Science.gov

Sample records for evolution

  1. Evolution.

    ERIC Educational Resources Information Center

    Mayr, Ernst

    1978-01-01

    Traces the history of evolution theory from Lamarck and Darwin to the present. Discusses natural selection in detail. Suggests that, besides biological evolution, there is also a cultural evolution which is more rapid than the former. (MA)

  2. Evolution

    NASA Astrophysics Data System (ADS)

    Peter, Ulmschneider

    When we are looking for intelligent life outside the Earth, there is a fundamental question: Assuming that life has formed on an extraterrestrial planet, will it also develop toward intelligence? As this is hotly debated, we will now describe the development of life on Earth in more detail in order to show that there are good reasons why evolution should culminate in intelligent beings.

  3. FTS evolution

    NASA Technical Reports Server (NTRS)

    Provost, David E.

    1990-01-01

    Viewgraphs on flight telerobotic servicer evolution are presented. Topics covered include: paths for FTS evolution; frequently performed actions; primary task states; EPS radiator panel installation; generic task definitions; path planning; non-contact alignment; contact planning and control; and human operator interface.

  4. Teaching Evolution

    ERIC Educational Resources Information Center

    Bryner, Jeanna

    2005-01-01

    Eighty years after the famous 1925 Scopes "monkey trial," which tested a teacher's right to discuss the theory of evolution in the classroom, evolution--and its most recent counterview, called "intelligent design"--are in the headlines again, and just about everyone seems to have an opinion. This past July, President Bush weighed in, telling…

  5. Stellar evolution.

    NASA Technical Reports Server (NTRS)

    Chiu, H.-Y. (Editor); Muriel, A.

    1972-01-01

    Aspects of normal stellar evolution are discussed together with evolution near the main sequence, stellar evolution from main sequence to white dwarf or carbon ignition, the structure of massive main-sequence stars, and problems of stellar stability and stellar pulsation. Other subjects considered include variable stars, white dwarfs, close binaries, novae, early supernova luminosity, neutron stars, the photometry of field horizontal-branch stars, and stellar opacity. Transport mechanisms in stars are examined together with thermonuclear reactions and nucleosynthesis, the instability problem in nuclear burning shells, stellar coalescence, and intense magnetic fields in astrophysics. Individual items are announced in this issue.

  6. Art & Evolution

    ERIC Educational Resources Information Center

    Terry, Mark

    2005-01-01

    In this article, the author presents a two-week evolution unit for his biology class. He uses Maria Sybilla Merian (1647-1717) as an example of an Enlightenment mind at work--in this case a woman recognized as one of the great artists and natural scientists of her time. Her representations of butterflies, caterpillars and their pupae, and the…

  7. Security Evolution.

    ERIC Educational Resources Information Center

    De Patta, Joe

    2003-01-01

    Examines how to evaluate school security, begin making schools safe, secure schools without turning them into fortresses, and secure schools easily and affordably; the evolution of security systems into information technology systems; using schools' high-speed network lines; how one specific security system was developed; pros and cons of the…

  8. Mitochondrial Evolution

    PubMed Central

    Gray, Michael W.

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it. PMID:22952398

  9. Viral evolution

    PubMed Central

    Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo

    2012-01-01

    Explaining the origin of viruses remains an important challenge for evolutionary biology. Previous explanatory frameworks described viruses as founders of cellular life, as parasitic reductive products of ancient cellular organisms or as escapees of modern genomes. Each of these frameworks endow viruses with distinct molecular, cellular, dynamic and emergent properties that carry broad and important implications for many disciplines, including biology, ecology and epidemiology. In a recent genome-wide structural phylogenomic analysis, we have shown that large-to-medium-sized viruses coevolved with cellular ancestors and have chosen the evolutionary reductive route. Here we interpret these results and provide a parsimonious hypothesis for the origin of viruses that is supported by molecular data and objective evolutionary bioinformatic approaches. Results suggest two important phases in the evolution of viruses: (1) origin from primordial cells and coexistence with cellular ancestors, and (2) prolonged pressure of genome reduction and relatively late adaptation to the parasitic lifestyle once virions and diversified cellular life took over the planet. Under this evolutionary model, new viral lineages can evolve from existing cellular parasites and enhance the diversity of the world’s virosphere. PMID:23550145

  10. Insect evolution.

    PubMed

    Engel, Michael S

    2015-10-01

    It goes without saying that insects epitomize diversity, and with over a million documented species they stand out as one of the most remarkable lineages in the 3.5-billion-year history of life on earth (Figure 1). This reality is passé to even the layperson and is taken for granted in the same way none of us think much of our breathing as we go about our day, and yet insects are just as vital to our existence. Insects are simultaneously familiar and foreign to us, and while a small fraction are beloved or reviled, most are simply ignored. These inexorable evolutionary overachievers outnumber us all, their segmented body plan is remarkably labile, they combine a capacity for high rates of speciation with low levels of natural extinction, and their history of successes eclipses those of the more familiar ages of dinosaurs and mammals alike. It is their evolution - persisting over vast expanses of geological time and inextricably implicated in the diversification of other lineages - that stands as one of the most expansive subjects in biology. PMID:26439349

  11. EMU evolution

    NASA Technical Reports Server (NTRS)

    Rouen, M.

    1991-01-01

    Evolution of Extravehicular Mobility Unit (EMU) technology is necessary to support the Extravehicular Activity (EVA) requirements of the Space Station Freedom Program and those of the Space Exploration Initiative (SEI). Key qualities supporting long-duration missions include technologies that are highly reliable, durable, minimize logistics requirements, and are in-flight maintainable and serviceable. While these qualities are common to SSF and SEI EVA, development paths will differ where specific mission requirements impose different constraints. Development of reusable, regenerative technologies is necessary to minimize the logistics penalties. Increased battery discharge/recharge cycle life and usable wet life, compact high current density fuel cells, reusable CO2 absorbing media, and thermal radiation coupled with venting heat rejection technologies are just some methods of reducing consumables. Development must strive for durable, reliable systems that are in-flight serviceable and maintainable, which are vital for missions where logistics capabilities are extremely constrained. Key areas include suit components (e.g., gloves, boots, and cooling garments), and life support hardware such as fans, pumps, instrumentation, and emergency O2 systems. Higher pressure suits will reduce EVA prebreathe requirements and pre-EVA operations overall. Many challenges of higher pressure suits have been addressed by on-going development. Emphasis on glove development is necessary to provide low fatigue, dexterous glove mobility at higher suit pressures. Minimum impact hooks and scars which support an advanced SSF EMU have been identified. These accommodations permit upgrades that support servicing of low volume, high pressure oxygen systems, and hydrogen technologies such as fuel cell, and venting hydrogen heat rejection systems.

  12. Evolution: Help for the Confused.

    ERIC Educational Resources Information Center

    Scheer, Bradley T.

    1979-01-01

    Written in response to an earlier article questioning certain aspects of evolution theory. Discusses ontogeny and phylogeny, the basis of evolution, chance or purpose in evolution, micro and macro-evolution, reversibility, and the evolution processes today. (MA)

  13. Understanding Evolution: An Evolution Website for Teachers

    ERIC Educational Resources Information Center

    Scotchmoor, Judy; Janulaw, Al

    2005-01-01

    While many states are facing challenges to the teaching of evolution in their science classrooms, the University of California Museum of Paleontology, working with the National Center for Science Education, has developed a useful web-based resource for science teachers of all grade- and experience-levels. Understanding Evolution (UE) was developed…

  14. Evolution and Probability.

    ERIC Educational Resources Information Center

    Bailey, David H.

    2000-01-01

    Some of the most impressive-sounding criticisms of the conventional theory of biological evolution involve probability. Presents a few examples of how probability should and should not be used in discussing evolution. (ASK)

  15. Oxygen and Biological Evolution.

    ERIC Educational Resources Information Center

    Baugh, Mark A.

    1990-01-01

    Discussed is the evolution of aerobic organisms from anaerobic organisms and the accompanying biochemistry that developed to motivate and enable this evolution. Uses of oxygen by aerobic organisms are described. (CW)

  16. Mistakes and Molecular Evolution.

    ERIC Educational Resources Information Center

    Trevors, J. T.

    1998-01-01

    Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)

  17. The Evolution of Design

    ERIC Educational Resources Information Center

    Stebbins, G. Ledyard

    1973-01-01

    Describes the basic logic behind the modern view of evolution theory. Despite gaps in fossil records, evidence is indicative of the origin of life from nonliving molecules and evolution of higher forms of life from simpler forms. (PS)

  18. HIV Evolution and Escape.

    PubMed Central

    Richman, Douglas D.; Little, Susan J.; Smith, Davey M.; Wrin, Terri; Petropoulos, Christos; Wong, Joseph K.

    2004-01-01

    Human immunodeficiency virus (HIV) exemplifies the principles of Darwinian evolution with a telescoped chronology. Because of its high mutation rate and remarkably high rates of replication, evolution can be appreciated over periods of days in contrast to the durations conceived of by Darwin. Certain selective pressures that drive the evolution of HIV include chemotherapy, anatomic compartmentalization and the immune response. Examples of these selective forces on HIV evolution are described. Images Fig. 5 PMID:17060974

  19. Old Perspectives on Evolution

    ERIC Educational Resources Information Center

    De Blacquiere-Clarkson, John

    1976-01-01

    Presents a perspective on evolution which includes an explanation of the textbook theory of evolution, a review of evolutionary theory before Darwin, and an outline of Darwin's early theories. Describes a rethinking of evolutionary theory to include natural selection, conservative selection, discontinous evolution, catastrophism, and the…

  20. A Shuttle evolution strategy

    NASA Technical Reports Server (NTRS)

    Teixeira, Charles; Mallini, Charles

    1989-01-01

    An overview of a potential Space Shuttle evolution strategy is presented. A Shuttle development study which reviews past and ongoing studies, implements a Shuttle Enhancement Data Base, and develops a methodology and a strawman evolution strategy is discussed. The long-term goals of a Shuttle evolution strategy, including increased reliability, lower cost, robustness, resiliency, increased capability, and assured access are addressed.

  1. Evolution & Diversity in Plants.

    ERIC Educational Resources Information Center

    Pearson, Lorentz C.

    1988-01-01

    Summarizes recent findings that help in understanding how evolution has brought about the diversity of plant life that presently exists. Discusses basic concepts of evolution, diversity and classification, the three-line hypothesis of plant evolution, the origin of fungi, and the geologic time table. Included are 31 references. (CW)

  2. Evolution for Young Victorians

    NASA Astrophysics Data System (ADS)

    Lightman, Bernard

    2012-07-01

    Evolution was a difficult topic to tackle when writing books for the young in the wake of the controversies over Darwin's Origin of Species. Authors who wrote about evolution for the young experimented with different ways of making the complex concepts of evolutionary theory accessible and less controversial. Many authors depicted presented evolution in a non-Darwinian form amenable to religious interpretation.

  3. Arguing for Evolution.

    ERIC Educational Resources Information Center

    Ayala, Francisco J.

    2000-01-01

    Discusses the Kansas State Board of Education's decision to remove references to evolution and cosmology from the state's education standards and assessment. Advocates the need to teach evolution in high schools for a meaningful biology education. Addresses the question whether the teaching of evolution poses a threat to Christianity or other…

  4. Frontiers of stellar evolution

    NASA Technical Reports Server (NTRS)

    Lambert, David L. (Editor)

    1991-01-01

    The present conference discusses theoretical and observational views of star formation, spectroscopic constraints on the evolution of massive stars, very low mass stars and brown dwarfs, asteroseismology, globular clusters as tests of stellar evolution, observational tests of stellar evolution, and mass loss from cool evolved giant stars. Also discussed are white dwarfs and hot subdwarfs, neutron stars and black holes, supernovae from single stars, close binaries with evolved components, accretion disks in interacting binaries, supernovae in binary systems, stellar evolution and galactic chemical evolution, and interacting binaries containing compact components.

  5. Has Human Evolution Stopped?

    PubMed Central

    Templeton, Alan R.

    2010-01-01

    It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important implications for infectious diseases, Mendelian genetic diseases, and systemic diseases in current human populations. Moreover, evolution proceeds by mechanisms other than natural selection. The recent growth in human population size has greatly increased the reservoir of mutational variants in the human gene pool, thereby enhancing the potential for human evolution. The increase in human population size coupled with our increased capacity to move across the globe has induced a rapid and ongoing evolutionary shift in how genetic variation is distributed within and among local human populations. In particular, genetic differences between human populations are rapidly diminishing and individual heterozygosity is increasing, with beneficial health effects. Finally, even when cultural evolution eliminates selection on a trait, the trait can still evolve due to natural selection on other traits. Our traits are not isolated, independent units, but rather are integrated into a functional whole, so selection on one trait can cause evolution to occur on another trait, sometimes with mildly maladaptive consequences. PMID:23908778

  6. Oxygen evolution reaction catalysis

    DOEpatents

    Haber, Joel A.; Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Jones, Ryan J.; Guevarra, Dan W.; Shinde, Aniketa A.

    2016-09-06

    An Oxygen Evolution Reaction (OER) catalyst includes a metal oxide that includes oxygen, cerium, and one or more second metals. In some instances, the cerium is 10 to 80 molar % of the metals in the metal oxide and/or the catalyst includes two or more second metals. The OER catalyst can be included in or on an electrode. The electrode can be arranged in an oxygen evolution system such that the Oxygen Evolution Reaction occurs at the electrode.

  7. Museums teach evolution.

    PubMed

    Diamond, Judy; Evans, E Margaret

    2007-06-01

    Natural history museums play a significant role in educating the general public about evolution. This article describes Explore Evolution, one of the largest evolution education projects funded by the National Science Foundation. A group of regional museums from the Midwestern United States worked with leading evolutionary scientists to create multiple permanent exhibit galleries and a curriculum book for youth. This program invites the public to experience current evolutionary research on organisms that range in size from HIV to whales. Learning research is being conducted on museum visitors to understand how they reason about evolution and to determine what influences the process of conceptual change. PMID:17542857

  8. Speeding up evolution

    NASA Astrophysics Data System (ADS)

    Hoff, Wouter

    Proteins and cells offer great opportunities for green chemistry and renewable energy. However, few of these possible applications have been put into practice because of details that turn out to be major barriers to cost-efficient implementation and that prove difficult to solve by genetic engineering. A better understanding of molecular evolution promises a novel approach to addressing these important challenges. While major advances have been made, major gaps remain in understanding the evolution of proteins. Different approaches to accelerating molecular evolution into targeted directions will be discussed, including recent progress on evolution in non-homogeneous environments.

  9. Hydrogen evolution reaction catalyst

    DOEpatents

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  10. Framing Evolution Discussion Intellectually

    ERIC Educational Resources Information Center

    Oliveira, Alandeom W.; Cook, Kristin; Buck, Gayle A.

    2011-01-01

    This study examines how a first-year biology teacher facilitates a series of whole-class discussions about evolution during the implementation of a problem-based unit. A communicative theoretical perspective is adopted wherein evolution discussions are viewed as social events that the teacher can frame intellectually (i.e., present or organize as…

  11. Evolution of Constructivism

    ERIC Educational Resources Information Center

    Liu, Chu Chih; Chen, I Ju

    2010-01-01

    The contrast between social constructivism and cognitive constructivism are depicted in different ways in many studies. The purpose of this paper is to summarize the evolution of constructivism and put a focus on social constructivism from the perception of Vygotsky. This study provides a general idea of the evolution of constructivism for people…

  12. Evolution: Theory or Dogma?

    ERIC Educational Resources Information Center

    Mayer, William V.

    In this paper the author examines the question of whether evolution is a theory or a dogma. He refutes the contention that there is a monolithic scientific conspiracy to present evolution as dogma and suggests that his own presentation might be more appropriately entitled "Creationism: Theory or Dogma." (PEB)

  13. Reconciling Evolution and Creation.

    ERIC Educational Resources Information Center

    Tax, Sol

    1983-01-01

    Proposes a way to reconcile evolution with creationism by hypothesizing that the universe was created when the scientific evidence shows, speculating that this was when God began the series of creations described in Genesis, and assuming that God gave humans intelligence to uncover the methods by which he ordained scientific evolution. (Author/MJL)

  14. Evolution - A Theory Evolving

    ERIC Educational Resources Information Center

    Weinberg, Janet H.

    1975-01-01

    Presented is an explanation of a non-Darwinian theory of evolution based on the premise that functional differences are the result of many small mutations such as the substitution of one amino acid for another in a large protein molecule. A brief overview of Darwinian evolution and other theories are presented. (EB)

  15. State Standards and Evolution

    ERIC Educational Resources Information Center

    Moore, Randy

    2004-01-01

    Throughout the United States various individuals and groups have tried to subvert science education by removing or weakening the treatment of evolution in state science-education standards. Most states' science-education standards support the teaching of evolution, but many in the general public and some policymakers want science classrooms to…

  16. Evolution for Young Victorians

    ERIC Educational Resources Information Center

    Lightman, Bernard

    2012-01-01

    Evolution was a difficult topic to tackle when writing books for the young in the wake of the controversies over Darwin's "Origin of Species." Authors who wrote about evolution for the young experimented with different ways of making the complex concepts of evolutionary theory accessible and less controversial. Many authors depicted presented…

  17. Evolution Under Attack

    ERIC Educational Resources Information Center

    Muench, David; Newell, Norman D.

    1974-01-01

    The article points out the growing attempts by creationists to have special creation presented with evolution in any educational discussion of the origin of life. The evolution theory is shown to be consistent with known scientific facts while the theory of special creation does not adequately account for these facts. (LS)

  18. Entropy and evolution

    NASA Astrophysics Data System (ADS)

    Styer, Daniel F.

    2008-11-01

    Quantitative estimates of the entropy involved in biological evolution demonstrate that there is no conflict between evolution and the second law of thermodynamics. The calculations are elementary and could be used to enliven the thermodynamics portion of a high school or introductory college physics course.

  19. Treatment of Evolution Inconsistent

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2005-01-01

    State standards for academic content vary enormously in how well they cover the topic of evolution, with many of those documents either ignoring or giving scant treatment to the core principles of that established scientific theory. This article presents the analysis of Education Week on state's standards treatment of evolution. Nearly all the…

  20. Evolution & Intelligent Design

    ERIC Educational Resources Information Center

    Staver, John R.

    2003-01-01

    Advocates of Intelligent Design (ID) theory argue that evolution is a theory in crisis, ID is a legitimate scientific theory, and biology teachers should teach the controversy. Supporters of evolutionary theory testify that ID is a religious, not scientific, concept, and evolution is in no danger of bankruptcy, having survived 140 years of…

  1. Science, Evolution, and Creationism

    ERIC Educational Resources Information Center

    National Academies Press, 2008

    2008-01-01

    How did life evolve on Earth? The answer to this question can help us understand our past and prepare for our future. Although evolution provides credible and reliable answers, polls show that many people turn away from science, seeking other explanations with which they are more comfortable. In the book "Science, Evolution, and…

  2. Organic chemical evolution

    NASA Technical Reports Server (NTRS)

    Chang, S.

    1981-01-01

    The course of organic chemical evolution preceding the emergence of life on earth is discussed based on evidence of processes occurring in interstellar space, the solar system and the primitive earth. Following a brief review of the equilibrium condensation model for the origin and evolution of the solar system, consideration is given to the nature and organic chemistry of interstellar clouds, comets, Jupiter, meteorites, Venus and Mars, and the prebiotic earth. Major issues to be resolved in the study of organic chemical evolution on earth are identified regarding condensation and accretion in the solar nebula, early geological evolution, the origin and evolution of the atmosphere, organic production rates, organic-inorganic interactions, environmental fluctuations, phase separation and molecular selectivity.

  3. How Can Evolution Learn?

    PubMed

    Watson, Richard A; Szathmáry, Eörs

    2016-02-01

    The theory of evolution links random variation and selection to incremental adaptation. In a different intellectual domain, learning theory links incremental adaptation (e.g., from positive and/or negative reinforcement) to intelligent behaviour. Specifically, learning theory explains how incremental adaptation can acquire knowledge from past experience and use it to direct future behaviours toward favourable outcomes. Until recently such cognitive learning seemed irrelevant to the 'uninformed' process of evolution. In our opinion, however, new results formally linking evolutionary processes to the principles of learning might provide solutions to several evolutionary puzzles - the evolution of evolvability, the evolution of ecological organisation, and evolutionary transitions in individuality. If so, the ability for evolution to learn might explain how it produces such apparently intelligent designs. PMID:26705684

  4. The evolution of airplanes

    NASA Astrophysics Data System (ADS)

    Bejan, A.; Charles, J. D.; Lorente, S.

    2014-07-01

    The prevailing view is that we cannot witness biological evolution because it occurred on a time scale immensely greater than our lifetime. Here, we show that we can witness evolution in our lifetime by watching the evolution of the flying human-and-machine species: the airplane. We document this evolution, and we also predict it based on a physics principle: the constructal law. We show that the airplanes must obey theoretical allometric rules that unite them with the birds and other animals. For example, the larger airplanes are faster, more efficient as vehicles, and have greater range. The engine mass is proportional to the body size: this scaling is analogous to animal design, where the mass of the motive organs (muscle, heart, lung) is proportional to the body size. Large or small, airplanes exhibit a proportionality between wing span and fuselage length, and between fuel load and body size. The animal-design counterparts of these features are evident. The view that emerges is that the evolution phenomenon is broader than biological evolution. The evolution of technology, river basins, and animal design is one phenomenon, and it belongs in physics.

  5. Cultural Evolution and SETI

    NASA Astrophysics Data System (ADS)

    Dick, S. J.

    2009-12-01

    The Drake Equation for the number of radio communicative technological civilizations in the Galaxy encompasses three components of cosmic evolution: astronomical, biological and cultural. Of these three, cultural evolution totally dominates in terms of the rapidity of its effects. Yet, SETI scientists do not take cultural evolution into account, perhaps for understandable reasons, since cultural evolution is not well-understood even on Earth and is unpredictable in its outcome. But the one certainty for technical civilizations billions, millions, or even thousands of years older than ours is that they will have undergone cultural evolution. Cultural evolution potentially takes place in many directions, but this paper argues that its central driving force is the maintenance, improvement and perpetuation of knowledge and intelligence, and that to the extent intelligence can be improved, it will be improved. Applying this principle to life in the universe, extraterrestrials will have sought the best way to improve their intelligence. One possibility is that they may have long ago advanced beyond flesh-and-blood to artificial intelligence, constituting a postbiological universe. Although this subject has been broached, it has not been given the attention it is due from its foundation in cultural evolution. Nor has the idea of a postbiological universe been carried to its logical conclusion, including a careful analysis of the implications for SETI. SETI scientists, social scientists, and experts in AI should consider the strengths and weaknesses of this new paradigm.

  6. Is genetic evolution predictable?

    PubMed

    Stern, David L; Orgogozo, Virginie

    2009-02-01

    Ever since the integration of Mendelian genetics into evolutionary biology in the early 20th century, evolutionary geneticists have for the most part treated genes and mutations as generic entities. However, recent observations indicate that all genes are not equal in the eyes of evolution. Evolutionarily relevant mutations tend to accumulate in hotspot genes and at specific positions within genes. Genetic evolution is constrained by gene function, the structure of genetic networks, and population biology. The genetic basis of evolution may be predictable to some extent, and further understanding of this predictability requires incorporation of the specific functions and characteristics of genes into evolutionary theory. PMID:19197055

  7. Evolution in the Bacillaceae.

    PubMed

    Fajardo-Cavazos, Patricia; Maughan, Heather; Nicholson, Wayne L

    2014-10-01

    The family Bacillaceae constitutes a phenotypically diverse and globally ubiquitous assemblage of bacteria. Investigation into how evolution has shaped, and continues to shape, this family has relied on several widely ranging approaches from classical taxonomy, ecological field studies, and evolution in soil microcosms to genomic-scale phylogenetics, laboratory, and directed evolution experiments. One unifying characteristic of the Bacillaceae, the endospore, poses unique challenges to answering questions regarding both the calculation of evolutionary rates and claims of extreme longevity in ancient environmental samples. PMID:26104365

  8. Heredity in Evolution & Evolution of Heredity

    NASA Astrophysics Data System (ADS)

    Rivoire, Olivier

    2015-03-01

    The inheritance of characteristics induced by the environment has often been opposed to the theory of evolution by natural selection. However, although evolution by natural selection requires new heritable traits to be produced and transmitted, it does not prescribe, per se, the mechanisms by which this is operated. The mechanisms of inheritance are not, however, unconstrained, because they are themselves subject to natural selection. We introduce a schematic, analytically solvable mathematical model to compare the adaptive value of different schemes of inheritance. Our model allows for variations to be inherited, randomly produced, or environmentally induced, and, irrespectively, to be either transmitted or not during reproduction. The adaptation of the different schemes for processing variations is quantified for a range of fluctuating environments, following an approach that links quantitative genetics with stochastic control theory.

  9. Evolution of models for evolution. [of life

    NASA Technical Reports Server (NTRS)

    Rohlfing, D. L.

    1974-01-01

    The paper discusses models of evolution and their values, and some critiques of these models and the value of these critiques. A model is investigated which involves the formation of prebiotic protein from amino acids. Its formation by four theoretical critiques that suggest alternative environmental conditions is discussed. Experiments are reviewed so as to illustrate the experimental testing of the possible weaknesses of a model for a single molecular evolutionary phase and to suggest some necessary changes in the model.

  10. Stellar evolution. VI.

    NASA Technical Reports Server (NTRS)

    Iben, I., Jr.

    1967-01-01

    Evolution of low mass Population I stars from main sequence to red giant branch in Hertzsprung- Russell diagram, through energy generation phases of p-p chain reactions /dominating over C-N cycle reactions/ and hydrogen burning

  11. Co-Evolution.

    ERIC Educational Resources Information Center

    McGhee, Robert

    2002-01-01

    Discusses the role of techniques of DNA analysis in assessing the genetic relationships between various species. Focuses on wolf-dog evolution using DNA evidence and historical data about human/wolf-dog relationships. (DDR)

  12. Experimental evolution gone wild.

    PubMed

    Scheinin, M; Riebesell, U; Rynearson, T A; Lohbeck, K T; Collins, S

    2015-05-01

    Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change. PMID:25833241

  13. Evolution: Always New

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2005-01-01

    The changes in the evolution due to changes in science are explored. These changes are frustrating to paleontologists, especially when they are trying to date a singular event, like a cataclysm that precipitated a mass extinction.

  14. Experimental evolution gone wild

    PubMed Central

    Scheinin, M.; Riebesell, U.; Rynearson, T. A.; Lohbeck, K. T.; Collins, S.

    2015-01-01

    Because of their large population sizes and rapid cell division rates, marine microbes have, or can generate, ample variation to fuel evolution over a few weeks or months, and subsequently have the potential to evolve in response to global change. Here we measure evolution in the marine diatom Skeletonema marinoi evolved in a natural plankton community in CO2-enriched mesocosms deployed in situ. Mesocosm enclosures are typically used to study how the species composition and biogeochemistry of marine communities respond to environmental shifts, but have not been used for experimental evolution to date. Using this approach, we detect a large evolutionary response to CO2 enrichment in a focal marine diatom, where population growth rate increased by 1.3-fold in high CO2-evolved lineages. This study opens an exciting new possibility of carrying out in situ evolution experiments to understand how marine microbial communities evolve in response to environmental change. PMID:25833241

  15. Physical Principles of Evolution

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    Theoretical biology is incomplete without a comprehensive theory of evolution, since evolution is at the core of biological thought. Evolution is visualized as a migration process in genotype or sequence space that is either an adaptive walk driven by some fitness gradient or a random walk in the absence of (sufficiently large) fitness differences. The Darwinian concept of natural selection consisting in the interplay of variation and selection is based on a dichotomy: All variations occur on genotypes whereas selection operates on phenotypes, and relations between genotypes and phenotypes, as encapsulated in a mapping from genotype space into phenotype space, are central to an understanding of evolution. Fitness is conceived as a function of the phenotype, represented by a second mapping from phenotype space into nonnegative real numbers. In the biology of organisms, genotype-phenotype maps are enormously complex and relevant information on them is exceedingly scarce. The situation is better in the case of viruses but so far only one example of a genotype-phenotype map, the mapping of RNA sequences into RNA secondary structures, has been investigated in sufficient detail. It provides direct information on RNA selection in vitro and test-tube evolution, and it is a basis for testing in silico evolution on a realistic fitness landscape. Most of the modeling efforts in theoretical and mathematical biology today are done by means of differential equations but stochastic effects are of undeniably great importance for evolution. Population sizes are much smaller than the numbers of genotypes constituting sequence space. Every mutant, after all, has to begin with a single copy. Evolution can be modeled by a chemical master equation, which (in principle) can be approximated by a stochastic differential equation. In addition, simulation tools are available that compute trajectories for master equations. The accessible population sizes in the range of 10^7le Nle 10

  16. Manipulation of quantum evolution

    NASA Technical Reports Server (NTRS)

    Cabera, David Jose Fernandez; Mielnik, Bogdan

    1994-01-01

    The free evolution of a non-relativistic charged particle is manipulated using time-dependent magnetic fields. It is shown that the application of a programmed sequence of magnetic pulses can invert the free evolution process, forcing an arbitrary wave packet to 'go back in time' to recover its past shape. The possibility of more general operations upon the Schrodinger wave packet is discussed.

  17. Evolution in Revolution

    PubMed Central

    2011-01-01

    Biological evolution represents one of the most successful, but also controversial scientific concepts. Ever since Charles Darwin formulated his version of evolution via natural selection, biological sciences experienced explosive development and progress. First of all, although Darwin could not explain how traits of organisms, selected via natural selection, are inherited and passed down along generations; his theory stimulated research in this respect and resulted in the establishment of genetics and still later in the discovery of DNA and genome sequencing some hundred years after his evolutionary theory. Nevertheless, there are several weaknesses in classical Darwinian as well as Neodarwinian gene-centric views of biological evolution. The most serious drawback is its narrow focus: the modern evolutionary synthesis, as formulated in the 20th Century, is based on the concept of gene and on the mathematical/statistical analysis of populations. While Neodarwinism is still generally considered a valid theory of biological evolution, its narrow focus and incompatibility with several new findings and discoveries calls for its update and/or transformation. Either it will be replaced with an updated version or, if not flexible enough, it will be replaced by a new theory. In his book “Evolution — A New View from the 21st Century,”1 James A. Shapiro discusses these problems as well as newly emerging results which are changing our understanding of biological evolution. This new book joins a row of several other recent books highlighting the same issues.2–13

  18. Energy and Evolution

    NASA Astrophysics Data System (ADS)

    Porter, George

    I have called my lecture Energy and Evolution, and that embraces Physics and Biology. I suppose that what I have in mind are the great things that have happened in the last 135 years since Charles Darwin; and the great problems that we have in this field today. In 1859 Charles Darwin wrote history on a grand scale and he gave mankind an intellectual shock which changed our concept of ourselves and our place in the world. Rather suddenly we have come to realize that the process of natural evolution which he described and which has served the world for three billion years may be about to cease or least to change in a profound way. The Darwinian changes of evolution occurred slowly, unnoticed by participants who had very little to say about the forms that their descendants would take. They merely flocked to survive and if they survived they had one privilege only and that was the privilege of handing on their genes. The situation has changed drastically in the last few years. One species, man now so dominates the earth that it is in his part to eliminate most of the other species if he so wishes. Those who do survive do so only because man finds them interesting and useful and he is busy with the natural evolution even of these. It is the end of the evolution, as Darwin knew it. Far greater powers to play God will soon be in our hands. Genetic Engineering will enable us to eliminate conquered genes and other unfavorable genetic information and even to change the nature of mankind. We may not wish to do this but it will become possible. What we see happening is a rapid transfer of responsibility for the future evolution into the hands of ourselves, the hands of one species, homosapiens. We are no longer pawns in the game of evolution. We are not even the kings and queens, we are the players.

  19. Creationism, Evolution, and Science Education

    SciTech Connect

    Scott, Eugenie C.

    2005-06-22

    Many topics in the curriculum of American schools are controversial, but perhaps the one with the longest tenure is evolution. Three arguments are made against evolution: that it is allegedly weak science ('evolution is a theory in crisis'); that it is incompatible with religion; and that it is only 'fair' to 'balance' evolution with creationism. Regardless of the appropriateness of their application to science education, all three of the arguments are made to try to restrict the teaching of evolution. Variants of the fairness argument such as balancing evolution with 'scientific alternatives to evolution' or balancing evolution with 'arguments against evolution' have in fact become the current predominant antievolutionist strategy. Current events in the creationism/evolution controversy will be reviewed, and suggestions made for how to promote sound science education in the schools.

  20. Evolution of Metabolism

    NASA Astrophysics Data System (ADS)

    Nealson, K. H.; Rye, R.

    2003-12-01

    This chapter is devoted to the discussion of the evolution of metabolism, with a particular focus towards redox metabolism and the utilization of redox energy by life. We will deal with various aspects of metabolism that involve direct interaction with, and the extraction of energy from, the environment (catabolic metabolism) and will talk briefly of the reactions that affect mineral formation and dissolution. However, we will de-emphasize the aspects related to the formation of complex molecules and organisms. To some, it will be refreshingly brief; to others, somewhat superficial. This is unavoidable, as our knowledge of the details of the evolution of metabolism is at best slim. However, by piecing together aspects of the properties and history of the Earth and coupling these with what we know of today's metabolism, it is possible to at least frame several different hypotheses that, with time, should be possible to test and modify so that the next writing of this chapter might contain some intellectual entrees and not just the appetizers. Any discussion of metabolic evolution must occur in concert with a consideration of the Earth - the understanding of the forces that drove the co-evolution of life and Earth can be achieved only by considering them together. This theme will pervade this chapter, and any real understanding of the evolution of metabolism must be inexorably coupled to, and consistent with, the geological record of the Earth.The first aspect of evolution concerns the metabolic participants as we know them now (i.e., a definition of metabolic diversity), and the second concerns the sequence of events that have led to this remarkable metabolic diversity. The first part is fairly straightforward: a discussion of the domains of life, and the metabolic achievements that are expressed in the various domains, and relating metabolism to biogeochemical processes whenever possible. The second part is much more problematic. While it is possible to make up

  1. Workshop on Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Cummings, Michael P.

    2004-01-01

    Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.

  2. Evolution of Active Regions

    NASA Astrophysics Data System (ADS)

    van Driel-Gesztelyi, Lidia; Green, Lucie May

    2015-09-01

    The evolution of active regions (AR) from their emergence through their long decay process is of fundamental importance in solar physics. Since large-scale flux is generated by the deep-seated dynamo, the observed characteristics of flux emergence and that of the subsequent decay provide vital clues as well as boundary conditions for dynamo models. Throughout their evolution, ARs are centres of magnetic activity, with the level and type of activity phenomena being dependent on the evolutionary stage of the AR. As new flux emerges into a pre-existing magnetic environment, its evolution leads to re-configuration of small-and large-scale magnetic connectivities. The decay process of ARs spreads the once-concentrated magnetic flux over an ever-increasing area. Though most of the flux disappears through small-scale cancellation processes, it is the remnant of large-scale AR fields that is able to reverse the polarity of the poles and build up new polar fields. In this Living Review the emphasis is put on what we have learned from observations, which is put in the context of modelling and simulation efforts when interpreting them. For another, modelling-focused Living Review on the sub-surface evolution and emergence of magnetic flux see Fan (2009). In this first version we focus on the evolution of dominantly bipolar ARs.

  3. Plant sex chromosome evolution.

    PubMed

    Charlesworth, Deborah

    2013-01-01

    It is now well established that plants have an important place in studies of sex chromosome evolution because of the repeated independent evolution of separate sexes and sex chromosomes. There has been considerable recent progress in studying plant sex chromosomes. In this review, I focus on how these recent studies have helped clarify or answer several important questions about sex chromosome evolution, and I shall also try to clarify some common misconceptions. I also outline future work that will be needed to make further progress, including testing some important ideas by genetic, molecular, and developmental approaches. Systems with different ages can clearly help show the time course of events during changes from an ancestral co-sexual state (hermaphroditism or monoecy), and I will also explain how different questions can be studied in lineages whose dioecy or sex chromosomes evolved at different times in the past. PMID:23125359

  4. Galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Chiappini, C.; Matteucci, F.

    2001-11-01

    In this paper we review the current ideas about the formation of our Galaxy. In particular, the main ingredients necessary to build chemical evolution models (star formation, initial mass function and stellar yields) are described and discussed. A critical discussion about the main observational constraints available is also presented. Finally, our model predictions concerning the evolution of the abundances of several chemical elements (H, D, He, C, N, O, Ne, Mg, Si, Ca and Fe) are compared with observations relative to the solar neighborhood and the whole disk. We show that from this comparison we can constrain the history of the formation and evolution of the Milky Way as well as the nucleosynthesis theories concerning the Big Bang and the stars. .

  5. B-chromosome evolution.

    PubMed Central

    Camacho, J P; Sharbel, T F; Beukeboom, L W

    2000-01-01

    B chromosomes are extra chromosomes to the standard complement that occur in many organisms. They can originate in a number of ways including derivation from autosomes and sex chromosomes in intra- and interspecies crosses. Their subsequent molecular evolution resembles that of univalent sex chromosomes, which involves gene silencing, heterochromatinization and the accumulation of repetitive DNA and transposons. B-chromosome frequencies in populations result from a balance between their transmission rates and their effects on host fitness. Their long-term evolution is considered to be the outcome of selection on the host genome to eliminate B chromosomes or suppress their effects and on the B chromosome's ability to escape through the generation of new variants. Because B chromosomes interact with the standard chromosomes, they can play an important role in genome evolution and may be useful for studying molecular evolutionary processes. PMID:10724453

  6. Evolution and Christian Faith

    NASA Astrophysics Data System (ADS)

    Roughgarden, J. E.

    2006-12-01

    My recent book, Evolution and Christian Faith explores how evolutionary biology can be portrayed from the religious perspective of Christianity. The principal metaphors for evolutionary biology---differential success at breeding and random mutation, probably originate with the dawn of agriculture and clearly occur in the Bible. The central narrative of evolutionary biology can be presented using Biblical passages, providing an account of evolution that is inherently friendly to a Christian perspective. Still, evolutionary biology is far from complete, and problematic areas pertain to species in which the concept of an individual is poorly defined, and to species in which the expression of gender and sexuality depart from Darwin's sexual-selection templates. The present- day controversy in the US about teaching evolution in the schools provides an opportunity to engage the public about science education.

  7. Computational evolution: taking liberties.

    PubMed

    Correia, Luís

    2010-09-01

    Evolution has, for a long time, inspired computer scientists to produce computer models mimicking its behavior. Evolutionary algorithm (EA) is one of the areas where this approach has flourished. EAs have been used to model and study evolution, but they have been especially developed for their aptitude as optimization tools for engineering. Developed models are quite simple in comparison with their natural sources of inspiration. However, since EAs run on computers, we have the freedom, especially in optimization models, to test approaches both realistic and outright speculative, from the biological point of view. In this article, we discuss different common evolutionary algorithm models, and then present some alternatives of interest. These include biologically inspired models, such as co-evolution and, in particular, symbiogenetics and outright artificial operators and representations. In each case, the advantages of the modifications to the standard model are identified. The other area of computational evolution, which has allowed us to study basic principles of evolution and ecology dynamics, is the development of artificial life platforms for open-ended evolution of artificial organisms. With these platforms, biologists can test theories by directly manipulating individuals and operators, observing the resulting effects in a realistic way. An overview of the most prominent of such environments is also presented. If instead of artificial platforms we use the real world for evolving artificial life, then we are dealing with evolutionary robotics (ERs). A brief description of this area is presented, analyzing its relations to biology. Finally, we present the conclusions and identify future research avenues in the frontier of computation and biology. Hopefully, this will help to draw the attention of more biologists and computer scientists to the benefits of such interdisciplinary research. PMID:20532997

  8. TMDs: Evolution, modeling, precision

    NASA Astrophysics Data System (ADS)

    D'Alesio, Umberto; Echevarría, Miguel G.; Melis, Stefano; Scimemi, Ignazio

    2015-01-01

    The factorization theorem for qT spectra in Drell-Yan processes, boson production and semi-inclusive deep inelastic scattering allows for the determination of the non-perturbative parts of transverse momentum dependent parton distribution functions. Here we discuss the fit of Drell-Yan and Z-production data using the transverse momentum dependent formalism and the resummation of the evolution kernel. We find a good theoretical stability of the results and a final χ2/points ≲ 1. We show how the fixing of the non-perturbative pieces of the evolution can be used to make predictions at present and future colliders.

  9. Evolution of proteins.

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.

    1971-01-01

    The amino acid sequences of proteins from living organisms are dealt with. The structure of proteins is first discussed; the variation in this structure from one biological group to another is illustrated by the first halves of the sequences of cytochrome c, and a phylogenetic tree is derived from the cytochrome c data. The relative geological times associated with the events of this tree are discussed. Errors which occur in the duplication of cells during the evolutionary process are examined. Particular attention is given to evolution of mutant proteins, globins, ferredoxin, and transfer ribonucleic acids (tRNA's). Finally, a general outline of biological evolution is presented.

  10. Macrothermodynamics of Biological Evolution:

    NASA Astrophysics Data System (ADS)

    Gladyshev, Georgi P.

    The author sets forth general considerations pertaining to the thermodynamic theory of biological evolution and the aging of living organisms. It becomes much easier to comprehend the phenomenon of life scrutinizing the formation of structural hierarchies of biological matter applying different temporal scales. These scales are 'identified' by nature itself, and this is reflected in the law of temporal hierarchies. The author discusses some misunderstandings in thermodynamics and evolutionary biology. A simple physicochemical model of biological evolution and the development of living beings is proposed. The considered theory makes it possible to use physicochemical evaluations to develop effective anti-aging diets.

  11. Evolution and social epidemiology.

    PubMed

    Nishi, Akihiro

    2015-11-01

    Evolutionary biology, which aims to explain the dynamic process of shaping the diversity of life, has not yet significantly affected thinking in social epidemiology. Current challenges in social epidemiology include understanding how social exposures can affect our biology, explaining the dynamics of society and health, and designing better interventions that are mindful of the impact of exposures during critical periods. I review how evolutionary concepts and tools, such as fitness gradient in cultural evolution, evolutionary game theory, and contemporary evolution in cancer, can provide helpful insights regarding social epidemiology. PMID:26319950

  12. Overview of TMD Evolution

    NASA Astrophysics Data System (ADS)

    Boer, Daniël

    2016-02-01

    Transverse momentum dependent parton distributions (TMDs) appear in many scattering processes at high energy, from the semi-inclusive DIS experiments at a few GeV to the Higgs transverse momentum distribution at the LHC. Predictions for TMD observables crucially depend on TMD factorization, which in turn determines the TMD evolution of the observables with energy. In this contribution to SPIN2014 TMD factorization is outlined, including a discussion of the treatment of the nonperturbative region, followed by a summary of results on TMD evolution, mostly applied to azimuthal asymmetries.

  13. Software evolution. What kind of evolution?

    NASA Astrophysics Data System (ADS)

    Torres-Carbonell, J. J.; Parets-Llorca, J.

    2001-06-01

    Most Software Systems capable of adapting to the environment or of performing some kind of adaptive activity (such as pattern learning, behavior simulations and the like) use concepts and models from Biology. Nevertheless, such approaches are based on the Modern Synthesis, i.e., Darwinism plus Mendelism, and this implies preadaptive mutations in, and subsequent selection of the better adapted individuals. These pre-adaptive changes usually do not produce the desired effect, are virtually useless and require some kind of backtracking for the system to obtain profit from adaptation. It is our contention that an evolutionary approach in Software Systems development cannot be based on pre-adaptive mutations, but rather on post-adaptive ones, that is, anticipatory mutations and modifications (Lamarkism). A novel way of understanding evolution in Software Systems based on applied Lamarkism is presented and a framework that allows the incorporation of modifications according to the necessities of the system and the will of the modeller is proposed.

  14. Tectonic Evolution of Mars

    NASA Technical Reports Server (NTRS)

    Phillips, Roger J.

    1992-01-01

    The Final Technical Report on tectonic evolution of Mars is presented. Two papers and an abstract are included. Topics addressed include: scientific rationale and requirements for a global seismic network on Mars, permanent uplift in magmatic systems with application to the Tharsis Region of Mars, and the geophysical signal of the Martian global dichotomy.

  15. Evolution Perception with Metaphors

    ERIC Educational Resources Information Center

    Yilmaz, Fatih

    2016-01-01

    The main objective of this research is to find out how the teacher candidates who graduated from the Faculty of Theology and study in pedagogical formation program perceive the theory of evolution. Having a descriptive characteristic, this research is conducted with 63 Faculty of Theology graduate teacher candidates of which 36 is women and 27 is…

  16. Evolution Projects Yield Results

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2010-01-01

    When a federal court in 2005 rejected an attempt by the Dover, Pennsylvania, school board to introduce intelligent design as an alternative to evolution to explain the development of life on Earth, it sparked a renaissance in involvement among scientists in K-12 science instruction. Now, some of those teaching programs, studies, and research…

  17. Crustal Evolution Introduced.

    ERIC Educational Resources Information Center

    Stoever, Edward C., Jr.; Korporaal, Arie R.

    1979-01-01

    Detailed are the origins, development, and implementation of the Crustal Evolution Education Project (CEEP). This group has produced, for use in earth science and other classes in grades 8-10, a series of instructional modules based on current scientific research in the composition, history, and processes of the earth's crust. (BT)

  18. On Multiobjective Evolution Model

    NASA Astrophysics Data System (ADS)

    Ahmed, E.; Elettreby, M. F.

    Self-Organized Criticality (SOC) phenomena could have a significant effect on the dynamics of ecosystems. The Bak-Sneppen (BS) model is a simple and robust model of biological evolution that exhibits punctuated equilibrium behavior. Here, we will introduce random version of BS model. We also generalize the single objective BS model to a multiobjective one.

  19. Evolution and the Law

    ERIC Educational Resources Information Center

    Mayer, William V.

    1973-01-01

    Some court cases and legislative bills have been filed in states to legalize the use of the creationist view (of life forms on earth) in biology textbooks superseding the organic theory of evolution. The law has not yet accepted the religious viewpoint. (PS)

  20. Human Development, Human Evolution.

    ERIC Educational Resources Information Center

    Smillie, David

    One of the truly remarkable events in human evolution is the unprecedented increase in the size of the brain of "Homo" over a brief span of 2 million years. It would appear that some significant selective pressure or opportunity presented itself to this branch of the hominid line and caused a rapid increase in the brain, introducing a wholly new…

  1. Evolution in Action

    ERIC Educational Resources Information Center

    Dennis, Mike; Duggan, Adrienne; McGregor, Deb

    2014-01-01

    Evolution and inheritance appear in the new National Science Curriculum for England, which comes into effect from September 2014. In the curriculum documents, it is expected that pupils in year 6 (ages 10-11) should be taught to: (1) recognise that living things have changed over time; (2) recognise that living things produce offspring of the same…

  2. Evolution and Friendship

    ERIC Educational Resources Information Center

    Mena-Werth, Jose

    2005-01-01

    In 1925, Williams Jennings Bryan, a former congressman from Nebraska and a former Secretary of State under Woodrow Wilson, spent two agonizing weeks defending his religious faith that cost him his life a month after. Bryan was a prosecutor of high school teacher John Scopes, who had violated Tennessee state law by teaching the theory of evolution.…

  3. Evolution of Osmolyte Systems.

    ERIC Educational Resources Information Center

    Banfalvi, Gaspar

    1991-01-01

    Osmotic aspects of aqueous solutions that are usually disregarded in biochemistry textbooks are presented. This article discusses the osmolarity of seawater, evolution of organisms over geological time, ionic adaptation of cells, ionic concentrations in bacteria, osmolytes and blood electrolytes in water-stressed organisms and land vertebrates,…

  4. Evolution of lifespan.

    PubMed

    Neill, David

    2014-10-01

    Present-day evolutionary theory, modern synthesis and evo-devo, appear to explain evolution. There remain however several points of contention. These include: biological time, direction, macroevolution verses microevolution, ageing and the extent of internal as opposed to external mediation. A new theoretical model for the control of biological time in vertebrates/bilaterians is introduced. Rather than biological time being controlled solely by a molecular cascade domino effect, it is suggested there is also an intracellular oscillatory clock. This clock (life's timekeeper) is synchronised across all cells in an organism and runs at a constant frequency throughout life. Slower frequencies extend lifespan, increase body/brain size and advance behaviour. They also create a time void which could aid additional evolutionary change. Faster frequencies shorten lifespan, reduce body/brain size and diminish behaviour. They are therefore less likely to mediate evolution in vertebrates/mammals. It is concluded that in vertebrates, especially mammals, there is a direction in evolution towards longer lifespan/advanced behaviour. Lifespan extension could equate with macroevolution and subsequent modifications with microevolution. As life's timekeeper controls the rate of ageing it constitutes a new genetic theory of ageing. Finally, as lifespan extension is internally mediated, this suggests a major role for internal mediation in evolution. PMID:24992233

  5. Evolution: Skipping School

    PubMed Central

    Bell, Alison M.

    2014-01-01

    Some individual fish like to be close together in ‘schools’, while other individuals like to be alone. A pair of recent papers dissects the genetic basis of schooling behavior, showing that genetic changes in sensory systems are involved when this social behavior is lost during evolution. PMID:24112981

  6. Early cellular evolution.

    NASA Technical Reports Server (NTRS)

    Margulis, L.

    1972-01-01

    Study of the evolutionary developments that occurred subsequent to the origin of ancestral cells. Microbial physiology and ecology are potential sharp tools for shaping concepts of microbial evolution. Some popular unjustified assumptions are discussed. It is considered that certain principles derived mainly from the advances of molecular biology can be used to order the natural groups (genera) of extant prokaryotes and their patterns phylogenetically.

  7. The Evolution of Behavior.

    ERIC Educational Resources Information Center

    Smith, John Maynard

    1978-01-01

    The topic of altruistic behavior is an important one in studying the evolution of behavior. It is questioned whether natural selection can actually favor patterns of behavior that apparently do not favor the survival of the individual. Game theory models are presented to help explore the problem. (MA)

  8. Evolution and Religion

    ERIC Educational Resources Information Center

    Strickberger, Monroe W.

    1973-01-01

    The relationship between the two concepts (evolution, religion) from an historical and social view is discussed. The concepts are seen to respond differently to the various needs of society, with considerable conflict between them in areas which involve the justification of religious beliefs. (Author/EB)

  9. Software Architecture Evolution

    ERIC Educational Resources Information Center

    Barnes, Jeffrey M.

    2013-01-01

    Many software systems eventually undergo changes to their basic architectural structure. Such changes may be prompted by new feature requests, new quality attribute requirements, changing technology, or other reasons. Whatever the causes, architecture evolution is commonplace in real-world software projects. Today's software architects, however,…

  10. Technologies for ECLSS Evolution

    NASA Technical Reports Server (NTRS)

    Diamant, Bryce L.

    1990-01-01

    Viewgraphs and discussion on technologies for Environmental Control and Life Support System (ECLSS) evolution are presented. Topics covered include: atmosphere revitalization including CO2 removal, CO2 reduction, O2 generation, and trace contaminant control; water recovery and management including urine processing, hygiene water processing, and potable water processing; and waste management. ECLSS technology schematics, process diagrams, and fluid interfaces are included.

  11. Darwinism: Evolution or Revolution?

    ERIC Educational Resources Information Center

    Holt, Niles R.

    1989-01-01

    Maintains that Darwin's theory of evolution was more than a science versus religion debate; rather it was a revolutionary concept that influenced numerous social and political ideologies and movements throughout western history. Traces the impact of Darwin's work historically, utilizing a holistic approach. (RW)

  12. Evolution. Teacher's Guide.

    ERIC Educational Resources Information Center

    Bershad, Carol

    This teacher's guide was developed to assist teachers in the use of multimedia resources for the Public Broadcasting System (PBS) program, "Evolution." Each unit uses an inquiry-based approach to meet the National Science Education Standards. Units include: (1) "What is the Nature of Science?"; (2) "Who Was Charles Darwin?"; (3) "What is the…

  13. The Evolution of Darwinism.

    ERIC Educational Resources Information Center

    Stebbins, G. Ledyard; Ayala, Francisco J.

    1985-01-01

    Recent developments in molecular biology and new interpretations of the fossil record are gradually altering and adding to Charles Darwin's theory, which has been the standard view of the process of evolution for 40 years. Several of these developments and interpretations are identified and discussed. (JN)

  14. Evolution of an operation.

    PubMed

    Shumacker, H B

    1981-01-01

    The story of the origin of Matas' endoaneurysmorrhaphy with suggestions for maintaining or restoring arterial continuity and their gradual evolution into the technique of intrasaccular interpolation of grafts in managing aneurysms provides another example of the increased utility of an operative procedure by its modification and expansion. PMID:7217191

  15. Animal evolution: trilobites on speed.

    PubMed

    Budd, Graham E

    2013-10-01

    A new study quantifies rates of morphological and molecular evolution for arthropods during the critical Cambrian explosion. Both morphological and molecular evolution are accelerated--but not so much to break any speed limits. PMID:24112983

  16. "New" Persuasive Evidence for Evolution.

    ERIC Educational Resources Information Center

    Max, Edward E.

    1998-01-01

    Discusses some new evidence for evolution that might be useful in persuading students who question the scientific basis for evolution. Draws on findings from the fields of molecular biology and genetics. (DDR)

  17. Evolution as Fact and Theory.

    ERIC Educational Resources Information Center

    Gould, Stephen Jay

    1981-01-01

    This essay by a Harvard evolutionist presents viewpoints concerning the creationists' arguments against evolutionary biology. Semantics regarding "facts" and "theory" of evolution are examined, examples are cited of creationist argument, and arguments for evolution are presented. (CS)

  18. The physics of evolution

    NASA Astrophysics Data System (ADS)

    Eigen, Manfred

    1988-12-01

    The Darwinian concept of evolution through natural selection has been revised and put on a solid physical basis, in a form which applies to self-replicable macromolecules. Two new concepts are introduced: sequence space and quasi-species. Evolutionary change in the DNA- or RNA-sequence of a gene can be mapped as a trajectory in a sequence space of dimension ν, where ν corresponds to the number of changeable positions in the genomic sequence. Emphasis, however, is shifted from the single surviving wildtype, a single point in the sequence space, to the complex structure of the mutant distribution that constitutes the quasi-species. Selection is equivalent to an establishment of the quasi-species in a localized region of sequence space, subject to threshold conditions for the error rate and sequence length. Arrival of a new mutant may violate the local threshold condition and thereby lead to a displacement of the quasi-species into a different region of sequence space. This transformation is similar to a phase transition; the dynamical equations that describe the quase-species have been shown to be analogous to those of the two-dimensional Ising model of ferromagnetism. The occurrence of a selectively advantageous mutant is biased by the particulars of the quasi-species distribution, whose mutants are populated according to their fitness relative to that of the wild-type. Inasmuch as fitness regions are connected (like mountain ridges) the evolutionary trajectory is guided to regions of optimal fitness. Evolution experiments in test tubes confirm this modification of the simple chance and law nature of the Darwinian concept. The results of the theory can also be applied to the construction of a machine that provides optimal conditions for a rapid evolution of functionally active macromolecules. An introduction to the physics of molecular evolution by the author has appeared recently.1 Detailed studies of the kinetics and mechanisms of replication of RNA, the most

  19. Phenotypic Evolution With and Beyond Genome Evolution.

    PubMed

    Félix, M-A

    2016-01-01

    DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis. PMID:27282029

  20. Expanding the Understanding of Evolution

    ERIC Educational Resources Information Center

    Musante, Susan

    2011-01-01

    Originally designed for K-12 teachers, the Understanding Evolution (UE) Web site ("www.understandingevolution.org") is a one-stop shop for all of a teacher's evolution education needs, with lesson plans, teaching tips, lists of common evolution misconceptions, and much more. However, during the past five years, the UE project team learned that…

  1. Fla. Panel's Evolution Vote Hailed

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    This article reports on how the compromise hammered out in Florida recently over the treatment of evolution in the state's science classrooms is winning praise from scientists and educators. The new science standards will refer to evolution as the "scientific theory of evolution." These changes will replace more-general language in the previous…

  2. Evolution of Brain and Language

    ERIC Educational Resources Information Center

    Schoenemann, P. Thomas

    2009-01-01

    The evolution of language and the evolution of the brain are tightly interlinked. Language evolution represents a special kind of adaptation, in part because language is a complex behavior (as opposed to a physical feature) but also because changes are adaptive only to the extent that they increase either one's understanding of others, or one's…

  3. The evolution of pregnancy.

    PubMed

    Bainbridge, David R J

    2014-11-01

    Although viviparity has evolved many times in the animal kingdom, it remains relatively uncommon-scorpions and therian mammals being rare examples of entirely viviparous major taxa. Viviparity is a specialised form of intra-species parasitism which biases parental investment towards fertilised eggs, temporally spreads that investment, and also temporarily protects offspring from many selection pressures. Importantly, the mammalian viviparity appeared at a relatively late stage in the process of vertebrate evolution. Because of this, viviparity was 'superimposed' on complex pre-existing cardiovascular, respiratory, metabolic and immune systems, and has altered them dramatically. Also, pregnancy has exerted pervasive effects on gene expression in mammals, including genetic imprinting, X inactivation, sex determination, and the ectopic expression in the extra-embryonic membranes of many genes previously expressed in the gonads, brain, pituitary and immune system. Finally, although lactation probably pre-dated viviparity in mammalian evolution, the two have co-evolved as alternative strategies of offspring nutrition ever since. PMID:25242206

  4. Evolutions from extremality

    NASA Astrophysics Data System (ADS)

    Booth, Ivan

    2016-04-01

    We examine the evolution of extremal spherically symmetric black holes, developing both general theory as well as the specific cases of (charged) null dust and massless scalar field spacetimes. As matter accretes onto extremal marginally trapped tubes, they generically evolve to become nonextremal, with the initial extremal horizon bifurcating into inner and outer nonextremal horizons. At the start of this process arbitrarily slow matter accretion can cause a geometrically invariant measure of horizon growth to jump from zero to infinity. We also consider dynamical horizons that are extremal throughout their evolution and see that such spacetimes contain two extremal black hole horizons: an inner isolated one and an outer dynamical one. We compare these extremal dynamical horizons with the dynamical extreme event horizon spacetimes of Murata, Reall and Tanahashi.

  5. Evolution of mycorrhiza systems

    NASA Astrophysics Data System (ADS)

    Cairney, J. W. G.

    Most terrestrial plants live in mutualistic symbiosis with root-infecting mycorrhizal fungi. Fossil records and molecular clock dating suggest that all extant land plants have arisen from an ancestral arbuscular mycorrhizal condition. Arbuscular mycorrhizas evolved concurrently with the first colonisation of land by plants some 450-500 million years ago and persist in most extant plant taxa. Ectomycorrhizas (about 200million years ago) and ericoid mycorrhizas (about 100million years ago) evolved subsequently as the organic matter content of some ancient soils increased and sclerophyllous vegetation arose as a response to nutrient-poor soils respectively. Mycorrhizal associations appear to be the result of relatively diffuse coevolutionary processes. While early events in the evolution of mycorrhizal symbioses may have involved reciprocal genetic changes in ancestral plants and free-living fungi, available evidence points largely to ongoing parallel evolution of the partners in response to environmental change.

  6. Evolution of mycorrhiza systems.

    PubMed

    Cairney, J W

    2000-11-01

    Most terrestrial plants live in mutualistic symbiosis with root-infecting mycorrhizal fungi. Fossil records and molecular clock dating suggest that all extant land plants have arisen from an ancestral arbuscular mycorrhizal condition. Arbuscular mycorrhizas evolved concurrently with the first colonisation of land by plants some 450-500 million years ago and persist in most extant plant taxa. Ectomycorrhizas (about 200 million years ago) and ericoid mycorrhizas (about 100 million years ago) evolved subsequently as the organic matter content of some ancient soils increased and sclerophyllous vegetation arose as a response to nutrient-poor soils respectively. Mycorrhizal associations appear to be the result of relatively diffuse coevolutionary processes. While early events in the evolution of mycorrhizal symbioses may have involved reciprocal genetic changes in ancestral plants and free-living fungi, available evidence points largely to ongoing parallel evolution of the partners in response to environmental change. PMID:11151665

  7. Interactive evolution of camouflage.

    PubMed

    Reynolds, Craig

    2011-01-01

    This article presents an abstract computation model of the evolution of camouflage in nature. The 2D model uses evolved textures for prey, a background texture representing the environment, and a visual predator. A human observer, acting as the predator, is shown a cohort of 10 evolved textures overlaid on the background texture. The observer clicks on the five most conspicuous prey to remove ("eat") them. These lower-fitness textures are removed from the population and replaced with newly bred textures. Biological morphogenesis is represented in this model by procedural texture synthesis. Nested expressions of generators and operators form a texture description language. Natural evolution is represented by genetic programming (GP), a variant of the genetic algorithm. GP searches the space of texture description programs for those that appear least conspicuous to the predator. PMID:21370960

  8. Emergence and Evolution

    PubMed Central

    Bullwinkle, Tammy J.

    2013-01-01

    The aminoacyl-tRNA synthetases (aaRSs) are essential components of the protein synthesis machinery responsible for defining the genetic code by pairing the correct amino acids to their cognate tRNAs. The aaRSs are an ancient enzyme family believed to have origins that may predate the last common ancestor and as such they provide insights into the evolution and development of the extant genetic code. Although the aaRSs have long been viewed as a highly conserved group of enzymes, findings within the last couple of decades have started to demonstrate how diverse and versatile these enzymes really are. Beyond their central role in translation, aaRSs and their numerous homologs have evolved a wide array of alternative functions both inside and outside translation. Current understanding of the emergence of the aaRSs, and their subsequent evolution into a functionally diverse enzyme family, are discussed in this chapter. PMID:23478877

  9. Evolution of intrafamilial interactions.

    PubMed Central

    Lynch, M

    1987-01-01

    A theory for the evolution of behavioral interactions among relatives is developed that allows for genetic correlations between the types of behavior that are expressed in different social contexts. Both theoretical and empirical considerations indicate that such genetic constraints will almost certainly be common in natural populations. It is shown that when genetic correlations between elements of social behavior exist, Hamilton's rule inaccurately describes the conditions for evolution by way of kin selection. The direction in which social organization evolves is a delicate function of the genetic covariance structure among behaviors expressed as an offspring, sibling, parent, etc. A change in this covariance structure caused by random genetic drift or by a change in environment for a population exhibiting genotype-environment interaction can cause the population to suddenly cross a threshold into a new selective domain. Consequently, radical changes in social organization may arise between closely related species without any major shift in selective pressures external to the population. Images PMID:3479804

  10. Relative constraints and evolution

    NASA Astrophysics Data System (ADS)

    Ochoa, Juan G. Diaz

    2014-03-01

    Several mathematical models of evolving systems assume that changes in the micro-states are constrained to the search of an optimal value in a local or global objective function. However, the concept of evolution requires a continuous change in the environment and species, making difficult the definition of absolute optimal values in objective functions. In this paper, we define constraints that are not absolute but relative to local micro-states, introducing a rupture in the invariance of the phase space of the system. This conceptual basis is useful to define alternative mathematical models for biological (or in general complex) evolving systems. We illustrate this concept with a modified Ising model, which can be useful to understand and model problems like the somatic evolution of cancer.

  11. Algorithms, games, and evolution

    PubMed Central

    Chastain, Erick; Livnat, Adi; Papadimitriou, Christos; Vazirani, Umesh

    2014-01-01

    Even the most seasoned students of evolution, starting with Darwin himself, have occasionally expressed amazement that the mechanism of natural selection has produced the whole of Life as we see it around us. There is a computational way to articulate the same amazement: “What algorithm could possibly achieve all this in a mere three and a half billion years?” In this paper we propose an answer: We demonstrate that in the regime of weak selection, the standard equations of population genetics describing natural selection in the presence of sex become identical to those of a repeated game between genes played according to multiplicative weight updates (MWUA), an algorithm known in computer science to be surprisingly powerful and versatile. MWUA maximizes a tradeoff between cumulative performance and entropy, which suggests a new view on the maintenance of diversity in evolution. PMID:24979793

  12. Histones in protistan evolution.

    PubMed

    Rizzo, P J

    1985-01-01

    The potential of comparative studies on histones for use in protistan evolution is discussed, using algal histones as specific examples. A basic premise for the importance of histones in protistan evolution is the observation that these proteins are completely absent in prokaryotes (and cytoplasmic organelles), but with few exceptions, the same five major histone types are found in all higher plants and animals. Since the histone content of the algae and other protists is not constant, some of these organisms may represent transition forms between the prokaryotic and eukaryotic modes of packaging the genetic material. Comparative studies of protistan histones may thus be of help in determining evolutionary relationships. However, several problems are encounter with protistan histones, including difficulties in isolating nuclei, proteolytic degradation, anomalous gel migration of histones, and difficulties in histone identification. Because of the above problems, and the observed variability in protistan histones, it is suggested that several criteria be employed for histone identification in protists. PMID:3910133

  13. Thermal evolution of Venus

    NASA Astrophysics Data System (ADS)

    Arkani-Hamed, J.; Toksoz, M. N.

    1984-09-01

    A modification of the Boussinesq fluid assumption is the basis of the present theory of three-dimensional and finite amplitude convection in a viscous spherical shell with temperature- and pressure-dependent physical parameters. The theory is applied to the definition of thermal evolution models for Venus which emphasize the effects of certain physical parameters on thermal evolution, rather than the specific thermal history of the planet. It is suggested that a significant portion of the present temperature in the mantle and surface heat flux of Venus is due to the decay of a high temperature that was established in the planet at the completion of its core formation, and that Venus has been highly convective over the course of its history, until about 0.5 Ga ago.

  14. The evolution of helicopters

    NASA Astrophysics Data System (ADS)

    Chen, R.; Wen, C. Y.; Lorente, S.; Bejan, A.

    2016-07-01

    Here, we show that during their half-century history, helicopters have been evolving into geometrically similar architectures with surprisingly sharp correlations between dimensions, performance, and body size. For example, proportionalities emerge between body size, engine size, and the fuel load. Furthermore, the engine efficiency increases with the engine size, and the propeller radius is roughly the same as the length scale of the whole body. These trends are in accord with the constructal law, which accounts for the engine efficiency trend and the proportionality between "motor" size and body size in animals and vehicles. These body-size effects are qualitatively the same as those uncovered earlier for the evolution of aircraft. The present study adds to this theoretical body of research the evolutionary design of all technologies [A. Bejan, The Physics of Life: The Evolution of Everything (St. Martin's Press, New York, 2016)].

  15. QCD Evolution 2015

    NASA Astrophysics Data System (ADS)

    These are the proceedings of the QCD Evolution 2015 Workshop which was held 26-30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.

  16. Anatomy of Scientific Evolution

    PubMed Central

    Yun, Jinhyuk; Kim, Pan-Jun; Jeong, Hawoong

    2015-01-01

    The quest for historically impactful science and technology provides invaluable insight into the innovation dynamics of human society, yet many studies are limited to qualitative and small-scale approaches. Here, we investigate scientific evolution through systematic analysis of a massive corpus of digitized English texts between 1800 and 2008. Our analysis reveals great predictability for long-prevailing scientific concepts based on the levels of their prior usage. Interestingly, once a threshold of early adoption rates is passed even slightly, scientific concepts can exhibit sudden leaps in their eventual lifetimes. We developed a mechanistic model to account for such results, indicating that slowly-but-commonly adopted science and technology surprisingly tend to have higher innate strength than fast-and-commonly adopted ones. The model prediction for disciplines other than science was also well verified. Our approach sheds light on unbiased and quantitative analysis of scientific evolution in society, and may provide a useful basis for policy-making. PMID:25671617

  17. Evolution of catalytic function

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.

    1993-01-01

    An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.

  18. Evolution of stellar entropy

    NASA Astrophysics Data System (ADS)

    de Souza, R. A.; de Avellar, M. G. B.; Horvath, J. E.

    2015-11-01

    An appraisal of the behavior of stellar entropy along stellar evolution is made. It is shown that the entropy per baryon of a star of a fixed baryon number decreases monotonically with increasing compactness of the star. The same entropy per baryon increases only whenever an irreversible collapse of the star happens. The recent proposals for a gravitational entropy related to curvature may justify the huge increase of the entropy in the ultimate collapse to a black hole.

  19. Space Station evolution study

    NASA Technical Reports Server (NTRS)

    Evans, David B.

    1993-01-01

    This is the Space Station Freedom (SSF) Evolution Study 1993 Final Report, performed under NASA Contract NAS8-38783, Task Order 5.1. This task examined: (1) the feasibility of launching current National Space Transportation System (NSTS) compatible logistics elements on expendable launch vehicles (ELV's) and the associated modifications, and (2) new, non-NSTS logistics elements for launch on ELV's to augment current SSF logistics capability.

  20. Evolution of Virtual Communities

    NASA Astrophysics Data System (ADS)

    Cheon, Eunyoung; Ahn, Joongho

    As the capabilities of technologies are enhanced and users become diversified, virtual communities have evolved from BBS to a new phenomena—virtual world. This study describes the evolution of VCs in three generations by three dimensions. Facing new challenges in new VC generation, VC platform providers need to adopt new approaches. The authors discuss important factors of future VCs. The field for VCs in the future will become more sophisticated and competitive.

  1. Evolution and ageing

    NASA Astrophysics Data System (ADS)

    de Oliveira, S. Moss; Alves, Domingos; Martins, J. S. Sá

    2000-09-01

    The idea of this review is to connect the different models of evolution to those of biological ageing through Darwin's theory. We start with the Eigen model of quasispecies for microevolution, then introduce the Bak-Sneppen model for macroevolution and, finally, present the Penna model for biological ageing and some of its most important results. We also explore the concept of coevolution using this model.

  2. Epistasis in protein evolution.

    PubMed

    Starr, Tyler N; Thornton, Joseph W

    2016-07-01

    The structure, function, and evolution of proteins depend on physical and genetic interactions among amino acids. Recent studies have used new strategies to explore the prevalence, biochemical mechanisms, and evolutionary implications of these interactions-called epistasis-within proteins. Here we describe an emerging picture of pervasive epistasis in which the physical and biological effects of mutations change over the course of evolution in a lineage-specific fashion. Epistasis can restrict the trajectories available to an evolving protein or open new paths to sequences and functions that would otherwise have been inaccessible. We describe two broad classes of epistatic interactions, which arise from different physical mechanisms and have different effects on evolutionary processes. Specific epistasis-in which one mutation influences the phenotypic effect of few other mutations-is caused by direct and indirect physical interactions between mutations, which nonadditively change the protein's physical properties, such as conformation, stability, or affinity for ligands. In contrast, nonspecific epistasis describes mutations that modify the effect of many others; these typically behave additively with respect to the physical properties of a protein but exhibit epistasis because of a nonlinear relationship between the physical properties and their biological effects, such as function or fitness. Both types of interaction are rampant, but specific epistasis has stronger effects on the rate and outcomes of evolution, because it imposes stricter constraints and modulates evolutionary potential more dramatically; it therefore makes evolution more contingent on low-probability historical events and leaves stronger marks on the sequences, structures, and functions of protein families. PMID:26833806

  3. Nonperturbative Quantum Field Evolution

    NASA Astrophysics Data System (ADS)

    Zhao, Xingbo; Ilderton, Anton; Maris, Pieter; Vary, James P.

    2014-06-01

    We introduce a nonperturbative, first-principles approach to time-dependent problems in quantum field theory. In this approach, the time-evolution of quantum field configurations is calculated in real time and at the amplitude level. This method is particularly suitable for treating systems interacting with a time-dependent background field. As a test problem, we apply this approach to QED and study electron acceleration and the associated photon emission in a time- and space-dependent electromagnetic background field.

  4. Evolution of Metabolic Dependency

    NASA Astrophysics Data System (ADS)

    Shou, Wenying

    Microbes are often found to have lost their ability to make essential metabolites (auxotrophs) and instead rely on other individuals for these metabolites. How might metabolic dependency evolve to be so common? When microbes live inside a host (endosymbionts), amply host metabolites support auxotrophic endosymbionts. If the host transmits only a small number of endosymbionts to its offspring, then auxotrophic endosymbionts can rise to high frequency simply by chance. On the other hand, auxotrophs have also been observed in abundant free-living bacteria found in ocean water where nutrient supply is low. How might auxotrophs rise to an appreciable frequency in a large population when nutrient supply is low? We have found commonly-encountered conditions that facilitate the evolution of metabolic dependency. Metabolic interactions can in turn shape spatial organization of microbial communities (Momeni et al. (2013) eLife 2, 00230; Momeni et al. (2013) eLife 2, 00960; Estrela and Brown (2013) PLoS Comput Biol 9, e1003398; Muller et al. (2014) PNAS 111, 1037-1042). Rapid evolution of metabolic dependency can contribute to the complexity of microbial communities. Evolution of metabolic dependency.

  5. Darwinian Evolution and Fractals

    NASA Astrophysics Data System (ADS)

    Carr, Paul H.

    2009-05-01

    Did nature's beauty emerge by chance or was it intelligently designed? Richard Dawkins asserts that evolution is blind aimless chance. Michael Behe believes, on the contrary, that the first cell was intelligently designed. The scientific evidence is that nature's creativity arises from the interplay between chance AND design (laws). Darwin's ``Origin of the Species,'' published 150 years ago in 1859, characterized evolution as the interplay between variations (symbolized by dice) and the natural selection law (design). This is evident in recent discoveries in DNA, Madelbrot's Fractal Geometry of Nature, and the success of the genetic design algorithm. Algorithms for generating fractals have the same interplay between randomness and law as evolution. Fractal statistics, which are not completely random, characterize such phenomena such as fluctuations in the stock market, the Nile River, rainfall, and tree rings. As chaos theorist Joseph Ford put it: God plays dice, but the dice are loaded. Thus Darwin, in discovering the evolutionary interplay between variations and natural selection, was throwing God's dice!

  6. The evolution within us

    PubMed Central

    Cobey, Sarah; Wilson, Patrick; Matsen, Frederick A.

    2015-01-01

    The B-cell immune response is a remarkable evolutionary system found in jawed vertebrates. B-cell receptors, the membrane-bound form of antibodies, are capable of evolving high affinity to almost any foreign protein. High germline diversity and rapid evolution upon encounter with antigen explain the general adaptability of B-cell populations, but the dynamics of repertoires are less well understood. These dynamics are scientifically and clinically important. After highlighting the remarkable characteristics of naive and experienced B-cell repertoires, especially biased usage of genes encoding the B-cell receptors, we contrast methods of sequence analysis and their attempts to explain patterns of B-cell evolution. These phylogenetic approaches are currently unlinked to explicit models of B-cell competition, which analyse repertoire evolution at the level of phenotype, the affinities and specificities to particular antigenic sites. The models, in turn, suggest how chance, infection history and other factors contribute to different patterns of immunodominance and protection between people. Challenges in rational vaccine design, specifically vaccines to induce broadly neutralizing antibodies to HIV, underscore critical gaps in our understanding of B cells' evolutionary and ecological dynamics. PMID:26194749

  7. Dynamics of secular evolution

    NASA Astrophysics Data System (ADS)

    Binney, James

    2013-10-01

    The material in this article was presented in five hours of lectures to the 2011 Canary Islands Winter School. The School’s theme was ‘Secular Evolution of Galaxies’ and my task was to present the underlying stellar-dynamical theory. Other lecturers were speaking on the role of bars and chemical evolution, so these topics are avoided here. The material starts with an account of the connections between isolating integrals, quasiperiodicity and angle-action variables - these variables played a prominent and unifying role throughout the lectures. This leads on to the phenomenon of resonant trap- ping and how this can lead to chaos in cuspy potentials and phase-space mixing in slowly evolving potentials. Surfaces of section and frequency analysis are introduced as diagnostics of phase-space structure. Real galactic potentials include a fluctuating part that drives the system towards unattainable thermal equilibrium. Two-body encounters are only one source of fluctuations, and all fluctuations will drive similar evolution. The orbit-averaged Fokker-Planck equation is derived, as are relations that hold between the second-order diffusion coefficients and both the power spectrum of the fluctuations and the first-order diffusion coefficients. From the observed heating of the solar neighbourhood we show that the second-order diffusion coefficients must scale as ˜ J1/2. We show that periodic spiral structure shifts angular momentum outwards, heating at the Lindblad resonances and mixing at corotation. The equation that would yield the normal modes of a stellar disk is first derived and then used to discuss the propagation of tightly wound spiral waves. The winding up of such waves is described and explains why cool stellar disks are responsive systems that amplify ambient noise. An explanation is offered of why the Lin-Shu-Kalnajs dispersion relation and even global normal-mode calculations provide a very incomplete understanding of the dynamics of stellar disks.

  8. Evolution of Sedimentary Rocks

    NASA Astrophysics Data System (ADS)

    Veizer, J.; MacKenzie, F. T.

    2003-12-01

    For almost a century, it has been recognized that the present-day thickness and areal extent of Phanerozoic sedimentary strata increase progressively with decreasing geologic age. This pattern has been interpreted either as reflecting an increase in the rate of sedimentation toward the present (Barrell, 1917; Schuchert, 1931; Ronov, 1976) or as resulting from better preservation of the younger part of the geologic record ( Gilluly, 1949; Gregor, 1968; Garrels and Mackenzie, 1971a; Veizer and Jansen, 1979, 1985).Study of the rocks themselves led to similarly opposing conclusions. The observed secular (=age) variations in relative proportions of lithological types and in chemistry of sedimentary rocks (Daly, 1909; Vinogradov et al., 1952; Nanz, 1953; Engel, 1963; Strakhov, 1964, 1969; Ronov, 1964, 1982) were mostly given an evolutionary interpretation. An opposing, uniformitarian, approach was proposed by Garrels and Mackenzie (1971a). For most isotopes, the consensus favors deviations from the present-day steady state as the likely cause of secular trends.This chapter attempts to show that recycling and evolution are not opposing, but complementary, concepts. It will concentrate on the lithological and chemical attributes of sediments, but not deal with the evolution of sedimentary mineral deposits (Veizer et al., 1989) and of life ( Sepkoski, 1989), both well amenable to the outlined conceptual treatment. The chapter relies heavily on Veizer (1988a) for the sections dealing with general recycling concepts, on Veizer (2003) for the discussion of isotopic evolution of seawater, and on Morse and Mackenzie (1990) and Mackenzie and Morse (1992) for discussion of carbonate rock recycling and environmental attributes.

  9. Evolution before genes

    PubMed Central

    2012-01-01

    Background Our current understanding of evolution is so tightly linked to template-dependent replication of DNA and RNA molecules that the old idea from Oparin of a self-reproducing 'garbage bag' ('coacervate') of chemicals that predated fully-fledged cell-like entities seems to be farfetched to most scientists today. However, this is exactly the kind of scheme we propose for how Darwinian evolution could have occurred prior to template replication. Results We cannot confirm previous claims that autocatalytic sets of organic polymer molecules could undergo evolution in any interesting sense by themselves. While we and others have previously imagined inhibition would result in selectability, we found that it produced multiple attractors in an autocatalytic set that cannot be selected for. Instead, we discovered that if general conditions are satisfied, the accumulation of adaptations in chemical reaction networks can occur. These conditions are the existence of rare reactions producing viable cores (analogous to a genotype), that sustains a molecular periphery (analogous to a phenotype). Conclusions We conclude that only when a chemical reaction network consists of many such viable cores, can it be evolvable. When many cores are enclosed in a compartment there is competition between cores within the same compartment, and when there are many compartments, there is between-compartment competition due to the phenotypic effects of cores and their periphery at the compartment level. Acquisition of cores by rare chemical events, and loss of cores at division, allows macromutation, limited heredity and selectability, thus explaining how a poor man's natural selection could have operated prior to genetic templates. This is the only demonstration to date of a mechanism by which pre-template accumulation of adaptation could occur. Reviewers This article was reviewed by William Martin and Eugene Koonin. PMID:22221860

  10. Evolution and human sexuality.

    PubMed

    Gray, Peter B

    2013-12-01

    The aim of this review is to put core features of human sexuality in an evolutionary light. Toward that end, I address five topics concerning the evolution of human sexuality. First, I address theoretical foundations, including recent critiques and developments. While much traces back to Darwin and his view of sexual selection, more recent work helps refine the theoretical bases to sex differences and life history allocations to mating effort. Second, I consider central models attempting to specify the phylogenetic details regarding how hominin sexuality might have changed, with most of those models honing in on transitions from a possible chimpanzee-like ancestor to the slightly polygynous and long-term bonded sociosexual partnerships observed among most recently studied hunter-gatherers. Third, I address recent genetic and physiological data contributing to a refined understanding of human sexuality. As examples, the availability of rapidly increasing genomic information aids comparative approaches to discern signals of selection in sexuality-related phenotypes, and neuroendocrine studies of human responses to sexual stimuli provide insight into homologous and derived mechanisms. Fourth, I consider some of the most recent, large, and rigorous studies of human sexuality. These provide insights into sexual behavior across other national samples and on the Internet. Fifth, I discuss the relevance of a life course perspective to understanding the evolution of human sexuality. Most research on the evolution of human sexuality focuses on young adults. Yet humans are sexual beings from gestation to death, albeit in different ways across the life course, and in ways that can be theoretically couched within life history theory. PMID:24151100

  11. The evolution of nucleotides

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Needels, M. C.

    1986-01-01

    Examples of chiral selection in nonenzymatic aminoacylation of internal 2-prime hydroxyl groups of oligo- and polynucleotides are discussed as an evidence for the early evolution of bionucleotides. Some factors that could influence the degree of this chiral selection and its direction are discussed. These include the structure of the aminoacyl component, the structure of the nucleoside component, and the reaction conditions. Investigation of the mechanism of this reaction was aided by the use of 3-prime inosine methyl phosphate (as a simplified model for a dinucleoside monophosphate) and proton NMR spectroscopy of t-butoxycarbonyl-alanyl esters of nucleosides as models for the transition state of the aminoacylation reaction itself.

  12. Orbital Evolution of Asteroids

    NASA Astrophysics Data System (ADS)

    Dermott, S. F.; Kehoe, T. J. J.

    2011-10-01

    The synthetic orbital frequencies and eccentricities of main belt asteroids computed by Knezevic and Milani [2] show evidence that the structure of the asteroid belt has been determined by a dense of web of high-order resonances. By examining the orbital frequency distribution at high resolution, we discover a correlation between asteroid number density, mean orbital eccentricity and Lyapunov Characteristic Exponent. In particular, the orbital eccentricities of asteroids trapped in resonance tend to be higher than those of non-resonant asteroids and we argue that this is observational evidence for orbital evolution due to chaotic diffusion.

  13. Evolution of Atmospheres

    SciTech Connect

    Hanson, B.

    1993-02-12

    An atmosphere is the dynamic gaseous boundary layer between a planet and space. Many complex interactions affect the composition and time evolution of an atmosphere and control the environment - or climate - at a planet's surface. These include both reactions within the atmosphere as well as exchange of energy, gases, and dust with the planet below and the solar system above; for Earth today, interactions with the biosphere and oceans are paramount. In view of the large changes in inputs of energy and gases that have occurred since planets began to form and the complexity of the chemistry, it is not surprising that planetary climates have changed greatly and are continuing to change.

  14. Evolution was chemically constrained.

    PubMed

    Williams, R J P; Fraústo Da Silva, J J R

    2003-02-01

    The objective of this paper is to present a systems view of the major features of biological evolution based upon changes in internal chemistry and uses of cellular space, both of which it will be stated were dependent on the changing chemical environment. The account concerns the major developments from prokaryotes to eukaryotes, to multi-cellular organisms, to animals with nervous systems and a brain, and finally to human beings and their uses of chemical elements in space outside themselves. It will be stated that the changes were in an inevitable progression, and were not just due to blind chance, so that "random searching" by a coded system to give species had a fixed overall route. The chemical sequence is from a reducing to an ever-increasingly oxidizing environment, while organisms retained reduced chemicals. The process was furthered recently by human beings who have also increased the range of reduced products trapped on Earth in novel forms. All the developments are brought about from the nature of the chemicals which organisms accumulate using the environment and its changes. The relationship to the manner in which particular species (gene sequences) were coincidentally changed, the molecular view of evolution, is left for additional examination. There is a further issue in that the changes of the chemistry of the environment developed largely at equilibrium due to the relatively fast reactions there of the available inorganic chemicals. Inside cells, some of these same chemicals also came to equilibrium within compounds. All such equilibria reduced the variance (degrees of freedom) of the total environmental/biological system and its possible development. However, the more sophisticated organic chemistry, almost totally inside cells until humans evolved, is kinetically controlled and limited by the demands of cellular reduction necessary to produce essential chemicals and by the availability of certain elements and energy. Hence the variability of

  15. Is evolution finished?

    PubMed

    Davison, John A

    2004-01-01

    Since speciation seems to be no longer in progress, one is compelled to conclude that sexual reproduction is incompetent as a macroevolutionary device. I propose that the reason some might insist that evolution is still in progress stems primarily from the influence of two authorities, the geologist Charles Lyell, with his doctrine of uniformitarianism and Gregor Mendel, the discoverer of sexually mediated transmission genetics. William Bateson, the father of modern genetics, clearly foresaw the failure of Mendelism to explain macroevolutionary change, a perspective with which I am in full agreement. PMID:15648214

  16. Galaxy evolution. Galactic paleontology.

    PubMed

    Tolstoy, Eline

    2011-07-01

    Individual low-mass stars have very long lives, comparable to the age of the universe, and can thus be used to probe ancient star formation. At present, such stars can be identified and studied only in the Milky Way and in the very closest of our neighboring galaxies, which are predominantly small dwarf galaxies. These nearby ancient stars are a fossil record that can provide detailed information about the physical processes that dominated the epoch of galaxy formation and subsequent evolution. PMID:21737732

  17. Glossogeny and phylogeny: cultural evolution meets genetic evolution.

    PubMed

    Fitch, W Tecumseh

    2008-08-01

    Evolutionary theorists since Darwin have been interested in the parallels and interactions between biological and cultural evolution. Recent applications of empirical techniques originally developed to analyze molecular genetic data to linguistic data offer new insights into the historical evolution of language, revealing fascinating parallels between language change and biological evolution. This work offers considerable potential toward unified theories of genetic and cultural change. PMID:18585817

  18. Evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Sevenster, M.

    1993-01-01

    The evolution of interstellar molecular hydrogen was studied, with a special interest for the formation and evolution of molecular clouds and star formation within them, by a two-dimensional hydrodynamical simulation performed on a rectangular grid of physical sizes on the order of 100 pc. It is filled with an initial density of approx. 1 cm(exp -3), except for one cell (approx. 1 pc(exp 2)) at the center of the grid where an accretion core of 1-10(exp 3) solar masses is placed. The grid is co-moving with the gridcenter that is on a circular orbit around the Galactic center and that also is the guiding center of epicyclic approximation of orbits of the matter surrounding it. The initial radial velocity is zero; to account for differential rotation the initial tangential velocity (i.e. the movement around the galactic center) is proportional to the radial distance to the grid center. The rate is comparable to the rotation rate at the Local Standard of Rest. The influence of galactic rotation is noticed by spiral or elliptical forms, but on much longer time scales than self gravitation and cooling processes. Density and temperature are kept constant at the boundaries and no inflow is allowed along the tangential boundaries.

  19. Evolution of Oxygenic Photosynthesis

    NASA Astrophysics Data System (ADS)

    Fischer, Woodward W.; Hemp, James; Johnson, Jena E.

    2016-06-01

    The origin of oxygenic photosynthesis was the most important metabolic innovation in Earth history. It allowed life to generate energy and reducing power directly from sunlight and water, freeing it from the limited resources of geochemically derived reductants. This greatly increased global primary productivity and restructured ecosystems. The release of O2 as an end product of water oxidation led to the rise of oxygen, which dramatically altered the redox state of Earth's atmosphere and oceans and permanently changed all major biogeochemical cycles. Furthermore, the biological availability of O2 allowed for the evolution of aerobic respiration and novel biosynthetic pathways, facilitating much of the richness we associate with modern biology, including complex multicellularity. Here we critically review and synthesize information from the geological and biological records for the origin and evolution of oxygenic photosynthesis. Data from both of these archives illustrate that this metabolism first appeared in early Paleoproterozoic time and, despite its biogeochemical prominence, is a relatively late invention in the context of our planet's history.

  20. Nucleosynthesis and Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Woosley, S. E.

    Preface I. Nuclear Astrophysics Nuclear cross sections Nuclear reaction rates Approximations to reaction rates for heavy nuclei Nuclear reaction networks II. Nuclear Reactions During Advanced Burning Stages of Massive Stars Carbon burning Neon burning Oxygen burning Silicon burning Nuclear statistical equilibrium (NSE) NSE network calculations Equilibrium at high densities III. Approximate Thermodynamic Conditions for Advanced Burning Stages in Massive Stars Burning in hydrostatic equilibrium Explosive burning conditions IV. Parametrized Network Calculations of Nucleosynthesis Helium Burning Carbon burning Neon burning Oxygen burning Silicon burning Summary V. Classical Novae and X-ray Bursts Classical novae Parametrized nucleosynthesis calculations Numerical calculations of a model nova Type I X-ray bursts VI. The Evolution of Massive Stars; M >= 8 Msun Stars that become type II supernovae Computer results Nucleosynthesis in pre-supernova stars The evolution to instability of more massive stars VII. Type II Supernovae Light curves and spectra of type II supernovae The type II explosion mechanism: core collapse and bounce "Delayed" explosions The role of rotation Nucleosynthesis in type II supernovae Unusual type II supernovae and "type III" supernovae VIII. Type I Supernovae General thermonuclear models The current standard model Nucleosynthesis in the standard model Spectral synthesis in type I supernovae Peculiar Type I's More on the physics of carbon ignition: flame propagation the conductive velocity the "turbulent" flame velocity Carbon detonation: The phase velocity and "spontaneous combustion" Initial conditions References

  1. Archaeology and cognitive evolution.

    PubMed

    Wynn, Thomas

    2002-06-01

    Archaeology can provide two bodies of information relevant to the understanding of the evolution of human cognition--the timing of developments, and the evolutionary context of these developments. The challenge is methodological. Archaeology must document attributes that have direct implications for underlying cognitive mechanisms. One example of such a cognitive archaeology is found in spatial cognition. The archaeological record documents an evolutionary sequence that begins with ape-equivalent spatial abilities 2.5 million years ago and ends with the appearance of modern abilities in the still remote past of 400,000 years ago. The timing of these developments reveals two major episodes in the evolution in spatial ability, one, 1.5 million years ago and the other, one million years later. The two episodes of development in spatial cognition had very different evolutionary contexts. The first was associated with the shift to an open country adaptive niche that occurred early in the time range of Homo erectus. The second was associated with no clear adaptive shift, though it does appear to have coincided with the invasion of more hostile environments and the appearance of systematic hunting of large mammals. Neither, however, occurred in a context of modern hunting and gathering. PMID:12879699

  2. Hox genes and evolution

    PubMed Central

    Hrycaj, Steven M.; Wellik, Deneen M.

    2016-01-01

    Hox proteins are a deeply conserved group of transcription factors originally defined for their critical roles in governing segmental identity along the antero-posterior (AP) axis in Drosophila. Over the last 30 years, numerous data generated in evolutionarily diverse taxa have clearly shown that changes in the expression patterns of these genes are closely associated with the regionalization of the AP axis, suggesting that Hox genes have played a critical role in the evolution of novel body plans within Bilateria. Despite this deep functional conservation and the importance of these genes in AP patterning, key questions remain regarding many aspects of Hox biology. In this commentary, we highlight recent reports that have provided novel insight into the origins of the mammalian Hox cluster, the role of Hox genes in the generation of a limbless body plan, and a novel putative mechanism in which Hox genes may encode specificity along the AP axis. Although the data discussed here offer a fresh perspective, it is clear that there is still much to learn about Hox biology and the roles it has played in the evolution of the Bilaterian body plan. PMID:27239281

  3. Geometry Genetics and Evolution

    NASA Astrophysics Data System (ADS)

    Siggia, Eric

    2011-03-01

    Darwin argued that highly perfected organs such as the vertebrate eye could evolve by a series of small changes, each of which conferred a selective advantage. In the context of gene networks, this idea can be recast into a predictive algorithm, namely find networks that can be built by incremental adaptation (gradient search) to perform some task. It embodies a ``kinetic'' view of evolution where a solution that is quick to evolve is preferred over a global optimum. Examples of biochemical kinetic networks were evolved for temporal adaptation, temperature compensated entrainable clocks, explore-exploit trade off in signal discrimination, will be presented as well as networks that model the spatially periodic somites (vertebrae) and HOX gene expression in the vertebrate embryo. These models appear complex by the criterion of 19th century applied mathematics since there is no separation of time or spatial scales, yet they are all derivable by gradient optimization of simple functions (several in the Pareto evolution) often based on the Shannon entropy of the time or spatial response. Joint work with P. Francois, Physics Dept. McGill University. With P. Francois, Physics Dept. McGill University

  4. Intron Evolution in Saccharomycetaceae

    PubMed Central

    Hooks, Katarzyna B.; Delneri, Daniela; Griffiths-Jones, Sam

    2014-01-01

    Introns in protein-coding genes are very rare in hemiascomycetous yeast genomes. It has been suggested that these species have experienced extensive intron loss during their evolution from the postulated intron-rich fungal ancestor. However, no intron-devoid yeast species have been identified and some of the introns remaining within the genomes of intron-poor species, such as Saccharomyces cerevisiae, appear to be beneficial during growth under stress conditions. In order to reveal the pattern of intron retention within intron-poor yeast species and better understand the mechanisms of intron evolution, we generated a comprehensive set of 250 orthologous introns in the 20 species that comprise the Saccharomycetaceae, by analyzing RNA deep-sequencing data and alignments of intron-containing genes. Analysis of these intron sets shows that intron loss is at least two orders of magnitude more frequent than intron gain. Fine mapping of intron positions shows that intron sliding is rare, and that introns are almost always removed without changing the primary sequence of the encoded protein. The latter finding is consistent with the prevailing view that homologous recombination between reverse-transcribed mature mRNAs and the corresponding genomic locus is the primary mechanism of intron loss. However, we also find evidence that loss of a small number of introns is mediated by micro-homology, and that the number of intron losses is diminished in yeast species that have lost the microhomology end joining and nonhomologous end joining machinery. PMID:25364803

  5. Introns in gene evolution.

    PubMed

    Fedorova, Larisa; Fedorov, Alexei

    2003-07-01

    Introns are integral elements of eukaryotic genomes that perform various important functions and actively participate in gene evolution. We review six distinct roles of spliceosomal introns: (1) sources of non-coding RNA; (2) carriers of transcription regulatory elements; (3) actors in alternative and trans-splicing; (4) enhancers of meiotic crossing over within coding sequences; (5) substrates for exon shuffling; and (6) signals for mRNA export from the nucleus and nonsense-mediated decay. We consider transposable capacities of introns and the current state of the long-lasting debate on the 'early-or-late' origin of introns. Cumulative data on known types of contemporary exon shuffling and the estimation of the size of the underlying exon universe are also discussed. We argue that the processes central to introns-early (exon shuffling) and introns-late (intron insertion) theories are entirely compatible. Each has provided insight: the latter through elucidating the transposon capabilities of introns, and the former through understanding the importance of introns in genomic recombination leading to gene rearrangements and evolution. PMID:12868603

  6. Concrete Chemical Evolution

    SciTech Connect

    D.H. Tang

    1998-07-31

    The objectives of this analysis are to discuss and evaluate testing results that were performed for the M&O by the Pennsylvania State University (PSU) to evaluate the potential long-term evolution of organic admixtures in cementitious materials at elevated temperatures. The testing was designed to help provide a basis for a determination by the Performance Assessment group (PA) of the long-term acceptability and longevity of cementitious materials for repository use. The main purpose of the testing was to assess the evolution of gases (especially CO{sub 2}) from hydrated cement paste at elevated temperatures and to determine the impact on alkalinity, i.e., the pH value of cement paste pore solution. This information in turn can be used as scoping information to determine if further tests of this nature are needed to support PA. As part of this discussion and evaluation of the PSU results, an assessment of alkalinity in a ''cementitious repository'' and an evaluation of organic materials are presented.

  7. Heat freezes niche evolution.

    PubMed

    Araújo, Miguel B; Ferri-Yáñez, Francisco; Bozinovic, Francisco; Marquet, Pablo A; Valladares, Fernando; Chown, Steven L

    2013-09-01

    Climate change is altering phenology and distributions of many species and further changes are projected. Can species physiologically adapt to climate warming? We analyse thermal tolerances of a large number of terrestrial ectotherm (n = 697), endotherm (n = 227) and plant (n = 1816) species worldwide, and show that tolerance to heat is largely conserved across lineages, while tolerance to cold varies between and within species. This pattern, previously documented for ectotherms, is apparent for this group and for endotherms and plants, challenging the longstanding view that physiological tolerances of species change continuously across climatic gradients. An alternative view is proposed in which the thermal component of climatic niches would overlap across species more than expected. We argue that hard physiological boundaries exist that constrain evolution of tolerances of terrestrial organisms to high temperatures. In contrast, evolution of tolerances to cold should be more frequent. One consequence of conservatism of upper thermal tolerances is that estimated niches for cold-adapted species will tend to underestimate their upper thermal limits, thereby potentially inflating assessments of risk from climate change. In contrast, species whose climatic preferences are close to their upper thermal limits will unlikely evolve physiological tolerances to increased heat, thereby being predictably more affected by warming. PMID:23869696

  8. Modeling Protein Evolution

    NASA Astrophysics Data System (ADS)

    Goldstein, Richard; Pollock, David

    The study of biology is fundamentally different from many other scientific pursuits, such as geology or astrophysics. This difference stems from the ubiquitous questions that arise about function and purpose. These are questions concerning why biological objects operate the way they do: what is the function of a polymerase? What is the role of the immune system? No one, aside from the most dedicated anthropist or interventionist theist, would attempt to determine the purpose of the earth's mantle or the function of a binary star. Among the sciences, it is only biology in which the details of what an object does can be said to be part of the reason for its existence. This is because the process of evolution is capable of improving an object to better carry out a function; that is, it adapts an object within the constraints of mechanics and history (i.e., what has come before). Thus, the ultimate basis of these biological questions is the process of evolution; generally, the function of an enzyme, cell type, organ, system, or trait is the thing that it does that contributes to the fitness (i.e., reproductive success) of the organism of which it is a part or characteristic. Our investigations cannot escape the simple fact that all things in biology (including ourselves) are, ultimately, the result of an evolutionary process.

  9. Student Visual Communication of Evolution

    NASA Astrophysics Data System (ADS)

    Oliveira, Alandeom W.; Cook, Kristin

    2016-05-01

    Despite growing recognition of the importance of visual representations to science education, previous research has given attention mostly to verbal modalities of evolution instruction. Visual aspects of classroom learning of evolution are yet to be systematically examined by science educators. The present study attends to this issue by exploring the types of evolutionary imagery deployed by secondary students. Our visual design analysis revealed that students resorted to two larger categories of images when visually communicating evolution: spatial metaphors (images that provided a spatio-temporal account of human evolution as a metaphorical "walk" across time and space) and symbolic representations ("icons of evolution" such as personal portraits of Charles Darwin that simply evoked evolutionary theory rather than metaphorically conveying its conceptual contents). It is argued that students need opportunities to collaboratively critique evolutionary imagery and to extend their visual perception of evolution beyond dominant images.

  10. Evolution across the Curriculum: Microbiology

    PubMed Central

    Burmeister, Alita R.; Smith, James J.

    2016-01-01

    An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives. Journal of Microbiology & Biology Education PMID:27158306

  11. Evolution across the Curriculum: Microbiology.

    PubMed

    Burmeister, Alita R; Smith, James J

    2016-05-01

    An integrated understanding of microbiology and evolutionary biology is essential for students pursuing careers in microbiology and healthcare fields. In this Perspective, we discuss the usefulness of evolutionary concepts and an overall evolutionary framework for students enrolled in microbiology courses. Further, we propose a set of learning goals for students studying microbial evolution concepts. We then describe some barriers to microbial evolution teaching and learning and encourage the continued incorporation of evidence-based teaching practices into microbiology courses at all levels. Next, we review the current status of microbial evolution assessment tools and describe some education resources available for teaching microbial evolution. Successful microbial evolution education will require that evolution be taught across the undergraduate biology curriculum, with a continued focus on applications and applied careers, while aligning with national biology education reform initiatives. Journal of Microbiology & Biology Education. PMID:27158306

  12. Evolution of working memory.

    PubMed

    Carruthers, Peter

    2013-06-18

    Working memory (WM) is fundamental to many aspects of human life, including learning, speech and text comprehension, prospection and future planning, and explicit "system 2" forms of reasoning, as well as overlapping heavily with fluid general intelligence. WM has been intensively studied for many decades, and there is a growing consensus about its nature, its components, and its signature limits. Remarkably, given its central importance in human life, there has been very little comparative investigation of WM abilities across species. Consequently, much remains unknown about the evolution of this important human capacity. Some questions can be tentatively answered from the existing comparative literature. Even studies that were not intended to do so can nonetheless shed light on the WM capacities of nonhuman animals. However, many questions remain. PMID:23754428

  13. Early stellar evolution

    NASA Technical Reports Server (NTRS)

    Stahler, Steven W.

    1994-01-01

    Research into the formation and early evolution of stars is currently an area of great interest and activity. The theoretical and observational foundations for this development are reviewed in this paper. By now, the basic physics governing cloud collapse is well understood, as is the structure of the resulting protostars. However, the theory predicts protostellar luminosities that are greater than those of most infrared sources. Observationally, it is thought that protostars emit powerful winds that push away remnant cloud gas, but both the origin of these winds and the nature of their interaction with ambient gas are controversial. Finally, the theory of pre-main-sequence stars has been modified to incorporate more realistic initial conditions. This improvement helps to explain the distribution of such stars in the H-R diagram. Many important issues, such as the origin of binary stars and stellar clusters, remain as challenges for future research.

  14. Evolution and public health

    PubMed Central

    Omenn, Gilbert S.

    2009-01-01

    Evolution and its elements of natural selection, population migration, genetic drift, and founder effects have shaped the world in which we practice public health. Human cultures and technologies have modified life on this planet and have coevolved with myriad other species, including microorganisms; plant and animal sources of food; invertebrate vectors of disease; and intermediate hosts among birds, mammals, and nonhuman primates. Molecular mechanisms of differential resistance or susceptibility to infectious agents or diets have evolved and are being discovered with modern methods. Some of these evolutionary relations require a perspective of tens of thousands of years, whereas other changes are observable in real time. The implications and applications of evolutionary understanding are important to our current programs and policies for infectious disease surveillance, gene–environment interactions, and health disparities globally. PMID:19966311

  15. Evolution of Biological Complexity

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    It is a general rule of nature that larger organisms are more complex, at least as measured by the number of distinct types of cells present. This reflects the fitness advantage conferred by a division of labor among specialized cells over homogeneous totipotency. Yet, increasing size has both costs and benefits, and the search for understanding the driving forces behind the evolution of multicellularity is becoming a very active area of research. This article presents an overview of recent experimental and theoretical work aimed at understanding this biological problem from the perspective of physics. For a class of model organisms, the Volvocine green algae, an emerging hypothesis connects the transition from organisms with totipotent cells to those with terminal germ-soma differentiation to the competition between diffusion and fluid advection created by beating flagella. A number of challenging problems in fluid dynamics, nonlinear dynamics, and control theory emerge when one probes the workings of the simplest multicellular organisms.

  16. The evolution of dominance.

    PubMed

    Bourguet, D

    1999-07-01

    The evolution of dominance has been subject to intensive debate since Fisher first argued that modifiers would be selected for if they made wild-type alleles more dominant over mutant alleles. An alternative explanation, put forward by Wright, is that the commonly observed dominance of wild-type alleles is simply a physiological consequence of metabolic pathways. Wright's explanation has gained support over the years, largely ending the debate over the general recessivity of deleterious mutations. Nevertheless there is reason to believe that dominance relationships have been moulded by natural selection to some extent. First, the metabolic pathways are themselves products of evolutionary processes that may have led them to be more stable to perturbations, including mutations. Secondly, theoretical models and empirical experiments suggest that substantial selection for dominance modifiers exists during the spread of adaptive alleles or when a polymorphism is maintained either by overdominant selection or by migration-selection balance. PMID:10447697

  17. Evolution of microbial markets

    PubMed Central

    Werner, Gijsbert D. A.; Strassmann, Joan E.; Ivens, Aniek B. F.; Engelmoer, Daniel J. P.; Verbruggen, Erik; Queller, David C.; Noë, Ronald; Johnson, Nancy Collins; Hammerstein, Peter; Kiers, E. Toby

    2014-01-01

    Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions. PMID:24474743

  18. Evolution and climate variability

    SciTech Connect

    Potts, R.

    1996-08-16

    Variations in organisms are preserved and accrue if there is a consistent bias in selection over many generations. This idea of long-term directional selection has been embraced to explain major adaptive change. It is widely thought that important adaptive shifts in hominids corresponded with directional environmental change. This view, which echoes the savanna scenario of hominid evolution, has strongly been supported by paleontologists and paleoclimatologists over the past decade. The origin of the hominids, bipedality, stone toolmaking, and brain size increase have all been related to cooling, aridification, and savanna expansion. However there appears to be a more prominent signal than the aridity trend: an increase in the range of climatic variation over time. This article discusses the possible reprocussions of this interpertation. 13 refs.

  19. Evolution of Metals

    NASA Astrophysics Data System (ADS)

    Shull, J. M.

    1998-05-01

    This review will cover a mystery story. Actually, two mysteries of the Structure and Evolution of the Universe involving the history of the baryons and the chemical elements synthesized in the first stars. When did the gas and metals first form? How did they evolve to their current distribution? The original crime scene is unknown, but evidence has been collected in the diffuse intergalactic medium and in hot intracluster gas. In these scattered locales, large amounts of gas has accumulated, contaminated by heavy elements from the first stars. Unfortunately, some of the evidence has been destroyed by gravity. Also, the earliest quasars, massive stars, and supernovae altered the physical state of the gas and transported the elements far from the original scene. I will briefly review current observations and theories relevant to these processes and suggest ways in which future NASA missions could constrain the many speculative ideas on this subject.

  20. Viral Quasispecies Evolution

    PubMed Central

    Sheldon, Julie; Perales, Celia

    2012-01-01

    Summary: Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory. PMID:22688811

  1. Evolution of biological information.

    PubMed

    Schneider, T D

    2000-07-15

    How do genetic systems gain information by evolutionary processes? Answering this question precisely requires a robust, quantitative measure of information. Fortunately, 50 years ago Claude Shannon defined information as a decrease in the uncertainty of a receiver. For molecular systems, uncertainty is closely related to entropy and hence has clear connections to the Second Law of Thermodynamics. These aspects of information theory have allowed the development of a straightforward and practical method of measuring information in genetic control systems. Here this method is used to observe information gain in the binding sites for an artificial 'protein' in a computer simulation of evolution. The simulation begins with zero information and, as in naturally occurring genetic systems, the information measured in the fully evolved binding sites is close to that needed to locate the sites in the genome. The transition is rapid, demonstrating that information gain can occur by punctuated equilibrium. PMID:10908337

  2. Evolution and Impartiality.

    PubMed

    Kahane, Guy

    2014-01-01

    Lazari-Radek and Singer argue that evolutionary considerations can resolve Sidgwick's dualism of practical reason, because such considerations debunk moral views that give weight to self-interested or partial considerations, but cannot threaten the principle Universal Benevolence. I argue that even if we grant these claims, this appeal to evolution is ultimately self-defeating. Lazari-Radek and Singer face a dilemma. Either their evolutionary argument against partial morality succeeds, but then we need to also give up our conviction that suffering is bad; or there is a way to defend this conviction, but then their argument against partiality fails. Utilitarians, I suggest, should resist the temptation to appeal to evolutionary debunking arguments. PMID:24711673

  3. The evolution of inequality.

    PubMed

    Mattison, Siobhán M; Smith, Eric A; Shenk, Mary K; Cochrane, Ethan E

    2016-07-01

    Understanding how systems of political and economic inequality evolved from relatively egalitarian origins has long been a focus of anthropological inquiry. Many hypotheses have been suggested to link socio-ecological features with the rise and spread of inequality, and empirical tests of these hypotheses in prehistoric and extant societies are increasing. In this review, we synthesize several streams of theory relevant to understanding the evolutionary origins, spread, and adaptive significance of inequality. We argue that while inequality may be produced by a variety of localized processes, its evolution is fundamentally dependent on the economic defensibility and transmissibility of wealth. Furthermore, these properties of wealth could become persistent drivers of inequality only following a shift to a more stable climate in the Holocene. We conclude by noting several key areas for future empirical research, emphasizing the need for more analyses of contemporary shifts toward institutionalized inequality as well as prehistoric cases. PMID:27519458

  4. SIM Configuration Evolution

    NASA Technical Reports Server (NTRS)

    Aaron, Kim M.

    2000-01-01

    The Space Interferometry Mission (SIM) is a space-based 10 m baseline Michelson interferometer. Planned for launch in 2005 aboard a Delta III launch vehicle, or equivalent, its primary objective is to measure the positions of stars and other celestial objects with an unprecedented accuracy of 4 micro arc seconds. With such an instrument, tremendous advancement can be expected in our understanding of stellar and galactic dynamics. Using triangulation from opposite sides of the orbit around the sun (i.e. by using parallax) one can measure the distance to any observable object in our galaxy. By directly measuring the orbital wobble of nearby stars, the mass and orbit of planets can be determined over a wide range of parameters. The distribution of velocity within nearby galaxies will be measurable. Observations of these and other objects will improve the calibration of distance estimators by more than an order of magnitude. This will permit a much better determination of the Hubble Constant as well as improving our overall understanding of the evolution of the universe. SIM has undergone several transformations, especially over the past year and a half since the start of Phase A. During this phase of a project, it is desirable to perform system-level trade studies, so the substantial evolution of the design that has occurred is quite appropriate. Part of the trade-off process has addressed two major underlying architectures: SIM Classic; and Son of SIM. The difference between these two architectures is related to the overall arrangement of the optical elements and the associated metrology system. Several different configurations have been developed for each architecture. Each configuration is the result of design choices that are influenced by many competing considerations. Some of the more important aspects will be discussed. The Space Interferometry Mission has some extremely challenging goals: millikelvin thermal stability, nanometer stabilization of optics

  5. Evolution and Impartiality*

    PubMed Central

    Kahane, Guy

    2014-01-01

    Lazari-Radek and Singer argue that evolutionary considerations can resolve Sidgwick’s dualism of practical reason, because such considerations debunk moral views that give weight to self-interested or partial considerations, but cannot threaten the principle Universal Benevolence. I argue that even if we grant these claims, this appeal to evolution is ultimately self-defeating. Lazari-Radek and Singer face a dilemma. Either their evolutionary argument against partial morality succeeds, but then we need to also give up our conviction that suffering is bad; or there is a way to defend this conviction, but then their argument against partiality fails. Utilitarians, I suggest, should resist the temptation to appeal to evolutionary debunking arguments. PMID:24711673

  6. [Metalworking industry management evolution].

    PubMed

    Mattucci, Massimo

    2011-01-01

    Analysis of the evolution drivers of the management systems in the metalworking industry, mainly characterized as "automotive", starting with the "mass production" model, followed for the development of Italian industry in the '50. Through the socio-economic changes of the '90/10, the metalworking plants were deeply restructured with the introduction of computers in the production systems, and then with the first global benchmarks such as the "lean production", towards the needed operational flexibility to respond to the market dynamics. Plants change radically, company networks become real, ICT services are fundamental elements for the integration. These trends help visualizing a new "Factory of the Future" for the years 2020/30, where the competition will be based on the socio-economical, technological and environmental factors included in the "Competitive Sustainable Manufacturing" paradigm. PMID:22073665

  7. Evolution of working memory

    PubMed Central

    Carruthers, Peter

    2013-01-01

    Working memory (WM) is fundamental to many aspects of human life, including learning, speech and text comprehension, prospection and future planning, and explicit “system 2” forms of reasoning, as well as overlapping heavily with fluid general intelligence. WM has been intensively studied for many decades, and there is a growing consensus about its nature, its components, and its signature limits. Remarkably, given its central importance in human life, there has been very little comparative investigation of WM abilities across species. Consequently, much remains unknown about the evolution of this important human capacity. Some questions can be tentatively answered from the existing comparative literature. Even studies that were not intended to do so can nonetheless shed light on the WM capacities of nonhuman animals. However, many questions remain. PMID:23754428

  8. Evolution of microbial markets.

    PubMed

    Werner, Gijsbert D A; Strassmann, Joan E; Ivens, Aniek B F; Engelmoer, Daniel J P; Verbruggen, Erik; Queller, David C; Noë, Ronald; Johnson, Nancy Collins; Hammerstein, Peter; Kiers, E Toby

    2014-01-28

    Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions. PMID:24474743

  9. Chemical evolution in space

    NASA Technical Reports Server (NTRS)

    Greenberg, J. M.

    1984-01-01

    Most of the complex molecules in interstellar space ar probably contained in small, frozen interstellar dust grains which are about as old as the earth and have been photochemically converted into large organic molecules. These molecules' maximum molecular weight is limited only by the approximately 0.1-micron grain size. Their evolution leads from cool, evolved stellar atmospheres' formation of seedlings to destruction through incorporation into the material of new stars. Organic dust constitutes about 0.1 percent of the total mass of the Milky Way, far outweighing any estimates of total planetary mass in the Galaxy. Because comets may be virtually pure, aggregated interstellar dust, they offer a source of interstellar organic material for detailed study.

  10. Evolution of filament barbs.

    NASA Astrophysics Data System (ADS)

    Liu, R.; Xu, Y.; Wang, H.

    We present a selected few cases in which the sense of chirality of filament barbs changed within periods as short as hours. We investigate in detail a quiescent filament on 2003 September 10 and 11. Of its four barbs displaying such changes, only one overlays a small polarity inversion line inside the EUV filament channel (EFC). No magnetic elements with magnitude above the noise level were detected at the endpoints of all barbs. In particular, a pair of barbs first approached toward, and then departed from, each other in Halpha , with the barb endpoints migrating as far as ˜ 10 arcsec. We conclude that the evolution of the barbs was driven by flux emergence and cancellation of small bipolar units at the EFC border.

  11. Evolution education in Canada's museums: Where is human evolution?

    NASA Astrophysics Data System (ADS)

    Bean, Sarah

    While an interest in the origin of human beings may be a cultural universal, there are various views and beliefs about how this event took place. In Canada, a recent (2010) Angus Reid survey revealed that only 61% of Canadians accepted that humans evolved over millions of years; 39% of the population either believed in creationism or did not accept evolution as a scientific fact. These statistics suggest that human evolution education is a topic that needs to be addressed. This thesis investigates the role of museums in public education about human evolution. Prior to this study, the number of Canadian museums with exhibits about this topic was unknown. Sixteen Canadian museums participated in this study, and the results demonstrated that only two had permanent exhibits on human evolution, and one creationist museum presented a biblically-based account of human origins. Here, it is argued that more of Canada's museums should consider incorporating human evolution education into their mandates.

  12. Galaxy Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Nagamine, Kentaro; Reddy, Naveen; Daddi, Emanuele; Sargent, Mark T.

    2016-07-01

    In this chapter, we discuss the current status of observational and computational studies on galaxy formation and evolution. In particular, a joint analysis of star-formation rates (SFRs), stellar masses, and metallicities of galaxies throughout cosmic time can shed light on the processes by which galaxies build up their stellar mass and enrich the environment with heavy elements. Comparison of such observations and the results of numerical simulations can give us insights on the physical importance of various feedback effects by supernovae and active galactic nuclei. In Sect. 1, we first discuss the primary methods used to deduce the SFRs, stellar masses, and (primarily) gas-phase metallicities in high-redshift galaxies. Then, we show how these quantities are related to each other and evolve with time. In Sect. 2, we further examine the distribution of SFRs in galaxies following the `Main Sequence' paradigm. We show how the so-called `starbursts' display higher specific SFRs and SF efficiencies by an order of magnitude. We use this to devise a simple description of the evolution of the star-forming galaxy population since z ˜3 that can successfully reproduce some of the observed statistics in the infrared (IR) wavelength. We also discuss the properties of molecular gas. In Sect. 3, we highlight some of the recent studies of high-redshift galaxy formation using cosmological hydrodynamic simulations. We discuss the physical properties of simulated galaxies such as luminosity function and escape fraction of ionizing photons, which are important statistics for reionization of the Universe. In particular the escape fraction of ionizing photons has large uncertainties, and studying gamma-ray bursts (which is the main topic of this conference) can also set observational constraints on this uncertain physical parameter as well as cosmic star formation rate density.

  13. Case A Binary Evolution

    SciTech Connect

    Nelson, C A; Eggleton, P P

    2001-03-28

    We undertake a comparison of observed Algol-type binaries with a library of computed Case A binary evolution tracks. The library consists of 5500 binary tracks with various values of initial primary mass M{sub 10}, mass ratio q{sub 0}, and period P{sub 0}, designed to sample the phase-space of Case A binaries in the range -0.10 {le} log M{sub 10} {le} 1.7. Each binary is evolved using a standard code with the assumption that both total mass and orbital angular momentum are conserved. This code follows the evolution of both stars until the point where contact or reverse mass transfer occurs. The resulting binary tracks show a rich variety of behavior which we sort into several subclasses of Case A and Case B. We present the results of this classification, the final mass ratio and the fraction of time spent in Roche Lobe overflow for each binary system. The conservative assumption under which we created this library is expected to hold for a broad range of binaries, where both components have spectra in the range G0 to B1 and luminosity class III - V. We gather a list of relatively well-determined observed hot Algol-type binaries meeting this criterion, as well as a list of cooler Algol-type binaries where we expect significant dynamo-driven mass loss and angular momentum loss. We fit each observed binary to our library of tracks using a {chi}{sup 2}-minimizing procedure. We find that the hot Algols display overall acceptable {chi}{sup 2}, confirming the conservative assumption, while the cool Algols show much less acceptable {chi}{sup 2} suggesting the need for more free parameters, such as mass and angular momentum loss.

  14. Early bioenergetic evolution

    PubMed Central

    Sousa, Filipa L.; Thiergart, Thorsten; Landan, Giddy; Nelson-Sathi, Shijulal; Pereira, Inês A. C.; Allen, John F.; Lane, Nick; Martin, William F.

    2013-01-01

    Life is the harnessing of chemical energy in such a way that the energy-harnessing device makes a copy of itself. This paper outlines an energetically feasible path from a particular inorganic setting for the origin of life to the first free-living cells. The sources of energy available to early organic synthesis, early evolving systems and early cells stand in the foreground, as do the possible mechanisms of their conversion into harnessable chemical energy for synthetic reactions. With regard to the possible temporal sequence of events, we focus on: (i) alkaline hydrothermal vents as the far-from-equilibrium setting, (ii) the Wood–Ljungdahl (acetyl-CoA) pathway as the route that could have underpinned carbon assimilation for these processes, (iii) biochemical divergence, within the naturally formed inorganic compartments at a hydrothermal mound, of geochemically confined replicating entities with a complexity below that of free-living prokaryotes, and (iv) acetogenesis and methanogenesis as the ancestral forms of carbon and energy metabolism in the first free-living ancestors of the eubacteria and archaebacteria, respectively. In terms of the main evolutionary transitions in early bioenergetic evolution, we focus on: (i) thioester-dependent substrate-level phosphorylations, (ii) harnessing of naturally existing proton gradients at the vent–ocean interface via the ATP synthase, (iii) harnessing of Na+ gradients generated by H+/Na+ antiporters, (iv) flavin-based bifurcation-dependent gradient generation, and finally (v) quinone-based (and Q-cycle-dependent) proton gradient generation. Of those five transitions, the first four are posited to have taken place at the vent. Ultimately, all of these bioenergetic processes depend, even today, upon CO2 reduction with low-potential ferredoxin (Fd), generated either chemosynthetically or photosynthetically, suggesting a reaction of the type ‘reduced iron → reduced carbon’ at the beginning of bioenergetic evolution

  15. Palaeoenvironments and hominoid evolution.

    PubMed

    Pickford, Martin

    2002-03-01

    One of the key features that separates humans and their closest relatives (extinct species of the genus Homo and Praeanthropus and the australopithecines Australopithecus and Paranthropus) on the one hand, from the other hominoids, on the other, is their obligate bipedal locomotion when on the ground. This major difference from the generally quadrupedal locomotion practiced by other hominoids (Pan, Gorilla, Pongo and many extinct lineages) is reflected in many parts of the body, including all the major bones in the legs, arms, trunk and cranium. Locomotion has thus been of major interest to those interested in human origins, evolution, classification and phylogeny. A major hurdle to studies of the origins of bipedalism concerns the paucity of African hominoid fossils between 15 Ma, when all the adequately known hominoids were quadrupedal (most were pronograde, but at least one lineage was orthograde), and 4.2 Ma by which time fully bipedal hominids were established in Africa. Examination of Old World geology and palaeontology reveals a great deal about the evolution of palaeoenvironments and faunas during this period, and it is suggested that hominids evolved bipedal locomotion at the same time that there was a fundamental reorganisation of faunas towards the end of the Miocene. This faunal turnover resulted in the establishment of faunal lineages of "modern" aspect in Africa at the expense of "archaic" lineages which either went extinct or suffered a diminution of diversity. Many of the "modern" lineages were adapted to open country habitats in which grass became a major component of the diet as shown by modifications in the cheek teeth. Hominoids, in contrast, retained their traditional diet but were obliged to forage over greater and greater areas in order to do so, and this tactic led to pressures to modify the locomotor system rather than the diet. If bipedal hominids originated during this period, then the family Hominidae (sensu stricto) dates from about 8

  16. Enzyme catalysis: Evolution made easy

    NASA Astrophysics Data System (ADS)

    Wee, Eugene J. H.; Trau, Matt

    2014-09-01

    Directed evolution is a powerful tool for the development of improved enzyme catalysts. Now, a method that enables an enzyme, its encoding DNA and a fluorescent reaction product to be encapsulated in a gel bead enables the application of directed evolution in an ultra-high-throughput format.

  17. The Molecular Basis of Evolution.

    ERIC Educational Resources Information Center

    Wilson, Allan C.

    1985-01-01

    Discovery that mutations accumulate at steady rates over time in the genes of all lineages of plants and animals has led to new insights into evolution at the molecular and organismal levels. Discusses molecular evolution, examining deoxyribonuclei acid (DNA) sequences, morphological distances, and codon rate of change. (DH)

  18. A Teaching Guide to Evolution

    ERIC Educational Resources Information Center

    Gregg, Thomas G.; Janssen, Gary R.; Bhattacharjee, J.K.

    2003-01-01

    Evolution is considered by virtually all biologists to be the central unifying principle of biology, yet its fundamental concepts are not widely understood or widely disseminated. Teaching evolution--defined as descent with modification from a common ancestor as a result of natural selection acting on genetic variation--has traditionally been a…

  19. America's Anti-Evolution Movement

    ERIC Educational Resources Information Center

    Moore, Randy

    2002-01-01

    Evolution is the cornerstone of biology and one of the most powerful, exciting, and well-supported laws in modern science. Evolution transforms biology from a collection of unrelated observations and definitions into a coherent discipline that, among other things, helps people understand life's history and predict answers to important research…

  20. Visualizing Clonal Evolution in Cancer.

    PubMed

    Krzywinski, Martin

    2016-06-01

    Rapid and inexpensive single-cell sequencing is driving new visualizations of cancer instability and evolution. Krzywinski discusses how to present clone evolution plots in order to visualize temporal, phylogenetic, and spatial aspects of a tumor in a single static image. PMID:27259197

  1. Evolution of entomopathogenicity in fungi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with all great and complex questions, no definitive answers are possible about the evolution of pathogenicity in general (an eternal question for mycologists!), much less about the evolution of fungal specialization to attack and to kill living insects or other arthropods. It does seem certain, h...

  2. Prolegomenon to patterns in evolution.

    PubMed

    Kauffman, Stuart A

    2014-09-01

    Despite Darwin, we remain children of Newton and dream of a grand theory that is epistemologically complete and would allow prediction of the evolution of the biosphere. The main purpose of this article is to show that this dream is false, and bears on studying patterns of evolution. To do so, I must justify the use of the word "function" in biology, when physics has only happenings. The concept of "function" lifts biology irreducibly above physics, for as we shall see, we cannot prestate the ever new biological functions that arise and constitute the very phase space of evolution. Hence, we cannot mathematize the detailed becoming of the biosphere, nor write differential equations for functional variables we do not know ahead of time, nor integrate those equations, so no laws "entail" evolution. The dream of a grand theory fails. In place of entailing laws, I propose a post-entailing law explanatory framework in which Actuals arise in evolution that constitute new boundary conditions that are enabling constraints that create new, typically unprestatable, adjacent possible opportunities for further evolution, in which new Actuals arise, in a persistent becoming. Evolution flows into a typically unprestatable succession of adjacent possibles. Given the concept of function, the concept of functional closure of an organism making a living in its world becomes central. Implications for patterns in evolution include historical reconstruction, and statistical laws such as the distribution of extinction events, or species per genus, and the use of formal cause, not efficient cause, laws. PMID:24704211

  3. Evolution: Understanding Life on Earth.

    ERIC Educational Resources Information Center

    Dybas, Cheryl Lyn

    2002-01-01

    Reports on presentations representing evolution at the 53rd annual meeting of the American Institute of Biological Sciences (AIBS) which was held March 22-24, 2002. Explains evolutionary patterns, phylogenetic pageantry, molecular clocks, speciation and biogeography, speciation and macroevolution, and human-induced evolution of drugs-resistant…

  4. Evolution & the Cesarean Section Rate

    ERIC Educational Resources Information Center

    Walsh, Joseph A.

    2008-01-01

    "Nothing in biology makes sense except in the light of evolution." This was the title of an essay by geneticist Theodosius Dobzhansky writing in 1973. Many causes have been given for the increased Cesarean section rate in developed countries, but biologic evolution has not been one of them. The C-section rate will continue to rise, because the…

  5. Major transitions in human evolution.

    PubMed

    Foley, Robert A; Martin, Lawrence; Mirazón Lahr, Marta; Stringer, Chris

    2016-07-01

    Evolutionary problems are often considered in terms of 'origins', and research in human evolution seen as a search for human origins. However, evolution, including human evolution, is a process of transitions from one state to another, and so questions are best put in terms of understanding the nature of those transitions. This paper discusses how the contributions to the themed issue 'Major transitions in human evolution' throw light on the pattern of change in hominin evolution. Four questions are addressed: (1) Is there a major divide between early (australopithecine) and later (Homo) evolution? (2) Does the pattern of change fit a model of short transformations, or gradual evolution? (3) Why is the role of Africa so prominent? (4) How are different aspects of adaptation-genes, phenotypes and behaviour-integrated across the transitions? The importance of developing technologies and approaches and the enduring role of fieldwork are emphasized.This article is part of the themed issue 'Major transitions in human evolution'. PMID:27298461

  6. Two Level Parallel Grammatical Evolution

    NASA Astrophysics Data System (ADS)

    Ošmera, Pavel

    This paper describes a Two Level Parallel Grammatical Evolution (TLPGE) that can evolve complete programs using a variable length linear genome to govern the mapping of a Backus Naur Form grammar definition. To increase the efficiency of Grammatical Evolution (GE) the influence of backward processing was tested and a second level with differential evolution was added. The significance of backward coding (BC) and the comparison with standard coding of GEs is presented. The new method is based on parallel grammatical evolution (PGE) with a backward processing algorithm, which is further extended with a differential evolution algorithm. Thus a two-level optimization method was formed in attempt to take advantage of the benefits of both original methods and avoid their difficulties. Both methods used are discussed and the architecture of their combination is described. Also application is discussed and results on a real-word application are described.

  7. Molecular imprint of dust evolution

    NASA Astrophysics Data System (ADS)

    Akimkin, Vitaly; Zhukovska, Svitlana; Wiebe, Dmitri; Semenov, Dmitry; Pavlyuchenkov, Yaroslav; Vasyunin, Anton; Birnstiel, Til; Henning, Thomas

    2013-07-01

    Evolution of sub-micron grains is an essential process during early stages of planet formation. The dust growth and sedimentation to the midplane affect a spectral energy distribution. At the same time dust evolution can alter significantly the distribution of gas that is a factor of 100 more massive than dust and can be traced with molecular line observations. We present simulations of protoplanetary disk structure with grain evolution using the ANDES code ("AccretioN disk with Dust Evolution and Sedimentation"). ANDES comprises (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain chemical network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. Such a set of physical processes allows us to assess the impact of dust evolution on the gas component, which is primarily related to radiation field and total available surface for chemical reactions. Considering cases of (i) evolved dust (2 Myr of grain coagulation, fragmentation and sedimentation) and (ii) pristine dust (well- mixed 0.1 micron grains), we found a sufficient changes in disk physical and chemical structure caused by the dust evolution. Due to higher transparency of the evolved disk model UV-shielded molecular layer is shifted closer to the midplane. The presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO, while the depletion is still effective in adjacent upper layers. Molecular concentrations of many species are enhanced in the disk model with dust evolution (CO2, NH2CN, HNO, H2O, HCOOH, HCN, CO) which provides an opportunity to use these molecules as tracers of dust evolution.

  8. Lakes, Lagerstaetten, and Evolution

    NASA Astrophysics Data System (ADS)

    Kordesch, E. G.; Park, L. E.

    2001-12-01

    nonmarine organisms, and thus the evolution of freshwater organisms, can occur in a short geologic timespan. Because of their unique and varied conditions, the evolution of nonmarine organisms may be linked to lake basin type as well as lake longevity.

  9. Evolution of genome architecture.

    PubMed

    Koonin, Eugene V

    2009-02-01

    Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome

  10. Evolution of the Insects

    NASA Astrophysics Data System (ADS)

    Grimaldi, David; Engel, Michael S.

    2005-05-01

    This book chronicles the complete evolutionary history of insects--their living diversity and relationships as well as 400 million years of fossils. Introductory sections cover the living species diversity of insects, methods of reconstructing evolutionary relationships, basic insect structure, and the diverse modes of insect fossilization and major fossil deposits. Major sections then explore the relationships and evolution of each order of hexapods. The volume also chronicles major episodes in the evolutionary history of insects from their modest beginnings in the Devonian and the origin of wings hundreds of millions of years before pterosaurs and birds to the impact of mass extinctions and the explosive radiation of angiosperms on insects, and how they evolved into the most complex societies in nature. Whereas other volumes focus on either living species or fossils, this is the first comprehensive synthesis of all aspects of insect evolution. Illustrated with 955 photo- and electron- micrographs, drawings, diagrams, and field photos, many in full color and virtually all of them original, this reference will appeal to anyone engaged with insect diversity--professional entomologists and students, insect and fossil collectors, and naturalists. David Grimaldi and Michael S. Engel have collectively published over 200 scientific articles and monographs on the relationships and fossil record of insects, including 10 articles in the journals Science, Nature, and Proceedings of the National Academy of Sciences. David Grimaldi is curator in the Division of Invertebrate Zoology, American Museum of Natural History and adjunct professor at Cornell University, Columbia University, and the City University of New York. David Grimaldi has traveled in 40 countries on 6 continents, collecting and studying recent species of insects and conducting fossil excavations. He is the author of Amber: Window to the Past (Abrams, 2003). Michael S. Engel is an assistant professor in the

  11. Evolution of Interstellar Grains

    NASA Technical Reports Server (NTRS)

    Allamandola, Lou J.; DeVincenzi, Donald L. (Technical Monitor)

    1998-01-01

    During the past two decades observations combined with laboratory simulations, have revolutionized our understanding of interstellar ice and dust, the raw materials from which planets, comets and stars form. Most interstellar material is concentrated in large molecular clouds where simple molecules are formed by dust-grain and gas-phase reactions. Gaseous species striking the cold (10K) dust stick, forming an icy grain mantle. This accretion, coupled with UV photolysis, produces a complex chemical mixture containing volatile, non-volatile, and isotopically fractionated species. Ices in molecular clouds contain the very simple molecules H2O, CH3OH, CO, CO2, H2, and perhaps some NH3 and H2CO, as well as more complex species. The evidence for these compounds, as well as carbon-rich materials, will be reviewed and the possible connections with comets and meteorites will be presented in the first part of the talk . The second part of the presentation will focus on interstellar/precometary ice photochemical evolution and the species likely to be found in comets. The chemical composition and photochemical evolution of realistic interstellar/pre-cometary ice analogs will be discussed. Ultraviolet photolysis of these ices produces H2, H2CO, CO2, CO, CH4, HCO, and more complex molecules. When ices representative of interstellar grains and comets are exposed to UV radiation at low temperature a series of moderately complex organic molecules are formed in the ice including: CH3CH2OH (ethanol), HC(=O)NH2 (formamide), CH3C(=O)NH2 (acetamide), and R-C=N (nitriles). Several of these are already known to be in the interstellar medium, and their presence indicates the importance of grain processing. After warming to room temperature an organic residue remains. This is composed primarily of hexamethylenetetramine (HMT, C6H12N4), with lesser amounts of polyoxymethylene-related species (POMs), amides, and ketones. This is in sharp contrast to the organic residues produced by

  12. The Galaxy Evolution Explorer

    NASA Astrophysics Data System (ADS)

    Martin, Christopher; Barlow, Thomas; Barnhart, William; Bianchi, Luciana; Blakkolb, Brian K.; Bruno, Dominique; Bushman, Joseph; Byun, Yong-Ik; Chiville, Michael; Conrow, Timothy; Cooke, Brian; Donas, Jose; Fanson, James L.; Forster, Karl; Friedman, Peter G.; Grange, Robert; Griffiths, David; Heckman, Timothy; Lee, James; Jelinsky, Patrick N.; Kim, Sug-Whan; Lee, Siu-Chun; Lee, Young-Wook; Liu, Dankai; Madore, Barry F.; Malina, Roger; Mazer, Alan; McLean, Ryan; Milliard, Bruno; Mitchell, William; Morais, Marco; Morrissey, Patrick F.; Neff, Susan G.; Raison, Frederic; Randall, David; Rich, Michael; Schiminovich, David; Schmitigal, Wes; Sen, Amit; Siegmund, Oswald H. W.; Small, Todd; Stock, Joseph M.; Surber, Frank; Szalay, Alexander; Vaughan, Arthur H.; Weigand, Timothy; Welsh, Barry Y.; Wu, Patrick; Wyder, Ted; Xu, C. Kevin; Zsoldas, Jennifer

    2003-02-01

    The Galaxy Evolution Explorer (GALEX), a NASA Small Explorer Mission planned for launch in Fall 2002, will perform the first Space Ultraviolet sky survey. Five imaging surveys in each of two bands (1350-1750Å and 1750-2800Å) will range from an all-sky survey (limit mAB~20-21) to an ultra-deep survey of 4 square degrees (limit mAB~26). Three spectroscopic grism surveys (R=100-300) will be performed with various depths (mAB~20-25) and sky coverage (100 to 2 square degrees) over the 1350-2800Å band. The instrument includes a 50 cm modified Ritchey-Chrétien telescope, a dichroic beam splitter and astigmatism corrector, two large sealed tube microchannel plate detectors to simultaneously cover the two bands and the 1.2 degree field of view. A rotating wheel provides either imaging or grism spectroscopy with transmitting optics. We will use the measured UV properties of local galaxies, along with corollary observations, to calibrate the UV-global star formation rate relationship in galaxies. We will apply this calibration to distant galaxies discovered in the deep imaging and spectroscopic surveys to map the history of star formation in the universe over the red shift range zero to two. The GALEX mission will include an Associate Investigator program for additional observations and supporting data analysis. This will support a wide variety of investigations made possible by the first UV sky survey.

  13. Evolution of optogenetic microdevices.

    PubMed

    Kale, Rajas P; Kouzani, Abbas Z; Walder, Ken; Berk, Michael; Tye, Susannah J

    2015-07-01

    Implementation of optogenetic techniques is a recent addition to the neuroscientists' preclinical research arsenal, helping to expose the intricate connectivity of the brain and allowing for on-demand direct modulation of specific neural pathways. Developing an optogenetic system requires thorough investigation of the optogenetic technique and of previously fabricated devices, which this review accommodates. Many experiments utilize bench-top systems that are bulky, expensive, and necessitate tethering to the animal. However, these bench-top systems can make use of power-demanding technologies, such as concurrent electrical recording. Newer portable microdevices and implantable systems carried by freely moving animals are being fabricated that take advantage of wireless energy harvesting to power a system and allow for natural movements that are vital for behavioral testing and analysis. An investigation of the evolution of tethered, portable, and implantable optogenetic microdevices is presented, and an analysis of benefits and detriments of each system, including optical power output, device dimensions, electrode width, and weight is given. Opsins, light sources, and optical fiber coupling are also discussed to optimize device parameters and maximize efficiency from the light source to the fiber, respectively. These attributes are important considerations when designing and developing improved optogenetic microdevices. PMID:26158015

  14. Thioredoxin and evolution

    NASA Technical Reports Server (NTRS)

    Buchanan, B. B.

    1991-01-01

    Comparisons of primary structure have revealed significant homology between the m type thioredoxins of chloroplasts and the thioredoxins from a variety of bacteria. Chloroplast thioredoxin f, by comparison, remains an enigma: certain residues are invariant with those of the other thioredoxins, but a phylogenetic relationship to bacterial or m thioredoxins seems distant. Knowledge of the evolutionary history of thioredoxin f is, nevertheless, of interest because of its role in photosynthesis. Therefore, we have attempted to gain information on the evolutionary history of chloroplast thioredoxin f, as well as m. Our goal was first to establish the utility of thioredoxin as a phylogenetic marker, and, if found suitable, to deduce the evolutionary histories of the chloroplast thioredoxins. To this end, we have constructed phylogenetic (minimal replacement) trees using computer analysis. The results show that the thioredoxins of bacteria and animals fall into distinct phylogenetic groups - the bacterial group resembling that derived from earlier 16s RNA analysis and the animal group showing a cluster consistent with known relationships. The chloroplast thioredoxins show a novel type of phylogenetic arrangement: one m type aligns with its counterpart of eukaryotic algae, cyanobacteria and other bacteria, whereas the second type (f type) tracks with animal thioredoxin. The results give new insight into the evolution of photosynthesis.

  15. Monitoring Evolution at CERN

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Fiorini, B.; Murphy, S.; Pigueiras, L.; Santos, M.

    2015-12-01

    Over the past two years, the operation of the CERN Data Centres went through significant changes with the introduction of new mechanisms for hardware procurement, new services for cloud provisioning and configuration management, among other improvements. These changes resulted in an increase of resources being operated in a more dynamic environment. Today, the CERN Data Centres provide over 11000 multi-core processor servers, 130 PB disk servers, 100 PB tape robots, and 150 high performance tape drives. To cope with these developments, an evolution of the data centre monitoring tools was also required. This modernisation was based on a number of guiding rules: sustain the increase of resources, adapt to the new dynamic nature of the data centres, make monitoring data easier to share, give more flexibility to Service Managers on how they publish and consume monitoring metrics and logs, establish a common repository of monitoring data, optimise the handling of monitoring notifications, and replace the previous toolset by new open source technologies with large adoption and community support. This contribution describes how these improvements were delivered, present the architecture and technologies of the new monitoring tools, and review the experience of its production deployment.

  16. The evolution of language.

    PubMed

    Corballis, Michael C

    2009-03-01

    Language, whether spoken or signed, can be viewed as a gestural system, evolving from the so-called mirror system in the primate brain. In nonhuman primates the gestural system is well developed for the productions and perception of manual action, especially transitive acts involving the grasping of objects. The emergence of bipedalism in the hominins freed the hands for the adaptation of the mirror system for intransitive acts for communication, initially through the miming of events. With the emergence of the genus Homo from some 2 million years ago, pressures for more complex communication and increased vocabulary size led to the conventionalization of gestures, the loss of iconic representation, and a gradual shift to vocal gestures replacing manual ones-although signed languages are still composed of manual and facial gestures. In parallel with the conventionalization of symbols, languages gained grammatical complexity, perhaps driven by the evolution of episodic memory and mental time travel, which involve combinations of familiar elements--Who did what to whom, when, where, and why? Language is thus adapted to allow us to share episodic structures, whether past, planned, or fictional, and so increase survival fitness. PMID:19338501

  17. Evolution of coalitionary killing.

    PubMed

    Wrangham, R W

    1999-01-01

    Warfare has traditionally been considered unique to humans. It has, therefore, often been explained as deriving from features that are unique to humans, such as the possession of weapons or the adoption of a patriarchal ideology. Mounting evidence suggests, however, that coalitional killing of adults in neighboring groups also occurs regularly in other species, including wolves and chimpanzees. This implies that selection can favor components of intergroup aggression important to human warfare, including lethal raiding. Here I present the principal adaptive hypothesis for explaining the species distribution of intergroup coalitional killing. This is the "imbalance-of-power hypothesis," which suggests that coalitional killing is the expression of a drive for dominance over neighbors. Two conditions are proposed to be both necessary and sufficient to account for coalitional killing of neighbors: (1) a state of intergroup hostility; (2) sufficient imbalances of power between parties that one party can attack the other with impunity. Under these conditions, it is suggested, selection favors the tendency to hunt and kill rivals when the costs are sufficiently low. The imbalance-of-power hypothesis has been criticized on a variety of empirical and theoretical grounds which are discussed. To be further tested, studies of the proximate determinants of aggression are needed. However, current evidence supports the hypothesis that selection has favored a hunt-and-kill propensity in chimpanzees and humans, and that coalitional killing has a long history in the evolution of both species. PMID:10601982

  18. Active region coronal evolution

    NASA Technical Reports Server (NTRS)

    Golub, L.; Noci, G.; Poletto, G.; Vaiana, G. S.

    1982-01-01

    Scaling relations between coronal base pressure and longitudinal photospheric magnetic field strength are tested for the case of a single active region observed for five solar rotations from Skylab. The evolution of measureable quantities, such as coronal thermal energy content, total longitudinal photospheric magnetic flux, region scale size, and peak energy density, is traced throughout the five rotations observed. The theoretically derived scaling law of Golub et al. (1980) is found to provide an acceptable fit to the data throughout the entire evolutionary history of the region from an age of about 3 days to the fully evolved state in which the mature active region merges into the general large-scale structure of the quiet corona. An alternative scaling law obtained by including the results of Galeev et al. (1981), however, is found to provide a somewhat better fit to the data. The study is seen as providing additional justification for the belief that magnetic field-related heating is the operative mechanism in the solar corona.

  19. Nanosciences: Evolution or revolution?

    NASA Astrophysics Data System (ADS)

    Pautrat, Jean-Louis

    2011-09-01

    In miniaturized objects fabricated by modern technology the smallest linear size may be of a few nanometers. In the field of microelectronics, the advantages of such a miniaturization are huge (increased complexity and reliability, reduced costs). The technology is now approaching the limits where further size reduction will be impossible, except for very novel techniques such as molecular electronics. Miniaturization research has also led to the discovery of nanometric objects such as carbon nanotubes, which turn out to be particularly appropriate for inventing new materials. Miniaturization techniques have been progressively applied in other fields, with the hope of obtaining improvements similar to those encountered in microelectronics. Examples are biochips, which concentrate on a few cm 2 the recognition of ADN sequences, or 'lab-on-a-chip' devices, each of which constitutes a whole laboratory of chemical analysis, or MEMs (Micro Electro Mechanical Systems). New therapies will use miniaturized objects with multiple functions: For instance a nanoparticle can both recognize the target organ thanks to an appropriate protein, and deliver the therapeutic molecule to this target. These results have only been possible through new observation instruments, able to observe and manipulate nano objects. Is the observed evolution really a revolution of science and techniques? This is a point discussed in the conclusion, which also deals with risks associated to nanotechnologies, while the need for a social regulation is stressed.

  20. Evolution of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Lammer, H.; Povoden, G.; Selsis, F.; Ribas, I.; Tehrany, M. G.; Guinan, E. F.; Hanslmeier, A.; Bauer, S. J.

    2003-04-01

    We show that anomalies of heavy isotopes in Titan's atmosphere can be explained by using observational data of the radiation and particle environment of solar proxies. These observations indicate a larger solar wind flux and high solar EUV radiation of the early Sun during the first billion years are responsible for a fractionated atmospheric loss. For studying the evolution of the thermal escape of Titan's atmosphere we use a scaling law based on an approximate solution of the heat balance equation in the exosphere. Further, isotope fractionation by non-thermal atmospheric escape processes like dissociative recombination, impact dissociation, atmospheric sputtering and ion pick-up processes. We show that Titan lost an atmospheric mass We discuss also possible chemical reactions of methane and other out-gassing substances due to the high solar EUV fluxes powered thermospheric temperature 4 Gyr ago. This could have lead to molecules of higher mass like ethane and other organic compounds. The efficient production of such molecules was reduced by the decrease of the solar activity resulting in a kind of frozen state. At present only high energy processes like lightning discharges may give similar reactions.

  1. Tooth patterning and evolution.

    PubMed

    Salazar-Ciudad, Isaac

    2012-12-01

    Teeth are a good system for studying development and evolution. Tooth development is largely independent of the rest of the body and teeth can be grown in culture to attain almost normal morphology. Their development is not affected by the patterns of movement or sensorial perception in the embryo. Teeth are hard and easily preserved. Thus, there is plenty of easily accessible information about the patterns of morphological variation occurring between and within species. This review summarises recent work and describes how tooth development can be understood as the coupling between a reaction-diffusion system and differential growth produced by diffusible growth factors: which growth factors are involved, how they affect each other's expression and how they affect the spatial patterns of proliferation that lead to final morphology. There are some aspects of tooth development, however, that do not conform to some common assumptions in many reaction-diffusion models. Those are discussed here since they provide clues about how reaction-diffusion systems may work in actual developmental systems. Mathematical models implementing what we know about tooth development are discussed. PMID:23266218

  2. Evolution of galaxy habitability

    NASA Astrophysics Data System (ADS)

    Gobat, R.; Hong, S. E.

    2016-08-01

    We combine a semi-analytic model of galaxy evolution with constraints on circumstellar habitable zones and the distribution of terrestrial planets in order to probe the suitability of galaxies of different mass and type to host habitable planets, and how it evolves with time. We find that the fraction of stars with terrestrial planets in their habitable zone (known as habitability) depends only weakly on galaxy mass, with a maximum around 4 × 1010M⊙. We estimate that 0.7% of all stars in Milky Way-type galaxies to host a terrestrial planet within their habitable zone, consistent with the value derived from Kepler observations. On the other hand, the habitability of passive galaxies is slightly but systematically higher, unless we assume an unrealistically high sensitivity of planets to supernovae. We find that the overall habitability of galaxies has not changed significantly in the last ~8 Gyr, with most of the habitable planets in local disk galaxies having formed ~1.5 Gyr before our own solar system. Finally, we expect that ~1.4 ×109 planets similar to present-day Earth have existed so far in our galaxy.

  3. Evolution of VCSELs

    NASA Astrophysics Data System (ADS)

    Tatum, Jim A.

    2014-02-01

    Over the last 20 years, nearly 1 billion VCSELs have been shipped, the vast majority of them emitting at 850nm using GaAs active regions, and primarily used in data communications and optical tracking applications. Looking to the future, the ever increasing speed of data communications is driving the VCSEL to evolve with more complex active regions, optical mode control, and alternate wavelengths to meet the more stringent requirements. We will discuss the current state of VCSELs for 28Gbps, and higher speeds, focusing on evolution to more complex active regions and alternate wavelength approaches, particularly as the market evolves to more active optical cables. Other high volume applications for VCSELs are driving improvements in single mode and optical power characteristics. We will present several evolving market trends and applications, and the specific VCSEL requirements that are imposed. The ubiquitous 850nm, GaAs active region VCSEL is evolving in multiple ways, and will continue to be a viable optical source well in to the future.

  4. Flies, clocks and evolution.

    PubMed Central

    Rosato, E; Kyriacou, C P

    2001-01-01

    The negative feedback model for gene regulation of the circadian mechanism is described for the fruitfly, Drosophila melanogaster. The conservation of function of clock molecules is illustrated by comparison with the mammalian circadian system, and the apparent swapping of roles between various canonical clock gene components is highlighted. The role of clock gene duplications and divergence of function is introduced via the timeless gene. The impressive similarities in clock gene regulation between flies and mammals could suggest that variation between more closely related species within insects might be minimal. However, this is not borne out because the expression of clock molecules in the brain of the giant silk moth, Antheraea pernyi, is not easy to reconcile with the negative feedback roles of the period and timeless genes. Variation in clock gene sequences between and within fly species is examined and the role of co-evolution between and within clock molecules is described, particularly with reference to adaptive functions of the circadian phenotype. PMID:11710984

  5. EVOLUTION OF MYELOID CELLS

    PubMed Central

    Barreda, Daniel R.; Neely, Harold R.; Flajnik, Martin F.

    2015-01-01

    In 1882, Elie Metchnikoff identified myeloid-like cells from starfish larvae responding to the invasion by a foreign body (rose thorn). This marked the origins of the study of innate immunity, and an appreciation that cellular immunity is already well established in these “primitive” organisms. This chapter focuses on these myeloid cells as well as the newest members of this family, the dendritic cells (DC), and explores their evolutionary origins. Our goal is to provide evolutionary context for the development of the multilayered immune system of mammals, where myeloid cells now serve as central effectors of innate immunity and regulators of adaptive immunity. Overall, we find that core contributions of myeloid cells to the regulation of inflammation are based on mechanisms that have been honed over hundreds of millions of years of evolution. Using phagocytosis as a platform, we show how fairly simple beginnings have offered a robust foundation onto which additional control features have been integrated, resulting in central regulatory nodes that now manage multi-factorial aspects of homeostasis and immunity. PMID:27337471

  6. Evolution of optogenetic microdevices

    PubMed Central

    Kale, Rajas P.; Kouzani, Abbas Z.; Walder, Ken; Berk, Michael; Tye, Susannah J.

    2015-01-01

    Abstract. Implementation of optogenetic techniques is a recent addition to the neuroscientists’ preclinical research arsenal, helping to expose the intricate connectivity of the brain and allowing for on-demand direct modulation of specific neural pathways. Developing an optogenetic system requires thorough investigation of the optogenetic technique and of previously fabricated devices, which this review accommodates. Many experiments utilize bench-top systems that are bulky, expensive, and necessitate tethering to the animal. However, these bench-top systems can make use of power-demanding technologies, such as concurrent electrical recording. Newer portable microdevices and implantable systems carried by freely moving animals are being fabricated that take advantage of wireless energy harvesting to power a system and allow for natural movements that are vital for behavioral testing and analysis. An investigation of the evolution of tethered, portable, and implantable optogenetic microdevices is presented, and an analysis of benefits and detriments of each system, including optical power output, device dimensions, electrode width, and weight is given. Opsins, light sources, and optical fiber coupling are also discussed to optimize device parameters and maximize efficiency from the light source to the fiber, respectively. These attributes are important considerations when designing and developing improved optogenetic microdevices. PMID:26158015

  7. The evolution of replicators.

    PubMed Central

    Szathmáry, E

    2000-01-01

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators. PMID:11127914

  8. Landscape evolution (A Review)

    PubMed Central

    Sharp, Robert P.

    1982-01-01

    Landscapes are created by exogenic and endogenic processes acting along the interface between the lithosphere and the atmosphere and hydrosphere. Various landforms result from the attack of weathering and erosion upon the highly heterogeneous lithospheric surface. Landscapes are dynamic, acutely sensitive to natural and artificial perturbation. Undisturbed, they can evolve through a succession of stages to a plain of low relief. Often, the progression of an erosion cycle is interrupted by tectonic or environmental changes; thus, many landscapes preserve vestiges of earlier cycles useful in reconstructing the recent history of Earth's surface. Landforms are bounded by slopes, so their evolution is best understood through study of slopes and the complex of factors controlling slope character and development. The substrate, biosphere, climatic environment, and erosive processes are principal factors. Creep of the disintegrated substrate and surface wash by water are preeminent. Some slopes attain a quasisteady form and recede parallel to themselves (backwearing); others become ever gentler with time (downwearing). The lovely convex/rectilinear/concave profile of many debris-mantled slopes reflects an interplay between creep and surface wash. Landscapes of greatest scenic attraction are usually those in which one or two genetic factors have strongly dominated or those perturbed by special events. Nature has been perturbing landscapes for billions of years, so mankind can learn about landscape perturbation from natural examples. Images

  9. Extraterrestrial civilizations: Problems of their evolution

    NASA Technical Reports Server (NTRS)

    Leskov, L. V.

    1987-01-01

    The problem of finding extraterrestrial civilizations and establishing contact with them is directly related to the problem of their evolution. Possible patterns in this evolution and the stages in the evolution of extraterrestrial civilizations are examined.

  10. Gas evolution from geopressured brines

    SciTech Connect

    Matthews, C.S.

    1980-06-01

    The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

  11. Statistical limitations on molecular evolution.

    PubMed

    Perlovsky, Leonid I

    2002-06-01

    Complexity of functions evolving in an evolution process are expected to be limited by the time length of an evolution process among other factors. This paper outlines a general method of deriving function-complexity limitations based on mathematical statistics and independent from details of a biological or genetic mechanism of the evolution of the function. Limitations on the emergence of life are derived, these limitations indicate a possibility of a very fast evolution and are consistent with "RNA world" hypothesis. The discussed method is general and can be used to characterize evolution of more specific biological organism functions and relate functions to genetic structures. The derived general limitations indicate that a co-evolution of multiple functions and species could be a slow process, whereas an evolution of a specific function might proceed very fast, so that no trace of intermediate forms (species) is preserved in fossil records of phenotype or DNA structure; this is consistent with a picture of "punctuated equilibrium". PMID:12023805

  12. On the evolution of development

    PubMed Central

    Torday, John S.

    2015-01-01

    Perhaps development is more than just morphogenesis. We now recognize that the conceptus expresses epigenetic marks that heritably affect it phenotypically, indicating that the offspring are to some degree genetically autonomous, and that ontogeny and phylogeny may coordinately determine the fate of such marks. This scenario mechanistically links ecology, ontogeny and phylogeny together as an integrated mechanism for evolution for the first time. As a functional example, the Parathyroid Hormone-related Protein (PTHrP) signaling duplicated during the Phanerozoic water-land transition. The PTHrP signaling pathway was critical for the evolution of the skeleton, skin barrier, and lung function, based on experimental evidence, inferring that physiologic stress can profoundly affect adaptation through internal selection, giving seminal insights to how and why vertebrates were able to evolve from water to land. By viewing evolution from its inception in unicellular organisms, driven by competition between pro- and eukaryotes, the emergence of complex biologic traits from the unicellular cell membrane offers a novel way of thinking about the process of evolution from its beginnings, rather than from its consequences as is traditionally done. And by focusing on the epistatic balancing mechanisms for calcium and lipid homeostasis, the evolution of unicellular organisms, driven by competition between pro- and eukaryotes, gave rise to the emergence of complex biologic traits derived from the unicellular plasma lemma, offering a unique way of thinking about the process of evolution. By exploiting the cellular-molecular mechanisms of lung evolution as ontogeny and phylogeny, the sequence of events for the evolution of the skin, kidney and skeleton become more transparent. This novel approach to the evolution question offers equally novel insights to the primacy of the unicellular state, hologenomics and even a priori bioethical decisions. PMID:25729239

  13. The Evolution of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Li, Lifang; Zhang, Fenghui; Han, Zhanwen

    2013-02-01

    Using Eggletons code the evolution of cataclysmic variables (CVs) is investigated. CVs might suffer the loss of mass and angular momentum during their evolution, we present the models of CVs with mass loss and angular momentum loss (AML) due to gravitation wave radiation (GR) and/or magnetic braking (MB). It is found that the loss of mass and angular momentum has significant influence on the evolution of CVs, and that the change of the star structure or their atmosphere properties is a possible mechanism which underlies a sudden change in the rate of AML owing to MB.

  14. Experimental evolution in budding yeast

    NASA Astrophysics Data System (ADS)

    Murray, Andrew

    2012-02-01

    I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.

  15. Confronting the Evolution Education Abyss

    NASA Astrophysics Data System (ADS)

    Zook, Douglas

    This article discusses recent evolution education literature and highlights key themes and perspectives recognized in the scientific community but only minimally exposed within either the science classroom or the science education research agenda. Examples include: macroevolution, expressed as the history of life on earth; the microbial dominance of most of earth time as a learning tool and theme organizer; sym-biogenesis and frequently accompanying horizontal gene transfer; Lamarck and the roles of others traditionally ridiculed in evolution study; and new views of fundamental evolution topics such as speciation. Several recommendations are given to address these important omissions within the science educator community.Received: 7 October 1994; Revised: 11 April 1995;

  16. Evolution of rhinology.

    PubMed

    Kaluskar, S K

    2008-06-01

    The study of the nose is as old as civilisation. Various conditions affecting its structure and function has been documented in Edwin Smith Papyrus in hieroglyphic script, an Egyptian writing system of the mid -4th Millennium BC.The major contribution for the complete reconstruction of the nose originated in India by Sushruta in around 600 BC. Writing in Sanskrit in the form of verses he described in detail the technique of total reconstruction, which is still being practiced today as Indian Rhinoplasty. This surgical reconstruction paved the way to modern plastic surgery in Europe and United States in 18th century. Sushruta contributed not only to the plastic surgery of the nose, but described entire philosophy of Head and Neck and other surgery as well. Other notable contributors were Greek physicians, Hippocrate and Galen, and at the birth of the Christianity, Celsus wrote eight books of medical encyclopaedia, which described various conditions affecting nose.Septal and Sinus surgery, in comparison to rhinoplasty did not develop until 17th century. Septal surgery began with total septectomy, sub mucous resection by Killian & Freer in early 20th century and later septoplasty by Cottle in middle of 20th century.Sinus surgery probably originated in Egypt, where instruments were used to remove brain through the ethmoid sinuses as part of the mummification process. In 18th century, empyema of the maxillary sinus was drained through the tooth socket or anterior wall of the sinus, which lead to the evolution of radical procedures of removal of mucous membrane and inferior meatal antrostomy. In the late 20th century, improved understanding of the mucociliary mechanism described by Prof. Messerklinger and Nasal Endoscopy described by Prof. Draf with the development of fibre optics and CT imaging, heralded a new era, which evolved in functional endoscopic sinus surgery. New technology further enhanced the scope of endoscope being used "around and beyond" the nose. PMID

  17. Stratocumulus cloud evolution

    SciTech Connect

    Yang, X.; Rogers, D.P.; Norris, P.M.; Johnson, D.W.; Martin, G.M.

    1994-12-31

    The structure and evolution of the extra-tropical marine atmospheric boundary layer (MABL) depends largely on the variability of stratus and stratocumulus clouds. The typical boundary-layer is capped by a temperature inversion that limits exchange with the free atmosphere. Cloud-top is usually coincident with the base of the inversion. Stratus clouds are generally associated with a well-mixed MABL, whereas daytime observations of stratocumulus-topped boundary-layers indicate that the cloud and subcloud layers are often decoupled due to shortwave radiative heating of the cloud layer. In this case the surface-based mixed layer is separated from the base of the stratocumulus (Sc) by a layer that is stable to dry turbulent mixing. This is sometimes referred to as the transition layer. Often cumulus clouds (Cu) develop in the transition layer. The cumulus tops may remain below the Sc base or they may penetrate into the Sc layer and occasionally through the capping temperature inversion. While this cloud structure is characteristic of the daytime MABL, it may persist at night also. The Cu play an important role in connecting the mixed layer to the Sc layer. If the Cu are active they transport water vapor from the sea surface that maintains the Sc against the dissipating effects of shortwave heating. The Cu, however, are very sensitive to small changes in the heat and moisture in the boundary-layer and are transient features. Here the authors discuss the effect of these small Cu on the turbulent structure of the MABL.

  18. Evolution of the ventricles.

    PubMed Central

    Victor, S; Nayak, V M; Rajasingh, R

    1999-01-01

    We studied the evolution of ventricles by macroscopic examination of the hearts of marine cartilaginous and bony fish, and by angiocardiography and gross examination of the hearts of air-breathing freshwater fish, frogs, turtles, snakes, and crocodiles. A right-sided, thin-walled ventricular lumen is seen in the fish, frog, turtle, and snake. In fish, there is external symmetry of the ventricle, internal asymmetry, and a thick-walled left ventricle with a small inlet chamber. In animals such as frogs, turtles, and snakes, the left ventricle exists as a small-cavitied contractile sponge. The high pressure generated by this spongy left ventricle, the direction of the jet, the ventriculoarterial orientation, and the bulbar spiral valve in the frog help to separate the systemic and pulmonary circulations. In the crocodile, the right aorta is connected to the left ventricle, and there is a complete interventricular septum and an improved left ventricular lumen when compared with turtles and snakes. The heart is housed in a rigid pericardial cavity in the shark, possibly to protect it from changing underwater pressure. The pericardial cavity in various species permits movements of the heart-which vary depending on the ventriculoarterial orientation and need for the ventricle to generate torque or spin on the ejected blood- that favor run-off into the appropriate arteries and their branches. In the lower species, it is not clear whether the spongy myocardium contributes to myocardial oxygenation. In human beings, spongy myocardium constitutes a rare form of congenital heart disease. Images PMID:10524737

  19. Giant lobelias exemplify convergent evolution

    PubMed Central

    2010-01-01

    Giant lobeliads on tropical mountains in East Africa and Hawaii have highly unusual, giant-rosette growth forms that appear to be convergent on each other and on those of several independently evolved groups of Asteraceae and other families. A recent phylogenetic analysis by Antonelli, based on sequencing the widest selection of lobeliads to date, raises doubts about this paradigmatic example of convergent evolution. Here I address the kinds of evidence needed to test for convergent evolution and argue that the analysis by Antonelli fails on four points. Antonelli's analysis makes several important contributions to our understanding of lobeliad evolution and geographic spread, but his claim regarding convergence appears to be invalid. Giant lobeliads in Hawaii and Africa represent paradigmatic examples of convergent evolution. PMID:20074322

  20. Chemical Evolution of Protostellar Matter

    NASA Technical Reports Server (NTRS)

    Langer, William D.; vanDishoeck, Ewine F.; Bergin, Edwin A.; Blake, Geoffrey A.; Tielens, Alexander G. G. M.; Velusamy, Thangasamy; Whittet, Douglas C. B.

    2000-01-01

    We review the chemical processes that are important in the evolution from a molecular cloud core to a protostellar disk. These cover both gas phase and gas grain interactions. The current observational and theoretical state of this field are discussed.

  1. Weak interactions and presupernova evolution

    SciTech Connect

    Aufderheide, M.B. State Univ. of New York . Dept. of Physics)

    1991-02-19

    The role of weak interactions, particularly electron capture and {beta}{sup {minus}} decay, in presupernova evolution is discussed. The present uncertainty in these rates is examined and the possibility of improving the situation is addressed. 12 refs., 4 figs.

  2. Marine microbiology: Evolution on acid

    NASA Astrophysics Data System (ADS)

    Collins, Sinéad

    2012-05-01

    The prediction of marine microbial responses to ocean acidification is a key challenge for marine biologists. Experimental evolution offers a powerful tool for understanding the forces that will shape tomorrow's microbial communities under global change.

  3. Evolution of the Solar System

    NASA Technical Reports Server (NTRS)

    Alfven, H.; Arrhenius, G.

    1976-01-01

    The origin and evolution of the solar system are analyzed. Physical processes are first discussed, followed by experimental studies of plasma-solid reactions and chemical and mineralogical analyses of meteorites and lunar and terrestrial samples.

  4. The Evolution of Complex Life

    NASA Technical Reports Server (NTRS)

    Billingham, John

    1989-01-01

    In considering the probabilities that intelligent life might exist elsewhere in the Universe, it is important to ask questions about the factors governing the emergence of complex living organisms in the context of evolutionary biology, planetary environments and events in space. Two important problems arise. First, what can be learned about the general laws governing the evolution of complex life anywhere in space by studying its history on the Earth? Second, how is the evolution of complex life affected by events in space? To address these problems, a series of Science Workshops on the Evolution of Complex Life was held at the Ames Research Center. Included in this paper are highlights of those workshops, with particular emphasis on the first question, namely the evolution of complex extraterrestrial life.

  5. Prion: Catalyst for Biological Evolution

    NASA Astrophysics Data System (ADS)

    Bueno, J. E.

    2010-04-01

    The theories of evolution of life on Earth have been based on the principle of storing and transmitting information of organisms in the genes, which according to the sequence of nucleotides could form proteins.

  6. Fire Control and Human Evolution.

    ERIC Educational Resources Information Center

    Russell, Claire

    1978-01-01

    Briefly outlines some aspects of the discovery of fire control by primitive people, such as the preadaptation for speech, the evolution of the human brain, and natural selection for human nakedness or loss of hair. (CS)

  7. Major transitions in human evolution

    PubMed Central

    Foley, Robert A.; Martin, Lawrence; Mirazón Lahr, Marta; Stringer, Chris

    2016-01-01

    Evolutionary problems are often considered in terms of ‘origins', and research in human evolution seen as a search for human origins. However, evolution, including human evolution, is a process of transitions from one state to another, and so questions are best put in terms of understanding the nature of those transitions. This paper discusses how the contributions to the themed issue ‘Major transitions in human evolution’ throw light on the pattern of change in hominin evolution. Four questions are addressed: (1) Is there a major divide between early (australopithecine) and later (Homo) evolution? (2) Does the pattern of change fit a model of short transformations, or gradual evolution? (3) Why is the role of Africa so prominent? (4) How are different aspects of adaptation—genes, phenotypes and behaviour—integrated across the transitions? The importance of developing technologies and approaches and the enduring role of fieldwork are emphasized. This article is part of the themed issue ‘Major transitions in human evolution’. PMID:27298461

  8. The Pace of Cultural Evolution

    PubMed Central

    Perreault, Charles

    2012-01-01

    Today, humans inhabit most of the world’s terrestrial habitats. This observation has been explained by the fact that we possess a secondary inheritance mechanism, culture, in addition to a genetic system. Because it is assumed that cultural evolution occurs faster than biological evolution, humans can adapt to new ecosystems more rapidly than other animals. This assumption, however, has never been tested empirically. Here, I compare rates of change in human technologies to rates of change in animal morphologies. I find that rates of cultural evolution are inversely correlated with the time interval over which they are measured, which is similar to what is known for biological rates. This correlation explains why the pace of cultural evolution appears faster when measured over recent time periods, where time intervals are often shorter. Controlling for the correlation between rates and time intervals, I show that (1) cultural evolution is faster than biological evolution; (2) this effect holds true even when the generation time of species is controlled for; and (3) culture allows us to evolve over short time scales, which are normally accessible only to short-lived species, while at the same time allowing for us to enjoy the benefits of having a long life history. PMID:23024804

  9. In Vivo Continuous Directed Evolution

    PubMed Central

    Badran, Ahmed H.; Liu, David R.

    2014-01-01

    The development and application of methods for the laboratory evolution of biomolecules has rapidly progressed over the last few decades. Advancements in continuous microbe culturing and selection design have facilitated the development of new technologies that enable the continuous directed evolution of proteins and nucleic acids. These technologies have the potential to support the extremely rapid evolution of biomolecules with tailor-made functional properties. Continuous evolution methods must support all of the key steps of laboratory evolution—translation of genes into gene products, selection or screening, replication of genes encoding the most fit gene products, and mutation of surviving genes—in a self-sustaining manner that requires little or no researcher intervention. Continuous laboratory evolution has been historically used to study problems including antibiotic resistance, organismal adaptation, phylogenetic reconstruction, and host-pathogen interactions, with more recent applications focusing on the rapid generation of proteins and nucleic acids with useful, tailor-made properties. The advent of increasingly general methods for continuous directed evolution should enable researchers to address increasingly complex questions and to access biomolecules with more novel or even unprecedented properties. PMID:25461718

  10. Mode decomposition evolution equations

    PubMed Central

    Wang, Yang; Wei, Guo-Wei; Yang, Siyang

    2011-01-01

    Partial differential equation (PDE) based methods have become some of the most powerful tools for exploring the fundamental problems in signal processing, image processing, computer vision, machine vision and artificial intelligence in the past two decades. The advantages of PDE based approaches are that they can be made fully automatic, robust for the analysis of images, videos and high dimensional data. A fundamental question is whether one can use PDEs to perform all the basic tasks in the image processing. If one can devise PDEs to perform full-scale mode decomposition for signals and images, the modes thus generated would be very useful for secondary processing to meet the needs in various types of signal and image processing. Despite of great progress in PDE based image analysis in the past two decades, the basic roles of PDEs in image/signal analysis are only limited to PDE based low-pass filters, and their applications to noise removal, edge detection, segmentation, etc. At present, it is not clear how to construct PDE based methods for full-scale mode decomposition. The above-mentioned limitation of most current PDE based image/signal processing methods is addressed in the proposed work, in which we introduce a family of mode decomposition evolution equations (MoDEEs) for a vast variety of applications. The MoDEEs are constructed as an extension of a PDE based high-pass filter (Europhys. Lett., 59(6): 814, 2002) by using arbitrarily high order PDE based low-pass filters introduced by Wei (IEEE Signal Process. Lett., 6(7): 165, 1999). The use of arbitrarily high order PDEs is essential to the frequency localization in the mode decomposition. Similar to the wavelet transform, the present MoDEEs have a controllable time-frequency localization and allow a perfect reconstruction of the original function. Therefore, the MoDEE operation is also called a PDE transform. However, modes generated from the present approach are in the spatial or time domain and can be

  11. Evolution of plant senescence

    PubMed Central

    Thomas, Howard; Huang, Lin; Young, Mike; Ougham, Helen

    2009-01-01

    -related genes allow a framework to be constructed of decisive events in the evolution of the senescence syndrome of modern land-plants. Combining phylogenetic, comparative sequence, gene expression and morphogenetic information leads to the conclusion that biochemical, cellular, integrative and adaptive systems were progressively added to the ancient primary core process of senescence as the evolving plant encountered new environmental and developmental contexts. PMID:19602260

  12. Galapagos III World Evolution Summit: why evolution matters

    PubMed Central

    Paz-y-Miño-C, Guillermo; Espinosa, Avelina

    2016-01-01

    There is no place on Earth like the Galapagos Islands and no better destination to discuss the reality of evolution. Under the theme ‘Why Does Evolution Matter’, the University San Francisco of Quito (USFQ), Ecuador, and its Galapagos Institute for the Arts and Sciences (GAIAS), organized the III World Evolution Summit in San Cristóbal Island. The 200-attendee meeting took place on 1 to 5 June 2013; it included 12 keynote speakers, 20 oral presentations by international scholars, and 31 posters by faculty, postdocs, and graduate and undergraduate students. The Summit encompassed five sessions: evolution and society, pre-cellular evolution and the RNA world, behavior and environment, genome, and microbes and diseases. USFQ and GAIAS launched officially the Lynn Margulis Center for Evolutionary Biology and showcased the Galapagos Science Center, in San Cristóbal, an impressive research facility conceptualized in partnership with the University of North Carolina at Chapel Hill, USA. USFQ and GAIAS excelled at managing the conference with exceptional vision and at highlighting the relevance of Galapagos in the history of modern evolutionary thinking; Charles Darwin’s visit to this volcanic archipelago in 1835 unfolded unprecedented scientific interest in what today is a matchless World Heritage. PMID:26925190

  13. Student Teachers' Approaches to Teaching Biological Evolution

    ERIC Educational Resources Information Center

    Borgerding, Lisa A.; Klein, Vanessa A.; Ghosh, Rajlakshmi; Eibel, Albert

    2015-01-01

    Evolution is fundamental to biology and scientific literacy, but teaching high school evolution is often difficult. Evolution teachers face several challenges including limited content knowledge, personal conflicts with evolution, expectations of resistance, concerns about students' conflicts with religion, and curricular constraints. Evolution…

  14. Musical emotions: functions, origins, evolution.

    PubMed

    Perlovsky, Leonid

    2010-03-01

    Theories of music origins and the role of musical emotions in the mind are reviewed. Most existing theories contradict each other, and cannot explain mechanisms or roles of musical emotions in workings of the mind, nor evolutionary reasons for music origins. Music seems to be an enigma. Nevertheless, a synthesis of cognitive science and mathematical models of the mind has been proposed describing a fundamental role of music in the functioning and evolution of the mind, consciousness, and cultures. The review considers ancient theories of music as well as contemporary theories advanced by leading authors in this field. It addresses one hypothesis that promises to unify the field and proposes a theory of musical origin based on a fundamental role of music in cognition and evolution of consciousness and culture. We consider a split in the vocalizations of proto-humans into two types: one less emotional and more concretely-semantic, evolving into language, and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other theories in considering specific mechanisms of the mind-brain, which required the evolution of music parallel with the evolution of cultures and languages. Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional encumbrances. The opposite, no less powerful mechanisms required a compensatory evolution of music toward more differentiated and refined emotionality. The need for refined music in the process of cultural evolution is grounded in fundamental mechanisms of the mind. This is why today's human mind and cultures cannot exist without today's music. The reviewed hypothesis gives a basis for future analysis of why different evolutionary paths of languages were paralleled by different evolutionary paths of music. Approaches toward experimental verification of this hypothesis in

  15. Cyanobacterial evolution during the Precambrian

    NASA Astrophysics Data System (ADS)

    Schirrmeister, Bettina E.; Sanchez-Baracaldo, Patricia; Wacey, David

    2016-07-01

    Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth's biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth's atmosphere and hydrosphere, triggered the evolution of plants -being ancestral to chloroplasts- and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history. However, very little is known about the early evolution of this phylum and ongoing debates about cyanobacterial fossils, biomarkers and molecular clock analyses highlight the difficulties in this field of research. Although phylogenomic analyses have provided promising glimpses into the early evolution of cyanobacteria, estimated divergence ages are often very uncertain, because of vague and insufficient tree-calibrations. Results of molecular clock analyses are intrinsically tied to these prior calibration points, hence improving calibrations will enable more precise divergence time estimations. Here we provide a review of previously described Precambrian microfossils, biomarkers and geochemical markers that inform upon the early evolution of cyanobacteria. Future research in micropalaeontology will require novel analyses and imaging techniques to improve taxonomic affiliation of many Precambrian microfossils. Consequently, a better understanding of early cyanobacterial evolution will not only allow for a more specific calibration of cyanobacterial and eubacterial phylogenies, but also provide new dates for the tree

  16. Musical emotions: Functions, origins, evolution

    NASA Astrophysics Data System (ADS)

    Perlovsky, Leonid

    2010-03-01

    Theories of music origins and the role of musical emotions in the mind are reviewed. Most existing theories contradict each other, and cannot explain mechanisms or roles of musical emotions in workings of the mind, nor evolutionary reasons for music origins. Music seems to be an enigma. Nevertheless, a synthesis of cognitive science and mathematical models of the mind has been proposed describing a fundamental role of music in the functioning and evolution of the mind, consciousness, and cultures. The review considers ancient theories of music as well as contemporary theories advanced by leading authors in this field. It addresses one hypothesis that promises to unify the field and proposes a theory of musical origin based on a fundamental role of music in cognition and evolution of consciousness and culture. We consider a split in the vocalizations of proto-humans into two types: one less emotional and more concretely-semantic, evolving into language, and the other preserving emotional connections along with semantic ambiguity, evolving into music. The proposed hypothesis departs from other theories in considering specific mechanisms of the mind-brain, which required the evolution of music parallel with the evolution of cultures and languages. Arguments are reviewed that the evolution of language toward becoming the semantically powerful tool of today required emancipation from emotional encumbrances. The opposite, no less powerful mechanisms required a compensatory evolution of music toward more differentiated and refined emotionality. The need for refined music in the process of cultural evolution is grounded in fundamental mechanisms of the mind. This is why today's human mind and cultures cannot exist without today's music. The reviewed hypothesis gives a basis for future analysis of why different evolutionary paths of languages were paralleled by different evolutionary paths of music. Approaches toward experimental verification of this hypothesis in

  17. JPSS CGS Evolution

    NASA Astrophysics Data System (ADS)

    Miller, S. W.; Grant, K. D.; Jamilkowski, M. L.

    2012-12-01

    Space Communications and Navigation (SCaN, which includes the Earth Observing System [EOS]), Metop for the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), Coriolis/WindSat for the DoD, as well as research activities of the National Science Foundation (NSF). The CGS architecture is evolving over the next few years for several key reasons: 1. "Operationalizing" Suomi NPP, which had originally been intended as a risk reduction mission 2. Leveraging lessons learned to date in multi-mission support 3. Taking advantage of newer, more reliable and efficient technologies 4. Satisfying new requirements and constraints due to the continually evolving budgetary environment Three key aspects of the CGS architecture are being prototyped as part of the path to improve operations in the 2015 timeframe. First, the front end architecture for mission data transport is being re-architected to improve reliability and address the incorporation of new ground stations. Second, the IDPS is undergoing a decoupling process to enhance its flexibility and modularity for supporting an array of potential new missions beyond those listed above. Finally, a solution for complete situational awareness across the CGS is being developed, to facilitate quicker and more efficient identification and resolution of system anomalies. This paper discusses the evolution of the CGS architecture to address these future mission needs.

  18. [Ribosomal RNA Evolution

    NASA Technical Reports Server (NTRS)

    1997-01-01

    It is generally believed that an RNA World existed at an early stage in the history of life. During this early period, RNA molecules are seen to be potentially involved in both catalysis and the storage of genetic information. Translation presents several interrelated themes of inquiry for exobiology. First, it is essential, for understanding the very origin of life, how peptides and eventually proteins might have come to be made on the early Earth in a template directed manner. Second, it is necessary to understand how a machinery of similar complexity to that found in the ribosomes of modern organisms came to exist by the time of the last common ancestor (as detected by 16S rRNA sequence studies). Third, the ribosomal RNAs themselves likely had a very early origin and studies of their history may be very informative about the nature of the RNA World. Moreover, studies of these RNAs will contribute to a better understanding of the potential roles of RNA in early evolution.During the past year we have ave conducted a comparative study of four completely sequenced bacterial genoames. We have focused initially on conservation of gene order. The second component of the project continues to build on the model system for studying the validity of variant 5S rRNA sequences in the vicinity of the modern Vibrio proteolyticus 5S rRNA that we established earlier. This system has made it possible to conduct a detailed and extensive analysis of a local portion of the sequence space. These core methods have been used to construct numerous mutants during the last several years. Although it has been a secondary focus, this work has continued over the last year such that we now have in excess of 125 V. proteolyticus derived constructs which have been made and characterized. We have also continued high resolution NMR work on RNA oligomers originally initiated by G. Kenneth Smith who was funded by a NASA Graduate Student Researcher's Fellowship Award until May of 1996. Mr. Smith

  19. Planetary evolution and habitability

    NASA Astrophysics Data System (ADS)

    Spohn, T.

    2008-09-01

    Planetary habitability is usually thought to require water on (or near) the surface, a magnetic field to protect life against cosmic radiation, and transport mechanisms for nutrients. A magnetic field also serves to protect an existing atmosphere against erosion by the solar wind and thus helps to stabilize the presence of water and habitability. Magnetic fields are generated in the cores of the terrestrial planets and thus habitability is linked to the evolution of the interior. Moreover, the interior is a potential source and sink for water and CO2 and may interact with the surface and atmosphere reservoirs through volcanic activity and recycling. On the Earth, water is stabilized by complex interactions between the atmosphere, the biosphere, the oceans, the crust, and the deep interior. On geological timescales, the anorganic CO2 cycle is most important. The most efficient known mechanism for recycling is plate tectonics. Plate tectonics is known to operate, at present, only on the Earth, although Mars may have had a phase of plate tectonics as may have Venus. Single-plate tectonics associated with stagnant lid convection can transfer water and CO2 from the interior but a simple recycling mechanism is lacking for this tectonic style. Stagnant lid convection will evolve to thicken the lid and increasingly frustrate volcanic activity and degassing. (This can keep the interior from running completely dry.) Plate tectonics supports the generation of magnetic fields by effectively cooling the deep interior. In addition, plate tectonics rejuvenates nutrients on the surface and generates granitic cratons. For Venus it is likely that a present-day magnetic field would require plate tectonics to operate. The chemistry of the Martian core likely precludes the growth of an inner core and thus a present-day dynamo. An early field is possible for both planets even with stagnant lid convection but the dynamos will have operated less than about a billion years on Mars and a

  20. Cultural evolution need not imply group selection.

    PubMed

    Amir, Dorsa; Jordan, Matthew R; Rand, David G

    2016-01-01

    Richerson et al. make a compelling case for cultural evolution. In focusing on cultural group selection, however, they neglect important individual-level accounts of cultural evolution. While scientific discourse typically links cultural evolution to group selection and genetic evolution to individual selection, this association is due to historical accident only. We thus call for more consideration of individual-level cultural evolution. PMID:27561957

  1. Experimental evolution in biofilm populations

    PubMed Central

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  2. Experimental evolution in biofilm populations.

    PubMed

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  3. Teaching evolution: challenging religious preconceptions.

    PubMed

    Lovely, Eric C; Kondrick, Linda C

    2008-08-01

    Teaching college students about the nature of science should not be a controversial exercise. College students are expected to distinguish between astronomy and astrology, chemistry and alchemy, evolution and creationism. In practice, however, the conflict between creationism and the nature of science may create controversy in the classroom, even walkouts, when the subject of evolution is raised. The authors have grappled with the meaning of such behaviors. They surveyed 538 students in a public, liberal arts college. Pre/post course surveys were analyzed to track changes in student responses to questions that were either consistent or inconsistent with the Theory of Evolution after a semester of instruction in a college biology or zoology course in which evolution was taught. Many students who were initially undecided about issues regarding evolution had shifted in their viewpoints by the end of the course. It was found that more education about the evidence for and the mechanics of evolutionary processes did not necessarily move students toward a scientific viewpoint. The authors also discovered a "wedge" effect among students who were undecided about questions pertaining to human ancestry at the beginning of the course. About half of these students shifted to a scientific viewpoint at the end of the course; the other half shifted toward agreement with statements consistent with creationism. PMID:21669781

  4. Evolution in Littorina: ecology matters

    NASA Astrophysics Data System (ADS)

    Johannesson, Kerstin

    2003-03-01

    Organisms of marine rocky shores are exposed to physical stress from abiotic factors, such as temperature, salinity and wave action. These factors vary over compressed temporal and spatial scales, producing an exceedingly heterogeneous habitat with steep gradients of selection, and it seems likely that this has a strong influence on the evolution of populations of rocky shore organisms. With the periwinkles (genus Littorina) as a model group, I review strategies for coping with small-scale heterogeneous environments and what implications these strategies have on the evolution of these species. Some species of Littorina have long-lived pelagic larvae and sites of various habitats are thus recruited from a common gene pool. This largely prevents local adaptation but minor adjustments are possible through a plastic phenotype. Other species of the genus are directly developing with no larval dispersal and among these there is evidence of strong local adaptation forming distinct ecotypes in contrasting habitats by parallel evolution. In at least one of the directly developing species ( L. saxatilis) divergent selection among ecotypes has resulted in partial reproductive barriers that further impede gene flow among ecotypes. Furthermore, convergent evolution among species has produced superficially similar morphs in different habitats. Ecotype formation, ecological reproductive barriers and convergence among species all indicate that ecological processes are critical for evolution of Littorina species.

  5. Oxygen and Early Animal Evolution

    NASA Astrophysics Data System (ADS)

    Xiao, S.

    2012-12-01

    It is often hypothesized that the rise of animals was triggered by an increase in O2 levels in the atmosphere and oceans. However, this hypothesis is remarkably difficult to test, because the timing of animal divergences is poorly resolved, the physiology of early animals is often unknown, estimates of past pO2 levels come with large error bars, and causal relationships between oxygenation and animal evolution are difficult to establish. Nonetheless, existing phylogenetic, paleontological, and geochemical data indicate that the evolution of macroscopic animals and motile macrometazoans with energetically expensive lifestyles may be temporally coupled with ocean oxygenation events in the Ediacaran Period. Thus, it is plausible that ocean oxygenation may have been a limiting factor in the early evolution of macroscopic, complex, and metabolically aggressive animals (particularly bilaterian animals). However, ocean oxygenation and animal evolution were likely engaged in two-way interactions: Ediacaran oxygenation may have initially lifted a physiological barrier for the evolution of animal size, motility, and active lifestyles, but subsequent animal diversification in the Paleozoic may have also changed oceanic redox structures. Viewed in a broader context, the early evolutionary history of animals was contingent upon a series of events, including genetic preparation (developmental genetics), environmental facilitation (oceanic oxygenation), and ecological escalation (Cambrian explosion), but the rise of animals to ecological importance also had important geobiological impacts on oceanic redox structures, sedimentary fabrics, and global geochemical cycles.

  6. Evolution of rapid nerve conduction.

    PubMed

    Castelfranco, Ann M; Hartline, Daniel K

    2016-06-15

    Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26879248

  7. Functional evolution of nuclear structure

    PubMed Central

    Dawson, Scott C.

    2011-01-01

    The evolution of the nucleus, the defining feature of eukaryotic cells, was long shrouded in speculation and mystery. There is now strong evidence that nuclear pore complexes (NPCs) and nuclear membranes coevolved with the endomembrane system, and that the last eukaryotic common ancestor (LECA) had fully functional NPCs. Recent studies have identified many components of the nuclear envelope in living Opisthokonts, the eukaryotic supergroup that includes fungi and metazoan animals. These components include diverse chromatin-binding membrane proteins, and membrane proteins with adhesive lumenal domains that may have contributed to the evolution of nuclear membrane architecture. Further discoveries about the nucleoskeleton suggest that the evolution of nuclear structure was tightly coupled to genome partitioning during mitosis. PMID:22006947

  8. Scale evolution of gluon TMDPDFs

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Kasemets, Tomas; Mulders, Piet J.; Pisano, Cristian

    2015-01-01

    By applying the effective field theory machinery we factorize the transverse momentum spectrum of Higgs boson production, where the main hadronic quantities are the gluon transverse momentum dependent parton distribution functions (TMDPDFs). We properly define those quantities, showing explicitly, in the case of an unpolarized hadron, that they are free from rapidity divergences, and extract their evolution properties. It turns out that the evolution for all eight (un-)polarized leading-twist gluon TMDPDFs is driven by the same evolution kernel, for which we derive the necessary ingredients to obtain a resummation of large logarithms at next-tonext-to-leading-logarithmic accuracy. We make predictions for the contribution of linearly polarized gluons to the Higgs boson qT -spectrum.

  9. Extinction Events Can Accelerate Evolution

    PubMed Central

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific in the long term. PMID:26266804

  10. Evolution of grasping among anthropoids.

    PubMed

    Pouydebat, E; Laurin, M; Gorce, P; Bels, V

    2008-11-01

    The prevailing hypothesis about grasping in primates stipulates an evolution from power towards precision grips in hominids. The evolution of grasping is far more complex, as shown by analysis of new morphometric and behavioural data. The latter concern the modes of food grasping in 11 species (one platyrrhine, nine catarrhines and humans). We show that precision grip and thumb-lateral behaviours are linked to carpus and thumb length, whereas power grasping is linked to second and third digit length. No phylogenetic signal was found in the behavioural characters when using squared-change parsimony and phylogenetic eigenvector regression, but such a signal was found in morphometric characters. Our findings shed new light on previously proposed models of the evolution of grasping. Inference models suggest that Australopithecus, Oreopithecus and Proconsul used a precision grip. PMID:18713244

  11. Evolution of Cytokine Receptor Signaling.

    PubMed

    Liongue, Clifford; Sertori, Robert; Ward, Alister C

    2016-07-01

    Cytokines represent essential mediators of cell-cell communication with particularly important roles within the immune system. These secreted factors are produced in response to developmental and/or environmental cues and act via cognate cytokine receptors on target cells, stimulating specific intracellular signaling pathways to facilitate appropriate cellular responses. This review describes the evolution of cytokine receptor signaling, focusing on the class I and class II receptor families and the downstream JAK-STAT pathway along with its key negative regulators. Individual components generated over a long evolutionary time frame coalesced to form an archetypal signaling pathway in bilateria that was expanded extensively during early vertebrate evolution to establish a substantial "core" signaling network, which has subsequently undergone limited diversification within discrete lineages. The evolution of cytokine receptor signaling parallels that of the immune system, particularly the emergence of adaptive immunity, which has likely been a major evolutionary driver. PMID:27317733

  12. Evolution of the Space Shuttle

    NASA Astrophysics Data System (ADS)

    Nease, Ardell

    1993-02-01

    This paper initially examines the Space Shuttle's past and future role in the exploration and exploitation of space and then discusses the evolution of the Space Shuttle as a cost effective design solution to the nation's and the world's space requirements. The argument for Shuttle evolution is presented and a cost effective approach to evolving the Space Shuttle into tomorrow's Space Transportation System is described. Near term upgrades can increase safety and reliability, avoid obsolescence, reduce operations costs, and increase performance; they can be followed by the long term block changes that incorporate new technologies and make the Space Shuttle dramatically more useful and cost effective to operate. The balance between continued Shuttle System life vs replacement system development and production is placed in the perspective of mission needs, technological leverage, and fiscal reality. The paper concludes that the evolution of the Space Shuttle is the most cost effective solution to the nation's space transportation needs for more than thirty years.

  13. Origins and Evolution of Life

    NASA Astrophysics Data System (ADS)

    Gargaud, Muriel; López-García, Purificación; Martin, Hervé

    2011-01-01

    Part I. What Is Life?: 1. Problems raised by a definition of life M. Morange; 2. Some remarks about uses of cosmological anthropic 'principles' D. Lambert; 3. Minimal cell: the biologist point of view C. Brochier-Armanet; 4. Minimal cell: the computer scientist point of view H. Bersini; 5. Origins of life: computing and simulation approaches B. Billoud; Part II. Astronomical and Geophysical Context of the Emergence of Life: 6. Organic molecules in interstellar medium C. Ceccarelli and C. Cernicharo; 7. Cosmochemical evolution and the origin of life: insights from meteorites S. Pizzarello; 8. Astronomical constraints on the emergence of life M. Gounelle and T. Montmerle; 9. Formation of habitable planets J. Chambers; 10. The concept of galactic habitable zone N. Prantzos; 11. The young Sun and its influence on planetary atmospheres M. Güdel and J. Kasting; 12. Climates of the Earth G. Ramstein; Part III. Role of Water in the Emergence of Life: 13. Liquid water: a necessary condition to all forms of life K. Bartik, G. Bruylants, E. Locci and J. Reisse; 14. The role of water in the formation and evolution of planets T. Encrenaz; 15. Water on Mars J. P. Bibring; Part IV. From Non-Living Systems to Life: 16. Energetic constraints on prebiotic pathways: application to the emergence of translation R. Pascal and L. Boiteau; 17. Comparative genomics and early cell evolution A. Lazcano; 18. Origin and evolution of metabolisms J. Peretó; Part V. Mechanisms for Life Evolution: 19. Molecular phylogeny: inferring the patterns of evolution E. Douzery; 20. Horizontal gene transfer: mechanisms and evolutionary consequences D. Moreira; 21. The role of symbiosis in eukaryotic evolution A. Latorre, A. Durbán, A. Moya and J. Peretó; Part VI. Life in Extreme Conditions: 22. Life in extreme conditions: Deinococcus radiodurans, an organism able to survive prolonged desiccation and high doses of ionising radiation S. Sommer and M. Toueille; 23. Molecular effects of UV and ionizing

  14. Evolution in an acidifying ocean.

    PubMed

    Sunday, Jennifer M; Calosi, Piero; Dupont, Sam; Munday, Philip L; Stillman, Jonathon H; Reusch, Thorsten B H

    2014-02-01

    Ocean acidification poses a global threat to biodiversity, yet species might have the capacity to adapt through evolutionary change. Here we summarize tools available to determine species' capacity for evolutionary adaptation to future ocean change and review the progress made to date with respect to ocean acidification. We focus on two key approaches: measuring standing genetic variation within populations and experimental evolution. We highlight benefits and challenges of each approach and recommend future research directions for understanding the modulating role of evolution in a changing ocean. PMID:24355315

  15. Comets. [and solar system evolution

    NASA Technical Reports Server (NTRS)

    Neugebauer, M.

    1986-01-01

    The nature, history, and evolution of comets are considered. Cometary ions, formed by photoionization and other processes, are forced into a highly structured ion tail by the interaction with the solar wind. The importance of comets to solar-system studies lies in the possibilities that they are well-preserved samples of either the interstellar cloud which collapsed to form the solar system or the planetesimals from which the outer planets accumulated, and that they provided either the prebiotic complex molecules from which life evolved or some volatiles necessary for the evolution of these molecules.

  16. Concepts in solid tumor evolution

    PubMed Central

    Sidow, Arend; Spies, Noah

    2015-01-01

    Evolutionary mechanisms in cancer progression give tumors their individuality. Cancer evolution is different from organismal evolution, however, and here we discuss where concepts from evolutionary genetics are useful or limited in facilitating an understanding of cancer. Based on these concepts we construct and apply the simplest plausible model of tumor growth and progression. Simulations using this simple model illustrate the importance of stochastic events early in tumorigenesis, highlight the dominance of exponential growth over linear growth and differentiation, and explain the clonal substructure of tumors. PMID:25733351

  17. Planetary Origin Evolution and Structure

    NASA Technical Reports Server (NTRS)

    Stevenson, David J.

    2005-01-01

    This wide-ranging grant supported theoretical modeling on many aspects of the formation, evolution and structure of planets and satellites. Many topics were studied during this grant period, including the evolution of icy bodies; the origin of magnetic fields in Ganymede; the thermal histories of terrestrial planets; the nature of flow inside giant planets (especially the coupling to the magnetic field) and the dynamics of silicate/iron mixing during giant impacts and terrestrial planet core formation. Many of these activities are ongoing and have not reached completion. This is the nature of this kind of research.

  18. Biocatalyst development by directed evolution.

    PubMed

    Wang, Meng; Si, Tong; Zhao, Huimin

    2012-07-01

    Biocatalysis has emerged as a great addition to traditional chemical processes for production of bulk chemicals and pharmaceuticals. To overcome the limitations of naturally occurring enzymes, directed evolution has become the most important tool for improving critical traits of biocatalysts such as thermostability, activity, selectivity, and tolerance towards organic solvents for industrial applications. Recent advances in mutant library creation and high-throughput screening have greatly facilitated the engineering of novel and improved biocatalysts. This review provides an update of the recent developments in the use of directed evolution to engineer biocatalysts for practical applications. PMID:22310212

  19. Constraining relativistic viscous hydrodynamical evolution

    SciTech Connect

    Martinez, Mauricio; Strickland, Michael

    2009-04-15

    We show that by requiring positivity of the longitudinal pressure it is possible to constrain the initial conditions one can use in second-order viscous hydrodynamical simulations of ultrarelativistic heavy-ion collisions. We demonstrate this explicitly for (0+1)-dimensional viscous hydrodynamics and discuss how the constraint extends to higher dimensions. Additionally, we present an analytic approximation to the solution of (0+1)-dimensional second-order viscous hydrodynamical evolution equations appropriate to describe the evolution of matter in an ultrarelativistic heavy-ion collision.

  20. Experimental evolution of E. coli

    NASA Astrophysics Data System (ADS)

    Zhang, Mengshi

    The evolution from unicellular to multicellular behavior is an essential step in the history of life. Our aim is to investigate the emergence of collective behavior in the model organism Escherichia coli (E. coli) and its selection advantages, such as better utilization of public goods. Our preliminary results suggest that the evolution of collective behavior may be a natural response to stressed conditions. Mailing address: Room 306 Science Centre North Block, The Chinese University of Hong Kong, Shatin, N.T. Hong Kong SAR. Phone: +852-3943-6354. Fax: +852-2603-5204. E-mail: mengshi0928@gmail.com.

  1. Punctuated equilibrium in software evolution.

    PubMed

    Gorshenev, A A; Pis'mak, Yu M

    2004-12-01

    An approach based on the paradigm of self-organized criticality is proposed for experimental investigation and theoretical modeling of software evolution. The dynamics of modifications is studied for three free, open source programs MOZILLA, FREE-BSD, and EMACS using the data from version control systems. Scaling laws typical for self-organized criticality found. A model of software evolution presenting the natural selection principle is proposed. Results of numerical and analytical investigation of the model are presented. They are in good agreement with data collected for real-world software. PMID:15697556

  2. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    A discussion of the evolution and observable consequences of a network of cosmic strings is given. A simple model for the evolution of the string network is presented, and related to the statistical mechanics of string networks. The model predicts the long string density throughout the history of the universe from a single parameter, which researchers calculate in radiation era simulations. The statistical mechanics arguments indicate a particular thermal form for the spectrum of loops chopped off the network. Detailed numerical simulations of string networks in expanding backgrounds are performed to test the model. Consequences for large scale structure, the microwave and gravity wave backgrounds, nucleosynthesis and gravitational lensing are calculated.

  3. Phenomenological implementations of TMD evolution

    SciTech Connect

    Boglione, Mariaelena; Gonzalez Hernandez, Jose Osvaldo; Melis, Stefano; Prokudin, Alexey

    2015-03-01

    Although the theoretical set-up of TMD evolution appears to be well established, its phenomenological implementations still require special attention, particularly as far as the interplay between perturbative and non-perturbative contributions is concerned. These issues have been extensively studied in Drell-Yan processes, where they seem to be reasonably under control. Instead, applying the same prescriptions and methodologies to Semi-Inclusive Deep Inelastic (SIDIS) processes is, at present, far from obvious. Some of the controversies related to the applications of TMD Evolution to SIDIS processes will be discussed with practical examples, exploring different kinematical configurations of SIDIS experiments.

  4. Biocatalyst Development by Directed Evolution

    PubMed Central

    Wang, Meng; Si, Tong; Zhao, Huimin

    2012-01-01

    Biocatalysis has emerged as a great addition to traditional chemical processes for production of bulk chemicals and pharmaceuticals. To overcome the limitations of naturally occurring enzymes, directed evolution has become the most important tool for improving critical traits of biocatalysts such as thermostability, activity, selectivity, and tolerance towards organic solvents for industrial applications. Recent advances in mutant library creation and high-throughput screening have greatly facilitated the engineering of novel and improved biocatalysts. This review provides an update of the recent developments in the use of directed evolution to engineer biocatalysts for practical applications. PMID:22310212

  5. The Evolution of Matter: The Quantal Unity of Evolution

    NASA Astrophysics Data System (ADS)

    Farre, George L.

    2002-09-01

    This paper is a brief sketch of the mechanisms that govern the construction of natural systems. Consequently, relatively little will be said about the external circumstances of their diversification. As nature has relatively few tricks in its bag, what follows may be viewed as an overview of the quantal unit of evolution (QUE), modally indexed.

  6. Statistical and physical evolution of QSO's

    NASA Technical Reports Server (NTRS)

    Caditz, David; Petrosian, Vahe

    1989-01-01

    The relationship between the physical evolution of discrete extragalactic sources, the statistical evolution of the observed population of sources, and the cosmological model is discussed. Three simple forms of statistical evolution: pure luminosity evolution (PLE), pure density evolution (PDE), and generalized luminosity evolution (GLE), are considered in detail together with what these forms imply about the physical evolution of individual sources. Two methods are used to analyze the statistical evolution of the observed distribution of QSO's (quasars) from combined flux limited samples. It is shown that both PLE and PDE are inconsistent with the data over the redshift range 0 less than z less than 2.2, and that a more complicated form of evolution such as GLE is required, independent of the cosmological model. This result is important for physical models of AGN, and in particular, for the accretion disk model which recent results show may be inconsistent with PLE.

  7. Student Teachers' Approaches to Teaching Biological Evolution

    NASA Astrophysics Data System (ADS)

    Borgerding, Lisa A.; Klein, Vanessa A.; Ghosh, Rajlakshmi; Eibel, Albert

    2015-06-01

    Evolution is fundamental to biology and scientific literacy, but teaching high school evolution is often difficult. Evolution teachers face several challenges including limited content knowledge, personal conflicts with evolution, expectations of resistance, concerns about students' conflicts with religion, and curricular constraints. Evolution teaching can be particularly challenging for student teachers who are just beginning to gain pedagogical knowledge and pedagogical content knowledge related to evolution teaching and who seek approval from university supervisors and cooperating teachers. Science teacher educators need to know how to best support student teachers as they broach the sometimes daunting task of teaching evolution within student teaching placements. This multiple case study report documents how three student teachers approached evolution instruction and what influenced their approaches. Data sources included student teacher interviews, field note observations for 4-5 days of evolution instruction, and evolution instructional artifacts. Data were analyzed using grounded theory approaches to develop individual cases and a cross-case analysis. Seven influences (state exams and standards, cooperating teacher, ideas about teaching and learning, concerns about evolution controversy, personal commitment to evolution, knowledge and preparation for teaching evolution, and own evolution learning experiences) were identified and compared across cases. Implications for science teacher preparation and future research are provided.

  8. Can evolution be directional without being teleological?

    PubMed

    McGhee, George R

    2016-08-01

    Convergent evolution reveals to us that the number of possibilities available for contingent events is limited, that historically contingent evolution is constrained to occur within a finite number of limited pathways, and that contingent evolution is thus probabilistic and predictable. That is, the phenomenon of convergence proves that truly contingent evolutionary processes can repeatedly produce the same, or very similar, organic designs in nature and that evolution is directional in these cases. For this reason it is argued in this paper that evolution can be directional without being teleological, and that the dichotomy that evolution must either be directionless and unpredictable or directional and predetermined (teleological) is false. PMID:26754619

  9. Theoretical horizontal-branch evolution

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.

    1987-01-01

    The general features of the theoretical evolution of canonical horizontal-branch (HB) stars are briefly reviewed with specific emphasis on the track morphology in the HR diagram and the determination of the globular cluster helium abundance. The observational evidence for the occurrence of semiconvection is discussed together with some remaining theoretical uncertainty.

  10. The evolution of massive stars

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The hypotheses underlying theoretical studies of the evolution of massive model stars with and without mass loss are summarized. The evolutionary tracks followed by the models across theoretical Hertzsprung-Russell (HR) diagrams are compared with the observed distribution of B stars in an HR diagram. The pulsational properties of models of massive star are also described.

  11. Accepting Evolution or Discarding Science

    ERIC Educational Resources Information Center

    Sharpes, Donald K.; Peramas, Mary M.

    2006-01-01

    Challenging basic principles of constitutional law, advocates of intelligent design are undermining educators' ability to teach evolution in their science classrooms. Because US Supreme Court rulings now prohibit creationist accounts of the origin of life in schools, arguments favoring divine intervention, known as intelligent design, have emerged…

  12. Teachers Torn over Religion, Evolution

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2005-01-01

    When science teachers in a small Pennsylvania town were asked to read a statement to their classes that introduced students to the concept of "intelligent design," they refused, citing legal and professional obligations. This article discusses teacher's views on religion and evolution and how their opinions influenced religion's place in science…

  13. Chromospheric activity and stellar evolution

    NASA Technical Reports Server (NTRS)

    Kippenhahn, R.

    1973-01-01

    A study of stellar chromospheres based on the internal structure of particular stars is presented. Used are complex flow diagrams of the linkage paths between mass loss, angular momentum loss, magnetic field from the turbulent dynamo and its relations to differential rotations and the convection zone, and stellar evolution.

  14. Supernova Nucleosynthesis and Galactic Evolution

    NASA Astrophysics Data System (ADS)

    Thielemann, F.-K.; Argast, D.; Brachwitz, F.; Hix, W. R.; Höflich, P.; Liebendörfer, M.; Martinez-Pinedo, G.; Mezzacappa, A.; Nomoto, K.; Panov, I.

    The understanding of the abundance evolution in the interstellar medium, and especially the enrichment of heavy elements, as a function of space and time reflects the history of star formation and the lifetimes of the diverse contributing stellar objects. Therefore, the understanding of the endpoints of stellar evolution is essential. These are mainly planetary nebulae and type II/Ib/Ic supernovae as evolutionary endpoints of single stars, but also events in binary systems can contribute, like e.g. supernovae of type Ia, novae and possibly X-ray bursts and neutron star or neutron star - black hole mergers. Despite many efforts, a full and self-consistent understanding of supernovae (the main contributors to nucleosynthesis in galaxies) is not existing, yet. However, observed spectra, light curves, radioactivities/decay gamma-rays and galactic evolution witness the composition of their ejecta and constrain model uncertainties. We focus on (i) neutrino-induced explosions for type II supernovae and the innermost ejected layers, (ii) electron captures in type Ia supernovae and neutron-rich Fe-group nuclei and finally (iii) galactic chemical evolution and possible r-process sites.

  15. A Ratio Explanation for Evolution.

    ERIC Educational Resources Information Center

    Riss, Pam Helfers

    1993-01-01

    Describes hands-on physical anthropology activities for teaching students about evolution. Using evidence found in hominid skulls, students conduct investigations that involve calculating ratios. Eight full-page photographs of skulls from the program Stones and Bones are included. (PR)

  16. How Darwinian is cultural evolution?

    PubMed Central

    Claidière, Nicolas; Scott-Phillips, Thomas C.; Sperber, Dan

    2014-01-01

    Darwin-inspired population thinking suggests approaching culture as a population of items of different types, whose relative frequencies may change over time. Three nested subtypes of populational models can be distinguished: evolutionary, selectional and replicative. Substantial progress has been made in the study of cultural evolution by modelling it within the selectional frame. This progress has involved idealizing away from phenomena that may be critical to an adequate understanding of culture and cultural evolution, particularly the constructive aspect of the mechanisms of cultural transmission. Taking these aspects into account, we describe cultural evolution in terms of cultural attraction, which is populational and evolutionary, but only selectional under certain circumstances. As such, in order to model cultural evolution, we must not simply adjust existing replicative or selectional models but we should rather generalize them, so that, just as replicator-based selection is one form that Darwinian selection can take, selection itself is one of several different forms that attraction can take. We present an elementary formalization of the idea of cultural attraction. PMID:24686939

  17. Introduction to Galactic Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Matteucci, Francesca

    2016-04-01

    In this lecture I will introduce the concept of galactic chemical evolution, namely the study of how and where the chemical elements formed and how they were distributed in the stars and gas in galaxies. The main ingredients to build models of galactic chemical evolution will be described. They include: initial conditions, star formation history, stellar nucleosynthesis and gas flows in and out of galaxies. Then some simple analytical models and their solutions will be discussed together with the main criticisms associated to them. The yield per stellar generation will be defined and the hypothesis of instantaneous recycling approximation will be critically discussed. Detailed numerical models of chemical evolution of galaxies of different morphological type, able to follow the time evolution of the abundances of single elements, will be discussed and their predictions will be compared to observational data. The comparisons will include stellar abundances as well as interstellar medium ones, measured in galaxies. I will show how, from these comparisons, one can derive important constraints on stellar nucleosynthesis and galaxy formation mechanisms. Most of the concepts described in this lecture can be found in the monograph by Matteucci (2012).

  18. Climatic Change and Human Evolution.

    ERIC Educational Resources Information Center

    Garratt, John R.

    1995-01-01

    Traces the history of the Earth over four billion years, and shows how climate has had an important role to play in the evolution of humans. Posits that the world's rapidly growing human population and its increasing use of energy is the cause of present-day changes in the concentrations of greenhouse gases in the atmosphere. (Author/JRH)

  19. Investigating Evolution with Living Plants.

    ERIC Educational Resources Information Center

    Schlessman, Mark A.

    1997-01-01

    Describes two investigative labs that use live plants to illustrate important biological principles, include quantitative analysis, and require very little equipment. Each lab is adaptable to a variety of class sizes, course contents, and student backgrounds. Topics include the evolution of flower size in Mimulus and pollination of Brassicas. (DDR)

  20. Galactic evolution of 7Li

    NASA Astrophysics Data System (ADS)

    Matteucci, Francesca

    2010-04-01

    Lithium represents a key element in cosmology, as it is one of the few nuclei synthesized during the Big Bang. The primordial abundance of 7Li allows us to impose constraints on the primordial nucleosynthesis and on the baryon density of the universe. However, 7Li is not only produced during the Big Bang but also during galactic evolution: measures of stellar Li in our Galaxy suggest an almost constant Li abundance (the so-called Spite plateau) at low metallicities and a subsequent increase in the disk stars, leading to a Li abundance in Population I stars higher by a factor of ten than in Population II stars. This means that there must exist several possible stellar sources of 7Li: asymptotic giant branch stars, supernovae, novae, red giant stars. 7Li is also partly produced in spallation processes while 6Li is entirely produced by such processes. All of these sources have been included in galactic chemical evolution models and constraints have been derived on the primordial 7Li and its evolution, as well on stellar models. I will review these models and their results and what we have learned about 7Li evolution. Some still open problems, such as the disagreement between the primordial 7Li abundance as derived by WMAP and as measured in Population II stars, and the uncertainties about the main sources of stellar 7Li will be discussed.

  1. The middle way of evolution

    PubMed Central

    Hunt, Tam

    2012-01-01

    This essay provides a critical review of two recent books on evolution: Richard Dawkins’ The Greatest Show on Earth, and Jerry Coyne’s Why Evolution is True, as well as a critique of mainstream evolutionary theory and of natural selection. I also suggest a generalization of sexual selection theory that acknowledges mind as pervasive in nature. Natural selection, as the primary theory of how biological change occurs, must be carefully framed to avoid the long-standing “tautology problem” and must also be modified to more explicitly include the role of mind in evolution. A propensity approach to natural selection, in which “expected fitness” is utilized rather than “fitness,” can save natural selection from tautology. But to be a productive theory, natural selection theory should be placed alongside sexual selection – which is explicitly agentic/intentional – as a twin force, but also placed alongside purely endogenous factors such as genetic drift. This framing is contrary to the normal convention that often groups all of these factors under the rubric of “natural selection.” I suggest some approaches for improving modern evolutionary theory, including a “generalized sexual selection,” a panpsychist extension of Darwin’s theory of sexual selection that explicitly recognizes the role of mind at all levels of nature and which may play the part of a general theory of evolution better than natural selection theory. PMID:23181154

  2. Angiosperm ovules: diversity, development, evolution

    PubMed Central

    Endress, Peter K.

    2011-01-01

    Background Ovules as developmental precursors of seeds are organs of central importance in angiosperm flowers and can be traced back in evolution to the earliest seed plants. Angiosperm ovules are diverse in their position in the ovary, nucellus thickness, number and thickness of integuments, degree and direction of curvature, and histological differentiations. There is a large body of literature on this diversity, and various views on its evolution have been proposed over the course of time. Most recently evo–devo studies have been concentrated on molecular developmental genetics in ovules of model plants. Scope The present review provides a synthetic treatment of several aspects of the sporophytic part of ovule diversity, development and evolution, based on extensive research on the vast original literature and on experience from my own comparative studies in a broad range of angiosperm clades. Conclusions In angiosperms the presence of an outer integument appears to be instrumental for ovule curvature, as indicated from studies on ovule diversity through the major clades of angiosperms, molecular developmental genetics in model species, abnormal ovules in a broad range of angiosperms, and comparison with gymnosperms with curved ovules. Lobation of integuments is not an atavism indicating evolution from telomes, but simply a morphogenetic constraint from the necessity of closure of the micropyle. Ovule shape is partly dependent on locule architecture, which is especially indicated by the occurrence of orthotropous ovules. Some ovule features are even more conservative than earlier assumed and thus of special interest in angiosperm macrosystematics. PMID:21606056

  3. On evolution of the universe

    NASA Astrophysics Data System (ADS)

    Slavnov, D. A.

    2016-01-01

    We consider the model of evolution of the Universe where the Big Bang is regarded as an explosion of a photon superstar. The inflationary epoch is not necessary in the model. The model describes the fundamental phenomena observed: the Universe is expanding at an increasing rate, it is homogeneous and isotropic and contains no antimatter, and its metrics is almost flat.

  4. The middle way of evolution.

    PubMed

    Hunt, Tam

    2012-09-01

    THIS ESSAY PROVIDES A CRITICAL REVIEW OF TWO RECENT BOOKS ON EVOLUTION: Richard Dawkins' The Greatest Show on Earth, and Jerry Coyne's Why Evolution is True, as well as a critique of mainstream evolutionary theory and of natural selection. I also suggest a generalization of sexual selection theory that acknowledges mind as pervasive in nature. Natural selection, as the primary theory of how biological change occurs, must be carefully framed to avoid the long-standing "tautology problem" and must also be modified to more explicitly include the role of mind in evolution. A propensity approach to natural selection, in which "expected fitness" is utilized rather than "fitness," can save natural selection from tautology. But to be a productive theory, natural selection theory should be placed alongside sexual selection - which is explicitly agentic/intentional - as a twin force, but also placed alongside purely endogenous factors such as genetic drift. This framing is contrary to the normal convention that often groups all of these factors under the rubric of "natural selection." I suggest some approaches for improving modern evolutionary theory, including a "generalized sexual selection," a panpsychist extension of Darwin's theory of sexual selection that explicitly recognizes the role of mind at all levels of nature and which may play the part of a general theory of evolution better than natural selection theory. PMID:23181154

  5. Metabolic Acceleration in Human Evolution.

    PubMed

    Isler, Karin

    2016-07-12

    Humans stand out among other primates by an unusual combination of a very large brain and high fertility. Pontzer et al. (2016a) present new data on daily energy expenditure in great apes and show that the metabolic rate increased during human evolution. PMID:27411003

  6. Chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  7. Why a Statement Affirming Evolution?

    ERIC Educational Resources Information Center

    Chambers, Bette

    1977-01-01

    The author defends the statement made in SO 505 260 by pointing out that creationists falsely allege that a choice exists between creationist and evolutionist theories. Even in the late 1960s, schools in the West and Northwest showed religious films and avoided use of the word "evolution." For journal availability, see SO 505 260. (AV)

  8. Native Tradition, Evolution and Creation.

    ERIC Educational Resources Information Center

    Pierotti, Raymond; Wildcat, Daniel R.

    1997-01-01

    Presents evidence that Native peoples' profound understanding of ecology, the nature of individuality, and resulting differences in survival and reproduction led them to develop ideas of evolution through natural selection long before Europeans. Suggests that in order to survive, Native Americans must not allow Western ways of thought, which are…

  9. The evolution of breast implants.

    PubMed

    Maxwell, G Patrick; Gabriel, Allen

    2009-01-01

    Female glandular hypomastia is a frequently encountered entity that occurs either developmentally or by postpartum involution. Historically, women have long sought breast enlargement to improve physical proportions, to foster a more feminine appearance, or to enhance self-image. This article explores the evolution of breast implants. PMID:19055956

  10. Ten year evolution of liposuction.

    PubMed

    Troilius, C

    1996-01-01

    The author very briefly reviews the evolution of liposuction beginning with the pioneering work of Yves-Gerard Illouz, through the contributions of Doctors Toledo, Gasparotti, Klein, and Zocchi. This brief historical review is accompanied by cases demonstrating his experiences with these techniques. PMID:8670395

  11. The Semiosic Evolution of Education

    ERIC Educational Resources Information Center

    Olteanu, Alin

    2014-01-01

    The recent development of biosemiotics has revealed the achievement of knowledge and the development of science to be the results of the semiosis of all life forms, including those commonly regarded as cultural constructs. Education is thus a semiosic structure to which evolution itself has adapted, while learning is the semiotic phenomenon that…

  12. The Evolution of Learning Mechanisms.

    ERIC Educational Resources Information Center

    Garcia, John; Garcia y Robertson, Rodrigo

    This paper introduces seven principles of learning, enduring over the last five centuries of psychological thought, to discuss the evolution of the "Biophyche" (the brain in action) in the development of humans and other large organisms. It describes the conditioning theories of Darwin, Pavlov, and Thorndike and critically reviews the twentieth…

  13. Evolution versus Creationism in Education

    ERIC Educational Resources Information Center

    Apple, Michael W.

    2008-01-01

    As part of the continuing series of the Reviewing Policy section, this article examines some of the recent literature on the creation-evolution controversy. These controversies are placed within a larger analysis of the growth of authoritarian populist movements in the United States. The article then focuses attention on debates both over a number…

  14. Evolution, Emotions, and Emotional Disorders

    ERIC Educational Resources Information Center

    Nesse, Randolph M.; Ellsworth, Phoebe C.

    2009-01-01

    Emotions research is now routinely grounded in evolution, but explicit evolutionary analyses of emotions remain rare. This article considers the implications of natural selection for several classic questions about emotions and emotional disorders. Emotions are special modes of operation shaped by natural selection. They adjust multiple response…

  15. Adaptive evolution of molecular phenotypes

    NASA Astrophysics Data System (ADS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-09-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak.

  16. Dynamic Evolution of Squeezing Maintenance

    NASA Astrophysics Data System (ADS)

    Wan, Zhi-Long; Fan, Hong-Yi

    2016-08-01

    By virtue of the coherent state representation and solving Riccati equation we derive dynamic evolution operator for maintaining squeezing, i.e., we demonstrate that the final state keeps squeezing when the initial state is a squeezed vacuum state. The number-phase squeezing maintenance mechanism is also studied.

  17. NLO Hierarchy of Wilson Lines Evolution

    SciTech Connect

    Balitsky, Ian

    2015-03-01

    The high-energy behavior of QCD amplitudes can be described in terms of the rapidity evolution of Wilson lines. I present the hierarchy of evolution equations for Wilson lines in the next-to-leading order.

  18. Space Station Displays and Controls Technology Evolution

    NASA Technical Reports Server (NTRS)

    Blackburn, Greg C.

    1990-01-01

    Viewgraphs on space station displays and controls technology evolution are presented. Topics covered include: a historical perspective; major development objectives; current development activities; key technology areas; and technology evolution issues.

  19. Human evolution: the view from Saturn.

    NASA Astrophysics Data System (ADS)

    Landau, M.

    The evolution of bipedalism is considered a critical step in human evolution. To discover how it occurred, and whether it could have occurred elsewhere in the universe, scientists must study the structure of their theories as well as fossils.

  20. Space Station displays and controls technology evolution

    NASA Astrophysics Data System (ADS)

    Blackburn, Greg C.

    Viewgraphs on space station displays and controls technology evolution are presented. Topics covered include: a historical perspective; major development objectives; current development activities; key technology areas; and technology evolution issues.

  1. Outrunning Nature: Directed Evolution of Superior Biocatalysts

    ERIC Educational Resources Information Center

    Woodyer, Ryan; Chen, Wilfred; Zhao, Huimin

    2004-01-01

    The development of enzymes as biocatalysts for industrial use and the emergence of directed evolution in the invention of advanced biocatalysts are discussed and illustrated. Thus, directed evolution has bridged the functional gap between natural and specially designed biocatalysts.

  2. Experimental "evolutional machines": mathematical and experimental modeling of biological evolution

    NASA Astrophysics Data System (ADS)

    Brilkov, A. V.; Loginov, I. A.; Morozova, E. V.; Shuvaev, A. N.; Pechurkin, N. S.

    Experimentalists possess model systems of two major types for study of evolution continuous cultivation in the chemostat and long-term development in closed laboratory microecosystems with several trophic structure If evolutionary changes or transfer from one steady state to another in the result of changing qualitative properties of the system take place in such systems the main characteristics of these evolution steps can be measured By now this has not been realized from the point of view of methodology though a lot of data on the work of both types of evolutionary machines has been collected In our experiments with long-term continuous cultivation we used the bacterial strains containing in plasmids the cloned genes of bioluminescence and green fluorescent protein which expression level can be easily changed and controlled In spite of the apparent kinetic diversity of evolutionary transfers in two types of systems the general mechanisms characterizing the increase of used energy flow by populations of primer producent can be revealed at their study According to the energy approach at spontaneous transfer from one steady state to another e g in the process of microevolution competition or selection heat dissipation characterizing the rate of entropy growth should increase rather then decrease or maintain steady as usually believed The results of our observations of experimental evolution require further development of thermodynamic theory of open and closed biological systems and further study of general mechanisms of biological

  3. Guiding Architects in Selecting Architectural Evolution Alternatives

    SciTech Connect

    Ciraci, Selim; Sozer, Hasan; Aksit, Mehmet

    2011-09-09

    Although there exist methods and tools to support architecture evolution, the derivation and evaluation of alternative evolution paths are realized manually. In this paper, we introduce an approach, where architecture specification is converted to a graph representation. Based on this representation, we automatically generate possible evolution paths, evalute quality attributes for different architecture configurations, and optimize the selection of a particular path accordingly. We illustrate our approach by modeling the software architecture evolution of a crisis management system.

  4. Florida Teachers' Attitudes about Teaching Evolution

    ERIC Educational Resources Information Center

    Fowler, Samantha R.; Meisels, Gerry G.

    2010-01-01

    A survey of Florida teachers reveals many differences in comfort level with teaching evolution according to the state's science teaching standards, general attitudes and beliefs about evolution, and the extent to which teachers are criticized, censured, disparaged, or reprehended for their beliefs about the teaching of evolution.

  5. Undermining Evolution: Where State Standards Go Wrong

    ERIC Educational Resources Information Center

    American Educator, 2012

    2012-01-01

    While many states are handling evolution better today than in the past, anti-evolution pressures continue to threaten state science standards. In April 2012, for example, Tennessee passed a law that enables teachers to bring anti-evolution materials into the classroom without being challenged by administrators. This law is similar to the Science…

  6. Investigating Human Evolution Using Digital Imaging & Craniometry

    ERIC Educational Resources Information Center

    Robertson, John C.

    2007-01-01

    Human evolution is an important and intriguing area of biology. The significance of evolution as a component of biology curricula, at all levels, can not be overstated; the need to make the most of opportunities to effectively educate students in evolution as a central and unifying realm of biology is paramount. Developing engaging laboratory or…

  7. Darwin and Mendel: Evolution and Genetics

    ERIC Educational Resources Information Center

    Bizzo, Nelio; El-Hani, Charbel N.

    2009-01-01

    Many studies have shown that students' understanding of evolution is low and some sort of historical approach would be necessary in order to allow students to understand the theory of evolution. It is common to present Mendelian genetics to high school students prior to Biological Evolution, having in mind historical and epistemological…

  8. Evolution, Creationism, and the Courts: 20 Questions

    ERIC Educational Resources Information Center

    Moore, Randy; Miksch, Karen L.

    2003-01-01

    The teaching of evolution and creationism is controversial to many people in the United States. Knowledge of the many important court-decisions about the teaching of evolution and creationism in the United States can be used not only to resist anti-evolution activities of creationists, but also to help teachers address questions about the teaching…

  9. Nonlinear Evolution of Alfvenic Wave Packets

    NASA Technical Reports Server (NTRS)

    Buti, B.; Jayanti, V.; Vinas, A. F.; Ghosh, S.; Goldstein, M. L.; Roberts, D. A.; Lakhina, G. S.; Tsurutani, B. T.

    1998-01-01

    Alfven waves are a ubiquitous feature of the solar wind. One approach to studying the evolution of such waves has been to study exact solutions to approximate evolution equations. Here we compare soliton solutions of the Derivative Nonlinear Schrodinger evolution equation (DNLS) to solutions of the compressible MHD equations.

  10. The Teaching and Learning of Biological Evolution.

    ERIC Educational Resources Information Center

    Kyle, William C., Jr., Ed.

    1994-01-01

    Evolution education is of increasing interest to the science education community. This special issue of the "Journal of Research in Science Teaching" has been devoted to the subject of evolution. The following articles are included: (1) "Evolution: Biological Education's Under-Researched Unifying Theme" by Catherine L. Cummins, Sherry S. Demastes,…

  11. Life and evolution as physics

    PubMed Central

    Bejan, Adrian

    2016-01-01

    ABSTRACT What is evolution and why does it exist in the biological, geophysical and technological realms — in short, everywhere? Why is there a time direction — a time arrow — in the changes we know are happening every moment and everywhere? Why is the present different than the past? These are questions of physics, about everything, not just biology. The answer is that nothing lives, flows and moves unless it is driven by power. Physics sheds light on the natural engines that produce the power destroyed by the flows, and on the free morphing that leads to flow architectures naturally and universally. There is a unifying tendency across all domains to evolve into flow configurations that provide greater access for movement. This tendency is expressed as the constructal law of evolutionary flow organization everywhere. Here I illustrate how this law of physics accounts for and unites the life and evolution phenomena throughout nature, animate and inanimate. PMID:27489579

  12. Biophysical Aspects of Spindle Evolution

    NASA Astrophysics Data System (ADS)

    Farhadifar, Reza; Baer, Charlie; Needleman, Daniel

    2011-03-01

    The continual propagation of genetic material from one generation to the next is one of the most basic characteristics of all organisms. In eukaryotes, DNA is segregated into the two daughter cells by a highly dynamic, self-organizing structure called the mitotic spindle. Mitotic spindles can show remarkable variability between tissues and organisms, but there is currently little understanding of the biophysical and evolutionary basis of this diversity. We are studying how spontaneous mutations modify cell division during nematode development. By comparing the mutational variation - the raw material of evolution - with the variation present in nature, we are investigating how the mitotic spindle is shaped over the course of evolution. This combination of quantitative genetics and cellular biophysics gives insight into how the structure and dynamics of the spindle is formed through selection, drift, and biophysical constraints.

  13. Evolutions equations in computational anatomy.

    PubMed

    Younes, Laurent; Arrate, Felipe; Miller, Michael I

    2009-03-01

    One of the main purposes in computational anatomy is the measurement and statistical study of anatomical variations in organs, notably in the brain or the heart. Over the last decade, our group has progressively developed several approaches for this problem, all related to the Riemannian geometry of groups of diffeomorphisms and the shape spaces on which these groups act. Several important shape evolution equations that are now used routinely in applications have emerged over time. Our goal in this paper is to provide an overview of these equations, placing them in their theoretical context, and giving examples of applications in which they can be used. We introduce the required theoretical background before discussing several classes of equations of increasingly complexity. These equations include energy minimizing evolutions deriving from Riemannian gradient descent, geodesics, parallel transport and Jacobi fields. PMID:19059343

  14. Evolution of Chinese airport network

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo; Cai, Kai-Quan

    2010-09-01

    With the rapid development of the economy and the accelerated globalization process, the aviation industry plays a more and more critical role in today’s world, in both developed and developing countries. As the infrastructure of aviation industry, the airport network is one of the most important indicators of economic growth. In this paper, we investigate the evolution of the Chinese airport network (CAN) via complex network theory. It is found that although the topology of CAN has remained steady during the past few years, there are many dynamic switchings inside the network, which have changed the relative importance of airports and airlines. Moreover, we investigate the evolution of traffic flow (passengers and cargoes) on CAN. It is found that the traffic continues to grow in an exponential form and has evident seasonal fluctuations. We also found that cargo traffic and passenger traffic are positively related but the correlations are quite different for different kinds of cities.

  15. Evolution equation for quantum coherence

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Liang; Fan, Heng

    2016-07-01

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures.

  16. Evolution in bouncing quantum cosmology

    NASA Astrophysics Data System (ADS)

    Mielczarek, Jakub; Piechocki, Włodzimierz

    2012-03-01

    We present the method of describing an evolution in quantum cosmology in the framework of the reduced phase space quantization of loop cosmology. We apply our method to the flat Friedmann-Robertson-Walker model coupled to a massless scalar field. We identify the physical quantum Hamiltonian that is positive-definite and generates globally a unitary evolution of the considered quantum system. We examine the properties of expectation values of physical observables in the process of the quantum big bounce transition. The dispersion of evolved observables is studied for the Gaussian state. Calculated relative fluctuations enable an examination of the semi-classicality conditions and possible occurrence of the cosmic forgetfulness. Preliminary estimations based on the cosmological data suggest that there was no cosmic amnesia. Presented results are analytical, and numerical computations are only used for the visualization purposes. Our method may be generalized to sophisticated cosmological models including the Bianchi-type universes.

  17. Life and evolution as physics.

    PubMed

    Bejan, Adrian

    2016-01-01

    What is evolution and why does it exist in the biological, geophysical and technological realms - in short, everywhere? Why is there a time direction - a time arrow - in the changes we know are happening every moment and everywhere? Why is the present different than the past? These are questions of physics, about everything, not just biology. The answer is that nothing lives, flows and moves unless it is driven by power. Physics sheds light on the natural engines that produce the power destroyed by the flows, and on the free morphing that leads to flow architectures naturally and universally. There is a unifying tendency across all domains to evolve into flow configurations that provide greater access for movement. This tendency is expressed as the constructal law of evolutionary flow organization everywhere. Here I illustrate how this law of physics accounts for and unites the life and evolution phenomena throughout nature, animate and inanimate. PMID:27489579

  18. The evolution of comet orbits

    NASA Technical Reports Server (NTRS)

    Everhart, E.

    1976-01-01

    The origin of comets and the evolution of their orbits are discussed. Factors considered include: the law of survival of comets against ejection on hyperbolic orbits; short-period comets are not created by single close encounters of near-parabolic comets with Jupiter; observable long-period comets do not evolve into observable short-period comets; unobservable long-period comets with perihelia near Jupiter can evolve into observable short-period comets; long-period comets cannot have been formed or created within the planetary region of the solar system (excluding the effects of stellar perturbations); it is possible that some of the short-period comets could have been formed inside the orbit of Neptune; circularly-restricted three-body problem, and its associated Jacobi integral, are not valid approximations to use in studying origin and evolution of comets.

  19. Directed Evolution of Fungal Laccases

    PubMed Central

    Maté, Diana; García-Ruiz, Eva; Camarero, Susana; Alcalde, Miguel

    2011-01-01

    Fungal laccases are generalists biocatalysts with potential applications that range from bioremediation to novel green processes. Fuelled by molecular oxygen, these enzymes can act on dozens of molecules of different chemical nature, and with the help of redox mediators, their spectrum of oxidizable substrates is further pushed towards xenobiotic compounds (pesticides, industrial dyes, PAHs), biopolymers (lignin, starch, cellulose) and other complex molecules. In recent years, extraordinary efforts have been made to engineer fungal laccases by directed evolution and semi-rational approaches to improve their functional expression or stability. All these studies have taken advantage of Saccharomyces cerevisiae as a heterologous host, not only to secrete the enzyme but also, to emulate the introduction of genetic diversity through in vivo DNA recombination. Here, we discuss all these endeavours to convert fungal laccases into valuable biomolecular platforms on which new functions can be tailored by directed evolution. PMID:21966249

  20. Evolution equation for quantum coherence

    PubMed Central

    Hu, Ming-Liang; Fan, Heng

    2016-01-01

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933

  1. Cancer: evolution within a lifetime.

    PubMed

    Gerlinger, Marco; McGranahan, Nicholas; Dewhurst, Sally M; Burrell, Rebecca A; Tomlinson, Ian; Swanton, Charles

    2014-01-01

    Subclonal cancer populations change spatially and temporally during the disease course. Studies are revealing branched evolutionary cancer growth with low-frequency driver events present in subpopulations of cells, providing escape mechanisms for targeted therapeutic approaches. Despite such complexity, evidence is emerging for parallel evolution of subclones, mediated through distinct somatic events converging on the same gene, signal transduction pathway, or protein complex in different subclones within the same tumor. Tumors may follow gradualist paths (microevolution) as well as major shifts in evolutionary trajectories (macroevolution). Although macroevolution has been subject to considerable controversy in post-Darwinian evolutionary theory, we review evidence that such nongradual, saltatory leaps, driven through chromosomal rearrangements or genome doubling, may be particularly relevant to tumor evolution. Adapting cancer care to the challenges imposed by tumor micro- and macroevolution and developing deeper insight into parallel evolutionary events may prove central to improving outcome and reducing drug development costs. PMID:25292359

  2. Drug discovery: lessons from evolution

    PubMed Central

    Warren, John

    2011-01-01

    A common view within the pharmaceutical industry is that there is a problem with drug discovery and we should do something about it. There is much sympathy for this from academics, regulators and politicians. In this article I propose that lessons learnt from evolution help identify those factors that favour successful drug discovery. This personal view is influenced by a decade spent reviewing drug development programmes submitted for European regulatory approval. During the prolonged gestation of a new medicine few candidate molecules survive. This process of elimination of many variants and the survival of so few has much in common with evolution, an analogy that encourages discussion of the forces that favour, and those that hinder, successful drug discovery. Imagining a world without vaccines, anaesthetics, contraception and anti-infectives reveals how medicines revolutionized humanity. How to manipulate conditions that favour such discoveries is worth consideration. PMID:21395642

  3. Endosymbiosis and Eukaryotic Cell Evolution.

    PubMed

    Archibald, John M

    2015-10-01

    Understanding the evolution of eukaryotic cellular complexity is one of the grand challenges of modern biology. It has now been firmly established that mitochondria and plastids, the classical membrane-bound organelles of eukaryotic cells, evolved from bacteria by endosymbiosis. In the case of mitochondria, evidence points very clearly to an endosymbiont of α-proteobacterial ancestry. The precise nature of the host cell that partnered with this endosymbiont is, however, very much an open question. And while the host for the cyanobacterial progenitor of the plastid was undoubtedly a fully-fledged eukaryote, how - and how often - plastids moved from one eukaryote to another during algal diversification is vigorously debated. In this article I frame modern views on endosymbiotic theory in a historical context, highlighting the transformative role DNA sequencing played in solving early problems in eukaryotic cell evolution, and posing key unanswered questions emerging from the age of comparative genomics. PMID:26439354

  4. Evolution of primoridal gas clouds

    NASA Technical Reports Server (NTRS)

    Bodenheimer, P. H.

    1986-01-01

    The dynamical, chemical, and thermal evolution of zero-metal gas clouds was modeled to study conditions of star formation in the early universe. Numerical results are given for the collapse of spherical clouds of mass 1000 and 50000 solar mass. Cooling by H2 lines and by photons emitted in H + e(-) yields H(-) = h (sup nu) maintains collapse until formation of an equilibrium protostellar core of mass 0.02 solar mass. The cooling by photons produced with H is essential for low mass star formation. If the cloud is fragmented, the evolution of the pieces is similar to that of the parent cloud, but the equilibrium core has larger density and mass.

  5. Evolution equation for quantum coherence.

    PubMed

    Hu, Ming-Liang; Fan, Heng

    2016-01-01

    The estimation of the decoherence process of an open quantum system is of both theoretical significance and experimental appealing. Practically, the decoherence can be easily estimated if the coherence evolution satisfies some simple relations. We introduce a framework for studying evolution equation of coherence. Based on this framework, we prove a simple factorization relation (FR) for the l1 norm of coherence, and identified the sets of quantum channels for which this FR holds. By using this FR, we further determine condition on the transformation matrix of the quantum channel which can support permanently freezing of the l1 norm of coherence. We finally reveal the universality of this FR by showing that it holds for many other related coherence and quantum correlation measures. PMID:27382933

  6. Analysis of the Science and Technology Preservice Teachers' Opinions on Teaching Evolution and Theory of Evolution

    ERIC Educational Resources Information Center

    Töman, Ufuk; Karatas, Faik Özgür; Çimer, Sabiha Odabasi

    2014-01-01

    In this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. The aim of this study, we investigate of science and technology teachers' opinions about the theory of evolution and the evolution teaching. This study is a descriptive study. Open-ended questions were used to…

  7. High School Students' Perceptions of Evolution Instruction: Acceptance and Evolution Learning Experiences

    ERIC Educational Resources Information Center

    Donnelly, Lisa A.; Kazempour, Mahsa; Amirshokoohi, Aidin

    2009-01-01

    Evolution is an important and sometimes controversial component of high school biology. In this study, we used a mixed methods approach to explore students' evolution acceptance and views of evolution teaching and learning. Students explained their acceptance and rejection of evolution in terms of evidence and conflicts with religion and…

  8. Horizontal-branch stellar evolution

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.

    1990-01-01

    The results of canonical theory for the evolution of horizontal-branch (HB) stars are examined. Particular attention is given to how an HB star maintains the appropriate composition distribution within the semiconvective zone and how this composition is affected by the finite time-dependence with which convective boundaries actually move. Newly developed models based on time-dependent overshooting are presented for both the core-helium-exhaustion and main HB phases.

  9. Stability and instability in evolution.

    PubMed

    Benci, V; Galleni, L

    1998-10-21

    In this paper we propose a mechanism which tries to explain the presence of periods of stability and instability which occur during the evolution of living forms. According to the Gaia hypothesis there are feedback mechanisms which stabilise the biosphere. Adding the presence of parameters which are out of control of the biosphere and of different time-scales, we propose a model which might explain the periods of instability. PMID:9790828

  10. Hominid evolution: genetics versus memetics

    NASA Astrophysics Data System (ADS)

    Carter, Brandon

    2012-01-01

    The last few million years on planet Earth have witnessed two remarkable phases of hominid development, starting with a phase of biological evolution characterized by rather rapid increase of the size of the brain. This has been followed by a phase of even more rapid technological evolution and concomitant expansion of the size of the population that began when our own particular ‘sapiens’ species emerged, just a few hundred thousand years ago. The present investigation exploits the analogy between the neo-Darwinian genetic evolution mechanism governing the first phase, and the memetic evolution mechanism governing the second phase. From the outset of the latter until very recently - about the year 2000 - the growth of the global population N was roughly governed by an equation of the form dN/Ndt=N/T*, in which T* is a coefficient introduced (in 1960) by von Foerster, who evaluated it empirically as about 200 000 million years. It is shown here how the value of this hitherto mysterious timescale governing the memetic phase is explicable in terms of what happened in the preceding genetic phase. The outcome is that the order of magnitude of the Foerster timescale can be accounted for as the product of the relevant (human) generation timescale, about 20 years, with the number of bits of information in the genome, of the order of 10 000 million. Whereas the origin of our ‘homo’ genus may well have involved an evolutionary hard step, it transpires that the emergence of our particular ‘sapiens’ species was rather an automatic process.

  11. On the evolution of pulsars

    NASA Technical Reports Server (NTRS)

    Beskin, V. S.; Gurevich, A. V.; Istomin, Ya. N.

    1991-01-01

    Data from a previous investigation on the angle chi between the axis of rotation and the magnetic dipole axis, determined from polarization observations, provides a complete catalog which makes it possible to carry out a detailed comparison of the theoretical results of this present investigation with the observed distribution of radio pulsars over the angel chi. Before such a comparison is made, the main features of a theory for pulsar evolution is described.

  12. Supersymmetric fifth order evolution equations

    SciTech Connect

    Tian, K.; Liu, Q. P.

    2010-03-08

    This paper considers supersymmetric fifth order evolution equations. Within the framework of symmetry approach, we give a list containing six equations, which are (potentially) integrable systems. Among these equations, the most interesting ones include a supersymmetric Sawada-Kotera equation and a novel supersymmetric fifth order KdV equation. For the latter, we supply some properties such as a Hamiltonian structures and a possible recursion operator.

  13. Planetary Evolution, Habitability and Life

    NASA Astrophysics Data System (ADS)

    Tilman, Spohn; Breuer, Doris; de Vera, Jean-Pierre; Jaumann, Ralf; Kuehrt, Ekkehard; Möhlmann, Diedrich; Rauer, Heike; Richter, Lutz

    A Helmholtz Alliance has been established to study the interactions between life and the evo-lution of planets. The approach goes beyond current studies in Earth-System Sciences by including the entire planet from the atmosphere to the deep interior, going beyond Earth to include other Earth-like planets such as Mars and Venus and satellites in the solar system where ecosystems may exist underneath thick ice shells,considering other solar systems. The approach includes studies of the importance of plate tectonics and other tectonic regimes such as single plate tectonics for the development and for sustaining life and asks the question: If life can adapt to a planet, can a planet adapt to life? Can life be seen as a geological process and if so, can life shape the conditions on a planet such that life can flourish? The vision goes beyond the solar system by including the challenges that life would face in other solar systems. The Alliance uses theoretical modelling of feedback cycles and coupled planetary atmosphere and interior processes. These models are based on the results of remote sensing of planetary surfaces and atmospheres, laboratory studies on (meteorite) samples from other planets and on studies of life under extreme conditions. The Alliance uses its unique capabilities in remote sensing and in-situ exploration to prepare for empirical studies of the parameters affecting habitability. The Alliance aims to establish a network infrastructure in Germany to enable the most ad-vanced research in planetary evolution studies by including life as a planetary process. Finding extraterrestrial life is a task of fundamental importance to mankind, and its fulfilment will be philosophically profound. Evaluating the interactions between planetary evolution and life will help to put the evolution of our home planet (even anthropogenic effects) into perspective.

  14. The evolution of emergent computation.

    PubMed Central

    Crutchfield, J P; Mitchell, M

    1995-01-01

    A simple evolutionary process can discover sophisticated methods for emergent information processing in decentralized spatially extended systems. The mechanisms underlying the resulting emergent computation are explicated by a technique for analyzing particle-based logic embedded in pattern-forming systems. Understanding how globally coordinated computation can emerge in evolution is relevant both for the scientific understanding of natural information processing and for engineering new forms of parallel computing systems. PMID:11607588

  15. THE CHEMICAL EVOLUTION OF PHOSPHORUS

    SciTech Connect

    Jacobson, Heather R.; Thanathibodee, Thanawuth; Frebel, Anna; Roederer, Ian U.; Cescutti, Gabriele; Matteucci, Francesca

    2014-12-01

    Phosphorus is one of the few remaining light elements for which little is known about its nucleosynthetic origin and chemical evolution, given the lack of optical absorption lines in the spectra of long-lived FGK-type stars. We have identified a P I doublet in the near-ultraviolet (2135/2136 Å) that is measurable in stars of low metallicity. Using archival Hubble Space Telescope-Space Telescope Imaging Spectrograph spectra, we have measured P abundances in 13 stars spanning –3.3 ≤ [Fe/H] ≤ -0.2, and obtained an upper limit for a star with [Fe/H] ∼ -3.8. Combined with the only other sample of P abundances in solar-type stars in the literature, which spans a range of –1 ≤ [Fe/H] ≤ +0.2, we compare the stellar data to chemical evolution models. Our results support previous indications that massive-star P yields may need to be increased by a factor of a few to match stellar data at all metallicities. Our results also show that hypernovae were important contributors to the P production in the early universe. As P is one of the key building blocks of life, we also discuss the chemical evolution of the important elements to life, C-N-O-P-S, together.

  16. Leopard predation and primate evolution.

    PubMed

    Zuberbühler, Klaus; Jenny, David

    2002-12-01

    Although predation is an important driving force of natural selection its effects on primate evolution are still not well understood, mainly because little is known about the hunting behaviour of the primates' various predators. Here, we present data on the hunting behaviour of the leopard (Panthera pardus), a major primate predator in the Tai; forest of Ivory Coast and elsewhere. Radio-tracking data showed that forest leopards primarily hunt for monkeys on the ground during the day. Faecal analyses confirmed that primates accounted for a large proportion of the leopards' diet and revealed in detail the predation pressure exerted on the eight different monkey and one chimpanzee species. We related the species-specific predation rates to various morphological, behavioural and demographic traits that are usually considered adaptations to predation (body size, group size, group composition, reproductive behaviour, and use of forest strata). Leopard predation was most reliably associated with density, suggesting that leopards hunt primates according to abundance. Contrary to predictions, leopard predation rates were not negatively, but positively, related to body size, group size and the number of males per group, suggesting that predation by leopards did not drive the evolution of these traits in the predicted way. We discuss these findings in light of some recent experimental data and suggest that the principal effect of leopard predation has been on primates' cognitive evolution. PMID:12473487

  17. Evolution of vertebrate retinal photoreception

    PubMed Central

    Lamb, Trevor D.

    2009-01-01

    Recent findings shed light on the steps underlying the evolution of vertebrate photoreceptors and retina. Vertebrate ciliary photoreceptors are not as wholly distinct from invertebrate rhabdomeric photoreceptors as is sometimes thought. Recent information on the phylogenies of ciliary and rhabdomeric opsins has helped in constructing the likely routes followed during evolution. Clues to the factors that led the early vertebrate retina to become invaginated can be obtained by combining recent knowledge about the origin of the pathway for dark re-isomerization of retinoids with knowledge of the inability of ciliary opsins to undergo photoreversal, along with consideration of the constraints imposed under the very low light levels in the deep ocean. Investigation of the origin of cell classes in the vertebrate retina provides support for the notion that cones, rods and bipolar cells all originated from a primordial ciliary photoreceptor, whereas ganglion cells, amacrine cells and horizontal cells all originated from rhabdomeric photoreceptors. Knowledge of the molecular differences between cones and rods, together with knowledge of the scotopic signalling pathway, provides an understanding of the evolution of rods and of the rods' retinal circuitry. Accordingly, it has been possible to propose a plausible scenario for the sequence of evolutionary steps that led to the emergence of vertebrate photoreceptors and retina. PMID:19720653

  18. Thermal Solutions for Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Mast, Christof B.; Osterman, Natan; Braun, Dieter

    2012-12-01

    The key requirement to solve the origin of life puzzle are disequilibrium conditions. Early molecular evolution cannot be explained by initial high concentrations of energetic chemicals since they would just react towards their chemical equilibrium allowing no further development. We argue here that persistent disequilibria are needed to increase complexity during molecular evolution. We propose thermal gradients as the disequilibrium setting which drove Darwinian molecular evolution. On the one hand the thermal gradient gives rise to laminar thermal convection flow with highly regular temperature oscillations that allow melting and replication of DNA. On the other hand molecules move along the thermal gradient, a mechanism termed Soret effect or thermophoresis. Inside a long chamber a combination of the convection flow and thermophoresis leads to a very efficient accumulation of molecules. Short DNA is concentrated thousand-fold, whereas longer DNA is exponentially better accumulated. We demonstrated both scenarios in the same micrometer-sized setting. Forthcoming experiments will reveal how replication and accumulation of DNA in a system, driven only by a thermal gradient, could create a Darwinian process of replication and selection.

  19. Laboratory-Directed Protein Evolution

    PubMed Central

    Yuan, Ling; Kurek, Itzhak; English, James; Keenan, Robert

    2005-01-01

    Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to “evolve” in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences. PMID:16148303

  20. The Evolution of Human Handedness

    PubMed Central

    Smaers, Jeroen B; Steele, James; Case, Charleen R; Amunts, Katrin

    2013-01-01

    There is extensive evidence for an early vertebrate origin of lateralized motor behavior and of related asymmetries in underlying brain systems. We investigate human lateralized motor functioning in a broad comparative context of evolutionary neural reorganization. We quantify evolutionary trends in the fronto-cerebellar system (involved in motor learning) across 46 million years of divergent primate evolution by comparing rates of evolution of prefrontal cortex, frontal motor cortex, and posterior cerebellar hemispheres along individual branches of the primate tree of life. We provide a detailed evolutionary model of the neuroanatomical changes leading to modern human lateralized motor functioning, demonstrating an increased role for the fronto-cerebellar system in the apes dating to their evolutionary divergence from the monkeys (∼30 million years ago (Mya)), and a subsequent shift toward an increased role for prefrontal cortex over frontal motor cortex in the fronto-cerebellar system in the Homo-Pan ancestral lineage (∼10 Mya) and in the human ancestral lineage (∼6 Mya). We discuss these results in the context of cortico-cerebellar functions and their likely role in the evolution of human tool use and speech. PMID:23647442

  1. Evolution of democracy in Europe

    NASA Astrophysics Data System (ADS)

    Oberoi, Mukesh K.

    The emphasis of this thesis is to build an intuitive and robust GIS (Geographic Information systems) Tool which will give a survey on the evolution of democracy in European countries. The user can know about the evolution of the democratic histories of these countries by just clicking on them on the map. The information is provided in separate HTML pages which will give information about start of revolution, transition to democracy, current legislature, women's status in the country etc. There are two separate web pages for each country- one shows the detailed explanation on how democracy evolved in diff. countries and another page contains a timeline which holds key events of the evolution. The tool has been developed in JAVA. For the European map MOJO (Map Objects Java Objects) is used. MOJO is developed by ESRI. The major features shown on the European map were designed using MOJO. MOJO made it easy to incorporate the statistical data with these features. The user interface, as well as the language was intentionally kept simple and easy to use, to broaden the potential audience. To keep the user engaged, key aspects are explained using HTML pages. The idea is that users can view the timeline to get a quick overview and can go through the other html page to learn about things in more detail.

  2. A structural perspective of compensatory evolution

    PubMed Central

    Ivankov, Dmitry N; Finkelstein, Alexei V; Kondrashov, Fyodor A

    2014-01-01

    The study of molecular evolution is important because it reveals how protein functions emerge and evolve. Recently, several types of studies indicated that substitutions in molecular evolution occur in a compensatory manner, whereby the occurrence of a substitution depends on the amino acid residues at other sites. However, a molecular or structural basis behind the compensation often remains obscure. Here, we review studies on the interface of structural biology and molecular evolution that revealed novel aspects of compensatory evolution. In many cases structural studies benefit from evolutionary data while structural data often add a functional dimension to the study of molecular evolution. PMID:24981969

  3. Evolution

    ERIC Educational Resources Information Center

    Lee, Christopher Michael

    2005-01-01

    In this article the author shares his personal experiences beginning in early childhood with his own learning disabilities. As an adult with learning disabilities, he describes how he has learned to manage his language and memory barriers through assistive technology and outside support, and he nourishes himself through therapy or simply…

  4. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  5. Mainstreaming Caenorhabditis elegans in experimental evolution

    PubMed Central

    Gray, Jeremy C.; Cutter, Asher D.

    2014-01-01

    Experimental evolution provides a powerful manipulative tool for probing evolutionary process and mechanism. As this approach to hypothesis testing has taken purchase in biology, so too has the number of experimental systems that use it, each with its own unique strengths and weaknesses. The depth of biological knowledge about Caenorhabditis nematodes, combined with their laboratory tractability, positions them well for exploiting experimental evolution in animal systems to understand deep questions in evolution and ecology, as well as in molecular genetics and systems biology. To date, Caenorhabditis elegans and related species have proved themselves in experimental evolution studies of the process of mutation, host–pathogen coevolution, mating system evolution and life-history theory. Yet these organisms are not broadly recognized for their utility for evolution experiments and remain underexploited. Here, we outline this experimental evolution work undertaken so far in Caenorhabditis, detail simple methodological tricks that can be exploited and identify research areas that are ripe for future discovery. PMID:24430852

  6. Stellar Evolution Physics 2 Volume Hardback Set

    NASA Astrophysics Data System (ADS)

    Iben, Icko

    2012-12-01

    Volume 1: Part I. Introduction and Overview: 1. Qualitative description of single and binary star evolution; 2. Quantitative foundations of stellar evolution theory; Part II. Basic Physical Processes in Stellar Interiors: 3. Properties of and physical processes in the interiors of main sequence stars - order of magnitude estimates; 4. Statistical physics, thermodynamics, and equations of state; 5. Polytropes and single zone models: elementary tools for understanding some aspects of stellar structure and evolution; 6. Hydrogen-burning nuclear reactions and energy-generation rates; 7. Photon-matter interactions and opacity; 8. Equations of stellar evolution and methods of solution; Part III. Pre-Main Sequence, Main Sequence, and Shell Hydrogen Burning Evolution of Single Stars: 9. Star formation and evolution to the main-sequence; 10. Solar structure and neutrino physics; 11. Evolution during core hydrogen-burning phases up to the onset of helium burning; Volume 2: Part IV. Transport Processes, Weak Interaction Processes and Helium-Burning Reactions: 12. Diffusion and gravitational settling; 13. Heat conduction by electrons; 14. Beta decay and electron capture at high densities in stars; 15. The current-current weak interaction and the production of neutrino-antineutrino pairs; 16. Helium-burning nuclear reactions and energy-generation rates; Part V. Evolution during Helium-Burning Phases: 17. Evolution of a low mass model burning helium and hydrogen; 18. Evolution of an intermediate mass model burning helium and hydrogen; 19. Neutron production and neutron capture in a thermally pulsing asymptotic giant branch star of intermediate mass; 20. Evolution of a massive population I model during helium- and carbon-burning stages; Part VI. Terminal Evolution of Low and Intermediate Mass Stars: 21. Wind mass loss on the AGB and formation of a circumstellar envelope, evolution of the remnant as the central star of a planetary nebula, and white dwarf evolution; Index.

  7. Evolution paths for advanced automation

    NASA Technical Reports Server (NTRS)

    Healey, Kathleen J.

    1990-01-01

    As Space Station Freedom (SSF) evolves, increased automation and autonomy will be required to meet Space Station Freedom Program (SSFP) objectives. As a precursor to the use of advanced automation within the SSFP, especially if it is to be used on SSF (e.g., to automate the operation of the flight systems), the underlying technologies will need to be elevated to a high level of readiness to ensure safe and effective operations. Ground facilities supporting the development of these flight systems -- from research and development laboratories through formal hardware and software development environments -- will be responsible for achieving these levels of technology readiness. These facilities will need to evolve support the general evolution of the SSFP. This evolution will include support for increasing the use of advanced automation. The SSF Advanced Development Program has funded a study to define evolution paths for advanced automaton within the SSFP's ground-based facilities which will enable, promote, and accelerate the appropriate use of advanced automation on-board SSF. The current capability of the test beds and facilities, such as the Software Support Environment, with regard to advanced automation, has been assessed and their desired evolutionary capabilities have been defined. Plans and guidelines for achieving this necessary capability have been constructed. The approach taken has combined indepth interviews of test beds personnel at all SSF Work Package centers with awareness of relevant state-of-the-art technology and technology insertion methodologies. Key recommendations from the study include advocating a NASA-wide task force for advanced automation, and the creation of software prototype transition environments to facilitate the incorporation of advanced automation in the SSFP.

  8. Hydrogen evolution catalyzed by cobaloximes.

    PubMed

    Dempsey, Jillian L; Brunschwig, Bruce S; Winkler, Jay R; Gray, Harry B

    2009-12-21

    Natural photosynthesis uses sunlight to drive the conversion of energy-poor molecules (H(2)O, CO(2)) to energy-rich ones (O(2), (CH(2)O)(n)). Scientists are working hard to develop efficient artificial photosynthetic systems toward the "Holy Grail" of solar-driven water splitting. High on the list of challenges is the discovery of molecules that efficiently catalyze the reduction of protons to H(2). In this Account, we report on one promising class of molecules: cobalt complexes with diglyoxime ligands (cobaloximes). Chemical, electrochemical, and photochemical methods all have been utilized to explore proton reduction catalysis by cobaloxime complexes. Reduction of a Co(II)-diglyoxime generates a Co(I) species that reacts with a proton source to produce a Co(III)-hydride. Then, in a homolytic pathway, two Co(III)-hydrides react in a bimolecular step to eliminate H(2). Alternatively, in a heterolytic pathway, protonation of the Co(III)-hydride produces H(2) and Co(III). A thermodynamic analysis of H(2) evolution pathways sheds new light on the barriers and driving forces of the elementary reaction steps involved in proton reduction by Co(I)-diglyoximes. In combination with experimental results, this analysis shows that the barriers to H(2) evolution along the heterolytic pathway are, in most cases, substantially greater than those of the homolytic route. In particular, a formidable barrier is associated with Co(III)-diglyoxime formation along the heterolytic pathway. Our investigations of cobaloxime-catalyzed H(2) evolution, coupled with the thermodynamic preference for a homolytic route, suggest that the rate-limiting step is associated with formation of the hydride. An efficient water splitting device may require the tethering of catalysts to an electrode surface in a fashion that does not inhibit association of Co(III)-hydrides. PMID:19928840

  9. The evolution of offensive realism.

    PubMed

    Johnson, Dominic D P; Phil, D; Thayer, Bradley A

    2016-01-01

    Offensive realism, a theory of international relations, holds that states are disposed to competition and conflict because they are self-interested, power maximizing, and fearful of other states. Moreover, it argues that states are obliged to behave this way because doing so favors survival in the international system. Debate continues as to whether modern states actually do, or should, behave in this way, but we are struck by a different question. In this article, we ask whether the three core assumptions about behavior in offensive realism-self-help, power maximization, and outgroup fear-have any basis in scientific knowledge about human behavioral evolution. We find that these precise traits are not only evolutionarily adaptive but also empirically common across the animal kingdom, especially in primate and human societies. Based on these findings, we hypothesize that states behave as offensive realists predict not just because of anarchy in the modern international system but also because of the legacy of our evolution. In short, offensive realism may really be describing the nature of the human species more than the nature of the international system. If our hypothesis is correct, then evolutionary theory offers the following: (1) a novel ultimate cause of offensive realist behavior; (2) an extension of offensive realism to any domain in which humans compete for power; and (3) an explanation for why individual leaders themselves, and not just states, seek power. However, a key insight from evolution is that the primacy of self-help, power maximization, and outgroup fear does not necessarily condemn individuals or groups to competition and conflict; rather, these traits can in themselves give rise to cooperation and alliances. PMID:27378020

  10. The Galactic evolution of phosphorus

    NASA Astrophysics Data System (ADS)

    Caffau, E.; Bonifacio, P.; Faraggiana, R.; Steffen, M.

    2011-08-01

    Context. As a galaxy evolves, its chemical composition changes and the abundance ratios of different elements are powerful probes of the underlying evolutionary processes. Phosphorous is an element whose evolution has remained quite elusive until now, because it is difficult to detect in cool stars. The infrared weak P i lines of the multiplet 1, at 1050-1082 nm, are the most reliable indicators of the presence of phosphorus. The availability of CRIRES at VLT has permitted access to this wavelength range in stellar spectra. Aims: We attempt to measure the phosphorus abundance of twenty cool stars in the Galactic disk. Methods: The spectra are analysed with one-dimensional model-atmospheres computed in local thermodynamic equilibrium (LTE). The line formation computations are performed assuming LTE. Results: The ratio of phosphorus to iron behaves similarly to sulphur, increasing towards lower metallicity stars. Its ratio with respect to sulphur is roughly constant and slightly larger than solar, [P/S] = 0.10 ± 0.10. Conclusions: We succeed in taking an important step towards the understanding of the chemical evolution of phosphorus in the Galaxy. However, the observed rise in the P/Fe abundance ratio is steeper than predicted by Galactic chemical evolution model developed by Kobayashi and collaborators. Phosphorus appears to evolve differently from the light odd-Z elements sodium and aluminium. The constant value of [P/S] with metallicity implies that P production is insensitive to the neutron excess, thus processes other than neutron captures operate. We suggest that proton captures on 30Si and α captures on 27Al are possibilities to investigate. We see no clear distinction between our results for stars with planets and stars without any detected planet. Based on observations obtained with the CRIRES spectrograph at ESO-VLT Antu 8.2 m telescope at Paranal, Programme 386.D-0130, P.I. E. Caffau.

  11. Malaria infection and human evolution.

    PubMed

    Sabbatani, Sergio; Manfredi, Roberto; Fiorino, Sirio

    2010-03-01

    During the evolution of the genus Homo, with regard to the species habilis, erectus and sapiens, malaria has played a key biological role in influencing human development. The plasmodia causing malaria have evolved in two ways, in biological and phylogenetic terms: Plasmodium vivax, Plasmodium malariae and Plasmodium ovale appear to have either coevolved with human mankind, or encountered human species during the most ancient phases of Homo evolution; on the other hand, Plasmodium falciparum has been transmitted to humans by monkeys in a more recent period, probably between the end of the Mesolithic and the beginning of the Neolithic age. The authors show both direct and indirect biomolecular evidence of malarial infection, detected in buried subjects, dating to ancient times and brought to light in the course of archaeological excavations in major Mediterranean sites. In this review of the literature the authors present scientific evidence confirming the role of malaria in affecting the evolution of populations in Mediterranean countries. The people living in several different Mediterranean regions, the cradle of western civilization, have been progressively influenced by malaria in the course of the spread of this endemic disease in recent millennia. In addition, populations affected by endemic malaria progressively developed cultural, dietary and behavioural adaptation mechanisms, which contributed to diminish the risk of disease. These habits were probably not fully conscious. Nevertheless it may be thought that both these customs and biological modifications, caused by malarial plasmodia, favoured the emergence of groups of people with greater resistance to malaria. All these factors have diminished the unfavourable demographic impact of the disease, also positively influencing the general development and growth of civilization. PMID:20424529

  12. On the Evolution of Comets

    NASA Astrophysics Data System (ADS)

    Guilbert-Lepoutre, A.; Besse, S.; Mousis, O.; Ali-Dib, M.; Höfner, S.; Koschny, D.; Hager, P.

    2015-12-01

    Studying comets is believed to bring invaluable clues on the formation and evolution of our planetary system. In comparison to planets, they have undergone much less alteration, and should have therefore retained a relatively pristine record of the conditions prevailing during the early phases of the solar system. However, comets might not be entirely pristine. As of today, we have not been able to determine which of the observed physical, chemical and orbital characteristics of comets, after they have evolved for more than 4 Gyr in a time-varying radiative and collisional environment, will provide the best clues to their origin. Comet physical characteristics as inherited from their formation stage may be very diverse, both in terms of composition and internal structure. The subsequent evolution of comet nuclei involves some possible processing from radiogenic heating, space weathering and large- and small-scale collisions, which might have modified their primordial structures and compositions with various degrees. When comets enter the inner solar system and become active, they start to lose mass at a very high rate. The effects of activity on comet nuclei involve a layering of the composition, a substantial non-even erosion and modification of their size and shape, and may eventually result in the death of comets. In this review, we present the dominating processes that might affect comet physical and chemical properties at different stages of their evolution. Although the evolutionary track may be specific to each comet, we can focus on long-lasting modifications which might be common to all nuclei after their formation stage, during their storage in reservoirs in the outer solar system, and once comets enter the inner solar system and become active objects.

  13. Sisyphean evolution in Darwin's finches.

    PubMed

    McKay, Bailey D; Zink, Robert M

    2014-07-01

    The trajectory of speciation involves geographic isolation of ancestral populations followed by divergence by natural selection, genetic drift or sexual selection. Once started, the process may experience fits and starts, as sometimes diverging populations intermittently reconnect. In theory populations might cycle between stages of differentiation and never attain species status, a process we refer to as Sisyphean evolution. We argue that the six putative ground finch species (genus Geospiza) of the Galápagos Islands represent a dramatic example of Sisyphean evolution that has been confused with the standard model of speciation. The dynamic environment of the Galápagos, closely spaced islands, and frequent dispersal and introgression have prevented the completion of the speciation process. We suggest that morphological clusters represent locally adapted ecomorphs, which might mimic, and have been confused with, species, but these ecomorphs do not form separate gene pools and are ephemeral in space and time. Thus the pattern of morphological, behavioural and genetic variation supports recognition of a single species of Geospiza, which we suggest should be recognized as Darwin's ground finch (Geospiza magnirostris). We argue that instead of providing an icon of insular speciation and adaptive radiation, which is featured in nearly every textbook on evolutionary biology, Darwin's ground finch represents a potentially more interesting phenomenon, one of transient morphs trapped in an unpredictable cycle of Sisyphean evolution. Instead of revealing details of the origin of species, the mechanisms underlying the transient occurrence of ecomorphs provide one of the best illustrations of the antagonistic effects of natural selection and introgression. PMID:25040800

  14. Stress evolution in solidifying coatings

    NASA Astrophysics Data System (ADS)

    Payne, Jason Alan

    The goal of this study is to measure, in situ, and control the evolution of stress in liquid applied coatings. In past studies, the stress in a coating was determined after processing (i.e., drying or curing). However, by observing a coating during drying or curing, the effects of processing variables (e.g., temperature, relative humidity, composition, etc.) on the stress state can be better determined. To meet the project goal, two controlled environment stress measurement devices, based on a cantilever deflection measurement principle, were constructed. Stress evolution experiments were completed for a number of coating systems including: solvent-cast homopolymers, tape-cast ceramics, aqueous gelatins, and radiation-cured multifunctional acrylates. In the majority of systems studied here, the final stresses were independent of coating thickness and solution concentration. Typical stress magnitudes for solvent-cast polymers ranged from zero to 18 MPa depending upon the pure polymer glass transition temperature (Tsb{g}), the solvent volatility, and additional coating components, such as plasticizers. Similar magnitudes and dependencies were observed in tape-cast ceramic layers. Stresses in gelatin coatings reached 50 MPa (due to the high Tsb{g} of the gelatin) and were highly dependent upon drying temperature and relative humidity. In contrast to the aforementioned coatings, stress in UV-cured tri- and tetrafunctional acrylate systems showed a large thickness dependence. For these materials, stress evolution rate and magnitude increased with photoinitiator concentration and with light intensity. Somewhat unexpectedly, larger monomer functionality led to greater stresses at faster rates even though the overall conversion fell. The stress magnitude and evolution rate at any stage in the solidification process are the result of a competition between shrinkage (due to drying, curing, etc.) and stress relaxation. A firm understanding of the mechanical, the thermal, and

  15. Space Station Freedom Evolution Symposium

    NASA Technical Reports Server (NTRS)

    Ott, Richard H.

    1991-01-01

    Information on the Space Station Freedom Evolution Symposium is given in viewgraph form. Topics covered include industry development needs and the Office of Commercial Programs strategy, the three-phase program to develop commercial space, Centers for the Commercial Development of Space (CCDS), key provisions of the Joint Endeavor agreement, current commercial flight experiment requirements, the CCDS expendable launch vehicle program, the Commercial Experiment Transporter (COMET) program, commercial launch dates, payload sponsors, the commercial roles of the Space Station Freedom, and a listing of the Office of Commercial Programs Space Station Freedom payloads.

  16. Studies of Circumstellar Disk Evolution

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2005-01-01

    The aim of this project is to develop a comprehensive global picture of the physical conditions in, and evolutionary timescales of, pre-main sequence accretion disks. The results of this work will help constrain the initial conditions for planet formation. To this end we are developing much larger samples of 3-10 Myr-old stars to provide better empirical constraints on protoplanetary disk evolution; measuring disk accretion rates in these systems; and constructing detailed model disk structures consistent with observations to infer physical conditions such as grain growth in protoplanetary disks.

  17. Venus magmatic and tectonic evolution

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Hansen, V. L.

    1993-01-01

    Two years beyond the initial mapping by the Magellan spacecraft, hypotheses for the magmatic and tectonic evolution of Venus have become refined and focused. We present our view of these processes, attempting to synthesize aspects of a model for the tectonic and magmatic behavior of the planet. The ideas presented should be taken collectively as an hypothesis subject to further testing. The quintessence of our model is that shear and buoyancy forces in the upper boundary layer of mantle convection give rise to a spatially and temporally complex pattern of strain in a one-plate Venusian lithosphere and modulate the timing and occurrence of magmatism on a global basis.

  18. Evolutions of Magnetized Neutron Stars

    NASA Astrophysics Data System (ADS)

    Liebling, Steven; Anderson, Matthew; Hirschmann, Eric; Lehner, Luis; Motl, Patrick; Neilsen, David; Palenzuela, Carlos; Tohline, Joel

    2009-05-01

    Magnetized neutron stars, whether considered individually or within compact binary systems, demonstrate a number of interesting dynamical effects and may represent an important source of observable gravitational waves. In addition, isolated, rotating, magnetized stars serve as a good testbed for a necessarily complex, distributed adaptive mesh refinement (AMR) code. As initial data, we use fully consistent, magnetized, rotating stellar configurations generated with the Lorene toolkit. Here results are presented which (i) demonstrate convergence and stability of the code, (ii) show the evolution of stable and unstable magnetized stars, and (iii) study the effects of a scheme to track the leakage of neutrinos.

  19. The evolution of human warfare.

    PubMed

    Pitman, George R

    2011-01-01

    Here we propose a new theory for the origins and evolution of human warfare as a complex social phenomenon involving several behavioral traits, including aggression, risk taking, male bonding, ingroup altruism, outgroup xenophobia, dominance and subordination, and territoriality, all of which are encoded in the human genome. Among the family of great apes only chimpanzees and humans engage in war; consequently, warfare emerged in their immediate common ancestor that lived in patrilocal groups who fought one another for females. The reasons for warfare changed when the common ancestor females began to immigrate into the groups of their choice, and again, during the agricultural revolution. PMID:22081837

  20. A climate for contemporary evolution.

    PubMed

    Skelly, David

    2010-01-01

    A new study of divergence in freshwater fish provides strong evidence of rapid, temperature-mediated adaptation. This study is particularly important in the ongoing debate over the extent and significance of evolutionary response to climate change because divergence has occurred in relatively few generations in spite of ongoing gene flow and in the aftermath of a significant genetic bottleneck, factors that have previously been considered obstacles to evolution. Climate change may thus be more likely to foster contemporary evolutionary responses than has been anticipated, and I argue here for the importance of investigating their possible occurrence. PMID:21070684

  1. Turbulence evolution in MHD plasmas

    NASA Astrophysics Data System (ADS)

    Wisniewski, Martina; Kissmann, Ralf; Spanier, Felix; Spanier

    2013-10-01

    Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. However, while there are a number of simulations on the market, some questions have not been answered finally. In this paper, we examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving has an influence not only on the ratio of compressible to incompressible component but also on the anisotropy of turbulence.

  2. Evolution of plant genome architecture.

    PubMed

    Wendel, Jonathan F; Jackson, Scott A; Meyers, Blake C; Wing, Rod A

    2016-01-01

    We have witnessed an explosion in our understanding of the evolution and structure of plant genomes in recent years. Here, we highlight three important emergent realizations: (1) that the evolutionary history of all plant genomes contains multiple, cyclical episodes of whole-genome doubling that were followed by myriad fractionation processes; (2) that the vast majority of the variation in genome size reflects the dynamics of proliferation and loss of lineage-specific transposable elements; and (3) that various classes of small RNAs help shape genomic architecture and function. We illustrate ways in which understanding these organism-level and molecular genetic processes can be used for crop plant improvement. PMID:26926526

  3. The evolution of embryo implantation.

    PubMed

    McGowen, Michael R; Erez, Offer; Romero, Roberto; Wildman, Derek E

    2014-01-01

    Embryo implantation varies widely in placental mammals. We review this variation in mammals with a special focus on two features: the depth of implantation and embryonic diapause. We discuss the two major types of implantation depth, superficial and interstitial, and map this character on a well-resolved molecular phylogenetic tree of placental mammals. We infer that relatively deep interstitial implantation has independently evolved at least eight times within placental mammals. Moreover, the superficial type of implantation represents the ancestral state for placental mammals. In addition, we review the genes involved in various phases of implantation, and suggest a future direction in investigating the molecular evolution of implantation-related genes. PMID:25023681

  4. Peptide Membranes in Chemical Evolution*

    PubMed Central

    Childers, W. Seth; Ni, Rong; Mehta, Anil K.; Lynn, David G.

    2009-01-01

    SUMMARY Simple surfactants achieve remarkable long-range order in aqueous environments. This organizing potential is seen most dramatically in biological membranes where phospholipid assemblies both define cell boundaries and provide a ubiquitous structural scaffold for controlling cellular chemistry. Here we consider simple peptides that also spontaneously assemble into exceptionally ordered scaffolds, and review early data suggesting that these structures maintain the functional diversity of proteins. We argue that such scaffolds can achieve the required molecular order and catalytic agility for the emergence of chemical evolution. PMID:19879180

  5. Evolution of Biologics Screening Technologies

    PubMed Central

    Cariuk, Peter; Gardener, Matthew J.; Vaughan, Tristan J.

    2013-01-01

    Screening for biologics, in particular antibody drugs, has evolved significantly over the last 20 years. Initially, the screening processes and technologies from many years experience with small molecules were adopted and modified to suit the needs of biologics discovery. Since then, antibody drug discovery has matured significantly and is today investing earlier in new technologies that commercial suppliers are now developing specifically to meet the growing needs of large molecule screening. Here, we review the evolution of screening and automation technologies employed in antibody discovery and highlight the benefits that these changes have brought. PMID:24276173

  6. Evolution of cosmic string networks

    NASA Technical Reports Server (NTRS)

    Albrecht, Andreas; Turok, Neil

    1989-01-01

    Results on cosmic strings are summarized including: (1) the application of non-equilibrium statistical mechanics to cosmic string evolution; (2) a simple one scale model for the long strings which has a great deal of predictive power; (3) results from large scale numerical simulations; and (4) a discussion of the observational consequences of our results. An upper bound on G mu of approximately 10(-7) emerges from the millisecond pulsar gravity wave bound. How numerical uncertainties affect this are discussed. Any changes which weaken the bound would probably also give the long strings the dominant role in producing observational consequences.

  7. Robotic technology evolution and transfer

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.

    1992-01-01

    A report concerning technology transfer in the area of robotics is presented in vugraph form. The following topics are discussed: definition of technology innovation and tech-transfer; concepts relevant for understanding tech-transfer; models advanced to portray tech-transfer process; factors identified as promoting tech-transfer; factors identified as impeding tech-transfer; what important roles do individuals fulfill in tech-transfer; federal infrastructure for promoting tech-transfer; federal infrastructure for promoting tech-transfer; robotic technology evolution; robotic technology transferred; and recommendations for successful robotics tech-transfer.

  8. Collisional Evolution of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Agnor, C.; Asphaug, E.

    2004-12-01

    The terrestrial planets are generally thought to have formed via the collisional accumulation of rocky bodies. The characteristics of the planets produced by this process are, to a large degree, determined by their collisional evolution, and their associated differentiation and thermal evolution. Studies of planet formation and planetary collisional evolution have typically been conducted separately. Most works of late-stage planet formation use perfectly inelastic mergers to model collisions (e.g. Agnor, Canup & Levison 1999, Chambers 2001, Levison & Agnor 2003), with certain recognized inadequacies, notably prohibitively large spin angular momentum acquired as a planet grows. To date, studies of the collisional evolution of terrestrial planets has focused on determining the efficacy of single impacts to account for particular planetary characteristics and the formation of satellites (e.g. Benz et al. 1988, Canup & Asphaug 2001, Canup 2004). It has been recognized for some time (Wetherill 1985) that the final characteristics (e.g. spin state, bulk composition, isotopic age) of an accreting planet are determined not by the last or single largest collision but by all of the major collisional encounters in a planet's history (Agnor, Canup & Levison 1999). As demonstrated by our impact models, each major impact changes the silicate to metal ratio, the thermal state, and the spin state, and sets the stage for the subsequent collision. We are studying collisional dynamics and outcomes common to the late stage of terrestrial planet formation. We use smooth particle hydrodynamics model collisions in an effort to identify the range of impact dynamics that allow for accretion (i.e. mass growth instead of mass loss). In our initial study we found that for dynamical environments typical of most late stage accretion models, about half of all collisions between equal mass planetary embryos do not result in accumulation into a larger embryo (Agnor & Asphaug 2004). We will

  9. Collisional Evolution of Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Agnor, C. B.; Asphaug, E. I.

    2003-05-01

    The currently accepted model for the formation of terrestrial planets describes their growth as the collisional accumulation of rocky or sometimes molten planetesimals. The characteristics of the planets produced by this process are, to a large degree, determined by their collisional evolution, and their associated differentiation and thermal evolution. Studies of planet formation and planetary collisional evolution have typically been conducted separately. Most works of late-stage planet formation use perfectly inelastic mergers to model collisions (e.g. Agnor, Canup & Levison 1999, Chambers 2001, Levison & Agnor 2003), with certain recognized inadequacies, notably rotationally unstable spin rates acquired as a planet grows. Do planets really accrete in this manner? On the other hand, most of the work studying the collisional evolution of terrestrial planets has focused on determining the efficacy of single impacts to account for particular planetary characteristics and the formation of satellites (e.g. Benz et al. 1988, Canup & Asphaug 2001). It has been recognized for some time (Wetherill 1985) that the final characteristics (e.g. spin state, bulk composition, isotopic age) of an accreting planet are determined not by the last or single largest collision (Agnor, Canup & Levison 1999) but by all of the major collisional encounters in a planet's history. As demonstrated in our impact models, each major impact changes the silicate to metal ratio, the thermal state, and the spin state, and sets the stage for subsequent collisions. We have commenced a detailed study of collision dynamics and outcomes common to the late stage of terrestrial planet accretion. We are modeling collisions using smooth particle hydrodynamics to examine, primarily, the regimes of impact that truly allow for accretion (i.e. mass accumulation instead of mass loss). We are also studying the cumulative affect of giant impacts on major planetary characteristics (such as composition and spin) and

  10. Gluon Evolution and Saturation Proceedings

    SciTech Connect

    McLerran, L.D.

    2010-05-26

    Almost 40 years ago, Gribov and colleagues at the Leningrad Nuclear Physics Institute developed the ideas that led to the Dokhsitzer-Gribov-Altarelli-Parisi the Baltisky-Fadin-Kuraev-Lipatov equations. These equations describe the evolution of the distributions for quarks and gluon inside a hadron to increased resolution scale of a probe or to smaller values of the fractional momentum of a hadronic constituent. I motivate and discuss the generalization required of these equations needed for high energy processes when the density of constituents is large. This leads to a theory of saturation realized by the Color Glass Condensate

  11. Secular Evolution in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Kormendy, John

    2013-10-01

    Self-gravitating systems evolve toward the most tightly bound configuration that is reachable via the evolution processes that are available to them. They do this by spreading -- the inner parts shrink while the outer parts expand -- provided that some physical process efficiently transports energy or angular momentum outward. The reason is that self-gravitating systems have negative specific heats. As a result, the evolution of stars, star clusters, protostellar and protoplanetary disks, black hole accretion disks and galaxy disks are fundamentally similar. How evolution proceeds then depends on the evolution processes that are available to each kind of self-gravitating system. These processes and their consequences for galaxy disks are the subjects of my lectures and of this Canary Islands Winter School. I begin with a review of the formation, growth and death of bars. Then I review the slow (`secular') rearrangement of energy, angular momentum, and mass that results from interactions between stars or gas clouds and collective phenomena such as bars, oval disks, spiral structure and triaxial dark haloes. The `existence-proof' phase of this work is largely over: we have a good heuristic understanding of how nonaxisymmetric structures rearrange disk gas into outer rings, inner rings and stuff dumped onto the centre. The results of simulations correspond closely to the morphology of barred and oval galaxies. Gas that is transported to small radii reaches high densities. Observations confirm that many barred and oval galaxies have dense central concentrations of gas and star formation. The result is to grow, on timescales of a few Gyr, dense central components that are frequently mistaken for classical (elliptical-galaxy-like) bulges but that were grown slowly out of the disk (not made rapidly by major mergers). The resulting picture of secular galaxy evolution accounts for the richness observed in galaxy structure. We can distinguish between classical and pseudo

  12. XMM tests galaxy evolutions models

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco

    2011-10-01

    Current models of galaxy evolution rely critically on feedback supernova and AGN feedback processes. The energy released by past star formation and AGN activity imprints a fossil record on the thermodynamic properties of the intra-group-medium (IGM). This can be decoded by studying the X-ray emission. for an unbiased sample of groups with known galaxy and AGN properties. Therefore we propose an X-ray survey with XMM-Newton for 255 ksec to observe 17 galaxy groups with Msim10(13) M_odot selected from our Zurich ENvironmental Survey that host >8 members.

  13. The evolution of anticoagulant therapy

    PubMed Central

    Franchini, Massimo; Liumbruno, Giancarlo M.; Bonfanti, Carlo; Lippi, Giuseppe

    2016-01-01

    Arterial and venous thromboembolism are leading causes of morbidity and mortality around the world. For almost 70 years, heparins (unfractionated heparin and low molecular weight heparins) and vitamin K antagonists have been the leading therapeutic medical options for the treatment and prevention of thromboembolic disorders. Nevertheless, the many limitations of these traditional anticoagulants have fuelled the search for novel agents over the past 15 years, and a new class of oral anticoagulants that specifically target activated factor X and thrombin has been developed and is now commercially available. In this narrative review, the evolution of anticoagulant therapy is summarised, with a focus on newer oral anticoagulants. PMID:26710352

  14. The evolution of the trunnion.

    PubMed

    Rajpura, Asim; Board, Timothy N

    2015-01-01

    Implant modularity has recently come under increasing scrutiny due to concerns regarding wear, corrosion and potential adverse reactions to metal debris. This review outlines the evolution and development of the femoral stem trunnion and relates this to contemporary issues now encountered.Despite different manufacturers producing what appear to be similar trunnion designs, there is still a lack of standardisation, with small but significant design variations. Wear and corrosion is certainly not a new phenomenon, but recent changes in design and the use of larger metal head sizes has potentially made the problem more prevalent. These issues along with steps to avoid these problems are discussed. PMID:25633761

  15. THE PSEUDO-EVOLUTION OF HALO MASS

    SciTech Connect

    Diemer, Benedikt; Kravtsov, Andrey V.; More, Surhud

    2013-03-20

    A dark matter halo is commonly defined as a spherical overdensity of matter with respect to a reference density, such as the critical density or the mean matter density of the universe. Such definitions can lead to a spurious pseudo-evolution of halo mass simply due to redshift evolution of the reference density, even if its physical density profile remains constant over time. We estimate the amount of such pseudo-evolution of mass between z = 1 and 0 for halos identified in a large N-body simulation, and show that it accounts for almost the entire mass evolution of the majority of halos with M{sub 200{rho}-bar} Less-Than-Or-Equivalent-To 10{sup 12} h{sup -1} M{sub Sun} and can be a significant fraction of the apparent mass growth even for cluster-sized halos. We estimate the magnitude of the pseudo-evolution assuming that halo density profiles remain static in physical coordinates, and show that this simple model predicts the pseudo-evolution of halos identified in numerical simulations to good accuracy, albeit with significant scatter. We discuss the impact of pseudo-evolution on the evolution of the halo mass function and show that the non-evolution of the low-mass end of the halo mass function is the result of a fortuitous cancellation between pseudo-evolution and the absorption of small halos into larger hosts. We also show that the evolution of the low-mass end of the concentration-mass relation observed in simulations is almost entirely due to the pseudo-evolution of mass. Finally, we discuss the implications of our results for the interpretation of the evolution of various scaling relations between the observable properties of galaxies and galaxy clusters and their halo masses.

  16. Sixth Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Acevedo, Sara (Editor); DeVincenzi, Donald L. (Editor); Chang, Sherwood (Editor)

    1998-01-01

    The 6th Symposium on Chemical Evolution and the Origin and Evolution of Life was convened at NASA Ames Research Center, November 17-20, 1997. This Symposium is convened every three years under the auspices of NASA's Exobiology Program Office. All Principal Investigators funded by this Program present their most recent research accomplishments at the Symposium. Scientific papers were presented in the following areas: cosmic evolution of the biogenic elements, prebiotic evolution (both planetary and chemical), evolution of early organisms and evolution of organisms in extreme environments, solar system exploration, and star and planet formation. The Symposium was attended by over 200 scientists from NASA centers and Universities nationwide.

  17. The mystery of language evolution

    PubMed Central

    Hauser, Marc D.; Yang, Charles; Berwick, Robert C.; Tattersall, Ian; Ryan, Michael J.; Watumull, Jeffrey; Chomsky, Noam; Lewontin, Richard C.

    2014-01-01

    Understanding the evolution of language requires evidence regarding origins and processes that led to change. In the last 40 years, there has been an explosion of research on this problem as well as a sense that considerable progress has been made. We argue instead that the richness of ideas is accompanied by a poverty of evidence, with essentially no explanation of how and why our linguistic computations and representations evolved. We show that, to date, (1) studies of nonhuman animals provide virtually no relevant parallels to human linguistic communication, and none to the underlying biological capacity; (2) the fossil and archaeological evidence does not inform our understanding of the computations and representations of our earliest ancestors, leaving details of origins and selective pressure unresolved; (3) our understanding of the genetics of language is so impoverished that there is little hope of connecting genes to linguistic processes any time soon; (4) all modeling attempts have made unfounded assumptions, and have provided no empirical tests, thus leaving any insights into language's origins unverifiable. Based on the current state of evidence, we submit that the most fundamental questions about the origins and evolution of our linguistic capacity remain as mysterious as ever, with considerable uncertainty about the discovery of either relevant or conclusive evidence that can adjudicate among the many open hypotheses. We conclude by presenting some suggestions about possible paths forward. PMID:24847300

  18. Evolution is only a theory?

    NASA Astrophysics Data System (ADS)

    Peshkin, Murray

    2008-04-01

    I have been speaking to diverse groups about science and religion in the context of the attacks on the teaching of biological evolution in public schools. My audiences have included church groups, classrooms, business clubs, and general public. In explaining why science does not threaten most people's religious beliefs and why belief in evolution is not really optional, I have learned that most people have never been told what a theory is and how we know when it's right, or what it means that our theories are always provisional but well-established theories are nevertheless reliable where they apply. It seems that we have taught students and the public about gravity and DNA, but never told them what science is all about. We need to do better. The people I have addressed have mostly appreciated hearing about these things and about why science, properly understood, does not deny most people's religious beliefs. I will discuss these and other lessons I have learned from the reactions to my talks. *For identification. This work is not supported by Argonne Natl. Lab.

  19. Neutral Models of Microbiome Evolution

    PubMed Central

    Zeng, Qinglong; Sukumaran, Jeet; Wu, Steven; Rodrigo, Allen

    2015-01-01

    There has been an explosion of research on host-associated microbial communities (i.e.,microbiomes). Much of this research has focused on surveys of microbial diversities across a variety of host species, including humans, with a view to understanding how these microbiomes are distributed across space and time, and how they correlate with host health, disease, phenotype, physiology and ecology. Fewer studies have focused on how these microbiomes may have evolved. In this paper, we develop an agent-based framework to study the dynamics of microbiome evolution. Our framework incorporates neutral models of how hosts acquire their microbiomes, and how the environmental microbial community that is available to the hosts is assembled. Most importantly, our framework also incorporates a Wright-Fisher genealogical model of hosts, so that the dynamics of microbiome evolution is studied on an evolutionary timescale. Our results indicate that the extent of parental contribution to microbial availability from one generation to the next significantly impacts the diversity of microbiomes: the greater the parental contribution, the less diverse the microbiomes. In contrast, even when there is only a very small contribution from a constant environmental pool, microbial communities can remain highly diverse. Finally, we show that our models may be used to construct hypotheses about the types of processes that operate to assemble microbiomes over evolutionary time. PMID:26200800

  20. The Evolution of Extracellular Matrix

    PubMed Central

    Özbek, Suat; Balasubramanian, Prakash G.; Chiquet-Ehrismann, Ruth; Tucker, Richard P.

    2010-01-01

    We present a perspective on the molecular evolution of the extracellular matrix (ECM) in metazoa that draws on research publications and data from sequenced genomes and expressed sequence tag libraries. ECM components do not function in isolation, and the biological ECM system or “adhesome” also depends on posttranslational processing enzymes, cell surface receptors, and extracellular proteases. We focus principally on the adhesome of internal tissues and discuss its origins at the dawn of the metazoa and the expansion of complexity that occurred in the chordate lineage. The analyses demonstrate very high conservation of a core adhesome that apparently evolved in a major wave of innovation in conjunction with the origin of metazoa. Integrin, CD36, and certain domains predate the metazoa, and some ECM-related proteins are identified in choanoflagellates as predicted sequences. Modern deuterostomes and vertebrates have many novelties and elaborations of ECM as a result of domain shuffling, domain innovations and gene family expansions. Knowledge of the evolution of metazoan ECM is important for understanding how it is built as a system, its roles in normal tissues and disease processes, and has relevance for tissue engineering, the development of artificial organs, and the goals of synthetic biology. PMID:21160071

  1. Human evolution: taxonomy and paleobiology

    PubMed Central

    WOOD, BERNARD; RICHMOND, BRIAN G.

    2000-01-01

    This review begins by setting out the context and the scope of human evolution. Several classes of evidence, morphological, molecular, and genetic, support a particularly close relationship between modern humans and the species within the genus Pan, the chimpanzee. Thus human evolution is the study of the lineage, or clade, comprising species more closely related to modern humans than to chimpanzees. Its stem species is the so-called ‘common hominin ancestor’, and its only extant member is Homo sapiens. This clade contains all the species more closely-related to modern humans than to any other living primate. Until recently, these species were all subsumed into a family, Hominidae, but this group is now more usually recognised as a tribe, the Hominini. The rest of the review sets out the formal nomenclature, history of discovery, and information about the characteristic morphology, and its behavioural implications, of the species presently included in the human clade. The taxa are considered within their assigned genera, beginning with the most primitive and finishing with Homo. Within genera, species are presented in order of geological age. The entries conclude with a list of the more important items of fossil evidence, and a summary of relevant taxonomic issues. PMID:10999270

  2. The evolution of pheromonal communication.

    PubMed

    Swaney, William T; Keverne, Eric B

    2009-06-25

    Small-brained rodents have been the principle focus for pheromonal research and have provided comprehensive insights into the chemosensory mechanisms that underpin pheromonal communication and the hugely important roles that pheromones play in behavioural regulation. However, pheromonal communication does not start or end with the mouse and the rat, and work in amphibians reveals much about the likely evolutionary origins of the chemosensory systems that mediate pheromonal effects. The dual olfactory organs (the main olfactory epithelium and the vomeronasal organ), their receptors and their separate projection pathways appear to have ancient evolutionary origins, appearing in the aquatic ancestors of all tetrapods during the Devonian period and so pre-dating the transition to land. While the vomeronasal organ has long been considered an exclusively pheromonal organ, accumulating evidence indicates that it is not the sole channel for the transduction of pheromonal information and that both olfactory systems have been co-opted for the detection of different pheromone signals over the course of evolution. This has also led to great diversity in the vomeronasal and olfactory receptor families, with enormous levels of gene diversity and inactivation of genes in different species. Finally, the evolution of trichromacy as well as huge increases in social complexity have minimised the role of pheromones in the lives of primates, leading to the total inactivation of the vomeronasal system in catarrhine primates while the brain increased in size and behaviour became emancipated from hormonal regulation. PMID:18977248

  3. Controlling Tensegrity Robots Through Evolution

    NASA Technical Reports Server (NTRS)

    Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan

    2013-01-01

    Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.

  4. Jet quenching from QCD evolution

    NASA Astrophysics Data System (ADS)

    Chien, Yang-Ting; Emerman, Alexander; Kang, Zhong-Bo; Ovanesyan, Grigory; Vitev, Ivan

    2016-04-01

    Recent advances in soft-collinear effective theory with Glauber gluons have led to the development of a new method that gives a unified description of inclusive hadron production in reactions with nucleons and heavy nuclei. We show how this approach, based on the generalization of the DGLAP evolution equations to include final-state medium-induced parton shower corrections for large Q2 processes, can be combined with initial-state effects for applications to jet quenching phenomenology. We demonstrate that the traditional parton energy loss calculations can be regarded as a special soft-gluon emission limit of the general QCD evolution framework. We present phenomenological comparison of the SCETG -based results on the suppression of inclusive charged hadron and neutral pion production in √{sNN }=2.76 TeV lead-lead collisions at the Large Hadron Collider to experimental data. We also show theoretical predictions for the upcoming √{sNN }≃5.1 TeV Pb +Pb run at the LHC.

  5. Chemical Evolution of Binary Stars

    NASA Astrophysics Data System (ADS)

    Izzard, R. G.

    2013-02-01

    Energy generation by nuclear fusion is the fundamental process that prevents stars from collapsing under their own gravity. Fusion in the core of a star converts hydrogen to heavier elements from helium to uranium. The signature of this nucleosynthesis is often visible in a single star only for a very short time, for example while the star is a red giant or, in massive stars, when it explodes. Contrarily, in a binary system nuclear-processed matter can captured by a secondary star which remains chemically polluted long after its more massive companion star has evolved and died. By probing old, low-mass stars we gain vital insight into the complex nucleosynthesis that occurred when our Galaxy was much younger than it is today. Stellar evolution itself is also affected by the presence of a companion star. Thermonuclear novae and type Ia supernovae result from mass transfer in binary stars, but big questions still surround the nature of their progenitors. Stars may even merge and one of the challenges for the future of stellar astrophysics is to quantitatively understand what happens in such extreme systems. Binary stars offer unique insights into stellar, galactic and extragalactic astrophysics through their plethora of exciting phenomena. Understanding the chemical evolution of binary stars is thus of high priority in modern astrophysics.

  6. A speed limit for evolution.

    PubMed

    Worden, R P

    1995-09-01

    An upper bound on the speed of evolution is derived. The bound concerns the amount of genetic information which is expressed in observable ways in various aspects of the phenotype. The genetic information expressed in some part of the phenotype of a species cannot increase faster than a given rate, determined by the selection pressure on that part. This rate is typically a small fraction of a bit per generation. Total expressed genetic information cannot increase faster than a species-specific rate--typically a few bits per generation. These bounds apply to all aspects of the phenotype, but are particularly relevant to cognition. As brains are highly complex, we expect large amounts of expressed genetic information in the brain--of the order of 100 kilobytes--yet evolutionary changes in brain genetic information are only a fraction of a bit per generation. This has important consequences for cognitive evolution. The limit implies that the human brain differs from the chimpanzee brain by at most 5 kilobytes of genetic design information. This is not enough to define a Language Acquisition Device, unless it depends heavily on pre-existing primate symbolic cognition. Subject to the evolutionary speed limit, in changing environments a simple, modular brain architecture is fitter than more complex ones. This encourages us to look for simplicity in brain design, rather than expecting the brain to be a patchwork of ad hoc adaptations. The limit implies that pure species selection is not an important mechanism of evolutionary change. PMID:7475097

  7. Evolution of the Congo Basin

    NASA Astrophysics Data System (ADS)

    Glasmacher, U. A.; Bauer, F. U.; Kollenz, S.; Delvaux, D.

    2012-04-01

    The Congo Basin is one of the largest basins in the World with very little knowledge on the geological evolution as well as the oil and gas potential. In the past, oil seeps are recorded in the central part of the basin. Four sides in the Congo basin have been drilled so far. The cores of the two drill sides Dekese and Samba are located at the Musée royal de l'Afrique Centrale, Belgium. In a reconnaissance survey, we sampled both drill cores in a nearly even spacing of ~ 150 m covering the whole stratigraphy from Albian to Proterozoic. The red and green to grey sandstone samples were prepared by usual heavy minerals separation technique. Most of the samples revealed enough apatite and zircon grains for the two thermochronometric techniques fission track and (U-Th-Sm)/He. The time-temperature (t-T) evolution for the two drill locations were modelled by using the determined thermochronological data within the software code HeFTy. We tested various geological evolutionary constrains. Both techniques provide us information on the thermal and exhumation of the possible source area and on the drill location by themselves.

  8. Evolution of the martian atmosphere

    NASA Technical Reports Server (NTRS)

    Pepin, Robert O.

    1994-01-01

    Carbon dioxide, nitrogen, and the nonradiogenic and radiogenic noble gases are tracked from primordial inventories to their present states in a revised model of atmospheric evolution on Mars. Elemental and isotopic abundances evolve by hydrodynamic escape, impact erosion, outgassing, sputtering, photochemical escape of nitrogen, and carbonate formation and recycling. Atmospheric history is divided into early and late evolutionary periods, the first characterized by high CO2 pressures and a possible greenhouse and the second by a low pressure cap-regolith buffered system initiated by polar CO2 condensation approximately 3.7 Gyr ago. During early evolution the Xe isotopes are fractionated to their present composition by hydraulic escape, and CO2 pressure and isotopic history are dictated by the interplay of losses to erosion, sputtering, and carbonate precipitation, additions by outgassing and carbonate recycling, and perhaps also by feedback stabilization under greenhouse conditions. Atmospheric collapse near 3.7 Gyr leads to abrupt increases in the mixing ratios of preexisting Ar, Ne, and N2 at the exobase and their rapid removal by sputtering. Current abundances and isotopic compositions of these light species are therefore entirely determined by the action of sputtering and photochemical escape on gases supplied by outgassing during the late evolutionary epoch. The present atmospheric Kr inventory also derives almost completely from solar-like Kr degassed during this period. Consequently, among current observables, only the Xe isotopes and delta(C-13) survive as isotopic tracers of atmospheric history prior to its transition to low pressure.

  9. Which Factors Shape Galaxy Evolution?

    NASA Astrophysics Data System (ADS)

    Iovino, A.; Cucciati, O.; Scodeggio, M.; Knobel, K.; Kovac, K.; Lilly, S.; Zcosmos Team

    2010-10-01

    Using samples of isolated and groups galaxies obtained from the first 10000 zCOSMOS-bright high quality redshifts, we study in detail the complex interplay between environment and galaxy evolution. Our main result is that galaxies of log( M* / Msun) ≍ 10.8 do not show any strong environmental dependency up to z ˜ 1. In contrast, for masses below this value and at redshift lower than z˜ 1, we witness the emergence of what we call nurture red galaxies: galaxies that slightly deviate from the trend of the downsizing scenario displayed by the global galaxy population and do more so as cosmic time progresses. There are various mechanisms occurring in groups (gradual cessation of star formation induced by gentle gas stripping and starvation by a diffuse intragroup medium, or by slow group-scale harassment), and that are more efficient for less massive galaxies. Our analysis implies that these mechanisms begin to significantly influence galaxy evolution after z˜1, a redshift corresponding to the emergence of structures in which these mechanisms take place.

  10. The Evolution of Evolved Galaxies

    NASA Astrophysics Data System (ADS)

    Gavazzi, Giuseppe

    The plethora of high redshift multifrequency surveys currently under way, that were extensively illustrated at this meeting will shortly provide us with a sequence of "fossil" galaxies, eventually disclosing the secret of their evolution, much as fossil organisms guided paleontologists tracing the evolution of species. Meanwhile we wish to remind to both theorists and to observers that the characterization of local galaxies, representing the boundary condition at z=0 of any evolutionary model, is not yet fully achieved. With this purpose we conceived an extensive observational campaign aimed at providing the phenomenology of local galaxies in the broadest possible frequency range. We took observations and collected data from the literature for over 3600 local (z<0.03) galaxies, mainly members to rich clusters, spending a large effort in making the literature data as homogeneous as possible with our own. The data cover the range from 2000 Å (UV) to the centimetric radio domain. The Web site "GOLDmine" (Galaxy On Line Database Milano Network) [10] is designed to provide world-wide access to this massive data-set on local galaxies.

  11. The fine details of evolution.

    PubMed

    Laskowski, Roman A; Thornton, Janet M; Sternberg, Michael J E

    2009-08-01

    Charles Darwin's theory of evolution was based on studies of biology at the species level. In the time since his death, studies at the molecular level have confirmed his ideas about the kinship of all life on Earth and have provided a wealth of detail about the evolutionary relationships between different species and a deeper understanding of the finer workings of natural selection. We now have a wealth of data, including the genome sequences of a wide range of organisms, an even larger number of protein sequences, a significant knowledge of the three-dimensional structures of proteins, DNA and other biological molecules, and a huge body of information about the operation of these molecules as systems in the molecular machinery of all living things. This issue of Biochemical Society Transactions contains papers from oral presentations given at a Biochemical Society Focused Meeting to commemorate the 200th Anniversary of Charles Darwin's birth, held on 26-27 January 2009 at the Wellcome Trust Conference Centre, Cambridge. The talks reported on some of the insights into evolution which have been obtained from the study of protein sequences, structures and systems. PMID:19614583

  12. Cosmocultural Evolution: Cosmic Motivation for Interstellar Travel?

    NASA Astrophysics Data System (ADS)

    Lupisella, M.

    Motivations for interstellar travel can vary widely from practical survival motivations to wider-ranging moral obligations to future generations. But it may also be fruitful to explore what, if any, "cosmic" relevance there may be regarding interstellar travel. Cosmocultural evolution can be defined as the coevolution of cosmos and culture, with cultural evolution playing an important and perhaps critical role in the overall evolution of the universe. Strong versions of cosmocultural evolution might suggest that cultural evolution may have unlimited potential as a cosmic force. In such a worldview, the advancement of cultural beings throughout the universe could have significant cosmic relevance, perhaps providing additional motivation for interstellar travel. This paper will explore some potential philosophical and policy implications for interstellar travel of a cosmocultural evolutionary perspective and other related concepts, including some from a recent NASA book, Cosmos and Culture: Cultural Evolution in a Cosmic Context.

  13. The genetic causes of convergent evolution.

    PubMed

    Stern, David L

    2013-11-01

    The evolution of phenotypic similarities between species, known as convergence, illustrates that populations can respond predictably to ecological challenges. Convergence often results from similar genetic changes, which can emerge in two ways: the evolution of similar or identical mutations in independent lineages, which is termed parallel evolution; and the evolution in independent lineages of alleles that are shared among populations, which I call collateral genetic evolution. Evidence for parallel and collateral evolution has been found in many taxa, and an emerging hypothesis is that they result from the fact that mutations in some genetic targets minimize pleiotropic effects while simultaneously maximizing adaptation. If this proves correct, then the molecular changes underlying adaptation might be more predictable than has been appreciated previously. PMID:24105273

  14. Human evolution. Evolution of early Homo: an integrated biological perspective.

    PubMed

    Antón, Susan C; Potts, Richard; Aiello, Leslie C

    2014-07-01

    Integration of evidence over the past decade has revised understandings about the major adaptations underlying the origin and early evolution of the genus Homo. Many features associated with Homo sapiens, including our large linear bodies, elongated hind limbs, large energy-expensive brains, reduced sexual dimorphism, increased carnivory, and unique life history traits, were once thought to have evolved near the origin of the genus in response to heightened aridity and open habitats in Africa. However, recent analyses of fossil, archaeological, and environmental data indicate that such traits did not arise as a single package. Instead, some arose substantially earlier and some later than previously thought. From ~2.5 to 1.5 million years ago, three lineages of early Homo evolved in a context of habitat instability and fragmentation on seasonal, intergenerational, and evolutionary time scales. These contexts gave a selective advantage to traits, such as dietary flexibility and larger body size, that facilitated survival in shifting environments. PMID:24994657

  15. Androgens in human evolution. A new explanation of human evolution.

    PubMed

    Howard, J

    2001-01-01

    Human evolution consists of chronological changes in gene regulation of a continuous and relatively stable genome, activated by hormones, the production of which is intermittently affected by endogenous and exogenous forces. Periodic variations in the gonadal androgen, testosterone, and the adrenal androgen, dehydroepiandrosterone (DHEA), significantly participated in all hominid transformations. The hominid characteristics of early Australopithecines are primarily a result of increased testosterone. The first significant cold of the early Pleistocene resulted in an increase in DHEA that simultaneously produced Homo and the robust Australopithecines. Subsequent Pleistocene climatic changes and differential reproduction produced changes in DHEA and testosterone ratios that caused extinction of the robust Australopithecines and further changes and continuation of Homo. Changes in testosterone and DHEA produce allometric and behavioral changes that are identifiable and vigorous in modern populations. PMID:11702658

  16. In vitro evolution of nucleic acids

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.; Miller, S. L. (Principal Investigator)

    1994-01-01

    The author reviews recent published reports of in vitro selection and evolution of nucleic acids. These nucleic acids will bind to a target ligand or catalyze a specific chemical reaction. The terms aptamers and systematic evolution of ligands by exponential enrichment (SELEX) are explained. The review focuses on protein binders, small molecule binders, and ribozymes obtained by directed evolution. The reference list identifies articles of special or outstanding interest.

  17. Workshop on Techtonic Evolution of Greenstone Belts

    NASA Technical Reports Server (NTRS)

    Dewit, M. J. (Editor); Ashwal, Lewis D. (Editor)

    1986-01-01

    Topics addressed include: greenstone belt externalities; boundaries; rock terranes; synthesis and destiny; tectonic evolution; rock components and structure; sedimentology; stratigraphy; volcanism; metamorphism; and geophysics.

  18. Genetic Regulatory Networks in Embryogenesis and Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The article introduces a series of papers that were originally presented at a workshop titled Genetic Regulatory Network in Embryogenesis and Evaluation. Contents include the following: evolution of cleavage programs in relationship to axial specification and body plan evolution, changes in cell lineage specification elucidate evolutionary relations in spiralia, axial patterning in the leech: developmental mechanisms and evolutionary implications, hox genes in arthropod development and evolution, heterochronic genes in development and evolution, a common theme for LIM homeobox gene function across phylogeny, and mechanisms of specification in ascidian embryos.

  19. Advances in the directed evolution of proteins

    PubMed Central

    Lane, Michael D.; Seelig, Burckhard

    2014-01-01

    Natural evolution has produced a great diversity of proteins that can be harnessed for numerous applications in biotechnology and pharmaceutical science. Commonly, specific applications require proteins to be tailored by protein engineering. Directed evolution is a type of protein engineering that yields proteins with the desired properties under well-defined conditions and in a practical time frame. While directed evolution has been employed for decades, recent creative developments enable the generation of proteins with previously inaccessible properties. Novel selection strategies, faster techniques, the inclusion of unnatural amino acids or modifications, and the symbiosis of rational design approaches and directed evolution continue to advance protein engineering. PMID:25309990

  20. Evaluation of seismic energy evolution

    NASA Astrophysics Data System (ADS)

    -Emilian Toader, Victorin; Marmureanu, Alexandru

    2013-04-01

    The program analyzes seismicity on a defined area with the use of bulletins (event information) provided by ANTELOPE software. These include earthquake localization (moment, latitude, longitude, magnitude, depth, P and S for each station and other parameters). The evolution of the calculated energy from the Richter magnitude is characterized by steps which can be linearly interpolated. In this way tendencies of energy accumulation / release through tectonic movement can be estimated. Also, it will be calculated and displayed the 'b' coefficient from the Gutenberg - Richter law. The results will be saved as a HTML list which allows global and individual visualization of the seismic forecasts accompanied by the epicenter position on the map. The ANTELOPE users are the first beneficiaries but the program could be modified for other formats of data which include the same information related to the earthquakes localization. The software allows to select the analysis area in which the epicenters are located. In this respect, we are using the free Google Static Maps service (in this case an internet connection is necessary) as well as there is an offline option. In a configuration file the coordinates of the epicenter area has to be defined, the zoom level and the map type if Google Maps is used. The user may redefine the investigation area in online mode. Furthermore, the program allows the selection of the time interval during which the analysis is performed, the configuration of the magnitude and depth intervals, the folders in which the ANTELOPE bulletins are located and where the results will be saved in HTML format. In a separate panel the time intervals between 2 seismic events, the resulted energy from the magnitude conversion (Ml or Md) and magnitudes - depths evolution at which the earthquakes took place can be visualized. During the analysis of the seismic bulletins generated by ANTELOPE, the epicenters are displayed dynamically in the original selected area

  1. Valley evolution by meandering rivers

    NASA Astrophysics Data System (ADS)

    Limaye, Ajay Brian Sanjay

    Fluvial systems form landscapes and sedimentary deposits with a rich hierarchy of structures that extend from grain- to valley scale. Large-scale pattern formation in fluvial systems is commonly attributed to forcing by external factors, including climate change, tectonic uplift, and sea-level change. Yet over geologic timescales, rivers may also develop large-scale erosional and depositional patterns that do not bear on environmental history. This dissertation uses a combination of numerical modeling and topographic analysis to identify and quantify patterns in river valleys that form as a consequence of river meandering alone, under constant external forcing. Chapter 2 identifies a numerical artifact in existing, grid-based models that represent the co-evolution of river channel migration and bank strength over geologic timescales. A new, vector-based technique for bank-material tracking is shown to improve predictions for the evolution of meander belts, floodplains, sedimentary deposits formed by aggrading channels, and bedrock river valleys, particularly when spatial contrasts in bank strength are strong. Chapters 3 and 4 apply this numerical technique to establishing valley topography formed by a vertically incising, meandering river subject to constant external forcing---which should serve as the null hypothesis for valley evolution. In Chapter 3, this scenario is shown to explain a variety of common bedrock river valley types and smaller-scale features within them---including entrenched channels, long-wavelength, arcuate scars in valley walls, and bedrock-cored river terraces. Chapter 4 describes the age and geometric statistics of river terraces formed by meandering with constant external forcing, and compares them to terraces in natural river valleys. The frequency of intrinsic terrace formation by meandering is shown to reflect a characteristic relief-generation timescale, and terrace length is identified as a key criterion for distinguishing these

  2. Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life

    NASA Technical Reports Server (NTRS)

    Wharton, Robert A., Jr. (Editor); Andersen, Dale T. (Editor); Bzik, Sara E. (Editor); Rummel, John D. (Editor)

    1991-01-01

    This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).

  3. Universal unification of life, death, evolution, post-evolution and extinction

    NASA Astrophysics Data System (ADS)

    Azbel', Mark Ya.

    1999-12-01

    A general law of universal maximally rapid entropy decrease unifies metabolism, mortality and evolution, yields their quantitatively accurate universal laws and singularities, proves that accidental premature mortality is relatively small and quantifies it, predicts that evolution may be continuous or followed by “weak” and “strong” spurts, leads to a definition of post-evolution and considers its probability, suggests an absolute instability of technological (terrestrial and extra-terrestrial) civilizations and allows for computer simulations of mortality and evolution.

  4. The evolution of nitrogen cycling

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.; Mckay, Christopher P.

    1988-01-01

    The energetics of nitrogen transformation reactions and the evolution of nitrogen cycling are examined. It is suggested that meteor impact-produced fixed nitrogen could have caused the entire reservoir of the earth's N2 to convert into fixed nitrogen at the end of accretion. The abiotic fixation rate on the early earth by lightning is estimated at about 1-3 X 10 to the 16th molecules of NO/J. It is found that biological nitrogen fixation may have evolved after the development of an aerobic atmosphere. It is shown that HNO could eventually become NO2(-) and NO3(-) after reaching the earth's surface. It is concluded that the evolutionary sequence for the biological transformation of nitrogen compounds is ammonification - denitrification - nitrification - nitrogen fixation.

  5. General models of multilocus evolution.

    PubMed Central

    Kirkpatrick, Mark; Johnson, Toby; Barton, Nick

    2002-01-01

    In 1991, Barton and Turelli developed recursions to describe the evolution of multilocus systems under arbitrary forms of selection. This article generalizes their approach to allow for arbitrary modes of inheritance, including diploidy, polyploidy, sex linkage, cytoplasmic inheritance, and genomic imprinting. The framework is also extended to allow for other deterministic evolutionary forces, including migration and mutation. Exact recursions that fully describe the state of the population are presented; these are implemented in a computer algebra package (available on the Web at http://helios.bto.ed.ac.uk/evolgen). Despite the generality of our framework, it can describe evolutionary dynamics exactly by just two equations. These recursions can be further simplified using a "quasi-linkage equilibrium" (QLE) approximation. We illustrate the methods by finding the effect of natural selection, sexual selection, mutation, and migration on the genetic composition of a population. PMID:12196414

  6. Cell Death in Genome Evolution

    PubMed Central

    Teng, Xinchen; Hardwick, J. Marie

    2015-01-01

    Inappropriate survival of abnormal cells underlies tumorigenesis. Most discoveries about programmed cell death have come from studying model organisms. Revisiting the experimental contexts that inspired these discoveries helps explain confounding biases that inevitably accompany such discoveries. Amending early biases has added a newcomer to the collection of cell death models. Analysis of gene-dependent death in yeast revealed the surprising influence of single gene mutations on subsequent eukaryotic genome evolution. Similar events may influence the selection for mutations during early tumorigenesis. The possibility that an early random mutation might drive the selection for a cancer driver mutation is conceivable but difficult to demonstrate. This was tested in yeast, revealing that mutation of almost any gene appears to specify the selection for a new second mutation. Some human tumors contain pairs of mutant genes homologous to co-occurring mutant genes in yeast. Here we consider how yeast again provide novel insights into tumorigenesis. PMID:25725369

  7. Historical Contingency in Controlled Evolution

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    2014-12-01

    A basic question in evolution is dealing with the nature of an evolutionary memory. At thermodynamic equilibrium, at stable stationary states or other stable attractors the memory on the path leading to the long-time solution is erased, at least in part. Similar arguments hold for unique optima. Optimality in biology is discussed on the basis of microbial metabolism. Biology, on the other hand, is characterized by historical contingency, which has recently become accessible to experimental test in bacterial populations evolving under controlled conditions. Computer simulations give additional insight into the nature of the evolutionary memory, which is ultimately caused by the enormous space of possibilities that is so large that it escapes all attempts of visualization. In essence, this contribution is dealing with two questions of current evolutionary theory: (i) Are organisms operating at optimal performance? and (ii) How is the evolutionary memory built up in populations?

  8. Nonlinear evolution of Buneman instability

    NASA Astrophysics Data System (ADS)

    Ishihara, O.; Hirose, A.; Langdon, A. B.

    1981-03-01

    The nonlinear evolution of one-dimensional electron-ion two-stream instability in a field-free plasma is investigated analytically and by computer simulation. The instability is dominated by the fastest growing mode and its harmonics, provided that the initial fluctuation level is sufficiently small. A nonlinear dispersion relation is obtained and solved numerically, with allowance for the frequency and growth rate modulation, the electric field up to a specified order, and the renormalized particle distribution functions. It is shown that the model can explain computer simulation results, including the presence of an algebraic growth stage following the breakdown of the exponential linear growth, the appearance of harmonics, and the final saturation level.

  9. ESTER: Evolution STEllaire en Rotation

    NASA Astrophysics Data System (ADS)

    Rieutord, Michel

    2013-05-01

    The ESTER code computes the steady state of an isolated star of mass larger than two solar masses. The only convective region computed as such is the core where isentropy is assumed. ESTER provides solutions of the partial differential equations, for the pressure, density, temperature, angular velocity and meridional velocity for the whole volume. The angular velocity (differential rotation) and meridional circulation are computed consistently with the structure and are driven by the baroclinic torque. The code uses spectral methods, both radially and horizontally, with spherical harmonics and Chebyshev polynomials. The iterations follow Newton's algorithm. The code is object-oriented and is written in C++; a python suite allows an easy visualization of the results. While running, PGPLOT graphs are displayed to show evolution of the iterations.

  10. Galapagos: Darwin, evolution, and ENT.

    PubMed

    Bluestone, Charles D

    2009-10-01

    This year is especially important in the history of the theory of evolution; 2009 is the bicentennial anniversary of the birth of Charles Darwin and the sesquicentennial anniversary of his publication, The Origin of Species. Darwin visited the Galapagos Islands as a young man, which greatly influenced his thinking. My son Jim and I had the good fortune to visit these islands in January 2009 and see firsthand what led Darwin to arrive at his monumental insights into the origins of life on this planet. I have described my observations and related some of this experience to the ear, nose, and throat, albeit with whimsy in several instances. Nonetheless, some of the adaptations in the animals on these unique islands may have bearing on my hypotheses related to the incidence and pathogenesis of otitis media in humans. It is hoped the reader will share my enthusiasm for the experience we had on these fantastic islands and tour them in the future. PMID:19658158

  11. Endogenous Retroviruses and Human Evolution

    PubMed Central

    Lebedev, Yuri; Sverdlov, Eugene

    2002-01-01

    Humans share about 99% of their genomic DNA with chimpanzees and bonobos; thus, the differences between these species are unlikely to be in gene content but could be caused by inherited changes in regulatory systems. Endogenous retroviruses (ERVs) comprise ∼ 5% of the human genome. The LTRs of ERVs contain many regulatory sequences, such as promoters, enhancers, polyadenylation signals and factor-binding sites. Thus, they can influence the expression of nearby human genes. All known human-specific LTRs belong to the HERV-K (human ERV) family, the most active family in the human genome. It is likely that some of these ERVs could have integrated into regulatory regions of the human genome, and therefore could have had an impact on the expression of adjacent genes, which have consequently contributed to human evolution. This review discusses possible functional consequences of ERV integration in active coding regions. PMID:18629260

  12. Chemical evolution of star clusters.

    PubMed

    van Loon, Jacco Th

    2010-02-28

    I discuss the chemical evolution of star clusters, with emphasis on old Galactic globular clusters (GCs), in relation to their formation histories. GCs are clearly formed in a complex fashion, under markedly different conditions from any younger clusters presently known. Those special conditions must be linked to the early formation epoch of the Galaxy and must not have occurred since. While a link to the formation of GCs in dwarf galaxies has been suggested, present-day dwarf galaxies are not representative of the gravitational potential wells within which the GCs formed. Instead, a formation deep within the proto-Galaxy or within dark-matter mini-haloes might be favoured. Not all GCs may have formed and evolved similarly. In particular, we may need to distinguish Galactic Halo from Galactic Bulge clusters. PMID:20083507

  13. Evolution of the indoor biome.

    PubMed

    Martin, Laura J; Adams, Rachel I; Bateman, Ashley; Bik, Holly M; Hawks, John; Hird, Sarah M; Hughes, David; Kembel, Steven W; Kinney, Kerry; Kolokotronis, Sergios-Orestis; Levy, Gabriel; McClain, Craig; Meadow, James F; Medina, Raul F; Mhuireach, Gwynne; Moreau, Corrie S; Munshi-South, Jason; Nichols, Lauren M; Palmer, Clare; Popova, Laura; Schal, Coby; Täubel, Martin; Trautwein, Michelle; Ugalde, Juan A; Dunn, Robert R

    2015-04-01

    Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations. PMID:25770744

  14. Juvenile Angiofibroma: Evolution of Management

    PubMed Central

    Nicolai, Piero; Schreiber, Alberto; Bolzoni Villaret, Andrea

    2012-01-01

    Juvenile angiofibroma is a rare benign lesion originating from the pterygopalatine fossa with distinctive epidemiologic features and growth patterns. The typical patient is an adolescent male with a clinical history of recurrent epistaxis and nasal obstruction. Although the use of nonsurgical therapies is described in the literature, surgery is currently considered the ideal treatment for juvenile angiofibroma. Refinement in preoperative embolization has provided significant reduction of complications and intraoperative bleeding with minimal risk of residual disease. During the last decade, an endoscopic technique has been extensively adopted as a valid alternative to external approaches in the management of small-intermediate size juvenile angiofibromas. Herein, we review the evolution in the management of juvenile angiofibroma with particular reference to recent advances in diagnosis and treatment. PMID:22164185

  15. EARLY EVOLUTION OF PRESTELLAR CORES

    SciTech Connect

    Horedt, G. P.

    2013-08-20

    Prestellar cores are approximated by singular polytropic spheres. Their early evolution is studied analytically with a Bondi-like scheme. The considered approximation is meaningful for polytropic exponents {gamma} between 0 and 6/5, implying radial power-law density profiles between r {sup -1} and r {sup -2.5}. Gravitationally unstable Jeans and Bonnor-Ebert masses differ at most by a factor of 3.25. Tidally stable prestellar cores must have a mean density contrast {approx}> 8 with respect to the external parent cloud medium. The mass-accretion rate relates to the cube of equivalent sound speed, as in Shu's seminal paper. The prestellar masses accreted over 10{sup 5} years cover the whole stellar mass spectrum; they are derived in simple closed form, depending only on the polytropic equation of state. The stellar masses that can be formed via strict conservation of angular momentum are at most of the order of a brown dwarf.

  16. Sivers Asymmetry with QCD Evolution

    NASA Astrophysics Data System (ADS)

    Echevarria, Miguel G.; Idilbi, Ahmad; Kang, Zhong-Bo; Vitev, Ivan

    2015-02-01

    We analyze the Sivers asymmetry in both Drell-Yan (DY) production and semi-inclusive deep inelastic scattering (SIDIS), while considering properly defined transverse momentum dependent parton distribution and fragmentation functions and their QCD evolution. After finding a universal non-perturbative spin-independent Sudakov factor that can describe reasonably well the world's data of SIDIS, DY lepton pair and W/Z production in unpolarized scatterings, we perform a global fitting of all the experimental data on the Sivers asymmetry in SIDIS from HERMES, COMPASS and Jefferson Lab. Then we make predictions for the asymmetry in DY lepton pair and W boson production, which could be compared to the future experimental data in order to test the sign change of the Sivers function.

  17. Evolution models with extremal dynamics.

    PubMed

    Kärenlampi, Petri P

    2016-08-01

    The random-neighbor version of the Bak-Sneppen biological evolution model is reproduced, along with an analogous model of random replicators, the latter eventually experiencing topology changes. In the absence of topology changes, both types of models self-organize to a critical state. Species extinctions in the replicator system degenerates the self-organization to a random walk, as does vanishing of species interaction for the BS-model. A replicator model with speciation is introduced, experiencing dramatic topology changes. It produces a variety of features, but self-organizes to a possibly critical state only in a few special cases. Speciation-extinction dynamics interfering with self-organization, biological macroevolution probably is not a self-organized critical system. PMID:27626090

  18. Algorithm evolution for signal understanding

    SciTech Connect

    Teller, A.

    1996-12-31

    Automated program evolution has existed in some form for over thirty years. Signal understanding (e.g., signal classification) has been a scientific concern for even longer than that. Interest in generating, through machine learning techniques, a general signal understanding system is a newer topic, but has recently attracted considerable attention. First, I have proposed to define and create a machine learning mechanism for generating signal understanding systems independent of the signal`s type and size. Second, I have proposed to do this through an evolutionary strategy that is an extension of genetic programming. Third, I have proposed to introduce a suite of sub-mechanisms that not only contribute to the power of the thesis mechanism, but are also contributions to the understanding of the learning technique developed.

  19. Language evolution in the laboratory.

    PubMed

    Scott-Phillips, Thomas C; Kirby, Simon

    2010-09-01

    The historical origins of natural language cannot be observed directly. We can, however, study systems that support language and we can also develop models that explore the plausibility of different hypotheses about how language emerged. More recently, evolutionary linguists have begun to conduct language evolution experiments in the laboratory, where the emergence of new languages used by human participants can be observed directly. This enables researchers to study both the cognitive capacities necessary for language and the ways in which languages themselves emerge. One theme that runs through this work is how individual-level behaviours result in population-level linguistic phenomena. A central challenge for the future will be to explore how different forms of information transmission affect this process. PMID:20675183

  20. Magnetars: Properties, Origin and Evolution

    NASA Astrophysics Data System (ADS)

    Mereghetti, Sandro; Pons, José A.; Melatos, Andrew

    2015-10-01

    Magnetars are neutron stars in which a strong magnetic field is the main energy source. About two dozens of magnetars, plus several candidates, are currently known in our Galaxy and in the Magellanic Clouds. They appear as highly variable X-ray sources and, in some cases, also as radio and/or optical pulsars. Their spin periods (2-12 s) and spin-down rates (˜10-13-10-10 s s-1) indicate external dipole fields of ˜1013-15 G, and there is evidence that even stronger magnetic fields are present inside the star and in non-dipolar magnetospheric components. Here we review the observed properties of the persistent emission from magnetars, discuss the main models proposed to explain the origin of their magnetic field and present recent developments in the study of their evolution and connection with other classes of neutron stars.

  1. Evolution of genetic switch complexity

    PubMed Central

    Broussard, Gregory W.; Hatfull, Graham F.

    2013-01-01

    The circuitry of the phage λ genetic switch determining the outcome of lytic or lysogenic growth is well-integrated and complex, raising the question as to how it evolved. It is plausible that it arose from a simpler ancestral switch with fewer components that underwent various additions and refinements, as it adapted to vast numbers of different hosts and conditions. We have recently identified a new class of genetic switches found in mycobacteriophages and other prophages, in which immunity is dependent on integration. These switches contain only three genes (integrase, repressor and cro) and represent a major departure from the λ-like circuitry, lacking many features such as xis, cII and cIII. These small self-contained switches represent an unrealized, elegant circuitry for controlling infection outcome. In this addendum, we propose a model of possible events in the evolution of a complex λ-like switch from a simpler integration-dependent switch. PMID:23819104

  2. The evolution of complex life

    NASA Technical Reports Server (NTRS)

    Billingham, J.

    1985-01-01

    The emergence of complex living organisms in the context of evolutionary biology, planetary environments, and space events is investigated. The application of data on biological evolution, climatology, and the chemical and physical environments of the earth's surface, to explain the development of extraterrestrial life is described and an example is provided. The possibility of extraplanetary disturbances such as, meteorite and comet bombardments, and supernova explosions, causing the elimination of preexisting life and allowing advanced life development is analyzed. The possible existence of different life cycles (genetic and reproductive strategies) on other planets is studied. The GAIA hypothesis (Lovelock, 1979) which states living things modify the global environment to their own advantage is examined. The improved identification of habitable planetary environments and the possible existence of a form of extraterrestrial intelligent life is discussed.

  3. Can IVF influence human evolution?

    PubMed

    Hanevik, Hans Ivar; Hessen, Dag O; Sunde, Arne; Breivik, Jarle

    2016-07-01

    IVF, a procedure in which pharmacological and technological manipulation is used to promote pregnancy, offers help to infertile couples by circumventing selection at the most fundamental level. Fertility is clearly one of the key fitness-promoting drivers in all forms of sexually reproducing life, and fertilization and pregnancy are fundamental evolutionary processes that involve a range of pre- and post-zygotic screening mechanisms. Here, we discuss the various selection and screening factors involved in fertilization and pregnancy and assess IVF practices in light of these factors. We then focus on the possible consequences of these differences in selection pressures, mainly at the individual but also at the population level, to evaluate whether changes in the reproducing genotype can affect human evolution. The aim of the article is not to argue for or against IVF, but to address aspects of assisted reproduction in an evolutionary context. PMID:27094480

  4. Mission operations computing systems evolution

    NASA Technical Reports Server (NTRS)

    Kurzhals, P. R.

    1981-01-01

    As part of its preparation for the operational Shuttle era, the Goddard Space Flight Center (GSFC) is currently replacing most of the mission operations computing complexes that have supported near-earth space missions since the late 1960's. Major associated systems include the Metric Data Facility (MDF) which preprocesses, stores, and forwards all near-earth satellite tracking data; the Orbit Computation System (OCS) which determines related production orbit and attitude information; the Flight Dynamics System (FDS) which formulates spacecraft attitude and orbit maneuvers; and the Command Management System (CMS) which handles mission planning, scheduling, and command generation and integration. Management issues and experiences for the resultant replacement process are driven by a wide range of possible future mission requirements, flight-critical system aspects, complex internal system interfaces, extensive existing applications software, and phasing to optimize systems evolution.

  5. Natural Evolution and Human Consciousness

    PubMed Central

    Holmgren, Jan

    2014-01-01

    A visual conscious experience is my empirical basis. All that we know comes to us through conscious experiences. Thanks to natural evolution, we have nearly direct perception, and can largely trust the information we attain. There is full integration, with no gaps, of organisms in the continuous world. Human conscious experiences, on the other hand, are discrete. Consciousness has certain limits for its resolution. This is illustrated by the so-called light-cone, with consequences for foundations in physics. Traditional universals are replaced by feels and distributions. Conscious experiences can be ordered within a framework of conceptual spaces. Triple Aspect Monism (TAM) can represent the dynamics of conscious systems. However, to fully represent the creative power of human consciousness, an all-inclusive view is suggested: Multi Aspect Monism (MAM). PMID:24891802

  6. Ebolavirus Evolution: Past and Present.

    PubMed

    de La Vega, Marc-Antoine; Stein, Derek; Kobinger, Gary P

    2015-01-01

    The past year has marked the most devastating Ebola outbreak the world has ever witnessed, with over 28,000 cases and over 11,000 deaths. Ebola virus (EBOV) has now been around for almost 50 years. In this review, we discuss past and present outbreaks of EBOV and how those variants evolved over time. We explore and discuss selective pressures that drive the evolution of different Ebola variants, and how they may modify the efficacy of therapeutic treatments and vaccines currently being developed. Finally, given the unprecedented size and spread of the outbreak, as well as the extended period of replication in human hosts, specific attention is given to the 2014-2015 West African outbreak variant (Makona). PMID:26562671

  7. The evolution of vasectomy reversal.

    PubMed

    Dickey, Ryan M; Pastuszak, Alexander W; Hakky, Tariq S; Chandrashekar, Aravind; Ramasamy, Ranjith; Lipshultz, Larry I

    2015-06-01

    In the USA, about 500,000 vasectomies are performed each year, with up to 6% of men requesting reversal. The technique of vasectomy reversal has evolved from macrosurgical to the implementation of both microscopic and robotic technologies. The very earliest attempts at vasectomy reversal, the vasoepididymostomy and vasovasostomy, have remained central in the treatment of male infertility and will continue to be so for years to come. As seen throughout its history, urological microsurgery has consistently implemented advanced techniques and state-of-the art technology in its craft, and its continued refinement will allow for even more favorable outcomes in the lives of patients seeking restoration of fertility following vasectomy. Here, we review the evolution of vasectomy reversal and its current techniques. PMID:25980804

  8. Clonal Evolution in Multiple Myeloma.

    PubMed

    Fakhri, Bita; Vij, Ravi

    2016-08-01

    Multiple myeloma (MM) is the second most common hematologic malignancy encountered among patients in the United States. The last decade has seen incremental improvements in the survival of patients with MM. These advances are, to a large extent, attributable to the addition of proteasome inhibitors and immunomodulatory drugs to the armamentarium of treatment options. The adoption of these drug classes was the result of an empiric research paradigm. However, with the application of next generation sequencing technologies, we are now starting to unravel the genomic landscape of MM. It is hoped that this will allow us to better disentangle the biology of the disease and allow for identification of new therapeutic targets. In this article, we review what we have learned to date about the mutational profile, clonal architecture, and evolution of the disease, and discuss the potential clinical implications of these findings. PMID:27521309

  9. Dynamical evolution of cosmic strings

    SciTech Connect

    Bouchet, F.R.

    1988-05-11

    The author have studied by means of numerical simulations the dynamical evolution of a network of cosmic strings, both in the radiation and matter era. Our basic conclusion is that a scaling solution exists, i.e., the string energy density evolves as t/sup -2/. This means that the process by which long strings dump their energy into closed loops (which can gravitationally radiate away) is efficient enough to prevent the string domination over other forms of energy. This conclusion does not depend on the initial string energy density, nor on the various numerical parameters. On the other hand, the generated spectrum of loop sizes does depend on the value of our numerical lower cutoff (i.e., the minimum length of loop we allow to be chopped off the network). Furthermore, the network evolution is very different from what was assumed before), namely the creation of a few horizon sized loops per horizon volume and per hubble time, which subsequently fragment into about 10 smaller daughter loops. Rather, many tiny loops are directly cut from the network of infinite strings, and it appears that the only fundamental scale (the horizon) has been lost. This is probably because a fundamental ingredient had been overlooked, namely the kinks. These kinks are created in pairs at each intercommutation, and very rapidly, the long strings appear to be very kinky. Thus the number of long strings per horizon is still of the order of a few, but their total length is fairly large. Furthermore, a large number of kinks favors the formation of small loops, and their sizes might well be governed by the kink density along the long strings. Finally, we computed the two-point correlation function of the loops and found significant differences from the work of Turok.

  10. Modelling microstructure evolution during recrystallization

    NASA Astrophysics Data System (ADS)

    Brahme, Abhijit P.

    The main aim of this work was to model microstructural evolution during recrystallization. This was achieved by characterizing it in terms of recrystallization kinetics and texture development and by identifying factors that exert the greatest effect on the recrystallization process. To achieve the above, geometric and crystallographic observations from two orthogonal sections through a polycrystal were used. Using these as input to the computer simulations, a statistically representative three dimensional model was created. Assignment of orientations to the grains was done such that nearest neighbor relationships match the observed distributions. The microstructures thus obtained were allowed to evolve using a Monte-Carlo simulation. A parametric study was done to study the effects of various factors on recrystallization kinetics and texture development during microstructural evolution. A set of software tools (Microstructure builder) were developed to generate the microstructures. The process involved the use of a ellipsoidal packing method combined with a voxel-based tessellation technique to create a 3 dimensional digital microstructure having the desired set of grain aspect ratios. Orientation assignment to the grains in the microstructure was done using a simulated annealing method that minimized the error between the orientation distribution function (ODF) and misorientation distribution function (MDF) of the measured and simulated materials. The effect of grain geometry and placement of nuclei on recrystallization kinetics was studied. A close match in the recrystallization kinetics as measured in the experiments and the simulations was found to be most sensitive to the accuracy with which the geometry of the simulated microstructure matched that observed in experiments. Also the effects of anisotropy, both in energy and in mobility, stored energy and oriented nucleation on overall texture development were studied in the light of various established

  11. Do Galaxies Follow Darwinian Evolution?

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Using VIMOS on ESO's Very Large Telescope, a team of French and Italian astronomers have shown the strong influence the environment exerts on the way galaxies form and evolve. The scientists have for the first time charted remote parts of the Universe, showing that the distribution of galaxies has considerably evolved with time, depending on the galaxies' immediate surroundings. This surprising discovery poses new challenges for theories of the formation and evolution of galaxies. The 'nature versus nurture' debate is a hot topic in human psychology. But astronomers too face similar conundrums, in particular when trying to solve a problem that goes to the very heart of cosmological theories: are the galaxies we see today simply the product of the primordial conditions in which they formed, or did experiences in the past change the path of their evolution? ESO PR Photo 17/06 ESO PR Photo 45/06 Galaxy Distribution in Space In a large, three-year long survey carried out with VIMOS [1], the Visible Imager and Multi-Object Spectrograph on ESO's VLT, astronomers studied more than 6,500 galaxies over a wide range of distances to investigate how their properties vary over different timescales, in different environments and for varying galaxy luminosities [2]. They were able to build an atlas of the Universe in three dimensions, going back more than 9 billion years. This new census reveals a surprising result. The colour-density relation, that describes the relationship between the properties of a galaxy and its environment, was markedly different 7 billion years ago. The astronomers thus found that the galaxies' luminosity, their initial genetic properties, and the environments they reside in have a profound impact on their evolution. "Our results indicate that environment is a key player in galaxy evolution, but there's no simple answer to the 'nature versus nurture' problem in galaxy evolution," said Olivier Le Fèvre from the Laboratoire d'Astrophysique de Marseille

  12. Diversity of Students' Beliefs about Biological Evolution

    ERIC Educational Resources Information Center

    Clores, Michael A.; Limjap, Auxencia A.

    2006-01-01

    The purpose of this study was to determine the beliefs about biological evolution held by college freshman students in one Catholic university in the Philippines. After 4 weeks of constructivist-inspired instruction, interviews and journal entries revealed that the students have diverse beliefs about the theory of evolution. They posited…

  13. Teaching the Broad, Interdisciplinary Impact of Evolution

    ERIC Educational Resources Information Center

    Benson, David; Atlas, Pierre; Haberski, Raymond; Higgs, Jamie; Kiley, Patrick; Maxwell, Michael, Jr.; Mirola, William; Norton, Jamey

    2009-01-01

    As perhaps the most encompassing idea in biology, evolution has impacted not only science, but other academic disciplines as well. The broad, interdisciplinary impact of evolution was the theme of a course taught at Marian College, Indianapolis, Indiana in 2002, 2004, and 2006. Using a strategy that could be readily adopted at other institutions,…

  14. Teaching the Evolution of the Angiosperm Carpel.

    ERIC Educational Resources Information Center

    Laferriere, Joseph E.

    1992-01-01

    The carpel is a highly modified leaf enclosing the ovules. This article describes methods for teaching about the evolution of the carpel and the nature of carpel fusion. Presents an illustration of the evolution of the most common types of compound pistil arrangement from the ancestral single-carpel marginal type of placentation. (PR)

  15. Evolution in Stage-Structured Populations

    PubMed Central

    Barfield, Michael; Holt, Robert D.; Gomulkiewicz, Richard

    2016-01-01

    For many organisms, stage is a better predictor of demographic rates than age. Yet no general theoretical framework exists for understanding or predicting evolution in stage-structured populations. Here, we provide a general modeling approach that can be used to predict evolution and demography of stage-structured populations. This advances our ability to understand evolution in stage-structured populations to a level previously available only for populations structured by age. We use this framework to provide the first rigorous proof that Lande’s theorem, which relates adaptive evolution to population growth, applies to stage-classified populations, assuming only normality and that evolution is slow relative to population dynamics. We extend this theorem to allow for different means or variances among stages. Our next major result is the formulation of Price’s theorem, a fundamental law of evolution, for stage-structured populations. In addition, we use data from Trillium grandiflorum to demonstrate how our models can be applied to a real-world population and thereby show their practical potential to generate accurate projections of evolutionary and population dynamics. Finally, we use our framework to compare rates of evolution in age- versus stage-structured populations, which shows how our methods can yield biological insights about evolution in stage-structured populations. PMID:21460563

  16. Experimental Evolution of Antibiotic Resistance in Bacteria

    ERIC Educational Resources Information Center

    Krist, Amy C.; Showsh, Sasha A.

    2007-01-01

    Evolution is typically measured as a change in allele or genotype frequencies over one or more generations. Consequently, evolution is difficult to show experimentally in a semester-long lab course because most organisms have longer generation times than 15 weeks. In this article, the authors present an experiment to demonstrate and study…

  17. History Forum Addresses Creation/Evolution Controversy.

    ERIC Educational Resources Information Center

    Schweinsberg, John

    1997-01-01

    A series of programs entitled Creationism and Evolution: The History of a Controversy was presented at the University of Alabama in Huntsville. The controversy was addressed from an historical and sociological, rather than a scientific perspective. Speakers addressed the evolution of scientific creationism, ancient texts versus sedimentary rocks…

  18. Textbook Stickers: A Reasonable Response to Evolution?

    ERIC Educational Resources Information Center

    Borenstein, Jason

    2008-01-01

    Debates concerning how the issue of human life's origins should be handled within the confines of American public schools still continue. In order to mitigate the impact that evolution has on students, some school boards and state legislatures have recommended that stickers voicing a disclaimer about evolution be placed in biology textbooks. Even…

  19. Understanding the Nature of Science through Evolution

    ERIC Educational Resources Information Center

    Narguizian, Paul

    2004-01-01

    As the common thread in biology, the topic of evolution and its related historical development can help students make sense of diverse biological concepts. The discussion of evolution provides educators with something else--a significant opportunity to teach important lessons involving the nature of science (NOS). This article addresses strategies…

  20. Addressing Teachers' Concerns about Teaching Evolution

    ERIC Educational Resources Information Center

    Sanders, Martie; Ngxola, Nonyameko

    2009-01-01

    Evolution was introduced into the senior secondary school Life Sciences curriculum in South Africa for the first time in 2008. Research in other countries shows that evolution is an extremely controversial topic to teach, raising serious concerns for teachers. Curriculum change theory dealing with "stages of concern" suggests that teachers…

  1. Cognitive Evolution by MMSE in Poststroke Patients

    ERIC Educational Resources Information Center

    da Costa, Fabricia Azevedo

    2010-01-01

    The aim of this study was to investigate the cognitive and clinical evolution of post-acute stroke patients and the evolution of each Mini-Mental State Examination (MMSE) item. A longitudinal study was conducted with 42 poststroke individuals in rehabilitation. The MMSE and the National Institutes of Health Stroke Scale were used to assess…

  2. The continuing evolution of ultrasocial economic organization.

    PubMed

    Farley, Joshua C

    2016-01-01

    Ultrasociality, as expressed in agricultural, monetary, and fossil fuel economies, has spurred exponential growth in population and in resource use that now threaten civilization. These threats take the form of prisoner's dilemmas. Avoiding collapse requires more cooperative economic organization that must be informed by knowledge of human behavior and cultural evolution. The evolution of a cooperative information economy is one possibility. PMID:27562419

  3. Biological Misfits as Evidence of Evolution.

    ERIC Educational Resources Information Center

    Bardell, David

    1997-01-01

    Biology textbooks usually give examples of organisms that have become ideally adapted to their habitat as a result of evolution. This article illustrates some poorly adapted organisms. Imperfections serve to demonstrate the purely chance nature of evolution since either the beneficial changes have not happened or the modifications that have…

  4. Getting Goose Bumps about Teaching Evolution

    ERIC Educational Resources Information Center

    Foster, Collin

    2014-01-01

    Evolution offers an intellectually satisfying and extremely well-supported explanation for the diversity of life in the natural world, its similarities and differences, how changes occur and how new life forms have developed. There are plenty of reasons to anticipate the teaching of evolution with exhilaration. In recent years, the issue of…

  5. Evolution versus Creationism: The Public Education Controversy.

    ERIC Educational Resources Information Center

    Zetterberg, J. Peter, Ed.

    The University of Minnesota organized a conference ("Evolution and Public Education," December 5, 1981) to help clarify issues in the creation/evolution controversy and to examine arguments of the proponents of scientific creationism. This six-part book, a revised version of a resource manual compiled for the conference: (1) discusses the theory…

  6. Darwinian evolution in the light of genomics

    PubMed Central

    Koonin, Eugene V.

    2009-01-01

    Comparative genomics and systems biology offer unprecedented opportunities for testing central tenets of evolutionary biology formulated by Darwin in the Origin of Species in 1859 and expanded in the Modern Synthesis 100 years later. Evolutionary-genomic studies show that natural selection is only one of the forces that shape genome evolution and is not quantitatively dominant, whereas non-adaptive processes are much more prominent than previously suspected. Major contributions of horizontal gene transfer and diverse selfish genetic elements to genome evolution undermine the Tree of Life concept. An adequate depiction of evolution requires the more complex concept of a network or ‘forest’ of life. There is no consistent tendency of evolution towards increased genomic complexity, and when complexity increases, this appears to be a non-adaptive consequence of evolution under weak purifying selection rather than an adaptation. Several universals of genome evolution were discovered including the invariant distributions of evolutionary rates among orthologous genes from diverse genomes and of paralogous gene family sizes, and the negative correlation between gene expression level and sequence evolution rate. Simple, non-adaptive models of evolution explain some of these universals, suggesting that a new synthesis of evolutionary biology might become feasible in a not so remote future. PMID:19213802

  7. Teaching Evolution & the Nature of Science.

    ERIC Educational Resources Information Center

    Farber, Paul

    2003-01-01

    The theory of evolution provides direction in many fields, such as ecology, genetics, and embryology. Examines issues concerning the teaching of the subject in the United States. Presents a case study approach to teach about the nature of science using the theory of evolution. (SOE)

  8. A Proactive Strategy for Teaching Evolution

    ERIC Educational Resources Information Center

    Scharmann, Lawrence C.

    2005-01-01

    A proactive instructional strategy for teaching evolution, which consists of the use of small group and peer discussion, is presented. While teaching about evolution, the teachers should consider and address the needs of the students and see the practical implications of the evolutionary theory by overcoming apprehension, misunderstanding and…

  9. Phylogeny and evolution of RNA structure.

    PubMed

    Gesell, Tanja; Schuster, Peter

    2014-01-01

    Darwin's conviction that all living beings on Earth are related and the graph of relatedness is tree-shaped has been essentially confirmed by phylogenetic reconstruction first from morphology and later from data obtained by molecular sequencing. Limitations of the phylogenetic tree concept were recognized as more and more sequence information became available. The other path-breaking idea of Darwin, natural selection of fitter variants in populations, is cast into simple mathematical form and extended to mutation-selection dynamics. In this form the theory is directly applicable to RNA evolution in vitro and to virus evolution. Phylogeny and population dynamics of RNA provide complementary insights into evolution and the interplay between the two concepts will be pursued throughout this chapter. The two strategies for understanding evolution are ultimately related through the central paradigm of structural biology: sequence ⇒ structure ⇒ function. We elaborate on the state of the art in modeling both phylogeny and evolution of RNA driven by reproduction and mutation. Thereby the focus will be laid on models for phylogenetic sequence evolution as well as evolution and design of RNA structures with selected examples and notes on simulation methods. In the perspectives an attempt is made to combine molecular structure, population dynamics, and phylogeny in modeling evolution. PMID:24639167

  10. Ecology and Evolution: Islands of Change.

    ERIC Educational Resources Information Center

    Benz, Richard

    This book was designed for middle and junior high school science classes and focuses on island biogeography, ecology, and evolution. Sections include: (1) "Galapagos: Frame of Reference"; (2) "Ecology and Islands"; and (3) "Evolution." Nineteen standards-based activities use the Galapagos Islands as a running theme but are designed to help…

  11. Reflections on Wilson's "The Quiet Evolution."

    ERIC Educational Resources Information Center

    Greer, W. Dwaine

    1999-01-01

    Explores Brent Wilson's report "The Quiet Evolution: Changing the Face of Arts Education," focusing on Wilson's reformulation of discipline-based art education and the methodology of the evaluation. Examines the findings and refers to "The Quiet Evolution Executive Summary." (CMK)

  12. The evolution of close binary stars

    NASA Astrophysics Data System (ADS)

    Tutukov, A. V.; Cherepashchuk, A. M.

    2016-05-01

    A review of our current understanding of the physics and evolution of close binary stars with various masses under the influence of the nuclear evolution of their components and their magnetic stellar winds is presented. The role of gravitational-wave radiation by close binaries on their evolution and the loss of their orbital angular momentum is also considered. The final stages in the evolution of close binary systems are described. The review also notes the main remaining tasks related to studies of the physics and evolution of various classes of close binaries, including analyses of collisions of close binaries and supermassive black holes in galactic nuclei. Such a collision could lead to the capture of one of the components by the black hole and the acceleration of the remaining component to relativistic speeds.

  13. Chemical evolution and the origin of life

    NASA Technical Reports Server (NTRS)

    Oro, J.

    1983-01-01

    A review is presented of recent advances made in the understanding of the formation of carbon compounds in the universe and the occurrence of processes of chemical evolution. Topics discussed include the principle of evolutionary continuity, evolution as a fundamental principle of the physical universe, the nuclear synthesis of biogenic elements, organic cosmochemistry and interstellar molecules, the solar nebula and the solar system in chemical evolution, the giant planets and Titan in chemical evolution, and comets and their interaction with the earth. Also examined are carbonaceous chondrites, environment of the primitive earth, energy sources available on the primitive earth, the synthesis of biochemical monomers and oligomers, the abiotic transcription of nucleotides, unified prebiotic and enzymatic mechanisms, phospholipids and membranes, and protobiological evolution.

  14. Helicity evolution at small-x

    DOE PAGESBeta

    Kovchegov, Yuri V.; Pitonyak, Daniel; Sievert, Matthew D.

    2016-01-13

    We construct small-x evolution equations which can be used to calculate quark and anti-quark helicity TMDs and PDFs, along with the g1 structure function. These evolution equations resum powers of αs ln2(1/x) in the polarization-dependent evolution along with the powers of αs ln(1/x) in the unpolarized evolution which includes saturation efects. The equations are written in an operator form in terms of polarization-dependent Wilson line-like operators. While the equations do not close in general, they become closed and self-contained systems of non-linear equations in the large-Nc and large-Nc & Nf limits. As a cross-check, in the ladder approximation, our equationsmore » map onto the same ladder limit of the infrared evolution equations for g1 structure function derived previously by Bartels, Ermolaev and Ryskin.« less

  15. Can Population Genetics Adapt to Rapid Evolution?

    PubMed

    Messer, Philipp W; Ellner, Stephen P; Hairston, Nelson G

    2016-07-01

    Population genetics largely rests on a 'standard model' in which random genetic drift is the dominant force, selective sweeps occur infrequently, and deleterious mutations are purged from the population by purifying selection. Studies of phenotypic evolution in nature reveal a very different picture, with strong selection and rapid heritable trait changes being common. The time-rate scaling of phenotypic evolution suggests that selection on phenotypes is often fluctuating in direction, allowing phenotypes to respond rapidly to environmental fluctuations while remaining within relatively constant bounds over longer periods. Whether such rapid phenotypic evolution undermines the standard model will depend on how many genomic loci typically contribute to strongly selected traits and how phenotypic evolution impacts the dynamics of genetic variation in a population. Population-level sequencing will allow us to dissect the genetic basis of phenotypic evolution and study the evolutionary dynamics of genetic variation through direct measurement of polymorphism trajectories over time. PMID:27185237

  16. The early history of chance in evolution.

    PubMed

    Pence, Charles H

    2015-04-01

    Work throughout the history and philosophy of biology frequently employs 'chance', 'unpredictability', 'probability', and many similar terms. One common way of understanding how these concepts were introduced in evolution focuses on two central issues: the first use of statistical methods in evolution (Galton), and the first use of the concept of "objective chance" in evolution (Wright). I argue that while this approach has merit, it fails to fully capture interesting philosophical reflections on the role of chance expounded by two of Galton's students, Karl Pearson and W.F.R. Weldon. Considering a question more familiar from contemporary philosophy of biology--the relationship between our statistical theories of evolution and the processes in the world those theories describe--is, I claim, a more fruitful way to approach both these two historical actors and the broader development of chance in evolution. PMID:26466463

  17. Angular correlations and high energy evolution

    SciTech Connect

    Kovner, Alex; Lublinsky, Michael

    2011-11-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N{sub c} approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  18. Testing the spherical evolution of cosmic voids

    NASA Astrophysics Data System (ADS)

    Demchenko, Vasiliy; Cai, Yan-Chuan; Heymans, Catherine; Peacock, John A.

    2016-08-01

    We study the spherical evolution model for voids in ΛCDM, where the evolution of voids is governed by dark energy at an earlier time than that for the whole universe or in overdensities. We show that the presence of dark energy suppresses the growth of peculiar velocities, causing void shell-crossing to occur at progressively later epochs as ΩΛ increases. We apply the spherical model to evolve the initial conditions of N-body simulated voids and compare the resulting final void profiles. We find that the model is successful in tracking the evolution of voids with radii greater than 30 h-1Mpc, implying that void profiles could be used to constrain dark energy. We find that the initial peculiar velocities of voids play a significant role in shaping their evolution. Excluding the peculiar velocity in the evolution model delays the time of shell crossing.

  19. Professor Attitudes and Beliefs about Teaching Evolution

    NASA Astrophysics Data System (ADS)

    Barnes, Maryann Elizabeth

    Teaching evolution has been shown to be a challenge for faculty, in both K-12 and postsecondary education. Many of these challenges stem from perceived conflicts not only between religion and evolution, but also faculty beliefs about religion, it's compatibility with evolutionary theory, and it's proper role in classroom curriculum. Studies suggest that if educators engage with students' religious beliefs and identity, this may help students have positive attitudes towards evolution. The aim of this study was to reveal attitudes and beliefs professors have about addressing religion and providing religious scientist role models to students when teaching evolution. 15 semi-structured interviews of tenured biology professors were conducted at a large Midwestern universiy regarding their beliefs, experiences, and strategies teaching evolution and particularly, their willingness to address religion in a class section on evolution. Following a qualitative analysis of transcripts, professors did not agree on whether or not it is their job to help students accept evolution (although the majority said it is not), nor did they agree on a definition of "acceptance of evolution". Professors are willing to engage in students' religious beliefs, if this would help their students accept evolution. Finally, professors perceived many challenges to engaging students' religious beliefs in a science classroom such as the appropriateness of the material for a science class, large class sizes, and time constraints. Given the results of this study, the author concludes that instructors must come to a consensus about their goals as biology educators as well as what "acceptance of evolution" means, before they can realistically apply the engagement of student's religious beliefs and identity as an educational strategy.

  20. Impacts and evolution: future prospects

    NASA Technical Reports Server (NTRS)

    Morrison, David

    2003-01-01

    The discipline of astrobiology includes the dynamics of biological evolution. One of the major ways that the cosmos influences life is through the catastrophic environmental disruptions caused when comets and asteroids collide with a planet. We now recognize that such impacts have caused mass extinctions and played a major role in determining the evolution of life on Earth. The time-averaged impact flux as a function of projectile energy can be derived from lunar cratering statistics as well as the current population of near Earth asteroids (NEAs). Effects of impacts of various energies can be modeled, using data from historic impacts [such as the Cretaceous-Tertiary (KT) impactor 65 million years ago] and the observed 1994 bombardment of Jupiter by fragments of Comet Shoemaker-Levy 9. It is of particular interest to find from such models that the terrestrial environment is highly vulnerable to perturbation from impacts, so that even such a small event as the KT impact (by a projectile 10-15 km in diameter) can lead to a mass extinction. Similar considerations allow us to model the effects of still smaller (and much more likely) impacts, down to the size of the asteroid that exploded over Tunguska in 1908 (energy approximately 10 megatons). Combining the impact flux with estimates of environmental and ecological effects reveals that the greatest contemporary hazard is associated with impactors near 1 million megatons in energy (approximately 2 km in diameter for an asteroid). The current impact hazard is significant relative to other natural hazards, and arguments can be developed to illuminate a variety of public policy issues. The first priority in any plan for defense against impactors is to survey the population of Earth-crossing NEAs and project their orbits forward in time. This is the purpose of the Spaceguard Survey, which has already found more than half of the NEAs >1 km in diameter. If there is an NEA on a collision course with Earth, it can be

  1. Evolution of the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Pepin, R. O.

    1993-01-01

    Evolution of Mars' noble gases through two stages of hydrodynamic escape early in planetary history has been proposed previously by the author. In the first evolutionary stage of this earlier model, beginning at a solar age of approximately 50 m.y., fractionating escape of a H2-rich primordial atmosphere containing CO2, N2, and the noble gases in roughly the proportions found in primitive carbonaceous (CI) chondrites is driven by intense extreme-ultraviolet (EUV) leads to a long (approximately 80 m.y.) period of quiescence, followed by an abrupt degassing of remnant H2, CO2, and N2 from the mantle and of solar-composition noble gases lighter than Xe from the planet's volatile-rich accretional core. Degassed H refuels hydrodynamic loss in a waning but still potent solar EUV flux. Atmospheric Xe, Kr, and Ar remaining at the end of this second escape stage, approximately 4.2 G.y. ago, have evolved to their present-day abundances and compositions. Residual Ne continues to be modified by accretion of solar wind gases throughout the later history of the planet. This model does not address a number of processes that now appear germane to Martian atmospheric history. One, gas loss and fractionation by sputtering, has recently been shown to be relevant. Another, atmospheric erosion, appears increasingly important. In the absence then of a plausible mechanism, the model did not consider the possibility of isotopic evolution of noble gases heavier than Ne after the termination of hydrodynamic escape. Subsequent non-thermal loss of N was assumed, in an unspecified way, to account for the elevation of N from the model value of approximately 250 percent at the end of the second escape stage to approximately 620 percent today. Only qualitative attention was paid to the eroding effects of impact on abundances of all atmophilic species prior to the end of heavy bombardment approximately 3.8 G.y. ago. No attempt was made to include precipitation and recycling of carbonates in

  2. Evolution of the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Pepin, R. O.

    Evolution of Mars' noble gases through two stages of hydrodynamic escape early in planetary history has been proposed previously by the author. In the first evolutionary stage of this earlier model, beginning at a solar age of approximately 50 m.y., fractionating escape of a H2-rich primordial atmosphere containing CO2, N2, and the noble gases in roughly the proportions found in primitive carbonaceous (CI) chondrites is driven by intense extreme-ultraviolet (EUV) leads to a long (approximately 80 m.y.) period of quiescence, followed by an abrupt degassing of remnant H2, CO2, and N2 from the mantle and of solar-composition noble gases lighter than Xe from the planet's volatile-rich accretional core. Degassed H refuels hydrodynamic loss in a waning but still potent solar EUV flux. Atmospheric Xe, Kr, and Ar remaining at the end of this second escape stage, approximately 4.2 G.y. ago, have evolved to their present-day abundances and compositions. Residual Ne continues to be modified by accretion of solar wind gases throughout the later history of the planet. This model does not address a number of processes that now appear germane to Martian atmospheric history. One, gas loss and fractionation by sputtering, has recently been shown to be relevant. Another, atmospheric erosion, appears increasingly important. In the absence then of a plausible mechanism, the model did not consider the possibility of isotopic evolution of noble gases heavier than Ne after the termination of hydrodynamic escape. Subsequent non-thermal loss of N was assumed, in an unspecified way, to account for the elevation of N from the model value of approximately 250 percent at the end of the second escape stage to approximately 620 percent today. Only qualitative attention was paid to the eroding effects of impact on abundances of all atmophilic species prior to the end of heavy bombardment approximately 3.8 G.y. ago. No attempt was made to include precipitation and recycling of carbonates in

  3. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  4. The Fast Debris Evolution Model

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; Swinerd, Graham; Newland, Rebecca; Saunders, Arrun

    The ‘Particles-in-a-box' (PIB) model introduced by Talent (1992) removed the need for computerintensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FaDE), employs a first-order differential equation to describe the rate at which new objects (˜ 10 cm) are added and removed from the environment. Whilst Talent (1992) based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FaDE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FaDE model has been implemented as a client-side, web-based service using Javascript embedded within a HTML document. Due to the simple nature of the algorithm, FaDE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ˜ 10 cm low Earth orbit (LEO) debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model. The results demonstrate that the FaDE model is able to capture comparable time-series of collisions and number of objects as predicted by DAMAGE in several scenarios. Further, and perhaps more importantly

  5. Seasonal evolution of Saturn's stratosphere

    NASA Astrophysics Data System (ADS)

    Sylvestre, Melody; Fouchet, Thierry; Spiga, Aymeric; Guerlet, Sandrine

    2015-11-01

    The exceptional duration of the Cassini-Huygens mission enables unprecedented study of Saturn's atmospheric dynamics and chemistry. In Saturn's stratosphere (from 20 hPa to 10-4 hPa), photochemical and radiative timescales are in the same order as Saturn's revolution period (29.5 years). Consequently, the large seasonal insolation variations experienced by this planet are expected to influence significantly temperatures and abundances of photochemical by-products in this region. We investigate the seasonal evolution of Saturn's stratosphere by measuring meridional and seasonal variations (from 2005 to 2012) of temperature and C2H6, C2H2, and C3H8 abundances using Cassini/CIRS limb observations. We complete this study with the development of a GCM (Global Climate Model), in order to understand the physical processes behind this seasonal evolution.The analysis of the CIRS limb observations show that the lower and upper stratospheres do not exhibit the same trends in their seasonal variations, especially for temperature. In the lower stratosphere, the seasonal temperature contrast is maximal (at 1 hPa) and can be explained by the radiative contributions included in our GCM. In contrast, upper stratospheric temperatures (at 0.01 hPa) are constant from northern winter to spring, at odds with our GCM predictions. This behavior indicates that other physical processes such as gravity waves breaking may be at play. At 1 hPa, C2H6, C2H2, and C3H8 abundances exhibit a striking seasonal stability, consistently with the predictions of the photochemical models of Moses and Greathouse, 2005 and Hue et al., 2015. However, the meridional distributions of these species do not follow the predicted trends, which gives insight on atmospheric dynamics. We perform numerical simulations with the GCM to better understand dynamical phenomena in Saturn's atmosphere. We investigate how the large insolation variations induced by the shadow of the rings influence temperatures and atmospheric

  6. Rumor evolution in social networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yichao; Zhou, Shi; Zhang, Zhongzhi; Guan, Jihong; Zhou, Shuigeng

    2013-03-01

    The social network is a main tunnel of rumor spreading. Previous studies concentrated on a static rumor spreading. The content of the rumor is invariable during the whole spreading process. Indeed, the rumor evolves constantly in its spreading process, which grows shorter, more concise, more easily grasped, and told. In an early psychological experiment, researchers found about 70% of details in a rumor were lost in the first six mouth-to-mouth transmissions. Based on these observations, we investigate rumor spreading on social networks, where the content of the rumor is modified by the individuals with a certain probability. In the scenario, they have two choices, to forward or to modify. As a forwarder, an individual disseminates the rumor directly to their neighbors. As a modifier, conversely, an individual revises the rumor before spreading it out. When the rumor spreads on the social networks, for instance, scale-free networks and small-world networks, the majority of individuals actually are infected by the multirevised version of the rumor, if the modifiers dominate the networks. The individuals with more social connections have a higher probability to receive the original rumor. Our observation indicates that the original rumor may lose its influence in the spreading process. Similarly, a true information may turn out to be a rumor as well. Our result suggests the rumor evolution should not be a negligible question, which may provide a better understanding of the generation and destruction of a rumor.

  7. Protein Evolution of Human Milk.

    PubMed

    Thakkar, Sagar K; Giuffrida, Francesca; Bertschy, Emmanuelle; De Castro, Antonio; Destaillats, Frédéric; Lee, Le Ye

    2016-01-01

    Given the documented short- and long-term advantages of breastfeeding, human milk (HM) as a sole source of nutrition for the first few months of newborn life is considered a normative standard. Each macroconstituent of HM plays a crucial role in the growth and development of the baby. Lipids are largely responsible for providing more than 50% of the energy as well as providing essential fatty acids and minor lipids that are integral to all cell membranes. Carbohydrates can be broadly divided into lactose and oligosaccharides, which are a readily digestible source of glucose and indigestible nonnutritive components, respectively. Proteins in HM provide essential amino acids indispensable for the growth of infants. What is more interesting is that protein concentration profoundly changes from colostrum to mature milk. In this report, we share data from an observatory, single-center, longitudinal trial assessing the constituents of HM collected 30, 60 and 120 days postpartum from 50 mothers (singleton deliveries: 25 male and 25 female infants). The protein content decreased with evolving stages of lactation from an average of 1.45 to 1.38 g/100 ml. The data did not show any gender differences as it was reported for lipid content at 120 days postpartum by our group. Additionally, we also share consolidated literature data on protein evolution of HM during the first year of lactation. PMID:27336906

  8. Evolution of concepts of stress.

    PubMed

    Goldstein, David S; Kopin, Irwin J

    2007-06-01

    This essay describes the evolution of stress as a medical scientific idea. Claude Bernard, Walter B. Cannon and Hans Selye provided key founding concepts for the current view. Bernard introduced the idea of the internal environment bathing cells - the milieu intérieur - maintained by continual compensatory changes of bodily functions. Cannon coined the word, "homeostasis," referring to a set of acceptable ranges of values for internal variables. Cannon taught that threats to homeostasis evoke activation of the sympathoadrenal system as a functional unit. Selye defined stress as a state characterized by a uniform response pattern, regardless of the particular stressor, that could lead to long-term pathologic changes. "Allostasis" was introduced as a concept in recognition that there is no single ideal set of steady-state conditions in life; instead, setpoints and other response criteria change continuously. Stress is now viewed neither as a perturbation nor a stereotyped response pattern but as a condition characterized by a perceived discrepancy between information about a monitored variable and criteria for eliciting patterned effector responses. Different stressors elicit different patterns of activation of the sympathetic nervous, adrenomedullary hormonal, hypothalamic-pituitary-adrenocortical and other effectors, closing negative feedback loops. This systems concept of stress yields predictions that observation or experimentation can test and that are applicable to normal physiology and to a variety of acute and chronic disorders. PMID:17514579

  9. Evolution of insect olfactory receptors

    PubMed Central

    Missbach, Christine; Dweck, Hany KM; Vogel, Heiko; Vilcinskas, Andreas; Stensmyr, Marcus C; Hansson, Bill S; Grosse-Wilde, Ewald

    2014-01-01

    The olfactory sense detects a plethora of behaviorally relevant odor molecules; gene families involved in olfaction exhibit high diversity in different animal phyla. Insects detect volatile molecules using olfactory (OR) or ionotropic receptors (IR) and in some cases gustatory receptors (GRs). While IRs are expressed in olfactory organs across Protostomia, ORs have been hypothesized to be an adaptation to a terrestrial insect lifestyle. We investigated the olfactory system of the primary wingless bristletail Lepismachilis y-signata (Archaeognatha), the firebrat Thermobia domestica (Zygentoma) and the neopteran leaf insect Phyllium siccifolium (Phasmatodea). ORs and the olfactory coreceptor (Orco) are with very high probability lacking in Lepismachilis; in Thermobia we have identified three Orco candidates, and in Phyllium a fully developed OR/Orco-based system. We suggest that ORs did not arise as an adaptation to a terrestrial lifestyle, but evolved later in insect evolution, with Orco being present before the appearance of ORs. DOI: http://dx.doi.org/10.7554/eLife.02115.001 PMID:24670956

  10. Evolution of maternal effect senescence

    PubMed Central

    Moorad, Jacob A.; Nussey, Daniel H.

    2016-01-01

    Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans). Current evolutionary theory considers such maternal effect senescence as part of a unified process of reproductive senescence, which is under identical age-specific selective pressures to fertility. We offer a novel theoretical perspective by combining William Hamilton’s evolutionary model for aging with a quantitative genetic model of indirect genetic effects. We demonstrate that fertility and maternal effect senescence are likely to experience different patterns of age-specific selection and thus can evolve to take divergent forms. Applied to neonatal survival, we find that selection for maternal effects is the product of age-specific fertility and Hamilton’s age-specific force of selection for fertility. Population genetic models show that senescence for these maternal effects can evolve in the absence of reproductive or actuarial senescence; this implies that maternal effect aging is a fundamentally distinct demographic manifestation of the evolution of aging. However, brief periods of increasingly beneficial maternal effects can evolve when fertility increases with age faster than cumulative survival declines. This is most likely to occur early in life. Our integration of theory provides a general framework with which to model, measure, and compare the evolutionary determinants of the social manifestations of aging. Extension of our maternal effects model to other ecological and social contexts could provide important insights into the drivers of the astonishing diversity of lifespans and aging patterns observed among species. PMID:26715745

  11. Vacuum energy and cosmological evolution

    NASA Astrophysics Data System (ADS)

    Solà, Joan

    2014-07-01

    An expanding universe is not expected to have a static vacuum energy density. The so-called cosmological constant Λ should be an approximation, certainly a good one for a fraction of a Hubble time, but it is most likely a temporary description of a true dynamical vacuum energy variable that is evolving from the inflationary epoch to the present day. We can compare the evolving vacuum energy with a Casimir device where the parallel plates slowly move apart ("expand"). The total vacuum energy density cannot be measured, only the effect associated to the presence of the plates, and then also their increasing separation with time. In the universe there is a nonvanishing spacetime curvature R as compared to Minkowskian spacetime that is changing with the expansion. The vacuum energy density must change accordingly, and we naturally expect δΛ˜R˜H2. A class of dynamical vacuum models that trace such rate of change can be constructed. They are compatible with the current cosmological data, and conveniently extended can account for the complete cosmic evolution from the inflationary epoch till the present days. These models are very close to the ΛCDM model for the late universe, but very different from it at the early times. Traces of the inherent vacuum dynamics could be detectable in our recent past.

  12. Evolution in an RNA World

    PubMed Central

    Joyce, Gerald F.

    2009-01-01

    A longstanding research goal has been to develop a self-sustained chemical system that is capable of undergoing Darwinian evolution. The notion of primitive RNA-based life suggests this goal might be achieved by constructing an RNA enzyme that catalyzes the replication of RNA molecules, including the RNA enzyme itself. This reaction recently was demonstrated in a cross-catalytic system involving two RNA enzymes that catalyze each other’s synthesis from a total of four component substrates. The cross-replicating RNA enzymes undergo self-sustained exponential amplification at a constant temperature in the absence of proteins or other biological materials. Amplification occurs with a doubling time of 30–60 min, and can be continued indefinitely. Small populations of cross-replicating RNA enzymes can be made to compete for limited resources within a common environment. The molecules reproduce with high fidelity, but occasionally give rise to recombinants that also can replicate. Over the course of many “generations” of selective amplification, novel variants arise and grow to dominate the population based on their relative fitness under the chosen reaction conditions. This is the first example, outside of biology, of evolutionary adaptation in a molecular genetic system. PMID:19667013

  13. Eumetazoan Cryptochrome Phylogeny and Evolution

    PubMed Central

    Haug, Marion F.; Gesemann, Matthias; Lazović, Viktor; Neuhauss, Stephan C.F.

    2015-01-01

    Cryptochromes (Crys) are light sensing receptors that are present in all eukaryotes. They mainly absorb light in the UV/blue spectrum. The extant Crys consist of two subfamilies, which are descendants of photolyases but are now involved in the regulation of circadian rhythms. So far, knowledge about the evolution, phylogeny, and expression of cry genes is still scarce. The inclusion of cry sequences from a wide range of bilaterian species allowed us to analyze their phylogeny in detail, identifying six major Cry subgroups. Selective gene inactivations and stabilizations in multiple chordate as well as arthropod lineages suggest several sub- and/or neofunctionalization events. An expression study performed in zebrafish, the model organism harboring the largest amount of crys, showed indeed only partially overlapping expression of paralogous mRNA, supporting gene sub- and/or neofunctionalization. Moreover, the daily cry expression in the adult zebrafish retina indicated varying oscillation patterns in different cell types. Our extensive phylogenetic analysis provides for the first time an overview of cry evolutionary history. Although several, especially parasitic or blind species, have lost all cry genes, crustaceans have retained up to three crys, teleosts possess up to seven, and tetrapods up to four crys. The broad and cyclic expression pattern of all cry transcripts in zebrafish retinal layers implies an involvement in retinal circadian processes and supports the hypothesis of several autonomous circadian clocks present in the vertebrate retina. PMID:25601102

  14. Opsin evolution in the Ambulacraria.

    PubMed

    D'Aniello, S; Delroisse, J; Valero-Gracia, A; Lowe, E K; Byrne, M; Cannon, J T; Halanych, K M; Elphick, M R; Mallefet, J; Kaul-Strehlow, S; Lowe, C J; Flammang, P; Ullrich-Lüter, E; Wanninger, A; Arnone, M I

    2015-12-01

    Opsins--G-protein coupled receptors involved in photoreception--have been extensively studied in the animal kingdom. The present work provides new insights into opsin-based photoreception and photoreceptor cell evolution with a first analysis of opsin sequence data for a major deuterostome clade, the Ambulacraria. Systematic data analysis, including for the first time hemichordate opsin sequences and an expanded echinoderm dataset, led to a robust opsin phylogeny for this cornerstone superphylum. Multiple genomic and transcriptomic resources were surveyed to cover each class of Hemichordata and Echinodermata. In total, 119 ambulacrarian opsin sequences were found, 22 new sequences in hemichordates and 97 in echinoderms (including 67 new sequences). We framed the ambulacrarian opsin repertoire within eumetazoan diversity by including selected reference opsins from non-ambulacrarians. Our findings corroborate the presence of all major ancestral bilaterian opsin groups in Ambulacraria. Furthermore, we identified two opsin groups specific to echinoderms. In conclusion, a molecular phylogenetic framework for investigating light-perception and photobiological behaviors in marine deuterostomes has been obtained. PMID:26472700

  15. The evolution of episodic memory

    PubMed Central

    Allen, Timothy A.; Fortin, Norbert J.

    2013-01-01

    One prominent view holds that episodic memory emerged recently in humans and lacks a “(neo)Darwinian evolution” [Tulving E (2002) Annu Rev Psychol 53:1–25]. Here, we review evidence supporting the alternative perspective that episodic memory has a long evolutionary history. We show that fundamental features of episodic memory capacity are present in mammals and birds and that the major brain regions responsible for episodic memory in humans have anatomical and functional homologs in other species. We propose that episodic memory capacity depends on a fundamental neural circuit that is similar across mammalian and avian species, suggesting that protoepisodic memory systems exist across amniotes and, possibly, all vertebrates. The implication is that episodic memory in diverse species may primarily be due to a shared underlying neural ancestry, rather than the result of evolutionary convergence. We also discuss potential advantages that episodic memory may offer, as well as species-specific divergences that have developed on top of the fundamental episodic memory architecture. We conclude by identifying possible time points for the emergence of episodic memory in evolution, to help guide further research in this area. PMID:23754432

  16. Evolution of Chloroplast J Proteins

    PubMed Central

    Chiu, Chi-Chou; Chen, Lih-Jen; Su, Pai-Hsiang; Li, Hsou-min

    2013-01-01

    Hsp70 chaperones are involved in multiple biological processes and are recruited to specific processes by designated J domain-containing cochaperones, or J proteins. To understand the evolution and functions of chloroplast Hsp70s and J proteins, we identified the Arabidopsis chloroplast J protein constituency using a combination of genomic and proteomic database searches and individual protein import assays. We show that Arabidopsis chloroplasts have at least 19 J proteins, the highest number of confirmed J proteins for any organelle. These 19 J proteins are classified into 11 clades, for which cyanobacteria and glaucophytes only have homologs for one clade, green algae have an additional three clades, and all the other 7 clades are specific to land plants. Each clade also possesses a clade-specific novel motif that is likely used to interact with different client proteins. Gene expression analyses indicate that most land plant-specific J proteins show highly variable expression in different tissues and are down regulated by low temperatures. These results show that duplication of chloroplast Hsp70 in land plants is accompanied by more than doubling of the number of its J protein cochaperones through adding new J proteins with novel motifs, not through duplications within existing families. These new J proteins likely recruit chloroplast Hsp70 to perform tissue specific functions related to biosynthesis rather than to stress resistance. PMID:23894646

  17. Simulating evolution by gene duplication.

    PubMed

    Ohta, T

    1987-01-01

    By considering the recent finding that unequal crossing over and other molecular interactions are contributing to the evolution of multigene families, a model of the origin of repetitive genes was studied by Monte Carlo simulations. Starting from a single gene copy, how genetic systems evolve was examined under unequal crossing over, random drift and natural selection. Both beneficial and deteriorating mutations were incorporated, and the latter were assumed to occur ten times more frequently than the former. Positive natural selection favors those chromosomes with more beneficial mutations in redundant copies than others in the population, but accumulation of deteriorating mutations (pseudogenes) have no effect on fitness so long as there remains a functional gene. The results imply the following: Positive natural selection is needed in order to acquire gene families with new functions. Without it, too many pseudogenes accumulate before attaining a functional gene family. There is a large fluctuation in the outcome even if parameters are the same. When unequal crossing over occurs more frequently, the system evolves more rapidly. It was also shown, under realistic values of parameters, that the genetic load for acquiring a new gene is not as large as J.B.S. Haldane suggested, but not so small as in a model in which a system for selection started from already redundant genes. PMID:3557113

  18. Mineral evolution and Earth history

    USGS Publications Warehouse

    Bradley, Dwight C.

    2015-01-01

    The field of mineral evolution—a merger of mineralogy and Earth history—coalesced in 2008 with the first of several global syntheses by Robert Hazen and coworkers in the American Mineralogist. They showed that the cumulative abundance of mineral species has a stepwise trend with first appearances tied to various transitions in Earth history such as the end of planetary accretion at ca. 4.55 Ga and the onset of bio-mediated mineralogy at ca. >2.5 Ga. A global age distribution is best established for zircon. Observed abundance of zircon fluctuates through more than an order of magnitude during successive supercontinent cycles. The pulse of the Earth is also recorded, albeit imperfectly, by the 87Sr/86Sr composition of marine biogenic calcite; the Sr-isotopic ratio of this mineral reflects the balance of inputs of primitive strontium at mid-ocean ridges and evolved strontium that drains off the continents. A global mineral evolution database, currently in the works, will greatly facilitate the compilation and analysis of extant data and the expansion of research in mineralogy outside its traditional bounds and into more interdisciplinary realms.

  19. Ceres: Evolution and Present State

    NASA Astrophysics Data System (ADS)

    Castillo-Rogez, J.; McCord, T.

    2007-08-01

    Introduction:We consider Ceres as a prototype for planetary evolution [1]. From thermal modeling by McCord and Sotin [2, 3, 4], Ceres was inferred to have differentiated into a rocky core of hydrated silicates, and an icy outer shell. Thomas et al. [5] confirmed such a model from direct observation of Ceres's shape from Hubble Space Telescope observations, and pervious occultation measurements. McCord and Sotin [4] also suggest that Ceres could have preserved a deep ocean, especially if ammonia or some other ice melting point depressant, such as salts, was incorporated during accretion. We continue to develop thermal modeling of Ceres, using increasingly sophisticated models and new observational information in order to match the observed shape. . In particular, we investigate the evolution of the core. Approach: Our models require the following initial input: initial planetesimal temperature (after [6]); composition; time of formation with respect to Calcium-Aluminum Inclusions (CAIs); and an internal heat profile after initial accretion. Modeling begins with a porous Ceres (after [7, 8]). The rock phase has the composition of an ordinary chondrite (after [9]). Short-lived radiogenic isotopes, including 26Al and 60Fe, have initial concentrations as measured by [10, 11]. Conductive thermal evolution is computed for one-dimensional models following the approach of [4] and [12]. The silicate core evolves through hydration, then dehydration and melting stages. Currently, hydrothermal cooling is not included in our algorithm. Model Results: Conditions were present for full differentiation of Ceres if accretion time t0-CAIs was less than 7 My and/or if ammonia was accreted. For times of formation t0-CAIs shorter than 2 My, the boiling point of water was reached within a few My after accretion, and may have led to major water loss.Under these conditions, hydrothermal activity was inevitable, and might still be taking place inside Ceres. Whether a deep ocean is still

  20. Biomimetic endodontics: the final evolution?

    PubMed

    Clark, David J

    2007-07-01

    We are seeing a gradual evolution by a small but growing number of endodontists and general dentists toward delicate biomimetic, microscope-based shaping. This old-fashioned respect for periradicular dentin is paired with microscopes, ultrasonics, and an appreciation for root morphology. Although no 2 roots are the same, general anatomic patterns allow the microscope-equipped clinician to search for major pulpal regions that will yield a high probability of cleaning and shaping the clinically available pulpal zones. There are complex, anatomically improbable, and clinically impossible areas of pulp that are beyond the reach of even the most gifted hands. Regardless, the clinician has the responsibility to begin each procedure seeking perfection and joyfully finishing with excellence. The shapes that were introduced during the Schilder (crown-down) era have served as a transitional technique to allow the first real 3-dimensional compaction of gutta-percha. Nonetheless, endodontics is in the end a restoratively driven procedure. Large, arbitrary, round shapes create beautiful endodontics but can dramatically weaken the tooth. The shaping philosophy advanced in this treatise allows perfectly adequate shapes to achieve the hydraulics needed for modern obturation. It will require different skills and materials to shape, pack, and restore the exotic architecture of nature. (See Tables 1 to 3.). PMID:17708316

  1. Stress evolution during caldera collapse

    NASA Astrophysics Data System (ADS)

    Holohan, E. P.; Schöpfer, M. P. J.; Walsh, J. J.

    2015-07-01

    The mechanics of caldera collapse are subject of long-running debate. Particular uncertainties concern how stresses around a magma reservoir relate to fracturing as the reservoir roof collapses, and how roof collapse in turn impacts upon the reservoir. We used two-dimensional Distinct Element Method models to characterise the evolution of stress around a depleting sub-surface magma body during gravity-driven collapse of its roof. These models illustrate how principal stress orientations rotate during progressive deformation so that roof fracturing transitions from initial reverse faulting to later normal faulting. They also reveal four end-member stress paths to fracture, each corresponding to a particular location within the roof. Analysis of these paths indicates that fractures associated with ultimate roof failure initiate in compression (i.e. as shear fractures). We also report on how mechanical and geometric conditions in the roof affect pre-failure unloading and post-failure reloading of the reservoir. In particular, the models show how residual friction within a failed roof could, without friction reduction mechanisms or fluid-derived counter-effects, inhibit a return to a lithostatically equilibrated pressure in the magma reservoir. Many of these findings should be transferable to other gravity-driven collapse processes, such as sinkhole formation, mine collapse and subsidence above hydrocarbon reservoirs.

  2. Evolution of maternal effect senescence.

    PubMed

    Moorad, Jacob A; Nussey, Daniel H

    2016-01-12

    Increased maternal age at reproduction is often associated with decreased offspring performance in numerous species of plants and animals (including humans). Current evolutionary theory considers such maternal effect senescence as part of a unified process of reproductive senescence, which is under identical age-specific selective pressures to fertility. We offer a novel theoretical perspective by combining William Hamilton's evolutionary model for aging with a quantitative genetic model of indirect genetic effects. We demonstrate that fertility and maternal effect senescence are likely to experience different patterns of age-specific selection and thus can evolve to take divergent forms. Applied to neonatal survival, we find that selection for maternal effects is the product of age-specific fertility and Hamilton's age-specific force of selection for fertility. Population genetic models show that senescence for these maternal effects can evolve in the absence of reproductive or actuarial senescence; this implies that maternal effect aging is a fundamentally distinct demographic manifestation of the evolution of aging. However, brief periods of increasingly beneficial maternal effects can evolve when fertility increases with age faster than cumulative survival declines. This is most likely to occur early in life. Our integration of theory provides a general framework with which to model, measure, and compare the evolutionary determinants of the social manifestations of aging. Extension of our maternal effects model to other ecological and social contexts could provide important insights into the drivers of the astonishing diversity of lifespans and aging patterns observed among species. PMID:26715745

  3. Chloroplast evolution, structure and functions

    PubMed Central

    Jensen, Poul Erik

    2014-01-01

    In this review, we consider a selection of recent advances in chloroplast biology. These include new findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner in primary endosymbiosis, a second instance of primary endosymbiosis represented by the chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed. We also present an updated inventory of photosynthetic proteins and the factors involved in the assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which receive electrons from ferredoxin. Other topics covered in this review include new protein components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the photosynthetic light reactions are fed to enzymes derived from secondary metabolism. PMID:24991417

  4. Lifetime Evolution of UV Jets

    NASA Technical Reports Server (NTRS)

    Corti, G.; Poletto, G.; Suess, S. T.; Moore, R.; Sterling, A.

    2006-01-01

    We report on observations acquired in May 2003 during a SOHO-Ulysses quadrature campaign. From May 25 to May 28, the SoHO LASCO Coronal Mass Ejection (CME) catalog lists a number of events which might have been observed by SOHO/UVCS, whose slit was centered along the Ulysses direction. However, because of time gaps in the observing schedule, or because of the unfavorable position of some CMEs, the most interesting events recorded by UVCS were a few short-lived ejections that represent the extension at higher altitudes of recursive EIT jets. We focus on jets occurring on May 26/27, visible also in EIT and LASCO images, which seem to propagate along the radial to Ulysses. UVCS spectra at 1.7 Rsun showed an unusually high emission in cool lines, lasting for about 10 to 25 minutes, with no evidence of hot plasma. Analysis of the cool line emission allowed us to infer the evolution of physical parameters during the jets lifetime and derive a crude estimate of the energy needed to account for their properties. We also looked for any evidence of the event in in situ data. Whether UVCS is observing jets or narrow CMEs is discussed in the contest of previous works on these classes of events and, in the last Section, we propose a scenario that accounts for our observations.

  5. The evolution of poxvirus vaccines.

    PubMed

    Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano

    2015-04-01

    After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. PMID:25853483

  6. Spiral Galactic Formation and Evolution

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2009-05-01

    Before the period of galactic formation the uiverse consisted of a vast number of pre-formed systems consisting of two or more pre-galactic arms, the arms orbiting each other. As the orbits of the arms decayed the sides of the fore-sections of the arms tangentially collided and joined and thereby forming multi-armed spiral galaxies which began to rotate.The rotation resulted from the conversion of the orbital motion of the individual arms when joined into faster rotational motion of the newly formed galaxy. The spiral arms were maintained by the centripital force of the rapidly rotational motion of the galaxy system. As the rotational motion of the galaxy slowed down the arms of the spiral galaxy collapsed towards the body of the galaxy due to lessening of centripetal force on the arms and elliptical galaxies were formed and with further lessening of galactic rotational motion galactic disks were formed. One can see in galaxies M51, M100, NGC2336 and NGC4939 the galactic arms came from external orbit, not disks or instabilities in support of this theory. Also in support of this theory of galactic evolution is that spiral galaxies rotate faster than ellipticals or disks.

  7. Fred's Contributions to Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Mestel, L.

    2003-07-01

    Fred began work on stellar structure after Hans Bethe and Carl-Friedrich von Weizsäcker had independently established that the thermonuclear fusion of hydrogen into helium is the primary source of the energy radiated by the Sun and other main sequence stars. A joint paper with Ray Lyttleton included this temperature-sensitive process explicitly in the energy equation, effectively vindicating the essentials of the theory of homogeneous gaseous stars presented in Sir Arthur Eddington's celebrated monograph `The Internal Constitution of the Stars'. Agreement with the solar luminosity can be obtained with two alternative values for the hydrogen content. In a subsequent paper, Fred argued convincingly in favour of the case with a very high rather than a moderate fraction of hydrogen. An epoch-making joint paper with Martin Schwarzschild followed the evolution of a low mass star through nuclear processing, from the main sequence into the giant domain in the Hertzsprung-Russell diagram. The slowly growing, burnt-out core becomes degenerate and nearly isothermal, while the photospheric boundary condition forces the expanding envelope to become largely convective. At the top of the giant branch, the degenerate core becomes hot enough for the fusion of helium into carbon; the consequent secular instability, noted first in studies of white dwarfs, brings the star down to the `horizontal branch', the location of the short-period globular cluster Cepheids. Two subsequent papers with Brian Haselgrove studied in further detail the structure of both main sequence and giant stars.

  8. The evolution of space simulation

    NASA Technical Reports Server (NTRS)

    Edwards, Arthur A.

    1992-01-01

    Thirty years have passed since the first large (more than 15 ft diameter) thermal vacuum space simulation chambers were built in this country. Many changes have been made since then, and the industry has learned a great deal as the designs have evolved in that time. I was fortunate to have been part of that beginning, and have participated in many of the changes that have occurred since. While talking with vacuum friends recently, I realized that many of the engineers working in the industry today may not be aware of the evolution of space simulation because they did not experience the changes that brought us today's technology. With that in mind, it seems to be appropriate to take a moment and review some of the events that were a big part of the past thirty years in the thermal vacuum business. Perhaps this review will help to understand a little of the 'why' as well as the 'how' of building and operating large thermal vacuum chambers.

  9. Structural evolution of proteinlike heteropolymers

    NASA Astrophysics Data System (ADS)

    Nelson, Erik D.; Grishin, Nick V.

    2014-12-01

    The biological function of a protein often depends on the formation of an ordered structure in order to support a smaller, chemically active configuration of amino acids against thermal fluctuations. Here we explore the development of proteins evolving to satisfy this requirement using an off-lattice polymer model in which monomers interact as low resolution amino acids. To evolve the model, we construct a Markov process in which sequences are subjected to random replacements, insertions, and deletions and are selected to recover a predefined minimum number of solid-ordered monomers using the Lindemann melting criterion. We show that polymers generated by this process consistently fold into soluble, ordered globules of similar length and complexity to small protein motifs. To compare the evolution of the globules with proteins, we analyze the statistics of amino acid replacements, the dependence of site mutation rates on solvent exposure, and the dependence of structural distance on sequence distance for homologous alignments. Despite the simplicity of the model, the results display a surprisingly close correspondence with protein data.

  10. Histological evolution of pleuroparenchymal fibroelastosis

    PubMed Central

    Hirota, Takako; Yoshida, Yuji; Kitasato, Yasuhiko; Yoshimi, Michihiro; Koga, Takaomi; Tsuruta, Nobuko; Minami, Masato; Harada, Taishi; Ishii, Hiroshi; Fujita, Masaki; Nabeshima, Kazuki; Nagata, Nobuhiko; Watanabe, Kentaro

    2015-01-01

    Aims To investigate the histological evolution in the development of pleuroparenchymal fibroelastosis (PPFE). Methods and results We examined four patients who had undergone surgical lung biopsy twice, or who had undergone surgical lung biopsy and had been autopsied, and in whom the histological diagnosis of the first biopsy was not PPFE, but the diagnosis of the second biopsy or of the autopsy was PPFE. The histological patterns of the first biopsy were cellular and fibrotic interstitial pneumonia, cellular interstitial pneumonia (CIP) with organizing pneumonia, CIP with granulomas and acute lung injury in cases 1, 2, 3, and 4, respectively. Septal elastosis was already present in the non-specific interstitial pneumonia-like histology of case 1, but a few additional years were necessary to reach consolidated subpleural fibroelastosis. In case 3, subpleural fibroelastosis was already present in the first biopsy, but only to a small extent. Twelve years later, it was replaced by a long band of fibroelastosis. The septal inflammation and fibrosis and airspace organization observed in the first biopsies were replaced by less cellular subpleural fibroelastosis within 3–12 years. Conclusions Interstitial inflammation or acute lung injury may be an initial step in the development of PPFE. PMID:25234959

  11. Double distributions and evolution equations

    SciTech Connect

    A.V. Radyushkin

    1998-05-01

    Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electroproduction processes require a generalization of usual parton distributions for the case when long-distance information is accumulated in nonforward matrix elements < p{prime} {vert_bar}O(0,z){vert_bar}p > of quark and gluon light-cone operators. In their previous papers the authors used two types of nonperturbative functions parameterizing such matrix elements: double distributions F(x,y;t) and nonforward distribution functions F{sub {zeta}}(X;t). Here they discuss in more detail the double distributions (DD's) and evolution equations which they satisfy. They propose simple models for F(x,y;t=0) DD's with correct spectral and symmetry properties which also satisfy the reduction relations connecting them to the usual parton densities f(x). In this way, they obtain self-consistent models for the {zeta}-dependence of nonforward distributions. They show that, for small {zeta}, one can easily obtain nonforward distributions (in the X > {zeta} region) from the parton densities: F{sub {zeta}} (X;t=0) {approx} f(X{minus}{zeta}/2).

  12. The Evolution of Poxvirus Vaccines

    PubMed Central

    Sánchez-Sampedro, Lucas; Perdiguero, Beatriz; Mejías-Pérez, Ernesto; García-Arriaza, Juan; Di Pilato, Mauro; Esteban, Mariano

    2015-01-01

    After Edward Jenner established human vaccination over 200 years ago, attenuated poxviruses became key players to contain the deadliest virus of its own family: Variola virus (VARV), the causative agent of smallpox. Cowpox virus (CPXV) and horsepox virus (HSPV) were extensively used to this end, passaged in cattle and humans until the appearance of vaccinia virus (VACV), which was used in the final campaigns aimed to eradicate the disease, an endeavor that was accomplished by the World Health Organization (WHO) in 1980. Ever since, naturally evolved strains used for vaccination were introduced into research laboratories where VACV and other poxviruses with improved safety profiles were generated. Recombinant DNA technology along with the DNA genome features of this virus family allowed the generation of vaccines against heterologous diseases, and the specific insertion and deletion of poxvirus genes generated an even broader spectrum of modified viruses with new properties that increase their immunogenicity and safety profile as vaccine vectors. In this review, we highlight the evolution of poxvirus vaccines, from first generation to the current status, pointing out how different vaccines have emerged and approaches that are being followed up in the development of more rational vaccines against a wide range of diseases. PMID:25853483

  13. The evolution of lossy compression

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah; Dedeo, Simon

    In complex environments, there are costs to both ignorance and perception. An organism needs to track fitness-relevant information about its world, but the more information it tracks, the more resources it must devote to memory and processing. As a first step towards an understanding of this tradeoff, we use rate-distortion theory to study large, unstructured environments with fixed, randomly-drawn penalties for stimuli confusion (``distortions''). We find that two different environments will have nearly identical rate-distortion functions (but very different codebooks) when distortions are drawn from the same distribution, suggesting an interesting weak universality. We further identify two distinct regimes for organisms in these structured environments: a high-fidelity regime where perceptual costs grow linearly with environmental complexity, and a low-fidelity regime where perceptual costs are, remarkably, independent of the number of environmental states. This last result suggests that evolution will drive organisms to the threshold between the high- and low-fidelity regimes. In dynamic environments of rapidly-increasing complexity, well-adapted organisms will find themselves able to make, just barely, the most subtle distinctions in their environment.

  14. Studies of Circumstellar Disk Evolution

    NASA Technical Reports Server (NTRS)

    Hartmann, Lee W.

    2004-01-01

    Spitzer Space Telescope infrared data for our program on disk evolution has been taken (the main IRAC - 3-8 micron exposures; the 24 and 70 micron MIPS data are to come later). We now have deep maps in the four IRAC bands of the 3-Myr-old cluster Trumpler 37, and the 10-Myr-old cluster NGC 7160. Analysis of these data has now begun. We will be combining these data with our ground-based photometric and spectroscopic data to obtain a complete picture of disk frequency as a function of mass through this important age range, which spans the likely epoch of (giant) planet formation in most systems. Analysis of the SIRTF data, and follow-on ground-based spectroscopy on the converted MMT telescope using the wide-field, fiber-fed, multiobject spectrographs, Hectospec and Hectochelle, will be the major activity during the next year.Work was also performed on the following: protoplanetary disk mass accretion rates in very low-mass stars; the inner edge of T Tauri disks; accretion in intermediate-mass T Tauri stars (IMPS); and the near-infrared spectra of the rapidly-accreting protostellar disks FU Ori and V1057 Cyg.

  15. Ape gestures and language evolution

    PubMed Central

    Pollick, Amy S.; de Waal, Frans B. M.

    2007-01-01

    The natural communication of apes may hold clues about language origins, especially because apes frequently gesture with limbs and hands, a mode of communication thought to have been the starting point of human language evolution. The present study aimed to contrast brachiomanual gestures with orofacial movements and vocalizations in the natural communication of our closest primate relatives, bonobos (Pan paniscus) and chimpanzees (Pan troglodytes). We tested whether gesture is the more flexible form of communication by measuring the strength of association between signals and specific behavioral contexts, comparing groups of both the same and different ape species. Subjects were two captive bonobo groups, a total of 13 individuals, and two captive chimpanzee groups, a total of 34 individuals. The study distinguished 31 manual gestures and 18 facial/vocal signals. It was found that homologous facial/vocal displays were used very similarly by both ape species, yet the same did not apply to gestures. Both within and between species gesture usage varied enormously. Moreover, bonobos showed greater flexibility in this regard than chimpanzees and were also the only species in which multimodal communication (i.e., combinations of gestures and facial/vocal signals) added to behavioral impact on the recipient. PMID:17470779

  16. Futility: a concept in evolution.

    PubMed

    Burns, Jeffrey P; Truog, Robert D

    2007-12-01

    The debate about how to resolve cases in which patients and families demand interventions that clinicians regard as futile has been in evolution over the past 20 years. This debate can be divided into three generations. The first generation was characterized by attempts to define futility in terms of certain clinical criteria. These attempts failed because they proposed limitations to care based on value judgments for which there is no consensus among a significant segment of society. The second generation was a procedural approach that empowered hospitals, through their ethics committees, to decide whether interventions demanded by families were futile. Many hospitals adopted such policies, and some states incorporated this approach into legislation. This approach has also failed because it gives hospitals authority to decide whether or not to accede to demands that the clinicians regard as unreasonable, when any national consensus on what is a "beneficial treatment" remains under intense debate. Absent such a consensus, procedural mechanisms to resolve futility disputes inevitably confront the same insurmountable barriers as attempts to define futility. We therefore predict emergence of a third generation, focused on communication and negotiation at the bedside. We present a paradigm that has proven successful in business and law. In the small number of cases in which even the best efforts at communication and negotiation fail, we suggest that clinicians should find ways to better support each other in providing this care, rather than seeking to override the requests of these patients and families. PMID:18079232

  17. Evolution of ageing since Darwin.

    PubMed

    Rose, Michael R; Burke, Molly K; Shahrestani, Parvin; Mueller, Laurence D

    2008-12-01

    In the late 19th century, the evolutionary approach to the problem of ageing was initiated by August Weismann, who argued that natural selection was more important for ageing than any physiological mechanism. In the mid-twentieth century, J. B. S. Haldane, P. B. Medawar and G. C. Williams informally argued that the force of natural selection falls with adult age. In 1966, W. D. Hamilton published formal equations that showed mathematically that two 'forces of natural selection' do indeed decline with age, though his analysis was not genetically explicit. Brian Charlesworth then developed the required mathematical population genetics for the evolution of ageing in the 1970's. In the 1980's, experiments using Drosophila showed that the rate of ageing evolves as predicted by Hamilton's 'forces of natural selection'. The discovery of the cessation of ageing late in life in the 1990's was followed by its explanation in terms of evolutionary theory based on Hamilton's forces. Recently, it has been shown that the cessation of ageing can also be manipulated experimentally using Hamilton's 'forces of natural selection'. Despite the success of evolutionary research on ageing, mainstream gerontological research has largely ignored both this work and the opportunity that it provides for effective intervention in ageing. PMID:19147926

  18. The evolution of mathematical immunology.

    PubMed

    Louzoun, Yoram

    2007-04-01

    The types of mathematical models used in immunology and their scope have changed drastically in the past 10 years. Classical models were based on ordinary differential equations (ODEs), difference equations, and cellular automata. These models focused on the 'simple' dynamics obtained between a small number of reagent types (e.g. one type of receptor and one type of antigen or two T-cell populations). With the advent of high-throughput methods, genomic data, and unlimited computing power, immunological modeling shifted toward the informatics side. Many current applications of mathematical models in immunology are now focused around the concepts of high-throughput measurements and system immunology (immunomics), as well as the bioinformatics analysis of molecular immunology. The types of models have shifted from mainly ODEs of simple systems to the extensive use of Monte Carlo simulations. The transition to a more molecular and more computer-based attitude is similar to the one occurring over all the fields of complex systems analysis. An interesting additional aspect in theoretical immunology is the transition from an extreme focus on the adaptive immune system (that was considered more interesting from a theoretical point of view) to a more balanced focus taking into account the innate immune system also. We here review the origin and evolution of mathematical modeling in immunology and the contribution of such models to many important immunological concepts. PMID:17367331

  19. Vertebral development and amphibian evolution.

    PubMed

    Carroll, R L; Kuntz, A; Albright, K

    1999-01-01

    Amphibians provide an unparalleled opportunity to integrate studies of development and evolution through the investigation of the fossil record of larval stages. The pattern of vertebral development in modern frogs strongly resembles that of Paleozoic labyrinthodonts in the great delay in the ossification of the vertebrae, with the centra forming much later than the neural arches. Slow ossification of the trunk vertebrae in frogs and the absence of ossification in the tail facilitate the rapid loss of the tail during metamorphosis, and may reflect retention of the pattern in their specific Paleozoic ancestors. Salamanders and caecilians ossify their centra at a much earlier stage than frogs, which resembles the condition in Paleozoic lepospondyls. The clearly distinct patterns and rates of vertebral development may indicate phylogenetic separation between the ultimate ancestors of frogs and those of salamanders and caecilians within the early radiation of ancestral tetrapods. This divergence may date from the Lower Carboniferous. Comparison with the molecular regulation of vertebral development described in modern mammals and birds suggests that the rapid chondrification of the centra in salamanders relative to that of frogs may result from the earlier migration of sclerotomal cells expressing Pax1 to the area surrounding the notochord. PMID:11324019

  20. Rapidity evolution of gluon TMD from low to moderate x

    SciTech Connect

    Balitsky, Ian; Tarasov, A.

    2015-10-05

    In this article, we study how the rapidity evolution of gluon transverse momentum dependent distribution changes from nonlinear evolution at small $x \\ll 1$ to linear evolution at moderate $x \\sim 1$.