Science.gov

Sample records for evolutionary developmental biology

  1. Michael Akam and the rise of evolutionary developmental biology.

    PubMed

    Stern, David L; Dawes-Hoang, Rachel E

    2010-01-01

    Michael Akam has been awarded the 2007 Kowalevsky medal for his many research accomplishments in the area of evolutionary developmental biology. We highlight three tributaries of Michaels contribution to evolutionary developmental biology. First, he has made major contributions to our understanding of development of the fruit fly, Drosophila melanogaster. Second, he has maintained a consistent focus on several key problems in evolutionary developmental biology, including the evolving role of Hox genes in arthropods and, more recently, the evolution of segmentation mechanisms. Third, Michael has written a series of influential reviews that have integrated progress in developmental biology into an evolutionary perspective. Michael has also made a large impact on the field through his effective mentorship style, his selfless promotion of younger colleagues, and his leadership of the University Museum of Zoology at Cambridge and the European community of evolutionary developmental biologists. PMID:20209429

  2. Evolutionary crossroads in developmental biology: annelids.

    PubMed

    Ferrier, David E K

    2012-08-01

    Annelids (the segmented worms) have a long history in studies of animal developmental biology, particularly with regards to their cleavage patterns during early development and their neurobiology. With the relatively recent reorganisation of the phylogeny of the animal kingdom, and the distinction of the super-phyla Ecdysozoa and Lophotrochozoa, an extra stimulus for studying this phylum has arisen. As one of the major phyla within Lophotrochozoa, Annelida are playing an important role in deducing the developmental biology of the last common ancestor of the protostomes and deuterostomes, an animal from which >98% of all described animal species evolved. PMID:22782719

  3. Evolutionary crossroads in developmental biology: sea urchins

    PubMed Central

    McClay, David R.

    2011-01-01

    Embryos of the echinoderms, especially those of sea urchins and sea stars, have been studied as model organisms for over 100 years. The simplicity of their early development, and the ease of experimentally perturbing this development, provides an excellent platform for mechanistic studies of cell specification and morphogenesis. As a result, echinoderms have contributed significantly to our understanding of many developmental mechanisms, including those that govern the structure and design of gene regulatory networks, those that direct cell lineage specification, and those that regulate the dynamic morphogenetic events that shape the early embryo. PMID:21652646

  4. Evolutionary crossroads in developmental biology: Cnidaria

    PubMed Central

    Technau, Ulrich; Steele, Robert E.

    2011-01-01

    There is growing interest in the use of cnidarians (corals, sea anemones, jellyfish and hydroids) to investigate the evolution of key aspects of animal development, such as the formation of the third germ layer (mesoderm), the nervous system and the generation of bilaterality. The recent sequencing of the Nematostella and Hydra genomes, and the establishment of methods for manipulating gene expression, have inspired new research efforts using cnidarians. Here, we present the main features of cnidarian models and their advantages for research, and summarize key recent findings using these models that have informed our understanding of the evolution of the developmental processes underlying metazoan body plan formation. PMID:21389047

  5. Phylo-evo-devo: combining phylogenetics with evolutionary developmental biology.

    PubMed

    Minelli, Alessandro

    2009-01-01

    As a result of the integration of molecular and morphological approaches for the reconstruction of phylogenies, and of the intertwining of developmental and evolutionary biology, further prospects are open for a fruitful interaction between these two fields in what we may call a phylo-evo-devo approach.Wiegmann et al.'s molecular phylogeny of the holometabolous insect orders, recently published in BMC Biology, offers a good opportunity to revisit the inverted positions of wings and halteres in the Diptera and the Strepsiptera in terms of a putative homeotic mutation in the Hox gene Ultrabithorax. The main finding of this paper is that Strepsiptera are closely related to the Coleoptera rather than Diptera, as recently claimed. Through this exemplary case, the paper demonstrates the value of the reciprocal illumination we can expect from the integration of a good phylogeny and a sound knowledge of the evolvability of developmental mechanisms. PMID:19558647

  6. Bridging the gap between developmental systems theory and evolutionary developmental biology.

    PubMed

    Robert, J S; Hall, B K; Olson, W M

    2001-10-01

    Many scientists and philosophers of science are troubled by the relative isolation of developmental from evolutionary biology. Reconciling the science of development with the science of heredity preoccupied a minority of biologists for much of the twentieth century, but these efforts were not corporately successful. Mainly in the past fifteen years, however, these previously dispersed integrating programmes have been themselves synthesized and so reinvigorated. Two of these more recent synthesizing endeavours are evolutionary developmental biology (EDB, or "evo-devo") and developmental systems theory (DST). While the former is a bourgeoning and scientifically well-respected biological discipline, the same cannot be said of DST, which is virtually unknown among biologists. In this review, we provide overviews of DST and EDB, summarize their key tenets, examine how they relate to one another and to the study of epigenetics, and survey the impact that DST and EDB have had (and in future should have) on biological theory and practice. PMID:11598962

  7. Biological and evolutionary contributions to developmental sex differences.

    PubMed

    Byrd-Craven, Jennifer; Geary, David C

    2007-12-01

    Boys and girls, and men and women show consistent differences, on average, in interests, activity preferences, and social styles. This article summarizes sex differences in human development from infancy through the childhood years and considers how these differences in developmental patterns relate to human evolutionary history. Evidence is reviewed suggesting that the psychological traits that were advantageous differed consistently for men and women during human evolution, consistent with Darwin's (1871) sexual selection as a mechanism through which cognitive and behavioural sex differences evolve and develop during lifetimes. The result is that some sex differences are found very early in development in predispositions to engage in different activities, to attend to different social information, and in methods of social influence. These early differences, in turn, prepare children for somewhat different tasks and roles in adulthood. Although these differences have strong biological origins, developmental experiences serve to flesh out and elaborate on these differences, or to minimize them, depending on the demands of the culture in which the child is situated. PMID:18088516

  8. Charles Darwin and the Origins of Plant Evolutionary Developmental Biology

    PubMed Central

    Friedman, William E.; Diggle, Pamela K.

    2011-01-01

    Much has been written of the early history of comparative embryology and its influence on the emergence of an evolutionary developmental perspective. However, this literature, which dates back nearly a century, has been focused on metazoans, without acknowledgment of the contributions of comparative plant morphologists to the creation of a developmental view of biodiversity. We trace the origin of comparative plant developmental morphology from its inception in the eighteenth century works of Wolff and Goethe, through the mid nineteenth century discoveries of the general principles of leaf and floral organ morphogenesis. Much like the stimulus that von Baer provided as a nonevolutionary comparative embryologist to the creation of an evolutionary developmental view of animals, the comparative developmental studies of plant morphologists were the basis for the first articulation of the concept that plant (namely floral) evolution results from successive modifications of ontogeny. Perhaps most surprisingly, we show that the first person to carefully read and internalize the remarkable advances in the understanding of plant morphogenesis in the 1840s and 1850s is none other than Charles Darwin, whose notebooks, correspondence, and (then) unpublished manuscripts clearly demonstrate that he had discovered the developmental basis for the evolutionary transformation of plant form. PMID:21515816

  9. Integrating Functional, Developmental and Evolutionary Biology into Biology Curricula

    ERIC Educational Resources Information Center

    Haave, Neil

    2012-01-01

    A complete understanding of life involves how organisms are able to function in their environment and how they arise. Understanding how organisms arise involves both their evolution and development. Thus to completely comprehend living things, biology must study their function, development and evolution. Previous proposals for standardized…

  10. The Comparative Organismal Approach in Evolutionary Developmental Biology: Insights from Ascidians and Cavefish.

    PubMed

    Jeffery, William R

    2016-01-01

    Important contributions to evolutionary developmental biology have been made using the comparative organismal approach. As examples, I describe insights obtained from studies of Molgula ascidians and Astyanax cavefish. PMID:26970636

  11. Goldfish morphology as a model for evolutionary developmental biology.

    PubMed

    Ota, Kinya G; Abe, Gembu

    2016-01-01

    Morphological variation of the goldfish is known to have been established by artificial selection for ornamental purposes during the domestication process. Chinese texts that date to the Song dynasty contain descriptions of goldfish breeding for ornamental purposes, indicating that the practice originated over one thousand years ago. Such a well-documented goldfish breeding process, combined with the phylogenetic and embryological proximities of this species with zebrafish, would appear to make the morphologically diverse goldfish strains suitable models for evolutionary developmental (evodevo) studies. However, few modern evodevo studies of goldfish have been conducted. In this review, we provide an overview of the historical background of goldfish breeding, and the differences between this teleost and zebrafish from an evolutionary perspective. We also summarize recent progress in the field of molecular developmental genetics, with a particular focus on the twin-tail goldfish morphology. Furthermore, we discuss unanswered questions relating to the evolution of the genome, developmental robustness, and morphologies in the goldfish lineage, with the goal of blazing a path toward an evodevo study paradigm using this teleost species as a new model species. For further resources related to this article, please visit the WIREs website. PMID:26952007

  12. The significance and scope of evolutionary developmental biology: a vision for the 21st century.

    PubMed

    Moczek, Armin P; Sears, Karen E; Stollewerk, Angelika; Wittkopp, Patricia J; Diggle, Pamela; Dworkin, Ian; Ledon-Rettig, Cristina; Matus, David Q; Roth, Siegfried; Abouheif, Ehab; Brown, Federico D; Chiu, Chi-Hua; Cohen, C Sarah; Tomaso, Anthony W De; Gilbert, Scott F; Hall, Brian; Love, Alan C; Lyons, Deirdre C; Sanger, Thomas J; Smith, Joel; Specht, Chelsea; Vallejo-Marin, Mario; Extavour, Cassandra G

    2015-01-01

    Evolutionary developmental biology (evo-devo) has undergone dramatic transformations since its emergence as a distinct discipline. This paper aims to highlight the scope, power, and future promise of evo-devo to transform and unify diverse aspects of biology. We articulate key questions at the core of eleven biological disciplines-from Evolution, Development, Paleontology, and Neurobiology to Cellular and Molecular Biology, Quantitative Genetics, Human Diseases, Ecology, Agriculture and Science Education, and lastly, Evolutionary Developmental Biology itself-and discuss why evo-devo is uniquely situated to substantially improve our ability to find meaningful answers to these fundamental questions. We posit that the tools, concepts, and ways of thinking developed by evo-devo have profound potential to advance, integrate, and unify biological sciences as well as inform policy decisions and illuminate science education. We look to the next generation of evolutionary developmental biologists to help shape this process as we confront the scientific challenges of the 21st century. PMID:25963198

  13. Incorporating tree-thinking and evolutionary time scale into developmental biology.

    PubMed

    Kuraku, Shigehiro; Feiner, Nathalie; Keeley, Sean D; Hara, Yuichiro

    2016-01-01

    Phylogenetic approaches are indispensable in any comparative molecular study involving multiple species. These approaches are in increasing demand as the amount and availability of DNA sequence information continues to increase exponentially, even for organisms that were previously not extensively studied. Without the sound application of phylogenetic concepts and knowledge, one can be misled when attempting to infer ancestral character states as well as the timing and order of evolutionary events, both of which are frequently exerted in evolutionary developmental biology. The ignorance of phylogenetic approaches can also impact non-evolutionary studies and cause misidentification of the target gene or protein to be examined in functional characterization. This review aims to promote tree-thinking in evolutionary conjecture and stress the importance of a sense of time scale in cross-species comparisons, in order to enhance the understanding of phylogenetics in all biological fields including developmental biology. To this end, molecular phylogenies of several developmental regulatory genes, including those denoted as "cryptic pan-vertebrate genes", are introduced as examples. PMID:26818824

  14. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions.

    PubMed

    Olsson, Lennart; Levit, Georgy S; Hossfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a "universal acid" (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research--evolutionary developmental biology--has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin's Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the "Jena school" of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about "biometabolic modi" are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research--heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the synthetic theory of

  15. Evolutionary developmental biology: its concepts and history with a focus on Russian and German contributions

    NASA Astrophysics Data System (ADS)

    Olsson, Lennart; Levit, Georgy S.; Hoßfeld, Uwe

    2010-11-01

    Evolutionary theory has been likened to a “universal acid” (Dennett 1995) that eats its way into more and more areas of science. Recently, developmental biology has been infused by evolutionary concepts and perspectives, and a new field of research—evolutionary developmental biology—has been created and is often called EvoDevo for short. However, this is not the first attempt to make a synthesis between these two areas of biology. In contrast, beginning right after the publication of Darwin’s Origin in 1859, Ernst Haeckel formulated his biogenetic law in 1872, famously stating that ontogeny recapitulates phylogeny. Haeckel was in his turn influenced by pre-Darwinian thinkers such as Karl Ernst von Baer, who had noted that earlier developmental stages show similarities not seen in the adults. In this review, written for an audience of non-specialists, we first give an overview of the history of EvoDevo, especially the tradition emanating from Haeckel and other comparative embryologists and morphologists, which has often been neglected in discussions about the history of EvoDevo and evolutionary biology. Here we emphasize contributions from Russian and German scientists to compensate for the Anglo-American bias in the literature. In Germany, the direct influence of Ernst Haeckel was felt particularly in Jena, where he spent his entire career as a professor, and we give an overview of the “Jena school” of evolutionary morphology, with protagonists such as Oscar Hertwig, Ludwig Plate, and Victor Franz, who all developed ideas that we would nowadays think of as belonging to EvoDevo. Franz ideas about “biometabolic modi” are similar to those of a Russian comparative morphologist that visited Jena repeatedly, A. N. Sewertzoff, who made important contributions to what we now call heterochrony research—heterochrony meaning changes in the relative timing of developmental events. His student I. I. Schmalhausen became an important contributor to the

  16. Toward a synthesis of developmental biology with evolutionary theory and ecology.

    PubMed

    Sommer, Ralf J; Mayer, Melanie G

    2015-01-01

    The evolutionary conservation of developmental mechanisms is a truism in biology, but few attempts have been made to integrate development with evolutionary theory and ecology. To work toward such a synthesis, we summarize studies in the nematode model Pristionchus pacificus, focusing on the development of the dauer, a stress-resistant, alternative larval stage. Integrative approaches combining molecular and genetic principles of development with natural variation and ecological studies in wild populations have identified a key role for a developmental switch mechanism in dauer development and evolution, one that involves the nuclear hormone receptor DAF-12. DAF-12 is a crucial regulator and convergence point for different signaling inputs, and its function is conserved among free-living and parasitic nematodes. Furthermore, DAF-12 is the target of regulatory loops that rely on novel or fast-evolving components to control the intraspecific competition of dauer larvae. We propose developmental switches as paradigms for understanding the integration of development, evolution, and ecology at the molecular level. PMID:26566116

  17. Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies

    NASA Technical Reports Server (NTRS)

    Fritzsch, B.; Beisel, K. W.; Bermingham, N. A.

    2000-01-01

    This brief overview shows that a start has been made to molecularly dissect vertebrate ear development and its evolutionary conservation to the development of the insect hearing organ. However, neither the patterning process of the ear nor the patterning process of insect sensory organs is sufficiently known at the moment to provide more than a first glimpse. Moreover, hardly anything is known about otocyst development of the cephalopod molluscs, another triploblast lineage that evolved complex 'ears'. We hope that the apparent conserved functional and cellular components present in the ciliated sensory neurons/hair cells will also be found in the genes required for vertebrate ear and insect sensory organ morphogenesis (Fig. 3). Likewise, we expect that homologous pre-patterning genes will soon be identified for the non-sensory cell development, which is more than a blocking of neuronal development through the Delta/Notch signaling system. Generation of the apparently unique ear could thus represent a multiplication of non-sensory cells by asymmetric and symmetric divisions as well as modification of existing patterning process by implementing novel developmental modules. In the final analysis, the vertebrate ear may come about by increasing the level of gene interactions in an already existing and highly conserved interactive cascade of bHLH genes. Since this was apparently achieved in all three lineages of triploblasts independently (Fig. 3), we now need to understand how much of the morphogenetic cascades are equally conserved across phyla to generate complex ears. The existing mutations in humans and mice may be able to point the direction of future research to understand the development of specific cell types and morphologies in the formation of complex arthropod, cephalopod, and vertebrate 'ears'.

  18. Sequenced genomes and rapidly emerging technologies pave the way for conifer evolutionary developmental biology

    PubMed Central

    Uddenberg, Daniel; Akhter, Shirin; Ramachandran, Prashanth; Sundström, Jens F.; Carlsbecker, Annelie

    2015-01-01

    Conifers, Ginkgo, cycads and gnetophytes comprise the four groups of extant gymnosperms holding a unique position of sharing common ancestry with the angiosperms. Comparative studies of gymnosperms and angiosperms are the key to a better understanding of ancient seed plant morphologies, how they have shifted over evolution to shape modern day species, and how the genes governing these morphologies have evolved. However, conifers and other gymnosperms have been notoriously difficult to study due to their long generation times, inaccessibility to genetic experimentation and unavailable genome sequences. Now, with three draft genomes from spruces and pines, rapid advances in next generation sequencing methods for genome wide expression analyses, and enhanced methods for genetic transformation, we are much better equipped to address a number of key evolutionary questions relating to seed plant evolution. In this mini-review we highlight recent progress in conifer developmental biology relevant to evo-devo questions. We discuss how genome sequence data and novel techniques might allow us to explore genetic variation and naturally occurring conifer mutants, approaches to reduce long generation times to allow for genetic studies in conifers, and other potential upcoming research avenues utilizing current and emergent techniques. Results from developmental studies of conifers and other gymnosperms in comparison to those in angiosperms will provide information to trace core molecular developmental control tool kits of ancestral seed plants, but foremost they will greatly improve our understanding of the biology of conifers and other gymnosperms in their own right. PMID:26579190

  19. Rupert Riedl and the re-synthesis of evolutionary and developmental biology: body plans and evolvability.

    PubMed

    Wagner, Günter P; Laubichler, Manfred D

    2004-01-15

    This paper reviews the scientific career of Rupert Riedl and his contributions to evolutionary biology. Rupert Riedl, a native of Vienna, Austria, began his career as a marine biologist who made important contributions to the systematics and anatomy of major invertebrate groups, as well as to marine ecology. When he assumed a professorship at the University of North Carolina in 1968, the predominant thinking in evolutionary biology focused on population genetics, to the virtual exclusion of most of the rest of biology. In this atmosphere Riedl developed his "systems theory" of evolution, which emphasizes the role of functional and developmental integration in limiting and enabling adaptive evolution by natural selection. The main objective of this theory is to account for the observed patterns of morphological evolution, such as the conservation of body plans. In contrast to other "alternative" theories of evolution, Riedl never denied the importance of natural selection as the driving force of evolution, but thought it necessary to contextualize natural selection with the organismal boundary conditions of adaptation. In Riedl's view development is the most important factor besides natural selection in shaping the pattern and processes of morphological evolution. PMID:14760655

  20. Evolutionary Developmental Psychology.

    ERIC Educational Resources Information Center

    Geary, David C.; Bjorklund, David F.

    2000-01-01

    Describes evolutionary developmental psychology as the study of the genetic and ecological mechanisms that govern the development of social and cognitive competencies common to all human beings and the epigenetic (gene-environment interactions) processes that adapt these competencies to local conditions. Outlines basic assumptions and domains of…

  1. Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    ERIC Educational Resources Information Center

    Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; Terry, Mark; French, Donald P.; Price, Rebecca M.; Perez, Kathryn E.

    2013-01-01

    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we…

  2. Chordate betagamma-crystallins and the evolutionary developmental biology of the vertebrate lens.

    PubMed

    Riyahi, Kumars; Shimeld, Sebastian M

    2007-07-01

    Several animal lineages, including the vertebrates, have evolved sophisticated eyes with lenses that refract light to generate an image. The nearest invertebrate relatives of the vertebrates, such as the ascidians (sea squirts) and amphioxus, have only basic light detecting organs, leading to the widely-held view that the vertebrate lens is an innovation that evolved in early vertebrates. From an embryological perspective the lens is different from the rest of the eye, in that the eye is primarily of neural origin while the lens derives from a non-neural ectodermal placode which invaginates into the developing eye. How such an organ could have evolved has attracted much speculation. Recently, however, molecular developmental studies of sea squirts have started to suggest a possible evolutionary origin for the lens. First, studies of the Pax, Six, Eya and other gene families have indicated that sea squirts have areas of non-neural ectoderm homologous to placodes, suggesting an origin for the embryological characteristics of the lens. Second, the evolution and regulation of the betagamma-crystallins has been studied. These form one of the key crystallin gene families responsible for the transparency of the lens, and regulatory conservation between the betagamma-crystallin gene in the sea squirt Ciona intestinalis and the vertebrate visual system has been experimentally demonstrated. These data, together with knowledge of the morphological, physiological and gene expression similarities between the C. intestinalis ocellus and vertebrate retina, have led us to propose a hypothesis for the evolution of the vertebrate lens and integrated vertebrate eye via the co-option and combination of ancient gene regulatory networks; one controlling morphogenetic aspects of lens development and one controlling the expression of a gene family responsible for the biophysical properties of the lens, with the components of the retina having evolved from an ancestral photoreceptive organ

  3. Biological sensitivity to context: I. An evolutionary-developmental theory of the origins and functions of stress reactivity.

    PubMed

    Boyce, W Thomas; Ellis, Bruce J

    2005-01-01

    Biological reactivity to psychological stressors comprises a complex, integrated, and highly conserved repertoire of central neural and peripheral neuroendocrine responses designed to prepare the organism for challenge or threat. Developmental experience plays a role, along with heritable, polygenic variation, in calibrating the response dynamics of these systems, with early adversity biasing their combined effects toward a profile of heightened or prolonged reactivity. Conventional views of such high reactivity suggest that it is an atavistic and pathogenic legacy of an evolutionary past in which threats to survival were more prevalent and severe. Recent evidence, however, indicates that (a) stress reactivity is not a unitary process, but rather incorporates counterregulatory circuits serving to modify or temper physiological arousal, and (b) the effects of high reactivity phenotypes on psychiatric and biomedical outcomes are bivalent, rather than univalent, in character, exerting both risk-augmenting and risk-protective effects in a context-dependent manner. These observations suggest that heightened stress reactivity may reflect, not simply exaggerated arousal under challenge, but rather an increased biological sensitivity to context, with potential for negative health effects under conditions of adversity and positive effects under conditions of support and protection. From an evolutionary perspective, the developmental plasticity of the stress response systems, along with their structured, context-dependent effects, suggests that these systems may constitute conditional adaptations: evolved psychobiological mechanisms that monitor specific features of childhood environments as a basis for calibrating the development of stress response systems to adaptively match those environments. Taken together, these theoretical perspectives generate a novel hypothesis: that there is a curvilinear, U-shaped relation between early exposures to adversity and the development

  4. The EvoDevoCI: A Concept Inventory for Gauging Students' Understanding of Evolutionary Developmental Biology

    ERIC Educational Resources Information Center

    Perez, Kathryn E.; Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; French, Donald P.; Terry, Mark; Price, Rebecca M.

    2013-01-01

    The American Association for the Advancement of Science 2011 report "Vision and Change in Undergraduate Biology Education" encourages the teaching of developmental biology as an important part of teaching evolution. Recently, however, we found that biology majors often lack the developmental knowledge needed to understand evolutionary…

  5. Evo-Devo: evolutionary developmental mechanisms.

    PubMed

    Hall, Brian K

    2003-01-01

    Evolutionary developmental biology (Evo-Devo) as a discipline is concerned, among other things, with discovering and understanding the role of changes in developmental mechanisms in the evolutionary origin of aspects of the phenotype. In a very real sense, Evo-Devo opens the black box between genotype and phenotype, or more properly, phenotypes as multiple life history stages arise in many organisms from a single genotype. Changes in the timing or positioning of an aspect of development in a descendant relative to an ancestor (heterochrony and heterotopy) were two evolutionary developmental mechanisms identified by Ernst Haeckel in the 1870s. Many more have since been identified, in large part because of our enhanced understanding of development and because new mechanisms emerge as development proceeds: the transfer from maternal to zygotic genomic control; cell-to-cell interactions; cell differentiation and cell migration; embryonic inductions; functional interactions at the tissue and organ levels; growth. Within these emergent processes, gene networks and gene cascades (genetic modules) link the genotype with morphogenetic units (cellular modules, namely germ layers, embryonic fields or cellular condensations), while epigenetic processes such as embryonic inductions, tissue interactions and functional integration, link morphogenetic units to the phenotype. Evolutionary developmental mechanisms also include interactions between individuals of the same species, individuals of different species, and species and their biotic and/or abiotic environment. Such interactions link ecological communities. Importantly, there is little to distinguish the causality that underlies these interactions from that which underlies inductive interactions within embryos. PMID:14756324

  6. Conceptual Barriers to Progress Within Evolutionary Biology

    PubMed Central

    Laland, Kevin N.; Odling-Smee, John; Feldman, Marcus W.; Kendal, Jeremy

    2011-01-01

    In spite of its success, Neo-Darwinism is faced with major conceptual barriers to further progress, deriving directly from its metaphysical foundations. Most importantly, neo-Darwinism fails to recognize a fundamental cause of evolutionary change, “niche construction”. This failure restricts the generality of evolutionary theory, and introduces inaccuracies. It also hinders the integration of evolutionary biology with neighbouring disciplines, including ecosystem ecology, developmental biology, and the human sciences. Ecology is forced to become a divided discipline, developmental biology is stubbornly difficult to reconcile with evolutionary theory, and the majority of biologists and social scientists are still unhappy with evolutionary accounts of human behaviour. The incorporation of niche construction as both a cause and a product of evolution removes these disciplinary boundaries while greatly generalizing the explanatory power of evolutionary theory. PMID:21572912

  7. Evolutionary quantitative genetics of nonlinear developmental systems.

    PubMed

    Morrissey, Michael B

    2015-08-01

    In quantitative genetics, the effects of developmental relationships among traits on microevolution are generally represented by the contribution of pleiotropy to additive genetic covariances. Pleiotropic additive genetic covariances arise only from the average effects of alleles on multiple traits, and therefore the evolutionary importance of nonlinearities in development is generally neglected in quantitative genetic views on evolution. However, nonlinearities in relationships among traits at the level of whole organisms are undeniably important to biology in general, and therefore critical to understanding evolution. I outline a system for characterizing key quantitative parameters in nonlinear developmental systems, which yields expressions for quantities such as trait means and phenotypic and genetic covariance matrices. I then develop a system for quantitative prediction of evolution in nonlinear developmental systems. I apply the system to generating a new hypothesis for why direct stabilizing selection is rarely observed. Other uses will include separation of purely correlative from direct and indirect causal effects in studying mechanisms of selection, generation of predictions of medium-term evolutionary trajectories rather than immediate predictions of evolutionary change over single generation time-steps, and the development of efficient and biologically motivated models for separating additive from epistatic genetic variances and covariances. PMID:26174586

  8. Evolutionary biology of language.

    PubMed Central

    Nowak, M A

    2000-01-01

    Language is the most important evolutionary invention of the last few million years. It was an adaptation that helped our species to exchange information, make plans, express new ideas and totally change the appearance of the planet. How human language evolved from animal communication is one of the most challenging questions for evolutionary biology The aim of this paper is to outline the major principles that guided language evolution in terms of mathematical models of evolutionary dynamics and game theory. I will discuss how natural selection can lead to the emergence of arbitrary signs, the formation of words and syntactic communication. PMID:11127907

  9. Bridging developmental systems theory and evolutionary psychology using dynamic optimization.

    PubMed

    Frankenhuis, Willem E; Panchanathan, Karthik; Clark Barrett, H

    2013-07-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic optimization integrates developmental systems theorists' focus on dynamics and contingency with the 'design stance' of evolutionary psychology. It provides a theoretical framework as well as a set of tools for exploring the properties of developmental systems that natural selection might favor, given particular evolutionary ecologies. We also discuss limitations of the approach. PMID:23786476

  10. Evolutionary Developmental Psychology: Contributions from Comparative Research with Nonhuman Primates

    ERIC Educational Resources Information Center

    Maestripieri, Dario; Roney, James R.

    2006-01-01

    Evolutionary developmental psychology is a discipline that has the potential to integrate conceptual approaches to the study of behavioral development derived from psychology and biology as well as empirical data from humans and animals. Comparative research with animals, and especially with nonhuman primates, can provide evidence of adaptation in…

  11. Bridging Developmental Systems Theory and Evolutionary Psychology Using Dynamic Optimization

    ERIC Educational Resources Information Center

    Frankenhuis, Willem E.; Panchanathan, Karthik; Clark Barrett, H.

    2013-01-01

    Interactions between evolutionary psychologists and developmental systems theorists have been largely antagonistic. This is unfortunate because potential synergies between the two approaches remain unexplored. This article presents a method that may help to bridge the divide, and that has proven fruitful in biology: dynamic optimization. Dynamic…

  12. Ecology and Evolutionary Biology of Arabidopsis

    PubMed Central

    Pigliucci, Massimo

    2002-01-01

    Arabidopsis thaliana is now widely used as a model system in molecular and developmental biology, as well as in physiology and cell biology. However, ecologists and evolutionary biologists have turned their attention to the mouse ear cress only much more recently and almost reluctantly. The reason for this is the perception that A. thaliana is not particularly interesting ecologically and that it represents an oddity from an evolutionary standpoint. While there is some truth in both these attitudes, similar criticisms apply to other model systems such as the fruit fly Drosophila melanogaster, which has been extensively studied from an organismal perspective. Furthermore, the shortcomings of A. thaliana in terms of its restricted ecological niche are counterbalanced by the wealth of information on the molecular and developmental biology of this species, which makes possible to address evolutionary questions that can rarely be pursued in other species. This chapter reviews the history of the use of A. thaliana in organismal biology and discusses some of the recent work and future perspectives of research on a variety of field including life history evolution, phenotypic plasticity, natural selection and quantitative genetics. I suggest that the future of both molecular and especially organismal biology lies into expanding our knowledge from limited and idiosyncratic model systems to their phylogenetic neighborhood, which is bound to be more varied and biologically interesting. PMID:22303188

  13. Ecology and evolutionary biology of Arabidopsis.

    PubMed

    Pigliucci, Massimo

    2002-01-01

    Arabidopsis thaliana is now widely used as a model system in molecular and developmental biology, as well as in physiology and cell biology. However, ecologists and evolutionary biologists have turned their attention to the mouse ear cress only much more recently and almost reluctantly. The reason for this is the perception that A. thaliana is not particularly interesting ecologically and that it represents an oddity from an evolutionary standpoint. While there is some truth in both these attitudes, similar criticisms apply to other model systems such as the fruit fly Drosophila melanogaster, which has been extensively studied from an organismal perspective. Furthermore, the shortcomings of A. thaliana in terms of its restricted ecological niche are counterbalanced by the wealth of information on the molecular and developmental biology of this species, which makes possible to address evolutionary questions that can rarely be pursued in other species. This chapter reviews the history of the use of A. thaliana in organismal biology and discusses some of the recent work and future perspectives of research on a variety of field including life history evolution, phenotypic plasticity, natural selection and quantitative genetics. I suggest that the future of both molecular and especially organismal biology lies into expanding our knowledge from limited and idiosyncratic model systems to their phylogenetic neighborhood, which is bound to be more varied and biologically interesting. PMID:22303188

  14. Evolutionary biology of harvestmen (Arachnida, Opiliones).

    PubMed

    Giribet, Gonzalo; Sharma, Prashant P

    2015-01-01

    Opiliones are one of the largest arachnid orders, with more than 6,500 species in 50 families. Many of these families have been erected or reorganized in the last few years since the publication of The Biology of Opiliones. Recent years have also seen an explosion in phylogenetic work on Opiliones, as well as in studies using Opiliones as test cases to address biogeographic and evolutionary questions more broadly. Accelerated activity in the study of Opiliones evolution has been facilitated by the discovery of several key fossils, including the oldest known Opiliones fossil, which represents a new, extinct suborder. Study of the group's biology has also benefited from rapid accrual of genomic resources, particularly with respect to transcriptomes and functional genetic tools. The rapid emergence and utility of Phalangium opilio as a model for evolutionary developmental biology of arthropods serve as demonstrative evidence of a new area of study in Opiliones biology, made possible through transcriptomic data. PMID:25341103

  15. Evolution of the vertebrate jaw: comparative embryology and molecular developmental biology reveal the factors behind evolutionary novelty

    PubMed Central

    Kuratani, Shigeru

    2004-01-01

    It is generally believed that the jaw arose through the simple transformation of an ancestral rostral gill arch. The gnathostome jaw differentiates from Hox-free crest cells in the mandibular arch, and this is also apparent in the lamprey. The basic Hox code, including the Hox-free default state in the mandibular arch, may have been present in the common ancestor, and jaw patterning appears to have been secondarily constructed in the gnathostomes. The distribution of the cephalic neural crest cells is similar in the early pharyngula of gnathostomes and lampreys, but different cell subsets form the oral apparatus in each group through epithelial–mesenchymal interactions: and this heterotopy is likely to have been an important evolutionary change that permitted jaw differentiation. This theory implies that the premandibular crest cells differentiate into the upper lip, or the dorsal subdivision of the oral apparatus in the lamprey, whereas the equivalent cell population forms the trabecula of the skull base in gnathostomes. Because the gnathostome oral apparatus is derived exclusively from the mandibular arch, the concepts ‘oral’ and ‘mandibular’ must be dissociated. The ‘lamprey trabecula’ develops from mandibular mesoderm, and is not homologous with the gnathostome trabecula, which develops from premandibular crest cells. Thus the jaw evolved as an evolutionary novelty through tissue rearrangements and topographical changes in tissue interactions. PMID:15575882

  16. Regulatory Evolution and Theoretical Arguments in Evolutionary Biology

    ERIC Educational Resources Information Center

    Ioannidis, Stavros

    2013-01-01

    The "cis"-regulatory hypothesis is one of the most important claims of evolutionary developmental biology. In this paper I examine the theoretical argument for "cis"-regulatory evolution and its role within evolutionary theorizing. I show that, although the argument has some weaknesses, it acts as a useful example for the importance of current…

  17. Macroevolutionary developmental biology: Embryos, fossils, and phylogenies.

    PubMed

    Organ, Chris L; Cooper, Lisa Noelle; Hieronymus, Tobin L

    2015-10-01

    The field of evolutionary developmental biology is broadly focused on identifying the genetic and developmental mechanisms underlying morphological diversity. Connecting the genotype with the phenotype means that evo-devo research often considers a wide range of evidence, from genetics and morphology to fossils. In this commentary, we provide an overview and framework for integrating fossil ontogenetic data with developmental data using phylogenetic comparative methods to test macroevolutionary hypotheses. We survey the vertebrate fossil record of preserved embryos and discuss how phylogenetic comparative methods can integrate data from developmental genetics and paleontology. Fossil embryos provide limited, yet critical, developmental data from deep time. They help constrain when developmental innovations first appeared during the history of life and also reveal the order in which related morphologies evolved. Phylogenetic comparative methods provide a powerful statistical approach that allows evo-devo researchers to infer the presence of nonpreserved developmental traits in fossil species and to detect discordant evolutionary patterns and processes across levels of biological organization. PMID:26250386

  18. Cryptic Genetic Variation in Evolutionary Developmental Genetics.

    PubMed

    Paaby, Annalise B; Gibson, Greg

    2016-01-01

    Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes-processes that cannot be fully observed in continuously varying visible traits. PMID:27304973

  19. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    PubMed Central

    Paaby, Annalise B.; Gibson, Greg

    2016-01-01

    Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits. PMID:27304973

  20. Evolutionary Dynamics of Biological Games

    NASA Astrophysics Data System (ADS)

    Nowak, Martin A.; Sigmund, Karl

    2004-02-01

    Darwinian dynamics based on mutation and selection form the core of mathematical models for adaptation and coevolution of biological populations. The evolutionary outcome is often not a fitness-maximizing equilibrium but can include oscillations and chaos. For studying frequency-dependent selection, game-theoretic arguments are more appropriate than optimization algorithms. Replicator and adaptive dynamics describe short- and long-term evolution in phenotype space and have found applications ranging from animal behavior and ecology to speciation, macroevolution, and human language. Evolutionary game theory is an essential component of a mathematical and computational approach to biology.

  1. Deconstructing Pancreas Developmental Biology

    PubMed Central

    Benitez, Cecil M.; Goodyer, William R.

    2012-01-01

    The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development. PMID:22587935

  2. Applying evolutionary biology to address global challenges

    PubMed Central

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  3. Applying evolutionary biology to address global challenges.

    PubMed

    Carroll, Scott P; Jørgensen, Peter Søgaard; Kinnison, Michael T; Bergstrom, Carl T; Denison, R Ford; Gluckman, Peter; Smith, Thomas B; Strauss, Sharon Y; Tabashnik, Bruce E

    2014-10-17

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens, and pests that evolve too quickly and the second, from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This Review highlights both progress and gaps in genetic, developmental, and environmental manipulations across the life sciences that either target the rate and direction of evolution or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  4. Evolutionary foundations for cancer biology

    PubMed Central

    Aktipis, C Athena; Nesse, Randolph M

    2013-01-01

    New applications of evolutionary biology are transforming our understanding of cancer. The articles in this special issue provide many specific examples, such as microorganisms inducing cancers, the significance of within-tumor heterogeneity, and the possibility that lower dose chemotherapy may sometimes promote longer survival. Underlying these specific advances is a large-scale transformation, as cancer research incorporates evolutionary methods into its toolkit, and asks new evolutionary questions about why we are vulnerable to cancer. Evolution explains why cancer exists at all, how neoplasms grow, why cancer is remarkably rare, and why it occurs despite powerful cancer suppression mechanisms. Cancer exists because of somatic selection; mutations in somatic cells result in some dividing faster than others, in some cases generating neoplasms. Neoplasms grow, or do not, in complex cellular ecosystems. Cancer is relatively rare because of natural selection; our genomes were derived disproportionally from individuals with effective mechanisms for suppressing cancer. Cancer occurs nonetheless for the same six evolutionary reasons that explain why we remain vulnerable to other diseases. These four principles—cancers evolve by somatic selection, neoplasms grow in complex ecosystems, natural selection has shaped powerful cancer defenses, and the limitations of those defenses have evolutionary explanations—provide a foundation for understanding, preventing, and treating cancer. PMID:23396885

  5. Transformationalism, taxism, and developmental biology in systematics.

    PubMed

    Bang, R; DeSalle, R; Wheeler, W

    2000-03-01

    Issues concerning transformational and taxic comparisons are central to understanding the impact of the recent proliferation of molecular developmental data on evolutionary biology. More importantly, an understanding of taxism and transformationalism in comparative biology is critical to assessing the impact of the recent developmental data on systematic theory and practice. We examine the philosophical and practical aspects of the transformational approach and the relevance of this approach to recent molecular-based developmental data. We also examine the theoretical basis of the taxic approach to molecular developmental data and suggest that developmental data are perfectly amenable to the taxic approach. Two recent examples from the molecular developmental biology literature--the evolution of insect wings and the evolution of dorsal ventral inversion in vertebrates and invertebrates--are used to compare the taxic and transformational approaches. We conclude that the transformational approach is entirely appropriate for ontogenetic studies and furthermore can serve as an excellent source of hypotheses about the evolution of characters. However, the taxic approach is the ultimate arbiter of these hypotheses. PMID:12116480

  6. The Renaissance of Developmental Biology

    PubMed Central

    St Johnston, Daniel

    2015-01-01

    Since its heyday in the 1980s and 90s, the field of developmental biology has gone into decline; in part because it has been eclipsed by the rise of genomics and stem cell biology, and in part because it has seemed less pertinent in an era with so much focus on translational impact. In this essay, I argue that recent progress in genome-wide analyses and stem cell research, coupled with technological advances in imaging and genome editing, have created the conditions for the renaissance of a new wave of developmental biology with greater translational relevance. PMID:25946596

  7. The diversification of developmental biology.

    PubMed

    Crowe, Nathan; Dietrich, Michael R; Alomepe, Beverly S; Antrim, Amelia F; ByrneSim, Bay Lauris; He, Yi

    2015-10-01

    In the 1960s, "developmental biology" became the dominant term to describe some of the research that had previously been included under the rubrics of embryology, growth, morphology, and physiology. As scientific societies formed under this new label, a new discipline took shape. Historians, however, have a number of different perspectives on what changes led to this new field of developmental biology and how the field itself was constituted during this period. Using the General Embryological Information Service, a global index of post-World War II development-related research, we have documented and visualized significant changes in the kinds of research that occurred as this new field formed. In particular, our analysis supports the claim that the transition toward developmental biology was marked by a growth in new topics and forms of research. Although many historians privilege the role of molecular biology and/or the molecularization of biology in general during this formative period, we have found that the influence of molecular biology is not sufficient to account for the wide range of new research that constituted developmental biology at the time. Overall, our work creates a robust characterization of the changes that occurred with regard to research on growth and development in the decades following World War II and provides a context for future work on the specific drivers of those changes. PMID:26056745

  8. Developmental biology of the leech Helobdella

    PubMed Central

    WEISBLAT, DAVID A.; KUO, DIAN-HAN

    2015-01-01

    Glossiphoniid leeches of the genus Helobdella provide experimentally tractable models for studies in evolutionary developmental biology (Evo-Devo). Here, after a brief rationale, we will summarize our current understanding of Helobdella development and highlight the near term prospects for future investigations, with respect to the issues of: D quadrant specification; the transition from spiral to bilaterally symmetric cleavage; segmentation, and the connections between segmental and non-segmental tissues; modifications of BMP signaling in dorsoventral patterning and the O-P equivalence group; germ line specification and genome rearrangements. The goal of this contribution is to serve as a summary of, and guide to, published work. PMID:25690960

  9. Evolutionary cell biology: Two origins, one objective

    PubMed Central

    Lynch, Michael; Field, Mark C.; Goodson, Holly V.; Malik, Harmit S.; Pereira-Leal, José B.; Roos, David S.; Turkewitz, Aaron P.; Sazer, Shelley

    2014-01-01

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology. PMID:25404324

  10. Evolutionary cell biology: two origins, one objective.

    PubMed

    Lynch, Michael; Field, Mark C; Goodson, Holly V; Malik, Harmit S; Pereira-Leal, José B; Roos, David S; Turkewitz, Aaron P; Sazer, Shelley

    2014-12-01

    All aspects of biological diversification ultimately trace to evolutionary modifications at the cellular level. This central role of cells frames the basic questions as to how cells work and how cells come to be the way they are. Although these two lines of inquiry lie respectively within the traditional provenance of cell biology and evolutionary biology, a comprehensive synthesis of evolutionary and cell-biological thinking is lacking. We define evolutionary cell biology as the fusion of these two eponymous fields with the theoretical and quantitative branches of biochemistry, biophysics, and population genetics. The key goals are to develop a mechanistic understanding of general evolutionary processes, while specifically infusing cell biology with an evolutionary perspective. The full development of this interdisciplinary field has the potential to solve numerous problems in diverse areas of biology, including the degree to which selection, effectively neutral processes, historical contingencies, and/or constraints at the chemical and biophysical levels dictate patterns of variation for intracellular features. These problems can now be examined at both the within- and among-species levels, with single-cell methodologies even allowing quantification of variation within genotypes. Some results from this emerging field have already had a substantial impact on cell biology, and future findings will significantly influence applications in agriculture, medicine, environmental science, and synthetic biology. PMID:25404324

  11. A Philosophical Perspective on Evolutionary Systems Biology

    PubMed Central

    Soyer, Orkun S.; Siegal, Mark L.

    2015-01-01

    Evolutionary systems biology (ESB) is an emerging hybrid approach that integrates methods, models, and data from evolutionary and systems biology. Drawing on themes that arose at a cross-disciplinary meeting on ESB in 2013, we discuss in detail some of the explanatory friction that arises in the interaction between evolutionary and systems biology. These tensions appear because of different modeling approaches, diverse explanatory aims and strategies, and divergent views about the scope of the evolutionary synthesis. We locate these discussions in the context of long-running philosophical deliberations on explanation, modeling, and theoretical synthesis. We show how many of the issues central to ESB’s progress can be understood as general philosophical problems. The benefits of addressing these philosophical issues feed back into philosophy too, because ESB provides excellent examples of scientific practice for the development of philosophy of science and philosophy of biology. PMID:26085823

  12. Genomes, Phylogeny, and Evolutionary Systems Biology

    SciTech Connect

    Medina, Monica

    2005-03-25

    With the completion of the human genome and the growing number of diverse genomes being sequenced, a new age of evolutionary research is currently taking shape. The myriad of technological breakthroughs in biology that are leading to the unification of broad scientific fields such as molecular biology, biochemistry, physics, mathematics and computer science are now known as systems biology. Here I present an overview, with an emphasis on eukaryotes, of how the postgenomics era is adopting comparative approaches that go beyond comparisons among model organisms to shape the nascent field of evolutionary systems biology.

  13. Towards a postmodern synthesis of evolutionary biology

    PubMed Central

    Koonin, Eugene V.

    2012-01-01

    In 2009, we are celebrating the 200th anniversary of Charles Darwin and the 150th jubilee of his masterpiece, the Origin of Species. Darwin developed the first coherent and compelling narrative of biological evolution and thus founded evolutionary biology—and modern biology in general, remembering the famous dictum of Dobzhansky. It is, however, counter-productive, and ultimately, a disservice to Darwin’s legacy, to define modern evolutionary biology as neo-Darwinism. The current picture of evolution, informed, in particular, by results of comparative genomics and systems biology, is by far more complex than that presented in the Origin of Species, so that Darwinian principles, including natural selection, are incorporated into the evolving new synthesis as important but certainly not all-embracing tenets. This expansion of evolutionary biology does not denigrate Darwin in the least but rather emphasizes the fertility of his ideas. PMID:19242109

  14. Evolutionary Biology Instruction: What Students Gain from Learning through Inquiry.

    ERIC Educational Resources Information Center

    Dremock, Fae, Ed.

    2002-01-01

    This bulletin features articles on real world evolutionary biology, revolutionary classroom science, a review of new curricula in evolutionary biology, and the use of case studies to illustrate points in evolutionary biology. The articles are: (1) "'Real World' Evolutionary Biology: A Pragmatic Quest. Interview with BioQUEST's John Jungck" (Harvey…

  15. Attachment in Middle Childhood: An Evolutionary-Developmental Perspective

    ERIC Educational Resources Information Center

    Del Giudice, Marco

    2015-01-01

    Middle childhood is a key transitional stage in the development of attachment processes and representations. Here I discuss the middle childhood transition from an evolutionary-developmental perspective and show how this approach offers fresh insight into the function and organization of attachment in this life stage. I begin by presenting an…

  16. Developmental and Evolutionary History Affect Survival in Stressful Environments

    PubMed Central

    Hopkins, Gareth R.; Brodie, Edmund D.; French, Susannah S.

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history. PMID:24748021

  17. The generation of variation and the developmental basis for evolutionary novelty.

    PubMed

    Hallgrímsson, Benedikt; Jamniczky, Heather A; Young, Nathan M; Rolian, Campbell; Schmidt-Ott, Urs; Marcucio, Ralph S

    2012-09-01

    Organisms exhibit an incredible diversity of form, a fact that makes the evolution of novelty seemingly self-evident. However, despite the "obvious" case for novelty, defining this concept in evolutionary terms is highly problematic, so much so that some have suggested discarding it altogether. Approaches to this problem tend to take either an adaptation- or development-based perspective, but we argue here that an exclusive focus on either of these misses the original intent of the novelty concept and undermines its practical utility. We propose instead that for a feature to be novel, it must have evolved both by a transition between adaptive peaks on the fitness landscape and that this transition must have overcome a previous developmental constraint. This definition focuses novelty on the explanation of apparently difficult or low-probability evolutionary transitions and highlights how the integration of developmental and functional considerations are necessary to evolutionary explanation. It further reinforces that novelty is a central concern not just of evolutionary developmental biology (i.e., "evo-devo") but of evolutionary biology more generally. We explore this definition of novelty in light of four examples that range from the obvious to subtle. PMID:22649039

  18. Evolutionary developmental genetics of fruit morphological variation within the Solanaceae

    PubMed Central

    Wang, Li; Li, Jing; Zhao, Jing; He, Chaoying

    2015-01-01

    Morphological variations of fruits such as shape and size, and color are a result of adaptive evolution. The evolution of morphological novelties is particularly intriguing. An understanding of these evolutionary processes calls for the elucidation of the developmental and genetic mechanisms that result in particular fruit morphological characteristics, which determine seed dispersal. The genetic and developmental basis for fruit morphological variation was established at a microevolutionary time scale. Here, we summarize the progress on the evolutionary developmental genetics of fruit size, shape and color in the Solanaceae. Studies suggest that the recruitment of a pre-existing gene and subsequent modification of its interaction and regulatory networks are frequently involved in the evolution of morphological diversity. The basic mechanisms underlying changes in plant morphology are alterations in gene expression and/or gene function. We also deliberate on the future direction in evolutionary developmental genetics of fruit morphological variation such as fruit type. These studies will provide insights into plant developmental processes and will help to improve the productivity and fruit quality of crops. PMID:25918515

  19. A SYSTEMS BIOLOGY APPROACH TO DEVELOPMENTAL TOXICOLOGY

    EPA Science Inventory

    Abstract
    Recent advances in developmental biology have yielded detailed models of gene regulatory networks (GRNs) involved in cell specification and other processes in embryonic differentiation. Such networks form the bedrock on which a systems biology approach to developme...

  20. Evolutionary Biology: Its Value to Society

    ERIC Educational Resources Information Center

    Carson, Hampton L.

    1972-01-01

    Cites examples of the contribution of basic research in evolutionary biology to the solution of problems facing society (1) by dispelling myths about human origins, the nature of the individual, and the nature of race (2) by providing basic data concerning the effects of overpopulation, the production of improved sources of food, resistance of…

  1. Developmental systems biology flourishing on new technologies.

    PubMed

    Han, Jing-Dong J; Liu, Yi; Xue, Huiling; Xia, Kai; Yu, Hong; Zhu, Shanshan; Chen, Zhang; Zhang, Wei; Huang, Zheng; Jin, Chunyu; Xian, Bo; Li, Jing; Hou, Lei; Han, Yixing; Niu, Chaoqun; Alcon, Timothy C

    2008-10-01

    Organism development is a systems level process. It has benefited greatly from the recent technological advances in the field of systems biology. DNA microarray, phenome, interactome and transcriptome mapping, the new generation of deep sequencing technologies, and faster and better computational and modeling approaches have opened new frontiers for both systems biologists and developmental biologists to reexamine the old developmental biology questions, such as pattern formation, and to tackle new problems, such as stem cell reprogramming. As showcased in the International Developmental Systems Biology Symposium organized by Chinese Academy of Sciences, developmental systems biology is flourishing in many perspectives, from the evolution of developmental systems, to the underlying genetic and molecular pathways and networks, to the genomic, epigenomic and noncoding levels, to the computational analysis and modeling. We believe that the field will continue to reap rewards into the future with these new approaches. PMID:18937914

  2. EVOLUTIONARY BIOSCIENCE AS REGULATORY SYSTEMS BIOLOGY

    PubMed Central

    Davidson, Eric H.

    2011-01-01

    At present several entirely different explanatory approaches compete to illuminate the mechanisms by which animal body plans have evolved. Their respective relevance is briefly considered here in the light of modern knowledge of genomes and the regulatory processes by which development is controlled. Just as development is a system property of the regulatory genome, so causal explanation of evolutionary change in developmental process must be considered at a system level. Here I enumerate some mechanistic consequences that follow from the conclusion that evolution of the body plan has occurred by alteration of the structure of developmental gene regulatory networks. The hierarchy and multiple additional design features of these networks act to produce Boolean regulatory state specification functions at upstream phases of development of the body plan. These are created by the logic outputs of network subcircuits, and in modern animals these outputs are impervious to continuous adaptive variation unlike genes operating more peripherally in the network. PMID:21320483

  3. Extended evolutionary psychology: the importance of transgenerational developmental plasticity.

    PubMed

    Stotz, Karola

    2014-01-01

    What kind mechanisms one deems central for the evolutionary process deeply influences one's understanding of the nature of organisms, including cognition. Reversely, adopting a certain approach to the nature of life and cognition and the relationship between them or between the organism and its environment should affect one's view of evolutionary theory. This paper explores this reciprocal relationship in more detail. In particular it argues that the view of living and cognitive systems, especially humans, as deeply integrated beings embedded in and transformed by their genetic, epigenetic (molecular and cellular), behavioral, ecological, socio-cultural and cognitive-symbolic legacies calls for an extended evolutionary synthesis that goes beyond either a theory of genes juxtaposed against a theory of cultural evolution and or even more sophisticated theories of gene-culture coevolution and niche construction. Environments, particularly in the form of developmental environments, do not just select for variation, they also create new variation by influencing development through the reliable transmission of non-genetic but heritable information. This paper stresses particularly views of embodied, embedded, enacted and extended cognition, and their relationship to those aspects of extended inheritance that lie between genetic and cultural inheritance, the still gray area of epigenetic and behavioral inheritance systems that play a role in parental effect. These are the processes that can be regarded as transgenerational developmental plasticity and that I think can most fruitfully contribute to, and be investigated by, developmental psychology. PMID:25191292

  4. Latent developmental and evolutionary shapes embedded within the grapevine leaf.

    PubMed

    Chitwood, Daniel H; Klein, Laura L; O'Hanlon, Regan; Chacko, Steven; Greg, Matthew; Kitchen, Cassandra; Miller, Allison J; Londo, Jason P

    2016-04-01

    Across plants, leaves exhibit profound diversity in shape. As a single leaf expands, its shape is in constant flux. Plants may also produce leaves with different shapes at successive nodes. In addition, leaf shape varies among individuals, populations and species as a result of evolutionary processes and environmental influences. Because leaf shape can vary in many different ways, theoretically, the effects of distinct developmental and evolutionary processes are separable, even within the shape of a single leaf. Here, we measured the shapes of > 3200 leaves representing > 270 vines from wild relatives of domesticated grape (Vitis spp.) to determine whether leaf shapes attributable to genetics and development are separable from each other. We isolated latent shapes (multivariate signatures that vary independently from each other) embedded within the overall shape of leaves. These latent shapes can predict developmental stages independent from species identity and vice versa. Shapes predictive of development were then used to stage leaves from 1200 varieties of domesticated grape (Vitis vinifera), revealing that changes in timing underlie leaf shape diversity. Our results indicate that distinct latent shapes combine to produce a composite morphology in leaves, and that developmental and evolutionary contributions to shape vary independently from each other. PMID:26580864

  5. Extended evolutionary psychology: the importance of transgenerational developmental plasticity

    PubMed Central

    Stotz, Karola

    2014-01-01

    What kind mechanisms one deems central for the evolutionary process deeply influences one's understanding of the nature of organisms, including cognition. Reversely, adopting a certain approach to the nature of life and cognition and the relationship between them or between the organism and its environment should affect one's view of evolutionary theory. This paper explores this reciprocal relationship in more detail. In particular it argues that the view of living and cognitive systems, especially humans, as deeply integrated beings embedded in and transformed by their genetic, epigenetic (molecular and cellular), behavioral, ecological, socio-cultural and cognitive-symbolic legacies calls for an extended evolutionary synthesis that goes beyond either a theory of genes juxtaposed against a theory of cultural evolution and or even more sophisticated theories of gene-culture coevolution and niche construction. Environments, particularly in the form of developmental environments, do not just select for variation, they also create new variation by influencing development through the reliable transmission of non-genetic but heritable information. This paper stresses particularly views of embodied, embedded, enacted and extended cognition, and their relationship to those aspects of extended inheritance that lie between genetic and cultural inheritance, the still gray area of epigenetic and behavioral inheritance systems that play a role in parental effect. These are the processes that can be regarded as transgenerational developmental plasticity and that I think can most fruitfully contribute to, and be investigated by, developmental psychology. PMID:25191292

  6. Adaptive Developmental Delay in Chagas Disease Vectors: An Evolutionary Ecology Approach

    PubMed Central

    Menu, Frédéric; Ginoux, Marine; Rajon, Etienne; Lazzari, Claudio R.; Rabinovich, Jorge E.

    2010-01-01

    Background The developmental time of vector insects is important in population dynamics, evolutionary biology, epidemiology and in their responses to global climatic change. In the triatomines (Triatominae, Reduviidae), vectors of Chagas disease, evolutionary ecology concepts, which may allow for a better understanding of their biology, have not been applied. Despite delay in the molting in some individuals observed in triatomines, no effort was made to explain this variability. Methodology We applied four methods: (1) an e-mail survey sent to 30 researchers with experience in triatomines, (2) a statistical description of the developmental time of eleven triatomine species, (3) a relationship between development time pattern and climatic inter-annual variability, (4) a mathematical optimization model of evolution of developmental delay (diapause). Principal Findings 85.6% of responses informed on prolonged developmental times in 5th instar nymphs, with 20 species identified with remarkable developmental delays. The developmental time analysis showed some degree of bi-modal pattern of the development time of the 5th instars in nine out of eleven species but no trend between development time pattern and climatic inter-annual variability was observed. Our optimization model predicts that the developmental delays could be due to an adaptive risk-spreading diapause strategy, only if survival throughout the diapause period and the probability of random occurrence of “bad” environmental conditions are sufficiently high. Conclusions/Significance Developmental delay may not be a simple non-adaptive phenotypic plasticity in development time, and could be a form of adaptive diapause associated to a physiological mechanism related to the postponement of the initiation of reproduction, as an adaptation to environmental stochasticity through a spreading of risk (bet-hedging) strategy. We identify a series of parameters that can be measured in the field and laboratory to test

  7. An extended synthesis for evolutionary biology.

    PubMed

    Pigliucci, Massimo

    2009-06-01

    Evolutionary theory is undergoing an intense period of discussion and reevaluation. This, contrary to the misleading claims of creationists and other pseudoscientists, is no harbinger of a crisis but rather the opposite: the field is expanding dramatically in terms of both empirical discoveries and new ideas. In this essay I briefly trace the conceptual history of evolutionary theory from Darwinism to neo-Darwinism, and from the Modern Synthesis to what I refer to as the Extended Synthesis, a more inclusive conceptual framework containing among others evo-devo, an expanded theory of heredity, elements of complexity theory, ideas about evolvability, and a reevaluation of levels of selection. I argue that evolutionary biology has never seen a paradigm shift, in the philosophical sense of the term, except when it moved from natural theology to empirical science in the middle of the 19th century. The Extended Synthesis, accordingly, is an expansion of the Modern Synthesis of the 1930s and 1940s, and one that--like its predecessor--will probably take decades to complete. PMID:19566710

  8. Origin of the fittest: link between emergent variation and evolutionary change as a critical question in evolutionary biology.

    PubMed

    Badyaev, Alexander V

    2011-07-01

    In complex organisms, neutral evolution of genomic architecture, associated compensatory interactions in protein networks and emergent developmental processes can delineate the directions of evolutionary change, including the opportunity for natural selection. These effects are reflected in the evolution of developmental programmes that link genomic architecture with a corresponding functioning phenotype. Two recent findings call for closer examination of the rules by which these links are constructed. First is the realization that high dimensionality of genotypes and emergent properties of autonomous developmental processes (such as capacity for self-organization) result in the vast areas of fitness neutrality at both the phenotypic and genetic levels. Second is the ubiquity of context- and taxa-specific regulation of deeply conserved gene networks, such that exceptional phenotypic diversification coexists with remarkably conserved generative processes. Establishing the causal reciprocal links between ongoing neutral expansion of genomic architecture, emergent features of organisms' functionality, and often precisely adaptive phenotypic diversification therefore becomes an important goal of evolutionary biology and is the latest reincarnation of the search for a framework that links development, functioning and evolution of phenotypes. Here I examine, in the light of recent empirical advances, two evolutionary concepts that are central to this framework-natural selection and inheritance-the general rules by which they become associated with emergent developmental and homeostatic processes and the role that they play in descent with modification. PMID:21490021

  9. The Best and the Worst of Times for Evolutionary Biology.

    ERIC Educational Resources Information Center

    Avise, John C.

    2003-01-01

    Discusses opportunities and challenges for the field of evolutionary biology, particularly in areas related to molecular genetic technologies, the environment, biodiversity, and public education. (Author/KHR)

  10. A Brunswikian evolutionary-developmental theory of adolescent sex offending.

    PubMed

    Figueredo, A J; Sales, B D; Russell, K P; Becker, J V; Kaplan, M

    2000-01-01

    A Brunswikian Evolutionary-Developmental model was developed to relate the sex offending behavior of adolescents to other forms of social deviance, tracing a history of repeated frustration and failure in various competitive sexual strategies and escalation to more extreme means of obtaining sexual gratification. Four hypothetical constructs were proposed as stages in the development of sexual criminality: (1) Psycho-Social Deficiency (PSD); (2) Non-Criminal Sexuality (NCS); (3) Non-Sexual Criminality (NSC); and (4) Sexual Criminality (SC). Significant direct and indirect pathways led from PSD to SC through both NCS and NSC, each time facilitated by an interaction with PSD. Although the causal orders between stages remain equivocal, the current results are consistent with our theory and establish the heuristic value of our theoretical approach, providing empirical support for otherwise counterintuitive predictions. This interpretation also offers hope for focusing preventative intervention at one major root cause of this unfortunate cascade of consequences, Psycho-Social Deficiency. PMID:10874291

  11. NASA Developmental Biology Workshop: A summary

    NASA Technical Reports Server (NTRS)

    Souza, K. A. (Editor); Halstead, T. W. (Editor)

    1985-01-01

    The Life Sciences Division of the National Aeronautics and Space Administration (NASA) as part of its continuing assessment of its research program, convened a workshop on Developmental Biology to determine whether there are important scientific studies in this area which warrant continued or expanded NASA support. The workshop consisted of six panels, each of which focused on a single major phylogenetic group. The objectives of each panel were to determine whether gravity plays a role in the ontogeny of their subject group, to determine whether the microgravity of spaceflight can be used to help understand fundamental problems in developmental biology, to develop the rationale and hypotheses for conducting NASA-relevant research in development biology both on the ground and in space, and to identify any unique equipment and facilities that would be required to support both ground-based and spaceflight experiments.

  12. Individual variation in cognitive performance: developmental and evolutionary perspectives

    PubMed Central

    Thornton, Alex; Lukas, Dieter

    2012-01-01

    Animal cognition experiments frequently reveal striking individual variation but rarely consider its causes and largely ignore its potential consequences. Studies often focus on a subset of high-performing subjects, sometimes viewing evidence from a single individual as sufficient to demonstrate the cognitive capacity of a species. We argue that the emphasis on demonstrating species-level cognitive capacities detracts from the value of individual variation in understanding cognitive development and evolution. We consider developmental and evolutionary interpretations of individual variation and use meta-analyses of data from published studies to examine predictors of individual performance. We show that reliance on small sample sizes precludes robust conclusions about individual abilities as well as inter- and intraspecific differences. We advocate standardization of experimental protocols and pooling of data between laboratories to improve statistical rigour. Our analyses show that cognitive performance is influenced by age, sex, rearing conditions and previous experience. These effects limit the validity of comparative analyses unless developmental histories are taken into account, and complicate attempts to understand how cognitive traits are expressed and selected under natural conditions. Further understanding of cognitive evolution requires efforts to elucidate the heritability of cognitive traits and establish whether elevated cognitive performance confers fitness advantages in nature. PMID:22927576

  13. Developmental biology in marine invertebrate symbioses.

    PubMed

    McFall-Ngai, M J; Ruby, E G

    2000-12-01

    Associations between marine invertebrates and their cooperative bacterial symbionts offer access to an understanding of the roots of host-microbe interaction; for example, several symbioses like the squid-vibrio light organ association serve as models for investigating how each partner affects the developmental biology of the other. Previous results have identified a program of specific developmental events that unfolds as the association is initiated. In the past year, published studies have focused primarily on describing the mechanisms underlying the signaling processes that occur between the juvenile squid and the luminous bacteria that colonize it. PMID:11121780

  14. Gravitational studies in cellular and developmental biology

    NASA Technical Reports Server (NTRS)

    Spooner, B. S.

    1992-01-01

    The paucity of data on the role of gravity in cellular and developmental biology has been examined, and a hypothesis has been generated that unifies potential gravity sensitivity in both plant and animal systems. This hypothesis considers the macromolecular order and functional importance of the extracellular matrix compartment, the intracellular cytoskeleton compartment, and the connecting plasma membrane-signal transduction compartment of plant and animal systems as potentially sensitive to alterations in the unit gravity environment in which they evolved.

  15. Developmental influences on fertility decisions by women: an evolutionary perspective.

    PubMed

    Coall, D A; Tickner, M; McAllister, L S; Sheppard, P

    2016-04-19

    Developmental environments are crucial for shaping our life course. Elements of the early social and biological environments have been consistently associated with reproduction in humans. To date, a strong focus has been on the relationship between early stress, earlier menarche and first child birth in women. These associations, found predominately in high-income countries, have been usefully interpreted within life-history theory frameworks. Fertility, on the other hand--a missing link between an individual's early environment, reproductive strategy and fitness--has received little attention. Here, we synthesize this literature by examining the associations between early adversity, age at menarche and fertility and fecundity in women. We examine the evidence that potential mechanisms such as birth weight, childhood body composition, risky health behaviours and developmental influences on attractiveness link the early environment and fecundity and fertility. The evidence that menarche is associated with fertility and fecundity is good. Currently, owing to the small number of correlational studies and mixed methodologies, the evidence that early adversity predicts fecundity and fertility is not conclusive. This area of research is in its infancy; studies examining early adversity and adult fertility decisions that can also examine likely biological, social and psychological pathways present opportunities for future fertility research. PMID:27022073

  16. The relationship between evolutionary biology and religion.

    PubMed

    Reiss, Michael J

    2009-07-01

    Belief in creationism and intelligent design is widespread and gaining significance in a number of countries. This article examines the characteristics of science and of religions and the possible relationship between science and religion. I argue that creationism is sometimes best seen not as a misconception but as a worldview. In such instances, the most to which a science educator (whether in school, college or university) can normally aspire is to ensure that students with creationist beliefs understand the scientific position. In the short term, the scientific worldview is unlikely to supplant a creationist one for students who are firm creationists. We can help students to find their evolutionary biology courses interesting and intellectually challenging without their being threatening. Effective teaching in this area can help students not only learn about the theory of evolution but better appreciate the way science is done, the procedures by which scientific knowledge accumulates, the limitations of science, and the ways in which scientific knowledge differs from other forms of knowledge. PMID:19473393

  17. The anatomy and ontogeny of the head, neck, pectoral, and upper limb muscles of Lemur catta and Propithecus coquereli (primates): discussion on the parallelism between ontogeny and phylogeny and implications for evolutionary and developmental biology.

    PubMed

    Diogo, Rui; Molnar, Julia L; Smith, Timothy D

    2014-08-01

    Most anatomical studies of primates focus on skeletal tissues, but muscular anatomy can provide valuable information about phylogeny, functional specializations, and evolution. Herein, we present the first detailed description of the head, neck, pectoral, and upper limb muscles of the fetal lemuriforms Lemur catta (Lemuridae) and Propithecus coquereli (Indriidae). These two species belong to the suborder Strepsirrhini, which is often presumed to possess some plesiomorphic anatomical features within primates. We compare the muscular anatomy of the fetuses with that of infants and adults and discuss the evolutionary and developmental implications. The fetal anatomy reflects a phylogenetically more plesiomorphic condition in nine of the muscles we studied and a more derived condition in only two, supporting a parallel between ontogeny and phylogeny. The derived exceptions concern muscles with additional insertions in the fetus which are lost in adults of the same species, that is, flexor carpi radialis inserts on metacarpal III and levator claviculae inserts on the clavicle. Interestingly, these two muscles are involved in movements of the pectoral girdle and upper limb, which are mainly important for activities in later stages of life, such as locomotion and prey capture, rather than activities in fetal life. Accordingly, our findings suggest that some exceptions to the "ontogeny parallels phylogeny" rule are probably driven more by ontogenetic constraints than by adaptive plasticity. PMID:24757163

  18. Acute lymphoblastic leukemia and developmental biology

    PubMed Central

    Campos-Sanchez, Elena; Toboso-Navasa, Amparo; Romero-Camarero, Isabel; Barajas-Diego, Marcos

    2011-01-01

    The latest scientific findings in the field of cancer research are redefining our understanding of the molecular and cellular basis of the disease, moving the emphasis toward the study of the mechanisms underlying the alteration of the normal processes of cellular differentiation. The concepts best exemplifying this new vision are those of cancer stem cells and tumoral reprogramming. The study of the biology of acute lymphoblastic leukemias (ALLs) has provided seminal experimental evidence supporting these new points of view. Furthermore, in the case of B cells, it has been shown that all the stages of their normal development show a tremendous degree of plasticity, allowing them to be reprogrammed to other cellular types, either normal or leukemic. Here we revise the most recent discoveries in the fields of B-cell developmental plasticity and B-ALL research and discuss their interrelationships and their implications for our understanding of the biology of the disease. PMID:22031225

  19. Indoor Thermal Comfort, an Evolutionary Biology Perspective

    SciTech Connect

    Stoops, John L.

    2006-04-15

    As is becoming increasingly clear, the human species evolvedin the East African savannah. Details of the precise evolutionary chainremain unresolved however it appears that the process lasted severalmillion years, culminating with the emergence of modern Homo sapiensroughly 200,000 years ago. Following that final evolutionary developmentmodern Homo sapiens relatively quickly populated the entire world.Clearly modern Homo sapiens is a successful, resourceful and adaptablespecies. In the developed societies, modern humans live an existence farremoved from our evolutionary ancestors. As we have learned over the lastcentury, this "new" lifestyle can often result in unintendedconsequences. Clearly, our modern access to food, shelter, transportationand healthcare has resulted in greatly expanded expected lifespan butthis new lifestyle can also result in the emergence of different kinds ofdiseases and health problems. The environment in modern buildings haslittle resemblance to the environment of the savannah. We strive tocreate environments with little temperature, air movement and lightvariation. Building occupants often express great dissatisfaction withthese modern created environments and a significant fraction even developsomething akin to allergies to specific buildings (sick buildingsyndrome). Are the indoor environments we are creating fundamentallyunhealthy -- when examined from an evolutionary perspective?

  20. Engineering reduced evolutionary potential for synthetic biology

    PubMed Central

    Renda, Brian A.; Hammerling, Michael J.

    2014-01-01

    The field of synthetic biology seeks to engineer reliable and predictable behaviors in organisms from collections of standardized genetic parts. However, unlike other types of machines, genetically encoded biological systems are prone to changes in their designed sequences due to mutations in their DNA sequences after these devices are constructed and deployed. Thus, biological engineering efforts can be confounded by undesired evolution that rapidly breaks the functions of parts and systems, particularly when they are costly to the host cell to maintain. Here, we explain the fundamental properties that determine the evolvability of biological systems. Then, we use this framework to review current efforts to engineer the DNA sequences that encode synthetic biology devices and the genomes of their microbial hosts to reduce their ability to evolve and therefore increase their genetic reliability so that they maintain their intended functions over longer timescales. PMID:24556867

  1. Emerging from the fog: hypotheses and paradigms in developmental biology--the Society for Developmental Biology 2005 Annual Meeting Report.

    PubMed

    Sun, Xin; Barolo, Scott; Bilder, David; Montgomery, Mary; Sinha, Neelima

    2006-01-15

    The Society for Developmental Biology 64th annual meeting took place by the beautiful San Francisco Bay from July 27th to August 1st, 2005. Organized under the leadership of Judith Kimble (SDB President, U. Wisconsin-Madison), the meeting attracted over one thousand developmental biologists from all over the world. They gathered to present data, exchange ideas and enjoy basking in the warm sun on the piers. Strong themes emerged from the diverse subjects discussed at the meeting, demonstrating exciting trends towards the unifying goal of understanding the progression from a single cell to an adult organism. Cell and Tissue Polarity was a recurring topic at the meeting. Questions like "is there polarity", "how is it achieved" and "how is it linked to stem cell maintenance" were discussed. Post-transcriptional regulation involving protein degradation and microRNA (miRNA) modulation of gene expression was featured in the context of transition between meiosis to mitosis and asymmetries in the embryo. It is apparent that Evolutionary Developmental Biology, once a major driving influence in the early days of the field, continues to enjoy a renaissance as researchers familiar with traditional model organisms are increasingly attracted to the field and as modern genetic and molecular approaches are applied to an increasingly varied assortment of organisms. The attention is beginning to pay off as laboratories are starting to generate significant results shedding light into how developmental programs are altered to generate morphological diversity. In the Satellite Symposium on Plant Development held on July 27th, 2005, the overriding theme was on the identity and maintenance of Stem Cells in Plants. Finally, researchers working on diverse organisms have shown a strong effort to address Developmental Coordination: on the subcellular, cellular and tissue levels. Advanced imaging techniques are combined with traditional genetic methods to scrutinize and compare dynamic

  2. Growth protocols for model plants in developmental biology.

    PubMed

    Hennig, Lars

    2010-01-01

    Arabidopsis is the dominating model species for plant developmental biology, but other species serve as models for processes that cannot be studied in Arabidopsis, such as compound leaf or wood formation, or to test the universality of developmental mechanisms initially identified in Arabidopsis. Research in plant developmental biology depends critically on robust growth protocols that will support reproducible development. Here, protocols are given to grow Antirrhinum, Arabidopsis, Brachypodium, maize, Medicago, Petunia, rice, and tomato in the laboratory. PMID:20734250

  3. Women in evolution - highlighting the changing face of evolutionary biology.

    PubMed

    Wellenreuther, Maren; Otto, Sarah

    2016-01-01

    The face of science has changed. Women now feature alongside men at the forefront of many fields, and this is particularly true in evolutionary biology. This special issue celebrates the outstanding achievements and contributions of women in evolutionary biology, by highlighting a sample of their research and accomplishments. In addition to original research contributions, this collection of articles contains personal reflections to provide perspective and advice on succeeding as a woman in science. By showcasing the diversity and research excellence of women and drawing on their experiences, we wish to enhance the visibility of female scientists and provide inspiration as well as role models. These are exciting times for evolutionary biology, and the field is richer and stronger for the diversity of voices contributing to the field. PMID:27087836

  4. Rheumatoid arthritis: an evolutionary force in biologics.

    PubMed

    Brown, Philip M; Isaacs, John D

    2015-01-01

    The advent of biologic therapy has transformed the outcomes of patients with Rheumatoid Arthritis (RA), but has also highlighted important issues for their development. Early attempts at T-cell driven therapies gave mixed results with difficulties extrapolating from non-human models to first in man trials. There is currently one T-cell modulating therapy - abatacept - licenced for use in RA. Cytokine inhibition has proven to be more fruitful with a number of anti-TNF and IL6 agents either licenced for use in RA or in development. The B-cell depleting therapy rituximab has also shown good efficacy as a chemotherapy agent repurposed for RA treatment. Overall the biologics show good efficacy in RA and have been shown to retard progression of radiographic joint damage. However, this benefit comes with a burden of increased infection risk and a financial cost significantly higher than conventional disease modifying therapies. As a result current UK licencing holds the biologics in reserve following failure of a conventional therapy and the presence of moderate to severely active disease. The long term use of the biologics in RA has highlighted the risk of immunogenicity, with significant proportions of patients developing anti-drug antibodies and losing therapeutic effect. The side effect profile and cost also raise the question around duration of therapy and trials of drug tapering following disease remission are now taking place with several biologic agents. Our inability to stratify patients to the most appropriate biologic drug (stratified or precision medicine) has also catalysed a large and critically important research agenda. Beyond identifying new biologic targets, the development of biosimilar agents will likely drive the future shape of the RA biologics market as lower cost alternatives are developed, thereby improving access to these therapies. PMID:25760301

  5. Measuring the evolutionary rewiring of biological networks.

    PubMed

    Shou, Chong; Bhardwaj, Nitin; Lam, Hugo Y K; Yan, Koon-Kiu; Kim, Philip M; Snyder, Michael; Gerstein, Mark B

    2011-01-01

    We have accumulated a large amount of biological network data and expect even more to come. Soon, we anticipate being able to compare many different biological networks as we commonly do for molecular sequences. It has long been believed that many of these networks change, or "rewire", at different rates. It is therefore important to develop a framework to quantify the differences between networks in a unified fashion. We developed such a formalism based on analogy to simple models of sequence evolution, and used it to conduct a systematic study of network rewiring on all the currently available biological networks. We found that, similar to sequences, biological networks show a decreased rate of change at large time divergences, because of saturation in potential substitutions. However, different types of biological networks consistently rewire at different rates. Using comparative genomics and proteomics data, we found a consistent ordering of the rewiring rates: transcription regulatory, phosphorylation regulatory, genetic interaction, miRNA regulatory, protein interaction, and metabolic pathway network, from fast to slow. This ordering was found in all comparisons we did of matched networks between organisms. To gain further intuition on network rewiring, we compared our observed rewirings with those obtained from simulation. We also investigated how readily our formalism could be mapped to other network contexts; in particular, we showed how it could be applied to analyze changes in a range of "commonplace" networks such as family trees, co-authorships and linux-kernel function dependencies. PMID:21253555

  6. Teaching Evolutionary Biology: Pressures, Stress, and Coping

    ERIC Educational Resources Information Center

    Griffith, Joyce A.; Brem, Sarah K.

    2004-01-01

    Understanding what teachers need to be more comfortable and confident in their profession is crucial to the future of effective teachers and scientific literacy in public schools. This study focuses on the experiences of Arizona biology teachers in teaching evolution, using a clinical model of stress to identify sources of pressure, the resulting…

  7. Regeneration in spiralians: evolutionary patterns and developmental processes.

    PubMed

    Bely, Alexandra E; Zattara, Eduardo E; Sikes, James M

    2014-01-01

    Animals differ markedly in their ability to regenerate, yet still little is known about how regeneration evolves. In recent years, important advances have been made in our understanding of animal phylogeny and these provide new insights into the phylogenetic distribution of regeneration. The developmental basis of regeneration is also being investigated in an increasing number of groups, allowing commonalities and differences across groups to become evident. Here, we focus on regeneration in the Spiralia, a group that includes several champions of animal regeneration, as well as many groups with more limited abilities. We review the phylogenetic distribution and developmental processes of regeneration in four major spiralian groups: annelids, nemerteans, platyhelminths, and molluscs. Although comparative data are still limited, this review highlights phylogenetic and developmental patterns that are emerging regarding regeneration in spiralians and identifies important avenues for future research. PMID:25690976

  8. Nomothetics and idiography in developmental biology.

    PubMed

    Beloussov, Lev V

    2011-01-01

    Successions of space-temporal structures arisen during development of multicellular organisms are the most regular, complex and reproducible ones among all taking place in the entire nature without a human's intervention. Therefore, the question whether it would be possible to embrace them by a common physicalistic law (nomothetic approach) or they can be only enumerated and described one after another (idiography) is of an overall importance for the natural sciences in general. We review several nomothetic attempts performed in XX century biology and suggest that such laws may have a structure of feedback contours between the active and passive mechanical stresses generated in developing embryos. We trace several steps towards creating such contours and show that they couple mechanics with geometry providing thus a progressive complication of embryonic structure. Then we discuss, in what way genome can influence these morphomechanical laws. We speculate that the main developmental function of genome is to set up the values of the parameters, introduced in these laws. We emphasize that these parameters values acquire a definite meaning only within the context of the laws into which they are introduced. PMID:22220352

  9. Teaching evolutionary biology: Pressures, stress, and coping

    NASA Astrophysics Data System (ADS)

    Griffith, Joyce A.; Brem, Sarah K.

    2004-10-01

    Understanding what teachers need to be more comfortable and confident in their profession is crucial to the future of effective teachers and scientific literacy in public schools. This study focuses on the experiences of Arizona biology teachers in teaching evolution, using a clinical model of stress to identify sources of pressure, the resulting stresses, and coping strategies they employ to alleviate these stresses. We conducted focus groups, one-on-one interviews, and written surveys with 15 biology teachers from the Phoenix area. On the basis of their responses, teachers were clustered into three categories: Conflicted, who struggle with their own beliefs and the possible impact of their teaching, Selective, who carefully avoid difficult topics and situations, and Scientists, who see no place for controversial social issues in their science classroom. Teachers from each group felt that they could be more effective in teaching evolution if they possessed the most up-to-date information about evolution and genomics, a safe space in which to reflect on the possible social and personal implications with their peers, and access to richer lesson plans for teaching evolution that include not only science but personal stories regarding how the lessons arose, and what problems and opportunities they created.

  10. Embryonic development of goldfish (Carassius auratus): A model for the study of evolutionary change in developmental mechanisms by artificial selection

    PubMed Central

    Tsai, Hsin-Yuan; Chang, Mariann; Liu, Shih-Chieh; Abe, Gembu; Ota, Kinya G

    2013-01-01

    Background: Highly divergent morphology among the different goldfish strains (Carassius auratus) may make it a suitable model for investigating how artificial selection has altered developmental mechanisms. Here we describe the embryological development of the common goldfish (the single fin Wakin), which retains the ancestral morphology of this species. Results: We divided goldfish embryonic development into seven periods consisting of 34 stages, using previously reported developmental indices of zebrafish and goldfish. Although several differences were identified in terms of their yolk size, epiboly process, pigmentation patterns, and development rate, our results indicate that the embryonic features of these two teleost species are highly similar in their overall morphology from the zygote to hatching stage. Conclusions: These results provide an opportunity for further study of the evolutionary relationship between domestication and development, through applying well-established zebrafish molecular biological resources to goldfish embryos. Developmental Dynamics 242:1262–1283, 2013. © 2013 Wiley Periodicals, Inc. Key findings This study provides the first reliable descriptions of normal embryonic stages of wild-type goldfish. The embryonic features of goldfish and zebrafish are almost directly comparable. Goldfish embryos provide a novel model for the investigation of the evolutionary relationship between domestication and development. PMID:23913853

  11. Four decades of teaching developmental biology in Germany.

    PubMed

    Grunz, Horst

    2003-01-01

    I have taught developmental biology in Essen for 30 years. Since my department is named Zoophysiologie (Zoophysiology), besides Developmental Biology, I also have to teach General Animal Physiology. This explains why the time for teaching developmental biology is restricted to a lecture course, a laboratory course and several seminar courses. However, I also try to demonstrate in the lecture courses on General Physiology the close relationship between developmental biology, physiology, morphology, anatomy, teratology, carcinogenesis, evolution and ecology (importance of environmental factors on embryogenesis). Students are informed that developmental biology is a core discipline of biology. In the last decade, knowledge about molecular mechanisms in different organisms has exponentially increased. The students are trained to understand the close relationship between conserved gene structure, gene function and signaling pathways, in addition to or as an extension of, classical concepts. Public reports about the human genome project and stem cell research (especially therapeutic and reproductive cloning) have shown that developmental biology, both in traditional view and at the molecular level, is essential for the understanding of these complex topics and for serious and non-emotional debate. PMID:12705670

  12. Evolution, Science and Society: Evolutionary Biology and the National Research Agenda.

    ERIC Educational Resources Information Center

    Futuyma, Douglas J.; Meagher, Thomas R.

    2001-01-01

    Discusses ways of advancing understanding of evolutionary biology which seeks to explain all the characteristics of organisms. Describes the goals of evolutionary biology, why it is important, and how it contributes to society and basic science. (ASK)

  13. Biochemistry and evolutionary biology: two disciplines that need each other?

    PubMed

    Cornish-Bowden, Athel; Pereto, Juli; Cardenas, Maria Luz

    2014-03-01

    Biochemical information has been crucial for the development of evolutionary biology. On the one hand, the sequence information now appearing is producing a huge increase in the amount of data available for phylogenetic analysis; on the other hand, and perhaps more fundamentally, it allows understanding of the mechanisms that make evolution possible. Less well recognized, but just as important, understanding evolutionary biology is essential for understanding many details of biochemistry that would otherwise be mysterious, such as why the structures of NAD and other coenzymes are far more complicated than their functions would seem to require. Courses of biochemistry should thus pay attention to the essential role of evolution in selecting the molecules of life. PMID:24499786

  14. Evolutionary Developmental Linguistics: Naturalization of the Faculty of Language

    ERIC Educational Resources Information Center

    Locke, John L.

    2009-01-01

    Since language is a biological trait, it is necessary to investigate its evolution, development, and functions, along with the mechanisms that have been set aside, and are now recruited, for its acquisition and use. It is argued here that progress toward each of these goals can be facilitated by new programs of research, carried out within a new…

  15. Developmental Dyslexia: A Review of Biological Interactions.

    ERIC Educational Resources Information Center

    Galaburda, Albert M.

    1985-01-01

    The author considers cerebral dominance and brain asymmetry, the development of the cerebral cortex and examples of aberrancy, and diseases of the immune system, all of which relate to recent anatomical and epidemiological findings in developmental dyslexia. These discoveries have led to testable hypotheses which may enhance current understandings…

  16. The Fin to Limb Transition: New Data, Interpretations, and Hypotheses from Paleontology and Developmental Biology

    NASA Astrophysics Data System (ADS)

    Clack, Jennifer A.

    2009-05-01

    After a brief historical review of the fin to limb transition and consideration of a theoretical “prototetrapod,” this article considers new ideas generated from recent fossil finds and from developmental biology that bear on the question of how limbs, digits, limb joints, and pentadactyly evolved. Among the first changes to take place were those to the humerus, in concert with those to the breathing apparatus, and these adaptations were acquired while the animals were still basically aquatic with the evolution of digits occurring during this phase. Studies from developmental biology of modern taxa can be integrated with information from fossils to produce a fuller picture. The acquisition of pentadactyly was among the last changes to occur in the modification of a fin into a limb. This vision differs radically from older theoretical ideas which perceived land locomotion as the prime evolutionary force driving the transition.

  17. The Growth of Developmental Thought: Implications for a New Evolutionary Psychology

    PubMed Central

    Lickliter, Robert

    2009-01-01

    Evolution has come to be increasingly discussed in terms of changes in developmental processes rather than simply in terms of changes in gene frequencies. This shift is based in large part on the recognition that since all phenotypic traits arise during ontogeny as products of individual development, a primary basis for evolutionary change must be variations in the patterns and processes of development. Further, the products of development are epigenetic, not just genetic, and this is the case even when considering the evolutionary process. These insights have led investigators to reconsider the established notion of genes as the primary cause of development, opening the door to research programs focused on identifying how genetic and non-genetic factors coact to guide and constrain the process of development and its outcomes. I explore this growth of developmental thought and its implications for the achievement of a unified theory of heredity, development, and evolution and consider its implications for the realization of a new, developmentally-based evolutionary psychology. PMID:19956346

  18. The evolutionary origin of biological function and complexity.

    PubMed

    Pross, Addy

    2013-04-01

    The identification of dynamic kinetic stability (DKS) as a stability kind that governs the evolutionary process for both chemical and biological replicators, opens up new avenues for uncovering the chemical basis of biological phenomena. In this paper, we utilize the DKS concept to explore the chemical roots of two of biology's central concepts--function and complexity. It is found that the selection rule in the world of persistent replicating systems--from DKS less stable to DKS more stable--is the operational law whose very existence leads to the creation of function from of a world initially devoid of function. The origin of biological complexity is found to be directly related to the origin of function through an underlying connection between the two phenomena. Thus the emergence of both function and complexity during abiogenesis, and their growing expression during biological evolution, are found to be governed by the same single driving force, the drive toward greater DKS. It is reaffirmed that the essence of biological phenomena can be best revealed by uncovering biology's chemical roots, by elucidating the physicochemical principles that governed the process by which life on earth emerged from inanimate matter. PMID:23512244

  19. Developmental plasticity as a cohesive evolutionary process between sympatric alternate-year insect cohorts

    PubMed Central

    Watts, P C; Thompson, D J

    2012-01-01

    Many species, particularly insects, pass through a series of distinct phases during their life history, with the developmental timing directed towards appropriate resources. Any factor that creates variation in developmental timing may partition a population into discrete populations—or ‘cohorts'. Where there is continued failure to recruit outside the natal cohort then alternate cohorts will have their own internal dynamics, eventually leading to independent demographic and evolutionary trajectories. By contrast, continued variation in development rates within a cohort–cohort splitting—may homogenise otherwise independent demographic units. Using a panel of 14 microsatellite loci, we quantify the genetic signature of apparent demographic isolation between coexisting, but alternate, semivoltine cohorts of the damselfly Coenagrion mercuriale at locations that span its distribution in the UK. We find consistently low levels of genetic divergence between sympatric cohorts of C. mercuriale, indicative of developmental plasticity during the larval stage (unregulated development) whereby some individuals complete their development outside the predominant 2-year (semivoltine) period. Thus, individuals that alter their developmental rate successfully recruit to a different cohort. Despite maintaining contrasting population sizes, gene flow between alternate cohorts broadly is sufficient to place them on a similar evolutionary trajectory and also buffers against loss of genetic diversity. Such flexible larval development permits a response to local conditions and may facilitate response to environmental change. PMID:21792228

  20. Evolutionary and developmental contributions for understanding the organization of the basal ganglia.

    PubMed

    Medina, Loreta; Abellán, Antonio; Vicario, Alba; Desfilis, Ester

    2014-01-01

    Herein we take advantage of the evolutionary developmental biology approach in order to improve our understanding of both the functional organization and the evolution of the basal ganglia, with a particular focus on the globus pallidus. Therefore, we review data on the expression of developmental regulatory genes (that play key roles in patterning, regional specification and/or morphogenesis), gene function and fate mapping available in different vertebrate species, which are useful to (a) understand the embryonic origin and basic features of each neuron subtype of the basal ganglia (including neurotransmitter/neuropeptide expression and connectivity patterns); (b) identify the same (homologous) subpopulations in different species and the degree of variation or conservation throughout phylogeny, and (c) identify possible mechanisms that may explain the evolution of the basal ganglia. These data show that the globus pallidus of rodents contains two major subpopulations of GABAergic projection neurons: (1) neurons containing parvalbumin and neurotensin-related hexapetide (LANT6), with descending projections to the subthalamus and substantia nigra, which originate from progenitors expressing Nkx2.1, primarily located in the pallidal embryonic domain (medial ganglionic eminence), and (2) neurons containing preproenkephalin (and possibly calbindin), with ascending projections to the striatum, which appear to originate from progenitors expressing Islet1 in the striatal embryonic domain (lateral ganglionic eminence). Based on data on Nkx2.1, Islet1, LANT6 and proenkephalin, it appears that both cell types are also present in the globus pallidus/dorsal pallidum of chicken, frog and lungfish. In chicken, the globus pallidus also contains neurons expressing substance P (SP), perhaps originating in the striatal embryonic domain. In ray-finned and cartilaginous fishes, the pallidum contains at least the Nkx2.1 lineage cell population (likely representing the neurons

  1. Cognitive Developmental Biology: History, Process and Fortune's Wheel

    ERIC Educational Resources Information Center

    Balaban, Evan

    2006-01-01

    Biological contributions to cognitive development continue to be conceived predominantly along deterministic lines, with proponents of different positions arguing about the preponderance of gene-based versus experience-based influences that organize brain circuits irreversibly during prenatal or early postnatal life, and evolutionary influences…

  2. Glycan Engineering for Cell and Developmental Biology

    PubMed Central

    Griffin, Matthew E.; Hsieh-Wilson, Linda C.

    2016-01-01

    Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. PMID:26933739

  3. Biological causal links on physiological and evolutionary time scales.

    PubMed

    Karmon, Amit; Pilpel, Yitzhak

    2016-01-01

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning. PMID:27113916

  4. Biological causal links on physiological and evolutionary time scales

    PubMed Central

    Karmon, Amit; Pilpel, Yitzhak

    2016-01-01

    Correlation does not imply causation. If two variables, say A and B, are correlated, it could be because A causes B, or that B causes A, or because a third factor affects them both. We suggest that in many cases in biology, the causal link might be bi-directional: A causes B through a fast-acting physiological process, while B causes A through a slowly accumulating evolutionary process. Furthermore, many trained biologists tend to consistently focus at first on the fast-acting direction, and overlook the slower process in the opposite direction. We analyse several examples from modern biology that demonstrate this bias (codon usage optimality and gene expression, gene duplication and genetic dispensability, stem cell division and cancer risk, and the microbiome and host metabolism) and also discuss an example from linguistics. These examples demonstrate mutual effects between the fast physiological processes and the slow evolutionary ones. We believe that building awareness of inference biases among biologists who tend to prefer one causal direction over another could improve scientific reasoning. PMID:27113916

  5. Fewer invited talks by women in evolutionary biology symposia

    PubMed Central

    Schroeder, J; Dugdale, H L; Radersma, R; Hinsch, M; Buehler, D M; Saul, J; Porter, L; Liker, A; De Cauwer, I; Johnson, P J; Santure, A W; Griffin, A S; Bolund, E; Ross, L; Webb, T J; Feulner, P G D; Winney, I; Szulkin, M; Komdeur, J; Versteegh, M A; Hemelrijk, C K; Svensson, E I; Edwards, H; Karlsson, M; West, S A; Barrett, E L B; Richardson, D S; van den Brink, V; Wimpenny, J H; Ellwood, S A; Rees, M; Matson, K D; Charmantier, A; dos Remedios, N; Schneider, N A; Teplitsky, C; Laurance, W F; Butlin, R K; Horrocks, N P C

    2013-01-01

    Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001–2011, 9–23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks. PMID:23786459

  6. Fewer invited talks by women in evolutionary biology symposia.

    PubMed

    Schroeder, J; Dugdale, H L; Radersma, R; Hinsch, M; Buehler, D M; Saul, J; Porter, L; Liker, A; De Cauwer, I; Johnson, P J; Santure, A W; Griffin, A S; Bolund, E; Ross, L; Webb, T J; Feulner, P G D; Winney, I; Szulkin, M; Komdeur, J; Versteegh, M A; Hemelrijk, C K; Svensson, E I; Edwards, H; Karlsson, M; West, S A; Barrett, E L B; Richardson, D S; van den Brink, V; Wimpenny, J H; Ellwood, S A; Rees, M; Matson, K D; Charmantier, A; Dos Remedios, N; Schneider, N A; Teplitsky, C; Laurance, W F; Butlin, R K; Horrocks, N P C

    2013-09-01

    Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks. PMID:23786459

  7. Generating new blood flow: integrating developmental biology and tissue engineering.

    PubMed

    Krenning, Guido; Moonen, Jan-Renier A J; van Luyn, Marja J A; Harmsen, Martin C

    2008-11-01

    Vascular tissue engineering aims to restore blood flow by seeding artificial tubular scaffolds with endothelial and smooth muscle cells, thus creating bioartificial blood vessels. Herein, the progenitors of smooth muscle and endothelial cells hold great promise because they efficiently differentiate and harbor longevity. In this review, we describe a novel tissue engineering approach that uses current insights from developmental biology, that is, progenitor cell plasticity, and the latest advances in biomaterial design. We focus specifically on developmental processes that regulate progenitor cell (trans)differentiation and offer a platform for the integration of these molecular clues into biomaterial design. We propose a novel engineering paradigm for the creation of a small-diameter blood vessel wherein progenitor cell differentiation and tissue organization are instructed by the biomaterial solely. With this review, we emphasize the power of integrating developmental biology and material science for vascular tissue engineering. PMID:19345319

  8. The extracellular matrix of plants: Molecular, cellular and developmental biology

    SciTech Connect

    1996-12-31

    A symposium entitled ``The Extracellular Matrix of Plants: Molecular, Cellular and Developmental Biology was held in Tamarron, Colorado, March 15--21, 1996. The following topics were explored in addresses by 43 speakers: structure and biochemistry of cell walls; biochemistry, molecular biology and biosynthesis of lignin; secretory pathway and synthesis of glycoproteins; biosynthesis of matrix polysaccharides, callose and cellulose; role of the extracellular matrix in plant growth and development; plant cell walls in symbiosis and pathogenesis.

  9. Modeling Radial Holoblastic Cleavage: A Laboratory Activity for Developmental Biology.

    ERIC Educational Resources Information Center

    Ellis, Linda K.

    2000-01-01

    Introduces a laboratory activity designed for an undergraduate developmental biology course. Uses Play-Doh (plastic modeling clay) to build a multicellular embryo in order to provide a 3-D demonstration of cleavage. Includes notes for the instructor and student directions. (YDS)

  10. Eco-Evolutionary Feedback and the Tuning of Proto-Developmental Life Cycles

    PubMed Central

    Libby, Eric; Rainey, Paul B.

    2013-01-01

    Multicellular organisms depend on developmental programs to coordinate growth and differentiation from single cells, but the origins of development are unclear. A possible starting point is stochastic phenotypic variation generated by molecular noise. Given appropriate environmental conditions, noise-driven differentiation could conceivably evolve so as to come under regulatory control; however, abiotic conditions are likely to be restrictive. Drawing from an experimental system, we present a model in which environmental fluctuations are coupled to population growth. We show that this coupling generates stable selection for a single optimal strategy that is largely insensitive to environmental conditions, including the number of competitors, carrying capacity of the environment, difference in growth rates among phenotypic variants, and population density. We argue that this optimal strategy establishes stabilizing conditions likely to improve the quality and reliability of information experienced by evolving organisms, thus increasing opportunity for the evolutionary emergence of developmental programs. PMID:24367511

  11. Developmental and Evolutionary Lexicon Acquisition in Cognitive Agents/Robots with Grounding Principle: A Short Review.

    PubMed

    Rasheed, Nadia; Amin, Shamsudin H M

    2016-01-01

    Grounded language acquisition is an important issue, particularly to facilitate human-robot interactions in an intelligent and effective way. The evolutionary and developmental language acquisition are two innovative and important methodologies for the grounding of language in cognitive agents or robots, the aim of which is to address current limitations in robot design. This paper concentrates on these two main modelling methods with the grounding principle for the acquisition of linguistic ability in cognitive agents or robots. This review not only presents a survey of the methodologies and relevant computational cognitive agents or robotic models, but also highlights the advantages and progress of these approaches for the language grounding issue. PMID:27069470

  12. Developmental and Evolutionary Lexicon Acquisition in Cognitive Agents/Robots with Grounding Principle: A Short Review

    PubMed Central

    Rasheed, Nadia; Amin, Shamsudin H. M.

    2016-01-01

    Grounded language acquisition is an important issue, particularly to facilitate human-robot interactions in an intelligent and effective way. The evolutionary and developmental language acquisition are two innovative and important methodologies for the grounding of language in cognitive agents or robots, the aim of which is to address current limitations in robot design. This paper concentrates on these two main modelling methods with the grounding principle for the acquisition of linguistic ability in cognitive agents or robots. This review not only presents a survey of the methodologies and relevant computational cognitive agents or robotic models, but also highlights the advantages and progress of these approaches for the language grounding issue. PMID:27069470

  13. Inference of Evolutionary Forces Acting on Human Biological Pathways

    PubMed Central

    Daub, Josephine T.; Dupanloup, Isabelle; Robinson-Rechavi, Marc; Excoffier, Laurent

    2015-01-01

    Because natural selection is likely to act on multiple genes underlying a given phenotypic trait, we study here the potential effect of ongoing and past selection on the genetic diversity of human biological pathways. We first show that genes included in gene sets are generally under stronger selective constraints than other genes and that their evolutionary response is correlated. We then introduce a new procedure to detect selection at the pathway level based on a decomposition of the classical McDonald–Kreitman test extended to multiple genes. This new test, called 2DNS, detects outlier gene sets and takes into account past demographic effects and evolutionary constraints specific to gene sets. Selective forces acting on gene sets can be easily identified by a mere visual inspection of the position of the gene sets relative to their two-dimensional null distribution. We thus find several outlier gene sets that show signals of positive, balancing, or purifying selection but also others showing an ancient relaxation of selective constraints. The principle of the 2DNS test can also be applied to other genomic contrasts. For instance, the comparison of patterns of polymorphisms private to African and non-African populations reveals that most pathways show a higher proportion of nonsynonymous mutations in non-Africans than in Africans, potentially due to different demographic histories and selective pressures. PMID:25971280

  14. Entrepreneurs and Evolutionary Biology: The Relationship between Testosterone and New Venture Creation

    ERIC Educational Resources Information Center

    White, Roderick E.; Thornhill, Stewart; Hampson, Elizabeth

    2006-01-01

    Biological evolutionary processes select for heritable behaviors providing a survival and reproductive advantage. Accordingly, how we behave is, at least in part, affected by the evolutionary history of our species. This research uses evolutionary psychology as the theoretical perspective for exploring the relationship between a heritable…

  15. Social defense: an evolutionary-developmental model of children's strategies for coping with threat in the peer group.

    PubMed

    Martin, Meredith J; Davies, Patrick T; MacNeill, Leigha A

    2014-01-01

    Navigating the ubiquitous conflict, competition, and complex group dynamics of the peer group is a pivotal developmental task of childhood. Difficulty negotiating these challenges represents a substantial source of risk for psychopathology. Evolutionary developmental psychology offers a unique perspective with the potential to reorganize the way we think about the role of peer relationships in shaping how children cope with the everyday challenges of establishing a social niche. To address this gap, we utilize the ethological reformulation of the emotional security theory as a guide to developing an evolutionary framework for advancing an understanding of the defense strategies children use to manage antagonistic peer relationships and protect themselves from interpersonal threat (Davies and Sturge-Apple, 2007). In this way, we hope to illustrate the value of an evolutionary developmental lens in generating unique theoretical insight and novel research directions into the role of peer relationships in the development of psychopathology. PMID:25299884

  16. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme

    PubMed Central

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton–Jacobi inequality – constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  17. Using Nonlinear Stochastic Evolutionary Game Strategy to Model an Evolutionary Biological Network of Organ Carcinogenesis Under a Natural Selection Scheme.

    PubMed

    Chen, Bor-Sen; Tsai, Kun-Wei; Li, Cheng-Wei

    2015-01-01

    Molecular biologists have long recognized carcinogenesis as an evolutionary process that involves natural selection. Cancer is driven by the somatic evolution of cell lineages. In this study, the evolution of somatic cancer cell lineages during carcinogenesis was modeled as an equilibrium point (ie, phenotype of attractor) shifting, the process of a nonlinear stochastic evolutionary biological network. This process is subject to intrinsic random fluctuations because of somatic genetic and epigenetic variations, as well as extrinsic disturbances because of carcinogens and stressors. In order to maintain the normal function (ie, phenotype) of an evolutionary biological network subjected to random intrinsic fluctuations and extrinsic disturbances, a network robustness scheme that incorporates natural selection needs to be developed. This can be accomplished by selecting certain genetic and epigenetic variations to modify the network structure to attenuate intrinsic fluctuations efficiently and to resist extrinsic disturbances in order to maintain the phenotype of the evolutionary biological network at an equilibrium point (attractor). However, during carcinogenesis, the remaining (or neutral) genetic and epigenetic variations accumulate, and the extrinsic disturbances become too large to maintain the normal phenotype at the desired equilibrium point for the nonlinear evolutionary biological network. Thus, the network is shifted to a cancer phenotype at a new equilibrium point that begins a new evolutionary process. In this study, the natural selection scheme of an evolutionary biological network of carcinogenesis was derived from a robust negative feedback scheme based on the nonlinear stochastic Nash game strategy. The evolvability and phenotypic robustness criteria of the evolutionary cancer network were also estimated by solving a Hamilton-Jacobi inequality - constrained optimization problem. The simulation revealed that the phenotypic shift of the lung cancer

  18. THALIACEANS, THE NEGLECTED PELAGIC RELATIVES OF ASCIDIANS: A DEVELOPMENTAL AND EVOLUTIONARY ENIGMA.

    PubMed

    Piette, Jacques; Lemaire, Patrick

    2015-06-01

    Most developmental biologists equate tunicates to the sessile ascidians, including Ciona intestinalis, and the pelagic appendicularians, in particular Oikopleura dioica. However, there exists a third group of tunicates with a pelagic lifestyle, the thaliaceans, which include salps, pyrosomes, and doliolids. Although thaliaceans have raised the curiosity offamous zoologists since the 18th century, the difficulty of observing and experimentally manipulating them has led to many controversies and speculations about their life cycles and developmental strategies, the phylogenetic relationship within the group and with other tunicates, and the drivers of speciation in these widely distributed animals living in a seemingly uniform environment. Here, we take a historical perspective to summarize 250 years of work on this intriguing group of animals, and explore how modern genomics and imaging approaches are starting to solve fascinating evolutionary and developmental riddles. Recent molecular analyses support previous morphological evidence that ascidians are not monophyletic and that thaliaceans evolved from a sessile ascidian-like ancestor. In parallel, preliminary live-imaging and gene-expression data offer exciting entry points to understand how the adoption of a pelagic lifestyle led to drastic modifications in the morphology, embryology, and life cycle of these tunicates, compared to their sessile ancestor. PMID:26285352

  19. Evolutionary and Political Economic Influences on Biological Diversity in African Americans.

    ERIC Educational Resources Information Center

    Jackson, Fatimah Linda Collier

    1993-01-01

    Examines existing data on biological diversity among Americans of African descent within the contexts of their evolutionary backgrounds and political and economic realities. Explores the origins of the diversity, and provides an evolutionary and political economy synthesis for evaluating the biological distinctions apparent among African…

  20. Bioinformatics approaches to single-cell analysis in developmental biology.

    PubMed

    Yalcin, Dicle; Hakguder, Zeynep M; Otu, Hasan H

    2016-03-01

    Individual cells within the same population show various degrees of heterogeneity, which may be better handled with single-cell analysis to address biological and clinical questions. Single-cell analysis is especially important in developmental biology as subtle spatial and temporal differences in cells have significant associations with cell fate decisions during differentiation and with the description of a particular state of a cell exhibiting an aberrant phenotype. Biotechnological advances, especially in the area of microfluidics, have led to a robust, massively parallel and multi-dimensional capturing, sorting, and lysis of single-cells and amplification of related macromolecules, which have enabled the use of imaging and omics techniques on single cells. There have been improvements in computational single-cell image analysis in developmental biology regarding feature extraction, segmentation, image enhancement and machine learning, handling limitations of optical resolution to gain new perspectives from the raw microscopy images. Omics approaches, such as transcriptomics, genomics and epigenomics, targeting gene and small RNA expression, single nucleotide and structural variations and methylation and histone modifications, rely heavily on high-throughput sequencing technologies. Although there are well-established bioinformatics methods for analysis of sequence data, there are limited bioinformatics approaches which address experimental design, sample size considerations, amplification bias, normalization, differential expression, coverage, clustering and classification issues, specifically applied at the single-cell level. In this review, we summarize biological and technological advancements, discuss challenges faced in the aforementioned data acquisition and analysis issues and present future prospects for application of single-cell analyses to developmental biology. PMID:26358759

  1. New insights into the evolutionary history of biological nitrogen fixation

    PubMed Central

    Boyd, Eric S.; Peters, John W.

    2013-01-01

    Nitrogenase, which catalyzes the ATP-dependent reduction of dinitrogen (N2) to ammonia (NH3), accounts for roughly half of the bioavailable nitrogen supporting extant life. The fundamental requirement for fixed forms of nitrogen for life on Earth, both at present and in the past, has led to broad and significant interest in the origin and evolution of biological N2 fixation. One key question is whether the limited availability of fixed nitrogen was a factor in life's origin or whether there were ample sources of fixed nitrogen produced by abiotic processes or delivered through the weathering of bolide impact materials to support this early life. If the latter, the key questions become what were the characteristics of the environment that precipitated the evolution of this oxygen sensitive process, when did this occur, and how was its subsequent evolutionary history impacted by the advent of oxygenic photosynthesis and the rise of oxygen in the Earth's biosphere. Since the availability of fixed sources of nitrogen capable of supporting early life is difficult to glean from the geologic record, there are limited means to get direct insights into these questions. Indirect insights, however, can be gained through phylogenetic studies of nitrogenase structural gene products and additional gene products involved in the biosynthesis of the complex metal-containing prosthetic groups associated with this enzyme complex. Insights gained from such studies, as reviewed herein, challenge traditional models for the evolution of biological nitrogen fixation and provide the basis for the development of new conceptual models that explain the stepwise evolution of this highly complex life sustaining process. PMID:23935594

  2. Investigating Climate Change and Reproduction: Experimental Tools from Evolutionary Biology

    PubMed Central

    Grazer, Vera M.; Martin, Oliver Y.

    2012-01-01

    It is now generally acknowledged that climate change has wide-ranging biological consequences, potentially leading to impacts on biodiversity. Environmental factors can have diverse and often strong effects on reproduction, with obvious ramifications for population fitness. Nevertheless, reproductive traits are often neglected in conservation considerations. Focusing on animals, recent progress in sexual selection and sexual conflict research suggests that reproductive costs may pose an underestimated hurdle during rapid climate change, potentially lowering adaptive potential and increasing extinction risk of certain populations. Nevertheless, regime shifts may have both negative and positive effects on reproduction, so it is important to acquire detailed experimental data. We hence present an overview of the literature reporting short-term reproductive consequences of exposure to different environmental factors. From the enormous diversity of findings, we conclude that climate change research could benefit greatly from more coordinated efforts incorporating evolutionary approaches in order to obtain cross-comparable data on how individual and population reproductive fitness respond in the long term. Therefore, we propose ideas and methods concerning future efforts dealing with reproductive consequences of climate change, in particular by highlighting the advantages of multi-generational experimental evolution experiments. PMID:24832232

  3. Evolutionary biology and genetic techniques for insect control.

    PubMed

    Leftwich, Philip T; Bolton, Michael; Chapman, Tracey

    2016-01-01

    The requirement to develop new techniques for insect control that minimize negative environmental impacts has never been more pressing. Here we discuss population suppression and population replacement technologies. These include sterile insect technique, genetic elimination methods such as the release of insects carrying a dominant lethal (RIDL), and gene driving mechanisms offered by intracellular bacteria and homing endonucleases. We also review the potential of newer or underutilized methods such as reproductive interference, CRISPR technology, RNA interference (RNAi), and genetic underdominance. We focus on understanding principles and potential effectiveness from the perspective of evolutionary biology. This offers useful insights into mechanisms through which potential problems may be minimized, in much the same way that an understanding of how resistance evolves is key to slowing the spread of antibiotic and insecticide resistance. We conclude that there is much to gain from applying principles from the study of resistance in these other scenarios - specifically, the adoption of combinatorial approaches to minimize the spread of resistance evolution. We conclude by discussing the focused use of GM for insect pest control in the context of modern conservation planning under land-sparing scenarios. PMID:27087849

  4. The Evolutionary Biology and Population Genetics Underlying Fungal Strain Typing

    PubMed Central

    Taylor, John W.; Geiser, David M.; Burt, Austin; Koufopanou, Vassiliki

    1999-01-01

    Strain typing of medically important fungi and fungal population genetics have been stimulated by new methods of tapping DNA variation. The aim of this contribution is to show how awareness of fungal population genetics can increase the utility of strain typing to better serve the interests of medical mycology. Knowing two basic features of fungal population biology, the mode of reproduction and genetic differentiation or isolation, can give medical mycologists information about the intraspecific groups that are worth identifying and the number and type of markers that would be needed to do so. The same evolutionary information can be just as valuable for the selection of fungi for development and testing of pharmaceuticals or vaccines. The many methods of analyzing DNA variation are evaluated in light of the need for polymorphic loci that are well characterized, simple, independent, and stable. Traditional population genetic and new phylogenetic methods for analyzing mode of reproduction, genetic differentiation, and isolation are reviewed. Strain typing and population genetic reports are examined for six medically important species: Coccidioides immitis, Histoplasma capsulatum, Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus, and A. flavus. Research opportunities in the areas of genomics, correlation of clinical variation with genetic variation, amount of recombination, and standardization of approach are suggested. PMID:9880478

  5. Developmental biology of Cystoisospora (Apicomplexa: Sarcocystidae) monozoic tissue cysts.

    PubMed

    Lindsay, David S; Houk, Alice E; Mitchell, Sheila M; Dubey, J P

    2014-08-01

    Tissue cyst stages are an intriguing aspect of the developmental cycle and transmission of species of Sarcocystidae. Tissue-cyst stages of Toxoplasma, Hammondia, Neospora, Besnoitia, and Sarcocystis contain many infectious stages (bradyzoites). The tissue cyst stage of Cystoisospora (syn. Isospora) possesses only 1 infectious stage (zoite), and is therefore referred to as a monozoic tissue cyst (MZTC). No tissue cyst stages are presently known for members of Nephroisospora. The present report examines the developmental biology of MZTC stages of Cystoisospora Frenkel, 1977 . These parasites cause intestinal coccidiosis in cats, dogs, pigs, and humans. The MZTC stages of C. belli are believed to be associated with reoccurrence of clinical disease in humans. PMID:24841928

  6. Developmental biology teaching - the importance of a practical approach

    PubMed Central

    Mulley, John F

    2015-01-01

    The huge growth in knowledge in many areas of biological sciences over the past few decades has created a major dilemma for those of us in higher education, for not only must we adequately and efficiently convey these new facts and concepts to our students, we must also ensure that they understand and appreciate them. The field of developmental biology has witnessed such a massive growth in knowledge since the mid-1980s, driven mainly by advances in cell and molecular biology, and the development of new imaging techniques and tools. Ensuring that students fully appreciate the four-dimensional nature of embryonic development and morphogenesis is a particular issue, and one that I argue can only be properly learned via direct exposure to embryos via laboratory practicals. PMID:26167273

  7. In search of evolutionary developmental mechanisms: the 30-year gap between 1944 and 1974.

    PubMed

    Hall, Brian K

    2004-01-15

    The approach I have elected in this retrospective of how I became a student of evo-devo is both biographical and historical, a case study along the lines of Waddington's The Evolution of an Evolutionist ('75), although in my case it is the Evolution of an Evo-devoist. What were the major events that brought me to developmental biology and from there to evo-devo? They were, of course, specific to my generation, to the state of knowledge at the time, and to my own particular circumstances. Although exposed to evolution and embryology as an undergraduate in the 1960s, my PhD and post-PhD research programme lay within developmental biology until the early 1970s. An important formative influence on my studies as an undergraduate was the work of Conrad Hal Waddington (1905-1975), whose writings made me aware of genetic assimilation and gave me an epigenetic approach to my developmental studies. The switch to evo-devo (and my discovery of the existence of the neural crest), I owe to an ASZ (now SICB) symposium held in 1973. PMID:14760651

  8. Evolutionary and developmental implications of asymmetric brain folding in a large primate pedigree.

    PubMed

    Atkinson, Elizabeth G; Rogers, Jeffrey; Cheverud, James M

    2016-03-01

    Bilateral symmetry is a fundamental property of the vertebrate central nervous system. Local deviations from symmetry provide various types of information about the development, evolution, and function of elements within the CNS, especially the cerebral hemispheres. Here, we quantify the pattern and extent of asymmetry in cortical folding within the cerebrum of Papio baboons and assess the evolutionary and developmental implications of the findings. Analyses of directional asymmetry show a population-level trend in length measurements indicating that baboons are genetically predisposed to be asymmetrical, with the right side longer than the left in the anterior cerebrum while the left side is longer than the right posteriorly. We also find a corresponding bias to display a right frontal petalia (overgrowth of the anterior pole of the cerebral cortex on the right side). By quantifying fluctuating asymmetry, we assess canalization of brain features and the susceptibility of the baboon brain to developmental perturbations. We find that features are differentially canalized depending on their ontogenetic timing. We further deduce that development of the two hemispheres is to some degree independent. This independence has important implications for the evolution of cerebral hemispheres and their separate specialization. Asymmetry is a major feature of primate brains and is characteristic of both brain structure and function. PMID:26813679

  9. The Zebrafish Models to Explore Genetic and Epigenetic Impacts on Evolutionary Developmental Origins of Aging

    PubMed Central

    Kishi, Shuji

    2014-01-01

    hand, unexpected senescence-related genes might also be involved in the early developmental process and its regulation. The ease of manipulation using the zebrafish system allows us to conduct an exhaustive exploration of novel genes/genotypes and epigenotype that can be linked to the senescence phenotype, and thereby facilitates searching for the evolutionary and developmental origins of aging in vertebrates. PMID:24239812

  10. Developmental “Roots” in Mature Biological Knowledge

    PubMed Central

    Goldberg, Robert F.; Thompson-Schill, Sharon L.

    2009-01-01

    Young children tend to claim that moving artifacts and nonliving natural kinds are alive, but neglect to ascribe life to plants. This research tested whether adults exhibit similar confusions when verifying life status in a speeded classification task. Experiment 1 showed that undergraduates encounter greater difficulty (reduced accuracy and increased response times) in determining life status for plants, relative to animals, and for natural and moving nonliving things, relative to artifacts and non-moving things. Experiment 2 replicated these effects in university biology professors. The professors showed a significantly reduced effect size for living things, as compared with the students, but still showed greater difficulty for plants than animals, even as no differences from the students were apparent in their responses to nonliving things. These results suggest that mature biological knowledge relies on a developmental foundation that is not radically overwritten or erased with the profound conceptual changes that accompany mastery of the domain. PMID:19399979

  11. Proposal for Teaching Evolutionary Biology: A Bridge between Research and Educational Practice

    ERIC Educational Resources Information Center

    Alvarez Pérez, Eréndira; Ruiz Gutiérrez, Rosaura

    2016-01-01

    We present quantitative results for the doctoral thesis of the first-named author of this article. The objective was to recommend and test a teaching proposal for core knowledge of evolutionary biology in secondary education. The focus of the study is "Problem cores in teaching". The "Weaving evolutionary thinking" teaching…

  12. In silico Evolutionary Developmental Neurobiology and the Origin of Natural Language

    NASA Astrophysics Data System (ADS)

    Szathmáry, Eörs; Szathmáry, Zoltán; Ittzés, Péter; Orbaán, Geroő; Zachár, István; Huszár, Ferenc; Fedor, Anna; Varga, Máté; Számadó, Szabolcs

    It is justified to assume that part of our genetic endowment contributes to our language skills, yet it is impossible to tell at this moment exactly how genes affect the language faculty. We complement experimental biological studies by an in silico approach in that we simulate the evolution of neuronal networks under selection for language-related skills. At the heart of this project is the Evolutionary Neurogenetic Algorithm (ENGA) that is deliberately biomimetic. The design of the system was inspired by important biological phenomena such as brain ontogenesis, neuron morphologies, and indirect genetic encoding. Neuronal networks were selected and were allowed to reproduce as a function of their performance in the given task. The selected neuronal networks in all scenarios were able to solve the communication problem they had to face. The most striking feature of the model is that it works with highly indirect genetic encoding--just as brains do.

  13. Inherit the policy: A sociocultural approach to understanding evolutionary biology policy in South Carolina

    NASA Astrophysics Data System (ADS)

    Moore, Gregory D.

    South Carolina biology Indicator 5.6 calls for students to "Summarize ways that scientists use data from a variety of sources to investigate and critically analyze aspects of evolutionary theory" (South Carolina Department of Education, 2006). Levinson and Sutton (2001) offered a sociocultural approach to policy that considers cultural and historical influences at all levels of the policy process. Lipsky (1980/2010) and others have identified teachers as de facto policy makers, exercising broad discretion in the execution of their work. This study looks to Ajzen's Theory of Planned Behavior as an initial framework to inform how evolutionary biology policy in South Carolina is conceptualized and understood at different levels of the policy process. The results of this study indicate that actors in the state's evolutionary biology policy process draw upon a myriad of Discourses (Gee, 1999/2005). These Discourses shape cultural dynamics and the agency of the policy actors as they navigate conflicting messages between testing mandates and evolutionary biology policy. There indeed exist gaps between how evolutionary biology policy in South Carolina is conceptualized and understood at the different levels of the policy process. Evidence from this study suggests that appropriation-level policy actors must be brought into the Discourse related to the critical analysis of evolutionary biology and academic freedom legislation must be enacted if South Carolina biology Indicator 5.6 is to realize practical significance in educational policy.

  14. Evolutionary Theory, the Nature of Science and High School Biology Teachers: Critical Relationships.

    ERIC Educational Resources Information Center

    Rutledge, Michael L.; Warden, Melissa A.

    2000-01-01

    Describes a study on establishing the current status of and exploring the relationships among the variables of high school biology teachers' acceptance of evolutionary theory and teacher understanding of the nature of science. (Contains 23 references.) (ASK)

  15. The integration of Darwinism and evolutionary morphology: Alexej Nikolajevich Sewertzoff (1866-1936) and the developmental basis of evolutionary change.

    PubMed

    Levit, George S; Hossfeld, Uwe; Olsson, Lennart

    2004-07-15

    The growth of evolutionary morphology in the late 19th and early 20th centuries was inspired by the work of Carl Gegenbaur (1826-1903) and his protégé and friend Ernst Haeckel (1834-1919). However, neither of them succeeded in creating and applying a strictly Darwinian (selectionist) methodology. This task was left to the next generation of evolutionary morphologists. In this paper we present a relatively unknown researcher, Alexej Nikolajevich Sewertzoff (1866-1936) who made important contributions towards a synthesis of Darwinism and evolutionary morphology. PMID:15287099

  16. Fluid dynamics in developmental biology: moving fluids that shape ontogeny

    PubMed Central

    Cartwright, Julyan H.E.; Piro, Oreste; Tuval, Idan

    2009-01-01

    Human conception, indeed fertilization in general, takes place in a fluid, but what role does fluid dynamics have during the subsequent development of an organism? It is becoming increasingly clear that the number of genes in the genome of a typical organism is not sufficient to specify the minutiae of all features of its ontogeny. Instead, genetics often acts as a choreographer, guiding development but leaving some aspects to be controlled by physical and chemical means. Fluids are ubiquitous in biological systems, so it is not surprising that fluid dynamics should play an important role in the physical and chemical processes shaping ontogeny. However, only in a few cases have the strands been teased apart to see exactly how fluid forces operate to guide development. Here, we review instances in which the hand of fluid dynamics in developmental biology is acknowledged, both in human development and within a wider biological context, together with some in which fluid dynamics is notable but whose workings have yet to be understood, and we provide a fluid dynamicist’s perspective on possible avenues for future research. PMID:19794816

  17. [Volvox (Chlorophyta, Volvocales) as a model organism in developmental biology].

    PubMed

    Desnitskiĭ, A G

    2009-01-01

    Model systems based on two or more related species with different types of development are finding increasing use in current comparative embryology. Green algae of the genus Volvox offer an interesting opportunity to study sex pheromones, morphogenesis as well as the formation of a somatic cell line undergoing terminal differentiation, senescence, and death as well as a line of reproductive cells, which at first grow and then undergo a series of consecutive divisions that give rise to new organisms. However, almost all studies of the recent years were conducted on a single species, Volvox carteri f. nagariensis. The goal of this publication was to advertise the cosmopolitan alga V. aureus as a model species in developmental biology. Published data on V. aureus are briefly reviewed in comparison with the development of V. carteri and outlooks of further studies are specified. In particular, the expediency of collecting new V. aureus strains from nature to study their development in clonal culture is outlined. PMID:19705761

  18. CRITTERS! A Realistic Simulation for Teaching Evolutionary Biology

    ERIC Educational Resources Information Center

    Latham, Luke G., II; Scully, Erik P.

    2008-01-01

    Evolutionary processes can be studied in nature and in the laboratory, but time and financial constraints result in few opportunities for undergraduate and high school students to explore the agents of genetic change in populations. One alternative to time consuming and expensive teaching laboratories is the use of computer simulations. We…

  19. Evolutionary and developmental analysis reveals KANK genes were co-opted for vertebrate vascular development.

    PubMed

    Hensley, Monica R; Cui, Zhibin; Chua, Rhys F M; Simpson, Stefanie; Shammas, Nicole L; Yang, Jer-Yen; Leung, Yuk Fai; Zhang, GuangJun

    2016-01-01

    Gene co-option, usually after gene duplication, in the evolution of development is found to contribute to vertebrate morphological innovations, including the endothelium-based vascular system. Recently, a zebrafish kank gene was found expressed in the vascular vessel primordium, suggesting KANK genes are a component of the developmental tool kit for the vertebrate vascular system. However, how the KANK gene family is involved in vascular vessel development during evolution remains largely unknown. First, we analyzed the molecular evolution of the KANK genes in metazoan, and found that KANK1, KANK2, KANK3 and KANK4 emerged in the lineage of vertebrate, consistent with the two rounds of vertebrate whole-genome duplications (WGD). Moreover, KANK genes were further duplicated in teleosts through the bony-fish specific WGD, while only kank1 and kank4 duplicates were retained in some of the examined fish species. We also found all zebrafish kank genes, except kank1b, are primarily expressed during embryonic vascular development. Compared to invertebrate KANK gene expression in the central nervous system, the vascular expression of zebrafish kank genes suggested KANK genes were co-opted for vertebrate vascular development. Given the cellular roles of KANK genes, our results suggest that this co-option may facilitate the evolutionary origin of vertebrate vascular vessels. PMID:27292017

  20. Evolutionary and developmental analysis reveals KANK genes were co-opted for vertebrate vascular development

    PubMed Central

    Hensley, Monica R.; Cui, Zhibin; Chua, Rhys F. M.; Simpson, Stefanie; Shammas, Nicole L.; Yang, Jer-Yen; Leung, Yuk Fai; Zhang, GuangJun

    2016-01-01

    Gene co-option, usually after gene duplication, in the evolution of development is found to contribute to vertebrate morphological innovations, including the endothelium-based vascular system. Recently, a zebrafish kank gene was found expressed in the vascular vessel primordium, suggesting KANK genes are a component of the developmental tool kit for the vertebrate vascular system. However, how the KANK gene family is involved in vascular vessel development during evolution remains largely unknown. First, we analyzed the molecular evolution of the KANK genes in metazoan, and found that KANK1, KANK2, KANK3 and KANK4 emerged in the lineage of vertebrate, consistent with the two rounds of vertebrate whole-genome duplications (WGD). Moreover, KANK genes were further duplicated in teleosts through the bony-fish specific WGD, while only kank1 and kank4 duplicates were retained in some of the examined fish species. We also found all zebrafish kank genes, except kank1b, are primarily expressed during embryonic vascular development. Compared to invertebrate KANK gene expression in the central nervous system, the vascular expression of zebrafish kank genes suggested KANK genes were co-opted for vertebrate vascular development. Given the cellular roles of KANK genes, our results suggest that this co-option may facilitate the evolutionary origin of vertebrate vascular vessels. PMID:27292017

  1. Variation in the volume of zebra finch song control nuclei is heritable: developmental and evolutionary implications.

    PubMed Central

    Airey, D C; Castillo-Juarez, H; Casella, G; Pollak, E J; DeVoogd, T J

    2000-01-01

    In many songbird species, females prefer males that sing a larger repertoire of syllables. Males with more elaborate songs have a larger high vocal centre (HVC) nucleus, the highest structure in the song production pathway. HVC size is thus a potential target of sexual selection. Here we provide evidence that the size of the HVC and other song production nuclei are heritable across individual males within a species. In contrast, we find that heritabilities of other nuclei in a song-learning pathway are lower, suggesting that variation in the sizes of these structures is more closely tied to developmental and environmental differences between individuals. We find that evolvability, a statistical measure that predicts response to selection, is higher for the HVC and its target for song production, the robustus archistriatalis (RA), than for all other brain volumes measured. This suggests that selection based on the functions of these two structures would result in rapid major shifts in their anatomy. We also show that the size of each song control nucleus is significantly correlated with the song related nuclei to which it is monosynaptically connected. Finally, we find that the volume of the telencephalon is larger in males than in females. These findings begin to join theoretical analyses of the role of female choice in the evolution of bird song to neurobiological mechanisms by which the evolutionary changes in behaviour are expressed. PMID:11416915

  2. Vertebral anatomy in the Florida manatee, Trichechus manatus latirostris: a developmental and evolutionary analysis.

    PubMed

    Buchholtz, Emily A; Booth, Amy C; Webbink, Katherine E

    2007-06-01

    The vertebral column of the Florida manatee presents an unusual suite of morphological traits. Key among these are a small precaudal count, elongate thoracic vertebrae, extremely short neural spines, lack of a sacral series, high lumbar variability, and the presence of six instead of seven cervical vertebrae. This study documents vertebral morphology, size, and lumbar variation in 71 skeletons of Trichechus manatus latirostris (Florida manatee) and uses the skeletons of Trichechus senegalensis (west African manatee) and Dugong dugon (dugong) in comparative analysis. Vertebral traits are used to define morphological, and by inference developmental, column modules and to propose their hierarchical relationships. A sequence of evolutionary innovations in column morphology is proposed. Results suggest that the origin of the fluke and low rates of cervical growth originated before separation of trichechids (manatees) and dugongids (dugongs). Meristic reduction in count is a later, trichechid innovation and is expressed across the entire precaudal column. Elongation of thoracic vertebrae may be an innovative strategy to generate an elongate column in an animal with a small precaudal count. Elimination of the lumbus through both meristic and homeotic reduction is currently in progress. PMID:17516429

  3. The role of evolutionary biology in research and control of liver flukes in Southeast Asia.

    PubMed

    Echaubard, Pierre; Sripa, Banchob; Mallory, Frank F; Wilcox, Bruce A

    2016-09-01

    Stimulated largely by the availability of new technology, biomedical research at the molecular-level and chemical-based control approaches arguably dominate the field of infectious diseases. Along with this, the proximate view of disease etiology predominates to the exclusion of the ultimate, evolutionary biology-based, causation perspective. Yet, historically and up to today, research in evolutionary biology has provided much of the foundation for understanding the mechanisms underlying disease transmission dynamics, virulence, and the design of effective integrated control strategies. Here we review the state of knowledge regarding the biology of Asian liver Fluke-host relationship, parasitology, phylodynamics, drug-based interventions and liver Fluke-related cancer etiology from an evolutionary biology perspective. We consider how evolutionary principles, mechanisms and research methods could help refine our understanding of clinical disease associated with infection by Liver Flukes as well as their transmission dynamics. We identify a series of questions for an evolutionary biology research agenda for the liver Fluke that should contribute to an increased understanding of liver Fluke-associated diseases. Finally, we describe an integrative evolutionary medicine approach to liver Fluke prevention and control highlighting the need to better contextualize interventions within a broader human health and sustainable development framework. PMID:27197053

  4. Evolutionary Design in Embryogeny

    NASA Astrophysics Data System (ADS)

    Ashlock, Daniel

    In biology texts embryogeny is defined as "the development or production of an embryo." An embryo is a living creature in its first stage of life, from the fertilized egg cell through the initial development of its morphology and its chemical networks. The study of embryogeny is part of developmental biology [1, 2]. The reader may wonder why a book on evolutionary design should have a section on embryogeny. Computational embryogeny is the study of representations for evolutionary computation that mimic biological embryogeny. These representations contain analogs to the complex biological processes that steer a single cell to become a rose, a mouse, or a man. The advantage of using embryogenic representations is their richness of expression. A small seed of information can be expanded, through a developmental process, into a complex and potentially useful object. This richness of expression comes at a substantial price: the developmental process is sufficiently complex to be unpredictable.

  5. Pancreatic cancer biology and genetics from an evolutionary perspective.

    PubMed

    Makohon-Moore, Alvin; Iacobuzio-Donahue, Christine A

    2016-09-01

    Cancer is an evolutionary disease, containing the hallmarks of an asexually reproducing unicellular organism subject to evolutionary paradigms. Pancreatic ductal adenocarcinoma (hereafter referred to as pancreatic cancer) is a particularly robust example of this phenomenon. Genomic features indicate that pancreatic cancer cells are selected for fitness advantages when encountering the geographic and resource-depleted constraints of the microenvironment. Phenotypic adaptations to these pressures help disseminated cells to survive in secondary sites, a major clinical problem for patients with this disease. In this Review we gather the wide-ranging aspects of pancreatic cancer research into a single concept rooted in Darwinian evolution, with the goal of identifying novel insights and opportunities for study. PMID:27444064

  6. Multidisciplinary approaches to understanding collective cell migration in developmental biology.

    PubMed

    Schumacher, Linus J; Kulesa, Paul M; McLennan, Rebecca; Baker, Ruth E; Maini, Philip K

    2016-06-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell-cell interactions, cell-environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. PMID:27278647

  7. Multidisciplinary approaches to understanding collective cell migration in developmental biology

    PubMed Central

    Schumacher, Linus J.; Kulesa, Paul M.; McLennan, Rebecca; Baker, Ruth E.; Maini, Philip K.

    2016-01-01

    Mathematical models are becoming increasingly integrated with experimental efforts in the study of biological systems. Collective cell migration in developmental biology is a particularly fruitful application area for the development of theoretical models to predict the behaviour of complex multicellular systems with many interacting parts. In this context, mathematical models provide a tool to assess the consistency of experimental observations with testable mechanistic hypotheses. In this review, we showcase examples from recent years of multidisciplinary investigations of neural crest cell migration. The neural crest model system has been used to study how collective migration of cell populations is shaped by cell–cell interactions, cell–environmental interactions and heterogeneity between cells. The wide range of emergent behaviours exhibited by neural crest cells in different embryonal locations and in different organisms helps us chart out the spectrum of collective cell migration. At the same time, this diversity in migratory characteristics highlights the need to reconcile or unify the array of currently hypothesized mechanisms through the next generation of experimental data and generalized theoretical descriptions. PMID:27278647

  8. Evolutionary Theory in Undergraduate Biology Programs at Lebanese Universities: A Comparative Study

    ERIC Educational Resources Information Center

    Vlaardingerbroek, Barend; Hachem-El-Masri, Yasmine

    2006-01-01

    The purpose of this study was to gauge the profile of evolutionary theory in Lebanese undergraduate biology programs. The research focused mainly on the views of university biology department heads, given that they are the people who exercise the most direct influence over their departments' ethos. An Australasian sample was chosen as a reference…

  9. Evolutionary thinking

    PubMed Central

    Hunt, Tam

    2014-01-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution—both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place—has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps’ book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging “integral” or “evolutionary” cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  10. The fossil record of phenotypic integration and modularity: A deep-time perspective on developmental and evolutionary dynamics

    PubMed Central

    Goswami, Anjali; Binder, Wendy J.; Meachen, Julie; O’Keefe, F. Robin

    2015-01-01

    Variation is the raw material for natural selection, but the factors shaping variation are still poorly understood. Genetic and developmental interactions can direct variation, but there has been little synthesis of these effects with the extrinsic factors that can shape biodiversity over large scales. The study of phenotypic integration and modularity has the capacity to unify these aspects of evolutionary study by estimating genetic and developmental interactions through the quantitative analysis of morphology, allowing for combined assessment of intrinsic and extrinsic effects. Data from the fossil record in particular are central to our understanding of phenotypic integration and modularity because they provide the only information on deep-time developmental and evolutionary dynamics, including trends in trait relationships and their role in shaping organismal diversity. Here, we demonstrate the important perspective on phenotypic integration provided by the fossil record with a study of Smilodon fatalis (saber-toothed cats) and Canis dirus (dire wolves). We quantified temporal trends in size, variance, phenotypic integration, and direct developmental integration (fluctuating asymmetry) through 27,000 y of Late Pleistocene climate change. Both S. fatalis and C. dirus showed a gradual decrease in magnitude of phenotypic integration and an increase in variance and the correlation between fluctuating asymmetry and overall integration through time, suggesting that developmental integration mediated morphological response to environmental change in the later populations of these species. These results are consistent with experimental studies and represent, to our knowledge, the first deep-time validation of the importance of developmental integration in stabilizing morphological evolution through periods of environmental change. PMID:25901310

  11. The Stochastic Evolutionary Game for a Population of Biological Networks Under Natural Selection

    PubMed Central

    Chen, Bor-Sen; Ho, Shih-Ju

    2014-01-01

    In this study, a population of evolutionary biological networks is described by a stochastic dynamic system with intrinsic random parameter fluctuations due to genetic variations and external disturbances caused by environmental changes in the evolutionary process. Since information on environmental changes is unavailable and their occurrence is unpredictable, they can be considered as a game player with the potential to destroy phenotypic stability. The biological network needs to develop an evolutionary strategy to improve phenotypic stability as much as possible, so it can be considered as another game player in the evolutionary process, ie, a stochastic Nash game of minimizing the maximum network evolution level caused by the worst environmental disturbances. Based on the nonlinear stochastic evolutionary game strategy, we find that some genetic variations can be used in natural selection to construct negative feedback loops, efficiently improving network robustness. This provides larger genetic robustness as a buffer against neutral genetic variations, as well as larger environmental robustness to resist environmental disturbances and maintain a network phenotypic traits in the evolutionary process. In this situation, the robust phenotypic traits of stochastic biological networks can be more frequently selected by natural selection in evolution. However, if the harbored neutral genetic variations are accumulated to a sufficiently large degree, and environmental disturbances are strong enough that the network robustness can no longer confer enough genetic robustness and environmental robustness, then the phenotype robustness might break down. In this case, a network phenotypic trait may be pushed from one equilibrium point to another, changing the phenotypic trait and starting a new phase of network evolution through the hidden neutral genetic variations harbored in network robustness by adaptive evolution. Further, the proposed evolutionary game is extended to

  12. Environmental quality, developmental plasticity and the thrifty phenotype: a review of evolutionary models.

    PubMed

    Wells, Jonathan C K

    2007-01-01

    The concept of the thrifty phenotype, first proposed by Hales and Barker, is now widely used in medical research, often in contrast to the thrifty genotype model, to interpret associations between early-life experience and adult health status. Several evolutionary models of the thrifty phenotype, which refers to developmental plasticity, have been presented. These include (A) the weather forecast model of Bateson, (B) the maternal fitness model of Wells, (C) the intergenerational phenotypic inertia model of Kuzawa, and (D) the predictive adaptive response model of Gluckman and Hanson. These models are compared and contrasted, in order to assess their relative utility for understanding human ontogenetic development. The most broadly applicable model is model A, which proposes that developing organisms respond to cues of environmental quality, and that mismatches between this forecast and subsequent reality generate significant adverse effects in adult phenotype. The remaining models all address in greater detail what kind of information is provided by such a forecast. Whereas both models B and C emphasise the adaptive benefits of exploiting information about the past, encapsulated in maternal phenotype, model D assumes that the fetus uses cues about the present external environment to predict its probable adult environment. I argue that for humans, with a disproportionately long period between the closing of sensitive windows of plasticity and the attainment of reproductive maturity, backward-looking models B and C represent a better approach, and indicate that the developing offspring aligns itself with stable cues of maternal phenotype so as to match its energy demand with maternal capacity to supply. In contrast, the predictive adaptive response model D over-estimates the capacity of the offspring to predict the future, and also fails to address the long-term parent-offspring dynamics of human development. Differences between models have implications for the

  13. Evolutionary Design in Biological Physics and Materials Science

    NASA Astrophysics Data System (ADS)

    Yang, M.; Park, J.-M.; Deem, M. W.

    In this chapter we provide a thorough discussion of the theoretical description of the multi-site approach to cancer vaccination. The discussion is somewhat demanding from a biological point of view. References to primary biological publications are given. A general reference on immunology is [1].

  14. Mathematics and evolutionary biology make bioinformatics education comprehensible

    PubMed Central

    Weisstein, Anton E.

    2013-01-01

    The patterns of variation within a molecular sequence data set result from the interplay between population genetic, molecular evolutionary and macroevolutionary processes—the standard purview of evolutionary biologists. Elucidating these patterns, particularly for large data sets, requires an understanding of the structure, assumptions and limitations of the algorithms used by bioinformatics software—the domain of mathematicians and computer scientists. As a result, bioinformatics often suffers a ‘two-culture’ problem because of the lack of broad overlapping expertise between these two groups. Collaboration among specialists in different fields has greatly mitigated this problem among active bioinformaticians. However, science education researchers report that much of bioinformatics education does little to bridge the cultural divide, the curriculum too focused on solving narrow problems (e.g. interpreting pre-built phylogenetic trees) rather than on exploring broader ones (e.g. exploring alternative phylogenetic strategies for different kinds of data sets). Herein, we present an introduction to the mathematics of tree enumeration, tree construction, split decomposition and sequence alignment. We also introduce off-line downloadable software tools developed by the BioQUEST Curriculum Consortium to help students learn how to interpret and critically evaluate the results of standard bioinformatics analyses. PMID:23821621

  15. Public health evolutionary biology of antimicrobial resistance: priorities for intervention

    PubMed Central

    Baquero, Fernando; Lanza, Val F; Cantón, Rafael; Coque, Teresa M

    2015-01-01

    The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR. PMID:25861381

  16. Evolutionary cell biology: functional insight from "endless forms most beautiful".

    PubMed

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G; Dacks, Joel B

    2015-12-15

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. PMID:26668171

  17. Developmental consequences and biological significance of mother-infant bonding.

    PubMed

    Mogi, Kazutaka; Nagasawa, Miho; Kikusui, Takefumi

    2011-07-01

    Mother-infant bonding is universal to all mammalian species. Here, we review how mutual communication between the mother and infant leads to mother-infant bonding in non-primate species. In rodents, mother-infant bond formation is reinforced by various pup stimuli, such as tactile stimuli and ultrasonic vocalizations. Evidence suggests that the oxytocin neural system plays a pivotal role in each aspect of the mother-infant bonding, although the mechanisms underlying bond formation in the brain of infants has not yet been clarified. Impairment of mother-infant bonding strongly influences offspring sociality. We describe the negative effects of mother-infant bonding deprivation on the neurobehavioral development in rodent offspring, even if weaning occurs in the later lactating period. We also discuss similar effects observed in pigs and dogs, which are usually weaned earlier than under natural conditions. The comparative understanding of the developmental consequences of mother-infant bonding and the underlying mechanisms provide insight into the biological significance of this bonding in mammals, and may help us to understand psychiatric disorders related to child abuse or childhood neglect. PMID:20817069

  18. Design of synthetic biological logic circuits based on evolutionary algorithm.

    PubMed

    Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei

    2013-08-01

    The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose. PMID:23919952

  19. Evolutionary Tradeoffs between Economy and Effectiveness in Biological Homeostasis Systems

    PubMed Central

    Szekely, Pablo; Sheftel, Hila; Mayo, Avi; Alon, Uri

    2013-01-01

    Biological regulatory systems face a fundamental tradeoff: they must be effective but at the same time also economical. For example, regulatory systems that are designed to repair damage must be effective in reducing damage, but economical in not making too many repair proteins because making excessive proteins carries a fitness cost to the cell, called protein burden. In order to see how biological systems compromise between the two tasks of effectiveness and economy, we applied an approach from economics and engineering called Pareto optimality. This approach allows calculating the best-compromise systems that optimally combine the two tasks. We used a simple and general model for regulation, known as integral feedback, and showed that best-compromise systems have particular combinations of biochemical parameters that control the response rate and basal level. We find that the optimal systems fall on a curve in parameter space. Due to this feature, even if one is able to measure only a small fraction of the system's parameters, one can infer the rest. We applied this approach to estimate parameters in three biological systems: response to heat shock and response to DNA damage in bacteria, and calcium homeostasis in mammals. PMID:23950698

  20. Mechanisms of bacterial morphogenesis: Evolutionary cell biology approaches provide new insights

    PubMed Central

    Jiang, Chao; Caccamo, Paul D.; Brun, Yves V.

    2015-01-01

    How Darwin’s “endless forms most beautiful” have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating “evolutionary thinking” into bacterial cell biology in the genomic era. PMID:25664446

  1. Evolution of microbes and viruses: a paradigm shift in evolutionary biology?

    PubMed Central

    Koonin, Eugene V.; Wolf, Yuri I.

    2012-01-01

    When Charles Darwin formulated the central principles of evolutionary biology in the Origin of Species in 1859 and the architects of the Modern Synthesis integrated these principles with population genetics almost a century later, the principal if not the sole objects of evolutionary biology were multicellular eukaryotes, primarily animals and plants. Before the advent of efficient gene sequencing, all attempts to extend evolutionary studies to bacteria have been futile. Sequencing of the rRNA genes in thousands of microbes allowed the construction of the three- domain “ribosomal Tree of Life” that was widely thought to have resolved the evolutionary relationships between the cellular life forms. However, subsequent massive sequencing of numerous, complete microbial genomes revealed novel evolutionary phenomena, the most fundamental of these being: (1) pervasive horizontal gene transfer (HGT), in large part mediated by viruses and plasmids, that shapes the genomes of archaea and bacteria and call for a radical revision (if not abandonment) of the Tree of Life concept, (2) Lamarckian-type inheritance that appears to be critical for antivirus defense and other forms of adaptation in prokaryotes, and (3) evolution of evolvability, i.e., dedicated mechanisms for evolution such as vehicles for HGT and stress-induced mutagenesis systems. In the non-cellular part of the microbial world, phylogenomics and metagenomics of viruses and related selfish genetic elements revealed enormous genetic and molecular diversity and extremely high abundance of viruses that come across as the dominant biological entities on earth. Furthermore, the perennial arms race between viruses and their hosts is one of the defining factors of evolution. Thus, microbial phylogenomics adds new dimensions to the fundamental picture of evolution even as the principle of descent with modification discovered by Darwin and the laws of population genetics remain at the core of evolutionary biology. PMID

  2. Remembering the Forest While Viewing the Trees: Evolutionary Thinking in the Teaching of Molecular Biology

    ERIC Educational Resources Information Center

    Saraswati, Sitaraman; Sitaraman, Ramakrishnan

    2014-01-01

    Given the centrality of evolutionary theory to the study of biology, we present a strategy for reinforcing its importance by appropriately recontextualizing classic and well-known experiments that are not explicitly linked with evolution in conventional texts. This exercise gives students an appreciation of the applicability of the theory of…

  3. Inherit the Policy: A Sociocultural Approach to Understanding Evolutionary Biology Policy in South Carolina

    ERIC Educational Resources Information Center

    Moore, Gregory D.

    2012-01-01

    South Carolina biology Indicator 5.6 calls for students to "Summarize ways that scientists use data from a variety of sources to investigate and critically analyze aspects of evolutionary theory" (South Carolina Department of Education, 2006). Levinson and Sutton (2001) offered a sociocultural approach to policy that considers cultural…

  4. A Course in Evolutionary Biology: Engaging Students in the "Practice" of Evolution. Research Report.

    ERIC Educational Resources Information Center

    Passmore, Cynthia; Stewart, James

    Recent education reform documents emphasize the need for students to develop a rich understanding of evolution's power to integrate knowledge of the natural world. This paper describes a nine-week high school course designed to help students understand evolutionary biology by engaging them in developing, elaborating, and using Charles Darwin's…

  5. Latitudinal clines: an evolutionary view on biological rhythms†,‡

    PubMed Central

    Hut, Roelof A.; Paolucci, Silvia; Dor, Roi; Kyriacou, Charalambos P.; Daan, Serge

    2013-01-01

    Properties of the circadian and annual timing systems are expected to vary systematically with latitude on the basis of different annual light and temperature patterns at higher latitudes, creating specific selection pressures. We review literature with respect to latitudinal clines in circadian phenotypes as well as in polymorphisms of circadian clock genes and their possible association with annual timing. The use of latitudinal (and altitudinal) clines in identifying selective forces acting on biological rhythms is discussed, and we evaluate how these studies can reveal novel molecular and physiological components of these rhythms. PMID:23825204

  6. The next evolutionary synthesis: from Lamarck and Darwin to genomic variation and systems biology

    PubMed Central

    2011-01-01

    The evolutionary synthesis, the standard 20th century view of how evolutionary change occurs, is based on selection, heritable phenotypic variation and a very simple view of genes. It is therefore unable to incorporate two key aspects of modern molecular knowledge: first is the richness of genomic variation, so much more complicated than simple mutation, and second is the opaque relationship between the genotype and its resulting phenotype. Two new and important books shed some light on how we should view evolutionary change now. Evolution: a view from the 21st century by J.A. Shapiro (2011, FT Press Science, New Jersey, USA. pp. 246.) examines the richness of genomic variation and its implications. Transformations of Lamarckism: from Subtle Fluids to Molecular Biology edited by S.B. Gissis & E. Jablonka (2011, MIT Press, Cambridge, USA. pp. 457) includes some 40 papers that anyone with an interest in the history of evolutionary thought and the relationship between the environment and the genome will want to read. This review discusses both books within the context of contemporary evolutionary thinking and points out that neither really comes to terms with today's key systems-biology question: how does mutation-induced variation in a molecular network generate variation in the resulting phenotype? PMID:22053760

  7. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  8. Making developmental biology relevant to undergraduates in an era of economic rationalism in Australia.

    PubMed

    Key, Brian; Nurcombe, Victor

    2003-01-01

    This report describes the road map we followed at our university to accommodate three main factors: financial pressure within the university system; desire to enhance the learning experience of undergraduates; and motivation to increase the prominence of the discipline of developmental biology in our university. We engineered a novel, multi-year undergraduate developmental biology program which was "student-oriented," ensuring that students were continually exposed to the underlying principles and philosophy of this discipline throughout their undergraduate career. Among its key features are introductory lectures in core courses in the first year, which emphasize the relevance of developmental biology to tissue engineering, reproductive medicine, therapeutic approaches in medicine, agriculture and aquaculture. State-of-the-art animated computer graphics and images of high visual impact are also used. In addition, students are streamed into the developmental biology track in the second year, using courses like human embryology and courses shared with cell biology, which include practicals based on modern experimental approaches. Finally, fully dedicated third-year courses in developmental biology are undertaken in conjunction with stand-alone practical courses where students experiencefirst-hand work in a research laboratory. Our philosophy is a "cradle-to-grave" approach to the education of undergraduates so as to prepare highly motivated, enthusiastic and well-educated developmental biologists for entry into graduate programs and ultimately post-doctoral research. PMID:12705657

  9. Coadaptation: a unifying principle in evolutionary thermal biology.

    PubMed

    Angilletta, Michael J; Bennett, Albert F; Guderley, Helga; Navas, Carlos A; Seebacher, Frank; Wilson, Robbie S

    2006-01-01

    Over the last 50 yr, thermal biology has shifted from a largely physiological science to a more integrated science of behavior, physiology, ecology, and evolution. Today, the mechanisms that underlie responses to environmental temperature are being scrutinized at levels ranging from genes to organisms. From these investigations, a theory of thermal adaptation has emerged that describes the evolution of thermoregulation, thermal sensitivity, and thermal acclimation. We review and integrate current models to form a conceptual model of coadaptation. We argue that major advances will require a quantitative theory of coadaptation that predicts which strategies should evolve in specific thermal environments. Simply combining current models, however, is insufficient to understand the responses of organisms to thermal heterogeneity; a theory of coadaptation must also consider the biotic interactions that influence the net benefits of behavioral and physiological strategies. Such a theory will be challenging to develop because each organism's perception of and response to thermal heterogeneity depends on its size, mobility, and life span. Despite the challenges facing thermal biologists, we have never been more pressed to explain the diversity of strategies that organisms use to cope with thermal heterogeneity and to predict the consequences of thermal change for the diversity of communities. PMID:16555188

  10. Evolutionary and Biological Implications of Dental Mesial Drift in Rodents: The Case of the Ctenodactylidae (Rodentia, Mammalia)

    PubMed Central

    Gomes Rodrigues, Helder; Solé, Floréal; Charles, Cyril; Tafforeau, Paul; Vianey-Liaud, Monique; Viriot, Laurent

    2012-01-01

    Dental characters are importantly used for reconstructing the evolutionary history of mammals, because teeth represent the most abundant material available for the fossil species. However, the characteristics of dental renewal are presently poorly used, probably because dental formulae are frequently not properly established, whereas they could be of high interest for evolutionary and developmental issues. One of the oldest rodent families, the Ctenodactylidae, is intriguing in having longstanding disputed dental formulae. Here, we investigated 70 skulls among all extant ctenodactylid genera (Ctenodactylus, Felovia, Massoutiera and Pectinator) by using X-ray conventional and synchrotron microtomography in order to solve and discuss these dental issues. Our study clearly indicates that Massoutiera, Felovia and Ctenodactylus differ from Pectinator not only by a more derived dentition, but also by a more derived eruptive sequence. In addition to molars, their dentition only includes the fourth deciduous premolars, and no longer bears permanent premolars, conversely to Pectinator. Moreover, we found that these premolars are lost during adulthood, because of mesial drift of molars. Mesial drift is a striking mechanism involving migration of teeth allowed by both bone remodeling and dental resorption. This dental innovation is to date poorly known in rodents, since it is only the second report described. Interestingly, we noted that dental drift in rodents is always associated with high-crowned teeth favoring molar size enlargement. It can thus represent another adaptation to withstand high wear, inasmuch as these rodents inhabit desert environments where dust is abundant. A more accurate study of mesial drift in rodents would be very promising from evolutionary, biological and orthodontic points of view. PMID:23185576

  11. Evolution of the neocortex: a perspective from developmental biology.

    PubMed

    Rakic, Pasko

    2009-10-01

    The enlargement and species-specific elaboration of the cerebral neocortex during evolution holds the secret to the mental abilities of humans; however, the genetic origin and cellular mechanisms that generated the distinct evolutionary advancements are not well understood. This article describes how novelties that make us human may have been introduced during evolution, based on findings in the embryonic cerebral cortex in different mammalian species. The data on the differences in gene expression, new molecular pathways and novel cellular interactions that have led to these evolutionary advances may also provide insight into the pathogenesis and therapies for human-specific neuropsychiatric disorders. PMID:19763105

  12. Conciliation biology: the eco-evolutionary management of permanently invaded biotic systems

    PubMed Central

    Carroll, Scott P

    2011-01-01

    Biotic invaders and similar anthropogenic novelties such as domesticates, transgenics, and cancers can alter ecology and evolution in environmental, agricultural, natural resource, public health, and medical systems. The resulting biological changes may either hinder or serve management objectives. For example, biological control and eradication programs are often defeated by unanticipated resistance evolution and by irreversibility of invader impacts. Moreover, eradication may be ill-advised when nonnatives introduce beneficial functions. Thus, contexts that appear to call for eradication may instead demand managed coexistence of natives with nonnatives, and yet applied biologists have not generally considered the need to manage the eco-evolutionary dynamics that commonly result from interactions of natives with nonnatives. Here, I advocate a conciliatory approach to managing systems where novel organisms cannot or should not be eradicated. Conciliatory strategies incorporate benefits of nonnatives to address many practical needs including slowing rates of resistance evolution, promoting evolution of indigenous biological control, cultivating replacement services and novel functions, and managing native–nonnative coevolution. Evolutionary links across disciplines foster cohesion essential for managing the broad impacts of novel biotic systems. Rather than signaling defeat, conciliation biology thus utilizes the predictive power of evolutionary theory to offer diverse and flexible pathways to more sustainable outcomes. PMID:25567967

  13. Developmental biology of Cystoisospora (Apicomplexa: Sarcocystidae) monozoic tissue cysts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tissue cyst stages are an intriguing aspect of the developmental cycle and transmission of members of the Family Sarcocystidae. Tissue cyst stages of the genera Toxoplasma, Hammondia, Neospora, Besnoitia, and Sarcocystis contain many infectious stages (bradyzoites).The tissue cyst stage of Cystoisos...

  14. Developmental Plasticity in Children: The Role of Biological Risk, Development, Time, and Reserve.

    ERIC Educational Resources Information Center

    Dennis, Maureen

    2000-01-01

    This article discusses newer views of functional developmental plasticity occurring after biological insults to the developing central nervous system (CNS), including concepts of neurobehavioral outcome and ways to measure it, biological risk, age and development at onset of CNS insult, time since onset of CNS insult, and reserve. (Contains…

  15. The Nestor Effect: Extending Evolutionary Developmental Psychology to a Lifespan Perspective

    ERIC Educational Resources Information Center

    Greve, Werner; Bjorklund, David F.

    2009-01-01

    We extend an evolutionary perspective of development to the lifespan, proposing that human longevity may be related to the experience, knowledge, and wisdom provided by older members of human groups. In addition to the assistance in childcare provided by grandmothers to their daughters, the experience of wise elders could have served to benefit…

  16. Can systems biology help to separate evolutionary analogies (convergent homoplasies) from homologies?

    PubMed

    Gordon, Malcolm S; Notar, Julia C

    2015-01-01

    Convergent evolutionary analogies (homoplasies) of many kinds occur in diverse phylogenetic clades/lineages on both the animal and plant branches of the Tree of Life. Living organisms whose last common ancestors lived millions to hundreds of millions of years ago have later converged morphologically, behaviorally or at other levels of functionality (from molecular genetics through biochemistry, physiology and other organismic processes) as a result of long term strong natural selection that has constrained and channeled evolutionary processes. This happens most often when organisms belonging to different clades occupy ecological niches, habitats or environments sharing major characteristics that select for a relatively narrow range of organismic properties. Systems biology, broadly defined, provides theoretical and methodological approaches that are beginning to make it possible to answer a perennial evolutionary biological question relating to convergent homoplasies: Are at least some of the apparent analogies actually unrecognized homologies? This review provides an overview of the current state of knowledge of important aspects of this topic area. It also provides a resource describing many homoplasies that may be fruitful subjects for systems biological research. PMID:25620424

  17. Polarized Light Microscopy in Reproductive and Developmental Biology

    PubMed Central

    KOIKE-TANI, MAKI; TANI, TOMOMI; MEHTA, SHALIN B.; VERMA, AMITABH; OLDENBOURG, RUDOLF

    2016-01-01

    SUMMARY The polarized light microscope reveals orientational order in native molecular structures inside living cells, tissues, and whole organisms. It is a powerful tool used to monitor and analyze the early developmental stages of organisms that lend themselves to microscopic observations. In this article, we briefly discuss the components specific to a traditional polarizing microscope and some historically important observations on: chromosome packing in the sperm head, the first zygote division of the sea urchin, and differentiation initiated by the first asymmetric cell division in the sand dollar. We then introduce the LC-PolScope and describe its use for measuring birefringence and polarized fluorescence in living cells and tissues. Applications range from the enucleation of mouse oocytes to analyzing the polarized fluorescence of the water strider acrosome. We end with new results on the birefringence of the developing chick brain, which we analyzed between developmental stages of days 12–20. PMID:23901032

  18. Developmental Plasticity in Protea as an Evolutionary Response to Environmental Clines in the Cape Floristic Region

    PubMed Central

    Carlson, Jane E.; Holsinger, Kent E.

    2012-01-01

    Local adaptation along steep environmental gradients likely contributes to plant diversity in the Cape Region of South Africa, yet existing analyses of trait divergence are limited to static measurements of functional traits rather than trajectories of individual development. We explore whether five taxa of evergreen shrubs (Protea section Exsertae) differ in their developmental trajectories and capacity for plasticity using two environmentally-distinct common gardens in South Africa. We measured seedlings in the summer-dry season and winter-wet season of each of two consecutive years to characterize ontogeny and plasticity within years, as same-age leaf cohorts mature, and between years, i.e., from leaf one cohort to the next. We compared patterns of development between gardens to assess whether trait trajectories are programmed versus plastic and examined whether developmental differences covaried with characteristics of a seedling’s home environment. We detected plasticity in developmental trajectories for leaf area, stomatal size, stomatal pore index, and to a limited extent specific leaf area, but not for stomatal density. We showed that the species growing in the harshest environments exhibits both the smallest increase in leaf area between years and the least change in SLA and photosynthetic rates as leaves age within years. These results show that within this clade, species have diverged in developmental trajectories and plasticity as well as in mean trait values. Some of these differences may be associated with adaptation to cold and drought stress within an environmentally-complex region. PMID:23272203

  19. Hard to swallow: Developmental biological insights into pediatric dysphagia.

    PubMed

    LaMantia, Anthony-Samuel; Moody, Sally A; Maynard, Thomas M; Karpinski, Beverly A; Zohn, Irene E; Mendelowitz, David; Lee, Norman H; Popratiloff, Anastas

    2016-01-15

    Pediatric dysphagia-feeding and swallowing difficulties that begin at birth, last throughout childhood, and continue into maturity--is one of the most common, least understood complications in children with developmental disorders. We argue that a major cause of pediatric dysphagia is altered hindbrain patterning during pre-natal development. Such changes can compromise craniofacial structures including oropharyngeal muscles and skeletal elements as well as motor and sensory circuits necessary for normal feeding and swallowing. Animal models of developmental disorders that include pediatric dysphagia in their phenotypic spectrum can provide mechanistic insight into pathogenesis of feeding and swallowing difficulties. A fairly common human genetic developmental disorder, DiGeorge/22q11.2 Deletion Syndrome (22q11DS) includes a substantial incidence of pediatric dysphagia in its phenotypic spectrum. Infant mice carrying a parallel deletion to 22q11DS patients have feeding and swallowing difficulties that approximate those seen in pediatric dysphagia. Altered hindbrain patterning, craniofacial malformations, and changes in cranial nerve growth prefigure these difficulties. Thus, in addition to craniofacial and pharyngeal anomalies that arise independently of altered neural development, pediatric dysphagia may result from disrupted hindbrain patterning and its impact on peripheral and central neural circuit development critical for feeding and swallowing. The mechanisms that disrupt hindbrain patterning and circuitry may provide a foundation to develop novel therapeutic approaches for improved clinical management of pediatric dysphagia. PMID:26554723

  20. On the evolutionary origins of life-course persistent offending: a theoretical scaffold for Moffitt's developmental taxonomy.

    PubMed

    Boutwell, Brian B; Barnes, J C; Deaton, Raelynn; Beaver, Kevin M

    2013-04-01

    The study of human crime and violence represents a flashpoint for discussion across academia. Multiple theories exist pertaining to the topic, all aimed at organizing numerous findings surrounding correlates of antisocial behavior. Along these lines, Moffitt's developmental taxonomy has emerged as a theory well supported by empirical research. Noticeably absent, though, has been an effort to apply an evolutionary framework to Moffitt's dual taxonomy of offending. With this in mind, the current study is intended to examine Moffitt's different typologies in the context of Rushton's Differential K theory (an adaptation of r-K selection from life history theory). Our findings suggest that life-course persistent offending may represent a viable reproductive strategy characterized by higher levels of sexual involvement over the life-course. PMID:23333839

  1. The society for craniofacial genetics and developmental biology 38th annual meeting.

    PubMed

    Taneyhill, Lisa A; Hoover-Fong, Julie; Lozanoff, Scott; Marcucio, Ralph; Richtsmeier, Joan T; Trainor, Paul A

    2016-07-01

    The mission of the Society for Craniofacial Genetics and Developmental Biology (SCGDB) is to promote education, research, and communication about normal and abnormal development of the tissues and organs of the head. The SCGDB welcomes as members undergraduate students, graduate students, post doctoral researchers, clinicians, orthodontists, scientists, and academicians who share an interest in craniofacial biology. Each year our members come together to share their novel findings, build upon, and challenge current knowledge of craniofacial biology. © 2016 Wiley Periodicals, Inc. PMID:27102868

  2. Virtual Tissues and Developmental Systems Biology (book chapter)

    EPA Science Inventory

    Virtual tissue (VT) models provide an in silico environment to simulate cross-scale properties in specific tissues or organs based on knowledge of the underlying biological networks. These integrative models capture the fundamental interactions in a biological system and enable ...

  3. Sex-Specific Pathways to Early Puberty, Sexual Debut, and Sexual Risk Taking: Tests of an Integrated Evolutionary-Developmental Model

    ERIC Educational Resources Information Center

    James, Jenee; Ellis, Bruce J.; Schlomer, Gabriel L.; Garber, Judy

    2012-01-01

    The current study tested sex-specific pathways to early puberty, sexual debut, and sexual risk taking, as specified by an integrated evolutionary-developmental model of adolescent sexual development and behavior. In a prospective study of 238 adolescents (n = 129 girls and n = 109 boys) followed from approximately 12-18 years of age, we tested for…

  4. Learning developmental biology has priority in the life sciences curriculum in Singapore.

    PubMed

    Lim, Tit-Meng

    2003-01-01

    Singapore has embraced the life sciences as an important discipline to be emphasized in schools and universities. This is part of the nation's strategic move towards a knowledge-based economy, with the life sciences poised as a new engine for economic growth. In the life sciences, the area of developmental biology is of prime interest, since it is not just intriguing for students to know how a single cell can give rise to a complex, coordinated, functional life that is multicellular and multifaceted, but more importantly, there is much in developmental biology that can have biomedical implications. At different levels in the Singapore educational system, students are exposed to various aspects of developmental biology. The author has given many guest lectures to secondary (ages 12-16) and high school (ages 17-18) students to enthuse them about topics such as embryo cloning and stem cell biology. At the university level, some selected topics in developmental biology are part of a broader course which caters for students not majoring in the life sciences, so that they will learn to comprehend how development takes place and the significance of the knowledge and impacts of the technologies derived in the field. For students majoring in the life sciences, the subject is taught progressively in years two and three, so that students will gain specialist knowledge in developmental biology. As they learn, students are exposed to concepts, principles and mechanisms that underlie development. Different model organisms are studied to demonstrate the rapid advances in this field and to show the interconnectivity of developmental themes among living things. The course inevitably touches on life and death matters, and the social and ethical implications of recent technologies which enable scientists to manipulate life are discussed accordingly, either in class, in a discussion forum, or through essay writing. PMID:12705658

  5. Adult renal cystic disease: a genetic, biological, and developmental primer.

    PubMed

    Katabathina, Venkata S; Kota, Gopi; Dasyam, Anil K; Shanbhogue, Alampady K P; Prasad, Srinivasa R

    2010-10-01

    Renal cystic diseases in adults are a heterogeneous group of disorders characterized by the presence of multiple cysts in the kidneys. These diseases may be categorized as hereditary, acquired, or developmental on the basis of their pathogenesis. Hereditary conditions include autosomal dominant polycystic kidney disease, medullary cystic kidney disease, von Hippel-Lindau disease, and tuberous sclerosis. Acquired conditions include cystic kidney disease, which develops in patients with end-stage renal disease. Developmental cystic diseases of the adult kidney include localized renal cystic disease, multicystic dysplastic kidney, and medullary sponge kidney. In recent years, many molecular and cellular mechanisms involved in the pathogenesis of renal cystic diseases have been identified. Hereditary renal cystic diseases are characterized by genetic mutations that lead to defects in the structure and function of the primary cilia of renal tubular epithelial cells, abnormal proliferation of tubular epithelium, and increased fluid secretion, all of which ultimately result in the development of renal cysts. A better understanding of these pathophysiologic mechanisms is now providing the basis for the development of more targeted therapeutic drugs for some of these disorders. Cross-sectional imaging provides useful information for diagnosis, surveillance, prognostication, and evaluation of treatment response in renal cystic diseases. PMID:21071372

  6. Developmental tuning of reflexive attentional effect to biological motion cues

    PubMed Central

    Zhao, Jing; Wang, Li; Wang, Ying; Weng, Xuchu; Li, Su; Jiang, Yi

    2014-01-01

    The human visual system is extremely sensitive to the direction information retrieved from biological motion. In the current study, we investigate the functional impact of this sensitivity on attentional orienting in young children. We found that children as early as 4 years old, like adults, showed a robust reflexive attentional orienting effect to the walking direction of an upright point-light walker, indicating that biological motion signals can automatically direct spatial attention at an early age. More importantly, the inversion effect associated with attentional orienting emerges by 4 years old and gradually develops into a similar pattern found in adults. These results provide strong evidence that biological motion cues can guide the distribution of spatial attention in young children, and highlight a critical development from a broadly- to finely-tuned process of utilizing biological motion cues in the human social brain. PMID:24990449

  7. Biochemistry and physiology within the framework of the extended synthesis of evolutionary biology.

    PubMed

    Vianello, Angelo; Passamonti, Sabina

    2016-01-01

    Functional biologists, like Claude Bernard, ask "How?", meaning that they investigate the mechanisms underlying the emergence of biological functions (proximal causes), while evolutionary biologists, like Charles Darwin, asks "Why?", meaning that they search the causes of adaptation, survival and evolution (remote causes). Are these divergent views on what is life? The epistemological role of functional biology (molecular biology, but also biochemistry, physiology, cell biology and so forth) appears essential, for its capacity to identify several mechanisms of natural selection of new characters, individuals and populations. Nevertheless, several issues remain unsolved, such as orphan metabolic activities, i.e., adaptive functions still missing the identification of the underlying genes and proteins, and orphan genes, i.e., genes that bear no signature of evolutionary history, yet provide an organism with improved adaptation to environmental changes. In the framework of the Extended Synthesis, we suggest that the adaptive roles of any known function/structure are reappraised in terms of their capacity to warrant constancy of the internal environment (homeostasis), a concept that encompasses both proximal and remote causes. PMID:26861860

  8. The biology of developmental plasticity and the Predictive Adaptive Response hypothesis

    PubMed Central

    Bateson, Patrick; Gluckman, Peter; Hanson, Mark

    2014-01-01

    Many forms of developmental plasticity have been observed and these are usually beneficial to the organism. The Predictive Adaptive Response (PAR) hypothesis refers to a form of developmental plasticity in which cues received in early life influence the development of a phenotype that is normally adapted to the environmental conditions of later life. When the predicted and actual environments differ, the mismatch between the individual's phenotype and the conditions in which it finds itself can have adverse consequences for Darwinian fitness and, later, for health. Numerous examples exist of the long-term effects of cues indicating a threatening environment affecting the subsequent phenotype of the individual organism. Other examples consist of the long-term effects of variations in environment within a normal range, particularly in the individual's nutritional environment. In mammals the cues to developing offspring are often provided by the mother's plane of nutrition, her body composition or stress levels. This hypothetical effect in humans is thought to be important by some scientists and controversial by others. In resolving the conflict, distinctions should be drawn between PARs induced by normative variations in the developmental environment and the ill effects on development of extremes in environment such as a very poor or very rich nutritional environment. Tests to distinguish between different developmental processes impacting on adult characteristics are proposed. Many of the mechanisms underlying developmental plasticity involve molecular epigenetic processes, and their elucidation in the context of PARs and more widely has implications for the revision of classical evolutionary theory. PMID:24882817

  9. Evolutionary Changes in the Developmental Origin of Hatching Gland Cells in Basal Ray-Finned Fishes.

    PubMed

    Nagasawa, Tatsuki; Kawaguchi, Mari; Yano, Tohru; Sano, Kaori; Okabe, Masataka; Yasumasu, Shigeki

    2016-06-01

    Hatching gland cells (HGCs) originate from different germ layers between frogs and teleosts, although the hatching enzyme genes are orthologous. Teleostei HGCs differentiate in the mesoendodermal cells at the anterior end of the involved hypoblast layer (known as the polster) in late gastrula embryos. Conversely, frog HGCs differentiate in the epidermal cells at the neural plate border in early neurula embryos. To infer the transition in the developmental origin of HGCs, we studied two basal ray-finned fishes, bichir (Polypterus) and sturgeon. We observed expression patterns of their hatching enzyme (HE) and that of three transcription factors that are critical for HGC differentiation: KLF17 is common to both teleosts and frogs; whereas FoxA3 and Pax3 are specific to teleosts and frogs, respectively. We then inferred the transition in the developmental origin of HGCs. In sturgeon, the KLF17, FoxA3, and HE genes were expressed during the tailbud stage in the cell mass at the anterior region of the body axis, a region corresponding to the polster in teleost embryos. In contrast, the bichir was suggested to possess both teleost- and amphibian-type HGCs, i.e. the KLF17 and FoxA3 genes were expressed in the anterior cell mass corresponding to the polster, and the KLF17, Pax3 and HE genes were expressed in dorsal epidermal layer of the head. The change in developmental origin is thought to have occurred during the evolution of basal ray-finned fish, because bichir has two HGCs, while sturgeon only has the teleost-type. PMID:27268981

  10. Plant Developmental Biology in Spain: from the origins to our days and prospects for the future.

    PubMed

    Beltrán, José-Pío

    2009-01-01

    The origins of modern Plant Developmental Biology in Spain can be traced back to a handful of scientists settled in Madrid, Barcelona, Valencia and Sevilla, who devoted themselves to plant biochemistry, molecular biology and genetics, and also to Drosophila developmental biology, which influenced, often unintentionally, the pioneers of this field. To reach the present day situation, the experience acquired in centres abroad has also been important, especially in plant research institutes in the USA, Germany (Max-Planck Institute für Züchtungsforschung) and United Kingdom (John Innes Centre). The contributions of Spanish scientists to the advancement of Plant Developmental Biology appears to be imbalanced towards reproductive biology, although relevant publications have also been reported on embryogenesis and seed development, shoot branching, tuberization, vascular morphogenesis, leaf development, regulation of development by light, signal transduction and hormone action and the connection between growth and development. Plant Developmental Biology in Spain is going through a flourishing time, with its future being highly dependent on i) appropriate funding conditions to its young scientists, ii) the opening of new areas of research, iii) the incorporation of technological breakthroughs into laboratories and iv) the carrying out of cooperative research by means of networking. Currently, besides many Departments of the Spanish universities, several centres in which competitive research in plant Developmental Biology can be accomplished, exist: the CNB and CBGP in Madrid, the LGMV CSIC-IRTA in Barcelona, the IBMCP CSIC-UPV, in Valencia and the IBVF CSIC-USE in Sevilla. Let's go for more! PMID:19247931

  11. Integrating developmental biology and the fossil record of reptiles.

    PubMed

    Skawiński, Tomasz; Tałanda, Mateusz

    2014-01-01

    Numerous new discoveries and new research techniques have influenced our understanding of reptile development from a palaeontological perspective. They suggest for example that transition from mineralized to leathery eggshells and from oviparity to viviparity appeared much more often in the evolution of reptiles than was previously thought. Most marine reptiles evolved from viviparous terrestrial ancestors and had probably genetic sex determination. Fossil forms often display developmental traits absent or rare among modern ones such as polydactyly, hyperphalangy, the presence of ribcage armour, reduction of head ornamentation during ontogeny, extreme modifications of vertebral count or a wide range of feather-like structures. Thus, they provide an empirical background for many morphogenetic considerations. PMID:26154335

  12. Developmental Cognitive Neuroscience: Origins, Issues, and Prospects

    ERIC Educational Resources Information Center

    Pennington, Bruce F.; Snyder, Kelly A.; Roberts, Ralph J., Jr.

    2007-01-01

    This commentary explains how the field of developmental cognitive neuroscience (DCN) holds the promise of a much wider interdisciplinary integration across sciences concerned with development: psychology, molecular genetics, neurobiology, and evolutionary developmental biology. First we present a brief history of DCN, including the key theoretical…

  13. Biology and Beyond: Domain Specificity in a Broader Developmental Context

    ERIC Educational Resources Information Center

    Keil, Frank C.

    2007-01-01

    The assumption of domain specificity has been invaluable to the study of the emergence of biological thought in young children. Yet, domains of thought must be understood within a broader context that explains how those domains relate to the surrounding cultures, to different kinds of cognitive constraints, to framing effects, to abilities to…

  14. An evolutionary firefly algorithm for the estimation of nonlinear biological model parameters.

    PubMed

    Abdullah, Afnizanfaizal; Deris, Safaai; Anwar, Sohail; Arjunan, Satya N V

    2013-01-01

    The development of accurate computational models of biological processes is fundamental to computational systems biology. These models are usually represented by mathematical expressions that rely heavily on the system parameters. The measurement of these parameters is often difficult. Therefore, they are commonly estimated by fitting the predicted model to the experimental data using optimization methods. The complexity and nonlinearity of the biological processes pose a significant challenge, however, to the development of accurate and fast optimization methods. We introduce a new hybrid optimization method incorporating the Firefly Algorithm and the evolutionary operation of the Differential Evolution method. The proposed method improves solutions by neighbourhood search using evolutionary procedures. Testing our method on models for the arginine catabolism and the negative feedback loop of the p53 signalling pathway, we found that it estimated the parameters with high accuracy and within a reasonable computation time compared to well-known approaches, including Particle Swarm Optimization, Nelder-Mead, and Firefly Algorithm. We have also verified the reliability of the parameters estimated by the method using an a posteriori practical identifiability test. PMID:23469172

  15. Evolution of unusual morphologies in Lentibulariaceae (bladderworts and allies) and Podostemaceae (river-weeds): a pictorial report at the interface of developmental biology and morphological diversification

    PubMed Central

    Rutishauser, Rolf

    2016-01-01

    Background Various groups of flowering plants reveal profound (‘saltational’) changes of their bauplans (architectural rules) as compared with related taxa. These plants are known as morphological misfits that appear as rather large morphological deviations from the norm. Some of them emerged as morphological key innovations (perhaps ‘hopeful monsters’) that gave rise to new evolutionary lines of organisms, based on (major) genetic changes. Scope This pictorial report places emphasis on released bauplans as typical for bladderworts (Utricularia, approx. 230 secies, Lentibulariaceae) and river-weeds (Podostemaceae, three subfamilies, approx. 54 genera, approx. 310 species). Bladderworts (Utricularia) are carnivorous, possessing sucking traps. They live as submerged aquatics (except for their flowers), as humid terrestrials or as epiphytes. Most Podostemaceae are restricted to rocks in tropical river-rapids and waterfalls. They survive as submerged haptophytes in these extreme habitats during the rainy season, emerging with their flowers afterwards. The recent scientific progress in developmental biology and evolutionary history of both Lentibulariaceae and Podostemaceae is summarized. Conclusions Lentibulariaceae and Podostemaceae follow structural rules that are different from but related to those of more typical flowering plants. The roots, stems and leaves – as still distinguishable in related flowering plants – are blurred (‘fuzzy’). However, both families have stable floral bauplans. The developmental switches to unusual vegetative morphologies facilitated rather than prevented the evolution of species diversity in both families. The lack of one-to-one correspondence between structural categories and gene expression may have arisen from the re-use of existing genetic resources in novel contexts. Understanding what developmental patterns are followed in Lentibulariaceae and Podostemaceae is a necessary prerequisite to discover the genetic

  16. Developmental biology in Geneva: a three century-long tradition.

    PubMed

    Buscaglia, Marino; Duboule, Denis

    2002-01-01

    It was in the first half of the 18th century when life sciences started to flourish in the independent republic of Geneva. However, it is difficult to identify a genuine school of developmental biologists during that era. Nevertheless, several prominent scientists over the past two and a half centuries have established and maintained a strong tradition of studies in embryological development and reproduction. In this short historical account, we briefly pay tribute to these famous forerunners, by emphasizing both the originality and quality of their work, as well as the many accompanying conceptual and methodological advances. We start with Abraham Trembley (1710-1784) and the discovery of Hydra and of regeneration, and with Charles Bonnet (1720-1793) who, amongst other contributions, first observed parthenogenetic development. In the 19th century, Carl Vogt (1817-1895) and Edouard Claparède (1832-1871) were well-known scientists in this field of research, whereas Hermann Fol (1845-1892) can be considered as one of the pioneers, if not the founder, of causal embryology, through his experiments on lateral asymmetry in manipulated chicken. More recently, Emile Guyénot (1885-1963) and Kitty Ponse (1897-1982) perpetuated this tradition, which is well alive nowadays in the city of Calvin. PMID:11902688

  17. Developmental Changes in Children's Inductive Inferences for Biological Concepts: Implications for the Development of Essentialist Beliefs

    ERIC Educational Resources Information Center

    Farrar, M. Jeffrey; Boyer-Pennington, Michelle

    2011-01-01

    We examined developmental changes in children's inductive inferences about biological concepts as a function of knowledge of properties and concepts. Specifically, 4- to 5-year-olds and 9- to 10-year-olds were taught either familiar or unfamiliar internal, external, or functional properties about known and unknown target animals. Children were…

  18. SUPERNUMERARY RIBS IN DEVELOPMENTAL TOXICITY BIOASSAYS AND IN HUMAN POPULATIONS: INCIDENCE AND BIOLOGICAL SIGNIFICANCE

    EPA Science Inventory

    Abstract
    Supernumerary or accessory ribs (SNR), either lumbar (LSNR) or cervical (CSNR) are a common finding in standard developmental toxicology bioassays. The biological significance of these anomalies within the regulatory arena has been problematic and the subject of some...

  19. EVALUATION OF BIOLOGICALLY BASED DOSE-RESPONSE MODELING FOR DEVELOPMENTAL TOXICITY: A WORKSHOP REPORT

    EPA Science Inventory

    Evaluation of biologically based dose-response modeling for developmental toxicity: a workshop report.

    Lau C, Andersen ME, Crawford-Brown DJ, Kavlock RJ, Kimmel CA, Knudsen TB, Muneoka K, Rogers JM, Setzer RW, Smith G, Tyl R.

    Reproductive Toxicology Division, NHEERL...

  20. Report of the NASA Mammalian Developmental Biology Working Group

    NASA Technical Reports Server (NTRS)

    Keefe, J. R.

    1985-01-01

    Development is considered to encompass all aspects of the mammalian life span from initial initial germ cell production through the complete life cycle to death of the organism. Thus, gamete production, fertilization, embryogenesis, implantation, fetogenesis, birth, peri- and postnatal maturation, and aging were all considered as stages of a development continuum relevant to problems of Space Biology. Deliberations thus far have been limited to stages of the development cycle from fertilization to early postnatal life. The deliberations are detailed.

  1. Stem cells and lineages of the intestine: a developmental and evolutionary perspective.

    PubMed

    Takashima, Shigeo; Gold, David; Hartenstein, Volker

    2013-03-01

    The intestine consists of epithelial cells that secrete digestive enzymes and mucus (gland cells), absorb food particles (enterocytes), and produce hormones (endocrine cells). Intestinal cells are rapidly turned over and need to be replaced. In cnidarians, mitosis of differentiated intestinal cells accounts for much of the replacement; in addition, migratory, multipotent stem cells (interstitial cells) contribute to the production of intestinal cells. In other phyla, intestinal cell replacement is solely the function of stem cells entering the gut from the outside (such as in case of the neoblasts of platyhelminths) or intestinal stem cells located within the midgut epithelium (as in both vertebrates or arthropods). We will attempt in the following to review important aspects of midgut stem cells in different animal groups: where are they located, what types of lineages do they produce, and how do they develop. We will start out with a comparative survey of midgut cell types found across the animal kingdom; then briefly look at the specification of these cells during embryonic development; and finally focus on the stem cells that regenerate midgut cells during adult life. In a number of model systems, including mouse, zebrafish and Drosophila, the molecular pathways controlling intestinal stem cells proliferation and the specification of intestinal cell types are under intensive investigation. We will highlight findings of the recent literature, focusing on aspects that are shared between the different models and that point at evolutionary ancient mechanisms of intestinal cell formation. PMID:23179635

  2. Stem cells and lineages of the intestine: a developmental and evolutionary perspective

    PubMed Central

    Takashima, Shigeo; Gold, David; Hartenstein, Volker

    2012-01-01

    The intestine consists of epithelial cells that secrete digestive enzymes and mucus (gland cells), absorb food particles (enterocytes), and produce hormones (endocrine cells). Intestinal cells are rapidly turned over and need to be replaced. In cnidarians, mitosis of differentiated intestinal cells accounts for much of the replacement; in addition, migratory, multipotent stem cells (interstitial cells) contribute to the production of intestinal cells. In other phyla, intestinal cell replacement is solely the function of stem cells entering the gut from the outside (such as in case of the neoblasts of platyhelmints) or intestinal stem cells located within the midgut epithelium (as in both vertebrates or arthropods). We will attempt in the following to review important aspects of midgut stem cells in different animal groups: where are they located, what types of lineages do they produce, and how do they develop. We will start out with a comparative survey of midgut cell types found across the animal kingdom; then briefly look at the specification of these cells during embryonic development; and finally focus on the stem cells that regenerate midgut cells during adult life. In a number of model systems, including mouse, zebrafish and Drosophila, the molecular pathways controlling ISC proliferation and the specification of intestinal cell types are under intensive investigation. We will highlight findings of the recent literature, focusing on aspects that are shared between the different models and that point at evolutionary ancient mechanisms of intestinal cell formation. PMID:23179635

  3. Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo

    PubMed Central

    Goltsev, Yury; Rezende, Gustavo L.; Vranizan, Karen; Lanzaro, Greg

    2009-01-01

    During the evolution of the Diptera there is a dramatic modification of the embryonic ectoderm, whereby mosquitoes contain separate amnion and serosa lineages while higher flies such as D. melanogaster contain a single amnioserosa. Whole-genome transcriptome assays were performed with isolated serosa from A. gambiae embryos. These assays identified a large number of genes implicated in the production of the larval cuticle. In D. melanogaster, these genes are activated just once during embryogenesis, during late stages where they are used for the production of the larval cuticle. Evidence is presented that the serosal cells secrete a dedicated serosal cuticle, which protects A. gambiae embryos from desiccation. Detailed temporal microarray assays of mosquito gene expression profiles revealed that the cuticular genes display biphasic expression during A. gambiae embryogenesis, first in the serosa of early embryos and then again during late stages as seen in D. melanogaster. We discuss how evolutionary modifications in the well-defined dorsal-ventral patterning network led to the wholesale deployment of the cuticle biosynthesis pathway in early embryos of A. gambiae. PMID:19298808

  4. Extended focus Fourier domain optical coherence microscopy assists developmental biology

    NASA Astrophysics Data System (ADS)

    Villiger, Martin L.; Beleut, Manfred; Brisken, Cathrin; Lasser, Theo; Leitgeb, Rainer A.

    2007-07-01

    We present a novel detection scheme for Fourier domain optical coherence microscopy (FDOCM). A Bessel-like interference pattern with a strong central lobe was created with an axicon lens. This pattern was then imaged by a telescopic system into the sample space to obtain a laterally highly confined illumination needle, extending over a long axial range. For increased efficiency, the detection occurs decoupled from the illumination, avoiding a double pass through the axicon. Nearly constant transverse resolution of ~1.5μm along a focal range of 200μm with a maximum sensitivity of 105dB was obtained. A broad bandwidth Ti:Sapphire laser allowed for an axial resolution of 3μm in air, providing the nearly isotropic resolution necessary to access the microstructure of biological tissues. Together with the speed- and sensitivity-advantage of FDOCT, this system can perform in vivo measurements in a minimally invasive way. Tomograms of the mouse mammary gland and the mouse follicle, recorded in vitro, revealed biologically relevant structural details. Images acquired with classical microscopy techniques, involving stained and fluorescent samples, validate these structures and emphasize the high contrast of the tomograms. It is comparable to the contrast achieved with classical techniques, but employing neither staining, labeling nor slicing of the samples, stressing the high potential of FDOCM for minimally invasive in vivo small animal imaging.

  5. Biology Teachers' Conceptions of the Diversity of Life and the Historical Development of Evolutionary Concepts

    ERIC Educational Resources Information Center

    da Silva, Paloma Rodrigues; de Andrade, Mariana A. Bologna Soares; de Andrade Caldeira, Ana Maria

    2015-01-01

    Biology is a science that involves study of the diversity of living organisms. This diversity has always generated questions and has motivated cultures to seek plausible explanations for the differences and similarities between types of organisms. In biology teaching, these issues are addressed by adopting an evolutionary approach. The aim of this…

  6. RNA editing of the Drosophila para Na(+) channel transcript. Evolutionary conservation and developmental regulation.

    PubMed Central

    Hanrahan, C J; Palladino, M J; Ganetzky, B; Reenan, R A

    2000-01-01

    Post-transcriptional editing of pre-mRNAs through the action of dsRNA adenosine deaminases results in the modification of particular adenosine (A) residues to inosine (I), which can alter the coding potential of the modified transcripts. We describe here three sites in the para transcript, which encodes the major voltage-activated Na(+) channel polypeptide in Drosophila, where RNA editing occurs. The occurrence of RNA editing at the three sites was found to be developmentally regulated. Editing at two of these sites was also conserved across species between the D. melanogaster and D. virilis. In each case, a highly conserved region was found in the intron downstream of the editing site and this region was shown to be complementary to the region of the exonic editing site. Thus, editing at these sites would appear to involve a mechanism whereby the edited exon forms a base-paired secondary structure with the distant conserved noncoding sequences located in adjacent downstream introns, similar to the mechanism shown for A-to-I RNA editing of mammalian glutamate receptor subunits (GluRs). For the third site, neither RNA editing nor the predicted RNA secondary structures were evolutionarily conserved. Transcripts from transgenic Drosophila expressing a minimal editing site construct for this site were shown to faithfully undergo RNA editing. These results demonstrate that Na(+) channel diversity in Drosophila is increased by RNA editing via a mechanism analogous to that described for transcripts encoding mammalian GluRs. PMID:10880477

  7. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas.

    PubMed

    Schroeder, Diane I; Jayashankar, Kartika; Douglas, Kory C; Thirkill, Twanda L; York, Daniel; Dickinson, Pete J; Williams, Lawrence E; Samollow, Paul B; Ross, Pablo J; Bannasch, Danika L; Douglas, Gordon C; LaSalle, Janine M

    2015-08-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  8. Early Developmental and Evolutionary Origins of Gene Body DNA Methylation Patterns in Mammalian Placentas

    PubMed Central

    Schroeder, Diane I.; Jayashankar, Kartika; Douglas, Kory C.; Thirkill, Twanda L.; York, Daniel; Dickinson, Pete J.; Williams, Lawrence E.; Samollow, Paul B.; Ross, Pablo J.; Bannasch, Danika L.; Douglas, Gordon C.; LaSalle, Janine M.

    2015-01-01

    Over the last 20-80 million years the mammalian placenta has taken on a variety of morphologies through both divergent and convergent evolution. Recently we have shown that the human placenta genome has a unique epigenetic pattern of large partially methylated domains (PMDs) and highly methylated domains (HMDs) with gene body DNA methylation positively correlating with level of gene expression. In order to determine the evolutionary conservation of DNA methylation patterns and transcriptional regulatory programs in the placenta, we performed a genome-wide methylome (MethylC-seq) analysis of human, rhesus macaque, squirrel monkey, mouse, dog, horse, and cow placentas as well as opossum extraembryonic membrane. We found that, similar to human placenta, mammalian placentas and opossum extraembryonic membrane have globally lower levels of methylation compared to somatic tissues. Higher relative gene body methylation was the conserved feature across all mammalian placentas, despite differences in PMD/HMDs and absolute methylation levels. Specifically, higher methylation over the bodies of genes involved in mitosis, vesicle-mediated transport, protein phosphorylation, and chromatin modification was observed compared with the rest of the genome. As in human placenta, higher methylation is associated with higher gene expression and is predictive of genic location across species. Analysis of DNA methylation in oocytes and preimplantation embryos shows a conserved pattern of gene body methylation similar to the placenta. Intriguingly, mouse and cow oocytes and mouse early embryos have PMD/HMDs but their placentas do not, suggesting that PMD/HMDs are a feature of early preimplantation methylation patterns that become lost during placental development in some species and following implantation of the embryo. PMID:26241857

  9. Exploring the Factors Related to Acceptance of Evolutionary Theory among Turkish Preservice Biology Teachers: Toward a More Informative Conceptual Ecology for Biological Evolution

    ERIC Educational Resources Information Center

    Deniz, Hasan; Donnelly, Lisa A.; Yilmaz, Irfan

    2008-01-01

    In this study, using multiple regression analysis, we aimed to explore the factors related to acceptance of evolutionary theory among preservice Turkish biology teachers using conceptual ecology for biological evolution as a theoretical lens. We aimed to determine the extent to which we can account for the variance in acceptance of evolutionary…

  10. Nonlinear, noniterative, single-distance phase retrieval and developmental biology

    SciTech Connect

    Moosmann, Julian; Altapova, Venera; Haenschke, Daniel; Hofmann, Ralf; Baumbach, Tilo

    2012-05-17

    For coherent X-ray imaging, based on phase contrast through free-space Fresnel propagation, we discuss two noniterative, nonlinear approaches to the phase-retrieval problem from a single-distance intensity map of a pure-phase object. On one hand, a perturbative set-up is proposed where nonlinear corrections to the linearized transport-of-intensity situation are expanded in powers of the object-detector distance z and are evaluated in terms of the linear estimate. On the other hand, a nonperturbative projection algorithm, which is based on the (linear and local) contrast-transfer function (CTF), works with an effective phase in Fourier space. This effective phase obeys a modified CTF relation between intensity contrast at z > 0 and phase contrast at z= 0: Unphysical singularities of the local CTF model are cut off to yield 'quasiparticles' in analogy to the theory of the Fermi liquid. By identifying the positions of the zeros of the Fourier transformed intensity contrast as order parameters for the dynamical breaking of scaling symmetry we investigate the phase structure of the forward-propagation problem when interpreted as a statistical system. Results justify the quasiparticle approach for a wide range of intermediary phase variations. The latter algorithm is applied to data from biological samples recorded at the beamlines TopoTomo and ID19 at ANKA and ESRF, respectively.

  11. Dental peculiarities in the silvery mole-rat: an original model for studying the evolutionary and biological origins of continuous dental generation in mammals.

    PubMed

    Gomes Rodrigues, Helder; Šumbera, Radim

    2015-01-01

    Unravelling the evolutionary and developmental mechanisms that have impacted the mammalian dentition, since more than 200 Ma, is an intricate issue. Interestingly, a few mammal species, including the silvery mole-rat Heliophobius argenteocinereus, are able to replace their dentition by the addition of supernumerary molars at the back of jaw migrating then toward the front. The aim here was to demonstrate the potential interest of further studying this rodent in order to better understand the origins of continuous dental replacement in mammals, which could also provide interesting data concerning the evolution of limited dental generation occurring in first mammals. In the present study, we described the main stages of the dental eruptive sequence in the silvery mole-rat and the associated characteristics of horizontal replacement using X-ray microtomography. This was coupled to the investigation of other African mole-rats which have no dental replacement. This method permitted to establish evidence that the initial development of the dentition in Heliophobius is comparable to what it is observed in most of African mole-rats. This rodent first has premolars, but then identical additional molars, a mechanism convergent to manatees and the pygmy rock-wallaby. Evidence of continuous replacement and strong dental dynamics were also illustrated in Heliophobius, and stressed the need to deeply investigate these aspects for evolutionary, functional and developmental purposes. We also noticed that two groups of extinct non-mammalian synapsids convergently acquired this dental mechanism, but in a way differing from extant mammals. The discussion on the diverse evolutionary origins of horizontal dental replacement put emphasis on the necessity of focusing on biological parameters potentially involved in both continuous and limited developments of teeth in mammals. In that context, the silvery mole-rat could appear as the most appropriate candidate to do so. PMID:26401449

  12. Dental peculiarities in the silvery mole-rat: an original model for studying the evolutionary and biological origins of continuous dental generation in mammals

    PubMed Central

    Šumbera, Radim

    2015-01-01

    Unravelling the evolutionary and developmental mechanisms that have impacted the mammalian dentition, since more than 200 Ma, is an intricate issue. Interestingly, a few mammal species, including the silvery mole-rat Heliophobius argenteocinereus, are able to replace their dentition by the addition of supernumerary molars at the back of jaw migrating then toward the front. The aim here was to demonstrate the potential interest of further studying this rodent in order to better understand the origins of continuous dental replacement in mammals, which could also provide interesting data concerning the evolution of limited dental generation occurring in first mammals. In the present study, we described the main stages of the dental eruptive sequence in the silvery mole-rat and the associated characteristics of horizontal replacement using X-ray microtomography. This was coupled to the investigation of other African mole-rats which have no dental replacement. This method permitted to establish evidence that the initial development of the dentition in Heliophobius is comparable to what it is observed in most of African mole-rats. This rodent first has premolars, but then identical additional molars, a mechanism convergent to manatees and the pygmy rock-wallaby. Evidence of continuous replacement and strong dental dynamics were also illustrated in Heliophobius, and stressed the need to deeply investigate these aspects for evolutionary, functional and developmental purposes. We also noticed that two groups of extinct non-mammalian synapsids convergently acquired this dental mechanism, but in a way differing from extant mammals. The discussion on the diverse evolutionary origins of horizontal dental replacement put emphasis on the necessity of focusing on biological parameters potentially involved in both continuous and limited developments of teeth in mammals. In that context, the silvery mole-rat could appear as the most appropriate candidate to do so. PMID:26401449

  13. Socioemotional, Personality, and Biological Development: Illustrations from a Multilevel Developmental Psychopathology Perspective on Child Maltreatment.

    PubMed

    Cicchetti, Dante

    2016-01-01

    Developmental theories can be affirmed, challenged, and augmented by incorporating knowledge about atypical ontogenesis. Investigations of the biological, socioemotional, and personality development in individuals with high-risk conditions and psychopathological disorders can provide an entrée into the study of system organization, disorganization, and reorganization. This article examines child maltreatment to illustrate the benefit that can be derived from the study of individuals subjected to nonnormative caregiving experiences. Relative to an average expectable environment, which consists of a species-specific range of environmental conditions that support adaptive development among genetically normal individuals, maltreating families fail to provide many of the experiences that are required for normal development. Principles gleaned from the field of developmental psychopathology provide a framework for understanding multilevel functioning in normality and pathology. Knowledge of normative developmental processes provides the impetus to design and implement randomized control trial (RCT) interventions that can promote resilient functioning in maltreated children. PMID:26726964

  14. Colour variation in cichlid fish: Developmental mechanisms, selective pressures and evolutionary consequences☆

    PubMed Central

    Maan, Martine E.; Sefc, Kristina M.

    2013-01-01

    Cichlid fishes constitute one of the most species-rich families of vertebrates. In addition to complex social behaviour and morphological versatility, they are characterised by extensive diversity in colouration, both within and between species. Here, we review the cellular and molecular mechanisms underlying colour variation in this group and the selective pressures responsible for the observed variation. We specifically address the evidence for the hypothesis that divergence in colouration is associated with the evolution of reproductive isolation between lineages. While we conclude that cichlid colours are excellent models for understanding the role of animal communication in species divergence, we also identify taxonomic and methodological biases in the current research effort. We suggest that the integration of genomic approaches with ecological and behavioural studies, across the entire cichlid family and beyond it, will contribute to the utility of the cichlid model system for understanding the evolution of biological diversity. PMID:23665150

  15. Measuring telomere length and telomere dynamics in evolutionary biology and ecology

    PubMed Central

    Nussey, Daniel H; Baird, Duncan; Barrett, Emma; Boner, Winnie; Fairlie, Jennifer; Gemmell, Neil; Hartmann, Nils; Horn, Thorsten; Haussmann, Mark; Olsson, Mats; Turbill, Chris; Verhulst, Simon; Zahn, Sandrine; Monaghan, Pat

    2014-01-01

    Telomeres play a fundamental role in the protection of chromosomal DNA and in the regulation of cellular senescence. Recent work in human epidemiology and evolutionary ecology suggests adult telomere length (TL) may reflect past physiological stress and predict subsequent morbidity and mortality, independent of chronological age. Several different methods have been developed to measure TL, each offering its own technical challenges. The aim of this review is to provide an overview of the advantages and drawbacks of each method for researchers, with a particular focus on issues that are likely to face ecologists and evolutionary biologists collecting samples in the field or in organisms that may never have been studied in this context before. We discuss the key issues to consider and wherever possible try to provide current consensus view regarding best practice with regard to sample collection and storage, DNA extraction and storage, and the five main methods currently available to measure TL. Decisions regarding which tissues to sample, how to store them, how to extract DNA, and which TL measurement method to use cannot be prescribed, and are dependent on the biological question addressed and the constraints imposed by the study system. What is essential for future studies of telomere dynamics in evolution and ecology is that researchers publish full details of their methods and the quality control thresholds they employ. PMID:25834722

  16. Evolutionary game theory for physical and biological scientists. I. Training and validating population dynamics equations

    PubMed Central

    Liao, David; Tlsty, Thea D.

    2014-01-01

    Failure to understand evolutionary dynamics has been hypothesized as limiting our ability to control biological systems. An increasing awareness of similarities between macroscopic ecosystems and cellular tissues has inspired optimism that game theory will provide insights into the progression and control of cancer. To realize this potential, the ability to compare game theoretic models and experimental measurements of population dynamics should be broadly disseminated. In this tutorial, we present an analysis method that can be used to train parameters in game theoretic dynamics equations, used to validate the resulting equations, and used to make predictions to challenge these equations and to design treatment strategies. The data analysis techniques in this tutorial are adapted from the analysis of reaction kinetics using the method of initial rates taught in undergraduate general chemistry courses. Reliance on computer programming is avoided to encourage the adoption of these methods as routine bench activities. PMID:25097751

  17. Cryptic organelle homology in Apicomplexan parasites: Insights from evolutionary cell biology

    PubMed Central

    Klinger, Christen M.; Nisbet, R. Ellen; Ouologuem, Dinkorma T.; Roos, David S.; Dacks, Joel B.

    2013-01-01

    The economic and clinical significance of apicomplexan parasites drives interest in their many evolutionary novelties. Distinctive intracellular organelles play key roles in parasite motility, invasion, metabolism, and replication, and understanding their relationship with the organelles of better-studied eukaryotic systems suggests potential targets for therapeutic intervention. Recent work has demonstrated divergent aspects of canonical eukaryotic components in the apicomplexa, including Golgi bodies and mitochondria. The apicoplast is a relict plastid of secondary endosymbiotic origin, harboring metabolic pathways distinct from those of host species. The inner membrane complex is derived from the cortical alveoli defining the superphylum Alveolata, but in apicomplexans functions in parasite motility and replication. Micronemes and rhoptries are associated with establishment of the intracellular niche, and define the apical complex for which the phylum is named. Morphological, cell biological and molecular evidence strongly suggest that these organelles are derived from the endocytic pathway. PMID:23932202

  18. Collaboration Networks in the Brazilian Scientific Output in Evolutionary Biology: 2000-2012.

    PubMed

    Santin, Dirce M; Vanz, Samile A S; Stumpf, Ida R C

    2016-03-01

    This article analyzes the existing collaboration networks in the Brazilian scientific output in Evolutionary Biology, considering articles published during the period from 2000 to 2012 in journals indexed by Web of Science. The methodology integrates bibliometric techniques and Social Network Analysis resources to describe the growth of Brazilian scientific output and understand the levels, dynamics and structure of collaboration between authors, institutions and countries. The results unveil an enhancement and consolidation of collaborative relationships over time and suggest the existence of key institutions and authors, whose influence on research is expressed by the variety and intensity of the relationships established in the co-authorship of articles. International collaboration, present in more than half of the publications, is highly significant and unusual in Brazilian science. The situation indicates the internationalization of scientific output and the ability of the field to take part in the science produced by the international scientific community. PMID:26871500

  19. The causal pie model: an epidemiological method applied to evolutionary biology and ecology.

    PubMed

    Wensink, Maarten; Westendorp, Rudi G J; Baudisch, Annette

    2014-05-01

    A general concept for thinking about causality facilitates swift comprehension of results, and the vocabulary that belongs to the concept is instrumental in cross-disciplinary communication. The causal pie model has fulfilled this role in epidemiology and could be of similar value in evolutionary biology and ecology. In the causal pie model, outcomes result from sufficient causes. Each sufficient cause is made up of a "causal pie" of "component causes". Several different causal pies may exist for the same outcome. If and only if all component causes of a sufficient cause are present, that is, a causal pie is complete, does the outcome occur. The effect of a component cause hence depends on the presence of the other component causes that constitute some causal pie. Because all component causes are equally and fully causative for the outcome, the sum of causes for some outcome exceeds 100%. The causal pie model provides a way of thinking that maps into a number of recurrent themes in evolutionary biology and ecology: It charts when component causes have an effect and are subject to natural selection, and how component causes affect selection on other component causes; which partitions of outcomes with respect to causes are feasible and useful; and how to view the composition of a(n apparently homogeneous) population. The diversity of specific results that is directly understood from the causal pie model is a test for both the validity and the applicability of the model. The causal pie model provides a common language in which results across disciplines can be communicated and serves as a template along which future causal analyses can be made. PMID:24963386

  20. Use of the confocal laser scanning microscope in studies on the developmental biology of marine crustaceans.

    PubMed

    Buttino, Isabella; Ianora, Adrianna; Carotenuto, Ylenia; Zupo, Valerio; Miralto, Antonio

    2003-03-01

    Confocal Laser Scanning Microscope techniques have been applied to study the developmental biology of marine copepods and decapod larvae. The lipophylic probes DiI and DiOC(6) were used to study both the external and internal morphology of these crustaceans, whereas the same DiOC(6) and the specific nuclear probe Hoechst 33342 were used to study embryonic development of copepods in vivo. To distinguish viable from non-viable copepod embryos, the vital dye dichlorodihydrofluorescein diacetate (H(2)DCFDA) was used. Major advantages and difficulties in the use of these non-invasive techniques in studies of the reproductive biology of marine crustaceans are discussed. PMID:12567403

  1. Evo-devo: extending the evolutionary synthesis.

    PubMed

    Müller, Gerd B

    2007-12-01

    Evolutionary developmental biology (evo-devo) explores the mechanistic relationships between the processes of individual development and phenotypic change during evolution. Although evo-devo is widely acknowledged to be revolutionizing our understanding of how the development of organisms has evolved, its substantial implications for the theoretical basis of evolution are often overlooked. This essay identifies major theoretical themes of current evo-devo research and highlights how its results take evolutionary theory beyond the boundaries of the Modern Synthesis. PMID:17984972

  2. Merging of Research and Teaching in Developmental Biology: Adaptation of Current Scientific Research Papers for Use in Undergraduate Laboratory Exercises

    ERIC Educational Resources Information Center

    Lee, H. H.; and others

    1970-01-01

    Describes two laboratory exercises adopted from current research papers for use in an undergraduate developmental biology course. Gives methods, summary of student results, and student comments. Lists lecture topics, text and reprint assignments, and laboratory exercises for course. (EB)

  3. The Childhood Solid Tumor Network: A new resource for the developmental biology and oncology research communities.

    PubMed

    Stewart, Elizabeth; Federico, Sara; Karlstrom, Asa; Shelat, Anang; Sablauer, Andras; Pappo, Alberto; Dyer, Michael A

    2016-03-15

    Significant advances have been made over the past 25 years in our understanding of the most common adult solid tumors such as breast, colon, lung and prostate cancer. Much less is known about childhood solid tumors because they are rare and because they originate in developing organs during fetal development, childhood and adolescence. It can be very difficult to study the cellular origins of pediatric solid tumors in developing organs characterized by rapid proliferative expansion, growth factor signaling, developmental angiogenesis, programmed cell death, tissue reorganization and cell migration. Not only has the etiology of pediatric cancer remained elusive because of their developmental origins, but it also makes it more difficult to treat. Molecular targeted therapeutics that alter developmental pathway signaling may have devastating effects on normal organ development. Therefore, basic research focused on the mechanisms of development provides an essential foundation for pediatric solid tumor translational research. In this article, we describe new resources available for the developmental biology and oncology research communities. In a companion paper, we present the detailed characterization of an orthotopic xenograft of a pediatric solid tumor derived from sympathoadrenal lineage during development. PMID:26068307

  4. The Current Status of the Philosophy of Biology

    NASA Astrophysics Data System (ADS)

    Takacs, Peter; Ruse, Michael

    2013-01-01

    The philosophy of biology today is one of the most exciting areas of philosophy. It looks critically across the life sciences, teasing out conceptual issues and difficulties bringing to bear the tools of philosophical analysis to achieve clarification and understanding. This essay surveys work in all of the major directions of research: evolutionary theory and the units/levels of selection; evolutionary developmental biology; reductionism; ecology; the species problem; teleology; evolutionary epistemology; evolutionary ethics; and progress. There is a comprehensive bibliography.

  5. Trypanosome species in neo-tropical bats: biological, evolutionary and epidemiological implications.

    PubMed

    Ramírez, Juan David; Tapia-Calle, Gabriela; Muñoz-Cruz, Geissler; Poveda, Cristina; Rendón, Lina M; Hincapié, Eduwin; Guhl, Felipe

    2014-03-01

    Bats (Chiroptera) are the only mammals naturally able to fly. Due to this characteristic they play a relevant ecological role in the niches they inhabit. These mammals spread infectious diseases from enzootic to domestic foci. Rabbies, SARS, fungi, ebola and trypanosomes are the most common pathogens these animals may host. We conducted intensive sampling of bats from the phyllostomidae, vespertilionidae and emballonuridae families in six localities from Casanare department in eastern Colombia. Blood-EDTA samples were obtained and subsequently submitted to analyses of mitochondrial and nuclear genetic markers in order to conduct barcoding analyses to discriminate trypanosome species. The findings according to the congruence of the three molecular markers suggest the occurrence of Trypanosoma cruzi cruzi (51%), T. c. marinkellei (9%), T. dionisii (13%), T. rangeli (21%), T. evansi (4%) and T. theileri (2%) among 107 positive bat specimens. Regarding the T. cruzi DTUs, we observed the presence of TcI (60%), TcII (15%), TcIII (7%), TcIV (7%) and TcBAT (11%) being the first evidence to our concern of the foreseen genotype TcBAT in Colombia. These results allowed us to propose reliable hypotheses regarding the ecology and biology of the bats circulating in the area including the enigmatic question whether TcBAT should be considered a novel DTU. The epidemiological and evolutionary implications of these findings are herein discussed. PMID:23831017

  6. Altruism, egoism, or neither: A cognitive-efficiency-based evolutionary biological perspective on helping behavior.

    PubMed

    Schulz, Armin W

    2016-04-01

    I argue for differences in the cognitive efficiency of different psychologies underlying helping behavior, and present an account of the adaptive pressures that result from these differences. Specifically, I argue that organisms often face pressure to move away from only being egoistically motivated to help: non-egoistic organisms are often able to determine how to help other organisms more quickly and with less recourse to costly cognitive resources like concentration and attention. Furthermore, I also argue that, while these pressures away from pure egoism can lead to the evolution of altruists, they can also lead to the evolution of reciprocation-focused behaviorist helpers or even of reflex-driven helpers (who are neither altruists nor egoists). In this way, I seek to broaden the set of considerations typically taken into account when assessing the evolution of the psychology of helping behavior-which tend to be restricted to matters of reliability-and also try to make clearer the role of evolutionary biological considerations in the discussion of this apparently straightforwardly psychological phenomenon. PMID:26778352

  7. The Rice Genome Knowledgebase (RGKbase): an annotation database for rice comparative genomics and evolutionary biology

    PubMed Central

    Wang, Dapeng; Xia, Yan; Li, Xinna; Hou, Lixia; Yu, Jun

    2013-01-01

    Over the past 10 years, genomes of cultivated rice cultivars and their wild counterparts have been sequenced although most efforts are focused on genome assembly and annotation of two major cultivated rice (Oryza sativa L.) subspecies, 93-11 (indica) and Nipponbare (japonica). To integrate information from genome assemblies and annotations for better analysis and application, we now introduce a comparative rice genome database, the Rice Genome Knowledgebase (RGKbase, http://rgkbase.big.ac.cn/RGKbase/). RGKbase is built to have three major components: (i) integrated data curation for rice genomics and molecular biology, which includes genome sequence assemblies, transcriptomic and epigenomic data, genetic variations, quantitative trait loci (QTLs) and the relevant literature; (ii) User-friendly viewers, such as Gbrowse, GeneBrowse and Circos, for genome annotations and evolutionary dynamics and (iii) Bioinformatic tools for compositional and synteny analyses, gene family classifications, gene ontology terms and pathways and gene co-expression networks. RGKbase current includes data from five rice cultivars and species: Nipponbare (japonica), 93-11 (indica), PA64s (indica), the African rice (Oryza glaberrima) and a wild rice species (Oryza brachyantha). We are also constantly introducing new datasets from variety of public efforts, such as two recent releases—sequence data from ∼1000 rice varieties, which are mapped into the reference genome, yielding ample high-quality single-nucleotide polymorphisms and insertions–deletions. PMID:23193278

  8. Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)

    ScienceCinema

    Wiegel, Detlef

    2011-04-25

    Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  9. Next-Generation Genetics in Plants: Evolutionary Trade-off, Immunity and Speciation (2010 JGI User Meeting)

    SciTech Connect

    Wiegel, Detlef

    2010-03-25

    Detlef Wiegel from the Max Planck Institute for Developmental Biology on "Next-generation genetics in plants: Evolutionary tradeoffs, immunity and speciation" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  10. BIOLOGICALLY-BASED DOSE-RESPONSE MODELING IN DEVELOPMENTAL TOXICOLOGY: BIOCHEMICAL AND CELLULAR SEQUELAE OF 5-FLUOROURACIL EXPOSURE IN THE DEVELOPING RAT

    EPA Science Inventory

    Mechanistically-based dose-response models for developmental toxicity require elucidation of biological events that intervene between maternal exposure and adverse developmental outcome. We examined some of the major events in the rat embryo following subcutaneous injection of 5-...

  11. Echoes of the embryo: using the developmental biology toolkit to study cancer.

    PubMed

    Aiello, Nicole M; Stanger, Ben Z

    2016-02-01

    The hallmark of embryonic development is regulation - the tendency for cells to find their way into organized and 'well behaved' structures - whereas cancer is characterized by dysregulation and disorder. At face value, cancer biology and developmental biology would thus seem to have little to do with each other. But if one looks beneath the surface, embryos and cancers share a number of cellular and molecular features. Embryos arise from a single cell and undergo rapid growth involving cell migration and cell-cell interactions: features that are also seen in the context of cancer. Consequently, many of the experimental tools that have been used to study embryogenesis for over a century are well-suited to studying cancer. This article will review the similarities between embryogenesis and cancer progression and discuss how some of the concepts and techniques used to understand embryos are now being adapted to provide insight into tumorigenesis, from the origins of cancer cells to metastasis. PMID:26839398

  12. Coalescent models for developmental biology and the spatio-temporal dynamics of growing tissues

    PubMed Central

    Smadbeck, Patrick; Stumpf, Michael P. H.

    2016-01-01

    Development is a process that needs to be tightly coordinated in both space and time. Cell tracking and lineage tracing have become important experimental techniques in developmental biology and allow us to map the fate of cells and their progeny. A generic feature of developing and homeostatic tissues that these analyses have revealed is that relatively few cells give rise to the bulk of the cells in a tissue; the lineages of most cells come to an end quickly. Computational and theoretical biologists/physicists have, in response, developed a range of modelling approaches, most notably agent-based modelling. These models seem to capture features observed in experiments, but can also become computationally expensive. Here, we develop complementary genealogical models of tissue development that trace the ancestry of cells in a tissue back to their most recent common ancestors. We show that with both bounded and unbounded growth simple, but universal scaling relationships allow us to connect coalescent theory with the fractal growth models extensively used in developmental biology. Using our genealogical perspective, it is possible to study bulk statistical properties of the processes that give rise to tissues of cells, without the need for large-scale simulations. PMID:27053656

  13. Biological Activity of trans-2-Hexenal Against Bradysia odoriphaga (Diptera: Sciaridae) at Different Developmental Stages

    PubMed Central

    Chen, Chengyu; Mu, Wei; Zhao, Yunhe; Li, Hui; Zhang, Peng; Wang, Qiuhong; Liu, Feng

    2015-01-01

    trans-2-Hexenal, one of the C6 green leaf volatiles, is potentially useful for the control of Bradysia odoriphaga Yang et Zhang. In this study, the biological activity of trans-2-hexenal on B. odoriphaga was assessed in the laboratory. trans-2-Hexenal was observed to kill B. odoriphaga in different developmental stages at a relatively low concentration under fumigation. The respiration rate in the male treatment group decreased from 131.44 to 4.07 nmol/g·min with a prolonged fumigation time, while the respiration rate in females decreased from 128.82 to 24.20 nmol/g·min. Male adults exhibited a more sensitive electroantennogram response at 0.05–500 μl/ml at the dose of 10.0 μl than female adults. Moreover, trans-2-hexenal had a repellent effect on adults based on the results with a Y-tube olfactometer at 10.0 μl, as shown by the deterrent rate of male and female adults with 96.67% and 98.33%, respectively. The results showed that trans-2-hexenal had good biological activity in different developmental stages of B. odoriphaga, which could reduce the need for, and risks associated with, the use of traditional insecticides and enable nonharmful management. PMID:26170398

  14. Biological Activity of trans-2-Hexenal Against Bradysia odoriphaga (Diptera: Sciaridae) at Different Developmental Stages.

    PubMed

    Chen, Chengyu; Mu, Wei; Zhao, Yunhe; Li, Hui; Zhang, Peng; Wang, Qiuhong; Liu, Feng

    2015-01-01

    trans-2-Hexenal, one of the C6 green leaf volatiles, is potentially useful for the control of Bradysia odoriphaga Yang et Zhang. In this study, the biological activity of trans-2-hexenal on B. odoriphaga was assessed in the laboratory. trans-2-Hexenal was observed to kill B. odoriphaga in different developmental stages at a relatively low concentration under fumigation. The respiration rate in the male treatment group decreased from 131.44 to 4.07 nmol/g · min with a prolonged fumigation time, while the respiration rate in females decreased from 128.82 to 24.20 nmol/g · min. Male adults exhibited a more sensitive electroantennogram response at 0.05-500 μl/ml at the dose of 10.0 μl than female adults. Moreover, trans-2-hexenal had a repellent effect on adults based on the results with a Y-tube olfactometer at 10.0 μl, as shown by the deterrent rate of male and female adults with 96.67% and 98.33%, respectively. The results showed that trans-2-hexenal had good biological activity in different developmental stages of B. odoriphaga, which could reduce the need for, and risks associated with, the use of traditional insecticides and enable nonharmful management. PMID:26170398

  15. Transforming Biology Assessment with Machine Learning: Automated Scoring of Written Evolutionary Explanations

    ERIC Educational Resources Information Center

    Nehm, Ross H.; Ha, Minsu; Mayfield, Elijah

    2012-01-01

    This study explored the use of machine learning to automatically evaluate the accuracy of students' written explanations of evolutionary change. Performance of the Summarization Integrated Development Environment (SIDE) program was compared to human expert scoring using a corpus of 2,260 evolutionary explanations written by 565 undergraduate…

  16. Evoecotoxicology: Environmental Changes and Life Features Development during the Evolutionary Process—the Record of the Past at Developmental Stages of Living Organisms

    PubMed Central

    Herkovits, Jorge

    2006-01-01

    For most of evolutionary history, scientific understanding of the environment and life forms is extremely limited. In this commentary I discuss the hypothesis that ontogenetic features of living organisms can be considered biomarkers of coevolution between organisms and physicochemical agents during Earth’s history. I provide a new vision of evolution based on correlations between metabolic features and stage-dependent susceptibility of organisms to physicochemical agents with well-known environmental signatures. Thus, developmental features potentially reflect environmental changes during evolution. From this perspective, early multicellular life forms would have flourished in the anoxic Earth more than 2 billion years ago, which is at least 1.2 billion years in advance of available fossil evidence. The remarkable transition to aerobic metabolism in gastrula-stage embryos potentially reflects evolution toward tridermic organisms by 2 billion years ago. Noteworthy changes in embryonic resistance to physicochemical agents at different developmental stages that can be observed in living organisms potentially reflect the influence of environmental stress conditions during different periods of evolutionary history. Evoecotoxicology, as a multidisciplinary and transdisciplinary approach, can enhance our understanding of evolution, including the phylogenetic significance of differences in susceptibility/resistance to physicochemical agents in different organisms. PMID:16882515

  17. Genes are information, so information theory is coming to the aid of evolutionary biology.

    PubMed

    Sherwin, William B

    2015-11-01

    Speciation is central to evolutionary biology, and to elucidate it, we need to catch the early genetic changes that set nascent taxa on their path to species status (Via 2009). That challenge is difficult, of course, for two chief reasons: (i) serendipity is required to catch speciation in the act; and (ii) after a short time span with lingering gene flow, differentiation may be low and/or embodied only in rare alleles that are difficult to sample. In this issue of Molecular Ecology Resources, Smouse et al. (2015) have noted that optimal assessment of differentiation within and between nascent species should be robust to these challenges, and they identified a measure based on Shannon's information theory that has many advantages for this and numerous other tasks. The Shannon measure exhibits complete additivity of information at different levels of subdivision. Of all the family of diversity measures ('0' or allele counts, '1' or Shannon, '2' or heterozygosity, F(ST) and related metrics) Shannon's measure comes closest to weighting alleles by their frequencies. For the Shannon measure, rare alleles that represent early signals of nascent speciation are neither down-weighted to the point of irrelevance, as for level 2 measures, nor up-weighted to overpowering importance, as for level 0 measures (Chao et al. 2010, )2015. Shannon measures have a long history in population genetics, dating back to Shannon's PhD thesis in 1940 (Crow 2001), but have received only sporadic attention, until a resurgence of interest in the last ten years, as reviewed briefly by Smouse et al. (2015). PMID:26452559

  18. Incubation temperature, developmental biology, and the divergence of sockeye salmon (Oncorhynchus nerka) within Lake Washington

    USGS Publications Warehouse

    Hendry, A.P.; Hensleigh, J.E.; Reisenbichler, R.R.

    1998-01-01

    Sockeye salmon (Oncorhynchus nerka) introduced into Lake Washington in the 1930s and 1940s now spawn at several different sites and over a period of more than 3 months. To test for evolutionary divergence within this derived lineage, embryos that would have incubated in different habitats (Cedar River or Pleasure Point Beach) or at different times (October, November, or December in the Cedar River) were reared in the laboratory at 5, 9, and 12.5??C. Some developmental variation mirrored predictions of adaptive divergence: (i) survival at 12.5??C was highest for embryos most likely to experience such temperatures in the wild (Early Cedar), (ii) development rate was fastest for progeny of late spawners (Late Cedar), and (iii) yolk conversion efficiency was matched to natural incubation temperatures. These patterns likely had a genetic basis because they were observed in a common environment and could not be attributed to differences in egg size. The absolute magnitude of divergence in development rates was moderate (Late Cedar embryos emerged only 6 days earlier at 9??C) and some predictions regarding development rates were not supported. Nonetheless our results provide evidence of adaptive divergence in only 9-14 generations.

  19. Information fluency for undergraduate biology majors: applications of inquiry-based learning in a developmental biology course.

    PubMed

    Gehring, Kathleen M; Eastman, Deborah A

    2008-01-01

    Many initiatives for the improvement of undergraduate science education call for inquiry-based learning that emphasizes investigative projects and reading of the primary literature. These approaches give students an understanding of science as a process and help them integrate content presented in courses. At the same time, general initiatives to promote information fluency are being promoted on many college and university campuses. Information fluency refers to discipline-specific processing of information, and it involves integration of gathered information with specific ideas to form logical conclusions. We have implemented the use of inquiry-based learning to enhance and study discipline-specific information fluency skills in an upper-level undergraduate Developmental Biology course. In this study, an information literacy tutorial and a set of linked assignments using primary literature analysis were integrated with two inquiry-based laboratory research projects. Quantitative analysis of student responses suggests that the abilities of students to identify and apply valid sources of information were enhanced. Qualitative assessment revealed a set of patterns by which students gather and apply information. Self-assessment responses indicated that students recognized the impact of the assignments on their abilities to gather and apply information and that they were more confident about these abilities for future biology courses and beyond. PMID:18316808

  20. Rapid Evolutionary Dynamics of Structural Disorder as a Potential Driving Force for Biological Divergence in Flaviviruses

    PubMed Central

    Ortiz, Juan F.; MacDonald, Madolyn L.; Masterson, Patrick; Uversky, Vladimir N.; Siltberg-Liberles, Jessica

    2013-01-01

    Protein structure is commonly regarded to be conserved and to dictate function. Most proteins rely on conformational flexibility to some degree. Are regions that convey conformational flexibility conserved over evolutionary time? Can changes in conformational flexibility alter protein function? Here, the evolutionary dynamics of structurally ordered and disordered (flexible) regions are investigated genome-wide in flaviviruses, revealing that the amount and location of structural disorder fluctuates highly among related proteins. Some regions are prone to shift between structured and flexible states. Increased evolutionary dynamics of structural disorder is observed for some lineages but not in others. Lineage-specific transitions of this kind could alter the conformational ensemble accessible to the same protein in different species, causing a functional change, even if the predominant function remains conserved. Thus, rapid evolutionary dynamics of structural disorder is a potential driving force for phenotypic divergence among flaviviruses. PMID:23418179

  1. Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows.

    PubMed

    Ribeiro, E S; Gomes, G; Greco, L F; Cerri, R L A; Vieira-Neto, A; Monteiro, P L J; Lima, F S; Bisinotto, R S; Thatcher, W W; Santos, J E P

    2016-03-01

    The objective of this series of studies was to investigate the effects of inflammatory diseases occurring before breeding on the developmental biology and reproductive responses in dairy cows. Data from 5 studies were used to investigate different questions associating health status before breeding and reproductive responses. Health information for all studies was composed of the incidence of retained fetal membranes, metritis, mastitis, lameness, and respiratory and digestive problems from parturition until the day of breeding. Retained placenta and metritis were grouped as uterine disease (UTD). Mastitis, lameness, digestive and respiratory problems were grouped as nonuterine diseases (NUTD). Study 1 evaluated the effect of disease before artificial insemination (AI), anovulation before synchronization of the estrous cycle, and low body condition score at AI on pregnancy per AI, as well as their potential interactions or additive effects. Study 2 investigated the effect of site of inflammation (UTD vs. NUTD) and time of occurrence relative to preantral or antral stages of ovulatory follicle development, and the effect of UTD and NUTD on fertility responses of cows bred by AI or by embryo transfer. Study 3 evaluated the effect of disease on fertilization and embryonic development to the morula stage. Study 4 evaluated the effect of disease on preimplantation conceptus development as well as secretion of IFN-τ and transcriptome. Study 5 investigated the effect of diseases before AI on the transcript expression of interferon-stimulated genes in peripheral blood leukocytes during peri-implantation stages of conceptus development after first AI postpartum. Altogether, these studies demonstrated that inflammatory disease before breeding reduced fertilization of oocytes and development to morula, and impaired early conceptus development to elongation stages and secretion of IFN-τ in the uterine lumen. Diseases caused inflammation-like changes in transcriptome of

  2. Tissue culture on a chip: Developmental biology applications of self-organized capillary networks in microfluidic devices.

    PubMed

    Miura, Takashi; Yokokawa, Ryuji

    2016-08-01

    Organ culture systems are used to elucidate the mechanisms of pattern formation in developmental biology. Various organ culture techniques have been used, but the lack of microcirculation in such cultures impedes the long-term maintenance of larger tissues. Recent advances in microfluidic devices now enable us to utilize self-organized perfusable capillary networks in organ cultures. In this review, we will overview past approaches to organ culture and current technical advances in microfluidic devices, and discuss possible applications of microfluidics towards the study of developmental biology. PMID:27272910

  3. The Intersection of Theory and Application in Elucidating Pattern Formation in Developmental Biology

    PubMed Central

    Othmer, Hans G.; Painter, Kevin; Umulis, David; Xue, Chuan

    2009-01-01

    We discuss theoretical and experimental approaches to three distinct developmental systems that illustrate how theory can influence experimental work and vice-versa. The chosen systems – Drosophila melanogaster, bacterial pattern formation, and pigmentation patterns – illustrate the fundamental physical processes of signaling, growth and cell division, and cell movement involved in pattern formation and development. These systems exemplify the current state of theoretical and experimental understanding of how these processes produce the observed patterns, and illustrate how theoretical and experimental approaches can interact to lead to a better understanding of development. As John Bonner said long ago ‘We have arrived at the stage where models are useful to suggest experiments, and the facts of the experiments in turn lead to new and improved models that suggest new experiments. By this rocking back and forth between the reality of experimental facts and the dream world of hypotheses, we can move slowly toward a satisfactory solution of the major problems of developmental biology.’ PMID:19844610

  4. NCT and Culture-Conscious Developmental Science

    ERIC Educational Resources Information Center

    Downing-Wilson, Deborah; Pelaprat, Etienne; Rosero, Ivan; Vadeboncoeur, Jennifer; Packer, Martin; Cole, Michael

    2013-01-01

    The authors share the belief that there is great potential for developmental science in bringing the ideas of Niche Construction Theory (NCT), as developed in evolutionary biology, into conversation with Vygotskian-inspired theories such as cultural-historical and activity theories, distributed cognition, and embodied cognition, although from…

  5. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology

    PubMed Central

    Sewell-Loftin, M.K.; Chun, Young Wook; Khademhosseini, Ali; Merryman, W. David

    2012-01-01

    Although artificial prostheses for diseased heart valves have been around for several decades, viable heart valve replacements have yet to be developed due to their complicated nature. The majority of research in heart valve replacement technology seeks to improve decellularization techniques for porcine valves or bovine pericardium as an effort to improve current clinically used valves. The drawback of clinically used valves is that they are nonviable and thus do not grow or remodel once implanted inside patients. This is particularly detrimental for pediatric patients, who will likely need several reoperations over the course of their lifetimes to implant larger valves as the patient grows. Due to this limitation, additional biomaterials, both synthetic and natural in origin, are also being investigated as novel scaffolds for tissue engineered heart valves, specifically for the pediatric population. Here, we provide a brief overview of valves in clinical use as well as of the materials being investigated as novel tissue engineered heart valve scaffolds. Additionally, we focus on natural-based biomaterials for promoting cell behavior that is indicative of the developmental biology process that occurs in the formation of heart valves in utero, such as epithelial-to-mesenchymal transition or transformation (EMT). By engineering materials that promote native developmental biology cues and signaling, while also providing mechanical integrity once implanted, a viable tissue engineered heart valve may one day be realized. A viable tissue engineered heart valve, capable of growing and remodeling actively inside a patient, could reduce risks and complications associated with current valve replacement options and improve overall quality of life in the thousands of patients who received such valves each year, particularly for children. PMID:21751069

  6. Development of Fourier domain optical coherence tomography for applications in developmental biology

    NASA Astrophysics Data System (ADS)

    Davis, Anjul Maheshwari

    Developmental biology is a field in which explorations are made to answer how an organism transforms from a single cell to a complex system made up of trillions of highly organized and highly specified cells. This field, however, is not just for discovery, it is crucial for unlocking factors that lead to diseases, defects, or malformations. The one key ingredient that contributes to the success of studies in developmental biology is the technology that is available for use. Optical coherence tomography (OCT) is one such technology. OCT fills a niche between the high resolution of confocal microscopy and deep imaging penetration of ultrasound. Developmental studies of the chicken embryo heart are of great interest. Studies in mature hearts, zebrafish animal models, and to a more limited degree chicken embryos, indicate a relationship between blood flow and development. It is believed that at the earliest stages, when the heart is still a tube, the purpose of blood flow is not for convective transport of oxygen, nutrients and waster, bur rather to induce shear-related gene expressions to induce further development. Yet, to this date, the simple question of "what makes blood flow?" has not been answered. This is mainly due limited availability to adequate imaging and blood flow measurement tools. Earlier work has demonstrated the potential of OCT for use in studying chicken embryo heart development, however quantitative measurement techniques still needed to be developed. In this dissertation I present technological developments I have made towards building an OCT system to study chick embryo heart development. I will describe: (1) a swept-source OCT with extended imaging depth; (2) a spectral domain OCT system for non-invasive small animal imaging; (3) Doppler flow imaging and techniques for quantitative blood flow measurement in living chicken embryos; and (4) application of the OCT system that was developed in the Specific Aims 2-5 to test hypotheses generated by a

  7. The current status of REH theory. [Random Evolutionary Hits in biological molecular evolution

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Jukes, T. H.

    1981-01-01

    A response is made to the evaluation of Fitch (1980) of REH (random evolutionary hits) theory for the evolutionary divergence of proteins and nucleic acids. Correct calculations for the beta hemoglobin mRNAs of the human, mouse and rabbit in the absence and presence of selective constraints are summarized, and it is shown that the alternative evolutionary analysis of Fitch underestimates the total fixed mutations. It is further shown that the model used by Fitch to test for the completeness of the count of total base substitutions is in fact a variant of REH theory. Considerations of the variance inherent in evolutionary estimations are also presented which show the REH model to produce no more variance than other evolutionary models. In the reply, it is argued that, despite the objections raised, REH theory applied to proteins gives inaccurate estimates of total gene substitutions. It is further contended that REH theory developed for nucleic sequences suffers from problems relating to the frequency of nucleotide substitutions, the identity of the codons accepting silent and amino acid-changing substitutions, and estimate uncertainties.

  8. Stochastic developmental variation, an epigenetic source of phenotypic diversity with far-reaching biological consequences.

    PubMed

    Vogt, Günter

    2015-03-01

    This article reviews the production of different phenotypes from the same genotype in the same environment by stochastic cellular events, nonlinear mechanisms during patterning and morphogenesis, and probabilistic self-reinforcing circuitries in the adult life. These aspects of phenotypic variation are summarized under the term 'stochastic developmental variation' (SDV) in the following. In the past, SDV has been viewed primarily as a nuisance, impairing laboratory experiments, pharmaceutical testing, and true-to-type breeding. This article also emphasizes the positive biological effects of SDV and discusses implications for genotype-to-phenotype mapping, biological individuation, ecology, evolution, and applied biology. There is strong evidence from experiments with genetically identical organisms performed in narrowly standardized laboratory set-ups that SDV is a source of phenotypic variation in its own right aside from genetic variation and environmental variation. It is obviously mediated by molecular and higher-order epigenetic mechanisms. Comparison of SDV in animals, plants, fungi, protists, bacteria, archaeans, and viruses suggests that it is a ubiquitous and phylogenetically old phenomenon. In animals, it is usually smallest for morphometric traits and highest for life history traits and behaviour. SDV is thought to contribute to phenotypic diversity in all populations but is particularly relevant for asexually reproducing and genetically impoverished populations, where it generates individuality despite genetic uniformity. In each generation, SDV produces a range of phenotypes around a well-adapted target phenotype, which is interpreted as a bet-hedging strategy to cope with the unpredictability of dynamic environments. At least some manifestations of SDV are heritable, adaptable, selectable, and evolvable, and therefore, SDV may be seen as a hitherto overlooked evolution factor. SDV is also relevant for husbandry, agriculture, and medicine because most

  9. Part I: A Review of Research on the Biological Basis of Dyslexia: The Neural Basis of Developmental Dyslexia.

    ERIC Educational Resources Information Center

    Zeffiro, Thomas J.; Eden, Guinevere

    2000-01-01

    This article reviews recent evidence supporting a biological basis for developmental dyslexia. It concludes that the combined evidence demonstrating macroscopic morphologic, microscopic neuronal, and microstructural white matter abnormalities in dyslexia is consistent with a localization of the principle pathophysicological process to perisylvian…

  10. Echoes of the embryo: using the developmental biology toolkit to study cancer

    PubMed Central

    Aiello, Nicole M.; Stanger, Ben Z.

    2016-01-01

    ABSTRACT The hallmark of embryonic development is regulation – the tendency for cells to find their way into organized and ‘well behaved’ structures – whereas cancer is characterized by dysregulation and disorder. At face value, cancer biology and developmental biology would thus seem to have little to do with each other. But if one looks beneath the surface, embryos and cancers share a number of cellular and molecular features. Embryos arise from a single cell and undergo rapid growth involving cell migration and cell-cell interactions: features that are also seen in the context of cancer. Consequently, many of the experimental tools that have been used to study embryogenesis for over a century are well-suited to studying cancer. This article will review the similarities between embryogenesis and cancer progression and discuss how some of the concepts and techniques used to understand embryos are now being adapted to provide insight into tumorigenesis, from the origins of cancer cells to metastasis. PMID:26839398

  11. The extended evolutionary synthesis: its structure, assumptions and predictions

    PubMed Central

    Laland, Kevin N.; Uller, Tobias; Feldman, Marcus W.; Sterelny, Kim; Müller, Gerd B.; Moczek, Armin; Jablonka, Eva; Odling-Smee, John

    2015-01-01

    Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the ‘extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism–environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559

  12. The extended evolutionary synthesis: its structure, assumptions and predictions.

    PubMed

    Laland, Kevin N; Uller, Tobias; Feldman, Marcus W; Sterelny, Kim; Müller, Gerd B; Moczek, Armin; Jablonka, Eva; Odling-Smee, John

    2015-08-22

    Scientific activities take place within the structured sets of ideas and assumptions that define a field and its practices. The conceptual framework of evolutionary biology emerged with the Modern Synthesis in the early twentieth century and has since expanded into a highly successful research program to explore the processes of diversification and adaptation. Nonetheless, the ability of that framework satisfactorily to accommodate the rapid advances in developmental biology, genomics and ecology has been questioned. We review some of these arguments, focusing on literatures (evo-devo, developmental plasticity, inclusive inheritance and niche construction) whose implications for evolution can be interpreted in two ways—one that preserves the internal structure of contemporary evolutionary theory and one that points towards an alternative conceptual framework. The latter, which we label the 'extended evolutionary synthesis' (EES), retains the fundaments of evolutionary theory, but differs in its emphasis on the role of constructive processes in development and evolution, and reciprocal portrayals of causation. In the EES, developmental processes, operating through developmental bias, inclusive inheritance and niche construction, share responsibility for the direction and rate of evolution, the origin of character variation and organism-environment complementarity. We spell out the structure, core assumptions and novel predictions of the EES, and show how it can be deployed to stimulate and advance research in those fields that study or use evolutionary biology. PMID:26246559

  13. Cancer: A Problem of Developmental Biology; Scientific Evidence for Reprogramming and Differentiation Therapy.

    PubMed

    Sell, Stewart; Nicolini, Andrea; Ferrari, Paola; Biava, Pier M

    2016-01-01

    Current medical literature acknowledges that embryonic micro-environment is able to suppress tumor development. Administering carcinogenic substances during organogenesis in fact leads to embryonic malformations, but not to offspring tumor growth. Once organogenesis has ended, administration of carcinogenic substances causes a rise in offspring tumor development. These data indicate that cancer can be considered a deviation in normal development, which can be regulated by factors of the embryonic microenvironment. Furthermore, it has been demonstrated that teratoma differentiates into normal tissues once it is implanted in the embryo. Recently, it has been shown that implanting a melanoma in Zebrafish embryo did not result in a tumor development; however, it did in the adult specimen. This demonstrates that cancer cells can differentiate into normal tissues when implanted in the embryo. In addition, it was demonstrated that other tumors can revert into a normal phenotype and/or differentiate into normal tissue when implanted in the embryo. These studies led some authors to define cancer as a problem of developmental biology and to predict the present concept of "cancer stem cells theory". In this review, we record the most important researches about the reprogramming and differentiation treatments of cancer cells to better clarify how the substances taken from developing embryo or other biological substances can induce differentiation of malignant cells. Lastly, a model of cancer has been proposed here, conceived by one of us, which is consistent with the reality, as demonstrated by a great number of researches. This model integrates the theory of the "maturation arrest" of cancer cells as conceived by B. Pierce with the theory which describes cancer as a process of deterministic chaos determined by genetic and/or epigenetic alterations in differentiated cells, which leads a normal cell to become cancerous. All the researches here described demonstrated that cancer

  14. Using an evolutionary algorithm to determine the parameters of a biologically inspired model of head direction cells.

    PubMed

    Kyriacou, Theocharis

    2012-04-01

    A biologically inspired model of head direction cells is presented and tested on a small mobile robot. Head direction cells (discovered in the brain of rats in 1984) encode the head orientation of their host irrespective of the host's location in the environment. The head direction system thus acts as a biological compass (though not a magnetic one) for its host. Head direction cells are influenced in different ways by idiothetic (host-centred) and allothetic (not host-centred) cues. The model presented here uses the visual, vestibular and kinesthetic inputs that are simulated by robot sensors. Real robot-sensor data has been used in order to train the model's artificial neural network connections. The main contribution of this paper lies in the use of an evolutionary algorithm in order to determine the values of parameters that determine the behaviour of the model. More importantly, the objective function of the evolutionary strategy used takes into consideration quantitative biological observations reported in the literature. PMID:21785973

  15. DARWIN'S NECESSARY MISFIT AND THE SLOSHING BUCKET: THE EVOLUTIONARY BIOLOGY OF EMERGING INFECTIOUS DISEASES.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evolutionary studies suggest that the potential for rapid emergence of novel host-parasite associations appears to be a “built-in feature” of the complex phenomenon that is Darwinian evolution. The current Emerging Infectious Disease (EID) crisis is thus a new manifestation of an old and repeating p...

  16. Evolution in Health and Disease: The Role of Evolutionary Biology in the Medical Curriculum

    ERIC Educational Resources Information Center

    Downie, J. R.

    2004-01-01

    Recent work has emphasised the relevance of evolutionary processes to medical thinking and practice. However, medical curricular revisions, in reducing basic science content, have often excluded evolution. This study establishes the extent of inclusion of evolution in UK medical courses, reports on the level of medical student rejection of…

  17. My Brother's Keeper: A Case Study in Evolutionary Biology and Animal Behavior

    ERIC Educational Resources Information Center

    Benson, Kari E.

    2004-01-01

    In this interrupted case, students read about the alarm-calling behavior of a certain type of ground squirrel and then work in groups to develop hypotheses to explain the behavior and describe data that might be used to test their hypotheses. Students are then given real data and asked to interpret the evolutionary relevance of the results.…

  18. Gradual versus punctuated equilibrium evolution in the Turkana Basin molluscs: evolutionary events or biological invasions?

    PubMed

    Van Bocxlaer, Bert; Damme, Dirk Van; Feibel, Craig S

    2008-03-01

    A running controversy in evolutionary thought was Eldredge and Gould's punctuated equilibrium model, which proposes long periods of morphological stasis interspersed with rapid bursts of dramatic evolutionary change. One of the earliest and most iconic pieces of research in support of punctuated equilibrium is the work of Williamson on the Plio-Pleistocene molluscs of the Turkana Basin. Williamson claimed to have found firm evidence for three episodes of rapid evolutionary change separated by long periods of stasis in a high-resolution sequence. Most of the discussions following this report centered on the topics of (eco)phenotype versus genotype and the possible presence of preservational and temporal artifacts. The debate proved inconclusive, leaving Williamson's reports as one of the empirical foundations of the paradigm of punctuated equilibrium. Here we conclusively show Williamson's original interpretations to be highly flawed. The supposed rapid bursts of punctuated evolutionary change represent artifacts resulting from the invasion of extrabasinal faunal elements in the Turkana palaeolakes during wet phases well known from elsewhere in Africa. PMID:17999724

  19. Developmental Biology of Zeugodacus cucurbitae (Diptera: Tephritidae) in Three Cucurbitaceous Hosts at Different Temperature Regimes.

    PubMed

    Mkiga, A M; Mwatawala, M W

    2015-01-01

    Fruit flies are key pests of cucurbits in many parts of the world, including Tanzania. Developmental biology of Zeugodacus cucurbitae (Coquillett) has been determined across temperature regimes in some cucurbitaceous hosts, in limited geographies. This study was conducted to determine duration and survival rates of immature stages of Z. cucurbitae in three cucurbitaceous hosts, at different temperature regimes. It was hypothesized that temperature and cucurbitaceous hosts influence duration and survival of immature stages of Z. cucurbitae. We conducted experiments in the environmental chamber set at 75 ± 10% RH and a photoperiod of 12:12 (L:D) h, at temperatures of 20, 25, and 30°. Our results showed that duration and survival of immature stages of Z. cucurbitae differed significantly among the temperature regimes but not among the hosts. Egg incubation period as well as larval and pupal stages were significantly longer (P < 0.0001) at low temperature in all three hosts Likewise, survival rate of all immature stages were significantly higher (P < 0.0001) at higher than lower temperatures. The three hosts, cucumber (Cucumis sativus), watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai), and pumpkin (Cucurbita pepo) did not significantly affect duration or survival rates of immature stages of Z. cucurbitae. The low developmental thresholds were estimated at 15.88, 13.44, and 12.62 for egg, larva and pupa, respectively. These results further confirm that Z. cucurbitae is well adapted to warm climate, which dominates many areas of Tanzania. PMID:26589874

  20. Developmental Biology of Zeugodacus cucurbitae (Diptera: Tephritidae) in Three Cucurbitaceous Hosts at Different Temperature Regimes

    PubMed Central

    Mkiga, A. M.; Mwatawala, M. W

    2015-01-01

    Fruit flies are key pests of cucurbits in many parts of the world, including Tanzania. Developmental biology of Zeugodacus cucurbitae (Coquillett) has been determined across temperature regimes in some cucurbitaceous hosts, in limited geographies. This study was conducted to determine duration and survival rates of immature stages of Z. cucurbitae in three cucurbitaceous hosts, at different temperature regimes. It was hypothesized that temperature and cucurbitaceous hosts influence duration and survival of immature stages of Z. cucurbitae. We conducted experiments in the environmental chamber set at 75 ± 10% RH and a photoperiod of 12:12 (L:D) h, at temperatures of 20, 25, and 30°. Our results showed that duration and survival of immature stages of Z. cucurbitae differed significantly among the temperature regimes but not among the hosts. Egg incubation period as well as larval and pupal stages were significantly longer (P < 0.0001) at low temperature in all three hosts Likewise, survival rate of all immature stages were significantly higher (P < 0.0001) at higher than lower temperatures. The three hosts, cucumber (Cucumis sativus), watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai), and pumpkin (Cucurbita pepo) did not significantly affect duration or survival rates of immature stages of Z. cucurbitae. The low developmental thresholds were estimated at 15.88, 13.44, and 12.62 for egg, larva and pupa, respectively. These results further confirm that Z. cucurbitae is well adapted to warm climate, which dominates many areas of Tanzania. PMID:26589874

  1. The role of mathematical models in understanding pattern formation in developmental biology.

    PubMed

    Umulis, David M; Othmer, Hans G

    2015-05-01

    In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics-whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: "It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations." This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, "The laws of Nature are written in the language of mathematics[Formula: see text] the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word." Mathematics has moved beyond the geometry-based model of Galileo's time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837-838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades-that of how organisms can scale in size. Mathematical analysis alone cannot "solve" these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology. PMID:25280665

  2. The Role of Mathematical Models in Understanding Pattern Formation in Developmental Biology

    PubMed Central

    Umulis, David M.

    2016-01-01

    In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics—whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: “It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations.” This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, “The laws of Nature are written in the language of mathematics…the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word.” Mathematics has moved beyond the geometry-based model of Galileo’s time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837–838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades—that of how organisms can scale in size. Mathematical analysis alone cannot “solve” these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology. PMID:25280665

  3. Fighting microbial drug resistance: a primer on the role of evolutionary biology in public health

    PubMed Central

    Perron, Gabriel G; Inglis, R Fredrik; Pennings, Pleuni S; Cobey, Sarah

    2015-01-01

    Although microbes have been evolving resistance to antimicrobials for millennia, the spread of resistance in pathogen populations calls for the development of new drugs and treatment strategies. We propose that successful, long-term resistance management requires a better understanding of how resistance evolves in the first place. This is an opportunity for evolutionary biologists to engage in public health, a collaboration that has substantial precedent. Resistance evolution has been an important tool for developing and testing evolutionary theory, especially theory related to the genetic basis of new traits and constraints on adaptation. The present era is no exception. The articles in this issue highlight the breadth of current research on resistance evolution and also its challenges. In this introduction, we review the conceptual advances that have been achieved from studying resistance evolution and describe a path forward. PMID:25861380

  4. Evolutionary innovation in the vertebrate jaw: A derived morphology in anuran tadpoles and its possible developmental origin.

    PubMed

    Svensson, Mats E; Haas, Alexander

    2005-05-01

    The mouthparts of anuran tadpoles are highly derived compared to those of caecilians or salamanders. The suprarostral cartilages support the tadpole's upper beak; the infrarostral cartilages support the lower beak. Both supra- and infrarostral cartilages are absent in other vertebrates. These differences reflect the evolutionary origin of a derived feeding mode in anuran tadpoles. We suggest that these unique cartilages stem from the evolution of new articulations within preexisting cartilages, rather than novel cartilage condensations. We propose testing this hypothesis through a search for similarities in the development of the suprarostral and infrarostral cartilage articulations and of the primary jaw joint. In Xenopus, the gene zax is expressed in a region corresponding to the infrarostral cartilage. This gene is related to the bapx1-gene, which regulates jaw joint development. Further investigation of these genes, as well as other genes with joint-related functions, in anuran craniofacial development may provide a connection between the morphological diversity seen in the vertebrate head and the corresponding diversity in genetic regulatory processes. We believe that the evolution of larval jaws in anurans may shed light on the general evolutionary mechanisms of how new articulations, not only in the jaw region, could have arisen in the vertebrate skull. PMID:15832380

  5. Evolutionary biology and anthropology suggest biome reconstitution as a necessary approach toward dealing with immune disorders

    PubMed Central

    Parker, William; Ollerton, Jeff

    2013-01-01

    Industrialized society currently faces a wide range of non-infectious, immune-related pandemics. These pandemics include a variety of autoimmune, inflammatory and allergic diseases that are often associated with common environmental triggers and with genetic predisposition, but that do not occur in developing societies. In this review, we briefly present the idea that these pandemics are due to a limited number of evolutionary mismatches, the most damaging being ‘biome depletion’. This particular mismatch involves the loss of species from the ecosystem of the human body, the human biome, many of which have traditionally been classified as parasites, although some may actually be commensal or even mutualistic. This view, evolved from the ‘hygiene hypothesis’, encompasses a broad ecological and evolutionary perspective that considers host-symbiont relations as plastic, changing through ecological space and evolutionary time. Fortunately, this perspective provides a blueprint, termed ‘biome reconstitution’, for disease treatment and especially for disease prevention. Biome reconstitution includes the controlled and population-wide reintroduction (i.e. domestication) of selected species that have been all but eradicated from the human biome in industrialized society and holds great promise for the elimination of pandemics of allergic, inflammatory and autoimmune diseases. PMID:24481190

  6. Evolutionary malignant resistance of cells to damaging factors as common biological defence mechanism in neoplastic development. Review of conception.

    PubMed

    Monceviciute-Eringiene, E

    2000-09-01

    Cells have some inborn resistance to harmful factors, which could be called physiological or natural resistance. The mechanisms of multixenobiotic resistance (MXR) and multidrug resistance (MDR) have common features in the formation of acquired resistance in microorganisms, carcinogenesis, tumour metastases and chemotherapy or irradiation. ATP-dependent membrane P-glycoprotein, as an MDR efflux pump, glutathione S-transferases and other products of evolutionary resistance-related genes arised for exportation and detoxification of cytotoxic xenobiotics and drugs are transmitted from bacteria to man. On the one hand, this evolutionary MXR as a common biological defence mechanism is a "driving" power to conserve homeostasis of cells, tissues and organs. On the other hand, mutation, selection and simplification of properties are the causes of functional and morphological changes in tumour cells which regress to a more primitive mode of existence (atavism) for adaptation to survival. In the present work are presented data on the forms of E. coli resistant to antibiotics and of sarcoma 45 resistant to alkylic preparations. They may be helpful in revealing the causes of resistance and acquired accelerated growth of cells. The development of tumours as fibromas 14-15 years following injection of a vital dye trypan blue into human skin supports our conception that neoplastic growth is a particular case of the evolutionary resistance of cells adapted to the damaging factors. So, tumour cells adopting the enhancement mechanisms of general biological persistent resistance, i. e. undergoing repeated cycles of malignancy enhancement, adapt themselves to survive under the changed unfavourable conditions. PMID:11144527

  7. The Predictive Power of Evolutionary Biology and the Discovery of Eusociality in the Naked Mole-Rat.

    ERIC Educational Resources Information Center

    Braude, Stanton

    1997-01-01

    Discusses how biologists use evolutionary theory and provides examples of how evolutionary biologists test hypotheses on specific modes of selection and evolution. Presents an example of the successful predictive power of one evolutionary hypothesis. Contains 38 references. (DDR)

  8. ANISEED 2015: a digital framework for the comparative developmental biology of ascidians.

    PubMed

    Brozovic, Matija; Martin, Cyril; Dantec, Christelle; Dauga, Delphine; Mendez, Mickaël; Simion, Paul; Percher, Madeline; Laporte, Baptiste; Scornavacca, Céline; Di Gregorio, Anna; Fujiwara, Shigeki; Gineste, Mathieu; Lowe, Elijah K; Piette, Jacques; Racioppi, Claudia; Ristoratore, Filomena; Sasakura, Yasunori; Takatori, Naohito; Brown, Titus C; Delsuc, Frédéric; Douzery, Emmanuel; Gissi, Carmela; McDougall, Alex; Nishida, Hiroki; Sawada, Hitoshi; Swalla, Billie J; Yasuo, Hitoyoshi; Lemaire, Patrick

    2016-01-01

    Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes. ANISEED is publicly available at: http://www.aniseed.cnrs.fr. PMID:26420834

  9. Cellular and Developmental Biology of TRPM7 Channel-Kinase: Implicated Roles in Cancer

    PubMed Central

    Yee, Nelson S.; Kazi, Abid A.; Yee, Rosemary K.

    2014-01-01

    The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed cation-permeable ion channel with intrinsic kinase activity that plays important roles in various physiological functions. Biochemical and electrophysiological studies, in combination with molecular analyses of TRPM7, have generated insights into its functions as a cellular sensor and transducer of physicochemical stimuli. Accumulating evidence indicates that TRPM7 channel-kinase is essential for cellular processes, such as proliferation, survival, differentiation, growth, and migration. Experimental studies in model organisms, such as zebrafish, mouse, and frog, have begun to elucidate the pleiotropic roles of TRPM7 during embryonic development from gastrulation to organogenesis. Aberrant expression and/or activity of the TRPM7 channel-kinase have been implicated in human diseases including a variety of cancer. Studying the functional roles of TRPM7 and the underlying mechanisms in normal cells and developmental processes is expected to help understand how TRPM7 channel-kinase contributes to pathogenesis, such as malignant neoplasia. On the other hand, studies of TRPM7 in diseases, particularly cancer, will help shed new light in the normal functions of TRPM7 under physiological conditions. In this article, we will provide an updated review of the structural features and biological functions of TRPM7, present a summary of current knowledge of its roles in development and cancer, and discuss the potential of TRPM7 as a clinical biomarker and therapeutic target in malignant diseases. PMID:25079291

  10. Biologically based dose-response models for developmental toxicity risk assessment

    SciTech Connect

    Kavlock, R.J.

    1991-01-01

    Present risk assessment procedures for non-cancer endpoints generally rely on the determination of No Observed Adverse Effects levels (NOAELS) in animal models followed by the application of various Uncertainty Factors (UFs) to account for unknowns in extrapolating high dose toxicology studies to potentially sensitive human subpopulations. The Reference Dose (RfD) or Concentration (RfC) which results from the process is an estimate, with an uncertainty spanning an order of magnitude, of the exposure level to the human population that is likely to be without appreciable risk of deleterious effects during a lifetime. The US Environmental Protection Agency, through its Research to Improve Health Risk Assessment Program (RIHRA), has embarked on a concerted effort to introduce more pharmacokinetic and mechanistic information into the risk assessment process for non-cancer endpoints and to do this in a quantitative and predictive fashion. Such approaches are collectively termed biologically based dose-response (BBDR) models, and the presentation will focus on examples of such research in the area of developmental toxicity currently being conducted or supported by the EPA.

  11. ANISEED 2015: a digital framework for the comparative developmental biology of ascidians

    PubMed Central

    Brozovic, Matija; Martin, Cyril; Dantec, Christelle; Dauga, Delphine; Mendez, Mickaël; Simion, Paul; Percher, Madeline; Laporte, Baptiste; Scornavacca, Céline; Di Gregorio, Anna; Fujiwara, Shigeki; Gineste, Mathieu; Lowe, Elijah K.; Piette, Jacques; Racioppi, Claudia; Ristoratore, Filomena; Sasakura, Yasunori; Takatori, Naohito; Brown, Titus C.; Delsuc, Frédéric; Douzery, Emmanuel; Gissi, Carmela; McDougall, Alex; Nishida, Hiroki; Sawada, Hitoshi; Swalla, Billie J.; Yasuo, Hitoyoshi; Lemaire, Patrick

    2016-01-01

    Ascidians belong to the tunicates, the sister group of vertebrates and are recognized model organisms in the field of embryonic development, regeneration and stem cells. ANISEED is the main information system in the field of ascidian developmental biology. This article reports the development of the system since its initial publication in 2010. Over the past five years, we refactored the system from an initial custom schema to an extended version of the Chado schema and redesigned all user and back end interfaces. This new architecture was used to improve and enrich the description of Ciona intestinalis embryonic development, based on an improved genome assembly and gene model set, refined functional gene annotation, and anatomical ontologies, and a new collection of full ORF cDNAs. The genomes of nine ascidian species have been sequenced since the release of the C. intestinalis genome. In ANISEED 2015, all nine new ascidian species can be explored via dedicated genome browsers, and searched by Blast. In addition, ANISEED provides full functional gene annotation, anatomical ontologies and some gene expression data for the six species with highest quality genomes. ANISEED is publicly available at: http://www.aniseed.cnrs.fr. PMID:26420834

  12. Evolutionary medicine: its scope, interest and potential

    PubMed Central

    Stearns, Stephen C.

    2012-01-01

    This review is aimed at readers seeking an introductory overview, teaching courses and interested in visionary ideas. It first describes the range of topics covered by evolutionary medicine, which include human genetic variation, mismatches to modernity, reproductive medicine, degenerative disease, host–pathogen interactions and insights from comparisons with other species. It then discusses priorities for translational research, basic research and health management. Its conclusions are that evolutionary thinking should not displace other approaches to medical science, such as molecular medicine and cell and developmental biology, but that evolutionary insights can combine with and complement established approaches to reduce suffering and save lives. Because we are on the cusp of so much new research and innovative insights, it is hard to estimate how much impact evolutionary thinking will have on medicine, but it is already clear that its potential is enormous. PMID:22933370

  13. Exploring Pandora's Box: Potential and Pitfalls of Low Coverage Genome Surveys for Evolutionary Biology

    PubMed Central

    Leese, Florian; Mayer, Christoph; Agrawal, Shobhit; Dambach, Johannes; Dietz, Lars; Doemel, Jana S.; Goodall-Copstake, William P.; Held, Christoph; Jackson, Jennifer A.; Lampert, Kathrin P.; Linse, Katrin; Macher, Jan N.; Nolzen, Jennifer; Raupach, Michael J.; Rivera, Nicole T.; Schubart, Christoph D.; Striewski, Sebastian; Tollrian, Ralph; Sands, Chester J.

    2012-01-01

    High throughput sequencing technologies are revolutionizing genetic research. With this “rise of the machines”, genomic sequences can be obtained even for unknown genomes within a short time and for reasonable costs. This has enabled evolutionary biologists studying genetically unexplored species to identify molecular markers or genomic regions of interest (e.g. micro- and minisatellites, mitochondrial and nuclear genes) by sequencing only a fraction of the genome. However, when using such datasets from non-model species, it is possible that DNA from non-target contaminant species such as bacteria, viruses, fungi, or other eukaryotic organisms may complicate the interpretation of the results. In this study we analysed 14 genomic pyrosequencing libraries of aquatic non-model taxa from four major evolutionary lineages. We quantified the amount of suitable micro- and minisatellites, mitochondrial genomes, known nuclear genes and transposable elements and searched for contamination from various sources using bioinformatic approaches. Our results show that in all sequence libraries with estimated coverage of about 0.02–25%, many appropriate micro- and minisatellites, mitochondrial gene sequences and nuclear genes from different KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways could be identified and characterized. These can serve as markers for phylogenetic and population genetic analyses. A central finding of our study is that several genomic libraries suffered from different biases owing to non-target DNA or mobile elements. In particular, viruses, bacteria or eukaryote endosymbionts contributed significantly (up to 10%) to some of the libraries analysed. If not identified as such, genetic markers developed from high-throughput sequencing data for non-model organisms may bias evolutionary studies or fail completely in experimental tests. In conclusion, our study demonstrates the enormous potential of low-coverage genome survey sequences and suggests

  14. Phylogenetic and Biological Significance of Evolutionary Elements from Metazoan Mitochondrial Genomes

    PubMed Central

    Yuan, Jianbo; Zhu, Qingming; Liu, Bin

    2014-01-01

    The evolutionary history of living species is usually inferred through the phylogenetic analysis of molecular and morphological information using various mathematical models. New challenges in phylogenetic analysis are centered mostly on the search for accurate and efficient methods to handle the huge amounts of sequence data generated from newer genome sequencing. The next major challenge is the determination of relationships between the evolution of structural elements and their functional implementation, which is largely ignored in previous analyses. Here, we described the discovery of structural elements in metazoan mitochondrial genomes, termed key K-strings, that can serve as a basis for phylogenetic tree construction. Although comprising only a small fraction (0.73%) of all K-strings, these key K-strings are pivotal to the tree construction because they allow for a significant reduction in the computational time required to construct phylogenetic trees, and more importantly, they make significant improvement to the results of phylogenetic inference. The trees constructed from the key K-strings were consistent overall to our current view of metazoan phylogeny and exhibited a more rational topology than the trees constructed by using other conventional methods. Surprisingly, the key K-strings tended to accumulate in the conserved regions of the original sequences, which were most likely due to strong selection pressure. Furthermore, the special structural features of the key K-strings should have some potential applications in the study of the structures and functions relationship of proteins and in the determination of evolutionary trajectory of species. The novelty and potential importance of key K-strings lead us to believe that they are essential evolutionary elements. As such, they may play important roles in the process of species evolution and their physical existence. Further studies could lead to discoveries regarding the relationship between

  15. "Evo in the News:" Understanding Evolution and Students' Attitudes toward the Relevance of Evolutionary Biology

    ERIC Educational Resources Information Center

    Infanti, Lynn M.; Wiles, Jason R.

    2014-01-01

    This investigation evaluated the effects of exposure to the "Evo in the News" section of the "Understanding Evolution" website on students' attitudes toward biological evolution in undergraduates in a mixed-majors introductory biology course at Syracuse University. Students' attitudes toward evolution and changes therein were…

  16. Evolutionary and preservational constraints on origins of biologic groups: divergence times of eutherian mammals

    NASA Technical Reports Server (NTRS)

    Foote, M.; Hunter, J. P.; Janis, C. M.; Sepkoski, J. J. Jr

    1999-01-01

    Some molecular clock estimates of divergence times of taxonomic groups undergoing evolutionary radiation are much older than the groups' first observed fossil record. Mathematical models of branching evolution are used to estimate the maximal rate of fossil preservation consistent with a postulated missing history, given the sum of species durations implied by early origins under a range of species origination and extinction rates. The plausibility of postulated divergence times depends on origination, extinction, and preservation rates estimated from the fossil record. For eutherian mammals, this approach suggests that it is unlikely that many modern orders arose much earlier than their oldest fossil records.

  17. Comparative systems biology across an evolutionary gradient within the Shewanella genus

    SciTech Connect

    Konstantinidis, Kostas; Serres, Margrethe H.; Romine, Margaret F.; Rodrigues, Jorge L.M.; Auchutung, Jennifer M.; McCue, Lee Ann; Lipton, Mary S.; Obraztsova, Anna; Giometti, Carol S.; Nealson, Kenneth H.; Fredrickson, Jim K.; Tiedje, James M.

    2009-09-15

    To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology such as the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of ten closely related Shewanella organisms to provide quantitative insights into this issue. Our analyses revealed that, despite the extensive horizontal gene transfer characterizing these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended, however, on the degree of ecological specialization of the organisms evaluated. Using the unprecedented genetic gradient formed by these genomes, we were able to isolate the effect of ecology from the effect of evolutionary divergence and rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms when grown under identical conditions were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for (new) species description. Collectively, our results provide important new information towards beginning a system level understanding of bacterial species and genera.

  18. Reflections on Behavior Analysis and Evolutionary Biology: A Selective Review of Evolution Since Darwin—The First 150 Years. Edited by M. A. Bell, D. J. Futuyama, W. F. Eanes, & J. S. Levinton

    PubMed Central

    Donahoe, John W

    2012-01-01

    This review focuses on parallels between the selectionist sciences of evolutionary biology and behavior analysis. In selectionism, complex phenomena are interpreted as the cumulative products of relatively simple processes acting over time—natural selection in evolutionary biology and reinforcement in behavior analysis. Because evolutionary biology is the more mature science, an examination of the factors that led to the triumph of natural selection provides clues whereby reinforcement may achieve a similar fate in the science of behavior.

  19. Is salamander limb regeneration really perfect? Anatomical and morphogenetic analysis of forelimb muscle regeneration in GFP-transgenic axolotls as a basis for regenerative, developmental, and evolutionary studies.

    PubMed

    Diogo, R; Nacu, E; Tanaka, E M

    2014-06-01

    The axolotl Ambystoma mexicanum is one of the most commonly used model organisms in developmental and regenerative studies because it can reconstitute what is believed to be a completely normal anatomical and functional forelimb/hindlimb after amputation. However, to date it has not been confirmed whether each regenerated forelimb muscle is really a "perfect" copy of the original muscle. This study describes the regeneration of the arm, forearm, hand, and some pectoral muscles (e.g., coracoradialis) in transgenic axolotls that express green fluorescent protein (GFP) in muscle fibers. The observations found that: (1) there were muscle anomalies in 43% of the regenerated forelimbs; (2) however, on average in each regenerated forelimb there are anomalies in only 2.5% of the total number of muscles examined, and there were no significant differences observed in the specific insertion and origin of the other muscles analyzed; (3) one of the most notable and common anomalies (seen in 35% of the regenerated forelimbs) was the presence of a fleshy coracoradialis at the level of the arm; this is a particularly outstanding configuration because in axolotls and in urodeles in general this muscle only has a thin tendon at the level of the arm, and the additional fleshy belly in the regenerated arms is strikingly similar to the fleshy biceps brachii of amniotes, suggesting a remarkable parallel between a regeneration defect and a major phenotypic change that occurred during tetrapod limb evolution; (4) during forelimb muscle regeneration there was a clear proximo-distal and radio-ulnar morphogenetic gradient, as seen in normal development, but also a ventro-dorsal gradient in the order of regeneration, which was not previously described in the literature. These results have broader implications for regenerative, evolutionary, developmental and morphogenetic studies. PMID:24692358

  20. Evolutionary cell biology: functional insight from “endless forms most beautiful”

    PubMed Central

    Richardson, Elisabeth; Zerr, Kelly; Tsaousis, Anastasios; Dorrell, Richard G.; Dacks, Joel B.

    2015-01-01

    In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking. PMID:26668171

  1. Evolutionary connections of biological kingdoms based on protein and nucleic acid sequence evidence

    NASA Technical Reports Server (NTRS)

    Dayhoff, M. O.

    1983-01-01

    Prokaryotic and eukaryotic evolutionary trees are developed from protein and nucleic-acid sequences by the methods of numerical taxonomy. Trees are presented for bacterial ferredoxins, 5S ribosomal RNA, c-type cytochromes , cytochromes c2 and c', and 5.8S ribosomal RNA; the implications for early evolution are discussed; and a composite tree showing the branching of the anaerobes, aerobes, archaebacteria, and eukaryotes is shown. Single lines are found for all oxygen-evolving photosynthetic forms and for the salt-loving and high-temperature forms of archaebacteria. It is argued that the eukaryote mitochondria, chloroplasts, and cytoplasmic host material are descended from free-living prokaryotes that formed symbiotic associations, with more than one symbiotic event involved in the evolution of each organelle.

  2. Link between insulin resistance and hypertension: What is the evidence from evolutionary biology?

    PubMed

    Zhou, Ming-Sheng; Wang, Aimei; Yu, Hong

    2014-01-01

    Insulin resistance and hypertension are considered as prototypical "diseases of civilization" that are manifested in the modern environment as plentiful food and sedentary life. The human propensity for insulin resistance and hypertension is a product, at least in part, of our evolutionary history. Adaptation to ancient lifestyle characterized by a low sodium, low-calorie food supply and physical stress to injury response has driven our evolution to shape and preserve a thrifty genotype, which is favorite with energy-saving and sodium conservation. As our civilization evolved, a sedentary lifestyle and sodium- and energy-rich diet, the thrifty genotype is no longer advantageous, and may be maladaptive to disease phenotype, such as hypertension, obesity and insulin resistance syndrome. This article reviews human evolution and the impact of the modern environment on hypertension and insulin resistance. PMID:24485020

  3. Framing Postpartum Hemorrhage as a Consequence of Human Placental Biology: An Evolutionary and Comparative Perspective

    PubMed Central

    Abrams, Elizabeth; Rutherford, Julienne

    2011-01-01

    Postpartum hemorrhage (PPH), the leading cause of maternal mortality worldwide, is responsible for 35 percent of maternal deaths. Proximately, PPH results from the failure of the placenta to separate from the uterine wall properly, most often because of impairment of uterine muscle contraction. Despite its prevalence and its well-described clinical manifestations, the ultimate causes of PPH are not known and have not been investigated through an evolutionary lens. We argue that vulnerability to PPH stems from the intensely invasive nature of human placentation. The human placenta causes uterine vessels to undergo transformation to provide the developing fetus with a high plane of maternal resources; the degree of this transformation in humans is extensive. We argue that the particularly invasive nature of the human placenta increases the possibility of increased blood loss at parturition. We review evidence suggesting PPH and other placental disorders represent an evolutionarily novel condition in hominins. PMID:21909154

  4. Link between insulin resistance and hypertension: What is the evidence from evolutionary biology?

    PubMed Central

    2014-01-01

    Insulin resistance and hypertension are considered as prototypical “diseases of civilization” that are manifested in the modern environment as plentiful food and sedentary life. The human propensity for insulin resistance and hypertension is a product, at least in part, of our evolutionary history. Adaptation to ancient lifestyle characterized by a low sodium, low-calorie food supply and physical stress to injury response has driven our evolution to shape and preserve a thrifty genotype, which is favorite with energy-saving and sodium conservation. As our civilization evolved, a sedentary lifestyle and sodium- and energy-rich diet, the thrifty genotype is no longer advantageous, and may be maladaptive to disease phenotype, such as hypertension, obesity and insulin resistance syndrome. This article reviews human evolution and the impact of the modern environment on hypertension and insulin resistance. PMID:24485020

  5. The evolution of ERMIONE in mitochondrial biogenesis and lipid homeostasis: An evolutionary view from comparative cell biology.

    PubMed

    Wideman, Jeremy G; Muñoz-Gómez, Sergio A

    2016-08-01

    The ER-mitochondria organizing network (ERMIONE) in Saccharomyces cerevisiae is involved in maintaining mitochondrial morphology and lipid homeostasis. ERMES and MICOS are two scaffolding complexes of ERMIONE that contribute to these processes. ERMES is ancient but has been lost in several lineages including animals, plants, and SAR (stramenopiles, alveolates and rhizaria). On the other hand, MICOS is ancient and has remained present in all organisms bearing mitochondrial cristae. The ERMIONE precursor evolved in the α-proteobacterial ancestor of mitochondria which had the central subunit of MICOS, Mic60. The subsequent evolution of ERMIONE and its interactors in eukaryotes reflects the integrative co-evolution of mitochondria and their hosts and the adaptive paths that some lineages have followed in their specialization to certain environments. By approaching the ERMIONE from a perspective of comparative evolutionary cell biology, we hope to shed light on not only its evolutionary history, but also how ERMIONE components may function in organisms other than S. cerevisiae. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. PMID:26825688

  6. Child Development and Evolutionary Psychology.

    ERIC Educational Resources Information Center

    Bjorklund, David F.; Pellegrini, Anthony D.

    2000-01-01

    Argues that an evolutionary account provides insight into developmental function and individual differences. Outlines some assumptions of evolutionary psychology related to development. Introduces the developmental systems approach, differential influence of natural selection at different points in ontogeny, and development of evolved…

  7. Spore: Spawning Evolutionary Misconceptions?

    NASA Astrophysics Data System (ADS)

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-10-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an immutable essence), teleological (assignment of purpose to living things and/or parts of living things that may not be purposeful), and intentionality (assumption that events are caused by an intelligent agent) biases may be reinforced through the use of computer simulations, rather than addressed with instruction. We examine the video game Spore for its depiction of evolutionary content and its potential to reinforce these cognitive biases. In particular, we discuss three pedagogical strategies to mitigate weaknesses of Spore and other computer simulations: directly targeting misconceptions through refutational approaches, targeting specific principles of scientific inquiry, and directly addressing issues related to models as cognitive tools.

  8. Metaphor, Ambiguity, and Motive in Evolutionary Biology: W. D. Hamilton and the "Gene's Point of View"

    ERIC Educational Resources Information Center

    Journet, Debra

    2005-01-01

    This article analyzes the power of ambiguous metaphors to present scientific novelty. Its focus is a series of papers by the prominent population biologist W. D. Hamilton in which he redefined the meaning of biological altruism. In particular, the article draws on Kenneth Burke's dramatistic pentad to examine why suggestions of motive are so…

  9. The evolutionary biology of self-deception, laughter, dreaming and depression: some clues from anosognosia.

    PubMed

    Ramachandran, V S

    1996-11-01

    Patients with right hemisphere strokes sometimes vehemently deny their paralysis. I describe three new experiments that were designed to determine the extent and depth of this denial. Curiously, when asked to perform an action with their paralyzed arm, they often employ a whole arsenal of grossly exaggerated 'Freudian defense mechanisms' to account for their failure (e.g. 'I have arthritis' or 'I don't feel like moving it right now'). To explain this, I propose that, in normal individuals, the left hemisphere ordinarily deals with small, local 'anomalies' or discrepancies by trying to impose consistency in order to preserve the status quo. But when the anomaly exceeds threshold, a 'devil's advocate' in the right hemisphere intervenes and generates a paradigm shift, i.e. it results in the construction of a new model using the same data. A failure of this process in right hemisphere stroke would partially explain anosognosia. Also, our model provides a new theory for the evolutionary origin of self-deception that is different from one proposed by Trivers. And, finally, I use anosognosia as a launching-off point to speculate on a number of other aspects of human nature such as Freudian defense mechanisms, laughter, dreams and the mnemonic functions of the hippocampus. PMID:8951799

  10. A biological basis for the Oedipus complex: an evolutionary and ethological approach.

    PubMed

    Jonas, A D; Jonas, D F

    1975-06-01

    The authors propose that the Oedipus complex has a strong biological basis that is evident in observations of human prehistoric and nonhuman primate behavior. The groundwork for the oedipal phase is the peaking of human infantile sexuality at age five or six-a vestige of an earlier biological timetable. Other contributing factors include the high level of helplessness of human infants, the resulting high attachment needs, and the prolongation of development phases. Unsuccessful resolution of the oedipal phase may result when the mother's dominant status is lowered. The authors suggest that an understanding of the relationship between sex and rank and an wareness of ethological findings can broaden psychodynamic formulations and enrich the psychoanalytic therapy of sexual problems. PMID:804819

  11. Linking Automated Data Analysis and Visualization with Applications in Developmental Biology and High-Energy Physics

    SciTech Connect

    Ruebel, Oliver

    2009-11-20

    Knowledge discovery from large and complex collections of today's scientific datasets is a challenging task. With the ability to measure and simulate more processes at increasingly finer spatial and temporal scales, the increasing number of data dimensions and data objects is presenting tremendous challenges for data analysis and effective data exploration methods and tools. Researchers are overwhelmed with data and standard tools are often insufficient to enable effective data analysis and knowledge discovery. The main objective of this thesis is to provide important new capabilities to accelerate scientific knowledge discovery form large, complex, and multivariate scientific data. The research covered in this thesis addresses these scientific challenges using a combination of scientific visualization, information visualization, automated data analysis, and other enabling technologies, such as efficient data management. The effectiveness of the proposed analysis methods is demonstrated via applications in two distinct scientific research fields, namely developmental biology and high-energy physics.Advances in microscopy, image analysis, and embryo registration enable for the first time measurement of gene expression at cellular resolution for entire organisms. Analysis of high-dimensional spatial gene expression datasets is a challenging task. By integrating data clustering and visualization, analysis of complex, time-varying, spatial gene expression patterns and their formation becomes possible. The analysis framework MATLAB and the visualization have been integrated, making advanced analysis tools accessible to biologist and enabling bioinformatic researchers to directly integrate their analysis with the visualization. Laser wakefield particle accelerators (LWFAs) promise to be a new compact source of high-energy particles and radiation, with wide applications ranging from medicine to physics. To gain insight into the complex physical processes of particle

  12. Structural, biological, and evolutionary relationships of plant food allergens sensitizing via the gastrointestinal tract.

    PubMed

    Mills, E N Clare; Jenkins, John A; Alcocer, Marcos J C; Shewry, Peter R

    2004-01-01

    The recently completed genome sequence of the model plant species Arabidopsis has been estimated to encode over 25,000 proteins, which, on the basis of their function, can be classified into structural and metabolic (the vast majority of plant proteins), protective proteins, which defend a plant against invasion by pathogens or feeding by pests, and storage proteins, which proved a nutrient store to support germination in seeds. It is now clear that almost all plant food allergens are either protective or storage proteins. It is also becoming evident that those proteins that trigger the development of an allergic response through the gastrointestinal tract belong primarily to two large protein superfamilies: (1) The cereal prolamin superfamily, comprising three major groups of plant food allergens, the 2S albumins, lipid transfer proteins, and cereal alpha-amylase/trypsin inhibitors, which have related structures, and are stable to thermal processing and proteolysis. They include major allergens from Brazil nut, peanuts, fruits, such as peaches, and cereals, such as rice and wheat; (2) The cupin superfamily, comprising the major globulin storage proteins from a number of plant species. The globulins have been found to be allergens in plant foods, such as peanuts, soya bean, and walnut; (3) The cyteine protease C1 family, comprising the papain-like proteases from microbes, plants, and animals. This family contains two notable allergens that sensitize via the GI tract, namely actinidin from kiwi fruit and the soybean allergen, Gly m Bd 30k/P34. This study describes the properties, structures, and evolutionary relationships of these protein families, the allergens that belong to them, and discusses them in relation to the role protein structure may play in determining protein allergenicity. PMID:15540651

  13. Beyond fossil calibrations: realities of molecular clock practices in evolutionary biology

    PubMed Central

    Hipsley, Christy A.; Müller, Johannes

    2014-01-01

    Molecular-based divergence dating methods, or molecular clocks, are the primary neontological tool for estimating the temporal origins of clades. While the appropriate use of vertebrate fossils as external clock calibrations has stimulated heated discussions in the paleontological community, less attention has been given to the quality and implementation of other calibration types. In lieu of appropriate fossils, many studies rely on alternative sources of age constraints based on geological events, substitution rates and heterochronous sampling, as well as dates secondarily derived from previous analyses. To illustrate the breadth and frequency of calibration types currently employed, we conducted a literature survey of over 600 articles published from 2007 to 2013. Over half of all analyses implemented one or more fossil dates as constraints, followed by geological events and secondary calibrations (15% each). Vertebrate taxa were subjects in nearly half of all studies, while invertebrates and plants together accounted for 43%, followed by viruses, protists and fungi (3% each). Current patterns in calibration practices were disproportionate to the number of discussions on their proper use, particularly regarding plants and secondarily derived dates, which are both relatively neglected in methodological evaluations. Based on our survey, we provide a comprehensive overview of the latest approaches in clock calibration, and outline strengths and weaknesses associated with each. This critique should serve as a call to action for researchers across multiple communities, particularly those working on clades for which fossil records are poor, to develop their own guidelines regarding selection and implementation of alternative calibration types. This issue is particularly relevant now, as time-calibrated phylogenies are used for more than dating evolutionary origins, but often serve as the backbone of investigations into biogeography, diversity dynamics and rates of

  14. Examining Gender Differences in Written Assessment Tasks in Biology: A Case Study of Evolutionary Explanations.

    PubMed

    Federer, Meghan Rector; Nehm, Ross H; Pearl, Dennis K

    2016-01-01

    Understanding sources of performance bias in science assessment provides important insights into whether science curricula and/or assessments are valid representations of student abilities. Research investigating assessment bias due to factors such as instrument structure, participant characteristics, and item types are well documented across a variety of disciplines. However, the relationships among these factors are unclear for tasks evaluating understanding through performance on scientific practices, such as explanation. Using item-response theory (Rasch analysis), we evaluated differences in performance by gender on a constructed-response (CR) assessment about natural selection (ACORNS). Three isomorphic item strands of the instrument were administered to a sample of undergraduate biology majors and nonmajors (Group 1: n = 662 [female = 51.6%]; G2: n = 184 [female = 55.9%]; G3: n = 642 [female = 55.1%]). Overall, our results identify relationships between item features and performance by gender; however, the effect is small in the majority of cases, suggesting that males and females tend to incorporate similar concepts into their CR explanations. These results highlight the importance of examining gender effects on performance in written assessment tasks in biology. PMID:26865642

  15. Extended inclusive fitness theory: synergy and assortment drives the evolutionary dynamics in biology and economics.

    PubMed

    Jaffe, Klaus

    2016-01-01

    W.D. Hamilton's Inclusive Fitness Theory explains the conditions that favor the emergence and maintenance of social cooperation. Today we know that these include direct and indirect benefits an agent obtains by its actions, and through interactions with kin and with genetically unrelated individuals. That is, in addition to kin-selection, assortation or homophily, and social synergies drive the evolution of cooperation. An Extended Inclusive Fitness Theory (EIFT) synthesizes the natural selection forces acting on biological evolution and on human economic interactions by assuming that natural selection driven by inclusive fitness produces agents with utility functions that exploit assortation and synergistic opportunities. This formulation allows to estimate sustainable cost/benefit threshold ratios of cooperation among organisms and/or economic agents, using existent analytical tools, illuminating our understanding of the dynamic nature of society, the evolution of cooperation among kin and non-kin, inter-specific cooperation, co-evolution, symbioses, division of labor and social synergies. EIFT helps to promote an interdisciplinary cross fertilization of the understanding of synergy by, for example, allowing to describe the role for division of labor in the emergence of social synergies, providing an integrated framework for the study of both, biological evolution of social behavior and economic market dynamics. Another example is a bio-economic understanding of the motivations of terrorists, which identifies different forms of terrorism. PMID:27468393

  16. Examining Gender Differences in Written Assessment Tasks in Biology: A Case Study of Evolutionary Explanations

    PubMed Central

    Federer, Meghan Rector; Nehm, Ross H.; Pearl, Dennis K.

    2016-01-01

    Understanding sources of performance bias in science assessment provides important insights into whether science curricula and/or assessments are valid representations of student abilities. Research investigating assessment bias due to factors such as instrument structure, participant characteristics, and item types are well documented across a variety of disciplines. However, the relationships among these factors are unclear for tasks evaluating understanding through performance on scientific practices, such as explanation. Using item-response theory (Rasch analysis), we evaluated differences in performance by gender on a constructed-response (CR) assessment about natural selection (ACORNS). Three isomorphic item strands of the instrument were administered to a sample of undergraduate biology majors and nonmajors (Group 1: n = 662 [female = 51.6%]; G2: n = 184 [female = 55.9%]; G3: n = 642 [female = 55.1%]). Overall, our results identify relationships between item features and performance by gender; however, the effect is small in the majority of cases, suggesting that males and females tend to incorporate similar concepts into their CR explanations. These results highlight the importance of examining gender effects on performance in written assessment tasks in biology. PMID:26865642

  17. [The effect of betain on biology and morphology of developmental stages of Eimeria acervulina in broiler chicks experimentally infected].

    PubMed

    Teixeira, Marcel; Niang, Tania Marcia S; Gomes, Augusto V da C; Lopes, Carlos Wilson G

    2006-01-01

    Purposing to investigate the betaine effect on biology and morphology of developmental stages of Eimeria acervulina, 420 broiler chicks Cobb were experimentally inoculated with 2 x 10(5) sporulated oocysts and housed in battery cages in a block design with five treatments and six replicates each, including a positive control, a group treated with salinomycin and growth promoter plus three levels of betaine as additive in the feed at 0.05, 0.10 and 0.15%. Measurements of oocysts, sporocysts and endogenous stages were performed as morphological parameters, while pre patent and patent periods and sporulation time were taken as biological parameters. Morphology was also associated with the mathematical constant Phi (1.618) to evaluate possible relationship. Betaine was able to cause modifications in both biology and morphology of oocysts and sporocysts, whereas it was weakly able to affect developmental stages based on trophozoites and macrogamonts measurements. According to the measures of sporocysts E. acervulina development was closely related to Phi. PMID:17196124

  18. Biological species is the only possible form of existence for higher organisms: the evolutionary meaning of sexual reproduction

    PubMed Central

    2010-01-01

    Consistent holistic view of sexual species as the highest form of biological existence is presented. The Weismann's idea that sex and recombination provide the variation for the natural selection to act upon is dominated in most discussions of the biological meaning of the sexual reproduction. Here, the idea is substantiated that the main advantage of sex is the opposite: the ability to counteract not only extinction but further evolution as well. Living systems live long owing to their ability to reproduce themselves with a high fidelity. Simple organisms (like bacteria) reach the continued existence due to the high fidelity of individual genome replication. In organisms with a large genome and complex development, the achievable fidelity of DNA replication is not enough for the precise reproduction of the genome. Such species must be capable of surviving and must remain unchanged in spite of the continuous changes of their genes. This problem has no solution in the frame of asexual ("homeogenomic") lineages. They would rapidly degrade and become extinct or blurred out in the course of the reckless evolution. The core outcome of the transition to sexual reproduction was the creation of multiorganismic entity - biological species. Individual organisms forfeited their ability to reproduce autonomously. It implies that individual organisms forfeited their ability to substantive evolution. They evolve as a part of the biological species. In case of obligatory sexuality, there is no such a thing as synchronic multi-level selection. Natural selection cannot select anything that is not a unit of reproduction. Hierarchy in biology implies the functional predestination of the parts for the sake of the whole. A crucial feature of the sexual reproduction is the formation of genomes of individual organisms by random picking them over from the continuously shuffled gene pool instead of the direct replication of the ancestor's genome. A clear anti-evolutionary consequence of

  19. Maternal and fetal toxicity in developmental toxicology bioassays: Weight changes and their biological significance

    EPA Science Inventory

    Standard developmental toxicology bioassays are designed to identify agents with the potential to induce adverse effects in the embryo/fetus. Guidelines call for the inclusion of a dose level(s) that induces “overt maternal toxicity.” The possibility that general maternal toxicit...

  20. Comparing Activity Patterns, Biological, and Family Factors in Children with and without Developmental Coordination Disorder

    ERIC Educational Resources Information Center

    Beutum, Monique Natalie; Cordier, Reinie; Bundy, Anita

    2013-01-01

    The association between motor proficiency and moderate to vigorous physical activity (MVPA) suggests children with developmental coordination disorder (DCD) may be susceptible to inactivity-related conditions such as cardiovascular diseases. The aim of this study was to compare children with and without DCD on physical activity patterns, activity…

  1. Interest in Biology: A Developmental Shift Characterized Using Self-Generated Questions

    ERIC Educational Resources Information Center

    Baram-Tsabari, Ayelet; Yarden, Anat

    2007-01-01

    Identifying students' interests in biology can play an important role in improving existing curricula to meet their needs. An analysis of 1,751 self-generated biological questions raised by children, adolescents, and adults yielded data regarding the different age groups' interests in biology. Research limitations and applications for teaching are…

  2. Evolutionary thinking: "A conversation with Carter Phipps about the role of evolutionary thinking in modern culture".

    PubMed

    Hunt, Tam

    2014-12-01

    Evolution as an idea has a lengthy history, even though the idea of evolution is generally associated with Darwin today. Rebecca Stott provides an engaging and thoughtful overview of this history of evolutionary thinking in her 2013 book, Darwin's Ghosts: The Secret History of Evolution. Since Darwin, the debate over evolution-both how it takes place and, in a long war of words with religiously-oriented thinkers, whether it takes place-has been sustained and heated. A growing share of this debate is now devoted to examining how evolutionary thinking affects areas outside of biology. How do our lives change when we recognize that all is in flux? What can we learn about life more generally if we study change instead of stasis? Carter Phipps' book, Evolutionaries: Unlocking the Spiritual and Cultural Potential of Science's Greatest Idea, delves deep into this relatively new development. Phipps generally takes as a given the validity of the Modern Synthesis of evolutionary biology. His story takes us into, as the subtitle suggests, the spiritual and cultural implications of evolutionary thinking. Can religion and evolution be reconciled? Can evolutionary thinking lead to a new type of spirituality? Is our culture already being changed in ways that we don't realize by evolutionary thinking? These are all important questions and Phipps book is a great introduction to this discussion. Phipps is an author, journalist, and contributor to the emerging "integral" or "evolutionary" cultural movement that combines the insights of Integral Philosophy, evolutionary science, developmental psychology, and the social sciences. He has served as the Executive Editor of EnlightenNext magazine (no longer published) and more recently is the co-founder of the Institute for Cultural Evolution, a public policy think tank addressing the cultural roots of America's political challenges. What follows is an email interview with Phipps. PMID:26478766

  3. Developmental biology of Streptomyces from the perspective of 100 actinobacterial genome sequences

    PubMed Central

    Chandra, Govind; Chater, Keith F

    2014-01-01

    To illuminate the evolution and mechanisms of actinobacterial complexity, we evaluate the distribution and origins of known Streptomyces developmental genes and the developmental significance of actinobacteria-specific genes. As an aid, we developed the Actinoblast database of reciprocal blastp best hits between the Streptomyces coelicolor genome and more than 100 other actinobacterial genomes (http://streptomyces.org.uk/actinoblast/). We suggest that the emergence of morphological complexity was underpinned by special features of early actinobacteria, such as polar growth and the coupled participation of regulatory Wbl proteins and the redox-protecting thiol mycothiol in transducing a transient nitric oxide signal generated during physiologically stressful growth transitions. It seems that some cell growth and division proteins of early actinobacteria have acquired greater importance for sporulation of complex actinobacteria than for mycelial growth, in which septa are infrequent and not associated with complete cell separation. The acquisition of extracellular proteins with structural roles, a highly regulated extracellular protease cascade, and additional regulatory genes allowed early actinobacterial stationary phase processes to be redeployed in the emergence of aerial hyphae from mycelial mats and in the formation of spore chains. These extracellular proteins may have contributed to speciation. Simpler members of morphologically diverse clades have lost some developmental genes. PMID:24164321

  4. From field to gel blot: teaching a holistic view of developmental phenomena to undergraduate biology students at the University of Tokyo.

    PubMed

    Ariizumi, Takashi; Asashima, Makoto

    2003-01-01

    We present here an outline of the lectures and laboratory exercises for undergraduate developmental biology students at the University of Tokyo. The main aim of our course is to help students fill the gap between natural history, classical embryology and molecular developmental biology. To achieve this aim, we take up various topics in the lectures, from fertilization and early development to developmental engineering. Our laboratory exercises begin with an introduction to the natural history of the organism. The entire class and the instructors collect newts in the field and discuss features of their mating behavior and so on. In the laboratory, students are absorbed by exercises such as a lampbrush chromosome preparation and an in vitro beating heart induction. After that, students choose their own research projects for which they will employ both classical embryological and modern molecular biological techniques. At the end of our course, the connectivity principle from field to gel blot will be part of the students' understanding. PMID:12705655

  5. Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies

    PubMed Central

    Baker, Ruth E.; Schnell, Santiago; Maini, Philip K.

    2014-01-01

    In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each patterning mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example patterning processes. PMID:19557684

  6. Otoconia as test masses in biological accelerometers: what can we learn about their formation from evolutionary studies and from work in microgravity?

    NASA Technical Reports Server (NTRS)

    Ross, M. D.; Donovan, K. M.

    1986-01-01

    This paper reviews previous findings and introduces new material about otolith end organs that help us to understand their functioning and development. In particular, we consider the end organs as biological accelerometers. The otoconia are dealt with as test masses whose substructure and evolutionary trend toward calcite may prove significant in understanding formation requirements. Space-flight helps illuminate the influence of gravity, while right-left asymmetry is suggested by study of certain rat strains.

  7. Positional information and reaction-diffusion: two big ideas in developmental biology combine.

    PubMed

    Green, Jeremy B A; Sharpe, James

    2015-04-01

    One of the most fundamental questions in biology is that of biological pattern: how do the structures and shapes of organisms arise? Undoubtedly, the two most influential ideas in this area are those of Alan Turing's 'reaction-diffusion' and Lewis Wolpert's 'positional information'. Much has been written about these two concepts but some confusion still remains, in particular about the relationship between them. Here, we address this relationship and propose a scheme of three distinct ways in which these two ideas work together to shape biological form. PMID:25804733

  8. The evolutionary conformation from traditional lecture to active learning in an undergraduate biology course and its effects on student achievement

    NASA Astrophysics Data System (ADS)

    Diederich, Kirsten Bakke

    In response to the declining number of students in the United States entering into the STEM (science, technology, engineering, and math) disciplines, there has been an attempt to retain student interest in the sciences through the implementation of more active learning in the classroom. Active learning is defined as any instructional method that requires students do something in the classroom rather than simply listen to a lecture (Herreid, 2006). These student centered approaches provide the students with the opportunity to work cooperatively while developing the skills required for critical inquiry. They also help the students make the connections between what is being taught and how it can be applied in a real world setting. Science education researchers have attempted to analyze the efficacy of active learning. Although they find it difficult to compare the data, they state unequivocally that "Active learning is a better strategy for learning than the traditional didactic lecture format" (Prince, 2004). However, even though research supports the efficacy of active learning, instructors find it difficult to adopt this pedagogy into their classrooms due to concerns such as loss of content knowledge and student resistance. This three year qualitative and quantitative study addressed the level of student learning and satisfaction in an introductory vertebrate biology class at a small liberal arts college. The courses were taught by the same instructor using three pedagogical methods; traditional lecture (TL), problem-based learning (PBL), and case-based learning (CBL). Student grades and levels of assessment were compared between the TL and PBL, while student attrition rates, course satisfaction and views of active and group learning were analyzed across all three sections. The evolutionary confirmations from TL to PBL and ultimately the adoption of CBL as the method of choice are discussed from the view of both the faculty member and the students.

  9. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology

    PubMed Central

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view. PMID:23515240

  10. A Unifying Mathematical Framework for Genetic Robustness, Environmental Robustness, Network Robustness and their Trade-off on Phenotype Robustness in Biological Networks Part I: Gene Regulatory Networks in Systems and Evolutionary Biology.

    PubMed

    Chen, Bor-Sen; Lin, Ying-Po

    2013-01-01

    Robust stabilization and environmental disturbance attenuation are ubiquitous systematic properties observed in biological systems at different levels. The underlying principles for robust stabilization and environmental disturbance attenuation are universal to both complex biological systems and sophisticated engineering systems. In many biological networks, network robustness should be enough to confer intrinsic robustness in order to tolerate intrinsic parameter fluctuations, genetic robustness for buffering genetic variations, and environmental robustness for resisting environmental disturbances. With this, the phenotypic stability of biological network can be maintained, thus guaranteeing phenotype robustness. This paper presents a survey on biological systems and then develops a unifying mathematical framework for investigating the principles of both robust stabilization and environmental disturbance attenuation in systems and evolutionary biology. Further, from the unifying mathematical framework, it was discovered that the phenotype robustness criterion for biological networks at different levels relies upon intrinsic robustness + genetic robustness + environmental robustness ≦ network robustness. When this is true, the phenotype robustness can be maintained in spite of intrinsic parameter fluctuations, genetic variations, and environmental disturbances. Therefore, the trade-offs between intrinsic robustness, genetic robustness, environmental robustness, and network robustness in systems and evolutionary biology can also be investigated through their corresponding phenotype robustness criterion from the systematic point of view. PMID:23515240

  11. How insights from cardiovascular developmental biology have impacted the care of infants and children with congenital heart disease

    PubMed Central

    Chin, Alvin J.; Saint-Jeannet, Jean-Pierre; Lo, Cecilia W.

    2012-01-01

    To illustrate the impact developmental biology and genetics have already had on the clinical management of the million infants born worldwide each year with CHD, we have chosen three stories which have had particular relevance for pediatric cardiologists, cardiothoracic surgeons, cardiac anesthesiologists, and cardiac nurses. First, we show how Margaret Kirby’s finding of the unexpected contribution of an ectodermal cell population – the cranial neural crest – to the aortic arch arteries and arterial pole of the embryonic avian heart provided a key impetus to the field of cardiovascular patterning. Recognition that a majority of patients affected by the neurocristopathy DiGeorge syndrome have a chromosome 22q11 deletion, have also spurred tremendous efforts to characterize the molecular mechanisms contributing to this pathology, assigning a major role to the transcription factor Tbx1. Second, synthesizing the work of the last two decades by many laboratories on a wide gamut of metazoans (invertebrates, tunicates, agnathans, teleosts, lungfish, amphibians, and amniotes), we review the >20 major modifications and additions to the ancient circulatory arrangement composed solely of a unicameral (one-chambered), contractile myocardial tube and a short proximal aorta. Two changes will be discussed in detail – the interposition of a second cardiac chamber in the circulation and the septation of the cardiac ventricle. By comparing the developmental genetic data of several model organisms, we can better understand the origin of the various components of the multicameral (multi-chambered) heart seen in humans. Third, Martina Brueckner’s discovery that a faulty axonemal dynein was responsible for the phenotype of the iv/iv mouse (the first mammalian model of human heterotaxy) focused attention on the biology of cilia. We discuss how even the care of the complex cardiac and non-cardiac anomalies seen in heterotaxy syndrome, which have long seemed impervious to

  12. How insights from cardiovascular developmental biology have impacted the care of infants and children with congenital heart disease.

    PubMed

    Chin, Alvin J; Saint-Jeannet, Jean-Pierre; Lo, Cecilia W

    2012-07-01

    To illustrate the impact developmental biology and genetics have already had on the clinical management of the million infants born worldwide each year with CHD, we have chosen three stories which have had particular relevance for pediatric cardiologists, cardiothoracic surgeons, cardiac anesthesiologists, and cardiac nurses. First, we show how Margaret Kirby's finding of the unexpected contribution of an ectodermal cell population - the cranial neural crest - to the aortic arch arteries and arterial pole of the embryonic avian heart provided a key impetus to the field of cardiovascular patterning. Recognition that a majority of patients affected by the neurocristopathy DiGeorge syndrome have a chromosome 22q11 deletion, have also spurred tremendous efforts to characterize the molecular mechanisms contributing to this pathology, assigning a major role to the transcription factor Tbx1. Second, synthesizing the work of the last two decades by many laboratories on a wide gamut of metazoans (invertebrates, tunicates, agnathans, teleosts, lungfish, amphibians, and amniotes), we review the >20 major modifications and additions to the ancient circulatory arrangement composed solely of a unicameral (one-chambered), contractile myocardial tube and a short proximal aorta. Two changes will be discussed in detail - the interposition of a second cardiac chamber in the circulation and the septation of the cardiac ventricle. By comparing the developmental genetic data of several model organisms, we can better understand the origin of the various components of the multicameral (multi-chambered) heart seen in humans. Third, Martina Brueckner's discovery that a faulty axonemal dynein was responsible for the phenotype of the iv/iv mouse (the first mammalian model of human heterotaxy) focused attention on the biology of cilia. We discuss how even the care of the complex cardiac and non-cardiac anomalies seen in heterotaxy syndrome, which have long seemed impervious to advancements in

  13. Developmental biology of the innate immune response: implications for neonatal and infant vaccine development

    PubMed Central

    Philbin, Victoria Jane; Levy, Ofer

    2009-01-01

    Molecular characterization of mechanisms by which human pattern recognition receptors (PRRs) detect danger signals has greatly expanded our understanding of the innate immune system. PRRs include Toll-like receptors (TLRs), nucleotide oligomerization domain-like receptors (NLRs), retinoic acid inducible gene-like receptors (RLRs) and C-type lectin receptors (CLRs). Characterization of the developmental expression of these systems in the fetus, newborn and infant is incomplete but has yielded important insights into neonatal susceptibility to infection. Activation of PRRs on antigen-presenting cells enhances co-stimulatory function, and thus PRRs agonists are potential vaccine adjuvants, some of which are already in clinical use. Thus study of PRRs has also revealed how previously mysterious immunomodulators are able to mediate their actions, including the vaccine adjuvant aluminum hydroxide (Alum) whose adjuvant activity depends on its ability to activate a cytosolic protein complex known as the Nacht Domain Leucine-Rich Repeat and PYD-Containing Protein 3 (NALP3) inflammasome leading to IL-1ß production. Progress in characterizing PRRs is thus informing and expanding the design of improved adjuvants. This review summarizes recent developments in the field of innate immunity with special emphasis on developmental expression in the fetus, newborn and infant and its implications for the design of more effective neonatal and infant vaccines. PMID:19918215

  14. INVITED ARTICLE: Partial differential equations for self-organization in cellular and developmental biology

    NASA Astrophysics Data System (ADS)

    Baker, R. E.; Gaffney, E. A.; Maini, P. K.

    2008-11-01

    Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field.

  15. Evolutionary development of tensegrity structures.

    PubMed

    Lobo, Daniel; Vico, Francisco J

    2010-09-01

    Contributions from the emerging fields of molecular genetics and evo-devo (evolutionary developmental biology) are greatly benefiting the field of evolutionary computation, initiating a promise of renewal in the traditional methodology. While direct encoding has constituted a dominant paradigm, indirect ways to encode the solutions have been reported, yet little attention has been paid to the benefits of the proposed methods to real problems. In this work, we study the biological properties that emerge by means of using indirect encodings in the context of form-finding problems. A novel indirect encoding model for artificial development has been defined and applied to an engineering structural-design problem, specifically to the discovery of tensegrity structures. This model has been compared with a direct encoding scheme. While the direct encoding performs similarly well to the proposed method, indirect-based results typically outperform the direct-based results in aspects not directly linked to the nature of the problem itself, but to the emergence of properties found in biological organisms, like organicity, generalization capacity, or modularity aspects which are highly valuable in engineering. PMID:20619314

  16. Systems developmental biology: the use of ontologies in annotating models and in identifying gene function within and across species

    PubMed Central

    2007-01-01

    Systems developmental biology is an approach to the study of embryogenesis that attempts to analyze complex developmental processes through integrating the roles of their molecular, cellular, and tissue participants within a computational framework. This article discusses ways of annotating these participants using standard terms and IDs now available in public ontologies (these are areas of hierarchical knowledge formalized to be computationally accessible) for tissues, cells, and processes. Such annotations bring two types of benefit. The first comes from using standard terms: This allows linkage to other resources that use them (e.g., GXD, the gene-expression [G-E] database for mouse development). The second comes from the annotation procedure itself: This can lead to the identification of common processes that are used in very different and apparently unrelated events, even in other organisms. One implication of this is the potential for identifying the genes underpinning common developmental processes in different tissues through Boolean analysis of their G-E profiles. While it is easiest to do this for single organisms, the approach is extendable to analyzing similar processes in different organisms. Although the full computational infrastructure for such an analysis has yet to be put in place, two examples are briefly considered as illustration. First, the early development of the mouse urogenital system shows how a line of development can be graphically formalized using ontologies. Second, Boolean analysis of the G-E profiles of the mesenchyme-to-epithelium transitions that take place during mouse development suggest Lhx1, Foxc1, and Meox1 as candidate transcription factors for mediating this process. PMID:17566825

  17. Systems developmental biology: the use of ontologies in annotating models and in identifying gene function within and across species.

    PubMed

    Bard, Jonathan

    2007-07-01

    Systems developmental biology is an approach to the study of embryogenesis that attempts to analyze complex developmental processes through integrating the roles of their molecular, cellular, and tissue participants within a computational framework. This article discusses ways of annotating these participants using standard terms and IDs now available in public ontologies (these are areas of hierarchical knowledge formalized to be computationally accessible) for tissues, cells, and processes. Such annotations bring two types of benefit. The first comes from using standard terms: This allows linkage to other resources that use them (e.g., GXD, the gene-expression [G-E] database for mouse development). The second comes from the annotation procedure itself: This can lead to the identification of common processes that are used in very different and apparently unrelated events, even in other organisms. One implication of this is the potential for identifying the genes underpinning common developmental processes in different tissues through Boolean analysis of their G-E profiles. While it is easiest to do this for single organisms, the approach is extendable to analyzing similar processes in different organisms. Although the full computational infrastructure for such an analysis has yet to be put in place, two examples are briefly considered as illustration. First, the early development of the mouse urogenital system shows how a line of development can be graphically formalized using ontologies. Second, Boolean analysis of the G-E profiles of the mesenchyme-to-epithelium transitions that take place during mouse development suggest Lhx1, Foxc1, and Meox1 as candidate transcription factors for mediating this process. PMID:17566825

  18. Fetal Hox11 expression patterns predict defective target organs: a novel link between developmental biology and autoimmunity

    PubMed Central

    Lonyai, Anna; Kodama, Shohta; Burger, Douglas; Faustman, Denise L

    2014-01-01

    Developmental biology has long been ignored in the etiology and diverse manifestations of autoimmune diseases. Yet a role for development is suggested by intriguing overlaps in particular organs targeted in autoimmune diseases, in this case type 1 diabetes and Sjogren’s syndrome. Patients with type 1 diabetes have high rates of co-occurring Sjogren’s syndrome, and both conditions are associated with hearing loss and tongue abnormalities. All of these co-occurrences are found in organs tracing their lineage to the developmental transcription factor Hox11, which is expressed in embryonic cells destined for the pancreas, salivary glands, tongue, cranial nerves and cochlea. To determine whether development contributes to autoimmunity, we compared four target organs in NOD mice (an animal model for type 1 diabetes and Sjogren’s syndrome) with NOD-SCID mice (which lack lymphocytes) and normal controls. We examined the structure and/or function of the cochlea, salivary glands, pancreas and tongue at early time points after birth. Before the usual time of the onset of type 1 diabetes or Sjogren’s syndrome, we show that all four Hox11-derived organs are structurally abnormal in both NOD mice and NOD-SCID mice versus controls. The most striking functional defect is near complete hearing loss occurring before the normal time of the onset of autoimmunity. The hearing loss is associated with severe structural defects in the cochlea, suggesting that near-deafness occurs independent of autoimmune attack. The pancreas and salivary glands are also structurally abnormal in NOD and NOD-SCID mice, but they are functionally normal. This suggests that autoimmune attack of these two organs is required for functional failure. We conclude that a developmental lineage of cells contributes to autoimmunity and predicts which organs may be targeted, either structurally and/or functionally. Taken together, our findings challenge the orthodoxy that autoimmunity is solely caused by a

  19. How evolutionary principles improve the understanding of human health and disease

    PubMed Central

    Gluckman, Peter D; Low, Felicia M; Buklijas, Tatjana; Hanson, Mark A; Beedle, Alan S

    2011-01-01

    An appreciation of the fundamental principles of evolutionary biology provides new insights into major diseases and enables an integrated understanding of human biology and medicine. However, there is a lack of awareness of their importance amongst physicians, medical researchers, and educators, all of whom tend to focus on the mechanistic (proximate) basis for disease, excluding consideration of evolutionary (ultimate) reasons. The key principles of evolutionary medicine are that selection acts on fitness, not health or longevity; that our evolutionary history does not cause disease, but rather impacts on our risk of disease in particular environments; and that we are now living in novel environments compared to those in which we evolved. We consider these evolutionary principles in conjunction with population genetics and describe several pathways by which evolutionary processes can affect disease risk. These perspectives provide a more cohesive framework for gaining insights into the determinants of health and disease. Coupled with complementary insights offered by advances in genomic, epigenetic, and developmental biology research, evolutionary perspectives offer an important addition to understanding disease. Further, there are a number of aspects of evolutionary medicine that can add considerably to studies in other domains of contemporary evolutionary studies. PMID:25567971

  20. Evolutionary perspectives on human personality. Comment on "Personality from a cognitive-biological perspective" by Y. Neuman

    NASA Astrophysics Data System (ADS)

    Southard, Ashton C.; Zeigler-Hill, Virgil; Shackelford, Todd K.

    2014-12-01

    Yair Neuman [6] presents many provocative ideas in his interdisciplinary approach to human personality. In this commentary, we focus on his ideas regarding (1) the evolutionary basis of personality and (2) human sperm competition.

  1. A Developmental Approach to Predicting Neuronal Connectivity from Small Biological Datasets: A Gradient-Based Neuron Growth Model

    PubMed Central

    Borisyuk, Roman; Azad, Abul Kalam al; Conte, Deborah; Roberts, Alan; Soffe, Stephen R.

    2014-01-01

    Relating structure and function of neuronal circuits is a challenging problem. It requires demonstrating how dynamical patterns of spiking activity lead to functions like cognitive behaviour and identifying the neurons and connections that lead to appropriate activity of a circuit. We apply a “developmental approach” to define the connectome of a simple nervous system, where connections between neurons are not prescribed but appear as a result of neuron growth. A gradient based mathematical model of two-dimensional axon growth from rows of undifferentiated neurons is derived for the different types of neurons in the brainstem and spinal cord of young tadpoles of the frog Xenopus. Model parameters define a two-dimensional CNS growth environment with three gradient cues and the specific responsiveness of the axons of each neuron type to these cues. The model is described by a nonlinear system of three difference equations; it includes a random variable, and takes specific neuron characteristics into account. Anatomical measurements are first used to position cell bodies in rows and define axon origins. Then a generalization procedure allows information on the axons of individual neurons from small anatomical datasets to be used to generate larger artificial datasets. To specify parameters in the axon growth model we use a stochastic optimization procedure, derive a cost function and find the optimal parameters for each type of neuron. Our biologically realistic model of axon growth starts from axon outgrowth from the cell body and generates multiple axons for each different neuron type with statistical properties matching those of real axons. We illustrate how the axon growth model works for neurons with axons which grow to the same and the opposite side of the CNS. We then show how, by adding a simple specification for dendrite morphology, our model “developmental approach” allows us to generate biologically-realistic connectomes. PMID:24586794

  2. Is evolutionary biology becoming too politically correct? A reflection on the scala naturae, phylogenetically basal clades, anatomically plesiomorphic taxa, and 'lower' animals.

    PubMed

    Diogo, Rui; Ziermann, Janine M; Linde-Medina, Marta

    2015-05-01

    , or the strepsirrhines and lemurs within the Primates, for instance. This review will contribute to improving our understanding of these broad evolutionary issues and of the evolution of the vertebrate Bauplans, and hopefully will stimulate future phylogenetic, evolutionary and developmental studies of these clades. PMID:24917249

  3. Darwin in Mind: New Opportunities for Evolutionary Psychology

    PubMed Central

    Bolhuis, Johan J.; Brown, Gillian R.; Richardson, Robert C.; Laland, Kevin N.

    2011-01-01

    Evolutionary Psychology (EP) views the human mind as organized into many modules, each underpinned by psychological adaptations designed to solve problems faced by our Pleistocene ancestors. We argue that the key tenets of the established EP paradigm require modification in the light of recent findings from a number of disciplines, including human genetics, evolutionary biology, cognitive neuroscience, developmental psychology, and paleoecology. For instance, many human genes have been subject to recent selective sweeps; humans play an active, constructive role in co-directing their own development and evolution; and experimental evidence often favours a general process, rather than a modular account, of cognition. A redefined EP could use the theoretical insights of modern evolutionary biology as a rich source of hypotheses concerning the human mind, and could exploit novel methods from a variety of adjacent research fields. PMID:21811401

  4. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    PubMed Central

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  5. Coprinus Cinereus: An Ideal Organism for Studies of Genetics and Developmental Biology.

    ERIC Educational Resources Information Center

    Moore, David; Pukkila, Patricia J.

    1985-01-01

    Ink-cap mushrooms can be easily grown in culture and provide students with ideal material for studying a wide range of biological problems. The life cycle is discussed extensively with hints for inoculating plates, staining, and isolating basidiospores. Exercises are easy, safe, and provide opportunity to demonstrate several microbiological…

  6. Science as a Way of Knowing IV--Developmental Biology. Proceedings of the Annual Meeting (Nashville, TN, December 27-30, 1986).

    ERIC Educational Resources Information Center

    Moore, John A.; And Others

    1987-01-01

    This fourth volume of the Science as a Way of Knowing project contains 12 papers given at a conference in 1986 which was cosponsored by a variety of scientific and science education organizations. The presentations include: (1) "Science as a Way of Knowing--Developmental Biology" (John A. Moore); (2) "Embryonic Induction" (Richard M. Eakin,…

  7. The genome as a developmental organ

    PubMed Central

    Lamm, Ehud

    2014-01-01

    This paper applies the conceptual toolkit of Evolutionary Developmental Biology (evo-devo) to the evolution of the genome and the role of the genome in organism development. This challenges both the Modern Evolutionary Synthesis, the dominant view in evolutionary theory for much of the 20th century, and the typically unreflective analysis of heredity by evo-devo. First, the history of the marginalization of applying system-thinking to the genome is described. Next, the suggested framework is presented. Finally, its application to the evolution of genome modularity, the evolution of induced mutations, the junk DNA versus ENCODE debate, the role of drift in genome evolution, and the relationship between genome dynamics and symbiosis with microorganisms are briefly discussed. PMID:24882813

  8. Developmental Biology and Effects of Adult Diet on Consumption, Longevity, and Fecundity of Colaspis crinicornis (Coleoptera: Chrysomelidae)

    PubMed Central

    Miwa, Kentaro; Meinke, Lance J.

    2015-01-01

    The chrysomelid beetle Colaspis crinicornis Schaeffer (Coleoptera: Chrysomelidae) occurs primarily in the Great Plains region of the United States. Little is known about the biology and ecology of this species, but over the last decade, it has become increasingly common in the corn, Zea mays L., and soybean, Glycine max (L.) Merrill, agroecosystem of southeastern Nebraska. As part of a larger comprehensive project to understand the natural history and pest potential of this species, laboratory experiments were conducted to study the developmental biology, morphological characters of immature stages, and the effect of adult diet on consumption, longevity, and fecundity. Females readily deposited egg clusters in the soil, and percentage egg hatch was high under laboratory conditions. Larvae and pupae were confirmed to be soil-dwelling stages. C. crinicornis has relatively short egg, pupal, and adult stages with the majority of its life cycle spent in the larval stage. Results of choice and no-choice adult feeding experiments indicate that diets of corn or soybean leaves did not significantly affect consumption, longevity, or fecundity of adult C. crinicornis, suggesting that corn and soybean leaves are similarly suitable food sources for adults. The ability to effectively utilize tissues from very different plant families as adult food sources suggests that C. crinicornis is polyphagous in the field. PMID:26106090

  9. Developmental Biology and Effects of Adult Diet on Consumption, Longevity, and Fecundity of Colaspis crinicornis (Coleoptera: Chrysomelidae).

    PubMed

    Miwa, Kentaro; Meinke, Lance J

    2015-01-01

    The chrysomelid beetle Colaspis crinicornis Schaeffer (Coleoptera: Chrysomelidae) occurs primarily in the Great Plains region of the United States. Little is known about the biology and ecology of this species, but over the last decade, it has become increasingly common in the corn, Zea mays L., and soybean, Glycine max (L.) Merrill, agroecosystem of southeastern Nebraska. As part of a larger comprehensive project to understand the natural history and pest potential of this species, laboratory experiments were conducted to study the developmental biology, morphological characters of immature stages, and the effect of adult diet on consumption, longevity, and fecundity. Females readily deposited egg clusters in the soil, and percentage egg hatch was high under laboratory conditions. Larvae and pupae were confirmed to be soil-dwelling stages. C. crinicornis has relatively short egg, pupal, and adult stages with the majority of its life cycle spent in the larval stage. Results of choice and no-choice adult feeding experiments indicate that diets of corn or soybean leaves did not significantly affect consumption, longevity, or fecundity of adult C. crinicornis, suggesting that corn and soybean leaves are similarly suitable food sources for adults. The ability to effectively utilize tissues from very different plant families as adult food sources suggests that C. crinicornis is polyphagous in the field. PMID:26106090

  10. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    PubMed

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-01-01

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically. PMID:26132533

  11. Scientific exchange: Jacques Loeb (1859-1924) and Emil Godlewski (1875-1944) as representatives of a transatlantic developmental biology.

    PubMed

    Fangerau, Heiner; Müller, Irmgard

    2007-09-01

    The German-American physiologist Jacques Loeb (1859-1924) and the Polish embryologist Emil Godlewski, jr. (1875-1944) contributed many valuable works to the body of developmental biology. Jacques Loeb was world famous at the beginning of the twentieth century for his development and demonstration of artificial parthenogenesis in 1899 and his experiments on regeneration. He served as a role model for the younger Polish experimenter Emil Godlewski, who began his career as a researcher like Loeb at the Zoological Station in Naples. Following Godlewski's first visit to Naples in 1901 a close relationship between the two scientists developed. Until Loeb's death in 1924 the two exchanged ideas via correspondence that was only interrupted during the First World War. The aim of the paper is to examine the transatlantic transfer of knowledge in the field of biological experimentation that was fostered by these two protagonists. Using a modification of Bruno Latour's model of the 'Circulatory System of Science' as a heuristic tool, different mechanisms of scientific exchange are displayed. With the help of Loeb's and Godlewski's correspondence the role of scientific communities, methods, allies, the public and institutions in the process of knowledge transfer are analysed. Preconditions for success and failure in transferring science are examined. PMID:17893068

  12. Gene Expression Analysis of Zebrafish Melanocytes, Iridophores, and Retinal Pigmented Epithelium Reveals Indicators of Biological Function and Developmental Origin

    PubMed Central

    Higdon, Charles W.; Mitra, Robi D.; Johnson, Stephen L.

    2013-01-01

    In order to facilitate understanding of pigment cell biology, we developed a method to concomitantly purify melanocytes, iridophores, and retinal pigmented epithelium from zebrafish, and analyzed their transcriptomes. Comparing expression data from these cell types and whole embryos allowed us to reveal gene expression co-enrichment in melanocytes and retinal pigmented epithelium, as well as in melanocytes and iridophores. We found 214 genes co-enriched in melanocytes and retinal pigmented epithelium, indicating the shared functions of melanin-producing cells. We found 62 genes significantly co-enriched in melanocytes and iridophores, illustrative of their shared developmental origins from the neural crest. This is also the first analysis of the iridophore transcriptome. Gene expression analysis for iridophores revealed extensive enrichment of specific enzymes to coordinate production of their guanine-based reflective pigment. We speculate the coordinated upregulation of specific enzymes from several metabolic pathways recycles the rate-limiting substrate for purine synthesis, phosphoribosyl pyrophosphate, thus constituting a guanine cycle. The purification procedure and expression analysis described here, along with the accompanying transcriptome-wide expression data, provide the first mRNA sequencing data for multiple purified zebrafish pigment cell types, and will be a useful resource for further studies of pigment cell biology. PMID:23874447

  13. "Do I Need to Know This for the Exam?" Using Popular Media, Inquiry-based Laboratories, and a Community of Scientific Practice to Motivate Students to Learn Developmental Biology

    ERIC Educational Resources Information Center

    Madhuri, Marga; Broussard, Christine

    2008-01-01

    One of the greatest challenges instructors face is getting students to connect with the subject in a manner that encourages them to learn. In this essay, we describe the redesign of our Developmental Biology course to foster a deeper connection between students and the field of developmental biology. In our approach, we created a community of…

  14. Integrating diverse datasets improves developmental enhancer prediction.

    PubMed

    Erwin, Genevieve D; Oksenberg, Nir; Truty, Rebecca M; Kostka, Dennis; Murphy, Karl K; Ahituv, Nadav; Pollard, Katherine S; Capra, John A

    2014-06-01

    Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable

  15. Integrating Diverse Datasets Improves Developmental Enhancer Prediction

    PubMed Central

    Erwin, Genevieve D.; Oksenberg, Nir; Truty, Rebecca M.; Kostka, Dennis; Murphy, Karl K.; Ahituv, Nadav; Pollard, Katherine S.; Capra, John A.

    2014-01-01

    Gene-regulatory enhancers have been identified using various approaches, including evolutionary conservation, regulatory protein binding, chromatin modifications, and DNA sequence motifs. To integrate these different approaches, we developed EnhancerFinder, a two-step method for distinguishing developmental enhancers from the genomic background and then predicting their tissue specificity. EnhancerFinder uses a multiple kernel learning approach to integrate DNA sequence motifs, evolutionary patterns, and diverse functional genomics datasets from a variety of cell types. In contrast with prediction approaches that define enhancers based on histone marks or p300 sites from a single cell line, we trained EnhancerFinder on hundreds of experimentally verified human developmental enhancers from the VISTA Enhancer Browser. We comprehensively evaluated EnhancerFinder using cross validation and found that our integrative method improves the identification of enhancers over approaches that consider a single type of data, such as sequence motifs, evolutionary conservation, or the binding of enhancer-associated proteins. We find that VISTA enhancers active in embryonic heart are easier to identify than enhancers active in several other embryonic tissues, likely due to their uniquely high GC content. We applied EnhancerFinder to the entire human genome and predicted 84,301 developmental enhancers and their tissue specificity. These predictions provide specific functional annotations for large amounts of human non-coding DNA, and are significantly enriched near genes with annotated roles in their predicted tissues and lead SNPs from genome-wide association studies. We demonstrate the utility of EnhancerFinder predictions through in vivo validation of novel embryonic gene regulatory enhancers from three developmental transcription factor loci. Our genome-wide developmental enhancer predictions are freely available as a UCSC Genome Browser track, which we hope will enable

  16. Developmental mechanisms underlying variation in craniofacial disease and evolution.

    PubMed

    Fish, Jennifer L

    2016-07-15

    Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. PMID:26724698

  17. Introducing biological realism into the study of developmental plasticity in behaviour.

    PubMed

    Groothuis, Ton G G; Taborsky, Barbara

    2015-01-01

    There is increasing attention for integrating mechanistic and functional approaches to the study of (behavioural) development. As environments are mostly unstable, it is now often assumed that genetic parental information is in many cases not sufficient for offspring to become optimally adapted to the environment and that early environmental cues, either indirectly via the parents or from direct experience, are necessary to prepare them for a specific environment later in life. To study whether these early developmental processes are adaptive and through which mechanism, not only the early environmental cues but also how they impinge on the later-life environmental context has therefore to be taken into account when measuring the animal's performance. We first discuss at the conceptual level six ways in which interactions between influences of different time windows during development may act (consolidation, cumulative information gathering and priming, compensation, buffering, matching and mismatching, context dependent trait expression). In addition we discuss how different environmental factors during the same time window may interact in shaping the phenotype during development. Next we discuss the pros and cons of several experimental designs for testing these interaction effects, highlighting the necessity for full, reciprocal designs and the importance of adjusting the nature and time of manipulation to the animal's adaptive capacity. We then review support for the interaction effects from both theoretical models and animal experiments in different taxa. This demonstrates indeed the existence of interactions at multiple levels, including different environmental factors, different time windows and between generations. As a consequence, development is a life-long, environment-dependent process and therefore manipulating only the early environment without taking interaction effects with other and later environmental influences into account may lead to wrong

  18. Introducing biological realism into the study of developmental plasticity in behaviour

    PubMed Central

    2015-01-01

    There is increasing attention for integrating mechanistic and functional approaches to the study of (behavioural) development. As environments are mostly unstable, it is now often assumed that genetic parental information is in many cases not sufficient for offspring to become optimally adapted to the environment and that early environmental cues, either indirectly via the parents or from direct experience, are necessary to prepare them for a specific environment later in life. To study whether these early developmental processes are adaptive and through which mechanism, not only the early environmental cues but also how they impinge on the later-life environmental context has therefore to be taken into account when measuring the animal's performance. We first discuss at the conceptual level six ways in which interactions between influences of different time windows during development may act (consolidation, cumulative information gathering and priming, compensation, buffering, matching and mismatching, context dependent trait expression). In addition we discuss how different environmental factors during the same time window may interact in shaping the phenotype during development. Next we discuss the pros and cons of several experimental designs for testing these interaction effects, highlighting the necessity for full, reciprocal designs and the importance of adjusting the nature and time of manipulation to the animal's adaptive capacity. We then review support for the interaction effects from both theoretical models and animal experiments in different taxa. This demonstrates indeed the existence of interactions at multiple levels, including different environmental factors, different time windows and between generations. As a consequence, development is a life-long, environment-dependent process and therefore manipulating only the early environment without taking interaction effects with other and later environmental influences into account may lead to wrong

  19. Sex in an Evolutionary Perspective: Just Another Reaction Norm

    PubMed Central

    Nylin, Sören

    2010-01-01

    It is common to refer to all sorts of clear-cut differences between the sexes as something that is biologically almost inevitable. Although this does not reflect the status of evolutionary theory on sex determination and sexual dimorphism, it is probably a common view among evolutionary biologists as well, because of the impact of sexual selection theory. To get away from thinking about biological sex and traits associated with a particular sex as something static, it should be recognized that in an evolutionary perspective sex can be viewed as a reaction norm, with sex attributes being phenotypically plastic. Sex determination itself is fundamentally plastic, even when it is termed “genetic”. The phenotypic expression of traits that are statistically associated with a particular sex always has a plastic component. This plasticity allows for much more variation in the expression of traits according to sex and more overlap between the sexes than is typically acknowledged. Here we review the variation and frequency of evolutionary changes in sex, sex determination and sex roles and conclude that sex in an evolutionary time-frame is extremely variable. We draw on recent findings in sex determination mechanisms, empirical findings of morphology and behaviour as well as genetic and developmental models to explore the concept of sex as a reaction norm. From this point of view, sexual differences are not expected to generally fall into neat, discrete, pre-determined classes. It is important to acknowledge this variability in order to increase objectivity in evolutionary research. PMID:21170116

  20. Can stem cells really regenerate the human heart? Use your noggin, dickkopf! Lessons from developmental biology.

    PubMed

    Sommer, Paula

    2013-06-01

    The human heart is the first organ to develop and its development is fairly well characterised. In theory, the heart has the capacity to regenerate, as its cardiomyocytes may be capable of cell division and the adult heart contains a cardiac stem cell niche, presumably capable of differentiating into cardiomyocytes and other cardiac-associated cell types. However, as with most other organs, these mechanisms are not activated upon serious injury. Several experimental options to induce regeneration of the damaged heart tissue are available: activate the endogenous cardiomyocytes to divide, coax the endogenous population of stem cells to divide and differentiate, or add exogenous cell-based therapy to replace the lost cardiac tissue. This review is a summary of the recent research into all these avenues, discussing the reasons for the limited successes of clinical trials using stem cells after cardiac injury and explaining new advances in basic science. It concludes with a reiteration that chances of successful regeneration would be improved by understanding and implementing the basics of heart development and stem cell biology. PMID:24217168

  1. Taking pills for developmental ails in Southern Brazil: The biologization of adolescence?

    PubMed

    Béhague, Dominique P

    2015-10-01

    In the late 1990s researchers in Pelotas Southern Brazil began documenting what they considered to be unacceptably high rates of licensed psychotropic use among individuals of all ages, including youth. This came as a surprise, since the vast majority of psychiatrists in Pelotas draw on psychoanalytic theory and approach pharmaceutical use, especially for children and adolescents, in a consciously tempered way. Drawing from a longitudinal ethnographic sub-study, part of a larger 1982 birth cohort study, this paper follows the circuitous trajectories of emergent pharma-patterns among "shantytown" youth over a ten-year period, exploring the thickly layered and often moralized contingencies in which psychodynamic psychiatrists' intention to resist excessive pharmaceuticalization both succeed and crumble. I juxtapose these trajectories with the growing salience of an "anti-biologizing" explanatory framework that psychiatrists and researchers are using to pre-empt the kind of diagnostics-driven "biopsychiatrization" so prevalent in North America. My analysis suggests that psychiatrists' use of this framework ironically contributes to their failed attempts to "resist" pharmaceuticalization. PMID:25533870

  2. Developmental Gene Regulation and Mechanisms of Evolution

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Marine Biological Laboratory and the National Aeronautics and Space Administration have established a cooperative agreement with the formation of a Center for Advanced Studies 'in the Space Life Sciences (CASSLS) at the MBL. This Center serves as an interface between NASA and the basic science community, addressing issues of mutual interest. The Center for Advanced Studies 'in the Space Life Sciences provides a forum for scientists to think and discuss, often for the first time, the role that gravity and aspects of spaceflight may play 'in fundamental cellular and physiologic processes. In addition the Center will sponsor discussions on evolutionary biology. These interactions will inform the community of research opportunities that are of interest to NASA. This workshop is one of a series of symposia, workshops and seminars that will be held at the MBL to advise NASA on a wide variety of topics in the life sciences, including cell biology, developmental biology, mg evolutionary biology, molecular biology, neurobiology, plant biology and systems biology.

  3. Interdisciplinary Lessons for the Teaching of Biology from the Practice of Evo-Devo

    ERIC Educational Resources Information Center

    Love, Alan C.

    2013-01-01

    Evolutionary developmental biology (Evo-devo) is a vibrant area of contemporary life science that should be (and is) increasingly incorporated into teaching curricula. Although the inclusion of this content is important for biological pedagogy at multiple levels of instruction, there are also philosophical lessons that can be drawn from the…

  4. Evolutionary change in the functional specificity of genes.

    PubMed

    Eizinger, A; Jungblut, B; Sommer, R J

    1999-05-01

    Species throughout the animal kingdom share not only housekeeping but also many key regulatory genes. Nonetheless, species differ from one another developmentally and thus, also morphologically. One of the general aims of comparative developmental genetics is to understand how similar molecules can generate the known diversity of biological form. Here, we argue that gene function can change in different ways during the evolution of developmental processes. Genes can be recruited to serve completely new functions in a new regulatory linkage (co-option), they can change their molecular specificity while remaining in the original (homologous) developmental program and can, at the same time, retain other functions. We describe evidence for such evolutionary patterns based on the comparison of loss-of-function mutations of homologous genes of the two free-living nematodes Caenorhabditis elegans and Pristionchus pacificus. Ultimately, it is the interplay of conservation and change of the specificity of genes and genetic networks that generates developmental novelty over evolutionary time. PMID:10322487

  5. Biological Transmission of Arboviruses: Reexamination of and New Insights into Components, Mechanisms, and Unique Traits as Well as Their Evolutionary Trends

    PubMed Central

    Kuno, Goro; Chang, Gwong-Jen J.

    2005-01-01

    Among animal viruses, arboviruses are unique in that they depend on arthropod vectors for transmission. Field research and laboratory investigations related to the three components of this unique mode of transmission, virus, vector, and vertebrate host, have produced an enormous amount of valuable information that may be found in numerous publications. However, despite many reviews on specific viruses, diseases, or interests, a systematic approach to organizing the available information on all facets of biological transmission and then to interpret it in the context of the evolutionary process has not been attempted before. Such an attempt in this review clearly demonstrates tremendous progress made worldwide to characterize the viruses, to comprehend disease transmission and pathogenesis, and to understand the biology of vectors and their role in transmission. The rapid progress in molecular biologic techniques also helped resolve many virologic puzzles and yielded highly valuable data hitherto unavailable, such as characterization of virus receptors, the genetic basis of vertebrate resistance to viral infection, and phylogenetic evidence of the history of host range shifts in arboviruses. However, glaring gaps in knowledge of many critical subjects, such as the mechanism of viral persistence and the existence of vertebrate reservoirs, are still evident. Furthermore, with the accumulated data, new questions were raised, such as evolutionary directions of virus virulence and of host range. Although many fundamental questions on the evolution of this unique mode of transmission remained unresolved in the absence of a fossil record, available observations for arboviruses and the information derived from studies in other fields of the biological sciences suggested convergent evolution as a plausible process. Overall, discussion of the diverse range of theories proposed and observations made by many investigators was found to be highly valuable for sorting out the

  6. Evolutionary Design of Gene Networks: Forced Evolution by Genomic Parasites

    PubMed Central

    Spirov, A. V.; Zagriychuk, E. A.; Holloway, D. M.

    2014-01-01

    The co-evolution of species with their genomic parasites (transposons) is thought to be one of the primary ways of rewiring gene regulatory networks (GRNs). We develop a framework for conducting evolutionary computations (EC) using the transposon mechanism. We find that the selective pressure of transposons can speed evolutionary searches for solutions and lead to outgrowth of GRNs (through co-option of new genes to acquire insensitivity to the attacking transposons). We test the approach by finding GRNs which can solve a fundamental problem in developmental biology: how GRNs in early embryo development can robustly read maternal signaling gradients, despite continued attacks on the genome by transposons. We observed co-evolutionary oscillations in the abundance of particular GRNs and their transposons, reminiscent of predator-prey or host-parasite dynamics. PMID:25558118

  7. "Evo in the News": A Pedagogical Tool to Enhance Students' Perceptions of the Relevance of Evolutionary Biology

    ERIC Educational Resources Information Center

    Infanti, Lynn M.

    2012-01-01

    This investigation evaluated the effects of the use of the pedagogical tool "Evo in the News" on the attitudes toward and knowledge of biological evolution in a sample of undergraduate non-major biology students at a large, private research university. In addition, this study looked at the initial attitudes of the students and their…

  8. Evolutionary Theory under Fire.

    ERIC Educational Resources Information Center

    Lewin, Roger

    1980-01-01

    Summarizes events of a conference on evolutionary biology in Chicago entitled: "Macroevolution." Reviews the theory of modern synthesis, a term used to explain Darwinism in terms of population biology and genetics. Issues presented at the conference are discussed in detail. (CS)

  9. The rise of developmental genetics - a historical account of the fusion of embryology and cell biology with human genetics and the emergence of the Stem Cell Initiative.

    PubMed

    Kidson, S H; Ballo, R; Greenberg, L J

    2016-01-01

    Genetics and cell biology are very prominent areas of biological research with rapid advances being driven by a flood of theoretical, technological and informational knowledge. Big biology and small biology continue to feed off each other. In this paper, we provide a brief overview of the productive interactions that have taken place between human geneticists and cell biologists at UCT, and credit is given to the enabling environment created led by Prof. Peter Beighton. The growth of new disciplines and disciplinary mergers that have swept away division of the past to make new exciting syntheses are discussed. We show how our joint research has benefitted from worldwide advances in developmental genetics, cloning and stem cell technologies, genomics, bioinformatics and imaging. We conclude by describing the role of the UCT Stem Cell Initiative and show how we are using induced pluripotent cells to carry out disease-in-the- dish studies on retinal degeneration and fibrosis. PMID:27245528

  10. Limits in the evolution of biological form: a theoretical morphologic perspective.

    PubMed

    McGhee, George R

    2015-12-01

    Limits in the evolution of biological form can be empirically demonstrated by using theoretical morphospace analyses, and actual analytic examples are given for univalved ammonoid shell form, bivalved brachiopod shell form and helical bryozoan colony form. Limits in the evolution of form in these animal groups can be shown to be due to functional and developmental constraints on possible evolutionary trajectories in morphospace. Future evolutionary-limit research is needed to analyse the possible existence of temporal constraint in the evolution of biological form on Earth, and in the search for the possible existence of functional alien life forms on Titan and Triton that are developmentally impossible for Earth life. PMID:26640645

  11. Emergence, self-organization and developmental science.

    PubMed

    Greenberg, Gary; Callina, Kristina Schmid; Mueller, Megan Kiely

    2013-01-01

    Our understanding is that psychology is a biopsychosocial science as well as a developmental science. Behavioral origins stem from ontogenetic processes, behavioral as well as biological. Biological factors are simply participating factors in behavioral origins and not causal factors. Psychology is not a biological science; it is a unique psychological science, a natural science consistent and compatible with the principles of the other sciences. Accordingly, we show in this chapter how principles and ideas from other sciences play important roles in psychology. While we focus on the concepts from physics of self-organization and emergence, we also address the cosmological and evolutionary biology idea of increased complexity over time, the organizing principle of integrative levels, and the epigenetic processes that are in part responsible for transgenerational trait transmission. Our discussion stresses the developmental science concepts of embodiment and contextualism and how they structure thinking about psychological processes. We conclude with a description of how these ideas support current postpositivist conceptions of relational processes and models in contemporary developmental science. PMID:23834003

  12. "Do I need to know this for the exam?" Using popular media, inquiry-based laboratories, and a community of scientific practice to motivate students to learn developmental biology.

    PubMed

    Madhuri, Marga; Broussard, Christine

    2008-01-01

    One of the greatest challenges instructors face is getting students to connect with the subject in a manner that encourages them to learn. In this essay, we describe the redesign of our Developmental Biology course to foster a deeper connection between students and the field of developmental biology. In our approach, we created a community of scientific practice focused on the investigation of environmental impacts on embryonic development and informed by popular and scientific media, the students' own questions, and the instructor. Our goals were to engage students in meaningful ways with the material, to develop students' science process skills, and to enhance students' understanding of broad principles of developmental biology. Though significant challenges arose during implementation, assessments indicate using this approach to teach undergraduate developmental biology was successful. PMID:18316806

  13. Evolutionary game theory for physical and biological scientists. II. Population dynamics equations can be associated with interpretations.

    PubMed

    Liao, David; Tlsty, Thea D

    2014-08-01

    The use of mathematical equations to analyse population dynamics measurements is being increasingly applied to elucidate complex dynamic processes in biological systems, including cancer. Purely 'empirical' equations may provide sufficient accuracy to support predictions and therapy design. Nevertheless, interpretation of fitting equations in terms of physical and biological propositions can provide additional insights that can be used both to refine models that prove inconsistent with data and to understand the scope of applicability of models that validate. The purpose of this tutorial is to assist readers in mathematically associating interpretations with equations and to provide guidance in choosing interpretations and experimental systems to investigate based on currently available biological knowledge, techniques in mathematical and computational analysis and methods for in vitro and in vivo experiments. PMID:25097752

  14. Evolutionary game theory for physical and biological scientists. II. Population dynamics equations can be associated with interpretations

    PubMed Central

    Liao, David; Tlsty, Thea D.

    2014-01-01

    The use of mathematical equations to analyse population dynamics measurements is being increasingly applied to elucidate complex dynamic processes in biological systems, including cancer. Purely ‘empirical’ equations may provide sufficient accuracy to support predictions and therapy design. Nevertheless, interpretation of fitting equations in terms of physical and biological propositions can provide additional insights that can be used both to refine models that prove inconsistent with data and to understand the scope of applicability of models that validate. The purpose of this tutorial is to assist readers in mathematically associating interpretations with equations and to provide guidance in choosing interpretations and experimental systems to investigate based on currently available biological knowledge, techniques in mathematical and computational analysis and methods for in vitro and in vivo experiments. PMID:25097752

  15. Contrasting Evolutionary Dynamics of the Developmental Regulator PAX9, among Bats, with Evidence for a Novel Post-Transcriptional Regulatory Mechanism

    PubMed Central

    Phillips, Caleb D.; Butler, Boyd; Fondon, John W.; Mantilla-Meluk, Hugo; Baker, Robert J.

    2013-01-01

    Morphological evolution can be the result of natural selection favoring modification of developmental signaling pathways. However, little is known about the genetic basis of such phenotypic diversity. Understanding these mechanisms is difficult for numerous reasons, yet studies in model organisms often provide clues about the major developmental pathways involved. The paired-domain gene, PAX9, is known to be a key regulator of development, particularly of the face and teeth. In this study, using a comparative genetics approach, we investigate PAX9 molecular evolution among mammals, focusing on craniofacially diversified (Phyllostomidae) and conserved (Vespertilionidae) bat families, and extend our comparison to other orders of mammal. Open-reading frame analysis disclosed signatures of selection, in which a small percentage of residues vary, and lineages acquire different combinations of variation through recurrent substitution and lineage specific changes. A few instances of convergence for specific residues were observed between morphologically convergent bat lineages. Bioinformatic analysis for unknown PAX9 regulatory motifs indicated a novel post-transcriptional regulatory mechanism involving a Musashi protein. This regulation was assessed through fluorescent reporter assays and gene knockdowns. Results are compatible with the hypothesis that the number of Musashi binding-elements in PAX9 mRNA proportionally regulates protein translation rate. Although a connection between morphology and binding element frequency was not apparent, results indicate this regulation would vary among craniofacially divergent bat species, but be static among conserved species. Under this model, Musashi’s regulatory control of alternative human PAX9 isoforms would also vary. The presence of Musashi-binding elements within PAX9 of all mammals examined, chicken, zebrafish, and the fly homolog of PAX9, indicates this regulatory mechanism is ancient, originating basal to much of the

  16. Evolutionary biology of plant defenses against herbivory and their predictive implications for endocrine disruptor susceptibility in vertebrates.

    PubMed Central

    Wynne-Edwards, K E

    2001-01-01

    Hormone disruption is a major, underappreciated component of the plant chemical arsenal, and the historical coevolution between hormone-disrupting plants and herbivores will have both increased the susceptibility of carnivores and diversified the sensitivities of herbivores to man-made endocrine disruptors. Here I review diverse evidence of the influence of plant secondary compounds on vertebrate reproduction, including human reproduction. Three of the testable hypotheses about the evolutionary responses of vertebrate herbivores to hormone-disrupting challenges from their diet are developed. Specifically, the hypotheses are that a) vertebrate herbivores will express steroid hormone receptors in the buccal cavity and/or the vomeronasal organ; b) absolute sex steroid concentrations will be lower in carnivores than in herbivores; and c) herbivore steroid receptors should be more diverse in their binding affinities than carnivore lineages. The argument developed in this review, if empirically validated by support for the specific hypotheses, suggests that a) carnivores will be more susceptible than herbivores to endocrine-disrupting compounds of anthropogenic origin entering their bodies, and b) diverse herbivore lineages will be variably susceptible to any given natural or synthetic contaminant. As screening methods for hormone-disrupting potential are compared and adopted, comparative endocrine physiology research is urgently needed to develop models that predict the broad applicability of those screening results in diverse vertebrate species. PMID:11401754

  17. Cellular Hyperproliferation and Cancer as Evolutionary Variables

    PubMed Central

    Alvarado, Alejandro Sánchez

    2012-01-01

    Technological advances in biology have begun to dramatically change the way we think about evolution, development, health and disease. The ability to sequence the genomes of many individuals within a population, and across multiple species, has opened the door to the possibility of answering some long-standing and perplexing questions about our own genetic heritage. One such question revolves around the nature of cellular hyperproliferation. This cellular behavior is used to effect wound healing in most animals, as well as, in some animals, the regeneration of lost body parts. Yet at the same time, cellular hyperproliferation is the fundamental pathological condition responsible for cancers in humans. Here, I will discuss why microevolution, macroevolution and developmental biology all have to be taken into consideration when interpreting studies of both normal and malignant hyperproliferation. I will also illustrate how a synthesis of evolutionary sciences and developmental biology through the study of diverse model organisms can inform our understanding of both health and disease. PMID:22975008

  18. Remotely Sensed Predictions and In Situ Observations of Lower Congo River Dynamics in Support of Fish Evolutionary Biology

    NASA Astrophysics Data System (ADS)

    Gardiner, N.; Bjerklie, D. M.

    2011-12-01

    Ongoing research into the evolution of fishes in the lower Congo River suggests a close tie between diversity and hydraulic complexity of flow in the channel. For example, fish populations on each side of the rapids at the head of the lower Congo are within 1.5 km of one another, a distance normally allowing for interbreeding in river systems of comparable size, yet these fish populations show about 5% divergence in their mitochondrial DNA signatures. The proximal reason for this divergence is hydraulic complexity: the speed and turbulence of water moving through the thalweg is a barrier to dispersal for these fishes. Further examination of fish diversity suggests additional correlations of evolutionary divergence of fish clades in association with geomorphic and hydraulic features such as deep pools, extensive systems of rapids, alternating sections of fast and slow current, and recurring whirlpools. Due to prohibitive travel costs, limited field time, and the large geographic domain (approximately 400 river km) of the study area, we undertook a nested set of remote sensing analyses to extract habitat features, geomorphic descriptors, and hydraulic parameters including channel forming velocity, depth, channel roughness, slope, and shear stress. Each of these estimated parameters is mapped for each 1 km segment of the river from the rapids described above to below Inga Falls, a massive cataract where several endemic fish species have been identified. To validate remote sensing estimates, we collected depth and velocity data within the river using gps-enabled sonar measurements from a kayak and Doppler profiling from a motor-driven dugout canoe. Observations corroborate remote sensing estimates of geomorphic parameters. Remote sensing-based estimates of channel-forming velocity and depth were less than the observed maximum channel depth but correlated well with channel properties within 1 km reach segments. This correspondence is notable. The empirical models used

  19. Evolutionary insights from bat trypanosomes: morphological, developmental and phylogenetic evidence of a new species, Trypanosoma (Schizotrypanum) erneyi sp. nov., in African bats closely related to Trypanosoma (Schizotrypanum) cruzi and allied species.

    PubMed

    Lima, Luciana; Silva, Flávia Maia da; Neves, Luis; Attias, Márcia; Takata, Carmen S A; Campaner, Marta; de Souza, Wanderley; Hamilton, Patrick B; Teixeira, Marta M G

    2012-11-01

    Parasites of the genus Trypanosoma are common in bats and those of the subgenus Schizotrypanum are restricted to bats throughout the world, with the exception of Trypanosoma (Schizotrypanum) cruzi that also infects other mammals and is restricted to the American Continent. We have characterized trypanosome isolates from Molossidae bats captured in Mozambique, Africa. Morphology and behaviour in culture, supported by phylogenetic inferences using SSU (small subunit) rRNA, gGAPDH (glycosomal glyceraldehyde 3-phosphate dehydrogenase) and Cyt b (cytochrome b) genes, allowed to classify the isolates as a new Schizotrypanum species named Trypanosoma (Schizotrypanum) erneyi sp. nov. This is the first report of a Schizotrypanum species from African bats cultured, characterized morphologically and biologically, and positioned in phylogenetic trees. The unprecedented finding of a new species of the subgenus Schizotrypanum from Africa that is closest related to the America-restricted Trypanosoma (Schizotrypanum) cruzi marinkellei and T. cruzi provides new insights into the origin and evolutionary history of T. cruzi and closely related bat trypanosomes. Altogether, data from our study support the hypothesis of an ancestor trypanosome parasite of bats evolving to infect other mammals, even humans, and adapted to transmission by triatomine bugs in the evolutionary history of T. cruzi in the New World. PMID:22277804

  20. Anatomy of the pectoral and forelimb muscles of wildtype and green fluorescent protein-transgenic axolotls and comparison with other tetrapods including humans: a basis for regenerative, evolutionary and developmental studies

    PubMed Central

    Diogo, R; Tanaka, E M

    2012-01-01

    The axolotl Ambystoma mexicanum is one of the most used model organisms in evolutionary, developmental and regenerative studies, particularly because it can reconstitute a fully functional and complete forelimb/hindlimb. Surprisingly, there is no publication that describes all the pectoral and forelimb muscles of this species or provides a comparative framework between these muscles and those of other model organisms and of modern humans. In the present paper we describe and illustrate all these muscles in A. mexicanum and provide the first report about the myology of adults of a model organism that is based on analyses and dissections of both wildtype animals and transgenic animals that express green fluorescent protein (GFP) in muscle fibers. On the one hand, the inclusion of GFP-transgenic animals allows us to show the muscles as more commonly seen, and thus easier to understand, by current developmental and regenerative biologists. On the other hand, by including wildtype and GFP-transgenic animals and by visualizing these latter animals with and without a simultaneous transmission laser light, we were able to obtain a more complete and clearer understanding of the exact limit of the fleshy and tendinous parts of the muscles and their specific connections with the skeletal elements. This in turn allowed us to settle some controversies in previous anatomical and comparative studies. As most developmental, regenerative and evolutionary biologists are interested in comparing their observations of A. mexicanum with observations in other model organisms, and ultimately in using this information to increase the understanding of human evolution and medicine, we also provide tables showing the homologies between the pectoral and forelimb muscles of axolotls, of model organisms such as mice, frogs and chicken, and of Homo sapiens. An example illustrating the outcomes of using our methodology and of our observations is that they revealed that, contrary to what is often

  1. Evolutionary Perspectives on the Development of Social Exchanges.

    ERIC Educational Resources Information Center

    Sheese, Brad E.; Graziano, William G.

    2002-01-01

    Argues that apparent incompatibilities between social exchange and developmental perspectives can be resolved by using evolutionary theories to extend the logic of social exchange. Discusses the implications of an expanded evolutionary perspective on social exchange and development, proposing that developmental context and genetic relatedness may…

  2. Drosophila Biology in the Genomic Age

    PubMed Central

    Markow, Therese Ann; O'Grady, Patrick M.

    2007-01-01

    Over the course of the past century, flies in the family Drosophilidae have been important models for understanding genetic, developmental, cellular, ecological, and evolutionary processes. Full genome sequences from a total of 12 species promise to extend this work by facilitating comparative studies of gene expression, of molecules such as proteins, of developmental mechanisms, and of ecological adaptation. Here we review basic biological and ecological information of the species whose genomes have recently been completely sequenced in the context of current research. PMID:18039866

  3. The new dysmorphology: application of insights from basic developmental biology to the understanding of human birth defects.

    PubMed Central

    Epstein, C J

    1995-01-01

    Information obtained from studies of developmental and cellular processes in lower organisms is beginning to make significant contributions to the understanding of the pathogenesis of human birth defects, and it is now becoming possible to treat birth defects as inborn errors of development. Mutations in genes for transcription factors, receptors, cell adhesion molecules, intercellular junctions, molecules involved in signal transduction, growth factors, structural proteins, enzymes, and transporters have been identified in genetically caused human malformations and dysplasias. The identification of these mutations and the analysis of their developmental effects have been greatly facilitated by the existence of natural or engineered models in the mouse and even of related mutations in Drosophila, and in some instances a remarkable conservation of function in development has been observed, even between widely separated species. PMID:7567976

  4. Plants: Novel Developmental Processes.

    ERIC Educational Resources Information Center

    Goldberg, Robert B.

    1988-01-01

    Describes the diversity of plants. Outlines novel developmental and complex genetic processes that are specific to plants. Identifies approaches that can be used to solve problems in plant biology. Cites the advantages of using higher plants for experimental systems. (RT)

  5. Evidence of an evolutionary-developmental trade-off between drag avoidance and tolerance strategies in wave-swept intertidal kelps (Laminariales, Phaeophyceae).

    PubMed

    Starko, Samuel; Martone, Patrick T

    2016-02-01

    Kelps are a clade of morphologically diverse, ecologically important habitat-forming species. Many kelps live in wave-swept environments and are exposed to chronic flow-induced stress. In order to grow and survive in these harsh environments, kelps can streamline (reducing drag coefficient) to avoid drag or to increase attachment and breakage force to tolerate it. We aimed to quantify the drag tolerance and streamlining strategies of kelps from wave-swept intertidal habitats. We measured drag coefficient and tenacity of populations from eight kelp species over a wide range of sizes to determine whether kelps avoid dislodgement by reducing drag coefficient or by increasing tenacity as they grow, and whether these traits are traded off. We employed phylogenetic comparative methods to rule out potentially confounding effects of species' relatedness. There was a significant negative relationship between drag avoidance and tolerance strategies, even after incorporating phylogeny. Kelps that were more tenacious were less able to reduce drag, resulting in a continuum from "tolerators" to "streamliners," with some species demonstrating intermediate, mixed strategies. Drag and tenacity were correlated with geometric properties (i.e., second moment of area) of the stipe in large kelps. Results presented in this study suggest that kelps are either strong or streamlined, but not both. This continuum is consistent with avoidance and tolerance trade-offs that have been documented in many different biological systems and may have widespread implications for the evolution of large macroalgae, perhaps driving morphological diversity within this group. PMID:26987088

  6. When do adaptive developmental mechanisms yield maladaptive outcomes?

    PubMed

    Frankenhuis, Willem E; Del Giudice, Marco

    2012-05-01

    This article discusses 3 ways in which adaptive developmental mechanisms may produce maladaptive outcomes. First, natural selection may favor risky strategies that enhance fitness on average but which have detrimental consequences for a subset of individuals. Second, mismatch may result when organisms experience environmental change during ontogeny, for instance, because they move from one environment to another. Third, organisms may learn about their environment in order to develop an appropriate phenotype; when cues indicate the environmental state probabilistically, as opposed to deterministically, sampling processes may produce mismatch. For each source of maladaptation, we present a selection of the relevant empirical research and illustrate how models from evolutionary biology can be used to make predictions about maladaptation. We also discuss what data can be collected to test these models in humans. Our goal is to show that evolutionary approaches not only yield insights into adaptive outcomes but can also illuminate the conditions leading to maladaptation. This perspective provides additional nuance to the dialectic between the developmental psychopathology model and evolutionary developmental psychology. PMID:21967567

  7. Eine evolutionsbiologische Betrachtung der menschlichen Fruhentwicklung (An Evolution-Biological Perspective on the Child's Early Development).

    ERIC Educational Resources Information Center

    Keller, Heidi

    1997-01-01

    Presents an evolutionary-biological perspective on the course of human life. Discusses early development during the first few months of a child's life in the context of bonding with regard to the differentiation of diverse strategies of reproduction. Tries to integrate developmental-psychological knowledge and sociobiological assumptions. (DSK)

  8. Evolutionary Growth of Genome Representations on Artificial Cellular Organisms with Indirect Encodings.

    PubMed

    Nichele, Stefano; Giskeødegård, Andreas; Tufte, Gunnar

    2016-01-01

    Evolutionary design targets systems of continuously increasing complexity. Thus, indirect developmental mappings are often a necessity. Varying the amount of genotype information changes the cardinality of the mapping, which in turn affects the developmental process. An open question is how to find the genotype size and representation in which a developmental solution would fit. A restricted pool of genes may not be large enough to encode a solution or may need complex heuristics to find a realistic size. On the other hand, using the whole set of possible regulatory combinations may be intractable. In nature, the genomes of biological organisms are not fixed in size; they slowly evolve and acquire new genes by random gene duplications. Such incremental growth of genome information can be beneficial also in the artificial domain. For an evolutionary and developmental (evo-devo) system based on cellular automata, we investigate an incremental evolutionary growth of genomes without any a priori knowledge on the necessary genotype size. Evolution starts with simple solutions in a low-dimensional space and incrementally increases the genotype complexity by means of gene duplication, allowing the evolution of scalable genomes that are able to adapt genetic information content while compactness and efficiency are retained. The results are consistent when the target phenotypic complexity, the geometry size, and the number of cell states are scaled up. PMID:26606469

  9. Spore: Spawning Evolutionary Misconceptions?

    ERIC Educational Resources Information Center

    Bean, Thomas E.; Sinatra, Gale M.; Schrader, P. G.

    2010-01-01

    The use of computer simulations as educational tools may afford the means to develop understanding of evolution as a natural, emergent, and decentralized process. However, special consideration of developmental constraints on learning may be necessary when using these technologies. Specifically, the essentialist (biological forms possess an…

  10. Conserved features and evolutionary shifts of the EDA signaling pathway involved in vertebrate skin appendage development.

    PubMed

    Pantalacci, Sophie; Chaumot, Arnaud; Benoît, Gérard; Sadier, Alexa; Delsuc, Frédéric; Douzery, Emmanuel J P; Laudet, Vincent

    2008-05-01

    It is widely accepted that evolutionary changes in conserved developmental signaling pathways play an important role in morphological evolution. However, few in silico studies were interested in tracking such changes in a signaling pathway. The Ectodysplasin (EDA) pathway provides an opportunity to fill this gap because it is involved in vertebrate skin appendage development such as scales, teeth, hair, and feathers that take an obvious part in the adaptation of species to their environment. We benefited from the large amount of genomic data now available to explore the evolution of the upstream genes of the EDA pathway. In mammals, these genes are eda (encoding 2 ligands, EDA-A1 and EDA-A2), edar (EDA-A1 receptor), edaradd (EDA receptor [EDAR] adapter), xedar (EDA-A2 receptor), and troy (a XEDAR-related receptor). We show that the evolution of EDA pathway genes combines both strongly conserved features and evolutionary shifts. These shifts are found at different signaling levels (from the ligand to intracellular signaling) and at different taxonomic levels (class, suborder, and genera). Although conserved features likely participate to the similarities found in the early development of vertebrate skin appendages, these shifts might account for innovations and specializations. Moreover, our study demonstrates that we can now benefit from the large number of sequenced vertebrate genomes to explore the evolution of specific signaling pathways and thereby to open new perspectives for developmental biology and evolutionary developmental biology. PMID:18304980

  11. The excluded philosophy of evo-devo? Revisiting C.H. Waddington's failed attempt to embed Alfred North Whitehead's "organicism" in evolutionary biology.

    PubMed

    Peterson, Erik L

    2011-01-01

    Though a prominent British developmental biologist in his day, a close friend of Theodosius Dobzhansky, and a frequent correspondent with Ernst Mayr, C.H. Waddington did not enter the ranks of "architect" of the Modern Synthesis. By the end of his career, in fact, he recognized that other biologists reacted to his work "as though they feel obscurely uneasy"; and that the best that some philosophers of biology could say of his work was that he was not "wholly orthodox" (Waddington 1975c, 11). In this essay, I take Waddington's self-assessments at face value and explore three potential reasons why his work did not have more of a direct impact: Waddington's explicit support for the philosophy of Alfred North Whitehead; a lack of institutional support; and Waddington's occasional marginalization from the core network of American neo-Darwinians. Though excluded from the Modern Synthesis in the mid-20th century, it now appears that Waddington's work does undergird the emerging evo-devo synthesis. Whether this indicates concomitant, if implicit, support for Whiteheadian philosophy is an interesting question not explored here. PMID:22696826

  12. Evolutionary and Structural Features of the C2, V3 and C3 Envelope Regions Underlying the Differences in HIV-1 and HIV-2 Biology and Infection

    PubMed Central

    Bártolo, Inês; Marcelino, José Maria; Família, Carlos; Quintas, Alexandre; Taveira, Nuno

    2011-01-01

    Background Unlike in HIV-1 infection, the majority of HIV-2 patients produce broadly reactive neutralizing antibodies, control viral replication and survive as elite controllers. The identification of the molecular, structural and evolutionary footprints underlying these very distinct immunological and clinical outcomes may lead to the development of new strategies for the prevention and treatment of HIV infection. Methodology/Principal Findings We performed a side-by-side molecular, evolutionary and structural comparison of the C2, V3 and C3 envelope regions from HIV-1 and HIV-2. These regions contain major antigenic targets and are important for receptor binding. In HIV-2, these regions also have immune modulatory properties. We found that these regions are significantly more variable in HIV-1 than in HIV-2. Within each virus, C3 is the most entropic region followed by either C2 (HIV-2) or V3 (HIV-1). The C3 region is well exposed in the HIV-2 envelope and is under strong diversifying selection suggesting that, like in HIV-1, it may harbour neutralizing epitopes. Notably, however, extreme diversification of C2 and C3 seems to be deleterious for HIV-2 and prevent its transmission. Computer modelling simulations showed that in HIV-2 the V3 loop is much less exposed than C2 and C3 and has a retractile conformation due to a physical interaction with both C2 and C3. The concealed and conserved nature of V3 in the HIV-2 is consistent with its lack of immunodominancy in vivo and with its role in preventing immune activation. In contrast, HIV-1 had an extended and accessible V3 loop that is consistent with its immunodominant and neutralizing nature. Conclusions/Significance We identify significant structural and functional constrains to the diversification and evolution of C2, V3 and C3 in the HIV-2 envelope but not in HIV-1. These studies highlight fundamental differences in the biology and infection of HIV-1 and HIV-2 and in their mode of interaction with the human

  13. Neocortical neurogenesis is not really "neo": a new evolutionary model derived from a comparative study of chick pallial development.

    PubMed

    Suzuki, Ikuo K; Hirata, Tatsumi

    2013-01-01

    The neocortex facilitates mammalian adaptive radiation by conferring highly sophisticated cognitive and motor abilities. A unique feature of the mammalian neocortex is its laminar structure in which similar neuronal subtypes are arranged in tangential layers and construct columnar circuits via interlaminar connections. The neocortical layer structure is completely conserved among all mammalian species, including monotremes and marsupials. However, this structure is missing in non-mammalian sister groups, such as birds and reptiles. The evolutionary origins of neocortical layers and cytoarchitectural borders have been the subject of debate over the past century. Using the chicken embryos as a model of evolutionary developmental biology (evo-devo model), we recently provided evidence suggesting that the evolutionary origin of layer-specific neuron subtypes predates the emergence of laminar structures. Based on this finding, we review the evolutionary conservation and divergence of neocortical development between mammals and non-mammals and discuss how the layered cytoarchitecture of the mammalian neocortex originated during evolution. PMID:23230908

  14. Evolution of specialized spermatheca morphology in ant queens: insight from comparative developmental biology between ants and polistine wasps.

    PubMed

    Gotoh, Ayako; Billen, Johan; Hashim, Rosli; Ito, Fuminori

    2009-11-01

    In many ant species, the queens can keep spermatozoa alive in their spermatheca for several years, which goes along with unique morphological characteristics of the queen's spermatheca. The relative spermatheca size in ant queens is prominently larger than that in social wasps. Furthermore, the epithelium lining the spermatheca reservoir of ants consists of columnar cells in the hilar region and squamous cells in the distal region, whereas it is formed by columnar cells only in social wasps. To study the evolution of the unique spermatheca morphology in ant queens, we compared the various processes during spermatheca development between two ponerine ant species of the genus Pachycondyla (=Brachyponera) and three polistine wasp species of the genus Polistes. From histological observations, we can define four developmental events in the ant queens: (1) invagination of the spermatheca primordium, (2) the reservoir wall thickness becomes unequal, (3) the reservoir diameter doubles as the lining epithelial cells become flattened except for the hilar region, and (4) the increase in thickness of the reservoir epithelium is limited to the hilar region which doubles in thickness. In polistine wasps, the second and the third developmental events are absent and the entire epithelium of the spermatheca wall becomes thick in the final step. We therefore conclude that for ant queens the second and third steps are crucial for the enlargement of the spermatheca size, and that the second to the fourth steps are crucial for the specialization of the reservoir wall structure. PMID:19720157

  15. Reproductive and developmental biology of the emerald ash borer parasitoid Spathius galinae (Hymenoptera: Braconidae) as affected by temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerald ash borer Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) is an invasive pest of serious concern in North America. To complement ongoing biological control efforts, Spathius galinae Belokobylskij and Strazenac (Hymenoptera: Braconidae), a recently-described specialist parasitoid of ...

  16. Developmental Toxicology##

    EPA Science Inventory

    Developmental toxicology encompasses the study of developmental exposures, pharmacokinetics, mechanisms, pathogenesis, and outcomes potentially leading to adverse health effects. Manifestations of developmental toxicity include structural malformations, growth retardation, functi...

  17. Symmetrical reproductive compatibility of two species in the Ciona intestinalis (Ascidiacea) species complex, a model for marine genomics and developmental biology.

    PubMed

    Sato, Atsuko; Shimeld, Sebastian M; Bishop, John D D

    2014-06-01

    The sea squirt Ciona intestinalis species complex is a widely used model system for genomics and developmental biology, as well as ecology. Contrary to previous reports, here we show no difference in the success of development and hatching between hybrid and conspecific crosses between the two species within this complex known as types A and B, from a region in the English Channel where they are sympatric. We grew laboratory hybrids in the field for three months, and successfully obtained reproductive adults. In back-crosses of F1 laboratory hybrids to parental types, normal larvae were obtained. We conclude that hybrid crosses generate viable offspring and the resulting hybrids are interfertile with types A and B. However we also show that introgression in the natural sympatric population remains low. We discuss possible pre-zygotic and post-zygotic mechanisms which reproductively isolate these species. PMID:24882097

  18. Consumption habits of pregnant women and implications for developmental biology: a survey of predominantly Hispanic women in California

    PubMed Central

    2013-01-01

    Background Healthy post-pregnancy outcomes are contingent upon an informed regimen of prenatal care encouraging healthy maternal consumption habits. In this article, we describe aspects of maternal intake of food, drink, and medication in a population of predominantly Hispanic women in Southern California. Potential implications for unhealthy prenatal dietary choices are discussed. Methods The Food, Beverage, and Medication Intake Questionnaire (FBMIQ) measures common practices of maternal consumption during pregnancy. The FBMIQ was administered to English and Spanish speaking pregnant and recently pregnant (36 weeks pregnant - 8 weeks post-partum) women over the age of 18 who were receiving care from a private medical group in Downey CA. Results A total of 200 women completed the FBMIQ. Consumption habits of healthy foods and beverages, unhealthy foods, unhealthy beverages, and medication are characterized in this article. Data indicate widespread consumption of fresh fruit, meats, milk and juice and indicate most women used prenatal vitamin supplements. Studies in developmental neuroscience have shown that certain substances may cause teratogenic effects on the fetus when ingested by the mother during pregnancy. Those potentially harmful substances included in our study were Bisphenol-A (BPA), methylmercury, caffeine, alcohol and certain medications. Our results show that a proportion of the women surveyed in our study consumed BPA, methylmercury, caffeine, alcohol, and certain medications at varied levels during pregnancy. This represents an interesting finding and suggests a disconnect between scientific data and general recommendations provided to pregnant mothers by obstetricians. Conclusions The results of our study demonstrate that a proportion of pregnant women consume substances that are potentially teratogenic and may impact the health and well being of the offspring. It is important to appraise healthy and unhealthy consumption habits in order to

  19. Differential susceptibility to the environment: an evolutionary--neurodevelopmental theory.

    PubMed

    Ellis, Bruce J; Boyce, W Thomas; Belsky, Jay; Bakermans-Kranenburg, Marian J; van Ijzendoorn, Marinus H

    2011-02-01

    Two extant evolutionary models, biological sensitivity to context theory (BSCT) and differential susceptibility theory (DST), converge on the hypothesis that some individuals are more susceptible than others to both negative (risk-promoting) and positive (development-enhancing) environmental conditions. These models contrast with the currently dominant perspective on personal vulnerability and environmental risk: diathesis stress/dual risk. We review challenges to this perspective based on emerging theory and data from the evolutionary, developmental, and health sciences. These challenges signify the need for a paradigm shift in conceptualizing Person x Environment interactions in development. In this context we advance an evolutionary--neurodevelopmental theory, based on DST and BSCT, of the role of neurobiological susceptibility to the environment in regulating environmental effects on adaptation, development, and health. We then outline current thinking about neurogenomic and endophenotypic mechanisms that may underpin neurobiological susceptibility, summarize extant empirical research on differential susceptibility, and evaluate the evolutionary bases and implications of BSCT and DST. Finally, we discuss applied issues including methodological and statistical considerations in conducting differential susceptibility research; issues of ecological, cultural, and racial--ethnic variation in neurobiological susceptibility; and implications of differential susceptibility for designing social programs. We conclude that the differential susceptibility paradigm has far-reaching implications for understanding whether and how much child and adult development responds, for better and for worse, to the gamut of species-typical environmental conditions. PMID:21262036

  20. Where Did You Come From? Where Will You Go? Human Evolutionary Biology Education and American Students' Academic Interests and Achievements, Professional Goals, and Socioscientific Decision-making

    NASA Astrophysics Data System (ADS)

    Schrein, Caitlin M.

    In the United States, there is a national agenda to increase the number of qualified science, technology, engineering, and maths (STEM) professionals and a movement to promote science literacy among the general public. This project explores the association between formal human evolutionary biology education (HEB) and high school science class enrollment, academic achievement, interest in a STEM degree program, motivation to pursue a STEM career, and socioscientific decision-making for a sample of students enrolled full-time at Arizona State University. Given a lack of a priori knowledge of these relationships, the Grounded Theory Method was used and was the foundation for a mixed-methods analysis involving qualitative and quantitative data from one-on-one interviews, focus groups, questionnaires, and an online survey. Theory development and hypothesis generation were based on data from 44 students. The survey instrument, developed to test the hypotheses, was completed by 486 undergraduates, age 18--22, who graduated from U.S. public high schools. The results showed that higher exposure to HEB was correlated with greater high school science class enrollment, particularly for advanced biological science classes, and that, for some students, HEB exposure may have influenced their enrollment, because the students found the content interesting and relevant. The results also suggested that students with higher K--12 HEB exposure felt more prepared for undergraduate science coursework. There was a positive correlation between HEB exposure and interest in a STEM degree and an indirect relationship between higher HEB exposure and motivation to pursue a STEM career. Regarding a number of socioscientific issues, including but not limited to climate change, homosexuality, and stem cell research, students' behaviors and decision-making more closely reflected a scientific viewpoint---or less-closely aligned to a religion-based perspective---when students had greater HEB exposure

  1. Paleoanthropology and evolutionary theory.

    PubMed

    Tattersall, Ian

    2012-01-01

    Paleoanthropologists of the first half of the twentieth century were little concerned either with evolutionary theory or with the technicalities and broader implications of zoological nomenclature. In consequence, the paleoanthropological literature of the period consisted largely of a series of descriptions accompanied by authoritative pronouncements, together with a huge excess of hominid genera and species. Given the intellectual flimsiness of the resulting paleoanthropological framework, it is hardly surprising that in 1950 the ornithologist Ernst Mayr met little resistance when he urged the new postwar generation of paleoanthropologists to accept not only the elegant reductionism of the Evolutionary Synthesis but a vast oversimplification of hominid phylogenetic history and nomenclature. Indeed, the impact of Mayr's onslaught was so great that even when developments in evolutionary biology during the last quarter of the century brought other paleontologists to the realization that much more has been involved in evolutionary histories than the simple action of natural selection within gradually transforming lineages, paleoanthropologists proved highly reluctant to follow. Even today, paleoanthropologists are struggling to reconcile an intuitive realization that the burgeoning hominid fossil record harbors a substantial diversity of species (bringing hominid evolutionary patterns into line with that of other successful mammalian families), with the desire to cram a huge variety of morphologies into an unrealistically minimalist systematic framework. As long as this theoretical ambivalence persists, our perception of events in hominid phylogeny will continue to be distorted. PMID:23272602

  2. Effect of host plant fertilization on the developmental biology and feeding preference of the glassy-winged sharpshooter.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main objective of this research was to evaluate the effect of host plant fertilization on the survival, immature development, adult fecundity, and the feeding of the glassy-winged sharpshooter (GWSS), a primary vector of Xylella fastidiosa (Xf). The development biology of GWSS was studied on co...

  3. Evolutionary objections to "alien design" models.

    NASA Astrophysics Data System (ADS)

    Coffey, E. J.

    A previous paper demonstrated that the principal supporters of SETI have ignored the biological and evolutionary consequences of a creature's body form. In fact, the supporting evidence they provide actually contradicts their view. The approach they employ is that of the engineer: the process of "designing" a hypothetical creature to a specification irrespective of biological or evolutionary considerations. The principal types of "alien designs" which have been employed shall be discussed, and the evolutionary objections to them given.

  4. Comparative approaches in evolutionary psychology: molecular neuroscience meets the mind.

    PubMed

    Panksepp, Jaak; Moskal, Joseph R; Panksepp, Jules B; Kroes, Roger A

    2002-12-01

    Evolutionary psychologists often overlook a wealth of information existing between the proximate genotypic level and the ultimate phenotypic level. This commonly ignored level of biological organization is the ongoing activity of neurobiological systems. In this paper, we extend our previous arguments concerning strategic weaknesses of evolutionary psychology by advocating a foundational view that focuses on similarities in brain, behavior, and various basic psychological features across mammalian species. Such an approach offers the potential to link the emerging discipline of evolutionary psychology to its parent scientific disciplines such as biochemistry, physiology, molecular genetics, developmental biology and the neuroscientific analysis of animal behavior. We detail an example of this through our impending work using gene microarray technology to characterize gene expression patterns in rats during aggressive and playful social interactions. Through a focus on functional homologies and the experimental analysis of conserved, subcortical emotional and motivational brain systems, neuroevolutionary psychobiology can reveal ancient features of the human mind that are still shared with other animals. Claims regarding evolved, uniquely human, psychological constructs should be constrained by the rigorous evidentiary standards that are routine in other sciences. PMID:12496741

  5. Evolutionary awareness.

    PubMed

    Gorelik, Gregory; Shackelford, Todd K

    2014-01-01

    In this article, we advance the concept of "evolutionary awareness," a metacognitive framework that examines human thought and emotion from a naturalistic, evolutionary perspective. We begin by discussing the evolution and current functioning of the moral foundations on which our framework rests. Next, we discuss the possible applications of such an evolutionarily-informed ethical framework to several domains of human behavior, namely: sexual maturation, mate attraction, intrasexual competition, culture, and the separation between various academic disciplines. Finally, we discuss ways in which an evolutionary awareness can inform our cross-generational activities-which we refer to as "intergenerational extended phenotypes"-by helping us to construct a better future for ourselves, for other sentient beings, and for our environment. PMID:25300054

  6. Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease.

    PubMed

    Talbot, Jared; Maves, Lisa

    2016-07-01

    Skeletal muscle fibers are classified into fiber types, in particular, slow twitch versus fast twitch. Muscle fiber types are generally defined by the particular myosin heavy chain isoforms that they express, but many other components contribute to a fiber's physiological characteristics. Skeletal muscle fiber type can have a profound impact on muscle diseases, including certain muscular dystrophies and sarcopenia, the aging-induced loss of muscle mass and strength. These findings suggest that some muscle diseases may be treated by shifting fiber type characteristics either from slow to fast, or fast to slow phenotypes, depending on the disease. Recent studies have begun to address which components of muscle fiber types mediate their susceptibility or resistance to muscle disease. However, for many diseases it remains largely unclear why certain fiber types are affected. A substantial body of work has revealed molecular pathways that regulate muscle fiber type plasticity and early developmental muscle fiber identity. For instance, recent studies have revealed many factors that regulate muscle fiber type through modulating the activity of the muscle regulatory transcription factor MYOD1. Future studies of muscle fiber type development in animal models will continue to enhance our understanding of factors and pathways that may provide therapeutic targets to treat muscle diseases. WIREs Dev Biol 2016, 5:518-534. doi: 10.1002/wdev.230 For further resources related to this article, please visit the WIREs website. PMID:27199166

  7. Proteomics in evolutionary ecology.

    PubMed

    Baer, B; Millar, A H

    2016-03-01

    Evolutionary ecologists are traditionally gene-focused, as genes propagate phenotypic traits across generations and mutations and recombination in the DNA generate genetic diversity required for evolutionary processes. As a consequence, the inheritance of changed DNA provides a molecular explanation for the functional changes associated with natural selection. A direct focus on proteins on the other hand, the actual molecular agents responsible for the expression of a phenotypic trait, receives far less interest from ecologists and evolutionary biologists. This is partially due to the central dogma of molecular biology that appears to define proteins as the 'dead-end of molecular information flow' as well as technical limitations in identifying and studying proteins and their diversity in the field and in many of the more exotic genera often favored in ecological studies. Here we provide an overview of a newly forming field of research that we refer to as 'Evolutionary Proteomics'. We point out that the origins of cellular function are related to the properties of polypeptide and RNA and their interactions with the environment, rather than DNA descent, and that the critical role of horizontal gene transfer in evolution is more about coopting new proteins to impact cellular processes than it is about modifying gene function. Furthermore, post-transcriptional and post-translational processes generate a remarkable diversity of mature proteins from a single gene, and the properties of these mature proteins can also influence inheritance through genetic and perhaps epigenetic mechanisms. The influence of post-transcriptional diversification on evolutionary processes could provide a novel mechanistic underpinning for elements of rapid, directed evolutionary changes and adaptations as observed for a variety of evolutionary processes. Modern state-of the art technologies based on mass spectrometry are now available to identify and quantify peptides, proteins, protein

  8. Biological and Rearing Mother Influences on Child ADHD Symptoms: Revisiting the Developmental Interface between Nature and Nurture

    PubMed Central

    Harold, Gordon T.; Leve, Leslie D.; Barrett, Douglas; Elam, Kit; Neiderhiser, Jenae M.; Natsuaki, Misaki N.; Shaw, Daniel S.; Reiss, David; Thapar, Anita

    2013-01-01

    Background Families of children with attention deficit hyperactivity disorder (ADHD) report more negative family relationships than families of children without ADHD. Questions remain as to the role of genetic factors underlying associations between family relationships and children’s ADHD symptoms, and the role of children’s ADHD symptoms as an evocative influence on the quality of relationships experienced within such families. Utilizing the attributes of two genetically sensitive research designs, the present study examined associations between biologically related and non-biologically related maternal ADHD symptoms, parenting practices, child impulsivity/activation, and child ADHD symptoms. The combined attributes of the study designs permit assessment of associations while controlling for passive genotype-environment correlation and directly examining evocative genotype-environment correlation (rGE); two relatively under examined confounds of past research in this area. Methods A cross-sectional adoption-at-conception design (Cardiff IVF Study; C-IVF) and a longitudinal adoption-at-birth design (Early Growth and Development Study; EGDS) were used. The C-IVF sample included 160 mothers and children (age 5–8 years). The EGDS sample included 320 linked sets of adopted children (age 6 years), adoptive-, and biologically-related mothers. Questionnaires were used to assess maternal ADHD symptoms, parenting practices, child impulsivity/activation, and child ADHD symptoms. A cross-rater approach was used across measures of maternal behavior (mother reports) and child ADHD symptoms (father reports). Results Significant associations were revealed between rearing mother ADHD symptoms, hostile parenting behavior, and child ADHD symptoms in both samples. Because both samples consisted of genetically-unrelated mothers and children, passive rGE was removed as a possible explanatory factor underlying these associations. Further, path analysis revealed evidence for

  9. Developmental dyslexia.

    PubMed

    Démonet, Jean-François; Taylor, Margot J; Chaix, Yves

    2004-05-01

    Developmental dyslexia, or specific reading disability, is a disorder in which children with normal intelligence and sensory abilities show learning deficits for reading. Substantial evidence has established its biological origin and the preponderance of phonological disorders even though important phenotypic variability and comorbidity have been recorded. Diverse theories have been proposed to account for the cognitive and neurological aspects of dyslexia. Findings of genetic studies show that different loci affect specific reading disability although a direct relation has not been established between symptoms and a given genomic locus. In both children and adults with dyslexia, results of neuroimaging studies suggest defective activity and abnormal connectivity between regions crucial for language functions--eg, the left fusiform gyrus for reading--and changes in brain activity associated with performance improvement after various remedial interventions. PMID:15121410

  10. Developmental biology and databases: how to archive, find and query gene expression patterns using the world wide web.

    PubMed

    Armit, Chris

    2007-10-01

    Systems biology has undergone an explosive growth in recent times. The staggering amount of expression data that can now be obtained from microarray chip analysis and high-throughput in situ screens has lent itself to the creation of large, terabyte-capacity databases in which to house gene expression patterns. Furthermore, innovative methods can be used to interrogate these databases and to link genomic information to functional information of embryonic cells, tissues and organs. These formidable advancements have led to the development of a whole host of online resources that have allowed biologists to probe the mysteries of growth and form with renewed zeal. This review seeks to highlight general features of these databases, and to identify the methods by which expression data can be retrieved. PMID:19279703

  11. Evolutionary Computing

    SciTech Connect

    Patton, Robert M; Cui, Xiaohui; Jiao, Yu; Potok, Thomas E

    2008-01-01

    The rate at which information overwhelms humans is significantly more than the rate at which humans have learned to process, analyze, and leverage this information. To overcome this challenge, new methods of computing must be formulated, and scientist and engineers have looked to nature for inspiration in developing these new methods. Consequently, evolutionary computing has emerged as new paradigm for computing, and has rapidly demonstrated its ability to solve real-world problems where traditional techniques have failed. This field of work has now become quite broad and encompasses areas ranging from artificial life to neural networks. This chapter focuses specifically on two sub-areas of nature-inspired computing: Evolutionary Algorithms and Swarm Intelligence.

  12. Developmental diversity in free-living flatworms

    PubMed Central

    2012-01-01

    Flatworm embryology has attracted attention since the early beginnings of comparative evolutionary biology. Considered for a long time the most basal bilaterians, the Platyhelminthes (excluding Acoelomorpha) are now robustly placed within the Spiralia. Despite having lost their relevance to explain the transition from radially to bilaterally symmetrical animals, the study of flatworm embryology is still of great importance to understand the diversification of bilaterians and of developmental mechanisms. Flatworms are acoelomate organisms generally with a simple centralized nervous system, a blind gut, and lacking a circulatory organ, a skeleton and a respiratory system other than the epidermis. Regeneration and asexual reproduction, based on a totipotent neoblast stem cell system, are broadly present among different groups of flatworms. While some more basally branching groups - such as polyclad flatworms - retain the ancestral quartet spiral cleavage pattern, most flatworms have significantly diverged from this pattern and exhibit unique strategies to specify the common adult body plan. Most free-living flatworms (i.e. Platyhelminthes excluding the parasitic Neodermata) are directly developing, whereas in polyclads, also indirect developers with an intermediate free-living larval stage and subsequent metamorphosis are found. A comparative study of developmental diversity may help understanding major questions in evolutionary biology, such as the evolution of cleavage patterns, gastrulation and axial specification, the evolution of larval types, and the diversification and specialization of organ systems. In this review, we present a thorough overview of the embryonic development of the different groups of free-living (turbellarian) platyhelminths, including the Catenulida, Macrostomorpha, Polycladida, Lecithoepitheliata, Proseriata, Bothrioplanida, Rhabdocoela, Fecampiida, Prolecithophora and Tricladida, and discuss their main features under a consensus phylogeny

  13. Developmental Toxicity

    EPA Science Inventory

    This chapter provides an overview the developmental toxicity resulting from exposure to perfluorinated alkyl acids (PFAAs). The majority of studies of PFAA-induced developmental toxicity have examined effects of perfluorooctane sulfonate (PFOS) or perfluorooctanoic acid (PFOA) a...

  14. Developmental Screening

    MedlinePlus

    Learn More about Your Child’s Development: Developmental Monitoring and Screening Taking a first step, waving “bye-bye,” and pointing to something interesting are all developmental milestones, ...

  15. Developmental Disabilities

    MedlinePlus

    Developmental disabilities are severe, long-term problems. They may be physical, such as blindness. They may affect mental ability, ... everyday living. There are many causes of developmental disabilities, including Genetic or chromosome abnormalities. These cause conditions ...

  16. Deep evolutionary origins of neurobiology

    PubMed Central

    Mancuso, Stefano

    2009-01-01

    It is generally assumed, both in common-sense argumentations and scientific concepts, that brains and neurons represent late evolutionary achievements which are present only in more advanced animals. Here we overview recently published data clearly revealing that our understanding of bacteria, unicellular eukaryotic organisms, plants, brains and neurons, rooted in the Aristotelian philosophy is flawed. Neural aspects of biological systems are obvious already in bacteria and unicellular biological units such as sexual gametes and diverse unicellular eukaryotic organisms. Altogether, processes and activities thought to represent evolutionary ‘recent’ specializations of the nervous system emerge rather to represent ancient and fundamental cell survival processes. PMID:19513267

  17. Report on 2nd Royan Institute International Summer School on developmental biology and stem cells Tehran, Iran, 17-22nd July 2011.

    PubMed

    Newgreen, Donald; Grounds, Miranda; Jesuthasan, Suresh; Rashidi, Hassan; Familari, Mary

    2012-03-01

    The 2nd Royan Institute International Summer School was built around the topic of stem cells and grounding in the discipline of developmental biology. The meeting provided not only direct transfer of technical and intellectual information, the normal process in scientific meetings, but was also a forum for the exchange of personal ideas of science as a creative pursuit. This summer school introduced aspiring young Iranian scientists to international researchers and exposed the latter to a rich culture that highly values learning and education, attested by the confident, intelligent young men and women who asked probing questions and who were eager to participate in the workshops. Hossein Baharvand's dedication and passion for science have led to an impressive record of national and international peer-reviewed publications and an increasing number of students who pursue science in Iran, and shows how the right people can create an environment where good science, good science education and motivation will flourish. This report summarizes some of the activities of the workshop in the Royan Institute and the impressions of the visiting scientists in the wider context of the scientific and cultural heritage of Iran. PMID:22364877

  18. On the bifurcation of blood vessels--Wilhelm Roux's doctoral thesis (Jena 1878)--a seminal work for biophysical modelling in developmental biology.

    PubMed

    Kurz, H; Sandau, K; Christ, B

    1997-02-01

    Wilhelm Roux's doctoral thesis described the relationship between the angle and diameter of bifurcating blood vessels. We have re-read this work in the light of biophysics and developmental biology and found two remarkable aspects hidden among a multitude of observations, rules and exceptions to these rules. First, the author identified the major determinants involved in vascular development; genetics, cybernetics, and mechanics; moreover, he knew that he could not deal with the genetic and regulatory aspects, and could hardly treat the mechanical part adequately. Second, he was deeply convinced that the laws of physics determine the design of organisms, and that a necessity for optimality was inherent in development. We combined the analysis of diameter relationships with the requirement for optimality in a stochastic biophysical model, and concluded that a constant wall-stress condition could define a minimum wall-tissue optimum during arterial development. Hence, almost 120 years after Wilhelm Roux's pioneering work, our model indicates one possible way in which physical laws have determined the evolution of regulatory and structural properties in vessel wall development. PMID:9059737

  19. Evolutionary Determinants of Cancer

    PubMed Central

    Greaves, Mel

    2015-01-01

    ‘Nothing in biology makes sense except in the light of evolution’ Th. Dobzhansky, 1973 Our understanding of cancer is being transformed by exploring clonal diversity, drug resistance and causation within an evolutionary framework. The therapeutic resilience of advanced cancer is a consequence of its character as complex, dynamic and adaptive ecosystem engendering robustness, underpinned by genetic diversity and epigenetic plasticity. The risk of mutation-driven escape by self-renewing cells is intrinsic to multicellularity but is countered by multiple restraints facilitating increasing complexity and longevity of species. But our own has disrupted this historical narrative by rapidly escalating intrinsic risk. Evolutionary principles illuminate these challenges and provide new avenues to explore for more effective control. PMID:26193902

  20. On evolutionary systems.

    PubMed

    Alvarez de Lorenzana, J M; Ward, L M

    1987-01-01

    This paper develops a metatheoretical framework for understanding evolutionary systems (systems that develop in ways that increase their own variety). The framework addresses shortcomings seen in other popular systems theories. It concerns both living and nonliving systems, and proposes a metahierarchy of hierarchical systems. Thus, it potentially addresses systems at all descriptive levels. We restrict our definition of system to that of a core system whose parts have a different ontological status than the system, and characterize the core system in terms of five global properties: minimal length interval, minimal time interval, system cycle, total receptive capacity, and system potential. We propose two principles through the interaction of which evolutionary systems develop. The Principle of Combinatorial Expansion describes how a core system realizes its developmental potential through a process of progressive differentiation of the single primal state up to a limit stage. The Principle of Generative Condensation describes how the components of the last stage of combinatorial expansion condense and become the environment for and components of new, enriched systems. The early evolution of the Universe after the "big bang" is discussed in light of these ideas as an example of the application of the framework. PMID:3689299

  1. Evolutionary History of the Marsupials and an Analysis of Osteological Characters

    NASA Astrophysics Data System (ADS)

    Szalay, Frederick S.

    1995-01-01

    The aim of this book is to examine a variety of problems in the understanding of the evolutionary history of the marsupials. In his exposition, the author covers developmental and reproductive biology, the cranio-skeletal system (including dentition, skull, and postcranial morphology), and the ecologically related aspects of skeletal morphology. In reviewing the evidence from bones, he presents much new information on both living and fossil groups of marsupials. All groups of marsupials are treated in detail, and in the final chapter their history in space and time and their paleobiogeography are considered.

  2. Progress in nemertean biology: development and phylogeny.

    PubMed

    Turbeville, J M

    2002-07-01

    This paper reviews progress in developmental biology and phylogeny of the Nemertea, a common but poorly studied spiralian taxon of considerable ecological and evolutionary significance. Analyses of reproductive biology (including calcium dynamics during fertilization and oocyte maturation), larval morphology and development and developmental genetics have significantly extended our knowledge of spiralian developmental biology. Developmental genetics studies have in addition provided characters useful for reconstructing metazoan phylogeny. Reinvestigation of the cell lineage of Cerebratulus lacteus using fluorescent tracers revealed that endomesoderm forms from the 4d cell as in other spiralians and that ectomesoderm is derived from the 3a and 3b cells as in annelids, echiurans and molluscs. Studies examining blastomere specification show that cell fates are established precociously in direct developers and later in indirect developers. Morphological characters used to estimate the phylogenetic position of nemerteans are critically re-evaluated, and cladistic analyses of morphology reveal that conflicting hypotheses of nemertean relationships result because of different provisional homology statements. Analyses that include disputed homology statements (1, gliointerstitial cell system 2, coelomic circulatory system) suggest that nemerteans form the sister taxon to the coelomate spiralian taxa rather than the sister taxon to Platyhelminthes. Analyses of small subunit rRNA (18S rDNA) sequences alone or in combination with morphological characters support the inclusion of the nemerteans in a spiralian coelomate clade nested within a more inclusive lophotrochozoan clade. Ongoing evaluation of nemertean relationships with mitochondrial gene rearrangements and other molecular characters is discussed. PMID:21708766

  3. Systems Modeling in Developmental Toxicity

    EPA Science Inventory

    An individual starts off as a single cell, the progeny of which form complex structures that are themselves integrated into progressively larger systems. Developmental biology is concerned with how this cellular complexity and patterning arises through orchestration of cell divi...

  4. Quantitative evolutionary design

    PubMed Central

    Diamond, Jared

    2002-01-01

    The field of quantitative evolutionary design uses evolutionary reasoning (in terms of natural selection and ultimate causation) to understand the magnitudes of biological reserve capacities, i.e. excesses of capacities over natural loads. Ratios of capacities to loads, defined as safety factors, fall in the range 1.2-10 for most engineered and biological components, even though engineered safety factors are specified intentionally by humans while biological safety factors arise through natural selection. Familiar examples of engineered safety factors include those of buildings, bridges and elevators (lifts), while biological examples include factors of bones and other structural elements, of enzymes and transporters, and of organ metabolic performances. Safety factors serve to minimize the overlap zone (resulting in performance failure) between the low tail of capacity distributions and the high tail of load distributions. Safety factors increase with coefficients of variation of load and capacity, with capacity deterioration with time, and with cost of failure, and decrease with costs of initial construction, maintenance, operation, and opportunity. Adaptive regulation of many biological systems involves capacity increases with increasing load; several quantitative examples suggest sublinear increases, such that safety factors decrease towards 1.0. Unsolved questions include safety factors of series systems, parallel or branched pathways, elements with multiple functions, enzyme reaction chains, and equilibrium enzymes. The modest sizes of safety factors imply the existence of costs that penalize excess capacities. Those costs are likely to involve wasted energy or space for large or expensive components, but opportunity costs of wasted space at the molecular level for minor components. PMID:12122135

  5. Haplogroups as Evolutionary Markers of Cognitive Ability

    ERIC Educational Resources Information Center

    Rindermann, Heiner; Woodley, Michael A.; Stratford, James

    2012-01-01

    Studies investigating evolutionary theories on the origins of national differences in intelligence have been criticized on the basis that both national cognitive ability measures and supposedly evolutionarily informative proxies (such as latitude and climate) are confounded with general developmental status. In this study 14 Y chromosomal…

  6. An inquiry into evolutionary inquiry

    NASA Astrophysics Data System (ADS)

    Donovan, Samuel S.

    2005-11-01

    While evolution education has received a great deal of attention within the science education research community it still poses difficult teaching and learning challenges. Understanding evolutionary biology has been given high priority in national science education policy because of its role in coordinating our understanding of the life sciences, its importance in our intellectual history, its role in the perception of humans' position in nature, and its impact on our current medical, agricultural, and conservation practices. The rhetoric used in evolution education policy statements emphasizes familiarity with the nature of scientific inquiry as an important learning outcome associated with understanding evolution but provide little guidance with respect to how one might achieve this goal. This dissertation project explores the nature of evolutionary inquiry and how understanding the details of disciplinary reasoning can inform evolution education. The first analysis involves recasting the existing evolution education research literature to assess educational outcomes related to students ability to reason about data using evolutionary biology methods and models. This is followed in the next chapter by a detailed historical and philosophical characterization of evolutionary biology with the goal of providing a richer context for considering what exactly it is we want students to know about evolution as a discipline. Chapter 4 describes the development and implementation of a high school evolution curriculum that engages students with many aspects of model based reasoning. The final component of this reframing of evolution education involves an empirical study characterizing students' understanding of evolutionary biology as a modeling enterprise. Each chapter addresses a different aspect of evolution education and explores the implications of foregrounding disciplinary reasoning as an educational outcome. The analyses are coordinated with one another in the sense

  7. Evolutionary games on graphs

    NASA Astrophysics Data System (ADS)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  8. Inferring the determinants of protein evolutionary rates in mammals.

    PubMed

    Zou, Yang; Shao, Xiaojian; Dong, Dong

    2016-06-15

    Understanding the determinants of protein evolutionary rates is one of the most fundamental evolutionary questions. Previous studies have revealed that many biological variables are tightly associated with protein evolutionary rates in mammals. However, the dominant role of these biological variables and their combinatorial effects to evolutionary rates of mammalian proteins are still less understood. In this work, we derived a quantitative model to correlate protein evolutionary rates with the levels of these variables. The result showed that only a small number of variables are necessary to accurately predict protein evolutionary rates, among which miRNA regulation plays the most important role. Our result suggested that biological variables are extensively interrelated and suffer from hidden redundancies in determining protein evolutionary rates. Various variables should be considered in a natural ensemble to comprehensively assess the determinants of protein evolutionary rate. PMID:26899866

  9. Current Issues in Evolutionary Paleontology.

    ERIC Educational Resources Information Center

    Scully, Erik Paul

    1987-01-01

    Describes some of the contributions made by the field of paleontology to theories in geology and biology. Suggests that the two best examples of modern evolutionary paleontology relate to the theory of punctuated equilibria, and the possibility that mass extinctions may be cyclic. (TW)

  10. OCT-based three-dimensional, three vector component imaging of cilia-driven fluid flow for developmental biology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Huang, Brendan K.; Zhou, Kevin C.; Gamm, Ute A.; Bhandari, Vineet; Khokha, Mustafa K.; Choma, Michael A.

    2016-03-01

    One critical barrier to the robust study of cilia-driven fluid flow in developmental biology is a lack of methods for acquiring three-dimensional (3D) images of three vector component (3C) measurements of flow velocities. A 3D3C map of cilia-driven fluid flow quantifies the flow speed along three axes (e.g. three Cartesian vector components v_x, v_y, v_z) at each point in 3D space. 3D3C quantification is important because cilia-driven fluid flow is not amenable to simplifying assumptions (e.g. parabolic flow profile. Such quantification may enable systematically detailed characterization of performance using shear force and power dissipation metrics derived from 3D3C flow velocity fields. We report our OCT-based results in developing methods for the 3D3C quantification of cilia-driven flow fields. First, we used custom scan protocols and reconstruction algorithms to synthesize 3D3C flow velocity fields from 2D2C fields generated using correlation-based methods (directional dynamic light scattering and digital particle image velocimetry). Xenopus results include flow driven by ciliated embryo skin and flow driven by ciliated ependymal cells in developing brain ventricles. Second, we developed a new approach to particle tracking velocimetry that generates 2D2.5C (2.5C: v_x,|v_y|,v_z) velocity fields from single-plane 2D image acquisitions. We demonstrated this particle streak velocimetry method in calibrated flow phantoms and in flow driven by ciliated Xenopus embryo skin. Additionally, we have preliminary results extending particle streak velocimetry to 3D3C in calibrated flow phantoms with ongoing work in Xenopus embryos.

  11. Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes.

    PubMed

    Tracy, Bryan P; Gaida, Stefan M; Papoutsakis, Eleftherios T

    2010-02-01

    Flow cytometry (FC) and FC-based cell sorting have been established as critical tools in modern cell and developmental biology. Yet, their applications in bacteria, especially in the multiparametric mode, remain limited. We argue that FC technologies have the potential to greatly accelerate the analysis and development of microbial complex phenotypes through applications of metabolic engineering, synthetic biology, and evolutionary engineering. We demonstrate the importance of FC for elucidating population heterogeneity because of developmental processes or epigenetic regulation. FC can be engaged for both synthetic and analytical applications of complex phenotypes within a single species, multispecies, and microbial-library populations. Examples include methods to identify developmental microbial stages associated with productive metabolic phenotypes, select desirable promoters from a single species or metagenomic libraries, and to screen designer riboswitches for synthetic-biology applications. PMID:20206495

  12. College Students' Misconceptions about Evolutionary Trees

    ERIC Educational Resources Information Center

    Meir, Eli; Perry, Judy; Herron, Jon C.; Kingsolver, Joel

    2007-01-01

    Evolution is at the center of the biological sciences and is therefore a required topic for virtually every college biology student. Over the past year, the authors have been building a new simulation software package called EvoBeaker to teach college-level evolutionary biology through simulated experiments. They have built both micro and…

  13. von Baer's law for the ages: lost and found principles of developmental evolution.

    PubMed

    Abzhanov, Arhat

    2013-12-01

    In 1828, Karl Ernst von Baer formulated a series of empirically defined rules, which became widely known as the 'Law of Development' or 'von Baer's law of embryology'. This was one the most significant attempts to define the principles that connected morphological complexity and embryonic development. Understanding this relation is central to both evolutionary biology and developmental genetics. Von Baer's ideas have been both a source of inspiration to generations of biologists and a target of continuous criticism over many years. With advances in multiple fields, including paleontology, cladistics, phylogenetics, genomics, and cell and developmental biology, it is now possible to examine carefully the significance of von Baer's law and its predictions. In this review, I argue that, 185 years after von Baer's law was first formulated, its main concepts after proper refurbishing remain surprisingly relevant in revealing the fundamentals of the evolution-development connection, and suggest that their explanation should become the focus of renewed research. PMID:24120296

  14. Evolutionary branching under multi-dimensional evolutionary constraints.

    PubMed

    Ito, Hiroshi; Sasaki, Akira

    2016-10-21

    The fitness of an existing phenotype and of a potential mutant should generally depend on the frequencies of other existing phenotypes. Adaptive evolution driven by such frequency-dependent fitness functions can be analyzed effectively using adaptive dynamics theory, assuming rare mutation and asexual reproduction. When possible mutations are restricted to certain directions due to developmental, physiological, or physical constraints, the resulting adaptive evolution may be restricted to subspaces (constraint surfaces) with fewer dimensionalities than the original trait spaces. To analyze such dynamics along constraint surfaces efficiently, we develop a Lagrange multiplier method in the framework of adaptive dynamics theory. On constraint surfaces of arbitrary dimensionalities described with equality constraints, our method efficiently finds local evolutionarily stable strategies, convergence stable points, and evolutionary branching points. We also derive the conditions for the existence of evolutionary branching points on constraint surfaces when the shapes of the surfaces can be chosen freely. PMID:27444402

  15. Evolutionary concepts meet the neck of penguins (Aves: Sphenisciformes), towards a "survival strategy" for evo-devo.

    PubMed

    Guinard, Geoffrey

    2012-12-01

    Evolutionary developmental biology (or evo-devo) is the scientific connectivity that allowed a more comprehensive and practical completeness in the contemporary conceptualisation of evolution. The links between genetics, developmental mechanics and evolution led to a better understanding of evolutionary mechanisms. An analysis of evolutionary concepts such as homology, homeoses, constraints, novelties, modularity, and selection is given through the recurring example of the variations identified in the modular repartition of the cervical vertebrae in extant and fossil penguins. The inclusion of this study about penguins in the evolutionary system also involves a reflection on the current state and the future of evo-devo. Three principles of assessment and method, applicable to many natural and conceptual scales, are introduced to define a "survival strategy" for evo-devo. The above-mentioned principles are intended to strengthen and continue the connectivity induced de facto. These current and future investigation challenges are discussed and connected to three main naturalist names related directly to the conceptualisation of evolution: Charles Darwin, Étienne Geoffroy Saint-Hilaire, and Lamarck. PMID:22890499

  16. Holistic Darwinism: the new evolutionary paradigm and some implications for political science.

    PubMed

    Corning, Peter A

    2008-03-01

    Holistic Darwinism is a candidate name for a major paradigm shift that is currently underway in evolutionary biology and related disciplines. Important developments include (1) a growing appreciation for the fact that evolution is a multilevel process, from genes to ecosystems, and that interdependent coevolution is a ubiquitous phenomenon in nature; (2) a revitalization of group selection theory, which was banned (prematurely) from evolutionary biology over 30 years ago (groups may in fact be important evolutionary units); (3) a growing respect for the fact that the genome is not a "bean bag" (in biologist Ernst Mayr's caricature), much less a gladiatorial arena for competing selfish genes, but a complex, interdependent, cooperating system; (4) an increased recognition that symbiosis is an important phenomenon in nature and that symbiogenesis is a major source of innovation in evolution; (5) an array of new, more advanced game theory models, which support the growing evidence that cooperation is commonplace in nature and not a rare exception; (6) new research and theoretical work that stresses the role of nurture in evolution, including developmental processes, phenotypic plasticity, social information transfer (culture), and especially the role of behavioral innovations as pacemakers of evolutionary change (e.g., niche construction theory, which is concerned with the active role of organisms in shaping the evolutionary process, and gene-culture coevolution theory, which relates especially to the dynamics of human evolution); (7) and, not least, a broad effort to account for the evolution of biological complexity--from major transition theory to the "Synergism Hypothesis." Here I will briefly review these developments and will present a case for the proposition that this paradigm shift has profound implications for the social sciences, including specifically political theory, economic theory, and political science as a discipline. Interdependent superorganisms, it

  17. Evolution of the Plant Reproduction Master Regulators LFY and the MADS Transcription Factors: The Role of Protein Structure in the Evolutionary Development of the Flower

    PubMed Central

    Silva, Catarina S.; Puranik, Sriharsha; Round, Adam; Brennich, Martha; Jourdain, Agnès; Parcy, François; Hugouvieux, Veronique; Zubieta, Chloe

    2016-01-01

    Understanding the evolutionary leap from non-flowering (gymnosperms) to flowering (angiosperms) plants and the origin and vast diversification of the floral form has been one of the focuses of plant evolutionary developmental biology. The evolving diversity and increasing complexity of organisms is often due to relatively small changes in genes that direct development. These “developmental control genes” and the transcription factors (TFs) they encode, are at the origin of most morphological changes. TFs such as LEAFY (LFY) and the MADS-domain TFs act as central regulators in key developmental processes of plant reproduction including the floral transition in angiosperms and the specification of the male and female organs in both gymnosperms and angiosperms. In addition to advances in genome wide profiling and forward and reverse genetic screening, structural techniques are becoming important tools in unraveling TF function by providing atomic and molecular level information that was lacking in purely genetic approaches. Here, we summarize previous structural work and present additional biophysical and biochemical studies of the key master regulators of plant reproduction – LEAFY and the MADS-domain TFs SEPALLATA3 and AGAMOUS. We discuss the impact of structural biology on our understanding of the complex evolutionary process leading to the development of the bisexual flower. PMID:26779227

  18. The Evolutionary Basis of Risky Adolescent Behavior: Implications for Science, Policy, and Practice

    ERIC Educational Resources Information Center

    Ellis, Bruce J.; Del Giudice, Marco; Dishion, Thomas J.; Figueredo, Aurelio Jose; Gray, Peter; Griskevicius, Vladas; Hawley, Patricia H.; Jacobs, W. Jake; James, Jenee; Volk, Anthony A.; Wilson, David Sloan

    2012-01-01

    This article proposes an evolutionary model of risky behavior in adolescence and contrasts it with the prevailing developmental psychopathology model. The evolutionary model contends that understanding the evolutionary functions of adolescence is critical to explaining why adolescents engage in risky behavior and that successful intervention…

  19. The Evolving Theory of Evolutionary Radiations.

    PubMed

    Simões, M; Breitkreuz, L; Alvarado, M; Baca, S; Cooper, J C; Heins, L; Herzog, K; Lieberman, B S

    2016-01-01

    Evolutionary radiations have intrigued biologists for more than 100 years, and our understanding of the patterns and processes associated with these radiations continues to grow and evolve. Recently it has been recognized that there are many different types of evolutionary radiation beyond the well-studied adaptive radiations. We focus here on multifarious types of evolutionary radiations, paying special attention to the abiotic factors that might trigger diversification in clades. We integrate concepts such as exaptation, species selection, coevolution, and the turnover-pulse hypothesis (TPH) into the theoretical framework of evolutionary radiations. We also discuss other phenomena that are related to, but distinct from, evolutionary radiations that have relevance for evolutionary biology. PMID:26632984

  20. Interpreting Evolutionary Diagrams: When Topology and Process Conflict

    ERIC Educational Resources Information Center

    Catley, Kefyn M.; Novick, Laura R.; Shade, Courtney K.

    2010-01-01

    The authors argue that some diagrams in biology textbooks and the popular press presented as depicting evolutionary relationships suggest an inappropriate (anagenic) conception of evolutionary history. The goal of this research was to provide baseline data that begin to document how college students conceptualize the evolutionary relationships…

  1. Paradigm change in evolutionary microbiology.

    PubMed

    O'Malley, Maureen A; Boucher, Yan

    2005-03-01

    Thomas Kuhn had little to say about scientific change in biological science, and biologists are ambivalent about how applicable his framework is for their disciplines. We apply Kuhn's account of paradigm change to evolutionary microbiology, where key Darwinian tenets are being challenged by two decades of findings from molecular phylogenetics. The chief culprit is lateral gene transfer, which undermines the role of vertical descent and the representation of evolutionary history as a tree of life. To assess Kuhn's relevance to this controversy, we add a social analysis of the scientists involved to the historical and philosophical debates. We conclude that while Kuhn's account may capture aspects of the pattern (or outcome) of an episode of scientific change, he has little to say about how the process of generating new understandings is occurring in evolutionary microbiology. Once Kuhn's application is limited to that of an initial investigative probe into how scientific problem-solving occurs, his disciplinary scope becomes broader. PMID:16120264

  2. Using evolutionary computations to understand the design and evolution of gene and cell regulatory networks

    PubMed Central

    Spirov, Alexander; Holloway, David

    2013-01-01

    This paper surveys modeling approaches for studying the evolution of gene regulatory networks (GRNs). Modeling of the design or ‘wiring’ of GRNs has become increasingly common in developmental and medical biology, as a means of quantifying gene-gene interactions, the response to perturbations, and the overall dynamic motifs of networks. Drawing from developments in GRN ‘design’ modeling, a number of groups are now using simulations to study how GRNs evolve, both for comparative genomics and to uncover general principles of evolutionary processes. Such work can generally be termed evolution in silico. Complementary to these biologically-focused approaches, a now well-established field of computer science is Evolutionary Computations (EC), in which highly efficient optimization techniques are inspired from evolutionary principles. In surveying biological simulation approaches, we discuss the considerations that must be taken with respect to: a) the precision and completeness of the data (e.g. are the simulations for very close matches to anatomical data, or are they for more general exploration of evolutionary principles); b) the level of detail to model (we proceed from ‘coarse-grained’ evolution of simple gene-gene interactions to ‘fine-grained’ evolution at the DNA sequence level); c) to what degree is it important to include the genome’s cellular context; and d) the efficiency of computation. With respect to the latter, we argue that developments in computer science EC offer the means to perform more complete simulation searches, and will lead to more comprehensive biological predictions. PMID:23726941

  3. Evolutionary routes to stable ownership.

    PubMed

    Hare, D; Reeve, H K; Blossey, B

    2016-06-01

    Ownership can evolve in potentially any species. Drawing on insights from across disciplines, we distinguish between possession and ownership and present species-neutral criteria for ownership, defined as respect for possession. We use a variant of the tug-of-war evolutionary game to demonstrate how ownership can evolve in the form of a new, biologically realistic strategy, Restraint With Retaliation (RWR). In our game, resource holding potential (RHP) is assumed to be equal between interactants, and resource holding asymmetry determines whether ownership is adaptive. RWR will be evolutionarily stable when the ratio of resource holdings between interactants is relatively low, but not when this ratio is sufficiently high. We offer RWR as one evolutionary route to ownership among many, and discuss how ownership unites previously described behavioural phenomena across taxa. We propose that some but not all mechanisms of territory formation and maintenance can be considered ownership, and show that territories are not the only resources that can be owned. We argue that ownership can be a powerful cooperative solution to tragedies of the commons and problems of collective action throughout the biological world. We advance recent scholarship that has begun to investigate the biological importance of ownership, and we call for a comprehensive account of its evolutionary logic and taxonomic distribution. We propose that ownership should be considered a fundamental, unifying biological phenomenon. PMID:26991035

  4. Gene Coexpression and Evolutionary Conservation Analysis of the Human Preimplantation Embryos.

    PubMed

    Liu, Tiancheng; Yu, Lin; Ding, Guohui; Wang, Zhen; Liu, Lei; Li, Hong; Li, Yixue

    2015-01-01

    Evolutionary developmental biology (EVO-DEVO) tries to decode evolutionary constraints on the stages of embryonic development. Two models--the "funnel-like" model and the "hourglass" model--have been proposed by investigators to illustrate the fluctuation of selective pressure on these stages. However, selective indices of stages corresponding to mammalian preimplantation embryonic development (PED) were undetected in previous studies. Based on single cell RNA sequencing of stages during human PED, we used coexpression method to identify gene modules activated in each of these stages. Through measuring the evolutionary indices of gene modules belonging to each stage, we observed change pattern of selective constraints on PED for the first time. The selective pressure decreases from the zygote stage to the 4-cell stage and increases at the 8-cell stage and then decreases again from 8-cell stage to the late blastocyst stages. Previous EVO-DEVO studies concerning the whole embryo development neglected the fluctuation of selective pressure in these earlier stages, and the fluctuation was potentially correlated with events of earlier stages, such as zygote genome activation (ZGA). Such oscillation in an earlier stage would further affect models of the evolutionary constraints on whole embryo development. Therefore, these earlier stages should be measured intensively in future EVO-DEVO studies. PMID:26273607

  5. A "developmental hourglass" in fungi.

    PubMed

    Cheng, Xuanjin; Hui, Jerome Ho Lam; Lee, Yung Yung; Wan Law, Patrick Tik; Kwan, Hoi Shan

    2015-06-01

    The "developmental hourglass" concept suggests that intermediate developmental stages are most resistant to evolutionary changes and that differences between species arise through divergence later in development. This high conservation during middevelopment is illustrated by the "waist" of the hourglass and it represents a low probability of evolutionary change. Earlier molecular surveys both on animals and on plants have shown that the genes expressed at the waist stage are more ancient and more conserved in their expression. The existence of such a developmental hourglass has not been explored in fungi, another eukaryotic kingdom. In this study, we generated a series of transcriptomic data covering the entire lifecycle of a model mushroom-forming fungus, Coprinopsis cinerea, and we observed a molecular hourglass over its development. The "young fruiting body" is the stage that expresses the evolutionarily oldest (lowest transcriptome age index) transcriptome and gives the strongest signal of purifying selection (lowest transcriptome divergence index). We also demonstrated that all three kingdoms-animals, plants, and fungi-display high expression levels of genes in "information storage and processing" at the waist stages, whereas the genes in "metabolism" become more highly expressed later. Besides, the three kingdoms all show underrepresented "signal transduction mechanisms" at the waist stages. The synchronic existence of a molecular "hourglass" across the three kingdoms reveals a mutual strategy for eukaryotes to incorporate evolutionary innovations. PMID:25725429

  6. Evolutionary principles and their practical application

    PubMed Central

    Hendry, Andrew P; Kinnison, Michael T; Heino, Mikko; Day, Troy; Smith, Thomas B; Fitt, Gary; Bergstrom, Carl T; Oakeshott, John; Jørgensen, Peter S; Zalucki, Myron P; Gilchrist, George; Southerton, Simon; Sih, Andrew; Strauss, Sharon; Denison, Robert F; Carroll, Scott P

    2011-01-01

    Evolutionary principles are now routinely incorporated into medicine and agriculture. Examples include the design of treatments that slow the evolution of resistance by weeds, pests, and pathogens, and the design of breeding programs that maximize crop yield or quality. Evolutionary principles are also increasingly incorporated into conservation biology, natural resource management, and environmental science. Examples include the protection of small and isolated populations from inbreeding depression, the identification of key traits involved in adaptation to climate change, the design of harvesting regimes that minimize unwanted life-history evolution, and the setting of conservation priorities based on populations, species, or communities that harbor the greatest evolutionary diversity and potential. The adoption of evolutionary principles has proceeded somewhat independently in these different fields, even though the underlying fundamental concepts are the same. We explore these fundamental concepts under four main themes: variation, selection, connectivity, and eco-evolutionary dynamics. Within each theme, we present several key evolutionary principles and illustrate their use in addressing applied problems. We hope that the resulting primer of evolutionary concepts and their practical utility helps to advance a unified multidisciplinary field of applied evolutionary biology. PMID:25567966

  7. The Implications of the Cognitive Sciences for the Relation Between Religion and Science Education: The Case of Evolutionary Theory

    NASA Astrophysics Data System (ADS)

    Blancke, Stefaan; De Smedt, Johan; De Cruz, Helen; Boudry, Maarten; Braeckman, Johan

    2012-08-01

    This paper discusses the relationship between religion and science education in the light of the cognitive sciences. We challenge the popular view that science and religion are compatible, a view that suggests that learning and understanding evolutionary theory has no effect on students' religious beliefs and vice versa. We develop a cognitive perspective on how students manage to reconcile evolutionary theory with their religious beliefs. We underwrite the claim developed by cognitive scientists and anthropologists that religion is natural because it taps into people's intuitive understanding of the natural world which is constrained by essentialist, teleological and intentional biases. After contrasting the naturalness of religion with the unnaturalness of science, we discuss the difficulties cognitive and developmental scientists have identified in learning and accepting evolutionary theory. We indicate how religious beliefs impede students' understanding and acceptance of evolutionary theory. We explore a number of options available to students for reconciling an informed understanding of evolutionary theory with their religious beliefs. To conclude, we discuss the implications of our account for science and biology teachers.

  8. The relationship of maternal and fetal toxicity in developmental toxicology bioassays with notes on the biological significance of the "no observed adverse effect level".

    EPA Science Inventory

    Standard developmental toxicology bioassays are designed to identify agents with the potential to induce adverse effects and include dose levels that induce maternal toxicity. The work reported here was undertaken to evaluate the relationship of maternal and fetal toxicity. It co...

  9. Behaviors of cavefish offer insight into developmental evolution.

    PubMed

    Yoshizawa, Masato

    2015-04-01

    Many developmental processes have evolved through natural selection, yet in only a few cases do we understand if and how a change of developmental process produces a benefit. For example, many studies in evolutionary biology have investigated the developmental mechanisms that lead to novel structures in an animal, but only a few have addressed if these structures actually benefit the animal at the behavioral level of prey hunting and mating. As such, this review discusses an animal's behavior as the integrated functional output of its evolved morphological and physiological traits. Specifically, we focus on recent findings about the blind Mexican cavefish, Astyanax mexicanus, for which clear relationships exist between its physical traits and ecosystem. This species includes two morphotypes: an eyed surface dweller versus many conspecific types of blind cave dwellers, some of which evolved independently; all of the blind subtypes derived from eyed surface dwellers. The blind cavefish evolved under clear selection pressures: food is sparse and darkness is perpetual. Simulating the major aspects of a cave ecosystem in the laboratory is relatively easy, so we can use this species to begin resolving the relationships between evolved traits and selection pressures-relationships which are more complex for other animals models. This review discusses the recent advances in cavefish research that have helped us establish some key relationships between morphological evolution and environmental shifts. PMID:25728684

  10. A manual collection of Syt, Esyt, Rph3a, Rph3al, Doc2, and Dblc2 genes from 46 metazoan genomes - an open access resource for neuroscience and evolutionary biology

    PubMed Central

    2010-01-01

    Background Synaptotagmin proteins were first identified in nervous tissue, residing in synaptic vesicles. Synaptotagmins were subsequently found to form a large family, some members of which play important roles in calcium triggered exocytic events. These members have been investigated intensively, but other family members are not well understood, making it difficult to grasp the meaning of family membership in functional terms. Further difficulty arises as families are defined quite legitimately in different ways: by common descent or by common possession of distinguishing features. One definition does not necessarily imply the other. The evolutionary range of genome sequences now available, can shed more light on synaptotagmin gene phylogeny and clarify family relationships. The aim of compiling this open access collection of synaptotagmin and synaptotagmin-like sequences, is that its use may lead to greater understanding of the biological function of these proteins in an evolutionary context. Results 46 metazoan genomes were examined and their complement of Syt, Esyt, Rph3a, Rph3al, Doc2 and Dblc2 genes identified. All of the sequences were compared, named, then examined in detail. Esyt genes were formerly named Fam62. The species in this collection are Trichoplax, Nematostella, Capitella, Helobdella, Lottia, Ciona, Strongylocentrotus, Branchiostoma, Ixodes, Daphnia, Acyrthosiphon, Tribolium, Nasonia, Apis, Anopheles, Drosophila, Caenorhabditis, Takifugu, Tetraodon, Gasterosteus, Oryzias, Danio, Xenopus, Anolis, Gallus, Taeniopygia,Ornithorhynchus, Monodelphis, Mus and Homo. All of the data described in this paper is available as additional files. Conclusions Only a subset of synaptotagmin proteins appear able to function as calcium triggers. Syt1, Syt7 and Syt9 are ancient conserved synaptotagmins of this type. Some animals carry extensive repertoires of synaptotagmin genes. Other animals of no less complexity, carry only a small repertoire. Current

  11. A developmental staging table for Astyanax mexicanus surface fish and Pachón cavefish.

    PubMed

    Hinaux, Hélène; Pottin, Karen; Chalhoub, Houssein; Père, Stéphane; Elipot, Yannick; Legendre, Laurent; Rétaux, Sylvie

    2011-12-01

    Every model species requires its own developmental table. Astyanax mexicanus, a teleost fish comprising both sighted river and blind cave populations, is becoming more and more important in the field of developmental and evolutionary biology. As such, a developmental staging table is increasingly necessary, particularly since comparative analysis of early developmental events is widely employed by researchers. We collected freshly spawned embryos from surface fish and Pachón cavefish populations. Embryos were imaged every 10-12 min during the first day of development, and less frequently in the following days. The results provide an illustrated comparison of selected developmental stages from one cell to hatching of these two populations. The two morphs show an essentially synchronous development regarding major events such as epiboly, neurulation, somitogenesis, heart beating, or hatching. We also present data on particular morphological characters appearing during larval development, such as eye size, yolk regression, swim bladder, and fin development. Some details about the development of F1 Pachón cave×surface hybrids are also given. Comparisons are made with Danio rerio (zebrafish) development. PMID:22181659

  12. Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development

    PubMed Central

    Yang, Kevin Yi; Chen, Yuan; Zhang, Zuming; Ng, Patrick Kwok-Shing; Zhou, Wayne Junwei; Zhang, Yinfeng; Liu, Minghua; Chen, Junyuan; Mao, Bingyu; Tsui, Stephen Kwok-Wing

    2016-01-01

    Vertebrates diverged from other chordates approximately 500 million years ago and have adopted several modifications of developmental processes. Amphioxus is widely used in evolutionary developmental biology research, such as on the basic patterning mechanisms involved in the chordate body plan and the origin of vertebrates. The fast development of next-generation sequencing has advanced knowledge of the genomic organization of amphioxus; however, many aspects of gene regulation during amphioxus development have not been fully characterized. In this study, we applied high-throughput sequencing on the transcriptomes of 13 developmental stages of Chinese amphioxus to gain a comprehensive understanding of transcriptional processes occurring from the fertilized egg to the adult stage. The expression levels of 3,423 genes were significantly changed (FDR ≤ 0.01). All of these genes were included in a clustering analysis, and enrichment of biological functions associated with these clusters was determined. Significant changes were observed in several important processes, including the down-regulation of the cell cycle and the up-regulation of translation. These results should build a foundation for identifying developmentally important genes, especially those regulatory factors involved in amphioxus development, and advance understanding of the developmental dynamics in vertebrates. PMID:26979494

  13. Transcriptome analysis of different developmental stages of amphioxus reveals dynamic changes of distinct classes of genes during development.

    PubMed

    Yang, Kevin Yi; Chen, Yuan; Zhang, Zuming; Ng, Patrick Kwok-Shing; Zhou, Wayne Junwei; Zhang, Yinfeng; Liu, Minghua; Chen, Junyuan; Mao, Bingyu; Tsui, Stephen Kwok-Wing

    2016-01-01

    Vertebrates diverged from other chordates approximately 500 million years ago and have adopted several modifications of developmental processes. Amphioxus is widely used in evolutionary developmental biology research, such as on the basic patterning mechanisms involved in the chordate body plan and the origin of vertebrates. The fast development of next-generation sequencing has advanced knowledge of the genomic organization of amphioxus; however, many aspects of gene regulation during amphioxus development have not been fully characterized. In this study, we applied high-throughput sequencing on the transcriptomes of 13 developmental stages of Chinese amphioxus to gain a comprehensive understanding of transcriptional processes occurring from the fertilized egg to the adult stage. The expression levels of 3,423 genes were significantly changed (FDR ≤ 0.01). All of these genes were included in a clustering analysis, and enrichment of biological functions associated with these clusters was determined. Significant changes were observed in several important processes, including the down-regulation of the cell cycle and the up-regulation of translation. These results should build a foundation for identifying developmentally important genes, especially those regulatory factors involved in amphioxus development, and advance understanding of the developmental dynamics in vertebrates. PMID:26979494

  14. Inflated impact factors? The true impact of evolutionary papers in non-evolutionary journals.

    PubMed

    Postma, Erik

    2007-01-01

    Amongst the numerous problems associated with the use of impact factors as a measure of quality are the systematic differences in impact factors that exist among scientific fields. While in theory this can be circumvented by limiting comparisons to journals within the same field, for a diverse and multidisciplinary field like evolutionary biology, in which the majority of papers are published in journals that publish both evolutionary and non-evolutionary papers, this is impossible. However, a journal's overall impact factor may well be a poor predictor for the impact of its evolutionary papers. The extremely high impact factors of some multidisciplinary journals, for example, are by many believed to be driven mostly by publications from other fields. Despite plenty of speculation, however, we know as yet very little about the true impact of evolutionary papers in journals not specifically classified as evolutionary. Here I present, for a wide range of journals, an analysis of the number of evolutionary papers they publish and their average impact. I show that there are large differences in impact among evolutionary and non-evolutionary papers within journals; while the impact of evolutionary papers published in multidisciplinary journals is substantially overestimated by their overall impact factor, the impact of evolutionary papers in many of the more specialized, non-evolutionary journals is significantly underestimated. This suggests that, for evolutionary biologists, publishing in high-impact multidisciplinary journals should not receive as much weight as it does now, while evolutionary papers in more narrowly defined journals are currently undervalued. Importantly, however, their ranking remains largely unaffected. While journal impact factors may thus indeed provide a meaningful qualitative measure of impact, a fair quantitative comparison requires a more sophisticated journal classification system, together with multiple field-specific impact statistics per

  15. The miR-15/107 group of microRNA genes: evolutionary biology, cellular functions, and roles in human diseases

    PubMed Central

    Finnerty, John R.; Wang, Wang-Xia; Hébert, Sébastien S.; Wilfred, Bernard R.; Mao, Guogen; Nelson, Peter T.

    2010-01-01

    The miR-15/107 group of microRNA (miRNA) genes is increasingly appreciated to serve key functions in humans. These miRNAs regulate gene expression involved in cell division, metabolism, stress response, and angiogenesis in vertebrate species. The miR-15/107 group has also been implicated in human cancers, cardiovascular disease, and neurodegenerative diseases including Alzheimer’s disease. Here, we provide an overview of (1) the evolution of miR-15/107 group member genes, (2) the expression levels of the miRNAs in mammalian tissues, (3) evidence for overlapping gene regulatory functions by the different miRNAs, (4) the normal biochemical pathways regulated by miR-15/107 group miRNAs, and (5) the roles played by these miRNAs in human diseases. Membership in this group is defined on the basis of sequence similarity near the mature miRNAs’ 5′ end: all include the sequence AGCAGC. Phylogeny of this group of miRNAs is incomplete so a definitive taxonomic classification (for example, designation as a “superfamily”) is currently not possible. While all vertebrates studied to date express miR-15a, -15b, -16, -103, and -107, mammals alone are known to express miR-195, -424, -497, -503, and -646. Multiple different miRNAs in the miR-15/107 group are expressed at moderate-to-high levels in human tissues. We present data on the expression of all known miR-15/107 group members in human cerebral cortical gray and white matter using new miRNA profiling microarrays. There is extensive overlap in the mRNAs targeted by miR-15/107 group members. We show new data from cultured H4 cancer cells that demonstrate similarities in mRNAs targeted by miR-16 and miR-103, and also support the importance of the mature miRNAs’ 5′ seed region in mRNA target recognition. In conclusion, the miR-15/107 group of miRNA genes is a fascinating topic of study for evolutionary biologists, miRNA biochemists, and clinically-oriented translational researchers alike. PMID:20678503

  16. NEW FRONTIER IN UNDERSTANDING THE MECHANISMS OF DEVELOPMENTAL ABNORMALITIES

    EPA Science Inventory

    Recent advancements in molecular developmental biology afford an opportunity to apply newly developed tools for understanding the mechanisms of both normal and abnormal development. lthough a number of agents have been identified as causing developmental abnormalities, knowledge ...

  17. Early-life stress and reproductive cost: A two-hit developmental model of accelerated aging?

    PubMed

    Shalev, Idan; Belsky, Jay

    2016-05-01

    Two seemingly independent bodies of research suggest a two-hit model of accelerated aging, one highlighting early-life stress and the other reproduction. The first, informed by developmental models of early-life stress, highlights reduced longevity effects of early adversity on telomere erosion, whereas the second, informed by evolutionary theories of aging, highlights such effects with regard to reproductive cost (in females). The fact that both early-life adversity and reproductive effort are associated with shorter telomeres and increased oxidative stress raises the prospect, consistent with life-history theory, that these two theoretical frameworks currently informing much research are tapping into the same evolutionary-developmental process of increased senescence and reduced longevity. Here we propose a mechanistic view of a two-hit model of accelerated aging in human females through (a) early-life adversity and (b) early reproduction, via a process of telomere erosion, while highlighting mediating biological embedding mechanisms that might link these two developmental aging processes. PMID:27063083

  18. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    ScienceCinema

    Robinson, Gene

    2011-06-03

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on "Genomic and Systems Biology Analyses of Social Behavior" at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011

  19. Genomic and Systems Biology Analyses of Social Behavior or Evolutionary Genomic Analyses of Insect Society: Eat, Drink, and Be Scary (2011 JGI User Meeting)

    SciTech Connect

    Robinson, Gene

    2011-03-23

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Gene Robinson of the University of Illinois on "Genomic and Systems Biology Analyses of Social Behavior" at the 6th Annual Genomics of Energy & Environment Meeting on March 23, 2011

  20. Extinction as the loss of evolutionary history

    PubMed Central

    Erwin, Douglas H.

    2008-01-01

    Current plant and animal diversity preserves at most 1–2% of the species that have existed over the past 600 million years. But understanding the evolutionary impact of these extinctions requires a variety of metrics. The traditional measurement is loss of taxa (species or a higher category) but in the absence of phylogenetic information it is difficult to distinguish the evolutionary depth of different patterns of extinction: the same species loss can encompass very different losses of evolutionary history. Furthermore, both taxic and phylogenetic measures are poor metrics of morphologic disparity. Other measures of lost diversity include: functional diversity, architectural components, behavioral and social repertoires, and developmental strategies. The canonical five mass extinctions of the Phanerozoic reveals the loss of different, albeit sometimes overlapping, aspects of loss of evolutionary history. The end-Permian mass extinction (252 Ma) reduced all measures of diversity. The same was not true of other episodes, differences that may reflect their duration and structure. The construction of biodiversity reflects similarly uneven contributions to each of these metrics. Unraveling these contributions requires greater attention to feedbacks on biodiversity and the temporal variability in their contribution to evolutionary history. Taxic diversity increases after mass extinctions, but the response by other aspects of evolutionary history is less well studied. Earlier views of postextinction biotic recovery as the refilling of empty ecospace fail to capture the dynamics of this diversity increase. PMID:18695248

  1. Darwin and Developmental Psychology: Past and Present.

    ERIC Educational Resources Information Center

    Charlesworth, William R.

    1992-01-01

    Darwin's weak influence on developmental psychology is traced. It is explained by (1) developmentalists' commitment to an ideology of meliorism; (2) conceptual issues relating to ontogeny and phylogeny; and (3) methodological problems. Suggests that developmentalists use evolutionary theory as a heuristic for structuring new research. (BC)

  2. Developmental plasticity, straight from the worm's mouth.

    PubMed

    Hartenstein, Volker; Jacobs, David

    2013-11-01

    Developmental plasticity in response to environmental conditions (polyphenism) plays an important role in evolutionary theory. Analyzing the nematode taxon Pristionchus, Ragsdale et al. demonstrate that a single gene underlies the nematode's ability to develop distinct mouth forms in response to environmental changes. PMID:24209614

  3. Learning Biology by Designing

    ERIC Educational Resources Information Center

    Janssen, Fred; Waarlo, Arend Jan

    2010-01-01

    According to a century-old tradition in biological thinking, organisms can be considered as being optimally designed. In modern biology this idea still has great heuristic value. In evolutionary biology a so-called design heuristic has been formulated which provides guidance to researchers in the generation of knowledge about biological systems.…

  4. Relations between Intuitive Biological Thinking and Biological Misconceptions in Biology Majors and Nonmajors

    ERIC Educational Resources Information Center

    Coley, John D.; Tanner, Kimberly

    2015-01-01

    Research and theory development in cognitive psychology and science education research remain largely isolated. Biology education researchers have documented persistent scientifically inaccurate ideas, often termed "misconceptions," among biology students across biological domains. In parallel, cognitive and developmental psychologists…

  5. Update of Thyroid Developmental Genes.

    PubMed

    Stoupa, Athanasia; Kariyawasam, Dulanjalee; Carré, Aurore; Polak, Michel

    2016-06-01

    Thyroid dysgenesis (TD) is the most common cause of congenital hypothyroidism in iodine-sufficient regions and includes a spectrum of developmental anomalies. The genetic components of TD are complex. Although a sporadic disease, advances in developmental biology have revealed monogenetic forms of TD. Inheritance is not based on a simple Mendelian pattern and additional genetic elements might contribute to the phenotypic spectrum. This article summarizes the key steps of normal thyroid development and provides an update on responsible genes and underlying mechanisms of TD. Up-to-date technologies in genetics and biology will allow us to advance in our knowledge of TD. PMID:27241962

  6. Understanding why we age and how: Evolutionary biology meets different model organisms and multi-level omics: Meeting report on "Comparative Biology of Aging," Roscoff, October 12-16, 2015.

    PubMed

    Gilson, Eric; Bosch, Thomas C G

    2016-06-01

    The conference explored an extraordinary diversity of aging strategies in organisms ranging from short-lived species to "immortal" animals and plants. Research on the biological processes of aging is at the brink of a revolution with respect to our understanding of its underlying mechanisms as well as our ability to prevent and cure a wide variety of age-related pathologies. PMID:27119822

  7. Developmental delay

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrition support is essential for the care of the child with developmental delay. After a thorough evaluation, an individualized intervention plan that accounts for the child’s nutrition status, feeding ability, and medical condition may be determined. Nutrition assessments may be performed at leas...

  8. Developmental dyscalculia.

    PubMed

    Shalev, Ruth S

    2004-10-01

    Developmental dyscalculia is a specific learning disability affecting the normal acquisition of arithmetic skills. Genetic, neurobiologic, and epidemiologic evidence indicates that dyscalculia, like other learning disabilities, is a brain-based disorder. However, poor teaching and environmental deprivation have also been implicated in its etiology. Because the neural network of both hemispheres comprises the substrate of normal arithmetic skills, dyscalculia can result from dysfunction of either hemisphere, although the left parietotemporal area is of particular significance. The prevalence of developmental dyscalculia is 5 to 6% in the school-aged population and is as common in girls as in boys. Dyscalculia can occur as a consequence of prematurity and low birthweight and is frequently encountered in a variety of neurologic disorders, such as attention-deficit hyperactivity disorder (ADHD), developmental language disorder, epilepsy, and fragile X syndrome. Developmental dyscalculia has proven to be a persisting learning disability, at least for the short term, in about half of affected preteen pupils. Educational interventions for dyscalculia range from rote learning of arithmetic facts to developing strategies for solving arithmetic exercises. The long-term prognosis of dyscalculia and the role of remediation in its outcome are yet to be determined. PMID:15559892

  9. [Developmental Assessment.

    ERIC Educational Resources Information Center

    Fenichel, Emily, Ed.

    1994-01-01

    This newsletter theme issue contains contributions by parents, practitioners, researchers, administrators, and providers of technical assistance, which explore aspects of the complex process of developmental assessment of infants and young children. They describe what is helpful and what can be harmful in current assessment practice. They offer…

  10. Euryhalinity in an evolutionary context

    USGS Publications Warehouse

    Schultz, Eric T.; McCormick, Stephen D.

    2013-01-01

    This chapter focuses on the evolutionary importance and taxonomic distribution of euryhalinity. Euryhalinity refers to broad halotolerance and broad halohabitat distribution. Salinity exposure experiments have demonstrated that species vary tenfold in their range of tolerable salinity levels, primarily because of differences in upper limits. Halotolerance breadth varies with the species’ evolutionary history, as represented by its ordinal classification, and with the species’ halohabitat. Freshwater and seawater species tolerate brackish water; their empirically-determined fundamental haloniche is broader than their realized haloniche, as revealed by the halohabitats they occupy. With respect to halohabitat distribution, a minority of species (<10%) are euryhaline. Habitat-euryhalinity is prevalent among basal actinopterygian fishes, is largely absent from orders arising from intermediate nodes, and reappears in the most derived taxa. There is pronounced family-level variability in the tendency to be halohabitat-euryhaline, which may have arisen during a burst of diversification following the Cretaceous-Palaeogene extinction. Low prevalence notwithstanding, euryhaline species are potent sources of evolutionary diversity. Euryhalinity is regarded as a key innovation trait whose evolution enables exploitation of new adaptive zone, triggering cladogenesis. We review phylogenetically-informed studies that demonstrate freshwater species diversifying from euryhaline ancestors through processes such as landlocking. These studies indicate that some euryhaline taxa are particularly susceptible to changes in halohabitat and subsequent diversification, and some geographic regions have been hotspots for transitions to freshwater. Comparative studies on mechanisms among multiple taxa and at multiple levels of biological integration are needed to clarify evolutionary pathways to, and from, euryhalinity.

  11. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course

    ERIC Educational Resources Information Center

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-year research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent…

  12. Evolutionary constraints or opportunities?

    PubMed Central

    Sharov, Alexei A.

    2014-01-01

    Natural selection is traditionally viewed as a leading factor of evolution, whereas variation is assumed to be random and non-directional. Any order in variation is attributed to epigenetic or developmental constraints that can hinder the action of natural selection. In contrast I consider the positive role of epigenetic mechanisms in evolution because they provide organisms with opportunities for rapid adaptive change. Because the term “constraint” has negative connotations, I use the term “regulated variation” to emphasize the adaptive nature of phenotypic variation, which helps populations and species to survive and evolve in changing environments. The capacity to produce regulated variation is a phenotypic property, which is not described in the genome. Instead, the genome acts as a switchboard, where mostly random mutations switch “on” or “off” preexisting functional capacities of organism components. Thus, there are two channels of heredity: informational (genomic) and structure-functional (phenotypic). Functional capacities of organisms most likely emerged in a chain of modifications and combinations of more simple ancestral functions. The role of DNA has been to keep records of these changes (without describing the result) so that they can be reproduced in the following generations. Evolutionary opportunities include adjustments of individual functions, multitasking, connection between various components of an organism, and interaction between organisms. The adaptive nature of regulated variation can be explained by the differential success of lineages in macro-evolution. Lineages with more advantageous patterns of regulated variation are likely to produce more species and secure more resources (i.e., long-term lineage selection). PMID:24769155

  13. Molluscan Evolutionary Genomics

    SciTech Connect

    Simison, W. Brian; Boore, Jeffrey L.

    2005-12-01

    In the last 20 years there have been dramatic advances in techniques of high-throughput DNA sequencing, most recently accelerated by the Human Genome Project, a program that has determined the three billion base pair code on which we are based. Now this tremendous capability is being directed at other genome targets that are being sampled across the broad range of life. This opens up opportunities as never before for evolutionary and organismal biologists to address questions of both processes and patterns of organismal change. We stand at the dawn of a new 'modern synthesis' period, paralleling that of the early 20th century when the fledgling field of genetics first identified the underlying basis for Darwin's theory. We must now unite the efforts of systematists, paleontologists, mathematicians, computer programmers, molecular biologists, developmental biologists, and others in the pursuit of discovering what genomics can teach us about the diversity of life. Genome-level sampling for mollusks to date has mostly been limited to mitochondrial genomes and it is likely that these will continue to provide the best targets for broad phylogenetic sampling in the near future. However, we are just beginning to see an inroad into complete nuclear genome sequencing, with several mollusks and other eutrochozoans having been selected for work about to begin. Here, we provide an overview of the state of molluscan mitochondrial genomics, highlight a few of the discoveries from this research, outline the promise of broadening this dataset, describe upcoming projects to sequence whole mollusk nuclear genomes, and challenge the community to prepare for making the best use of these data.

  14. Threat-detection in child development: an evolutionary perspective.

    PubMed

    Boyer, Pascal; Bergstrom, Brian

    2011-03-01

    Evidence for developmental aspects of fear-targets and anxiety suggests a complex but stable pattern whereby specific kinds of fears emerge at different periods of development. This developmental schedule seems appropriate to dangers encountered repeatedly during human evolution. Also consistent with evolutionary perspective, the threat-detection systems are domain-specific, comprising different kinds of cues to do with predation, intraspecific violence, contamination-contagion and status loss. Proper evolutionary models may also be relevant to outstanding issues in the domain, notably the connections between typical development and pathology. PMID:20832423

  15. How Does the Mind Work? Insights from Biology

    PubMed Central

    Marcus, Gary

    2009-01-01

    Cognitive scientists must understand not just what the mind does, but how it does what it does. In this paper, I consider four aspects of cognitive architecture: how the mind develops, the extent to which it is or is not modular, the extent to which it is or is not optimal, and the extent to which it should or should not be considered a symbol-manipulating device (as opposed to, say, an eliminative connectionist network). In each case, I argue that insights from developmental and evolutionary biology can lead to substantive and important compromises in historically vexed debates. PMID:19890489

  16. Many human accelerated regions are developmental enhancers

    PubMed Central

    Capra, John A.; Erwin, Genevieve D.; McKinsey, Gabriel; Rubenstein, John L. R.; Pollard, Katherine S.

    2013-01-01

    The genetic changes underlying the dramatic differences in form and function between humans and other primates are largely unknown, although it is clear that gene regulatory changes play an important role. To identify regulatory sequences with potentially human-specific functions, we and others used comparative genomics to find non-coding regions conserved across mammals that have acquired many sequence changes in humans since divergence from chimpanzees. These regions are good candidates for performing human-specific regulatory functions. Here, we analysed the DNA sequence, evolutionary history, histone modifications, chromatin state and transcription factor (TF) binding sites of a combined set of 2649 non-coding human accelerated regions (ncHARs) and predicted that at least 30% of them function as developmental enhancers. We prioritized the predicted ncHAR enhancers using analysis of TF binding site gain and loss, along with the functional annotations and expression patterns of nearby genes. We then tested both the human and chimpanzee sequence for 29 ncHARs in transgenic mice, and found 24 novel developmental enhancers active in both species, 17 of which had very consistent patterns of activity in specific embryonic tissues. Of these ncHAR enhancers, five drove expression patterns suggestive of different activity for the human and chimpanzee sequence at embryonic day 11.5. The changes to human non-coding DNA in these ncHAR enhancers may modify the complex patterns of gene expression necessary for proper development in a human-specific manner and are thus promising candidates for understanding the genetic basis of human-specific biology. PMID:24218637

  17. Evolutionary mechanisms for establishing eukaryotic cellular complexity.

    PubMed

    Mast, Fred D; Barlow, Lael D; Rachubinski, Richard A; Dacks, Joel B

    2014-07-01

    Through a comparative approach, evolutionary cell biology makes use of genomics, bioinformatics, and cell biology of non-model eukaryotes to provide new avenues for understanding basic cellular processes. This approach has led to proposed mechanisms underpinning the evolution of eukaryotic cellular organization including endosymbiotic and autogenous processes and neutral and adaptive processes. Together these mechanisms have contributed to the genesis and complexity of organelles, molecular machines, and genome architecture. We review these mechanisms and suggest that a greater appreciation of the diversity in eukaryotic form has led to a more complete understanding of the evolutionary connections between organelles and the unexpected routes by which this diversity has been reached. PMID:24656655

  18. Developmental decisions

    PubMed Central

    Tobin, David V.; Saito, Richard Mako

    2012-01-01

    The small nematode C. elegans is characterized by developing through a highly coordinated, reproducible cell lineage that serves as the basis of many studies focusing on the development of multi-lineage organisms. Indeed, the reproducible cell lineage enables discovery of developmental defects that occur in even a single cell. Only recently has attention been focused on how these animals modify their genetically programmed cell lineages to adapt to altered environments. Here, we summarize the current understanding of how C. elegans responds to food deprivation by adapting their developmental program in order to conserve energy. In particular, we highlight the AMPK-mediated and insulin-like growth factor signaling pathways that are the principal regulators of induced cell cycle quiescence. PMID:22510569

  19. Computational Physics and Evolutionary Dynamics

    NASA Astrophysics Data System (ADS)

    Fontana, Walter

    2000-03-01

    One aspect of computational physics deals with the characterization of statistical regularities in materials. Computational physics meets biology when these materials can evolve. RNA molecules are a case in point. The folding of RNA sequences into secondary structures (shapes) inspires a simple biophysically grounded genotype-phenotype map that can be explored computationally and in the laboratory. We have identified some statistical regularities of this map and begin to understand their evolutionary consequences. (1) ``typical shapes'': Only a small subset of shapes realized by the RNA folding map is typical, in the sense of containing shapes that are realized significantly more often than others. Consequence: evolutionary histories mostly involve typical shapes, and thus exhibit generic properties. (2) ``neutral networks'': Sequences folding into the same shape are mutationally connected into a network that reaches across sequence space. Consequence: Evolutionary transitions between shapes reflect the fraction of boundary shared by the corresponding neutral networks in sequence space. The notion of a (dis)continuous transition can be made rigorous. (3) ``shape space covering'': Given a random sequence, a modest number of mutations suffices to reach a sequence realizing any typical shape. Consequence: The effective search space for evolutionary optimization is greatly reduced, and adaptive success is less dependent on initial conditions. (4) ``plasticity mirrors variability'': The repertoire of low energy shapes of a sequence is an indicator of how much and in which ways its energetically optimal shape can be altered by a single point mutation. Consequence: (i) Thermodynamic shape stability and mutational robustness are intimately linked. (ii) When natural selection favors the increase of stability, extreme mutational robustness -- to the point of an evolutionary dead-end -- is produced as a side effect. (iii) The hallmark of robust shapes is modularity.

  20. Developmental Design of Synthetic Bacterial Architectures by Morphogenetic Engineering.

    PubMed

    Pascalie, Jonathan; Potier, Martin; Kowaliw, Taras; Giavitto, Jean-Louis; Michel, Olivier; Spicher, Antoine; Doursat, René

    2016-08-19

    Synthetic biology is an emerging scientific field that promotes the standardized manufacturing of biological components without natural equivalents. Its goal is to create artificial living systems that can meet various needs in health care or energy domains. While most works are focused on the individual bacterium as a chemical reactor, our project, SynBioTIC, addresses a novel and more complex challenge: shape engineering; that is, the redesign of natural morphogenesis toward a new kind of developmental 3D printing. Potential applications include organ growth, natural computing in biocircuits, or future vegetal houses. To create in silico multicellular organisms that exhibit specific shapes, we construe their development as an iterative process combining fundamental collective phenomena such as homeostasis, patterning, segmentation, and limb growth. Our numerical experiments rely on the existing Escherichia coli simulator Gro, a physicochemical computation platform offering reaction-diffusion and collision dynamics solvers. The synthetic bioware of our model executes a set of rules, or genome, in each cell. Cells can differentiate into several predefined types associated with specific actions (divide, emit signal, detect signal, die). Transitions between types are triggered by conditions involving internal and external sensors that detect various protein levels inside and around the cell. Indirect communication between bacteria is relayed by morphogen diffusion and the mechanical constraints of 2D packing. Starting from a single bacterium, the overall architecture emerges in a purely endogenous fashion through a series of developmental stages, inlcuding proliferation, differentiation, morphogen diffusion, and synchronization. The genome can be parametrized to control the growth and features of appendages individually. As exemplified by the L and T shapes that we obtain, certain precursor cells can be inhibited while others can create limbs of varying size

  1. Historical change and evolutionary theory.

    PubMed

    Masters, Roger D

    2007-09-01

    Despite advances in fields like genetics, evolutionary psychology, and human behavior and evolution--which generally focus on individual or small group behavior from a biological perspective--evolutionary biology has made little impact on studies of political change and social history. Theories of natural selection often seem inapplicable to human history because our social behavior is embedded in language (which makes possible the concepts of time and social identity on which what we call "history" depends). Peter Corning's Holistic Darwinism reconceptualizes evolutionary biology, making it possible to go beyond the barriers separating the social and natural sciences. Corning focuses on two primary processes: "synergy" (complex multivariate interactions at multiple levels between a species and its environment) and "cybernetics" (the information systems permitting communication between individuals and groups over time). Combining this frame of reference with inclusive fitness theory, it is possible to answer the most important (and puzzling) question in human history: How did a species that lived for millennia in hunter-gatherer bands form centralized states governing large populations of non-kin (including multi-ethnic empires as well as modern nation-states)? The fragility and contemporary ethnic violence in Kenya and the Congo should suffice as evidence that these issues need to be taken seriously. To explain the rise and fall of states as well as changes in human laws and customs--the core of historical research--it is essential to show how the provision of collective goods can overcome the challenge of self-interest and free-riding in some instances, yet fail to do so in others. To this end, it is now possible to consider how a state providing public goods can--under circumstances that often include effective leadership--contribute to enhanced inclusive fitness of virtually all its members. Because social behavior needs to adapt to ecology, but ecological

  2. Erasmus Darwin, Herbert Spencer, and the origins of the evolutionary worldview in British provincial scientific culture, 1770-1850.

    PubMed

    Elliott, Paul

    2003-03-01

    The significance of Herbert Spencer's evolutionary philosophy has been generally recognized for over a century, as the familiarity of his phrase "survival of the fittest" indicates, yet accounts of the origins of his system still tend to follow too closely his own description, written many decades later. This essay argues that Spencer's own interpretation of his intellectual development gives an inadequate impression of the debt he owed to provincial scientific culture and its institutions. Most important, it shows that his evolutionism was originally stimulated by his association with the Derby philosophical community, for it was through this group--of which his father, who also appears to have espoused a deistic evolutionary theory, was a member--that he was first exposed to progressive Englightenment social and educational philosophies and to the evolutionary worldview of Erasmus Darwin, the first president of the Derby Philosophical Society. Darwin's scheme was the first to incorporate biological evolution, associationist psychology, evolutionary geology, and cosmological developmentalism. Spencer's own implicit denials of the link with Darwin are shown to be implausible in the face of Darwin's continuing influence on the Derby savants, the product of insecurity in his later years when he feared for his reputation as Lamarckism became increasingly untenable. PMID:12725102

  3. Evolution of a novel developmental trajectory: fission is distinct from regeneration in the annelid Pristina leidyi.

    PubMed

    Zattara, Eduardo E; Bely, Alexandra E

    2011-01-01

    Understanding how novelty arises has been a major focus of evolutionary developmental biology. While the origin of new genes, gene functions, and morphological features has been studied intensely, the origin of entire developmental trajectories, such as regeneration or agametic reproduction, remains poorly understood. Agametic reproduction by fission is a novel trajectory evolved numerous times among animal phyla, including Annelida, in which it is thought to arise by co-option of regeneration. To gain insight into how a novel trajectory may evolve, we investigated a relatively recent origin of fission. We performed a detailed comparison of morphogenesis during regeneration and fission in the annelid Pristina leidyi (Clitellata, Naididae), from the onset of these trajectories to the achievement of the final morphology. We find extensive similarities between fission and regeneration morphogenesis, and, of particular note, find evidence for a synapomorphy of fission and regeneration (apparently not shared with embryogenesis) in peripheral nervous system development, providing strong support for the hypothesis that fission is derived from regeneration. We also find important differences between fission and regeneration, during development of multiple organ systems. These are manifested by temporal shifts in developmental events and by the presence of elements unique to only one process. Differences are not obviously temporally clustered at the beginning, middle, or end of development but rather occur throughout, indicating that divergence has occurred along the entire developmental course of these trajectories. PMID:21210945

  4. Developmental palaeontology in synapsids: the fossil record of ontogeny in mammals and their closest relatives

    PubMed Central

    Sánchez-Villagra, Marcelo R.

    2010-01-01

    The study of fossilized ontogenies in mammals is mostly restricted to postnatal and late stages of growth, but nevertheless can deliver great insights into life history and evolutionary mechanisms affecting all aspects of development. Fossils provide evidence of developmental plasticity determined by ecological factors, as when allometric relations are modified in species which invaded a new space with a very different selection regime. This is the case of dwarfing and gigantism evolution in islands. Skeletochronological studies are restricted to the examination of growth marks mostly in the cement and dentine of teeth and can provide absolute age estimates. These, together with dental replacement data considered in a phylogenetic context, provide life-history information such as maturation time and longevity. Palaeohistology and dental replacement data document the more or less gradual but also convergent evolution of mammalian growth features during early synapsid evolution. Adult phenotypes of extinct mammals can inform developmental processes by showing a combination of features or levels of integration unrecorded in living species. Some adult features such as vertebral number, easily recorded in fossils, provide indirect information about somitogenesis and hox-gene expression boundaries. Developmental palaeontology is relevant for the discourse of ecological developmental biology, an area of research where features of growth and variation are fundamental and accessible among fossil mammals. PMID:20071389

  5. Developmental palaeontology in synapsids: the fossil record of ontogeny in mammals and their closest relatives.

    PubMed

    Sánchez-Villagra, Marcelo R

    2010-04-22

    The study of fossilized ontogenies in mammals is mostly restricted to postnatal and late stages of growth, but nevertheless can deliver great insights into life history and evolutionary mechanisms affecting all aspects of development. Fossils provide evidence of developmental plasticity determined by ecological factors, as when allometric relations are modified in species which invaded a new space with a very different selection regime. This is the case of dwarfing and gigantism evolution in islands. Skeletochronological studies are restricted to the examination of growth marks mostly in the cement and dentine of teeth and can provide absolute age estimates. These, together with dental replacement data considered in a phylogenetic context, provide life-history information such as maturation time and longevity. Palaeohistology and dental replacement data document the more or less gradual but also convergent evolution of mammalian growth features during early synapsid evolution. Adult phenotypes of extinct mammals can inform developmental processes by showing a combination of features or levels of integration unrecorded in living species. Some adult features such as vertebral number, easily recorded in fossils, provide indirect information about somitogenesis and hox-gene expression boundaries. Developmental palaeontology is relevant for the discourse of ecological developmental biology, an area of research where features of growth and variation are fundamental and accessible among fossil mammals. PMID:20071389

  6. Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology?

    PubMed Central

    Hanson, M. A.; Gluckman, P. D.

    2014-01-01

    Extensive experimental animal studies and epidemiological observations have shown that environmental influences during early development affect the risk of later pathophysiological processes associated with chronic, especially noncommunicable, disease (NCD). This field is recognized as the developmental origins of health and disease (DOHaD). We discuss the extent to which DOHaD represents the result of the physiological processes of developmental plasticity, which may have potential adverse consequences in terms of NCD risk later, or whether it is the manifestation of pathophysiological processes acting in early life but only becoming apparent as disease later. We argue that the evidence suggests the former, through the operation of conditioning processes induced across the normal range of developmental environments, and we summarize current knowledge of the physiological processes involved. The adaptive pathway to later risk accords with current concepts in evolutionary developmental biology, especially those concerning parental effects. Outside the normal range, effects on development can result in nonadaptive processes, and we review their underlying mechanisms and consequences. New concepts concerning the underlying epigenetic and other mechanisms involved in both disruptive and nondisruptive pathways to disease are reviewed, including the evidence for transgenerational passage of risk from both maternal and paternal lines. These concepts have wider implications for understanding the causes and possible prevention of NCDs such as type 2 diabetes and cardiovascular disease, for broader social policy and for the increasing attention paid in public health to the lifecourse approach to NCD prevention. PMID:25287859

  7. Incorporating evolutionary principles into environmental management and policy

    PubMed Central

    Lankau, Richard; Jørgensen, Peter Søgaard; Harris, David J; Sih, Andrew

    2011-01-01

    As policymakers and managers work to mitigate the effects of rapid anthropogenic environmental changes, they need to consider organisms’ responses. In light of recent evidence that evolution can be quite rapid, this now includes evolutionary responses. Evolutionary principles have a long history in conservation biology, and the necessary next step for the field is to consider ways in which conservation policy makers and managers can proactively manipulate evolutionary processes to achieve their goals. In this review, we aim to illustrate the potential conservation benefits of an increased understanding of evolutionary history and prescriptive manipulation of three basic evolutionary factors: selection, variation, and gene flow. For each, we review and propose ways that policy makers and managers can use evolutionary thinking to preserve threatened species, combat pest species, or reduce undesirable evolutionary changes. Such evolution-based management has potential to be a highly efficient and consistent way to create greater ecological resilience to widespread, rapid, and multifaceted environmental change. PMID:25567975

  8. Evolutionary stability on graphs

    PubMed Central

    Ohtsuki, Hisashi; Nowak, Martin A.

    2008-01-01

    Evolutionary stability is a fundamental concept in evolutionary game theory. A strategy is called an evolutionarily stable strategy (ESS), if its monomorphic population rejects the invasion of any other mutant strategy. Recent studies have revealed that population structure can considerably affect evolutionary dynamics. Here we derive the conditions of evolutionary stability for games on graphs. We obtain analytical conditions for regular graphs of degree k > 2. Those theoretical predictions are compared with computer simulations for random regular graphs and for lattices. We study three different update rules: birth-death (BD), death-birth (DB), and imitation (IM) updating. Evolutionary stability on sparse graphs does not imply evolutionary stability in a well-mixed population, nor vice versa. We provide a geometrical interpretation of the ESS condition on graphs. PMID:18295801

  9. Modeling tumor evolutionary dynamics

    PubMed Central

    Stransky, Beatriz; de Souza, Sandro J.

    2013-01-01

    Tumorigenesis can be seen as an evolutionary process, in which the transformation of a normal cell into a tumor cell involves a number of limiting genetic and epigenetic events, occurring in a series of discrete stages. However, not all mutations in a cell are directly involved in cancer development and it is likely that most of them (passenger mutations) do not contribute in any way to tumorigenesis. Moreover, the process of tumor evolution is punctuated by selection of advantageous (driver) mutations and clonal expansions. Regarding these driver mutations, it is uncertain how many limiting events are required and/or sufficient to promote a tumorigenic process or what are the values associated with the adaptive advantage of different driver mutations. In spite of the availability of high-quality cancer data, several assumptions about the mechanistic process of cancer initiation and development remain largely untested, both mathematically and statistically. Here we review the development of recent mathematical/computational models and discuss their impact in the field of tumor biology. PMID:23420281

  10. Darwin's Galapagos finches in modern biology.

    PubMed

    Abzhanov, Arhat

    2010-04-12

    One of the classic examples of adaptive radiation under natural selection is the evolution of 15 closely related species of Darwin's finches (Passeriformes), whose primary diversity lies in the size and shape of their beaks. Since Charles Darwin and other members of the Beagle expedition collected these birds on the Galápagos Islands in 1835 and introduced them to science, they have been the subjects of intense research. Many biology textbooks use Darwin's finches to illustrate a variety of topics of evolutionary theory, such as speciation, natural selection and niche partitioning. Today, as this Theme Issue illustrates, Darwin's finches continue to be a very valuable source of biological discovery. Certain advantages of studying this group allow further breakthroughs in our understanding of changes in recent island biodiversity, mechanisms of speciation and hybridization, evolution of cognitive behaviours, principles of beak/jaw biomechanics as well as the underlying developmental genetic mechanisms in generating morphological diversity. Our objective was to bring together some of the key workers in the field of ecology and evolutionary biology who study Darwin's finches or whose studies were inspired by research on Darwin's finches. Insights provided by papers collected in this Theme Issue will be of interest to a wide audience. PMID:20194163

  11. Computer Simulation of Embryonic Systems: What can a virtual embryo teach us about developmental toxicity? (LA Conference on Computational Biology & Bioinformatics)

    EPA Science Inventory

    This presentation will cover work at EPA under the CSS program for: (1) Virtual Tissue Models built from the known biology of an embryological system and structured to recapitulate key cell signals and responses; (2) running the models with real (in vitro) or synthetic (in silico...

  12. Developmental trends in adaptive memory.

    PubMed

    Otgaar, Henry; Howe, Mark L; Smeets, Tom; Garner, Sarah R

    2014-01-01

    Recent studies have revealed that memory is enhanced when information is processed for fitness-related purposes. The main objective of the current experiments was to test developmental trends in the evolutionary foundation of memory using different types of stimuli and paradigms. In Experiment 1, 11-year-olds and adults were presented with neutral, negative, and survival-related DRM word lists. We found a memory benefit for the survival-related words and showed that false memories were more likely to be elicited for the survival-related word lists than for the other lists. Experiment 2 examined developmental trends in the survival processing paradigm using neutral, negative, and survival-related pictures. A survival processing advantage was found for survival-related pictures in adults, for negative pictures in 11/12-year-olds, and for neutral pictures in 7/8-year-olds. In Experiment 3, 11/12-year-olds and adults had to imagine the standard survival scenario or an adapted survival condition (or pleasantness condition) that was designed to reduce the possibilities for elaborative processing. We found superior memory retention for both survival scenarios in children and adults. Collectively, our results evidently show that the survival processing advantage is developmentally invariant and that certain proximate mechanisms (elaboration and distinctiveness) underlie these developmental trends. PMID:23521432

  13. An evolutionary approach to Function

    PubMed Central

    2010-01-01

    Background Understanding the distinction between function and role is vexing and difficult. While it appears to be useful, in practice this distinction is hard to apply, particularly within biology. Results I take an evolutionary approach, considering a series of examples, to develop and generate definitions for these concepts. I test them in practice against the Ontology for Biomedical Investigations (OBI). Finally, I give an axiomatisation and discuss methods for applying these definitions in practice. Conclusions The definitions in this paper are applicable, formalizing current practice. As such, they make a significant contribution to the use of these concepts within biomedical ontologies. PMID:20626924

  14. Introduced species as evolutionary traps

    USGS Publications Warehouse

    Schlaepfer, Martin A.; Sherman, P.W.; Blossey, B.; Runge, M.C.

    2005-01-01

    Invasive species can alter environments in such a way that normal behavioural decision-making rules of native species are no longer adaptive. The evolutionary trap concept provides a useful framework for predicting and managing the impact of harmful invasive species. We discuss how native species can respond to changes in their selective regime via evolution or learning. We also propose novel management strategies to promote the long-term co-existence of native and introduced species in cases where the eradication of the latter is either economically or biologically unrealistic.

  15. Evolutionary dynamics on interdependent populations

    NASA Astrophysics Data System (ADS)

    Gómez-Gardeñes, Jesús; Gracia-Lázaro, Carlos; Floría, Luis Mario; Moreno, Yamir

    2012-11-01

    Although several mechanisms can promote cooperative behavior, there is no general consensus about why cooperation survives when the most profitable action for an individual is to defect, especially when the population is well mixed. Here we show that when a replicator such as evolutionary game dynamics takes place on interdependent networks, cooperative behavior is fixed on the system. Remarkably, we analytically and numerically show that this is even the case for well-mixed populations. Our results open the path to mechanisms able to sustain cooperation and can provide hints for controlling its rise and fall in a variety of biological and social systems.

  16. Policy folklists and evolutionary theory

    PubMed Central

    O’Neill, Barry

    2014-01-01

    Policy folklists present a set of alleged historical facts seen as relevant to some social issue. Although the validity of these folklists is dubious, leaders and writers circulate them in the media, variants arise, and the lists continue on, sometimes for decades. Folklists are repeated because their messages are appealing and their users are credible. Because folklists are on the record, we can examine their origins and changes. This report draws an analogy with evolutionary theory and suggests that biological mechanisms of self-repair, boundary maintenance, plasticity, speciation, and predation have significant interpretations for folklists, and clarify how the lists win the credence of otherwise skeptical people. PMID:25024210

  17. Policy folklists and evolutionary theory.

    PubMed

    O'Neill, Barry

    2014-07-22

    Policy folklists present a set of alleged historical facts seen as relevant to some social issue. Although the validity of these folklists is dubious, leaders and writers circulate them in the media, variants arise, and the lists continue on, sometimes for decades. Folklists are repeated because their messages are appealing and their users are credible. Because folklists are on the record, we can examine their origins and changes. This report draws an analogy with evolutionary theory and suggests that biological mechanisms of self-repair, boundary maintenance, plasticity, speciation, and predation have significant interpretations for folklists, and clarify how the lists win the credence of otherwise skeptical people. PMID:25024210

  18. Analysis of the contribution of experimental bias, experimental noise, and inter-subject biological variability on the assessment of developmental trajectories in diffusion MRI studies of the brain

    PubMed Central

    Sadeghi, Neda; Nayak, Amritha; Walker, Lindsay; Irfanoglu, M. Okan; Albert, Paul S.; Pierpaoli, Carlo

    2015-01-01

    Metrics derived from the diffusion tensor, such as fractional anisotropy (FA) and mean diffusivity (MD) have been used in many studies of postnatal brain development. A common finding of previous studies is that these tensor-derived measures vary widely even in healthy populations. This variability can be due to inherent inter-individual biological differences as well as experimental noise. Moreover, when comparing different studies, additional variability can be introduced by different acquisition protocols. In this study we examined scans of 61 individuals (aged 4–22 years) from the NIH MRI study of normal brain development. Two scans were collected with different protocols (low and high resolution). Our goal was to separate the contributions of biological variability and experimental noise to the overall measured variance, as well as to assess potential systematic effects related to the use of different protocols. We analyzed FA and MD in seventeen regions of interest. We found that biological variability for both FA and MD varies widely across brain regions; biological variability is highest for FA in the lateral part of the splenium and body of the corpus callosum along with the cingulum and the superior longitudinal fasciculus, and for MD in the optic radiations and the lateral part of the splenium. These regions with high inter-individual biological variability are the most likely candidates for assessing genetic and environmental effects in the developing brain. With respect to protocol-related effects, the lower resolution acquisition resulted in higher MD and lower FA values for the majority of regions compared with the higher resolution protocol. However, the majority of the regions did not show any age–protocol interaction, indicating similar trajectories were obtained irrespective of the protocol used. PMID:25583609

  19. Ecological and Evolutionary Effects of Dispersal on Freshwater Zooplankton

    ERIC Educational Resources Information Center

    Allen, Michael R.

    2009-01-01

    A recent focus on contemporary evolution and the connections between communities has sought to more closely integrate ecology with evolutionary biology. Studies of coevolutionary dynamics, life history evolution, and rapid local adaptation demonstrate that ecological circumstances can dictate evolutionary trajectories. Thus, variation in species…

  20. Investigating Evolutionary Biology in the Laboratory.

    ERIC Educational Resources Information Center

    McComas, William F., Ed.

    This document presents a collection of useful laboratory-based activities for teaching about evolution. Some of the activities in this monograph are previously unpublished exercises, some are new versions of well-known labs, a few make useful classroom demonstrations, and several require somewhat sophisticated equipment. As a group, the activities…

  1. Evolutionary biology. Chewed leaves reveal ancient relationship.

    PubMed

    Pennisi, E

    2000-07-14

    On page 291, researchers describe a new beetle fossil based not on traces of the insect skeleton but on the distinctive gouges the beetles left when they munched on 11 ginger leaves many millions of years ago. The chew marks of the newly described Cephaloleichnites strongi prove that leaf beetles underwent rapid evolution and diversification more than 65 million years ago, possibly taking advantage of (and perhaps influencing) the rapid diversification among flowering plants occurring at the same time. What's more, C. strongi represents the earliest known rolled-leaf beetle species, hundreds of which today still prefer just one of the ginger- and heliconia-like plants in the Zingiberales order. PMID:10917840

  2. Evolutionary biology and the question of teleology.

    PubMed

    Ruse, Michael

    2016-08-01

    Teleology-what Aristotle called "final cause"-is trying to understand things in terms of the future, as when we ask about the plates on the back of the dinosaur, stegosaurus, and suggest that they might sometime be used to control the internal temperature of the brute. Recently the philosopher Thomas Nagel has argued for a wholesale embrace of teleological thinking in the sciences, particularly the life sciences. I argue that Nagel's thinking is shoddy and ill-informed, but that in some sense biologists do (with reason) seem drawn to teleological understanding, and so the correct response is not outright rejection of the very idea but a more informed and sympathetic approach to those aspects of nature that seem to call for final cause thinking. PMID:26739773

  3. RNA based evolutionary optimization

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    1993-12-01

    The notion of an RNA world has been introduced for a prebiotic scenario that is dominated by RNA molecules and their properties, in particular their capabilities to act as templates for reproduction and as catalysts for several cleavage and ligation reactions of polynucleotides and polypeptides. This notion is used here also for simple experimental assays which are well suited to study evolution in the test tube. In molecular evolution experiments fitness is determined in essence by the molecular structures of RNA molecules. Evidence is presented for adaptation to environment in cell-free media. RNA based molecular evolution experiments have led to interesting spin-offs in biotechnology, commonly called ‘applied molecular evolution’, which make use of Darwinian trial-and-error strategies in order to synthesize new pharmacological compounds and other advanced materials on a biological basis. Error-propagation in RNA replication leads to formation of mutant spectra called ‘quasispecies’. An increase in the error rate broadens the mutant spectrum. There exists a sharply defined threshold beyond which heredity breaks down and evolutionary adaptation becomes impossible. Almost all RNA viruses studied so far operate at conditions close to this error threshold. Quasispecies and error thresholds are important for an understanding of RNA virus evolution, and they may help to develop novel antiviral strategies. Evolution of RNA molecules can be studied and interpreted by considering secondary structures. The notion of sequence space introduces a distance between pairs of RNA sequences which is tantamount to counting the minimal number of point mutations required to convert the sequences into each other. The mean sensitivity of RNA secondary structures to mutation depends strongly on the base pairing alphabet: structures from sequences which contain only one base pair (GC or AU are much less stable against mutation than those derived from the natural (AUGC) sequences

  4. On evolutionary spatial heterogeneous games

    NASA Astrophysics Data System (ADS)

    Fort, H.

    2008-03-01

    How cooperation between self-interested individuals evolve is a crucial problem, both in biology and in social sciences, that is far from being well understood. Evolutionary game theory is a useful approach to this issue. The simplest model to take into account the spatial dimension in evolutionary games is in terms of cellular automata with just a one-parameter payoff matrix. Here, the effects of spatial heterogeneities of the environment and/or asymmetries in the interactions among the individuals are analysed through different extensions of this model. Instead of using the same universal payoff matrix, bimatrix games in which each cell at site ( i, j) has its own different ‘temptation to defect’ parameter T(i,j) are considered. First, the case in which these individual payoffs are constant in time is studied. Second, an evolving evolutionary spatial game such that T=T(i,j;t), i.e. besides depending on the position evolves (by natural selection), is used to explore the combination of spatial heterogeneity and natural selection of payoff matrices.

  5. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course.

    PubMed

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-yr research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent to which students' data interpretations were valid and/or generative. By analyzing small-group audio recordings during in-class activities, we demonstrated how students used instructor-provided models to build and refine data interpretations. Often, students used models to broaden the scope of data interpretations, tying conclusions to a biological significance. Coding analysis revealed several strategies and challenges that were common among students in this collaborative setting. Spontaneous argumentation was present in 82% of transcripts, suggesting that data interpretation using models may be a way to elicit this important disciplinary practice. Argumentation dialogue included frequent co-construction of claims backed by evidence from data. Other common strategies included collaborative decoding of data representations and noticing data patterns before making interpretive claims. Focusing on irrelevant data patterns was the most common challenge. Our findings provide evidence to support the feasibility of supporting students' data-interpretation skills within a large lecture course. PMID:27193288

  6. Teaching Real Data Interpretation with Models (TRIM): Analysis of Student Dialogue in a Large-Enrollment Cell and Developmental Biology Course

    PubMed Central

    Zagallo, Patricia; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    We present our design for a cell biology course to integrate content with scientific practices, specifically data interpretation and model-based reasoning. A 2-yr research project within this course allowed us to understand how students interpret authentic biological data in this setting. Through analysis of written work, we measured the extent to which students’ data interpretations were valid and/or generative. By analyzing small-group audio recordings during in-class activities, we demonstrated how students used instructor-provided models to build and refine data interpretations. Often, students used models to broaden the scope of data interpretations, tying conclusions to a biological significance. Coding analysis revealed several strategies and challenges that were common among students in this collaborative setting. Spontaneous argumentation was present in 82% of transcripts, suggesting that data interpretation using models may be a way to elicit this important disciplinary practice. Argumentation dialogue included frequent co-construction of claims backed by evidence from data. Other common strategies included collaborative decoding of data representations and noticing data patterns before making interpretive claims. Focusing on irrelevant data patterns was the most common challenge. Our findings provide evidence to support the feasibility of supporting students’ data-interpretation skills within a large lecture course. PMID:27193288

  7. Grand challenges in migration biology.

    PubMed

    Bowlin, Melissa S; Bisson, Isabelle-Anne; Shamoun-Baranes, Judy; Reichard, Jonathan D; Sapir, Nir; Marra, Peter P; Kunz, Thomas H; Wilcove, David S; Hedenström, Anders; Guglielmo, Christopher G; Åkesson, Susanne; Ramenofsky, Marilyn; Wikelski, Martin

    2010-09-01

    Billions of animals migrate each year. To successfully reach their destination, migrants must have evolved an appropriate genetic program and suitable developmental, morphological, physiological, biomechanical, behavioral, and life-history traits. Moreover, they must interact successfully with biotic and abiotic factors in their environment. Migration therefore provides an excellent model system in which to address several of the "grand challenges" in organismal biology. Previous research on migration, however, has often focused on a single aspect of the phenomenon, largely due to methodological, geographical, or financial constraints. Integrative migration biology asks 'big questions' such as how, when, where, and why animals migrate, which can be answered by examining the process from multiple ecological and evolutionary perspectives, incorporating multifaceted knowledge from various other scientific disciplines, and using new technologies and modeling approaches, all within the context of an annual cycle. Adopting an integrative research strategy will provide a better understanding of the interactions between biological levels of organization, of what role migrants play in disease transmission, and of how to conserve migrants and the habitats upon which they depend. PMID:21558203

  8. Evolutionary Existentialism, Sociobiology, and the Meaning of Life.

    ERIC Educational Resources Information Center

    Barash, David P.

    2000-01-01

    Discusses how existential philosophy and evolutionary biology enjoy substantial and hitherto unappreciated similarities, in particular in understanding life's fundamental absurdity, a relentless and productive focus on the individual, and an optimistic presumption of freedom. (SAH)

  9. Eco-evolutionary dynamics

    PubMed Central

    Pelletier, F.; Garant, D.; Hendry, A.P.

    2009-01-01

    Evolutionary ecologists and population biologists have recently considered that ecological and evolutionary changes are intimately linked and can occur on the same time-scale. Recent theoretical developments have shown how the feedback between ecological and evolutionary dynamics can be linked, and there are now empirical demonstrations showing that ecological change can lead to rapid evolutionary change. We also have evidence that microevolutionary change can leave an ecological signature. We are at a stage where the integration of ecology and evolution is a necessary step towards major advances in our understanding of the processes that shape and maintain biodiversity. This special feature about ‘eco-evolutionary dynamics’ brings together biologists from empirical and theoretical backgrounds to bridge the gap between ecology and evolution and provide a series of contributions aimed at quantifying the interactions between these fundamental processes. PMID:19414463

  10. Polymorphic Evolutionary Games.

    PubMed

    Fishman, Michael A

    2016-06-01

    In this paper, I present an analytical framework for polymorphic evolutionary games suitable for explicitly modeling evolutionary processes in diploid populations with sexual reproduction. The principal aspect of the proposed approach is adding diploid genetics cum sexual recombination to a traditional evolutionary game, and switching from phenotypes to haplotypes as the new game׳s pure strategies. Here, the relevant pure strategy׳s payoffs derived by summing the payoffs of all the phenotypes capable of producing gametes containing that particular haplotype weighted by the pertinent probabilities. The resulting game is structurally identical to the familiar Evolutionary Games with non-linear pure strategy payoffs (Hofbauer and Sigmund, 1998. Cambridge University Press), and can be analyzed in terms of an established analytical framework for such games. And these results can be translated into the terms of genotypic, and whence, phenotypic evolutionary stability pertinent to the original game. PMID:27016340

  11. The female gametophyte: an emerging model for cell type-specific systems biology in plant development.

    PubMed

    Schmid, Marc W; Schmidt, Anja; Grossniklaus, Ueli

    2015-01-01

    Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods ("omics") now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis). Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes. PMID:26579157

  12. The female gametophyte: an emerging model for cell type-specific systems biology in plant development

    PubMed Central

    Schmid, Marc W.; Schmidt, Anja; Grossniklaus, Ueli

    2015-01-01

    Systems biology, a holistic approach describing a system emerging from the interactions of its molecular components, critically depends on accurate qualitative determination and quantitative measurements of these components. Development and improvement of large-scale profiling methods (“omics”) now facilitates comprehensive measurements of many relevant molecules. For multicellular organisms, such as animals, fungi, algae, and plants, the complexity of the system is augmented by the presence of specialized cell types and organs, and a complex interplay within and between them. Cell type-specific analyses are therefore crucial for the understanding of developmental processes and environmental responses. This review first gives an overview of current methods used for large-scale profiling of specific cell types exemplified by recent advances in plant biology. The focus then lies on suitable model systems to study plant development and cell type specification. We introduce the female gametophyte of flowering plants as an ideal model to study fundamental developmental processes. Moreover, the female reproductive lineage is of importance for the emergence of evolutionary novelties such as an unequal parental contribution to the tissue nurturing the embryo or the clonal production of seeds by asexual reproduction (apomixis). Understanding these processes is not only interesting from a developmental or evolutionary perspective, but bears great potential for further crop improvement and the simplification of breeding efforts. We finally highlight novel methods, which are already available or which will likely soon facilitate large-scale profiling of the specific cell types of the female gametophyte in both model and non-model species. We conclude that it may take only few years until an evolutionary systems biology approach toward female gametogenesis may decipher some of its biologically most interesting and economically most valuable processes. PMID:26579157

  13. Developmental dyslexia.

    PubMed

    Peterson, Robin L; Pennington, Bruce F

    2015-01-01

    This review uses a levels-of-analysis framework to summarize the current understanding of developmental dyslexia's etiology, brain bases, neuropsychology, and social context. Dyslexia is caused by multiple genetic and environmental risk factors as well as their interplay. Several candidate genes have been identified in the past decade. At the brain level, dyslexia is associated with aberrant structure and function, particularly in left hemisphere reading/language networks. The neurocognitive influences on dyslexia are also multifactorial and involve phonological processing deficits as well as weaknesses in other oral language skills and processing speed. We address contextual issues such as how dyslexia manifests across languages and social classes as well as what treatments are best supported. Throughout the review, we highlight exciting new research that cuts across levels of analysis. Such work promises eventually to provide a comprehensive explanation of the disorder as well as its prevention and remediation. PMID:25594880

  14. Plant biology in the future.

    PubMed

    Bazzaz, F A

    2001-05-01

    In the beginning of modern plant biology, plant biologists followed a simple model for their science. This model included important branches of plant biology known then. Of course, plants had to be identified and classified first. Thus, there was much work on taxonomy, genetics, and physiology. Ecology and evolution were approached implicitly, rather than explicitly, through paleobotany, taxonomy, morphology, and historical geography. However, the burgeoning explosion of knowledge and great advances in molecular biology, e.g., to the extent that genes for specific traits can be added (or deleted) at will, have created a revolution in the study of plants. Genomics in agriculture has made it possible to address many important issues in crop production by the identification and manipulation of genes in crop plants. The current model of plant study differs from the previous one in that it places greater emphasis on developmental controls and on evolution by differential fitness. In a rapidly changing environment, the current model also explicitly considers the phenotypic variation among individuals on which selection operates. These are calls for the unity of science. In fact, the proponents of "Complexity Theory" think there are common algorithms describing all levels of organization, from atoms all the way to the structure of the universe, and that when these are discovered, the issue of scaling will be greatly simplified! Plant biology must seriously contribute to, among other things, meeting the nutritional needs of the human population. This challenge constitutes a key part of the backdrop against which future evolution will occur. Genetic engineering technologies are and will continue to be an important component of agriculture; however, we must consider the evolutionary implications of these new technologies. Meeting these demands requires drastic changes in the undergraduate curriculum. Students of biology should be trained in molecular, cellular, organismal

  15. Three Laws in Darwinian Evolutionary Theory

    NASA Astrophysics Data System (ADS)

    Ao, Ping

    2006-03-01

    Recent works to formulate laws in Darwinian evolutionary dynamics will be discussed. Specifically, three laws which form a consistent mathematical framework for the evolutionary dynamics in biology will be spelt out. The second law is most quantitative and is explicitly expressed in the unique form of a stochastic differential equation. Salient features of Darwinian evolutionary dynamics are captured by this law: the probabilistic nature of evolution, ascendancy, and the adaptive landscape. Four dynamical elements are introduced in this formulation: the ascendant matrix, the transverse matrix, the Wright evolutionary potential, and the stochastic drive. The first law may be regarded as a special case of the second law. It gives the reference point to discuss the evolutionary dynamics. The third law describes the relationship between the focused level of description to its lower and higher ones, and defines the dichotomy of deterministic and stochastic drives. It is an acknowledgement of the hierarchical structure in biology. A new interpretation of Fisher's fundamental theorem of natural selection is provided in terms of the F-Theorem. Ref. P. Ao, Physics of Life Reviews 2 (2005) 117-156.

  16. The conceptual framework of evolutionary morphology in the studies of Ernst Haeckel and Fritz Müller.

    PubMed

    Breidbach, Olaf

    2006-03-01

    In his Gastraea studies Ernst Haeckel characterized the initial stages of the animal embryo, describing complete and incomplete cleavages in various groups, until the gastrula stage. Thereby, he was able to point out various degrees of developmental diversification in these initial stages of development. As the functional meaning of such cleavages was not clear however, it was difficult to argue about putative functional adaptations. Information about the consequences for tissue formation initiated in this primary phase of development was simply lacking. Haeckel could only provide a vague picture of a highly diversified but systematically inconsistent distribution of various types of early embryogenesis. Thereby he discusses phylogenetically preserved (palingenetic) stages of development and adaptations to certain specific situations of the embryo (cenogenesis). To decide whether such types, in the initial stages of embryogenesis, are ceno- or phaenogenetic is quite difficult. Reference to the highly diversified distribution of certain types within specific groups is an indication that there is no strict adaptive pressure on these early parts of embryonic development. This makes it possible to formulate - as Haeckel did it - the idea, that in these initial phases palingenetic attributes are dominant. Thus, he tried to use these early phases of development for the classification of larger systematic units. The result is a concept of an evolutionary morphology, that was, however, never elaborated in detail by Haeckel. Therefore, it remained without effect for evolutionary biology. On the contrary, following the Darwinian approach towards a comparative analysis of embryogenesis, Fritz Müller presented a series of examples for a comparative developmental biology that allowed one to interpret certain morphological characteristics as the outcome of common evolutionary histories within different species. For various crustacean species, he was able to demonstrate that

  17. Challenges and opportunities in developmental integrative physiology☆

    PubMed Central

    Mueller, C.A.; Eme, J.; Burggren, W.W.; Roghair, R.D.; Rundle, S.D.

    2015-01-01

    This review explores challenges and opportunities in developmental physiology outlined by a symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal environmental conditions can alter morphological and physiological phenotypes in juveniles or adults, and capacities for developmental plasticity are common phenomena. Human neonates with body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly hypertension and cardiovascular disease. There are many rewarding areas of current and future research in comparative developmental physiology. We present key mechanisms, models, and experimental designs that can be used across taxa to investigate patterns in, and implications of, the development of animal phenotypes. Intraspecific variation in the timing of developmental events can be increased through developmental plasticity (heterokairy), and could provide the raw material for selection to produce heterochrony — an evolutionary change in the timing of developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal development represent a vulnerable period in the life history of an animal, when the developing organism may be unable to actively mitigate environmental perturbations. ‘Critical windows’ are periods of susceptibility or vulnerability to environmental or maternal challenges, periods when recovery from challenge is possible, and periods when the phenotype or epigenome has been altered. Developmental plasticity may allow survival in an altered environment, but it also has possible long-term consequences for the animal. “Catch-up growth” in humans after the critical perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive phenotype (one of many examples of “fetal programing”). Grand challenges for developmental physiology

  18. Challenges and opportunities in developmental integrative physiology.

    PubMed

    Mueller, C A; Eme, J; Burggren, W W; Roghair, R D; Rundle, S D

    2015-06-01

    This review explores challenges and opportunities in developmental physiology outlined by a symposium at the 2014 American Physiological Society Intersociety Meeting: Comparative Approaches to Grand Challenges in Physiology. Across animal taxa, adverse embryonic/fetal environmental conditions can alter morphological and physiological phenotypes in juveniles or adults, and capacities for developmental plasticity are common phenomena. Human neonates with body sizes at the extremes of perinatal growth are at an increased risk of adult disease, particularly hypertension and cardiovascular disease. There are many rewarding areas of current and future research in comparative developmental physiology. We present key mechanisms, models, and experimental designs that can be used across taxa to investigate patterns in, and implications of, the development of animal phenotypes. Intraspecific variation in the timing of developmental events can be increased through developmental plasticity (heterokairy), and could provide the raw material for selection to produce heterochrony--an evolutionary change in the timing of developmental events. Epigenetics and critical windows research recognizes that in ovo or fetal development represent a vulnerable period in the life history of an animal, when the developing organism may be unable to actively mitigate environmental perturbations. 'Critical windows' are periods of susceptibility or vulnerability to environmental or maternal challenges, periods when recovery from challenge is possible, and periods when the phenotype or epigenome has been altered. Developmental plasticity may allow survival in an altered environment, but it also has possible long-term consequences for the animal. "Catch-up growth" in humans after the critical perinatal window has closed elicits adult obesity and exacerbates a programmed hypertensive phenotype (one of many examples of "fetal programing"). Grand challenges for developmental physiology include

  19. Heterochrony and developmental timing mechanisms: changing ontogenies in evolution.

    PubMed

    Keyte, Anna L; Smith, Kathleen K

    2014-10-01

    Heterochrony, or a change in developmental timing, is an important mechanism of evolutionary change. Historically the concept of heterochrony has focused alternatively on changes in size and shape or changes in developmental sequence, but most have focused on the pattern of change. Few studies have examined changes in the mechanisms that embryos use to actually measure time during development. Recently, evolutionary studies focused on changes in distinct timekeeping mechanisms have appeared, and this review examines two such case studies: the evolution of increased segment number in snakes and the extreme rostral to caudal gradient of developmental maturation in marsupials. In both examples, heterochronic modifications of the somite clock have been important drivers of evolutionary change. PMID:24994599

  20. Heterochrony and developmental timing mechanisms: changing ontogenies in evolution

    PubMed Central

    Keyte, Anna L.; Smith, Kathleen K.

    2014-01-01

    Heterochrony, or a change in developmental timing, is an important mechanism of evolutionary change. Historically the concept of heterochrony has focused alternatively on changes in size and shape or changes in developmental sequence, but most have focused on the pattern of change. Few studies have examined changes in the mechanisms that embryos use to actually measure time during development. Recently, evolutionary studies focused on changes in distinct timekeeping mechanisms have appeared, and this review examines two such case studies: the evolution of increased segment number in snakes and the extreme rostral to caudal gradient of developmental maturation in marsupials. In both examples, heterochronic modifications of the somite clock have been important drivers of evolutionary change. PMID:24994599