across epochs to find event related components on the cerebral cortex in each frequency band. To determine which of these components are statistically significant within an individual subject, we threshold the cortical images to control for false positives. This involves testing thousands of hypotheses (one per surface element and time-frequency band) for significant experimental effects. To control the number of false positives over all tests, we must therefore apply multiplicity adjustments by controlling the familywise error rate, i.e. the probability of one or more false positive detections across the entire cortex. Applying this test to each frequency band produces a set of cortical images showing significant eventrelated activity in each band of interest. We demonstrate this method in applications to high density MEG studies of visual attention.

  12. Spatial-temporal modelling of fMRI data through spatially regularized mixture of hidden process models.

    PubMed

    Shen, Yuan; Mayhew, Stephen D; Kourtzi, Zoe; Tiňo, Peter

    2014-01-01

    Previous work investigated a range of spatio-temporal constraints for fMRI data analysis to provide robust detection of neural activation. We present a mixture-based method for the spatio-temporal modelling of fMRI data. This approach assumes that fMRI time series are generated by a probabilistic superposition of a small set of spatio-temporal prototypes (mixture components). Each prototype comprises a temporal model that explains fMRI signals on a single voxel and the model's "region of influence" through a spatial prior over the voxel space. As the key ingredient of our temporal model, the Hidden Process Model (HPM) framework proposed in Hutchinson et al. (2009) is adopted to infer the overlapping cognitive processes triggered by stimuli. Unlike the original HPM framework, we use a parametric model of Haemodynamic Response Function (HRF) so that biological constraints are naturally incorporated in the HRF estimation. The spatial priors are defined in terms of a parameterised distribution. Thus, the total number of parameters in the model does not depend on the number of voxels. The resulting model provides a conceptually principled and computationally efficient approach to identify spatio-temporal patterns of neural activation from fMRI data, in contrast to most conventional approaches in the literature focusing on the detection of spatial patterns. We first verify the proposed model in a controlled experimental setting using synthetic data. The model is further validated on real fMRI data obtained from a rapid event-related visual recognition experiment (Mayhew et al., 2012). Our model enables us to evaluate in a principled manner the variability of neural activations within individual regions of interest (ROIs). The results strongly suggest that, compared with occipitotemporal regions, the frontal ones are less homogeneous, requiring two HPM prototypes per region. Despite the rapid event-related experimental design, the model is capable of disentangling the

  13. Spatial–temporal modelling of fMRI data through spatially regularized mixture of hidden process models

    PubMed Central

    Shen, Yuan; Mayhew, Stephen D.; Kourtzi, Zoe; Tiňo, Peter

    2014-01-01

    Previous work investigated a range of spatio-temporal constraints for fMRI data analysis to provide robust detection of neural activation. We present a mixture-based method for the spatio-temporal modelling of fMRI data. This approach assumes that fMRI time series are generated by a probabilistic superposition of a small set of spatio-temporal prototypes (mixture components). Each prototype comprises a temporal model that explains fMRI signals on a single voxel and the model's “region of influence” through a spatial prior over the voxel space. As the key ingredient of our temporal model, the Hidden Process Model (HPM) framework proposed in Hutchinson et al. (2009) is adopted to infer the overlapping cognitive processes triggered by stimuli. Unlike the original HPM framework, we use a parametric model of Haemodynamic Response Function (HRF) so that biological constraints are naturally incorporated in the HRF estimation. The spatial priors are defined in terms of a parameterised distribution. Thus, the total number of parameters in the model does not depend on the number of voxels. The resulting model provides a conceptually principled and computationally efficient approach to identify spatio-temporal patterns of neural activation from fMRI data, in contrast to most conventional approaches in the literature focusing on the detection of spatial patterns. We first verify the proposed model in a controlled experimental setting using synthetic data. The model is further validated on real fMRI data obtained from a rapid event-related visual recognition experiment (Mayhew et al., 2012). Our model enables us to evaluate in a principled manner the variability of neural activations within individual regions of interest (ROIs). The results strongly suggest that, compared with occipitotemporal regions, the frontal ones are less homogeneous, requiring two HPM prototypes per region. Despite the rapid event-related experimental design, the model is capable of disentangling the

  14. Multi-channel linear descriptors for event-related EEG collected in brain computer interface

    NASA Astrophysics Data System (ADS)

    Pei, Xiao-mei; Zheng, Chong-xun; Xu, Jin; Bin, Guang-yu; Wang, Hong-wu

    2006-03-01

    By three multi-channel linear descriptors, i.e. spatial complexity (Ω), field power (Σ) and frequency of field changes (Φ), event-related EEG data within 8-30 Hz were investigated during imagination of left or right hand movement. Studies on the event-related EEG data indicate that a two-channel version of Ω, Σ and Φ could reflect the antagonistic ERD/ERS patterns over contralateral and ipsilateral areas and also characterize different phases of the changing brain states in the event-related paradigm. Based on the selective two-channel linear descriptors, the left and right hand motor imagery tasks are classified to obtain satisfactory results, which testify the validity of the three linear descriptors Ω, Σ and Φ for characterizing event-related EEG. The preliminary results show that Ω, Σ together with Φ have good separability for left and right hand motor imagery tasks, which could be considered for classification of two classes of EEG patterns in the application of brain computer interfaces.

  15. Sex-Related Hemispheric Lateralization of Amygdala Function in Emotionally Influenced Memory: An fMRI Investigation

    ERIC Educational Resources Information Center

    Cahill, Larry; Uncapher, Melina; Kilpatrick, Lisa; Alkire, Mike T.; Turner, Jessica

    2004-01-01

    The amygdala appears necessary for enhanced long-term memory associated with emotionally arousing events. Recent brain imaging investigations support this view and indicate a sex-related hemispheric lateralization exists in the amygdala relationship to memory for emotional material. This study confirms and further explores this finding. Healthy…

  16. Interaction of Phonological Awareness and "Magnocellular" Processing during Normal and Dyslexic Reading: Behavioural and fMRI Investigations

    ERIC Educational Resources Information Center

    Heim, Stefan; Grande, Marion; Pape-Neumann, Julia; van Ermingen, Muna; Meffert, Elisabeth; Grabowska, Anna; Huber, Walter; Amunts, Katrin

    2010-01-01

    We investigated whether phonological deficits are a consequence of magnocellular processing deficits in dyslexic and control children. In Experiment 1, children were tested for reading ability, phonological awareness, visuo-magnocellular motion perception, and attention shifting (sometimes considered as magnocellular function). A two-step cluster…

  17. Event-related potentials reveal early activation of body part representations in action concept comprehension.

    PubMed

    Lu, Aitao; Liu, Jing; Zhang, John X

    2012-03-01

    With tasks involving action concept comprehension, many fMRI studies have reported brain activations in sensori-motor regions specific to effectors of the referent action. There is relatively less evidence whether such activations reflect early semantic access or late conceptual re-processing. Here we recorded event-related potentials when participants recognized noun-verb pairs. For Congruent pairs, the verb was the one most commonly associated with the noun (e.g., football-kick). Compared with a control condition, verbs in Congruent pairs showed priming effects in the time windows of 100-150 ms and 210-260 ms. Such activation seems to be specific to body part but not other aspects of the action as similar priming effect was also found when the noun and verb involved different actions though sharing the same body part (e.g., football-jump), documenting for the first time the early activation of body part representations in action concept comprehension. PMID:22306088

  18. Spatio-Temporal Information Analysis of Event-Related BOLD Responses

    PubMed Central

    Alpert, Galit Fuhrmann; Handwerker, Dan; Sun, Felice T.; D’Esposito, Mark; Knight, Robert T.

    2009-01-01

    A new approach for analysis of event related fMRI (BOLD) signals is proposed. The technique is based on measures from information theory and is used both for spatial localization of task related activity, as well as for extracting temporal information regarding the task dependent propagation of activation across different brain regions. This approach enables whole brain visualization of voxels (areas) most involved in coding of a specific task condition, the time at which they are most informative about the condition, as well as their average amplitude at that preferred time. The approach does not require prior assumptions about the shape of the hemodynamic response function (HRF), nor about linear relations between BOLD response and presented stimuli (or task conditions). We show that relative delays between different brain regions can also be computed without prior knowledge of the experimental design, suggesting a general method that could be applied for analysis of differential time delays that occur during natural, uncontrolled conditions. Here we analyze BOLD signals recorded during performance of a motor learning task. We show that during motor learning, the BOLD response of unimodal motor cortical areas precedes the response in higher-order multimodal association areas, including posterior parietal cortex. Brain areas found to be associated with reduced activity during motor learning, predominantly in prefrontal brain regions, are informative about the task typically at significantly later times. PMID:17188515

  19. Perigenual anterior cingulate event-related potential precedes stop signal errors

    PubMed Central

    Chang, Andrew; Chen, Chien-Chung; Li, Hsin-Hung; Li, Chiang-Shan R.

    2015-01-01

    Momentary lapses in attention disrupt goal-directed behavior. Attentional lapse has been associated with increased “default-mode” network (DMN) activity. In our previous fMRI study of a stop signal task (SST), greater activation of the perigenual anterior cingulate cortex (pgACC) – an important node of the DMN – predicts stop signal errors. In event-related potential (ERP) studies, the amplitude of an error-preceding positivity (EPP) also predicts response error. However, it is not clear whether the EPP originates from DMN regions. Here, we combined high-density array EEG and an SST to examine response-locked ERPs of error preceding trials in twenty young adult participants. The results showed an EPP in go trials that preceded stop error than stop success trials. Importantly, source modeling identified the origin of the EPP in the pgACC. By employing a bootstrapping procedure, we further confirmed that pgACC rather than the dorsal ACC as the source provides a better fit to the EPP. Together, these results suggest that attentional lapse in association with EPP in the pgACC anticipates failure in response inhibition. PMID:25700955

  20. The other face of the other-race effect: An fMRI investigation of the other-race face categorization advantage

    PubMed Central

    Feng, Lu; Liu, Jiangang; Wang, Zhe; Li, Jun; Li, Ling; Ge, Liezhong; Tian, Jie; Lee, Kang

    2011-01-01

    The present study was the first to use the functional magnetic resonance imaging (fMRI) methodology to investigate the neural correlates of race categorization of own- and other-race faces. We found that Chinese participants categorized the race of Caucasian faces more accurately and faster than that of Chinese faces, replicating the robust effect of the other-race categorization advantage. Regions of interest (ROI) analyses revealed greater neural activations when participants were categorizing own-race faces than other-race faces in the bilateral ventral occipito-temporal cortex (VOT) such as the fusiform face areas (FFA) and the occipital face areas (OFA). Within the left FFA, there was also a significant negative correlation between the behavioral difference of own- and other-race face categorization accuracy and the activation difference between categorizing own- and other-race faces. Whole brain analyses showed that categorizing own-race faces induced greater activations in the right medial frontal cortex (MFC) and right inferior frontal gyrus (IFG) than categorizing other-race faces. Psychophysiological interaction (PPI) analyses revealed that the frontal cortical regions interacted more strongly with the posterior VOT during the categorization of own-race faces than that of other-race faces. Overall, our findings suggest that relative to the categorization of other-race faces, more cortical resources are engaged during the categorization of own-race faces with which we have a higher level of processing expertise. This increased involvement of cortical neural sources perhaps serves to provide more in-depth processing of own-race faces (such as individuation), which in turn paradoxically results in the behavioral other-race categorization advantage. PMID:21971308

  1. An fMRI investigation of the effects of belief in free will on third-party punishment.

    PubMed

    Krueger, Frank; Hoffman, Morris; Walter, Henrik; Grafman, Jordan

    2014-08-01

    The relationship between belief in free will (BFW) and third-party punishment (TPP) of criminal norm violations has been the subject of great debate among philosophers, criminologists and neuroscientists. We combined a TPP task with functional magnetic resonance imaging to investigate how lay people's BFW might affect their punishment of hypothetical criminal offenses varying in affective content. Our results revealed that people with strong BFW punished more harshly than people with weak BFW, but only in low affective cases, likely driven by a more robust commitment to moral responsibility. This effect was mirrored by a stronger activation in the right temporo-parietal junction, a region presumably involved in attentional selection to salient stimuli and attribution of temporary intentions and beliefs of others. But, for high affective cases, the BFW-based behavioral and neural differences disappeared. Both groups similarly punished high affective cases and showed higher activation in the right insula. The right insula is typically activated during aversive interoceptive-emotional processing for extreme norm violations. Our results demonstrated that the impact of BFW on TPP is context-dependent; perhaps explaining in part why the philosophical debate between free will and determinism is so stubbornly persistent. PMID:23887810

  2. What's Unique about Unique Entities? An fMRI Investigation of the Semantics of Famous Faces and Landmarks

    PubMed Central

    Olson, Ingrid R.

    2012-01-01

    Famous people and artifacts are referred to as “unique entities” (UEs) due to the unique nature of the knowledge we have about them. Past imaging and lesion experiments have indicated that the anterior temporal lobes (ATLs) as having a special role in the processing of UEs. It has remained unclear which attributes of UEs were responsible for the observed effects in imaging experiments. In this study, we investigated what factors of UEs influence brain activity. In a training paradigm, we systematically varied the uniqueness of semantic associations, the presence/absence of a proper name, and the number of semantic associations to determine factors modulating activity in regions subserving the processing of UEs. We found that a conjunction of unique semantic information and proper names modulated activity within a section of the left ATL. Overall, the processing of UEs involved a wider left-hemispheric cortical network. Within these regions, brain activity was significantly affected by the unique semantic attributes especially in the presence of a proper name, but we could not find evidence for an effect of the number of semantic associations. Findings are discussed in regard to current models of ATL function, the neurophysiology of semantics, and social cognitive processing. PMID:22021913

  3. An fMRI investigation of the effects of belief in free will on third-party punishment

    PubMed Central

    Hoffman, Morris; Walter, Henrik; Grafman, Jordan

    2014-01-01

    The relationship between belief in free will (BFW) and third-party punishment (TPP) of criminal norm violations has been the subject of great debate among philosophers, criminologists and neuroscientists. We combined a TPP task with functional magnetic resonance imaging to investigate how lay people’s BFW might affect their punishment of hypothetical criminal offenses varying in affective content. Our results revealed that people with strong BFW punished more harshly than people with weak BFW, but only in low affective cases, likely driven by a more robust commitment to moral responsibility. This effect was mirrored by a stronger activation in the right temporo-parietal junction, a region presumably involved in attentional selection to salient stimuli and attribution of temporary intentions and beliefs of others. But, for high affective cases, the BFW-based behavioral and neural differences disappeared. Both groups similarly punished high affective cases and showed higher activation in the right insula. The right insula is typically activated during aversive interoceptive-emotional processing for extreme norm violations. Our results demonstrated that the impact of BFW on TPP is context-dependent; perhaps explaining in part why the philosophical debate between free will and determinism is so stubbornly persistent. PMID:23887810

  4. Mapping of event-related desynchronization and type of derivation.

    PubMed

    Pfurtscheller, G

    1988-08-01

    Event-related desynchronization (ERD) is a term describing alpha band amplitude changes in response to an event (stimulus presentation, self-paced movement, etc.). ERD mapping is a brain-imaging technique used to display the topographical pattern and time course of alpha power changes. Multi-lead EEG data referred to one ear were recorded during voluntary finger movements. From these data, transverse bipolar, source and common average reference derivations and the laplacian operator were calculated, and ERD maps are computed. The ERD is enhanced and best localized with the laplacian operator method, or with source derivations. ERD maps with ear reference required cautious interpretation. PMID:2456197

  5. Heschl's gyrification pattern is related to speech-listening hemispheric lateralization: FMRI investigation in 281 healthy volunteers.

    PubMed

    Tzourio-Mazoyer, N; Marie, D; Zago, L; Jobard, G; Perchey, G; Leroux, G; Mellet, E; Joliot, M; Crivello, F; Petit, L; Mazoyer, B

    2015-01-01

    This study investigates the structure-function relationships between the anatomy of Heschl's gyri (HG) and speech hemispheric lateralization in 281 healthy volunteers (135 left-handers). Hemispheric lateralization indices (HFLIs) were calculated with Wilke's method from the activations obtained via functional magnetic resonance imaging while listening to lists of words (LIST). The mean HFLI during LIST was rightward asymmetrical, and left-handers displayed a trend toward decreased rightward asymmetry. The correlations between LIST BOLD contrast maps and individual HFLIs demonstrated that among the cortical areas showing significant asymmetry during LIST, only phonological regions explained HFLI variability. Significant positive correlations were present among the left HG, supramarginal gyri, and the anterior insula. Significant negative correlations occurred in the mid-part of the right superior temporal sulcus. Left HG had the largest functional activity during LIST and explained 10% of the HFLI variance. There was a strong anatomo-functional link in the HG: duplication was associated with a decrease in both the surface area of the anterior HG and HG functional activity. Participants with a single left HG exhibited leftward anatomical and functional asymmetry of HG, but participants with a left duplication lost either anatomical and/or functional leftward asymmetries. Finally, manual preference was related to HG anatomy, but not to HG functional asymmetries measured during LIST. The anatomical characteristics of left-handers (lower occurrence of right HG duplication and a smaller surface area of the right first HG) thus appeared to be unrelated to variations in speech lateralization with handedness. PMID:24638878

  6. Movement-related event-related desynchronization in neuropsychiatric disorders.

    PubMed

    Leocani, Letizia; Comi, Giancarlo

    2006-01-01

    The analysis of event-related desynchronization (ERD) and event-related synchronization (ERS) provides information on the dynamics of cortical activation during cognitive and motor tasks and has been applied in a variety of neurological and psychiatric disorders. In this chapter, we focus on studies concerning movement-related activity, which showed changes in amount, topography, or time course in relation to not only involvement of the motor system--such as Parkinson's disease (PD), dystonia, and stroke affecting the sensorimotor (SM) pathways--but also physiological aging, degenerative dementia, obsessive-compulsive disorder (OCD), and fatigue associated with multiple sclerosis (MS). In these disorders, the extent of abnormality in the pattern of ERD/ERS is related to the severity of the underlying pathology. Moreover in MS, a correlation with the severity of brain tissue has been found. While there is consistency in changes related to ipokinetic disorders, mainly consisting of delayed appearance of ERD to movement preparation, changes occurring in other brain disorders need to be replicated or raise doubts on the specificity of changes across different diseases. Further studies are needed in order to validate the usefulness of this methodology in the assessment of the single patient for diagnosis and monitoring of the natural course of the disease and of treatment efficacy. PMID:17071242

  7. Gender differences in the processing of standard emotional visual stimuli: integrating ERP and fMRI results

    NASA Astrophysics Data System (ADS)

    Yang, Lei; Tian, Jie; Wang, Xiaoxiang; Hu, Jin

    2005-04-01

    The comprehensive understanding of human emotion processing needs consideration both in the spatial distribution and the temporal sequencing of neural activity. The aim of our work is to identify brain regions involved in emotional recognition as well as to follow the time sequence in the millisecond-range resolution. The effect of activation upon visual stimuli in different gender by International Affective Picture System (IAPS) has been examined. Hemodynamic and electrophysiological responses were measured in the same subjects. Both fMRI and ERP study were employed in an event-related study. fMRI have been obtained with 3.0 T Siemens Magnetom whole-body MRI scanner. 128-channel ERP data were recorded using an EGI system. ERP is sensitive to millisecond changes in mental activity, but the source localization and timing is limited by the ill-posed 'inversed' problem. We try to investigate the ERP source reconstruction problem in this study using fMRI constraint. We chose ICA as a pre-processing step of ERP source reconstruction to exclude the artifacts and provide a prior estimate of the number of dipoles. The results indicate that male and female show differences in neural mechanism during emotion visual stimuli.

  8. Report order and identification of multidimensional stimuli: a study of event-related brain potentials.

    PubMed

    Shieh, Kong-King; Shen, I-Hsuan

    2004-06-01

    An experiment was conducted to investigate the effect of order of report on multidimensional stimulus identification. Subjects were required to identify each two-dimensional symbol by pushing corresponding buttons on the keypad on which there were two columns representing the two dimensions. Order of report was manipulated for the dimension represented by the left or right column. Both behavioral data and event-related potentials were recorded from 14 college students. Behavioral data analysis showed that order of report had a significant effect on response times. Such results were consistent with those of previous studies. Analysis of event-related brain potentials showed significant differences in peak amplitude and mean amplitude at time windows of 120-250 msec. at Fz, F3, and F4 and of 350-750 msec. at Fz, F3, F4, Cz, and Pz. Data provided neurophysiological evidence that reporting dimensional values according to natural language habits was appropriate and less cognitively demanding. PMID:15291234

  9. Modulation of semantic integration as a function of syntactic expectations: event-related brain potential evidence.

    PubMed

    Isel, Frédéric; Shen, Weilin

    2011-03-30

    This study investigated syntax-semantics interactions during spoken sentence comprehension. We showed that expectations of phrase-structure incongruencies, which were induced by the experimental instructions, although not actually present in the sentences, were able to block the process of semantic integration. Although this process is usually associated with an N400 event-related brain potential component, here we found a P600, that is, an event-related brain potential component that is thought to reflect syntactic revision. This finding lends support to neurophysiological models of sentence interpretation, which postulates that the lexical-semantic integration of a given word can take place only when syntactic analysis has been successfully completed. PMID:21358555

  10. Effects of handedness on olfactory event-related potentials in a simple olfactory task.

    PubMed

    Gottschlich, Marie; Hummel, Thomas

    2015-06-01

    The purpose of the present study was to re-investigate the influence of handedness on simple olfactory tasks to further clarify the role of handedness in chemical senses. Similar to language and other sensory systems, effects of handedness should be expected. Young, healthy subjects participated in this study, including 24 left-handers and 24 right-handers, with no indication of any major nasal or health problems. The two groups did not differ in terms of sex and age (14 women and 10 men in each group). They had a mean age of 24.0 years. Olfactory event-related potentials were recorded after left or right olfactory stimulation with the rose-like odor phenyl ethyl alcohol (PEA) or the smell of rotten eggs (hydrogen sulfide, H2S). Results suggested that handedness has no major influence on amplitude or latency of olfactory event-related potentials when it comes to simple olfactory tasks. PMID:26030037

  11. [Unconscious Acoustical Stimuli Effects on Event-related Potentials in Humans].

    PubMed

    Kopeikina, E A; Choroshich, V V; Aleksandrov, A Y; Ivanova, V Y

    2015-01-01

    Unconscious perception essentially affects human behavior. The main results in this area obtained in experiments with visual stimuli. However, the acoustical stimuli play not less important role in behavior. The main idea of this paper is the electroencephalographic investigation of unconscious acoustical stimulation effects on electro-physiological activity of the brain. For this purpose, the event-related potentials were acquired under unconscious stimulus priming paradigm. The one syllable, three letter length, Russian words and pseudo-words with single letter substitution were used as primes and targets. As a result, we find out that repetition and alternative priming similarly affects the event-related potential's component with 200 ms latency after target application in frontal parietal and temporal areas. Under alternative priming the direction of potential amplitude modification nearby 400 ms was altered for word and semi-word targets. Alternative priming reliably increase ERP's amplitude in 400 ms locality with pseudo-word targets and decrease it under word targets. Taking into account, that all participants were unable to distinguish the applied prime stimuli, we can assume that the event-related potential changes evoked by unconscious perception of acoustical stimuli. The ERP amplitude dynamics revealed in current investigation demonstrate the opportunity of subliminal acoustical stimuli to modulate the electrical activity evoked by verbal acoustical stimulation. PMID:26237945

  12. Lying about Facial Recognition: An fMRI Study

    ERIC Educational Resources Information Center

    Bhatt, S.; Mbwana, J.; Adeyemo, A.; Sawyer, A.; Hailu, A.; VanMeter, J.

    2009-01-01

    Novel deception detection techniques have been in creation for centuries. Functional magnetic resonance imaging (fMRI) is a neuroscience technology that non-invasively measures brain activity associated with behavior and cognition. A number of investigators have explored the utilization and efficiency of fMRI in deception detection. In this study,…

  13. Study Design in fMRI: Basic Principles

    ERIC Educational Resources Information Center

    Amaro, Edson, Jr.; Barker, Gareth J.

    2006-01-01

    There is a wide range of functional magnetic resonance imaging (fMRI) study designs available for the neuroscientist who wants to investigate cognition. In this manuscript we review some aspects of fMRI study design, including cognitive comparison strategies (factorial, parametric designs), and stimulus presentation possibilities (block,…

  14. Retinotopic mapping of visual event-related potentials.

    PubMed

    Capilla, Almudena; Melcón, María; Kessel, Dominique; Calderón, Rosbén; Pazo-Álvarez, Paula; Carretié, Luis

    2016-07-01

    Visual stimulation is frequently employed in electroencephalographic (EEG) research. However, despite its widespread use, no studies have thoroughly evaluated how the morphology of the visual event-related potentials (ERPs) varies according to the spatial location of stimuli. Hence, the purpose of this study was to perform a detailed retinotopic mapping of visual ERPs. We recorded EEG activity while participants were visually stimulated with 60 pattern-reversing checkerboards placed at different polar angles and eccentricities. Our results show five pattern-reversal ERP components. C1 and C2 components inverted polarity between the upper and lower hemifields. P1 and N1 showed higher amplitudes and shorter latencies to stimuli located in the contralateral lower quadrant. In contrast, P2 amplitude was enhanced and its latency was reduced by stimuli presented in the periphery of the upper hemifield. The retinotopic maps presented here could serve as a guide for selecting optimal visuo-spatial locations in future ERP studies. PMID:27235686

  15. Event-Related Potentials and Emotion Processing in Child Psychopathology.

    PubMed

    Chronaki, Georgia

    2016-01-01

    In recent years there has been increasing interest in the neural mechanisms underlying altered emotional processes in children and adolescents with psychopathology. This review provides a brief overview of the most up-to-date findings in the field of event-related potentials (ERPs) to facial and vocal emotional expressions in the most common child psychopathological conditions. In regards to externalizing behavior (i.e., ADHD, CD), ERP studies show enhanced early components to anger, reflecting enhanced sensory processing, followed by reductions in later components to anger, reflecting reduced cognitive-evaluative processing. In regards to internalizing behavior, research supports models of increased processing of threat stimuli especially at later more elaborate and effortful stages. Finally, in autism spectrum disorders abnormalities have been observed at early visual-perceptual stages of processing. An affective neuroscience framework for understanding child psychopathology can be valuable in elucidating underlying mechanisms and inform preventive intervention. PMID:27199803

  16. P3 event-related evoked potential in young adults.

    PubMed

    Tandon, O P

    1990-07-01

    P3 component of event related potential reflects memory and decision making processes. It has been applied as an index of information processing in a wide variety of normal and cognitive impaired subjects. Scalp P3 was elicited in 24 male neurologically and audiologically normal young subjects of 17-20 years (Av. 17.7) of age. Standard auditory 'Oddball' paradigm involving simple discrimination task of concentrating on infrequent (target) stimulus and ignoring frequent (non target) stimulus was employed. Evoked response trials of discriminating 32 target stimuli out of 160 total presented (20% target and 80% non target randomly) were replicated and analysed by computer. Latency of P3 as 305 +/- 18.4 msec and amplitude 6.5 +/- 2.1 uv are being reported which are comparable with age and sex matched subjects of western world. PMID:2286422

  17. Event-Related Potentials and Emotion Processing in Child Psychopathology

    PubMed Central

    Chronaki, Georgia

    2016-01-01

    In recent years there has been increasing interest in the neural mechanisms underlying altered emotional processes in children and adolescents with psychopathology. This review provides a brief overview of the most up-to-date findings in the field of event-related potentials (ERPs) to facial and vocal emotional expressions in the most common child psychopathological conditions. In regards to externalizing behavior (i.e., ADHD, CD), ERP studies show enhanced early components to anger, reflecting enhanced sensory processing, followed by reductions in later components to anger, reflecting reduced cognitive-evaluative processing. In regards to internalizing behavior, research supports models of increased processing of threat stimuli especially at later more elaborate and effortful stages. Finally, in autism spectrum disorders abnormalities have been observed at early visual-perceptual stages of processing. An affective neuroscience framework for understanding child psychopathology can be valuable in elucidating underlying mechanisms and inform preventive intervention. PMID:27199803

  18. Common Neural Systems Associated with the Recognition of Famous Faces and Names: An Event-Related fMRI Study

    ERIC Educational Resources Information Center

    Nielson, Kristy A.; Seidenberg, Michael; Woodard, John L.; Durgerian, Sally; Zhang, Qi; Gross, William L.; Gander, Amelia; Guidotti, Leslie M.; Antuono, Piero; Rao, Stephen M.

    2010-01-01

    Person recognition can be accomplished through several modalities (face, name, voice). Lesion, neurophysiology and neuroimaging studies have been conducted in an attempt to determine the similarities and differences in the neural networks associated with person identity via different modality inputs. The current study used event-related…

  19. Probabilistic delay differential equation modeling of event-related potentials.

    PubMed

    Ostwald, Dirk; Starke, Ludger

    2016-08-01

    "Dynamic causal models" (DCMs) are a promising approach in the analysis of functional neuroimaging data due to their biophysical interpretability and their consolidation of functional-segregative and functional-integrative propositions. In this theoretical note we are concerned with the DCM framework for electroencephalographically recorded event-related potentials (ERP-DCM). Intuitively, ERP-DCM combines deterministic dynamical neural mass models with dipole-based EEG forward models to describe the event-related scalp potential time-series over the entire electrode space. Since its inception, ERP-DCM has been successfully employed to capture the neural underpinnings of a wide range of neurocognitive phenomena. However, in spite of its empirical popularity, the technical literature on ERP-DCM remains somewhat patchy. A number of previous communications have detailed certain aspects of the approach, but no unified and coherent documentation exists. With this technical note, we aim to close this gap and to increase the technical accessibility of ERP-DCM. Specifically, this note makes the following novel contributions: firstly, we provide a unified and coherent review of the mathematical machinery of the latent and forward models constituting ERP-DCM by formulating the approach as a probabilistic latent delay differential equation model. Secondly, we emphasize the probabilistic nature of the model and its variational Bayesian inversion scheme by explicitly deriving the variational free energy function in terms of both the likelihood expectation and variance parameters. Thirdly, we detail and validate the estimation of the model with a special focus on the explicit form of the variational free energy function and introduce a conventional nonlinear optimization scheme for its maximization. Finally, we identify and discuss a number of computational issues which may be addressed in the future development of the approach. PMID:27114057

  20. Genetic influences on sociability: heightened amygdala reactivity and event-related responses to positive social stimuli in Williams syndrome.

    PubMed

    Haas, Brian W; Mills, Debra; Yam, Anna; Hoeft, Fumiko; Bellugi, Ursula; Reiss, Allan

    2009-01-28

    Williams syndrome (WS) is a genetic disorder caused by a hemizygous microdeletion on chromosome 7q11.23. WS is associated with a compelling neurocognitive profile characterized by relative deficits in visuospatial function, relative strengths in face and language processing, and enhanced drive toward social engagement. We used a combined functional magnetic resonance imaging (fMRI) and event-related potential (ERP) approach to examine the neural basis of social responsiveness in WS participants to two types of social stimuli, negative (fearful) and positive (happy) emotional facial expressions. Here, we report a double dissociation consistent across both methods such that WS participants exhibited heightened amygdala reactivity to positive (happy) social stimuli and absent or attenuated amygdala reactivity to negative (fearful) social stimuli, compared with controls. The fMRI findings indicate that atypical social processing in WS may be rooted in altered development of disparate amygdalar nuclei that subserve different social functions. The ERP findings suggest that abnormal amygdala reactivity in WS may possibly function to increase attention to and encoding of happy expressions and to decrease arousal to fearful expressions. This study provides the first evidence that the genetic deletion associated with WS influences the function of the amygdala to be particularly responsive to socially appetitive stimuli. PMID:19176822

  1. Altered Dynamics of the fMRI Response to Faces in Individuals with Autism

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2016-01-01

    Abnormal fMRI habituation in autism spectrum disorders (ASDs) has been proposed as a critical component in social impairment. This study investigated habituation to fearful faces and houses in ASD and whether fMRI measures of brain activity discriminate between ASD and typically developing (TD) controls. Two identical fMRI runs presenting masked…

  2. Verum and sham acupuncture exert distinct cerebral activation in pain processing areas: a crossover fMRI investigation in healthy volunteers.

    PubMed

    Usichenko, Taras I; Wesolowski, Toni; Lotze, Martin

    2015-06-01

    Although acupuncture is effective for treating pain, its site-specificity is questioned. The aim was to compare the cerebral responses of needling applied to an acupuncture point to the needling of a sham point, using functional magnetic resonance imaging (fMRI). Twenty-one healthy male volunteers were enrolled. Manual stimulation of the acupuncture (ST44) and sham points on the dorsum of the left foot was applied during fMRI in a crossover manner. fMRI data analysis was performed contrasting the ST44 and the sham conditions. Stimulation intensity, subjective discrimination of the needling site and the incidence of "Qi" sensation were additionally recorded. Stimulation of ST44 acupoint, in comparison to the sham procedure, was associated with an increased fMRI-activation in the primary somatosensory, the inferior parietal and the prefrontal cortex and the posterior insula. Sham needling was associated with increased activation in the anterior cingulate cortex and the anterior insula. Verum acupuncture increased the activity of discriminative somatosensory and cognitive pain processing areas of the brain, whereas sham needling activated the areas responsible for affective processing of pain. This may explain favorable effects of verum acupuncture in clinical studies about treatment of chronic pain patients. PMID:24728839

  3. Say It with Flowers! An fMRI Study of Object Mediated Communication

    ERIC Educational Resources Information Center

    Tylen, Kristian; Wallentin, Mikkel; Roepstorff, Andreas

    2009-01-01

    Human communicational interaction can be mediated by a host of expressive means from words in a natural language to gestures and material symbols. Given the proper contextual setting even an everyday object can gain a mediating function in a communicational situation. In this study we used event-related fMRI to study the brain activity caused by…

  4. Analysis and visualization of single-trial event-related potentials

    NASA Technical Reports Server (NTRS)

    Jung, T. P.; Makeig, S.; Westerfield, M.; Townsend, J.; Courchesne, E.; Sejnowski, T. J.

    2001-01-01

    In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image

  5. Analysis and visualization of single-trial event-related potentials.

    PubMed

    Jung, T P; Makeig, S; Westerfield, M; Townsend, J; Courchesne, E; Sejnowski, T J

    2001-11-01

    In this study, a linear decomposition technique, independent component analysis (ICA), is applied to single-trial multichannel EEG data from event-related potential (ERP) experiments. Spatial filters derived by ICA blindly separate the input data into a sum of temporally independent and spatially fixed components arising from distinct or overlapping brain or extra-brain sources. Both the data and their decomposition are displayed using a new visualization tool, the "ERP image," that can clearly characterize single-trial variations in the amplitudes and latencies of evoked responses, particularly when sorted by a relevant behavioral or physiological variable. These tools were used to analyze data from a visual selective attention experiment on 28 control subjects plus 22 neurological patients whose EEG records were heavily contaminated with blink and other eye-movement artifacts. Results show that ICA can separate artifactual, stimulus-locked, response-locked, and non-event-related background EEG activities into separate components, a taxonomy not obtained from conventional signal averaging approaches. This method allows: (1) removal of pervasive artifacts of all types from single-trial EEG records, (2) identification and segregation of stimulus- and response-locked EEG components, (3) examination of differences in single-trial responses, and (4) separation of temporally distinct but spatially overlapping EEG oscillatory activities with distinct relationships to task events. The proposed methods also allow the interaction between ERPs and the ongoing EEG to be investigated directly. We studied the between-subject component stability of ICA decomposition of single-trial EEG epochs by clustering components with similar scalp maps and activation power spectra. Components accounting for blinks, eye movements, temporal muscle activity, event-related potentials, and event-modulated alpha activities were largely replicated across subjects. Applying ICA and ERP image

  6. Bringing memory fMRI to the clinic: comparison of seven memory fMRI protocols in temporal lobe epilepsy.

    PubMed

    Towgood, Karren; Barker, Gareth J; Caceres, Alejandro; Crum, William R; Elwes, Robert D C; Costafreda, Sergi G; Mehta, Mitul A; Morris, Robin G; von Oertzen, Tim J; Richardson, Mark P

    2015-04-01

    fMRI is increasingly implemented in the clinic to assess memory function. There are multiple approaches to memory fMRI, but limited data on advantages and reliability of different methods. Here, we compared effect size, activation lateralisation, and between-sessions reliability of seven memory fMRI protocols: Hometown Walking (block design), Scene encoding (block design and event-related design), Picture encoding (block and event-related), and Word encoding (block and event-related). All protocols were performed on three occasions in 16 patients with temporal lobe epilepsy (TLE). Group T-maps showed activity bilaterally in medial temporal lobe for all protocols. Using ANOVA, there was an interaction between hemisphere and seizure-onset lateralisation (P = 0.009) and between hemisphere, protocol and seizure-onset lateralisation (P = 0.002), showing that the distribution of memory-related activity between left and right temporal lobes differed between protocols and between patients with left-onset and right-onset seizures. Using voxelwise intraclass Correlation Coefficient, between-sessions reliability was best for Hometown and Scenes (block and event). The between-sessions spatial overlap of activated voxels was also greatest for Hometown and Scenes. Lateralisation of activity between hemispheres was most reliable for Scenes (block and event) and Words (event). Using receiver operating characteristic analysis to explore the ability of each fMRI protocol to classify patients as left-onset or right-onset TLE, only the Words (event) protocol achieved a significantly above-chance classification of patients at all three sessions. We conclude that Words (event) protocol shows the best combination of between-sessions reliability of the distribution of activity between hemispheres and reliable ability to distinguish between left-onset and right-onset patients. PMID:25727386

  7. Resting-state FMRI confounds and cleanup

    PubMed Central

    Murphy, Kevin; Birn, Rasmus M.; Bandettini, Peter A.

    2013-01-01

    The goal of resting-state functional magnetic resonance imaging (FMRI) is to investigate the brain’s functional connections by using the temporal similarity between blood oxygenation level dependent (BOLD) signals in different regions of the brain “at rest” as an indicator of synchronous neural activity. Since this measure relies on the temporal correlation of FMRI signal changes between different parts of the brain, any non-neural activity-related process that affects the signals will influence the measure of functional connectivity, yielding spurious results. To understand the sources of these resting-state FMRI confounds, this article describes the origins of the BOLD signal in terms of MR physics and cerebral physiology. Potential confounds arising from motion, cardiac and respiratory cycles, arterial CO2 concentration, blood pressure/cerebral autoregulation, and vasomotion are discussed. Two classes of techniques to remove confounds from resting-state BOLD time series are reviewed: 1) those utilising external recordings of physiology and 2) data-based cleanup methods that only use the resting-state FMRI data itself. Further methods that remove noise from functional connectivity measures at a group level are also discussed. For successful interpretation of resting-state FMRI comparisons and results, noise cleanup is an often over-looked but essential step in the analysis pipeline. PMID:23571418

  8. Simultaneous EEG-fMRI in patients with Unverricht-Lundborg disease: event-related desynchronization/synchronization and hemodynamic response analysis.

    PubMed

    Visani, Elisa; Minati, Ludovico; Canafoglia, Laura; Gilioli, Isabella; Salvatoni, Lucia; Varotto, Giulia; Fazio, Patrik; Aquino, Domenico; Bruzzone, Maria Grazia; Franceschetti, Silvana; Panzica, Ferruccio

    2010-01-01

    We performed simultaneous acquisition of EEG-fMRI in seven patients with Unverricht-Lundborg disease (ULD) and in six healthy controls using self-paced finger extension as a motor task. The event-related desynchronization/synchronization (ERD/ERS) analysis showed a greater and more diffuse alpha desynchronization in central regions and a strongly reduced post-movement beta-ERS in patients compared with controls, suggesting a significant dysfunction of the mechanisms regulating active movement and movement end. The event-related hemodynamic response obtained from fMRI showed delayed BOLD peak latency in the contralateral primary motor area suggesting a less efficient activity of the neuronal populations driving fine movements, which are specifically impaired in ULD. PMID:20111730

  9. Communication of ALS Patients by Detecting Event-Related Potential

    NASA Astrophysics Data System (ADS)

    Kanou, Naoyuki; Sakuma, Kenji; Nakashima, Kenji

    Amyotrophic Lateral Sclerosis(ALS) patients are unable to successfully communicate their desires, although their mental capacity is the same as non-affected persons. Therefore, the authors put emphasis on Event-Related Potential(ERP) which elicits the highest outcome for the target visual and hearing stimuli. P300 is one component of ERP. It is positive potential that is elicited when the subject focuses attention on stimuli that appears infrequently. In this paper, the authors focused on P200 and N200 components, in addition to P300, for their great improvement in the rate of correct judgment in the target word-specific experiment. Hence the authors propose the algorithm that specifies target words by detecting these three components. Ten healthy subjects and ALS patient underwent the experiment in which a target word out of five words, was specified by this algorithm. The rates of correct judgment in nine of ten healthy subjects were more than 90.0%. The highest rate was 99.7%. The highest rate of ALS patient was 100.0%. Through these results, the authors found the possibility that ALS patients could communicate with surrounding persons by detecting ERP(P200, N200 and P300) as their desire.

  10. Affective recognition memory processing and event-related brain potentials

    PubMed Central

    Kaestner, Erik J.

    2011-01-01

    Recognition memory was examined for visual affective stimuli using behavioral and event-related brain potential (ERP) measures. Images from the International Affective Picture System (IAPS) that varied systematically in arousal level (low, high) and valence direction (unpleasant, pleasant) were first viewed passively. Then, during a response phase, the original images were intermixed with an equal number of new images and presented, and participants were instructed to press a button to indicate whether each stimulus picture was previously viewed (target) or new (foil). Participants were more sensitive to unpleasant- than to pleasant-valence stimuli and were biased to respond to high-arousal unpleasant stimuli as targets, whether the stimuli were previously viewed or new. Response times (RTs) to target stimuli were systematically affected by valence, whereas RTs to foil stimuli were influenced by arousal level. ERP component amplitudes were generally larger for high than for low arousal levels. The P300 (late positive component) amplitude was largest for high-arousal unpleasant target images. These and other amplitude effects suggest that high-arousal unpleasant stimuli engage a privileged memory-processing route during stimulus processing. Theoretical relationships between affective and memory processes are discussed. PMID:21384231

  11. Somatosensory Event-related Potentials from Orofacial Skin Stretch Stimulation.

    PubMed

    Ito, Takayuki; Ostry, David J; Gracco, Vincent L

    2015-01-01

    Cortical processing associated with orofacial somatosensory function in speech has received limited experimental attention due to the difficulty of providing precise and controlled stimulation. This article introduces a technique for recording somatosensory event-related potentials (ERP) that uses a novel mechanical stimulation method involving skin deformation using a robotic device. Controlled deformation of the facial skin is used to modulate kinesthetic inputs through excitation of cutaneous mechanoreceptors. By combining somatosensory stimulation with electroencephalographic recording, somatosensory evoked responses can be successfully measured at the level of the cortex. Somatosensory stimulation can be combined with the stimulation of other sensory modalities to assess multisensory interactions. For speech, orofacial stimulation is combined with speech sound stimulation to assess the contribution of multi-sensory processing including the effects of timing differences. The ability to precisely control orofacial somatosensory stimulation during speech perception and speech production with ERP recording is an important tool that provides new insight into the neural organization and neural representations for speech. PMID:26709504

  12. Auditory event-related potentials in methadone substituted opiate users.

    PubMed

    Wang, Grace Y; Kydd, Robert; Russell, Bruce R

    2015-09-01

    The effects of methadone maintenance treatment (MMT) on neurophysiological function are unclear. Using an auditory oddball paradigm, event-related potential (ERP) amplitudes and latencies were measured in 32 patients undertaking MMT, 17 opiate users who were addicted but not receiving substitution treatment and 25 healthy control subjects. Compared with healthy control subjects, the MMT and opiate user groups showed an increased P200 amplitude in response to target stimuli. The opiate user group also exhibited a decreased amplitude and an increased latency of N200, and a greater number of task-related errors than either healthy control subjects or patients undertaking MMT. There were no significant group differences in the P300 amplitude. However, it is noteworthy that the frontal P300 amplitude of the MMT group was greater than that of opiate users or healthy controls. Our findings suggest that altered sensory information processing associated with a history of opiate use remains in patients undertaking MMT. However, there are less marked ERP abnormalities in those receiving MMT than in active opiate users. The deficits in information processing associated with illicit opiate use are likely to be reduced during MMT. PMID:26038111

  13. Cholinergic modulation of event-related oscillations (ERO).

    PubMed

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N; Havstad, James; Ehlers, Cindy L

    2014-04-22

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time-frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx-Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC-Amyg and Fctx-DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  14. Cholinergic modulation of event-related oscillations (ERO)

    PubMed Central

    Sanchez-Alavez, Manuel; Robledo, Patricia; Wills, Derek N.; Havstad, James; Ehlers, Cindy L.

    2014-01-01

    The cholinergic system in the brain modulates patterns of activity involved in general arousal, attention processing, memory and consciousness. In the present study we determined the effects of selective cholinergic lesions of the medial septum area (MS) or nucleus basalis magnocellularis (NBM) on amplitude and phase characteristics of event related oscillations (EROs). A time–frequency based representation was used to determine ERO energy, phase synchronization across trials, recorded within a structure (phase lock index, PLI), and phase synchronization across trials, recorded between brain structures (phase difference lock index, PDLI), in the frontal cortex (Fctx), dorsal hippocampus (DHPC) and central amygdala (Amyg). Lesions in MS produced: (1) decreases in ERO energy in delta, theta, alpha, beta and gamma frequencies in Amyg, (2) reductions in gamma ERO energy and PLI in Fctx, (3) decreases in PDLI between the Fctx–Amyg in the theta, alpha, beta and gamma frequencies, and (4) decreases in PDLI between the DHPC–Amyg and Fctx–DHPC in the theta frequency bands. Lesions in NBM resulted in: (1) increased ERO energy in delta and theta frequency bands in Fctx, (2) reduced gamma ERO energy in Fctx and Amyg, (3) reductions in PLI in the theta, beta and gamma frequency ranges in Fctx, (4) reductions in gamma PLI in DHPC and (5) reduced beta PLI in Amyg. These studies suggest that the MS cholinergic system can alter phase synchronization between brain areas whereas the NBM cholinergic system modifies phase synchronization/phase resetting within a brain area. PMID:24594019

  15. Social Comparison Manifests in Event-related Potentials.

    PubMed

    Luo, Yi; Feng, Chunliang; Wu, Tingting; Broster, Lucas S; Cai, Huajian; Gu, Ruolei; Luo, Yue-jia

    2015-01-01

    Social comparison, a widespread phenomenon in human society, has been found to affect outcome evaluation. The need to belong to a social group may result in distinct neural responses to diverse social comparison outcomes. To extend previous studies by examining how social comparison with hierarchical characteristics is temporally processed, electroencephalography responses were recorded in the current study. Participants played a lottery game with two pseudo-players simultaneously and received both their own and the other two players' outcomes. Results of three event-related potential components, including the P2, the feedback-related negativity (FRN), and the late positive component (LPC), indicate that social comparison manifests in three stages. First, outcomes indicating a different performance from others elicited a larger P2 than evenness. Second, the FRN showed hierarchical sensitivity to social comparison outcomes. This effect manifested asymmetrically. Finally, large difference between the participant's outcome and the other two players' evoked a larger LPC than the medium difference and the even condition. We suggest that during social comparison, people detect if there is any difference between self and others, and then evaluate the information of this difference hierarchically, and finally interpret the situations in which oneself deviates from the group as most motivationally salient. PMID:26183734

  16. Event related desynchronization: use as a neurophysiologic marker is restricted.

    PubMed

    Başar, Erol; Gölbaşı, Bilge Turp

    2014-12-01

    The present research aims to show that the occurrence of alpha blocking or event-related desynchronization (ERD) strongly depends on the amplitude and also on the phase angle of alpha activity at the stimulus onset. Simple visual stimulation was presented to 17 healthy subjects during EEG recording. An O2 electrode was used for analysis with a 32 channel EEG sampling system. We used a segmentation of raw data in order to obtain the evoked potential. Prestimulus and poststimulus activities were filtered in the alpha (8-13 Hz) frequency band. Later, four different events (blocked, time-locked, phase-locked, and eliminated) were separately averaged. Phase-locked sweeps were determined by application of inter-trial coherence analysis. The evaluation of the data shows that "time-locked and phase-locked sweeps" were the dominating pattern and not "the blocked pattern", which occurred only when the prestimulus alpha was high. In the analyses of EEG-EP sweeps, only 22 % of epochs showed (ERD). The ANOVA revealed significant differences between four different alpha responses (F(3,48) = 11.175; p < 0.001). Furthermore, alpha oscillations in time-locked responses were significantly higher than blocked (p < 0.0001). The analyses clearly demonstrate that important precaution is needed when using the ERD as a cognitive or pathological marker. PMID:26396644

  17. Late cognitive event-related potentials in adult Down's syndrome.

    PubMed

    Vieregge, P; Verleger, R; Schulze-Rava, H; Kömpf, D

    1992-12-15

    Event-related electroencephalogram (EEG) potentials (ERPs) using two different tasks were measured in 14 adults with Down's syndrome (DS; mean age 32 years) without clinically detectable cognitive decline. Two groups, young healthy (YH) and old healthy (OH) adults, served as controls. In the oddball task, DS had prolonged N1 and earlier P2 latencies than the control groups. P3 latency was delayed in comparison to YH. In the PushWait task, P3 latency was later in DS than in YH and OH. In both tasks, DS showed a marked amplitude shift towards positivity overlapping the N1-P2 complex and seemingly also P3: The P3 amplitude evoked by target tones and by "Push" was shifted towards anterior sites resulting in a Cz maximum. Changes of the N1 latency and amplitude in DS may be related to enhanced arousal during stimulus processing, indicating a possible defect of central inhibitory mechanisms. The study suggests that differentiated ERP procedures provide information on adult DS cognition exceeding those given by mere P3 latency measurements. Such procedures may be useful in the evaluation of the cognitive decline due to precocious aging or Alzheimer-type dementia in DS. PMID:1477192

  18. Neurovascular coupling in normal aging: A combined optical, ERP and fMRI study

    PubMed Central

    Fabiani, Monica; Gordon, Brian A.; Maclin, Edward L.; Pearson, Melanie A.; Brumback-Peltz, Carrie R.; Low, Kathy A.; McAuley, Edward; Sutton, Bradley P.; Kramer, Arthur F.; Gratton, Gabriele

    2013-01-01

    Brain aging is characterized by changes in both hemodynamic and neuronal responses, which may be influenced by the cardiorespiratory fitness of the individual. To investigate the relationship between neuronal and hemodynamic changes, we studied the brain activity elicited by visual stimulation (checkerboard reversals at different frequencies) in younger adults and in older adults varying in physical fitness. Four functional brain measures were used to compare neuronal and hemodynamic responses obtained from BA17: two reflecting neuronal activity (the event-related optical signal, EROS, and the C1 response of the ERP), and two reflecting functional hemodynamic changes (functional magnetic resonance imaging, fMRI, and near-infrared spectroscopy, NIRS). The results indicated that both younger and older adults exhibited a quadratic relationship between neuronal and hemodynamic effects, with reduced increases of the hemodynamic response at high levels of neuronal activity. Although older adults showed reduced activation, similar neurovascular coupling functions were observed in the two age groups when fMRI and deoxy-hemoglobin measures were used. However, the coupling between oxy-and deoxy-hemoglobin changes decreased with age and increased with increasing fitness. These data indicate that departures from linearity in neurovascular coupling may be present when using hemodynamic measures to study neuronal function. PMID:23664952

  19. Hemodynamic Nonlinearities Affect BOLD fMRI Response Timing and Amplitude

    PubMed Central

    de Zwart, Jacco A; van Gelderen, Peter; Jansma, J Martijn; Fukunaga, Masaki; Bianciardi, Marta; Duyn, Jeff H

    2009-01-01

    The interpretation of functional Magnetic Resonance Imaging (fMRI) studies based on Blood Oxygen-Level Dependent (BOLD) contrast generally relies on the assumption of a linear relationship between evoked neuronal activity and fMRI response. While nonlinearities in this relationship have been suggested by a number of studies, it remains unclear to what extent they relate to the neurovascular response and are therefore inherent to BOLD-fMRI. Full characterization of potential vascular nonlinearities is required for accurate inferences about the neuronal system under study. To investigate the extent of vascular nonlinearities, evoked activity was studied in humans with BOLD-fMRI (n=28) and Magnetoencephalography (MEG) (n=5). Brief (600-800 ms) rapidly repeated (1 Hz) visual stimuli were delivered using a stimulation paradigm that minimized neuronal nonlinearities. Nevertheless, BOLD-fMRI experiments showed substantial remaining nonlinearities. The smallest stimulus separation (200-400 ms) resulted in significant response broadening (15-20% amplitude decrease; 10-12% latency increase; 6-14% duration increase) with respect to a linear prediction. The substantial slowing and widening of the response in the presence of preceding stimuli suggests a vascular rather than neuronal origin to the observed non-linearity. This was confirmed by the MEG data, which showed no significant neuro-electric nonlinear interactions between stimuli as little as 200 ms apart. The presence of substantial vascular nonlinearities has important implications for rapid event-related studies by fMRI and other imaging modalities that infer neuronal activity from hemodynamic parameters. PMID:19520175

  20. Cue Reactivity in Smokers: An Event-Related Potential Study

    PubMed Central

    Bloom, Erika Litvin; Potts, Geoffrey F.; Evans, David E.; Drobes, David J.

    2013-01-01

    Drugs-of-abuse may increase the salience of drug cues by sensitizing the dopaminergic (DA) system (Robinson & Berridge, 1993), leading to differential attention to smoking stimuli. Event-related potentials (ERPs) have been used to assess attention to smoking cues but not using an ERP component associated with DA-mediated salience evaluation. In this study the DA-related P2a and the P3, were compared in smokers (N=21) and non-smokers (N=21) during an attention selection cue exposure task including both cigarette and neutral images. We predicted that both the P2a and P3 would be larger to targets than non-targets, but larger to non-target cigarette images than non-target neutral images only in the smokers, reflecting smokers’ evaluation of smoking stimuli as relevant even when they were not targets. Results indicated that smokers showed behavioral cue reactivity, with more false alarms to cigarette images (responding to cigarette images when they were not targets) than non-smokers; however, both smokers and non-smokers had a larger P2a and P3 to cigarette images. Thus, while smokers showed behavioral evidence of differential salience evaluation of the cigarette images, this group difference was not reflected in differential brain activity. These findings may reflect characteristics of the ERPs (both ERP components were smaller in the smokers), the smoking sample (they were not more impulsive, i.e. reward sensitive, than the non-smokers, in contrast to prior studies) and the design (all participants were aware that the aim of the study was related to smoking). PMID:23958866

  1. Event-related potential indices of workload in a single task paradigm

    NASA Technical Reports Server (NTRS)

    Horst, R. L.; Munson, R. C.; Ruchkin, D. S.

    1984-01-01

    Many previous studies of both behavioral and physiological correlates of cognitive workload have burdened subjects with a contrived secondary task in order to assess the workload of a primary task. The present study investigated event-related potential (ERP) indices of workload in a single task paradigm. Subjects monitored changing digital readouts for values that went 'out-of-bounds'. The amplitude of a long-latency positivity in the ERPs elicited by readout changes increased with the number of readouts being monitored. This effect of workload on ERPs is reported, along with plans for additional analyses to address theoretical implications.

  2. Combining self-organizing mapping and supervised affinity propagation clustering approach to investigate functional brain networks involved in motor imagery and execution with fMRI measurements

    PubMed Central

    Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin

    2015-01-01

    Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks. PMID:26236217

  3. Individual Differences in Nonverbal Number Discrimination Correlate with Event-Related Potentials and Measures of Probabilistic Reasoning

    ERIC Educational Resources Information Center

    Paulsen, David J.; Woldorff, Marty G.; Brannon, Elizabeth M.

    2010-01-01

    The current study investigated the neural activity patterns associated with numerical sensitivity in adults. Event-related potentials (ERPs) were recorded while adults observed sequentially presented display arrays (S1 and S2) of non-symbolic numerical stimuli (dots) and made same/different judgments of these stimuli by pressing a button only when…

  4. Hemispheric Differences in the Time-Course of Semantic Priming Processes: Evidence from Event-Related Potentials (ERPs)

    ERIC Educational Resources Information Center

    Bouaffre, Sarah; Faita-Ainseba, Frederique

    2007-01-01

    To investigate hemispheric differences in the timing of word priming, the modulation of event-related potentials by semantic word relationships was examined in each cerebral hemisphere. Primes and targets, either categorically (silk-wool) or associatively (needle-sewing) related, were presented to the left or right visual field in a go/no-go…

  5. Enhanced Development of Auditory Change Detection in Musically Trained School-Aged Children: A Longitudinal Event-Related Potential Study

    ERIC Educational Resources Information Center

    Putkinen, Vesa; Tervaniemi, Mari; Saarikivi, Katri; Ojala, Pauliina; Huotilainen, Minna

    2014-01-01

    Adult musicians show superior auditory discrimination skills when compared to non-musicians. The enhanced auditory skills of musicians are reflected in the augmented amplitudes of their auditory event-related potential (ERP) responses. In the current study, we investigated longitudinally the development of auditory discrimination skills in…

  6. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    ERIC Educational Resources Information Center

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  7. Right Hemisphere Sensitivity to Word- and Sentence-Level Context: Evidence From Event-Related Brain Potentials

    ERIC Educational Resources Information Center

    Coulson, Seana; Federmeier, Kara D.; Van Petten, Cyma; Kutas, Marta

    2005-01-01

    Researchers using lateralized stimuli have suggested that the left hemisphere is sensitive to sentence-level context, whereas the right hemisphere (RH) primarily processes word-level meaning. The authors investigated this message-blind RH model by measuring associative priming with event-related brain potentials (ERPs). For word pairs in…

  8. Pre-Attentive Mental Processing of Music Expectation: Event-Related Potentials of a Partially Violating and Resolving Paradigm

    ERIC Educational Resources Information Center

    Pei, Yu-Cheng; Chen, Chia-Ling; Chung, Chia-Ying; Chou, Shi-Wei; Wong, Alice M. K.; Tang, Simon F. T.

    2004-01-01

    Auditory event-related potentials (ERPs) were investigated in an oddball paradigm to verify electrophysiological evidence of music expectation, which is a key component of artistic presentation. The non-target condition consisted of four-chord harmonic chord sequences, while the target condition was manifested by a partially violating third chord…

  9. fMRI paradigm designing and post-processing tools.

    PubMed

    James, Jija S; Rajesh, Pg; Chandran, Anuvitha Vs; Kesavadas, Chandrasekharan

    2014-01-01

    In this article, we first review some aspects of functional magnetic resonance imaging (fMRI) paradigm designing for major cognitive functions by using stimulus delivery systems like Cogent, E-Prime, Presentation, etc., along with their technical aspects. We also review the stimulus presentation possibilities (block, event-related) for visual or auditory paradigms and their advantage in both clinical and research setting. The second part mainly focus on various fMRI data post-processing tools such as Statistical Parametric Mapping (SPM) and Brain Voyager, and discuss the particulars of various preprocessing steps involved (realignment, co-registration, normalization, smoothing) in these software and also the statistical analysis principles of General Linear Modeling for final interpretation of a functional activation result. PMID:24851001

  10. fMRI paradigm designing and post-processing tools

    PubMed Central

    James, Jija S; Rajesh, PG; Chandran, Anuvitha VS; Kesavadas, Chandrasekharan

    2014-01-01

    In this article, we first review some aspects of functional magnetic resonance imaging (fMRI) paradigm designing for major cognitive functions by using stimulus delivery systems like Cogent, E-Prime, Presentation, etc., along with their technical aspects. We also review the stimulus presentation possibilities (block, event-related) for visual or auditory paradigms and their advantage in both clinical and research setting. The second part mainly focus on various fMRI data post-processing tools such as Statistical Parametric Mapping (SPM) and Brain Voyager, and discuss the particulars of various preprocessing steps involved (realignment, co-registration, normalization, smoothing) in these software and also the statistical analysis principles of General Linear Modeling for final interpretation of a functional activation result. PMID:24851001

  11. Transient and sustained BOLD signal time courses affect the detection of emotion-related brain activation in fMRI.

    PubMed

    Paret, Christian; Kluetsch, Rosemarie; Ruf, Matthias; Demirakca, Traute; Kalisch, Raffael; Schmahl, Christian; Ende, Gabriele

    2014-12-01

    A tremendous amount of effort has been dedicated to unravel the functional neuroanatomy of the processing and regulation of emotion, resulting in a well-described picture of limbic, para-limbic and prefrontal regions involved. Studies applying functional magnetic resonance imaging (fMRI) often use the block-wise presentation of stimuli with affective content, and conventionally model brain activation as a function of stimulus or task duration. However, there is increasing evidence that regional brain responses may not always translate to task duration and rather show stimulus onset-related transient time courses. We assume that brain regions showing transient responses cannot be detected in block designs using a conventional fMRI analysis approach. At the same time, the probability of detecting these regions with conventional analyses may be increased when shorter stimulus timing or a more intense stimulation during a block is used. In a within-subject fMRI study, we presented aversive pictures to 20 healthy subjects and investigated the effect of experimental design (i.e. event-related and block design) on the detection of brain activation in limbic and para-limbic regions of interest of emotion processing. In addition to conventional modeling of sustained activation during blocks of stimulus presentation, we included a second response function into the general linear model (GLM), suited to detect transient time courses at block onset. In the conventional analysis, several regions like the amygdala, thalamus and periaqueductal gray were activated irrespective of design. However, we found a positive BOLD response in the anterior insula (AI) in event-related but not in block-design analyses. GLM analyses suggest that this difference may result from a transient response pattern which cannot be captured by the conventional fMRI analysis approach. Our results indicate that regions with a transient response profile like the AI can be missed in block designs if analyses

  12. Syntactic and semantic processing of Chinese middle sentences: evidence from event-related potentials.

    PubMed

    Zeng, Tao; Mao, Wen; Lu, Qing

    2016-05-25

    Scalp-recorded event-related potentials are known to be sensitive to particular aspects of sentence processing. The N400 component is widely recognized as an effect closely related to lexical-semantic processing. The absence of an N400 effect in participants performing tasks in Indo-European languages has been considered evidence that failed syntactic category processing appears to block lexical-semantic integration and that syntactic structure building is a prerequisite of semantic analysis. An event-related potential experiment was designed to investigate whether such syntactic primacy can be considered to apply equally to Chinese sentence processing. Besides correct middles, sentences with either single semantic or single syntactic violation as well as double syntactic and semantic anomaly were used in the present research. Results showed that both purely semantic and combined violation induced a broad negativity in the time window 300-500 ms, indicating the independence of lexical-semantic integration. These findings provided solid evidence that lexical-semantic parsing plays a crucial role in Chinese sentence comprehension. PMID:27028353

  13. Tactile capture of auditory localization: an event-related potential study.

    PubMed

    Bruns, Patrick; Röder, Brigitte

    2010-05-01

    The well-known ventriloquist illusion arises when sounds are mislocalized towards a synchronous but spatially discrepant visual stimulus, and a similar effect of touch on audition has also been reported. By manipulating hand position, we recently demonstrated that this audiotactile ventriloquism effect predominantly operates in an external coordinate system. Using event-related potentials, the present study investigated the neural correlates of this audiotactile ventriloquism effect. Participants reported the perceived location of brief auditory stimuli that were presented either alone or with concurrent tactile stimuli to the fingertips, which were situated at the left and right side of the speaker array. Concurrent electroencephalogram recordings suggested a biasing of cortical activity by the tactile stimuli, which was only observed for trials in which a ventriloquist illusion was elicited. Irrespective of the physical location of the sound source in the bimodal trials, centrally perceived sounds elicited an enhanced centrally distributed negativity, compared to laterally perceived sounds, between 260 and 400 ms following stimulus onset, similar to unimodal auditory stimuli that were actually presented from central and lateral positions, respectively. Moreover, this effect was modulated by hand posture. When external and anatomically centred reference frames were in conflict, the event-related potential effect was reduced for small audiotactile spatial discrepancies, which corresponded to the behavioural finding of a reduced audiotactile ventriloquism effect compared to a parallel hand posture. The present data suggest that the cortical representation of auditory space is adjusted to coincide with spatially disparate tactile input. PMID:20584189

  14. High-speed gas sensor for chemosensory event-related potentials or magnetic fields.

    PubMed

    Toda, H; Saito, S; Yamada, H; Kobayakawa, T

    2006-04-15

    The observation of odor and air exchange with high temporal accuracy is necessary to obtain strict chemosensory event-related potentials (CSERPs) or magnetic fields, as proposed by Evans et al. [Evans W, Kobal G, Lorig T, Prah J. Suggestions for collection and reporting of chemosensory (olfactory) event-related potentials. Chem Senses, 1993; 18: 751- 6]. No suitable method for real time observation of gas stimuli, however, has been available until now. We have developed a technique to measure accurately gas molecule concentrations with a high temporal resolution. We determined that attenuation of sound amplitude varies in a manner dependent on the average molecular weight through which the sound wave passes. Based on this principle, we have designed a high-speed gas concentration sensor utilizing ultrasound. We investigated the practical potential of this sensor using a chemosensory stimulator (olfactometer); we succeeded in observing rapid gas exchange between air and nitrogen with a 2 kHz sampling rate. The signal/noise ratio of the stimulus was greater than 42 dB. In a 20 min experiment we determined that, for this olfactometer, the gas onset latency was 79 ms and the rise time was 16 ms. No significant artifact to magnetic fields was observed, even when the sensor was situated near a whole head magnetoencephalography (MEG) system. These results indicate that this sensor could be used for the observation of odor and air exchange, as well as, for real time monitoring of odor stimuli during actual experiments with a participant. PMID:16257056

  15. Early event-related brain potentials that reflect interest for content information in the media.

    PubMed

    Adachi, Shinobu; Morikawa, Koji; Nittono, Hiroshi

    2012-03-28

    This study investigated the relationship between event-related brain potentials (ERPs) to abridged content information in the media and the subsequent decisions to view the full content. Student volunteers participated in a task that simulated information selection on the basis of the content information. Screenshots of television clips and headlines of news articles on the Web were used as content information for the image condition and the headline condition, respectively. Following presentation of a stimulus containing content information, participants decided whether or not they would view the full content by pressing a select or a reject button. When the select button was pressed, participants were presented with a television clip or a news article. When the reject button was pressed, participants continued on to the next trial, without viewing further. In comparison with rejected stimuli, selected stimuli elicited a larger negative component, with a peak latency of ∼250 ms. The increase in the negative component was independent of the type of visual stimulus. These results suggest that interest toward content information is reflected in early-stage event-related brain potential responses. PMID:22336875

  16. FMRI repetition suppression for voices is modulated by stimulus expectations.

    PubMed

    Andics, Attila; Gál, Viktor; Vicsi, Klára; Rudas, Gábor; Vidnyánszky, Zoltán

    2013-04-01

    According to predictive coding models of sensory processing, stimulus expectations have a profound effect on sensory cortical responses. This was supported by experimental results, showing that fMRI repetition suppression (fMRI RS) for face stimuli is strongly modulated by the probability of stimulus repetitions throughout the visual cortical processing hierarchy. To test whether processing of voices is also affected by stimulus expectations, here we investigated the effect of repetition probability on fMRI RS in voice-selective cortical areas. Changing ('alt') and identical ('rep') voice stimulus pairs were presented to the listeners in blocks, with a varying probability of alt and rep trials across blocks. We found auditory fMRI RS in the nonprimary voice-selective cortical regions, including the bilateral posterior STS, the right anterior STG and the right IFC, as well as in the IPL. Importantly, fMRI RS effects in all of these areas were strongly modulated by the probability of stimulus repetition: auditory fMRI RS was reduced or not present in blocks with low repetition probability. Our results revealed that auditory fMRI RS in higher-level voice-selective cortical regions is modulated by repetition probabilities and thus suggest that in audition, similarly to the visual modality, processing of sensory information is shaped by stimulus expectation processes. PMID:23268783

  17. Fractals properties of EEG during event-related desynchronization of motor imagery.

    PubMed

    Nguyen, Ngoc Quang; Truong, Quang Dang Khoa; Kondo, Toshiyuki

    2015-08-01

    Chaos and fractal dimension are emerging modalities for the research of electroencephalogram (EEG) signal processing. The capability of measuring non-linear characteristics of the fractal dimension enables new methodologies to identify distinct brain activities. Recent studies on the topic focus on utilizing various types of fractals as features in order to design better brain state classification system. However, we have little insight about the EEG signals projected in fractal dimension. In this paper, we investigate the relationship between the non-linear characteristics of ongoing EEG signals and event-related desynchronization (ERD) during motor imagery. We observed a considerable synchronization between ERD and fractal dimension. This finding suggests further usage of chaos and fractal theory in investigating brain activities. PMID:26737207

  18. Event-related changes of the prefrontal cortex oxygen delivery and metabolism during driving measured by hyperspectral fNIRS

    PubMed Central

    Nosrati, Reyhaneh; Vesely, Kristin; Schweizer, Tom A.; Toronov, Vladislav

    2016-01-01

    Recent technological advancements in optical spectroscopy allow for the construction of hyperspectral (broadband) portable tissue oximeters. In a series of our recent papers we have shown that hyperspectral NIRS (hNIRS) has similar or better capabilities in the absolute tissue oximetry as frequency-domain NIRS, and that hNIRS is also very efficient in measuring temporal changes in tissue hemoglobin concentration and oxygenation. In this paper, we extend the application of hNIRS to the measurement of event-related hemodynamic and metabolic functional cerebral responses during simulated driving. In order to check if hNIRS can detect event-related changes in the brain, we measured the concentration changes of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin and of the oxidized state of cytochrome c oxidase, on the right and left prefrontal cortices (PFC) simultaneously during simulated driving on sixteen healthy right-handed participants (aged between 22–32). We used our in-house hNIRS system based on a portable spectrometer with cooled CCD detector and a driving simulator with a fully functional steering wheel and foot pedals. Each participant performed different driving tasks and participants were distracted during some driving conditions by asking general knowledge true/false questions. Our findings suggest that more complex driving tasks (non-distracted) deactivate PFC while distractions during driving significantly activate PFC, which is in agreement with previous fMRI results. Also, we found the changes in the redox state of the cytochrome C oxidase to be very consistent with those in the concentrations of HbO2 and HHb. Overall our findings suggest that in addition to the suitability of absolute tissue oximetry, hyperspectral NIRS may also offer advantages in functional brain imaging. In particular, it can be used to measure the metabolic functional brain activity during actual driving. PMID:27446658

  19. Event-related changes of the prefrontal cortex oxygen delivery and metabolism during driving measured by hyperspectral fNIRS.

    PubMed

    Nosrati, Reyhaneh; Vesely, Kristin; Schweizer, Tom A; Toronov, Vladislav

    2016-04-01

    Recent technological advancements in optical spectroscopy allow for the construction of hyperspectral (broadband) portable tissue oximeters. In a series of our recent papers we have shown that hyperspectral NIRS (hNIRS) has similar or better capabilities in the absolute tissue oximetry as frequency-domain NIRS, and that hNIRS is also very efficient in measuring temporal changes in tissue hemoglobin concentration and oxygenation. In this paper, we extend the application of hNIRS to the measurement of event-related hemodynamic and metabolic functional cerebral responses during simulated driving. In order to check if hNIRS can detect event-related changes in the brain, we measured the concentration changes of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin and of the oxidized state of cytochrome c oxidase, on the right and left prefrontal cortices (PFC) simultaneously during simulated driving on sixteen healthy right-handed participants (aged between 22-32). We used our in-house hNIRS system based on a portable spectrometer with cooled CCD detector and a driving simulator with a fully functional steering wheel and foot pedals. Each participant performed different driving tasks and participants were distracted during some driving conditions by asking general knowledge true/false questions. Our findings suggest that more complex driving tasks (non-distracted) deactivate PFC while distractions during driving significantly activate PFC, which is in agreement with previous fMRI results. Also, we found the changes in the redox state of the cytochrome C oxidase to be very consistent with those in the concentrations of HbO2 and HHb. Overall our findings suggest that in addition to the suitability of absolute tissue oximetry, hyperspectral NIRS may also offer advantages in functional brain imaging. In particular, it can be used to measure the metabolic functional brain activity during actual driving. PMID:27446658

  20. Differences in the hemodynamic response to event-related motor and visual paradigms as measured by near-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Jasdzewski, G.; Strangman, G.; Wagner, J.; Kwong, K. K.; Poldrack, R. A.; Boas, D. A.; Sutton, J. P. (Principal Investigator)

    2003-01-01

    Several current brain imaging techniques rest on the assumption of a tight coupling between neural activity and hemodynamic response. The nature of this neurovascular coupling, however, is not completely understood. There is some evidence for a decoupling of these processes at the onset of neural activity, which manifests itself as a momentary increase in the relative concentration of deoxyhemoglobin (HbR). The existence of this early component of the hemodynamic response function, however, is controversial, as it is inconsistently found. Near infrared spectroscopy (NIRS) allows quantification of levels of oxyhemoglobin (HbO(2)) and HbR during task performance in humans. We acquired NIRS data during performance of simple motor and visual tasks, using rapid-presentation event-related paradigms. Our results demonstrate that rapid, event-related NIRS can provide robust estimates of the hemodynamic response without artifacts due to low-frequency signal components, unlike data from blocked designs. In both the motor and visual data the onset of the increase in HbO(2) occurs before HbR decreases, and there is a poststimulus undershoot. Our results also show that total blood volume (HbT) drops before HbO(2) and undershoots baseline, raising a new issue for neurovascular models. We did not find early deoxygenation in the motor data using physiologically plausible values for the differential pathlength factor, but did find one in the visual data. We suggest that this difference, which is consistent with functional magnetic resonance imaging (fMRI) data, may be attributable to different capillary transit times in these cortices.

  1. Reduced visual event-related δ oscillatory responses in amnestic mild cognitive impairment.

    PubMed

    Yener, Görsev G; Kurt, Pınar; Emek-Savaş, Derya Durusu; Güntekin, Bahar; Başar, Erol

    2013-01-01

    Mild cognitive impairment (MCI) is considered as a prodromal stage for Alzheimer's disease (AD) in the majority of cases. Event-related oscillations might be used for detection of cognitive deficits. Our group's earlier results showed diminished delta visual and auditory target oscillatory responses in AD, and we investigated whether this prevails for MCI. Eighteen MCI subjects and 18 age-matched healthy elderly controls were investigated. The maximum peak-to-peak amplitudes of oscillatory responses for each subject's averaged oscillatory target responses in delta, theta, and alpha frequency bands upon application of visual oddball paradigm were measured. Repeated measures of ANOVA was used to analyze four locations (frontal, central, parietal, occipital), at three coronal (left, midline, right) sites. Independent t tests were applied for post-hoc analyses. The oddball target delta response (0.5-3.0 Hz) was 26-32% lower in MCI than healthy controls over fronto-central-parietal regions [F(1.34) = 4.562, p = 0.04]. Without a group effect, theta oscillatory responses (4-7 Hz) showed significant differences in coronal electrodes indicating highest values over mid-electrode sites, and a anteriorposterior x coronal effect, being maximum at mid-central. Alpha frequency band analyses indicated no statistical differences. Peak-to-peak amplitudes of visual target delta oscillatory responses were lower in fronto-central-parietal regions in MCI than in healthy controls. This supports our earlier findings in AD, showing hypoactive delta fronto-central-parietal regions during cognitive tasks. These results indicate that event-related oscillations may detect early changes of brain dynamics in MCI, and deserves to be investigated as a candidate biomarker in further studies using multimodal techniques. PMID:23948923

  2. Pitch Processing in Tonal-Language-Speaking Children with Autism: An Event-Related Potential Study.

    PubMed

    Yu, Luodi; Fan, Yuebo; Deng, Zhizhou; Huang, Dan; Wang, Suiping; Zhang, Yang

    2015-11-01

    The present study investigated pitch processing in Mandarin-speaking children with autism using event-related potential measures. Two experiments were designed to test how acoustic, phonetic and semantic properties of the stimuli contributed to the neural responses for pitch change detection and involuntary attentional orienting. In comparison with age-matched (6-12 years) typically developing controls (16 participants in Experiment 1, 18 in Experiment 2), children with autism (18 participants in Experiment 1, 16 in Experiment 2) showed enhanced neural discriminatory sensitivity in the nonspeech conditions but not for speech stimuli. The results indicate domain specificity of enhanced pitch processing in autism, which may interfere with lexical tone acquisition and language development for children who speak a tonal language. PMID:26111738

  3. An event-related potential study of semantic style-match judgments of artistic furniture.

    PubMed

    Lin, Ming-Huang; Wang, Ching-yi; Cheng, Shih-kuen; Cheng, Shih-hung

    2011-11-01

    This study investigates how semantic networks represent different artistic furniture. Event-related potentials (ERPs) were recorded while participants made style-match judgments for table and chair sets. All of the tables were in the Normal style, whereas the chairs were in the Normal, Minimal, ReadyMade, or Deconstruction styles. The Normal and Minimal chairs had the same rates of "match" responses, which were both higher than the rates for the ReadyMade and Deconstruction chairs. Compared with Normal chairs, the ERPs elicited by both ReadyMade chairs and Deconstruction chairs exhibited reliable N400 effects, which suggests that these two design styles were unlike the Normal design style. However, Minimal chairs evoked ERPs that were similar to the ERPs of Normal chairs. Furthermore, the N400 effects elicited by ReadyMade and Deconstruction chairs showed different scalp distributions. These findings reveal that semantic networks represent different design styles for items of the same category. PMID:21893109

  4. Integrating the Meaning of Person Names into Discourse Context: An Event-Related Potential Study

    PubMed Central

    Wang, Lin; Yang, Yufang

    2013-01-01

    The meaning of person names is determined by their associated information. This study used event related potentials to investigate the time course of integrating the newly constructed meaning of person names into discourse context. The meaning of person names was built by two-sentence descriptions of the names. Then we manipulated the congruence of person names relative to discourse context in a way that the meaning of person names either matched or did not match the previous context. ERPs elicited by the names were compared between the congruent and the incongruent conditions. We found that the incongruent names elicited a larger N400 as well as a larger P600 compared to the congruent names. The results suggest that the meaning of unknown names can be effectively constructed from short linguistic descriptions and that the established meaning can be rapidly retrieved and integrated into contexts. PMID:24349462

  5. The relation between prospective memory and working memory: Evidence from event-related potential data.

    PubMed

    Wang, Ya; Cao, Xiao-Yan; Cui, Ji-Fang; Shum, David H K; Chan, Raymond C K

    2013-08-01

    Event-related potentials were used in this study to investigate the neural correlates of prospective memory and whether working memory is involved in prospective remembering. Thirty undergraduate or graduate students participated in the study. All participants completed a working memory test, namely, the Chinese Letter-Number Span Test, and were divided into two groups: the longer and shorter working memory span groups. They also undertook a prospective memory task while electrophysiological data were recorded. The results showed that participants in the longer working memory span group had shorter reaction times and smaller amplitudes in prospective positivity than participants in the shorter working memory span group. The results suggested that working memory resources are involved in the intention retrieval process of prospective remembering. PMID:26271181

  6. Approximate entropy analysis of event-related potentials in patients with early vascular dementia.

    PubMed

    Xu, Jin; Sheng, Hengsong; Lou, Wutao; Zhao, Songzhen

    2012-06-01

    This study investigated differences in event-related potential (ERP) parameters among early vascular dementia (VD) patients, healthy elder controls (ECs), and young controls (YCs). A visual "oddball" color identification task was performed while individuals' electroencephalograms (EEGs) were recorded. Approximate entropy (ApEn), a nonlinear measure, along with P300 latencies and amplitudes were used to analyze ERP data and compare these three groups. The patients with VD showed more complex ERP waveforms and higher ApEn values than did ECs while performing the visual task. It was further found that patients with VD showed reduced P300 amplitudes and increased latencies. The results indicate that patients with VD have fewer attention resources to devote to processing stimuli, lower speed of stimulus classification, and lower synchrony in their cortical activity during the response period. We suggest that ApEn, as a measure of ERP complexity, is a promising marker for early diagnosis of VD. PMID:22659716

  7. Effects of Grammaticality and Morphological Complexity on the P600 Event-Related Potential Component

    PubMed Central

    Wampler, Emma K.; Valentine, Geoffrey D.; Osterhout, Lee

    2015-01-01

    We investigated interactions between morphological complexity and grammaticality on electrophysiological markers of grammatical processing during reading. Our goal was to determine whether morphological complexity and stimulus grammaticality have independent or additive effects on the P600 event-related potential component. Participants read sentences that were either well-formed or grammatically ill-formed, in which the critical word was either morphologically simple or complex. Results revealed no effects of complexity for well-formed stimuli, but the P600 amplitude was significantly larger for morphologically complex ungrammatical stimuli than for morphologically simple ungrammatical stimuli. These findings suggest that some previous work may have inadequately characterized factors related to reanalysis during morphosyntactic processing. Our results show that morphological complexity by itself does not elicit P600 effects. However, in ungrammatical circumstances, overt morphology provides a more robust and reliable cue to morphosyntactic relationships than null affixation. PMID:26488893

  8. Information Structure Influences Depth of Syntactic Processing: Event-Related Potential Evidence for the Chomsky Illusion

    PubMed Central

    Wang, Lin; Bastiaansen, Marcel; Yang, Yufang; Hagoort, Peter

    2012-01-01

    Information structure facilitates communication between interlocutors by highlighting relevant information. It has previously been shown that information structure modulates the depth of semantic processing. Here we used event-related potentials to investigate whether information structure can modulate the depth of syntactic processing. In question-answer pairs, subtle (number agreement) or salient (phrase structure) syntactic violations were placed either in focus or out of focus through information structure marking. P600 effects to these violations reflect the depth of syntactic processing. For subtle violations, a P600 effect was observed in the focus condition, but not in the non-focus condition. For salient violations, comparable P600 effects were found in both conditions. These results indicate that information structure can modulate the depth of syntactic processing, but that this effect depends on the salience of the information. When subtle violations are not in focus, they are processed less elaborately. We label this phenomenon the Chomsky illusion. PMID:23110131

  9. Bilingualism and increased attention to speech: Evidence from event-related potentials.

    PubMed

    Kuipers, Jan Rouke; Thierry, Guillaume

    2015-10-01

    A number of studies have shown that from an early age, bilinguals outperform their monolingual peers on executive control tasks. We previously found that bilingual children and adults also display greater attention to unexpected language switches within speech. Here, we investigated the effect of a bilingual upbringing on speech perception in one language. We recorded monolingual and bilingual toddlers' event-related potentials (ERPs) to spoken words preceded by pictures. Words matching the picture prime elicited an early frontal positivity in bilingual participants only, whereas later ERP amplitudes associated with semantic processing did not differ between groups. These results add to the growing body of evidence that bilingualism increases overall attention during speech perception whilst semantic integration is unaffected. PMID:26185046

  10. Event-related potentials increase the discrimination performance of the autonomic-based concealed information test.

    PubMed

    Matsuda, Izumi; Nittono, Hiroshi; Ogawa, Tokihiro

    2011-12-01

    The concealed information test (CIT) assesses an examinee's crime-relevant memory on the basis of physiological differences between crime-relevant and irrelevant items. The CIT based on autonomic measures has been used for criminal investigations, while the CIT based on event-related potentials (ERPs) has been suggested as a useful alternative. To combine these two methods, we developed a quantification method of ERPs measured in the autonomic-based CIT where each item was repeated only 5 times. Results showed that the peak amplitude of the ERP difference wave between crime-relevant and irrelevant items could discriminate between guilty and innocent participants effectively even when only 5 trials were used for averaging. This ERP measure could detect some participants who were missed by the autonomic measures. Combining the ERP and autonomic measures significantly improved the discrimination performance of the autonomic-based CIT. PMID:21806637

  11. Event Related Potentials in the Understanding of Autism Spectrum Disorders: An Analytical Review

    PubMed Central

    Nelson, Charles A.

    2015-01-01

    In this paper we critically review the literature on the use of event related potentials (ERPs) to elucidate the neural sources of the core deficits in autism. We review auditory and visual ERP studies, and then review the use of ERPs in the investigation of executive function. We conclude that, in autism, impairments likely exist in both low and higher level auditory and visual processing, with prominent impairments in the processing of social stimuli. We also discuss the putative neural circuitry underlying these deficits. As we look to the future, we posit that tremendous insight can be gained by applying ERPs to the definition of endophenotypes, which, in turn, can facilitate early diagnosis and the creation of informed interventions for children with autism. PMID:18850262

  12. Early age-related changes in episodic memory retrieval as revealed by event-related potentials.

    PubMed

    Guillaume, Cécile; Clochon, Patrice; Denise, Pierre; Rauchs, Géraldine; Guillery-Girard, Bérengère; Eustache, Francis; Desgranges, Béatrice

    2009-01-28

    Familiarity is better preserved than recollection in ageing. The age at which changes first occur and the slope of the subsequent decline, however, remain unclear. In this study, we investigated changes in episodic memory, by using event-related potentials (ERPs) in young (m=24), middle-aged (m=58) and older (m=70) adults. Although behavioural performance did not change before the age of 65 years, changes in ERP correlates were already present in the middle-aged adults. The ERP correlates of recollection and monitoring processes were the first to be affected by ageing, with a linear decrease as age increased. Conversely, the ERP correlate of familiarity remained unchanged, at least up to the age of 65 years. These results suggest a differential time course for the age effects on episodic retrieval. PMID:19104457

  13. Effortful control and executive attention in typical and atypical development: an event-related potential study.

    PubMed

    Samyn, Vicky; Wiersema, Jan R; Bijttebier, Patricia; Roeyers, Herbert

    2014-05-01

    Executive attention and its relationship with effortful control (EC) were investigated in children with ADHD (n=24), autism spectrum disorder (ASD; n=20), and controls (n=21). Executive attention measures included flanker-performance and event-related potentials (N2, P3, and ERN). EC was assessed using questionnaires. Only the ERN was found to be robustly related to EC across groups. N2 did not differ between groups and only children with ADHD+ODD showed diminished executive attention as expressed in RT and P3. In ADHD, monitoring of incorrect (ERN) and correct (CRN) responses was diminished. Overall, the link between EC and executive attention was less strong as expected and varied depending on group and measure considered. All groups were able to detect conflict (N2) and all but ADHD+ODD were able to allocate extra attention in order to respond correctly (P3). Findings indicate a general reduced response monitoring in ADHD. PMID:24686073

  14. Primary task event-related potentials related to different aspects of information processing

    NASA Technical Reports Server (NTRS)

    Munson, Robert C.; Horst, Richard L.; Mahaffey, David L.

    1988-01-01

    The results of two studies which investigated the relationships between cognitive processing and components of transient event-related potentials (ERPs) are presented in a task in which mental workload was manipulated. The task involved the monitoring of an array of discrete readouts for values that went out of bounds, and was somewhat analogous to tasks performed in cockpits. The ERPs elicited by the changing readouts varied with the number of readouts being monitored, the number of monitored readouts that were close to going out of bounds, and whether or not the change took a monitored readout out of bounds. Moreover, different regions of the waveform differentially reflected these effects. The results confirm the sensitivity of scalp-recorded ERPs to the cognitive processes affected by mental workload and suggest the possibility of extracting useful ERP indices of primary task performance in a wide range of man-machine settings.

  15. Positive bias in self-appraisals from friend's perspective: an event-related potential study.

    PubMed

    Li, Shifeng; Xu, Kepeng; Xu, Qiongying; Xia, Ruixue; Ren, Deyun; Zhou, Aibao

    2016-06-15

    The present study investigated how positive bias in self-appraisals is differentially modulated when taking a friend's versus a stranger's perspective. Reaction time and event-related potentials were recorded while the participants performed a self-descriptiveness task with positive and negative trait adjectives from one's own perspective, a friend's perspective, or a stranger's perspective. The results showed that faster reaction times and reduced N400 amplitudes were induced by positive relative to negative words both in the self-perspective and friend-perspective conditions, but not in the stranger-perspective condition. This suggests that the perceived closeness between oneself and the other may modulate the neural basis of positive bias in self-appraisals during perspective taking. PMID:27138953

  16. Conveying the concept of movement in music: An event-related brain potential study.

    PubMed

    Zhou, Linshu; Jiang, Cunmei; Wu, Yingying; Yang, Yufang

    2015-10-01

    This study on event-related brain potential investigated whether music can convey the concept of movement. Using a semantic priming paradigm, natural musical excerpts were presented to non-musicians, followed by semantically congruent or incongruent pictures that depicted objects either in motion or at rest. The priming effects were tested in object decision and implicit recognition tasks to distinguish the effects of automatic conceptual activation from response competition. Results showed that in both tasks, pictures that were incongruent to preceding musical excerpts elicited larger N400 than congruent pictures, suggesting that music can prime the representations of movement concepts. Results of the multiple regression analysis showed that movement expression could be well predicted by specific acoustic and musical features, indicating the associations between music per se and the processing of iconic musical meaning. PMID:26254996

  17. Influence of diazepam on clinically designed FMRI.

    PubMed

    Ragnehed, Mattias; Håkansson, Irene; Nilsson, Maritha; Lundberg, Peter; Söderfeldt, Birgitta; Engström, Maria

    2007-01-01

    The authors investigated the effect of diazepam on clinically relevant measures from functional magnetic resonance imaging (fMRI) examinations. Twenty volunteers were scanned twice. Using a double-blind randomized study design, the volunteers received placebo on one occasion, and on the other, 5 mg of diazepam. Three functional tests were used: motor, word generation, and working memory. Images were analyzed individually for each subject and the number of activated voxels and the laterality index were calculated. No significant effects related to the drug were detected. In contrast, the motor and working memory tasks showed a significant decrease in the number of activated voxels between Sessions 1 and 2, independently of diazepam administration. These results indicate that diazepam may be administered for premedication prior to fMRI investigations. PMID:17431063

  18. An investigation of the value of spin-echo-based fMRI using a Stroop color-word matching task and EPI at 3 T.

    PubMed

    Norris, David G; Zysset, Stefan; Mildner, Toralf; Wiggins, Christopher J

    2002-03-01

    This study examines the value of spin-echo-based fMRI for cognitive studies at the main magnetic field strength of 3 T using a spin-echo EPI (SE-EPI) sequence and a Stroop color-word matching task. SE-EPI has the potential advantage over conventional gradient-echo EPI (GE-EPI) that signal losses caused by dephasing through the slice are not present, and hence although image distortion will be the same as for an equivalent GE-EPI sequence, signal voids will be eliminated. The functional contrast in SE-EPI will be lower than for GE-EPI, as static dephasing effects do not contribute. As an auxiliary experiment interleaved diffusion-weighted and non-diffusion-weighted SE-EPI was performed in the visual cortex to further elucidate the mechanims of functional contrast. In the Stroop experiment activation was detected in all areas previously found using GE-EPI. Additional frontopolar and ventral frontomedian activations were also found, which could not be detected using GE-EPI. The experiments from visual cortex indicated that at 3 T the BOLD signal change has contributions from the extravascular space and larger blood vessels in roughly equal amounts. In comparison with GE-EPI the absence of static dephasing effects would seem to result in a superior intrinsic spatial resolution. In conclusion the sensitivity of SE-EPI at 3 T is sufficient to make it the method of choice for fMR studies that require a high degree of spatial localization or where the requirement is to detect activation in regions affected by strong susceptibility gradients. PMID:11848715

  19. Interoception in insula subregions as a possible state marker for depression—an exploratory fMRI study investigating healthy, depressed and remitted participants

    PubMed Central

    Wiebking, Christine; de Greck, Moritz; Duncan, Niall W.; Tempelmann, Claus; Bajbouj, Malek; Northoff, Georg

    2015-01-01

    Background: Interoceptive awareness (iA), the awareness of stimuli originating inside the body, plays an important role in human emotions and psychopathology. The insula is particularly involved in neural processes underlying iA. However, iA-related neural activity in the insula during the acute state of major depressive disorder (MDD) and in remission from depression has not been explored. Methods: A well-established fMRI paradigm for studying (iA; heartbeat counting) and exteroceptive awareness (eA; tone counting) was used. Study participants formed three independent groups: patients suffering from MDD, patients in remission from MDD or healthy controls. Task-induced neural activity in three functional subdivisions of the insula was compared between these groups. Results: Depressed participants showed neural hypo-responses during iA in anterior insula regions, as compared to both healthy and remitted participants. The right dorsal anterior insula showed the strongest response to iA across all participant groups. In depressed participants there was no differentiation between different stimuli types in this region (i.e., between iA, eA and noTask). Healthy and remitted participants in contrast showed clear activity differences. Conclusions: This is the first study comparing iA and eA-related activity in the insula in depressed participants to that in healthy and remitted individuals. The preliminary results suggest that these groups differ in there being hypo-responses across insula regions in the depressed participants, whilst non-psychiatric participants and patients in remission from MDD show the same neural activity during iA in insula subregions implying a possible state marker for MDD. The lack of activity differences between different stimulus types in the depressed group may account for their symptoms of altered external and internal focus. PMID:25914633

  20. Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism.

    PubMed

    Balsters, Joshua H; Mantini, Dante; Apps, Matthew A J; Eickhoff, Simon B; Wenderoth, Nicole

    2016-01-01

    Although resting state fMRI (RS-fMRI) is increasingly used to generate biomarkers of psychiatric illnesses, analytical choices such as seed size and placement can lead to variable findings. Seed placement especially impacts on RS-fMRI studies of Autism Spectrum Disorder (ASD), because individuals with ASD are known to possess more variable network topographies. Here, we present a novel pipeline for analysing RS-fMRI in ASD using the cingulate cortex as an exemplar anatomical region of interest. Rather than using seeds based on previous literature, or gross morphology, we used a combination of structural information, task-independent (RS-fMRI) and task-dependent functional connectivity (Meta-Analytic Connectivity Modeling) to partition the cingulate cortex into six subregions with unique connectivity fingerprints and diverse behavioural profiles. This parcellation was consistent between groups and highly replicable across individuals (up to 93% detection) suggesting that the organisation of cortico-cingulo connections is highly similar between groups. However, our results showed an age-related increase in connectivity between the anterior middle cingulate cortex and right lateral prefrontal cortex in ASD, whilst this connectivity decreased in controls. There was also a Group × Grey Matter (GM) interaction, showing increased connectivity between the anterior cingulate cortex and the rectal gyrus in concert with increasing rectal gyrus GM in controls. By comparing our approach to previously established methods we revealed that our approach improves network detection in both groups, and that the ability to detect group differences using 4 mm radius spheres varies greatly with seed placement. Using our multi-modal approach we find disrupted cortico-cingulo circuits that, based on task-dependent information, may contribute to ASD deficits in attention and social interaction. Moreover, we highlight how more sensitive approaches to RS-fMRI are crucial for establishing

  1. Connectivity-based parcellation increases network detection sensitivity in resting state fMRI: An investigation into the cingulate cortex in autism

    PubMed Central

    Balsters, Joshua H.; Mantini, Dante; Apps, Matthew A.J.; Eickhoff, Simon B.; Wenderoth, Nicole

    2016-01-01

    Although resting state fMRI (RS-fMRI) is increasingly used to generate biomarkers of psychiatric illnesses, analytical choices such as seed size and placement can lead to variable findings. Seed placement especially impacts on RS-fMRI studies of Autism Spectrum Disorder (ASD), because individuals with ASD are known to possess more variable network topographies. Here, we present a novel pipeline for analysing RS-fMRI in ASD using the cingulate cortex as an exemplar anatomical region of interest. Rather than using seeds based on previous literature, or gross morphology, we used a combination of structural information, task-independent (RS-fMRI) and task-dependent functional connectivity (Meta-Analytic Connectivity Modeling) to partition the cingulate cortex into six subregions with unique connectivity fingerprints and diverse behavioural profiles. This parcellation was consistent between groups and highly replicable across individuals (up to 93% detection) suggesting that the organisation of cortico-cingulo connections is highly similar between groups. However, our results showed an age-related increase in connectivity between the anterior middle cingulate cortex and right lateral prefrontal cortex in ASD, whilst this connectivity decreased in controls. There was also a Group × Grey Matter (GM) interaction, showing increased connectivity between the anterior cingulate cortex and the rectal gyrus in concert with increasing rectal gyrus GM in controls. By comparing our approach to previously established methods we revealed that our approach improves network detection in both groups, and that the ability to detect group differences using 4 mm radius spheres varies greatly with seed placement. Using our multi-modal approach we find disrupted cortico-cingulo circuits that, based on task-dependent information, may contribute to ASD deficits in attention and social interaction. Moreover, we highlight how more sensitive approaches to RS-fMRI are crucial for establishing

  2. Decreasing Ventromedial Prefrontal Cortex Activity During Sequential Risk-Taking: An fMRI Investigation of the Balloon Analog Risk Task

    PubMed Central

    Schonberg, Tom; Fox, Craig R.; Mumford, Jeanette A.; Congdon, Eliza; Trepel, Christopher; Poldrack, Russell A.

    2012-01-01

    Functional imaging studies examining the neural correlates of risk have mainly relied on paradigms involving exposure to simple chance gambles and an economic definition of risk as variance in the probability distribution over possible outcomes. However, there is little evidence that choices made during gambling tasks predict naturalistic risk-taking behaviors such as drug use, extreme sports, or even equity investing. To better understand the neural basis of naturalistic risk-taking, we scanned participants using fMRI while they completed the Balloon Analog Risk Task, an experimental measure that includes an active decision/choice component and that has been found to correlate with a number of naturalistic risk-taking behaviors. In the task, as in many naturalistic settings, escalating risk-taking occurs under uncertainty and might be experienced either as the accumulation of greater potential rewards, or as exposure to increasing possible losses (and decreasing expected value). We found that areas previously linked to risk and risk-taking (bilateral anterior insula, anterior cingulate cortex, and right dorsolateral prefrontal cortex) were activated as participants continued to inflate balloons. Interestingly, we found that ventromedial prefrontal cortex (vmPFC) activity decreased as participants further expanded balloons. In light of previous findings implicating the vmPFC in value calculation, this result suggests that escalating risk-taking in the task might be perceived as exposure to increasing possible losses (and decreasing expected value) rather than the increasing potential total reward relative to the starting point of the trial. A better understanding of how neural activity changes with risk-taking behavior in the task offers insight into the potential neural mechanisms driving naturalistic risk-taking. PMID:22675289

  3. Leading the follower: an fMRI investigation of dynamic cooperativity and leader-follower strategies in synchronization with an adaptive virtual partner.

    PubMed

    Fairhurst, Merle T; Janata, Petr; Keller, Peter E

    2014-01-01

    From everyday experience we know that it is generally easier to interact with someone who adapts to our behavior. Beyond this, achieving a common goal will very much depend on who adapts to whom and to what degree. Therefore, many joint action tasks such as musical performance prove to be more successful when defined leader-follower roles are established. In the present study, we present a novel approach to explore the mechanisms of how individuals lead and, using functional magnetic resonance imaging (fMRI), probe the neural correlates of leading. Specifically, we implemented an adaptive virtual partner (VP), an auditory pacing signal, with which individuals were instructed to tap in synchrony while maintaining a steady tempo. By varying the degree of temporal adaptation (period correction) implemented by the VP, we manipulated the objective control individuals had to exert to maintain the overall tempo of the pacing sequence (which was prone to tempo drift with high levels of period correction). Our imaging data revealed that perceiving greater influence and leading are correlated with right lateralized frontal activation of areas involved in cognitive control and self-related processing. Using participants' subjective ratings of influence and task difficulty, we classified a subgroup of our cohort as "leaders", individuals who found the task of synchronizing easier when they felt more in control. Behavioral tapping measures showed that leaders employed less error correction and focused more on self-tapping (prioritizing the instruction to maintain the given tempo) than on the stability of the interaction (prioritizing the instruction to synchronize with the VP), with correlated activity in areas involved in self-initiated action including the pre-supplementary motor area. PMID:24064075

  4. Research of personal decision process using event-related potentials

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng

    2011-10-01

    To gain insights into the neural basis of such adaptive decision-making processes, we investigated the nature of learning process in humans playing a competitive game with binary choices, using a matching pennies game. As in reinforcement learning, the subject's choice during a competitive game was biased by its choice and reward history, as well as by the strategies of its opponent. Analyses of ERP data focused on the feedback-related negativity (FRN), we found that the magnitude of ERPs after losing to the computer opponent predicted whether subjects would change decision behavior on the subsequent trial. These findings provide novel evidence that humans engage a reinforcement learning process to adjust representations of competing decision options.

  5. Age, Intelligence, and Event-Related Brain Potentials during Late Childhood: A Longitudinal Study.

    ERIC Educational Resources Information Center

    Stauder, Johannes E. A.; van der Molen, Maurits W.; Molenaar, Peter C. M.

    2003-01-01

    Studied the relationship between event-related brain activity, age, and intelligence using a visual oddball task presented to girls at 9, 10, and 11 years of age. Findings for 26 girls suggest a qualitative shift in the relation between event-related brain activity and intelligence between 9 and 10 years of age. (SLD)

  6. Use of Event-Related Potentials to Identify Language and Reading Skills

    ERIC Educational Resources Information Center

    Molfese, Victoria J.; Molfese, Dennis L.; Beswick, Jennifer L.; Jacobi-Vessels, Jill; Molfese, Peter J.; Molnar, Andrew E.; Wagner, Mary C.; Haines, Brittany L.

    2008-01-01

    The extent to which oral language and emergent literacy skills are influenced by event-related potential measures of phonological processing was examined. Results revealed that event-related potential responses identify differences in letter naming but not receptive language skills.

  7. Infant Auditory Processing and Event-related Brain Oscillations

    PubMed Central

    Musacchia, Gabriella; Ortiz-Mantilla, Silvia; Realpe-Bonilla, Teresa; Roesler, Cynthia P.; Benasich, April A.

    2015-01-01

    Rapid auditory processing and acoustic change detection abilities play a critical role in allowing human infants to efficiently process the fine spectral and temporal changes that are characteristic of human language. These abilities lay the foundation for effective language acquisition; allowing infants to hone in on the sounds of their native language. Invasive procedures in animals and scalp-recorded potentials from human adults suggest that simultaneous, rhythmic activity (oscillations) between and within brain regions are fundamental to sensory development; determining the resolution with which incoming stimuli are parsed. At this time, little is known about oscillatory dynamics in human infant development. However, animal neurophysiology and adult EEG data provide the basis for a strong hypothesis that rapid auditory processing in infants is mediated by oscillatory synchrony in discrete frequency bands. In order to investigate this, 128-channel, high-density EEG responses of 4-month old infants to frequency change in tone pairs, presented in two rate conditions (Rapid: 70 msec ISI and Control: 300 msec ISI) were examined. To determine the frequency band and magnitude of activity, auditory evoked response averages were first co-registered with age-appropriate brain templates. Next, the principal components of the response were identified and localized using a two-dipole model of brain activity. Single-trial analysis of oscillatory power showed a robust index of frequency change processing in bursts of Theta band (3 - 8 Hz) activity in both right and left auditory cortices, with left activation more prominent in the Rapid condition. These methods have produced data that are not only some of the first reported evoked oscillations analyses in infants, but are also, importantly, the product of a well-established method of recording and analyzing clean, meticulously collected, infant EEG and ERPs. In this article, we describe our method for infant EEG net

  8. Event-related desynchronization/synchronization during discrimination task conditions in patients with Parkinson's disease.

    PubMed

    Dushanova, Juliana; Philipova, Dolja; Nikolova, Gloria

    2009-09-01

    Parkinson's disease is a neurodegenerative disorder with symptoms, which include movement disturbances and changes of cognitive information processing. The aim of the present study was to investigate the functional relationships between oscillatory electroencephalographic (EEG) dominant components with event-related desynchronization/synchronization (ERD/ERS) method for idiopathic non-demented Parkinson's patients (PP) and control subjects (CS) during auditory discrimination tasks within two post-stimulus intervals of 0-250 and 250-600 ms. When comparing the CS and PP during the first post-stimulus period, we found delta- and theta-ERS significantly pronounced in CS for both tone types (low--800, high--1,000 Hz) with the following exceptions: at Fz, PP displayed higher delta-ERS, while at C3' theta-ERD in response to a high tone. Alpha-ERS was found in PP in response to either tone at all electrodes and mainly alpha-ERD in CS. In the second post-stimulus interval, the significant differences between the groups were: (i) delta-ERS in CS and delta-ERD in PP in response to the low tone and (ii) delta-ERS for both groups in answer to the high tone, more prominent in CS at Cz and Pz, except for delta-ERD in PP at C3'. For both groups, we detected predominantly theta-ERD and alpha-ERD following both tone types within this second interval. PP showed more expressed theta-ERD at Fz and parietal theta-ERS. Alpha-ERD was significantly higher in CS, while frontal alpha-ERD was more prominent in the PP in response to both tones. The data obtained showed specific functional differences of event-related oscillatory activity in cognitive and sensory-motor information processing between the PP and CS. PMID:19291392

  9. The dysfunction of face processing in patients with internet addiction disorders: an event-related potential study.

    PubMed

    Zhang, Fan; Zhao, Lun

    2016-10-19

    To investigate face processing in patients with internet addiction disorders (IAD), an event-related brain potential experiment was conducted in IAD patients and healthy age-matched controls in which participants were instructed to classify each stimulus (face vs. nonface object) as quickly and accurately as possible. Although we did not find a significant difference in the performance between two groups, both the N110 and the P2 components in response to faces were larger in the IAD group than in the control group, whereas the N170 to faces decreased in the IAD group than in the control group. In addition, the source analysis of event-related potential components showed different generators between two groups. These data indicated that there was a dysfunction of face processing in IAD patients and the underlying mechanism of processing faces could be different from healthy individuals. PMID:27563738

  10. The neural correlates of volitional attention: A combined fMRI and ERP study.

    PubMed

    Bengson, Jesse J; Kelley, Todd A; Mangun, George R

    2015-07-01

    Studies of visual-spatial attention typically use instructional cues to direct attention to a relevant location, but in everyday vision, attention is often focused volitionally, in the absence of external signals. Although investigations of cued attention comprise hundreds of behavioral and physiological studies, remarkably few studies of voluntary attention have addressed the challenging question of how spatial attention is initiated and controlled in the absence of external instructions, which we refer to as willed attention. To explore this question, we employed a trial-by-trial spatial attention task using electroencephalography and functional magnetic resonance imaging (fMRI). The fMRI results reveal a unique network of brain regions for willed attention that includes the anterior cingulate cortex, left middle frontal gyrus (MFG), and the left and right anterior insula (AI). We also observed two event-related potentials (ERPs) associated with willed attention; one with a frontal distribution occurring 250-350 ms postdecision cue onset (EWAC: Early Willed Attention Component), and another occurring between 400 and 800 ms postdecision-cue onset (WAC: Willed Attention Component). In addition, each ERP component uniquely correlated across subjects with different willed attention-specific sites of BOLD activation. The EWAC was correlated with the willed attention-specific left AI and left MFG activations and the later WAC was correlated only with left AI. These results offer a comprehensive and novel view of the electrophysiological and anatomical profile of willed attention and further illustrate the relationship between scalp-recorded ERPs and the BOLD response. PMID:25731128