Science.gov

Sample records for evolutionarily conserved transcriptional

  1. Two evolutionarily conserved sequence elements for Peg3/Usp29 transcription

    PubMed Central

    Kim, Jeong Do; Yu, Sungryul; Choo, Jung Ha; Kim, Joomyeong

    2008-01-01

    Background Two evolutionarily Conserved Sequence Elements, CSE1 and CSE2 (YY1 binding sites), are found within the 3.8-kb CpG island surrounding the bidirectional promoter of two imprinted genes, Peg3 (Paternally expressed gene 3) and Usp29 (Ubiquitin-specific protease 29). This CpG island is a likely ICR (Imprinting Control Region) that controls transcription of the 500-kb genomic region of the Peg3 imprinted domain. Results The current study investigated the functional roles of CSE1 and CSE2 in the transcriptional control of the two genes, Peg3 and Usp29, using cell line-based promoter assays. The mutation of 6 YY1 binding sites (CSE2) reduced the transcriptional activity of the bidirectional promoter in the Peg3 direction in an orientation-dependent manner, suggesting an activator role for CSE2 (YY1 binding sites). However, the activity in the Usp29 direction was not detectable regardless of the presence/absence of YY1 binding sites. In contrast, mutation of CSE1 increased the transcriptional activity of the promoter in both the Peg3 and Usp29 directions, suggesting a potential repressor role for CSE1. The observed repression by CSE1 was also orientation-dependent. Serial mutational analyses further narrowed down two separate 6-bp-long regions within the 42-bp-long CSE1 which are individually responsible for the repression of Peg3 and Usp29. Conclusion CSE2 (YY1 binding sites) functions as an activator for Peg3 transcription, while CSE1 acts as a repressor for the transcription of both Peg3 and Usp29. PMID:19068137

  2. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

    PubMed

    Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M

    2015-01-01

    PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception. PMID:25891934

  3. Characterization of evolutionarily conserved motifs involved in activity and regulation of the ABA-INSENSITIVE (ABI) 4 transcription factor.

    PubMed

    Gregorio, Josefat; Hernández-Bernal, Alma Fabiola; Cordoba, Elizabeth; León, Patricia

    2014-02-01

    In recent years, the transcription factor ABI4 has emerged as an important node of integration for external and internal signals such as nutrient status and hormone signaling that modulates critical transitions during the growth and development of plants. For this reason, understanding the mechanism of action and regulation of this protein represents an important step towards the elucidation of crosstalk mechanisms in plants. However, this understanding has been hindered due to the negligible levels of this protein as a result of multiple posttranscriptional regulations. To better understand the function and regulation of the ABI4 protein in this work, we performed a functional analysis of several evolutionarily conserved motifs. Based on these conserved motifs, we identified ortholog genes of ABI4 in different plant species. The functionality of the putative ortholog from Theobroma cacao was demonstrated in transient expression assays and in complementation studies in plants. The function of the highly conserved motifs was analyzed after their deletion or mutagenesis in the Arabidopsis ABI4 sequence using mesophyll protoplasts. This approach permitted us to immunologically detect the ABI4 protein and identify some of the mechanisms involved in its regulation. We identified sequences required for the nuclear localization (AP2-associated motif) as well as those for transcriptional activation function (LRP motif). Moreover, this approach showed that the protein stability of this transcription factor is controlled through protein degradation and subcellular localization and involves the AP2-associated and the PEST motifs. We demonstrated that the degradation of ABI4 protein through the PEST motif is mediated by the 26S proteasome in response to changes in the sugar levels. PMID:24046063

  4. An evolutionarily conserved RNase-based mechanism for repression of transcriptional positive autoregulation

    PubMed Central

    Wurtmann, Elisabeth J.; Ratushny, Alexander V.; Pan, Min; Beer, Karlyn D.; Aitchison, John D.; Baliga, Nitin S.

    2014-01-01

    Summary It is known that environmental context influences the degree of regulation at the transcriptional and post-transcriptional levels. However, the principles governing the differential usage and interplay of regulation at these two levels are not clear. Here, we show that the integration of transcriptional and post-transcriptional regulatory mechanisms in a characteristic network motif drives efficient environment-dependent state transitions. Through phenotypic screening, systems analysis, and rigorous experimental validation, we discovered an RNase (VNG2099C) in Halobacterium salinarum that is transcriptionally co-regulated with genes of the aerobic physiologic state but acts on transcripts of the anaerobic state. Through modeling and experimentation we show that this arrangement generates an efficient state-transition switch, within which RNase-repression of a transcriptional positive autoregulation (RPAR) loop is critical for shutting down ATP-consuming active potassium uptake to reserve energy required for salinity adaptation under aerobic, high potassium, or dark conditions. Subsequently, we discovered that many Escherichia coli operons with energy-associated functions are also putatively controlled by RPAR indicating that this network motif may have evolved independently in phylogenetically distant organisms. Thus, our data suggest that interplay of transcriptional and post-transcriptional regulation in the RPAR motifis a generalized principle for efficient environment-dependent state transitions across prokaryotes. PMID:24612392

  5. Transcriptional Control of Photosynthesis Genes: The Evolutionarily Conserved Regulatory Mechanism in Plastid Genome Function

    PubMed Central

    Puthiyaveetil, Sujith; Ibrahim, Iskander M.; Jeličić, Branka; Tomašić, Ana; Fulgosi, Hrvoje; Allen, John F.

    2010-01-01

    Chloroplast sensor kinase (CSK) is a bacterial-type sensor histidine kinase found in chloroplasts—photosynthetic plastids—in eukaryotic plants and algae. Using a yeast two-hybrid screen, we demonstrate recognition and interactions between: CSK, plastid transcription kinase (PTK), and a bacterial-type RNA polymerase sigma factor-1 (SIG-1). CSK interacts with itself, with SIG-1, and with PTK. PTK also interacts directly with SIG-1. PTK has previously been shown to catalyze phosphorylation of plastid-encoded RNA polymerase (PEP), suppressing plastid transcription nonspecifically. Phospho-PTK is inactive as a PEP kinase. Here, we propose that phospho-CSK acts as a PTK kinase, releasing PTK repression of chloroplast transcription, while CSK also acts as a SIG-1 kinase, blocking transcription specifically at the gene promoter of chloroplast photosystem I. Oxidation of the photosynthetic electron carrier plastoquinone triggers phosphorylation of CSK, inducing chloroplast photosystem II while suppressing photosystem I. CSK places photosystem gene transcription under the control of photosynthetic electron transport. This redox signaling pathway has its origin in cyanobacteria, photosynthetic prokaryotes from which chloroplasts evolved. The persistence of this mechanism in cytoplasmic organelles of photosynthetic eukaryotes is in precise agreement with the CoRR hypothesis for the function of organellar genomes: the plastid genome and its primary gene products are Co-located for Redox Regulation. Genes are retained in plastids primarily in order for their expression to be subject to this rapid and robust redox regulatory transcriptional control mechanism, whereas plastid genes also encode genetic system components, such as some ribosomal proteins and RNAs, that exist in order to support this primary, redox regulatory control of photosynthesis genes. Plastid genome function permits adaptation of the photosynthetic apparatus to changing environmental conditions of light

  6. Functional analysis of the Arabidopsis PLDZ2 promoter reveals an evolutionarily conserved low-Pi-responsive transcriptional enhancer element

    PubMed Central

    Oropeza-Aburto, Araceli; Cruz-Ramírez, Alfredo; Acevedo-Hernández, Gustavo J.; Pérez-Torres, Claudia-Anahí; Caballero-Pérez, Juan; Herrera-Estrella, Luis

    2012-01-01

    Plants have evolved a plethora of responses to cope with phosphate (Pi) deficiency, including the transcriptional activation of a large set of genes. Among Pi-responsive genes, the expression of the Arabidopsis phospholipase DZ2 (PLDZ2) is activated to participate in the degradation of phospholipids in roots in order to release Pi to support other cellular activities. A deletion analysis was performed to identify the regions determining the strength, tissue-specific expression, and Pi responsiveness of this regulatory region. This study also reports the identification and characterization of a transcriptional enhancer element that is present in the PLDZ2 promoter and able to confer Pi responsiveness to a minimal, inactive 35S promoter. This enhancer also shares the cytokinin and sucrose responsive properties observed for the intact PLDZ2 promoter. The EZ2 element contains two P1BS motifs, each of which is the DNA binding site of transcription factor PHR1. Mutation analysis showed that the P1BS motifs present in EZ2 are necessary but not sufficient for the enhancer function, revealing the importance of adjacent sequences. The structural organization of EZ2 is conserved in the orthologous genes of at least eight families of rosids, suggesting that architectural features such as the distance between the two P1BS motifs are also important for the regulatory properties of this enhancer element. PMID:22210906

  7. An evolutionarily conserved DNA architecture determines target specificity of the TWIST family bHLH transcription factors

    PubMed Central

    Chang, Andrew T.; Liu, Yuanjie; Ayyanathan, Kasirajan; Benner, Chris; Jiang, Yike; Prokop, Jeremy W.; Paz, Helicia; Wang, Dong; Li, Hai-Ri; Fu, Xiang-Dong

    2015-01-01

    Basic helix–loop–helix (bHLH) transcription factors recognize the canonical E-box (CANNTG) to regulate gene transcription; however, given the prevalence of E-boxes in a genome, it has been puzzling how individual bHLH proteins selectively recognize E-box sequences on their targets. TWIST is a bHLH transcription factor that promotes epithelial–mesenchymal transition (EMT) during development and tumor metastasis. High-resolution mapping of TWIST occupancy in human and Drosophila genomes reveals that TWIST, but not other bHLH proteins, recognizes a unique double E-box motif with two E-boxes spaced preferentially by 5 nucleotides. Using molecular modeling and binding kinetic analyses, we found that the strict spatial configuration in the double E-box motif aligns two TWIST–E47 dimers on the same face of DNA, thus providing a high-affinity site for a highly stable intramolecular tetramer. Biochemical analyses showed that the WR domain of TWIST dimerizes to mediate tetramer formation, which is functionally required for TWIST-induced EMT. These results uncover a novel mechanism for a bHLH transcription factor to recognize a unique spatial configuration of E-boxes to achieve target specificity. The WR–WR domain interaction uncovered here sets an example of target gene specificity of a bHLH protein being controlled allosterically by a domain outside of the bHLH region. PMID:25762439

  8. Sirtuins Are Evolutionarily Conserved Viral Restriction Factors

    PubMed Central

    Koyuncu, Emre; Budayeva, Hanna G.; Miteva, Yana V.; Ricci, Dante P.; Silhavy, Thomas J.; Shenk, Thomas

    2014-01-01

    ABSTRACT The seven human sirtuins are a family of ubiquitously expressed and evolutionarily conserved NAD+-dependent deacylases/mono-ADP ribosyltransferases that regulate numerous cellular and organismal functions, including metabolism, cell cycle, and longevity. Here, we report the discovery that all seven sirtuins have broad-range antiviral properties. We demonstrate that small interfering RNA (siRNA)-mediated knockdown of individual sirtuins and drug-mediated inhibition of sirtuin enzymatic activity increase the production of virus progeny in infected human cells. This impact on virus growth is observed for both DNA and RNA viruses. Importantly, sirtuin-activating drugs inhibit the replication of diverse viruses, as we demonstrate for human cytomegalovirus, a slowly replicating DNA virus, and influenza A (H1N1) virus, an RNA virus that multiplies rapidly. Furthermore, sirtuin defense functions are evolutionarily conserved, since CobB, the sirtuin homologue in Escherichia coli, protects against bacteriophages. Altogether, our findings establish sirtuins as broad-spectrum and evolutionarily conserved components of the immune defense system, providing a framework for elucidating a new set of host cell defense mechanisms and developing sirtuin modulators with antiviral activity. PMID:25516616

  9. Evolutionarily conserved sequences on human chromosome 21

    SciTech Connect

    Frazer, Kelly A.; Sheehan, John B.; Stokowski, Renee P.; Chen, Xiyin; Hosseini, Roya; Cheng, Jan-Fang; Fodor, Stephen P.A.; Cox, David R.; Patil, Nila

    2001-09-01

    Comparison of human sequences with the DNA of other mammals is an excellent means of identifying functional elements in the human genome. Here we describe the utility of high-density oligonucleotide arrays as a rapid approach for comparing human sequences with the DNA of multiple species whose sequences are not presently available. High-density arrays representing approximately 22.5 Mb of nonrepetitive human chromosome 21 sequence were synthesized and then hybridized with mouse and dog DNA to identify sequences conserved between humans and mice (human-mouse elements) and between humans and dogs (human-dog elements). Our data show that sequence comparison of multiple species provides a powerful empiric method for identifying actively conserved elements in the human genome. A large fraction of these evolutionarily conserved elements are present in regions on chromosome 21 that do not encode known genes.

  10. An evolutionarily conserved pathway controls proteasome homeostasis.

    PubMed

    Rousseau, Adrien; Bertolotti, Anne

    2016-08-11

    The proteasome is essential for the selective degradation of most cellular proteins, but how cells maintain adequate amounts of proteasome is unclear. Here we show that there is an evolutionarily conserved signalling pathway controlling proteasome homeostasis. Central to this pathway is TORC1, the inhibition of which induced all known yeast 19S regulatory particle assembly-chaperones (RACs), as well as proteasome subunits. Downstream of TORC1 inhibition, the yeast mitogen-activated protein kinase, Mpk1, acts to increase the supply of RACs and proteasome subunits under challenging conditions in order to maintain proteasomal degradation and cell viability. This adaptive pathway was evolutionarily conserved, with mTOR and ERK5 controlling the levels of the four mammalian RACs and proteasome abundance. Thus, the central growth and stress controllers, TORC1 and Mpk1/ERK5, endow cells with a rapid and vital adaptive response to adjust proteasome abundance in response to the rising needs of cells. Enhancing this pathway may be a useful therapeutic approach for diseases resulting from impaired proteasomal degradation. PMID:27462806

  11. The type 1 human immunodeficiency virus Tat binding protein is a transcriptional activator belonging to an additional family of evolutionarily conserved genes.

    PubMed Central

    Ohana, B; Moore, P A; Ruben, S M; Southgate, C D; Green, M R; Rosen, C A

    1993-01-01

    The type 1 human immunodeficiency virus Tat protein is a powerful transcriptional activator when bound to an RNA structure (TAR) present at the extreme 5' terminus of viral mRNA. Since transcriptional activation requires binding of Tat to RNA, it has been suggested that Tat enhances initiation or elongation through a direct interaction with cellular transcription factors. Here we show through protein fusion experiments that the previously identified cellular Tat binding protein, TBP-1, although unable to bind DNA, is a strong transcriptional activator when brought into proximity of several promoter elements. Transcriptional activity depends upon the integrity of at least two highly conserved domains: one resembling a nucleotide-binding motif and the other motif common to proteins with helicase activity. Our studies further reveal that TBP-1 represents one member of a large, highly conserved gene family that encodes proteins demonstrating strong amino acid conservation across species. Finally, we identified a second family member that, although 77% similar to TBP-1, does not activate transcription from the promoters examined. This finding, together with the observation that TBP-1 does not activate each promoter examined, suggests that this gene family may encode promoter-specific transcriptional activators. Images PMID:8419915

  12. Evolutionarily conserved regulation of hypocretin neuron specification by Lhx9

    PubMed Central

    Liu, Justin; Merkle, Florian T.; Gandhi, Avni V.; Gagnon, James A.; Woods, Ian G.; Chiu, Cindy N.; Shimogori, Tomomi; Schier, Alexander F.; Prober, David A.

    2015-01-01

    Loss of neurons that express the neuropeptide hypocretin (Hcrt) has been implicated in narcolepsy, a debilitating disorder characterized by excessive daytime sleepiness and cataplexy. Cell replacement therapy, using Hcrt-expressing neurons generated in vitro, is a potentially useful therapeutic approach, but factors sufficient to specify Hcrt neurons are unknown. Using zebrafish as a high-throughput system to screen for factors that can specify Hcrt neurons in vivo, we identified the LIM homeobox transcription factor Lhx9 as necessary and sufficient to specify Hcrt neurons. We found that Lhx9 can directly induce hcrt expression and we identified two potential Lhx9 binding sites in the zebrafish hcrt promoter. Akin to its function in zebrafish, we found that Lhx9 is sufficient to specify Hcrt-expressing neurons in the developing mouse hypothalamus. Our results elucidate an evolutionarily conserved role for Lhx9 in Hcrt neuron specification that improves our understanding of Hcrt neuron development. PMID:25725064

  13. Functional equivalence of an evolutionarily conserved RNA binding module.

    PubMed

    Wells, Melissa L; Hicks, Stephanie N; Perera, Lalith; Blackshear, Perry J

    2015-10-01

    Members of the tristetraprolin (TTP) family of proteins participate in the regulation of mRNA turnover after initially binding to AU-rich elements in target mRNAs. Related proteins from most groups of eukaryotes contain a conserved tandem zinc finger (TZF) domain consisting of two closely spaced, similar CCCH zinc fingers that form the primary RNA binding domain. There is considerable sequence variation within the TZF domains from different family members within a single organism and from different organisms, raising questions about sequence-specific effects on RNA binding and decay promotion. We hypothesized that TZF domains from evolutionarily distant species are functionally interchangeable. The single family member expressed in the fission yeast Schizosaccharomyces pombe, Zfs1, promotes the turnover of several dozen transcripts, some of which are involved in cell-cell interactions. Using knockin techniques, we replaced the TZF domain of S. pombe Zfs1 with the equivalent domains from human TTP and the single family member proteins expressed in the silkworm Bombyx mori, the pathogenic yeast Candida guilliermondii, and the plant Chromolaena odorata. We found that the TZF domains from these widely disparate species could completely substitute for the native S. pombe TZF domain, as determined by measurement of target transcript levels and the flocculation phenotype characteristic of Zfs1 deletion. Recombinant TZF domain peptides from several of these species bound to an AU-rich RNA oligonucleotide with comparably high affinity. We conclude that the TZF domains from TTP family members in these evolutionarily widely divergent species are functionally interchangeable in mRNA binding and decay. PMID:26292216

  14. Evolutionarily conserved coupling of transcription and alternative splicing in the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes.

    PubMed

    Tan, Jeff S; Mohandas, Narla; Conboy, John G

    2005-12-01

    Recent studies have shown that transcription and alternative splicing can be mechanistically coupled. In the EPB41 (protein 4.1R) and EPB41L3 (protein 4.1B) genes, we showed previously that promoter/alternative first exon choice is coupled to downstream splicing events in exon 2. Here we demonstrate that this coupling is conserved among several vertebrate classes from fish to mammals. The EPB41 and EPB41L3 genes from fish, bird, amphibian, and mammal genomes exhibit shared features including alternative first exons and differential splice acceptors in exon 2. In all cases, the 5'-most exon (exon 1A) splices exclusively to a weaker internal acceptor site in exon 2, skipping a fragment designated as exon 2'. Conversely, alternative first exons 1B and 1C always splice to the stronger first acceptor site, retaining exon 2'. These correlations are independent of cell type or species of origin. Since exon 2' contains a translation initiation site, splice variants generate protein isoforms with distinct N-termini. We propose that these genes represent a physiologically relevant model system for mechanistic analysis of transcription-coupled alternative splicing. PMID:16242908

  15. Hoxb-2 transcriptional activation in rhombomeres 3 and 5 requires an evolutionarily conserved cis-acting element in addition to the Krox-20 binding site.

    PubMed Central

    Vesque, C; Maconochie, M; Nonchev, S; Ariza-McNaughton, L; Kuroiwa, A; Charnay, P; Krumlauf, R

    1996-01-01

    Segmentation is a key feature of the development of the vertebrate hindbrain where it involves the generation of repetitive morphological units termed rhombomeres (r). Hox genes are likely to play an essential role in the specification of segmental identity and we have been investigating their regulation. We show here that the mouse and chicken Hoxb-2 genes are dependent for their expression in r3 and r5 on homologous enhancer elements and on binding to this enhancer of the r3/r5-specific transcriptional activator Krox-20. Among the three Krox-20 binding sites of the mouse Hoxb-2 enhancer, only the high-affinity site is absolutely necessary for activity. In contrast, we have identified an additional cis-acting element, Box1, essential for r3/r5 enhancer activity. It is conserved both in sequence and in position respective to the high-affinity Krox-20 binding site within the mouse and chicken enhancers. Furthermore, a short 44 bp sequence spanning the Box1 and Krox-20 sites can act as an r3/r5 enhancer when oligomerized. Box1 may therefore constitute a recognition sequence for another factor cooperating with Krox-20. Taken together, these data demonstrate the conservation of Hox gene regulation and of Krox-20 function during vertebrate evolution. Images PMID:8895582

  16. Evolutionarily Conserved Herpesviral Protein Interaction Networks

    PubMed Central

    Fossum, Even; Friedel, Caroline C.; Rajagopala, Seesandra V.; Titz, Björn; Baiker, Armin; Schmidt, Tina; Kraus, Theo; Stellberger, Thorsten; Rutenberg, Christiane; Suthram, Silpa; Bandyopadhyay, Sourav; Rose, Dietlind; von Brunn, Albrecht; Uhlmann, Mareike; Zeretzke, Christine; Dong, Yu-An; Boulet, Hélène; Koegl, Manfred; Bailer, Susanne M.; Koszinowski, Ulrich; Ideker, Trey; Uetz, Peter; Zimmer, Ralf; Haas, Jürgen

    2009-01-01

    Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species. PMID:19730696

  17. Evolutionarily conserved phenylpropanoid pattern on angiosperm pollen.

    PubMed

    Fellenberg, Christin; Vogt, Thomas

    2015-04-01

    The male gametophyte of higher plants appears as a solid box containing the essentials to transmit genetic material to the next generation. These consist of haploid generative cells that are required for reproduction, and an invasive vegetative cell producing the pollen tube, both mechanically protected by a rigid polymer, the pollen wall, and surrounded by a hydrophobic pollen coat. This coat mediates the direct contact to the biotic and abiotic environments. It contains a mixture of compounds required not only for fertilization but also for protection against biotic and abiotic stressors. Among its metabolites, the structural characteristics of two types of phenylpropanoids, hydroxycinnamic acid amides and flavonol glycosides, are highly conserved in Angiosperm pollen. Structural and functional aspects of these compounds will be discussed. PMID:25739656

  18. Identification of an evolutionarily conserved domain in human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) that binds HIV-1 integrase.

    PubMed

    Cherepanov, Peter; Devroe, Eric; Silver, Pamela A; Engelman, Alan

    2004-11-19

    Human lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF/p75) protein was recently identified as a binding partner for HIV-1 integrase (IN) in human cells. In this work, we used biochemical and bioinformatic approaches to define the domain organization of LEDGF/p75. Using limited proteolysis and deletion mutagenesis we show that the protein contains a pair of evolutionarily conserved domains, assuming about 35% of its sequence. Whereas the N-terminal PWWP domain had been recognized previously, the second domain is novel. It is comprised of approximately 80 amino acid residues and is both necessary and sufficient for binding to HIV-1 IN. Strikingly, the integrase binding domain (IBD) is not unique to LEDGF/p75, as a second human protein, hepatoma-derived growth factor-related protein 2 (HRP2), contains a homologous sequence. LEDGF/p75 and HRP2 IBDs avidly bound HIV-1 IN in an in vitro GST pull-down assay and each full-length protein potently stimulated HIV-1 IN activity in vitro. LEDGF/p75 and HRP2 are predicted to share a similar domain organization and have an evident evolutionary and likely functional relationship. PMID:15371438

  19. Protection of CpG islands from DNA methylation is DNA-encoded and evolutionarily conserved.

    PubMed

    Long, Hannah K; King, Hamish W; Patient, Roger K; Odom, Duncan T; Klose, Robert J

    2016-08-19

    DNA methylation is a repressive epigenetic modification that covers vertebrate genomes. Regions known as CpG islands (CGIs), which are refractory to DNA methylation, are often associated with gene promoters and play central roles in gene regulation. Yet how CGIs in their normal genomic context evade the DNA methylation machinery and whether these mechanisms are evolutionarily conserved remains enigmatic. To address these fundamental questions we exploited a transchromosomic animal model and genomic approaches to understand how the hypomethylated state is formed in vivo and to discover whether mechanisms governing CGI formation are evolutionarily conserved. Strikingly, insertion of a human chromosome into mouse revealed that promoter-associated CGIs are refractory to DNA methylation regardless of host species, demonstrating that DNA sequence plays a central role in specifying the hypomethylated state through evolutionarily conserved mechanisms. In contrast, elements distal to gene promoters exhibited more variable methylation between host species, uncovering a widespread dependence on nucleotide frequency and occupancy of DNA-binding transcription factors in shaping the DNA methylation landscape away from gene promoters. This was exemplified by young CpG rich lineage-restricted repeat sequences that evaded DNA methylation in the absence of co-evolved mechanisms targeting methylation to these sequences, and species specific DNA binding events that protected against DNA methylation in CpG poor regions. Finally, transplantation of mouse chromosomal fragments into the evolutionarily distant zebrafish uncovered the existence of a mechanistically conserved and DNA-encoded logic which shapes CGI formation across vertebrate species. PMID:27084945

  20. Epigenetic Pattern on the Human Y Chromosome Is Evolutionarily Conserved

    PubMed Central

    Meng, Hao; Agbagwa, Ikechukwu O.; Wang, Ling-Xiang; Wang, Yingzhi; Yan, Shi; Ren, Shancheng; Sun, Yinghao; Pei, Gang; Liu, Xin; Liu, Jiang; Jin, Li; Li, Hui; Sun, Yingli

    2016-01-01

    DNA methylation plays an important role for mammalian development. However, it is unclear whether the DNA methylation pattern is evolutionarily conserved. The Y chromosome serves as a powerful tool for the study of human evolution because it is transferred between males. In this study, based on deep-rooted pedigrees and the latest Y chromosome phylogenetic tree, we performed epigenetic pattern analysis of the Y chromosome from 72 donors. By comparing their respective DNA methylation level, we found that the DNA methylation pattern on the Y chromosome was stable among family members and haplogroups. Interestingly, two haplogroup-specific methylation sites were found, which were both genotype-dependent. Moreover, the African and Asian samples also had similar DNA methylation pattern with a remote divergence time. Our findings indicated that the DNA methylation pattern on the Y chromosome was conservative during human male history. PMID:26760298

  1. Epigenetic Pattern on the Human Y Chromosome Is Evolutionarily Conserved.

    PubMed

    Zhang, Minjie; Wang, Chuan-Chao; Yang, Caiyun; Meng, Hao; Agbagwa, Ikechukwu O; Wang, Ling-Xiang; Wang, Yingzhi; Yan, Shi; Ren, Shancheng; Sun, Yinghao; Pei, Gang; Liu, Xin; Liu, Jiang; Jin, Li; Li, Hui; Sun, Yingli

    2016-01-01

    DNA methylation plays an important role for mammalian development. However, it is unclear whether the DNA methylation pattern is evolutionarily conserved. The Y chromosome serves as a powerful tool for the study of human evolution because it is transferred between males. In this study, based on deep-rooted pedigrees and the latest Y chromosome phylogenetic tree, we performed epigenetic pattern analysis of the Y chromosome from 72 donors. By comparing their respective DNA methylation level, we found that the DNA methylation pattern on the Y chromosome was stable among family members and haplogroups. Interestingly, two haplogroup-specific methylation sites were found, which were both genotype-dependent. Moreover, the African and Asian samples also had similar DNA methylation pattern with a remote divergence time. Our findings indicated that the DNA methylation pattern on the Y chromosome was conservative during human male history. PMID:26760298

  2. Localization of an evolutionarily conserved protein proton pyrophosphatase in evolutionarily distant plants oryza sativa and physcomitrella patens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Proton Pyrophosphatase (H+-PPase) is a highly evolutionarily conserved protein that is prevalent in the plant kingdom. One of the salient features of H+-PPase expression pattern, at least in vascular plants like Arabidopsis, is its conspicuous localization in both actively dividing cells and the phl...

  3. Evolutionarily Conserved, Multitasking TRP Channels: Lessons from Worms and Flies

    PubMed Central

    Venkatachalam, Kartik; Luo, Junjie; Montell, Craig

    2015-01-01

    The Transient Receptor Potential (TRP) channel family is comprised of a large group of cation-permeable channels, which display an extraordinary diversity of roles in sensory signaling. TRPs allow animals to detect chemicals, mechanical force, light, and changes in temperature. Consequently, these channels control a plethora of animal behaviors. Moreover, their functions are not limited to the classical senses, as they are cellular sensors, which are critical for ionic homeostasis and metabolism. Two genetically tractable invertebrate model organisms, Caenorhabditis elegans and Drosophila melanogaster, have led the way in revealing a wide array of sensory roles and behaviors that depend on TRP channels. Two overriding themes have emerged from these studies. First, TRPs are multitasking proteins, and second, many functions and modes of activation of these channels are evolutionarily conserved, including some that were formerly thought to be unique to invertebrates, such as phototransduction. Thus, worms and flies offer the potential to decipher roles for mammalian TRPs, which would otherwise not be suspected. PMID:24961975

  4. Evolutionarily conserved autoregulation of alternative pre-mRNA splicing by ribosomal protein L10a

    PubMed Central

    Takei, Satomi; Togo-Ohno, Marina; Suzuki, Yutaka; Kuroyanagi, Hidehito

    2016-01-01

    Alternative splicing of pre-mRNAs can regulate expression of protein-coding genes by generating unproductive mRNAs rapidly degraded by nonsense-mediated mRNA decay (NMD). Many of the genes directly regulated by alternative splicing coupled with NMD (AS-NMD) are related to RNA metabolism, but the repertoire of genes regulated by AS-NMD in vivo is to be determined. Here, we analyzed transcriptome data of wild-type and NMD-defective mutant strains of the nematode worm Caenorhabditis elegans and demonstrate that eight of the 82 cytoplasmic ribosomal protein (rp) genes generate unproductively spliced mRNAs. Knockdown of any of the eight rp genes exerted a dynamic and compensatory effect on alternative splicing of its own transcript and inverse effects on that of the other rp genes. A large subunit protein L10a, termed RPL-1 in nematodes, directly and specifically binds to an evolutionarily conserved 39-nt stretch termed L10ARE between the two alternative 5′ splice sites in its own pre-mRNA to switch the splice site choice. Furthermore, L10ARE-mediated splicing autoregulation of the L10a-coding gene is conserved in vertebrates. These results indicate that L10a is an evolutionarily conserved splicing regulator and that homeostasis of a subset of the rp genes are regulated at the level of pre-mRNA splicing in vivo. PMID:26961311

  5. Identification and function of an evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) from Crassostrea hongkongensis.

    PubMed

    Qu, Fufa; Xiang, Zhiming; Wang, Fuxuan; Zhang, Yang; Li, Jun; Zhang, Yuehuan; Xiao, Shu; Yu, Ziniu

    2015-11-01

    Evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) is a multifunctional adaptor protein that plays a key role in the regulation of the oxidative phosphorylation (OXPHOS) system, bone morphogenetic protein (BMP) pathway and Toll-like receptor (TLR) signaling pathway in mammals. However, the function of ECSIT homologs in mollusks, the second most diverse group of animals, is not well understood. In this study, we identified an ECSIT homolog in the Hong Kong oyster Crassostrea hongkongensis (ChECSIT) and investigated its biological functions. The full-length cDNA of ChECSIT is 1734 bp and includes an open reading frame (ORF) of 1074 bp that encodes a polypeptide of 451 amino acids. The predicted ChECSIT protein shares similar structural characteristics with other known ECSIT family proteins. Quantitative real-time PCR analysis revealed that ChECSIT mRNA is broadly expressed in all of the examined tissues and at different stages of embryonic development; its transcript level could be significantly up-regulated by challenge with microorganisms (Vibrio alginolyticus, Staphylococcus haemolyticus and Saccharomyces cerevisiae). In addition, ChECSIT was found to be located primarily in the cytoplasm, and its overexpression stimulated the transcriptional activity of an NF-κB reporter gene in HEK293T cells. These findings suggest that ChECSIT might be involved in embryogenesis processes and immune responses in C. hongkongensis. PMID:26204814

  6. FGF signaling inhibitor, SPRY4, is evolutionarily conserved target of WNT signaling pathway in progenitor cells.

    PubMed

    Katoh, Yuriko; Katoh, Masaru

    2006-03-01

    WNT, FGF and Hedgehog signaling pathways network together during embryogenesis, tissue regeneration, and carcinogenesis. FGF16, FGF18, and FGF20 genes are targets of WNT-mediated TCF/LEF-beta-catenin-BCL9/BCL9L-PYGO transcriptional complex. SPROUTY (SPRY) and SPRED family genes encode inhibitors for receptor tyrosine kinase signaling cascades, such as those of FGF receptor family members and EGF receptor family members. Here, transcriptional regulation of SPRY1, SPRY2, SPRY3, SPRY4, SPRED1, SPRED2, and SPRED3 genes by WNT/beta-catenin signaling cascade was investigated by using bioinformatics and human intelligence (humint). Because double TCF/LEF-binding sites were identified within the 5'-promoter region of human SPRY4 gene, comparative genomics analyses on SPRY4 orthologs were further performed. SPRY4-FGF1 locus at human chromosome 5q31.3 and FGF2-NUDT6-SPATA5-SPRY1 locus at human chromosome 4q27-q28.1 were paralogous regions within the human genome. Chimpanzee SPRY4 gene was identified within NW_107083.1 genome sequence. Human, chimpanzee, rat and mouse SPRY4 orthologs, consisting of three exons, were well conserved. SPRY4 gene was identified as the evolutionarily conserved target of WNT/beta-catenin signaling pathway based on the conservation of double TCF/LEF-binding sites within 5'-promoter region of mammalian SPRY4 orthologs. Human SPRY4 mRNA was expressed in embryonic stem (ES) cells, brain, pancreatic islet, colon cancer, head and neck tumor, melanoma, and pancreatic cancer. WNT signaling activation in progenitor cells leads to the growth regulation of progenitor cells themselves through SPRY4 induction, and also to the growth stimulation of proliferating cells through FGF secretion. Epigenetic silencing and loss-of-function mutations of SPRY4 gene in progenitor cells could lead to carcinogenesis. SPRY4 is the pharmacogenomics target in the fields of oncology and regenerative medicine. PMID:16465403

  7. Of flies, mice, and men: evolutionarily conserved tissue damage responses and aging.

    PubMed

    Neves, Joana; Demaria, Marco; Campisi, Judith; Jasper, Heinrich

    2015-01-12

    Studies in flies, mice, and human models have provided a conceptual framework for how paracrine interactions between damaged cells and the surrounding tissue control tissue repair. These studies have amassed evidence for an evolutionarily conserved secretory program that regulates tissue homeostasis. This program coordinates cell survival and proliferation during tissue regeneration and repair in young animals. By virtue of chronic engagement, however, it also contributes to the age-related decline of tissue homeostasis leading to degeneration, metabolic dysfunction, and cancer. Here, we review recent studies that shed light on the nature and regulation of this evolutionarily conserved secretory program. PMID:25584795

  8. Dual-targeted proteins tend to be more evolutionarily conserved.

    PubMed

    Kisslov, Irit; Naamati, Adi; Shakarchy, Nitzan; Pines, Ophry

    2014-10-01

    In eukaryotic cells, identical proteins can be located in more than a single subcellular compartment, a phenomenon termed dual targeting. We hypothesized that dual-targeted proteins should be more evolutionary conserved than exclusive mitochondrial proteins, due to separate selective pressures administered by the different compartments to maintain the functions associated with the protein sequences. We employed codon usage bias, propensity for gene loss, phylogenetic relationships, conservation analysis at the DNA level, and gene expression, to test our hypothesis. Our findings indicate that, indeed, dual-targeted proteins are significantly more conserved than their exclusively targeted counterparts. We then used this trait of gene conservation, together with previously identified traits of dual-targeted proteins (such as protein net charge and mitochondrial targeting sequence strength) to 1) create, for the first time (due to addition of conservation parameters), a tool for the prediction of dual-targeted mitochondrial proteins based on protein and mRNA sequences, and 2) show that molecular mechanisms involving one versus two translation products are not correlated with specific dual-targeting parameters. Finally, we discuss what evolutionary pressure maintains protein dual targeting in eukaryotes and deduce, as we initially hypothesized, that it is the discrete functions of these proteins in the different subcellular compartments, regardless of their dual-targeting mechanism. PMID:25063438

  9. Evolutionarily Conserved Linkage between Enzyme Fold, Flexibility, and Catalysis

    PubMed Central

    Ramanathan, Arvind; Agarwal, Pratul K.

    2011-01-01

    Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 Å away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme–substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme–substrate interactions, thereby

  10. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis

    SciTech Connect

    Ramanathan, Arvind; Agarwal, Pratul K

    2011-01-01

    Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme substrate interactions, thereby impacting

  11. Role of the evolutionarily conserved starvation response in anorexia nervosa.

    PubMed

    Dwyer, D S; Horton, R Y; Aamodt, E J

    2011-06-01

    This review will summarize recent findings concerning the biological regulation of starvation as it relates to anorexia nervosa (AN), a serious eating disorder that mainly affects female adolescents and young adults. AN is generally viewed as a psychosomatic disorder mediated by obsessive concerns about weight, perfectionism and an overwhelming desire to be thin. By contrast, the thesis that will be developed here is that, AN is primarily a metabolic disorder caused by defective regulation of the starvation response, which leads to ambivalence towards food, decreased food consumption and characteristic psychopathology. We will trace the starvation response from yeast to man and describe the central role of insulin (and insulin-like growth factor-1 (IGF-1))/Akt/ F-box transcription factor (FOXO) signaling in this response. Akt is a serine/threonine kinase downstream of the insulin and IGF-1 receptors, whereas FOXO refers to the subfamily of Forkhead box O transcription factors, which are regulated by Akt. We will also discuss how initial bouts of caloric restriction may alter the production of neurotransmitters that regulate appetite and food-seeking behavior and thus, set in motion a vicious cycle. Finally, an integrated approach to treatment will be outlined that addresses the biological aspects of AN. PMID:20838399

  12. An evolutionarily conserved gene, FUWA, plays a role in determining panicle architecture, grain shape and grain weight in rice.

    PubMed

    Chen, Jun; Gao, He; Zheng, Xiao-Ming; Jin, Mingna; Weng, Jian-Feng; Ma, Jin; Ren, Yulong; Zhou, Kunneng; Wang, Qi; Wang, Jie; Wang, Jiu-Lin; Zhang, Xin; Cheng, Zhijun; Wu, Chuanyin; Wang, Haiyang; Wan, Jian-Min

    2015-08-01

    Plant breeding relies on creation of novel allelic combinations for desired traits. Identification and utilization of beneficial alleles, rare alleles and evolutionarily conserved genes in the germplasm (referred to as 'hidden' genes) provide an effective approach to achieve this goal. Here we show that a chemically induced null mutation in an evolutionarily conserved gene, FUWA, alters multiple important agronomic traits in rice, including panicle architecture, grain shape and grain weight. FUWA encodes an NHL domain-containing protein, with preferential expression in the root meristem, shoot apical meristem and inflorescences, where it restricts excessive cell division. Sequence analysis revealed that FUWA has undergone a bottleneck effect, and become fixed in landraces and modern cultivars during domestication and breeding. We further confirm a highly conserved role of FUWA homologs in determining panicle architecture and grain development in rice, maize and sorghum through genetic transformation. Strikingly, knockdown of the FUWA transcription level by RNA interference results in an erect panicle and increased grain size in both indica and japonica genetic backgrounds. This study illustrates an approach to create new germplasm with improved agronomic traits for crop breeding by tapping into evolutionary conserved genes. PMID:26043067

  13. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels

    NASA Astrophysics Data System (ADS)

    Oelstrom, Kevin; Goldschen-Ohm, Marcel P.; Holmgren, Miguel; Chanda, Baron

    2014-03-01

    Members of the voltage-gated ion channel superfamily (VGIC) regulate ion flux and generate electrical signals in excitable cells by opening and closing pore gates. The location of the gate in voltage-gated sodium channels, a founding member of this superfamily, remains unresolved. Here we explore the chemical modification rates of introduced cysteines along the S6 helix of domain IV in an inactivation-removed background. We find that state-dependent accessibility is demarcated by an S6 hydrophobic residue; substituted cysteines above this site are not modified by charged thiol reagents when the channel is closed. These accessibilities are consistent with those inferred from open- and closed-state structures of prokaryotic sodium channels. Our findings suggest that an intracellular gate composed of a ring of hydrophobic residues is not only responsible for regulating access to the pore of sodium channels, but is also a conserved feature within canonical members of the VGIC superfamily.

  14. Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity

    PubMed Central

    Hsiung, Bor-Kai; Deheyn, Dimitri D.; Shawkey, Matthew D.; Blackledge, Todd A.

    2015-01-01

    Slight shifts in arrangement within biological photonic nanostructures can produce large color differences, and sexual selection often leads to high color diversity in clades with structural colors. We use phylogenetic reconstruction, electron microscopy, spectrophotometry, and optical modeling to show an opposing pattern of nanostructural diversification accompanied by unusual conservation of blue color in tarantulas (Araneae: Theraphosidae). In contrast to other clades, blue coloration in phylogenetically distant tarantulas peaks within a narrow 20-nm region around 450 nm. Both quasi-ordered and multilayer nanostructures found in different tarantulas produce this blue color. Thus, even within monophyletic lineages, tarantulas have evolved strikingly similar blue coloration through divergent mechanisms. The poor color perception and lack of conspicuous display during courtship of tarantulas argue that these colors are not sexually selected. Therefore, our data contrast with sexual selection that typically produces a diverse array of colors with a single structural mechanism by showing that natural selection on structural color in tarantulas resulted in convergence on similar color through diverse structural mechanisms. PMID:26702433

  15. Evolutionarily Conserved Network Properties of Intrinsically Disordered Proteins

    PubMed Central

    Rangarajan, Nivedita; Kulkarni, Prakash; Hannenhalli, Sridhar

    2015-01-01

    Background Intrinsically disordered proteins (IDPs) lack a stable tertiary structure in isolation. Remarkably, however, a substantial portion of IDPs undergo disorder-to-order transitions upon binding to their cognate partners. Structural flexibility and binding plasticity enable IDPs to interact with a broad range of partners. However, the broader network properties that could provide additional insights into the functional role of IDPs are not known. Results Here, we report the first comprehensive survey of network properties of IDP-induced sub-networks in multiple species from yeast to human. Our results show that IDPs exhibit greater-than-expected modularity and are connected to the rest of the protein interaction network (PIN) via proteins that exhibit the highest betweenness centrality and connect to fewer-than-expected IDP communities, suggesting that they form critical communication links from IDP modules to the rest of the PIN. Moreover, we found that IDPs are enriched at the top level of regulatory hierarchy. Conclusion Overall, our analyses reveal coherent and remarkably conserved IDP-centric network properties, namely, modularity in IDP-induced network and a layer of critical nodes connecting IDPs with the rest of the PIN. PMID:25974317

  16. QGRS-Conserve: a computational method for discovering evolutionarily conserved G-quadruplex motifs

    PubMed Central

    2014-01-01

    Background Nucleic acids containing guanine tracts can form quadruplex structures via non-Watson-Crick base pairing. Formation of G-quadruplexes is associated with the regulation of important biological functions such as transcription, genetic instability, DNA repair, DNA replication, epigenetic mechanisms, regulation of translation, and alternative splicing. G-quadruplexes play important roles in human diseases and are being considered as targets for a variety of therapies. Identification of functional G-quadruplexes and the study of their overall distribution in genomes and transcriptomes is an important pursuit. Traditional computational methods map sequence motifs capable of forming G-quadruplexes but have difficulty in distinguishing motifs that occur by chance from ones which fold into G-quadruplexes. Results We present Quadruplex forming ‘G’-rich sequences (QGRS)-Conserve, a computational method for calculating motif conservation across exomes and supports filtering to provide researchers with more precise methods of studying G-quadruplex distribution patterns. Our method quantitatively evaluates conservation between quadruplexes found in homologous nucleotide sequences based on several motif structural characteristics. QGRS-Conserve also efficiently manages overlapping G-quadruplex sequences such that the resulting datasets can be analyzed effectively. Conclusions We have applied QGRS-Conserve to identify a large number of G-quadruplex motifs in the human exome conserved across several mammalian and non-mammalian species. We have successfully identified multiple homologs of many previously published G-quadruplexes that play post-transcriptional regulatory roles in human genes. Preliminary large-scale analysis identified many homologous G-quadruplexes in the 5′- and 3′-untranslated regions of mammalian species. An expectedly smaller set of G-quadruplex motifs was found to be conserved across larger phylogenetic distances. QGRS-Conserve provides means

  17. Of flies, mice and men: Evolutionarily conserved tissue damage responses and aging

    PubMed Central

    Neves, Joana; Demaria, Marco; Campisi, Judith; Jasper, Heinrich

    2015-01-01

    SUMMARY Studies in flies, mice, and human models have provided a conceptual framework for how paracrine interactions between damaged cells and the surrounding tissue control tissue repair. These studies have amassed evidence for an evolutionarily conserved secretory program that regulates tissue homeostasis. This program coordinates cell survival and proliferation during tissue regeneration and repair in young animals. By virtue of chronic engagement, however, it also contributes to the age-related decline of tissue homeostasis leading to degeneration, metabolic dysfunction and cancer. Here we review recent studies that shed light on the nature and regulation of this evolutionary conserved secretory program. PMID:25584795

  18. Distance conservation of transcriptional and splicing regulatory motifs

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Ding, Changjiang

    2012-09-01

    The distance conservation is a new kind of genomic evolutionary conservation. The transcriptional and splicing regulatory k-mer motifs are functionally important DNA sequence elements. We demonstrated that there exist the evolutionarily conservation of the distance between these k-mer pairs in genomic sequences. This kind of conservation is not based on the strict location of bases in genome sequences, and does not depend on excess frequency of occurrence of k-mers. By utilizing the conservation of k-mer distance it is possible to design a non-alignment-based approach to quickly identify transcriptional or splicing regulatory motifs on the genome-wide scale. In this paper we will summarize our previous studies on distance conservation, introduce the method of distance conservation and indicate the prospects of its application.

  19. The viral transactivator HBx protein exhibits a high potential for regulation via phosphorylation through an evolutionarily conserved mechanism

    PubMed Central

    2012-01-01

    Background Hepatitis B virus (HBV) encodes an oncogenic factor, HBx, which is a multifunctional protein that can induce dysfunctional regulation of signaling pathways, transcription, and cell cycle progression, among other processes, through interactions with target host factors. The subcellular localization of HBx is both cytoplasmic and nuclear. This dynamic distribution of HBx could be essential to the multiple roles of the protein at different stages during HBV infection. Transactivational functions of HBx may be exerted both in the nucleus, via interaction with host DNA-binding proteins, and in the cytoplasm, via signaling pathways. Although there have been many studies describing different pathways altered by HBx, and its innumerable binding partners, the molecular mechanism that regulates its different roles has been difficult to elucidate. Methods In the current study, we took a bioinformatics approach to investigate whether the viral protein HBx might be regulated via phosphorylation by an evolutionarily conserved mechanism. Results We found that the phylogenetically conserved residues Ser25 and Ser41 (both within the negative regulatory domain), and Thr81 (in the transactivation domain) are predicted to be phosphorylated. By molecular 3D modeling of HBx, we further show these residues are all predicted to be exposed on the surface of the protein, making them easily accesible to these types of modifications. Furthermore, we have also identified Yin Yang sites that might have the potential to be phosphorylated and O-β-GlcNAc interplay at the same residues. Conclusions Thus, we propose that the different roles of HBx displayed in different subcellular locations might be regulated by an evolutionarily conserved mechanism of posttranslational modification, via phosphorylation. PMID:23079056

  20. Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans.

    PubMed

    Wilson, Benjamin; Kikuchi, Yukiko; Sun, Li; Hunter, David; Dick, Frederic; Smith, Kenny; Thiele, Alexander; Griffiths, Timothy D; Marslen-Wilson, William D; Petkov, Christopher I

    2015-01-01

    An evolutionary account of human language as a neurobiological system must distinguish between human-unique neurocognitive processes supporting language and evolutionarily conserved, domain-general processes that can be traced back to our primate ancestors. Neuroimaging studies across species may determine whether candidate neural processes are supported by homologous, functionally conserved brain areas or by different neurobiological substrates. Here we use functional magnetic resonance imaging in Rhesus macaques and humans to examine the brain regions involved in processing the ordering relationships between auditory nonsense words in rule-based sequences. We find that key regions in the human ventral frontal and opercular cortex have functional counterparts in the monkey brain. These regions are also known to be associated with initial stages of human syntactic processing. This study raises the possibility that certain ventral frontal neural systems, which play a significant role in language function in modern humans, originally evolved to support domain-general abilities involved in sequence processing. PMID:26573340

  1. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges

    PubMed Central

    Lovci, Michael T; Ghanem, Dana; Marr, Henry; Arnold, Justin; Gee, Sherry; Parra, Marilyn; Liang, Tiffany Y; Stark, Thomas J; Gehman, Lauren T; Hoon, Shawn; Massirer, Katlin B; Pratt, Gabriel A; Black, Douglas L; Gray, Joe W; Conboy, John G; Yeo, Gene W

    2014-01-01

    Alternative splicing (AS) enables programmed diversity of gene expression across tissues and development. We show here that binding in distal intronic regions (>500 nucleotides (nt) from any exon) by Rbfox splicing factors important in development is extensive and is an active mode of splicing regulation. Similarly to exon-proximal sites, distal sites contain evolutionarily conserved GCATG sequences and are associated with AS activation and repression upon modulation of Rbfox abundance in human and mouse experimental systems. As a proof of principle, we validated the activity of two specific Rbfox enhancers in KIF21A and ENAH distal introns and showed that a conserved long-range RNA-RNA base-pairing interaction (an RNA bridge) is necessary for Rbfox-mediated exon inclusion in the ENAH gene. Thus we demonstrate a previously unknown RNA-mediated mechanism for AS control by distally bound RNA-binding proteins. PMID:24213538

  2. Rbfox proteins regulate alternative mRNA splicing through evolutionarily conserved RNA bridges.

    PubMed

    Lovci, Michael T; Ghanem, Dana; Marr, Henry; Arnold, Justin; Gee, Sherry; Parra, Marilyn; Liang, Tiffany Y; Stark, Thomas J; Gehman, Lauren T; Hoon, Shawn; Massirer, Katlin B; Pratt, Gabriel A; Black, Douglas L; Gray, Joe W; Conboy, John G; Yeo, Gene W

    2013-12-01

    Alternative splicing (AS) enables programmed diversity of gene expression across tissues and development. We show here that binding in distal intronic regions (>500 nucleotides (nt) from any exon) by Rbfox splicing factors important in development is extensive and is an active mode of splicing regulation. Similarly to exon-proximal sites, distal sites contain evolutionarily conserved GCATG sequences and are associated with AS activation and repression upon modulation of Rbfox abundance in human and mouse experimental systems. As a proof of principle, we validated the activity of two specific Rbfox enhancers in KIF21A and ENAH distal introns and showed that a conserved long-range RNA-RNA base-pairing interaction (an RNA bridge) is necessary for Rbfox-mediated exon inclusion in the ENAH gene. Thus we demonstrate a previously unknown RNA-mediated mechanism for AS control by distally bound RNA-binding proteins. PMID:24213538

  3. Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans

    PubMed Central

    Wilson, Benjamin; Kikuchi, Yukiko; Sun, Li; Hunter, David; Dick, Frederic; Smith, Kenny; Thiele, Alexander; Griffiths, Timothy D.; Marslen-Wilson, William D.; Petkov, Christopher I.

    2015-01-01

    An evolutionary account of human language as a neurobiological system must distinguish between human-unique neurocognitive processes supporting language and evolutionarily conserved, domain-general processes that can be traced back to our primate ancestors. Neuroimaging studies across species may determine whether candidate neural processes are supported by homologous, functionally conserved brain areas or by different neurobiological substrates. Here we use functional magnetic resonance imaging in Rhesus macaques and humans to examine the brain regions involved in processing the ordering relationships between auditory nonsense words in rule-based sequences. We find that key regions in the human ventral frontal and opercular cortex have functional counterparts in the monkey brain. These regions are also known to be associated with initial stages of human syntactic processing. This study raises the possibility that certain ventral frontal neural systems, which play a significant role in language function in modern humans, originally evolved to support domain-general abilities involved in sequence processing. PMID:26573340

  4. EAG2 potassium channel with evolutionarily conserved function as a brain tumor target

    PubMed Central

    Huang, Xi; He, Ye; Dubuc, Adrian M.; Hashizume, Rintaro; Zhang, Wei; Reimand, Jüri; Yang, Huanghe; Wang, Tongfei A.; Stehbens, Samantha J.; Younger, Susan; Barshow, Suzanne; Zhu, Sijun; Cooper, Michael K.; Peacock, John; Ramaswamy, Vijay; Garzia, Livia; Wu, Xiaochong; Remke, Marc; Forester, Craig M.; Kim, Charles C.; Weiss, William A.; James, C. David; Shuman, Marc A.; Bader, Gary D.; Mueller, Sabine; Taylor, Michael D.; Jan, Yuh Nung; Jan, Lily Yeh

    2015-01-01

    Over 20% of the drugs for treating human diseases target ion channels, however, no cancer drug approved by the U.S. Food and Drug Administration (FDA) is intended to target an ion channel. Here, we demonstrate the evolutionarily conserved function of EAG2 potassium channel in promoting brain tumor growth and metastasis, delineate downstream pathways and uncover a mechanism for different potassium channels to functionally corporate and regulate mitotic cell volume and tumor progression. We show that EAG2 potassium channel is enriched at the trailing edge of migrating MB cells to regulate local cell volume dynamics, thereby facilitating cell motility. We identify the FDA-approved antipsychotic drug thioridazine as an EAG2 channel blocker that reduces xenografted MB growth and metastasis, and present a case report of repurposing thioridazine for treating a human patient. Our findings thus illustrate the potential of targeting ion channels in cancer treatment. PMID:26258683

  5. EAG2 potassium channel with evolutionarily conserved function as a brain tumor target.

    PubMed

    Huang, Xi; He, Ye; Dubuc, Adrian M; Hashizume, Rintaro; Zhang, Wei; Reimand, Jüri; Yang, Huanghe; Wang, Tongfei A; Stehbens, Samantha J; Younger, Susan; Barshow, Suzanne; Zhu, Sijun; Cooper, Michael K; Peacock, John; Ramaswamy, Vijay; Garzia, Livia; Wu, Xiaochong; Remke, Marc; Forester, Craig M; Kim, Charles C; Weiss, William A; James, C David; Shuman, Marc A; Bader, Gary D; Mueller, Sabine; Taylor, Michael D; Jan, Yuh Nung; Jan, Lily Yeh

    2015-09-01

    Over 20% of the drugs for treating human diseases target ion channels, but no cancer drug approved by the US Food and Drug Administration (FDA) is intended to target an ion channel. We found that the EAG2 (Ether-a-go-go 2) potassium channel has an evolutionarily conserved function for promoting brain tumor growth and metastasis, delineate downstream pathways, and uncover a mechanism for different potassium channels to functionally cooperate and regulate mitotic cell volume and tumor progression. EAG2 potassium channel was enriched at the trailing edge of migrating medulloblastoma (MB) cells to regulate local cell volume dynamics, thereby facilitating cell motility. We identified the FDA-approved antipsychotic drug thioridazine as an EAG2 channel blocker that reduces xenografted MB growth and metastasis, and present a case report of repurposing thioridazine for treating a human patient. Our findings illustrate the potential of targeting ion channels in cancer treatment. PMID:26258683

  6. Evolutionarily Conserved Coupling of Adaptive and Excitable Networks Mediates Eukaryotic Chemotaxis

    PubMed Central

    Wang, Mingjie; Shi, Changji; Iglesias, Pablo A.; Devreotes, Peter N.

    2014-01-01

    Numerous models explain how cells sense and migrate toward shallow chemoattractant gradients. Studies show that an excitable signal transduction network acts as a pacemaker that controls the cytoskeleton to drive motility. Here we show that this network is required to link stimuli to actin polymerization and chemotactic motility and we distinguish the various models of chemotaxis. First, signaling activity is suppressed toward the low side in a gradient or following removal of uniform chemoattractant. Second, signaling activities display a rapid shut off and a slower adaptation during which responsiveness to subsequent test stimuli decline. Simulations of various models indicate that these properties require coupled adaptive and excitable networks. Adaptation involves a G-protein independent inhibitor since stimulation of cells lacking G-protein function suppresses basal activities. The salient features of the coupled networks were observed for different chemoattractants in Dictyostelium and in human neutrophils, suggesting an evolutionarily conserved mechanism for eukaryotic chemotaxis. PMID:25346418

  7. Functional phosphorylation sites in cardiac myofilament proteins are evolutionarily conserved in skeletal myofilament proteins.

    PubMed

    Gross, Sean M; Lehman, Steven L

    2016-06-01

    Protein phosphorylation plays an important role in regulating cardiac contractile function, but phosphorylation is not thought to play a regulatory role in skeletal muscle. To examine how myofilament phosphorylation arose in the human heart, we analyzed the amino acid sequences of 25 cardiac phosphorylation sites in animals ranging from fruit flies to humans. These analyses indicated that of the 25 human phosphorylation sites examined, 11 have been conserved across vertebrates and four have been sporadically present in vertebrates. Furthermore, all 11 of the cardiac sites found across vertebrates were present in skeletal muscle isoforms, along with three sites that were sporadically present. Based on the conservation of amino acid sequences between cardiac and skeletal contractile proteins, we tested for phosphorylation in mammalian skeletal muscle using several biochemical techniques and found evidence that multiple myofilament proteins were phosphorylated. Several of these phosphorylation sites were validated using mass spectrometry, including one site that is present in slow- and fast-twitch troponin I (TnI), but was lost in cardiac TnI. Thus, several myofilament phosphorylation sites present in the human heart likely arose in invertebrate muscle, have been evolutionarily conserved in skeletal muscle, and potentially have functional effects in both skeletal and cardiac muscle. PMID:26993364

  8. Evolutionarily Ancient Association of the FoxJ1 Transcription Factor with the Motile Ciliogenic Program

    PubMed Central

    Ho, Hao Kee; Babu, Deepak; Eitel, Michael; Narasimhan, Vijayashankaranarayanan; Tiku, Varnesh; Westbrook, Jody; Schierwater, Bernd; Roy, Sudipto

    2012-01-01

    It is generally believed that the last eukaryotic common ancestor (LECA) was a unicellular organism with motile cilia. In the vertebrates, the winged-helix transcription factor FoxJ1 functions as the master regulator of motile cilia biogenesis. Despite the antiquity of cilia, their highly conserved structure, and their mechanism of motility, the evolution of the transcriptional program controlling ciliogenesis has remained incompletely understood. In particular, it is presently not known how the generation of motile cilia is programmed outside of the vertebrates, and whether and to what extent the FoxJ1-dependent regulation is conserved. We have performed a survey of numerous eukaryotic genomes and discovered that genes homologous to foxJ1 are restricted only to organisms belonging to the unikont lineage. Using a mis-expression assay, we then obtained evidence of a conserved ability of FoxJ1 proteins from a number of diverse phyletic groups to activate the expression of a host of motile ciliary genes in zebrafish embryos. Conversely, we found that inactivation of a foxJ1 gene in Schmidtea mediterranea, a platyhelminth (flatworm) that utilizes motile cilia for locomotion, led to a profound disruption in the differentiation of motile cilia. Together, all of these findings provide the first evolutionary perspective into the transcriptional control of motile ciliogenesis and allow us to propose a conserved FoxJ1-regulated mechanism for motile cilia biogenesis back to the origin of the metazoans. PMID:23144623

  9. MetaMirClust: Discovery and Exploration of Evolutionarily Conserved miRNA Clusters.

    PubMed

    Chan, Wen-Ching; Lin, Wen-Chang

    2016-01-01

    Recent emerging studies suggest that a substantial fraction of microRNA (miRNA) genes is likely to form clusters in terms of evolutionary conservation and biological implications, posing a significant challenge for the research community and shifting the bottleneck of scientific discovery from miRNA singletons to miRNA clusters. In addition, the advance in molecular sequencing technique such as next-generation sequencing (NGS) has facilitated researchers to comprehensively characterize miRNAs with low abundance on genome-wide scale in multiple species. Taken together, a large scale, cross-species survey of grouped miRNAs based on genomic location would be valuable for investigating their biological functions and regulations in an evolutionary perspective. In the present chapter, we describe the application of effective and efficient bioinformatics tools on the identification of clustered miRNAs and illustrate how to use the recently developed Web-based database, MetaMirClust ( http://fgfr.ibms.sinic.aedu.tw/MetaMirClust ) to discover evolutionarily conserved pattern of miRNA clusters across metazoans. PMID:25861770

  10. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection

    PubMed Central

    Schmelcher, Mathias; Shen, Yang; Nelson, Daniel C.; Eugster, Marcel R.; Eichenseher, Fritz; Hanke, Daniela C.; Loessner, Martin J.; Dong, Shengli; Pritchard, David G.; Lee, Jean C.; Becker, Stephen C.; Foster-Frey, Juli; Donovan, David M.

    2015-01-01

    Objectives In the light of increasing drug resistance in Staphylococcus aureus, bacteriophage endolysins [peptidoglycan hydrolases (PGHs)] have been suggested as promising antimicrobial agents. The aim of this study was to determine the antimicrobial activity of nine enzymes representing unique homology groups within a diverse class of staphylococcal PGHs. Methods PGHs were recombinantly expressed, purified and tested for staphylolytic activity in multiple in vitro assays (zymogram, turbidity reduction assay and plate lysis) and against a comprehensive set of strains (S. aureus and CoNS). PGH cut sites in the staphylococcal peptidoglycan were determined by biochemical assays (Park–Johnson and Ghuysen procedures) and MS analysis. The enzymes were tested for their ability to eradicate static S. aureus biofilms and compared for their efficacy against systemic MRSA infection in a mouse model. Results Despite similar modular architectures and unexpectedly conserved cleavage sites in the peptidoglycan (conferred by evolutionarily divergent catalytic domains), the enzymes displayed varying degrees of in vitro lytic activity against numerous staphylococcal strains, including cell surface mutants and drug-resistant strains, and proved effective against static biofilms. In a mouse model of systemic MRSA infection, six PGHs provided 100% protection from death, with animals being free of clinical signs at the end of the experiment. Conclusions Our results corroborate the high potential of PGHs for treatment of S. aureus infections and reveal unique antimicrobial and biochemical properties of the different enzymes, suggesting a high diversity of potential applications despite highly conserved peptidoglycan target sites. PMID:25630640

  11. A molecular genetic dissection of the evolutionarily conserved N terminus of yeast Rad52.

    PubMed Central

    Mortensen, Uffe H; Erdeniz, Naz; Feng, Qi; Rothstein, Rodney

    2002-01-01

    Rad52 is a DNA-binding protein that stimulates the annealing of complementary single-stranded DNA. Only the N terminus of Rad52 is evolutionarily conserved; it contains the core activity of the protein, including its DNA-binding activity. To identify amino acid residues that are important for Rad52 function(s), we systematically replaced 76 of 165 amino acid residues in the N terminus with alanine. These substitutions were examined for their effects on the repair of gamma-ray-induced DNA damage and on both interchromosomal and direct repeat heteroallelic recombination. This analysis identified five regions that are required for efficient gamma-ray damage repair or mitotic recombination. Two regions, I and II, also contain the classic mutations, rad52-2 and rad52-1, respectively. Interestingly, four of the five regions contain mutations that impair the ability to repair gamma-ray-induced DNA damage yet still allow mitotic recombinants to be produced at rates that are similar to or higher than those obtained with wild-type strains. In addition, a new class of separation-of-function mutation that is only partially deficient in the repair of gamma-ray damage, but exhibits decreased mitotic recombination similar to rad52 null strains, was identified. These results suggest that Rad52 protein acts differently on lesions that occur spontaneously during the cell cycle than on those induced by gamma-irradiation. PMID:12072453

  12. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity

    PubMed Central

    Fiore, Vincenzo G.; Dolan, Raymond J.; Strausfeld, Nicholas J.; Hirth, Frank

    2015-01-01

    Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates. PMID:26554043

  13. An archaeal protein evolutionarily conserved in prokaryotes is a zinc-dependent metalloprotease

    PubMed Central

    Hu, Yongmei; Peng, Nan; Han, Wenyuan; Mei, Yuxia; Chen, Zhengjun; Feng, Xu; Liang, Yun Xiang; She, Qunxin

    2012-01-01

    A putative protease gene (tldD) was previously identified from studying tolerance of letD encoding the CcdB toxin of a toxin–antidote system of the F plasmid in Escherichia coli. While this gene is evolutionarily conserved in archaea and bacteria, the proteolytic activity of encoded proteins remained to be demonstrated experimentally. Here we studied Sso0660, an archaeal TldD homologue encoded in Sulfolobus solfataricus by overexpression of the recombinant protein and characterization of the purified enzyme. We found that the enzyme is active in degrading azocasein and FITC–BSA substrates. Protease inhibitor studies showed that EDTA and o-phenanthroline, two well-known metalloprotease inhibitors, either abolished completely or strongly inhibited the enzyme activity, and flame spectrometric analysis showed that a zinc ion is a cofactor of the protease. Furthermore, the protein forms disulfide bond via the Cys416 residue, yielding protein dimer that is the active form of the enzyme. These results establish for the first time that tidD genes encode zinc-containing proteases, classifying them as a family in the metalloprotease class. PMID:22950735

  14. The Evolutionarily Conserved E3 Ubiquitin Ligase AtCHIP Contributes to Plant Immunity

    PubMed Central

    Copeland, Charles; Ao, Kevin; Huang, Yan; Tong, Meixuizi; Li, Xin

    2016-01-01

    Plants possess a sophisticated immune system to recognize and respond to microbial threats in their environment. The level of immune signaling must be tightly regulated so that immune responses can be quickly activated in the presence of pathogens, while avoiding autoimmunity. HSP90s, along with their diverse array of co-chaperones, forms chaperone complexes that have been shown to play both positive and negative roles in regulating the accumulation of immune receptors and regulators. In this study, we examined the role of AtCHIP, an evolutionarily conserved E3 ligase that was known to interact with chaperones including HSP90s in multicellular organisms including fruit fly, Caenorhabditis elegans, plants and human. Atchip knockout mutants display enhanced disease susceptibility to a virulent oomycete pathogen, and overexpression of AtCHIP causes enhanced disease resistance at low temperature. Although CHIP was reported to target HSP90 for ubiquitination and degradation, accumulation of HSP90.3 was not affected in Atchip plants. In addition, protein accumulation of nucleotide-binding, leucine-rich repeat domain immune receptor (NLR) SNC1 is not altered in Atchip mutant. Thus, while AtCHIP plays a role in immunity, it does not seem to regulate the turnover of HSP90 or SNC1. Further investigation is needed in order to determine the exact mechanism behind AtCHIP’s role in regulating plant immune responses. PMID:27014328

  15. The Evolutionarily Conserved E3 Ubiquitin Ligase AtCHIP Contributes to Plant Immunity.

    PubMed

    Copeland, Charles; Ao, Kevin; Huang, Yan; Tong, Meixuizi; Li, Xin

    2016-01-01

    Plants possess a sophisticated immune system to recognize and respond to microbial threats in their environment. The level of immune signaling must be tightly regulated so that immune responses can be quickly activated in the presence of pathogens, while avoiding autoimmunity. HSP90s, along with their diverse array of co-chaperones, forms chaperone complexes that have been shown to play both positive and negative roles in regulating the accumulation of immune receptors and regulators. In this study, we examined the role of AtCHIP, an evolutionarily conserved E3 ligase that was known to interact with chaperones including HSP90s in multicellular organisms including fruit fly, Caenorhabditis elegans, plants and human. Atchip knockout mutants display enhanced disease susceptibility to a virulent oomycete pathogen, and overexpression of AtCHIP causes enhanced disease resistance at low temperature. Although CHIP was reported to target HSP90 for ubiquitination and degradation, accumulation of HSP90.3 was not affected in Atchip plants. In addition, protein accumulation of nucleotide-binding, leucine-rich repeat domain immune receptor (NLR) SNC1 is not altered in Atchip mutant. Thus, while AtCHIP plays a role in immunity, it does not seem to regulate the turnover of HSP90 or SNC1. Further investigation is needed in order to determine the exact mechanism behind AtCHIP's role in regulating plant immune responses. PMID:27014328

  16. Trichohyalin-like proteins have evolutionarily conserved roles in the morphogenesis of skin appendages.

    PubMed

    Mlitz, Veronika; Strasser, Bettina; Jaeger, Karin; Hermann, Marcela; Ghannadan, Minoo; Buchberger, Maria; Alibardi, Lorenzo; Tschachler, Erwin; Eckhart, Leopold

    2014-11-01

    S100 fused-type proteins (SFTPs) such as filaggrin, trichohyalin, and cornulin are differentially expressed in cornifying keratinocytes of the epidermis and various skin appendages. To determine evolutionarily conserved, and thus presumably important, features of SFTPs, we characterized nonmammalian SFTPs and compared their amino acid sequences and expression patterns with those of mammalian SFTPs. We identified an ortholog of cornulin and a previously unknown SFTP, termed scaffoldin, in reptiles and birds, whereas filaggrin was confined to mammals. In contrast to mammalian SFTPs, both cornulin and scaffoldin of the chicken are expressed in the embryonic periderm. However, scaffoldin resembles mammalian trichohyalin with regard to its expression in the filiform papillae of the tongue and in the epithelium underneath the forming tips of the claws. Furthermore, scaffoldin is expressed in the epithelial sheath around growing feathers, reminiscent of trichohyalin expression in the inner root sheath of hair. The results of this study show that SFTP-positive epithelia function as scaffolds for the growth of diverse skin appendages such as claws, nails, hair, and feathers, indicating a common evolutionary origin. PMID:24780931

  17. An evolutionarily conserved protein CHORD regulates scaling of dendritic arbors with body size

    PubMed Central

    Shimono, Kohei; Fujishima, Kazuto; Nomura, Takafumi; Ohashi, Masayoshi; Usui, Tadao; Kengaku, Mineko; Toyoda, Atsushi; Uemura, Tadashi

    2014-01-01

    Most organs scale proportionally with body size through regulation of individual cell size and/or cell number. Here we addressed how postmitotic and morphologically complex cells such as neurons scale with the body size by using the dendritic arbor of one Drosophila sensory neuron as an assay system. In small adults eclosed under a limited-nutrition condition, the wild-type neuron preserved the branching complexity of the arbor, but scaled down the entire arbor, making a “miniature”. In contrast, mutant neurons for the Insulin/IGF signaling (IIS) or TORC1 pathway exhibited “undergrowth”, which was characterized by decreases in both the branching complexity and the arbor size, despite a normal diet. These contrasting phenotypes hinted that a novel regulatory mechanism contributes to the dendritic scaling in wild-type neurons. Indeed, we isolated a mutation in the gene CHORD/morgana that uncoupled the neuron size and the body size: CHORD mutant neurons generated miniature dendritic arbors regardless of the body size. CHORD encodes an evolutionarily conserved co-chaperone of HSP90. Our results support the notion that dendritic growth and branching are controlled by partly separate mechanisms. The IIS/TORC1 pathways control both growth and branching to avert underdevelopment, whereas CHORD together with TORC2 realizes proportional scaling of the entire arbor. PMID:24643112

  18. Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA

    PubMed Central

    Školáková, Petra; Foldynová-Trantírková, Silvie; Bednářová, Klára; Fiala, Radovan; Vorlíčková, Michaela; Trantírek, Lukáš

    2015-01-01

    There are two basic mechanisms that are associated with the maintenance of the telomere length, which endows cancer cells with unlimited proliferative potential. One mechanism, referred to as alternative lengthening of telomeres (ALT), accounts for approximately 10–15% of all human cancers. Tumours engaged in the ALT pathway are characterised by the presence of the single stranded 5′-C-rich telomeric overhang (C-overhang). This recently identified hallmark of ALT cancers distinguishes them from healthy tissues and renders the C-overhang as a clear target for anticancer therapy. We analysed structures of the 5′-C-rich and 3′-G-rich telomeric overhangs from human and Caenorhabditis elegans, the recently established multicellular in vivo model of ALT tumours. We show that the telomeric DNA from C. elegans and humans forms fundamentally different secondary structures. The unique structural characteristics of C. elegans telomeric DNA that are distinct not only from those of humans but also from those of other multicellular eukaryotes allowed us to identify evolutionarily conserved properties of telomeric DNA. Differences in structural organisation of the telomeric DNA between the C. elegans and human impose limitations on the use of the C. elegans as an ALT tumour model. PMID:25855805

  19. Unique C. elegans telomeric overhang structures reveal the evolutionarily conserved properties of telomeric DNA.

    PubMed

    Školáková, Petra; Foldynová-Trantírková, Silvie; Bednářová, Klára; Fiala, Radovan; Vorlíčková, Michaela; Trantírek, Lukáš

    2015-05-19

    There are two basic mechanisms that are associated with the maintenance of the telomere length, which endows cancer cells with unlimited proliferative potential. One mechanism, referred to as alternative lengthening of telomeres (ALT), accounts for approximately 10-15% of all human cancers. Tumours engaged in the ALT pathway are characterised by the presence of the single stranded 5'-C-rich telomeric overhang (C-overhang). This recently identified hallmark of ALT cancers distinguishes them from healthy tissues and renders the C-overhang as a clear target for anticancer therapy. We analysed structures of the 5'-C-rich and 3'-G-rich telomeric overhangs from human and Caenorhabditis elegans, the recently established multicellular in vivo model of ALT tumours. We show that the telomeric DNA from C. elegans and humans forms fundamentally different secondary structures. The unique structural characteristics of C. elegans telomeric DNA that are distinct not only from those of humans but also from those of other multicellular eukaryotes allowed us to identify evolutionarily conserved properties of telomeric DNA. Differences in structural organisation of the telomeric DNA between the C. elegans and human impose limitations on the use of the C. elegans as an ALT tumour model. PMID:25855805

  20. Evolutionarily conserved mechanisms for the selection and maintenance of behavioural activity.

    PubMed

    Fiore, Vincenzo G; Dolan, Raymond J; Strausfeld, Nicholas J; Hirth, Frank

    2015-12-19

    Survival and reproduction entail the selection of adaptive behavioural repertoires. This selection manifests as phylogenetically acquired activities that depend on evolved nervous system circuitries. Lorenz and Tinbergen already postulated that heritable behaviours and their reliable performance are specified by genetically determined programs. Here we compare the functional anatomy of the insect central complex and vertebrate basal ganglia to illustrate their role in mediating selection and maintenance of adaptive behaviours. Comparative analyses reveal that central complex and basal ganglia circuitries share comparable lineage relationships within clusters of functionally integrated neurons. These clusters are specified by genetic mechanisms that link birth time and order to their neuronal identities and functions. Their subsequent connections and associated functions are characterized by similar mechanisms that implement dimensionality reduction and transition through attractor states, whereby spatially organized parallel-projecting loops integrate and convey sensorimotor representations that select and maintain behavioural activity. In both taxa, these neural systems are modulated by dopamine signalling that also mediates memory-like processes. The multiplicity of similarities between central complex and basal ganglia suggests evolutionarily conserved computational mechanisms for action selection. We speculate that these may have originated from ancestral ground pattern circuitries present in the brain of the last common ancestor of insects and vertebrates. PMID:26554043

  1. Maximal Expression of the Evolutionarily Conserved Slit2 Gene Promoter Requires Sp1.

    PubMed

    Saunders, Jacquelyn; Wisidagama, D Roonalika; Morford, Travis; Malone, Cindy S

    2016-08-01

    Slit2 is a neural axon guidance and chemorepellent protein that stimulates motility in a variety of cell types. The role of Slit2 in neural development and neoplastic growth and migration has been well established, while the genetic mechanisms underlying regulation of the Slit2 gene have not. We identified the core and proximal promoter of Slit2 by mapping multiple transcriptional start sites, analyzing transcriptional activity, and confirming sequence homology for the Slit2 proximal promoter among a number of species. Deletion series and transient transfection identified the Slit2 proximal promoter as within 399 base pairs upstream of the start of transcription. A crucial region for full expression of the Slit2 proximal promoter lies between 399 base pairs and 296 base pairs upstream of the start of transcription. Computer modeling identified three transcription factor-binding consensus sites within this region, of which only site-directed mutagenesis of one of the two identified Sp1 consensus sites inhibited transcriptional activity of the Slit2 proximal promoter (-399 to +253). Bioinformatics analysis of the Slit2 proximal promoter -399 base pair to -296 base pair region shows high sequence conservation over twenty-two species, and that this region follows an expected pattern of sequence divergence through evolution. PMID:26456684

  2. Two evolutionarily conserved repression domains in the Drosophila Kruppel protein differ in activator specificity.

    PubMed Central

    Hanna-Rose, W; Licht, J D; Hansen, U

    1997-01-01

    To identify biologically functional regions in the product of the Drosophila melanogaster gene Kruppel, we cloned the Kruppel homolog from Drosophila virilis. Both the previously identified amino (N)-terminal repression region and the DNA-binding region of the D. virilis Kruppel protein are greater than 96% identical to those of the D. melanogaster Kruppel protein, demonstrating a selective pressure to maintain the integrity of each region during 60 million to 80 million years of evolution. An additional region in the carboxyl (C) terminus of Kruppel that was most highly conserved was examined further. A 42-amino-acid stretch within the conserved C-terminal region also encoded a transferable repression domain. The short, C-terminal repression region is a composite of three subregions of distinct amino acid composition, each containing a high proportion of either basic, proline, or acidic residues. Mutagenesis experiments demonstrated, unexpectedly, that the acidic residues contribute to repression function. Both the N-terminal and C-terminal repression regions were tested for the ability to affect transcription mediated by a variety of activator proteins. The N-terminal repression region was able to inhibit transcription in the presence of multiple activators. However, the C-terminal repression region inhibited transcription by only a subset of the activator proteins. The different activator specificities of the two regions suggest that they repress transcription by different mechanisms and may play distinct biological roles during Drosophila development. PMID:9234738

  3. Identification of Plasmodium falciparum DNA Repair Protein Mre11 with an Evolutionarily Conserved Nuclease Function

    PubMed Central

    Badugu, Sugith Babu; Nabi, Shaik Abdul; Vaidyam, Pratap; Laskar, Shyamasree; Bhattacharyya, Sunanda; Bhattacharyya, Mrinal Kanti

    2015-01-01

    The eukaryotic Meiotic Recombination protein 11 (Mre11) plays pivotal roles in the DNA damage response (DDR). Specifically, Mre11 senses and signals DNA double strand breaks (DSB) and facilitates their repair through effector proteins belonging to either homologous recombination (HR) or non-homologous end joining (NHEJ) repair mechanisms. In the human malaria parasite Plasmodium falciparum, HR and alternative-NHEJ have been identified; however, little is known about the upstream factors involved in the DDR of this organism. In this report, we identify a putative ortholog of Mre11 in P. falciparum (PfalMre11) that shares 22% sequence similarity to human Mre11. Homology modeling reveals striking structural resemblance of the predicted PfalMre11 nuclease domain to the nuclease domain of Saccharomyces cerevisiae Mre11 (ScMre11). Complementation analyses reveal functional conservation of PfalMre11 nuclease activity as demonstrated by the ability of the PfalMre11 nuclease domain, in conjunction with the C-terminal domain of ScMre11, to functionally complement an mre11 deficient yeast strain. Functional complementation was virtually abrogated by an amino acid substitution in the PfalMre11 nuclease domain (D398N). PfalMre11 is abundant in the mitotically active trophozoite and schizont stages of P. falciparum and is up-regulated in response to DNA damage, suggesting a role in the DDR. PfalMre11 exhibits physical interaction with PfalRad50. In addition, yeast 2-hybrid studies show that PfalMre11 interacts with ScRad50 and ScXrs2, two important components of the well characterized Mre11-Rad50-Xrs2 complex which is involved in DDR signaling and repair in S. cerevisiae, further supporting a role for PfalMre11 in the DDR. Taken together, these findings provide evidence that PfalMre11 is an evolutionarily conserved component of the DDR in Plasmodium. PMID:25938776

  4. An evolutionarily conserved mode of modulation of Shaw-like K+ channels

    PubMed Central

    Cotella, Diego; Hernandez-Enriquez, Berenice; Duan, Zhibing; Wu, Xilong; Gazula, Valeswara-Rao; Brown, Maile R.; Kaczmarek, Leonard K.; Sesti, Federico

    2013-01-01

    Voltage-gated K+ channels of the Shaw family (also known as the KCNC or Kv3 family) play pivotal roles in mammalian brains, and genetic or pharmacological disruption of their activities in mice results in a spectrum of behavioral defects. We have used the model system of Caenorhabditis elegans to elucidate conserved molecular mechanisms that regulate these channels. We have now found that the C. elegans Shaw channel KHT-1, and its mammalian homologue, murine Kv3.1b, are both modulated by acid phosphatases. Thus, the C. elegans phosphatase ACP-2 is stably associated with KHT-1, while its mammalian homolog, prostatic acid phosphatase (PAP; also known as ACPP-201) stably associates with murine Kv3.1b K+ channels in vitro and in vivo. In biochemical experiments both phosphatases were able to reverse phosphorylation of their associated channel. The effect of phosphorylation on both channels is to produce a decrease in current amplitude and electrophysiological analyses demonstrated that dephosphorylation reversed the effects of phosphorylation on the magnitude of the macroscopic currents. ACP-2 and KHT-1 were colocalized in the nervous system of C. elegans and, in the mouse nervous system, PAP and Kv3.1b were colocalized in subsets of neurons, including in the brain stem and the ventricular zone. Taken together, this body of evidence suggests that acid phosphatases are general regulatory partners of Shaw-like K+ channels.—Cotella, D., Hernandez-Enriquez, B., Duan, Z., Wu, X., Gazula, V.-R., Brown, M. R., Kaczmarek, L. K., and Sesti, F. An evolutionarily conserved mode of modulation of Shaw-like K+ channels. PMID:23233530

  5. Unique amino acid signatures that are evolutionarily conserved distinguish simple-type, epidermal and hair keratins

    PubMed Central

    Strnad, Pavel; Usachov, Valentyn; Debes, Cedric; Gräter, Frauke; Parry, David A. D.; Omary, M. Bishr

    2011-01-01

    Keratins (Ks) consist of central α-helical rod domains that are flanked by non-α-helical head and tail domains. The cellular abundance of keratins, coupled with their selective cell expression patterns, suggests that they diversified to fulfill tissue-specific functions although the primary structure differences between them have not been comprehensively compared. We analyzed keratin sequences from many species: K1, K2, K5, K9, K10, K14 were studied as representatives of epidermal keratins, and compared with K7, K8, K18, K19, K20 and K31, K35, K81, K85, K86, which represent simple-type (single-layered or glandular) epithelial and hair keratins, respectively. We show that keratin domains have striking differences in their amino acids. There are many cysteines in hair keratins but only a small number in epidermal keratins and rare or none in simple-type keratins. The heads and/or tails of epidermal keratins are glycine and phenylalanine rich but alanine poor, whereas parallel domains of hair keratins are abundant in prolines, and those of simple-type epithelial keratins are enriched in acidic and/or basic residues. The observed differences between simple-type, epidermal and hair keratins are highly conserved throughout evolution. Cysteines and histidines, which are infrequent keratin amino acids, are involved in de novo mutations that are markedly overrepresented in keratins. Hence, keratins have evolutionarily conserved and domain-selectively enriched amino acids including glycine and phenylalanine (epidermal), cysteine and proline (hair), and basic and acidic (simple-type epithelial), which reflect unique functions related to structural flexibility, rigidity and solubility, respectively. Our findings also support the importance of human keratin ‘mutation hotspot’ residues and their wild-type counterparts. PMID:22215855

  6. APeg3: regulation of Peg3 through an evolutionarily conserved ncRNA

    PubMed Central

    Frey, Wesley D.

    2014-01-01

    Mammalian APeg3 is an antisense gene that is localized within the 3′-untranslated region of the imprinted gene, Peg3. APeg3 is expressed only in the vasopressinergic neurons of the hypothalamus, thus is predicted to play significant roles in this specific area of the brain. In the current study, we investigate the functions of APeg3 with comparative genomics and cell line-based functional approaches. The transcribed region of APeg3 displays high levels of sequence conservation among placental mammals, but without any obvious open reading frame, suggesting that APeg3 may have been selected as a ncRNA gene during eutherian evolution. This has been further supported by the detection of a conserved local RNA secondary structure within APeg3. RNA secondary structure analyses indicate a single conserved hairpin-loop structure towards the 5′ end of the transcript. The results from cell line-based transfection experiments demonstrate that APeg3 has the potential to down-regulate the transcription and protein levels of Peg3. The observed down-regulation by APeg3 is also somewhat orientation-independent. Overall, these results suggest that APeg3 has evolved as a ncRNA gene and controls the function of its sense gene Peg3 within specific neuronal cells. PMID:24582979

  7. Evolutionarily-conserved prefrontal-amygdalar dysfunction in early-life anxiety

    PubMed Central

    Birn, Rasmus M.; Shackman, Alexander J.; Oler, Jonathan A.; Williams, Lisa E.; McFarlin, Daniel R.; Rogers, Gregory M.; Shelton, Steven E.; Alexander, Andrew L.; Pine, Daniel S.; Slattery, Marcia J.; Davidson, Richard J.; Fox, Andrew S.; Kalin, Ned H.

    2014-01-01

    Some individuals are endowed with a biology that renders them more reactive to novelty and potential threat. When extreme, this anxious temperament (AT) confers elevated risk for the development of anxiety, depression, and substance abuse. These disorders are highly prevalent, debilitating, and can be challenging to treat. The high-risk AT phenotype is expressed similarly in children and young monkeys and mechanistic work demonstrates that the central nucleus (Ce) of the amygdala is an important substrate. While it is widely believed that the flow of information across the structural network connecting the Ce to other brain regions underlies primates' capacity for flexibly regulating anxiety, the functional architecture of this network has remained poorly understood. Here we used functional magnetic resonance imaging (fMRI) in anesthetized young monkeys and quietly resting children with anxiety disorders to identify an evolutionarily-conserved pattern of functional connectivity relevant to early-life anxiety. Across primate species and levels of awareness, reduced functional connectivity between the dorsolateral prefrontal cortex (dlPFC), a region thought to play a central role in the control of cognition and emotion, and the Ce was associated with increased anxiety assessed outside the scanner. Importantly, high-resolution 18-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging provided evidence that elevated Ce metabolism statistically mediates the association between prefrontal-amygdalar connectivity and elevated anxiety. These results provide new clues about the brain network underlying extreme early-life anxiety and set the stage for mechanistic work aimed at developing improved interventions for pediatric anxiety. PMID:24863147

  8. Positive regulation of c-Myc by cohesin is direct, and evolutionarily conserved

    PubMed Central

    Rhodes, Jenny M.; Bentley, Fiona K.; Print, Cristin G.; Dorsett, Dale; Misulovin, Ziva; Dickinson, Emma J.; Crosier, Kathryn E.; Crosier, Philip S.; Horsfield, Julia A.

    2010-01-01

    Contact between sister chromatids from S phase to anaphase depends on cohesin, a large multi-subunit protein complex. Mutations in sister chromatid cohesion proteins underlie the human developmental condition, Cornelia de Lange Syndrome. Roles for cohesin in regulating gene expression, sometimes in combination with CCCTC-binding factor (CTCF), have emerged. We analyzed zebrafish embryos null for cohesin subunit rad21 using microarrays to determine global effects of cohesin on gene expression during embryogenesis. This identified Rad21-associated gene networks that included myca (zebrafish c-myc), p53 and mdm2. In zebrafish, cohesin binds to the transcription start sites of p53 and mdm2, and depletion of either Rad21 or CTCF increased their transcription. In contrast, myca expression was strongly downregulated upon loss of Rad21 while depletion of CTCF had little effect. Depletion of Rad21 or the cohesin-loading factor Nipped-B in Drosophila cells also reduced expression of myc and Myc target genes. Cohesin bound the transcription start site plus an upstream predicted CTCF binding site at zebrafish myca. Binding and positive regulation of the c-Myc gene by cohesin is conserved through evolution, indicating this regulation is likely to be direct. The exact mechanism of regulation is unknown, but local changes in histone modification associated with transcription repression at the myca gene were observed in rad21 mutants. PMID:20553708

  9. Nucleoplasmic Lamin A/C and Polycomb group of proteins: An evolutionarily conserved interplay

    PubMed Central

    Marullo, F.; Cesarini, E.; Antonelli, L.; Gregoretti, F.; Oliva, G.; Lanzuolo, C.

    2016-01-01

    ABSTRACT Nuclear lamins are the main components of the nuclear lamina at the nuclear periphery, providing mechanical support to the nucleus. However, recent findings suggest that lamins also reside in the nuclear interior, as a distinct and dynamic pool with critical roles in transcriptional regulation. In our work we found a functional and evolutionary conserved crosstalk between Lamin A/C and the Polycomb group (PcG) of proteins, this being required for the maintenance of the PcG repressive functions. Indeed, Lamin A/C knock-down causes PcG foci dispersion and defects in PcG-mediated higher order structures, thereby leading to impaired PcG mediated transcriptional repression. By using ad-hoc algorithms for image analysis and PLA approaches we hereby show that PcG proteins are preferentially located in the nuclear interior where they interact with nucleoplasmic Lamin A/C. Taken together, our findings suggest that nuclear components, such as Lamin A/C, functionally interact with epigenetic factors to ensure the correct transcriptional program maintenance. PMID:26930442

  10. An Evolutionarily Conserved Enhancer Regulates Bmp4 Expression in Developing Incisor and Limb Bud

    PubMed Central

    O’Connell, Daniel J.; Aboukhalil, Anton; Li, Xiao; Choe, Sung E.; Ho, Joshua W. K.; Turbe-Doan, Annick; Robertson, Erin A.; Olsen, Bjorn R.; Bulyk, Martha L.; Amendt, Brad A.; Maas, Richard L.

    2012-01-01

    To elucidate the transcriptional regulation of Bmp4 expression during organogenesis, we used phylogenetic footprinting and transgenic reporter analyses to identify Bmp4 cis-regulatory modules (CRMs). These analyses identified a regulatory region located ∼46 kb upstream of the mouse Bmp4 transcription start site that had previously been shown to direct expression in lateral plate mesoderm. We refined this regulatory region to a 396-bp minimal enhancer, and show that it recapitulates features of endogenous Bmp4 expression in developing mandibular arch ectoderm and incisor epithelium during the initiation-stage of tooth development. In addition, this enhancer directs expression in the apical ectodermal ridge (AER) of the developing limb and in anterior and posterior limb mesenchyme. Transcript profiling of E11.5 mouse incisor dental lamina, together with protein binding microarray (PBM) analyses, allowed identification of a conserved DNA binding motif in the Bmp4 enhancer for Pitx homeoproteins, which are also expressed in the developing mandibular and incisor epithelium. In vitro electrophoretic mobility shift assays (EMSA) and in vivo transgenic reporter mutational analyses revealed that this site supports Pitx binding and that the site is necessary to recapitulate aspects of endogenous Bmp4 expression in developing craniofacial and limb tissues. Finally, Pitx2 chromatin immunoprecipitation (ChIP) demonstrated direct binding of Pitx2 to this Bmp4 enhancer site in a dental epithelial cell line. These results establish a direct molecular regulatory link between Pitx family members and Bmp4 gene expression in developing incisor epithelium. PMID:22701669

  11. Nucleoplasmic Lamin A/C and Polycomb group of proteins: An evolutionarily conserved interplay.

    PubMed

    Marullo, F; Cesarini, E; Antonelli, L; Gregoretti, F; Oliva, G; Lanzuolo, C

    2016-04-25

    Nuclear lamins are the main components of the nuclear lamina at the nuclear periphery, providing mechanical support to the nucleus. However, recent findings suggest that lamins also reside in the nuclear interior, as a distinct and dynamic pool with critical roles in transcriptional regulation. In our work we found a functional and evolutionary conserved crosstalk between Lamin A/C and the Polycomb group (PcG) of proteins, this being required for the maintenance of the PcG repressive functions. Indeed, Lamin A/C knock-down causes PcG foci dispersion and defects in PcG-mediated higher order structures, thereby leading to impaired PcG mediated transcriptional repression. By using ad-hoc algorithms for image analysis and PLA approaches we hereby show that PcG proteins are preferentially located in the nuclear interior where they interact with nucleoplasmic Lamin A/C. Taken together, our findings suggest that nuclear components, such as Lamin A/C, functionally interact with epigenetic factors to ensure the correct transcriptional program maintenance. PMID:26930442

  12. Systems biology approach reveals possible evolutionarily conserved moonlighting functions for enolase.

    PubMed

    Paludo, Gabriela Prado; Lorenzatto, Karina Rodrigues; Bonatto, Diego; Ferreira, Henrique Bunselmeyer

    2015-10-01

    Glycolytic enzymes, such as enolase, have been described as multifunctional complex proteins that also display non-glycolytic activities, termed moonlighting functions. Although enolase multifunctionality has been described for several organisms, the conservation of enolase alternative functions through different phyla has not been explored with more details. A useful strategy to investigate moonlighting functions is the use of systems biology tools, which allow the prediction of protein functions/interactions by graph design and analysis. In this work, available information from protein-protein interaction (PPI) databases were used to design enolase PPI networks for four eukaryotic organisms, namely Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae, covering a wide spectrum of this domain of life. PPI networks with number of nodes ranging from 140 to 411 and up to 15,855 connections were generated, and modularity and centrality analyses, and functional enrichment were performed for all of them. The performed analyses showed that enolase is a central node within the networks, and that, in addition to its canonical interactions with proteins related to glycolysis and energetic metabolism, it is also part of protein clusters related to different biological processes, like transcription, development, and apoptosis, among others. Some of these non-glycolytic clusters, are partially conserved between networks, in terms of overall sharing of orthologs, overall cluster structure, and/or at the levels of key regulatory proteins within clusters. Overall, our results provided evidences of enolase multifunctionality and evolutionary conservation of enolase PPIs at all these levels. PMID:25978602

  13. An Evolutionarily-Conserved Mechanism of Calcium-Dependent Neurotoxicity in a Zebrafish Model of FASD

    PubMed Central

    Flentke, George R.; Klingler, Rebekah H.; Tanguay, Robert L.; Carvan, Michael J.; Smith, Susan M.

    2014-01-01

    Background Fetal Alcohol Spectrum Disorders (FASD) are a leading cause of neurodevelopmental disability. Non-human animal models offer novel insights into its underlying mechanisms. Although the developing zebrafish has great promise for FASD research, a significant challenge to its wider adoption is the paucity of clear, mechanistic parallels between its ethanol responses and those of non-piscine, established models. Inconsistencies in the published pharmodynamics for ethanol-exposed zebrafish, alongside the use of comparatively high ethanol doses, challenge the interpretation of this model’s clinical relevance. Methods To address these limitations, we developed a binge, single-exposure model of ethanol exposure in the early zebrafish embryo. Results Brief (3hr) ethanol exposure is sufficient to cause significant neural crest losses and craniofacial alterations, with peak vulnerability during neurogenesis and early somitogenesis. These losses are apoptotic, documented using TUNEL assay and secA5-YFP-reporter fish. Apoptosis is dose-dependent with an EC50 = 56.2mM ± 14.3mM ethanolint, a clinically-relevant value within the range producing apoptosis in chick and mouse neural crest. This apoptosis requires the calcium-dependent activation of CaMKII and recapitulates the well-described ethanol signaling mechanism in avian neural crest. Importantly, we resolve the existing confusion regarding zebrafish ethanol kinetics. We show that steady-state ethanol concentrations within both chorion-intact and dechorionated embryos are maintained at 35.7% ± 2.8% of ethanolext levels across the range from 50 to 300 mM ethanolext, a value consistent with several published reports. Equilibrium is rapid and complete within 5min of ethanol addition. Conclusions The calcium/CaMKII mechanism of ethanol's neurotoxicity is shared between an amniote (chick) and teleost fish, indicating this mechanism is evolutionarily conserved. Our data suggest that ethanolext concentrations greater

  14. An Evolutionarily Conserved PLC-PKD-TFEB Pathway for Host Defense.

    PubMed

    Najibi, Mehran; Labed, Sid Ahmed; Visvikis, Orane; Irazoqui, Javier Elbio

    2016-05-24

    The mechanisms that tightly control the transcription of host defense genes have not been fully elucidated. We previously identified TFEB as a transcription factor important for host defense, but the mechanisms that regulate TFEB during infection remained unknown. Here, we used C. elegans to discover a pathway that activates TFEB during infection. Gene dkf-1, which encodes a homolog of protein kinase D (PKD), was required for TFEB activation in nematodes infected with Staphylococcus aureus. Conversely, pharmacological activation of PKD was sufficient to activate TFEB. Furthermore, phospholipase C (PLC) gene plc-1 was also required for TFEB activation, downstream of Gαq homolog egl-30 and upstream of dkf-1. Using reverse and chemical genetics, we discovered a similar PLC-PKD-TFEB axis in Salmonella-infected mouse macrophages. In addition, PKCα was required in macrophages. These observations reveal a previously unknown host defense signaling pathway, which has been conserved across one billion years of evolution. PMID:27184844

  15. An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling.

    PubMed

    Lucas-Reina, Eva; Romero-Campero, Francisco J; Romero, José M; Valverde, Federico

    2015-06-01

    The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. PMID:25897001

  16. An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling1[OPEN

    PubMed Central

    2015-01-01

    The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs. PMID:25897001

  17. The Evolutionarily Conserved LIM Homeodomain Protein LIM-4/LHX6 Specifies the Terminal Identity of a Cholinergic and Peptidergic C. elegans Sensory/Inter/Motor Neuron-Type

    PubMed Central

    Choi, Seong-Kyoon; Huh, Yang Hoon; Fang, Zi; Park, Seo Jin; Kim, Myoung Ok; Ryoo, Zae Young; Kang, Kyeongjin; Kweon, Hee-Seok; Jeon, Won Bae; Li, Chris; Kim, Kyuhyung

    2015-01-01

    The expression of specific transcription factors determines the differentiated features of postmitotic neurons. However, the mechanism by which specific molecules determine neuronal cell fate and the extent to which the functions of transcription factors are conserved in evolution are not fully understood. In C. elegans, the cholinergic and peptidergic SMB sensory/inter/motor neurons innervate muscle quadrants in the head and control the amplitude of sinusoidal movement. Here we show that the LIM homeobox protein LIM-4 determines neuronal characteristics of the SMB neurons. In lim-4 mutant animals, expression of terminal differentiation genes, such as the cholinergic gene battery and the flp-12 neuropeptide gene, is completely abolished and thus the function of the SMB neurons is compromised. LIM-4 activity promotes SMB identity by directly regulating the expression of the SMB marker genes via a distinct cis-regulatory motif. Two human LIM-4 orthologs, LHX6 and LHX8, functionally substitute for LIM-4 in C. elegans. Furthermore, C. elegans LIM-4 or human LHX6 can induce cholinergic and peptidergic characteristics in the human neuronal cell lines. Our results indicate that the evolutionarily conserved LIM-4/LHX6 homeodomain proteins function in generation of precise neuronal subtypes. PMID:26305787

  18. Identification of Evolutionarily Conserved Md1 Splice Variants That Regulate Innate Immunity through Differential Induction of NF-кB.

    PubMed

    Candel, Sergio; Tyrkalska, Sylwia D; García-Moreno, Diana; Meseguer, José; Mulero, Victoriano

    2016-08-15

    Although in mammals the TLR4/myeloid differentiation factor (MD)2/CD14 complex is responsible for the recognition of bacterial LPS, and it is known that the RP105/MD1 complex negatively regulates TLR4 signaling, the evolutionary history of LPS recognition remains enigmatic. Thus, zebrafish has orthologs of mammalian TLR4 (Tlr4a and Tlr4b), RP105, and MD1, but MD2 and CD14 seem to be absent from all fish genomes available to date. In addition, and to make the story more intriguing, zebrafish Tlr4a and Tlr4b do not recognize LPS, whereas the zebrafish Rp105/Md1 complex unexpectedly participates in the regulation of innate immunity and viral resistance. In this work, we report the identification of two novel splice variants of Md1, which are expressed at similar levels as full-length Md1 in the main immune-related organs of zebrafish and are highly induced upon viral infection. One of these splice variants, which is also expressed by mouse macrophages, lacks three conserved cysteine residues that have been shown to form disulfide bonds that are crucial for the three-dimensional structure of the MD-2-related lipid recognition domain of Md1. Functional studies in zebrafish demonstrate that this evolutionarily conserved splice variant shows higher antiviral activity than full-length Md1, but reduced proinflammatory activity, due to an impaired ability to activate the master regulator of inflammation, NF-κB. These results uncover a previously unappreciated evolutionarily conserved Md1 splice variant with important functions in the regulation of innate immunity and the antiviral response in zebrafish, and point to the need for additional functional studies in mammals on this little explored molecule. PMID:27402697

  19. An Evolutionarily Conserved Role for the Aryl Hydrocarbon Receptor in the Regulation of Movement

    PubMed Central

    Williams, Evan G.; Mouchiroud, Laurent; Frochaux, Michael; Pandey, Ashutosh; Andreux, Pénélope A.; Deplancke, Bart; Auwerx, Johan

    2014-01-01

    The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some of these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. Here we phenotype 43 BXD strains and observe they have large variation (∼5-fold) in their spontaneous activity during waking hours. QTL analyses indicate that ∼40% of this variance is attributable to a narrow locus containing the aryl hydrocarbon receptor (Ahr), a basic helix-loop-helix transcription factor with well-established roles in development and xenobiotic metabolism. Strains with the D2 allele of Ahr have reduced gene expression compared to those with the B6 allele, and have significantly higher spontaneous activity. This effect was also observed in B6 mice with a congenic D2 Ahr interval, and in B6 mice with a humanized AHR allele which, like the D2 allele, is expressed much less and has less enzymatic activity than the B6 allele. Ahr is highly conserved in invertebrates, and strikingly inhibition of its orthologs in D. melanogaster and C. elegans (spineless and ahr-1) leads to marked increases in basal activity. In mammals, Ahr has numerous ligands, but most are either non-selective (e.g. resveratrol) or highly toxic (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)). Thus, we chose to examine a major environmental influence—long term feeding with high fat diet (HFD)—to see if the effects of Ahr are dependent on major metabolic differences. Interestingly, while HFD robustly halved movement across all strains, the QTL position and effects of Ahr remained unchanged, indicating that the effects are independent. The highly consistent effects of Ahr on movement indicate that changes in its constitutive activity have a role on spontaneous movement and may influence human behavior. PMID:25255223

  20. An evolutionarily conserved role for the aryl hydrocarbon receptor in the regulation of movement.

    PubMed

    Williams, Evan G; Mouchiroud, Laurent; Frochaux, Michael; Pandey, Ashutosh; Andreux, Pénélope A; Deplancke, Bart; Auwerx, Johan

    2014-09-01

    The BXD genetic reference population is a recombinant inbred panel descended from crosses between the C57BL/6 (B6) and DBA/2 (D2) strains of mice, which segregate for about 5 million sequence variants. Recently, some of these variants have been established with effects on general metabolic phenotypes such as glucose response and bone strength. Here we phenotype 43 BXD strains and observe they have large variation (-5-fold) in their spontaneous activity during waking hours. QTL analyses indicate that -40% of this variance is attributable to a narrow locus containing the aryl hydrocarbon receptor (Ahr), a basic helix-loop-helix transcription factor with well-established roles in development and xenobiotic metabolism. Strains with the D2 allele of Ahr have reduced gene expression compared to those with the B6 allele, and have significantly higher spontaneous activity. This effect was also observed in B6 mice with a congenic D2 Ahr interval, and in B6 mice with a humanized AHR allele which, like the D2 allele, is expressed much less and has less enzymatic activity than the B6 allele. Ahr is highly conserved in invertebrates, and strikingly inhibition of its orthologs in D. melanogaster and C. elegans (spineless and ahr-1) leads to marked increases in basal activity. In mammals, Ahr has numerous ligands, but most are either non-selective (e.g. resveratrol) or highly toxic (e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)). Thus, we chose to examine a major environmental influence--long term feeding with high fat diet (HFD)--to see if the effects of Ahr are dependent on major metabolic differences. Interestingly, while HFD robustly halved movement across all strains, the QTL position and effects of Ahr remained unchanged, indicating that the effects are independent. The highly consistent effects of Ahr on movement indicate that changes in its constitutive activity have a role on spontaneous movement and may influence human behavior. PMID:25255223

  1. Comparative Analysis of Evolutionarily Conserved Motifs of Epidermal Growth Factor Receptor 2 (HER2) Predicts Novel Potential Therapeutic Epitopes

    PubMed Central

    Deng, Xiaohong; Zheng, Xuxu; Yang, Huanming; Moreira, José Manuel Afonso; Brünner, Nils; Christensen, Henrik

    2014-01-01

    Overexpression of human epidermal growth factor receptor 2 (HER2) is associated with tumor aggressiveness and poor prognosis in breast cancer. With the availability of therapeutic antibodies against HER2, great strides have been made in the clinical management of HER2 overexpressing breast cancer. However, de novo and acquired resistance to these antibodies presents a serious limitation to successful HER2 targeting treatment. The identification of novel epitopes of HER2 that can be used for functional/region-specific blockade could represent a central step in the development of new clinically relevant anti-HER2 antibodies. In the present study, we present a novel computational approach as an auxiliary tool for identification of novel HER2 epitopes. We hypothesized that the structurally and linearly evolutionarily conserved motifs of the extracellular domain of HER2 (ECD HER2) contain potential druggable epitopes/targets. We employed the PROSITE Scan to detect structurally conserved motifs and PRINTS to search for linearly conserved motifs of ECD HER2. We found that the epitopes recognized by trastuzumab and pertuzumab are located in the predicted conserved motifs of ECD HER2, supporting our initial hypothesis. Considering that structurally and linearly conserved motifs can provide functional specific configurations, we propose that by comparing the two types of conserved motifs, additional druggable epitopes/targets in the ECD HER2 protein can be identified, which can be further modified for potential therapeutic application. Thus, this novel computational process for predicting or searching for potential epitopes or key target sites may contribute to epitope-based vaccine and function-selected drug design, especially when x-ray crystal structure protein data is not available. PMID:25192037

  2. Genome-Wide Identification of Evolutionarily Conserved Alternative Splicing Events in Flowering Plants

    PubMed Central

    Chamala, Srikar; Feng, Guanqiao; Chavarro, Carolina; Barbazuk, W. Brad

    2015-01-01

    Alternative splicing (AS) plays important roles in many plant functions, but its conservation across the plant kingdom is not known. We describe a methodology to identify AS events and identify conserved AS events across large phylogenetic distances using RNA-Seq datasets. We applied this methodology to transcriptome data from nine angiosperms including Amborella, the single sister species to all other extant flowering plants. AS events within 40–70% of the expressed multi-exonic genes per species were found, 27,120 of which are conserved among two or more of the taxa studied. While many events are species specific, many others are shared across long evolutionary distances suggesting they have functional significance. Conservation of AS event data provides an estimate of the number of ancestral AS events present at each node of the tree representing the nine species studied. Furthermore, the presence or absence of AS isoforms between species with different whole genome duplication (WGD) histories provides the opportunity to examine the impact of WDG on AS potential. Examining AS in gene families identifies those with high rates of AS, and conservation can distinguish ancient events vs. recent or species specific adaptations. The MADS-box and SR protein families are found to represent families with low and high occurrences of AS, respectively, yet their AS events were likely present in the MRCA of angiosperms. PMID:25859541

  3. CPhos: a program to calculate and visualize evolutionarily conserved functional phosphorylation sites.

    PubMed

    Zhao, Boyang; Pisitkun, Trairak; Hoffert, Jason D; Knepper, Mark A; Saeed, Fahad

    2012-11-01

    Profiling using high-throughput MS has discovered an overwhelming number of novel protein phosphorylation sites ("phosphosites"). However, the functional relevance of these sites is not always clear. In light of recent studies on the evolutionary mechanism of phosphorylation, we have developed CPhos, a Java program that can assess the conservation of phosphosites among species using an information theory-based approach. The degree of conservation established using CPhos can be used to assess the functional significance of phosphosites. CPhos has a user friendly graphical user interface and is available both as a web service and as a standalone Java application to assist phosphoproteomic researchers in analyzing and prioritizing lists of phosphosites for further experimental validation. CPhos can be accessed or downloaded at http://helixweb.nih.gov/CPhos/. PMID:23001821

  4. The evolutionarily conserved Krueppel-associated box domain defines a subfamily of eukaryotic multifingered proteins

    SciTech Connect

    Bellefroid, E.J.; Poncelet, D.A.; Lecocq, P.J.; Revelant, O.; Martial, J.A. )

    1991-05-01

    The authors have previously shown that the human genome includes hundreds of genes coding for putative factors related to the Krueppel zinc-finger protein, which regulates Drosophila segmentation. They report herein that about one-third of these genes code for proteins that share a very conserved region of about 75 amino acids in their N-terminal nonfinger portion. Homologous regions are found in a number of previously described finger proteins, including mouse Zfp-1 and Xenopus Xfin. They named this region the Krueppel-associated box (KRAB). This domain has the potential to form two amphipathic {alpha}-helices. Southern blot analysis of zoo blots suggests that the Krueppel-associated box is highly conserved during evolution. Northern blot analysis shows that these genes are expressed in most adult tissues and are down-regulated during in vitro terminal differentiation of human myeloid cells.

  5. Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development

    PubMed Central

    Miao, Jun; Lawrence, Matthew; Jeffers, Victoria; Zhao, Fangqing; Parker, Daniel; Ge, Ying; Sullivan, William J.; Cui, Liwang

    2013-01-01

    Summary Lysine acetylation has emerged as a major posttranslational modification involved in diverse cellular functions. Using a combination of immunoisolation and liquid chromatography coupled to accurate mass spectrometry, we determined the first acetylome of the human malaria parasite Plasmodium falciparum during its active proliferation in erythrocytes with 421 acetylation sites identified in 230 proteins. Lysine-acetylated proteins are distributed in the nucleus, cytoplasm, mitochondrion, and apicoplast. Whereas occurrence of lysine acetylation in a similarly wide range of cellular functions suggests conservation of lysine acetylation through evolution, the Plasmodium acetylome also revealed significant divergence from those of other eukaryotes and even the closely-related parasite Toxoplasma. This divergence is reflected in the acetylation of a large number of Plasmodium-specific proteins and different acetylation sites in evolutionarily conserved acetylated proteins. A prominent example is the abundant acetylation of proteins in the glycolysis pathway but relatively deficient acetylation of enzymes in the citrate cycle. Using specific transgenic lines and inhibitors, we determined that the acetyltransferase PfMYST and lysine deacetylases play important roles in regulating the dynamics of cytoplasmic protein acetylation. The Plasmodium acetylome provides an exciting start point for further exploration of functions of acetylation in the biology of malaria parasites. PMID:23796209

  6. Regulation of Splicing Factors by Alternative Splicing and NMD Is Conserved between Kingdoms Yet Evolutionarily Flexible

    PubMed Central

    Lareau, Liana F.; Brenner, Steven E.

    2015-01-01

    Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and NMD, one might expect this regulation to have originated in an early SR gene and persisted as duplications expanded the SR family. But in fact, unproductive splicing of most human SR genes arose independently (Lareau et al. 2007). This paradox led us to investigate the origin and proliferation of unproductive splicing in SR genes. We demonstrate that unproductive splicing of the splicing factor SRSF5 (SRp40) is conserved among all animals and even observed in fungi; this is a rare example of alternative splicing conserved between kingdoms, yet its effect is to trigger mRNA degradation. As the gene duplicated, the ancient unproductive splicing was lost in paralogs, and distinct unproductive splicing evolved rapidly and repeatedly to take its place. SR genes have consistently employed unproductive splicing, and while it is exceptionally conserved in some of these genes, turnover in specific events among paralogs shows flexible means to the same regulatory end. PMID:25576366

  7. Identification of Novel Human Genes Evolutionarily Conserved in Caenorhabditis elegans by Comparative Proteomics

    PubMed Central

    Lai, Chun-Hung; Chou, Chang-Yuan; Ch'ang, Lan-Yang; Liu, Chung-Shyan; Lin, Wen-chang

    2000-01-01

    Modern biomedical research greatly benefits from large-scale genome-sequencing projects ranging from studies of viruses, bacteria, and yeast to multicellular organisms, like Caenorhabditis elegans. Comparative genomic studies offer a vast array of prospects for identification and functional annotation of human ortholog genes. We presented a novel comparative proteomic approach for assembling human gene contigs and assisting gene discovery. The C. elegans proteome was used as an alignment template to assist in novel human gene identification from human EST nucleotide databases. Among the available 18,452 C. elegans protein sequences, our results indicate that at least 83% (15,344 sequences) of C. elegans proteome has human homologous genes, with 7,954 records of C. elegans proteins matching known human gene transcripts. Only 11% or less of C. elegans proteome contains nematode-specific genes. We found that the remaining 7,390 sequences might lead to discoveries of novel human genes, and over 150 putative full-length human gene transcripts were assembled upon further database analyses. [The sequence data described in this paper have been submitted to the GenBank data library under accession nos. AF132936–AF132973, AF151799–AF151909, and AF152097.] PMID:10810093

  8. The roles of evolutionarily conserved functional modules in cilia-related trafficking

    PubMed Central

    Sung, Ching-Hwa; Leroux, Michel R.

    2014-01-01

    Cilia are present across most eukaryotic phyla and have diverse sensory and motility roles in animal physiology, cell signalling and development. Their biogenesis and maintenance depend on vesicular and intraciliary (intraflagellar) trafficking pathways that share conserved structural and functional modules. The functional units of the interconnected pathways, which include proteins involved in membrane coating as well as small GTPases and their accessory factors, were first experimentally associated with canonical vesicular trafficking. These components are, however, ancient, having been co-opted by the ancestral eukaryote to establish the ciliary organelle, and their study can inform us about ciliary biology in higher organisms. PMID:24296415

  9. Production of bioactive diterpenoids in the euphorbiaceae depends on evolutionarily conserved gene clusters.

    PubMed

    King, Andrew J; Brown, Geoffrey D; Gilday, Alison D; Larson, Tony R; Graham, Ian A

    2014-08-01

    The Euphorbiaceae produce a diverse range of diterpenoids, many of which have pharmacological activities. These diterpenoids include ingenol mebutate, which is licensed for the treatment of a precancerous skin condition (actinic keratosis), and phorbol derivatives such as resiniferatoxin and prostratin, which are undergoing investigation for the treatment of severe pain and HIV, respectively. Despite the interest in these diterpenoids, their biosynthesis is poorly understood at present, with the only characterized step being the conversion of geranylgeranyl pyrophosphate into casbene. Here, we report a physical cluster of diterpenoid biosynthetic genes from castor (Ricinus communis), including casbene synthases and cytochrome P450s from the CYP726A subfamily. CYP726A14, CYP726A17, and CYP726A18 were able to catalyze 5-oxidation of casbene, a conserved oxidation step in the biosynthesis of this family of medicinally important diterpenoids. CYP726A16 catalyzed 7,8-epoxidation of 5-keto-casbene and CYP726A15 catalyzed 5-oxidation of neocembrene. Evidence of similar gene clustering was also found in two other Euphorbiaceae, including Euphorbia peplus, the source organism of ingenol mebutate. These results demonstrate conservation of gene clusters at the higher taxonomic level of the plant family and that this phenomenon could prove useful in further elucidating diterpenoid biosynthetic pathways. PMID:25172144

  10. An Anomalous Type IV Secretion System in Rickettsia Is Evolutionarily Conserved

    PubMed Central

    Gillespie, Joseph J.; Ammerman, Nicole C.; Dreher-Lesnick, Sheila M.; Rahman, M. Sayeedur; Worley, Micah J.; Setubal, Joao C.; Sobral, Bruno S.; Azad, Abdu F.

    2009-01-01

    Background Bacterial type IV secretion systems (T4SSs) comprise a diverse transporter family functioning in conjugation, competence, and effector molecule (DNA and/or protein) translocation. Thirteen genome sequences from Rickettsia, obligate intracellular symbionts/pathogens of a wide range of eukaryotes, have revealed a reduced T4SS relative to the Agrobacterium tumefaciens archetype (vir). However, the Rickettsia T4SS has not been functionally characterized for its role in symbiosis/virulence, and none of its substrates are known. Results Superimposition of T4SS structural/functional information over previously identified Rickettsia components implicate a functional Rickettsia T4SS. virB4, virB8 and virB9 are duplicated, yet only one copy of each has the conserved features of similar genes in other T4SSs. An extraordinarily duplicated VirB6 gene encodes five hydrophobic proteins conserved only in a short region known to be involved in DNA transfer in A. tumefaciens. virB1, virB2 and virB7 are newly identified, revealing a Rickettsia T4SS lacking only virB5 relative to the vir archetype. Phylogeny estimation suggests vertical inheritance of all components, despite gene rearrangements into an archipelago of five islets. Similarities of Rickettsia VirB7/VirB9 to ComB7/ComB9 proteins of ε-proteobacteria, as well as phylogenetic affinities to the Legionella lvh T4SS, imply the Rickettsiales ancestor acquired a vir-like locus from distantly related bacteria, perhaps while residing in a protozoan host. Modern modifications of these systems likely reflect diversification with various eukaryotic host cells. Conclusion We present the rvh (Rickettsiales vir homolog) T4SS, an evolutionary conserved transporter with an unknown role in rickettsial biology. This work lays the foundation for future laboratory characterization of this system, and also identifies the Legionella lvh T4SS as a suitable genetic model. PMID:19279686

  11. The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling

    PubMed Central

    Oelgeschläger, Michael; Larraín, Juan; Geissert, Douglas; De Robertis, Eddy M.

    2008-01-01

    Dorsal-ventral patterning in vertebrate and Drosophila embryos requires a conserved system of extracellular proteins to generate a positional information gradient. The components involved include bone morphogenetic proteins (BMP/Dpp), a BMP antagonist (Chordin/Short gastrulation; Chd/Sog) and a secreted metalloproteinase (Xolloid/Tolloid) that cleaves Chd/Sog. Here we describe Xenopus Twisted gastrulation (xTsg), another member of this signalling pathway. xTsg is expressed ventrally as part of the BMP-4 synexpression group and encodes a secreted BMP-binding protein that is a BMP signalling agonist. The data suggest a molecular mechanism by which xTsg dislodges latent BMPs bound to Chordin BMP-binding fragments generated by Xolloid cleavage, providing a permissive signal that allows high BMP signalling in the embryo. Drosophila Tsg also binds BMPs and is expressed dorsally, supporting the proposal that the dorsal-ventral axis was inverted in the course of animal evolution. PMID:10866189

  12. Similarity-based gene detection: using COGs to find evolutionarily-conserved ORFs

    PubMed Central

    Powell, Bradford C; Hutchison, Clyde A

    2006-01-01

    Background Experimental verification of gene products has not kept pace with the rapid growth of microbial sequence information. However, existing annotations of gene locations contain sufficient information to screen for probable errors. Furthermore, comparisons among genomes become more informative as more genomes are examined. We studied all open reading frames (ORFs) of at least 30 codons from the genomes of 27 sequenced bacterial strains. We grouped the potential peptide sequences encoded from the ORFs by forming Clusters of Orthologous Groups (COGs). We used this grouping in order to find homologous relationships that would not be distinguishable from noise when using simple BLAST searches. Although COG analysis was initially developed to group annotated genes, we applied it to the task of grouping anonymous DNA sequences that may encode proteins. Results "Mixed COGs" of ORFs (clusters in which some sequences correspond to annotated genes and some do not) are attractive targets when seeking errors of gene predicion. Examination of mixed COGs reveals some situations in which genes appear to have been missed in current annotations and a smaller number of regions that appear to have been annotated as gene loci erroneously. This technique can also be used to detect potential pseudogenes or sequencing errors. Our method uses an adjustable parameter for degree of conservation among the studied genomes (stringency). We detail results for one level of stringency at which we found 83 potential genes which had not previously been identified, 60 potential pseudogenes, and 7 sequences with existing gene annotations that are probably incorrect. Conclusion Systematic study of sequence conservation offers a way to improve existing annotations by identifying potentially homologous regions where the annotation of the presence or absence of a gene is inconsistent among genomes. PMID:16423288

  13. An actin cytoskeleton with evolutionarily conserved functions in the absence of canonical actin-binding proteins

    PubMed Central

    Paredez, Alexander R.; Assaf, Zoe June; Sept, David; Timofejeva, Ljudmilla; Dawson, Scott C.; Wang, Chung-Ju Rachel; Cande, W. Z.

    2011-01-01

    Giardia intestinalis, a human intestinal parasite and member of what is perhaps the earliest-diverging eukaryotic lineage, contains the most divergent eukaryotic actin identified to date and is the first eukaryote known to lack all canonical actin-binding proteins (ABPs). We sought to investigate the properties and functions of the actin cytoskeleton in Giardia to determine whether Giardia actin (giActin) has reduced or conserved roles in core cellular processes. In vitro polymerization of giActin produced filaments, indicating that this divergent actin is a true filament-forming actin. We generated an anti-giActin antibody to localize giActin throughout the cell cycle. GiActin localized to the cortex, nuclei, internal axonemes, and formed C-shaped filaments along the anterior of the cell and a flagella-bundling helix. These structures were regulated with the cell cycle and in encysting cells giActin was recruited to the Golgi-like cyst wall processing vesicles. Knockdown of giActin demonstrated that giActin functions in cell morphogenesis, membrane trafficking, and cytokinesis. Additionally, Giardia contains a single G protein, giRac, which affects the Giardia actin cytoskeleton independently of known target ABPs. These results imply that there exist ancestral and perhaps conserved roles for actin in core cellular processes that are independent of canonical ABPs. Of medical significance, the divergent giActin cytoskeleton is essential and commonly used actin-disrupting drugs do not depolymerize giActin structures. Therefore, the giActin cytoskeleton is a promising drug target for treating giardiasis, as we predict drugs that interfere with the Giardia actin cytoskeleton will not affect the mammalian host. PMID:21444821

  14. Plastid-LCGbase: a collection of evolutionarily conserved plastid-associated gene pairs.

    PubMed

    Wang, Dapeng; Yu, Jun

    2015-01-01

    Plastids carry their own genetic material that encodes a variable set of genes that are limited in number but functionally important. Aside from orthology, the lineage-specific order and orientation of these genes are also relevant. Here, we develop a database, Plastid-LCGbase (http://lcgbase.big.ac.cn/plastid-LCGbase/), which focuses on organizational variability of plastid genes and genomes from diverse taxonomic groups. The current Plastid-LCGbase contains information from 470 plastid genomes and exhibits several unique features. First, through a genome-overview page generated from OrganellarGenomeDRAW, it displays general arrangement of all plastid genes (circular or linear). Second, it shows patterns and modes of all paired plastid genes and their physical distances across user-defined lineages, which are facilitated by a step-wise stratification of taxonomic groups. Third, it divides the paired genes into three categories (co-directionally-paired genes or CDPGs, convergently-paired genes or CPGs and divergently-paired genes or DPGs) and three patterns (separation, overlap and inclusion) and provides basic statistics for each species. Fourth, the gene pairing scheme is expandable, where neighboring genes can also be included in species-/lineage-specific comparisons. We hope that Plastid-LCGbase facilitates gene variation (insertion-deletion, translocation and rearrangement) and transcription-level studies of plastid genomes. PMID:25378306

  15. Drosophila EYA regulates the immune response against DNA through an evolutionarily conserved threonine phosphatase motif.

    PubMed

    Liu, Xi; Sano, Teruyuki; Guan, Yongsheng; Nagata, Shigekazu; Hoffmann, Jules A; Fukuyama, Hidehiro

    2012-01-01

    Innate immune responses against DNA are essential to counter both pathogen infections and tissue damages. Mammalian EYAs were recently shown to play a role in regulating the innate immune responses against DNA. Here, we demonstrate that the unique Drosophila eya gene is also involved in the response specific to DNA. Haploinsufficiency of eya in mutants deficient for lysosomal DNase activity (DNaseII) reduces antimicrobial peptide gene expression, a hallmark for immune responses in flies. Like the mammalian orthologues, Drosophila EYA features a N-terminal threonine and C-terminal tyrosine phosphatase domain. Through the generation of a series of mutant EYA fly strains, we show that the threonine phosphatase domain, but not the tyrosine phosphatase domain, is responsible for the innate immune response against DNA. A similar role for the threonine phosphatase domain in mammalian EYA4 had been surmised on the basis of in vitro studies. Furthermore EYA associates with IKKβ and full-length RELISH, and the induction of the IMD pathway-dependent antimicrobial peptide gene is independent of SO. Our data provide the first in vivo demonstration for the immune function of EYA and point to their conserved immune function in response to endogenous DNA, throughout evolution. PMID:22916150

  16. Antioxidant properties of UCP1 are evolutionarily conserved in mammals and buffer mitochondrial reactive oxygen species.

    PubMed

    Oelkrug, Rebecca; Goetze, Nadja; Meyer, Carola W; Jastroch, Martin

    2014-12-01

    Mitochondrial uncoupling reduces reactive oxygen species (ROS) production and appears to be important for cellular signaling/protection, making it a focus for the treatment of metabolic and age-related diseases. Whereas the physiological role of uncoupling protein 1 (UCP1) of brown adipose tissue is established for thermogenesis, the function of UCP1 in the reduction of ROS in cold-exposed animals is currently under debate. Here, we investigated the role of UCP1 in mitochondrial ROS handling in the Lesser hedgehog tenrec (Echinops telfairi), a unique protoendothermic Malagasy mammal with recently identified brown adipose tissue (BAT). We show that the reduction of ROS by UCP1 activity also occurs in BAT mitochondria of the tenrec, suggesting that the antioxidative role of UCP1 is an ancient mammalian trait. Our analysis shows that the quantity of UCP1 displays strong control over mitochondrial hydrogen peroxide release, whereas other factors, such as mild cold, nonshivering thermogenesis, oxidative capacity, and mitochondrial respiration, do not correlate. Furthermore, hydrogen peroxide release from recoupled BAT mitochondria was positively associated with mitochondrial membrane potential. These findings led to a model of UCP1 controlling mitochondrial ROS release and, presumably, being controlled by high membrane potential, as proposed in the canonical model of "mild uncoupling". Our study further promotes a conserved role for UCP1 in the prevention of oxidative stress, which was presumably established during evolution before UCP1 was physiologically integrated into nonshivering thermogenesis. PMID:25224037

  17. Evolutionarily conserved sites in yeast tropomyosin function in cell polarity, transport and contractile ring formation

    PubMed Central

    Cranz-Mileva, Susanne; MacTaggart, Brittany; Russell, Jacquelyn; Hitchcock-DeGregori, Sarah E.

    2015-01-01

    ABSTRACT Tropomyosin is a coiled-coil protein that binds and regulates actin filaments. The tropomyosin gene in Schizosaccharomyces pombe, cdc8, is required for formation of actin cables, contractile rings, and polar localization of actin patches. The roles of conserved residues were investigated in gene replacement mutants. The work validates an evolution-based approach to identify tropomyosin functions in living cells and sites of potential interactions with other proteins. A cdc8 mutant with near-normal actin affinity affects patch polarization and vacuole fusion, possibly by affecting Myo52p, a class V myosin, function. The presence of labile residual cell attachments suggests a delay in completion of cell division and redistribution of cell patches following cytokinesis. Another mutant with a mild phenotype is synthetic negative with GFP-fimbrin, inferring involvement of the mutated tropomyosin sites in interaction between the two proteins. Proteins that assemble in the contractile ring region before actin do so in a mutant cdc8 strain that cannot assemble condensed actin rings, yet some cells can divide. Of general significance, LifeAct-GFP negatively affects the actin cytoskeleton, indicating caution in its use as a biomarker for actin filaments. PMID:26187949

  18. Dibutyl Phthalate Exposure Disrupts Evolutionarily Conserved Insulin and Glucagon-Like Signaling in Drosophila Males.

    PubMed

    Williams, Michael J; Wiemerslage, Lyle; Gohel, Priya; Kheder, Sania; Kothegala, Lakshmi V; Schiöth, Helgi B

    2016-06-01

    Phthalate diesters are commonly used as industrial plasticisers, as well as in cosmetics and skin care products, as a result people are constantly exposed to these xenobiotics. Recent epidemiological studies have found a correlation between circulating phthalate levels and type 2 diabetes, whereas animal studies indicate that phthalates are capable of disrupting endocrine signaling. Nonetheless, how phthalates interfere with metabolic function is still unclear. Here, we show that feeding Drosophila males the xenobiotic dibutyl phthalate (DBP) affects conserved insulin- and glucagon-like signaling. We report that raising flies on food containing DBP leads to starvation resistance, increased lipid storage, hyperglycemia, and hyperphagia. We go on to show that the starvation-resistance phenotype can be rescued by overexpression of the glucagon analogue adipokinetic hormone (Akh). Furthermore, although acute DBP exposure in adult flies is able to affect insulin levels, only chronic feeding influences Akh expression. We establish that raising flies on DBP-containing food or feeding adults DBP food affects the expression of homologous genes involved in xenobiotic and lipid metabolism (AHR [Drosophila ss], NR1I2 [Hr96], ABCB1 [MDR50], ABCC3 [MRP], and CYP3A4 [Cyp9f2]). Finally, we determined that the expression of these genes is also influenced by Akh. Our results provide comprehensive evidence that DBP can disrupt metabolism in Drosophila males, by regulating genes involved in glucose, lipid, and xenobiotic metabolism. PMID:27100621

  19. The presence of disulfide bonds reveals an evolutionarily conserved mechanism involved in mitochondrial protein translocase assembly

    PubMed Central

    Wrobel, Lidia; Sokol, Anna M.; Chojnacka, Magdalena; Chacinska, Agnieszka

    2016-01-01

    Disulfide bond formation is crucial for the biogenesis and structure of many proteins that are localized in the intermembrane space of mitochondria. The importance of disulfide bond formation within mitochondrial proteins was extended beyond soluble intermembrane space proteins. Tim22, a membrane protein and core component of the mitochondrial translocase TIM22, forms an intramolecular disulfide bond in yeast. Tim22 belongs to the Tim17/Tim22/Tim23 family of protein translocases. Here, we present evidence of the high evolutionary conservation of disulfide bond formation in Tim17 and Tim22 among fungi and metazoa. Topological models are proposed that include the location of disulfide bonds relative to the predicted transmembrane regions. Yeast and human Tim22 variants that are not oxidized do not properly integrate into the membrane complex. Moreover, the lack of Tim17 oxidation disrupts the TIM23 translocase complex. This underlines the importance of disulfide bond formation for mature translocase assembly through membrane stabilization of weak transmembrane domains. PMID:27265872

  20. Computational Analysis of an Evolutionarily Conserved VertebrateMuscle Alternative Splicing Program

    SciTech Connect

    Das, Debopriya; Clark, Tyson A.; Schweitzer, Anthony; Marr,Henry; Yamamoto, Miki L.; Parra, Marilyn K.; Arribere, Josh; Minovitsky,Simon; Dubchak, Inna; Blume, John E.; Conboy, John G.

    2006-06-15

    A novel exon microarray format that probes gene expression with single exon resolution was employed to elucidate critical features of a vertebrate muscle alternative splicing program. A dataset of 56 microarray-defined, muscle-enriched exons and their flanking introns were examined computationally in order to investigate coordination of the muscle splicing program. Candidate intron regulatory motifs were required to meet several stringent criteria: significant over-representation near muscle-enriched exons, correlation with muscle expression, and phylogenetic conservation among genomes of several vertebrate orders. Three classes of regulatory motifs were identified in the proximal downstream intron, within 200nt of the target exons: UGCAUG, a specific binding site for Fox-1 related splicing factors; ACUAAC, a novel branchpoint-like element; and UG-/UGC-rich elements characteristic of binding sites for CELF splicing factors. UGCAUG was remarkably enriched, being present in nearly one-half of all cases. These studies suggest that Fox and CELF splicing factors play a major role in enforcing the muscle-specific alternative splicing program, facilitating expression of a set of unique isoforms of cytoskeletal proteins that are critical to muscle cell differentiation. Supplementary materials: There are four supplementary tables and one supplementary figure. The tables provide additional detailed information concerning the muscle-enriched datasets, and about over-represented oligonucleotide sequences in the flanking introns. The supplementary figure shows RT-PCR data confirming the muscle-enriched expression of exons predicted from the microarray analysis.

  1. An Evolutionarily Conserved Long Noncoding RNA TUNA Controls Pluripotency and Neural Lineage Commitment

    PubMed Central

    Lin, Nianwei; Chang, Kung-Yen; Li, Zhonghan; Gates, Keith; Rana, Zacharia A.; Dang, Jason; Zhang, Danhua; Han, Tianxu; Yang, Chao-Shun; Cunningham, Thomas J.; Head, Steven R.; Duester, Gregg; Dong, Duc; Rana, Tariq M.

    2014-01-01

    SUMMARY Here, we generated the first genome-scale shRNA library targeting lincRNAs in the mouse. We performed an unbiased loss-of-function study in mouse embryonic stem cells (mESCs) and identified 20 novel lincRNAs involved in the maintenance of pluripotency. Among these, TUNA (Tcl1 Upstream Neuron-Associated lincRNA), was required for pluripotency and formed a complex with three RNA-binding proteins (RBPs). The TUNA–RBP complex was detected at the promoters of Nanog, Sox2, and Fgf4, and knockdown of TUNA or the individual RBPs inhibited neural differentiation of mESCs. TUNA showed striking evolutionary conservation of both sequence and central nervous system-restricted expression in vertebrates. Accordingly, knockdown of tuna in zebrafish caused impaired locomotor function, and TUNA expression in the brains of Huntington’s patients was significantly associated with disease grade. Our results suggest that the lincRNA TUNA plays a vital role in pluripotency and neural differentiation of ESCs and is associated with neurological function of adult vertebrates. PMID:24530304

  2. Eukaryotic Initiation Factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation

    SciTech Connect

    Guo, Jianjun; Jin, Zhaoqing; Yang, Xiaohan; Li, Jian-Feng; Chen, Jay

    2011-01-01

    We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.

  3. An evolutionarily-conserved role for murine Ly-1 B cells in protection against bacterial infections.

    PubMed

    Lalor, P A

    1991-01-01

    The murine Ly-1 B cell lineage, although comprising only a minority of peripheral IgM+ B cells, secretes a major proportion of the IgM antibodies occurring naturally in serum. Ly-1 B cells also seed a large number of IgA+ plasma cells to the gut walls, thereby contributing significantly to production of natural IgA antibodies in response to chronic stimulation by the normal gut flora. Apart from these naturally-produced antibodies, Ly-1 B cells also produce specific antibodies following deliberate immunisation with the bacterial cell wall antigens, phosphorylcholine and dextran. The inability of the X-linked immunodeficient CBA/N mice to produce antibody responses to these two antigens is overcome by reconstitution with normal Ly-1 B cells from the parental CBA strain. Ly-1 B cells therefore appear to play a dominant role in natural immunity and protection against bacterial infections. The compartmentalisation of development and function within murine B cells is suggestive of an evolutionary structuring of the murine immune system, with Ly-1 B cells representing a conserved, primitive B cell lineage and retaining key, associated functions. PMID:1742426

  4. Comparative biology of the pentraxin protein family: evolutionarily conserved component of innate immune system.

    PubMed

    Armstrong, Peter B

    2015-01-01

    The immune system is based on the actions of the collection of specialized immune defense cells and their secreted proteins and peptides that defend the host against infection by parasites. Parasites are organisms that live part or all of their lives in close physical association with the host and extract nutrients from the host and, by releasing toxins and virulence factors, cause disease with the potential for injury and premature death of that host. Parasites of the metazoa can be viruses, eubacteria, fungi, protozoans, and other metazoans. The immune system operates to kill or eliminate parasites and eliminate or detoxify their toxins and virulence factors. Although some of the elements of immune systems are specific to a particular phylum of metazoans, others show extensive evolutionary conservation, being present in several or all major phyla of the metazoa. The pentraxins display this latter character in their roles in immune defense. Pentraxins have been documented in vertebrates, nonvertebrate chordates, arthropods, and mollusks and may be present in other taxa of metazoans. Presumably the pentraxins appeared early in the evolution of metazoa, prior to their evolutionary divergence in the Precambrian epoch into many phyla present today, and have been preserved for the 542 million years since that explosive evolutionary radiation. The fidelity with which these phyla have preserved the pentraxins suggests that the functions of these proteins are important for survival of the members of these diverse taxa of animals. PMID:25805121

  5. An evolutionarily conserved mode of modulation of Shaw-like K⁺ channels.

    PubMed

    Cotella, Diego; Hernandez-Enriquez, Berenice; Duan, Zhibing; Wu, Xilong; Gazula, Valeswara-Rao; Brown, Maile R; Kaczmarek, Leonard K; Sesti, Federico

    2013-04-01

    Voltage-gated K(+) channels of the Shaw family (also known as the KCNC or Kv3 family) play pivotal roles in mammalian brains, and genetic or pharmacological disruption of their activities in mice results in a spectrum of behavioral defects. We have used the model system of Caenorhabditis elegans to elucidate conserved molecular mechanisms that regulate these channels. We have now found that the C. elegans Shaw channel KHT-1, and its mammalian homologue, murine Kv3.1b, are both modulated by acid phosphatases. Thus, the C. elegans phosphatase ACP-2 is stably associated with KHT-1, while its mammalian homolog, prostatic acid phosphatase (PAP; also known as ACPP-201) stably associates with murine Kv3.1b K(+) channels in vitro and in vivo. In biochemical experiments both phosphatases were able to reverse phosphorylation of their associated channel. The effect of phosphorylation on both channels is to produce a decrease in current amplitude and electrophysiological analyses demonstrated that dephosphorylation reversed the effects of phosphorylation on the magnitude of the macroscopic currents. ACP-2 and KHT-1 were colocalized in the nervous system of C. elegans and, in the mouse nervous system, PAP and Kv3.1b were colocalized in subsets of neurons, including in the brain stem and the ventricular zone. Taken together, this body of evidence suggests that acid phosphatases are general regulatory partners of Shaw-like K(+) channels. PMID:23233530

  6. Dual origins of the mammalian accessory olfactory bulb revealed by an evolutionarily conserved migratory stream.

    PubMed

    Huilgol, Dhananjay; Udin, Susan; Shimogori, Tomomi; Saha, Bhaskar; Roy, Achira; Aizawa, Shinichi; Hevner, Robert F; Meyer, Gundela; Ohshima, Toshio; Pleasure, Samuel J; Zhao, Yangu; Tole, Shubha

    2013-02-01

    The accessory olfactory bulb (AOB) is a critical olfactory structure that has been implicated in mediating social behavior. It receives input from the vomeronasal organ and projects to targets in the amygdaloid complex. Its anterior and posterior components (aAOB and pAOB) display molecular, connectional and functional segregation in processing reproductive and defensive and aggressive behaviors, respectively. We observed a dichotomy in the development of the projection neurons of the aAOB and pAOB in mice. We found that they had distinct sites of origin and that different regulatory molecules were required for their specification and migration. aAOB neurons arose locally in the rostral telencephalon, similar to main olfactory bulb neurons. In contrast, pAOB neurons arose caudally, from the neuroepithelium of the diencephalic-telencephalic boundary, from which they migrated rostrally to reach their destination. This unusual origin and migration is conserved in Xenopus, providing an insight into the origin of a key component of this system in evolution. PMID:23292680

  7. Drosophila KCNQ channel displays evolutionarily conserved electrophysiology and pharmacology with mammalian KCNQ channels.

    PubMed

    Cavaliere, Sonia; Hodge, James J L

    2011-01-01

    Of the five human KCNQ (Kv7) channels, KCNQ1 with auxiliary subunit KCNE1 mediates the native cardiac I(Ks) current with mutations causing short and long QT cardiac arrhythmias. KCNQ4 mutations cause deafness. KCNQ2/3 channels form the native M-current controlling excitability of most neurons, with mutations causing benign neonatal febrile convulsions. Drosophila contains a single KCNQ (dKCNQ) that appears to serve alone the functions of all the duplicated mammalian neuronal and cardiac KCNQ channels sharing roughly 50-60% amino acid identity therefore offering a route to investigate these channels. Current information about the functional properties of dKCNQ is lacking therefore we have investigated these properties here. Using whole cell patch clamp electrophysiology we compare the biophysical and pharmacological properties of dKCNQ with the mammalian neuronal and cardiac KCNQ channels expressed in HEK cells. We show that Drosophila KCNQ (dKCNQ) is a slowly activating and slowly-deactivating K(+) current open at sub-threshold potentials that has similar properties to neuronal KCNQ2/3 with some features of the cardiac KCNQ1/KCNE1 accompanied by conserved sensitivity to a number of clinically relevant KCNQ blockers (chromanol 293B, XE991, linopirdine) and opener (zinc pyrithione). We also investigate the molecular basis of the differential selectivity of KCNQ channels to the opener retigabine and show a single amino acid substitution (M217W) can confer sensitivity to dKCNQ. We show dKCNQ has similar electrophysiological and pharmacological properties as the mammalian KCNQ channels, allowing future study of physiological and pathological roles of KCNQ in Drosophila and whole organism screening for new modulators of KCNQ channelopathies. PMID:21915266

  8. Hepatitis B virus X protein increases the IL-1β-induced NF-κB activation via interaction with evolutionarily conserved signaling intermediate in Toll pathways (ECSIT).

    PubMed

    Chen, Wan-nan; Liu, Ling-ling; Jiao, Bo-yan; Lin, Wan-song; Lin, Xin-jian; Lin, Xu

    2015-01-01

    Hepatitis B virus X protein (HBx) transactivates multiple transcription factors including nuclear factor-kappa B (NF-κB) that regulates inflammatory-related genes. However, the regulatory mechanism of HBx in NF-κB activation remains largely unknown. This study reports that HBx augments the interleukin-1β (IL-1β)-induced NF-κB activation via interaction with a Toll-like receptor (TLR) adapter protein, ECSIT (evolutionarily conserved signaling intermediate in Toll pathways). GST pull-down and co-immunoprecipitation analyses showed that HBx interacted with ECSIT. Deletion analysis of HBx in a CytoTrap two-hybrid system revealed that the interaction region of HBx for ECSIT was attributed to aa 51-80. Co-transfection of HBx and ECSIT in IL-1β-stimulated cells appeared to activate IKK and IκB signaling pathway as phosphorylation of both IKK α/β and IκBα was increased whereas knockdown of ECSIT or HBxΔ51-80 mutant attenuated the phosphorylation. As a consequence of IκBα degradation, NF-κB was activated as evidenced by increases in NF-κB transcriptional activity and the nuclear translocation of p65 and p50 that resulted in the induction of IL-10. In contrast, knockdown of ECSIT by siRNA or treatment with an NF-κB selective inhibitor (helenalin) abolished the NF-κB activation and IL-10 expression. We conclude that ECSIT appears to be a novel HBx-interacting signal molecule and their interaction is mechanistically important in IL-1β induction of NF-κB activation. PMID:25449573

  9. Evolutionarily conserved morphogenetic movements at the vertebrate head–trunk interface coordinate the transport and assembly of hypopharyngeal structures

    PubMed Central

    Lours-Calet, Corinne; Alvares, Lucia E.; El-Hanfy, Amira S.; Gandesha, Saniel; Walters, Esther H.; Sobreira, Débora Rodrigues; Wotton, Karl R.; Jorge, Erika C.; Lawson, Jennifer A.; Kelsey Lewis, A.; Tada, Masazumi; Sharpe, Colin; Kardon, Gabrielle; Dietrich, Susanne

    2014-01-01

    The vertebrate head–trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head–trunk interface. PMID:24662046

  10. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice.

    PubMed

    Miyata, Haruhiko; Castaneda, Julio M; Fujihara, Yoshitaka; Yu, Zhifeng; Archambeault, Denise R; Isotani, Ayako; Kiyozumi, Daiji; Kriseman, Maya L; Mashiko, Daisuke; Matsumura, Takafumi; Matzuk, Ryan M; Mori, Masashi; Noda, Taichi; Oji, Asami; Okabe, Masaru; Prunskaite-Hyyrylainen, Renata; Ramirez-Solis, Ramiro; Satouh, Yuhkoh; Zhang, Qian; Ikawa, Masahito; Matzuk, Martin M

    2016-07-12

    Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201-12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract-enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the "gold standard" to determine whether a gene's function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others. PMID:27357688

  11. Genome engineering uncovers 54 evolutionarily conserved and testis-enriched genes that are not required for male fertility in mice

    PubMed Central

    Miyata, Haruhiko; Castaneda, Julio M.; Fujihara, Yoshitaka; Yu, Zhifeng; Archambeault, Denise R.; Isotani, Ayako; Kiyozumi, Daiji; Kriseman, Maya L.; Mashiko, Daisuke; Matsumura, Takafumi; Matzuk, Ryan M.; Mori, Masashi; Noda, Taichi; Oji, Asami; Okabe, Masaru; Prunskaite-Hyyrylainen, Renata; Ramirez-Solis, Ramiro; Satouh, Yuhkoh; Zhang, Qian; Ikawa, Masahito; Matzuk, Martin M.

    2016-01-01

    Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201–12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract–enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the “gold standard” to determine whether a gene’s function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others. PMID:27357688

  12. Evolutionarily conserved morphogenetic movements at the vertebrate head-trunk interface coordinate the transport and assembly of hypopharyngeal structures.

    PubMed

    Lours-Calet, Corinne; Alvares, Lucia E; El-Hanfy, Amira S; Gandesha, Saniel; Walters, Esther H; Sobreira, Débora Rodrigues; Wotton, Karl R; Jorge, Erika C; Lawson, Jennifer A; Kelsey Lewis, A; Tada, Masazumi; Sharpe, Colin; Kardon, Gabrielle; Dietrich, Susanne

    2014-06-15

    The vertebrate head-trunk interface (occipital region) has been heavily remodelled during evolution, and its development is still poorly understood. In extant jawed vertebrates, this region provides muscle precursors for the throat and tongue (hypopharyngeal/hypobranchial/hypoglossal muscle precursors, HMP) that take a stereotype path rostrally along the pharynx and are thought to reach their target sites via active migration. Yet, this projection pattern emerged in jawless vertebrates before the evolution of migratory muscle precursors. This suggests that a so far elusive, more basic transport mechanism must have existed and may still be traceable today. Here we show for the first time that all occipital tissues participate in well-conserved cell movements. These cell movements are spearheaded by the occipital lateral mesoderm and ectoderm that split into two streams. The rostrally directed stream projects along the floor of the pharynx and reaches as far rostrally as the floor of the mandibular arch and outflow tract of the heart. Notably, this stream leads and engulfs the later emerging HMP, neural crest cells and hypoglossal nerve. When we (i) attempted to redirect hypobranchial/hypoglossal muscle precursors towards various attractants, (ii) placed non-migratory muscle precursors into the occipital environment or (iii) molecularly or (iv) genetically rendered muscle precursors non-migratory, they still followed the trajectory set by the occipital lateral mesoderm and ectoderm. Thus, we have discovered evolutionarily conserved morphogenetic movements, driven by the occipital lateral mesoderm and ectoderm, that ensure cell transport and organ assembly at the head-trunk interface. PMID:24662046

  13. Human H/ACA Small Nucleolar RNPs and Telomerase Share Evolutionarily Conserved Proteins NHP2 and NOP10

    PubMed Central

    Pogacic, Vanda; Dragon, François; Filipowicz, Witold

    2000-01-01

    The H/ACA small nucleolar RNAs (snoRNAs) are involved in pseudouridylation of pre-rRNAs. In the yeast Saccharomyces cerevisiae, four common proteins are associated with H/ACA snoRNAs: Gar1p, Cbf5p, Nhp2p, and Nop10p. In vitro reconstitution studies showed that four proteins also specifically interact with H/ACA snoRNAs in mammalian cell extracts. Two mammalian proteins, NAP57/dyskerin (the ortholog of Cbf5p) and hGAR1, have been characterized. In this work we describe properties of hNOP10 and hNHP2, human orthologs of yeast Nop10p and Nhp2p, respectively, and further characterize hGAR1. hNOP10 and hNHP2 complement yeast cells depleted of Nhp2p and Nop10p, respectively. Immunoprecipitation experiments with extracts from transfected HeLa cells indicated that epitope-tagged hNOP10 and hNHP2 specifically associate with hGAR1 and H/ACA RNAs; they also interact with the RNA subunit of telomerase, which contains an H/ACA-like domain in its 3′ moiety. Immunofluorescence microscopy experiments showed that hGAR1, hNOP10, and hNHP2 are localized in the dense fibrillar component of the nucleolus and in Cajal (coiled) bodies. Deletion analysis of hGAR1 indicated that its evolutionarily conserved core domain contains all the signals required for localization, but progressive deletions from either the N or the C terminus of the core domain abolish localization in the nucleolus and/or the Cajal bodies. PMID:11074001

  14. MicroRNA expression during demosponge dissociation, reaggregation, and differentiation and a evolutionarily conserved demosponge miRNA expression profile.

    PubMed

    Robinson, Jeffrey M

    2015-11-01

    ), demonstrating and evolutionarily conserved miRNA expression profile across Demospongia. While these results do not elucidate specific molecular and cellular pathways, together they provide a broad survey of miRNA expression in demosponge systems. PMID:26553380

  15. RNA editing of the Drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation.

    PubMed Central

    Hanrahan, C J; Palladino, M J; Ganetzky, B; Reenan, R A

    2000-01-01

    Post-transcriptional editing of pre-mRNAs through the action of dsRNA adenosine deaminases results in the modification of particular adenosine (A) residues to inosine (I), which can alter the coding potential of the modified transcripts. We describe here three sites in the para transcript, which encodes the major voltage-activated Na(+) channel polypeptide in Drosophila, where RNA editing occurs. The occurrence of RNA editing at the three sites was found to be developmentally regulated. Editing at two of these sites was also conserved across species between the D. melanogaster and D. virilis. In each case, a highly conserved region was found in the intron downstream of the editing site and this region was shown to be complementary to the region of the exonic editing site. Thus, editing at these sites would appear to involve a mechanism whereby the edited exon forms a base-paired secondary structure with the distant conserved noncoding sequences located in adjacent downstream introns, similar to the mechanism shown for A-to-I RNA editing of mammalian glutamate receptor subunits (GluRs). For the third site, neither RNA editing nor the predicted RNA secondary structures were evolutionarily conserved. Transcripts from transgenic Drosophila expressing a minimal editing site construct for this site were shown to faithfully undergo RNA editing. These results demonstrate that Na(+) channel diversity in Drosophila is increased by RNA editing via a mechanism analogous to that described for transcripts encoding mammalian GluRs. PMID:10880477

  16. Evolutionarily Conserved Regulatory Motifs in the Promoter of the Arabidopsis Clock Gene LATE ELONGATED HYPOCOTYL[C][W

    PubMed Central

    Spensley, Mark; Kim, Jae-Yean; Picot, Emma; Reid, John; Ott, Sascha; Helliwell, Chris; Carré, Isabelle A.

    2009-01-01

    The transcriptional regulation of the LATE ELONGATED HYPOCOTYL (LHY) gene is key to the structure of the circadian oscillator, integrating information from multiple regulatory pathways. We identified a minimal region of the LHY promoter that was sufficient for rhythmic expression. Another upstream sequence was also required for appropriate waveform of transcription and for maximum amplitude of oscillations under both diurnal and free-running conditions. We showed that two classes of protein complexes interact with a G-box and with novel 5A motifs; mutation of these sites reduced the amplitude of oscillation and broadened the peak of expression. A genome-wide bioinformatic analysis showed that these sites were enriched in phase-specific clusters of rhythmically expressed genes. Comparative genomic analyses showed that these motifs were conserved in orthologous promoters from several species. A position-specific scoring matrix for the 5A sites suggested similarity to CArG boxes, which are recognized by MADS box transcription factors. In support of this, the FLOWERING LOCUS C (FLC) protein was shown to interact with the LHY promoter in planta. This suggests a mechanism by which FLC might affect circadian period. PMID:19789276

  17. Interaction of MYC with host cell factor-1 is mediated by the evolutionarily conserved Myc box IV motif.

    PubMed

    Thomas, L R; Foshage, A M; Weissmiller, A M; Popay, T M; Grieb, B C; Qualls, S J; Ng, V; Carboneau, B; Lorey, S; Eischen, C M; Tansey, W P

    2016-07-01

    The MYC family of oncogenes encodes a set of three related transcription factors that are overexpressed in many human tumors and contribute to the cancer-related deaths of more than 70,000 Americans every year. MYC proteins drive tumorigenesis by interacting with co-factors that enable them to regulate the expression of thousands of genes linked to cell growth, proliferation, metabolism and genome stability. One effective way to identify critical co-factors required for MYC function has been to focus on sequence motifs within MYC that are conserved throughout evolution, on the assumption that their conservation is driven by protein-protein interactions that are vital for MYC activity. In addition to their DNA-binding domains, MYC proteins carry five regions of high sequence conservation known as Myc boxes (Mb). To date, four of the Mb motifs (MbI, MbII, MbIIIa and MbIIIb) have had a molecular function assigned to them, but the precise role of the remaining Mb, MbIV, and the reason for its preservation in vertebrate Myc proteins, is unknown. Here, we show that MbIV is required for the association of MYC with the abundant transcriptional coregulator host cell factor-1 (HCF-1). We show that the invariant core of MbIV resembles the tetrapeptide HCF-binding motif (HBM) found in many HCF-interaction partners, and demonstrate that MYC interacts with HCF-1 in a manner indistinguishable from the prototypical HBM-containing protein VP16. Finally, we show that rationalized point mutations in MYC that disrupt interaction with HCF-1 attenuate the ability of MYC to drive tumorigenesis in mice. Together, these data expose a molecular function for MbIV and indicate that HCF-1 is an important co-factor for MYC. PMID:26522729

  18. Pi class glutathione S-transferase genes are regulated by Nrf 2 through an evolutionarily conserved regulatory element in zebrafish

    PubMed Central

    Suzuki, Takafumi; Takagi, Yaeko; Osanai, Hitoshi; Li, Li; Takeuchi, Miki; Katoh, Yasutake; Kobayashi, Makoto; Yamamoto, Masayuki

    2005-01-01

    Pi class GSTs (glutathione S-transferases) are a member of the vertebrate GST family of proteins that catalyse the conjugation of GSH to electrophilic compounds. The expression of Pi class GST genes can be induced by exposure to electrophiles. We demonstrated previously that the transcription factor Nrf 2 (NF-E2 p45-related factor 2) mediates this induction, not only in mammals, but also in fish. In the present study, we have isolated the genomic region of zebrafish containing the genes gstp1 and gstp2. The regulatory regions of zebrafish gstp1 and gstp2 have been examined by GFP (green fluorescent protein)-reporter gene analyses using microinjection into zebrafish embryos. Deletion and point-mutation analyses of the gstp1 promoter showed that an ARE (antioxidant-responsive element)-like sequence is located 50 bp upstream of the transcription initiation site which is essential for Nrf 2 transactivation. Using EMSA (electrophoretic mobility-shift assay) analysis we showed that zebrafish Nrf 2–MafK heterodimer specifically bound to this sequence. All the vertebrate Pi class GST genes harbour a similar ARE-like sequence in their promoter regions. We propose that this sequence is a conserved target site for Nrf 2 in the Pi class GST genes. PMID:15654768

  19. Abscisic acid-induced gene expression in the liverwort Marchantia polymorpha is mediated by evolutionarily conserved promoter elements.

    PubMed

    Ghosh, Totan K; Kaneko, Midori; Akter, Khaleda; Murai, Shuhei; Komatsu, Kenji; Ishizaki, Kimitsune; Yamato, Katsuyuki T; Kohchi, Takayuki; Takezawa, Daisuke

    2016-04-01

    Abscisic acid (ABA) is a phytohormone widely distributed among members of the land plant lineage (Embryophyta), regulating dormancy, stomata closure and tolerance to environmental stresses. In angiosperms (Magnoliophyta), ABA-induced gene expression is mediated by promoter elements such as the G-box-like ACGT-core motifs recognized by bZIP transcription factors. In contrast, the mode of regulation by ABA of gene expression in liverworts (Marchantiophyta), representing one of the earliest diverging land plant groups, has not been elucidated. In this study, we used promoters of the liverwort Marchantia polymorpha dehydrin and the wheat Em genes fused to the β-glucuronidase (GUS) reporter gene to investigate ABA-induced gene expression in liverworts. Transient assays of cultured cells of Marchantia indicated that ACGT-core motifs proximal to the transcription initiation site play a role in the ABA-induced gene expression. The RY sequence recognized by B3 transcriptional regulators was also shown to be responsible for the ABA-induced gene expression. In transgenic Marchantia plants, ABA treatment elicited an increase in GUS expression in young gemmalings, which was abolished by simultaneous disruption of the ACGT-core and RY elements. ABA-induced GUS expression was less obvious in mature thalli than in young gemmalings, associated with reductions in sensitivity to exogenous ABA during gametophyte growth. In contrast, lunularic acid, which had been suggested to function as an ABA-like substance, had no effect on GUS expression. The results demonstrate the presence of ABA-specific response mechanisms mediated by conserved cis-regulatory elements in liverworts, implying that the mechanisms had been acquired in the common ancestors of embryophytes. PMID:26456006

  20. Unlocking the power of cross-species genomic analyses: identification of evolutionarily conserved breast cancer networks and validation of preclinical models.

    PubMed

    Bennett, Christina N; Green, Jeffrey E

    2008-01-01

    The application of high-throughput genomic technologies has revealed that individual breast tumors display a variety of molecular features that require more personalized approaches to treatment. Several recent studies have demonstrated that a cross-species analytic approach provides a powerful means to filter through genetic complexity by identifying evolutionarily conserved genetic networks that are fundamental to the oncogenic process. Mouse-human tumor comparisons will provide insights into cellular origins of tumor subtypes, define interactive oncogenetic networks, identify potential novel therapeutic targets, and further validate as well as guide the selection of genetically engineered mouse models for preclinical testing. PMID:18828875

  1. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism.

    PubMed

    Loboda, Agnieszka; Damulewicz, Milena; Pyza, Elzbieta; Jozkowicz, Alicja; Dulak, Jozef

    2016-09-01

    The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap 'n' Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors. PMID:27100828

  2. Evolutionarily conserved repressive activity of WOX proteins mediates leaf blade outgrowth and floral organ development in plants

    PubMed Central

    Lin, Hao; Niu, Lifang; McHale, Neil A.; Ohme-Takagi, Masaru; Mysore, Kirankumar S.; Tadege, Million

    2013-01-01

    The WUSCHEL related homeobox (WOX) genes play key roles in stem cell maintenance, embryonic patterning, and lateral organ development. WOX genes have been categorized into three clades—ancient, intermediate, and modern/WUS—based on phylogenetic analysis, but a functional basis for this classification has not been established. Using the classical bladeless lam1 mutant of Nicotiana sylvestris as a genetic tool, we examined the function of the Medicago truncatula WOX gene, STENOFOLIA (STF), in controlling leaf blade outgrowth. STF and LAM1 are functional orthologs. We found that the introduction of mutations into the WUS-box of STF (STFm1) reduces its ability to complement the lam1 mutant. Fusion of an exogenous repressor domain to STFm1 restores complementation, whereas fusion of an exogenous activator domain to STFm1 enhances the narrow leaf phenotype. These results indicate that transcriptional repressor activity mediated by the WUS-box of STF acts to promote blade outgrowth. With the exception of WOX7, the WUS-box is conserved in the modern clade WOX genes, but is not found in members of the intermediate or ancient clades. Consistent with this, all members of the modern clade except WOX7 can complement the lam1 mutant when expressed using the STF promoter, but members of the intermediate and ancient clades cannot. Furthermore, we found that fusion of either the WUS-box or an exogenous repressor domain to WOX7 or to members of intermediate and ancient WOX clades results in a gain-of-function ability to complement lam1 blade outgrowth. These results suggest that modern clade WOX genes have evolved for repressor activity through acquisition of the WUS-box. PMID:23248305

  3. A Functional Genomic Screen for Evolutionarily Conserved Genes Required for Lifespan and Immunity in Germline-Deficient C. elegans

    PubMed Central

    Sinha, Amit; Rae, Robbie

    2014-01-01

    The reproductive system regulates lifespan in insects, nematodes and vertebrates. In Caenorhabditis elegans removal of germline increases lifespan by 60% which is dependent upon insulin signaling, nuclear hormone signaling, autophagy and fat metabolism and their microRNA-regulators. Germline-deficient C. elegans are also more resistant to various bacterial pathogens but the underlying molecular mechanisms are largely unknown. Firstly, we demonstrate that previously identified genes that regulate the extended lifespan of germline-deficient C. elegans (daf-2, daf-16, daf-12, tcer-1, mir-7.1 and nhr-80) are also essential for resistance to the pathogenic bacterium Xenorhabdus nematophila. We then use a novel unbiased approach combining laser cell ablation, whole genome microarrays, RNAi screening and exposure to X. nematophila to generate a comprehensive genome-wide catalog of genes potentially required for increased lifespan and innate immunity in germline-deficient C. elegans. We find 3,440 genes to be upregulated in C. elegans germline-deficient animals in a gonad dependent manner, which are significantly enriched for genes involved in insulin signaling, fatty acid desaturation, translation elongation and proteasome complex function. Using RNAi against a subset of 150 candidate genes selected from the microarray results, we show that the upregulated genes such as transcription factor DAF-16/FOXO, the PTEN homolog lipid phosphatase DAF-18 and several components of the proteasome complex (rpn-6.1, rpn-7, rpn-9, rpn-10, rpt-6, pbs-3 and pbs-6) are essential for both lifespan and immunity of germline deficient animals. We also identify a novel role for genes including par-5 and T12G3.6 in both lifespan-extension and increased survival on X. nematophila. From an evolutionary perspective, most of the genes differentially expressed in germline deficient C. elegans also show a conserved expression pattern in germline deficient Pristionchus pacificus, a nematode species

  4. Small ruminant lentiviral Vif proteins commonly utilize cyclophilin A, an evolutionarily and structurally conserved protein, to degrade ovine and caprine APOBEC3 proteins.

    PubMed

    Yoshikawa, Rokusuke; Izumi, Taisuke; Nakano, Yusuke; Yamada, Eri; Moriwaki, Miyu; Misawa, Naoko; Ren, Fengrong; Kobayashi, Tomoko; Koyanagi, Yoshio; Sato, Kei

    2016-06-01

    Mammals have co-evolved with retroviruses, including lentiviruses, over a long period. Evidence supporting this contention is that viral infectivity factor (Vif) encoded by lentiviruses antagonizes the anti-viral action of cellular apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3 (APOBEC3) of the host. To orchestrate E3 ubiquitin ligase complex for APOBEC3 degradation, Vifs utilize mammalian proteins such as core-binding factor beta (CBFB; for primate lentiviruses) or cyclophilin A (CYPA; for Maedi-Visna virus [MVV]). However, the co-evolutionary relationship between lentiviral Vif and the mammalian proteins associated with Vif-mediated APOBEC3 degradation is poorly understood. Moreover, it is unclear whether Vif proteins of small ruminant lentiviruses (SRLVs), including MVV and caprine arthritis encephalitis virus (CAEV), commonly utilize CYPA to degrade the APOBEC3 of their hosts. In this study, molecular phylogenetic and protein homology modeling revealed that Vif co-factors are evolutionarily and structurally conserved. It was also found that not only MVV but also CAEV Vifs degrade APOBEC3 of both sheep and goats and that CAEV Vifs interact with CYPA. These findings suggest that lentiviral Vifs chose evolutionarily and structurally stable proteins as their partners (e.g., CBFB or CYPA) for APOBEC3 degradation and, particularly, that SRLV Vifs evolved to utilize CYPA as their co-factor in degradation of ovine and caprine APOBEC3. PMID:27193350

  5. An Evolutionarily Conserved Domain of roX2 RNA Is Sufficient for Induction of H4-Lys16 Acetylation on the Drosophila X Chromosome

    PubMed Central

    Park, Seung-Won; Kang, Yool Ie; Sypula, Joanna G.; Choi, Jiyeon; Oh, Hyangyee; Park, Yongkyu

    2007-01-01

    The male-specific lethal (MSL) complex, which includes two noncoding RNA on X (roX)1 and roX2 RNAs, induces histone H4-Lys16 acetylation for twofold hypertranscription of the male X chromosome in Drosophila melanogaster. To characterize the role of roX RNAs in this process, we have identified evolutionarily conserved functional domains of roX RNAs in several Drosophila species (eight for roX1 and nine for roX2). Despite low homology between them, male-specific expression and X chromosome-specific binding are conserved. Within roX RNAs of all Drosophila species, we found conserved primary sequences, such as GUUNUACG, in the 3′ end of both roX1 (three repeats) and roX2 (two repeats). A predicted stem–loop structure of roX2 RNA contains this sequence in the 3′ stem region. Six tandem repeats of this stem–loop region (72 nt) of roX2 were enough for targeting the MSL complex and inducing H4-Lys16 acetylation on the X chromosome without other parts of roX2 RNA, suggesting that roX RNAs might play important roles in regulating enzymatic activity of the MSL complex. PMID:18039876

  6. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK

    PubMed Central

    Hao, Yan; Frey, Erin; Yoon, Choya; Wong, Hetty; Nestorovski, Douglas; Holzman, Lawrence B; Giger, Roman J; DiAntonio, Aaron; Collins, Catherine

    2016-01-01

    A broadly known method to stimulate the growth potential of axons is to elevate intracellular levels of cAMP, however the cellular pathway(s) that mediate this are not known. Here we identify the Dual Leucine-zipper Kinase (DLK, Wnd in Drosophila) as a critical target and effector of cAMP in injured axons. DLK/Wnd is thought to function as an injury ‘sensor’, as it becomes activated after axonal damage. Our findings in both Drosophila and mammalian neurons indicate that the cAMP effector kinase PKA is a conserved and direct upstream activator of Wnd/DLK. PKA is required for the induction of Wnd signaling in injured axons, and DLK is essential for the regenerative effects of cAMP in mammalian DRG neurons. These findings link two important mediators of responses to axonal injury, DLK/Wnd and cAMP/PKA, into a unified and evolutionarily conserved molecular pathway for stimulating the regenerative potential of injured axons. DOI: http://dx.doi.org/10.7554/eLife.14048.001 PMID:27268300

  7. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK.

    PubMed

    Hao, Yan; Frey, Erin; Yoon, Choya; Wong, Hetty; Nestorovski, Douglas; Holzman, Lawrence B; Giger, Roman J; DiAntonio, Aaron; Collins, Catherine

    2016-01-01

    A broadly known method to stimulate the growth potential of axons is to elevate intracellular levels of cAMP, however the cellular pathway(s) that mediate this are not known. Here we identify the Dual Leucine-zipper Kinase (DLK, Wnd in Drosophila) as a critical target and effector of cAMP in injured axons. DLK/Wnd is thought to function as an injury 'sensor', as it becomes activated after axonal damage. Our findings in both Drosophila and mammalian neurons indicate that the cAMP effector kinase PKA is a conserved and direct upstream activator of Wnd/DLK. PKA is required for the induction of Wnd signaling in injured axons, and DLK is essential for the regenerative effects of cAMP in mammalian DRG neurons. These findings link two important mediators of responses to axonal injury, DLK/Wnd and cAMP/PKA, into a unified and evolutionarily conserved molecular pathway for stimulating the regenerative potential of injured axons. PMID:27268300

  8. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis.

    PubMed

    Thirugnanasambantham, Krishnaraj; Saravanan, Subramanian; Karikalan, Kulandaivelu; Bharanidharan, Rajaraman; Lalitha, Perumal; Ilango, S; HairulIslam, Villianur Ibrahim

    2015-10-01

    Momordica charantia (bitter gourd, bitter melon) is a monoecious Cucurbitaceae with anti-oxidant, anti-microbial, anti-viral and anti-diabetic potential. Molecular studies on this economically valuable plant are very essential to understand its phylogeny and evolution. MicroRNAs (miRNAs) are conserved, small, non-coding RNA with ability to regulate gene expression by bind the 3' UTR region of target mRNA and are evolved at different rates in different plant species. In this study we have utilized homology based computational approach and identified 27 mature miRNAs for the first time from this bio-medically important plant. The phylogenetic tree developed from binary data derived from the data on presence/absence of the identified miRNAs were noticed to be uncertain and biased. Most of the identified miRNAs were highly conserved among the plant species and sequence based phylogeny analysis of miRNAs resolved the above difficulties in phylogeny approach using miRNA. Predicted gene targets of the identified miRNAs revealed their importance in regulation of plant developmental process. Reported miRNAs held sequence conservation in mature miRNAs and the detailed phylogeny analysis of pre-miRNA sequences revealed genus specific segregation of clusters. PMID:25988220

  9. The evolutionarily conserved region of the U snRNA export mediator PHAX is a novel RNA-binding domain that is essential for U snRNA export.

    PubMed Central

    Segref, A; Mattaj, I W; Ohno, M

    2001-01-01

    In metazoa, a subset of spliceosomal U snRNAs are exported from the nucleus after transcription. This export occurs in a large complex containing a U snRNA, the nuclear cap binding complex (CBC), the leucine-rich nuclear export signal receptor CRM1/Xpo1, RanGTP, and the recently identified phosphoprotein PHAX (phosphorylated adaptor for RNA export). Previous results indicated that PHAX made direct contact with RNA, CBC, and Xpo1 in the U snRNA export complex. We have now performed a systematic characterization of the functional domains of PHAX. The most evolutionarily conserved region of PHAX is shown to be a novel RNA-binding domain that is essential for U snRNA export. In addition, PHAX contains two major nuclear localization signals (NLSs) that are required for its recycling to the nucleus after export. The interaction domain of PHAX with CBC is at least partly distinct from the RNA-binding domain and the NLSs. Thus, the different interaction domains of PHAX allow it to act as a scaffold for the assembly of U snRNA export complexes. PMID:11333016

  10. The Evolutionarily Conserved Mediator Subunit MDT-15/MED15 Links Protective Innate Immune Responses and Xenobiotic Detoxification

    PubMed Central

    McEwan, Deborah L.; Conery, Annie L.; Ausubel, Frederick M.

    2014-01-01

    Metazoans protect themselves from environmental toxins and virulent pathogens through detoxification and immune responses. We previously identified a small molecule xenobiotic toxin that extends survival of Caenorhabditis elegans infected with human bacterial pathogens by activating the conserved p38 MAP kinase PMK-1 host defense pathway. Here we investigate the cellular mechanisms that couple activation of a detoxification response to innate immunity. From an RNAi screen of 1,420 genes expressed in the C. elegans intestine, we identified the conserved Mediator subunit MDT-15/MED15 and 28 other gene inactivations that abrogate the induction of PMK-1-dependent immune effectors by this small molecule. We demonstrate that MDT-15/MED15 is required for the xenobiotic-induced expression of p38 MAP kinase PMK-1-dependent immune genes and protection from Pseudomonas aeruginosa infection. We also show that MDT-15 controls the induction of detoxification genes and functions to protect the host from bacteria-derived phenazine toxins. These data define a central role for MDT-15/MED15 in the coordination of xenobiotic detoxification and innate immune responses. PMID:24875643

  11. Production of Bioactive Diterpenoids in the Euphorbiaceae Depends on Evolutionarily Conserved Gene Clusters[C][W][OPEN

    PubMed Central

    King, Andrew J.; Brown, Geoffrey D.; Gilday, Alison D.; Larson, Tony R.; Graham, Ian A.

    2014-01-01

    The Euphorbiaceae produce a diverse range of diterpenoids, many of which have pharmacological activities. These diterpenoids include ingenol mebutate, which is licensed for the treatment of a precancerous skin condition (actinic keratosis), and phorbol derivatives such as resiniferatoxin and prostratin, which are undergoing investigation for the treatment of severe pain and HIV, respectively. Despite the interest in these diterpenoids, their biosynthesis is poorly understood at present, with the only characterized step being the conversion of geranylgeranyl pyrophosphate into casbene. Here, we report a physical cluster of diterpenoid biosynthetic genes from castor (Ricinus communis), including casbene synthases and cytochrome P450s from the CYP726A subfamily. CYP726A14, CYP726A17, and CYP726A18 were able to catalyze 5-oxidation of casbene, a conserved oxidation step in the biosynthesis of this family of medicinally important diterpenoids. CYP726A16 catalyzed 7,8-epoxidation of 5-keto-casbene and CYP726A15 catalyzed 5-oxidation of neocembrene. Evidence of similar gene clustering was also found in two other Euphorbiaceae, including Euphorbia peplus, the source organism of ingenol mebutate. These results demonstrate conservation of gene clusters at the higher taxonomic level of the plant family and that this phenomenon could prove useful in further elucidating diterpenoid biosynthetic pathways. PMID:25172144

  12. The role of evolutionarily conserved germ-line DH sequence in B-1 cell development and natural antibody production.

    PubMed

    Vale, Andre M; Nobrega, Alberto; Schroeder, Harry W

    2015-12-01

    Because of N addition and variation in the site of VDJ joining, the third complementarity-determining region of the heavy chain (CDR-H3) is the most diverse component of the initial immunoglobulin antigen-binding site repertoire. A large component of the peritoneal cavity B-1 cell component is the product of fetal and perinatal B cell production. The CDR-H3 repertoire is thus depleted of N addition, which increases dependency on germ-line sequence. Cross-species comparisons have shown that DH gene sequence demonstrates conservation of amino acid preferences by reading frame. Preference for reading frame 1, which is enriched for tyrosine and glycine, is created both by rearrangement patterns and by pre-BCR and BCR selection. In previous studies, we have assessed the role of conserved DH sequence by examining peritoneal cavity B-1 cell numbers and antibody production in BALB/c mice with altered DH loci. Here, we review our finding that changes in the constraints normally imposed by germ-line-encoded amino acids within the CDR-H3 repertoire profoundly affect B-1 cell development, especially B-1a cells, and thus natural antibody immunity. Our studies suggest that both natural and somatic selection operate to create a restricted B-1 cell CDR-H3 repertoire. PMID:26104486

  13. Characterization of the Six Zebrafish Clade B Fibrillar Procollagen Genes, with Evidence for Evolutionarily Conserved Alternative Splicing within the pro-α1(V) C-propeptide

    PubMed Central

    Hoffman, Guy G.; Branam, Amanda M.; Huang, Guorui; Pelegri, Francisco; Cole, William G.; Wenstrup, Richard M.; Greenspan, Daniel S.

    2010-01-01

    Genes for tetrapod fibrillar procollagen chains can be divided into two clades, A and B, based on sequence homologies and differences in protein domain and gene structures. Although the major fibrillar collagen types I–III comprise only clade A chains, the minor fibrillar collagen types V and XI comprise both clade A chains and the clade B chains pro-α1(V), pro-α3(V), pro-α1(XI) and pro-α2(XI), in which defects can underlie various genetic connective tissue disorders. Here we characterize the clade B procollagen chains of zebrafish. We demonstrate that in contrast to the four tetrapod clade B chains, zebrafish have six clade B chains, designated here as pro-α1(V), proα3(V)a and b, pro-α1(XI)a and b, and pro-α2(XI), based on synteny, sequence homologies, and features of protein domain and gene structures. Spatiotemporal expression patterns are described, as are conserved and non-conserved features that provide insights into the function and evolution of the clade B chain types. Such features include differential alternative splicing of NH2-terminal globular sequences and the first case of a non-triple helical imperfection in the COL1 domain of a clade B, or clade A, fibrillar procollagen chain. Evidence is also provided for previously unknown and evolutionarily conserved alternative splicing within the pro-α1(V) C-propeptide, which may affect selectivity of collagen type V/XI chain associations in species ranging from zebrafish to human. Data presented herein provide insights into the nature of clade B procollagen chains and should facilitate their study in the zebrafish model system. PMID:20102740

  14. Identification and Validation of Evolutionarily Conserved Unusually Short Pre-mRNA Introns in the Human Genome

    PubMed Central

    Shimada, Makoto K.; Sasaki-Haraguchi, Noriko; Mayeda, Akila

    2015-01-01

    According to the length distribution of human introns, there is a large population of short introns with a threshold of 65 nucleotides (nt) and a peak at 85 nt. Using human genome and transcriptome databases, we investigated the introns shorter than 66 nt, termed ultra-short introns, the identities of which are scarcely known. Here, we provide for the first time a list of bona fide human ultra-short introns, which have never been characterized elsewhere. By conducting BLAST searches of the databases, we screened 22 introns (37–65 nt) with conserved lengths and sequences among closely related species. We then provide experimental and bioinformatic evidence for the splicing of 15 introns, of which 12 introns were remarkably G-rich and 9 introns contained completely inefficient splice sites and/or branch sites. These unorthodox characteristics of ultra-short introns suggest that there are unknown splicing mechanisms that differ from the well-established mechanism. PMID:25961948

  15. Identification and Validation of Evolutionarily Conserved Unusually Short Pre-mRNA Introns in the Human Genome.

    PubMed

    Shimada, Makoto K; Sasaki-Haraguchi, Noriko; Mayeda, Akila

    2015-01-01

    According to the length distribution of human introns, there is a large population of short introns with a threshold of 65 nucleotides (nt) and a peak at 85 nt. Using human genome and transcriptome databases, we investigated the introns shorter than 66 nt, termed ultra-short introns, the identities of which are scarcely known. Here, we provide for the first time a list of bona fide human ultra-short introns, which have never been characterized elsewhere. By conducting BLAST searches of the databases, we screened 22 introns (37-65 nt) with conserved lengths and sequences among closely related species. We then provide experimental and bioinformatic evidence for the splicing of 15 introns, of which 12 introns were remarkably G-rich and 9 introns contained completely inefficient splice sites and/or branch sites. These unorthodox characteristics of ultra-short introns suggest that there are unknown splicing mechanisms that differ from the well-established mechanism. PMID:25961948

  16. Evolutionarily conserved paired immunoglobulin-like receptor α (PILRα) domain mediates its interaction with diverse sialylated ligands.

    PubMed

    Sun, Yonglian; Senger, Kate; Baginski, Tomasz K; Mazloom, Anita; Chinn, Yvonne; Pantua, Homer; Hamidzadeh, Kajal; Ramani, Sree Ranjani; Luis, Elizabeth; Tom, Irene; Sebrell, Andrew; Quinones, Gabriel; Ma, Yan; Mukhyala, Kiran; Sai, Tao; Ding, Jiabing; Haley, Benjamin; Shadnia, Hooman; Kapadia, Sharookh B; Gonzalez, Lino C; Hass, Philip E; Zarrin, Ali A

    2012-05-01

    Paired immunoglobulin-like receptor (PILR) α is an inhibitory receptor that recognizes several ligands, including mouse CD99, PILR-associating neural protein, and Herpes simplex virus-1 glycoprotein B. The physiological function(s) of interactions between PILRα and its cellular ligands are not well understood, as are the molecular determinants of PILRα/ligand interactions. To address these uncertainties, we sought to identify additional PILRα ligands and further define the molecular basis for PILRα/ligand interactions. Here, we identify two novel PILRα binding partners, neuronal differentiation and proliferation factor-1 (NPDC1), and collectin-12 (COLEC12). We find that sialylated O-glycans on these novel PILRα ligands, and on known PILRα ligands, are compulsory for PILRα binding. Sialylation-dependent ligand recognition is also a property of SIGLEC1, a member of the sialic acid-binding Ig-like lectins. SIGLEC1 Ig domain shares ∼22% sequence identity with PILRα, an identity that includes a conserved arginine localized to position 97 in mouse and human SIGLEC1, position 133 in mouse PILRα and position 126 in human PILRα. We observe that PILRα/ligand interactions require conserved PILRα Arg-133 (mouse) and Arg-126 (human), in correspondence with a previously reported requirement for SIGLEC1 Arg-197 in SIGLEC1/ligand interactions. Homology modeling identifies striking similarities between PILRα and SIGLEC1 ligand binding pockets as well as at least one set of distinctive interactions in the galactoxyl-binding site. Binding studies suggest that PILRα recognizes a complex ligand domain involving both sialic acid and protein motif(s). Thus, PILRα is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILRα ligands are expressed. PMID:22396535

  17. Evolutionarily Conserved Paired Immunoglobulin-like Receptor α (PILRα) Domain Mediates Its Interaction with Diverse Sialylated Ligands

    PubMed Central

    Sun, Yonglian; Senger, Kate; Baginski, Tomasz K.; Mazloom, Anita; Chinn, Yvonne; Pantua, Homer; Hamidzadeh, Kajal; Ramani, Sree Ranjani; Luis, Elizabeth; Tom, Irene; Sebrell, Andrew; Quinones, Gabriel; Ma, Yan; Mukhyala, Kiran; Sai, Tao; Ding, Jiabing; Haley, Benjamin; Shadnia, Hooman; Kapadia, Sharookh B.; Gonzalez, Lino C.; Hass, Philip E.; Zarrin, Ali A.

    2012-01-01

    Paired immunoglobulin-like receptor (PILR) α is an inhibitory receptor that recognizes several ligands, including mouse CD99, PILR-associating neural protein, and Herpes simplex virus-1 glycoprotein B. The physiological function(s) of interactions between PILRα and its cellular ligands are not well understood, as are the molecular determinants of PILRα/ligand interactions. To address these uncertainties, we sought to identify additional PILRα ligands and further define the molecular basis for PILRα/ligand interactions. Here, we identify two novel PILRα binding partners, neuronal differentiation and proliferation factor-1 (NPDC1), and collectin-12 (COLEC12). We find that sialylated O-glycans on these novel PILRα ligands, and on known PILRα ligands, are compulsory for PILRα binding. Sialylation-dependent ligand recognition is also a property of SIGLEC1, a member of the sialic acid-binding Ig-like lectins. SIGLEC1 Ig domain shares ∼22% sequence identity with PILRα, an identity that includes a conserved arginine localized to position 97 in mouse and human SIGLEC1, position 133 in mouse PILRα and position 126 in human PILRα. We observe that PILRα/ligand interactions require conserved PILRα Arg-133 (mouse) and Arg-126 (human), in correspondence with a previously reported requirement for SIGLEC1 Arg-197 in SIGLEC1/ligand interactions. Homology modeling identifies striking similarities between PILRα and SIGLEC1 ligand binding pockets as well as at least one set of distinctive interactions in the galactoxyl-binding site. Binding studies suggest that PILRα recognizes a complex ligand domain involving both sialic acid and protein motif(s). Thus, PILRα is evolved to engage multiple ligands with common molecular determinants to modulate myeloid cell functions in anatomical settings where PILRα ligands are expressed. PMID:22396535

  18. The M1 family of vertebrate aminopeptidases: role of evolutionarily conserved tyrosines in the enzymatic mechanism of aminopeptidase B.

    PubMed

    Cadel, Sandrine; Darmon, Cécile; Pernier, Julien; Hervé, Guy; Foulon, Thierry

    2015-02-01

    Aminopeptidase B (Ap-B), a member of the M1 family of Zn(2+)-aminopeptidases, removes basic residues at the NH2-terminus of peptides and is involved in the in vivo proteolytic processing of miniglucagon and cholecystokinin-8. M1 enzymes hydrolyze numerous different peptides and are implicated in many physiological functions. As these enzymes have similar catalytic mechanisms, their respective substrate specificity and/or catalytic efficiency must be based on subtle structural differences at or near the catalytic site. This leads to the hypothesis that each primary structure contains a consensus structural template, strictly necessary for aminopeptidase activity, and a specific amino acid environment localized in or outside the catalytic pocket that finely tunes the substrate specificity and catalytic efficiency of each enzyme. A multiple sequence alignment of M1 peptidases from vertebrates allowed to identify conserved tyrosine amino acids, which are members of this catalytic backbone. In the present work, site-directed mutagenesis and 3D molecular modeling of Ap-B were used to specify the role of four fully (Y281, Y229, Y414, and Y441) and one partially (Y409) conserved residues. Tyrosine to phenylalanine mutations allowed confirming the influence of the hydroxyl groups on the enzyme activity. These groups are implicated in the reaction mechanism (Y414), in substrate specificity and/or catalytic efficiency (Y409), in stabilization of essential amino acids of the active site (Y229, Y409) and potentially in the maintenance of its structural integrity (Y281, Y441). The importance of hydrogen bonds is verified by the Y229H substitution, which preserves the enzyme activity. These data provide new insights into the catalytic mechanism of Ap-B in the M1 family of aminopeptidases. PMID:25530263

  19. Characterisation of the Trichinella spiralis Deubiquitinating Enzyme, TsUCH37, an Evolutionarily Conserved Proteasome Interaction Partner

    PubMed Central

    White, Rhiannon R.; Miyata, Sachiko; Papa, Eliseo; Spooner, Eric; Gounaris, Kleoniki; Selkirk, Murray E.; Artavanis-Tsakonas, Katerina

    2011-01-01

    Background Trichinella spiralis is a zoonotic parasitic nematode that causes trichinellosis, a disease that has been identified on all continents except Antarctica. During chronic infection, T. spiralis larvae infect skeletal myofibres, severely disrupting their differentiation state. Methodology and Results An activity-based probe, HA-Ub-VME, was used to identify deubiquitinating enzyme (DUB) activity in lysate of T. spiralis L1 larvae. Results were analysed by immuno-blot and immuno-precipitation, identifying a number of potential DUBs. Immuno-precipitated proteins were subjected to LC/MS/MS, yielding peptides with sequence homology to 5 conserved human DUBs: UCH-L5, UCH-L3, HAUSP, OTU 6B and Ataxin-3. The predicted gene encoding the putative UCH-L5 homologue, TsUCH37, was cloned and recombinant protein was expressed and purified. The deubiquitinating activity of this enzyme was verified by Ub-AMC assay. Co-precipitation of recombinant TsUCH37 showed that the protein associates with putative T. spiralis proteasome components, including the yeast Rpn13 homologue ADRM1. In addition, the UCH inhibitor LDN-57444 exhibited specific inhibition of recombinant TsUCH37 and reduced the viability of cultured L1 larvae. Conclusions This study reports the identification of the first T. spiralis DUB, a cysteine protease that is putatively orthologous to the human protein, hUCH-L5. Results suggest that the interaction of this protein with the proteasome has been conserved throughout evolution. We show potential for the use of inhibitor compounds to elucidate the role of UCH enzymes in T. spiralis infection and their investigation as therapeutic targets for trichinellosis. PMID:22013496

  20. Novel Insights into the Role of Neurospora crassa NDUFAF2, an Evolutionarily Conserved Mitochondrial Complex I Assembly Factor

    PubMed Central

    Pereira, Bruno; Videira, Arnaldo

    2013-01-01

    Complex I deficiency is commonly associated with mitochondrial oxidative phosphorylation diseases. Mutations in nuclear genes encoding structural subunits or assembly factors of complex I have been increasingly identified as the cause of the diseases. One such factor, NDUFAF2, is a paralog of the NDUFA12 structural subunit of the enzyme, but the mechanism by which it exerts its function remains unknown. Herein, we demonstrate that the Neurospora crassa NDUFAF2 homologue, the 13.4L protein, is a late assembly factor that associates with complex I assembly intermediates containing the membrane arm and the connecting part but lacking the N module of the enzyme. Furthermore, we provide evidence that dissociation of the assembly factor is dependent on the incorporation of the putative regulatory module composed of the subunits of 13.4 (NDUFA12), 18.4 (NDUFS6), and 21 (NDUFS4) kDa. Our results demonstrate that the 13.4L protein is a complex I assembly factor functionally conserved from fungi to mammals. PMID:23648483

  1. Constitutive photomorphogenesis protein 1 (COP1) and COP9 signalosome, evolutionarily conserved photomorphogenic proteins as possible targets of melatonin.

    PubMed

    Sanchez-Barcelo, Emilio J; Mediavilla, Maria D; Vriend, Jerry; Reiter, Russel J

    2016-08-01

    The ubiquitin proteasome system has been proposed as a possible mechanism involved in the multiple actions of melatonin. COP1 (constitutive photomorphogenesis protein 1), a RING finger-type ubiquitin E3 ligase formerly identified in Arabidopsis, is a central switch for the transition from plant growth underground in darkness (etiolation) to growth under light exposure (photomorphogenesis). In darkness, COP1 binds to photomorphogenic transcription factors driving its degradation via the 26S proteasome; blue light, detected by cryptochromes, and red and far-red light detected by phytochromes, negatively regulate COP1. Homologues of plant COP1 containing all the structural features present in Arabidopsis as well as E3 ubiquitin ligase activity have been identified in mice and humans. Substrates for mammalian (m) COP1 include p53, AP-1 and c-Jun, p27(Kip1) , ETV1, MVP, 14-3-3σ, C/EBPα, MTA1, PEA3, ACC, TORC2 and FOXO1. This mCOP1 target suggests functions related to tumorigenesis, gluconeogenesis, and lipid metabolism. The role of mCOP1 in tumorigenesis (either as a tumor promoter or tumor suppressor), as well as in glucose metabolism (inhibition of gluconeogenesis) and lipid metabolism (inhibition of fatty acid synthesis), has been previously demonstrated. COP1, along with numerous other ubiquitin ligases, is regulated by the COP9 signalosome; this protein complex is associated with the oxidative stress sensor Keap1 and the deubiquitinase USP15. The objective of this review was to provide new information on the possible role of COP1 and COP9 as melatonin targets. The hypothesis is based on common functional aspects of melatonin and COP1 and COP9, including their dependence on light, regulation of the metabolism, and their control of tumor growth. PMID:27121162

  2. Evolutionarily conserved multisubunit RBL2/p130 and E2F4 protein complex represses human cell cycle-dependent genes in quiescence.

    PubMed

    Litovchick, Larisa; Sadasivam, Subhashini; Florens, Laurence; Zhu, Xiaopeng; Swanson, Selene K; Velmurugan, Soundarapandian; Chen, Runsheng; Washburn, Michael P; Liu, X Shirley; DeCaprio, James A

    2007-05-25

    The mammalian Retinoblastoma (RB) family including pRB, p107, and p130 represses E2F target genes through mechanisms that are not fully understood. In D. melanogaster, RB-dependent repression is mediated in part by the multisubunit protein complex Drosophila RBF, E2F, and Myb (dREAM) that contains homologs of the C. elegans synthetic multivulva class B (synMuvB) gene products. Using an integrated approach combining proteomics, genomics, and bioinformatic analyses, we identified a p130 complex termed DP, RB-like, E2F, and MuvB (DREAM) that contains mammalian homologs of synMuvB proteins LIN-9, LIN-37, LIN-52, LIN-54, and LIN-53/RBBP4. DREAM bound to more than 800 human promoters in G0 and was required for repression of E2F target genes. In S phase, MuvB proteins dissociated from p130 and formed a distinct submodule that bound MYB. This work reveals an evolutionarily conserved multisubunit protein complex that contains p130 and E2F4, but not pRB, and mediates the repression of cell cycle-dependent genes in quiescence. PMID:17531812

  3. An evolutionarily conserved switch in response to GABA affects development and behavior of the locomotor circuit of Caenorhabditis elegans.

    PubMed

    Han, Bingjie; Bellemer, Andrew; Koelle, Michael R

    2015-04-01

    The neurotransmitter gamma-aminobutyric acid (GABA) is depolarizing in the developing vertebrate brain, but in older animals switches to hyperpolarizing and becomes the major inhibitory neurotransmitter in adults. We discovered a similar developmental switch in GABA response in Caenorhabditis elegans and have genetically analyzed its mechanism and function in a well-defined circuit. Worm GABA neurons innervate body wall muscles to control locomotion. Activation of GABAA receptors with their agonist muscimol in newly hatched first larval (L1) stage animals excites muscle contraction and thus is depolarizing. At the mid-L1 stage, as the GABAergic neurons rewire onto their mature muscle targets, muscimol shifts to relaxing muscles and thus has switched to hyperpolarizing. This muscimol response switch depends on chloride transporters in the muscles analogous to those that control GABA response in mammalian neurons: the chloride accumulator sodium-potassium-chloride-cotransporter-1 (NKCC-1) is required for the early depolarizing muscimol response, while the two chloride extruders potassium-chloride-cotransporter-2 (KCC-2) and anion-bicarbonate-transporter-1 (ABTS-1) are required for the later hyperpolarizing response. Using mutations that disrupt GABA signaling, we found that neural circuit development still proceeds to completion but with an ∼6-hr delay. Using optogenetic activation of GABAergic neurons, we found that endogenous GABAA signaling in early L1 animals, although presumably depolarizing, does not cause an excitatory response. Thus a developmental depolarizing-to-hyperpolarizing shift is an ancient conserved feature of GABA signaling, but existing theories for why this shift occurs appear inadequate to explain its function upon rigorous genetic analysis of a well-defined neural circuit. PMID:25644702

  4. An Evolutionarily Conserved Switch in Response to GABA Affects Development and Behavior of the Locomotor Circuit of Caenorhabditis elegans

    PubMed Central

    Han, Bingjie; Bellemer, Andrew; Koelle, Michael R.

    2015-01-01

    The neurotransmitter gamma-aminobutyric acid (GABA) is depolarizing in the developing vertebrate brain, but in older animals switches to hyperpolarizing and becomes the major inhibitory neurotransmitter in adults. We discovered a similar developmental switch in GABA response in Caenorhabditis elegans and have genetically analyzed its mechanism and function in a well-defined circuit. Worm GABA neurons innervate body wall muscles to control locomotion. Activation of GABAA receptors with their agonist muscimol in newly hatched first larval (L1) stage animals excites muscle contraction and thus is depolarizing. At the mid-L1 stage, as the GABAergic neurons rewire onto their mature muscle targets, muscimol shifts to relaxing muscles and thus has switched to hyperpolarizing. This muscimol response switch depends on chloride transporters in the muscles analogous to those that control GABA response in mammalian neurons: the chloride accumulator sodium-potassium-chloride-cotransporter-1 (NKCC-1) is required for the early depolarizing muscimol response, while the two chloride extruders potassium-chloride-cotransporter-2 (KCC-2) and anion-bicarbonate-transporter-1 (ABTS-1) are required for the later hyperpolarizing response. Using mutations that disrupt GABA signaling, we found that neural circuit development still proceeds to completion but with an ∼6-hr delay. Using optogenetic activation of GABAergic neurons, we found that endogenous GABAA signaling in early L1 animals, although presumably depolarizing, does not cause an excitatory response. Thus a developmental depolarizing-to-hyperpolarizing shift is an ancient conserved feature of GABA signaling, but existing theories for why this shift occurs appear inadequate to explain its function upon rigorous genetic analysis of a well-defined neural circuit. PMID:25644702

  5. Transcription Factors Exhibit Differential Conservation in Bacteria with Reduced Genomes.

    PubMed

    Galán-Vásquez, Edgardo; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2016-01-01

    The description of transcriptional regulatory networks has been pivotal in the understanding of operating principles under which organisms respond and adapt to varying conditions. While the study of the topology and dynamics of these networks has been the subject of considerable work, the investigation of the evolution of their topology, as a result of the adaptation of organisms to different environmental conditions, has received little attention. In this work, we study the evolution of transcriptional regulatory networks in bacteria from a genome reduction perspective, which manifests itself as the loss of genes at different degrees. We used the transcriptional regulatory network of Escherichia coli as a reference to compare 113 smaller, phylogenetically-related γ-proteobacteria, including 19 genomes of symbionts. We found that the type of regulatory action exerted by transcription factors, as genomes get progressively smaller, correlates well with their degree of conservation, with dual regulators being more conserved than repressors and activators in conditions of extreme reduction. In addition, we found that the preponderant conservation of dual regulators might be due to their role as both global regulators and nucleoid-associated proteins. We summarize our results in a conceptual model of how each TF type is gradually lost as genomes become smaller and give a rationale for the order in which this phenomenon occurs. PMID:26766575

  6. Transcription Factors Exhibit Differential Conservation in Bacteria with Reduced Genomes

    PubMed Central

    Galán-Vásquez, Edgardo; Sánchez-Osorio, Ismael; Martínez-Antonio, Agustino

    2016-01-01

    The description of transcriptional regulatory networks has been pivotal in the understanding of operating principles under which organisms respond and adapt to varying conditions. While the study of the topology and dynamics of these networks has been the subject of considerable work, the investigation of the evolution of their topology, as a result of the adaptation of organisms to different environmental conditions, has received little attention. In this work, we study the evolution of transcriptional regulatory networks in bacteria from a genome reduction perspective, which manifests itself as the loss of genes at different degrees. We used the transcriptional regulatory network of Escherichia coli as a reference to compare 113 smaller, phylogenetically-related γ-proteobacteria, including 19 genomes of symbionts. We found that the type of regulatory action exerted by transcription factors, as genomes get progressively smaller, correlates well with their degree of conservation, with dual regulators being more conserved than repressors and activators in conditions of extreme reduction. In addition, we found that the preponderant conservation of dual regulators might be due to their role as both global regulators and nucleoid-associated proteins. We summarize our results in a conceptual model of how each TF type is gradually lost as genomes become smaller and give a rationale for the order in which this phenomenon occurs. PMID:26766575

  7. spalt encodes an evolutionarily conserved zinc finger protein of novel structure which provides homeotic gene function in the head and tail region of the Drosophila embryo.

    PubMed Central

    Kühnlein, R P; Frommer, G; Friedrich, M; Gonzalez-Gaitan, M; Weber, A; Wagner-Bernholz, J F; Gehring, W J; Jäckle, H; Schuh, R

    1994-01-01

    The region specific homeotic gene spalt (sal) of Drosophila melanogaster promotes the specification of terminal pattern elements as opposed to segments in the trunk. Our results show that the previously reported sal transcription unit was misidentified. Based on P-element mediated germ line transformation and DNA sequence analysis of sal mutant alleles, we identified the transcription unit that carries sal function. sal is located close to the misidentified transcription unit, and it is expressed in similar temporal and spatial patterns during embryogenesis. The sal gene encodes a zinc finger protein of novel structure composed of three widely spaced 'double zinc finger' motifs of internally conserved sequences and a single zinc finger motif of different sequence. Antibodies produced against the sal protein show that sal is first expressed at the blastoderm stage and later in restricted areas of the embryonic nervous system as well as in the developing trachea. The antibodies detect sal homologous proteins in corresponding spatial and temporal patterns in the embryos of related insect species. Sequence analysis of the sal gene of Drosophila virilis, a species which is phylogenetically separated by approximately 60 million years, suggests that the sal function is conserved during evolution, consistent with its proposed role in head formation during arthropod evolution. Images PMID:7905822

  8. Cross-species transcriptional network analysis reveals conservation and variation in response to metal stress in cyanobacteria

    PubMed Central

    2013-01-01

    Background As one of the most dominant bacterial groups on Earth, cyanobacteria play a pivotal role in the global carbon cycling and the Earth atmosphere composition. Understanding their molecular responses to environmental perturbations has important scientific and environmental values. Since important biological processes or networks are often evolutionarily conserved, the cross-species transcriptional network analysis offers a useful strategy to decipher conserved and species-specific transcriptional mechanisms that cells utilize to deal with various biotic and abiotic disturbances, and it will eventually lead to a better understanding of associated adaptation and regulatory networks. Results In this study, the Weighted Gene Co-expression Network Analysis (WGCNA) approach was used to establish transcriptional networks for four important cyanobacteria species under metal stress, including iron depletion and high copper conditions. Cross-species network comparison led to discovery of several core response modules and genes possibly essential to metal stress, as well as species-specific hub genes for metal stresses in different cyanobacteria species, shedding light on survival strategies of cyanobacteria responding to different environmental perturbations. Conclusions The WGCNA analysis demonstrated that the application of cross-species transcriptional network analysis will lead to novel insights to molecular response to environmental changes which will otherwise not be achieved by analyzing data from a single species. PMID:23421563

  9. Violation of an evolutionarily conserved immunoglobulin diversity gene sequence preference promotes production of dsDNA-specific IgG antibodies.

    PubMed

    Silva-Sanchez, Aaron; Liu, Cun Ren; Vale, Andre M; Khass, Mohamed; Kapoor, Pratibha; Elgavish, Ada; Ivanov, Ivaylo I; Ippolito, Gregory C; Schelonka, Robert L; Schoeb, Trenton R; Burrows, Peter D; Schroeder, Harry W

    2015-01-01

    Variability in the developing antibody repertoire is focused on the third complementarity determining region of the H chain (CDR-H3), which lies at the center of the antigen binding site where it often plays a decisive role in antigen binding. The power of VDJ recombination and N nucleotide addition has led to the common conception that the sequence of CDR-H3 is unrestricted in its variability and random in its composition. Under this view, the immune response is solely controlled by somatic positive and negative clonal selection mechanisms that act on individual B cells to promote production of protective antibodies and prevent the production of self-reactive antibodies. This concept of a repertoire of random antigen binding sites is inconsistent with the observation that diversity (DH) gene segment sequence content by reading frame (RF) is evolutionarily conserved, creating biases in the prevalence and distribution of individual amino acids in CDR-H3. For example, arginine, which is often found in the CDR-H3 of dsDNA binding autoantibodies, is under-represented in the commonly used DH RFs rearranged by deletion, but is a frequent component of rarely used inverted RF1 (iRF1), which is rearranged by inversion. To determine the effect of altering this germline bias in DH gene segment sequence on autoantibody production, we generated mice that by genetic manipulation are forced to utilize an iRF1 sequence encoding two arginines. Over a one year period we collected serial serum samples from these unimmunized, specific pathogen-free mice and found that more than one-fifth of them contained elevated levels of dsDNA-binding IgG, but not IgM; whereas mice with a wild type DH sequence did not. Thus, germline bias against the use of arginine enriched DH sequence helps to reduce the likelihood of producing self-reactive antibodies. PMID:25706374

  10. IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress.

    PubMed

    Kinoshita, Natsuko; Wang, Huan; Kasahara, Hiroyuki; Liu, Jun; Macpherson, Cameron; Machida, Yasunori; Kamiya, Yuji; Hannah, Matthew A; Chua, Nam-Hai

    2012-09-01

    The functions of microRNAs and their target mRNAs in Arabidopsis thaliana development have been widely documented; however, roles of stress-responsive microRNAs and their targets are not as well understood. Using small RNA deep sequencing and ATH1 microarrays to profile mRNAs, we identified IAA-Ala Resistant3 (IAR3) as a new target of miR167a. As expected, IAR3 mRNA was cleaved at the miR167a complementary site and under high osmotic stress miR167a levels decreased, whereas IAR3 mRNA levels increased. IAR3 hydrolyzes an inactive form of auxin (indole-3-acetic acid [IAA]-alanine) and releases bioactive auxin (IAA), a central phytohormone for root development. In contrast with the wild type, iar3 mutants accumulated reduced IAA levels and did not display high osmotic stress-induced root architecture changes. Transgenic plants expressing a cleavage-resistant form of IAR3 mRNA accumulated high levels of IAR3 mRNAs and showed increased lateral root development compared with transgenic plants expressing wild-type IAR3. Expression of an inducible noncoding RNA to sequester miR167a by target mimicry led to an increase in IAR3 mRNA levels, further confirming the inverse relationship between the two partners. Sequence comparison revealed the miR167 target site on IAR3 mRNA is conserved in evolutionarily distant plant species. Finally, we showed that IAR3 is required for drought tolerance. PMID:22960911

  11. A Conserved Transcriptional Signature of Delayed Aging and Reduced Disease Vulnerability Is Partially Mediated by SIRT3

    PubMed Central

    Newton, Michael A.; da Silva, Cristina; Vann, James A.; Pugh, Thomas D.; Someya, Shinichi; Prolla, Tomas A.; Weindruch, Richard

    2015-01-01

    Aging is the most significant risk factor for a range of diseases, including many cancers, neurodegeneration, cardiovascular disease, and diabetes. Caloric restriction (CR) without malnutrition delays aging in diverse species, and therefore offers unique insights into age-related disease vulnerability. Previous studies suggest that there are shared mechanisms of disease resistance associated with delayed aging, however quantitative support is lacking. We therefore sought to identify a common response to CR in diverse tissues and species and determine whether this signature would reflect health status independent of aging. We analyzed gene expression datasets from eight tissues of mice subjected to CR and identified a common transcriptional signature that includes functional categories of mitochondrial energy metabolism, inflammation and ribosomal structure. This signature is detected in flies, rats, and rhesus monkeys on CR, indicating aspects of CR that are evolutionarily conserved. Detection of the signature in mouse genetic models of slowed aging indicates that it is not unique to CR but rather a common aspect of extended longevity. Mice lacking the NAD-dependent deacetylase SIRT3 fail to induce mitochondrial and anti-inflammatory elements of the signature in response to CR, suggesting a potential mechanism involving SIRT3. The inverse of this transcriptional signature is detected with consumption of a high fat diet, obesity and metabolic disease, and is reversed in response to interventions that decrease disease risk. We propose that this evolutionarily conserved, tissue-independent, transcriptional signature of delayed aging and reduced disease vulnerability is a promising target for developing therapies for age-related diseases. PMID:25830335

  12. Epstein-Barr virus infection induces expression in B lymphocytes of a novel gene encoding an evolutionarily conserved 55-kilodalton actin-bundling protein.

    PubMed

    Mosialos, G; Yamashiro, S; Baughman, R W; Matsudaira, P; Vara, L; Matsumura, F; Kieff, E; Birkenbach, M

    1994-11-01

    A novel human mRNA whose expression is induced over 200-fold in B lymphocytes by latent Epstein-Barr virus (EBV) infection was reverse transcribed, cloned, and sequenced. The mRNA is predicted to encode a protein containing four peptides which precisely match amino acid sequences from a previously identified 55-kDa actin-bundling protein, p55. In vitro translation of the cDNA results in a 55-kDa protein which binds to actin filaments in the presence of purified p55 from HeLa cells. The p55 mRNA is undetectable in non-EBV-infected B- and T-cell lines or in a myelomonocytic cell line (U937). Newly infected primary human B lymphocytes, EBV-transformed B-cell lines, latently infected Burkitt tumor cells expressing EBNA2 and LMP1, a chronic myelogenous leukemia cell line (K562), and an osteosarcoma cell line (TK143) contain high levels of p55 mRNA or protein. In EBV-transformed B cells, p55 localizes to perinuclear cytoplasm and to cell surface processes that resemble filopodia. The p55 mRNA is detected at high levels in spleen and brain tissues, at moderate levels in lung and placenta tissues, and at low levels in skeletal muscle, liver, and tonsil tissues and is undetectable in heart, kidney, pancreas, and bone marrow tissues. Immunohistochemical staining of human brain tissue demonstrates p55 localization to the perinuclear cytoplasm and dendritic processes of many, but not all, types of cortical or cerebellar neurons, to glial cells, and to capillary endothelial cells. In cultured primary rat neurons, p55 is distributed throughout the perinuclear cytoplasm and in subcortical filamentous structures of dendrites and growth cones. p55 is highly evolutionarily conserved since it shows 40% amino acid sequence identity to the Drosophila singed gene product and 37% identity to fascin, an echinoderm actin-bundling protein. The evolutionary conservation of p55 and its lack of extensive homology to other actin-binding proteins suggest that p55 has specific microfilament

  13. Conserved hemopoietic transcription factor Cg-SCL delineates hematopoiesis of Pacific oyster Crassostrea gigas.

    PubMed

    Song, Xiaorui; Wang, Hao; Chen, Hao; Sun, Mingzhe; Liang, Zhongxiu; Wang, Lingling; Song, Linsheng

    2016-04-01

    Hemocytes are the effective immunocytes in bivalves, which have been reported to be derived from stem-like cells in gill epithelium of oyster. In the present work, a conserved haematopoietic transcription factor Tal-1/Scl (Stem Cell Leukemia) was identified in Pacific oyster (Cg-SCL), and it was evolutionarily close to the orthologs in deuterostomes. Cg-SCL was highly distributed in the hemocytes as well as gill and mantle. The hemocyte specific genes Integrin, EcSOD and haematopoietic transcription factors GATA3, C-Myb, c-kit, were down-regulated when Cg-SCL was interfered by dsRNA. During the larval developmental stages, the mRNA transcripts of Cg-SCL gradually increased after fertilization and peaked at early trochophore larvae stage (10 hpf, hours post fertilization), then sharply decreased in late trochophore larvae stage (15 hpf) before resuming in umbo larvae (120 hpf). Whole-mount immunofluorescence assay further revealed that the immunoreactivity of Cg-SCL appeared in blastula larvae with two approximate symmetric spots, and this expression pattern lasted in gastrula larvae. By trochophore, the immunoreactivity formed a ring around the dorsal region and then separated into two remarkable spots at the dorsal side in D-veliger larvae. After bacterial challenge, the mRNA expression levels of Cg-SCL were significantly up-regulated in the D-veliger and umbo larvae, indicating the available hematopoietic regulation in oyster larvae. These results demonstrated that Cg-SCL could be used as haematopoietic specific marker to trace potential developmental events of hematopoiesis during ontogenesis of oyster, which occurred early in blastula stage and maintained until D-veliger larvae. PMID:26915307

  14. Structure-aided prediction of mammalian transcription factor complexes in conserved non-coding elements.

    PubMed

    Guturu, Harendra; Doxey, Andrew C; Wenger, Aaron M; Bejerano, Gill

    2013-12-19

    Mapping the DNA-binding preferences of transcription factor (TF) complexes is critical for deciphering the functions of cis-regulatory elements. Here, we developed a computational method that compares co-occurring motif spacings in conserved versus unconserved regions of the human genome to detect evolutionarily constrained binding sites of rigid TF complexes. Structural data were used to estimate TF complex physical plausibility, explore overlapping motif arrangements seldom tackled by non-structure-aware methods, and generate and analyse three-dimensional models of the predicted complexes bound to DNA. Using this approach, we predicted 422 physically realistic TF complex motifs at 18% false discovery rate, the majority of which (326, 77%) contain some sequence overlap between binding sites. The set of mostly novel complexes is enriched in known composite motifs, predictive of binding site configurations in TF-TF-DNA crystal structures, and supported by ChIP-seq datasets. Structural modelling revealed three cooperativity mechanisms: direct protein-protein interactions, potentially indirect interactions and 'through-DNA' interactions. Indeed, 38% of the predicted complexes were found to contain four or more bases in which TF pairs appear to synergize through overlapping binding to the same DNA base pairs in opposite grooves or strands. Our TF complex and associated binding site predictions are available as a web resource at http://bejerano.stanford.edu/complex. PMID:24218641

  15. Role of conserved cis-regulatory elements in the post-transcriptional regulation of the human MECP2 gene involved in autism

    PubMed Central

    2013-01-01

    Background The MECP2 gene codes for methyl CpG binding protein 2 which regulates activities of other genes in the early development of the brain. Mutations in this gene have been associated with Rett syndrome, a form of autism. The purpose of this study was to investigate the role of evolutionarily conserved cis-elements in regulating the post-transcriptional expression of the MECP2 gene and to explore their possible correlations with a mutation that is known to cause mental retardation. Results A bioinformatics approach was used to map evolutionarily conserved cis-regulatory elements in the transcribed regions of the human MECP2 gene and its mammalian orthologs. Cis-regulatory motifs including G-quadruplexes, microRNA target sites, and AU-rich elements have gained significant importance because of their role in key biological processes and as therapeutic targets. We discovered in the 5′-UTR (untranslated region) of MECP2 mRNA a highly conserved G-quadruplex which overlapped a known deletion in Rett syndrome patients with decreased levels of MeCP2 protein. We believe that this 5′-UTR G-quadruplex could be involved in regulating MECP2 translation. We mapped additional evolutionarily conserved G-quadruplexes, microRNA target sites, and AU-rich elements in the key sections of both untranslated regions. Our studies suggest the regulation of translation, mRNA turnover, and development-related alternative MECP2 polyadenylation, putatively involving interactions of conserved cis-regulatory elements with their respective trans factors and complex interactions among the trans factors themselves. We discovered highly conserved G-quadruplex motifs that were more prevalent near alternative splice sites as compared to the constitutive sites of the MECP2 gene. We also identified a pair of overlapping G-quadruplexes at an alternative 5′ splice site that could potentially regulate alternative splicing in a negative as well as a positive way in the MECP2 pre

  16. Transcriptional divergence and conservation of human and mouse erythropoiesis

    PubMed Central

    Pishesha, Novalia; Thiru, Prathapan; Shi, Jiahai; Eng, Jennifer C.; Sankaran, Vijay G.; Lodish, Harvey F.

    2014-01-01

    Mouse models have been used extensively for decades and have been instrumental in improving our understanding of mammalian erythropoiesis. Nonetheless, there are several examples of variation between human and mouse erythropoiesis. We performed a comparative global gene expression study using data from morphologically identical stage-matched sorted populations of human and mouse erythroid precursors from early to late erythroblasts. Induction and repression of major transcriptional regulators of erythropoiesis, as well as major erythroid-important proteins, are largely conserved between the species. In contrast, at a global level we identified a significant extent of divergence between the species, both at comparable stages and in the transitions between stages, especially for the 500 most highly expressed genes during development. This suggests that the response of multiple developmentally regulated genes to key erythroid transcriptional regulators represents an important modification that has occurred in the course of erythroid evolution. In developing a systematic framework to understand and study conservation and divergence between human and mouse erythropoiesis, we show how mouse models can fail to mimic specific human diseases and provide predictions for translating findings from mouse models to potential therapies for human disease. PMID:24591581

  17. Conserved Transcriptional Regulatory Programs Underlying Rice and Barley Germination

    PubMed Central

    Lin, Li; Tian, Shulan; Kaeppler, Shawn; Liu, Zongrang; An, Yong-Qiang (Charles)

    2014-01-01

    Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence. PMID

  18. Box C/D snoRNA-associated proteins: two pairs of evolutionarily ancient proteins and possible links to replication and transcription.

    PubMed Central

    Newman, D R; Kuhn, J F; Shanab, G M; Maxwell, E S

    2000-01-01

    The eukaryotic nucleolus contains a diverse population of small nucleolar RNAs (snoRNAs) essential for ribosome biogenesis. The box C/D snoRNA family possesses conserved nucleotide boxes C and D that are multifunctional elements required for snoRNA processing, snoRNA transport to the nucleolus, and 2'-O-methylation of ribosomal RNA. We have previously demonstrated that the assembly of an snoRNP complex is essential for processing the intronic box C/D snoRNAs and that specific nuclear proteins associate with the box C/D core motif in vitro. Using a box C/D motif derived from mouse U14 snoRNA, we have now affinity purified and defined four mouse proteins that associate with this minimal RNA substrate. These four proteins consist of two protein pairs: members of each pair are highly related in sequence. One protein pair corresponds to the essential yeast nucleolar proteins Nop56p and Nop58p. Affinity purification of mouse Nop58 confirms observations made in yeast that Nop58 is a core protein of the box C/D snoRNP complex. Isolation of Nop56 using this RNA motif defines an additional snoRNP core protein. The second pair of mouse proteins, designated p50 and p55, are also highly conserved among eukaryotes. Antibody probing of nuclear fractions revealed a predominance of p55 and p50 in the nucleoplasm, suggesting a possible role for the p50/p55 pair in snoRNA production and/or nucleolar transport. The reported interaction of p55 with TATA-binding protein (TBP) and replication A protein as well as the DNA helicase activity of p55 and p50 may suggest the coordination of snoRNA processing and snoRNP assembly with replication and/or transcriptional events in the nucleus. Homologs for both snoRNA-associated protein pairs occur in Archaea, strengthening the hypothesis that the box C/D RNA elements and their interacting proteins are of ancient evolutionary origin. PMID:10864044

  19. Chloroplast Elongation Factor Ts Pro-Protein Is an Evolutionarily Conserved Fusion with the S1 Domain-Containing Plastid-Specific Ribosomal Protein-7

    PubMed Central

    Beligni, María Verónica; Yamaguchi, Kenichi; Mayfield, Stephen P.

    2004-01-01

    The components of chloroplast translation are similar to those of prokaryotic translation but contain some additional unique features. Proteomic analysis of the Chlamydomonas reinhardtii chloroplast ribosome identified an S1-like protein, plastid-specific ribosomal protein-7 (PSRP-7), as a stoichiometric component of the 30S subunit. Here, we report that PSRP-7 is part of a polyprotein that contains PSRP-7 on its amino end and two translation elongation factor Ts (EF-Ts) domains at the carboxy end. We named this polyprotein PETs (for polyprotein of EF-Ts). Pets is a single-copy gene containing the only chloroplast PSRP-7 and EF-Ts sequences found in the C. reinhardtii genome. The pets precursor transcript undergoes alternative splicing to generate three mRNAs with open reading frames (ORFs) of 1.68, 1.8, and 3 kb. A 110-kD pro-protein is translated from the 3-kb ORF, and the majority of this protein is likely posttranslationally processed into the 65-kD protein PSRP-7 and a 55-kD EF-Ts. PETs homologs are found in Arabidopsis thaliana and rice (Oryza sativa). The conservation of the 110-kD PETs polyprotein in the plant kingdom suggests that PSRP-7 and EF-Ts function together in some aspects of chloroplast translation and that the PETs pro-protein may have a novel function as a whole. PMID:15548736

  20. COTRASIF: conservation-aided transcription-factor-binding site finder.

    PubMed

    Tokovenko, Bogdan; Golda, Rostyslav; Protas, Oleksiy; Obolenskaya, Maria; El'skaya, Anna

    2009-04-01

    COTRASIF is a web-based tool for the genome-wide search of evolutionary conserved regulatory regions (transcription factor-binding sites, TFBS) in eukaryotic gene promoters. Predictions are made using either a position-weight matrix search method, or a hidden Markov model search method, depending on the availability of the matrix and actual sequences of the target TFBS. COTRASIF is a fully integrated solution incorporating both a gene promoter database (based on the regular Ensembl genome annotation releases) and both JASPAR and TRANSFAC databases of TFBS matrices. To decrease the false-positives rate an integrated evolutionary conservation filter is available, which allows the selection of only those of the predicted TFBS that are present in the promoters of the related species' orthologous genes. COTRASIF is very easy to use, implements a regularly updated database of promoters and is a powerful solution for genome-wide TFBS searching. COTRASIF is freely available at http://biomed.org.ua/COTRASIF/. PMID:19264796

  1. Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation

    PubMed Central

    Beike, Anna K; Lang, Daniel; Zimmer, Andreas D; Wüst, Florian; Trautmann, Danika; Wiedemann, Gertrud; Beyer, Peter; Decker, Eva L; Reski, Ralf

    2015-01-01

    The whole-genome transcriptomic cold stress response of the moss Physcomitrella patens was analyzed and correlated with phenotypic and metabolic changes. Based on time-series microarray experiments and quantitative real-time polymerase chain reaction, we characterized the transcriptomic changes related to early stress signaling and the initiation of cold acclimation. Transcription-associated protein (TAP)-encoding genes of P. patens and Arabidopsis thaliana were classified using generalized linear models. Physiological responses were monitored with pulse-amplitude-modulated fluorometry, high-performance liquid chromatography and targeted high-performance mass spectrometry. The transcript levels of 3220 genes were significantly affected by cold. Comparative classification revealed a global specialization of TAP families, a transcript accumulation of transcriptional regulators of the stimulus/stress response and a transcript decline of developmental regulators. Although transcripts of the intermediate to later response are from evolutionarily conserved genes, the early response is dominated by species-specific genes. These orphan genes may encode as yet unknown acclimation processes. PMID:25209349

  2. Large-scale nucleotide sequence alignment and sequence variability assessment to identify the evolutionarily highly conserved regions for universal screening PCR assay design: an example of influenza A virus.

    PubMed

    Nagy, Alexander; Jiřinec, Tomáš; Černíková, Lenka; Jiřincová, Helena; Havlíčková, Martina

    2015-01-01

    The development of a diagnostic polymerase chain reaction (PCR) or quantitative PCR (qPCR) assay for universal detection of highly variable viral genomes is always a difficult task. The purpose of this chapter is to provide a guideline on how to align, process, and evaluate a huge set of homologous nucleotide sequences in order to reveal the evolutionarily most conserved positions suitable for universal qPCR primer and hybridization probe design. Attention is paid to the quantification and clear graphical visualization of the sequence variability at each position of the alignment. In addition, specific problems related to the processing of the extremely large sequence pool are highlighted. All of these steps are performed using an ordinary desktop computer without the need for extensive mathematical or computational skills. PMID:25697651

  3. In vivo analysis of developmentally and evolutionarily dynamic protein-DNA interactions regulating transcription of the Pgk2 gene during mammalian spermatogenesis.

    PubMed

    Yoshioka, Hirotaka; Geyer, Christopher B; Hornecker, Jacey L; Patel, Krishan T; McCarrey, John R

    2007-11-01

    Transcription of the testis-specific Pgk2 gene is selectively activated in primary spermatocytes to provide a source of phosphoglycerate kinase that is critical to normal motility and fertility of mammalian spermatozoa. We examined dynamic changes in protein-DNA interactions at the Pgk2 gene promoter during murine spermatogenesis in vivo by performing genomic footprinting and chromatin immunoprecipitation assays with enriched populations of murine spermatogenic cells at stages prior to, during, and following transcription of this gene. We found that genes encoding the testis-specific homeodomain factor PBX4 and its coactivator, PREP1, are expressed in patterns that mirror expression of the Pgk2 gene and that these factors become bound to the Pgk2 enhancer in cells in which this gene is actively expressed. We therefore suggest that these factors, along with CREM and SP3, direct stage- and cell type-specific transcription of the Pgk2 gene during spermatogenesis. We propose that binding of PBX4, plus its coactivator PREP1, is a rate-limiting step leading to the initiation of tissue-specific transcription of the Pgk2 gene. This study provides insight into the developmentally dynamic establishment of tissue-specific protein-DNA interactions in vivo. It also allows us to speculate about the events that led to tissue-specific regulation of the Pgk2 gene during mammalian evolution. PMID:17875925

  4. Identification of proliferation-induced genes in Arabidopsis thaliana. Characterization of a new member of the highly evolutionarily conserved histone H2A.F/Z variant subfamily.

    PubMed Central

    Callard, D; Mazzolini, L

    1997-01-01

    The changes in gene expression associated with the reinitiation of cell division and subsequent progression through the cell cycle in Arabidopsis thaliana cell-suspension cultures were investigated. Partial synchronization of cells was achieved by a technique combining phosphate starvation and a transient treatment with the DNA replication inhibitor aphidicolin. Six cDNAs corresponding to genes highly induced in proliferating cells and showing cell-cycle-regulated expression were obtained by the mRNA differential display technique. Full-length cDNA clones (cH2BAt and cH2AvAt) corresponding to two of the display products were subsequently isolated. The cH2BAt clone codes for a novel histone H2B protein, whereas the cH2AvAt cDNA corresponds to a gene encoding a new member of the highly conserved histone H2A.F/Z subfamily of chromosomal proteins. Further studies indicated that H2AvAt mRNA expression is tightly correlated with cell proliferation in cell-suspension cultures, and that closely related analogs of the encoded protein exist in Arabidopsis. The implications of the conservation of histone H2A.F/Z variants in plants are discussed. PMID:9414552

  5. Conservation of AtTZF1, AtTZF2, and AtTZF3 homolog gene regulation by salt stress in evolutionarily distant plant species

    PubMed Central

    D’Orso, Fabio; De Leonardis, Anna M.; Salvi, Sergio; Gadaleta, Agata; Ruberti, Ida; Cattivelli, Luigi; Morelli, Giorgio; Mastrangelo, Anna M.

    2015-01-01

    Arginine-rich tandem zinc-finger proteins (RR-TZF) participate in a wide range of plant developmental processes and adaptive responses to abiotic stress, such as cold, salt, and drought. This study investigates the conservation of the genes AtTZF1-5 at the level of their sequences and expression across plant species. The genomic sequences of the two RR-TZF genes TdTZF1-A and TdTZF1-B were isolated in durum wheat and assigned to chromosomes 3A and 3B, respectively. Sequence comparisons revealed that they encode proteins that are highly homologous to AtTZF1, AtTZF2, and AtTZF3. The expression profiles of these RR-TZF durum wheat and Arabidopsis proteins support a common function in the regulation of seed germination and responses to abiotic stress. In particular, analysis of plants with attenuated and overexpressed AtTZF3 indicate that AtTZF3 is a negative regulator of seed germination under conditions of salt stress. Finally, comparative sequence analyses establish that the RR-TZF genes are encoded by lower plants, including the bryophyte Physcomitrella patens and the alga Chlamydomonas reinhardtii. The regulation of the Physcomitrella AtTZF1-2-3-like genes by salt stress strongly suggests that a subgroup of the RR-TZF proteins has a function that has been conserved throughout evolution. PMID:26136754

  6. Evolutionarily conserved organization of the dopaminergic system in lamprey: SNc/VTA afferent and efferent connectivity and D2 receptor expression.

    PubMed

    Pérez-Fernández, Juan; Stephenson-Jones, Marcus; Suryanarayana, Shreyas M; Robertson, Brita; Grillner, Sten

    2014-12-01

    The dopaminergic system influences motor behavior, signals reward and novelty, and is an essential component of the basal ganglia in all vertebrates including the lamprey, one of the phylogenetically oldest vertebrates. The intrinsic organization and function of the lamprey basal ganglia is highly conserved. For instance, the direct and indirect pathways are modulated through dopamine D1 and D2 receptors in lamprey and in mammals. The nucleus of the tuberculum posterior, a homologue of the substantia nigra pars compacta (SNc)/ventral tegmental area (VTA) is present in lamprey, but only scarce data exist about its connectivity. Likewise, the D2 receptor is expressed in the striatum, but little is known about its localization in other brain areas. We used in situ hybridization and tracer injections, both in combination with tyrosine hydroxylase immunohistochemistry, to characterize the SNc/VTA efferent and afferent connectivity, and to relate its projection pattern with D2 receptor expression in particular. We show that most features of the dopaminergic system are highly conserved. As in mammals, the direct pallial (cortex in mammals) input and the basal ganglia connectivity with the SNc/VTA are present as part of the evaluation system, as well as input from the tectum as the evolutionary basis for salience/novelty detection. Moreover, the SNc/VTA receives sensory information from the olfactory bulbs, optic tectum, octavolateral area, and dorsal column nucleus, and it innervates, apart from the nigrostriatal pathway, several motor-related areas. This suggests that the dopaminergic system also contributes to the control of different motor centers at the brainstem level. PMID:24942187

  7. Critical role of evolutionarily conserved glycosylation at Asn211 in the intracellular trafficking and activity of sialyltransferase ST3Gal-II.

    PubMed

    Ruggiero, Fernando M; Vilcaes, Aldo A; Iglesias-Bartolomé, Ramiro; Daniotti, José L

    2015-07-01

    ST3Gal-II, a type II transmembrane protein, is the main mammalian sialyltransferase responsible for GD1a and GT1b ganglioside biosynthesis in brain. It contains two putative N-glycosylation sites (Asn(92) and Asn(211)). Whereas Asn(92) is only conserved in mammalian species, Asn(211) is highly conserved in mammals, birds and fish. The present study explores the occupancy and relevance for intracellular trafficking and enzyme activity of these potential N-glycosylations in human ST3Gal-II. We found that ST3Gal-II distributes along the Golgi complex, mainly in proximal compartments. By pharmacological, biochemical and site-directed mutagenesis, we observed that ST3Gal-II is mostly N-glycosylated at Asn(211) and that this co-translational modification is critical for its exit from the endoplasmic reticulum and proper Golgi localization. The individual N-glycosylation sites had different effects on ST3Gal-II enzymatic activity. Whereas the N-glycan at position Asn(211) seems to negatively influence the activity of the enzyme using both glycolipid and glycoprotein as acceptor substrates, the single N-glycan mutant at Asn(92) had only a moderate effect. Lastly, we demonstrated that the N-terminal ST3Gal-II domain containing the cytosolic, transmembrane and stem region (amino acids 1-51) is able to drive a protein reporter out of the endoplasmic reticulum and to retain it in the Golgi complex. This suggests that the C-terminal domain of ST3Gal-II depends on N-glycosylation to attain an optimum conformation for proper exit from the endoplasmic reticulum, but it does not represent an absolute requirement for Golgi complex retention of the enzyme. PMID:25916169

  8. Functional role of evolutionarily highly conserved residues, N-glycosylation level and domains of the Leishmania miltefosine transporter-Cdc50 subunit.

    PubMed

    García-Sánchez, Sebastián; Sánchez-Cañete, María P; Gamarro, Francisco; Castanys, Santiago

    2014-04-01

    Cdc50 (cell-cycle control protein 50) is a family of conserved eukaryotic proteins that interact with P4-ATPases (phospholipid translocases). Cdc50 association is essential for the endoplasmic reticulum export of P4-ATPases and proper translocase activity. In the present study, we analysed the role of Leishmania infantum LiRos3, the Cdc50 subunit of the P4-ATPase MLF (miltefosine) transporter [LiMT (L. infantum MLF transporter)], on trafficking and complex functionality using site-directed mutagenesis and domain substitution. We identified 22 invariant residues in the Cdc50 proteins from L. infantum, human and yeast. Seven of these residues are found in the extracellular domain of LiRos3, the conservation of which is critical for ensuring that LiMT arrives at the plasma membrane. The substitution of other invariant residues affects complex trafficking to a lesser extent. Furthermore, invariant residues located in the N-terminal cytosolic domain play a role in the transport activity. Partial N-glycosylation of LiRos3 reduces MLF transport and total N-deglycosylation completely inhibits LiMT trafficking to the plasma membrane. One of the N-glycosylation residues is invariant along the Cdc50 family. The transmembrane and exoplasmic domains are not interchangeable with the other two L. infantum Cdc50 proteins to maintain LiMT interaction. Taken together, these findings indicate that both invariant and N-glycosylated residues of LiRos3 are implicated in LiMT trafficking and transport activity. PMID:24447089

  9. (dC-dA)n.(dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function.

    PubMed Central

    Pardue, M L; Lowenhaupt, K; Rich, A; Nordheim, A

    1987-01-01

    In situ hybridization of (dC-dA)n.(dG-dT)n to the polytene chromosomes of Drosophila melanogaster reveals a clearly non-random distribution of chromosomal sites for this sequence. Sites are distributed over most euchromatic regions but the density of sites along the X chromosome is significantly higher than the density over the autosomes. All autosomes show approximately equal levels of hybridization except chromosome 4 which has no detectable stretches of (dC-dA)n.(dG-dT)n. Another striking feature is the lack of hybridization of the beta-heterochromatin of the chromocenter. The specific sites are conserved between different strains of D. melanogaster. The same overall chromosomal pattern of hybridization is seen for the other Drosophila species studied, including D. simulans, a sibling species with a much lower content of middle repetitive DNA, and D. virilis, a distantly related species. The evolutionary conservation of the distribution of (dC-dA)n.(dG-dT)n suggests that these sequences are of functional importance. The distribution patterns seen for D. pseudoobscura and D. miranda raise interesting speculations about function. In these species a chromosome equivalent to an autosomal arm of D. melanogaster has been translocated onto the X chromosome and acquired dosage compensation. In each species the new arm of the X also has a higher density of (dC-dA)n.(dG-dT)n similar to that seen on other X chromosomes. In addition to correlations with dosage compensation, the depletion of (dC-dA)n.(dG-dT)n in beta-heterochromatin and chromosome 4 may also be related to the fact that these regions do not normally undergo meiotic recombination. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:3111846

  10. Conservation of Transcription Start Sites within Genes across a Bacterial Genus

    PubMed Central

    Shao, Wenjun; Price, Morgan N.; Deutschbauer, Adam M.; Romine, Margaret F.

    2014-01-01

    ABSTRACT Transcription start sites (TSSs) lying inside annotated genes, on the same or opposite strand, have been observed in diverse bacteria, but the function of these unexpected transcripts is unclear. Here, we use the metal-reducing bacterium Shewanella oneidensis MR-1 and its relatives to study the evolutionary conservation of unexpected TSSs. Using high-resolution tiling microarrays and 5′-end RNA sequencing, we identified 2,531 TSSs in S. oneidensis MR-1, of which 18% were located inside coding sequences (CDSs). Comparative transcriptome analysis with seven additional Shewanella species revealed that the majority (76%) of the TSSs within the upstream regions of annotated genes (gTSSs) were conserved. Thirty percent of the TSSs that were inside genes and on the sense strand (iTSSs) were also conserved. Sequence analysis around these iTSSs showed conserved promoter motifs, suggesting that many iTSS are under purifying selection. Furthermore, conserved iTSSs are enriched for regulatory motifs, suggesting that they are regulated, and they tend to eliminate polar effects, which confirms that they are functional. In contrast, the transcription of antisense TSSs located inside CDSs (aTSSs) was significantly less likely to be conserved (22%). However, aTSSs whose transcription was conserved often have conserved promoter motifs and drive the expression of nearby genes. Overall, our findings demonstrate that some internal TSSs are conserved and drive protein expression despite their unusual locations, but the majority are not conserved and may reflect noisy initiation of transcription rather than a biological function. PMID:24987095

  11. Conservation of Transcription Start Sites within Genes across a Bacterial Genus

    SciTech Connect

    Shao, Wenjun; Price, Morgan N.; Deutschbauer, Adam M.; Romine, Margaret F.; Arkin, Adam P.

    2014-07-01

    Transcription start sites (TSSs) lying inside annotated genes, on the same or opposite strand, have been observed in diverse bacteria, but the function of these unexpected transcripts is unclear. Here, we use the metal-reducing bacterium Shewanella oneidensis MR-1 and its relatives to study the evolutionary conservation of unexpected TSSs. Using high-resolution tiling microarrays and 5'-end RNA sequencing, we identified 2,531 TSSs in S. oneidensis MR-1, of which 18% were located inside coding sequences (CDSs). Comparative transcriptome analysis with seven additional Shewanella species revealed that the majority (76%) of the TSSs within the upstream regions of annotated genes (gTSSs) were conserved. Thirty percent of the TSSs that were inside genes and on the sense strand (iTSSs) were also conserved. Sequence analysis around these iTSSs showed conserved promoter motifs, suggesting that many iTSS are under purifying selection. Furthermore, conserved iTSSs are enriched for regulatory motifs, suggesting that they are regulated, and they tend to eliminate polar effects, which confirms that they are functional. In contrast, the transcription of antisense TSSs located inside CDSs (aTSSs) was significantly less likely to be conserved (22%). However, aTSSs whose transcription was conserved often have conserved promoter motifs and drive the expression of nearby genes. Overall, our findings demonstrate that some internal TSSs are conserved and drive protein expression despite their unusual locations, but the majority are not conserved and may reflect noisy initiation of transcription rather than a biological function.

  12. Caenorhabditis elegans lin-25: a study of its role in multiple cell fate specification events involving Ras and the identification and characterization of evolutionarily conserved domains.

    PubMed Central

    Nilsson, L; Tiensuu, T; Tuck, S

    2000-01-01

    Caenorhabditis elegans lin-25 functions downstream of let-60 ras in the genetic pathway for the induction of the 1 degrees cell fate during vulval development and encodes a novel 130-kD protein. The biochemical activity of LIN-25 is presently unknown, but the protein appears to function together with SUR-2, whose human homologue binds to Mediator, a protein complex required for transcriptional regulation. We describe here experiments that indicate that, besides its role in vulval development, lin-25 also participates in the fate specification of a number of other cells in the worm that are known to require Ras-mediated signaling. We also describe the cloning of a lin-25 orthologue from C. briggsae. Sequence comparisons suggest that the gene is evolving relatively rapidly. By characterizing the molecular lesions associated with 10 lin-25 mutant alleles and by assaying in vivo the activity of mutants lin-25 generated in vitro, we have identified three domains within LIN-25 that are required for activity or stability. We have also identified a sequence that is required for efficient nuclear translocation. We discuss how lin-25 might act in cell fate specification in C. elegans within the context of models for lin-25 function in cell identity and cell signaling. PMID:11063686

  13. An evolutionarily conserved interaction of tumor suppressor protein Pdcd4 with the poly(A)-binding protein contributes to translation suppression by Pdcd4.

    PubMed

    Fehler, Olesja; Singh, Priyanka; Haas, Astrid; Ulrich, Diana; Müller, Jan P; Ohnheiser, Johanna; Klempnauer, Karl-Heinz

    2014-01-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) has been implicated in the translational regulation of specific mRNAs, however, the identities of the natural Pdcd4 target mRNAs and the mechanisms by which Pdcd4 affects their translation are not well understood. Pdcd4 binds to the eukaryotic translation initiation factor eIF4A and inhibits its helicase activity, which has suggested that Pdcd4 suppresses translation initiation of mRNAs containing structured 5'-untranslated regions. Recent work has revealed a second inhibitory mechanism, which is eIF4A-independent and involves direct RNA-binding of Pdcd4 to the target mRNAs. We have now identified the poly(A)-binding protein (PABP) as a novel direct interaction partner of Pdcd4. The ability to interact with PABP is shared between human and Drosophila Pdcd4, indicating that it has been highly conserved during evolution. Mutants of Pdcd4 that have lost the ability to interact with PABP fail to stably associate with ribosomal complexes in sucrose density gradients and to suppress translation, as exemplified by c-myb mRNA. Overall, our work identifies PABP as a novel functionally relevant Pdcd4 interaction partner that contributes to the regulation of translation by Pdcd4. PMID:25190455

  14. Conservation of Male Sterility 2 function during spore and pollen wall development supports an evolutionarily early recruitment of a core component in the sporopollenin biosynthetic pathway.

    PubMed

    Wallace, Simon; Chater, Caspar C; Kamisugi, Yasuko; Cuming, Andrew C; Wellman, Charles H; Beerling, David J; Fleming, Andrew J

    2015-01-01

    The early evolution of plants required the acquisition of a number of key adaptations to overcome physiological difficulties associated with survival on land. One of these was a tough sporopollenin wall that enclosed reproductive propagules and provided protection from desiccation and UV-B radiation. All land plants possess such walled spores (or their derived homologue, pollen). We took a reverse genetics approach, consisting of knock-out and complementation experiments to test the functional conservation of the sporopollenin-associated gene MALE STERILTY 2 (which is essential for pollen wall development in Arabidopsis thaliana) in the bryophyte Physcomitrella patens. Knock-outs of a putative moss homologue of the A. thaliana MS2 gene, which is highly expressed in the moss sporophyte, led to spores with highly defective walls comparable to that observed in the A. thaliana ms2 mutant, and extremely compromised germination. Conversely, the moss MS2 gene could not rescue the A. thaliana ms2 phenotype. The results presented here suggest that a core component of the biochemical and developmental pathway required for angiosperm pollen wall development was recruited early in land plant evolution but the continued increase in pollen wall complexity observed in angiosperms has been accompanied by divergence in MS2 gene function. PMID:25195943

  15. Two-ligand priming mechanism for potentiated phosphoinositide synthesis is an evolutionarily conserved feature of Sec14-like phosphatidylinositol and phosphatidylcholine exchange proteins.

    PubMed

    Huang, Jin; Ghosh, Ratna; Tripathi, Ashutosh; Lönnfors, Max; Somerharju, Pentti; Bankaitis, Vytas A

    2016-07-15

    Lipid signaling, particularly phosphoinositide signaling, plays a key role in regulating the extreme polarized membrane growth that drives root hair development in plants. The Arabidopsis AtSFH1 gene encodes a two-domain protein with an amino-terminal Sec14-like phosphatidylinositol transfer protein (PITP) domain linked to a carboxy-terminal nodulin domain. AtSfh1 is critical for promoting the spatially highly organized phosphatidylinositol-4,5-bisphosphate signaling program required for establishment and maintenance of polarized root hair growth. Here we demonstrate that, like the yeast Sec14, the AtSfh1 PITP domain requires both its phosphatidylinositol (PtdIns)- and phosphatidylcholine (PtdCho)-binding properties to stimulate PtdIns-4-phosphate [PtdIns(4)P] synthesis. Moreover, we show that both phospholipid-binding activities are essential for AtSfh1 activity in supporting polarized root hair growth. Finally, we report genetic and biochemical evidence that the two-ligand mechanism for potentiation of PtdIns 4-OH kinase activity is a broadly conserved feature of plant Sec14-nodulin proteins, and that this strategy appeared only late in plant evolution. Taken together, the data indicate that the PtdIns/PtdCho-exchange mechanism for stimulated PtdIns(4)P synthesis either arose independently during evolution in yeast and in higher plants, or a suitable genetic module was introduced to higher plants from a fungal source and subsequently exploited by them. PMID:27193303

  16. An evolutionarily conserved interaction of tumor suppressor protein Pdcd4 with the poly(A)-binding protein contributes to translation suppression by Pdcd4

    PubMed Central

    Fehler, Olesja; Singh, Priyanka; Haas, Astrid; Ulrich, Diana; Müller, Jan P.; Ohnheiser, Johanna; Klempnauer, Karl-Heinz

    2014-01-01

    The tumor suppressor protein programmed cell death 4 (Pdcd4) has been implicated in the translational regulation of specific mRNAs, however, the identities of the natural Pdcd4 target mRNAs and the mechanisms by which Pdcd4 affects their translation are not well understood. Pdcd4 binds to the eukaryotic translation initiation factor eIF4A and inhibits its helicase activity, which has suggested that Pdcd4 suppresses translation initiation of mRNAs containing structured 5′-untranslated regions. Recent work has revealed a second inhibitory mechanism, which is eIF4A-independent and involves direct RNA-binding of Pdcd4 to the target mRNAs. We have now identified the poly(A)-binding protein (PABP) as a novel direct interaction partner of Pdcd4. The ability to interact with PABP is shared between human and Drosophila Pdcd4, indicating that it has been highly conserved during evolution. Mutants of Pdcd4 that have lost the ability to interact with PABP fail to stably associate with ribosomal complexes in sucrose density gradients and to suppress translation, as exemplified by c-myb mRNA. Overall, our work identifies PABP as a novel functionally relevant Pdcd4 interaction partner that contributes to the regulation of translation by Pdcd4. PMID:25190455

  17. Expression of human Cfdp1 gene in Drosophila reveals new insights into the function of the evolutionarily conserved BCNT protein family

    PubMed Central

    Messina, Giovanni; Atterrato, Maria Teresa; Fanti, Laura; Giordano, Ennio; Dimitri, Patrizio

    2016-01-01

    The Bucentaur (BCNT) protein family is widely distributed in eukaryotes and is characterized by a highly conserved C-terminal domain. This family was identified two decades ago in ruminants, but its role(s) remained largely unknown. Investigating cellular functions and mechanism of action of BCNT proteins is challenging, because they have been implicated in human craniofacial development. Recently, we found that YETI, the D. melanogaster BCNT, is a chromatin factor that participates to H2A.V deposition. Here we report the effects of in vivo expression of CFDP1, the human BCNT protein, in Drosophila melanogaster. We show that CFDP1, similarly to YETI, binds to chromatin and its expression results in a wide range of abnormalities highly reminiscent of those observed in Yeti null mutants. This indicates that CFDP1 expressed in flies behaves in a dominant negative fashion disrupting the YETI function. Moreover, GST pull-down provides evidence indicating that 1) both YETI and CFDP1 undergo homodimerization and 2) YETI and CFDP1 physically interact each other by forming inactive heterodimers that would trigger the observed dominant-negative effect. Overall, our findings highlight unanticipated evidences suggesting that homodimerization mediated by the BCNT domain is integral to the chromatin functions of BCNT proteins. PMID:27151176

  18. Expression of human Cfdp1 gene in Drosophila reveals new insights into the function of the evolutionarily conserved BCNT protein family.

    PubMed

    Messina, Giovanni; Atterrato, Maria Teresa; Fanti, Laura; Giordano, Ennio; Dimitri, Patrizio

    2016-01-01

    The Bucentaur (BCNT) protein family is widely distributed in eukaryotes and is characterized by a highly conserved C-terminal domain. This family was identified two decades ago in ruminants, but its role(s) remained largely unknown. Investigating cellular functions and mechanism of action of BCNT proteins is challenging, because they have been implicated in human craniofacial development. Recently, we found that YETI, the D. melanogaster BCNT, is a chromatin factor that participates to H2A.V deposition. Here we report the effects of in vivo expression of CFDP1, the human BCNT protein, in Drosophila melanogaster. We show that CFDP1, similarly to YETI, binds to chromatin and its expression results in a wide range of abnormalities highly reminiscent of those observed in Yeti null mutants. This indicates that CFDP1 expressed in flies behaves in a dominant negative fashion disrupting the YETI function. Moreover, GST pull-down provides evidence indicating that 1) both YETI and CFDP1 undergo homodimerization and 2) YETI and CFDP1 physically interact each other by forming inactive heterodimers that would trigger the observed dominant-negative effect. Overall, our findings highlight unanticipated evidences suggesting that homodimerization mediated by the BCNT domain is integral to the chromatin functions of BCNT proteins. PMID:27151176

  19. Evolutionarily conserved IMPACT impairs various stress responses that require GCN1 for activating the eIF2 kinase GCN2.

    PubMed

    Cambiaghi, Tavane D; Pereira, Catia M; Shanmugam, Renuka; Bolech, Michael; Wek, Ronald C; Sattlegger, Evelyn; Castilho, Beatriz A

    2014-01-10

    In response to a range of environmental stresses, phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) represses general protein synthesis coincident with increased translation of specific mRNAs, such as those encoding the transcription activators GCN4 and ATF4. The eIF2α kinase GCN2 is activated by amino acid starvation by a mechanism involving GCN2 binding to an activator protein GCN1, along with association with uncharged tRNA that accumulates during nutrient deprivation. We previously showed that mammalian IMPACT and its yeast ortholog YIH1 bind to GCN1, thereby preventing GCN1 association with GCN2 and stimulation of this eIF2α kinase during amino acid depletion. GCN2 activity is also enhanced by other stresses, including proteasome inhibition, UV irradiation and lack of glucose. Here, we provide evidence that IMPACT affects directly and specifically the activation of GCN2 under these stress conditions in mammalian cells. We show that activation of mammalian GCN2 requires its interaction with GCN1 and that IMPACT promotes the dissolution of the GCN2-GCN1 complex. To a similar extent as the overexpression of YIH1, overexpression of IMPACT in yeast cells inhibited growth under all stress conditions that require GCN2 and GCN1 for cell survival, including exposure to acetic acid, high levels of NaCl, H₂O₂ or benomyl. This study extends our understanding of the roles played by GCN1 in GCN2 activation induced by a variety of stress arrangements and suggests that IMPACT and YIH1 use similar mechanisms for regulating this eIF2α kinase. PMID:24333428

  20. Post-transcriptional regulation of transcript abundance by a conserved member of the tristetraprolin family in Candida albicans

    PubMed Central

    Wells, Melissa L.; Washington, Onica L.; Hicks, Stephanie N.; Nobile, Clarissa J.; Hartooni, Nairi; Wilson, Gerald M.; Zucconi, Beth E.; Huang, Weichun; Li, Leping; Fargo, David C.; Blackshear, Perry J.

    2015-01-01

    Summary Members of the tristetraprolin (TTP) family of CCCH tandem zinc finger proteins bind to AU-rich regions in target mRNAs, leading to their deadenylation and decay. Family members in Saccharomyces cerevisiae influence iron metabolism, whereas the single protein expressed in Schizosaccharomyces pombe, Zfs1, regulates cell–cell interactions. In the human pathogen Candida albicans, deep sequencing of mutants lacking the orthologous protein, Zfs1, revealed significant increases (> 1.5-fold) in 156 transcripts. Of these, 113 (72%) contained at least one predicted TTP family member binding site in their 3′UTR, compared with only 3 of 56 (5%) down-regulated transcripts. The zfs1Δ/Δ mutant was resistant to 3-amino-1,2,4-triazole, perhaps because of increased expression of the potential target transcript encoded by HIS3. Sequences of the proteins encoded by the putative Zfs1 targets were highly conserved among other species within the fungal CTG clade, while the predicted Zfs1 binding sites in these mRNAs often ‘disappeared’ with increasing evolutionary distance from the parental species. C. albicans Zfs1 bound to the ideal mammalian TTP binding site with high affinity, and Zfs1 was associated with target transcripts after co-immunoprecipitation. Thus, the biochemical activities of these proteins in fungi are highly conserved, but Zfs1-like proteins may target different transcripts in each species. PMID:25524641

  1. Crystal structure of a dimerization domain of human Caprin-1: insights into the assembly of an evolutionarily conserved ribonucleoprotein complex consisting of Caprin-1, FMRP and G3BP1.

    PubMed

    Wu, Yuhong; Zhu, Jiang; Huang, Xiaolan; Du, Zhihua

    2016-06-01

    Caprin-1 plays roles in many important biological processes, including cellular proliferation, innate immune response, stress response and synaptic plasticity. Caprin-1 has been implicated in several human diseases, including osteosarcoma, breast cancer, viral infection, hearing loss and neurodegenerative disorders. The functions of Caprin-1 depend on its molecular-interaction network. Direct interactions have been established between Caprin-1 and the fragile X mental retardation protein (FMRP), Ras GAP-activating protein-binding protein 1 (G3BP1) and the Japanese encephalitis virus (JEV) core protein. Here, crystal structures of a fragment (residues 132-251) of Caprin-1, which adopts a novel all-α-helical fold and mediates homodimerization through a substantial interface, are reported. Homodimerization creates a large and highly negatively charged concave surface suggestive of a protein-binding groove. The FMRP-interacting sequence motif forms an integral α-helix in the dimeric Caprin-1 structure in such a way that the binding of FMRP would not disrupt the homodimerization of Caprin-1. Based on insights from the structures and existing biochemical data, the existence of an evolutionarily conserved ribonucleoprotein (RNP) complex consisting of Caprin-1, FMRP and G3BP1 is proposed. The JEV core protein may bind Caprin-1 at the negatively charged putative protein-binding groove and an adjacent E-rich sequence to hijack the RNP complex. PMID:27303792

  2. The Spatial-Functional Coupling of Box C/D and C′/D′ RNPs Is an Evolutionarily Conserved Feature of the Eukaryotic Box C/D snoRNP Nucleotide Modification Complex ▿ †

    PubMed Central

    Qu, Guosheng; van Nues, Rob W.; Watkins, Nicholas J.; Maxwell, E. Stuart

    2011-01-01

    Box C/D ribonucleoprotein particles guide the 2′-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C′/D′ motifs in the box C/D RNA. The C/D and C′/D′ RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2′-O-methylation when the C′/D′ motif was either mutated or ablated. In contrast, the C′/D′ RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C′/D′ RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C′/D′ motifs. Therefore, the spatial-functional coupling of box C/D and C′/D′ RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes. PMID:21041475

  3. The spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of the eukaryotic box C/D snoRNP nucleotide modification complex.

    PubMed

    Qu, Guosheng; van Nues, Rob W; Watkins, Nicholas J; Maxwell, E Stuart

    2011-01-01

    Box C/D ribonucleoprotein particles guide the 2'-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C'/D' motifs in the box C/D RNA. The C/D and C'/D' RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2'-O-methylation when the C'/D' motif was either mutated or ablated. In contrast, the C'/D' RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C'/D' RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C'/D' motifs. Therefore, the spatial-functional coupling of box C/D and C'/D' RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes. PMID:21041475

  4. The Evolutionarily Conserved Tre2/Bub2/Cdc16 (TBC), Lysin Motif (LysM), Domain Catalytic (TLDc) Domain Is Neuroprotective against Oxidative Stress*

    PubMed Central

    Finelli, Mattéa J.; Sanchez-Pulido, Luis; Liu, Kevin X; Davies, Kay E.; Oliver, Peter L.

    2016-01-01

    Oxidative stress is a pathological feature of many neurological disorders; therefore, utilizing proteins that are protective against such cellular insults is a potentially valuable therapeutic approach. Oxidation resistance 1 (OXR1) has been shown previously to be critical for oxidative stress resistance in neuronal cells; deletion of this gene causes neurodegeneration in mice, yet conversely, overexpression of OXR1 is protective in cellular and mouse models of amyotrophic lateral sclerosis. However, the molecular mechanisms involved are unclear. OXR1 contains the Tre2/Bub2/Cdc16 (TBC), lysin motif (LysM), domain catalytic (TLDc) domain, a motif present in a family of proteins including TBC1 domain family member 24 (TBC1D24), a protein mutated in a range of disorders characterized by seizures, hearing loss, and neurodegeneration. The TLDc domain is highly conserved across species, although the structure-function relationship is unknown. To understand the role of this domain in the stress response, we carried out systematic analysis of all mammalian TLDc domain-containing proteins, investigating their expression and neuroprotective properties in parallel. In addition, we performed a detailed structural and functional study of this domain in which we identified key residues required for its activity. Finally, we present a new mouse insertional mutant of Oxr1, confirming that specific disruption of the TLDc domain in vivo is sufficient to cause neurodegeneration. Our data demonstrate that the integrity of the TLDc domain is essential for conferring neuroprotection, an important step in understanding the functional significance of all TLDc domain-containing proteins in the cellular stress response and disease. PMID:26668325

  5. Knockout of the two evolutionarily conserved peroxisomal 3-ketoacyl-CoA thiolases in Arabidopsis recapitulates the abnormal inflorescence meristem 1 phenotype.

    PubMed

    Wiszniewski, Andrew A G; Bussell, John D; Long, Rowena L; Smith, Steven M

    2014-12-01

    A specific function for peroxisomal β-oxidation in inflorescence development in Arabidopsis thaliana is suggested by the mutation of the abnormal inflorescence meristem 1 gene, which encodes one of two peroxisomal multifunctional proteins. Therefore, it should be possible to identify other β-oxidation mutants that recapitulate the aim1 phenotype. Three genes encode peroxisomal 3-ketoacyl-CoA thiolase (KAT) in Arabidopsis. KAT2 and KAT5 are present throughout angiosperms whereas KAT1 is a Brassicaceae-specific duplication of KAT2 expressed at low levels in Arabidopsis. KAT2 plays a dominant role in all known aspects of peroxisomal β-oxidation, including that of fatty acids, pro-auxins, jasmonate precursor oxophytodienoic acid, and trans-cinnamic acid. The functions of KAT1 and KAT5 are unknown. Since KAT5 is conserved throughout vascular plants and expressed strongly in flowers, kat2 kat5 double mutants were generated. These were slow growing, had abnormally branched inflorescences, and ectopic organ growth. They made viable pollen, but produced no seed indicating that infertility was due to defective gynaecium function. These phenotypes are strikingly similar to those of aim1. KAT5 in the Brassicaceae encodes both cytosolic and peroxisomal proteins and kat2 kat5 defects could be complemented by the re-introduction of peroxisomal (but not cytosolic) KAT5. It is concluded that peroxisomal KAT2 and KAT5 have partially redundant functions and operate downstream of AIM1 to provide β-oxidation functions essential for inflorescence development and fertility. PMID:25297549

  6. Evolutionarily conserved IMPACT impairs various stress responses that require GCN1 for activating the eIF2 kinase GCN2

    SciTech Connect

    Cambiaghi, Tavane D.; Pereira, Catia M.; Shanmugam, Renuka; Bolech, Michael; Wek, Ronald C.; Sattlegger, Evelyn; Castilho, Beatriz A.

    2014-01-10

    Highlights: •GCN1 is required for mammalian and yeast GCN2 function in a variety of conditions. •Mammalian IMPACT competes with GCN2 for GCN1 binding. •IMPACT and its yeast counterpart YIH1 downregulate GCN1-dependent GCN2 activation. -- Abstract: In response to a range of environmental stresses, phosphorylation of the alpha subunit of the translation initiation factor 2 (eIF2α) represses general protein synthesis coincident with increased translation of specific mRNAs, such as those encoding the transcription activators GCN4 and ATF4. The eIF2α kinase GCN2 is activated by amino acid starvation by a mechanism involving GCN2 binding to an activator protein GCN1, along with association with uncharged tRNA that accumulates during nutrient deprivation. We previously showed that mammalian IMPACT and its yeast ortholog YIH1 bind to GCN1, thereby preventing GCN1 association with GCN2 and stimulation of this eIF2α kinase during amino acid depletion. GCN2 activity is also enhanced by other stresses, including proteasome inhibition, UV irradiation and lack of glucose. Here, we provide evidence that IMPACT affects directly and specifically the activation of GCN2 under these stress conditions in mammalian cells. We show that activation of mammalian GCN2 requires its interaction with GCN1 and that IMPACT promotes the dissolution of the GCN2–GCN1 complex. To a similar extent as the overexpression of YIH1, overexpression of IMPACT in yeast cells inhibited growth under all stress conditions that require GCN2 and GCN1 for cell survival, including exposure to acetic acid, high levels of NaCl, H{sub 2}O{sub 2} or benomyl. This study extends our understanding of the roles played by GCN1 in GCN2 activation induced by a variety of stress arrangements and suggests that IMPACT and YIH1 use similar mechanisms for regulating this eIF2α kinase.

  7. Partial Conservation between Mice and Humans in Olfactory Bulb Interneuron Transcription Factor Codes

    PubMed Central

    Fujiwara, Nana; Cave, John W.

    2016-01-01

    The mammalian main olfactory bulb (OB) has a large population of GABAergic inhibitory interneurons that contains several subtypes defined by the co-expression other neurotransmitters and calcium binding proteins. The three most commonly studied OB interneuron subtypes co-express either Calretinin, Calbindin, or Tyrosine hydroxylase (Th). Combinations of transcription factors used to specify the phenotype of progenitors are referred to as transcription factor codes, and the current understanding of transcription factor codes that specify OB inhibitory neuron phenotypes are largely based on studies in mice. The conservation of these transcription factor codes in the human OB, however, has not been investigated. The aim of this study was to establish whether transcription factor codes in OB interneurons are conserved between mice and humans. This study compared the co-expression of Foxp2, Meis2, Pax6, and Sp8 transcription factors with Calretinin, Calbindin, or Th in human and mouse OB interneurons. This analysis found strong conservation of Calretinin co-expression with Sp8 and Meis2 as well as Th co-expression with Pax6 and Meis2. This analysis also showed that selective Foxp2 co-expression with Calbindin was conserved between mice and humans, which suggests Foxp2 is a novel determinant of the OB Calbindin interneuron phenotype. Together, the findings in this study provide insight into the conservation of transcription codes for OB interneuron phenotypes between humans and mice, as well as reveal some important differences between the species. This advance in our understanding of transcription factor codes in OB interneurons provides an important complement to the codes that have been established for other regions within the mammalian central nervous system, such as the cortex and spinal cord. PMID:27489533

  8. Partial Conservation between Mice and Humans in Olfactory Bulb Interneuron Transcription Factor Codes.

    PubMed

    Fujiwara, Nana; Cave, John W

    2016-01-01

    The mammalian main olfactory bulb (OB) has a large population of GABAergic inhibitory interneurons that contains several subtypes defined by the co-expression other neurotransmitters and calcium binding proteins. The three most commonly studied OB interneuron subtypes co-express either Calretinin, Calbindin, or Tyrosine hydroxylase (Th). Combinations of transcription factors used to specify the phenotype of progenitors are referred to as transcription factor codes, and the current understanding of transcription factor codes that specify OB inhibitory neuron phenotypes are largely based on studies in mice. The conservation of these transcription factor codes in the human OB, however, has not been investigated. The aim of this study was to establish whether transcription factor codes in OB interneurons are conserved between mice and humans. This study compared the co-expression of Foxp2, Meis2, Pax6, and Sp8 transcription factors with Calretinin, Calbindin, or Th in human and mouse OB interneurons. This analysis found strong conservation of Calretinin co-expression with Sp8 and Meis2 as well as Th co-expression with Pax6 and Meis2. This analysis also showed that selective Foxp2 co-expression with Calbindin was conserved between mice and humans, which suggests Foxp2 is a novel determinant of the OB Calbindin interneuron phenotype. Together, the findings in this study provide insight into the conservation of transcription codes for OB interneuron phenotypes between humans and mice, as well as reveal some important differences between the species. This advance in our understanding of transcription factor codes in OB interneurons provides an important complement to the codes that have been established for other regions within the mammalian central nervous system, such as the cortex and spinal cord. PMID:27489533

  9. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    DOE Data Explorer

    Loots, Gabriela G. [LLNL; Ovcharenko, I. [LLNL

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. This database of evolutionary conserved regions (ECRs) in vertebrate genomes features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a comprehensive collection of promoters in all vertebrate genomes generated using multiple sources of gene annotation. The database also contains a collection of annotated transcription factor binding sites (TFBSs) in evolutionary conserved and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and fugu genomes. (taken from paper in Journal: Bioinformatics, November 7, 2006, pp. 122-124

  10. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts

    PubMed Central

    Abby, Emilie; Tourpin, Sophie; Ribeiro, Jonathan; Daniel, Katrin; Messiaen, Sébastien; Moison, Delphine; Guerquin, Justine; Gaillard, Jean-Charles; Armengaud, Jean; Langa, Francina; Toth, Attila; Martini, Emmanuelle; Livera, Gabriel

    2016-01-01

    Sexual reproduction is crucially dependent on meiosis, a conserved, specialized cell division programme that is essential for the production of haploid gametes. Here we demonstrate that fertility and the implementation of the meiotic programme require a previously uncharacterized meiosis-specific protein, MEIOC. Meioc invalidation in mice induces early and pleiotropic meiotic defects in males and females. MEIOC prevents meiotic transcript degradation and interacts with an RNA helicase that binds numerous meiotic mRNAs. Our results indicate that proper engagement into meiosis necessitates the specific stabilization of meiotic transcripts, a previously little-appreciated feature in mammals. Remarkably, the upregulation of MEIOC at the onset of meiosis does not require retinoic acid and STRA8 signalling. Thus, we propose that the complete induction of the meiotic programme requires both retinoic acid-dependent and -independent mechanisms. The latter process involving post-transcriptional regulation likely represents an ancestral mechanism, given that MEIOC homologues are conserved throughout multicellular animals. PMID:26742488

  11. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts.

    PubMed

    Abby, Emilie; Tourpin, Sophie; Ribeiro, Jonathan; Daniel, Katrin; Messiaen, Sébastien; Moison, Delphine; Guerquin, Justine; Gaillard, Jean-Charles; Armengaud, Jean; Langa, Francina; Toth, Attila; Martini, Emmanuelle; Livera, Gabriel

    2016-01-01

    Sexual reproduction is crucially dependent on meiosis, a conserved, specialized cell division programme that is essential for the production of haploid gametes. Here we demonstrate that fertility and the implementation of the meiotic programme require a previously uncharacterized meiosis-specific protein, MEIOC. Meioc invalidation in mice induces early and pleiotropic meiotic defects in males and females. MEIOC prevents meiotic transcript degradation and interacts with an RNA helicase that binds numerous meiotic mRNAs. Our results indicate that proper engagement into meiosis necessitates the specific stabilization of meiotic transcripts, a previously little-appreciated feature in mammals. Remarkably, the upregulation of MEIOC at the onset of meiosis does not require retinoic acid and STRA8 signalling. Thus, we propose that the complete induction of the meiotic programme requires both retinoic acid-dependent and -independent mechanisms. The latter process involving post-transcriptional regulation likely represents an ancestral mechanism, given that MEIOC homologues are conserved throughout multicellular animals. PMID:26742488

  12. Conserved enhancer and silencer elements responsible for differential Adh transcription in Drosophila cell lines.

    PubMed Central

    Ayer, S; Benyajati, C

    1990-01-01

    The distal promoter of Adh is differentially expressed in Drosophila tissue culture cell lines. After transfection with an exogenous Adh gene, there was a specific increase in distal alcohol dehydrogenase (ADH) transcripts in ADH-expressing (ADH+) cells above the levels observed in transfected ADH-nonexpressing (ADH-) cells. We used deletion mutations and a comparative transient-expression assay to identify the cis-acting elements responsible for enhanced Adh distal transcription in ADH+ cells. DNA sequences controlling high levels of distal transcription were localized to a 15-base-pair (bp) region nearly 500 bp upstream of the distal RNA start site. In addition, a 61-bp negative cis-acting element was found upstream from and adjacent to the enhancer. When this silencer element was deleted, distal transcription increased only in the ADH+ cell line. These distant upstream elements must interact with the promoter elements, the Adf-1-binding site and the TATA box, as they only influenced transcription when at least one of these two positive distal promoter elements was present. Internal deletions targeted to the Adf-1-binding site or the TATA box reduced transcription in both cell types but did not affect the transcription initiation site. Distal transcription in transfected ADH- cells appears to be controlled primarily through these promoter elements and does not involve the upstream regulatory elements. Evolutionary conservation in distantly related Drosophila species suggests the importance of these upstream elements in correct developmental and tissue-specific expression of ADH. Images PMID:1694013

  13. A well-conserved Plasmodium falciparum var gene shows an unusual stage-specific transcript pattern

    PubMed Central

    Kyes, Sue A.; Christodoulou, Zoe; Raza, Ahmed; Horrocks, Paul; Pinches, Robert; Rowe, J. Alexandra; Newbold, Chris I.

    2010-01-01

    Summary The var multicopy gene family encodes Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) variant antigens, which, through their ability to adhere to a variety of host receptors, are thought to be important virulence factors. The predominant expression of a single cytoadherent PfEMP1 type on an infected red blood cell, and the switching between different PfEMP1 types to evade host protective antibody responses, are processes thought to be controlled at the transcriptional level. Contradictory data have been published on the timing of var gene transcription. Reverse transcription-polymerase chain reaction (RT-PCR) data suggested that transcription of the predominant var gene occurs in the later (pigmented trophozoite) stages, whereas Northern blot data indicated such transcripts only in early (ring) stages. We investigated this discrepancy by Northern blot, with probes covering a diverse var gene repertoire. We confirm that almost all var transcript types were detected only in ring stages. However, one type, the well-conserved varCSA transcript, was present constitutively in different laboratory parasites and does not appear to undergo antigenic variation. Although varCSA has been shown to encode a chondroitin sulphate A (CSA)-binding PfEMP1, we find that the presence of full-length varCSA transcripts does not correlate with the CSA-binding phenotype. PMID:12787360

  14. Characterization of chicken octamer-binding proteins demonstrates that POU domain-containing homeobox transcription factors have been highly conserved during vertebrate evolution

    SciTech Connect

    Petryniak, B.; Postema, C.E.; McCormack, W.T.; Thompson, C.B. ); Staudt, L.M. )

    1990-02-01

    The DNA sequence motif ATTTGCAT (octamer) or its inverse complement has been identified as an evolutionarily conserved element in the promoter region of immunoglobulin genes. Two major DNA-binding proteins that bind in a sequence-specific manner to the octamer DNA sequence have been identified in mammalian species--a ubiquitously expressed protein (Oct-1) and a lymphoid-specific protein (Oct-2). During characterization of the promoter region of the chicken immunoglobulin light chain gene, the authors identified two homologous octamer-binding proteins in chicken B cells. when the cloning of the human gene for Oct-2 revealed it to be a member of a distinct family of homeobox genes, they sought to determine if the human Oct-2 cDNA could be used to identify homologous chicken homeobox genes. Using a human Oct-2 homeobox-specific DNA probe, they were able to identify 6-10 homeobox-containing genes in the chicken genome, demonstrating that the Oct-2-related subfamily of homeobox genes exists in avian species. DNA sequence analysis revealed it to be the chicken homologue of the human Oct-1 gene. Together, the data show that the POU-containing subfamily of homeobox genes have been highly conserved during vertebrate evolution, apparently as a result of selection for their DNA-binding and transcriptional regulatory properties.

  15. A conserved heptamer motif for ribosomal RNA transcription termination in animal mitochondria.

    PubMed Central

    Valverde, J R; Marco, R; Garesse, R

    1994-01-01

    A search of sequence data bases for a tridecamer transcription termination signal, previously described in human mtDNA as being responsible for the accumulation of mitochondrial ribosomal RNAs (rRNAs) in excess over the rest of mitochondrial genes, has revealed that this termination signal occurs in equivalent positions in a wide variety of organisms from protozoa to mammals. Due to the compact organization of the mtDNA, the tridecamer motif usually appears as part of the 3' adjacent gene sequence. Because in phylogenetically widely separated organisms the mitochondrial genome has experienced many rearrangements, it is interesting that its occurrence near the 3' end of the large rRNA is independent of the adjacent gene. The tridecamer sequence has diverged in phylogenetically widely separated organisms. Nevertheless, a well-conserved heptamer--TGGCAGA, the mitochondrial rRNA termination box--can be defined. Although extending the experimental evidence of its role as a transcription termination signal in humans will be of great interest, its evolutionary conservation strongly suggests that mitochondrial rRNA transcription termination could be a widely conserved mechanism in animals. Furthermore, the conservation of a homologous tridecamer motif in one of the last 3' secondary loops of nonmitochondrial 23S-like rRNAs suggests that the role of the sequence has changed during mitochondrial evolution. PMID:7515499

  16. An Evolutionarily Informed Education Science

    ERIC Educational Resources Information Center

    Geary, David C.

    2008-01-01

    Schools are a central interface between evolution and culture. They are the contexts in which children learn the evolutionarily novel abilities and knowledge needed to function as adults in modern societies. Evolutionary educational psychology is the study of how an evolved bias in children's learning and motivational systems influences their…

  17. A conserved RNA polymerase III promoter required for gammaherpesvirus TMER transcription and microRNA processing

    PubMed Central

    Diebel, Kevin W.; Claypool, David J.; van Dyk, Linda F.

    2014-01-01

    Canonical RNA polymerase III (pol III) type 2 promoters contain a single A and B box and are well documented for their role in tRNA and SINE transcription in eukaryotic cells. The genome of Murid herpesvirus 4 (MuHV-4) contains eight polycistronic tRNA-microRNA encoded RNA (TMER) genes that are transcribed from a RNA pol III type 2-like promoter containing triplicated A box elements. Here, we demonstrate that the triplicated A box sequences are required in their entirety to produce functional MuHV-4 miRNAs. We also identify that these RNA pol III type 2-like promoters are conserved in eukaryotic genomes. Human and mouse predicted tRNA genes containing these promoters also show enrichment of alternative RNA pol III transcription termination sequences and are predicted to give rise to longer tRNA primary transcripts. PMID:24747015

  18. Conserved elements in Pax6 intron 7 involved in (auto)regulation and alternative transcription.

    PubMed

    Kleinjan, Dirk A; Seawright, Anne; Childs, Andrew J; van Heyningen, Veronica

    2004-01-15

    Pax6 is a transcription factor with an essential role in eye, central nervous system, and pancreas development. Its expression pattern is restricted to these specific domains within the developing embryo. Here four conserved elements are identified in Pax6 intron 7, showing a high level of sequence conservation between human, mouse, pufferfish, and zebrafish. Three of these are shown to act as cis-regulatory elements, directing expression of a reporter gene to distinct subsets of the Pax6 expression domain. CE1 regulates gene expression in late eye development, CE2 drives expression in the diencephalon and in the developing heart tube where Pax6 is not normally expressed, while CE3 directs expression in rhombencephalon. CE2 is shown to be autoregulated in the diencephalon, responding to absence of Pax6. We identify a highly conserved Pax6 recognition site and demonstrate its ability to bind Pax6 specifically. CE1 is embedded in a CpG island, and we identify a novel Pax6 transcript which initiates from this region. Functional analysis of evolutionary conserved sequences pinpoints novel cis-acting elements that govern the regulation of the complex spatio-temporal and quantitative expression of Pax6. PMID:14732405

  19. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast.

    PubMed

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-04-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeastSchizosaccharomyces pombe Genome-wide studies of theCrz1and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2and tunicamycin treatment, as well as a∆pmr1genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of theSaccharomyces cerevisiaeorthologCrz1 These genes were functionally enriched forCrz1-conserved processes such as cell-wall biosynthesis. Overexpression ofprz1(+)increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of theO-mannosyltransferase encoding geneomh1(+) Loss ofomh1(+)abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss ofprz1(+)resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the∆prz1strain was abrogated by the loss ofgsf2(+)orcbf12(+) This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes betweenCrz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network. PMID:26896331

  20. Conserved and Diverged Functions of the Calcineurin-Activated Prz1 Transcription Factor in Fission Yeast

    PubMed Central

    Chatfield-Reed, Kate; Vachon, Lianne; Kwon, Eun-Joo Gina; Chua, Gordon

    2016-01-01

    Gene regulation in response to intracellular calcium is mediated by the calcineurin-activated transcription factor Prz1 in the fission yeast Schizosaccharomyces pombe. Genome-wide studies of the Crz1 and CrzA fungal orthologs have uncovered numerous target genes involved in conserved and species-specific cellular processes. In contrast, very few target genes of Prz1 have been published. This article identifies an extensive list of genes using transcriptome and ChIP-chip analyses under inducing conditions of Prz1, including CaCl2 and tunicamycin treatment, as well as a ∆pmr1 genetic background. We identified 165 upregulated putative target genes of Prz1 in which the majority contained a calcium-dependent response element in their promoters, similar to that of the Saccharomyces cerevisiae ortholog Crz1. These genes were functionally enriched for Crz1-conserved processes such as cell-wall biosynthesis. Overexpression of prz1+ increased resistance to the cell-wall degradation enzyme zymolyase, likely from upregulation of the O-mannosyltransferase encoding gene omh1+. Loss of omh1+ abrogates this phenotype. We uncovered a novel inhibitory role in flocculation for Prz1. Loss of prz1+ resulted in constitutive flocculation and upregulation of genes encoding the flocculins Gsf2 and Pfl3, as well as the transcription factor Cbf12. The constitutive flocculation of the ∆prz1 strain was abrogated by the loss of gsf2+ or cbf12+. This study reveals that Prz1 functions as a positive and negative transcriptional regulator of genes involved in cell-wall biosynthesis and flocculation, respectively. Moreover, comparison of target genes between Crz1/CrzA and Prz1 indicate some conservation in DNA-binding specificity, but also substantial rewiring of the calcineurin-mediated transcriptional regulatory network. PMID:26896331

  1. Microbial community transcriptional networks are conserved in three domains at ocean basin scales

    PubMed Central

    Aylward, Frank O.; Eppley, John M.; Chavez, Francisco P.; Scholin, Christopher A.; DeLong, Edward F.

    2015-01-01

    Planktonic microbial communities in the ocean are typically dominated by several cosmopolitan clades of Bacteria, Archaea, and Eukarya characterized by their ribosomal RNA gene phylogenies and genomic features. Although the environments these communities inhabit range from coastal to open ocean waters, how the biological dynamics vary between such disparate habitats is not well known. To gain insight into the differential activities of microbial populations inhabiting different oceanic provinces we compared the daily metatranscriptome profiles of related microbial populations inhabiting surface waters of both a coastal California upwelling region (CC) as well as the oligotrophic North Pacific Subtropical Gyre (NPSG). Transcriptional networks revealed that the dominant photoautotrophic microbes in each environment (Ostreococcus in CC, Prochlorococcus in NPSG) were central determinants of overall community transcriptome dynamics. Furthermore, heterotrophic bacterial clades common to both ecosystems (SAR11, SAR116, SAR86, SAR406, and Roseobacter) displayed conserved, genome-wide inter- and intrataxon transcriptional patterns and diel cycles. Populations of SAR11 and SAR86 clades in particular exhibited tightly coordinated transcriptional patterns in both coastal and pelagic ecosystems, suggesting that specific biological interactions between these groups are widespread in nature. Our results identify common diurnally oscillating behaviors among diverse planktonic microbial species regardless of habitat, suggesting that highly conserved temporally phased biotic interactions are ubiquitous among planktonic microbial communities worldwide. PMID:25775583

  2. Microbial community transcriptional networks are conserved in three domains at ocean basin scales

    NASA Astrophysics Data System (ADS)

    Aylward, Frank O.; Eppley, John M.; Smith, Jason M.; Chavez, Francisco P.; Scholin, Christopher A.; DeLong, Edward F.

    2015-04-01

    Planktonic microbial communities in the ocean are typically dominated by several cosmopolitan clades of Bacteria, Archaea, and Eukarya characterized by their ribosomal RNA gene phylogenies and genomic features. Although the environments these communities inhabit range from coastal to open ocean waters, how the biological dynamics vary between such disparate habitats is not well known. To gain insight into the differential activities of microbial populations inhabiting different oceanic provinces we compared the daily metatranscriptome profiles of related microbial populations inhabiting surface waters of both a coastal California upwelling region (CC) as well as the oligotrophic North Pacific Subtropical Gyre (NPSG). Transcriptional networks revealed that the dominant photoautotrophic microbes in each environment (Ostreococcus in CC, Prochlorococcus in NPSG) were central determinants of overall community transcriptome dynamics. Furthermore, heterotrophic bacterial clades common to both ecosystems (SAR11, SAR116, SAR86, SAR406, and Roseobacter) displayed conserved, genome-wide inter- and intrataxon transcriptional patterns and diel cycles. Populations of SAR11 and SAR86 clades in particular exhibited tightly coordinated transcriptional patterns in both coastal and pelagic ecosystems, suggesting that specific biological interactions between these groups are widespread in nature. Our results identify common diurnally oscillating behaviors among diverse planktonic microbial species regardless of habitat, suggesting that highly conserved temporally phased biotic interactions are ubiquitous among planktonic microbial communities worldwide.

  3. SMADs and FOXL2 synergistically regulate murine FSHbeta transcription via a conserved proximal promoter element.

    PubMed

    Tran, Stella; Lamba, Pankaj; Wang, Ying; Bernard, Daniel J

    2011-07-01

    Pituitary FSH regulates ovarian and testicular function. Activins stimulate FSHβ subunit (Fshb) gene transcription in gonadotrope cells, the rate-limiting step in mature FSH synthesis. Activin A-induced murine Fshb gene transcription in immortalized gonadotropes is dependent on homolog of Drosophila mothers against decapentaplegic (SMAD) proteins as well as the forkhead transcription factor FOXL2 (FOXL2). Here, we demonstrate that FOXL2 synergizes with SMAD2, SMAD3, and SMAD4 to stimulate murine Fshb promoter-reporter activity in heterologous cells. Moreover, SMAD3-induction of Fshb promoter activity or endogenous mRNA expression is dependent upon endogenous FOXL2 in homologous cells. FOXL2/SMAD synergy requires binding of both FOXL2 and SMAD3 or SMAD4 to DNA. Of three putative forkhead-binding elements identified in the murine Fshb promoter, only the most proximal is absolutely required for activin A induction of reporter activity in homologous cells. Additionally, mutations to the minimal SMAD-binding element adjacent to the proximal forkhead-binding element abrogate activin A or FOXL2/SMAD3 induction of reporter activity. In contrast, a mutation that impairs an adjacent PBX1/PREP1 (pre-B cell leukemia transcription factor 1-PBX/knotted-1 homeobox-1) binding site does not alter activin A-stimulated promoter activity in homologous cells. Collectively, these and previous data suggest a model in which activins stimulate formation of FOXL2-SMAD2/3/4 complexes, which bind to the proximal murine Fshb promoter to stimulate its transcription. Within these complexes, FOXL2 and SMAD3 or SMAD4 bind to adjacent cis-elements, with SMAD3 brokering the physical interaction with FOXL2. Because this composite response element is highly conserved, this suggests a general mechanism whereby activins may regulate and/or modulate Fshb transcription in mammals. PMID:21622537

  4. DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information

    PubMed Central

    Sierro, Nicolas; Makita, Yuko; de Hoon, Michiel; Nakai, Kenta

    2008-01-01

    DBTBS, first released in 1999, is a reference database on transcriptional regulation in Bacillus subtilis, summarizing the experimentally characterized transcription factors, their recognition sequences and the genes they regulate. Since the previous release, the original content was extended by the addition of the data contained in 569 new publications, the total of which now reaches 947. The number of B. subtilis promoters annotated in the database was more than doubled to 1475. In addition, 463 experimentally validated B. subtilis operons and their terminators have been included. Given the increase in the number of fully sequenced bacterial genomes, we decided to extend the usability of DBTBS in comparative regulatory genomics. We therefore created a new section on the conservation of the upstream regulatory sequences between homologous genes in 40 Gram-positive bacterial species, as well as on the presence of overrepresented hexameric motifs that may have regulatory functions. DBTBS can be accessed at: http://dbtbs.hgc.jp. PMID:17962296

  5. ECRbase: Database of Evolutionary Conserved Regions, Promoters, and Transcription Factor Binding Sites in Vertebrate Genomes

    SciTech Connect

    Loots, G; Ovcharenko, I

    2006-08-08

    Evolutionary conservation of DNA sequences provides a tool for the identification of functional elements in genomes. We have created a database of evolutionary conserved regions (ECRs) in vertebrate genomes entitled ECRbase that is constructed from a collection of pairwise vertebrate genome alignments produced by the ECR Browser database. ECRbase features a database of syntenic blocks that recapitulate the evolution of rearrangements in vertebrates and a collection of promoters in all vertebrate genomes presented in the database. The database also contains a collection of annotated transcription factor binding sites (TFBS) in all ECRs and promoter elements. ECRbase currently includes human, rhesus macaque, dog, opossum, rat, mouse, chicken, frog, zebrafish, and two pufferfish genomes. It is freely accessible at http://ECRbase.dcode.org.

  6. Allele Frequencies of Variants in Ultra Conserved Elements Identify Selective Pressure on Transcription Factor Binding

    PubMed Central

    Silla, Toomas; Kepp, Katrin; Tai, E. Shyong; Goh, Liang; Davila, Sonia; Ivkovic, Tina Catela; Calin, George A.; Voorhoeve, P. Mathijs

    2014-01-01

    Ultra-conserved genes or elements (UCGs/UCEs) in the human genome are extreme examples of conservation. We characterized natural variations in 2884 UCEs and UCGs in two distinct populations; Singaporean Chinese (n = 280) and Italian (n = 501) by using a pooled sample, targeted capture, sequencing approach. We identify, with high confidence, in these regions the abundance of rare SNVs (MAF<0.5%) of which 75% is not present in dbSNP137. UCEs association studies for complex human traits can use this information to model expected background variation and thus necessary power for association studies. By combining our data with 1000 Genome Project data, we show in three independent datasets that prevalent UCE variants (MAF>5%) are more often found in relatively less-conserved nucleotides within UCEs, compared to rare variants. Moreover, prevalent variants are less likely to overlap transcription factor binding site. Using SNPfold we found no significant influence of RNA secondary structure on UCE conservation. All together, these results suggest UCEs are not under selective pressure as a stretch of DNA but are under differential evolutionary pressure on the single nucleotide level. PMID:25369454

  7. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    SciTech Connect

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.; Iyer, VenkyN.; Eisen, Michael B.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  8. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast.

    PubMed

    Booth, Gregory T; Wang, Isabel X; Cheung, Vivian G; Lis, John T

    2016-06-01

    Complex regulation of gene expression in mammals has evolved from simpler eukaryotic systems, yet the mechanistic features of this evolution remain elusive. Here, we compared the transcriptional landscapes of the distantly related budding and fission yeast. We adapted the Precision Run-On sequencing (PRO-seq) approach to map the positions of RNA polymerase active sites genome-wide in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Additionally, we mapped preferred sites of transcription initiation in each organism using PRO-cap. Unexpectedly, we identify a pause in early elongation, specific to S. pombe, that requires the conserved elongation factor subunit Spt4 and resembles promoter-proximal pausing in metazoans. PRO-seq profiles in strains lacking Spt4 reveal globally elevated levels of transcribing RNA Polymerase II (Pol II) within genes in both species. Messenger RNA abundance, however, does not reflect the increases in Pol II density, indicating a global reduction in elongation rate. Together, our results provide the first base-pair resolution map of transcription elongation in S. pombe and identify divergent roles for Spt4 in controlling elongation in budding and fission yeast. PMID:27197211

  9. The Disequilibrium of Nucleosomes Distribution along Chromosomes Plays a Functional and Evolutionarily Role in Regulating Gene Expression

    PubMed Central

    Zhang, Lingfang; Ding, Feng; Xin, Chengqi; Zhang, Daoyong; Sun, Fanglin; Hu, Songnian; Yu, Jun

    2011-01-01

    To further understand the relationship between nucleosome-space occupancy (NO) and global transcriptional activity in mammals, we acquired a set of genome-wide nucleosome distribution and transcriptome data from the mouse cerebrum and testis based on ChIP (H3)-seq and RNA-seq, respectively. We identified a nearly consistent NO patterns among three mouse tissues—cerebrum, testis, and ESCs—and found, through clustering analysis for transcriptional activation, that the NO variations among chromosomes are closely associated with distinct expression levels between house-keeping (HK) genes and tissue-specific (TS) genes. Both TS and HK genes form clusters albeit the obvious majority. This feature implies that NO patterns, i.e. nucleosome binding and clustering, are coupled with gene clustering that may be functionally and evolutionarily conserved in regulating gene expression among different cell types. PMID:21886783

  10. Fibrinogen {alpha} genes: Conservation of bipartite transcripts and carboxy-terminal-extended {alpha} subunits in vertebrates

    SciTech Connect

    Fu, Y.; Cao, Y.; Hertzberg, K.M.; Grieninger, G.

    1995-11-01

    All three well-studied subunits of the clotting protein fibrinogen ({alpha}, {beta}, {gamma}) share N-terminal structural homologies, but until recently only the {beta} and {gamma} chains were recognized as having similar globular C-termini. With the discovery of an extra exon in the human fibrinogen {alpha} gene (exon VI), a minor form of the {alpha} subunit ({alpha}{sub E}) with an extended {beta}- and {gamma}-like C-terminus has been identified. In the present study, the polymerase chain reaction has been used to identify sequences that encode counterparts to {alpha}{sub E} in chicken, rabbit, rat, and baboon. The basic six-exon structure of the fibrinogen {alpha} genes is shown to be conserved among mammals and birds, as are the intron positions. Bipartite transcripts - still bearing an intron prior to the last exon - are found among the products of the various vertebrate fibrinogen {alpha} genes. The last exon represents the largest conserved segment of the gene and, in each species examined, encodes exactly 236 amino acids. The C-termini of these {alpha}{sub E} chains align without a single gap and are between 76 and 99% identical. Since the exon VI-encoded domain of {alpha}{sub E} is as well conserved as the corresponding regions of the {beta} and {gamma} chains, it follows that it is equally important and that {alpha}{sub E}-fibrinogen plays a vital, if as-yet unrecognized physiological role. 21 refs., 7 figs., 1 tab.

  11. Chromatin Remodeling and Transcriptional Control in Innate Immunity: Emergence of Akirin2 as a Novel Player.

    PubMed

    Tartey, Sarang; Takeuchi, Osamu

    2015-01-01

    Transcriptional regulation of inflammatory gene expression has been at the forefront of studies of innate immunity and is coordinately regulated by transcription factors, including NF-κB, and chromatin modifiers. The growing evidence for involvement of chromatin in the regulation of gene expression in innate immune cells, has uncovered an evolutionarily conserved role of microbial sensing and chromatin remodeling. Toll-like receptors and RIG-I-like receptors trigger these signaling pathways leading to transcriptional expression of a set of genes involved in inflammation. Tightly regulated control of this gene expression is a paramount, and often foremost, goal of most biological endeavors. In this review, we will discuss the recent progress about the molecular mechanisms governing control of pro-inflammatory gene expression by an evolutionarily conserved novel nuclear protein Akirin2 in macrophages and its emergence as an essential link between NF-κB and chromatin remodelers for transcriptional regulation. PMID:26287257

  12. Chromatin Remodeling and Transcriptional Control in Innate Immunity: Emergence of Akirin2 as a Novel Player

    PubMed Central

    Tartey, Sarang; Takeuchi, Osamu

    2015-01-01

    Transcriptional regulation of inflammatory gene expression has been at the forefront of studies of innate immunity and is coordinately regulated by transcription factors, including NF-κB, and chromatin modifiers. The growing evidence for involvement of chromatin in the regulation of gene expression in innate immune cells, has uncovered an evolutionarily conserved role of microbial sensing and chromatin remodeling. Toll-like receptors and RIG-I-like receptors trigger these signaling pathways leading to transcriptional expression of a set of genes involved in inflammation. Tightly regulated control of this gene expression is a paramount, and often foremost, goal of most biological endeavors. In this review, we will discuss the recent progress about the molecular mechanisms governing control of pro-inflammatory gene expression by an evolutionarily conserved novel nuclear protein Akirin2 in macrophages and its emergence as an essential link between NF-κB and chromatin remodelers for transcriptional regulation. PMID:26287257

  13. Conservation of transcription factor binding specificities across 600 million years of bilateria evolution.

    PubMed

    Nitta, Kazuhiro R; Jolma, Arttu; Yin, Yimeng; Morgunova, Ekaterina; Kivioja, Teemu; Akhtar, Junaid; Hens, Korneel; Toivonen, Jarkko; Deplancke, Bart; Furlong, Eileen E M; Taipale, Jussi

    2015-01-01

    Divergent morphology of species has largely been ascribed to genetic differences in the tissue-specific expression of proteins, which could be achieved by divergence in cis-regulatory elements or by altering the binding specificity of transcription factors (TFs). The relative importance of the latter has been difficult to assess, as previous systematic analyses of TF binding specificity have been performed using different methods in different species. To address this, we determined the binding specificities of 242 Drosophila TFs, and compared them to human and mouse data. This analysis revealed that TF binding specificities are highly conserved between Drosophila and mammals, and that for orthologous TFs, the similarity extends even to the level of very subtle dinucleotide binding preferences. The few human TFs with divergent specificities function in cell types not found in fruit flies, suggesting that evolution of TF specificities contributes to emergence of novel types of differentiated cells. PMID:25779349

  14. Sphingolipids, Transcription Factors, and Conserved Toolkit Genes: Developmental Plasticity in the Ant Cardiocondyla obscurior

    PubMed Central

    Schrader, Lukas; Simola, Daniel F.; Heinze, Jürgen; Oettler, Jan

    2015-01-01

    Developmental plasticity allows for the remarkable morphological specialization of individuals into castes in eusocial species of Hymenoptera. Developmental trajectories that lead to alternative caste fates are typically determined by specific environmental stimuli that induce larvae to express and maintain distinct gene expression patterns. Although most eusocial species express two castes, queens and workers, the ant Cardiocondyla obscurior expresses diphenic females and males; this provides a unique system with four discrete phenotypes to study the genomic basis of developmental plasticity in ants. We sequenced and analyzed the transcriptomes of 28 individual C. obscurior larvae of known developmental trajectory, providing the first in-depth analysis of gene expression in eusocial insect larvae. Clustering and transcription factor binding site analyses revealed that different transcription factors and functionally distinct sets of genes are recruited during larval development to induce the four alternative trajectories. In particular, we found complex patterns of gene regulation pertaining to sphingolipid metabolism, a conserved molecular pathway involved in development, obesity, and aging. PMID:25725431

  15. Dynamic Sumoylation of a Conserved Transcription Corepressor Prevents Persistent Inclusion Formation during Hyperosmotic Stress

    PubMed Central

    Oeser, Michelle L.; Amen, Triana; Nadel, Cory M.; Bradley, Amanda I.; Reed, Benjamin J.; Jones, Ramon D.; Gopalan, Janani; Kaganovich, Daniel; Gardner, Richard G.

    2016-01-01

    Cells are often exposed to physical or chemical stresses that can damage the structures of essential biomolecules. Stress-induced cellular damage can become deleterious if not managed appropriately. Rapid and adaptive responses to stresses are therefore crucial for cell survival. In eukaryotic cells, different stresses trigger post-translational modification of proteins with the small ubiquitin-like modifier SUMO. However, the specific regulatory roles of sumoylation in each stress response are not well understood. Here, we examined the sumoylation events that occur in budding yeast after exposure to hyperosmotic stress. We discovered by proteomic and biochemical analyses that hyperosmotic stress incurs the rapid and transient sumoylation of Cyc8 and Tup1, which together form a conserved transcription corepressor complex that regulates hundreds of genes. Gene expression and cell biological analyses revealed that sumoylation of each protein directs distinct outcomes. In particular, we discovered that Cyc8 sumoylation prevents the persistence of hyperosmotic stress-induced Cyc8-Tup1 inclusions, which involves a glutamine-rich prion domain in Cyc8. We propose that sumoylation protects against persistent inclusion formation during hyperosmotic stress, allowing optimal transcriptional function of the Cyc8-Tup1 complex. PMID:26800527

  16. Transcriptional trans activators of human and simian foamy viruses contain a small, highly conserved activation domain.

    PubMed Central

    Garrett, E D; He, F; Bogerd, H P; Cullen, B R

    1993-01-01

    The Bel-1 protein of human foamy virus is a potent transcriptional trans activator of its homologous long terminal repeat promoter element. Here, we demonstrate that Bel-1 can also efficiently activate gene expression when targeted to a heterologous promoter by fusion to the DNA-binding motif of the yeast GAL4 protein. Analysis of a series of deletion mutants of Bel-1 generated in this hybrid protein context suggests the presence of a single transcription activation domain that is fully contained within a discrete, approximately 30-amino-acid segment located proximal to the Bel-1 carboxy terminus. Although this short motif can be shown to function effectively in eukaryotic cells of mammalian, avian, and fungal origin, it does not bear any evident sequence homology to the known classes of eukaryotic activation domain. However, this Bel-1 activation domain was found to be fully conserved, in terms of both biological activity and location, in the distantly related Taf trans activator of simian foamy virus type 1. Images PMID:8411385

  17. Genome-wide mapping of conserved microRNAs and their host transcripts in Tribolium castaneum.

    PubMed

    Luo, Qibin; Zhou, Qing; Yu, Xiaomin; Lin, Hongbin; Hu, Songnian; Yu, Jun

    2008-06-01

    MicroRNAs (miRNAs) are endogenous 22-nt RNAs, which play important regulatory roles by post-transcriptional gene silencing. A computational strategy has been developed for the identification of conserved miRNAs based on features of known metazoan miRNAs in red flour beetle (Tribolium castaneum), which is regarded as one of the major laboratory models of arthropods. Among 118 putative miRNAs, 47% and 53% of the predicted miRNAs from the red flour beetle are harbored by known protein-coding genes (intronic) and genes located outside (intergenic miRNA), respectively. There are 31 intronic miRNAs in the same transcriptional orientation as the host genes, which may share RNA polymerase II and spliceosomal machinery with their host genes for their biogenesis. A hypothetical feedback model has been proposed based on the analysis of the relationship between intronic miRNAs and their host genes in the development of red flour beetle. PMID:18571123

  18. Conserved Promoter Motif Is Required for Cell Cycle Timing of dnaX Transcription in Caulobacter

    PubMed Central

    Keiler, Kenneth C.; Shapiro, Lucy

    2001-01-01

    Cells use highly regulated transcriptional networks to control temporally regulated events. In the bacterium Caulobacter crescentus, many cellular processes are temporally regulated with respect to the cell cycle, and the genes required for these processes are expressed immediately before the products are needed. Genes encoding factors required for DNA replication, including dnaX, dnaA, dnaN, gyrB, and dnaK, are induced at the G1/S-phase transition. By analyzing mutations in the dnaX promoter, we identified a motif between the −10 and −35 regions that is required for proper timing of gene expression. This motif, named RRF (for repression of replication factors), is conserved in the promoters of other coordinately induced replication factors. Because mutations in the RRF motif result in constitutive gene expression throughout the cell cycle, this sequence is likely to be the binding site for a cell cycle-regulated transcriptional repressor. Consistent with this hypothesis, Caulobacter extracts contain an activity that binds specifically to the RRF in vitro. PMID:11466289

  19. Conservation of lipid metabolic gene transcriptional regulatory networks in fish and mammals.

    PubMed

    Carmona-Antoñanzas, Greta; Tocher, Douglas R; Martinez-Rubio, Laura; Leaver, Michael J

    2014-01-15

    Lipid content and composition in aquafeeds have changed rapidly as a result of the recent drive to replace ecologically limited marine ingredients, fishmeal and fish oil (FO). Terrestrial plant products are the most economic and sustainable alternative; however, plant meals and oils are devoid of physiologically important cholesterol and long-chain polyunsaturated fatty acids (LC-PUFA), eicosapentaenoic (EPA), docosahexaenoic (DHA) and arachidonic (ARA) acids. Although replacement of dietary FO with vegetable oil (VO) has little effect on growth in Atlantic salmon (Salmo salar), several studies have shown major effects on the activity and expression of genes involved in lipid homeostasis. In vertebrates, sterols and LC-PUFA play crucial roles in lipid metabolism by direct interaction with lipid-sensing transcription factors (TFs) and consequent regulation of target genes. The primary aim of the present study was to elucidate the role of key TFs in the transcriptional regulation of lipid metabolism in fish by transfection and overexpression of TFs. The results show that the expression of genes of LC-PUFA biosynthesis (elovl and fads2) and cholesterol metabolism (abca1) are regulated by Lxr and Srebp TFs in salmon, indicating highly conserved regulatory mechanism across vertebrates. In addition, srebp1 and srebp2 mRNA respond to replacement of dietary FO with VO. Thus, Atlantic salmon adjust lipid metabolism in response to dietary lipid composition through the transcriptional regulation of gene expression. It may be possible to further increase efficient and effective use of sustainable alternatives to marine products in aquaculture by considering these important molecular interactions when formulating diets. PMID:24177230

  20. A conserved structural module regulates transcriptional responses to diverse stress signals in bacteria

    SciTech Connect

    Campbell, Elizabeth A.; Greenwell, Roger S.; Anthony, Jennifer R.; Wang, Sheng; Lim, Lee; Das, Kakoli; Sofia, Heidi J.; Donohue, Timothy J.; Darst, Seth A.

    2007-09-07

    In Rhodbacter sphaeroides, transcriptional response to singlet oxygen is controlled by the ECF (extracytoplasmic function) transcription factor, σΕ. ECF σ’s comprise the largest and most divergent group of the σ70-family members and are negatively regulated by their cognate anti-σ factor. Here, we determine the crystal structure of the Rhodobacter sphaeroides ECF σ factor, σE, in an inhibitory complex with its anti-σ, ChrR. The structure reveals that ChrR is composed of two structural domains separated by a flexible linker. The N-terminal domain sterically occludes the two primary binding determinants on σE for core RNA polymerase and is thus referred to as the ASD (anti-σ domain). Genetic and biochemical characterization of the two domains show that the ASD is sufficient to inhibit σE dependant transcription and the C-terminal domain is required for response to singlet oxygen and the release of σE from the ASD. In addition, structural and sequence analyses of the ASD of ChrR and other ECF anti-σ’s, reveal that the N-terminal domain of different groups of ECF anti-σ’s share a common structural fold with some sequence similarity. Bioinformatics studies show that the ASD occurs in as many as one third of ECF anti-σ’s, many of which have diverse C-terminal domains. The conserved ASD are sometimes fused to diverse C-terminal domains. These studies reveal that the ASD class of anti-σ’s are extraordinarily diverse, based on the type of σΕ factors they are associated with and the C-terminal domains to which they are linked.

  1. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans

    PubMed Central

    Ahn, Jeong H.; Rechsteiner, Andreas; Strome, Susan; Kelly, William G.

    2016-01-01

    The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3’ end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139

  2. A Conserved Nuclear Cyclophilin Is Required for Both RNA Polymerase II Elongation and Co-transcriptional Splicing in Caenorhabditis elegans.

    PubMed

    Ahn, Jeong H; Rechsteiner, Andreas; Strome, Susan; Kelly, William G

    2016-08-01

    The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3' end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation. PMID:27541139

  3. Thioredoxins in evolutionarily primitive organisms

    NASA Technical Reports Server (NTRS)

    Buchanan, B. B.

    1986-01-01

    Thioredoxins are low molecular weight redox proteins, alternating between the S-S (oxidized) and SH (reduced) states, that function in a number of biochemical processes, including DNA synthesis, DNA replication, and enzyme regulation. Until recently, reduced ferredoxin was known to serve as the source of reducing power for the reduction of thioredoxins only in oxygenic photosynthetic cells. In all other organisms, the source of hydrogen (electrons) for thioredoxin reduction was considered to be NADPH. It was found that Clostridium pasteurianum, an anaerobic organism normally living in the soil unexposed to light, resembles photosynthetic cells in using ferredoxin for the reduction of thioredoxin. The results reveal the existence of a pathway in which ferredoxin, provides the reducing power for the reduction of thioredoxin via the flavoprotein enzyme, ferredoxinthioredoxin reductase. In related studies, it was found that Chromatium vinosum, an anaerobic photosynthetic purple sulfur bacterium, resembles evolutionarily more advanced micro-organisms in having an NADP-thioredoxin system composed of a single thioredoxin which is reduced by NADPH via NADP-thioredoxin reductase. The adoption of the NADP-thioredoxin system by Chromatium seems appropriate in view of evidence tha the organi sm utilizes ATP-driven reverse electron transport. Finally, results of research directed towards the identification of target enzymes of the ferredoxin/thioredoxin system in a cyanobacterium (Nostoc muscorum), show that thioredoxin-linked photosynthetic enzymes of cyanobateria are similar to those of chloroplasts. It now seems that the ferredoxin/thioredoxin system functions in regulating CO2 assimilation via the reductive pentose phosphate cycle in oxygenic but not anoxygenic photosynthetic cells.

  4. Conservation of Histone Binding and Transcriptional Repressor Functions in a Schizosaccharomyces pombe Tup1p Homolog

    PubMed Central

    Mukai, Yukio; Matsuo, Eri; Roth, Sharon Y.; Harashima, Satoshi

    1999-01-01

    The Ssn6p-Tup1p corepressor complex is important to the regulation of several diverse genes in Saccharomyces cerevisiae and serves as a model for corepressor functions. To investigate the evolutionary conservation of these functions, sequences homologous to the S. cerevisiae TUP1 gene were cloned from Kluyveromyces lactis (TUP1) and Schizosaccharomyces pombe (tup11+). Interestingly, while the K. lactis TUP1 gene complemented an S. cerevisiae tup1 null mutation, the S. pombe tup11+ gene did not, even when expressed under the control of the S. cerevisiae TUP1 promoter. However, an S. pombe Tup11p-LexA fusion protein repressed transcription of a corresponding reporter gene, indicating that this Tup1p homolog has intrinsic repressor activity. Moreover, a chimeric protein containing the amino-terminal Ssn6p-binding domain of S. cerevisiae Tup1p and 544 amino acids from the C-terminal region of S. pombe Tup11p complemented the S. cerevisiae tup1 mutation. The failure of native S. pombe Tup11p to complement loss of Tup1p functions in S. cerevisiae corresponds to an inability to bind to S. cerevisiae Ssn6p in vitro. Disruption of tup11+ in combination with a disruption of tup12+, another TUP1 homolog gene in S. pombe, causes a defect in glucose repression of fbp1+, suggesting that S. pombe Tup1p homologs function as repressors in S. pombe. Furthermore, Tup11p binds specifically to histones H3 and H4 in vitro, indicating that both the repression and histone binding functions of Tup1p-related proteins are conserved across species. PMID:10567571

  5. Conservation of transcription factor binding specificities across 600 million years of bilateria evolution

    PubMed Central

    Nitta, Kazuhiro R; Jolma, Arttu; Yin, Yimeng; Morgunova, Ekaterina; Kivioja, Teemu; Akhtar, Junaid; Hens, Korneel; Toivonen, Jarkko; Deplancke, Bart; Furlong, Eileen E M; Taipale, Jussi

    2015-01-01

    Divergent morphology of species has largely been ascribed to genetic differences in the tissue-specific expression of proteins, which could be achieved by divergence in cis-regulatory elements or by altering the binding specificity of transcription factors (TFs). The relative importance of the latter has been difficult to assess, as previous systematic analyses of TF binding specificity have been performed using different methods in different species. To address this, we determined the binding specificities of 242 Drosophila TFs, and compared them to human and mouse data. This analysis revealed that TF binding specificities are highly conserved between Drosophila and mammals, and that for orthologous TFs, the similarity extends even to the level of very subtle dinucleotide binding preferences. The few human TFs with divergent specificities function in cell types not found in fruit flies, suggesting that evolution of TF specificities contributes to emergence of novel types of differentiated cells. DOI: http://dx.doi.org/10.7554/eLife.04837.001 PMID:25779349

  6. The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli

    SciTech Connect

    Eraso, Jesus M.; Markillie, Lye Meng; Mitchell, Hugh D.; Taylor, Ronald C.; Orr, Galya; Margolin, William

    2014-05-05

    The mraZ and mraW genes are highly conserved in bacteria, both in sequence and location at the head of the division and cell wall (dcw) gene cluster. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin, and MraW is known to methylate ribosomal RNA, mraZ and mraW null mutants have no detectable growth phenotype in any species tested to date, hampering progress in understanding their physiological role. Here we show that overproduction of Escherichia coli MraZ perturbs cell division and the cell envelope, is more lethal at high levels or in minimal growth medium, and that MraW antagonizes these effects. MraZGFP localizes to the nucleoid, suggesting that it binds DNA. Indeed, purified MraZ directly binds a region upstream from its own promoter containing three direct repeats to regulate its own expression and that of downstream cell division and cell wall genes. MraZ-LacZ fusions are repressed by excess MraZ but not when DNA binding by MraZ is inhibited. RNAseq analysis indicates that MraZ is a global transcriptional regulator with numerous targets in addition to dcw genes. One of these targets, mioC, is directly bound by MraZ in a region with three direct repeats.

  7. Psychological Well-Being and the Human Conserved Transcriptional Response to Adversity

    PubMed Central

    Fredrickson, Barbara L.; Grewen, Karen M.; Algoe, Sara B.; Firestine, Ann M.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cole, Steve W.

    2015-01-01

    Research in human social genomics has identified a conserved transcriptional response to adversity (CTRA) characterized by up-regulated expression of pro-inflammatory genes and down-regulated expression of Type I interferon- and antibody-related genes. This report seeks to identify the specific aspects of positive psychological well-being that oppose such effects and predict reduced CTRA gene expression. In a new confirmation study of 122 healthy adults that replicated the approach of a previously reported discovery study, mixed effect linear model analyses identified a significant inverse association between expression of CTRA indicator genes and a summary measure of eudaimonic well-being from the Mental Health Continuum – Short Form. Analyses of a 2- representation of eudaimonia converged in finding correlated psychological and social subdomains of eudaimonic well-being to be the primary carriers of CTRA associations. Hedonic well-being showed no consistent CTRA association independent of eudaimonic well-being, and summary measures integrating hedonic and eudaimonic well-being showed less stable CTRA associations than did focal measures of eudaimonia (psychological and social well-being). Similar results emerged from analyses of pooled discovery and confirmation samples (n = 198). Similar results also emerged from analyses of a second new generalization study of 107 healthy adults that included the more detailed Ryff Scales of Psychological Well-being and found this more robust measure of eudaimonic well-being to also associate with reduced CTRA gene expression. Five of the 6 major sub-domains of psychological well-being predicted reduced CTRA gene expression when analyzed separately, and 3 remained distinctively prognostic in mutually adjusted analyses. All associations were independent of demographic characteristics, health-related confounders, and RNA indicators of leukocyte subset distribution. These results identify specific sub-dimensions of eudaimonic

  8. Psychological well-being and the human conserved transcriptional response to adversity.

    PubMed

    Fredrickson, Barbara L; Grewen, Karen M; Algoe, Sara B; Firestine, Ann M; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steve W

    2015-01-01

    Research in human social genomics has identified a conserved transcriptional response to adversity (CTRA) characterized by up-regulated expression of pro-inflammatory genes and down-regulated expression of Type I interferon- and antibody-related genes. This report seeks to identify the specific aspects of positive psychological well-being that oppose such effects and predict reduced CTRA gene expression. In a new confirmation study of 122 healthy adults that replicated the approach of a previously reported discovery study, mixed effect linear model analyses identified a significant inverse association between expression of CTRA indicator genes and a summary measure of eudaimonic well-being from the Mental Health Continuum - Short Form. Analyses of a 2- representation of eudaimonia converged in finding correlated psychological and social subdomains of eudaimonic well-being to be the primary carriers of CTRA associations. Hedonic well-being showed no consistent CTRA association independent of eudaimonic well-being, and summary measures integrating hedonic and eudaimonic well-being showed less stable CTRA associations than did focal measures of eudaimonia (psychological and social well-being). Similar results emerged from analyses of pooled discovery and confirmation samples (n = 198). Similar results also emerged from analyses of a second new generalization study of 107 healthy adults that included the more detailed Ryff Scales of Psychological Well-being and found this more robust measure of eudaimonic well-being to also associate with reduced CTRA gene expression. Five of the 6 major sub-domains of psychological well-being predicted reduced CTRA gene expression when analyzed separately, and 3 remained distinctively prognostic in mutually adjusted analyses. All associations were independent of demographic characteristics, health-related confounders, and RNA indicators of leukocyte subset distribution. These results identify specific sub-dimensions of eudaimonic well

  9. The Highly Conserved MraZ Protein Is a Transcriptional Regulator in Escherichia coli

    PubMed Central

    Eraso, Jesus M.; Markillie, Lye M.; Mitchell, Hugh D.; Taylor, Ronald C.; Orr, Galya

    2014-01-01

    The mraZ and mraW genes are highly conserved in bacteria, both in sequence and in their position at the head of the division and cell wall (dcw) gene cluster. Located directly upstream of the mraZ gene, the Pmra promoter drives the transcription of mraZ and mraW, as well as many essential cell division and cell wall genes, but no regulator of Pmra has been found to date. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin and MraW is known to methylate the 16S rRNA, mraZ and mraW null mutants have no detectable phenotypes. Here we show that overproduction of Escherichia coli MraZ inhibited cell division and was lethal in rich medium at high induction levels and in minimal medium at low induction levels. Co-overproduction of MraW suppressed MraZ toxicity, and loss of MraW enhanced MraZ toxicity, suggesting that MraZ and MraW have antagonistic functions. MraZ-green fluorescent protein localized to the nucleoid, suggesting that it binds DNA. Consistent with this idea, purified MraZ directly bound a region of DNA containing three direct repeats between Pmra and the mraZ gene. Excess MraZ reduced the expression of an mraZ-lacZ reporter, suggesting that MraZ acts as a repressor of Pmra, whereas a DNA-binding mutant form of MraZ failed to repress expression. Transcriptome sequencing (RNA-seq) analysis suggested that MraZ also regulates the expression of genes outside the dcw cluster. In support of this, purified MraZ could directly bind to a putative operator site upstream of mioC, one of the repressed genes identified by RNA-seq. PMID:24659771

  10. Conserved rates and patterns of transcription errors across bacterial growth states and lifestyles.

    PubMed

    Traverse, Charles C; Ochman, Howard

    2016-03-22

    Errors that occur during transcription have received much less attention than the mutations that occur in DNA because transcription errors are not heritable and usually result in a very limited number of altered proteins. However, transcription error rates are typically several orders of magnitude higher than the mutation rate. Also, individual transcripts can be translated multiple times, so a single error can have substantial effects on the pool of proteins. Transcription errors can also contribute to cellular noise, thereby influencing cell survival under stressful conditions, such as starvation or antibiotic stress. Implementing a method that captures transcription errors genome-wide, we measured the rates and spectra of transcription errors in Escherichia coli and in endosymbionts for which mutation and/or substitution rates are greatly elevated over those of E. coli Under all tested conditions, across all species, and even for different categories of RNA sequences (mRNA and rRNAs), there were no significant differences in rates of transcription errors, which ranged from 2.3 × 10(-5) per nucleotide in mRNA of the endosymbiont Buchnera aphidicola to 5.2 × 10(-5) per nucleotide in rRNA of the endosymbiont Carsonella ruddii The similarity of transcription error rates in these bacterial endosymbionts to that in E. coli (4.63 × 10(-5) per nucleotide) is all the more surprising given that genomic erosion has resulted in the loss of transcription fidelity factors in both Buchnera and Carsonella. PMID:26884158

  11. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes

    PubMed Central

    Uhl, Juli D.; Zandvakili, Arya; Gebelein, Brian

    2016-01-01

    cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. PMID:27058369

  12. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes.

    PubMed

    Uhl, Juli D; Zandvakili, Arya; Gebelein, Brian

    2016-04-01

    cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. PMID:27058369

  13. Quantitative gene expression profiling of mouse brain regions reveals differential transcripts conserved in human and affected in disease models.

    PubMed

    Brochier, Camille; Gaillard, Marie-Claude; Diguet, Elsa; Caudy, Nicolas; Dossat, Carole; Ségurens, Béatrice; Wincker, Patrick; Roze, Emmanuel; Caboche, Jocelyne; Hantraye, Philippe; Brouillet, Emmanuel; Elalouf, Jean-Marc; de Chaldée, Michel

    2008-04-22

    Using serial analysis of gene expression, we collected quantitative transcriptome data in 11 regions of the adult wild-type mouse brain: the orbital, prelimbic, cingulate, motor, somatosensory, and entorhinal cortices, the caudate-putamen, the nucleus accumbens, the thalamus, the substantia nigra, and the ventral tegmental area. With >1.2 million cDNA tags sequenced, this database is a powerful resource to explore brain functions and disorders. As an illustration, we performed interregional comparisons and found 315 differential transcripts. Most of them are poorly characterized and 20% lack functional annotation. For 78 differential transcripts, we provide independent expression level measurements in mouse brain regions by real-time quantitative RT-PCR. We also show examples where we used in situ hybridization to achieve infrastructural resolution. For 30 transcripts, we next demonstrated that regional enrichment is conserved in the human brain. We then quantified the expression levels of region-enriched transcripts in the R6/2 mouse model of Huntington disease and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson disease and observed significant alterations in the striatum, cerebral cortex, thalamus and substantia nigra of R6/2 mice and in the striatum of MPTP-treated mice. These results show that the gene expression data provided here for the mouse brain can be used to explore pathophysiological models and disclose transcripts differentially expressed in human brain regions. PMID:18252803

  14. Conserved Units of Co-Expression in Bacterial Genomes: An Evolutionary Insight into Transcriptional Regulation

    PubMed Central

    Junier, Ivan; Rivoire, Olivier

    2016-01-01

    Genome-wide measurements of transcriptional activity in bacteria indicate that the transcription of successive genes is strongly correlated beyond the scale of operons. Here, we analyze hundreds of bacterial genomes to identify supra-operonic segments of genes that are proximal in a large number of genomes. We show that these synteny segments correspond to genomic units of strong transcriptional co-expression. Structurally, the segments contain operons with specific relative orientations (co-directional or divergent) and nucleoid-associated proteins are found to bind at their boundaries. Functionally, operons inside a same segment are highly co-expressed even in the apparent absence of regulatory factors at their promoter regions. Remote operons along DNA can also be co-expressed if their corresponding segments share a transcriptional or sigma factor, without requiring these factors to bind directly to the promoters of the operons. As evidence that these results apply across the bacterial kingdom, we demonstrate them both in the Gram-negative bacterium Escherichia coli and in the Gram-positive bacterium Bacillus subtilis. The underlying process that we propose involves only RNA-polymerases and DNA: it implies that the transcription of an operon mechanically enhances the transcription of adjacent operons. In support of a primary role of this regulation by facilitated co-transcription, we show that the transcription en bloc of successive operons as a result of transcriptional read-through is strongly and specifically enhanced in synteny segments. Finally, our analysis indicates that facilitated co-transcription may be evolutionary primitive and may apply beyond bacteria. PMID:27195891

  15. Rethinking transcription coupled DNA repair.

    PubMed

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity. PMID:25596348

  16. Motif composition, conservation and condition-specificity of single and alternative transcription start sites in the Drosophila genome

    PubMed Central

    Rach, Elizabeth A; Yuan, Hsiang-Yu; Majoros, William H; Tomancak, Pavel; Ohler, Uwe

    2009-01-01

    Background Transcription initiation is a key component in the regulation of gene expression. mRNA 5' full-length sequencing techniques have enhanced our understanding of mammalian transcription start sites (TSSs), revealing different initiation patterns on a genomic scale. Results To identify TSSs in Drosophila melanogaster, we applied a hierarchical clustering strategy on available 5' expressed sequence tags (ESTs) and identified a high quality set of 5,665 TSSs for approximately 4,000 genes. We distinguished two initiation patterns: 'peaked' TSSs, and 'broad' TSS cluster groups. Peaked promoters were found to contain location-specific sequence elements; conversely, broad promoters were associated with non-location-specific elements. In alignments across other Drosophila genomes, conservation levels of sequence elements exceeded 90% within the melanogaster subgroup, but dropped considerably for distal species. Elements in broad promoters had lower levels of conservation than those in peaked promoters. When characterizing the distributions of ESTs, 64% of TSSs showed distinct associations to one out of eight different spatiotemporal conditions. Available whole-genome tiling array time series data revealed different temporal patterns of embryonic activity across the majority of genes with distinct alternative promoters. Many genes with maternally inherited transcripts were found to have alternative promoters utilized later in development. Core promoters of maternally inherited transcripts showed differences in motif composition compared to zygotically active promoters. Conclusions Our study provides a comprehensive map of Drosophila TSSs and the conditions under which they are utilized. Distinct differences in motif associations with initiation pattern and spatiotemporal utilization illustrate the complex regulatory code of transcription initiation. PMID:19589141

  17. Phylogenetic conservation of RNA secondary and tertiary structure in the trpEDCFBA operon leader transcript in Bacillus.

    PubMed

    Schaak, Janell E; Babitzke, Paul; Bevilacqua, Philip C

    2003-12-01

    Expression of the trpEDCFBA operon of Bacillus subtilis is regulated by transcription attenuation and translation control mechanisms. We recently determined that the B. subtilis trp leader readthrough transcript can adopt a Mg(2+)-dependent tertiary structure that appears to interfere with TRAP-mediated translation control of trpE. In the present study, sequence comparisons to trp leaders from three other Bacillus sp. were made, suggesting that RNA secondary and tertiary structures are phylogenetically conserved. To test this hypothesis, experiments were carried out with the trp leader transcript from Bacillus stearothermophilus. Structure mapping experiments confirmed the predicted secondary structure. Native gel experiments identified a faster mobility species in the presence of Mg(2+), suggesting that a Mg(2+)-dependent tertiary structure forms. Mg(2+)-dependent protection of residues within the first five triplet repeats of the TRAP binding target and a pyrimidine-rich internal loop were observed, consistent with tertiary structure formation between these regions. Structure mapping in the presence of a competitor DNA oligonucleotide allowed the interacting partners to be identified as a single-stranded portion of the purine-rich TRAP binding target and the large downstream pyrimidine-rich internal loop. Thermal denaturation experiments revealed a Mg(2+)- and pH-dependent unfolding transition that was absent for a transcript missing the first five triplet repeats. The stability of several mutant transcripts allowed a large portion of the base-pairing register for the tertiary interaction to be determined. These data indicate that RNA secondary and tertiary structures involved in TRAP-mediated translation control are conserved in at least four Bacillus species. PMID:14624006

  18. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    PubMed Central

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.; Kuiper, Emily G.; Mourtada-Maarabouni, Mirna; Conn, Graeme L.; Kojetin, Douglas J.; Williams, Gwyn T.; Ortlund, Eric A.

    2014-01-01

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic non-coding RNAs (lincRNAs). While lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here, we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA Gas5, which regulates steroid-mediated transcriptional regulation, growth arrest, and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions. PMID:25377354

  19. Conserved sequence-specific lincRNA-steroid receptor interactions drive transcriptional repression and direct cell fate

    SciTech Connect

    Hudson, William H.; Pickard, Mark R.; de Vera, Ian Mitchelle S.; Kuiper, Emily G.; Mourtada-Maarabouni, Mirna; Conn, Graeme L.; Kojetin, Douglas J.; Williams, Gwyn T.; Ortlund, Eric A.

    2014-12-23

    The majority of the eukaryotic genome is transcribed, generating a significant number of long intergenic noncoding RNAs (lincRNAs). Although lincRNAs represent the most poorly understood product of transcription, recent work has shown lincRNAs fulfill important cellular functions. In addition to low sequence conservation, poor understanding of structural mechanisms driving lincRNA biology hinders systematic prediction of their function. Here we report the molecular requirements for the recognition of steroid receptors (SRs) by the lincRNA growth arrest-specific 5 (Gas5), which regulates steroid-mediated transcriptional regulation, growth arrest and apoptosis. We identify the functional Gas5-SR interface and generate point mutations that ablate the SR-Gas5 lincRNA interaction, altering Gas5-driven apoptosis in cancer cell lines. Further, we find that the Gas5 SR-recognition sequence is conserved among haplorhines, with its evolutionary origin as a splice acceptor site. This study demonstrates that lincRNAs can recognize protein targets in a conserved, sequence-specific manner in order to affect critical cell functions.

  20. The BEN domain is a novel sequence-specific DNA-binding domain conserved in neural transcriptional repressors

    PubMed Central

    Dai, Qi; Ren, Aiming; Westholm, Jakub O.; Serganov, Artem A.; Patel, Dinshaw J.; Lai, Eric C.

    2013-01-01

    We recently reported that Drosophila Insensitive (Insv) promotes sensory organ development and has activity as a nuclear corepressor for the Notch transcription factor Suppressor of Hairless [Su(H)]. Insv lacks domains of known biochemical function but contains a single BEN domain (i.e., a “BEN-solo” protein). Our chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq) analysis confirmed binding of Insensitive to Su(H) target genes in the Enhancer of split gene complex [E(spl)-C]; however, de novo motif analysis revealed a novel site strongly enriched in Insv peaks (TCYAATHRGAA). We validate binding of endogenous Insv to genomic regions bearing such sites, whose associated genes are enriched for neural functions and are functionally repressed by Insv. Unexpectedly, we found that the Insv BEN domain binds specifically to this sequence motif and that Insv directly regulates transcription via this motif. We determined the crystal structure of the BEN–DNA target complex, revealing homodimeric binding of the BEN domain and extensive nucleotide contacts via α helices and a C-terminal loop. Point mutations in key DNA-contacting residues severely impair DNA binding in vitro and capacity for transcriptional regulation in vivo. We further demonstrate DNA-binding and repression activities by the mammalian neural BEN-solo protein BEND5. Altogether, we define novel DNA-binding activity in a conserved family of transcriptional repressors, opening a molecular window on this extensive gene family. PMID:23468431

  1. Contribution of transcript stability to a conserved procyanidin-induced cytokine response in γδT cells1

    PubMed Central

    Daughenbaugh, Katie F.; Holderness, Jeff; Graff, Jill C.; Hedges, Jodi F.; Freedman, Brett; Graff, Joel W.; Jutila, Mark A.

    2011-01-01

    γδ T cells function in innate and adaptive immunity and are primed for secondary responses by procyanidin components of unripe apple peel (APP). Here we investigate the effects of APP and purified procyanidins on γ δ T cell gene expression. A microarray analysis was performed on bovine γ δ T cells treated with APP; increases in transcripts encoding GM-CSF, IL-8, and IL-17, but not markers of TCR stimulation such as IFNγ , were observed. Key responses were confirmed in human, mouse, and bovine cells by RT-PCR and/or ELISA, indicating a conserved response to procyanidins. In vivo relevance of the cytokine response was shown in mice following intraperitoneal injection of APP, which induced production of CXCL1/KC and resulted in neutrophil influx to the blood and peritoneum. In the human γ δ T cell-line, MOLT-14, GM-CSF and IL-8 transcripts were increased and stabilized in cells treated with crude APP or purified procyanidins. The ERK1/2 MAPK pathway was activated in APP-treated cells, and necessary for transcript stabilization. Our data describe a unique γ δ T cell inflammatory response during procyanidin treatment and suggest that transcript stability mechanisms could account, at least in part, for the priming phenotype. PMID:21307878

  2. The boundaries of partially edited transcripts are not conserved in kinetoplastids: implications for the guide RNA model of editing.

    PubMed Central

    Landweber, L F; Fiks, A G; Gilbert, W

    1993-01-01

    We have studied partially edited molecules for the cytochrome-c oxidase subunit III (COIII) transcript from two species of the insect trypanosome Herpetomonas. We found unexpected patterns of editing, in which editing does not proceed strictly 3' to 5', in 24 of 61 partially edited clones. A comparison of the partially edited molecules between the two kinetoplastid species revealed an 8- to 10-nt shift in precisely defined editing boundaries, sites at which editing pauses before binding of the next guide RNA after formation of a stable duplex between a guide RNA and mRNA. This suggests that the region of base pairing between individual guide RNAs and the COIII transcript is not strictly conserved in kinetoplastids, implying gradual evolution of the editing process. Images Fig. 2 Fig. 3 PMID:8415685

  3. Transcriptional profiling of macrophages derived from monocytes and iPS cells identifies a conserved response to LPS and novel alternative transcription

    PubMed Central

    Alasoo, Kaur; Martinez, Fernando O.; Hale, Christine; Gordon, Siamon; Powrie, Fiona; Dougan, Gordon; Mukhopadhyay, Subhankar; Gaffney, Daniel J.

    2015-01-01

    Macrophages differentiated from human induced pluripotent stem cells (IPSDMs) are a potentially valuable new tool for linking genotype to phenotype in functional studies. However, at a genome-wide level these cells have remained largely uncharacterised. Here, we compared the transcriptomes of naïve and lipopolysaccharide (LPS) stimulated monocyte-derived macrophages (MDMs) and IPSDMs using RNA-Seq. The IPSDM and MDM transcriptomes were broadly similar and exhibited a highly conserved response to LPS. However, there were also significant differences in the expression of genes associated with antigen presentation and tissue remodelling. Furthermore, genes coding for multiple chemokines involved in neutrophil recruitment were more highly expressed in IPSDMs upon LPS stimulation. Additionally, analysing individual transcript expression identified hundreds of genes undergoing alternative promoter and 3′ untranslated region usage following LPS treatment representing a previously under-appreciated level of regulation in the LPS response. PMID:26224331

  4. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Bacteria

    PubMed Central

    Campbell, Elizabeth A.; Greenwell, Roger; Anthony, Jennifer R.; Wang, Sheng; Lim, Lionel; Das, Kalyan; Sofia, Heidi J.; Donohue, Timothy J.; Darst, Seth A.

    2008-01-01

    SUMMARY A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV σ factor σE and its cognate anti-σ ChrR. Crystal structures of the σE/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-σ domain (ASD) binds a Zn2+ ion, contacts σE, and is sufficient to inhibit σE-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn2+, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV antiσs. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate σ factor. PMID:17803943

  5. A subgroup of MYB transcription factor genes undergoes highly conserved alternative splicing in Arabidopsis and rice.

    PubMed

    Li, Jigang; Li, Xiaojuan; Guo, Lei; Lu, Feng; Feng, Xiaojie; He, Kun; Wei, Liping; Chen, Zhangliang; Qu, Li-Jia; Gu, Hongya

    2006-01-01

    MYB transcription factor genes play important roles in many developmental processes and in various defence responses of plants. Two Arabidopsis R2R3-type MYB genes, AtMYB59 and AtMYB48, were found to undergo similar alternative splicing. Both genes have four distinctively spliced transcripts that encode either MYB-related proteins or R2R3-MYB proteins. An extensive BLAST search of the GenBank database resulted in finding and cloning two rice homologues, both of which were also found to share a similar alternative splicing pattern. In a semi-quantitative study, the expression of one splice variant of AtMYB59 was found to be differentially regulated in treatments with different phytohormones and stresses. GFP fusion protein analysis revealed that both of the two predicted nuclear localization signals (NLSs) in the R3 domain are required for localizing to the nucleus. Promoter-GUS analysis in transgenic plants showed that 5'-UTR is sufficient for the translation initiation of type 3 transcripts (encoding R2R3-MYB proteins), but not for type 2 transcripts (encoding MYB-related proteins). Moreover, a new type of non-canonical intron, with the same nucleotide repeats at the 5' and 3' splice sites, was identified. Thirty-eight Arabidopsis and rice genes were found to have this type of non-canonical intron, most of which undergo alternative splicing. These data suggest that this subgroup of transcription factor genes may be involved in multiple biological processes and may be transcriptionally regulated by alternative splicing. PMID:16531467

  6. Computational identification of conserved transcription factor binding sites upstream of genes induced in rat brain by transient focal ischemic stroke.

    PubMed

    Pulliam, John V K; Xu, Zhenfeng; Ford, Gregory D; Liu, Cuimei; Li, Yonggang; Stovall, Kyndra C; Cannon, Virginetta S; Tewolde, Teclemichael; Moreno, Carlos S; Ford, Byron D

    2013-02-01

    Microarray analysis has been used to understand how gene regulation plays a critical role in neuronal injury, survival and repair following ischemic stroke. To identify the transcriptional regulatory elements responsible for ischemia-induced gene expression, we examined gene expression profiles of rat brains following focal ischemia and performed computational analysis of consensus transcription factor binding sites (TFBS) in the genes of the dataset. In this study, rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO) stroke and gene transcription in brain tissues following ischemia/reperfusion was examined using Affymetrix GeneChip technology. The CONserved transcription FACtor binding site (CONFAC) software package was used to identify over-represented TFBS in the upstream promoter regions of ischemia-induced genes compared to control datasets. CONFAC identified 12 TFBS that were statistically over-represented from our dataset of ischemia-induced genes, including three members of the Ets-1 family of transcription factors (TFs). Microarray results showed that mRNA for Ets-1 was increased following tMCAO but not pMCAO. Immunohistochemical analysis of Ets-1 protein in rat brains following MCAO showed that Ets-1 was highly expressed in neurons in the brain of sham control animals. Ets-1 protein expression was virtually abolished in injured neurons of the ischemic brain but was unchanged in peri-infarct brain areas. These data indicate that TFs, including Ets-1, may influence neuronal injury following ischemia. These findings could provide important insights into the mechanisms that lead to brain injury and could provide avenues for the development of novel therapies. PMID:23246490

  7. Regulation of tyrosine hydroxylase transcription by hnRNP K and DNA secondary structure

    PubMed Central

    Banerjee, Kasturi; Wang, Meng; Cai, Elizabeth; Fujiwara, Nana; Baker, Harriet; Cave, John W.

    2014-01-01

    Regulation of tyrosine hydroxylase gene (Th) transcription is critical for specifying and maintaining the dopaminergic neuronal phenotype. Here we define a molecular regulatory mechanism for Th transcription conserved in tetrapod vertebrates. We show that heterogeneous nuclear ribonucleoprotein (hnRNP) K is a transactivator of Th transcription. It binds to previously unreported and evolutionarily conserved G:C-rich regions in the Th proximal promoter. hnRNP K directly binds C-rich single DNA strands within these conserved regions and also associates with double-stranded sequences when proteins, such as CREB, are bound to an adjacent cis-regulatory element. The single DNA strands within the conserved G:C-rich regions adopt either G-quadruplex or i-motif secondary structures. We also show that small molecule-mediated stabilization of these secondary structures represses Th promoter activity. These data suggest that these secondary structures are targets for pharmacological modulation of the dopaminergic phenotype. PMID:25493445

  8. Conservation.

    ERIC Educational Resources Information Center

    National Audubon Society, New York, NY.

    This set of teaching aids consists of seven Audubon Nature Bulletins, providing the teacher and student with informational reading on various topics in conservation. The bulletins have these titles: Plants as Makers of Soil, Water Pollution Control, The Ground Water Table, Conservation--To Keep This Earth Habitable, Our Threatened Air Supply,…

  9. Conserved factor Dhp1/Rat1/Xrn2 triggers premature transcription termination and nucleates heterochromatin to promote gene silencing

    PubMed Central

    Chalamcharla, Venkata R.; Folco, H. Diego; Dhakshnamoorthy, Jothy; Grewal, Shiv I. S.

    2015-01-01

    Cotranscriptional RNA processing and surveillance factors mediate heterochromatin formation in diverse eukaryotes. In fission yeast, RNAi machinery and RNA elimination factors including the Mtl1–Red1 core and the exosome are involved in facultative heterochromatin assembly; however, the exact mechanisms remain unclear. Here we show that RNA elimination factors cooperate with the conserved exoribonuclease Dhp1/Rat1/Xrn2, which couples pre-mRNA 3′-end processing to transcription termination, to promote premature termination and facultative heterochromatin formation at meiotic genes. We also find that Dhp1 is critical for RNAi-mediated heterochromatin assembly at retroelements and regulated gene loci and facilitates the formation of constitutive heterochromatin at centromeric and mating-type loci. Remarkably, our results reveal that Dhp1 interacts with the Clr4/Suv39h methyltransferase complex and acts directly to nucleate heterochromatin. Our work uncovers a previously unidentified role for 3′-end processing and transcription termination machinery in gene silencing through premature termination and suggests that noncanonical transcription termination by Dhp1 and RNA elimination factors is linked to heterochromatin assembly. These findings have important implications for understanding silencing mechanisms targeting genes and repeat elements in higher eukaryotes. PMID:26631744

  10. Regulation of Nav1.7: A Conserved SCN9A Natural Antisense Transcript Expressed in Dorsal Root Ganglia

    PubMed Central

    Koenig, Jennifer; Werdehausen, Robert; Linley, John E.; Habib, Abdella M.; Vernon, Jeffrey; Lolignier, Stephane; Eijkelkamp, Niels; Zhao, Jing; Okorokov, Andrei L.; Woods, C. Geoffrey; Wood, John N.; Cox, James J.

    2015-01-01

    The Nav1.7 voltage-gated sodium channel, encoded by SCN9A, is critical for human pain perception yet the transcriptional and post-transcriptional mechanisms that regulate this gene are still incompletely understood. Here, we describe a novel natural antisense transcript (NAT) for SCN9A that is conserved in humans and mice. The NAT has a similar tissue expression pattern to the sense gene and is alternatively spliced within dorsal root ganglia. The human and mouse NATs exist in cis with the sense gene in a tail-to-tail orientation and both share sequences that are complementary to the terminal exon of SCN9A/Scn9a. Overexpression analyses of the human NAT in human embryonic kidney (HEK293A) and human neuroblastoma (SH-SY5Y) cell lines show that it can function to downregulate Nav1.7 mRNA, protein levels and currents. The NAT may play an important role in regulating human pain thresholds and is a potential candidate gene for individuals with chronic pain disorders that map to the SCN9A locus, such as Inherited Primary Erythromelalgia, Paroxysmal Extreme Pain Disorder and Painful Small Fibre Neuropathy, but who do not contain mutations in the sense gene. Our results strongly suggest the SCN9A NAT as a prime candidate for new therapies based upon augmentation of existing antisense RNAs in the treatment of chronic pain conditions in man. PMID:26035178

  11. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone.

    PubMed

    Melia, Tisha; Hao, Pengying; Yilmaz, Feyza; Waxman, David J

    2016-01-01

    Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as key chromatin regulators, yet few studies have characterized lincRNAs in a single tissue under diverse conditions. Here, we analyzed 45 mouse liver RNA sequencing (RNA-Seq) data sets collected under diverse conditions to systematically characterize 4,961 liver lincRNAs, 59% of them novel, with regard to gene structures, species conservation, chromatin accessibility, transcription factor binding, and epigenetic states. To investigate the potential for functionality, we focused on the responses of the liver lincRNAs to growth hormone stimulation, which imparts clinically relevant sex differences to hepatic metabolism and liver disease susceptibility. Sex-biased expression characterized 247 liver lincRNAs, with many being nuclear RNA enriched and regulated by growth hormone. The sex-biased lincRNA genes are enriched for nearby and correspondingly sex-biased accessible chromatin regions, as well as sex-biased binding sites for growth hormone-regulated transcriptional activators (STAT5, hepatocyte nuclear factor 6 [HNF6], FOXA1, and FOXA2) and transcriptional repressors (CUX2 and BCL6). Repression of female-specific lincRNAs in male liver, but not that of male-specific lincRNAs in female liver, was associated with enrichment of H3K27me3-associated inactive states and poised (bivalent) enhancer states. Strikingly, we found that liver-specific lincRNA gene promoters are more highly species conserved and have a significantly higher frequency of proximal binding by liver transcription factors than liver-specific protein-coding gene promoters. Orthologs for many liver lincRNAs were identified in one or more supraprimates, including two rat lincRNAs showing the same growth hormone-regulated, sex-biased expression as their mouse counterparts. This integrative analysis of liver lincRNA chromatin states, transcription factor occupancy, and growth hormone regulation provides novel insights into the

  12. Hepatic Long Intergenic Noncoding RNAs: High Promoter Conservation and Dynamic, Sex-Dependent Transcriptional Regulation by Growth Hormone

    PubMed Central

    Melia, Tisha; Hao, Pengying; Yilmaz, Feyza

    2015-01-01

    Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as key chromatin regulators, yet few studies have characterized lincRNAs in a single tissue under diverse conditions. Here, we analyzed 45 mouse liver RNA sequencing (RNA-Seq) data sets collected under diverse conditions to systematically characterize 4,961 liver lincRNAs, 59% of them novel, with regard to gene structures, species conservation, chromatin accessibility, transcription factor binding, and epigenetic states. To investigate the potential for functionality, we focused on the responses of the liver lincRNAs to growth hormone stimulation, which imparts clinically relevant sex differences to hepatic metabolism and liver disease susceptibility. Sex-biased expression characterized 247 liver lincRNAs, with many being nuclear RNA enriched and regulated by growth hormone. The sex-biased lincRNA genes are enriched for nearby and correspondingly sex-biased accessible chromatin regions, as well as sex-biased binding sites for growth hormone-regulated transcriptional activators (STAT5, hepatocyte nuclear factor 6 [HNF6], FOXA1, and FOXA2) and transcriptional repressors (CUX2 and BCL6). Repression of female-specific lincRNAs in male liver, but not that of male-specific lincRNAs in female liver, was associated with enrichment of H3K27me3-associated inactive states and poised (bivalent) enhancer states. Strikingly, we found that liver-specific lincRNA gene promoters are more highly species conserved and have a significantly higher frequency of proximal binding by liver transcription factors than liver-specific protein-coding gene promoters. Orthologs for many liver lincRNAs were identified in one or more supraprimates, including two rat lincRNAs showing the same growth hormone-regulated, sex-biased expression as their mouse counterparts. This integrative analysis of liver lincRNA chromatin states, transcription factor occupancy, and growth hormone regulation provides novel insights into the

  13. Distinct Properties of Hexameric but Functionally Conserved Mycobacterium tuberculosis Transcription-Repair Coupling Factor

    PubMed Central

    Prabha, Swayam; Rao, Desirazu N.; Nagaraja, Valakunja

    2011-01-01

    Transcription coupled nucleotide excision repair (TC-NER) is involved in correcting UV-induced damage and other road-blocks encountered in the transcribed strand. Mutation frequency decline (Mfd) is a transcription repair coupling factor, involved in repair of template strand during transcription. Mfd from M. tuberculosis (MtbMfd) is 1234 amino-acids long harboring characteristic modules for different activities. Mtbmfd complemented Escherichia coli mfd (Ecomfd) deficient strain, enhanced survival of UV irradiated cells and increased the road-block repression in vivo. The protein exhibited ATPase activity, which was stimulated ∼1.5-fold in the presence of DNA. While the C-terminal domain (CTD) comprising amino acids 630 to 1234 showed ∼2-fold elevated ATPase activity than MtbMfd, the N-terminal domain (NTD) containing the first 433 amino acid residues was able to bind ATP but deficient in hydrolysis. Overexpression of NTD of MtbMfd led to growth defect and hypersensitivity to UV light. Deletion of 184 amino acids from the C-terminal end of MtbMfd (MfdΔC) increased the ATPase activity by ∼10-fold and correspondingly exhibited efficient translocation along DNA as compared to the MtbMfd and CTD. Surprisingly, MtbMfd was found to be distributed in monomer and hexamer forms both in vivo and in vitro and the monomer showed increased susceptibility to proteases compared to the hexamer. MfdΔC, on the other hand, was predominantly monomeric in solution implicating the extreme C-terminal region in oligomerization of the protein. Thus, although the MtbMfd resembles EcoMfd in many of its reaction characteristics, some of its hitherto unknown distinct properties hint at its species specific role in mycobacteria during transcription-coupled repair. PMID:21559463

  14. Minimal promoter systems reveal the importance of conserved residues in the B-finger of human transcription factor IIB.

    PubMed

    Thompson, Nancy E; Glaser, Bryan T; Foley, Katherine M; Burton, Zachary F; Burgess, Richard R

    2009-09-11

    The "B-finger" of transcription factor IIB (TFIIB) is highly conserved and believed to play a role in the initiation process. We performed alanine substitutions across the B-finger of human TFIIB, made change-of-charge mutations in selected residues, and substituted the B-finger sequence from other organisms. Mutant proteins were examined in two minimal promoter systems (containing only RNA polymerase II, TATA-binding protein, and TFIIB) and in a complex system, using TFIIB-immunodepleted HeLa cell nuclear extract (NE). Mutations in conserved residues located on the sides of the B-finger had the greatest effect on activity in both minimal promoter systems, with mutations in residues Glu-51 and Arg-66 eliminating activity. The double change-of-charge mutant (E51R:R66E) did not show activity in either minimal promoter system. Mutations in the nonconserved residues at the tip of the B-finger did not significantly affect activity. However, all of the mutations in the B-finger showed at least 25% activity in the HeLa cell NE. Chimeric proteins, containing B-finger sequences from species with conserved residues on the side of the B-finger, showed wild-type activity in a minimal promoter system and in the HeLa cell NE. However, chimeric proteins whose sequence showed divergence on the sides of the B-finger had reduced activity. Transcription factor IIF (TFIIF) partially restored activity of the inactive mutants in the minimal promoter system, suggesting that TFIIF in HeLa cell NE helps to rescue the inactive mutations by interacting with either the B-finger or another component of the initiation complex that is influenced by the B-finger. PMID:19590095

  15. A Conserved Structural Module Regulates Transcriptional Responses to Diverse Stress Signals in Eubacteria

    SciTech Connect

    Campbell,E.; Greenwell, R.; Anthony, J.; Wang, S.; Lim, L.; Das, K.; Sofia, H.; Donohue, T.; Darst, S.

    2007-01-01

    A transcriptional response to singlet oxygen in Rhodobacter sphaeroides is controlled by the group IV {sigma} factor {sigma}{sup E} and its cognate anti-{sigma} ChrR. Crystal structures of the {sigma}{sup E}/ChrR complex reveal a modular, two-domain architecture for ChrR. The ChrR N-terminal anti-{sigma} domain (ASD) binds a Zn{sup 2+} ion, contacts {sigma}{sup E}, and is sufficient to inhibit {sigma}{sup E}-dependent transcription. The ChrR C-terminal domain adopts a cupin fold, can coordinate an additional Zn{sup 2+}, and is required for the transcriptional response to singlet oxygen. Structure-based sequence analyses predict that the ASD defines a common structural fold among predicted group IV anti-{sigma}s. These ASDs are fused to diverse C-terminal domains that are likely involved in responding to specific environmental signals that control the activity of their cognate {sigma} factor.

  16. A conserved role for Snail as a potentiator of active transcription

    PubMed Central

    Rembold, Martina; Ciglar, Lucia; Yáñez-Cuna, J. Omar; Zinzen, Robert P.; Girardot, Charles; Jain, Ankit; Welte, Michael A.; Stark, Alexander; Leptin, Maria; Furlong, Eileen E.M.

    2014-01-01

    The transcription factors of the Snail family are key regulators of epithelial–mesenchymal transitions, cell morphogenesis, and tumor metastasis. Since its discovery in Drosophila ∼25 years ago, Snail has been extensively studied for its role as a transcriptional repressor. Here we demonstrate that Drosophila Snail can positively modulate transcriptional activation. By combining information on in vivo occupancy with expression profiling of hand-selected, staged snail mutant embryos, we identified 106 genes that are potentially directly regulated by Snail during mesoderm development. In addition to the expected Snail-repressed genes, almost 50% of Snail targets showed an unanticipated activation. The majority of “Snail-activated” genes have enhancer elements cobound by Twist and are expressed in the mesoderm at the stages of Snail occupancy. Snail can potentiate Twist-mediated enhancer activation in vitro and is essential for enhancer activity in vivo. Using a machine learning approach, we show that differentially enriched motifs are sufficient to predict Snail's regulatory response. In silico mutagenesis revealed a likely causative motif, which we demonstrate is essential for enhancer activation. Taken together, these data indicate that Snail can potentiate enhancer activation by collaborating with different activators, providing a new mechanism by which Snail regulates development. PMID:24402316

  17. Strong conservation of non-coding sequences during vertebrates evolution: potential involvement in post-transcriptional regulation of gene expression.

    PubMed Central

    Duret, L; Dorkeld, F; Gautier, C

    1993-01-01

    Comparison of nucleotide sequences from different classes of vertebrates that diverged more than 300 million years ago, revealed the existence of highly conserved regions (HCRs) with more than 70% similarity over 100 to 1450 nt in non-coding parts of genes. Such a conservation is unexpected because it is much longer and stronger than what is necessary for specifying the binding of a regulatory protein. HCRs are relatively frequent, particularly in genes that are essential to cell life. In multigene families, conserved regions are specific of each isotype and are probably involved in the control of their specific pattern of expression. Studying HCRs distribution within genes showed that functional constraints are generally much stronger in 3'-non-coding regions than in promoters or introns. The 3'-HCRs are particularly A + T-rich and are always located in the transcribed untranslated regions of genes, which suggests that they are involved in post-transcriptional processes. However, current knowledge of mechanisms that regulate mRNA export, localisation, translation, or degradation is not sufficient to explain the strong functional constraints that we have characterised. PMID:8506129

  18. Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor.

    PubMed

    Sahu, Sarata C; Swanson, Kurt A; Kang, Richard S; Huang, Kai; Brubaker, Kurt; Ratcliff, Kathleen; Radhakrishnan, Ishwar

    2008-02-01

    The recruitment of chromatin-modifying coregulator complexes by transcription factors to specific sites of the genome constitutes an important step in many eukaryotic transcriptional regulatory pathways. The histone deacetylase-associated Sin3 corepressor complex is recruited by a large and diverse array of transcription factors through direct interactions with the N-terminal PAH domains of Sin3. Here, we describe the solution structures of the mSin3A PAH1 domain in the apo form and when bound to SAP25, a component of the corepressor complex. Unlike the apo-mSin3A PAH2 domain, the apo-PAH1 domain is conformationally pure and is largely, but not completely, folded. Portions of the interacting segments of both mSin3A PAH1 and SAP25 undergo folding upon complex formation. SAP25 binds through an amphipathic helix to a predominantly hydrophobic cleft on the surface of PAH1. Remarkably, the orientation of the helix is reversed compared to that adopted by NRSF, a transcription factor unrelated to SAP25, upon binding to the mSin3B PAH1 domain. The reversal in helical orientations is correlated with a reversal in the underlying PAH1-interaction motifs, echoing a theme previously described for the mSin3A PAH2 domain. The definition of these so-called type I and type II PAH1-interaction motifs has allowed us to predict the precise location of these motifs within previously experimentally characterized PAH1 binders. Finally, we explore the specificity determinants of protein-protein interactions involving the PAH1 and PAH2 domains. These studies reveal that even conservative replacements of PAH2 residues with equivalent PAH1 residues are sufficient to alter the affinity and specificity of these protein-protein interactions dramatically. PMID:18089292

  19. Integrating bioinformatic resources to predict transcription factors interacting with cis-sequences conserved in co-regulated genes

    PubMed Central

    2014-01-01

    Background Using motif detection programs it is fairly straightforward to identify conserved cis-sequences in promoters of co-regulated genes. In contrast, the identification of the transcription factors (TFs) interacting with these cis-sequences is much more elaborate. To facilitate this, we explore the possibility of using several bioinformatic and experimental approaches for TF identification. This starts with the selection of co-regulated gene sets and leads first to the prediction and then to the experimental validation of TFs interacting with cis-sequences conserved in the promoters of these co-regulated genes. Results Using the PathoPlant database, 32 up-regulated gene groups were identified with microarray data for drought-responsive gene expression from Arabidopsis thaliana. Application of the binding site estimation suite of tools (BEST) discovered 179 conserved sequence motifs within the corresponding promoters. Using the STAMP web-server, 49 sequence motifs were classified into 7 motif families for which similarities with known cis-regulatory sequences were identified. All motifs were subjected to a footprintDB analysis to predict interacting DNA binding domains from plant TF families. Predictions were confirmed by using a yeast-one-hybrid approach to select interacting TFs belonging to the predicted TF families. TF-DNA interactions were further experimentally validated in yeast and with a Physcomitrella patens transient expression system, leading to the discovery of several novel TF-DNA interactions. Conclusions The present work demonstrates the successful integration of several bioinformatic resources with experimental approaches to predict and validate TFs interacting with conserved sequence motifs in co-regulated genes. PMID:24773781

  20. Direct stimulation of transcription by negative cofactor 2 (NC2) through TATA-binding protein (TBP)

    PubMed Central

    Cang, Yong; Prelich, Gregory

    2002-01-01

    Negative cofactor 2 (NC2) is an evolutionarily conserved transcriptional regulator that was originally identified as an inhibitor of basal transcription. Its inhibitory mechanism has been extensively characterized; NC2 binds to the TATA-binding protein (TBP), blocking the recruitment of TFIIA and TFIIB, and thereby inhibiting preinitiation complex assembly. NC2 is also required for expression of many yeast genes in vivo and stimulates TATA-less transcription in a Drosophila in vitro transcription system, but the mechanism responsible for the NC2-mediated stimulation of transcription is not understood. Here we establish that yeast NC2 can directly stimulate activated transcription from TATA-driven promoters both in vivo and in vitro, and moreover that this positive role requires the same surface of TBP that mediates the NC2 repression activity. On the basis of these results, we propose a model to explain how NC2 can mediate both repression and activation through the same surface of TBP. PMID:12237409

  1. Functional analysis of a highly conserved abundant larval transcript-2 (alt-2) intron 2 repeat region of lymphatic filarial parasites.

    PubMed

    Sakthidevi, Moorthy; Hoti, Sugeerappa Laxmanappa; Kaliraj, Perumal

    2014-06-01

    The filarial-specific protein abundant larval transcript-2 (ALT-2) is expressed exclusively in the infective larval stage (L3) and is a crucial protein for establishing immunopathogenesis in human hosts. The alt-2 gene has a conserved minisatellite repeat (29 or 27bp) in intron 2 (IR2) whose significance within lymphatic filarial species is unknown. Here, we report the role of IR2 in the regulation of alt-2 gene expression using an in vitro model. Using electrophoretic mobility shift assays, we identified the presence of a putative nuclear protein binding region within IR2. Subsequent transient expression experiments in eukaryotic cell lines demonstrated that the IR2 downregulated the expression of a downstream luciferase reporter gene, which was further validated with RT-PCR. We therefore identify IR2 as a suppressor element that regulates L3 stage-specific expression of alt-2. PMID:24681262

  2. PTS-Mediated Regulation of the Transcription Activator MtlR from Different Species: Surprising Differences despite Strong Sequence Conservation.

    PubMed

    Joyet, Philippe; Derkaoui, Meriem; Bouraoui, Houda; Deutscher, Josef

    2015-01-01

    The hexitol D-mannitol is transported by many bacteria via a phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). In most Firmicutes, the transcription activator MtlR controls the expression of the genes encoding the D-mannitol-specific PTS components and D-mannitol-1-P dehydrogenase. MtlR contains an N-terminal helix-turn-helix motif followed by an Mga-like domain, two PTS regulation domains (PRDs), an EIIB(Gat)- and an EIIA(Mtl)-like domain. The four regulatory domains are the target of phosphorylation by PTS components. Despite strong sequence conservation, the mechanisms controlling the activity of MtlR from Lactobacillus casei, Bacillus subtilis and Geobacillus stearothermophilus are quite different. Owing to the presence of a tyrosine in place of the second conserved histidine (His) in PRD2, L. casei MtlR is not phosphorylated by Enzyme I (EI) and HPr. When the corresponding His in PRD2 of MtlR from B. subtilis and G. stearothermophilus was replaced with alanine, the transcription regulator was no longer phosphorylated and remained inactive. Surprisingly, L. casei MtlR functions without phosphorylation in PRD2 because in a ptsI (EI) mutant MtlR is constitutively active. EI inactivation prevents not only phosphorylation of HPr, but also of the PTS(Mtl) components, which inactivate MtlR by phosphorylating its EIIB(Gat)- or EIIA(Mtl)-like domain. This explains the constitutive phenotype of the ptsI mutant. The absence of EIIB(Mtl)-mediated phosphorylation leads to induction of the L. caseimtl operon. This mechanism resembles mtlARFD induction in G. stearothermophilus, but differs from EIIA(Mtl)-mediated induction in B. subtilis. In contrast to B. subtilis MtlR, L. casei MtlR activation does not require sequestration to the membrane via the unphosphorylated EIIB(Mtl) domain. PMID:26159071

  3. Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology.

    PubMed Central

    Katsani, K R; Hajibagheri, M A; Verrijzer, C P

    1999-01-01

    The POZ domain is a conserved protein-protein interaction motif present in a variety of transcription factors involved in development, chromatin remodelling and human cancers. Here, we study the role of the POZ domain of the GAGA transcription factor in promoter recognition. Natural target promoters for GAGA typically contain multiple GAGA-binding elements. Our results show that the POZ domain mediates strong co-operative binding to multiple sites but inhibits binding to single sites. Protein cross-linking and gel filtration chromatography experiments established that the POZ domain is required for GAGA oligomerization into higher order complexes. Thus, GAGA oligomerization increases binding specificity by selecting only promoters with multiple sites. Electron microscopy revealed that GAGA binds to multiple sites as a large oligomer and induces bending of the promoter DNA. Our results indicate a novel mode of DNA binding by GAGA, in which a large GAGA complex binds multiple GAGA elements that are spread out over a region of a few hundred base pairs. We suggest a model in which the promoter DNA is wrapped around a GAGA multimer in a conformation that may exclude normal nucleosome formation. PMID:9927429

  4. Conservation and tissue-specific transcription patterns of long noncoding RNAs

    PubMed Central

    Ward, Melanie; McEwan, Callum; Mills, James D; Janitz, Michael

    2015-01-01

    Abstract Over the past decade, the focus of molecular biology has shifted from being predominately DNA and protein-centric to having a greater appreciation of RNA. It is now accepted that the genome is pervasively transcribed in tissue- and cell-specific manner, to produce not only protein-coding RNAs, but also an array of noncoding RNAs (ncRNAs). Many of these ncRNAs have been found to interact with DNA, protein and other RNA molecules where they exert regulatory functions. Long ncRNAs (lncRNAs) are a subclass of ncRNAs that are particularly interesting due to their cell-specific and species-specific expression patterns and unique conservation patterns. Currently, individual lncRNAs have been classified functionally; however, for the vast majority the functional relevance is unknown. To better categorize lncRNAs, an understanding of their specific expression patterns and evolutionary constraints are needed. PMID:27335896

  5. High conservation of a 5' element required for RNA editing of a C target in chloroplast psbE transcripts.

    PubMed

    Hayes, Michael L; Hanson, Maureen R

    2008-09-01

    C-to-U editing modifies 30-40 distinct nucleotides within higher-plant chloroplast transcripts. Many C targets are located at the same position in homologous genes from different plants; these either could have emerged independently or could share a common origin. The 5' sequence GCCGUU, required for editing of C214 in tobacco psbE in vitro, is one of the few identified editing cis-elements. We investigated psbE sequences from many plant species to determine in what lineage(s) editing of psbE C214 emerged and whether the cis-element identified in tobacco is conserved in plants with a C214. The GCCGUU sequence is present at a high frequency in plants that carry a C214 in psbE. However, Sciadopitys verticillata (Pinophyta) edits C214 despite the presence of nucleotide differences compared to the conserved cis-element. The C214 site in psbE genes is represented in members of four branches of spermatophytes but not in gnetophytes, resulting in the parsimonious prediction that editing of psbE C214 was present in the ancestor of spermatophytes. Extracts from chloroplasts from a species that has a difference in the motif and lacks the C target are incapable of editing tobacco psbE C214 substrates, implying that the critical trans-acting protein factors were not retained without a C target. Because noncoding sequences are less constrained than coding regions, we analyzed sequences 5' to two C editing targets located within coding regions to search for possible editing-related conserved elements. Putative editing cis-elements were uncovered in the 5' UTRs near editing sites psbL C2 and ndhD C2. PMID:18696032

  6. Changing a conserved amino acid in R2R3-MYB transcription repressors results in cytoplasmic accumulation and abolishes their repressive activity in Arabidopsis.

    PubMed

    Zhou, Meiliang; Sun, Zhanmin; Wang, Chenglong; Zhang, Xinquan; Tang, Yixiong; Zhu, Xuemei; Shao, Jirong; Wu, Yanmin

    2015-10-01

    Sub-group 4 R2R3-type MYB transcription factors, including MYB3, MYB4, MYB7 and MYB32, act as repressors in phenylpropanoid metabolism. These proteins contain the conserved MYB domain and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR) repression domain. Additionally, MYB4, MYB7 and MYB32 possess a putative zinc-finger domain and a conserved GY/FDFLGL motif in their C-termini. The protein 'sensitive to ABA and drought 2' (SAD2) recognizes the nuclear pore complex, which then transports the SAD2-MYB4 complex into the nucleus. Here, we show that the conserved GY/FDFLGL motif contributes to the interaction between MYB factors and SAD2. The Asp → Asn mutation in the GY/FDFLGL motif abolishes the interaction between MYB transcription factors and SAD2, and therefore they cannot be transported into the nucleus and cannot repress their target genes. We found that MYB4(D261N) loses the capacity to repress expression of the cinnamate 4-hydroxylase (C4H) gene and biosynthesis of sinapoyl malate. Our results indicate conservation among MYB transcription factors in terms of their interaction with SAD2. Therefore, the Asp → Asn mutation may be used to engineer transcription factors. PMID:26332741

  7. New insights on the transcriptional regulation of CD69 gene through a potent enhancer located in the conserved non-coding sequence 2.

    PubMed

    Laguna, Teresa; Notario, Laura; Pippa, Raffaella; Fontela, Miguel G; Vázquez, Berta N; Maicas, Miren; Aguilera-Montilla, Noemí; Corbí, Ángel L; Odero, María D; Lauzurica, Pilar

    2015-08-01

    The CD69 type II C-type lectin is one of the earliest indicators of leukocyte activation acting in lymphocyte migration and cytokine secretion. CD69 expression in hematopoietic lineage undergoes rapid changes depending on the cell-lineage, the activation state or the localization of the cell where it is expressed, suggesting a complex and tightly controlled regulation. Here we provide new insights on the transcriptional regulation of CD69 gene in mammal species. Through in silico studies, we analyzed several regulatory features of the 4 upstream conserved non-coding sequences (CNS 1-4) previously described, confirming a major function of CNS2 in the transcriptional regulation of CD69. In addition, multiple transcription binding sites are identified in the CNS2 region by DNA cross-species conservation analysis. By functional approaches we defined a core region of 226bp located within CNS2 as the main enhancer element of CD69 transcription in the hematopoietic cells analyzed. By chromatin immunoprecipitation, binding of RUNX1 to the core-CNS2 was shown in a T cell line. In addition, we found an activating but not essential role of RUNX1 in CD69 gene transcription by site-directed mutagenesis and RNA silencing, probably through the interaction with this potent enhancer specifically in the hematopoietic lineage. In summary, in this study we contribute with new evidences to the landscape of the transcriptional regulation of the CD69 gene. PMID:25801305

  8. Divest yourself of a preconceived idea: transcription factor ATF6 is not a soluble protein!

    PubMed

    Mori, Kazutoshi

    2010-05-01

    The unfolded protein response (UPR), an evolutionarily conserved transcriptional induction program that is coupled with intracellular signaling from the endoplasmic reticulum (ER) to the nucleus, is activated to cope with ER stress and to maintain the homeostasis of the ER. In 1996, we isolated a basic leucine zipper protein, which had been previously named activating transcription factor (ATF)6, as a candidate transcription factor responsible for the mammalian UPR. Subsequent analysis, however, was confounding. The problem was eventually tracked down to an unusual property of ATF6: rather than being a soluble nuclear protein, as expected for an active transcription factor, ATF6 was instead synthesized as a transmembrane protein embedded in the ER, which was activated by ER stress-induced proteolysis. ATF6 was thus unique: an ER stress sensor/transducer that is involved in all steps of the UPR, from the sensing step in the ER to the transcriptional activation step in the nucleus. PMID:20219975

  9. Divest Yourself of a Preconceived Idea: Transcription Factor ATF6 Is Not a Soluble Protein!

    PubMed Central

    2010-01-01

    The unfolded protein response (UPR), an evolutionarily conserved transcriptional induction program that is coupled with intracellular signaling from the endoplasmic reticulum (ER) to the nucleus, is activated to cope with ER stress and to maintain the homeostasis of the ER. In 1996, we isolated a basic leucine zipper protein, which had been previously named activating transcription factor (ATF)6, as a candidate transcription factor responsible for the mammalian UPR. Subsequent analysis, however, was confounding. The problem was eventually tracked down to an unusual property of ATF6: rather than being a soluble nuclear protein, as expected for an active transcription factor, ATF6 was instead synthesized as a transmembrane protein embedded in the ER, which was activated by ER stress-induced proteolysis. ATF6 was thus unique: an ER stress sensor/transducer that is involved in all steps of the UPR, from the sensing step in the ER to the transcriptional activation step in the nucleus. PMID:20219975

  10. Uncovering ancient transcription systems with a novel evolutionary indicator.

    PubMed

    Adachi, Naruhiko; Senda, Toshiya; Horikoshi, Masami

    2016-01-01

    TBP and TFIIB are evolutionarily conserved transcription initiation factors in archaea and eukaryotes. Information about their ancestral genes would be expected to provide insight into the origin of the RNA polymerase II-type transcription apparatus. In obtaining such information, the nucleotide sequences of current genes of both archaea and eukaryotes should be included in the analysis. However, the present methods of evolutionary analysis require that a subset of the genes should be excluded as an outer group. To overcome this limitation, we propose an innovative concept for evolutionary analysis that does not require an outer group. This approach utilizes the similarity in intramolecular direct repeats present in TBP and TFIIB as an evolutionary measure revealing the degree of similarity between the present offspring genes and their ancestors. Information on the properties of the ancestors and the order of emergence of TBP and TFIIB was also revealed. These findings imply that, for evolutionarily early transcription systems billions of years ago, interaction of RNA polymerase II with transcription initiation factors and the regulation of its enzymatic activity was required prior to the accurate positioning of the enzyme. Our approach provides a new way to discuss mechanistic and system evolution in a quantitative manner. PMID:27307191

  11. Uncovering ancient transcription systems with a novel evolutionary indicator

    PubMed Central

    Adachi, Naruhiko; Senda, Toshiya; Horikoshi, Masami

    2016-01-01

    TBP and TFIIB are evolutionarily conserved transcription initiation factors in archaea and eukaryotes. Information about their ancestral genes would be expected to provide insight into the origin of the RNA polymerase II-type transcription apparatus. In obtaining such information, the nucleotide sequences of current genes of both archaea and eukaryotes should be included in the analysis. However, the present methods of evolutionary analysis require that a subset of the genes should be excluded as an outer group. To overcome this limitation, we propose an innovative concept for evolutionary analysis that does not require an outer group. This approach utilizes the similarity in intramolecular direct repeats present in TBP and TFIIB as an evolutionary measure revealing the degree of similarity between the present offspring genes and their ancestors. Information on the properties of the ancestors and the order of emergence of TBP and TFIIB was also revealed. These findings imply that, for evolutionarily early transcription systems billions of years ago, interaction of RNA polymerase II with transcription initiation factors and the regulation of its enzymatic activity was required prior to the accurate positioning of the enzyme. Our approach provides a new way to discuss mechanistic and system evolution in a quantitative manner. PMID:27307191

  12. Elucidating the evolutionary conserved DNA-binding specificities of WRKY transcription factors by molecular dynamics and in vitro binding assays

    PubMed Central

    Brand, Luise H.; Fischer, Nina M.; Harter, Klaus; Kohlbacher, Oliver; Wanke, Dierk

    2013-01-01

    WRKY transcription factors constitute a large protein family in plants that is involved in the regulation of developmental processes and responses to biotic or abiotic stimuli. The question arises how stimulus-specific responses are mediated given that the highly conserved WRKY DNA-binding domain (DBD) exclusively recognizes the ‘TTGACY’ W-box consensus. We speculated that the W-box consensus might be more degenerate and yet undetected differences in the W-box consensus of WRKYs of different evolutionary descent exist. The phylogenetic analysis of WRKY DBDs suggests that they evolved from an ancestral group IIc-like WRKY early in the eukaryote lineage. A direct descent of group IIc WRKYs supports a monophyletic origin of all other group II and III WRKYs from group I by loss of an N-terminal DBD. Group I WRKYs are of paraphyletic descent and evolved multiple times independently. By homology modeling, molecular dynamics simulations and in vitro DNA–protein interaction-enzyme-linked immunosorbent assay with AtWRKY50 (IIc), AtWRKY33 (I) and AtWRKY11 (IId) DBDs, we revealed differences in DNA-binding specificities. Our data imply that other components are essentially required besides the W-box-specific binding to DNA to facilitate a stimulus-specific WRKY function. PMID:23975197

  13. The conserved chimeric transcript UPGRADE2 is associated with unreduced pollen formation and is exclusively found in apomictic Boechera species.

    PubMed

    Mau, Martin; Corral, José M; Vogel, Heiko; Melzer, Michael; Fuchs, Jörg; Kuhlmann, Markus; de Storme, Nico; Geelen, Danny; Sharbel, Timothy F

    2013-12-01

    In apomictic Boechera spp., meiotic diplospory leads to the circumvention of meiosis and the suppression of recombination to produce unreduced male and female gametes (i.e. apomeiosis). Here, we have established an early flower developmental staging system and have performed microarray-based comparative gene expression analyses of the pollen mother cell stage in seven diploid sexual and seven diploid apomictic genotypes to identify candidate factors for unreduced pollen formation. We identified a transcript unique to apomictic Boechera spp. called UPGRADE2 (BspUPG2), which is highly up-regulated in their pollen mother cells. BspUPG2 is highly conserved among apomictic Boechera spp. genotypes but has no homolog in sexual Boechera spp. or in any other taxa. BspUPG2 undergoes posttranscriptional processing but lacks a prominent open reading frame. Together with the potential of stably forming microRNA-like secondary structures, we hypothesize that BspUPG2 functions as a long regulatory noncoding messenger RNA-like RNA. BspUPG2 has apparently arisen through a three-step process initiated by ancestral gene duplication of the original BspUPG1 locus, followed by sequential insertions of segmentally duplicated gene fragments, with final exonization of its sequence structure. Its genesis reflects the hybridization history that characterizes the genus Boechera. PMID:24130193

  14. Lipopolysaccharide-induced inhibition of transcription of tlr4 in vitro is reversed by dexamethasone and correlates with presence of conserved NFκB binding sites

    SciTech Connect

    Bonin, Camila P.; Baccarin, Raquel Y.A.; Nostell, Katarina; Nahum, Laila A.; Fossum, Caroline; Camargo, Maristela M. de

    2013-03-08

    Highlights: ► Chimpanzees, horses and humans have regions of similarity on TLR4 and MD2 promoters. ► Rodents have few regions of similarity on TLR4 promoter when compared to primates. ► Conserved NFkB binding sites were found in the promoters of TLR4 and MD2. ► LPS-induced inhibition of TLR4 transcription is reversed by dexamethasone. ► LPS-induced transcription of MD2 is inhibited by dexamethasone. -- Abstract: Engagement of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is a master trigger of the deleterious effects of septic shock. Horses and humans are considered the most sensitive species to septic shock, but the mechanisms explaining these phenomena remain elusive. Analysis of tlr4 promoters revealed high similarity among LPS-sensitive species (human, chimpanzee, and horse) and low similarity with LPS-resistant species (mouse and rat). Four conserved nuclear factor kappa B (NFκB) binding sites were found in the tlr4 promoter and two in the md2 promoter sequences that are likely to be targets for dexamethasone regulation. In vitro treatment of equine peripheral blood mononuclear cells (eqPBMC) with LPS decreased transcripts of tlr4 and increased transcription of md2 (myeloid differentiation factor 2) and cd14 (cluster of differentiation 14). Treatment with dexamethasone rescued transcription of tlr4 after LPS inhibition. LPS-induced transcription of md2 was inhibited in the presence of dexamethasone. Dexamethasone alone did not affect transcription of tlr4 and md2.

  15. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes1[OPEN

    PubMed Central

    Laloum, Tom; Lepage, Agnès; Ariel, Federico; Frances, Lisa; Gamas, Pascal; de Carvalho-Niebel, Fernanda

    2015-01-01

    The endosymbiotic association between legumes and soil bacteria called rhizobia leads to the formation of a new root-derived organ called the nodule in which differentiated bacteria convert atmospheric nitrogen into a form that can be assimilated by the host plant. Successful root infection by rhizobia and nodule organogenesis require the activation of symbiotic genes that are controlled by a set of transcription factors (TFs). We recently identified Medicago truncatula nuclear factor-YA1 (MtNF-YA1) and MtNF-YA2 as two M. truncatula TFs playing a central role during key steps of the Sinorhizobium meliloti-M. truncatula symbiotic interaction. NF-YA TFs interact with NF-YB and NF-YC subunits to regulate target genes containing the CCAAT box consensus sequence. In this study, using a yeast two-hybrid screen approach, we identified the NF-YB and NF-YC subunits able to interact with MtNF-YA1 and MtNF-YA2. In yeast (Saccharomyces cerevisiae) and in planta, we further demonstrated by both coimmunoprecipitation and bimolecular fluorescence complementation that these NF-YA, -B, and -C subunits interact and form a stable NF-Y heterotrimeric complex. Reverse genetic and chromatin immunoprecipitation-PCR approaches revealed the importance of these newly identified NF-YB and NF-YC subunits for rhizobial symbiosis and binding to the promoter of MtERN1 (for Ethylene Responsive factor required for Nodulation), a direct target gene of MtNF-YA1 and MtNF-YA2. Finally, we verified that a similar trimer is formed in planta by the common bean (Phaseolus vulgaris) NF-Y subunits, revealing the existence of evolutionary conserved NF-Y protein complexes to control nodulation in leguminous plants. This sheds light on the process whereby an ancient heterotrimeric TF mainly controlling cell division in animals has acquired specialized functions in plants. PMID:26432878

  16. Transcriptional Control of the TNF Gene

    PubMed Central

    Falvo, James V.; Tsytsykova, Alla V.; Goldfeld, Anne E.

    2016-01-01

    The cytokine TNF is a critical mediator of immune and inflammatory responses. The TNF gene is an immediate early gene, rapidly transcribed in a variety of cell types following exposure to a broad range of pathogens and signals of inflammation and stress. Regulation of TNF gene expression at the transcriptional level is cell type- and stimulus-specific, involving the recruitment of distinct sets of transcription factors to a compact and modular promoter region. In this review, we describe our current understanding of the mechanisms through which TNF transcription is specifically activated by a variety of extracellular stimuli in multiple cell types, including T cells, B cells, macrophages, mast cells, dendritic cells, and fibroblasts. We discuss the role of nuclear factor of activated T cells and other transcription factors and coactivators in enhanceosome formation, as well as the contradictory evidence for a role for nuclear factor κB as a classical activator of the TNF gene. We describe the impact of evolutionarily conserved cis-regulatory DNA motifs in the TNF locus upon TNF gene transcription, in contrast to the neutral effect of single nucleotide polymorphisms. We also assess the regulatory role of chromatin organization, epigenetic modifications, and long-range chromosomal interactions at the TNF locus. PMID:20173386

  17. A conserved lysine in the thyroid hormone receptor (TR)-α1 DNA binding domain, mutated in hepatocellular carcinoma, serves as a sensor for transcriptional regulation

    PubMed Central

    Chan, Ivan H.; Privalsky, Martin L.

    2009-01-01

    Nuclear receptors are hormone-regulated transcription factors that play key roles in normal physiology and development; conversely, mutant nuclear receptors are associated with a wide variety of neoplastic and endocrine disorders. Typically these receptor mutants function as dominant-negatives and can interfere with wild-type receptor activity. Dominant-negative thyroid hormone receptor (TR) mutations have been identified in over 60% of the human hepatocellular carcinomas (HCCs) analyzed. Most of these mutant TRs are defective for corepressor release or coactivator binding in vitro, accounting for their transcriptional defects in vivo. However, two HCC-TR mutants that function as dominant-negative receptors in cells display near-normal properties in vitro, raising questions as to the molecular basis behind their transcriptional defects. We report here that a single amino acid substitution, located at the same position in the DNA binding domain of both mutants, is responsible for their impaired transcriptional activation and dominant negative properties. Significantly, this amino acid, K74 in TRα, is highly conserved in all known nuclear receptors, and appears to function as an allosteric sensor that regulates the transcriptional activity of these receptors in response to binding to their DNA recognition sequences. We provide evidence that these two HCC mutants have acquired dominant-negative function as a result of disruption of this allosteric sensing. Our results suggest a novel mechanism by which nuclear receptors can acquire transcriptional defects and contribute to neoplastic disease. PMID:20053725

  18. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation.

    PubMed

    Pai, Vaibhav P; Martyniuk, Christopher J; Echeverri, Karen; Sundelacruz, Sarah; Kaplan, David L; Levin, Michael

    2016-02-01

    Endogenous bioelectric signaling via changes in cellular resting potential (V mem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of V mem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re-specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome-wide transcriptional responses to V mem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to V mem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of V mem change, and also revealed important (well-conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that V mem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies. PMID:27499876

  19. Genome‐wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation

    PubMed Central

    Pai, Vaibhav P.; Martyniuk, Christopher J.; Echeverri, Karen; Sundelacruz, Sarah; Kaplan, David L.

    2015-01-01

    Abstract Endogenous bioelectric signaling via changes in cellular resting potential (V mem) is a key regulator of patterning during regeneration and embryogenesis in numerous model systems. Depolarization of V mem has been functionally implicated in dedifferentiation, tumorigenesis, anatomical re‐specification, and appendage regeneration. However, no unbiased analyses have been performed to understand genome‐wide transcriptional responses to V mem change in vivo. Moreover, it is unknown which genes or gene networks represent conserved targets of bioelectrical signaling across different patterning contexts and species. Here, we use microarray analysis to comparatively analyze transcriptional responses to V mem depolarization. We compare the response of the transcriptome during embryogenesis (Xenopus development), regeneration (axolotl regeneration), and stem cell differentiation (human mesenchymal stem cells in culture) to identify common networks across model species that are associated with depolarization. Both subnetwork enrichment and PANTHER analyses identified a number of key genetic modules as targets of V mem change, and also revealed important (well‐conserved) commonalities in bioelectric signal transduction, despite highly diverse experimental contexts and species. Depolarization regulates specific transcriptional networks across all three germ layers (ectoderm, mesoderm, and endoderm) such as cell differentiation and apoptosis, and this information will be used for developing mechanistic models of bioelectric regulation of patterning. Moreover, our analysis reveals that V mem change regulates transcripts related to important disease pathways such as cancer and neurodegeneration, which may represent novel targets for emerging electroceutical therapies. PMID:27499876

  20. β-adrenergic signaling regulates evolutionarily derived sleep loss in the Mexican cavefish.

    PubMed

    Duboué, Erik R; Borowsky, Richard L; Keene, Alex C

    2012-01-01

    Sleep is a fundamental behavior exhibited almost universally throughout the animal kingdom. The required amount and circadian timing of sleep differs greatly between species in accordance with habitats and evolutionary history. The Mexican blind cavefish, Astyanax mexicanus, is a model organism for the study of adaptive morphological and behavioral traits. In addition to loss of eyes and pigmentation, cave populations of A. mexicanus exhibit evolutionarily derived sleep loss and increased vibration attraction behavior, presumably to cope with a nutrient-poor environment. Understanding the neural mechanisms of evolutionarily derived sleep loss in this system may reveal critical insights into the regulation of sleep in vertebrates. Here we report that blockade of β-adrenergic receptors with propranolol rescues the decreased-sleep phenotype of cavefish. This effect was not seen with α-adrenergic antagonists. Treatment with selective β1-, β2-, and β3-antagonists revealed that the increased sleep observed with propranolol could partially be explained via the β1-adrenergic system. Morphological analysis of catecholamine circuitry revealed conservation of gross catecholaminergic neuroanatomy between surface and cave morphs. Taken together, these findings suggest that evolutionarily derived changes in adrenergic signaling underlie the reduced sleep of cave populations. PMID:22922609

  1. Conservation of Endo16 expression in sea urchins despite evolutionary divergence in both cis and trans-acting components of transcriptional regulation

    NASA Technical Reports Server (NTRS)

    Romano, Laura A.; Wray, Gregory A.

    2003-01-01

    Evolutionary changes in transcriptional regulation undoubtedly play an important role in creating morphological diversity. However, there is little information about the evolutionary dynamics of cis-regulatory sequences. This study examines the functional consequence of evolutionary changes in the Endo16 promoter of sea urchins. The Endo16 gene encodes a large extracellular protein that is expressed in the endoderm and may play a role in cell adhesion. Its promoter has been characterized in exceptional detail in the purple sea urchin, Strongylocentrotus purpuratus. We have characterized the structure and function of the Endo16 promoter from a second sea urchin species, Lytechinus variegatus. The Endo16 promoter sequences have evolved in a strongly mosaic manner since these species diverged approximately 35 million years ago: the most proximal region (module A) is conserved, but the remaining modules (B-G) are unalignable. Despite extensive divergence in promoter sequences, the pattern of Endo16 transcription is largely conserved during embryonic and larval development. Transient expression assays demonstrate that 2.2 kb of upstream sequence in either species is sufficient to drive GFP reporter expression that correctly mimics this pattern of Endo16 transcription. Reciprocal cross-species transient expression assays imply that changes have also evolved in the set of transcription factors that interact with the Endo16 promoter. Taken together, these results suggest that stabilizing selection on the transcriptional output may have operated to maintain a similar pattern of Endo16 expression in S. purpuratus and L. variegatus, despite dramatic divergence in promoter sequence and mechanisms of transcriptional regulation.

  2. Specialization versus conservation: How Pol I and Pol III use the conserved architecture of the pre-initiation complex for specialized transcription

    PubMed Central

    Hoffmann, Niklas A.; Sadian, Yashar; Tafur, Lucas; Kosinski, Jan; Müller, Christoph W.

    2016-01-01

    ABSTRACT Here, we discuss the overall architecture of the RNA polymerase I (Pol I) and III (Pol III) core enzymes and their associated general transcription factors in the context of models of the Pol I and Pol III pre-initiation complexes, thereby highlighting potential functional adaptations of the Pol I and Pol III enzymes to their respective transcription tasks. Several new insights demonstrate the great degree of specialization of each of the eukaryotic RNA polymerases that is only beginning to be revealed as the structural and functional characterization of all eukaryotic RNA polymerases and their pre-initiation complexes progresses. PMID:27327079

  3. RAM: A Conserved Signaling Network That Regulates Ace2p Transcriptional Activity and Polarized MorphogenesisD⃞

    PubMed Central

    Nelson, Bryce; Kurischko, Cornelia; Horecka, Joe; Mody, Manali; Nair, Pradeep; Pratt, Lana; Zougman, Alexandre; McBroom, Linda D.B.; Hughes, Timothy R.; Boone, Charlie; Luca, Francis C.

    2003-01-01

    In Saccharomyces cerevisiae, polarized morphogenesis is critical for bud site selection, bud development, and cell separation. The latter is mediated by Ace2p transcription factor, which controls the daughter cell-specific expression of cell separation genes. Recently, a set of proteins that include Cbk1p kinase, its binding partner Mob2p, Tao3p (Pag1p), and Hym1p were shown to regulate both Ace2p activity and cellular morphogenesis. These proteins seem to form a signaling network, which we designate RAM for regulation of Ace2p activity and cellular morphogenesis. To find additional RAM components, we conducted genetic screens for bilateral mating and cell separation mutants and identified alleles of the PAK-related kinase Kic1p in addition to Cbk1p, Mob2p, Tao3p, and Hym1p. Deletion of each RAM gene resulted in a loss of Ace2p function and caused cell polarity defects that were distinct from formin or polarisome mutants. Two-hybrid and coimmunoprecipitation experiments reveal a complex network of interactions among the RAM proteins, including Cbk1p–Cbk1p, Cbk1p–Kic1p, Kic1p–Tao3p, and Kic1p–Hym1p interactions, in addition to the previously documented Cbk1p–Mob2p and Cbk1p–Tao3p interactions. We also identified a novel leucine-rich repeat-containing protein Sog2p that interacts with Hym1p and Kic1p. Cells lacking Sog2p exhibited the characteristic cell separation and cell morphology defects associated with perturbation in RAM signaling. Each RAM protein localized to cortical sites of growth during both budding and mating pheromone response. Hym1p was Kic1p- and Sog2p-dependent and Sog2p and Kic1p were interdependent for localization, indicating a close functional relationship between these proteins. Only Mob2p and Cbk1p were detectable in the daughter cell nucleus at the end of mitosis. The nuclear localization and kinase activity of the Mob2p–Cbk1p complex were dependent on all other RAM proteins, suggesting that Mob2p–Cbk1p functions late in the

  4. Understanding Transcription Factors in Sugar Beets: Genetic and Physical Mapping, Differential Expression, and Conservation Between Related Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transcription factors control all biological processes at the cellular level, but their role in sugar beets is still widely unknown. In order to develop a greater understanding, 47 primer pairs were designed around expressed tag sequences (ESTs) whose putative functions are various transcription fac...

  5. Lipopolysaccharide-induced inhibition of transcription of tlr4 in vitro is reversed by dexamethasone and correlates with presence of conserved NFκB binding sites

    PubMed Central

    Bonin, Camila P.; Baccarin, Raquel Y.A.; Nostell, Katarina; Nahum, Laila A.; Fossum, Caroline; de Camargo, Maristela M.

    2013-01-01

    Engagement of Toll-like receptor 4 (TLR4) by lipopolysaccharide (LPS) is a master trigger of the deleterious effects of septic shock. Horses and humans are considered the most sensitive species to septic shock, but the mechanisms explaining these phenomena remain elusive. Analysis of tlr4 promoters revealed high similarity among LPS-sensitive species (human, chimpanzee, and horse) and low similarity with LPS-resistant species (mouse and rat). Four conserved nuclear factor kappa B (NFκB) binding sites were found in the tlr4 promoter and two in the md2 promoter sequences that are likely to be targets for dexamethasone regulation. In vitro treatment of equine peripheral blood mononuclear cells (eqPBMC) with LPS decreased transcripts of tlr4 and increased transcription of md2 (myeloid differentiation factor 2) and cd14 (cluster of differentiation 14). Treatment with dexamethasone rescued transcription of tlr4 after LPS inhibition. LPS-induced transcription of md2 was inhibited in the presence of dexamethasone. Dexamethasone alone did not affect transcription of tlr4 and md2. PMID:23402753

  6. Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites

    SciTech Connect

    Rossi, M.; Anderson, C.; Demidov, O. N.; Appella, E.; Mazur, S. J.

    2008-12-01

    PPM1D (Wip1), a type PP2C phosphatase, is expressed at low levels in most normal tissues but is overexpressed in several types of cancers. In cells containing wild-type p53, the levels of PPM1D mRNA and protein increase following exposure to genotoxic stress, but the mechanism of regulation by p53 was unknown. PPM1D also has been identified as a CREB-regulated gene due to the presence of a cyclic AMP response element (CRE) in the promoter. Transient transfection and chromatin immunoprecipitation experiments in HCT116 cells were used to characterize a conserved p53 response element located in the 5' untranslated region (UTR) of the PPM1D gene that is required for the p53-dependent induction of transcription from the human PPM1D promoter. CREB binding to the CRE contributes to the regulation of basal expression of PPM1D and directs transcription initiation at upstream sites. Following exposure to ultraviolet (UV) or ionizing radiation, the abundance of transcripts with short 5' UTRs increased in cells containing wild-type p53, indicating increased utilization of downstream transcription initiation sites. In cells containing wild-type p53, exposure to UV resulted in increased PPM1D protein levels even when PPM1D mRNA levels remained constant, indicating post-transcriptional regulation of PPM1D protein levels.

  7. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    SciTech Connect

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.; Salzberg, Steven L.; Rubin, Gerald M.; Eisen, Michael B.; Celniker, SusanE.

    2004-08-06

    The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Measuring conservation of sequence features closely linked to function--such as binding-site clustering--makes better use of comparative sequence data than commonly used methods that examine only sequence identity.

  8. Computational identification of developmental enhancers:conservation and function of transcription factor binding-site clustersin drosophila melanogaster and drosophila psedoobscura

    SciTech Connect

    Berman, Benjamin P.; Pfeiffer, Barret D.; Laverty, Todd R.; Salzberg, Steven L.; Rubin, Gerald M.; Eisen, Michael B.; Celniker, SusanE.

    2004-08-06

    Background The identification of sequences that control transcription in metazoans is a major goal of genome analysis. In a previous study, we demonstrated that searching for clusters of predicted transcription factor binding sites could discover active regulatory sequences, and identified 37 regions of the Drosophila melanogaster genome with high densities of predicted binding sites for five transcription factors involved in anterior-posterior embryonic patterning. Nine of these clusters overlapped known enhancers. Here, we report the results of in vivo functional analysis of 27 remaining clusters. Results We generated transgenic flies carrying each cluster attached to a basal promoter and reporter gene, and assayed embryos for reporter gene expression. Six clusters are enhancers of adjacent genes: giant, fushi tarazu, odd-skipped, nubbin, squeeze and pdm2; three drive expression in patterns unrelated to those of neighboring genes; the remaining 18 do not appear to have enhancer activity. We used the Drosophila pseudoobscura genome to compare patterns of evolution in and around the 15 positive and 18 false-positive predictions. Although conservation of primary sequence cannot distinguish true from false positives, conservation of binding-site clustering accurately discriminates functional binding-site clusters from those with no function. We incorporated conservation of binding-site clustering into a new genome-wide enhancer screen, and predict several hundred new regulatory sequences, including 85 adjacent to genes with embryonic patterns. Conclusions Measuring conservation of sequence features closely linked to function - such as binding-site clustering - makes better use of comparative sequence data than commonly used methods that examine only sequence identity.

  9. INO80-dependent regression of ecdysone-induced transcriptional responses regulates developmental timing in Drosophila.

    PubMed

    Neuman, Sarah D; Ihry, Robert J; Gruetzmacher, Kelly M; Bashirullah, Arash

    2014-03-15

    Sequential pulses of the steroid hormone ecdysone regulate the major developmental transitions in Drosophila, and the duration of each developmental stage is determined by the length of time between ecdysone pulses. Ecdysone regulates biological responses by directly initiating target gene transcription. In turn, these transcriptional responses are known to be self-limiting, with mechanisms in place to ensure regression of hormone-dependent transcription. However, the biological significance of these transcriptional repression mechanisms remains unclear. Here we show that the chromatin remodeling protein INO80 facilitates transcriptional repression of ecdysone-regulated genes during prepupal development. In ino80 mutant animals, inefficient repression of transcriptional responses to the late larval ecdysone pulse delays the onset of the subsequent prepupal ecdysone pulse, resulting in a significantly longer prepupal stage. Conversely, increased expression of ino80 is sufficient to shorten the prepupal stage by increasing the rate of transcriptional repression. Furthermore, we demonstrate that enhancing the rate of regression of the mid-prepupal competence factor βFTZ-F1 is sufficient to determine the timing of head eversion and thus the duration of prepupal development. Although ino80 is conserved from yeast to humans, this study represents the first characterization of a bona fide ino80 mutation in any metazoan, raising the possibility that the functions of ino80 in transcriptional repression and developmental timing are evolutionarily conserved. PMID:24468295

  10. TGF-β1-induced transcription factor networks in Langerhans cell development and maintenance.

    PubMed

    Zhang, X; Gu, J; Yu, F-S; Zhou, L; Mi, Q-S

    2016-06-01

    Langerhans cells (LC) represent a specialized subset of evolutionarily conserved dendritic cells (DC) that populate stratified epithelial tissues, which are essential for the induction of skin and mucosal immunity and tolerance, including allergy. Transforming growth factor-β1 (TGF-β1) has been confirmed to be a predominant factor involved in LC development. Despite great advances in the understanding of LC ontogeny and diverse replenishment patterns, the underlying molecular mechanisms remain elusive. This review focuses on the recent discoveries in TGF-β1-mediated LC development and maintenance, with special attention to the involved transcription factors and related regulators. PMID:26948524

  11. An ER-directed transcriptional response to unfolded protein stress in the absence of conserved sensor-transducer proteins in Giardia lamblia.

    PubMed

    Spycher, Cornelia; Herman, Emily K; Morf, Laura; Qi, Weihong; Rehrauer, Hubert; Aquino Fournier, Catharine; Dacks, Joel B; Hehl, Adrian B

    2013-05-01

    The protozoan Giardia lamblia has a minimized organelle repertoire, and most strikingly lacks a classical stacked Golgi apparatus. Nevertheless, Giardia trophozoites constitutively secrete variant surface proteins, and dramatically increase the volume of protein secretion during differentiation to cysts. Eukaryotic cells have evolved an elaborate system for quality control (QC) of protein folding and capacity in the endoplasmic reticulum (ER). Upon ER-overload, an unfolded protein response (UPR) is triggered on transcriptional/translational level aiming at alleviating ER stress. In Giardia, a minimized secretory machinery and absence of glycan-dependent QC suggests that a genetically conserved UPR (or functional equivalent) to cope with insults to the secretory system has been eliminated. We tested this hypothesis of UPR elimination by profiling the transcriptional response during induced ER-folding stress. We show that on the contrary, ER-folding stress triggers a stressor-specific, ER-directed response with upregulation of only ~ 30 genes, with different kinetics and scope compared with the UPR of other eukaryotes. Computational genomics revealed conserved cis-acting motifs in upstream regions of responder genes capable of stressor-specific gene regulation in transfected cells. Interestingly, the sensors/transducers of folding stress, well conserved in model eukaryotes, are absent in Giardia suggesting the presence of a novel version of this essential eukaryotic function. PMID:23617761

  12. An evolutionarily ancient NO synthase (NOS) in shrimp.

    PubMed

    Wu, Chun-Hung; Siva, Vinu S; Song, Yen-Ling

    2013-11-01

    produce NOS, the florescence test was assayed, and it implicated that the production of NO was catalyzed by subset of granulocytic NOS. Since the MW range, inducible/noninducible transcript, calcium-dependent activity and tissue distribution, we suggest that PmNOS may recognize as an ancient NOS evolutionarily. PMID:23994281

  13. Redundancy of the conserved His residue in Azotobacter vinelandii NifL, a histidine autokinase homologue which regulates transcription of nitrogen fixation genes.

    PubMed

    Woodley, P; Drummond, M

    1994-08-01

    The NifL protein of Azotobacter vinelandii inhibits NifA, the activator of nif (nitrogen fixation) transcription, in response to oxygen and fixed nitrogen. NifL shows strong homology in its C-terminal domain to the histidine autokinase domains of the canonical two-component sensor proteins, including the region around His-304, which corresponds to the residue known to be phosphorylated in other systems. To examine the mechanism of sensory transduction by NifL, mutations encoding 10 substitutions for His-304 were introduced into the A. vinelandii chromosome. Regulation of nif transcription was measured using acetylene reduction and RNA blots. The substitutions His-304-->Arg and His-304-->Pro impaired regulation by both fixed nitrogen and oxygen, but substitution of Ala, Phe, Ile, Lys, Asn, Ser, Thr, Val had no effect. None of the mutants, including His-304-->Arg and His-304-->Pro, excreted ammonium during diazotrophy, a phenotype of nifL deletion mutants, suggesting that the molecular basis of this effect differs from that responsible for the inhibition of nif transcription. The data show conclusively that phosphorylation of His-304 is not essential for any of the known functions of A. vinelandii NifL. Homology to the family of histidine autokinases is therefore inadequate evidence for a mechanism of sensory transduction involving phosphorylation of the conserved histidine residue. PMID:7997174

  14. The Function of the MEF2 Family of Transcription Factors in Cardiac Development, Cardiogenomics, and Direct Reprogramming

    PubMed Central

    Desjardins, Cody A.; Naya, Francisco J.

    2016-01-01

    Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families to ensure accuracy and specificity in the system. Unsurprisingly, perturbations in this elaborate transcriptional circuitry can lead to severe cardiac abnormalities. Myocyte enhancer factor–2 (MEF2) transcription factor belongs to the evolutionarily conserved cardiac gene regulatory network. Given its central role in muscle gene regulation and its evolutionary conservation, MEF2 is considered one of only a few core cardiac transcription factors. In addition to its firmly established role as a differentiation factor, MEF2 regulates wide variety of, sometimes antagonistic, cellular processes such as cell survival and death. Vertebrate genomes encode multiple MEF2 family members thereby expanding the transcriptional potential of this core transcription factor in the heart. This review highlights the requirement of the MEF2 family and their orthologs in cardiac development in diverse animal model systems. Furthermore, we describe the recently characterized role of MEF2 in direct reprogramming and genome-wide cardiomyocyte gene regulation. A thorough understanding of the regulatory functions of the MEF2 family in cardiac development and cardiogenomics is required in order to develop effective therapeutic strategies to repair the diseased heart.

  15. Transcriptional regulation of neuropeptide and peptide hormone expression by the Drosophila dimmed and cryptocephal genes.

    PubMed

    Gauthier, Sebastien A; Hewes, Randall S

    2006-05-01

    The regulation of neuropeptide and peptide hormone gene expression is essential for the development and function of neuroendocrine cells in integrated physiological networks. In insects, a decline in circulating ecdysteroids triggers the activation of a neuroendocrine system to stimulate ecdysis, the behaviors used to shed the old cuticle at the culmination of each molt. Here we show that two evolutionarily conserved transcription factor genes, the basic helix-loop-helix (bHLH) gene dimmed (dimm) and the basic-leucine zipper (bZIP) gene cryptocephal (crc), control expression of diverse neuropeptides and peptide hormones in Drosophila. Central nervous system expression of three neuropeptide genes, Dromyosuppressin, FMRFamide-related and Leucokinin, is activated by dimm. Expression of Ecdysis triggering hormone (ETH) in the endocrine Inka cells requires crc; homozygous crc mutant larvae display markedly reduced ETH levels and corresponding defects in ecdysis. crc activates ETH expression though a 382 bp enhancer, which completely recapitulates the ETH expression pattern. The enhancer contains two evolutionarily conserved regions, and both are imperfect matches to recognition elements for activating transcription factor-4 (ATF-4), the vertebrate ortholog of the CRC protein and an important intermediate in cellular responses to endoplasmic reticulum stress. These regions also contain a putative ecdysteroid response element and a predicted binding site for the products of the E74 ecdysone response gene. These results suggest that convergence between ATF-related signaling and an important intracellular steroid response pathway may contribute to the neuroendocrine regulation of insect molting. PMID:16651547

  16. Genome-wide identification of conserved regulatory function in diverged sequences

    PubMed Central

    Taher, Leila; McGaughey, David M.; Maragh, Samantha; Aneas, Ivy; Bessling, Seneca L.; Miller, Webb; Nobrega, Marcelo A.; McCallion, Andrew S.; Ovcharenko, Ivan

    2011-01-01

    Plasticity of gene regulatory encryption can permit DNA sequence divergence without loss of function. Functional information is preserved through conservation of the composition of transcription factor binding sites (TFBS) in a regulatory element. We have developed a method that can accurately identify pairs of functional noncoding orthologs at evolutionarily diverged loci by searching for conserved TFBS arrangements. With an estimated 5% false-positive rate (FPR) in approximately 3000 human and zebrafish syntenic loci, we detected approximately 300 pairs of diverged elements that are likely to share common ancestry and have similar regulatory activity. By analyzing a pool of experimentally validated human enhancers, we demonstrated that 7/8 (88%) of their predicted functional orthologs retained in vivo regulatory control. Moreover, in 5/7 (71%) of assayed enhancer pairs, we observed concordant expression patterns. We argue that TFBS composition is often necessary to retain and sufficient to predict regulatory function in the absence of overt sequence conservation, revealing an entire class of functionally conserved, evolutionarily diverged regulatory elements that we term “covert.” PMID:21628450

  17. Conservation and divergence of transcriptional coregulations between box C/D snoRNA and ribosomal protein genes in Ascomycota

    PubMed Central

    Diao, Li-Ting; Xiao, Zhen-Dong; Leng, Xiao-Min; Li, Bin; Li, Jun-Hao; Luo, Yu-Ping; Li, Si-Guang; Yu, Chuan-He; Zhou, Hui

    2014-01-01

    Coordinated assembly of the ribosome is essential for proper translational activity in eukaryotic cells. It is therefore critical to coordinate the expression of components of ribosomal programs with the cell's nutritional status. However, coordinating expression of these components is poorly understood. Here, by combining experimental and computational approaches, we systematically identified box C/D snoRNAs in four fission yeasts and found that the expression of box C/D snoRNA and ribosomal protein (RP) genes were orchestrated by a common Homol-D box, thereby ensuring a constant balance of these two genetic components. Interestingly, such transcriptional coregulations could be observed in most Ascomycota species and were mediated by different cis-regulatory elements. Via the reservation of cis elements, changes in spatial configuration, the substitution of cis elements, and gain or loss of cis elements, the regulatory networks of box C/D snoRNAs evolved to correspond with those of the RP genes, maintaining transcriptional coregulation between box C/D snoRNAs and RP genes. Our results indicate that coregulation via common cis elements is an important mechanism to coordinate expression of the RP and snoRNA genes, which ensures a constant balance of these two components. PMID:25002674

  18. Nucleotide excision repair (NER) machinery recruitment by the transcription-repair coupling factor involves unmasking of a conserved intramolecular interface

    PubMed Central

    Deaconescu, Alexandra M.; Sevostyanova, Anastasia; Artsimovitch, Irina; Grigorieff, Nikolaus

    2012-01-01

    Transcription-coupled DNA repair targets DNA lesions that block progression of elongating RNA polymerases. In bacteria, the transcription-repair coupling factor (TRCF; also known as Mfd) SF2 ATPase recognizes RNA polymerase stalled at a site of DNA damage, removes the enzyme from the DNA, and recruits the Uvr(A)BC nucleotide excision repair machinery via UvrA binding. Previous studies of TRCF revealed a molecular architecture incompatible with UvrA binding, leaving its recruitment mechanism unclear. Here, we examine the UvrA recognition determinants of TRCF using X-ray crystallography of a core TRCF–UvrA complex and probe the conformational flexibility of TRCF in the absence and presence of nucleotides using small-angle X-ray scattering. We demonstrate that the C-terminal domain of TRCF is inhibitory for UvrA binding, but not RNA polymerase release, and show that nucleotide binding induces concerted multidomain motions. Our studies suggest that autoinhibition of UvrA binding in TRCF may be relieved only upon engaging the DNA damage. PMID:22331906

  19. A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots[C][W][OPEN

    PubMed Central

    Albert, Nick W.; Davies, Kevin M.; Lewis, David H.; Zhang, Huaibi; Montefiori, Mirco; Brendolise, Cyril; Boase, Murray R.; Ngo, Hanh; Jameson, Paula E.; Schwinn, Kathy E.

    2014-01-01

    Plants require sophisticated regulatory mechanisms to ensure the degree of anthocyanin pigmentation is appropriate to myriad developmental and environmental signals. Central to this process are the activity of MYB-bHLH-WD repeat (MBW) complexes that regulate the transcription of anthocyanin genes. In this study, the gene regulatory network that regulates anthocyanin synthesis in petunia (Petunia hybrida) has been characterized. Genetic and molecular evidence show that the R2R3-MYB, MYB27, is an anthocyanin repressor that functions as part of the MBW complex and represses transcription through its C-terminal EAR motif. MYB27 targets both the anthocyanin pathway genes and basic-helix-loop-helix (bHLH) ANTHOCYANIN1 (AN1), itself an essential component of the MBW activation complex for pigmentation. Other features of the regulatory network identified include inhibition of AN1 activity by the competitive R3-MYB repressor MYBx and the activation of AN1, MYB27, and MYBx by the MBW activation complex, providing for both reinforcement and feedback regulation. We also demonstrate the intercellular movement of the WDR protein (AN11) and R3-repressor (MYBx), which may facilitate anthocyanin pigment pattern formation. The fundamental features of this regulatory network in the Asterid model of petunia are similar to those in the Rosid model of Arabidopsis thaliana and are thus likely to be widespread in the Eudicots. PMID:24642943

  20. Regulation of Lactobacillus casei sorbitol utilization genes requires DNA-binding transcriptional activator GutR and the conserved protein GutM.

    PubMed

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J

    2008-09-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTS(Gut)). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIB(Gat) domain) and a mannitol/fructose-specific EIIA-like domain (EIIA(Mtl) domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBC(Gut) negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  1. Regulation of Lactobacillus casei Sorbitol Utilization Genes Requires DNA-Binding Transcriptional Activator GutR and the Conserved Protein GutM▿

    PubMed Central

    Alcántara, Cristina; Sarmiento-Rubiano, Luz Adriana; Monedero, Vicente; Deutscher, Josef; Pérez-Martínez, Gaspar; Yebra, María J.

    2008-01-01

    Sequence analysis of the five genes (gutRMCBA) downstream from the previously described sorbitol-6-phosphate dehydrogenase-encoding Lactobacillus casei gutF gene revealed that they constitute a sorbitol (glucitol) utilization operon. The gutRM genes encode putative regulators, while the gutCBA genes encode the EIIC, EIIBC, and EIIA proteins of a phosphoenolpyruvate-dependent sorbitol phosphotransferase system (PTSGut). The gut operon is transcribed as a polycistronic gutFRMCBA messenger, the expression of which is induced by sorbitol and repressed by glucose. gutR encodes a transcriptional regulator with two PTS-regulated domains, a galactitol-specific EIIB-like domain (EIIBGat domain) and a mannitol/fructose-specific EIIA-like domain (EIIAMtl domain). Its inactivation abolished gut operon transcription and sorbitol uptake, indicating that it acts as a transcriptional activator. In contrast, cells carrying a gutB mutation expressed the gut operon constitutively, but they failed to transport sorbitol, indicating that EIIBCGut negatively regulates GutR. A footprint analysis showed that GutR binds to a 35-bp sequence upstream from the gut promoter. A sequence comparison with the presumed promoter region of gut operons from various firmicutes revealed a GutR consensus motif that includes an inverted repeat. The regulation mechanism of the L. casei gut operon is therefore likely to be operative in other firmicutes. Finally, gutM codes for a conserved protein of unknown function present in all sequenced gut operons. A gutM mutant, the first constructed in a firmicute, showed drastically reduced gut operon expression and sorbitol uptake, indicating a regulatory role also for GutM. PMID:18676710

  2. Separation of mutational and transcriptional enhancers in immunoglobulin genes

    PubMed Central

    Kothapalli, Naga Rama; Collura, Kaitlin M.; Norton, Darrell D.; Fugmann, Sebastian D.

    2011-01-01

    Secondary immunoglobulin (Ig) gene diversification relies on activation-induced cytidine deaminase (AID) to create U:G mismatches that are subsequently fixed by mutagenic repair pathways. AID activity is focused to Ig loci by cis-regulatory DNA sequences named targeting elements. Here we show that in contrast to prevailing thought in the field, the targeting elements in the chicken IGL locus are distinct from classical transcriptional enhancers. These mutational enhancer elements (MEEs) are required over and above transcription to recruit AID-mediated mutagenesis to Ig loci. We identified a small 222 bp fragment in the chicken IGL locus that enhances mutagenesis without boosting transcription, and this sequence represents a key component of a MEE. Lastly, MEEs are evolutionarily conserved amongst birds, both in sequence and function, and contain several highly conserved sequence modules that are likely involved in recruiting trans-acting targeting factors. We propose that MEEs represent a novel class of cis-regulatory elements whose function is to control genomic integrity. PMID:21844395

  3. Separation of mutational and transcriptional enhancers in Ig genes.

    PubMed

    Kothapalli, Naga Rama; Collura, Kaitlin M; Norton, Darrell D; Fugmann, Sebastian D

    2011-09-15

    Secondary Ig gene diversification relies on activation-induced cytidine deaminase (AID) to create U:G mismatches that are subsequently fixed by mutagenic repair pathways. AID activity is focused to Ig loci by cis-regulatory DNA sequences named targeting elements. In this study, we show that in contrast to prevailing thought in the field, the targeting elements in the chicken IGL locus are distinct from classical transcriptional enhancers. These mutational enhancer elements (MEEs) are required over and above transcription to recruit AID-mediated mutagenesis to Ig loci. We identified a small 222-bp fragment in the chicken IGL locus that enhances mutagenesis without boosting transcription, and this sequence represents a key component of an MEE. Lastly, MEEs are evolutionarily conserved among birds, both in sequence and function, and contain several highly conserved sequence modules that are likely involved in recruiting trans-acting targeting factors. We propose that MEEs represent a novel class of cis-regulatory elements for which the function is to control genomic integrity. PMID:21844395

  4. Autopalmitoylation of TEAD Proteins Regulates Transcriptional Output of Hippo Pathway

    PubMed Central

    Chan, PuiYee; Han, Xiao; Zheng, Baohui; DeRan, Michael; Yu, Jianzhong; Jarugumilli, Gopala K.; Deng, Hua; Pan, Duojia; Luo, Xuelian; Wu, Xu

    2016-01-01

    TEA domain (TEAD) transcription factors bind to the co-activator YAP/TAZ, and regulate the transcriptional output of Hippo pathway, playing critical roles in organ size control and tumorigenesis. Protein S-palmitoylation attaches fatty acid (palmitate) to cysteine residues, and regulates protein trafficking, membrane localization and signaling activities. Using activity-based chemical probes, we discovered that human TEADs possess intrinsic palmitoylating enzyme-like activities, and undergo autopalmitoylation at evolutionarily conserved cysteine residues under physiological conditions. We determined the crystal structures of lipid-bound TEADs, and found that the lipid chain of palmitate inserts into a conserved deep hydrophobic pocket. Strikingly, palmitoylation is required for TEAD’s binding to YAP/TAZ, but dispensable for the binding to Vgll4 tumor suppressor. In addition, palmitoylation does not alter TEAD’s localization. Moreover, TEAD palmitoylation-deficient mutants impaired TAZ-mediated muscle differentiation in vitro, and Yorkie-mediated tissue overgrowth in Drosophila in vivo. Our study directly linked autopalmitoylation to the transcriptional regulation of Hippo pathway. PMID:26900866

  5. Phylogenetic comparison of the pre-mRNA adenosine deaminase ADAR2 genes and transcripts: conservation and diversity in editing site sequence and alternative splicing patterns.

    PubMed

    Slavov, D; Gardiner, K

    2002-10-16

    Adenosine deaminase that acts on RNA -2 (ADAR2) is a member of a family of vertebrate genes that encode adenosine (A)-to-inosine (I) RNA deaminases, enzymes that deaminate specific A residues in specific pre-mRNAs to produce I. Known substrates of ADAR2 include sites within the coding regions of pre-mRNAs of the ionotropic glutamate receptors, GluR2-6, and the serotonin receptor, 5HT2C. Mammalian ADAR2 expression is itself regulated by A-to-I editing and by several alternative splicing events. Because the biological consequences of ADAR2 function are significant, we have undertaken a phylogenetic comparison of these features. Here we report a comparison of cDNA sequences, genomic organization, editing site sequences and patterns of alternative splicing of ADAR2 genes from human, mouse, chicken, pufferfish and zebrafish. Coding sequences and intron/exon organization are highly conserved. All ADAR2 genes show evidence of transcript editing with required sequences and predicted secondary structures very highly conserved. Patterns and levels of editing and alternative splicing vary among organisms, and include novel N-terminal exons and splicing events. PMID:12459255

  6. Conserved Ser residues in the basic region of the bZIP-type transcription factor HBP-1a(17): importance in DNA binding and possible targets for phosphorylation.

    PubMed

    Meshi, T; Moda, I; Minami, M; Okanami, M; Iwabuchi, M

    1998-01-01

    HBP-1a(17) is representative of a group of plant bZIP-type transcription factors which includes HBP-1a proteins and G-box-binding factors. We found kinase activity in wheat nuclear extract that phosphorylated HBP-1a(17). Experiments using recombinant HBP-1a(17) derivatives as substrates revealed that all three of the Ser residues in the basic region, Ser-261, Ser-265, and Ser-269, were phosphorylated in a Ca(2+)-stimulated manner. DNA-binding analysis of mutants with a Ser-to-Glu change, prepared to mimic the phosphorylated proteins, indicated that introduction of a negative charge at position 265 or 269 prevents HBP-1a(17) from binding DNA not only in the homodimer of mutants but also in heterodimers with a wild-type protein. It is therefore suggested that the phosphorylation regulates the function of HBP-1a(17) at least at the level of DNA binding. Since Ser-265 and Ser-269 are highly conserved among the plant bZIP-type factors known to date, a common Ca(2+)-mediated regulatory mechanism may exert an effect on the bZIP-type factors through phosphorylation of these conserved Ser residues. PMID:9484468

  7. Conserved Structural Domains in FoxD4L1, a Neural Forkhead Box Transcription Factor, Are Required to Repress or Activate Target Genes

    PubMed Central

    Klein, Steven L.; Neilson, Karen M.; Orban, John; Yaklichkin, Sergey; Hoffbauer, Jennifer; Mood, Kathy; Daar, Ira O.; Moody, Sally A.

    2013-01-01

    FoxD4L1 is a forkhead transcription factor that expands the neural ectoderm by down-regulating genes that promote the onset of neural differentiation and up-regulating genes that maintain proliferative neural precursors in an immature state. We previously demonstrated that binding of Grg4 to an Eh-1 motif enhances the ability of FoxD4L1 to down-regulate target neural genes but does not account for all of its repressive activity. Herein we analyzed the protein sequence for additional interaction motifs and secondary structure. Eight conserved motifs were identified in the C-terminal region of fish and frog proteins. Extending the analysis to mammals identified a high scoring motif downstream of the Eh-1 domain that contains a tryptophan residue implicated in protein-protein interactions. In addition, secondary structure prediction programs predicted an α-helical structure overlapping with amphibian-specific Motif 6 in Xenopus, and similarly located α-helical structures in other vertebrate FoxD proteins. We tested functionality of this site by inducing a glutamine-to-proline substitution expected to break the predicted α-helical structure; this significantly reduced FoxD4L1’s ability to repress zic3 and irx1. Because this mutation does not interfere with Grg4 binding, these results demonstrate that at least two regions, the Eh-1 motif and a more C-terminal predicted α-helical/Motif 6 site, additively contribute to repression. In the N-terminal region we previously identified a 14 amino acid motif that is required for the up-regulation of target genes. Secondary structure prediction programs predicted a short β-strand separating two acidic domains. Mutant constructs show that the β-strand itself is not required for transcriptional activation. Instead, activation depends upon a glycine residue that is predicted to provide sufficient flexibility to bring the two acidic domains into close proximity. These results identify conserved predicted motifs with secondary

  8. Conserved function of medaka pink-eyed dilution in melanin synthesis and its divergent transcriptional regulation in gonads among vertebrates.

    PubMed

    Fukamachi, Shoji; Asakawa, Shuichi; Wakamatsu, Yuko; Shimizu, Nobuyoshi; Mitani, Hiroshi; Shima, Akihiro

    2004-11-01

    Medaka is emerging as a model organism for the study of vertebrate development and genetics, and its effectiveness in forward genetics should prove equal to that of zebrafish. Here, we identify by positional cloning a gene responsible for the medaka i-3 albino mutant. i-3 larvae have weakly tyrosinase-positive cells but lack strongly positive and dendritic cells, suggesting loss of fully differentiated melanophores. The region surrounding the i-3 locus is syntenic to human 19p13, but a BAC clone covering the i-3 locus contained orthologs located at 15q11-13, including OCA2 (P). Medaka P consists of 842 amino acids and shares approximately 65% identity with mammalian P proteins. The i-3 mutation is a four-base deletion in exon 13, which causes a frameshift and truncation of the protein. We detected medaka P transcripts in melanin-producing eyeballs and (putative) skin melanophores on embryos and an alternatively spliced form in the non-melanin-producing ovary or oocytes. The mouse p is similarly expressed in gonads, but not alternatively spliced. This is the first isolation of nonmammalian P, the functional mechanism of action of which has not yet been elucidated, even in mammals. Further investigation of the functions of P proteins and the regulation of their expression will provide new insight into body color determination and gene evolution. PMID:15579703

  9. Inherent properties not conserved in other tenuiviruses increase priming and realignment cycles during transcription of Rice stripe virus.

    PubMed

    Liu, Xiaojuan; Xiong, Guihong; Qiu, Ping; Du, Zhenguo; Richard, Kormelink; Zheng, Luping; Zhang, Jie; Ding, Xinlun; Yang, Liang; Zhang, Songbai; Wu, Zujian

    2016-09-01

    Two tenuiviruses Rice stripe virus (RSV) and Rice grassy stunt virus (RGSV) were found to co-infect rice with the same reovirus Rice ragged stunt virus (RRSV). During the co-infection, both tenuiviruses recruited 10-21 nucleotides sized capped-RNA leaders from the RRSV. A total of 245 and 102 RRSV-RGSV and RRSV-RSV chimeric mRNA clones, respectively, were sequenced. An analysis of the sequences suggested a scenario consistent with previously reported data on related viruses, in which capped leader RNAs having a 3' end complementary to the viral template are preferred and upon base pairing the leaders prime processive transcription directly or after one to several cycles of priming and realignment (repetitive prime-and-realign). Interestingly, RSV appeared to have a higher tendency to use repetitive prime-and-realign than RGSV even with the same leader derived from the same RRSV RNA. Combining with relevant data reported previously, this points towards an intrinsic feature of RSV. PMID:27393974

  10. Fine-Tuning of FACT by the Ubiquitin Proteasome System in Regulation of Transcriptional Elongation.

    PubMed

    Sen, Rwik; Ferdoush, Jannatul; Kaja, Amala; Bhaumik, Sukesh R

    2016-06-01

    FACT (facilitates chromatin transcription), an evolutionarily conserved histone chaperone involved in transcription and other DNA transactions, is upregulated in cancers, and its downregulation is associated with cellular death. However, it is not clearly understood how FACT is fine-tuned for normal cellular functions. Here, we show that the FACT subunit Spt16 is ubiquitylated by San1 (an E3 ubiquitin ligase) and degraded by the 26S proteasome. Enhanced abundance of Spt16 in the absence of San1 impairs transcriptional elongation. Likewise, decreased abundance of Spt16 also reduces transcription. Thus, an optimal level of Spt16 is required for efficient transcriptional elongation, which is maintained by San1 via ubiquitylation and proteasomal degradation. Consistently, San1 associates with the coding sequences of active genes to regulate Spt16's abundance. Further, we found that enhanced abundance of Spt16 in the absence of San1 impairs chromatin reassembly at the coding sequence, similarly to the results seen following inactivation of Spt16. Efficient chromatin reassembly enhances the fidelity of transcriptional elongation. Taken together, our results demonstrate for the first time a fine-tuning of FACT by a ubiquitin proteasome system in promoting chromatin reassembly in the wake of elongating RNA polymerase II and transcriptional elongation, thus revealing novel regulatory mechanisms of gene expression. PMID:27044865

  11. Identification and analysis of copine/BONZAI proteins among evolutionarily diverse plant species.

    PubMed

    Zou, Baohong; Hong, Xuexue; Ding, Yuan; Wang, Xiang; Liu, He; Hua, Jian

    2016-08-01

    Copines are evolutionarily conserved calcium-dependent membrane-binding proteins with potentially critical biological functions. In plants, the function of these proteins has not been analyzed except for in Arabidopsis thaliana where they play critical roles in development and disease resistance. To facilitate functional studies of copine proteins in crop plants, genome-wide identification, curation, and phylogeny analysis of copines in 16 selected plant species were conducted. All the identified 32 plant copines have conserved features of the two C2 domains (C2A and C2B) and the von Willebrand factor A (vWA) domain. Different from animal and protozoa copines, plant copines have glycine at the second residue potentially acquiring a unique protein myristoylation modification. Phylogenetic analysis suggests that copine was present as one copy when evolving from green algae to basal flowering plants, and duplicated before the divergence of monocots and dicots. In addition, gene expression and protein localization study of rice copines suggests both conserved and different properties of copines in dicots and monocots. This study will contribute to uncovering the role of copine genes in different plant species. PMID:27484220

  12. Towards an Evolutionary Model of Transcription Networks

    PubMed Central

    He, Xin; Cao, Xiaoyi; Zhong, Sheng

    2011-01-01

    DNA evolution models made invaluable contributions to comparative genomics, although it seemed formidable to include non-genomic features into these models. In order to build an evolutionary model of transcription networks (TNs), we had to forfeit the substitution model used in DNA evolution and to start from modeling the evolution of the regulatory relationships. We present a quantitative evolutionary model of TNs, subjecting the phylogenetic distance and the evolutionary changes of cis-regulatory sequence, gene expression and network structure to one probabilistic framework. Using the genome sequences and gene expression data from multiple species, this model can predict regulatory relationships between a transcription factor (TF) and its target genes in all species, and thus identify TN re-wiring events. Applying this model to analyze the pre-implantation development of three mammalian species, we identified the conserved and re-wired components of the TNs downstream to a set of TFs including Oct4, Gata3/4/6, cMyc and nMyc. Evolutionary events on the DNA sequence that led to turnover of TF binding sites were identified, including a birth of an Oct4 binding site by a 2nt deletion. In contrast to recent reports of large interspecies differences of TF binding sites and gene expression patterns, the interspecies difference in TF-target relationship is much smaller. The data showed increasing conservation levels from genomic sequences to TF-DNA interaction, gene expression, TN, and finally to morphology, suggesting that evolutionary changes are larger at molecular levels and smaller at functional levels. The data also showed that evolutionarily older TFs are more likely to have conserved target genes, whereas younger TFs tend to have larger re-wiring rates. PMID:21695281

  13. Transcription factors Mix1 and VegT, relocalization of vegt mRNA, and conserved endoderm and dorsal specification in frogs.

    PubMed

    Sudou, Norihiro; Garcés-Vásconez, Andrés; López-Latorre, María A; Taira, Masanori; Del Pino, Eugenia M

    2016-05-17

    Protein expression of the transcription factor genes mix1 and vegt characterized the presumptive endoderm in embryos of the frogs Engystomops randi, Epipedobates machalilla, Gastrotheca riobambae, and Eleutherodactylus coqui, as in Xenopus laevis embryos. Protein VegT was detected in the animal hemisphere of the early blastula in all frogs, and only the animal pole was VegT-negative. This finding stimulated a vegt mRNA analysis in X. laevis eggs and embryos. vegt mRNA was detected in the animal region of X. laevis eggs and early embryos, in agreement with the VegT localization observed in the analyzed frogs. Moreover, a dorso-animal relocalization of vegt mRNA occurred in the egg at fertilization. Thus, the comparative analysis indicated that vegt may participate in dorsal development besides its known roles in endoderm development, and germ-layer specification. Zygotic vegt (zvegt) mRNA was detected as a minor isoform besides the major maternal (mvegt) isoform of the X. laevis egg. In addition, α-amanitin-insensitive vegt transcripts were detected around vegetal nuclei of the blastula. Thus, accumulation of vegt mRNA around vegetal nuclei was caused by relocalization rather than new mRNA synthesis. The localization of vegt mRNA around vegetal nuclei may contribute to the identity of vegetal blastomeres. These and previously reportedly localization features of vegt mRNA and protein derive from the master role of vegt in the development of frogs. The comparative analysis indicated that the strategies for endoderm, and dorsal specification, involving vegt and mix1, have been evolutionary conserved in frogs. PMID:27140624

  14. A surprising cross-species conservation in the genomic landscape of mouse and human oral cancer identifies a transcriptional signature predicting metastatic disease

    PubMed Central

    Onken, Michael D.; Winkler, Ashley E.; Kanchi, Krishna-Latha; Chalivendra, Varun; Law, Jonathan H.; Rickert, Charles G.; Kallogjeri, Dorina; Judd, Nancy P.; Dunn, Gavin P.; Piccirillo, Jay F.; Lewis, James S.; Mardis, Elaine R.; Uppaluri, Ravindra

    2014-01-01

    Purpose Improved understanding of the molecular basis underlying oral squamous cell carcinoma (OSCC) aggressive growth has significant clinical implications. Herein, cross-species genomic comparison of carcinogen-induced murine and human OSCCs with indolent or metastatic growth yielded results with surprising translational relevance. Experimental Design Murine OSCC cell lines were subjected to next-generation sequencing (NGS) to define their mutational landscape, to define novel candidate cancer genes and to assess for parallels with known drivers in human OSCC. Expression arrays identified a mouse metastasis signature and we assessed its representation in 4 independent human datasets comprising 324 patients using weighted voting and Gene Set Enrichment Analysis (GSEA). Kaplan-Meier analysis and multivariate Cox proportional hazards modeling were used to stratify outcomes. A qRT-PCR assay based on the mouse signature coupled to a machine-learning algorithm was developed and used to stratify an independent set of 31 patients with respect to metastatic lymphadenopathy. Results NGS revealed conservation of human driver pathway mutations in mouse OSCC including in Trp53, MAPK, PI3K, NOTCH, JAK/STAT and FAT1–4. Moreover, comparative analysis between The Cancer Genome Atlas (TCGA) and mouse samples defined AKAP9, MED12L and MYH6 as novel putative cancer genes. Expression analysis identified a transcriptional signature predicting aggressiveness and clinical outcomes, which were validated in 4 independent human OSCC datasets. Finally, we harnessed the translational potential of this signature by creating a clinically feasible assay that stratified OSCC patients with a 93.5% accuracy. Conclusions These data demonstrate surprising cross-species genomic conservation that has translational relevance for human oral squamous cell cancer. PMID:24668645

  15. Conserved localization of Pax6 and Pax7 transcripts in the brain of representatives of sarcopterygian vertebrates during development supports homologous brain regionalization

    PubMed Central

    Moreno, Nerea; Joven, Alberto; Morona, Ruth; Bandín, Sandra; López, Jesús M.; González, Agustín

    2014-01-01

    Many of the genes involved in brain patterning during development are highly conserved in vertebrates and similarities in their expression patterns help to recognize homologous cell types or brain regions. Among these genes, Pax6 and Pax7 are expressed in regionally restricted patterns in the brain and are essential for its development. In the present immunohistochemical study we analyzed the distribution of Pax6 and Pax7 cells in the brain of six representative species of tetrapods and lungfishes, the closest living relatives of tetrapods, at several developmental stages. The distribution patterns of these transcription factors were largely comparable across species. In all species only Pax6 was expressed in the telencephalon, including the olfactory bulbs, septum, striatum, and amygdaloid complex. In the diencephalon, Pax6 and Pax7 were distinct in the alar and basal parts, mainly in prosomeres 1 and 3. Pax7 specifically labeled cells in the optic tectum (superior colliculus) and Pax6, but not Pax7, cells were found in the tegmentum. Pax6 was found in most granule cells of the cerebellum and Pax7 labeling was detected in cells of the ventricular zone of the rostral alar plate and in migrated cells in the basal plate, including the griseum centrale and the interpeduncular nucleus. Caudally, Pax6 cells formed a column, whereas the ventricular zone of the alar plate expressed Pax7. Since the observed Pax6 and Pax7 expression patterns are largely conserved they can be used to identify subdivisions in the brain across vertebrates that are not clearly discernible with classical techniques. PMID:25147506

  16. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II.

    PubMed

    Larson, Matthew H; Zhou, Jing; Kaplan, Craig D; Palangat, Murali; Kornberg, Roger D; Landick, Robert; Block, Steven M

    2012-04-24

    During transcription, RNA polymerase II (RNAPII) must select the correct nucleotide, catalyze its addition to the growing RNA transcript, and move stepwise along the DNA until a gene is fully transcribed. In all kingdoms of life, transcription must be finely tuned to ensure an appropriate balance between fidelity and speed. Here, we used an optical-trapping assay with high spatiotemporal resolution to probe directly the motion of individual RNAPII molecules as they pass through each of the enzymatic steps of transcript elongation. We report direct evidence that the RNAPII trigger loop, an evolutionarily conserved protein subdomain, serves as a master regulator of transcription, affecting each of the three main phases of elongation, namely: substrate selection, translocation, and catalysis. Global fits to the force-velocity relationships of RNAPII and its trigger loop mutants support a Brownian ratchet model for elongation, where the incoming NTP is able to bind in either the pre- or posttranslocated state, and movement between these two states is governed by the trigger loop. Comparison of the kinetics of pausing by WT and mutant RNAPII under conditions that promote base misincorporation indicate that the trigger loop governs fidelity in substrate selection and mismatch recognition, and thereby controls aspects of both transcriptional accuracy and rate. PMID:22493230

  17. Trigger loop dynamics mediate the balance between the transcriptional fidelity and speed of RNA polymerase II

    PubMed Central

    Larson, Matthew H.; Zhou, Jing; Kaplan, Craig D.; Palangat, Murali; Kornberg, Roger D.; Landick, Robert; Block, Steven M.

    2012-01-01

    During transcription, RNA polymerase II (RNAPII) must select the correct nucleotide, catalyze its addition to the growing RNA transcript, and move stepwise along the DNA until a gene is fully transcribed. In all kingdoms of life, transcription must be finely tuned to ensure an appropriate balance between fidelity and speed. Here, we used an optical-trapping assay with high spatiotemporal resolution to probe directly the motion of individual RNAPII molecules as they pass through each of the enzymatic steps of transcript elongation. We report direct evidence that the RNAPII trigger loop, an evolutionarily conserved protein subdomain, serves as a master regulator of transcription, affecting each of the three main phases of elongation, namely: substrate selection, translocation, and catalysis. Global fits to the force-velocity relationships of RNAPII and its trigger loop mutants support a Brownian ratchet model for elongation, where the incoming NTP is able to bind in either the pre- or posttranslocated state, and movement between these two states is governed by the trigger loop. Comparison of the kinetics of pausing by WT and mutant RNAPII under conditions that promote base misincorporation indicate that the trigger loop governs fidelity in substrate selection and mismatch recognition, and thereby controls aspects of both transcriptional accuracy and rate. PMID:22493230

  18. The Conserved Chimeric Transcript UPGRADE2 Is Associated with Unreduced Pollen Formation and Is Exclusively Found in Apomictic Boechera Species1[C][W][OPEN

    PubMed Central

    Mau, Martin; Corral, José M.; Vogel, Heiko; Melzer, Michael; Fuchs, Jörg; Kuhlmann, Markus; de Storme, Nico; Geelen, Danny; Sharbel, Timothy F.

    2013-01-01

    In apomictic Boechera spp., meiotic diplospory leads to the circumvention of meiosis and the suppression of recombination to produce unreduced male and female gametes (i.e. apomeiosis). Here, we have established an early flower developmental staging system and have performed microarray-based comparative gene expression analyses of the pollen mother cell stage in seven diploid sexual and seven diploid apomictic genotypes to identify candidate factors for unreduced pollen formation. We identified a transcript unique to apomictic Boechera spp. called UPGRADE2 (BspUPG2), which is highly up-regulated in their pollen mother cells. BspUPG2 is highly conserved among apomictic Boechera spp. genotypes but has no homolog in sexual Boechera spp. or in any other taxa. BspUPG2 undergoes posttranscriptional processing but lacks a prominent open reading frame. Together with the potential of stably forming microRNA-like secondary structures, we hypothesize that BspUPG2 functions as a long regulatory noncoding messenger RNA-like RNA. BspUPG2 has apparently arisen through a three-step process initiated by ancestral gene duplication of the original BspUPG1 locus, followed by sequential insertions of segmentally duplicated gene fragments, with final exonization of its sequence structure. Its genesis reflects the hybridization history that characterizes the genus Boechera. PMID:24130193

  19. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes.

    PubMed Central

    Oeda, K; Salinas, J; Chua, N H

    1991-01-01

    Tobacco nuclear extract contains a factor that binds specifically to the motif I sequence (5'-GTACGTGGCG-3') conserved among rice rab genes and cotton lea genes. We isolated from a tobacco cDNA expression library, a partial cDNA clone encoding a truncated derivative of a protein designated as TAF-1. The truncated TAF-1 (Mr = 26,000) contains an acidic region at its N-terminus and a bZip motif at its C-terminus. Using a panel of motif I mutants as probes, we showed that the truncated TAF-1 and the tobacco nuclear factor for motif I have similar, it not identical, binding specificities. In particular, both show high-affinity binding to the perfect palindrome 5'-GCCACGTGGC-3' which is also known as the G-box motif. TAF-1 mRNA is highly expressed in root, but the level is at least 10 times lower in stem and leaf. Consistent with this observation, we found that a motif I tetramer, when fused to the -90 derivative of the CaMV 35S promoter, is inactive in leaf of transgenic tobacco. The activity, however, can be elevated by transient expression of the truncated TAF-1. We conclude from these results that TAF-1 can bind to the G-box and related motifs and that it functions as a transcription activator. Images PMID:2050116

  20. Role of the semi-conserved histidine residue in the light-sensing domain of LitR, a MerR-type photosensory transcriptional regulator.

    PubMed

    Takano, Hideaki; Mise, Kou; Maruyama, Takafumi; Hagiwara, Kenta; Ueda, Kenji

    2016-08-01

    The LitR/CarH protein family transcriptional regulator is a new type of photoreceptor based on the function of adenosyl B12 (AdoB12) as a light-sensitive ligand. Here, we studied a semi-conserved histidine residue (His132) in the light-sensing (AdoB12-binding) domain at the C-terminus of LitR from a thermophilic Gram-negative bacterium, Thermus thermophilus HB27. The in vivo mutation of His132 within LitR caused a reduction in the rate of carotenoid production in response to illumination. BIAcore analysis revealed that the illuminated-LitRH132A possesses high DNA-binding activity compared to the wild-type protein. The subunit structure analysis showed that LitRH132A performed an incomplete subunit dissociation. The ability of LitRH132A to associate with AdoB12 was reduced compared with that of the wild-type protein in an equilibration dialysis experiment. Overall, these results suggest that His132 of LitR is involved in the association with AdoB12 as well as the light-sensitive DNA-binding activity based on oligomer dissociation. PMID:27283316

  1. A Global Trend towards the Loss of Evolutionarily Unique Species in Mangrove Ecosystems

    PubMed Central

    Mankga, Ledile T.; Davies, T. Jonathan

    2013-01-01

    The mangrove biome stands out as a distinct forest type at the interface between terrestrial, estuarine, and near-shore marine ecosystems. However, mangrove species are increasingly threatened and experiencing range contraction across the globe that requires urgent conservation action. Here, we assess the spatial distribution of mangrove species richness and evolutionary diversity, and evaluate potential predictors of global declines and risk of extinction. We found that human pressure, measured as the number of different uses associated with mangroves, correlated strongly, but negatively, with extinction probability, whereas species ages were the best predictor of global decline, explaining 15% of variation in extinction risk. Although the majority of mangrove species are categorised by the IUCN as Least Concern, our finding that the more threatened species also tend to be those that are more evolutionarily unique is of concern because their extinction would result in a greater loss of phylogenetic diversity. Finally, we identified biogeographic regions that are relatively species-poor but rich in evolutionary history, and suggest these regions deserve greater conservation priority. Our study provides phylogenetic information that is important for developing a unified management plan for mangrove ecosystems worldwide. PMID:23805263

  2. NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms.

    PubMed

    Love, Nick R; Pollak, Nadine; Dölle, Christian; Niere, Marc; Chen, Yaoyao; Oliveri, Paola; Amaya, Enrique; Patel, Sandip; Ziegler, Mathias

    2015-02-01

    Nicotinamide adenine dinucleotide phosphate (NADP) is a critical cofactor during metabolism, calcium signaling, and oxidative defense, yet how animals regulate their NADP pools in vivo and how NADP-synthesizing enzymes are regulated have long remained unknown. Here we show that expression of Nadk, an NAD(+) kinase-encoding gene, governs NADP biosynthesis in vivo and is essential for development in Xenopus frog embryos. Unexpectedly, we found that embryonic Nadk expression is dynamic, showing cell type-specific up-regulation during both frog and sea urchin embryogenesis. We analyzed the NAD kinases (NADKs) of a variety of deuterostome animals, finding two conserved internal domains forming a catalytic core but a highly divergent N terminus. One type of N terminus (found in basal species such as the sea urchin) mediates direct catalytic activation of NADK by Ca(2+)/calmodulin (CaM), whereas the other (typical for vertebrates) is phosphorylated by a CaM kinase-dependent mechanism. This work indicates that animal NADKs govern NADP biosynthesis in vivo and are regulated by evolutionarily divergent and conserved CaM-dependent mechanisms. PMID:25605906

  3. NAD kinase controls animal NADP biosynthesis and is modulated via evolutionarily divergent calmodulin-dependent mechanisms

    PubMed Central

    Love, Nick R.; Pollak, Nadine; Dölle, Christian; Niere, Marc; Chen, Yaoyao; Oliveri, Paola; Amaya, Enrique; Patel, Sandip; Ziegler, Mathias

    2015-01-01

    Nicotinamide adenine dinucleotide phosphate (NADP) is a critical cofactor during metabolism, calcium signaling, and oxidative defense, yet how animals regulate their NADP pools in vivo and how NADP-synthesizing enzymes are regulated have long remained unknown. Here we show that expression of Nadk, an NAD+ kinase-encoding gene, governs NADP biosynthesis in vivo and is essential for development in Xenopus frog embryos. Unexpectedly, we found that embryonic Nadk expression is dynamic, showing cell type-specific up-regulation during both frog and sea urchin embryogenesis. We analyzed the NAD kinases (NADKs) of a variety of deuterostome animals, finding two conserved internal domains forming a catalytic core but a highly divergent N terminus. One type of N terminus (found in basal species such as the sea urchin) mediates direct catalytic activation of NADK by Ca2+/calmodulin (CaM), whereas the other (typical for vertebrates) is phosphorylated by a CaM kinase-dependent mechanism. This work indicates that animal NADKs govern NADP biosynthesis in vivo and are regulated by evolutionarily divergent and conserved CaM-dependent mechanisms. PMID:25605906

  4. Deep Vertebrate Roots for Mammalian Zinc Finger Transcription Factor Subfamilies

    PubMed Central

    Liu, Hui; Chang, Li-Hsin; Sun, Younguk; Lu, Xiaochen; Stubbs, Lisa

    2014-01-01

    While many vertebrate transcription factor (TF) families are conserved, the C2H2 zinc finger (ZNF) family stands out as a notable exception. In particular, novel ZNF gene types have arisen, duplicated, and diverged independently throughout evolution to yield many lineage-specific TF genes. This evolutionary dynamic not only raises many intriguing questions but also severely complicates identification of those ZNF genes that remain functionally conserved. To address this problem, we searched for vertebrate “DNA binding orthologs” by mining ZNF loci from eight sequenced genomes and then aligning the patterns of DNA-binding amino acids, or “fingerprints,” extracted from the encoded ZNF motifs. Using this approach, we found hundreds of lineage-specific genes in each species and also hundreds of orthologous groups. Most groups of orthologs displayed some degree of fingerprint divergence between species, but 174 groups showed fingerprint patterns that have been very rigidly conserved. Focusing on the dynamic KRAB-ZNF subfamily—including nearly 400 human genes thought to possess potent KRAB-mediated epigenetic silencing activities—we found only three genes conserved between mammals and nonmammalian groups. These three genes, members of an ancient familial cluster, encode an unusual KRAB domain that functions as a transcriptional activator. Evolutionary analysis confirms the ancient provenance of this activating KRAB and reveals the independent expansion of KRAB-ZNFs in every vertebrate lineage. Most human ZNF genes, from the most deeply conserved to the primate-specific genes, are highly expressed in immune and reproductive tissues, indicating that they have been enlisted to regulate evolutionarily divergent biological traits. PMID:24534434

  5. The MUR3 Gene of Arabidopsis Encodes a Xyloglucan Galactosyltransferase That Is Evolutionarily Related to Animal Exostosins

    PubMed Central

    Madson, Michael; Dunand, Christophe; Li, Xuemei; Verma, Rajeev; Vanzin, Gary F.; Caplan, Jeffrey; Shoue, Douglas A.; Carpita, Nicholas C.; Reiter, Wolf-Dieter

    2003-01-01

    Xyloglucans are the principal glycans that interlace cellulose microfibrils in most flowering plants. The mur3 mutant of Arabidopsis contains a severely altered structure of this polysaccharide because of the absence of a conserved α-l-fucosyl-(1→2)-β-d-galactosyl side chain and excessive galactosylation at an alternative xylose residue. Despite this severe structural alteration, mur3 plants were phenotypically normal and exhibited tensile strength in their inflorescence stems comparable to that of wild-type plants. The MUR3 gene was cloned positionally and shown to encode a xyloglucan galactosyltransferase that acts specifically on the third xylose residue within the XXXG core structure of xyloglucan. MUR3 belongs to a large family of type-II membrane proteins that is evolutionarily conserved among higher plants. The enzyme shows sequence similarities to the glucuronosyltransferase domain of exostosins, a class of animal glycosyltransferases that catalyze the synthesis of heparan sulfate, a glycosaminoglycan with numerous roles in cell differentiation and development. This finding suggests that components of the plant cell wall and of the animal extracellular matrix are synthesized by evolutionarily related enzymes even though the structures of the corresponding polysaccharides are entirely different from each other. PMID:12837954

  6. Post-transcriptional control of nuclear-encoded cytochrome oxidase subunits in Trypanosoma brucei: evidence for genome-wide conservation of life-cycle stage-specific regulatory elements

    PubMed Central

    Mayho, Matthew; Fenn, Katelyn; Craddy, Paul; Crosthwaite, Susan; Matthews, Keith

    2006-01-01

    Trypanosomes represent an excellent model for the post-transcriptional regulation of gene expression because their genome is organized into polycistronic transcription units. However, few signals governing developmental stage-specific expression have been identified, with there being no compelling evidence for widespread conservation of regulatory motifs. As a tool to search for common regulatory sequences we have used the nuclear-encoded components of the cytochrome oxidase (COX) complex of the trypanosome respiratory chain. Components of this complex represent a form of post-transcriptional operon because trypanosome mitochondrial activity is unusual in being developmentally programmed. By genome analysis we identified the genes for seven components of the COX complex. Each mRNA exhibits bloodstream stage-specific instability, which is not mediated by the RNA silencing pathway but which is alleviated by cycloheximide. Reporter assays have identified regulatory regions within the 3′-untranslated regions of three COX mRNAs operating principally at the translational level, but also via mRNA stability. Interrogation of the mapped regions via oligonucleotide frequency scoring provides evidence for genome-wide conservation of regulatory sequences among a large cohort of procyclic-enriched transcripts. Analysis of the co-regulated subunits of a stage-specific enzyme is therefore a novel approach to uncover cryptic regulatory sequences controlling gene expression at the post-transcriptional level. PMID:17012283

  7. Mutational analysis of the D1/E1 core helices and the conserved N-terminal region of yeast transcription factor IIB (TFIIB): identification of an N-terminal mutant that stabilizes TATA-binding protein-TFIIB-DNA complexes.

    PubMed Central

    Bangur, C S; Pardee, T S; Ponticelli, A S

    1997-01-01

    The general transcription factor IIB (TFIIB) plays an essential role in transcription of protein-coding genes by RNA polymerase II. We have used site-directed mutagenesis to assess the role of conserved amino acids in several important regions of yeast TFIIB. These include residues in the highly conserved amino-terminal region and basic residues in the D1 and E1 core domain alpha-helices. Acidic substitutions of residues K190 (D1) and K201 (E1) resulted in growth impairments in vivo, reduced basal transcriptional activity in vitro, and an inability to form stable TFIIB-TATA-binding protein-DNA (DB) complexes. Significantly, these mutants retained the ability to respond to acidic activators in vivo and to the Gal4-VP16 activator in vitro, supporting the view that these basic residues play a role in basal transcription. In addition, 14 single-amino-acid substitutions were introduced in the conserved amino-terminal region. Three of these mutants, the L50D, R64E, and R78L mutants, displayed altered growth properties in vivo and were compromised for supporting transcription in vitro. The L50D mutant was impaired for RNA polymerase II interaction, while the R64E mutant exhibited altered transcription start site selection both in vitro and in vivo and, surprisingly, was more active than the wild type in the formation of stable DB complexes. These results support the view that the amino-terminal domain is involved in the direct interaction between yeast TFIIB and RNA polymerase II and suggest that this domain may interact with DNA and/or modulate the formation of a DB complex. PMID:9372909

  8. Recombinant expression of twelve evolutionarily diverse subfamily Iα aminotransferases

    PubMed Central

    Muratore, Kathryn E.; Srouji, John R.; Chow, Margaret A.; Kirsch, Jack F.

    2009-01-01

    Aminotransferases are essential enzymes involved in the central metabolism of all organisms. The Iα subfamily of aspartate and tyrosine aminotransferases (AATases and TATases) is the best-characterized grouping, but only eight enzymes from this subfamily, representing relatively little sequence diversity, have been experimentally characterized for substrate specificity (i.e., AATase vs. TATase). Genome annotation, based on this limited dataset, provides tentative assignments for all sequenced members of this subfamily. This procedure is, however, subject to error, particularly when the experimental basis set is limited. To address this problem we cloned twelve additional subfamily Iα enzymes from an evolutionarily divergent set of organisms. Nine were purified to homogeneity after heterologous expression in E. coli in native, intein-tagged or His6-tagged forms and the two S. cerevisiae isoforms were recombinantly produced in yeast. The effects of the C-terminal tags on expression, purification and enzyme activity are discussed. PMID:17964807

  9. An Evolutionarily Adaptive Neural Architecture for Social Reasoning

    PubMed Central

    Barbey, Aron K.; Krueger, Frank; Grafman, Jordan

    2009-01-01

    Recent progress in cognitive neuroscience highlights the involvement of the prefrontal cortex (PFC) in social cognition. Accumulating evidence demonstrates that representations within the lateral PFC enable people to coordinate their thoughts and actions with their intentions to support goal-directed social behavior. Despite the importance of this region in guiding social interactions, remarkably little is known about the functional organization and forms of social inference processed by the lateral PFC. Here we introduce a cognitive neuroscience framework for understanding the inferential architecture of the lateral PFC, drawing upon recent theoretical developments in evolutionary psychology and emerging neuroscience evidence about how this region may orchestrate behavior on the basis of evolutionarily adaptive social norms for obligatory, prohibited, and permissible courses of action. PMID:19782410

  10. Specification of jaw identity by the Hand2 transcription factor.

    PubMed

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel's cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  11. Specification of jaw identity by the Hand2 transcription factor

    PubMed Central

    Funato, Noriko; Kokubo, Hiroki; Nakamura, Masataka; Yanagisawa, Hiromi; Saga, Yumiko

    2016-01-01

    Acquisition of the lower jaw (mandible) was evolutionarily important for jawed vertebrates. In humans, syndromic craniofacial malformations often accompany jaw anomalies. The basic helix-loop-helix transcription factor Hand2, which is conserved among jawed vertebrates, is expressed in the neural crest in the mandibular process but not in the maxillary process of the first branchial arch. Here, we provide evidence that Hand2 is sufficient for upper jaw (maxilla)-to-mandible transformation by regulating the expression of homeobox transcription factors in mice. Altered Hand2 expression in the neural crest transformed the maxillae into mandibles with duplicated Meckel’s cartilage, which resulted in an absence of the secondary palate. In Hand2-overexpressing mutants, non-Hox homeobox transcription factors were dysregulated. These results suggest that Hand2 regulates mandibular development through downstream genes of Hand2 and is therefore a major determinant of jaw identity. Hand2 may have influenced the evolutionary acquisition of the mandible and secondary palate. PMID:27329940

  12. Ikaros and RAG-2-Mediated Antisense Transcription Are Responsible for Lymphocyte-Specific Inactivation of NWC Promoter

    PubMed Central

    Kasztura, Monika; Śnieżewski, Łukasz; Janik, Sylwia; Kisielow, Paweł; Cebrat, Małgorzata

    2014-01-01

    Recombination activating gene-2 (RAG-2) and NWC are strongly evolutionarily conserved overlapping genes which are convergently transcribed. In non-lymphoid cells the NWC promoter is active whereas in lymphocytes it is inactive due to the DNA methylation. Analysing the mechanism responsible for lymphocyte-specific methylation and inactivation of NWC promoter we found that Ikaros, a lymphocyte-specific transcription factor, acts as a repressor of NWC promoter - thus identifying a new Ikaros target - but is insufficient for inducing its methylation which depends on the antisense transcription driven by RAG-2 promoter. Possible implications of these observations for understanding evolutionary mechanisms leading to lymphocyte specific expression of RAG genes are discussed. PMID:25198102

  13. Characterization of the direct targets of FOXO transcription factors throughout evolution.

    PubMed

    Webb, Ashley E; Kundaje, Anshul; Brunet, Anne

    2016-08-01

    FOXO transcription factors (FOXOs) are central regulators of lifespan across species, yet they also have cell-specific functions, including adult stem cell homeostasis and immune function. Direct targets of FOXOs have been identified genome-wide in several species and cell types. However, whether FOXO targets are specific to cell types and species or conserved across cell types and throughout evolution remains uncharacterized. Here, we perform a meta-analysis of direct FOXO targets across tissues and organisms, using data from mammals as well as Caenorhabditis elegans and Drosophila. We show that FOXOs bind cell type-specific targets, which have functions related to that particular cell. Interestingly, FOXOs also share targets across different tissues in mammals, and the function and even the identity of these shared mammalian targets are conserved in invertebrates. Evolutionarily conserved targets show enrichment for growth factor signaling, metabolism, stress resistance, and proteostasis, suggesting an ancestral, conserved role in the regulation of these processes. We also identify candidate cofactors at conserved FOXO targets that change in expression with age, including CREB and ETS family factors. This meta-analysis provides insight into the evolution of the FOXO network and highlights downstream genes and cofactors that may be particularly important for FOXO's conserved function in adult homeostasis and longevity. PMID:27061590

  14. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway

    PubMed Central

    Chinchankar, Meghna N.; Ferguson, Annabel A.; Ghazi, Arjumand; Fisher, Alfred L.

    2016-01-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  15. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway.

    PubMed

    Keith, Scott A; Maddux, Sarah K; Zhong, Yayu; Chinchankar, Meghna N; Ferguson, Annabel A; Ghazi, Arjumand; Fisher, Alfred L

    2016-02-01

    The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique

  16. System-level identification of transcriptional circuits underlying mammalian circadian clocks.

    PubMed

    Ueda, Hiroki R; Hayashi, Satoko; Chen, Wenbin; Sano, Motoaki; Machida, Masayuki; Shigeyoshi, Yasufumi; Iino, Masamitsu; Hashimoto, Seiichi

    2005-02-01

    Mammalian circadian clocks consist of complexly integrated regulatory loops, making it difficult to elucidate them without both the accurate measurement of system dynamics and the comprehensive identification of network circuits. Toward a system-level understanding of this transcriptional circuitry, we identified clock-controlled elements on 16 clock and clock-controlled genes in a comprehensive surveillance of evolutionarily conserved cis elements and measurement of their transcriptional dynamics. Here we report the roles of E/E' boxes, DBP/E4BP4 binding elements and RevErbA/ROR binding elements in nine, seven and six genes, respectively. Our results indicate that circadian transcriptional circuits are governed by two design principles: regulation of E/E' boxes and RevErbA/ROR binding elements follows a repressor-precedes-activator pattern, resulting in delayed transcriptional activity, whereas regulation of DBP/E4BP4 binding elements follows a repressor-antiphasic-to-activator mechanism, which generates high-amplitude transcriptional activity. Our analysis further suggests that regulation of E/E' boxes is a topological vulnerability in mammalian circadian clocks, a concept that has been functionally verified using in vitro phenotype assay systems. PMID:15665827

  17. The DNA replication factor MCM5 is essential for Stat1-mediated transcriptional activation

    PubMed Central

    Snyder, Marylynn; He, Wei; Zhang, J. Jillian

    2005-01-01

    The eukaryotic minichromosome maintenance (MCM) family of proteins (MCM2–MCM7) is evolutionarily conserved from yeast to human. These proteins are essential for DNA replication. The signal transducer and activator of transcription proteins are critical for the signal transduction of a multitude of cytokines and growth factors leading to the regulation of gene expression. We previously identified a strong interaction between Stat1 and MCM5. However, the physiological significance of this interaction was not clear. We show here by chromatin immunoprecipitation (ChIP) analyses that the MCM5 protein, as well as other members of the MCM family, is inducibly recruited to Stat1 target gene promoters in response to cytokine stimulation. Furthermore, the MCM proteins are shown to move along with the RNA polymerase II during transcription elongation. We have also identified an independent domain in MCM5 that mediates the interaction between Stat1 and MCM5; overexpression of this domain can disrupt the interaction between Stat1 and MCM5 and inhibit Stat1 transcriptional activity. Finally, we used the RNA interference technique to show that MCM5 is essential for transcription activation of Stat1 target genes. Together, these results demonstrate that, in addition to their roles in DNA replication, the MCM proteins are also necessary for transcription activation. PMID:16199513

  18. Proteomics-based sequence analysis of plant gene expression--the chloroplast transcription apparatus.

    PubMed

    Loschelder, Heike; Homann, Anke; Ogrzewalla, Karsten; Link, Gerhard

    2004-06-01

    The chloroplast transcription apparatus has turned out to be more complex than anticipated, with core polypeptides surrounded by multiple accessory proteins of diverse, and in part unexpected, functions. At least two different RNA-binding proteins and several redox-responsive proteins are components of the major chloroplast RNA polymerase termed PEP-A. One of the key-regulatory factors has been identified as a Ser/Thr-specific protein kinase that is sensitive to SH group modification by glutathione and by this means is able to modulate transcription. The cloned plastid transcription kinase from mustard (Sinapis alba L.) has been assigned as a member of the (mostly nucleo-cytosolic) CK2 family and hence has been termed cpCK2. Despite its apparent role in mustard chloroplast transcription, until recently no data have been available for other plant species. Using the web database resources, we find evidence for an evolutionarily conserved role of this redox-sensitive plastid transcription factor. PMID:15276437

  19. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    PubMed

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  20. Transcription-dependent DNA transactions in the mitochondrial genome of a yeast hypersuppressive petite mutant.

    PubMed

    Van Dyck, E; Clayton, D A

    1998-05-01

    Mitochondrial DNA (mtDNA) of Saccharomyces cerevisiae contains highly conserved sequences, called rep/ori, that are associated with several aspects of its metabolism. These rep/ori sequences confer the transmission advantage exhibited by a class of deletion mutants called hypersuppressive petite mutants. In addition, because they share features with the mitochondrial leading-strand DNA replication origin of mammals, rep/ori sequences have also been proposed to participate in mtDNA replication initiation. Like the mammalian origins, where transcription is used as a priming mechanism for DNA synthesis, yeast rep/ori sequences contain an active promoter. Although transcription is required for maintenance of wild-type mtDNA in yeast, the role of the rep/ori promoter as a cis-acting element involved in the replication of wild-type mtDNA is unclear, since mitochondrial deletion mutants need neither transcription nor a rep/ori sequence to maintain their genome. Similarly, transcription from the rep/ori promoter does not seem to be necessary for biased inheritance of mtDNA. As a step to elucidate the function of the rep/ori promoter, we have attempted to detect transcription-dependent DNA transactions in the mtDNA of a hypersuppressive petite mutant. We have examined the mtDNA of the well-characterized petite mutant a-1/1R/Z1, whose repeat unit shelters the rep/ori sequence ori1, in strains carrying either wild-type or null alleles of the nuclear genes encoding the mitochondrial transcription apparatus. Complex DNA transactions were detected that take place around GC-cluster C, an evolutionarily conserved GC-rich sequence block immediately downstream from the rep/ori promoter. These transactions are strictly dependent upon mitochondrial transcription. PMID:9566917

  1. Functional characterization of the evolutionarily preserved mitochondrial antiviral signaling protein (MAVS) from rock bream, Oplegnathus fasciatus.

    PubMed

    Kasthuri, Saranya Revathy; Wan, Qiang; Whang, Ilson; Lim, Bong-Soo; Yeo, Sang-Yeob; Choi, Cheol Young; Lee, Jehee

    2014-10-01

    Antimicrobial immune defense is evolutionarily preserved in all organisms. Mammals have developed robust, protein-based antiviral defenses, which are under constant investigation. Studies have provided evidences for the various fish immune factors sharing similarity with those of mammals. In this study, we have identified an ortholog of mitochondrial antiviral signaling protein from rock bream, Oplegnathus fasciatus. RbMAVS cDNA possesses an open reading frame (ORF) of 1758 bp coding for a protein of 586 amino acids with molecular mass of approximately 62 kDa and isoelectric point of 4.6. In silico analysis of RbMAVS protein revealed a caspase recruitment domain (CARD), a proline rich domain and a transmembrane domain. RbMAVS protein also contains a putative TRAF2 binding motif, (319)PVQDT(323). Primary sequence comparison of RbMAVS with other orthologues revealed heterogeneity towards the C-terminus after the CARD region. RbMAVS transcripts were evident in all the examined tissues. RbMAVS expression was induced in vivo after poly I:C challenge in peripheral blood cells, liver, head kidney and spleen tissues. Over-expression of RbMAVS potently inhibited marine birnavirus (MABV) infection in rock bream heart cells and induced various cytokines and signaling molecules in vitro. Thus, RbMAVS is an antiviral protein and potentially involved in the recognition and signaling of antiviral defense mechanism in rock bream. PMID:25107693

  2. Enhancement of Transcription by a Splicing-Competent Intron Is Dependent on Promoter Directionality

    PubMed Central

    Agarwal, Neha; Ansari, Athar

    2016-01-01

    Enhancement of transcription by a splicing-competent intron is an evolutionarily conserved feature among eukaryotes. The molecular mechanism underlying the phenomenon, however, is not entirely clear. Here we show that the intron is an important regulator of promoter directionality. Employing strand-specific transcription run-on (TRO) analysis, we show that the transcription of mRNA is favored over the upstream anti-sense transcripts (uaRNA) initiating from the promoter in the presence of an intron. Mutation of either the 5′ or 3′ splice site resulted in the reversal of promoter directionality, thereby suggesting that it is not merely the 5′ splice site but the entire splicing-competent intron that regulates transcription directionality. ChIP analysis revealed the recruitment of termination factors near the promoter region in the presence of an intron. Removal of intron or the mutation of splice sites adversely affected the promoter localization of termination factors. We have earlier demonstrated that the intron-mediated enhancement of transcription is dependent on gene looping. Here we show that gene looping is crucial for the recruitment of termination factors in the promoter-proximal region of an intron-containing gene. In a looping-defective mutant, despite normal splicing, the promoter occupancy of factors required for poly(A)-dependent termination of transcription was compromised. This was accompanied by a concomitant loss of transcription directionality. On the basis of these results, we propose that the intron-dependent gene looping places the terminator-bound factors in the vicinity of the promoter region for termination of the promoter-initiated upstream antisense transcription, thereby conferring promoter directionality. PMID:27152651

  3. Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice1[OPEN

    PubMed Central

    Obertello, Mariana; Shrivastava, Stuti; Katari, Manpreet S.; Coruzzi, Gloria M.

    2015-01-01

    In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana) to a crop, rice (Oryza sativa), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants. To uncover such conserved N-regulatory network modules, we first generated an N-regulatory network based solely on rice transcriptome and gene interaction data. Next, we enhanced the network knowledge in the rice N-regulatory network using transcriptome and gene interaction data from Arabidopsis and new data from Arabidopsis and rice plants exposed to the same N treatment conditions. This cross-species network analysis uncovered a set of N-regulated transcription factors (TFs) predicted to target the same genes and network modules in both species. Supernode analysis of the TFs and their targets in these conserved network modules uncovered genes directly related to N use (e.g. N assimilation) and to other shared biological processes indirectly related to N. This cross-species network approach was validated with members of two TF families in the supernode network, BASIC-LEUCINE ZIPPER TRANSCRIPTION FACTOR1-TGA and HYPERSENSITIVITY TO LOW PI-ELICITED PRIMARY ROOT SHORTENING1 (HRS1)/HRS1 Homolog family, which have recently been experimentally validated to mediate the N response in Arabidopsis. PMID:26045464

  4. Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice.

    PubMed

    Obertello, Mariana; Shrivastava, Stuti; Katari, Manpreet S; Coruzzi, Gloria M

    2015-08-01

    In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana) to a crop, rice (Oryza sativa), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants. To uncover such conserved N-regulatory network modules, we first generated an N-regulatory network based solely on rice transcriptome and gene interaction data. Next, we enhanced the network knowledge in the rice N-regulatory network using transcriptome and gene interaction data from Arabidopsis and new data from Arabidopsis and rice plants exposed to the same N treatment conditions. This cross-species network analysis uncovered a set of N-regulated transcription factors (TFs) predicted to target the same genes and network modules in both species. Supernode analysis of the TFs and their targets in these conserved network modules uncovered genes directly related to N use (e.g. N assimilation) and to other shared biological processes indirectly related to N. This cross-species network approach was validated with members of two TF families in the supernode network, BASIC-LEUCINE ZIPPER TRANSCRIPTION FACTOR1-TGA and HYPERSENSITIVITY TO LOW PI-ELICITED PRIMARY ROOT SHORTENING1 (HRS1)/HRS1 Homolog family, which have recently been experimentally validated to mediate the N response in Arabidopsis. PMID:26045464

  5. An evolutionarily conserved program of B-cell development and activation in zebrafish.

    PubMed

    Page, Dawne M; Wittamer, Valerie; Bertrand, Julien Y; Lewis, Kanako L; Pratt, David N; Delgado, Noemi; Schale, Sarah E; McGue, Caitlyn; Jacobsen, Bradley H; Doty, Alyssa; Pao, Yvonne; Yang, Hongbo; Chi, Neil C; Magor, Brad G; Traver, David

    2013-08-22

    Teleost fish are among the most ancient vertebrates possessing an adaptive immune system with B and T lymphocytes that produce memory responses to pathogens. Most bony fish, however, have only 2 types of B lymphocytes, in contrast to the 4 types available to mammals. To better understand the evolution of adaptive immunity, we generated transgenic zebrafish in which the major immunoglobulin M (IgM(+)) B-cell subset expresses green fluorescence protein (GFP) (IgM1:eGFP). We discovered that the earliest IgM(+) B cells appear between the dorsal aorta and posterior cardinal vein and also in the kidney around 20 days postfertilization. We also examined B-cell ontogeny in adult IgM1:eGFP;rag2:DsRed animals, where we defined pro-B, pre-B, and immature/mature B cells in the adult kidney. Sites of B-cell development that shift between the embryo and adult have previously been described in birds and mammals. Our results suggest that this developmental shift occurs in all jawed vertebrates. Finally, we used IgM1:eGFP and cd45DsRed;blimp1:eGFP zebrafish to characterize plasma B cells and investigate B-cell function. The IgM1:eGFP reporter fish are the first nonmammalian B-cell reporter animals to be described. They will be important for further investigation of immune cell evolution and development and host-pathogen interactions in zebrafish. PMID:23861249

  6. The Drosophila wings apart gene anchors a novel, evolutionarily conserved pathway of neuromuscular development.

    PubMed

    Morriss, Ginny R; Jaramillo, Carmelita T; Mikolajczak, Crystal M; Duong, Sandy; Jaramillo, Maryann S; Cripps, Richard M

    2013-11-01

    wings apart (wap) is a recessive, semilethal gene located on the X chromosome in Drosophila melanogaster, which is required for normal wing-vein patterning. We show that the wap mutation also results in loss of the adult jump muscle. We use complementation mapping and gene-specific RNA interference to localize the wap locus to the proximal X chromosome. We identify the annotated gene CG14614 as the gene affected by the wap mutation, since one wap allele contains a non-sense mutation in CG14614, and a genomic fragment containing only CG14614 rescues the jump-muscle phenotypes of two wap mutant alleles. The wap gene lies centromere-proximal to touch-insensitive larva B and centromere-distal to CG14619, which is tentatively assigned as the gene affected in introverted mutants. In mutant wap animals, founder cell precursors for the jump muscle are specified early in development, but are later lost. Through tissue-specific knockdowns, we demonstrate that wap function is required in both the musculature and the nervous system for normal jump-muscle formation. wap/CG14614 is homologous to vertebrate wdr68, DDB1 and CUL4 associated factor 7, which also are expressed in neuromuscular tissues. Thus, our findings provide insight into mechanisms of neuromuscular development in higher animals and facilitate the understanding of neuromuscular diseases that may result from mis-expression of muscle-specific or neuron-specific genes. PMID:24026097

  7. Low molecular weight protein tyrosine phosphatase: Multifaceted functions of an evolutionarily conserved enzyme.

    PubMed

    Caselli, Anna; Paoli, Paolo; Santi, Alice; Mugnaioni, Camilla; Toti, Alessandra; Camici, Guido; Cirri, Paolo

    2016-10-01

    Originally identified as a low molecular weight acid phosphatase, LMW-PTP is actually a protein tyrosine phosphatase that acts on many phosphotyrosine-containing cellular proteins that are primarily involved in signal transduction. Differences in sequence, structure, and substrate recognition as well as in subcellular localization in different organisms enable LMW-PTP to exert many different functions. In fact, during evolution, the LMW-PTP structure adapted to perform different catalytic actions depending on the organism type. In bacteria, this enzyme is involved in the biosynthesis of group 1 and 4 capsules, but it is also a virulence factor in pathogenic strains. In yeast, LMW-PTPs dephosphorylate immunophilin Fpr3, a peptidyl-prolyl-cis-trans isomerase member of the protein chaperone family. In humans, LMW-PTP is encoded by the ACP1 gene, which is composed of three different alleles, each encoding two active enzymes produced by alternative RNA splicing. In animals, LMW-PTP dephosphorylates a number of growth factor receptors and modulates their signalling processes. The involvement of LMW-PTP in cancer progression and in insulin receptor regulation as well as its actions as a virulence factor in a number of pathogenic bacterial strains may promote the search for potent, selective and bioavailable LMW-PTP inhibitors. PMID:27421795

  8. Drosophila Ncd reveals an evolutionarily conserved powerstroke mechanism for homodimeric and heterodimeric kinesin-14s.

    PubMed

    Zhang, Pengwei; Dai, Wei; Hahn, Juergen; Gilbert, Susan P

    2015-05-19

    Drosophila melanogaster kinesin-14 Ncd cross-links parallel microtubules at the spindle poles and antiparallel microtubules within the spindle midzone to play roles in bipolar spindle assembly and proper chromosome distribution. As observed for Saccharomyces cerevisiae kinesin-14 Kar3Vik1 and Kar3Cik1, Ncd binds adjacent microtubule protofilaments in a novel microtubule binding configuration and uses an ATP-promoted powerstroke mechanism. The hypothesis tested here is that Kar3Vik1 and Kar3Cik1, as well as Ncd, use a common ATPase mechanism for force generation even though the microtubule interactions for both Ncd heads are modulated by nucleotide state. The presteady-state kinetics and computational modeling establish an ATPase mechanism for a powerstroke model of Ncd that is very similar to those determined for Kar3Vik1 and Kar3Cik1, although these heterodimers have one Kar3 catalytic motor domain and a Vik1/Cik1 partner motor homology domain whose interactions with microtubules are not modulated by nucleotide state but by strain. The results indicate that both Ncd motor heads bind the microtubule lattice; two ATP binding and hydrolysis events are required for each powerstroke; and a slow step occurs after microtubule collision and before the ATP-promoted powerstroke. Note that unlike conventional myosin-II or other processive molecular motors, Ncd requires two ATP turnovers rather than one for a single powerstroke-driven displacement or step. These results are significant because all metazoan kinesin-14s are homodimers, and the results presented show that despite their structural and functional differences, the heterodimeric and homodimeric kinesin-14s share a common evolutionary structural and mechanochemical mechanism for force generation. PMID:25941402

  9. Ghrelin O-Acyl Transferase in Zebrafish Is an Evolutionarily Conserved Peptide Upregulated During Calorie Restriction.

    PubMed

    Hatef, Azadeh; Yufa, Roman; Unniappan, Suraj

    2015-10-01

    Ghrelin is a multifunctional orexigenic hormone with a unique acyl modification enabled by ghrelin O-acyl transferase (GOAT). Ghrelin is well-characterized in nonmammals, and GOAT sequences of several fishes are available in the GenBank. However, endogenous GOAT in non-mammals remains poorly understood. In this research, GOAT sequence comparison, tissue-specific GOAT expression, and its regulation by nutrient status and exogenous ghrelin were studied. It was found that the bioactive core of zebrafish GOAT amino acid sequence share high identity with that of mammals. GOAT mRNA was most abundant in the gut. GOAT-like immunoreactivity (i.r.) was found colocalized with ghrelin in the gastric mucosa. Food deprivation increased, and feeding decreased GOAT and preproghrelin mRNA expression in the brain and gut. GOAT and ghrelin peptides in the gut and brain showed corresponding decrease in food-deprived state. Intraperitoneal injection of acylated fish ghrelin caused a significant decrease in GOAT mRNA expression, suggesting a feedback mechanism regulating its abundance. Together, these results provide the first in-depth characterization of GOAT in a non-mammal. Our results demonstrate that endogenous GOAT expression is responsive to metabolic status and availability of acylated ghrelin, providing further evidences for GOAT in the regulation of feeding in teleosts. PMID:26226634

  10. Structural Analyses of Short-Chain Prenyltransferases Identify an Evolutionarily Conserved GFPPS Clade in Brassicaceae Plants.

    PubMed

    Wang, Chengyuan; Chen, Qingwen; Fan, Dongjie; Li, Jianxu; Wang, Guodong; Zhang, Peng

    2016-02-01

    Terpenoids are the largest and most diverse class of plant-specialized metabolites, which function in diverse physiological processes during plant development. In the biosynthesis of plant terpenoids, short-chain prenyltransferases (SC-PTs), together with terpene synthases (TPSs), play critical roles in determining terpenoid diversity. SC-PTs biosynthesize prenyl pyrophosphates with different chain lengths, and these compounds are the direct precursors of terpenoids. Arabidopsis thaliana possesses a subgroup of SC-PTs whose functions are not clearly known. In this study, we focus on 10 geranylgeranyl pyrophosphate synthase-like [GGPPSL] proteins, which are commonly thought to produce GGPP [C20]. We found that a subset of members of the Arabidopsis GGPPSL gene family have undergone neo-functionalization: GGPPSL6, 7, 9, and 10 mainly have geranylfarnesyl pyrophosphate synthase activity (C25; renamed AtGFPPS1, 2, 3, and 4), and GGPPSL8 produces even longer chain prenyl pyrophosphate (≥ C30; renamed polyprenyl pyrophosphate synthase 2, AtPPPS2). By solving the crystal structures of AtGFPPS2, AtPPPS2, and AtGGPPS11, we reveal the product chain-length determination mechanism of SC-PTs and interpret it as a "three floors" model. Using this model, we identified a novel GFPPS clade distributed in Brassicaceae plants and found that the GFPPS gene typically occurs in tandem with a gene encoding a TPS, forming a GFPPS-TPS gene cluster. PMID:26537048

  11. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells

    PubMed Central

    Padmanabhan, Achuth; Vuong, Simone Anh-Thu; Hochstrasser, Mark

    2016-01-01

    Summary Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here we report formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, which bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of ‘α4-α4’ proteasomes depends on the relative cellular levels of α4 and α3, and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of a novel mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses. PMID:26997268

  12. An evolutionarily conserved autoinhibitory molecular switch in ELMO proteins regulates Rac signaling.

    PubMed

    Patel, Manishha; Margaron, Yoran; Fradet, Nadine; Yang, Qi; Wilkes, Brian; Bouvier, Michel; Hofmann, Kay; Côté, Jean-François

    2010-11-23

    Dedicator of cytokinesis (DOCK) proteins are guanine nucleotide exchange factors (GEFs) controlling the activity of Rac1/Cdc42 during migration, phagocytosis, and myoblast fusion [1-4]. Engulfment and cell motility (ELMO) proteins bind a subset of DOCK members and are emerging as critical regulators of Rac signaling [5-10]. Although formation of a DOCK180/ELMO complex is not essential for Rac1 activation, ELMO mutants deficient in binding to DOCK180 are unable to promote cytoskeleton remodeling [11]. How ELMO regulates signaling through DOCK GEFs is poorly understood. Here, we identify an autoinhibitory switch in ELMO presenting homology to a regulatory unit described for Dia formins. One part of the switch, composed of a Ras-binding domain (RBD) and Armadillo repeats, is positioned N-terminally while the other is housed in the C terminus. We demonstrate interaction between these fragments, suggesting autoinhibition of ELMO. Using a bioluminescence resonance energy transfer biosensor, we establish that ELMO undergoes conformational changes upon disruption of autoinhibition. We found that engagement of ELMO to RhoG, or with DOCK180, promotes the relief of autoinhibition in ELMO. Functionally, we found that ELMO mutants with impaired autoregulatory activity promote cell elongation. These results demonstrate an unsuspected level of regulation for Rac1 signaling via autoinhibition of ELMO. PMID:21035343

  13. Molecular phylogeny and biogeography of the weevil subfamily Platypodinae reveals evolutionarily conserved range patterns.

    PubMed

    Jordal, Bjarte H

    2015-11-01

    Platypodinae is a peculiar weevil subfamily of species that cultivate fungi in tunnels excavated in dead wood. Their geographical distribution is generally restricted, with genera confined to a single continent or large island, which provides a useful system for biogeographical research. This study establishes the first detailed molecular phylogeny of the group, with the aim of testing hypotheses on classification, diversification, and biogeography. A phylogeny was reconstructed based on 3648 nucleotides from COI, EF-1α, CAD, ArgK, and 28S. Tree topology was well resolved and indicated a strong correlation with geography, more so than predicted by previous morphology-based classifications. Tesserocerini was paraphyletic, with Notoplatypus as the sister group to a clade consisting of three main lineages of Tesserocerini and the recently evolved Platypodini. Austroplatypus formed the sister group to all remaining Platypodini and hence confirmed its separate status from Platypus. The Indo-Australian genera of Platypodini were strikingly paraphyletic, suggesting that the taxonomy of this tribe needs careful revision. Ancestral-area reconstructions in Lagrange and S-DIVA were ambiguous for nodes roughly older than 80 Ma. More recent events were firmly assessed and involved post-Gondwanan long-distance dispersal. The Neotropics was colonized three times, all from the Afrotropical region, with the latest event less than 25 Ma that included the ancestor of all Neotropical Platypodini. PMID:26190520

  14. SNEV is an evolutionarily conserved splicing factor whose oligomerization is necessary for spliceosome assembly

    PubMed Central

    Grillari, Johannes; Ajuh, Paul; Stadler, Guido; Löscher, Marlies; Voglauer, Regina; Ernst, Wolfgang; Chusainow, Janet; Eisenhaber, Frank; Pokar, Marion; Fortschegger, Klaus; Grey, Martin; Lamond, Angus I.; Katinger, Hermann

    2005-01-01

    We have isolated the human protein SNEV as downregulated in replicatively senescent cells. Sequence homology to the yeast splicing factor Prp19 suggested that SNEV might be the orthologue of Prp19 and therefore might also be involved in pre-mRNA splicing. We have used various approaches including gene complementation studies in yeast using a temperature sensitive mutant with a pleiotropic phenotype and SNEV immunodepletion from human HeLa nuclear extracts to determine its function. A human–yeast chimera was indeed capable of restoring the wild-type phenotype of the yeast mutant strain. In addition, immunodepletion of SNEV from human nuclear extracts resulted in a decrease of in vitro pre-mRNA splicing efficiency. Furthermore, as part of our analysis of protein–protein interactions within the CDC5L complex, we found that SNEV interacts with itself. The self-interaction domain was mapped to amino acids 56–74 in the protein's sequence and synthetic peptides derived from this region inhibit in vitro splicing by surprisingly interfering with spliceosome formation and stability. These results indicate that SNEV is the human orthologue of yeast PRP19, functions in splicing and that homo-oligomerization of SNEV in HeLa nuclear extract is essential for spliceosome assembly and that it might also be important for spliceosome stability. PMID:16332694

  15. Monoacylglycerol Lipases Act as Evolutionarily Conserved Regulators of Non-oxidative Ethanol Metabolism.

    PubMed

    Heier, Christoph; Taschler, Ulrike; Radulovic, Maja; Aschauer, Philip; Eichmann, Thomas O; Grond, Susanne; Wolinski, Heimo; Oberer, Monika; Zechner, Rudolf; Kohlwein, Sepp D; Zimmermann, Robert

    2016-05-27

    Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative hydrolases involved in FAEE catabolism. We found that Yju3p, the functional orthologue of mammalian monoacylglycerol lipase (MGL), contributes >90% of cellular FAEE hydrolase activity, and its loss leads to the accumulation of FAEE. Heterologous expression of mammalian MGL in yju3Δ mutants restored cellular FAEE hydrolase activity and FAEE catabolism. Moreover, overexpression or pharmacological inhibition of MGL in mouse AML-12 hepatocytes decreased or increased FAEE levels, respectively. FAEEs were transiently incorporated into lipid droplets (LDs) and both Yju3p and MGL co-localized with these organelles. We conclude that the storage of FAEE in inert LDs and their mobilization by LD-resident FAEE hydrolases facilitate a controlled metabolism of these potentially toxic lipid metabolites. PMID:27036938

  16. Monoacylglycerol Lipases Act as Evolutionarily Conserved Regulators of Non-oxidative Ethanol Metabolism*

    PubMed Central

    Heier, Christoph; Taschler, Ulrike; Radulovic, Maja; Aschauer, Philip; Eichmann, Thomas O.; Grond, Susanne; Wolinski, Heimo; Oberer, Monika; Zechner, Rudolf; Kohlwein, Sepp D.; Zimmermann, Robert

    2016-01-01

    Fatty acid ethyl esters (FAEEs) are non-oxidative metabolites of ethanol that accumulate in human tissues upon ethanol intake. Although FAEEs are considered as toxic metabolites causing cellular dysfunction and tissue damage, the enzymology of FAEE metabolism remains poorly understood. In this study, we used a biochemical screen in Saccharomyces cerevisiae to identify and characterize putative hydrolases involved in FAEE catabolism. We found that Yju3p, the functional orthologue of mammalian monoacylglycerol lipase (MGL), contributes >90% of cellular FAEE hydrolase activity, and its loss leads to the accumulation of FAEE. Heterologous expression of mammalian MGL in yju3Δ mutants restored cellular FAEE hydrolase activity and FAEE catabolism. Moreover, overexpression or pharmacological inhibition of MGL in mouse AML-12 hepatocytes decreased or increased FAEE levels, respectively. FAEEs were transiently incorporated into lipid droplets (LDs) and both Yju3p and MGL co-localized with these organelles. We conclude that the storage of FAEE in inert LDs and their mobilization by LD-resident FAEE hydrolases facilitate a controlled metabolism of these potentially toxic lipid metabolites. PMID:27036938

  17. Neprilysins: An Evolutionarily Conserved Family of Metalloproteases That Play Important Roles in Reproduction in Drosophila

    PubMed Central

    Sitnik, Jessica L.; Francis, Carmen; Hens, Korneel; Huybrechts, Roger; Wolfner, Mariana F.; Callaerts, Patrick

    2014-01-01

    Members of the M13 class of metalloproteases have been implicated in diseases and in reproductive fitness. Nevertheless, their physiological role remains poorly understood. To obtain a tractable model with which to analyze this protein family’s function, we characterized the gene family in Drosophila melanogaster and focused on reproductive phenotypes. The D. melanogaster genome contains 24 M13 class protease homologs, some of which are orthologs of human proteases, including neprilysin. Many are expressed in the reproductive tracts of either sex. Using RNAi we individually targeted the five Nep genes most closely related to vertebrate neprilysin, Nep1-5, to investigate their roles in reproduction. A reduction in Nep1, Nep2, or Nep4 expression in females reduced egg laying. Nep1 and Nep2 are required in the CNS and the spermathecae for wild-type fecundity. Females that are null for Nep2 also show defects as hosts of sperm competition as well as an increased rate of depletion for stored sperm. Furthermore, eggs laid by Nep2 mutant females are fertilized normally, but arrest early in embryonic development. In the male, only Nep1 was required to induce normal patterns of female egg laying. Reduction in the expression of Nep2-5 in the male did not cause any dramatic effects on reproductive fitness, which suggests that these genes are either nonessential for male fertility or perform redundant functions. Our results suggest that, consistent with the functions of neprilysins in mammals, these proteins are also required for reproduction in Drosophila, opening up this model system for further functional analysis of this protein class and their substrates. PMID:24395329

  18. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Staphylococcus aureus is a Gram-positive pathogen relevant for both human and animal health. With multi-drug resistant S. aureus strains becoming increasingly prevalent, alternative therapeutics are urgently needed. Bacteriophage endolysins (peptidoglycan hydrolases, PGH) are capable of killing Gra...

  19. Assembly of an Evolutionarily Conserved Alternative Proteasome Isoform in Human Cells.

    PubMed

    Padmanabhan, Achuth; Vuong, Simone Anh-Thu; Hochstrasser, Mark

    2016-03-29

    Targeted intracellular protein degradation in eukaryotes is largely mediated by the proteasome. Here, we report the formation of an alternative proteasome isoform in human cells, previously found only in budding yeast, that bears an altered subunit arrangement in the outer ring of the proteasome core particle. These proteasomes result from incorporation of an additional α4 (PSMA7) subunit in the position normally occupied by α3 (PSMA4). Assembly of "α4-α4" proteasomes depends on the relative cellular levels of α4 and α3 and on the proteasome assembly chaperone PAC3. The oncogenic tyrosine kinases ABL and ARG and the tumor suppressor BRCA1 regulate cellular α4 levels and formation of α4-α4 proteasomes. Cells primed to assemble α4-α4 proteasomes exhibit enhanced resistance to toxic metal ions. Taken together, our results establish the existence of an alternative mammalian proteasome isoform and suggest a potential role in enabling cells to adapt to environmental stresses. PMID:26997268

  20. Filling the Gap, Evolutionarily Conserved Omp85 in Plastids of Chromalveolates*

    PubMed Central

    Bullmann, Lars; Haarmann, Raimund; Mirus, Oliver; Bredemeier, Rolf; Hempel, Franziska; Maier, Uwe G.; Schleiff, Enrico

    2010-01-01

    Chromalveolates are a diverse group of protists that include many ecologically and medically relevant organisms such as diatoms and apicomplexan parasites. They possess plastids generally surrounded by four membranes, which evolved by engulfment of a red alga. Today, most plastid proteins must be imported, but many aspects of protein import into complex plastids are still cryptic. In particular, how proteins cross the third outermost membrane has remained unexplained. We identified a protein in the third outermost membrane of the diatom Phaeodactylum tricornutum with properties comparable to those of the Omp85 family. We demonstrate that the targeting route of P. tricornutum Omp85 parallels that of the translocation channel of the outer envelope membrane of chloroplasts, Toc75. In addition, the electrophysiological properties are similar to those of the Omp85 proteins involved in protein translocation. This supports the hypothesis that P. tricornutum Omp85 is involved in precursor protein translocation, which would close a gap in the fundamental understanding of the evolutionary origin and function of protein import in secondary plastids. PMID:20042599

  1. The evolutionarily conserved gene LNP-1 is required for synaptic vesicle trafficking and synaptic transmission.

    PubMed

    Ghila, Luiza; Gomez, Marie

    2008-02-01

    The control of vesicle-mediated transport in nerve cells is of great importance in the function, development and maintenance of synapse. In this paper, we characterize the new Caenorhabditis elegans gene, lnp-1. The lnp-1 gene is broadly distributed in many neuronal structures and its localization is dependent of the UNC-104/kinesin protein. Deletion mutations in lnp-1 result in increased resistance to aldicarb, an acetylcholinesterase inhibitor, and in locomotor defects. However, sensitivity to levamisole, a nicotinic agonist which, unlike aldicarb, only affects postsynaptic function, was similar to that of wild-type animals, suggesting a presynaptic function for LNP-1 in neurotransmission. The mislocalization of presynaptic proteins, such as synaptobrevin-1 or RAB-3, in lnp-1 mutants further supports this hypothesis. In summary, our studies suggest that LNP-1 plays a role in synaptogenesis by regulating vesicular transport or localization. PMID:18279315

  2. Retinoic acid expands the evolutionarily reduced dentition of zebrafish

    PubMed Central

    Seritrakul, Pawat; Samarut, Eric; Lama, Tenzing T. S.; Gibert, Yann; Laudet, Vincent; Jackman, William R.

    2012-01-01

    Zebrafish lost anterior teeth during evolution but retain a posterior pharyngeal dentition that requires retinoic acid (RA) cell-cell signaling for its development. The purposes of this study were to test the sufficiency of RA to induce tooth development and to assess its role in evolution. We found that exposure of embryos to exogenous RA induces a dramatic anterior expansion of the number of pharyngeal teeth that later form and shifts anteriorly the expression patterns of genes normally expressed in the posterior tooth-forming region, such as pitx2 and dlx2b. After RA exposure, we also observed a correlation between cartilage malformations and ectopic tooth induction, as well as abnormal cranial neural crest marker gene expression. Additionally, we observed that the RA-induced zebrafish anterior teeth resemble in pattern and number the dentition of fish species that retain anterior pharyngeal teeth such as medaka but that medaka do not express the aldh1a2 RA-synthesizing enzyme in tooth-forming regions. We conclude that RA is sufficient to induce anterior ectopic tooth development in zebrafish where teeth were lost in evolution, potentially by altering neural crest cell development, and that changes in the location of RA synthesis correlate with evolutionary changes in vertebrate dentitions.—Seritrakul, P., Samarut, E., Lama, T. T. S., Gibert, Y., Laudet, V., Jackman, W. R. Retinoic acid expands the evolutionarily reduced dentition of zebrafish. PMID:22942074

  3. Evolutionarily advanced ant farmers rear polyploid fungal crops.

    PubMed

    Kooij, P W; Aanen, D K; Schiøtt, M; Boomsma, J J

    2015-11-01

    Innovative evolutionary developments are often related to gene or genome duplications. The crop fungi of attine fungus-growing ants are suspected to have enhanced genetic variation reminiscent of polyploidy, but this has never been quantified with cytological data and genetic markers. We estimated the number of nuclei per fungal cell for 42 symbionts reared by 14 species of Panamanian fungus-growing ants. This showed that domesticated symbionts of higher attine ants are polykaryotic with 7-17 nuclei per cell, whereas nonspecialized crops of lower attines are dikaryotic similar to most free-living basidiomycete fungi. We then investigated how putative higher genetic diversity is distributed across polykaryotic mycelia, using microsatellite loci and evaluating models assuming that all nuclei are either heterogeneously haploid or homogeneously polyploid. Genetic variation in the polykaryotic symbionts of the basal higher attine genera Trachymyrmex and Sericomyrmex was only slightly enhanced, but the evolutionarily derived crop fungi of Atta and Acromyrmex leaf-cutting ants had much higher genetic variation. Our opposite ploidy models indicated that the symbionts of Trachymyrmex and Sericomyrmex are likely to be lowly and facultatively polyploid (just over two haplotypes on average), whereas Atta and Acromyrmex symbionts are highly and obligatorily polyploid (ca. 5-7 haplotypes on average). This stepwise transition appears analogous to ploidy variation in plants and fungi domesticated by humans and in fungi domesticated by termites and plants, where gene or genome duplications were typically associated with selection for higher productivity, but allopolyploid chimerism was incompatible with sexual reproduction. PMID:26265100

  4. Evolutionarily labile responses to a signal of aggressive intent.

    PubMed Central

    Moretz, Jason A; Morris, Molly R

    2003-01-01

    Males of many swordtail species possess vertical bar pigment patterns that are used both in courtship and agonistic interactions. Expression of the bars may function as a conventional threat signal during conflicts with rival males; bars intensify at the onset of aggression and fade in the subordinate male at contest's end. We used mirror image stimulation and bar manipulations to compare the aggressive responses of the males of four swordtail species to their barred and barless images. We found that having a response to the bars is tightly linked to having genes for bars, while the nature of the response the bars evoked varied across species. Specifically, we report the first known instance where closely related species exhibited differing and contradictory responses to a signal of aggressive motivation. Demonstrating that a signal conveys the same information across species (aggressive intent) while the response to that information has changed among species suggests that the nature of the responses are more evolutionarily labile than the signal. PMID:14613614

  5. Evolutionarily Stable Strategies for Fecundity and Swimming Speed of Fish.

    PubMed

    Plank, Michael J; Pitchford, Jonathan W; James, Alex

    2016-02-01

    Many pelagic fish species have a life history that involves producing a large number of small eggs. This is the result of a trade-off between fecundity and larval survival probability. There are also trade-offs involving other traits, such as larval swimming speed. Swimming faster increases the average food encounter rate but also increases the metabolic cost. Here we introduce an evolutionary model comprising fecundity and swimming speed as heritable traits. We show that there can be two evolutionary stable strategies. In environments where there is little noise in the food encounter rate, the stable strategy is a low-fecundity strategy with a swimming speed that minimises the mean time taken to reach reproductive maturity. However, in noisy environments, for example where the prey distribution is patchy or the water is turbulent, strategies that optimise mean outcomes are often outperformed by strategies that increase inter-individual variance. We show that, when larval growth rates are unpredictable, a high-fecundity strategy is evolutionarily stable. In a population following this strategy, the swimming speed is higher than would be anticipated by maximising the mean growth rate. PMID:26817756

  6. Testing the evolutionary conservation of vocal motoneurons in vertebrates.

    PubMed

    Albersheim-Carter, Jacob; Blubaum, Aleksandar; Ballagh, Irene H; Missaghi, Kianoush; Siuda, Edward R; McMurray, George; Bass, Andrew H; Dubuc, Réjean; Kelley, Darcy B; Schmidt, Marc F; Wilson, Richard J A; Gray, Paul A

    2016-04-01

    Medullary motoneurons drive vocalization in many vertebrate lineages including fish, amphibians, birds, and mammals. The developmental history of vocal motoneuron populations in each of these lineages remains largely unknown. The highly conserved transcription factor Paired-like Homeobox 2b (Phox2b) is presumed to be expressed in all vertebrate hindbrain branchial motoneurons, including laryngeal motoneurons essential for vocalization in humans. We used immunohistochemistry and in situ hybridization to examine Phox2b protein and mRNA expression in caudal hindbrain and rostral spinal cord motoneuron populations in seven species across five chordate classes. Phox2b was present in motoneurons dedicated to sound production in mice and frogs (bullfrog, African clawed frog), but not those in bird (zebra finch) or bony fish (midshipman, channel catfish). Overall, the pattern of caudal medullary motoneuron Phox2b expression was conserved across vertebrates and similar to expression in sea lamprey. These observations suggest that motoneurons dedicated to sound production in vertebrates are not derived from a single developmentally or evolutionarily conserved progenitor pool. PMID:26160673

  7. Autopalmitoylation of TEAD proteins regulates transcriptional output of the Hippo pathway.

    PubMed

    Chan, PuiYee; Han, Xiao; Zheng, Baohui; DeRan, Michael; Yu, Jianzhong; Jarugumilli, Gopala K; Deng, Hua; Pan, Duojia; Luo, Xuelian; Wu, Xu

    2016-04-01

    TEA domain (TEAD) transcription factors bind to the coactivators YAP and TAZ and regulate the transcriptional output of the Hippo pathway, playing critical roles in organ size control and tumorigenesis. Protein S-palmitoylation attaches a fatty acid, palmitate, to cysteine residues and regulates protein trafficking, membrane localization and signaling activities. Using activity-based chemical probes, we discovered that human TEADs possess intrinsic palmitoylating enzyme-like activities and undergo autopalmitoylation at evolutionarily conserved cysteine residues under physiological conditions. We determined the crystal structures of lipid-bound TEADs and found that the lipid chain of palmitate inserts into a conserved deep hydrophobic pocket. Strikingly, palmitoylation did not alter TEAD's localization, but it was required for TEAD's binding to YAP and TAZ and was dispensable for its binding to the Vgll4 tumor suppressor. Moreover, palmitoylation-deficient TEAD mutants impaired TAZ-mediated muscle differentiation in vitro and tissue overgrowth mediated by the Drosophila YAP homolog Yorkie in vivo. Our study directly links autopalmitoylation to the transcriptional regulation of the Hippo pathway. PMID:26900866

  8. Plastidial metabolite MEcPP induces a transcriptionally centered stress-response hub via the transcription factor CAMTA3.

    PubMed

    Benn, Geoffrey; Bjornson, Marta; Ke, Haiyan; De Souza, Amancio; Balmond, Edward I; Shaw, Jared T; Dehesh, Katayoon

    2016-08-01

    The general stress response (GSR) is an evolutionarily conserved rapid and transient transcriptional reprograming of genes central for transducing environmental signals into cellular responses, leading to metabolic and physiological readjustments to cope with prevailing conditions. Defining the regulatory components of the GSR will provide crucial insight into the design principles of early stress-response modules and their role in orchestrating master regulators of adaptive responses. Overaccumulation of methylerythritol cyclodiphosphate (MEcPP), a bifunctional chemical entity serving as both a precursor of isoprenoids produced by the plastidial methylerythritol phosphate (MEP) pathway and a stress-specific retrograde signal, in ceh1 (constitutively expressing hydroperoxide lyase1)-mutant plants leads to large-scale transcriptional alterations. Bioinformatic analyses of microarray data in ceh1 plants established the overrepresentation of a stress-responsive cis element and key GSR marker, the rapid stress response element (RSRE), in the promoters of robustly induced genes. ceh1 plants carrying an established 4×RSRE:Luciferase reporter for monitoring the GSR support constitutive activation of the response in this mutant background. Genetics and pharmacological approaches confirmed the specificity of MEcPP in RSRE induction via the transcription factor CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3), in a calcium-dependent manner. Moreover, CAMTA3-dependent activation of IRE1a (inositol-requiring protein-1) and bZIP60 (basic leucine zipper 60), two RSRE containing unfolded protein-response genes, bridges MEcPP-mediated GSR induction to the potentiation of protein-folding homeostasis in the endoplasmic reticulum. These findings introduce the notion of transcriptional regulation by a key plastidial retrograde signaling metabolite that induces nuclear GSR, thereby offering a window into the role of interorgannellar communication in shaping cellular adaptive

  9. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis.

    PubMed

    Li, Xue; Oghi, Kenneth A; Zhang, Jie; Krones, Anna; Bush, Kevin T; Glass, Christopher K; Nigam, Sanjay K; Aggarwal, Aneel K; Maas, Richard; Rose, David W; Rosenfeld, Michael G

    2003-11-20

    The precise mechanistic relationship between gene activation and repression events is a central question in mammalian organogenesis, as exemplified by the evolutionarily conserved sine oculis (Six), eyes absent (Eya) and dachshund (Dach) network of genetically interacting proteins. Here, we report that Six1 is required for the development of murine kidney, muscle and inner ear, and that it exhibits synergistic genetic interactions with Eya factors. We demonstrate that the Eya family has a protein phosphatase function, and that its enzymatic activity is required for regulating genes encoding growth control and signalling molecules, modulating precursor cell proliferation. The phosphatase function of Eya switches the function of Six1-Dach from repression to activation, causing transcriptional activation through recruitment of co-activators. The gene-specific recruitment of a co-activator with intrinsic phosphatase activity provides a molecular mechanism for activation of specific gene targets, including those regulating precursor cell proliferation and survival in mammalian organogenesis. PMID:14628042

  10. Keeping a lid on nodal: transcriptional and translational repression of nodal signalling

    PubMed Central

    Robertson, Elizabeth J.

    2016-01-01

    Nodal is an evolutionarily conserved member of the transforming growth factor-β (TGF-β) superfamily of secreted signalling factors. Nodal factors are known to play key roles in embryonic development and asymmetry in a variety of organisms ranging from hydra and sea urchins to fish, mice and humans. In addition to embryonic patterning, Nodal signalling is required for maintenance of human embryonic stem cell pluripotency and mis-regulated Nodal signalling has been found associated with tumour metastases. Therefore, precise and timely regulation of this pathway is essential. Here, we discuss recent evidence from sea urchins, frogs, fish, mice and humans that show a role for transcriptional and translational repression of Nodal signalling during early development. PMID:26791244

  11. Transcription factor SGF1 is critical for the neurodevelopment in the silkworm, Bombyx mori.

    PubMed

    Liu, Zhao-Yang; Yu, Qi; Yang, Chun-Hong; Meng, Miao; Ren, Chun-Jiu; Mu, Zhi-Mei; Cui, Wei-Zheng; Liu, Qing-Xin

    2016-08-01

    FoxA transcription factors play vital roles in regulating the expression of organ-specific genes. BmSGF1, the sole FoxA family member in Bombyx mori, is required for development of the silk gland. However, the function of BmSGF1 in development of the nervous system in the silkworm remains unknown. Here, we show that the amino acids sequence of BmSGF1 is evolutionarily conserved in its middle region from Trichoplax adhaerens to human and diverged from the homologues in most other species in its N-terminal region. BmSGF1 expresses in the nervous system at the embryonic stage. Knockdown of Bmsgf1 by RNA interference (RNAi) results in abnormal development of axons. Therefore, our results demonstrate that BmSGF1 is an indispensable regulator for neurodevelopment. PMID:27106119

  12. piRNA-guided slicing specifies transcripts for Zucchini dependent, phased piRNA biogenesis

    PubMed Central

    Brennecke, Julius

    2016-01-01

    In animal gonads PIWI-clade Argonaute proteins repress transposons sequence-specifically via bound piRNAs. These are processed from single-stranded precursor RNAs by largely unknown mechanisms. Here we show that primary piRNA biogenesis is a 3′ directed and phased process that, in the Drosophila germline, is initiated by secondary piRNA-guided transcript cleavage. Phasing results from consecutive endo-nucleolytic cleavages catalyzed by Zucchini, implying coupled formation of 3′ and 5′ ends of flanking piRNAs. Unexpectedly, Zucchini also participates in 3′ end formation of secondary piRNAs. Its function can, however, be bypassed by downstream piRNA-guided precursor cleavages coupled to exonucleolytic trimming. Our data uncover an evolutionarily conserved piRNA biogenesis mechanism where Zucchini plays a central role in defining piRNA 5′ and 3′ ends. PMID:25977553

  13. The transcription factors Sox10 and Myrf define an essential regulatory network module in differentiating oligodendrocytes.

    PubMed

    Hornig, Julia; Fröb, Franziska; Vogl, Michael R; Hermans-Borgmeyer, Irm; Tamm, Ernst R; Wegner, Michael

    2013-10-01

    Myelin is essential for rapid saltatory conduction and is produced by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. In both cell types the transcription factor Sox10 is an essential component of the myelin-specific regulatory network. Here we identify Myrf as an oligodendrocyte-specific target of Sox10 and map a Sox10 responsive enhancer to an evolutionarily conserved element in intron 1 of the Myrf gene. Once induced, Myrf cooperates with Sox10 to implement the myelination program as evident from the physical interaction between both proteins and the synergistic activation of several myelin-specific genes. This is strongly reminiscent of the situation in Schwann cells where Sox10 first induces and then cooperates with Krox20 during myelination. Our analyses indicate that the regulatory network for myelination in oligodendrocytes is organized along similar general principles as the one in Schwann cells, but is differentially implemented. PMID:24204311

  14. A conserved motif N-terminal to the DNA-binding domains of myogenic bHLH transcription factors mediates cooperative DNA binding with pbx-Meis1/Prep1.

    PubMed

    Knoepfler, P S; Bergstrom, D A; Uetsuki, T; Dac-Korytko, I; Sun, Y H; Wright, W E; Tapscott, S J; Kamps, M P

    1999-09-15

    The t(1;19) chromosomal translocation of pediatric pre-B cell leukemia produces chimeric oncoprotein E2a-Pbx1, which contains the N-terminal transactivation domain of the basic helix-loop-helix (bHLH) transcription factor, E2a, joined to the majority of the homeodomain protein, Pbx1. There are three Pbx family members, which bind DNA as heterodimers with both broadly expressed Meis/Prep1 homeo-domain proteins and specifically expressed Hox homeodomain proteins. These Pbx heterodimers can augment the function of transcriptional activators bound to adjacent elements. In heterodimers, a conserved tryptophan motif in Hox proteins binds a pocket on the surface of the Pbx homeodomain, while Meis/Prep1 proteins bind an N-terminal Pbx domain, raising the possibility that the tryptophan-interaction pocket of the Pbx component of a Pbx-Meis/Prep1 complex is still available to bind trypto-phan motifs of other transcription factors bound to flanking elements. Here, we report that Pbx-Meis1/Prep1 binds DNA cooperatively with heterodimers of E2a and MyoD, myogenin, Mrf-4 or Myf-5. As with Hox proteins, a highly conserved tryptophan motif N-terminal to the DNA-binding domains of each myogenic bHLH family protein is required for cooperative DNA binding with Pbx-Meis1/Prep1. In vivo, MyoD requires this tryptophan motif to evoke chromatin remodeling in the Myogenin promoter and to activate Myogenin transcription. Pbx-Meis/Prep1 complexes, therefore, have the potential to cooperate with the myogenic bHLH proteins in regulating gene transcription. PMID:10471746

  15. The MADS box transcription factor MEF2C regulates melanocyte development and is a direct transcriptional target and partner of SOX10.

    PubMed

    Agarwal, Pooja; Verzi, Michael P; Nguyen, Thuyen; Hu, Jianxin; Ehlers, Melissa L; McCulley, David J; Xu, Shan-Mei; Dodou, Evdokia; Anderson, Joshua P; Wei, Maria L; Black, Brian L

    2011-06-01

    Waardenburg syndromes are characterized by pigmentation and autosensory hearing defects, and mutations in genes encoding transcription factors that control neural crest specification and differentiation are often associated with Waardenburg and related disorders. For example, mutations in SOX10 result in a severe form of Waardenburg syndrome, Type IV, also known as Waardenburg-Hirschsprung disease, characterized by pigmentation and other neural crest defects, including defective innervation of the gut. SOX10 controls neural crest development through interactions with other transcription factors. The MADS box transcription factor MEF2C is an important regulator of brain, skeleton, lymphocyte and cardiovascular development and is required in the neural crest for craniofacial development. Here, we establish a novel role for MEF2C in melanocyte development. Inactivation of Mef2c in the neural crest of mice results in reduced expression of melanocyte genes during development and a significant loss of pigmentation at birth due to defective differentiation and reduced abundance of melanocytes. We identify a transcriptional enhancer of Mef2c that directs expression to the neural crest and its derivatives, including melanocytes, in transgenic mouse embryos. This novel Mef2c neural crest enhancer contains three functional SOX binding sites and a single essential MEF2 site. We demonstrate that Mef2c is a direct transcriptional target of SOX10 and MEF2 via this evolutionarily conserved enhancer. Furthermore, we show that SOX10 and MEF2C physically interact and function cooperatively to activate the Mef2c gene in a feed-forward transcriptional circuit, suggesting that MEF2C might serve as a potentiator of the transcriptional pathways affected in Waardenburg syndromes. PMID:21610032

  16. MEF2 Transcription Factors Regulate Distinct Gene Programs in Mammalian Skeletal Muscle Differentiation*

    PubMed Central

    Estrella, Nelsa L.; Desjardins, Cody A.; Nocco, Sarah E.; Clark, Amanda L.; Maksimenko, Yevgeniy; Naya, Francisco J.

    2015-01-01

    Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease. PMID:25416778

  17. Molecular cloning and characterization of a Bombyx mori gene encoding the transcription factor Atonal.

    PubMed

    Hu, Ping; Feng, Fan; Xia, Hengchuan; Chen, Liang; Yao, Qin; Chen, Keping

    2014-01-01

    The atonal genes are an evolutionarily conserved group of genes encoding regulatory basic helix-loop-helix (bHLH) transcription factors. These transcription factors have a critical antioncogenic function in the retina, and are necessary for cell fate determination through the regulation of the cell signal pathway. In this study, the atonal gene was cloned from Bombyx mori, and the transcription factor was named BmAtonal. Sequence analysis showed that the BmAtonal protein shares extensive homology with other invertebrate Atonal proteins with the bHLH motif. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analyses revealed that BmAtonal was expressed in all developmental stages of B. mori and various larval tissues. The BmAtonal protein was expressed in Escherichia coli, and polyclonal antibodies were raised against the purified protein. By immunofluorescence, the BmAtonal protein was localized to both the nucleus and cytoplasm of BmN cells. After knocking out nuclear localization signals (NLS), the BmAtonal protein was only detected in the cytoplasm. In addition, using the B. mori nuclear polyhedrosis virus (BmNPV) baculovirus expression system, the recombinant BmAtonal protein was successfully expressed in the B. mori cell line BmN. This work lays the foundation for exploring the biological functions of the BmAtonal protein, such as identifying its potential binding partners and understanding the molecular control of the formation of sensory organs. PMID:24873037

  18. Transcriptional regulation of cathelicidin genes in chicken bone marrow cells.

    PubMed

    Lee, Sang In; Jang, Hyun June; Jeon, Mi-hyang; Lee, Mi Ock; Kim, Jeom Sun; Jeon, Ik-Soo; Byun, Sung June

    2016-04-01

    Cathelicidins form a family of vertebrate-specific immune molecules with an evolutionarily conserved gene structure. We analyzed the expression patterns of cathelicidin genes (CAMP, CATH3, and CATHB1) in chicken bone marrow cells (BMCs) and chicken embryonic fibroblasts (CEFs). We found that CAMP and CATHB1 were significantly up-regulated in BMCs, whereas the expression of CATH3 did not differ significantly between BMCs and CEFs. To study the mechanism underlying the up-regulation of cathelicidin genes in BMCs, we predicted the transcription factors (TFs) that bind to the 5'-flanking regions of cathelicidin genes. CEBPA, EBF1, HES1, MSX1, and ZIC3 were up-regulated in BMCs compared to CEFs. Subsequently, when a siRNA-mediated knockdown assay was performed for MSX1, the expression of CAMP and CATHB1 was decreased in BMCs. We also showed that the transcriptional activity of the CAMP promoter was decreased by mutation of the MSX1-binding sites present within the 5'-flanking region of CAMP. These results increase our understanding of the regulatory mechanisms controlling cathelicidin genes in BMCs. PMID:26908883

  19. RFX transcription factors are essential for hearing in mice

    PubMed Central

    Elkon, Ran; Milon, Beatrice; Morrison, Laura; Shah, Manan; Vijayakumar, Sarath; Racherla, Manoj; Leitch, Carmen C.; Silipino, Lorna; Hadi, Shadan; Weiss-Gayet, Michèle; Barras, Emmanuèle; Schmid, Christoph D.; Ait-Lounis, Aouatef; Barnes, Ashley; Song, Yang; Eisenman, David J.; Eliyahu, Efrat; Frolenkov, Gregory I.; Strome, Scott E.; Durand, Bénédicte; Zaghloul, Norann A.; Jones, Sherri M.; Reith, Walter; Hertzano, Ronna

    2015-01-01

    Sensorineural hearing loss is a common and currently irreversible disorder, because mammalian hair cells (HCs) do not regenerate and current stem cell and gene delivery protocols result only in immature HC-like cells. Importantly, although the transcriptional regulators of embryonic HC development have been described, little is known about the postnatal regulators of maturating HCs. Here we apply a cell type-specific functional genomic analysis to the transcriptomes of auditory and vestibular sensory epithelia from early postnatal mice. We identify RFX transcription factors as essential and evolutionarily conserved regulators of the HC-specific transcriptomes, and detect Rfx1,2,3,5 and 7 in the developing HCs. To understand the role of RFX in hearing, we generate Rfx1/3 conditional knockout mice. We show that these mice are deaf secondary to rapid loss of initially well-formed outer HCs. These data identify an essential role for RFX in hearing and survival of the terminally differentiating outer HCs. PMID:26469318

  20. FoxA2, Nkx2.2, and PDX-1 Regulate Islet β-Cell-Specific mafA Expression through Conserved Sequences Located between Base Pairs −8118 and −7750 Upstream from the Transcription Start Site

    PubMed Central

    Raum, Jeffrey C.; Gerrish, Kevin; Artner, Isabella; Henderson, Eva; Guo, Min; Sussel, Lori; Schisler, Jonathan C.; Newgard, Christopher B.; Stein, Roland

    2006-01-01

    The MafA transcription factor is both critical to islet β-cell function and has a unique pancreatic cell-type-specific expression pattern. To localize the potential transcriptional regulatory region(s) involved in directing expression to the β cell, areas of identity within the 5′ flanking region of the mouse, human, and rat mafA genes were found between nucleotides −9389 and −9194, −8426 and −8293, −8118 and −7750, −6622 and −6441, −6217 and −6031, and −250 and +56 relative to the transcription start site. The identity between species was greater than 75%, with the highest found between bp −8118 and −7750 (∼94%, termed region 3). Region 3 was the only upstream mammalian conserved region found in chicken mafA (88% identity). In addition, region 3 uniquely displayed β-cell-specific activity in cell-line-based reporter assays. Important regulators of β-cell formation and function, PDX-1, FoxA2, and Nkx2.2, were shown to specifically bind to region 3 in vivo using the chromatin immunoprecipitation assay. Mutational and functional analyses demonstrated that FoxA2 (bp −7943 to −7910), Nkx2.2 (bp −7771 to −7746), and PDX-1 (bp −8087 to −8063) mediated region 3 activation. Consistent with a role in transcription, small interfering RNA-mediated knockdown of PDX-1 led to decreased mafA mRNA production in INS-1-derived β-cell lines (832/13 and 832/3), while MafA expression was undetected in the pancreatic epithelium of Nkx2.2 null animals. These results suggest that β-cell-type-specific mafA transcription is principally controlled by region 3-acting transcription factors that are essential in the formation of functional β cells. PMID:16847327

  1. Association of transcription factor YY1 with the high molecular weight Notch complex suppresses the transactivation activity of Notch.

    PubMed

    Yeh, Tien-Shun; Lin, Yu-Min; Hsieh, Rong-Hong; Tseng, Min-Jen

    2003-10-24

    Notch receptors are evolutionarily conserved from Drosophila to human and play important roles in cell fate decisions. After ligand binding, Notch receptors are cleaved to release their intracellular domains. The intracellular domains, the activated form of Notch receptors, are then translocated into the nucleus where they interact with other transcriptional machinery to regulate the expression of cellular genes. To dissect the molecular mechanisms of Notch signaling, the cellular targets that interact with Notch1 receptor intracellular domain (N1IC) were screened. In this study, we found that endogenous transcription factor Ying Yang 1 (YY1) was associated with exogenous N1IC in human K562 erythroleukemic cells. The ankyrin (ANK) domain of N1IC and zinc finger domains of YY1 were essential for the association of N1IC and YY1 according to the pull-down assay of glutathione S-transferase fusion proteins. Furthermore, both YY1 and N1IC were present in a large complex of the nucleus to suppress the luciferase reporter activity transactivated by Notch signaling. The transcription factor YY1 indirectly regulated the transcriptional activity of the wild-type CBF1-response elements via the direct interaction of N1IC and CBF1. We also demonstrated the association between endogenous N1IC and intrinsic YY1 in human acute T-cell lymphoblastic leukemia cell lines. Taken together, these results indicate that transcription factor YY1 may modulate Notch signaling via association with the high molecular weight Notch complex. PMID:12913000

  2. Isolation of the mouse (MFH-1) and human (FKHL14) mesenchyme fork head-1 genes reveals conservation of their gene and protein structures

    SciTech Connect

    Miura, Naoyuki; Iida, Kiyoshi; Yang, Xiao-Li

    1997-05-01

    The very recently found evolutionarily conserved DNA-binding domain of 100 amino acids, termed the fork head domain, emerged from a sequence comparison of the rat hepatocyte transcription factor HNF-3{alpha} and the homeotic gene fork head of Drosophila. We previously isolated a new member of this family, the mesenchyme fork head-1 (MFH-1) gene, which is expressed in developing mesenchyme. Here we describe the isolation of the mouse (MFH-1) and human (FKHL14) chromosomal MFH-1 genes and the determination of the gene and protein structures of MFH-1. We found that the MFH-1 gene has no introns and that the identity of the amino acid sequences of mouse and human MFH-1 proteins is 94%. We also investigated the transcriptional activity of the mouse and human MFH-1 proteins and found that both proteins act as positive transactivators. 31 refs., 3 figs.

  3. E2F transcription factor 1 regulates cellular and organismal senescence by inhibiting Forkhead box O transcription factors.

    PubMed

    Xie, Qi; Peng, Shengyi; Tao, Li; Ruan, Haihe; Yang, Yanglu; Li, Tie-Mei; Adams, Ursula; Meng, Songshu; Bi, Xiaolin; Dong, Meng-Qiu; Yuan, Zengqiang

    2014-12-01

    E2F1 and FOXO3 are two transcription factors that have been shown to participate in cellular senescence. Previous report reveals that E2F1 enhanced cellular senescence in human fibroblast cells, while FOXO transcription factors play against senescence by regulation reactive oxygen species scavenging proteins. However, their functional interplay has been unclear. Here we use E2F1 knock-out murine Embryonic fibroblasts (MEFs), knockdown RNAi constructs, and ectopic expression of E2F1 to show that it functions by negatively regulating FOXO3. E2F1 attenuates FOXO3-mediated expression of MnSOD and Catalase without affecting FOXO3 protein stability, subcellular localization, or phosphorylation by Akt. We mapped the interaction between E2F1 and FOXO3 to a region including the DNA binding domain of E2F1 and the C-terminal transcription-activation domain of FOXO3. We propose that E2F1 inhibits FOXO3-dependent transcription by directly binding FOXO3 in the nucleus and preventing activation of its target genes. Moreover, knockdown of the Caenorhabditis elegans E2F1 ortholog efl-1 significantly extends lifespan in a manner that requires the activity of the C. elegans FOXO gene daf-16. We conclude that there is an evolutionarily conserved signaling connection between E2F1 and FOXO3, which regulates cellular senescence and aging by regulating the activity of FOXO3. We speculate that drugs and/or therapies that inhibit this physical interaction might be good candidates for reducing cellular senescence and increasing longevity. PMID:25344604

  4. Imprecise transcription termination within Escherichia coli greA leader gives rise to an array of short transcripts, GraL

    PubMed Central

    Potrykus, Katarzyna; Murphy, Helen; Chen, Xiongfong; Epstein, Jonathan A.; Cashel, Michael

    2010-01-01

    We report that greA expression is driven by two strong, overlapping P1 and P2 promoters. The P1 promoter is σ70-dependent and P2 is σE-dependent. Two-thirds of transcripts terminate within the leader region and the remaining third comprises greA mRNA. Termination efficiency seems to be unaffected by growth phase. Two collections of small 40–50 (initiating from P2) and 50–60 nt (from P1) RNA chains, termed GraL, are demonstrable in vivo and in vitro. We document that GraL arrays arise from an intrinsic terminator with an 11 bp stem followed by an AU7GCU2 sequence. Atypical chain termination occurs at multiple sites; the 3′-ends differ by 1 nt over a range of 10 nt. Transcripts observed are shown to be insensitive to Gre factors and physically released from RNAP–DNA complexes. The abundance of individual chains within each cluster displays a characteristic pattern, which can be differentially altered by oligonucleotide probes. Multiple termination sites are particularly sensitive to changes at the bottom of the stem. Evolutionarily conserved GraL stem structures and fitness assays suggest a biological function for the RNA clusters themselves. Although GraL overexpression induces ≥3-fold transcriptional changes of over 100 genes, a direct target remains elusive. PMID:20008510

  5. Transcriptional profiling of C. elegans DAF-19 uncovers a ciliary base-associated protein and a CDK/CCRK/LF2p-related kinase required for intraflagellar transport.

    PubMed

    Phirke, Prasad; Efimenko, Evgeni; Mohan, Swetha; Burghoorn, Jan; Crona, Filip; Bakhoum, Mathieu W; Trieb, Maria; Schuske, Kim; Jorgensen, Erik M; Piasecki, Brian P; Leroux, Michel R; Swoboda, Peter

    2011-09-01

    Cilia are ubiquitous cell surface projections that mediate various sensory- and motility-based processes and are implicated in a growing number of multi-organ genetic disorders termed ciliopathies. To identify new components required for cilium biogenesis and function, we sought to further define and validate the transcriptional targets of DAF-19, the ciliogenic C. elegans RFX transcription factor. Transcriptional profiling of daf-19 mutants (which do not form cilia) and wild-type animals was performed using embryos staged to when the cell types developing cilia in the worm, the ciliated sensory neurons (CSNs), still differentiate. Comparisons between the two populations revealed 881 differentially regulated genes with greater than a 1.5-fold increase or decrease in expression. A subset of these was confirmed by quantitative RT-PCR. Transgenic worms expressing transcriptional GFP fusions revealed CSN-specific expression patterns for 11 of 14 candidate genes. We show that two uncharacterized candidate genes, termed dyf-17 and dyf-18 because their corresponding mutants display dye-filling (Dyf) defects, are important for ciliogenesis. DYF-17 localizes at the base of cilia and is specifically required for building the distal segment of sensory cilia. DYF-18 is an evolutionarily conserved CDK7/CCRK/LF2p-related serine/threonine kinase that is necessary for the proper function of intraflagellar transport, a process critical for cilium biogenesis. Together, our microarray study identifies targets of the evolutionarily conserved RFX transcription factor, DAF-19, providing a rich dataset from which to uncover-in addition to DYF-17 and DYF-18-cellular components important for cilium formation and function. PMID:21740898

  6. A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans

    PubMed Central

    Roh, Hyun Cheol; Dimitrov, Ivan; Deshmukh, Krupa; Zhao, Guoyan; Warnhoff, Kurt; Cabrera, Daniel; Tsai, Wendy; Kornfeld, Kerry

    2015-01-01

    Zinc is essential for biological systems, and aberrant zinc metabolism is implicated in a broad range of human diseases. To maintain homeostasis in response to fluctuating levels of dietary zinc, animals regulate gene expression; however, mechanisms that mediate the transcriptional response to fluctuating levels of zinc have not been fully defined. Here, we identified DNA enhancer elements that mediate intestine-specific transcriptional activation in response to high levels of dietary zinc in C. elegans. Using bioinformatics, we characterized an evolutionarily conserved enhancer element present in multiple zinc-inducible genes, the high zinc activation (HZA) element. The HZA was consistently adjacent to a GATA element that mediates expression in intestinal cells. Functional studies using transgenic animals demonstrated that this modular system of DNA enhancers mediates tissue-specific transcriptional activation in response to high levels of dietary zinc. We used this information to search the genome and successfully identified novel zinc-inducible genes. To characterize the mechanism of enhancer function, we demonstrated that the GATA transcription factor ELT-2 and the mediator subunit MDT-15 are necessary for zinc-responsive transcriptional activation. These findings define new mechanisms of zinc homeostasis and tissue-specific regulation of transcription. PMID:25552416

  7. AthaMap web tools for database-assisted identification of combinatorial cis-regulatory elements and the display of highly conserved transcription factor binding sites in Arabidopsis thaliana.

    PubMed

    Steffens, Nils Ole; Galuschka, Claudia; Schindler, Martin; Bülow, Lorenz; Hehl, Reinhard

    2005-07-01

    The AthaMap database generates a map of cis-regulatory elements for the Arabidopsis thaliana genome. AthaMap contains more than 7.4 x 10(6) putative binding sites for 36 transcription factors (TFs) from 16 different TF families. A newly implemented functionality allows the display of subsets of higher conserved transcription factor binding sites (TFBSs). Furthermore, a web tool was developed that permits a user-defined search for co-localizing cis-regulatory elements. The user can specify individually the level of conservation for each TFBS and a spacer range between them. This web tool was employed for the identification of co-localizing sites of known interacting TFs and TFs containing two DNA-binding domains. More than 1.8 x 10(5) combinatorial elements were annotated in the AthaMap database. These elements can also be used to identify more complex co-localizing elements consisting of up to four TFBSs. The AthaMap database and the connected web tools are a valuable resource for the analysis and the prediction of gene expression regulation at http://www.athamap.de. PMID:15980498

  8. 18 CFR 1b.12 - Transcripts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Transcripts. 1b.12 Section 1b.12 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.12 Transcripts. Transcripts, if any,...

  9. The T-box transcription factor Midline regulates wing development by repressing wingless and hedgehog in Drosophila

    PubMed Central

    Fu, Chong-Lei; Wang, Xian-Feng; Cheng, Qian; Wang, Dan; Hirose, Susumu; Liu, Qing-Xin

    2016-01-01

    Wingless (Wg) and Hedgehog (Hh) signaling pathways are key players in animal development. However, regulation of the expression of wg and hh are not well understood. Here, we show that Midline (Mid), an evolutionarily conserved transcription factor, expresses in the wing disc of Drosophila and plays a vital role in wing development. Loss or knock down of mid in the wing disc induced hyper-expression of wingless (wg) and yielded cocked and non-flat wings. Over-expression of mid in the wing disc markedly repressed the expression of wg, DE-Cadherin (DE-Cad) and armadillo (arm), and resulted in a small and blistered wing. In addition, a reduction in the dose of mid enhanced phenotypes of a gain-of-function mutant of hedgehog (hh). We also observed repression of hh upon overexpression of mid in the wing disc. Taken together, we propose that Mid regulates wing development by repressing wg and hh in Drosophila. PMID:27301278

  10. The T-box transcription factor Midline regulates wing development by repressing wingless and hedgehog in Drosophila.

    PubMed

    Fu, Chong-Lei; Wang, Xian-Feng; Cheng, Qian; Wang, Dan; Hirose, Susumu; Liu, Qing-Xin

    2016-01-01

    Wingless (Wg) and Hedgehog (Hh) signaling pathways are key players in animal development. However, regulation of the expression of wg and hh are not well understood. Here, we show that Midline (Mid), an evolutionarily conserved transcription factor, expresses in the wing disc of Drosophila and plays a vital role in wing development. Loss or knock down of mid in the wing disc induced hyper-expression of wingless (wg) and yielded cocked and non-flat wings. Over-expression of mid in the wing disc markedly repressed the expression of wg, DE-Cadherin (DE-Cad) and armadillo (arm), and resulted in a small and blistered wing. In addition, a reduction in the dose of mid enhanced phenotypes of a gain-of-function mutant of hedgehog (hh). We also observed repression of hh upon overexpression of mid in the wing disc. Taken together, we propose that Mid regulates wing development by repressing wg and hh in Drosophila. PMID:27301278

  11. Noncoding RNA. piRNA-guided slicing specifies transcripts for Zucchini-dependent, phased piRNA biogenesis.

    PubMed

    Mohn, Fabio; Handler, Dominik; Brennecke, Julius

    2015-05-15

    In animal gonads, PIWI-clade Argonaute proteins repress transposons sequence-specifically via bound Piwi-interacting RNAs (piRNAs). These are processed from single-stranded precursor RNAs by largely unknown mechanisms. Here we show that primary piRNA biogenesis is a 3'-directed and phased process that, in the Drosophila germ line, is initiated by secondary piRNA-guided transcript cleavage. Phasing results from consecutive endonucleolytic cleavages catalyzed by Zucchini, implying coupled formation of 3' and 5' ends of flanking piRNAs. Unexpectedly, Zucchini also participates in 3' end formation of secondary piRNAs. Its function can, however, be bypassed by downstream piRNA-guided precursor cleavages coupled to exonucleolytic trimming. Our data uncover an evolutionarily conserved piRNA biogenesis mechanism in which Zucchini plays a central role in defining piRNA 5' and 3' ends. PMID:25977553

  12. Detained introns are a novel, widespread class of post-transcriptionally spliced introns

    PubMed Central

    Boutz, Paul L.; Bhutkar, Arjun

    2015-01-01

    Deep sequencing of embryonic stem cell RNA revealed many specific internal introns that are significantly more abundant than the other introns within polyadenylated transcripts; we classified these as “detained” introns (DIs). We identified thousands of DIs, many of which are evolutionarily conserved, in human and mouse cell lines as well as the adult mouse liver. DIs can have half-lives of over an hour yet remain in the nucleus and are not subject to nonsense-mediated decay (NMD). Drug inhibition of Clk, a stress-responsive kinase, triggered rapid splicing changes for a specific subset of DIs; half showed increased splicing, and half showed increased intron detention, altering transcript pools of >300 genes. Srsf4, which undergoes a dramatic phosphorylation shift in response to Clk kinase inhibition, regulates the splicing of some DIs, particularly in genes encoding RNA processing and splicing factors. The splicing of some DIs—including those in Mdm4, a negative regulator of p53—was also altered following DNA damage. After 4 h of Clk inhibition, the expression of >400 genes changed significantly, and almost one-third of these are p53 transcriptional targets. These data suggest a widespread mechanism by which the rate of splicing of DIs contributes to the level of gene expression. PMID:25561496

  13. Src tyrosine kinase signaling antagonizes nuclear localization of FOXO and inhibits its transcription factor activity.

    PubMed

    Bülow, Margret H; Bülow, Torsten R; Hoch, Michael; Pankratz, Michael J; Jünger, Martin A

    2014-01-01

    Biochemical experiments in mammalian cells have linked Src family kinase activity to the insulin signaling pathway. To explore the physiological link between Src and a central insulin pathway effector, we investigated the effect of different Src signaling levels on the Drosophila transcription factor dFOXO in vivo. Ectopic activation of Src42A in the starved larval fatbody was sufficient to drive dFOXO out of the nucleus. When Src signaling levels were lowered by means of loss-of-function mutations or pharmacological inhibition, dFOXO localization was shifted to the nucleus in growing animals, and transcription of the dFOXO target genes d4E-BP and dInR was induced. dFOXO loss-of-function mutations rescued the induction of dFOXO target gene expression and the body size reduction of Src42A mutant larvae, establishing dFOXO as a critical downstream effector of Src signaling. Furthermore, we provide evidence that the regulation of FOXO transcription factors by Src is evolutionarily conserved in mammalian cells. PMID:24513978

  14. Regulated Formation of lncRNA-DNA Hybrids Enables Faster Transcriptional Induction and Environmental Adaptation.

    PubMed

    Cloutier, Sara C; Wang, Siwen; Ma, Wai Kit; Al Husini, Nadra; Dhoondia, Zuzer; Ansari, Athar; Pascuzzi, Pete E; Tran, Elizabeth J

    2016-02-01

    Long non-coding (lnc)RNAs, once thought to merely represent noise from imprecise transcription initiation, have now emerged as major regulatory entities in all eukaryotes. In contrast to the rapidly expanding identification of individual lncRNAs, mechanistic characterization has lagged behind. Here we provide evidence that the GAL lncRNAs in the budding yeast S. cerevisiae promote transcriptional induction in trans by formation of lncRNA-DNA hybrids or R-loops. The evolutionarily conserved RNA helicase Dbp2 regulates formation of these R-loops as genomic deletion or nuclear depletion results in accumulation of these structures across the GAL cluster gene promoters and coding regions. Enhanced transcriptional induction is manifested by lncRNA-dependent displacement of the Cyc8 co-repressor and subsequent gene looping, suggesting that these lncRNAs promote induction by altering chromatin architecture. Moreover, the GAL lncRNAs confer a competitive fitness advantage to yeast cells because expression of these non-coding molecules correlates with faster adaptation in response to an environmental switch. PMID:26833086

  15. Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation

    PubMed Central

    Zhang, Zhengjian; Boskovic, Zarko; Hussain, Mahmud M; Hu, Wenxin; Inouye, Carla; Kim, Han-Je; Abole, A Katherine; Doud, Mary K; Lewis, Timothy A; Koehler, Angela N; Schreiber, Stuart L; Tjian, Robert

    2015-01-01

    Intrinsically disordered proteins/regions (IDPs/IDRs) are proteins or peptide segments that fail to form stable 3-dimensional structures in the absence of partner proteins. They are abundant in eukaryotic proteomes and are often associated with human diseases, but their biological functions have been elusive to study. In this study, we report the identification of a tin(IV) oxochloride-derived cluster that binds an evolutionarily conserved IDR within the metazoan TFIID transcription complex. Binding arrests an isomerization of promoter-bound TFIID that is required for the engagement of Pol II during the first (de novo) round of transcription initiation. However, the specific chemical probe does not affect reinitiation, which requires the re-entry of Pol II, thus, mechanistically distinguishing these two modes of transcription initiation. This work also suggests a new avenue for targeting the elusive IDRs by harnessing certain features of metal-based complexes for mechanistic studies, and for the development of novel pharmaceutical interventions. DOI: http://dx.doi.org/10.7554/eLife.07777.001 PMID:26314865

  16. Alternative splicing generates novel Fads3 transcript in mice.

    PubMed

    Zhang, Ji Yao; Qin, Xia; Park, Hui Gyu; Kim, Ellen; Liu, Guowen; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-08-01

    Fads3 is the third member of the fatty acid desaturase gene cluster; with at least eight evolutionarily conserved alternative transcripts (AT), having no clearly established function as are known for FADS2 and FADS1. Here we present identification of a novel Fads3 transcript in mice (Fads3AT9), characterize Fads3AT9 expression in mouse tissues and evaluate correlations with metabolite profiles. Total RNA obtained from mouse tissues is reverse-transcribed into cDNA and used as template for PCR reactions. Tissue fatty acids were extracted and quantified by gas chromatography. Sequencing analysis revealed complete absence of exon 2 resulting in an open reading frame of 1239 bp, encoding a putative protein of 412 aa with loss of 37 aa compared to classical Fads3 (Fads3CS). FADS3AT9 retains all the conserved regions characteristic of front end desaturase (cytochrome b5 domain and three histidine repeats). Both Fads3CS and Fads3AT9 are ubiquitously expressed in 11 mouse tissues. Fads3AT9 abundance was greater than Fads3CS in pancreas, liver, spleen, brown adipose tissue and thymus. Fads3CS expression is low in pancreas while Fads3AT9 is over ten-fold greater abundance. The eicosanoid precursor fatty acid 20:4n - 6, the immediate desaturation product of the Fads1 coded Δ5-desaturase, was highest in pancreas where Fads3CS is low. Changes in expression patterns and fatty acid profiles suggest that Fads3AT9 may play a role in the regulation and/or biosynthesis of long chain polyunsaturated fatty acids from precursors. PMID:27216536

  17. A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1.

    PubMed

    Neef, Daniel W; Jaeger, Alex M; Gomez-Pastor, Rocio; Willmund, Felix; Frydman, Judith; Thiele, Dennis J

    2014-11-01

    Heat shock transcription factor 1 (HSF1) is an evolutionarily conserved transcription factor that protects cells from protein-misfolding-induced stress and apoptosis. The mechanisms by which cytosolic protein misfolding leads to HSF1 activation have not been elucidated. Here, we demonstrate that HSF1 is directly regulated by TRiC/CCT, a central ATP-dependent chaperonin complex that folds cytosolic proteins. A small-molecule activator of HSF1, HSF1A, protects cells from stress-induced apoptosis, binds TRiC subunits in vivo and in vitro, and inhibits TRiC activity without perturbation of ATP hydrolysis. Genetic inactivation or depletion of the TRiC complex results in human HSF1 activation, and HSF1A inhibits the direct interaction between purified TRiC and HSF1 in vitro. These results demonstrate a direct regulatory interaction between the cytosolic chaperone machine and a critical transcription factor that protects cells from proteotoxicity, providing a mechanistic basis for signaling perturbations in protein folding to a stress-protective transcription factor. PMID:25437552

  18. The homeobox gene Mohawk represses transcription by recruiting the sin3A/HDAC co-repressor complex.

    PubMed

    Anderson, Douglas M; Beres, Brian J; Wilson-Rawls, Jeanne; Rawls, Alan

    2009-03-01

    Mohawk is an atypical homeobox gene expressed in embryonic progenitor cells of skeletal muscle, tendon, and cartilage. We demonstrate that Mohawk functions as a transcriptional repressor capable of blocking the myogenic conversion of 10T1/2 fibroblasts. The repressor activity is located in three small, evolutionarily conserved domains (MRD1-3) in the carboxy-terminal half of the protein. Point mutation analysis revealed six residues in MRD1 are sufficient for repressor function. The carboxy-terminal half of Mohawk is able to recruit components of the Sin3A/HDAC co-repressor complex (Sin3A, Hdac1, and Sap18) and a subset of Polymerase II general transcription factors (Tbp, TFIIA1 and TFIIB). Furthermore, Sap18, a protein that bridges the Sin3A/HDAC complex to DNA-bound transcription factors, is co-immunoprecipitated by MRD1. These data predict that Mohawk can repress transcription through recruitment of the Sin3A/HDAC co-repressor complex, and as a result, repress target genes required for the differentiation of cells to the myogenic lineage. PMID:19235719

  19. Conserved POU-binding site linked to SP1-binding site within FZD5 promoter: Transcriptional mechanisms of FZD5 in undifferentiated human ES cells, fetal liver/spleen, adult colon, pancreatic islet, and diffuse-type gastric cancer.

    PubMed

    Katoh, Yuriko; Katoh, Masaru

    2007-03-01

    Canonical WNT signals are transduced through Frizzled (FZD) family receptor and LRP5/LRP6 co-receptor to upregulate FGF20, JAG1, DKK1, WISP1, CCND1 and MYC genes for cell-fate determination, while non-canonical WNT signals are transduced through FZD family receptor and ROR2/PTK7/RYK co-receptor to activate RHOA/RHOU/RAC/CDC42, JNK, PKC, NLK and NFAT signaling cascades for the regulation of tissue polarity, cell movement, and adhesion. We previously reported molecular cloning and characterization of human FZD5, which showed six amino-acid substitutions with human Hfz5. FZD5, functioning as WNT5A receptor, is the key molecule in the fields of oncology, regenerative medicine, cardiology, rheumatology, diabetology, and gastroenterology. Here, comparative integromics analyses on FZD5 orthologs were performed by using bioinformatics (Techint) and human intelligence (Humint). Chimpanzee FZD5 and cow Fzd5 genes were identified within NW_104292.1 and AC166656.2 genome sequences, respectively. FZD5 orthologs were seven-transmembrane proteins with extracellular Frizzled domain, leucine zipper motif around the 5th transmembrane domain, and cytoplasmic DVL- and PDZ-binding motifs. Ser523 and Ser529 around the DVL-binding motif of FZD5 orthologs were putative aPKC phosphorylation sites. POU5F1 (OCT4)-binding site linked to SP1-binding site within the 5'-promoter region of human FZD5 gene was evolutionarily conserved among mammalian FZD5 orthologs. POU5F1 was more related to POU2F and POU3F subfamily members. POU5F1 was preferentially expressed in undifferentiated human embryonic stem (ES) cells, pancreatic islet, and diffuse-type gastric cancer. POU2F1 (OCT1) was expressed in ES cells, fetal liver/spleen, adult colon, POU2F2 in ES cells, fetal liver/spleen, and POU2F3 in diffuse-type gastric cancer. Multiple SP1/KLF family members, other than KLF2 or KLF4, were expressed in undifferentiated human ES cells. Together, these facts indicate that POU5F1 and POU2F subfamily members

  20. Molecular and biochemical analysis of rainbow trout LCK suggests a conserved mechanism for T-cell signaling in gnathostomes

    USGS Publications Warehouse

    Laing, K.J.; Dutton, S.; Hansen, J.D.

    2007-01-01

    Two genes were identified in rainbow trout that display high sequence identity to vertebrate Lck. Both of the trout Lck transcripts are associated with lymphoid tissues and were found to be highly expressed in IgM-negative lymphocytes. In vitro analysis of trout lymphocytes indicates that trout Lck mRNA is up-regulated by T-cell mitogens, supporting an evolutionarily conserved function for Lck in the signaling pathways of T-lymphocytes. Here, we describe the generation and characterization of a specific monoclonal antibody raised against the N-terminal domains of recombinant trout Lck that can recognize Lck protein(s) from trout thymocyte lysates that are similar in size (???57 kDa) to mammalian Lck. This antibody also reacted with permeabilized lymphocytes during FACS analysis, indicating its potential usage for cellular analyses of trout lymphocytes, thus representing an important tool for investigations of salmonid T-cell function.

  1. Nuclear Respiratory Factor 1 Controls Myocyte Enhancer Factor 2A Transcription to Provide a Mechanism for Coordinate Expression of Respiratory Chain Subunits*S⃞

    PubMed Central

    Ramachandran, Bindu; Yu, Gengsheng; Gulick, Tod

    2008-01-01

    Nuclear respiratory factors NRF1 and NRF2 regulate the expression of nuclear genes encoding heme biosynthetic enzymes, proteins required for mitochondrial genome transcription and protein import, and numerous respiratory chain subunits. NRFs thereby coordinate the expression of nuclear and mitochondrial genes relevant to mitochondrial biogenesis and respiration. Only two of the nuclear-encoded respiratory chain subunits have evolutionarily conserved tissue-specific forms: the cytochrome c oxidase (COX) subunits VIa and VIIa heart/muscle (H) and ubiquitous (L) isoforms. We used genome comparisons to conclude that the promoter regions of COX6AH and COX7AH lack NRF sites but have conserved myocyte enhancer factor 2 (MEF2) elements. We show that MEF2A mRNA is induced with forced expression of NRF1 and that the MEF2A 5′-regulatory region contains an evolutionarily conserved canonical element that binds endogenous NRF1 in chromatin immunoprecipitation (ChIP) assays. NRF1 regulates MEF2A promoter-reporters according to overexpression, RNA interference underexpression, and promoter element mutation studies. As there are four mammalian MEF2 isotypes, we used an isoform-specific antibody in ChIP to confirm MEF2A binding to the COX6AH promoter. These findings support a role for MEF2A as an intermediary in coordinating respiratory chain subunit expression in heart and muscle through a NRF1 → MEF2A → COXH transcriptional cascade. MEF2A also bound the MEF2A and PPARGC1A promoters in ChIP, placing it within a feedback loop with PGC1α in controlling NRF1 activity. Interruption of this cascade and loop may account for striated muscle mitochondrial defects in mef2a null mice. Our findings also account for the previously described indirect regulation by NRF1 of other MEF2 targets in muscle such as GLUT4. PMID:18222924

  2. Nuclear respiratory factor 1 controls myocyte enhancer factor 2A transcription to provide a mechanism for coordinate expression of respiratory chain subunits.

    PubMed

    Ramachandran, Bindu; Yu, Gengsheng; Gulick, Tod

    2008-05-01

    Nuclear respiratory factors NRF1 and NRF2 regulate the expression of nuclear genes encoding heme biosynthetic enzymes, proteins required for mitochondrial genome transcription and protein import, and numerous respiratory chain subunits. NRFs thereby coordinate the expression of nuclear and mitochondrial genes relevant to mitochondrial biogenesis and respiration. Only two of the nuclear-encoded respiratory chain subunits have evolutionarily conserved tissue-specific forms: the cytochrome c oxidase (COX) subunits VIa and VIIa heart/muscle (H) and ubiquitous (L) isoforms. We used genome comparisons to conclude that the promoter regions of COX6A(H) and COX7A(H) lack NRF sites but have conserved myocyte enhancer factor 2 (MEF2) elements. We show that MEF2A mRNA is induced with forced expression of NRF1 and that the MEF2A 5'-regulatory region contains an evolutionarily conserved canonical element that binds endogenous NRF1 in chromatin immunoprecipitation (ChIP) assays. NRF1 regulates MEF2A promoter-reporters according to overexpression, RNA interference underexpression, and promoter element mutation studies. As there are four mammalian MEF2 isotypes, we used an isoform-specific antibody in ChIP to confirm MEF2A binding to the COX6A(H) promoter. These findings support a role for MEF2A as an intermediary in coordinating respiratory chain subunit expression in heart and muscle through a NRF1 --> MEF2A --> COX(H) transcriptional cascade. MEF2A also bound the MEF2A and PPARGC1A promoters in ChIP, placing it within a feedback loop with PGC1alpha in controlling NRF1 activity. Interruption of this cascade and loop may account for striated muscle mitochondrial defects in mef2a null mice. Our findings also account for the previously described indirect regulation by NRF1 of other MEF2 targets in muscle such as GLUT4. PMID:18222924

  3. Cytoplasmic protein binding to highly conserved sequences in the 3' untranslated region of mouse protamine 2 mRNA, a translationally regulated transcript of male germ cells.

    PubMed

    Kwon, Y K; Hecht, N B

    1991-05-01

    The expression of the protamines, the predominant nuclear proteins of mammalian spermatozoa, is regulated translationally during male germ-cell development. The 3' untranslated region (UTR) of protamine 1 mRNA has been reported to control its time of translation. To understand the mechanisms controlling translation of the protamine mRNAs, we have sought to identify cis elements of the 3' UTR of protamine 2 mRNA that are recognized by cytoplasmic factors. From gel retardation assays, two sequence elements are shown to form specific RNA-protein complexes. Protein binding sites of the two complexes were determined by RNase T1 mapping, by blocking the putative binding sites with antisense oligonucleotides, and by competition assays. The sequences of these elements, located between nucleotides + 537 and + 572 in protamine 2 mRNA, are highly conserved among postmeiotic translationally regulated nuclear proteins of the mammalian testis. Two closely linked protein binding sites were detected. UV-crosslinking studies revealed that a protein of about 18 kDa binds to one of the conserved sequences. These data demonstrate specific protein binding to a highly conserved 3' UTR of translationally regulated testicular mRNA. PMID:2023906

  4. A Nuclear DNA Perspective on Delineating Evolutionarily Significant Lineages in Polyploids: The Case of the Endangered Shortnose Sturgeon (Acipenser brevirostrum)

    PubMed Central

    King, Tim L.; Henderson, Anne P.; Kynard, Boyd E.; Kieffer, Micah C.; Peterson, Douglas L.; Aunins, Aaron W.; Brown, Bonnie L.

    2014-01-01

    The shortnose sturgeon, Acipenser brevirostrum, oft considered a phylogenetic relic, is listed as an “endangered species threatened with extinction” in the US and “Vulnerable” on the IUCN Red List. Effective conservation of A. brevirostrum depends on understanding its diversity and evolutionary processes, yet challenges associated with the polyploid nature of its nuclear genome have heretofore limited population genetic analysis to maternally inherited haploid characters. We developed a suite of polysomic microsatellite DNA markers and characterized a sample of 561 shortnose sturgeon collected from major extant populations along the North American Atlantic coast. The 181 alleles observed at 11 loci were scored as binary loci and the data were subjected to multivariate ordination, Bayesian clustering, hierarchical partitioning of variance, and among-population distance metric tests. The methods uncovered moderately high levels of gene diversity suggesting population structuring across and within three metapopulations (Northeast, Mid-Atlantic, and Southeast) that encompass seven demographically discrete and evolutionarily distinct lineages. The predicted groups are consistent with previously described behavioral patterns, especially dispersal and migration, supporting the interpretation that A. brevirostrum exhibit adaptive differences based on watershed. Combined with results of prior genetic (mitochondrial DNA) and behavioral studies, the current work suggests that dispersal is an important factor in maintaining genetic diversity in A. brevirostrum and that the basic unit for conservation management is arguably the local population. PMID:25166503

  5. A nuclear DNA perspective on delineating evolutionarily significant lineages in polyploids: the case of the endangered shortnose sturgeon (Acipenser brevirostrum).

    PubMed

    King, Tim L; Henderson, Anne P; Kynard, Boyd E; Kieffer, Micah C; Peterson, Douglas L; Aunins, Aaron W; Brown, Bonnie L

    2014-01-01

    The shortnose sturgeon, Acipenser brevirostrum, oft considered a phylogenetic relic, is listed as an "endangered species threatened with extinction" in the US and "Vulnerable" on the IUCN Red List. Effective conservation of A. brevirostrum depends on understanding its diversity and evolutionary processes, yet challenges associated with the polyploid nature of its nuclear genome have heretofore limited population genetic analysis to maternally inherited haploid characters. We developed a suite of polysomic microsatellite DNA markers and characterized a sample of 561 shortnose sturgeon collected from major extant populations along the North American Atlantic coast. The 181 alleles observed at 11 loci were scored as binary loci and the data were subjected to multivariate ordination, Bayesian clustering, hierarchical partitioning of variance, and among-population distance metric tests. The methods uncovered moderately high levels of gene diversity suggesting population structuring across and within three metapopulations (Northeast, Mid-Atlantic, and Southeast) that encompass seven demographically discrete and evolutionarily distinct lineages. The predicted groups are consistent with previously described behavioral patterns, especially dispersal and migration, supporting the interpretation that A. brevirostrum exhibit adaptive differences based on watershed. Combined with results of prior genetic (mitochondrial DNA) and behavioral studies, the current work suggests that dispersal is an important factor in maintaining genetic diversity in A. brevirostrum and that the basic unit for conservation management is arguably the local population. PMID:25166503

  6. A nuclear DNA perspective on delineating evolutionarily significant lineages in polyploids: the case of the endangered shortnose sturgeon (Acipenser brevirostrum)

    USGS Publications Warehouse

    King, Timothy L.; Henderson, Anne P.; Kynard, Boyd E.; Kieffer, Micah C.; Peterson, Douglas L.; Aunins, Aaron W.; Brown, Bonnie L.

    2014-01-01

    The shortnose sturgeon, Acipenser brevirostrum, oft considered a phylogenetic relic, is listed as an “endangered species threatened with extinction” in the US and “Vulnerable” on the IUCN Red List. Effective conservation of A. brevirostrum depends on understanding its diversity and evolutionary processes, yet challenges associated with the polyploid nature of its nuclear genome have heretofore limited population genetic analysis to maternally inherited haploid characters. We developed a suite of polysomic microsatellite DNA markers and characterized a sample of 561 shortnose sturgeon collected from major extant populations along the North American Atlantic coast. The 181 alleles observed at 11 loci were scored as binary loci and the data were subjected to multivariate ordination, Bayesian clustering, hierarchical partitioning of variance, and among-population distance metric tests. The methods uncovered moderately high levels of gene diversity suggesting population structuring across and within three metapopulations (Northeast, Mid-Atlantic, and Southeast) that encompass seven demographically discrete and evolutionarily distinct lineages. The predicted groups are consistent with previously described behavioral patterns, especially dispersal and migration, supporting the interpretation that A. brevirostrum exhibit adaptive differences based on watershed. Combined with results of prior genetic (mitochondrial DNA) and behavioral studies, the current work suggests that dispersal is an important factor in maintaining genetic diversity in A. brevirostrum and that the basic unit for conservation management is arguably the local population.

  7. Conserved Overlapping Gene Arrangement, Restricted Expression, and Biochemical Activities of DNA Polymerase ν (POLN)*

    PubMed Central

    Takata, Kei-ichi; Tomida, Junya; Reh, Shelley; Swanhart, Lisa M.; Takata, Minoru; Hukriede, Neil A.; Wood, Richard D.

    2015-01-01

    DNA polymerase ν (POLN) is one of 16 DNA polymerases encoded in vertebrate genomes. It is important to determine its gene expression patterns, biological roles, and biochemical activities. By quantitative analysis of mRNA expression, we found that POLN from the zebrafish Danio rerio is expressed predominantly in testis. POLN is not detectably expressed in zebrafish embryos or in mouse embryonic stem cells. Consistent with this, injection of POLN-specific morpholino antisense oligonucleotides did not interfere with zebrafish embryonic development. Analysis of transcripts revealed that vertebrate POLN has an unusual gene expression arrangement, sharing a first exon with HAUS3, the gene encoding augmin-like complex subunit 3. HAUS3 is broadly expressed in embryonic and adult tissues, in contrast to POLN. Differential expression of POLN and HAUS3 appears to arise by alternate splicing of transcripts in mammalian cells and zebrafish. When POLN was ectopically overexpressed in human cells, it specifically coimmunoprecipitated with the homologous recombination factors BRCA1 and FANCJ, but not with previously suggested interaction partners (HELQ and members of the Fanconi anemia core complex). Purified zebrafish POLN protein is capable of thymine glycol bypass and strand displacement, with activity dependent on a basic amino acid residue known to stabilize the primer-template. These properties are conserved with the human enzyme. Although the physiological function of pol ν remains to be clarified, this study uncovers distinctive aspects of its expression control and evolutionarily conserved properties of this DNA polymerase. PMID:26269593

  8. Transdifferentiation of Fast Skeletal Muscle Into Functional Endothelium in Vivo by Transcription Factor Etv2

    PubMed Central

    Gomez, Gustavo A.; Lindgren, Anne G.; Huang, Haigen; Yang, Hanshuo; Yao, Shaohua; Martin, Benjamin L.; Kimelman, David; Lin, Shuo

    2013-01-01

    Etsrp/Etv2 (Etv2) is an evolutionarily conserved master regulator of vascular development in vertebrates. Etv2 deficiency prevents the proper specification of the endothelial cell lineage, while its overexpression causes expansion of the endothelial cell lineage in the early embryo or in embryonic stem cells. We hypothesized that Etv2 alone is capable of transdifferentiating later somatic cells into endothelial cells. Using heat shock inducible Etv2 transgenic zebrafish, we demonstrate that Etv2 expression alone is sufficient to transdifferentiate fast skeletal muscle cells into functional blood vessels. Following heat treatment, fast skeletal muscle cells turn on vascular genes and repress muscle genes. Time-lapse imaging clearly shows that muscle cells turn on vascular gene expression, undergo dramatic morphological changes, and integrate into the existing vascular network. Lineage tracing and immunostaining confirm that fast skeletal muscle cells are the source of these newly generated vessels. Microangiography and observed blood flow demonstrated that this new vasculature is capable of supporting circulation. Using pharmacological, transgenic, and morpholino approaches, we further establish that the canonical Wnt pathway is important for induction of the transdifferentiation process, whereas the VEGF pathway provides a maturation signal for the endothelial fate. Additionally, overexpression of Etv2 in mammalian myoblast cells, but not in other cell types examined, induced expression of vascular genes. We have demonstrated in zebrafish that expression of Etv2 alone is sufficient to transdifferentiate fast skeletal muscle into functional endothelial cells in vivo. Given the evolutionarily conserved function of this transcription factor and the responsiveness of mammalian myoblasts to Etv2, it is likely that mammalian muscle cells will respond similarly. PMID:23853546

  9. Rapid evolution of a recently retroposed transcription factor YY2 in mammalian genomes

    SciTech Connect

    Luo, C; Lu, X; Stubbs, L; Kim, J

    2005-11-11

    YY2 was originally identified due to its unusual similarity to the evolutionarily well conserved, zinc-finger gene YY1. In this study, we have determined the evolutionary origin and conservation of YY2 using comparative genomic approaches. Our results indicate that YY2 is a retroposed copy of YY1 that has been inserted into another gene locus named Mbtps2 (membrane-bound transcription factor protease site 2). This retroposition is estimated to have occurred after the divergence of placental mammals from other vertebrates based on the detection of YY2 only in the placental mammals. The N-terminal and C-terminal regions of YY2 have evolved under different selection pressures. The N-terminal region has evolved at a very fast pace with very limited functional constraints whereas the DNA-binding, C-terminal region still maintains very similar sequence structure as YY1 and is also well conserved among placental mammals. In situ hybridizations using different adult mouse tissues indicate that mouse YY2 is expressed at relatively low levels in Purkinje and granular cells of cerebellum, and neuronal cells of cerebrum, but at very high levels in testis. The expression levels of YY2 is much lower than YY1, but the overall spatial expression patterns are similar to those of Mbtps2, suggesting a possible shared transcriptional control between YY2 and Mbtps2. Taken together, the formation and evolution of YY2 represent a very unusual case where a transcription factor was first retroposed into another gene locus encoding a protease and survived with different selection schemes and expression patterns.

  10. Control of human carnitine palmitoyltransferase II gene transcription by peroxisome proliferator-activated receptor through a partially conserved peroxisome proliferator-responsive element.

    PubMed Central

    Barrero, María J; Camarero, Nuria; Marrero, Pedro F; Haro, Diego

    2003-01-01

    The expression of several genes involved in fatty acid metabolism is regulated by peroxisome proliferator-activated receptors (PPARs). To gain more insight into the control of carnitine palmitoyltransferase (CPT) gene expression, we examined the transcriptional regulation of the human CPT II gene. We show that the 5'-flanking region of this gene is transcriptionally active and binds PPARalpha in vivo in a chromatin immunoprecipitation assay. In addition, we characterized the peroxisome proliferator-responsive element (PPRE) in the proximal promoter of the CPT II gene, which appears to be a novel PPRE. The sequence of this PPRE contains one half-site which is a perfect consensus sequence (TGACCT) but no clearly recognizable second half-site (CAGCAC); this part of the sequence contains only one match to the consensus, which seems to be irrelevant for the binding of PPARalpha. As expected, other members of the nuclear receptor superfamily also bind to this element and repress the activation mediated by PPARalpha, thus showing that the interplay between several nuclear receptors may regulate the entry of fatty acids into the mitochondria, a crucial step in their metabolism. PMID:12408750

  11. Regulation of PURA gene transcription by three promoters generating distinctly spliced 5-prime leaders: a novel means of fine control over tissue specificity and viral signals

    PubMed Central

    2010-01-01

    Background Purα is an evolutionarily conserved cellular protein participating in processes of DNA replication, transcription, and RNA transport; all involving binding to nucleic acids and altering conformation and physical positioning. The distinct but related roles of Purα suggest a need for expression regulated differently depending on intracellular and external signals. Results Here we report that human PURA (hPURA) transcription is regulated from three distinct and widely-separated transcription start sites (TSS). Each of these TSS is strongly homologous to a similar site in mouse chromosomal DNA. Transcripts from TSS I and II are characterized by the presence of large and overlapping 5'-UTR introns terminated at the same splice receptor site. Transfection of lung carcinoma cells with wild-type or mutated hPURA 5' upstream sequences identifies different regulatory elements. TSS III, located within 80 bp of the translational start codon, is upregulated by E2F1, CAAT and NF-Y binding elements. Transcription at TSS II is downregulated through the presence of adjacent consensus binding elements for interferon regulatory factors (IRFs). Chromatin immunoprecipitation reveals that IRF-3 protein binds hPURA promoter sequences at TSS II in vivo. By co-transfecting hPURA reporter plasmids with expression plasmids for IRF proteins we demonstrate that several IRFs, including IRF-3, down-regulate PURA transcription. Infection of NIH 3T3 cells with mouse cytomegalovirus results in a rapid decrease in levels of mPURA mRNA and Purα protein. The viral infection alters the degree of splicing of the 5'-UTR introns of TSS II transcripts. Conclusions Results provide evidence for a novel mechanism of transcriptional control by multiple promoters used differently in various tissues and cells. Viral infection alters not only the use of PURA promoters but also the generation of different non-coding RNAs from 5'-UTRs of the resulting transcripts. PMID:21062477

  12. Global alterations of the transcriptional landscape during yeast growth and development in the absence of Ume6-dependent chromatin modification.

    PubMed

    Lardenois, Aurélie; Becker, Emmanuelle; Walther, Thomas; Law, Michael J; Xie, Bingning; Demougin, Philippe; Strich, Randy; Primig, Michael

    2015-10-01

    Chromatin modification enzymes are important regulators of gene expression and some are evolutionarily conserved from yeast to human. Saccharomyces cerevisiae is a major model organism for genome-wide studies that aim at the identification of target genes under the control of conserved epigenetic regulators. Ume6 interacts with the upstream repressor site 1 (URS1) and represses transcription by recruiting both the conserved histone deacetylase Rpd3 (through the co-repressor Sin3) and the chromatin-remodeling factor Isw2. Cells lacking Ume6 are defective in growth, stress response, and meiotic development. RNA profiling studies and in vivo protein-DNA binding assays identified mRNAs or transcript isoforms that are directly repressed by Ume6 in mitosis. However, a comprehensive understanding of the transcriptional alterations, which underlie the complex ume6Δ mutant phenotype during fermentation, respiration, or sporulation, is lacking. We report the protein-coding transcriptome of a diploid MAT a/α wild-type and ume6/ume6 mutant strains cultured in rich media with glucose or acetate as a carbon source, or sporulation-inducing medium. We distinguished direct from indirect effects on mRNA levels by combining GeneChip data with URS1 motif predictions and published high-throughput in vivo Ume6-DNA binding data. To gain insight into the molecular interactions between successive waves of Ume6-dependent meiotic genes, we integrated expression data with information on protein networks. Our work identifies novel Ume6 repressed genes during growth and development and reveals a strong effect of the carbon source on the derepression pattern of transcripts in growing and developmentally arrested ume6/ume6 mutant cells. Since yeast is a useful model organism for chromatin-mediated effects on gene expression, our results provide a rich source for further genetic and molecular biological work on the regulation of cell growth and cell differentiation in eukaryotes. PMID:25957495

  13. Functional characterization of the evolutionarily divergent fern plastocyanin.

    PubMed

    Navarro, José A; Lowe, Christian E; Amons, Reinout; Kohzuma, Takamitsu; Canters, Gerard W; De la Rosa, Miguel A; Ubbink, Marcellus; Hervás, Manuel

    2004-08-01

    Plastocyanin (Pc) is a soluble copper protein that transfers electrons from cytochrome b(6)f to photosystem I (PSI), two protein complexes that are localized in the thylakoid membranes in chloroplasts. The surface electrostatic potential distribution of Pc plays a key role in complex formation with the membrane-bound partners. It is practically identical for Pcs from plants and green algae, but is quite different for Pc from ferns. Here we report on a laser flash kinetic analysis of PSI reduction by Pc from various eukaryotic and prokaryotic organisms. The reaction of fern Pc with fern PSI fits a two-step kinetic model, consisting of complex formation and electron transfer, whereas other plant systems exhibit a mechanism that requires an additional intracomplex rearrangement step. The fern Pc interacts inefficiently with spinach PSI, showing no detectable complex formation. This can be explained by assuming that the unusual surface charge distribution of fern Pc impairs the interaction. Fern PSI behaves in a similar way as spinach PSI in reaction with other Pcs. The reactivity of fern Pc towards several soluble c-type cytochromes, including cytochrome f, has been analysed by flavin-photosensitized laser flash photolysis, demonstrating that the specific surface motifs for the interaction with cytochrome f are conserved in fern Pc. PMID:15291822

  14. Transcriptional regulation of the human, porcine and bovine OCTN2 gene by PPARα via a conserved PPRE located in intron 1

    PubMed Central

    2014-01-01

    Background The novel organic cation transporter 2 (OCTN2) is the physiologically most important carnitine transporter in tissues and is responsible for carnitine absorption in the intestine, carnitine reabsorption in the kidney and distribution of carnitine between tissues. Genetic studies clearly demonstrated that the mouse OCTN2 gene is directly regulated by peroxisome proliferator-activated receptor α (PPARα). Despite its well conserved role as an important regulator of lipid catabolism in general, the specific genes under control of PPARα within each lipid metabolic pathway were shown to differ between species and it is currently unknown whether the OCTN2 gene is also a PPARα target gene in pig, cattle, and human. In the present study we examined the hypothesis that the porcine, bovine, and human OCTN2 gene are also PPARα target genes. Results Using positional cloning and reporter gene assays we identified a functional PPRE, each in the intron 1 of the porcine, bovine, and human OCTN2 gene. Gel shift assay confirmed binding of PPARα to this PPRE in the porcine, bovine, and the human OCTN2 gene. Conclusions The results of the present study show that the porcine, bovine, and human OCTN2 gene, like the mouse OCTN2 gene, is directly regulated by PPARα. This suggests that regulation of genes involved in carnitine uptake by PPARα is highly conserved across species. PMID:25299939

  15. Conserved homeodomain proteins interact with MADS box protein Mcm1 to restrict ECB-dependent transcription to the M/G1 phase of the cell cycle

    PubMed Central

    Pramila, Tata; Miles, Shawna; GuhaThakurta, Debraj; Jemiolo, Dave; Breeden, Linda L.

    2002-01-01

    Two homeodomain proteins, Yox1 and Yhp1, act as repressors at early cell cycle boxes (ECBs) to restrict their activity to the M/G1 phase of the cell cycle in budding yeast. These proteins bind to Mcm1 and to a typical homeodomain binding site. The expression of Yox1 is periodic and directly correlated with its binding to, and repression of, ECB activity. The absence of Yox1 and Yhp1 or the constitutive expression of Yox1 leads to the loss of cell-cycle regulation of ECB activity. Therefore, the cell-cycle-regulated expression of these repressors defines the interval of ECB-dependent transcription. Twenty-eight genes, including MCM2-7, CDC6, SWI4, CLN3, and a number of genes required during late M phase have been identified that are coordinately regulated by this pathway. PMID:12464633

  16. Comparative analysis of the full genome sequence of European bat lyssavirus type 1 and type 2 with other lyssaviruses and evidence for a conserved transcription termination and polyadenylation motif in the G-L 3' non-translated region.

    PubMed

    Marston, D A; McElhinney, L M; Johnson, N; Müller, T; Conzelmann, K K; Tordo, N; Fooks, A R

    2007-04-01

    We report the first full-length genomic sequences for European bat lyssavirus type-1 (EBLV-1) and type-2 (EBLV-2). The EBLV-1 genomic sequence was derived from a virus isolated from a serotine bat in Hamburg, Germany, in 1968 and the EBLV-2 sequence was derived from a virus isolate from a human case of rabies that occurred in Scotland in 2002. A long-distance PCR strategy was used to amplify the open reading frames (ORFs), followed by standard and modified RACE (rapid amplification of cDNA ends) techniques to amplify the 3' and 5' ends. The lengths of each complete viral genome for EBLV-1 and EBLV-2 were 11 966 and 11 930 base pairs, respectively, and follow the standard rhabdovirus genome organization of five viral proteins. Comparison with other lyssavirus sequences demonstrates variation in degrees of homology, with the genomic termini showing a high degree of complementarity. The nucleoprotein was the most conserved, both intra- and intergenotypically, followed by the polymerase (L), matrix and glyco- proteins, with the phosphoprotein being the most variable. In addition, we have shown that the two EBLVs utilize a conserved transcription termination and polyadenylation (TTP) motif, approximately 50 nt upstream of the L gene start codon. All available lyssavirus sequences to date, with the exception of Pasteur virus (PV) and PV-derived isolates, use the second TTP site. This observation may explain differences in pathogenicity between lyssavirus strains, dependent on the length of the untranslated region, which might affect transcriptional activity and RNA stability. PMID:17374776

  17. The sua8 suppressors of Saccharomyces cerevisiae encode replacements of conserved residues within the largest subunit of RNA polymerase II and affect transcription start site selection similarly to sua7 (TFIIB) mutations.

    PubMed Central

    Berroteran, R W; Ware, D E; Hampsey, M

    1994-01-01

    Mutations in the Saccharomyces cerevisiae sua8 gene were found to be suppressors of an aberrant ATG translation initiation codon in the leader region of the cyc1 gene. Analysis of cyc1 transcripts from sua8 mutants revealed that suppression is a consequence of diminished transcription initiation at the normal start sites in favor of initiation at downstream sites, including a site between the aberrant and normal ATG start codons. This effect is not cyc1 gene specific since initiation at other genes, including ADH1, CYC7, and HIS4, was similarly affected, although initiation at HIS3 and SPT15 was unaffected. The SUA8 gene was cloned and partially sequenced, revealing identity to RPB1, which encodes the largest subunit of RNA polymerase II. The sua8 suppressors are the result of single amino acid replacements of highly conserved residues. Three replacements were found either within or immediately preceding homology block D, and a fourth was found adjacent to homology block H, indicating that these regions play a role in defining start sites in vivo. Nearly identical effects on start site selection were observed for sua7 suppressors, which encode altered forms of TFIIB. Synthetic lethality was associated with double sua7 sua8 suppressor mutations, and recessive sua7 mutants failed to fully complement recessive sua8 mutants in heterozygous diploids (nonallelic noncomplementation). These data indicate that the largest subunit of RNA polymerase II and TFIIB are important determinants of transcription start site selection in S. cerevisiae and suggest that this function might be conferred by interaction between these two proteins. Images PMID:8264591

  18. Identification of human proteins functionally conserved with the yeast putative adaptors ADA2 and GCN5.

    PubMed Central

    Candau, R; Moore, P A; Wang, L; Barlev, N; Ying, C Y; Rosen, C A; Berger, S L

    1996-01-01

    Transcriptional adaptor proteins are required for full function of higher eukaryotic acidic activators in the yeast Saccharomyces cerevisiae, suggesting that this pathway of activation is evolutionarily conserved. Consistent with this view, we have identified possible human homologs of yeast ADA2 (yADA2) and yeast GCN5 (yGCN5), components of a putative adaptor complex. While there is overall sequence similarity between the yeast and human proteins, perhaps more significant is conservation of key sequence features with other known adaptors. We show several functional similarities between the human and yeast adaptors. First, as shown for yADA2 and yGCN5, human ADA2 (hADA2) and human GCN5 (hGCN5) interacted in vivo in a yeast two-hybrid assay. Moreover, hGCN5 interacted with yADA2 in this assay, suggesting that the human proteins form similar complexes. Second, both yADA2 and hADA2 contain cryptic activation domains. Third, hGCN5 and yGCN5 had similar stabilizing effects on yADA2 in vivo. Furthermore, the region of yADA2 that interacted with yGCN5 mapped to the amino terminus of yADA2, which is highly conserved in hADA2. Most striking, is the behavior of the human proteins in human cells. First, GAL4-hADA2 activated transcription in HeLa cells, and second, either hADA2 or hGCN5 augmented GAL4-VP16 activation. These data indicated that the human proteins correspond to functional homologs of the yeast adaptors, suggesting that these cofactors play a key role in transcriptional activation. PMID:8552087

  19. Functional conservation of Drosophila FTZ-F1 and its mammalian homologs suggests ligand-independent regulation of NR5A family transcriptional activity.

    PubMed

    Lu, Yong; Anderson, W Ray; Zhang, Hua; Feng, Siqian; Pick, Leslie

    2013-05-01

    Drosophila Ftz-F1 is an orphan nuclear receptor required for segmentation and metamorphosis. Its mammalian orthologs, SF-1 and LRH-1, function in sexual development and homeostasis, and have been implicated in stem cell pluripotency maintenance and tumorigenesis. These NR5A family members bind DNA as monomers and strongly activate transcription. However, controversy exists as to whether their activity is regulated by ligand-binding. Structural evidence suggested that SF-1 and human LRH-1 bind regulatory ligands, but mouse LRH-1 and Drosophila FTZ-F1 are active in the absence of ligand. We found that Dm-Ftz-F1 and mLRH-1, thought not to bind ligand, or mSF-1 and hLRH-1, predicted to bind ligand, each efficiently rescued the defects of Drosophila ftz-f1 mutants. Further, each correctly activated expression of a Dm-Ftz-F1 target gene in Drosophila embryos. The functional equivalence of ftz-f1 orthologs in these sensitive in vivo assays argues against specific activating ligands for NR5A family members. PMID:23340581

  20. MucR Is Required for Transcriptional Activation of Conserved Ion Transporters to Support Nitrogen Fixation of Sinorhizobium fredii in Soybean Nodules.

    PubMed

    Jiao, Jian; Wu, Li Juan; Zhang, Biliang; Hu, Yue; Li, Yan; Zhang, Xing Xing; Guo, Hui Juan; Liu, Li Xue; Chen, Wen Xin; Zhang, Ziding; Tian, Chang Fu

    2016-05-01

    To achieve effective symbiosis with legume, rhizobia should fine-tune their background regulation network in addition to activating key genes involved in nodulation (nod) and nitrogen fixation (nif). Here, we report that an ancestral zinc finger regulator, MucR1, other than its paralog, MucR2, carrying a frameshift mutation, is essential for supporting nitrogen fixation of Sinorhizobium fredii CCBAU45436 within soybean nodules. In contrast to the chromosomal mucR1, mucR2 is located on symbiosis plasmid, indicating its horizontal transfer potential. A MucR2 homolog lacking the frameshift mutation, such as the one from S. fredii NGR234, can complement phenotypic defects of the mucR1 mutant of CCBAU45436. RNA-seq analysis revealed that the MucR1 regulon of CCBAU45436 within nodules exhibits significant difference compared with that of free-living cells. MucR1 is required for active expression of transporters for phosphate, zinc, and elements essential for nitrogenase activity (iron, molybdenum, and sulfur) in nodules but is dispensable for transcription of key genes (nif/fix) involved in nitrogen fixation. Further reverse genetics suggests that S. fredii uses high-affinity transporters to meet the demand for zinc and phosphate within nodules. These findings, together with the horizontal transfer potential of the mucR homolog, imply an intriguing evolutionary role of this ancestral regulator in supporting nitrogen fixation. PMID:26883490

  1. Identification of cDNAs encoding viper venom hyaluronidases: cross-generic sequence conservation of full-length and unusually short variant transcripts.

    PubMed

    Harrison, Robert A; Ibison, Frances; Wilbraham, Davina; Wagstaff, Simon C

    2007-05-01

    The immobilisation of prey by snakes is most efficiently achieved by the rapid dissemination of venom from its site of injection into the blood stream. Hyaluronidase is a common component of snake venoms and has been termed the "venom spreading factor". In the absence of nucleotide or protein sequence data to confirm the functional identity of this venom component, we interrogated a venom gland EST database for the saw-scaled viper, Echis ocellatus (Nigeria), using the gene ontology (GO) term "carbohydrate metabolism". A single hyalurononglucosaminadase-activity matching sequence (EOC00242) was found and used to design PCR primers to acquire the full-length cDNA sequence. Although very different from the bee venom and mammalian hyaluronidase sequences, the E. ocellatus sequence retained all the catalytic, positional and structural residues that characterise this class of carbohydrate metabolising hydrolases. An extraordinarily high level of sequence identity (>95%) was observed in analogous venom gland cDNA sequences isolated (by PCR) from another saw-scaled viper species, E. pyramidum leakeyi (Kenya), and from the sahara horned viper, Cerastes cerastes cerastes (Egypt) and the puff adder, Bitis arietans (Nigeria). Smaller amplicons, lacking hyaluronidase catalytic residues because of 768 bp or 855 bp central deletions, appear to encode either truncated peptides without hyaluronidase activity, or are non-translated transcripts because they lack consensus translation initiating motifs. PMID:17210232

  2. Diversity, Phylogeny and Expression Patterns of Pou and Six Homeodomain Transcription Factors in Hydrozoan Jellyfish Craspedacusta sowerbyi

    PubMed Central

    Hroudova, Miluse; Vojta, Petr; Strnad, Hynek; Krejcik, Zdenek; Ridl, Jakub; Paces, Jan; Vlcek, Cestmir; Paces, Vaclav

    2012-01-01

    Formation of all metazoan bodies is controlled by a group of selector genes including homeobox genes, highly conserved across the entire animal kingdom. The homeobox genes from Pou and Six classes are key members of the regulation cascades determining development of sensory organs, nervous system, gonads and muscles. Besides using common bilaterian models, more attention has recently been targeted at the identification and characterization of these genes within the basal metazoan phyla. Cnidaria as a diploblastic sister group to bilateria with simple and yet specialized organs are suitable models for studies on the sensory organ origin and the associated role of homeobox genes. In this work, Pou and Six homeobox genes, together with a broad range of other sensory-specific transcription factors, were identified in the transcriptome of hydrozoan jellyfish Craspedacusta sowerbyi. Phylogenetic analyses of Pou and Six proteins revealed cnidarian-specific sequence motifs and contributed to the classification of individual factors. The majority of the Craspedacusta sowerbyi Pou and Six homeobox genes are predominantly expressed in statocysts, manubrium and nerve ring, the tissues with sensory and nervous activities. The described diversity and expression patterns of Pou and Six factors in hydrozoan jellyfish highlight their evolutionarily conserved functions. This study extends the knowledge of the cnidarian genome complexity and shows that the transcriptome of hydrozoan jellyfish is generally rich in homeodomain transcription factors employed in the regulation of sensory and nervous functions. PMID:22558464

  3. Diversity, phylogeny and expression patterns of Pou and Six homeodomain transcription factors in hydrozoan jellyfish Craspedacusta sowerbyi.

    PubMed

    Hroudova, Miluse; Vojta, Petr; Strnad, Hynek; Krejcik, Zdenek; Ridl, Jakub; Paces, Jan; Vlcek, Cestmir; Paces, Vaclav

    2012-01-01

    Formation of all metazoan bodies is controlled by a group of selector genes including homeobox genes, highly conserved across the entire animal kingdom. The homeobox genes from Pou and Six classes are key members of the regulation cascades determining development of sensory organs, nervous system, gonads and muscles. Besides using common bilaterian models, more attention has recently been targeted at the identification and characterization of these genes within the basal metazoan phyla. Cnidaria as a diploblastic sister group to bilateria with simple and yet specialized organs are suitable models for studies on the sensory organ origin and the associated role of homeobox genes. In this work, Pou and Six homeobox genes, together with a broad range of other sensory-specific transcription factors, were identified in the transcriptome of hydrozoan jellyfish Craspedacusta sowerbyi. Phylogenetic analyses of Pou and Six proteins revealed cnidarian-specific sequence motifs and contributed to the classification of individual factors. The majority of the Craspedacusta sowerbyi Pou and Six homeobox genes are predominantly expressed in statocysts, manubrium and nerve ring, the tissues with sensory and nervous activities. The described diversity and expression patterns of Pou and Six factors in hydrozoan jellyfish highlight their evolutionarily conserved functions. This study extends the knowledge of the cnidarian genome complexity and shows that the transcriptome of hydrozoan jellyfish is generally rich in homeodomain transcription factors employed in the regulation of sensory and nervous functions. PMID:22558464

  4. The AP-2 Transcription Factor APTF-2 Is Required for Neuroblast and Epidermal Morphogenesis in Caenorhabditis elegans Embryogenesis.

    PubMed

    Budirahardja, Yemima; Tan, Pei Yi; Doan, Thang; Weisdepp, Peter; Zaidel-Bar, Ronen

    2016-05-01

    The evolutionarily conserved family of AP-2 transcription factors (TF) regulates proliferation, differentiation, and apoptosis. Mutations in human AP-2 TF have been linked with bronchio-occular-facial syndrome and Char Syndrome, congenital birth defects characterized by craniofacial deformities and patent ductus arteriosus, respectively. How mutations in AP-2 TF cause the disease phenotypes is not well understood. Here, we characterize the aptf-2(qm27) allele in Caenorhabditis elegans, which carries a point mutation in the conserved DNA binding region of AP-2 TF. We show that compromised APTF-2 activity leads to defects in dorsal intercalation, aberrant ventral enclosure and elongation defects, ultimately culminating in the formation of morphologically deformed larvae or complete arrest during epidermal morphogenesis. Using cell lineaging, we demonstrate that APTF-2 regulates the timing of cell division, primarily in ABarp, D and C cell lineages to control the number of neuroblasts, muscle and epidermal cells. Live imaging revealed nuclear enrichment of APTF-2 in lineages affected by the qm27 mutation preceding the relevant morphogenetic events. Finally, we found that another AP-2 TF, APTF-4, is also essential for epidermal morphogenesis, in a similar yet independent manner. Thus, our study provides novel insight on the cellular-level functions of an AP-2 transcription factor in development. PMID:27176626

  5. The AP-2 Transcription Factor APTF-2 Is Required for Neuroblast and Epidermal Morphogenesis in Caenorhabditis elegans Embryogenesis

    PubMed Central

    Budirahardja, Yemima; Tan, Pei Yi; Weisdepp, Peter; Zaidel-Bar, Ronen

    2016-01-01

    The evolutionarily conserved family of AP-2 transcription factors (TF) regulates proliferation, differentiation, and apoptosis. Mutations in human AP-2 TF have been linked with bronchio-occular-facial syndrome and Char Syndrome, congenital birth defects characterized by craniofacial deformities and patent ductus arteriosus, respectively. How mutations in AP-2 TF cause the disease phenotypes is not well understood. Here, we characterize the aptf-2(qm27) allele in Caenorhabditis elegans, which carries a point mutation in the conserved DNA binding region of AP-2 TF. We show that compromised APTF-2 activity leads to defects in dorsal intercalation, aberrant ventral enclosure and elongation defects, ultimately culminating in the formation of morphologically deformed larvae or complete arrest during epidermal morphogenesis. Using cell lineaging, we demonstrate that APTF-2 regulates the timing of cell division, primarily in ABarp, D and C cell lineages to control the number of neuroblasts, muscle and epidermal cells. Live imaging revealed nuclear enrichment of APTF-2 in lineages affected by the qm27 mutation preceding the relevant morphogenetic events. Finally, we found that another AP-2 TF, APTF-4, is also essential for epidermal morphogenesis, in a similar yet independent manner. Thus, our study provides novel insight on the cellular-level functions of an AP-2 transcription factor in development. PMID:27176626

  6. Isolation, cDNA, and genomic structure of a conserved gene (NOF) at chromosome 11q13 next to FAU and oriented in the opposite transcriptional orientation

    SciTech Connect

    Kas, K.; Meyen, E.; Van De Ven, W.J.M.

    1996-06-15

    In our effort to characterize a gene at chromosome 11q13 involved in a t(11;17)(q13;q21) translocation in B-non-Hodgkin lymphoma, we have identified a novel human gene, NOF (Neighbour of FAU). It maps right next to FAU in a head to head configuration separated by a maximum of 146 nucleotides. cDNA clones representing NOF hybridized to a 2.2-kb mRNA present in all tissues tested. The largest open reading frame appeared to contain 166 amino acids and is proline rich, and the sequence shows no homology with any known gene in the public databases. The NOF gene consists of 4 exons and 3 introns spanning approximately 5 kb, and the boundaries between exons and introns follow the GT/AG rule. The NOF locus is conserved during evolution, with the predicted protein having over 80% identity to three translated mouse and rat ESTs of unknown function. Moreover, the mouse ESTs map in the same organization, closely linked to the FAU gene, in the mouse genome. NOF, however, is not affected by the t(11;17)(q13;121) chromosomal translocation. 14 refs., 2 figs.

  7. The DAF-16 FOXO Transcription Factor Regulates natc-1 to Modulate Stress Resistance in Caenorhabditis elegans, Linking Insulin/IGF-1 Signaling to Protein N-Terminal Acetylation

    PubMed Central

    Warnhoff, Kurt; Murphy, John T.; Kumar, Sandeep; Schneider, Daniel L.; Peterson, Michelle; Hsu, Simon; Guthrie, James; Robertson, J. David; Kornfeld, Kerry

    2014-01-01

    The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance. PMID:25330323

  8. Interplay of dFOXO and Two ETS-Family Transcription Factors Determines Lifespan in Drosophila melanogaster

    PubMed Central

    Alic, Nazif; Giannakou, Maria E.; Papatheodorou, Irene; Hoddinott, Matthew P.; Andrews, T. Daniel; Bolukbasi, Ekin; Partridge, Linda

    2014-01-01

    Forkhead box O (FoxO) transcription factors (TFs) are key drivers of complex transcriptional programmes that determine animal lifespan. FoxOs regulate a number of other TFs, but how these TFs in turn might mediate the anti-ageing programmes orchestrated by FoxOs in vivo is unclear. Here, we identify an E-twenty six (ETS)-family transcriptional repressor, Anterior open (Aop), as regulated by the single Drosophila melanogaster FoxO (dFOXO) in the adult gut. AOP, the functional orthologue of the human Etv6/Tel protein, binds numerous genomic sites also occupied by dFOXO and counteracts the activity of an ETS activator, Pointed (Pnt), to prevent the lifespan-shortening effects of co-activation of dFOXO and PNT. This detrimental synergistic effect of dFOXO and PNT appears to stem from a mis-regulation of lipid metabolism. At the same time, AOP activity in another fly organ, the fat body, has further beneficial roles, regulating genes in common with dfoxo, such as the secreted, non-sensory, odorant binding protein (Obp99b), and robustly extending lifespan. Our study reveals a complex interplay between evolutionarily conserved ETS factors and dFOXO, the functional significance of which may extend well beyond animal lifespan. PMID:25232726

  9. Rate of amino acid substitution is influenced by the degree and conservation of male-biased transcription over 50 myr of Drosophila evolution.

    PubMed

    Grath, Sonja; Parsch, John

    2012-01-01

    Sex-biased gene expression (i.e., the differential expression of genes between males and females) is common among sexually reproducing species. However, genes often differ in their sex-bias classification or degree of sex bias between species. There is also an unequal distribution of sex-biased genes (especially male-biased genes) between the X chromosome and the autosomes. We used whole-genome expression data and evolutionary rate estimates for two different Drosophilid lineages, melanogaster and obscura, spanning an evolutionary time scale of around 50 Myr to investigate the influence of sex-biased gene expression and chromosomal location on the rate of molecular evolution. In both lineages, the rate of protein evolution correlated positively with the male/female expression ratio. Genes with highly male-biased expression, genes expressed specifically in male reproductive tissues, and genes with conserved male-biased expression over long evolutionary time scales showed the fastest rates of evolution. An analysis of sex-biased gene evolution in both lineages revealed evidence for a "fast-X" effect in which the rate of evolution was greater for X-linked than for autosomal genes. This pattern was particularly pronounced for male-biased genes. Genes located on the obscura "neo-X" chromosome, which originated from a recent X-autosome fusion, showed rates of evolution that were intermediate between genes located on the ancestral X-chromosome and the autosomes. This suggests that the shift to X-linkage led to an increase in the rate of molecular evolution. PMID:22321769

  10. Rate of Amino Acid Substitution Is Influenced by the Degree and Conservation of Male-Biased Transcription Over 50 Myr of Drosophila Evolution

    PubMed Central

    Grath, Sonja; Parsch, John

    2012-01-01

    Sex-biased gene expression (i.e., the differential expression of genes between males and females) is common among sexually reproducing species. However, genes often differ in their sex-bias classification or degree of sex bias between species. There is also an unequal distribution of sex-biased genes (especially male-biased genes) between the X chromosome and the autosomes. We used whole-genome expression data and evolutionary rate estimates for two different Drosophilid lineages, melanogaster and obscura, spanning an evolutionary time scale of around 50 Myr to investigate the influence of sex-biased gene expression and chromosomal location on the rate of molecular evolution. In both lineages, the rate of protein evolution correlated positively with the male/female expression ratio. Genes with highly male-biased expression, genes expressed specifically in male reproductive tissues, and genes with conserved male-biased expression over long evolutionary time scales showed the fastest rates of evolution. An analysis of sex-biased gene evolution in both lineages revealed evidence for a “fast-X” effect in which the rate of evolution was greater for X-linked than for autosomal genes. This pattern was particularly pronounced for male-biased genes. Genes located on the obscura “neo-X” chromosome, which originated from a recent X-autosome fusion, showed rates of evolution that were intermediate between genes located on the ancestral X-chromosome and the autosomes. This suggests that the shift to X-linkage led to an increase in the rate of molecular evolution. PMID:22321769

  11. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline.

    PubMed

    Landeen, Emily L; Muirhead, Christina A; Wright, Lori; Meiklejohn, Colin D; Presgraves, Daven C

    2016-07-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower-approximately 3-fold or more-for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution. PMID:27404402

  12. Sex Chromosome-wide Transcriptional Suppression and Compensatory Cis-Regulatory Evolution Mediate Gene Expression in the Drosophila Male Germline

    PubMed Central

    Landeen, Emily L.; Muirhead, Christina A.; Meiklejohn, Colin D.; Presgraves, Daven C.

    2016-01-01

    The evolution of heteromorphic sex chromosomes has repeatedly resulted in the evolution of sex chromosome-specific forms of regulation, including sex chromosome dosage compensation in the soma and meiotic sex chromosome inactivation in the germline. In the male germline of Drosophila melanogaster, a novel but poorly understood form of sex chromosome-specific transcriptional regulation occurs that is distinct from canonical sex chromosome dosage compensation or meiotic inactivation. Previous work shows that expression of reporter genes driven by testis-specific promoters is considerably lower—approximately 3-fold or more—for transgenes inserted into X chromosome versus autosome locations. Here we characterize this transcriptional suppression of X-linked genes in the male germline and its evolutionary consequences. Using transgenes and transpositions, we show that most endogenous X-linked genes, not just testis-specific ones, are transcriptionally suppressed several-fold specifically in the Drosophila male germline. In wild-type testes, this sex chromosome-wide transcriptional suppression is generally undetectable, being effectively compensated by the gene-by-gene evolutionary recruitment of strong promoters on the X chromosome. We identify and experimentally validate a promoter element sequence motif that is enriched upstream of the transcription start sites of hundreds of testis-expressed genes; evolutionarily conserved across species; associated with strong gene expression levels in testes; and overrepresented on the X chromosome. These findings show that the expression of X-linked genes in the Drosophila testes reflects a balance between chromosome-wide epigenetic transcriptional suppression and long-term compensatory adaptation by sex-linked genes. Our results have broad implications for the evolution of gene expression in the Drosophila male germline and for genome evolution. PMID:27404402

  13. The Groucho Co-repressor Is Primarily Recruited to Local Target Sites in Active Chromatin to Attenuate Transcription

    PubMed Central

    Jennings, Barbara H.

    2014-01-01

    Gene expression is regulated by the complex interaction between transcriptional activators and repressors, which function in part by recruiting histone-modifying enzymes to control accessibility of DNA to RNA polymerase. The evolutionarily conserved family of Groucho/Transducin-Like Enhancer of split (Gro/TLE) proteins act as co-repressors for numerous transcription factors. Gro/TLE proteins act in several key pathways during development (including Notch and Wnt signaling), and are implicated in the pathogenesis of several human cancers. Gro/TLE proteins form oligomers and it has been proposed that their ability to exert long-range repression on target genes involves oligomerization over broad regions of chromatin. However, analysis of an endogenous gro mutation in Drosophila revealed that oligomerization of Gro is not always obligatory for repression in vivo. We have used chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) to profile Gro recruitment in two Drosophila cell lines. We find that Gro predominantly binds at discrete peaks (<1 kilobase). We also demonstrate that blocking Gro oligomerization does not reduce peak width as would be expected if Gro oligomerization induced spreading along the chromatin from the site of recruitment. Gro recruitment is enriched in “active” chromatin containing developmentally regulated genes. However, Gro binding is associated with local regions containing hypoacetylated histones H3 and H4, which is indicative of chromatin that is not fully open for efficient transcription. We also find that peaks of Gro binding frequently overlap the transcription start sites of expressed genes that exhibit strong RNA polymerase pausing and that depletion of Gro leads to release of polymerase pausing and increased transcription at a bona fide target gene. Our results demonstrate that Gro is recruited to local sites by transcription factors to attenuate rather than silence gene expression by promoting histone deacetylation

  14. Increased Expression of X-Linked Genes in Mammals Is Associated with a Higher Stability of Transcripts and an Increased Ribosome Density

    PubMed Central

    Faucillion, Marie-Line; Larsson, Jan

    2015-01-01

    Mammalian sex chromosomes evolved from the degeneration of one homolog of a pair of ancestral autosomes, the proto-Y. This resulted in a gene dose imbalance that is believed to be restored (partially or fully) through upregulation of gene expression from the single active X-chromosome in both sexes by a dosage compensatory mechanism. We analyzed multiple genome-wide RNA stability data sets and found significantly longer average half-lives for X-chromosome transcripts than for autosomal transcripts in various human cell lines, both male and female, and in mice. Analysis of ribosome profiling data shows that ribosome density is higher on X-chromosome transcripts than on autosomal transcripts in both humans and mice, suggesting that the higher stability is causally linked to a higher translation rate. Our results and observations are in accordance with a dosage compensatory upregulation of expressed X-linked genes. We therefore propose that differential mRNA stability and translation rates of the autosomes and sex chromosomes contribute to an evolutionarily conserved dosage compensation mechanism in mammals. PMID:25786432

  15. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus.

    PubMed

    Schaefke, Bernhard; Wang, Tzi-Yuan; Wang, Chuen-Yi; Li, Wen-Hsiung

    2015-08-01

    Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains). PMID:26220934

  16. YAP regulates neural progenitor cell number via the TEA domain transcription factor

    PubMed Central

    Cao, Xinwei; Pfaff, Samuel L.; Gage, Fred H.

    2008-01-01

    Tight control of cell proliferation is essential for proper growth during development and for tissue homeostasis in mature animals. The evolutionarily conserved Hippo pathway restrains proliferation through a kinase cascade that culminates in the inhibition of the transcriptional coactivator YAP. Unphosphorylated YAP activates genes involved in cell proliferation and survival by interacting with a DNA-binding factor. Here we show that during vertebrate neural tube development, the TEA domain transcription factor (TEAD) is the cognate DNA-binding partner of YAP. YAP and TEAD gain of function causes marked expansion of the neural progenitor population, partly owing to their ability to promote cell cycle progression by inducing cyclin D1 and to inhibit differentiation by suppressing NeuroM. Their loss of function results in increased apoptosis, whereas repressing their target genes leads to premature neuronal differentiation. Inhibiting the upstream kinases of the Hippo pathway also causes neural progenitor overproliferation. Thus, the Hippo pathway plays critical roles in regulating neural progenitor cell number by affecting proliferation, fate choice, and cell survival. PMID:19015275

  17. Comparative analyses of developmental transcription factor repertoires in sponges reveal unexpected complexity of the earliest animals.

    PubMed

    Fortunato, Sofia A V; Adamski, Marcin; Adamska, Maja

    2015-12-01

    Developmental transcription factors (DTFs) control development of animals by affecting expression of target genes, some of which are transcription factors themselves. In bilaterians and cnidarians, conserved DTFs are involved in homologous processes such as gastrulation or specification of neurons. The genome of Amphimedon queenslandica, the first sponge to be sequenced, revealed that only a fraction of these conserved DTF families are present in demosponges. This finding was in line with the view that morphological complexity in the animal lineage correlates with developmental toolkit complexity. However, as the phylum Porifera is very diverse, Amphimedon's genome may not be representative of all sponges. The recently sequenced genomes of calcareous sponges Sycon ciliatum and Leucosolenia complicata allowed investigations of DTFs in a sponge lineage evolutionarily distant from demosponges. Surprisingly, the phylogenetic analyses of identified DTFs revealed striking differences between the calcareous sponges and Amphimedon. As these differences appear to be a result of independent gene loss events in the two sponge lineages, the last common ancestor of sponges had to possess a much more diverse repertoire of DTFs than extant sponges. Developmental expression of sponge homologs of genes involved in specification of the Bilaterian endomesoderm and the neurosensory cells suggests that roles of many DTFs date back to the last common ancestor of all animals. Strikingly, even DTFs displaying apparent pan-metazoan conservation of sequence and function are not immune to being lost from individual species genomes. The quest for a comprehensive picture of the developmental toolkit in the last common metazoan ancestor is thus greatly benefitting from the increasing accessibility of sequencing, allowing comparisons of multiple genomes within each phylum. PMID:26253310

  18. On Nash Equilibrium and Evolutionarily Stable States That Are Not Characterised by the Folk Theorem

    PubMed Central

    Li, Jiawei; Kendall, Graham

    2015-01-01

    In evolutionary game theory, evolutionarily stable states are characterised by the folk theorem because exact solutions to the replicator equation are difficult to obtain. It is generally assumed that the folk theorem, which is the fundamental theory for non-cooperative games, defines all Nash equilibria in infinitely repeated games. Here, we prove that Nash equilibria that are not characterised by the folk theorem do exist. By adopting specific reactive strategies, a group of players can be better off by coordinating their actions in repeated games. We call it a type-k equilibrium when a group of k players coordinate their actions and they have no incentive to deviate from their strategies simultaneously. The existence and stability of the type-k equilibrium in general games is discussed. This study shows that the sets of Nash equilibria and evolutionarily stable states have greater cardinality than classic game theory has predicted in many repeated games. PMID:26288088

  19. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms.

    PubMed Central

    Klenova, E M; Nicolas, R H; Paterson, H F; Carne, A F; Heath, C M; Goodwin, G H; Neiman, P E; Lobanenkov, V V

    1993-01-01

    A novel sequence-specific DNA-binding protein, CTCF, which interacts with the chicken c-myc gene promoter, has been identified and partially characterized (V. V. Lobanenkov, R. H. Nicolas, V. V. Adler, H. Paterson, E. M. Klenova, A. V. Polotskaja, and G. H. Goodwin, Oncogene 5:1743-1753, 1990). In order to test directly whether binding of CTCF to one specific DNA region of the c-myc promoter is important for chicken c-myc transcription, we have determined which nucleotides within this GC-rich region are responsible for recognition of overlapping sites by CTCF and Sp1-like proteins. Using missing-contact analysis of all four nucleotides in both DNA strands and homogeneous CTCF protein purified by sequence-specific chromatography, we have identified three sets of nucleotides which contact either CTCF or two Sp1-like proteins binding within the same DNA region. Specific mutations of 3 of 15 purines required for CTCF binding were designed to eliminate binding of CTCF without altering the binding of other proteins. Electrophoretic mobility shift assay of nuclear extracts showed that the mutant DNA sequence did not bind CTCF but did bind two Sp1-like proteins. When introduced into a 3.3-kbp-long 5'-flanking noncoding c-myc sequence fused to a reporter CAT gene, the same mutation of the CTCF binding site resulted in 10- and 3-fold reductions, respectively, of transcription in two different (erythroid and myeloid) stably transfected chicken cell lines. Isolation and analysis of the CTCF cDNA encoding an 82-kDa form of CTCF protein shows that DNA-binding domain of CTCF is composed of 11 Zn fingers: 10 are of C2H2 class, and 1 is of C2HC class. CTCF was found to be abundant and conserved in cells of vertebrate species. We detected six major nuclear forms of CTCF protein differentially expressed in different chicken cell lines and tissues. We conclude that isoforms of 11-Zn-finger factor CTCF which are present in chicken hematopoietic HD3 and BM2 cells can act as a positive

  20. B-GATA transcription factors – insights into their structure, regulation, and role in plant development

    PubMed Central

    Behringer, Carina; Schwechheimer, Claus

    2015-01-01

    GATA transcription factors are evolutionarily conserved transcriptional regulators that recognize promoter elements with a G-A-T-A core sequence. In comparison to animal genomes, the GATA transcription factor family in plants is comparatively large with approximately 30 members. Here, we review the current knowledge on B-GATAs, one of four GATA factor subfamilies from Arabidopsis thaliana. We show that B-GATAs can be subdivided based on structural features and their biological function into family members with a C-terminal LLM- (leucine–leucine–methionine) domain or an N-terminal HAN- (HANABA TARANU) domain. The paralogous GNC (GATA, NITRATE-INDUCIBLE, CARBON-METABOLISM INVOLVED) and CGA1/GNL (CYTOKININ-INDUCED GATA1/GNC-LIKE) are introduced as LLM-domain containing B-GATAs from Arabidopsis that control germination, greening, senescence, and flowering time downstream from several growth regulatory signals. Arabidopsis HAN and its monocot-specific paralogs from rice (NECK LEAF1), maize (TASSEL SHEATH1), and barley (THIRD OUTER GLUME) are HAN-domain-containing B-GATAs with a predominant role in embryo development and floral development. We also review GATA23, a regulator of lateral root initiation from Arabidopsis that is closely related to GNC and GNL but has a degenerate LLM-domain that is seemingly specific for the Brassicaceae family. The Brassicaceae-specific GATA23 and the monocot-specific HAN-domain GATAs provide evidence that neofunctionalization of B-GATAs was used during plant evolution to expand the functional repertoire of these transcription factors. PMID:25755661

  1. Vertebrate paralogous conserved noncoding sequences may be related to gene expressions in brain.

    PubMed

    Matsunami, Masatoshi; Saitou, Naruya

    2013-01-01

    Vertebrate genomes include gene regulatory elements in protein-noncoding regions. A part of gene regulatory elements are expected to be conserved according to their functional importance, so that evolutionarily conserved noncoding sequences (CNSs) might be good candidates for those elements. In addition, paralogous CNSs, which are highly conserved among both orthologous loci and paralogous loci, have the possibility of controlling overlapping expression patterns of their adjacent paralogous protein-coding genes. The two-round whole-genome duplications (2R WGDs), which most probably occurred in the vertebrate common ancestors, generated large numbers of paralogous protein-coding genes and their regulatory elements. These events could contribute to the emergence of vertebrate features. However, the evolutionary history and influences of the 2R WGDs are still unclear, especially in noncoding regions. To address this issue, we identified paralogous CNSs. Region-focused Basic Local Alignment Search Tool (BLAST) search of each synteny block revealed 7,924 orthologous CNSs and 309 paralogous CNSs conserved among eight high-quality vertebrate genomes. Paralogous CNSs we found contained 115 previously reported ones and newly detected 194 ones. Through comparisons with VISTA Enhancer Browser and available ChIP-seq data, one-third (103) of paralogous CNSs detected in this study showed gene regulatory activity in the brain at several developmental stages. Their genomic locations are highly enriched near the transcription factor-coding regions, which are expressed in brain and neural systems. These results suggest that paralogous CNSs are conserved mainly because of maintaining gene expression in the vertebrate brain. PMID:23267051

  2. Expression analysis of five zebrafish RXFP3 homologues reveals evolutionary conservation of gene expression pattern.

    PubMed

    Donizetti, Aldo; Fiengo, Marcella; Iazzetti, Giovanni; del Gaudio, Rosanna; Di Giaimo, Rossella; Pariante, Paolo; Minucci, Sergio; Aniello, Francesco

    2015-01-01

    Relaxin peptides exert different functions in reproduction and neuroendocrine processes via interaction with two evolutionarily unrelated groups of receptors: RXFP1 and RXFP2 on one hand, RXFP3 and RXFP4 on the other hand. Evolution of receptor genes after splitting of tetrapods and teleost lineage led to a different retention rate between mammals and fish, with the latter having more gene copies compared to the former. In order to improve our knowledge on the evolution of the relaxin ligands/receptors system and have insights on their function in early stages of life, in the present paper we analyzed the expression pattern of five zebrafish RXFP3 homologue genes during embryonic development. In our analysis, we show that only two of the five genes are expressed during embryogenesis and that their transcripts are present in all the developmental stages. Spatial localization analysis of these transcripts revealed that the gene expression is restricted in specific territories starting from early pharyngula stage. Both genes are expressed in the brain but in different cell clusters and in extra-neural territories, one gene in the interrenal gland and the other in the pancreas. These two genes share expression territories with the homologue mammalian counterpart, highlighting a general conservation of gene expression regulatory processes and their putative function during evolution that are established early in vertebrate embryogenesis. PMID:25384467

  3. A Diversity of Conserved and Novel Ovarian MicroRNAs in the Speckled Wood (Pararge aegeria)

    PubMed Central

    Quah, Shan; Breuker, Casper J.; Holland, Peter W. H.

    2015-01-01

    microRNAs (miRNAs) are important regulators of animal development and other processes, and impart robustness to living systems through post-transcriptional regulation of specific mRNA transcripts. It is postulated that newly emergent miRNAs are generally expressed at low levels and with spatiotemporally restricted expression domains, thus minimising effects of spurious targeting on animal transcriptomes. Here we present ovarian miRNA transcriptome data for two geographically distinct populations of the Speckled Wood butterfly (Pararge aegeria). A total of 74 miRNAs were identified, including 11 newly discovered and evolutionarily-young miRNAs, bringing the total of miRNA genes known from P. aegeria up to 150. We find a positive correlation between miRNA age and expression level. A common set of 55 miRNAs are expressed in both populations. From this set, we identify seven that are consistently either ovary-specific or highly upregulated in ovaries relative to other tissues. This ‘ovary set’ includes miRNAs with known contributions to ovarian function in other insect species with similar ovaries and mode of oogenesis, including miR-989 and miR-2763, plus new candidates for ovarian function. We also note that conserved miRNAs are overrepresented in the ovary relative to the whole body. PMID:26556800

  4. The dMRP/CG6214 gene of Drosophila is evolutionarily and functionally related to the human multidrug resistance-associated protein family.

    PubMed

    Tarnay, J N; Szeri, F; Iliás, A; Annilo, T; Sung, C; Le Saux, O; Váradi, A; Dean, M; Boyd, C D; Robinow, S

    2004-10-01

    ATP-binding cassette (ABC) transporters are involved in the transport of substrates across biological membranes and are essential for many cellular processes. Of the fifty-six Drosophila ABC transporter genes only white, brown, scarlet, E23 and Atet have been studied in detail. Phylogenetic analyses identify the Drosophila gene dMRP/CG6214 as an orthologue to the human multidrug-resistance associated proteins MRP1, MRP2, MRP3 and MRP6. To study evolutionarily conserved roles of MRPs we have initiated a characterization of dMRP. In situ hybridization and Northern analysis indicate that dMRP is expressed throughout development and appears to be head enriched in adults. Functional studies indicate that DMRP is capable of transporting a known MRP1 substrate and establishes DMRP as a high capacity ATP-dependent, vanadate-sensitive organic anion transporter. PMID:15373810

  5. A Simple Predictive Enhancer Syntax for Hindbrain Patterning Is Conserved in Vertebrate Genomes

    PubMed Central

    Grice, Joseph; Noyvert, Boris; Doglio, Laura; Elgar, Greg

    2015-01-01

    Background Determining the function of regulatory elements is fundamental for our understanding of development, disease and evolution. However, the sequence features that mediate these functions are often unclear and the prediction of tissue-specific expression patterns from sequence alone is non-trivial. Previous functional studies have demonstrated a link between PBX-HOX and MEIS/PREP binding interactions and hindbrain enhancer activity, but the defining grammar of these sites, if any exists, has remained elusive. Results Here, we identify a shared sequence signature (syntax) within a heterogeneous set of conserved vertebrate hindbrain enhancers composed of spatially co-occurring PBX-HOX and MEIS/PREP transcription factor binding motifs. We use this syntax to accurately predict hindbrain enhancers in 89% of cases (67/75 predicted elements) from a set of conserved non-coding elements (CNEs). Furthermore, mutagenesis of the sites abolishes activity or generates ectopic expression, demonstrating their requirement for segmentally restricted enhancer activity in the hindbrain. We refine and use our syntax to predict over 3,000 hindbrain enhancers across the human genome. These sequences tend to be located near developmental transcription factors and are enriched in known hindbrain activating elements, demonstrating the predictive power of this simple model. Conclusion Our findings support the theory that hundreds of CNEs, and perhaps thousands of regions across the human genome, function to coordinate gene expression in the developing hindbrain. We speculate that deeply conserved sequences of this kind contributed to the co-option of new genes into the hindbrain gene regulatory network during early vertebrate evolution by linking patterns of hox expression to downstream genes involved in segmentation and patterning, and evolutionarily newer instances may have continued to contribute to lineage-specific elaboration of the hindbrain. PMID:26131856

  6. A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity

    PubMed Central

    Humphry, Matt; Bednarek, Paweł; Kemmerling, Birgit; Koh, Serry; Stein, Mónica; Göbel, Ulrike; Stüber, Kurt; Piślewska-Bednarek, Mariola; Loraine, Ann; Schulze-Lefert, Paul; Somerville, Shauna; Panstruga, Ralph

    2010-01-01

    At least two components that modulate plant resistance against the fungal powdery mildew disease are ancient and have been conserved since the time of the monocot–dicot split (≈200 Mya). These components are the seven transmembrane domain containing MLO/MLO2 protein and the syntaxin ROR2/PEN1, which act antagonistically and have been identified in the monocot barley (Hordeum vulgare) and the dicot Arabidopsis thaliana, respectively. Additionally, syntaxin-interacting N-ethylmaleimide sensitive factor adaptor protein receptor proteins (VAMP721/722 and SNAP33/34) as well as a myrosinase (PEN2) and an ABC transporter (PEN3) contribute to antifungal resistance in both barley and/or Arabidopsis. Here, we show that these genetically defined defense components share a similar set of coexpressed genes in the two plant species, comprising a statistically significant overrepresentation of gene products involved in regulation of transcription, posttranslational modification, and signaling. Most of the coexpressed Arabidopsis genes possess a common cis-regulatory element that may dictate their coordinated expression. We exploited gene coexpression to uncover numerous components in Arabidopsis involved in antifungal defense. Together, our data provide evidence for an evolutionarily conserved regulon composed of core components and clade/species-specific innovations that functions as a module in plant innate immunity. PMID:21098265

  7. The Caenorhabditis elegans LET-418/Mi2 plays a conserved role in lifespan regulation.

    PubMed

    De Vaux, Véronique; Pfefferli, Catherine; Passannante, Myriam; Belhaj, Khaoula; von Essen, Alina; Sprecher, Simon G; Müller, Fritz; Wicky, Chantal

    2013-12-01

    The evolutionarily conserved nucleosome-remodeling protein Mi2 is involved in transcriptional repression during development in various model systems, plays a role in embryonic patterning and germ line development, and participates in DNA repair and cell cycle progression. It is the catalytic subunit of the nucleosome remodeling and histone deacetylase (NuRD) complex, a key determinant of differentiation in mammalian embryonic stem cells. In addition, the Drosophila and C. elegans Mi2 homologs participate in another complex, the MEC complex, which also plays an important developmental role in these organisms. Here we show a new and unexpected feature of the C. elegans Mi2 homolog, LET-418/Mi2. Lack of LET-418/Mi2 results in longevity and enhanced stress resistance, a feature that we found to be conserved in Drosophila and in Arabidopsis. The fact that depletion of other components of the NuRD and the MEC complexes did not result in longevity suggests that LET-418 may regulate lifespan in a different molecular context. Genetic interaction studies suggest that let-418 could act in the germ-cell-loss pathway, downstream of kri-1 and tcer-1. On the basis of our data and on previous findings showing a role for let-418 during development, we propose that LET-418/Mi2 could be part of a system that drives development and reproduction with concomitant life-reducing effects later in life. PMID:23815345

  8. RNAseq versus genome-predicted transcriptomes: a large population of novel transcripts identified in an Illumina-454 Hydra transcriptome

    PubMed Central

    2013-01-01

    Background Evolutionary studies benefit from deep sequencing technologies that generate genomic and transcriptomic sequences from a variety of organisms. Genome sequencing and RNAseq have complementary strengths. In this study, we present the assembly of the most complete Hydra transcriptome to date along with a comparative analysis of the specific features of RNAseq and genome-predicted transcriptomes currently available in the freshwater hydrozoan Hydra vulgaris. Results To produce an accurate and extensive Hydra transcriptome, we combined Illumina and 454 Titanium reads, giving the primacy to Illumina over 454 reads to correct homopolymer errors. This strategy yielded an RNAseq transcriptome that contains 48’909 unique sequences including splice variants, representing approximately 24’450 distinct genes. Comparative analysis to the available genome-predicted transcriptomes identified 10’597 novel Hydra transcripts that encode 529 evolutionarily-conserved proteins. The annotation of 170 human orthologs points to critical functions in protein biosynthesis, FGF and TOR signaling, vesicle transport, immunity, cell cycle regulation, cell death, mitochondrial metabolism, transcription and chromatin regulation. However, a majority of these novel transcripts encodes short ORFs, at least 767 of them corresponding to pseudogenes. This RNAseq transcriptome also lacks 11’270 predicted transcripts that correspond either to silent genes or to genes expressed below the detection level of this study. Conclusions We established a simple and powerful strategy to combine Illumina and 454 reads and we produced, with genome assistance, an extensive and accurate Hydra transcriptome. The comparative analysis of the RNAseq transcriptome with genome-predicted transcriptomes lead to the identification of large populations of novel as well as missing transcripts that might reflect Hydra-specific evolutionary events. PMID:23530871

  9. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice

    PubMed Central

    Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M.; Bansal, Kailash C.

    2015-01-01

    MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by “top-down” and “guide-gene” approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via “top-down” approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by “guide-gene” approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought

  10. Comparative integromics on FZD7 orthologs: conserved binding sites for PU.1, SP1, CCAAT-box and TCF/LEF/SOX transcription factors within 5'-promoter region of mammalian FZD7 orthologs.

    PubMed

    Katoh, Masuko; Katoh, Masaru

    2007-03-01

    that the binding sites for PU.1, SP1/Krüppel-like, CCAAT-box, and TCF/LEF/SOX transcription factors were conserved among 5'-promoter regions of mammalian FZD7 orthologs. PMID:17273804

  11. The Evolutionarily Conserved Protein PHOTOSYNTHESIS AFFECTED MUTANT71 Is Required for Efficient Manganese Uptake at the Thylakoid Membrane in Arabidopsis.

    PubMed

    Schneider, Anja; Steinberger, Iris; Herdean, Andrei; Gandini, Chiara; Eisenhut, Marion; Kurz, Samantha; Morper, Anna; Hoecker, Natalie; Rühle, Thilo; Labs, Mathias; Flügge, Ulf-Ingo; Geimer, Stefan; Schmidt, Sidsel Birkelund; Husted, Søren; Weber, Andreas P M; Spetea, Cornelia; Leister, Dario

    2016-04-01

    In plants, algae, and cyanobacteria, photosystem II (PSII) catalyzes the light-driven oxidation of water. The oxygen-evolving complex of PSII is a Mn4CaO5 cluster embedded in a well-defined protein environment in the thylakoid membrane. However, transport of manganese and calcium into the thylakoid lumen remains poorly understood. Here, we show that Arabidopsis thaliana PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein involved in Mn(2+) and Ca(2+) homeostasis in chloroplasts. This protein is required for normal operation of the oxygen-evolving complex (as evidenced by oxygen evolution rates) and for manganese incorporation. Manganese binding to PSII was severely reduced in pam71 thylakoids, particularly in PSII supercomplexes. In cation partitioning assays with intact chloroplasts, Mn(2+) and Ca(2+) ions were differently sequestered in pam71, with Ca(2+) enriched in pam71 thylakoids relative to the wild type. The changes in Ca(2+) homeostasis were accompanied by an increased contribution of the transmembrane electrical potential to the proton motive force across the thylakoid membrane. PSII activity in pam71 plants and the corresponding Chlamydomonas reinhardtii mutant cgld1 was restored by supplementation with Mn(2+), but not Ca(2+) Furthermore, PAM71 suppressed the Mn(2+)-sensitive phenotype of the yeast mutant Δpmr1 Therefore, PAM71 presumably functions in Mn(2+) uptake into thylakoids to ensure optimal PSII performance. PMID:27020959

  12. Expression Analysis of an Evolutionarily Conserved Alternative Splicing Factor, Sfrs10, in Age-Related Macular Degeneration

    PubMed Central

    Karunakaran, Devi Krishna Priya; Banday, Abdul Rouf; Wu, Qian; Kanadia, Rahul

    2013-01-01

    Age-related macular degeneration (AMD) is the most common cause of blindness in the elderly population. Hypoxic stress created in the micro-environment of the photoreceptors is thought to be the underlying cause that results in the pathophysiology of AMD. However, association of AMD with alternative splicing mediated gene regulation is not well explored. Alternative Splicing is one of the primary mechanisms in humans by which fewer protein coding genes are able to generate a vast proteome. Here, we investigated the expression of a known stress response gene and an alternative splicing factor called Serine-Arginine rich splicing factor 10 (Sfrs10). Sfrs10 is a member of the serine-arginine (SR) rich protein family and is 100% identical at the amino acid level in most mammals. Immunoblot analysis on retinal extracts from mouse, rat, and chicken showed a single immunoreactive band. Further, immunohistochemistry on adult mouse, rat and chicken retinae showed pan-retinal expression. However, SFRS10 was not detected in normal human retina but was observed as distinct nuclear speckles in AMD retinae. This is in agreement with previous reports that show Sfrs10 to be a stress response gene, which is upregulated under hypoxia. The difference in the expression of Sfrs10 between humans and lower mammals and the upregulation of SFRS10 in AMD is further reflected in the divergence of the promoter sequence between these species. Finally, SFRS10+ speckles were independent of the SC35+ SR protein speckles or the HSF1+ stress granules. In all, our data suggests that SFRS10 is upregulated and forms distinct stress-induced speckles and might be involved in AS of stress response genes in AMD. PMID:24098751

  13. The BAT1 gene in the MHC encodes an evolutionarily conserved putative nuclear RNA helicase of the DEAD family

    SciTech Connect

    Peelman, L.J.; Van Zeveren, A.; Coppeiters, W.

    1995-03-20

    The BAT1 gene has previously been identified about 30 kb upstream from the tumor necrosis factor (TNF) locus and close to a NF{sub kb}-related gene of the nuclear factor family in the major histocompatibility complex (MHC) of human, mouse, and pig. We now show that the BAT1 translation product is the homolog of the rat p47 nuclear protein, the WM6 Drosophila gene product, and probably also Ce08102 of Caenorhabditis elegans, all members of the DEAD protein family of ATP-dependent RNA helicases. This family has more than 40 members, including the eukaryotic translation initiation factor-4A (eIF-4A), the human nuclear protein p68, and the Drosophila oocyte polar granule component vasa. BAT1 spans about 10 kb, is split into 10 exons of varying length, and encodes a protein of 428 amino acids ({approximately}48 kDa). Human and pig BAT1 cDNAs display 95.6% identity in the coding region and 80% identity in the 5{prime} and 3{prime} noncoding regions. Several repeat sequences of different types were identified in introns of the porcine BAT1 gene. Three different mRNAs, 4.1,1.7, and 0.9 kb, respectively, were detected in all tissues analyzed upon hybridization with porcine BAT1 cDNA. Transfection and expression of human BAT1 cDNA after tagging with a heterologous antibody recognition epitope revealed a nuclear localization of the hybrid protein. An MspI RFLP was detected in an SLA class I typed family, confirming the localization of the BAT1 gene in the porcine MHC. BAT1 thus encodes a putative nuclear ATP-dependent RNA helicase and is likely to have an indispensable function. 35 refs., 6 figs., 1 tab.

  14. An evolutionarily conserved SSNA1/DIP13 homologue is a component of both basal and apical complexes of Toxoplasma gondii

    PubMed Central

    Lévêque, Maude F.; Berry, Laurence; Besteiro, Sébastien

    2016-01-01

    Microtubule-based cytoskeletal structures have fundamental roles in several essential eukaryotic processes, including transport of intracellular constituents as well as ciliary and flagellar mobility. Temporal and spatial organisation of microtubules is determined by microtubule organising centers and a number of appendages and accessory proteins. Members of the SSNA1/DIP13 family are coiled coil proteins that are known to localise to microtubular structures like centrosomes and flagella, but are otherwise poorly characterised. We have identified a homologue of SSNA1/DIP13 in the parasitic protist Toxoplasma gondii and found it localises to parasite-specific cytoskeletal structures: the conoid in the apical complex of mature and dividing cells, and the basal complex in elongating daughter cells during cell division. This protein is dispensable for parasite growth in vitro. However, quite remarkably, this coiled coil protein is able to self-associate into higher order structures both in vitro and in vivo, and its overexpression is impairing parasite division. PMID:27324377

  15. MINDY-1 Is a Member of an Evolutionarily Conserved and Structurally Distinct New Family of Deubiquitinating Enzymes.

    PubMed

    Abdul Rehman, Syed Arif; Kristariyanto, Yosua Adi; Choi, Soo-Youn; Nkosi, Pedro Junior; Weidlich, Simone; Labib, Karim; Hofmann, Kay; Kulathu, Yogesh

    2016-07-01

    Deubiquitinating enzymes (DUBs) remove ubiquitin (Ub) from Ub-conjugated substrates to regulate the functional outcome of ubiquitylation. Here we report the discovery of a new family of DUBs, which we have named MINDY (motif interacting with Ub-containing novel DUB family). Found in all eukaryotes, MINDY-family DUBs are highly selective at cleaving K48-linked polyUb, a signal that targets proteins for degradation. We identify the catalytic activity to be encoded within a previously unannotated domain, the crystal structure of which reveals a distinct protein fold with no homology to any of the known DUBs. The crystal structure of MINDY-1 (also known as FAM63A) in complex with propargylated Ub reveals conformational changes that realign the active site for catalysis. MINDY-1 prefers cleaving long polyUb chains and works by trimming chains from the distal end. Collectively, our results reveal a new family of DUBs that may have specialized roles in regulating proteostasis. PMID:27292798

  16. mCelsr1 is an evolutionarily conserved seven-pass transmembrane receptor and is expressed during mouse embryonic development.

    PubMed

    Hadjantonakis, A K; Formstone, C J; Little, P F

    1998-11-01

    Mcelsr1 encodes a protein of 3034 amino acids predicted to contain seven membrane spanning domains having homology to a group of peptide hormone binding G-protein coupled receptors. Its extracellular domain comprises epidermal growth factor-like repeats, laminin A G-domains and cadherin repeats. Homologous genes have been identified in C. elegans and D. melanogaster suggesting that the Celsr gene family is ancient. mCelsr1 mRNA expression precedes gastrulation, is subsequently restricted primarily to ectodermal derivatives and is tightly regulated in the developing central nervous system (CNS). We observe segmentally-restricted gene expression in the developing hindbrain and in the spinal cord dynamic dorso-ventrally restricted 'stripes' of expression. PMID:9858697

  17. The Ribosome Biogenesis Factor Nol11 Is Required for Optimal rDNA Transcription and Craniofacial Development in Xenopus

    PubMed Central

    Griffin, John N.; Sondalle, Samuel B.; del Viso, Florencia; Baserga, Susan J.; Khokha, Mustafa K.

    2015-01-01

    The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly expressed in the developing cranial neural crest (CNC) of both amphibians and mammals, and knockdown of Xenopus nol11 results in impaired pre-rRNA transcription and processing, increased apoptosis, and abnormal development of the craniofacial cartilages. Inhibition of p53 rescues this skeletal phenotype, but not the underlying ribosome biogenesis defect, demonstrating an evolutionarily conserved control mechanism through which ribosome-impaired craniofacial cells are removed. Excessive activation of this mechanism impairs craniofacial development. Together, our findings reveal a novel requirement for Nol11 in craniofacial development, present the first frog model of a ribosomopathy, and provide further insight into the clinically important relationship between specific ribosome biogenesis proteins and craniofacial cell survival. PMID:25756904

  18. The ribosome biogenesis factor Nol11 is required for optimal rDNA transcription and craniofacial development in Xenopus.

    PubMed

    Griffin, John N; Sondalle, Samuel B; Del Viso, Florencia; Baserga, Susan J; Khokha, Mustafa K

    2015-03-01

    The production of ribosomes is ubiquitous and fundamental to life. As such, it is surprising that defects in ribosome biogenesis underlie a growing number of symptomatically distinct inherited disorders, collectively called ribosomopathies. We previously determined that the nucleolar protein, NOL11, is essential for optimal pre-rRNA transcription and processing in human tissue culture cells. However, the role of NOL11 in the development of a multicellular organism remains unknown. Here, we reveal a critical function for NOL11 in vertebrate ribosome biogenesis and craniofacial development. Nol11 is strongly exp