Science.gov

Sample records for examination nde reliability

  1. Nondestructive examination (NDE) reliability for inservice inspection of light waters reactors

    SciTech Connect

    Doctor, S.R.; Deffenbaugh, J.D.; Good, M.S.; Green, E.R.; Heasler, P.G.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T. )

    1989-11-01

    Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other inspected components. This is a progress report covering the programmatic work from April 1988 through September 1988. 33 refs., 70 figs., 12 tabs.

  2. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Semiannual report, October 1990--March 1991: Volume 13

    SciTech Connect

    Doctor, S.R.; Good, M.S.; Heasler, P.G.; Hockey, R.L.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1992-07-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties.

  3. Assessment of NDE Reliability Data

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Chang, F. H.; Covchman, J. C.; Lemon, G. H.; Packman, P. F.

    1976-01-01

    Twenty sets of relevant Nondestructive Evaluation (NDE) reliability data have been identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations has been formulated. A model to grade the quality and validity of the data sets has been developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, have been formulated for each NDE method. A comprehensive computer program has been written to calculate the probability of flaw detection at several confidence levels by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. Probability of detection curves at 95 and 50 percent confidence levels have been plotted for individual sets of relevant data as well as for several sets of merged data with common sets of NDE parameters.

  4. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Volume 15, Semiannual report: October 1991--March 1992

    SciTech Connect

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.

    1993-09-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to ASME Code and Regulatory requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from October 1991 through March 1992.

  5. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Semiannual report, April 1992--September 1992: Volume 16

    SciTech Connect

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Greenwood, M.S.; Heasler, P.G.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Vo, T.V.

    1993-11-01

    The Evaluation and Improvement of NDE Reliability for Inservice inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWRs);using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel and other components inspected in accordance with Section XI of the ASME Code. This is a programs report covering the programmatic work from April 1992 through September 1992.

  6. Nondestructive Examination (NDE) Reliability for Inservice Inspection of Light Water Reactors. Volume 14, Semiannual report, April 1991--September 1991

    SciTech Connect

    Doctor, S.R.; Diaz, A.A.; Friley, J.R.; Good, M.S.; Greenwood, M.S.; Heasler, P.G.; Hockey, R.L.; Kurtz, R.J.; Simonen, F.A.; Spanner, J.C.; Taylor, T.T.; Vo, T.V.

    1992-07-01

    The Evaluation and Improvement of NDE Reliability for Inservice Inspection of Light Water Reactors (NDE Reliability) Program at the Pacific Northwest Laboratory was established by the Nuclear Regulatory Commission to determine the reliability of current inservice inspection (ISI) techniques and to develop recommendations that will ensure a suitably high inspection reliability. The objectives of this program include determining the reliability of ISI performed on the primary systems of commercial light-water reactors (LWR`s); using probabilistic fracture mechanics analysis to determine the impact of NDE unreliability on system safety; and evaluating reliability improvements that can be achieved with improved and advanced technology. A final objective is to formulate recommended revisions to the Regulatory and ASME Code requirements, based on material properties, service conditions, and NDE uncertainties. The program scope is limited to ISI of the primary systems including the piping, vessel, and other components inspected in accordance with Section XI of the ASME Code. This is a progress report covering the programmatic work from April 1991 through September 1991.

  7. Assessment of NDE reliability data

    NASA Technical Reports Server (NTRS)

    Yee, B. G. W.; Couchman, J. C.; Chang, F. H.; Packman, D. F.

    1975-01-01

    Twenty sets of relevant nondestructive test (NDT) reliability data were identified, collected, compiled, and categorized. A criterion for the selection of data for statistical analysis considerations was formulated, and a model to grade the quality and validity of the data sets was developed. Data input formats, which record the pertinent parameters of the defect/specimen and inspection procedures, were formulated for each NDE method. A comprehensive computer program was written and debugged to calculate the probability of flaw detection at several confidence limits by the binomial distribution. This program also selects the desired data sets for pooling and tests the statistical pooling criteria before calculating the composite detection reliability. An example of the calculated reliability of crack detection in bolt holes by an automatic eddy current method is presented.

  8. Statistical Tests of Reliability of NDE

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Klima, Stanley J.; Roth, Don J.; Kiser, James D.

    1987-01-01

    Capabilities of advanced material-testing techniques analyzed. Collection of four reports illustrates statistical method for characterizing flaw-detecting capabilities of sophisticated nondestructive evaluation (NDE). Method used to determine reliability of several state-of-the-art NDE techniques for detecting failure-causing flaws in advanced ceramic materials considered for use in automobiles, airplanes, and space vehicles.

  9. NDE (nondestructive examination) development for ceramics for advanced heat engines

    SciTech Connect

    McClung, R.W. , Powell, TN ); Johnson, D.R. )

    1991-01-01

    The Department of Energy (DOE) Ceramic Technology for Advanced Heat Engines (CTAHE) project was initiated in 1983 to meet the ceramic technology needs of DOE's advanced heat engines programs (i.e., advanced gas turbines and low heat rejection diesels). The objective is to establish an industrial ceramic technology base for reliable and cost-effective high-temperature components. Reliability of ceramics was recognized as the major technology need. To increase the material reliability of current and new ceramics, advances were needed in component design methodology, materials processing technology, and data base/life prediction. Nondestructive examination (NDE) was identified as one of the key elements in the approach to high-reliability components. An assessment was made of the current status of NDE for structural ceramics, and a report was prepared containing the results and recommendations for needed development. Based on these recommendations, a long-range NDE development program has been established in the CTAHE project to address these needs.

  10. Impact of NDE reliability developments on risk-informed methods

    SciTech Connect

    Walker, S.M.; Ammirato, F.V.

    1996-12-01

    Risk informed inspection procedures are being developed to more effectively and economically manage degradation in plant piping systems. A key element of this process is applying nondestructive examination (NDE) procedures capable of detecting specific damage mechanisms that may be operative in particular locations. Thus, the needs of risk informed analysis are closely coupled with a firm understanding of the capability of NDE.

  11. Conclusions of the 6th European American Workshop on reliability of NDE

    NASA Astrophysics Data System (ADS)

    Mueller, Christina; Bertovic, Marija; Kanzler, Daniel; Ronneteg, Ulf

    2016-02-01

    The principles of Open Space Technology (OST) were again applied to discuss burning issues in the field of NDE reliability. The results of the discussions among NDE professionals concerning new reliability methods, human factors and integrated solutions will be presented.

  12. Integration of NDE Reliability and Fracture Mechanics

    SciTech Connect

    Becker, F. L.; Doctor, S. R.; Heas!er, P. G.; Morris, C. J.; Pitman, S. G.; Selby, G. P.; Simonen, F. A.

    1981-03-01

    The Pacific Northwest Laboratory is conducting a four-phase program for measuring and evaluating the effectiveness and reliability of in-service inspection (lSI} performed on the primary system piping welds of commercial light water reactors (LWRs). Phase I of the program is complete. A survey was made of the state of practice for ultrasonic rsr of LWR primary system piping welds. Fracture mechanics calculations were made to establish required nondestrutive testing sensitivities. In general, it was found that fatigue flaws less than 25% of wall thickness would not grow to failure within an inspection interval of 10 years. However, in some cases failure could occur considerably faster. Statistical methods for predicting and measuring the effectiveness and reliability of lSI were developed and will be applied in the "Round Robin Inspections" of Phase II. Methods were also developed for the production of flaws typical of those found in service. Samples fabricated by these methods wilI be used in Phase II to test inspection effectiveness and reliability. Measurements were made of the influence of flaw characteristics {i.e., roughness, tightness, and orientation) on inspection reliability. These measurernents, as well as the predictions of a statistical model for inspection reliability, indicate that current reporting and recording sensitivities are inadequate.

  13. Uncertainties in NDE Reliability and Assessing the Impact on RI-ISI

    SciTech Connect

    Doctor, Steven R.; Anderson, Michael T.

    2010-08-01

    A major thrust in the past 20 years has been to upgrade nondestructive examinations (NDE) for use in inservice inspection (ISI) programs to more effectively manage degradation at operating nuclear power plants. Risk-informed ISI (RI-ISI) is one of the outcomes of this work, and this approach relies heavily on the reliability of NDE, when properly applied, to detect sources of expected degradation. There have been a number of improvements in the reliability of NDE, specifically in ultrasonic testing (UT), through training of examiners, and improved equipment and procedure development. However, the most significant improvements in UT were derived by moving from prescriptive requirements to performance based requirements. Even with these substantial improvements, NDE contains significant uncertainties and RI-ISI programs need to address and accommodate this factor. As part of the work that PNNL is conducting for the U. S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, we are examining the impact of these uncertainties on the effectiveness of RI-ISI programs.

  14. NDE for utilities: maintaining reliability in a competitive environment

    NASA Astrophysics Data System (ADS)

    Tilley, Richard M.; Brett, Colin R.

    1996-11-01

    US utilities are facing an increasingly deregulated market place in which price competition will be featured. Correspondingly, utilities are aggressively pursuing cost reduction efforts in all phases of electric power production. Power plant operating and maintenance cost reduction efforts must be carefully managed, however, to avoid a potential reduction in operating reliability. To succeed in this effort will require new NDE techniques and decision support tools. Key attributes of such new techniques will be improved measurement speed and accuracy, reduced preparation requirements, automated data acquisition, and computer-based analysis support. Tools will be required to assist power plant personnel in making the best decisions on what, when, and how to inspect plant components to achieve overall economic objectives.

  15. NDE reliability and probability of detection (POD) evolution and paradigm shift

    NASA Astrophysics Data System (ADS)

    Singh, Surendra

    2014-02-01

    The subject of NDE Reliability and POD has gone through multiple phases since its humble beginning in the late 1960s. This was followed by several programs including the important one nicknamed "Have Cracks - Will Travel" or in short "Have Cracks" by Lockheed Georgia Company for US Air Force during 1974-1978. This and other studies ultimately led to a series of developments in the field of reliability and POD starting from the introduction of fracture mechanics and Damaged Tolerant Design (DTD) to statistical framework by Bernes and Hovey in 1981 for POD estimation to MIL-STD HDBK 1823 (1999) and 1823A (2009). During the last decade, various groups and researchers have further studied the reliability and POD using Model Assisted POD (MAPOD), Simulation Assisted POD (SAPOD), and applying Bayesian Statistics. All and each of these developments had one objective, i.e., improving accuracy of life prediction in components that to a large extent depends on the reliability and capability of NDE methods. Therefore, it is essential to have a reliable detection and sizing of large flaws in components. Currently, POD is used for studying reliability and capability of NDE methods, though POD data offers no absolute truth regarding NDE reliability, i.e., system capability, effects of flaw morphology, and quantifying the human factors. Furthermore, reliability and POD have been reported alike in meaning but POD is not NDE reliability. POD is a subset of the reliability that consists of six phases: 1) samples selection using DOE, 2) NDE equipment setup and calibration, 3) System Measurement Evaluation (SME) including Gage Repeatability &Reproducibility (Gage R&R) and Analysis Of Variance (ANOVA), 4) NDE system capability and electronic and physical saturation, 5) acquiring and fitting data to a model, and data analysis, and 6) POD estimation. This paper provides an overview of all major POD milestones for the last several decades and discuss rationale for using Integrated

  16. NDE reliability and probability of detection (POD) evolution and paradigm shift

    SciTech Connect

    Singh, Surendra

    2014-02-18

    The subject of NDE Reliability and POD has gone through multiple phases since its humble beginning in the late 1960s. This was followed by several programs including the important one nicknamed “Have Cracks – Will Travel” or in short “Have Cracks” by Lockheed Georgia Company for US Air Force during 1974–1978. This and other studies ultimately led to a series of developments in the field of reliability and POD starting from the introduction of fracture mechanics and Damaged Tolerant Design (DTD) to statistical framework by Bernes and Hovey in 1981 for POD estimation to MIL-STD HDBK 1823 (1999) and 1823A (2009). During the last decade, various groups and researchers have further studied the reliability and POD using Model Assisted POD (MAPOD), Simulation Assisted POD (SAPOD), and applying Bayesian Statistics. All and each of these developments had one objective, i.e., improving accuracy of life prediction in components that to a large extent depends on the reliability and capability of NDE methods. Therefore, it is essential to have a reliable detection and sizing of large flaws in components. Currently, POD is used for studying reliability and capability of NDE methods, though POD data offers no absolute truth regarding NDE reliability, i.e., system capability, effects of flaw morphology, and quantifying the human factors. Furthermore, reliability and POD have been reported alike in meaning but POD is not NDE reliability. POD is a subset of the reliability that consists of six phases: 1) samples selection using DOE, 2) NDE equipment setup and calibration, 3) System Measurement Evaluation (SME) including Gage Repeatability and Reproducibility (Gage R and R) and Analysis Of Variance (ANOVA), 4) NDE system capability and electronic and physical saturation, 5) acquiring and fitting data to a model, and data analysis, and 6) POD estimation. This paper provides an overview of all major POD milestones for the last several decades and discuss rationale for using

  17. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-6, Radiography Inspection.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This sixth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains radiographic inspection as a means of nondestructively examining components, assemblies, structures, and fabricated piping. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  18. NDE reliability and process control for structural ceramics

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.

    1986-01-01

    The reliability of microfocus x-radiography and scanning laser acoustic microscopy for detecting microvoids in silicon nitride and silicon carbide was statistically evaluated. Materials- and process-related parameters that influenced the statistical findings in research samples are discussed. The use of conventional x-radiography in controlling and optimizing the processing and sintering of an Si3N4-Si02-Y203 composition designated NASA 6Y is described. Radiographic evaluation and guidance helped develop uniform high-density Si3N4 modulus-of-rupture bars with improved four-point flexural strength (857, 544, and 462 MPa at room temperature, 1200 C, and 1370 C, respectively) and reduced strength scatter.

  19. NDE reliability and process control for structural ceramics

    NASA Technical Reports Server (NTRS)

    Baaklini, G. Y.

    1987-01-01

    The reliability of microfocus X-radiography and scanning laser acoustic microscopy for detecting microvoids in silicon nitride and silicon carbide was statistically evaluated. Materials- and process-related parameters that influenced the statistical findings in research samples are discussed. The use of conventional X-radiography in controlling and optimizing the processing and sintering of an Si3N4-SiO2-Y2O3 composition designated NASA 6Y is described. Radiographic evaluation and guidance helped develop uniform high-density Si3N4 modulus-of-rupture bars with improved four-point flexural strength (857, 544, and 462 MPa at room temperature, 1200 C, and 1370 C, respectively) and reduced strength scatter.

  20. Nondestructive Examination (NDE) Detection and Characterization of Degradation Precursors, Technical Progress Report for FY 2012

    SciTech Connect

    Ramuhalli, P.; Meyer, R.M.; Fricke, J.M.; Prowant, M.S.; Coble, J.B.; Griffin, J.W.; Pitman, S.G.; Dahl, M.E.; Kafentzis, T.A.; Roosendaal, T.J.

    2012-09-01

    The overall objective of this project was to investigate the effectiveness of nondestructive examination (NDE) technology in detecting material degradation precursors by initiating and growing cracks in selected materials and using NDE methods to measure crack precursors prior to the onset of cracking. Nuclear reactor components are subject to stresses over time that are not precisely known and that make the life expectancy of components difficult to determine. To prevent future issues with the operation of these plants because of unforeseen failure of components, NDE technology is needed that can be used to identify and quantify precursors to macroscopic degradation of materials. Some of the NDE methods being researched as possible solutions to the precursor detection problem are magnetic Barkhausen noise, nonlinear ultrasonics, acoustic emission, eddy current measurements, and guided wave technology. In FY12, the objective was to complete preliminary assessment of advanced NDE techniques for sensitivity to degradation precursors, using prototypical degradation mechanisms in laboratory-scale measurements. This present document reports on the deliverable that meets the following milestone: M3LW-12OR0402143 – Report detailing an initial demonstration on samples from the crack-initiation tests will be provided (demonstrating acceleration of the work).

  1. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-3, Hydrostatic Tests.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This third in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the principles and practices associated with hydrostatic testing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student,…

  2. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-2, Leak Tests.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This second in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes the predominantly used leak test methods in nuclear power plants. More specifically, the module describes these test methods, the testing techniques, and the associated quality assurance requirements. The module follows a typical…

  3. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-5, Fundamentals of Radiography.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This fifth in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I explains the radiographic process, from radiation source selection to equipment and specimen selection and arrangement, and film processing. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  4. Probabilistic model for pressure vessel reliability incorporating fracture mechanics and nondestructive examination

    SciTech Connect

    Tow, D.M.; Reuter, W.G.

    1998-03-01

    A probabilistic model has been developed for predicting the reliability of structures based on fracture mechanics and the results of nondestructive examination (NDE). The distinctive feature of this model is the way in which inspection results and the probability of detection (POD) curve are used to calculate a probability density function (PDF) for the number of flaws and the distribution of those flaws among the various size ranges. In combination with a probabilistic fracture mechanics model, this density function is used to estimate the probability of failure (POF) of a structure in which flaws have been detected by NDE. The model is useful for parametric studies of inspection techniques and material characteristics.

  5. NDE research efforts at the FAA Center for Aviation Systems Reliability

    NASA Technical Reports Server (NTRS)

    Thompson, Donald O.; Brasche, Lisa J. H.

    1992-01-01

    The Federal Aviation Administration-Center for Aviation Systems Reliability (FAA-CASR), a part of the Institute for Physical Research and Technology at Iowa State University, began operation in the Fall of 1990 with funding from the FAA. The mission of the FAA-CASR is to develop quantitative nondestructive evaluation (NDE) methods for aircraft structures and materials including prototype instrumentation, software, techniques, and procedures and to develop and maintain comprehensive education and training programs in aviation specific inspection procedures and practices. To accomplish this mission, FAA-CASR brings together resources from universities, government, and industry to develop a comprehensive approach to problems specific to the aviation industry. The problem areas are targeted by the FAA, aviation manufacturers, the airline industry and other members of the aviation business community. This consortium approach ensures that the focus of the efforts is on relevant problems and also facilitates effective transfer of the results to industry.

  6. Progress in evaluation and improvement in nondestructive examination reliability for inservice inspection of Light Water Reactors (LWRs) and characterize fabrication flaws in reactor pressure vessels

    SciTech Connect

    Doctor, S.R.; Bowey, R.E.; Good, M.S.; Friley, J.R.; Kurtz, R.J.; Simonen, F.A.; Taylor, T.T.; Heasler, P.G.; Andersen, E.S.; Diaz, A.A.; Greenwood, M.S.; Hockey, R.L.; Schuster, G.J.; Spanner, J.C.; Vo, T.V.

    1991-10-01

    This paper is a review of the work conducted under two programs. One (NDE Reliability Program) is a multi-year program addressing the reliability of nondestructive evaluation (NDE) for the inservice inspection (ISI) of light water reactor components. This program examines the reliability of current NDE, the effectiveness of evolving technologies, and provides assessments and recommendations to ensure that the NDE is applied at the right time, in the right place with sufficient effectiveness that defects of importance to structural integrity will be reliably detected and accurately characterized. The second program (Characterizing Fabrication Flaws in Reactor Pressure Vessels) is assembling a data base to quantify the distribution of fabrication flaws that exist in US nuclear reactor pressure vessels with respect to density, size, type, and location. These programs will be discussed as two separate sections in this report. 4 refs., 7 figs.

  7. An International Round-Robin Test of NDE Reliability for PWSCC

    SciTech Connect

    Schuster, George J.; Cumblidge, Stephen E.; Doctor, Steven R.; Moyer, Carol E.

    2007-12-01

    In this paper we describe the round robin tests that have been designed and are being conducted in the international program. Participants in the PINC have offered more than 30 test blocks for use in round-robin tests of NDE effectiveness. The test blocks have more than 130 flaws in nickel-base weld metal that are intended to simulate PWSCC in a variety of component geometries. NDE techniques representative of current in-service inspections are being applied, along with emerging NDE approaches.

  8. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-6, Operation of Eddy Current Test Equipment.

    ERIC Educational Resources Information Center

    Espy, John; Selleck, Ben

    This sixth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II details eddy current examination of steam generator tubing. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…

  9. Nuclear Technology. Course 32: Nondestructive Examination (NDE) II. Module 32-3, Fundamentals of Magnetic Particle Testing.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This third in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II explains the principles of magnets and magnetic fields and how they are applied in magnetic particle testing, describes the theory and methods of magnetizing test specimens, describes the test equipment used, discusses the principles and…

  10. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-2, Operation of Ultrasonic Test Equipment.

    ERIC Educational Resources Information Center

    Espy, John

    This second in a series of six modules for a course titled Nondestructive Examination (NDE) II describes specific ultrasonic test techniques and calibration principles. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…

  11. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-1, Fundamentals of Ultrasonic Testing.

    ERIC Educational Resources Information Center

    Spaulding, Bruce

    This first in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II introduces the student/trainee to the basic behavior of ultrasound, describes ultrasonic test equipment, and outlines the principal methods of ultrasonic testing. The module follows a typical format that includes the following sections: (1)…

  12. Nuclear Technology. Course 26: Nondestructive Examination (NDE) Techniques I. Module 26-7, Radiographic Specifications and Code Requirements.

    ERIC Educational Resources Information Center

    Pelton, Rick; Espy, John

    This seventh in a series of seven modules for a course titled Nondestructive Examination (NDE) Techniques I describes radiographic specifications and code requirements. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to instructor/student, (5) subject…

  13. Nuclear Technology. Course 32: Nondestructive Examination (NDE) Techniques II. Module 32-5, Fundamentals of Eddy Current Testing.

    ERIC Educational Resources Information Center

    Espy, John

    This fifth in a series of six modules for a course titled Nondestructive Examination (NDE) Techniques II describes the fundamental concepts applicable to eddy current testing in general. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3) objectives, (4) notes to…

  14. NDE detectability of fatigue-type cracks in high-strength alloys: NDI reliability assessments

    NASA Technical Reports Server (NTRS)

    Christner, Brent K.; Long, Donald L.; Rummel, Ward D.

    1988-01-01

    This program was conducted to generate quantitative flaw detection capability data for the nondestructive evaluation (NDE) techniques typically practiced by aerospace contractors. Inconel 718 and Haynes 188 alloy test specimens containing fatigue flaws with a wide distribution of sizes were used to assess the flaw detection capabilities at a number of contractor and government facilities. During this program 85 inspection sequences were completed presenting a total of 20,994 fatigue cracks to 53 different inspectors. The inspection sequences completed included 78 liquid penetrant, 4 eddy current, and 3 ultrasonic evaluations. The results of the assessment inspections are presented and discussed. In generating the flaw detection capability data base, procedures for data collection, data analysis, and specimen care and maintenance were developed, demonstrated, and validated. The data collection procedures and methods that evolved during this program for the measurement of flaw detection capabilities and the effects of inspection variables on performance are discussed. The Inconel 718 and Haynes 188 test specimens that were used in conducting this program and the NDE assessment procedures that were demonstrated, provide NASA with the capability to accurately assess the flaw detection capabilities of specific inspection procedures being applied or proposed for use on current and future fracture control hardware program.

  15. ORCHID - a computer simulation of the reliability of an NDE inspection system

    SciTech Connect

    Moles, M.D.C.

    1987-03-01

    CANDU pressurized heavy water reactors contain several hundred horizontally-mounted zirconium alloy pressure tubes. Following a pressure tube failure, a pressure tube inspection system called CIGARette was rapidly designed, manufactured and put in operation. Defects called hydride blisters were found to be the cause of the failure, and were detected using a combination of eddy current and ultrasonic scans. A number of improvements were made to CIGARette during the inspection period. The ORCHID computer program models the operation of the delivery system, eddy current and ultrasonic systems by imitating the on-reactor decision-making procedure. ORCHID predicts that during the early stage of development, less than one blistered tube in three would be detected, while less than one in two would be detected in the middle development stage. However, ORCHID predicts that during the late development stage, probability of detection will be over 90%, primarily due to the inclusion of axial ultrasonic scans (a procedural modification). Rotational and axial slip could severely reduce probability of detection. Comparison of CIGARette's inspection data with ORCHID's predictions indicate that the latter are compatible with the actual inspection results, through the numbers are small and data uncertain. It should be emphasized that the CIGARette system has been essentially replaced with the much more reliable CIGAR system.

  16. Examination of Single- and Multi-Channel GPR Bridge Deck Condition Assessment Methods with Comparison to Complementary NDE Results

    NASA Astrophysics Data System (ADS)

    Romero, Francisco A.; Manacorda, Guido; Simi, Alessandro; Gucunski, Nenad; Parvardeh, Hooman

    2013-04-01

    other NDE technologies. Not only did all the single- and multi-channel system comparisons generate nearly identical deterioration maps when GPR results were compared and examined, but mapped results obtained from other NDE methods on the same deck were used to identify zones where corrosive environment (electrical resistivity - ER) elastic modulus (ultrasonic surface wave - USW), and identified delaminations (impact-echo - IE) had commonality with the GPR results. A summary of the equipment used, as well as general data collection and analysis procedures is provided for the GPR condition assessments. Brief descriptions of background and references to how the complementary NDT technologies are deployed, and how data are interpreted, are also discussed. Comparative maps for all technologies are used for illustrative purposes.

  17. Reliability and Validity of the Pilot National Board Dental Examination.

    ERIC Educational Resources Information Center

    Kramer, Gene A.; DeMarais, David R.

    1992-01-01

    This study found that the restructured National Board Dental Examination Part II is a reliable test assessing a full range of cognitive behaviors, and a unidimensional test of comprehensive general dentistry, suggesting better testing of knowledge and problem-solving skills than on the traditional examination. Performance on the pilot and…

  18. Examining the reliability of ADAS-Cog change scores.

    PubMed

    Grochowalski, Joseph H; Liu, Ying; Siedlecki, Karen L

    2016-09-01

    The purpose of this study was to estimate and examine ways to improve the reliability of change scores on the Alzheimer's Disease Assessment Scale, Cognitive Subtest (ADAS-Cog). The sample, provided by the Alzheimer's Disease Neuroimaging Initiative, included individuals with Alzheimer's disease (AD) (n = 153) and individuals with mild cognitive impairment (MCI) (n = 352). All participants were administered the ADAS-Cog at baseline and 1 year, and change scores were calculated as the difference in scores over the 1-year period. Three types of change score reliabilities were estimated using multivariate generalizability. Two methods to increase change score reliability were evaluated: reweighting the subtests of the scale and adding more subtests. Reliability of ADAS-Cog change scores over 1 year was low for both the AD sample (ranging from .53 to .64) and the MCI sample (.39 to .61). Reweighting the change scores from the AD sample improved reliability (.68 to .76), but lengthening provided no useful improvement for either sample. The MCI change scores had low reliability, even with reweighting and adding additional subtests. The ADAS-Cog scores had low reliability for measuring change. Researchers using the ADAS-Cog should estimate and report reliability for their use of the change scores. The ADAS-Cog change scores are not recommended for assessment of meaningful clinical change. PMID:26708116

  19. Are Specialist Certification Examinations a Reliable Measure of Physician Competence?

    ERIC Educational Resources Information Center

    Burch, V. C.; Norman, G. R.; Schmidt, H. G.; van der Vleuten, C. P. M.

    2008-01-01

    High stakes postgraduate specialist certification examinations have considerable implications for the future careers of examinees. Medical colleges and professional boards have a social and professional responsibility to ensure their fitness for purpose. To date there is a paucity of published data about the reliability of specialist certification…

  20. Inter-Examiner Reliability in Meibomian Gland Dysfunction Assessment

    PubMed Central

    Powell, Daniel R.; Nichols, Jason J.; Nichols, Kelly K

    2012-01-01

    Purpose. We evaluated inter-examiner reliability in grading of clinical variables associated with meibomian gland dysfunction (MGD) in real-time examination versus a graded digital image. Methods. Meibography grading of meibomian gland atrophy and acini appearance, and slit-lamp grading of lid debris and telangiectasias were conducted on 410 post-menopausal women. Meibography and slit-lamp photos were captured digitally and saved for analysis by a masked examiner. Gland atrophy was graded as a proportion of partial glands in the lower lid, and acini appearance by the presence/absence of grape-like clusters. Lid debris and telangiectasias were graded based on severity and quantity from the same image, respectively. Observed agreement and weighted kappas (κw) with 95% confidence intervals (CI) determined the degree of inter-examiner reliability between grading of these clinical variables in real-time examination and digital photographs using a multiple-point categorical scale. Results. Observed agreement was determined for telangiectasias (40.6%), lid debris (50.9%), gland dropout (42.8%), and acini appearance (54.5%). Inter-examiner reliability for the four clinical outcomes ranged from fair agreement for acini appearance (κw = 0.23, 95% CI = 0.14–0.32) and lid debris (κw = 0.24, 0.16–0.32) to moderate agreement for gland dropout (κw = 0.50, 0.40–0.59) and telangiectasias (κw = 0.47, 0.39–0.55). Conclusions. Gland dropout and potentially lid telangiectasia grading from a photograph are more representative of grading in a real-time examination compared to acini appearance and lid debris. Alternative grading scales and/or clinical variables associated with MGD should be addressed in future studies. PMID:22499983

  1. Reliability and Validity of Modified Algometer in Abdominal Examination

    PubMed Central

    Ko, Seok-Jae; Kim, Honggeol; Kim, Seul-Ki; Park, Kyungmo; Lee, Jeungchan; Lee, Beom-Joon; Oh, Jayoung; Lee, Kyungjin; Park, Jae-Woo

    2016-01-01

    Objective. Abdominal examination (AE) is one of the essential diagnostic methods in traditional Korean medicine that has been widely used for deciding treatment, cause, and prognosis of the disease. AE majorly depends on the experience of practitioners; therefore, standardization and quantification of AE are desperately needed. However, few studies have tried to objectify AE and established its standard. We assessed the reliability and validity of newly developed diagnostic device for AE called modified algometer (MA). Methods. Thirty-six subjects with functional dyspepsia were allocated into one of 2 groups according to gold standard of AE: epigastric discomfort without tenderness (n = 23) group or epigastric discomfort with tenderness (n = 13) group. Pressure pain threshold was evaluated at participants' epigastric region with algometer and MA. We assessed reliability and validity (sensitivity and specificity) and calculated optimal cutoff value. Results. MA showed high intertrial reliability (ICC 0.849; 0.703–0.923; P < 0.000) and validity (sensitivity: 76.92%; specificity: 60.87%), and cutoff value was 330.0 mmHg. Algometer and MA showed moderate correlation (r = 0.583, P ≤ 0.000). Conclusion. MA can be reliable and valid diagnostic device for AE and has the possibility of practical use for quantification and standardization of AE. PMID:27073401

  2. Nuclear Power Plant NDE Challenges - Past, Present, and Future

    SciTech Connect

    Doctor, S. R.

    2007-03-21

    The operating fleet of U.S. nuclear power plants was built to fossil plant standards (of workmanship, not fitness for service) and with good engineering judgment. Fortuitously, those nuclear power plants were designed using defense-in-depth concepts, with nondestructive examination (NDE) an important layer, so they can tolerate almost any component failure and still continue to operate safely. In the 30+ years of reactor operation, many material failures have occurred. Unfortunately, NDE has not provided the reliability to detect degradation prior to initial failure (breaching the pressure boundary). However, NDE programs have been improved by moving from prescriptive procedures to performance demonstrations that quantify inspection effectiveness for flaw detection probability and sizing accuracy. Other improvements include the use of risk-informed strategies to ensure that reactor components contributing the most risk receive the best and most frequent inspections. Another challenge is the recent surge of interest in building new nuclear power plants in the United States to meet increasing domestic energy demand. New construction will increase the demand for NDE but also offers the opportunity for more proactive inspections. This paper reviews the inception and evolution of NDE for nuclear power plants over the past 40 years, recounts lessons learned, and describes the needs remaining as existing plants continue operation and new construction is contemplated.

  3. NDE: An effective approach to improved reliability and safety. A technology survey. [nondestructive testing of aircraft structures

    NASA Technical Reports Server (NTRS)

    Carpenter, J. L., Jr.; Stuhrke, W. F.

    1976-01-01

    Technical abstracts are presented for about 100 significant documents relating to nondestructive testing of aircraft structures or related structural testing and the reliability of the more commonly used evaluation methods. Particular attention is directed toward acoustic emission; liquid penetrant; magnetic particle; ultrasonics; eddy current; and radiography. The introduction of the report includes an overview of the state-of-the-art represented in the documents that have been abstracted.

  4. Nondestructive Evaluation (NDE) Research Progress in 1988, Proceedings From the Ninth Annual EPRI NDE Information Meeting

    SciTech Connect

    1989-05-01

    Nondestructive evaluation (NDE) research has led to improved technologies and new procedures for inspecting electric generating plant components. This review of 1988 EPRI research discusses NDE procedures for pressure vessel and containment weld examinations, assessments of the eddy-current technology for steam generators, and integrated ultrasonic techniques for examining cast austenitic stainless components.

  5. Development of NDE methods for hot gas filters.

    SciTech Connect

    Deemer, C.; Ellingson, W. A.; Koehl, E. R.; Lee, H.; Spohnholtz, T.; Sun, J. G.

    1999-07-21

    Ceramic hot gas candle filters are currently under development for hot gas particulate cleanup in advanced coal-based power systems. The ceramic materials for these filters include nonoxide monolithic, nonoxide-fiber-reinforced composites, and nonoxide reticulated foam. A concern is the lack of reliable data on which to base decisions for reusing or replacing hot gas filters during plant shutdowns. The work in this project is aimed at developing nondestructive evaluation (FIDE) technology to allow detection, and determination of extent, of life-limiting characteristics such as thermal fatigue, oxidation, damage from ash bridging such as localized cracking, damage from local burning, and elongation at elevated temperature. Although in-situ NDE methods are desirable in order to avoid disassembly of the candle filter vessels, the current vessel designs, the presence of filter cakes and possible ash bridging, and the state of NDE technology prevent this. Candle filter producers use a variety of NDE methods to ensure as-produced quality. While impact acoustic resonance offers initial promise for examining new as-produced filters and for detecting damage in some monolithic filters when removed from service, it presents difficulties in data interpretation, it lacks localization capability, and its applicability to composites has yet to be demonstrated. Additional NDE technologies being developed and evaluated in this program and whose applicability to both monolithics and composites has been demonstrated include (a) full-scale thermal imaging for analyzing thermal property variations; (b) fret, high-spatial-resolution X-ray imaging for detecting density variations and dimensional changes; (c) air-coupled ultrasonic methods for determining through-thickness compositional variations; and (d) acoustic emission technology with mechanical loading for detecting localized bulk damage. New and exposed clay-bonded SiC filters and CVI-SiC composite filters have been tested with

  6. Videotape Reliability: A Method of Evaluation of a Clinical Performance Examination.

    ERIC Educational Resources Information Center

    And Others; Liu, Philip

    1980-01-01

    A method of statistically analyzing clinical performance examinations for reliability and the application of this method in determining the reliability of two examinations of skill in administering anesthesia are described. Videotaped performances for the Spinal Anesthesia Skill Examination and the Anesthesia Setup and Machine Checkout Examination…

  7. Interrater reliability of quantitative ultrasound using force feedback among examiners with varied levels of experience

    PubMed Central

    Ismail, Catheeja; Monfaredi, Reza; Hernandez, Haniel J.; Pennington, Donte; Woletz, Paula; McIntosh, Valerie; Adams, Bernadette; Blackman, Marc R.

    2016-01-01

    Background. Quantitative ultrasound measures are influenced by multiple external factors including examiner scanning force. Force feedback may foster the acquisition of reliable morphometry measures under a variety of scanning conditions. The purpose of this study was to determine the reliability of force-feedback image acquisition and morphometry over a range of examiner-generated forces using a muscle tissue-mimicking ultrasound phantom. Methods. Sixty material thickness measures were acquired from a muscle tissue mimicking phantom using B-mode ultrasound scanning by six examiners with varied experience levels (i.e., experienced, intermediate, and novice). Estimates of interrater reliability and measurement error with force feedback scanning were determined for the examiners. In addition, criterion-based reliability was determined using material deformation values across a range of examiner scanning forces (1–10 Newtons) via automated and manually acquired image capture methods using force feedback. Results. All examiners demonstrated acceptable interrater reliability (intraclass correlation coefficient, ICC = .98, p < .001) for material thickness measures obtained using force feedback. Individual examiners exhibited acceptable reliability with the criterion-based reference measures (ICC > .90, p < .001), independent of their level of experience. The measurement error among all examiners was 1.5%–2.9% across all applied stress conditions. Conclusion. Manual image capture with force feedback may aid the reliability of morphometry measures across a range of examiner scanning forces, and allow for consistent performance among examiners with differing levels of experience. PMID:27366647

  8. Subjective Scoring of Divergent Thinking: Examining the Reliability of Unusual Uses, Instances, and Consequences Tasks

    ERIC Educational Resources Information Center

    Silvia, Paul J.

    2011-01-01

    The present research examined the reliability of three types of divergent thinking tasks (unusual uses, instances, consequences/implications) and two types of subjective scoring (an average across all responses vs. the responses people chose as their top-two responses) within a latent variable framework, using the maximal-reliability "H"…

  9. Reliability and Validity of a Breast Self-Examination Proficiency Rating Instrument.

    ERIC Educational Resources Information Center

    Wood, Robin Y.

    1994-01-01

    The reliability and validity of a newly constructed instrument, the Breast Self-Examination Proficiency Rating Instrument, was tested with 84 instructed and 80 uninstructed nursing students. Results support beginning reliability and preliminary validity when the instrument is used in a controlled setting. (SLD)

  10. Overview of the program to assess the reliability of emerging nondestructive techniques open testing and study of flaw type effect on NDE response

    NASA Astrophysics Data System (ADS)

    Meyer, Ryan M.; Komura, Ichiro; Kim, Kyung-cho; Zetterwall, Tommy; Cumblidge, Stephen E.; Prokofiev, Iouri

    2016-02-01

    In February 2012, the U.S. Nuclear Regulatory Commission (NRC) executed agreements with VTT Technical Research Centre of Finland, Nuclear Regulatory Authority of Japan (NRA, former JNES), Korea Institute of Nuclear Safety (KINS), Swedish Radiation Safety Authority (SSM), and Swiss Federal Nuclear Safety Inspectorate (ENSI) to establish the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT). The goal of PARENT is to investigate the effectiveness of current emerging and perspective novel nondestructive examination procedures and techniques to find flaws in nickel-alloy welds and base materials. This is done by conducting a series of open and blind international round-robin tests on a set of large-bore dissimilar metal welds (LBDMW), small-bore dissimilar metal welds (SBDMW), and bottom-mounted instrumentation (BMI) penetration weld test blocks. The purpose of blind testing is to study the reliability of more established techniques and included only qualified teams and procedures. The purpose of open testing is aimed at a more basic capability assessment of emerging and novel technologies. The range of techniques applied in open testing varied with respect to maturity and performance uncertainty and were applied to a variety of simulated flaws. This paper will include a brief overview of the PARENT blind and open testing techniques and test blocks and present some of the blind testing results.

  11. Ensuring reliability in UK written tests of general practice: the MRCGP examination 1998-2003.

    PubMed

    Munro, Neil; Denney, Mei Ling; Rughani, Amar; Foulkes, John; Wilson, Andrew; Tate, Peter

    2005-01-01

    Reliability in written examinations is taken very seriously by examination boards and candidates alike. Within general education many factors influence reliability including variations between markers, within markers, within candidates and within teachers. Mechanisms designed to overcome, or at least minimize, the impact of such variables are detailed. Methods of establishing reliability are also explored in the context of a range of assessment situations. In written tests of general practice within the Membership of the Royal College of General Practitioner (MRCGP) examination considerable effort has put been put into achieving acceptable levels of reliability. Current mechanisms designed to ensure high reliability are described and related to the evolution of the written component of the examination. In addition to description of marker selection and training, question development including construct a detailed example of specific and generic marking schedules is provided. Examination results for the Written Paper of the MRCGP from 1998 to 2003 are reported including Cronbach's alpha coefficients and standard error of measurements, mean scores (and SD) and pass rates. In addition individual discrimination scores for each question in the October 2002 paper are shown. Consistent high reliability of the written component of the MRCGP examination provides valuable lessons in terms of selection, training and monitoring of markers as well as practical methods of moderating factors affecting candidate variability. The challenge for examination developers is to carry these important lessons forward into a modernized assessment structure of UK general practice. PMID:16147769

  12. NASA NDE Program

    NASA Technical Reports Server (NTRS)

    Generazio, Ed; Burke, Eric

    2015-01-01

    The current activities in the National Aeronautics and Space Administration Nondestructive Evaluation (NDE) Program are presented. The topics covered include organizational communications, orbital weld inspection, electric field imaging, fracture critical probability of detection validation, monitoring of thermal protection systems, physical and document standards, image quality indicators, integrity of composite pressure vessels, and NDE for additively manufactured components.

  13. Developing NDE Techniques for Orion Crew Module

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan; Youngquist, Robert

    2009-01-01

    Project: The Orion Crew Module (CM) and Service Module (SM) subsystems will require approximately 870 tube welds to be fabricated onsite at KSC O&C High Bay. A quick and reliable NDE technique is required to ensure efficient assembly and superior weld quality.

  14. Directed Design of Experiments (DOE) for Determining Probability of Detection (POD) Capability of NDE Systems (DOEPOD)

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2007-01-01

    This viewgraph presentation reviews some of the problems that are encountered by designers of Non-Destructive Examination (NDE) have in determining the probability of detection. According to the author "[the] NDE community should not blindly accept statistical results due to lack of knowledge." This is an attempt to bridge the gap between people doing NDE, and statisticians.

  15. Steam generator tubing NDE performance

    SciTech Connect

    Henry, G.; Welty, C.S. Jr.

    1997-02-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.

  16. The Reliability of Results from National Tests, Public Examinations, and Vocational Qualifications in England

    ERIC Educational Resources Information Center

    He, Qingping; Opposs, Dennis

    2012-01-01

    National tests, public examinations, and vocational qualifications in England are used for a variety of purposes, including the certification of individual learners in different subject areas and the accountability of individual professionals and institutions. However, there has been ongoing debate about the reliability and validity of their…

  17. Oral Assessment and Postgraduate Medical Examinations: Establishing Conditions for Validity, Reliability and Fairness

    ERIC Educational Resources Information Center

    Memon, Muhammed Ashraf; Joughin, Gordon Rowland; Memon, Breda

    2010-01-01

    The purpose of this review was to examine the practice of oral assessment in postgraduate medical education in the context of the core assessment constructs of validity, reliability and fairness. Although oral assessment has a long history in the certification process of medical specialists and is a well-established part of such proceedings for a…

  18. Examining the Reliability and Validity of Clinician Ratings on the Five-Factor Model Score Sheet

    ERIC Educational Resources Information Center

    Few, Lauren R.; Miller, Joshua D.; Morse, Jennifer Q.; Yaggi, Kirsten E.; Reynolds, Sarah K.; Pilkonis, Paul A.

    2010-01-01

    Despite substantial research use, measures of the five-factor model (FFM) are infrequently used in clinical settings due, in part, to issues related to administration time and a reluctance to use self-report instruments. The current study examines the reliability and validity of the Five-Factor Model Score Sheet (FFMSS), which is a 30-item…

  19. Reliability analysis of the objective structured clinical examination using generalizability theory

    PubMed Central

    Trejo-Mejía, Juan Andrés; Sánchez-Mendiola, Melchor; Méndez-Ramírez, Ignacio; Martínez-González, Adrián

    2016-01-01

    Background The objective structured clinical examination (OSCE) is a widely used method for assessing clinical competence in health sciences education. Studies using this method have shown evidence of validity and reliability. There are no published studies of OSCE reliability measurement with generalizability theory (G-theory) in Latin America. The aims of this study were to assess the reliability of an OSCE in medical students using G-theory and explore its usefulness for quality improvement. Methods An observational cross-sectional study was conducted at National Autonomous University of Mexico (UNAM) Faculty of Medicine in Mexico City. A total of 278 fifth-year medical students were assessed with an 18-station OSCE in a summative end-of-career final examination. There were four exam versions. G-theory with a crossover random effects design was used to identify the main sources of variance. Examiners, standardized patients, and cases were considered as a single facet of analysis. Results The exam was applied to 278 medical students. The OSCE had a generalizability coefficient of 0.93. The major components of variance were stations, students, and residual error. The sites and the versions of the tests had minimum variance. Conclusions Our study achieved a G coefficient similar to that found in other reports, which is acceptable for summative tests. G-theory allows the estimation of the magnitude of multiple sources of error and helps decision makers to determine the number of stations, test versions, and examiners needed to obtain reliable measurements. PMID:27543188

  20. The reliability, validity, and usefulness of the Objective Structured Clinical Examination (OSCE) in dental education

    NASA Astrophysics Data System (ADS)

    Graham, Roseanna

    This study evaluated the reliability, validity, and educational usefulness of a comprehensive, multidisciplinary Objective Structured Clinical Examination (OSCE) in dental education. The OSCE was administered to dental students at the Columbia University College of Dental Medicine (CDM) before they entered clinical training. Participants in this study included CDM's class of 2010 which consisted of 78 students. The overall reliability of the examination was measured via calculation of Cronbach's alpha. Content validity was examined through evaluation of the OSCE by three experienced clinical faculty members. Predictive validity was evaluated by correlating student grades on the OSCE to future clinical performance as measured by number of clinical points achieved during the third year of training. Student perceptions regarding the educational usefulness of the examination were evaluated through a 12-question Liken-type survey and focus group interviews analyzed using a phenomenological approach. Findings of the study indicated the OSCE was a highly reliable examination (alpha=0.86) with high content validity and a moderately high correlation to future clinical performance (r=.614, p<.0001). Overall, student perceptions of the educational usefulness of the OSCE were positive as based on their responses to a 5-point Likert scale (1=strongly disagree and 5=strongly agree). They reported that the exam required the ability to think critically and problem-solve (4.0 +/- 0.85), assessed clinically relevant skills (4.59 +/- 0.69), helped identify clinical weaknesses (4.16 +/- 0.90), and was a learning experience (4.58 +/- 0.84). Findings from the qualitative portion of the study identified four main themes including the student perception that the OSCE is a unique assessment experience that required integration and application of knowledge. Recommendations for the use of the OSCE to improve clinical teaching and the implications of this study relating to the expanded use of

  1. [The Reliability of Measurement Methods for Medical Examinations and Health Screening].

    PubMed

    Hosogaya, Shigemi

    2016-03-01

    Clinical laboratory data used in medical examinations and health screening need to have a guaranteed analytical reliability. To ensure the reliability of measurement data, each constituent is required to be compatible with its traceability chain, and any constituent whose traceability chain has yet to be established is required to be appropriately harmonized in the current measurement system. The inter-laboratory reproducibility of standardized measurement values obtained from the external quality assessments conducted by the Japan Medical Association and Japanese Association of Medical Technologists was estimated to evaluate the analytical reliability of clinical tests in Japan. The estimated inter-laboratory reproducibility was then compared with the permissible error limits which have been reported domestically and internationally based on inter- and intra-individual biological variations of healthy subjects. The results showed that most of the measurement uncertainties were sufficiently lower than the permissible limits. This study proposes that the measurement uncertainty of the standardized measurement method has the potential to be a new assessment standard for analytical reliability. PMID:27363220

  2. The Colorado Haemophilia Paediatric Joint Physical Examination Scale: normal values and interrater reliability.

    PubMed

    Hacker, M R; Funk, S M; Manco-Johnson, M J

    2007-01-01

    Persons with haemophilia often experience their first joint haemorrhage in early childhood. Recurrent bleeding into a joint may lead to significant morbidity, specifically haemophilic arthropathy. Early identification of the onset and progression of joint damage is critical to preserving joint structure and function. Physical examination is the most feasible approach to monitor joint health. Our group developed the Colorado Haemophilia Paediatric Joint Physical Examination Scale to identify earlier signs of joint degeneration and incorporate developmentally appropriate tasks for assessing joint function in young children. This study's objectives were to establish normal ranges for this scale and assess interrater reliability. The ankles, knees and elbows of 72 healthy boys aged 1 through 7 years were evaluated by a physical therapist to establish normal ranges. Exactly 10 boys in each age category from 2 to 7 years were evaluated by a second physical therapist to determine interrater reliability. The original scale was modified to account for the finding that mild angulation in the weight-bearing joints is developmentally normal. The interrater reliability of the scale ranged from fair to good, underscoring the need for physical therapists to have specific training in the orthopaedic assessment of very young children and the measurement error inherent in the goniometer. Modifications to axial alignment scoring will allow the scale to distinguish healthy joints from those suffering frequent haemarthroses. PMID:17212728

  3. RCC NDE Update

    NASA Technical Reports Server (NTRS)

    Hernandez, Jose M.

    2004-01-01

    This slide presentation reviews non-destructive evaluation (NDE) techniques of Reinforced Carbon-Carbon (RCC) materials and the progress involved in bringing the technology to technological maturity. Included is information about the test specimens, thermographic, ultrasonic, eddy current, and radiographic inspection of RCC materials.

  4. Developing an estimate of daily cumulative loading for the knee: examining test-retest reliability.

    PubMed

    Robbins, Shawn M K; Birmingham, Trevor B; Jones, Gareth R; Callaghan, Jack P; Maly, Monica R

    2009-11-01

    Although the knee adduction moment during gait is a valid and reliable proxy for the dynamic load on the medial compartment of the knee, it represents exposure to loading during one stride only. In contrast, a measure that incorporates both the nature and frequency of loading throughout daily activities might provide additional insight into the effects of cumulative knee loading. The purpose of this study was to introduce a new representation of daily cumulative knee loading and examine its test-retest reliability. Thirty healthy adults participated. Cumulative knee loading was calculated on two testing periods from the mean external knee adduction moment stance phase impulse, measured with a three-dimensional motion capture system over five walking trials, and mean steps/day, measured with a unidimensional accelerometer over one week. Analysis for test-retest reliability included Bland-Altman graphs, intraclass correlation coefficients (ICC 2,1) and standard errors of measurements (SEM). The ICC values for cumulative knee loading, adduction impulse and steps/day ranged from 0.84 to 0.89. Bland-Altman plots suggested daily cumulative knee loading and steps/day measures were less reliable at higher values. The SEM values were 9.67 kNm s, 1.45 Nm s and 1043 steps/day for cumulative knee loading, adduction impulse and steps/day, respectively. Daily cumulative knee loading is reliable and provides a stable measure of the total exposure to knee loading. These findings support further study of cumulative knee loading to determine its potential clinical importance. PMID:19692246

  5. Review of progress in quantitative NDE. [Nondestructive Evaluation (NDE)

    SciTech Connect

    Not Available

    1991-01-01

    This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques. (GHH)

  6. A limited assessment of the ASEP human reliability analysis procedure using simulator examination results

    SciTech Connect

    Gore, B.R.; Dukelow, J.S. Jr.; Mitts, T.M.; Nicholson, W.L.

    1995-10-01

    This report presents a limited assessment of the conservatism of the Accident Sequence Evaluation Program (ASEP) human reliability analysis (HRA) procedure described in NUREG/CR-4772. In particular, the, ASEP post-accident, post-diagnosis, nominal HRA procedure is assessed within the context of an individual`s performance of critical tasks on the simulator portion of requalification examinations administered to nuclear power plant operators. An assessment of the degree to which operator perforn:Lance during simulator examinations is an accurate reflection of operator performance during actual accident conditions was outside the scope of work for this project; therefore, no direct inference can be made from this report about such performance. The data for this study are derived from simulator examination reports from the NRC requalification examination cycle. A total of 4071 critical tasks were identified, of which 45 had been failed. The ASEP procedure was used to estimate human error probability (HEP) values for critical tasks, and the HEP results were compared with the failure rates observed in the examinations. The ASEP procedure was applied by PNL operator license examiners who supplemented the limited information in the examination reports with expert judgment based upon their extensive simulator examination experience. ASEP analyses were performed for a sample of 162 critical tasks selected randomly from the 4071, and the results were used to characterize the entire population. ASEP analyses were also performed for all of the 45 failed critical tasks. Two tests were performed to assess the bias of the ASEP HEPs compared with the data from the requalification examinations. The first compared the average of the ASEP HEP values with the fraction of the population actually failed and it found a statistically significant factor of two bias on the average.

  7. Examining the Validity and Reliability of the ABC-6 in Underserved Older Adults.

    PubMed

    Skipper, Antonius; Ellis, Rebecca

    2015-09-01

    Losing confidence in the ability to maintain balance can be more debilitating than a fall; therefore, the accurate measurement of balance confidence is critical. The purpose of this study was to examine the validity and reliability of the ABC-6, a shortened version of the Activities-specific Balance Confidence scale (ABC), among underserved older adults. The final sample included 251 older adults (M age = 71.2 years, SD = 8.9; 72.1% African Americans, 62.5% low-income, 61% low-education). Participants completed assessments of multiple falls risk factors, physical activity, and balance confidence. The ABC-6 had excellent internal consistency reliability, substantial intraclass correlations, and significant moderate to large correlations with physical activity, mobility, balance, and total falls risk. It also demonstrated the ability to discriminate between fallers and nonfallers, and it was a significant predictor of total falls risk. The ABC-6 was a valid and reliable measure of balance confidence among underserved older adults. PMID:24652895

  8. NDE Assessment of PWSCC in Control Rod Drive Mechanism Housings

    SciTech Connect

    Doctor, Steven R.; Cumblidge, Stephen E.; Schuster, George J.; Harris, Rob V.; Crawford, Susan L.

    2006-11-01

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are focused on assessing the effectiveness of Nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. In describing two CRDM assemblies removed from service, decontaminated, and then used in a series of NDE measurements, this paper will address the following questions: 1) What did each technique detect?, 2) What did each technique miss?, 3) How accurately did each technique characterize the detected flaws? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. One contained suspected PWSCC, based on in-service inspection data and through-wall leakage; the other contained evidence suggesting through-wall leakage, but this was unconfirmed. The selected NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on inspecting the J-groove weld and buttering. This paper will also describe the NDE methods used and discuss the NDE results. Future work will involve using the results from these NDE studies to guide the development of a destructive characterization plan to reveal the crack morphology and a comparison of the degradation found by the destructive evaluation with the recorded NDE responses.

  9. An Examination of the Reliability of Scores from Zuckerman's Sensation Seeking Scales, Form V.

    ERIC Educational Resources Information Center

    Deditius-Island, Heide K.; Caruso, John C.

    2002-01-01

    Conducted a reliability generalization study on Zuckerman's Sensation Seeking Scale (M. Zuckerman and others, 1964) using 113 reliability coefficients from 21 published studies. The reliability of scores was marginal for four of the five scales, and low for the other. Mean age of subjects has a significant relationship with score reliability. (SLD)

  10. Examining the Reliability and Validity of Clinician Ratings on the Five-Factor Model Score Sheet

    PubMed Central

    Few, Lauren R.; Miller, Joshua D.; Morse, Jennifer Q.; Yaggi, Kirsten E.; Reynolds, Sarah K.; Pilkonis, Paul A.

    2013-01-01

    Despite substantial research use, measures of the five-factor model (FFM) are infrequently used in clinical settings due, in part, to issues related to administration time and a reluctance to use self-report instruments. The current study examines the reliability and validity of the Five-Factor Model Score Sheet (FFMSS), which is a 30-item clinician rating form designed to assess the five domains and 30 facets of one conceptualization of the FFM. Studied in a sample of 130 outpatients, clinical raters demonstrated reasonably good interrater reliability across personality profiles and the domains manifested good internal consistency with the exception of Neuroticism. The FFMSS ratings also evinced expected relations with self-reported personality traits (e.g., FFMSS Extraversion and Schedule for Nonadaptive and Adaptive Personality Positive Temperament) and consensus-rated personality disorder symptoms (e.g., FFMSS Agreeableness and Narcissistic Personality Disorder). Finally, on average, the FFMSS domains were able to account for approximately 50% of the variance in domains of functioning (e.g., occupational, parental) and were even able to account for variance after controlling for Axis I and Axis II pathology. Given these findings, it is believed that the FFMSS holds promise for clinical use. PMID:20519735

  11. NDE applications in microelectronic industries

    NASA Astrophysics Data System (ADS)

    Meyendorf, N.; Oppermann, M.; Krueger, P.; Roellig, M.; Wolter, K. J.

    2016-04-01

    New concepts in assembly technology boost our daily life in an unknown way. High end semiconductor industry today deals with functional structures down to a few nanometers. ITRS roadmap predicts an ongoing decrease of the "DRAM half pitch" over the next decade. Packaging of course is not intended to realize pitches at the nanometer scale, but has to face the challenges of integrating such semiconductor devices with smallest pitch and high pin counts into systems. Advanced techniques of nondestructive evaluation (NDE) with resolutions in volume better than 1 micrometer vixen size are urgently needed for the safety and reliability of electronic systems, especially those that are used in long living applications. The development speed of integrated circuits is still very high and is not expected to decrease in the next future. The integration density of microelectronic devices is increasing, the dimensions become smaller and the number of I/O's is getting higher. The development of new types of packages must be done with respect to reliability issues. Potential damage sources must be identified and finally avoided in the new packages. In power electronics production the condition monitoring receives a lot of interest to avoid electrical shortcuts, dead solder joints and interface cracking. It is also desired to detect and characterize very small defects like transportation phenomenon or Kirkendall voids. For this purpose, imaging technologies with resolutions in the sub-micron range are required.

  12. Precise thermal NDE for quantifying structural damage

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.

    1995-09-18

    The authors demonstrated a fast, wide-area, precise thermal NDE imaging system to quantify aircraft corrosion damage, such as percent metal loss, above a threshold of 5% with 3% overall uncertainties. The DBIR precise thermal imaging and detection method has been used successfully to characterize defect types, and their respective depths, in aircraft skins, and multi-layered composite materials used for wing patches, doublers and stiffeners. This precise thermal NDE inspection tool has long-term potential benefits to evaluate the structural integrity of airframes, pipelines and waste containers. They proved the feasibility of the DBIR thermal NDE imaging system to inspect concrete and asphalt-concrete bridge decks. As a logical extension to the successful feasibility study, they plan to inspect a concrete bridge deck from a moving vehicle to quantify the volumetric damage within the deck and the percent of the deck which has subsurface delaminations. Potential near-term benefits are in-service monitoring from a moving vehicle to inspect the structural integrity of the bridge deck. This would help prioritize the repair schedule for a reported 200,000 bridge decks in the US which need substantive repairs. Potential long-term benefits are affordable, and reliable, rehabilitation for bridge decks.

  13. Fiber optic sensing for ultrasonic NDE

    SciTech Connect

    Dudderar, T.D.; Burger, C.P.; Gilbert, J.A.; Smith, J.A.; Peters, B.R.

    1987-09-01

    An innovative approach to nondestructive evaluation (NDE) using noncontacting optical sensors has demonstrated. In this effort a single mode optical fiber interferometer (OFI) was used to sense the presence and form of Rayleigh waves traveling along the surface of a steel test bar at a velocity of nearly 3mm/..mu.. s. Acousto-optic time-domain data was successfully used to detect the presence and locate the position of a test flaw (a machined slot) in the bar, and spectrum analysis was used to estimate its geometry and size. This approach has many potential applications in the ultrasonic evaluation of real flaws in structures with complex geometries. Coupled with the authors' earlier work demonstrating the feasibility of generating acoustic waves in metals using laser light pulses transmitted through the fiber optic probes, this latest achievement points to the development of a fully noncontacting, fiber optic based thermal-acousto-photonic (TAP) NDE system, with potential applications to the reliability testing of many important structures where composition, scale, geometry, or restricted access preclude the use of conventional NDE techniques.

  14. Experimental validation of ultrasonic NDE simulation software

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Larche, Michael; Diaz, Aaron A.; Crawford, Susan L.; Prowant, Matthew S.; Anderson, Michael T.

    2016-02-01

    Computer modeling and simulation is becoming an essential tool for transducer design and insight into ultrasonic nondestructive evaluation (UT-NDE). As the popularity of simulation tools for UT-NDE increases, it becomes important to assess their reliability to model acoustic responses from defects in operating components and provide information that is consistent with in-field inspection data. This includes information about the detectability of different defect types for a given UT probe. Recently, a cooperative program between the Electrical Power Research Institute and the U.S. Nuclear Regulatory Commission was established to validate numerical modeling software commonly used for simulating UT-NDE of nuclear power plant components. In the first phase of this cooperative, extensive experimental UT measurements were conducted on machined notches with varying depth, length, and orientation in stainless steel plates. Then, the notches were modeled in CIVA, a semi-analytical NDE simulation platform developed by the French Commissariat a l'Energie Atomique, and their responses compared with the experimental measurements. Discrepancies between experimental and simulation results are due to either improper inputs to the simulation model, or to incorrect approximations and assumptions in the numerical models. To address the former, a variation study was conducted on the different parameters that are required as inputs for the model, specifically the specimen and transducer properties. Then, the ability of simulations to give accurate predictions regarding the detectability of the different defects was demonstrated. This includes the results in terms of the variations in defect amplitude indications, and the ratios between tip diffracted and specular signal amplitudes.

  15. NDE detectability of fatigue type cracks in high strength alloys

    NASA Technical Reports Server (NTRS)

    Christner, B. K.; Rummel, W. D.

    1983-01-01

    Specimens suitable for investigating the reliability of production nondestructive evaluation (NDE) to detect tightly closed fatigue cracks in high strength alloys representative of those materials used in spacecraft engine/booster construction were produced. Inconel 718 was selected as representative of nickel base alloys and Haynes 188 was selected as representative of cobalt base alloys used in this application. Cleaning procedures were developed to insure the reusability of the test specimens and a flaw detection reliability assessment of the fluorescent penetrant inspection method was performed using the test specimens produced to characterize their use for future reliability assessments and to provide additional NDE flaw detection reliability data for high strength alloys. The statistical analysis of the fluorescent penetrant inspection data was performed to determine the detection reliabilities for each inspection at a 90% probability/95% confidence level.

  16. NDE: A key to engine rotor life prediction

    NASA Technical Reports Server (NTRS)

    Doherty, J. E.

    1977-01-01

    A key ingredient in the establishment of safe life times for critical components is the means of reliably detecting flaws which may potentially exist. Currently used nondestructive evaluation procedures are successful in detecting life limiting defects; however, the development of automated and computer aided NDE technology permits even greater assurance of flight safety.

  17. Second Conference on NDE for Aerospace Requirements

    NASA Technical Reports Server (NTRS)

    Woodis, Kenneth W. (Compiler); Bryson, Craig C. (Compiler); Workman, Gary L. (Compiler)

    1990-01-01

    Nondestructive evaluation and inspection procedures must constantly improve rapidly in order to keep pace with corresponding advances being made in aerospace material and systems. In response to this need, the 1989 Conference was organized to provide a forum for discussion between the materials scientists, systems designers, and NDE engineers who produce current and future aerospace systems. It is anticipated that problems in current systems can be resolved more quickly and that new materials and structures can be designed and manufactured in such a way as to be more easily inspected and to perform reliably over the life cycle of the system.

  18. The Mindful Attention Awareness Scale: Further Examination of Dimensionality, Reliability, and Concurrent Validity Estimates.

    PubMed

    Osman, Augustine; Lamis, Dorian A; Bagge, Courtney L; Freedenthal, Stacey; Barnes, Sean M

    2016-01-01

    We examined the factor structure and psychometric properties of the Mindful Attention Awareness Scale (MAAS) in a sample of 810 undergraduate students. Using common exploratory factor analysis (EFA), we obtained evidence for a 1-factor solution (41.84% common variance). To confirm unidimensionality of the 15-item MAAS, we conducted a 1-factor confirmatory factor analysis (CFA). Results of the EFA and CFA, respectively, provided support for a unidimensional model. Using differential item functioning analysis methods within item response theory modeling (IRT-based DIF), we found that individuals with high and low levels of nonattachment responded similarly to the MAAS items. Following a detailed item analysis, we proposed a 5-item short version of the instrument and present descriptive statistics and composite score reliability for the short and full versions of the MAAS. Finally, correlation analyses showed that scores on the full and short versions of the MAAS were associated with measures assessing related constructs. The 5-item MAAS is as useful as the original MAAS in enhancing our understanding of the mindfulness construct. PMID:26560259

  19. Reliability Generalization: An Examination of the Positive Affect and Negative Affect Schedule

    ERIC Educational Resources Information Center

    Leue, Anja; Lange, Sebastian

    2011-01-01

    The assessment of positive affect (PA) and negative affect (NA) by means of the Positive Affect and Negative Affect Schedule has received a remarkable popularity in the social sciences. Using a meta-analytic tool--namely, reliability generalization (RG)--population reliability scores of both scales have been investigated on the basis of a random…

  20. 40-in. OMS Kevlar(Registered Trademark) COPV S/N 007 Stress Rupture Test NDE

    NASA Technical Reports Server (NTRS)

    Saulsberry, Regor; Greene, Nate; Forth, Scott; Leifeste, Mark; Gallus, Tim; Yoder, Tommy; Keddy, Chris; Mandaras, Eric; Wincheski, Buzz; Williams, Philip; Russell, Richard; Eldridge, Jeff

    2010-01-01

    The presentation examines pretest nondestructive evaluation (NDE), including external/internal visual inspection, raman spectroscopy, laser shearography, and laser profilometry; real-time NDE including eddy current, acoustic emission (AE), and real-time portable raman spectroscopy; and AE application to carbon/epoxy composite overwrapped pressure vessels.

  1. Technical Letter Report - Preliminary Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion

    SciTech Connect

    Crawford, Susan L.; Cumblidge, Stephen E.; Doctor, Steven R.; Hall, Thomas E.; Anderson, Michael T.

    2008-05-29

    The U.S. Nuclear Regulatory Commission (NRC) has a multi-year program at the Pacific Northwest National Laboratory (PNNL) to provide engineering studies and assessments of issues related to the use of nondestructive evaluation (NDE) methods for the reliable inspection of nuclear power plant components. As part of this program, there is a subtask 2D that was set up to address an assessment of issues related to the NDE of high density polyethylene (HDPE) butt fusion joints. This work is being driven by the nuclear industry wanting to employ HDPE materials in nuclear power plant systems. This being a new material for use in nuclear applications, there are a number of issues related to its use and potential problems that may evolve. The industry is pursuing ASME Code Case N-755 entitled “Use of Polyethylene (PE) Plastic Pipe for Section III, Division 1, Construction and Section XI Repair/Replacement Activities” that contains the requirements for nuclear power plant applications of HDPE. This Code Case requires that inspections be performed after the fusion joint is made by visually examining the bead that is formed and conducting a pressure test of the joint. These tests are only effective in general if gross through-wall flaws exist in the fusion joint. The NRC wants to know whether a volumetric inspection can be conducted on the fusion joint that will reliably detect lack-of-fusion conditions that may be produced during joint fusing. The NRC has requested that the work that PNNL is conducting be provided to assist them in resolving this inspection issue of whether effective volumetric NDE can be conducted to detect lack of fusion (LOF) in the butt HDPE joints. PNNL had 24 HDPE pipe specimens manufactured of 3408 material to contain LOF conditions that could be used to assess the effectiveness of NDE in detecting the LOF. Basic ultrasonic material properties were measured and used to guide the use of phased arrays and time-of-flight diffraction (TOFD) work that

  2. NDE of advanced ceramics

    NASA Technical Reports Server (NTRS)

    Klima, S. J.

    1986-01-01

    Radiographic, ultrasonic, and scanning laser acoustic microscopy (SLAM) techniques were used to characterize silicon nitride and silicon carbide modulus-of-rupture test specimens in various stages of fabrication. Conventional and microfocus X-ray techniques were found capable of detecting minute high-density inclusions in as-received powders, green compacts, and fully densified specimens. Significant density gradients in sintered bars were observed by radiography, ultrasonic velocity, and SLAM. Ultrasonic attenuation was found sensitive to microstructural variations due to grain and void morphology and distribution. SLAM was capable also of detecting voids, inclusions, and cracks in finished test bars. Consideration is given to the potential for applying thermoacoustic microscopy techniques to green and densified ceramics. Some limitations and the detection probability statistics of the aforementioned nondestructive evaluation (NDE) processes are also discussed.

  3. Reliability of Health Information on the Internet: An Examination of Experts' Ratings

    PubMed Central

    Craigie, Mark; Loader, Brian; Burrows, Roger

    2002-01-01

    Background The use of medical experts in rating the content of health-related sites on the Internet has flourished in recent years. In this research, it has been common practice to use a single medical expert to rate the content of the Web sites. In many cases, the expert has rated the Internet health information as poor, and even potentially dangerous. However, one problem with this approach is that there is no guarantee that other medical experts will rate the sites in a similar manner. Objectives The aim was to assess the reliability of medical experts' judgments of threads in an Internet newsgroup related to a common disease. A secondary aim was to show the limitations of commonly-used statistics for measuring reliability (eg, kappa). Method The participants in this study were 5 medical doctors, who worked in a specialist unit dedicated to the treatment of the disease. They each rated the information contained in newsgroup threads using a 6-point scale designed by the experts themselves. Their ratings were analyzed for reliability using a number of statistics: Cohen's kappa, gamma, Kendall's W, and Cronbach's alpha. Results Reliability was absent for ratings of questions, and low for ratings of responses. The various measures of reliability used gave conflicting results. No measure produced high reliability. Conclusions The medical experts showed a low agreement when rating the postings from the newsgroup. Hence, it is important to test inter-rater reliability in research assessing the accuracy and quality of health-related information on the Internet. A discussion of the different measures of agreement that could be used reveals that the choice of statistic can be problematic. It is therefore important to consider the assumptions underlying a measure of reliability before using it. Often, more than one measure will be needed for "triangulation" purposes. PMID:11956034

  4. Reference Artifacts for NDE

    SciTech Connect

    Bono, M; Hibbard, R; Martz, H E

    2003-02-11

    Two reference artifacts will be fabricated for this study. One of the artifacts will have a cylindrical geometry and will contain features similar to those on an SNRT target. The second artifact will have a spherical geometry and will contain features similar to those on a Double Shell target. The artifacts were designed for manufacturability and to provide a range of features that can be measured using NDE methods. The cylindrical reference artifact is illustrated in Figure 1. This artifact consists of a polystyrene body containing two steps and a machined slot, into which will fit a tracer made of doped polystyrene. The polystyrene body contains several grooves and can be fabricated entirely on a diamond turning machine. The body can be machined by turning a PS rod to a diameter slightly greater than the finished diameter of 2 mm. The part can be moved off-axis to face it off and to machine the steps, slot, and grooves. The tracer contains a drilled hole and a milled slot, which could be machined with a single setup on a milling machine. Once assembled, the artifact could be placed in a Be tube or other structure relevant to target assemblies. The assembled artifact will contain many features that could be measured using various NDE methods. Some of these features are: Diameter; Maximum height; Step height; Dimensions of upper step; Radius at the union of the bottom of step and the vertical wall; Sizes of the grooves; Distance from step to groove; Slot width; Slot height; Location of the groove beneath the tracer; Diameter and location of drilled hole in tracer; and Size and location of slot in tracer. The spherical reference artifact is illustrated in Figure 2. This artifact is intended to replicate a double shell target, which consists of concentric polymer spheres separated by aerogel. The artifact consists of an upper hemispherical shell composed of 1% BrCH, which mates via a step joint with a hemispherical component made of polystyrene. This lower component

  5. Assessing Reliability: Critical Corrections for a Critical Examination of the Rorschach Comprehensive System.

    ERIC Educational Resources Information Center

    Meyer, Gregory J.

    1997-01-01

    In reply to criticism of the Rorschach Comprehensive System (CS) by J. Wood, M. Nezworski, and W. Stejskal (1996), this article presents a meta-analysis of published data indicating that the CS has excellent chance-corrected interrater reliability. It is noted that the erroneous assumptions of Wood et al. make their assertions about validity…

  6. The Examination of Reliability According to Classical Test and Generalizability on a Job Performance Scale

    ERIC Educational Resources Information Center

    Yelboga, Atilla; Tavsancil, Ezel

    2010-01-01

    In this research, the classical test theory and generalizability theory analyses were carried out with the data obtained by a job performance scale for the years 2005 and 2006. The reliability coefficients obtained (estimated) from the classical test theory and generalizability theory analyses were compared. In classical test theory, test retest…

  7. The Rorschach Perceptual-Thinking Index (PTI): An Examination of Reliability, Validity, and Diagnostic Efficiency

    ERIC Educational Resources Information Center

    Hilsenroth, Mark J.; Eudell-Simmons, Erin M.; DeFife, Jared A.; Charnas, Jocelyn W.

    2007-01-01

    This study investigates the reliability, validity, and diagnostic efficiency of the Rorschach Perceptual-Thinking Index (PTI) in relation to the accurate identification of psychotic disorder (PTD) patients. The PTI is a revision of the Rorschach Schizophrenia Index (SCZI), designed to achieve several criteria, including an increase in the…

  8. Examining Reliability of Reading Comprehension Ratings of Fifth Grade Students' Oral Retellings

    ERIC Educational Resources Information Center

    Bernfeld, L. Elizabeth Shirley; Morrison, Timothy G.; Sudweeks, Richard R.; Wilcox, Brad

    2013-01-01

    The purpose of this study was to rate oral retellings of fifth graders to determine how passages, raters, and rating occasions affect those ratings, and to identify what combination of those elements produce reliable retelling ratings. A group of 36 fifth grade students read and orally retold three contemporary realistic fiction passages. Two…

  9. Examining the Reliability and Validity of the Effective Behavior Support Self-Assessment Survey

    ERIC Educational Resources Information Center

    Solomon, Benjamin G.; Tobin, Kevin G.; Schutte, Gregory M.

    2015-01-01

    The Effective Behavior Support Self-Assessment Survey (SAS; Sugai, Horner, & Todd, 2003) is designed to measure perceived Positive Behavior Interventions and Supports (PBIS) implementation and identify priorities for improvement. Despite its longevity, little published research exists documenting its reliability or validity for these purposes.…

  10. Relationship Skills in a Clinical Performance Examination: Reliability and Validity of the Relationship Instrument.

    ERIC Educational Resources Information Center

    Bolton, Cynthia; And Others

    Among the repertoire of clinical skills necessary for the professional development of medical students is the ability to create a positive doctor-patient relationship through effective communication skills. The purpose of this study was to create an instrument that reliably measures the relationship between physician and patient. The Relationship…

  11. Test Theories, Educational Priorities and Reliability of Public Examinations in England

    ERIC Educational Resources Information Center

    Baird, Jo-Anne; Black, Paul

    2013-01-01

    Much has already been written on the controversies surrounding the use of different test theories in educational assessment. Other authors have noted the prevalence of classical test theory over item response theory in practice. This Special Issue draws together articles based upon work conducted on the Reliability Programme for England's…

  12. Can We Trust Levelled Texts? An Examination of Their Reliability and Quality from a Linguistic Perspective

    ERIC Educational Resources Information Center

    Pitcher, Brandy; Fang, Zhihui

    2007-01-01

    Over the past decade in the United States, levelled texts, or "little books" with finely graduated levelling of text difficulty, have regained their status as a literacy staple for beginning readers. Despite their resurgence, questions remain regarding the reliability and quality of these books. In this study, we conducted a detailed analysis of…

  13. Development of the Anxiety Scale for Natural Disaster: Examination of its Reliability

    NASA Astrophysics Data System (ADS)

    Matsumoto, Miki; Yatabe, Ryuichi

    The objective of present study was to develop the a nxiety scale for natural disaster, and to examineits reliability. We developed the 14 items for the anxiety scale based on anticipated damage of Nankai earthquake in Ehime prefecture. The subjects consist of 391 people in Yawatahama city, Ehime prefecture. Firstly, we analyzed the latent factors which influenced the anxiety for natural disaster by using the factor analysis method. Secondly, we cal culated Cronbach's coefficient alpha. The result of the factor analysis confirmed the three factors such as "anxiety for lifeline damage", "anxiety for second ary disaster" and "fear for others". Cronbach's coefficient alpha for each factor showed the high interna l consistency reliability. We considered that each factor could prove to be a valuable tool for researc h about the person's anxiety for natural disaster.

  14. Examining the scope of questionable diagnostic reliability in Sexually Violent Predator (SVP) evaluations.

    PubMed

    Perillo, Anthony D; Spada, Ashley H; Calkins, Cynthia; Jeglic, Elizabeth L

    2014-01-01

    Research has suggested questionable reliability of diagnosing mental abnormality during Sexually Violent Predator (SVP) evaluations, despite this being a necessary requirement for SVP commitment. Findings have been inconsistent across studies, and little is known about the extent of such trends across diagnoses and clinicians. The current study includes data from 375 sex offenders referred for evaluation for SVP commitment in New Jersey. Clinicians (n = 128) rendered a variety of diagnoses, most commonly Pedophilia. Results suggested questionable agreement across paraphilic and non-paraphilic diagnoses, although agreement was fair for diagnoses of Pedophilia. Further analyses of cases (n = 49) involving clinicians receiving a large number of referrals (n = 14) were generally consistent with these findings, with no outlier effect apparent. Findings suggest questionable diagnostic reliability to be a widespread issue in SVP evaluations, present across a variety of diagnoses and across the general body of clinicians involved in evaluations. PMID:24274914

  15. NASA DOE POD NDE Capabilities Data Book

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2015-01-01

    This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book, 3rd ed., NTIAC DB-97-02. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. The test methodology used in DOEPOD is based on the field of statistical sequential analysis founded by Abraham Wald. Sequential analysis is a method of statistical inference whose characteristic feature is that the number of observations required by the procedure is not determined in advance of the experiment. The decision to terminate the experiment depends, at each stage, on the results of the observations previously made. A merit of the sequential method, as applied to testing statistical hypotheses, is that test procedures can be constructed which require, on average, a substantially smaller number of observations than equally reliable test procedures based on a predetermined number of observations.

  16. Advanced Eddy current NDE steam generator tubing.

    SciTech Connect

    Bakhtiari, S.

    1999-03-29

    As part of a multifaceted project on steam generator integrity funded by the U.S. Nuclear Regulatory Commission, Argonne National Laboratory is carrying out research on the reliability of nondestructive evaluation (NDE). A particular area of interest is the impact of advanced eddy current (EC) NDE technology. This paper presents an overview of work that supports this effort in the areas of numerical electromagnetic (EM) modeling, data analysis, signal processing, and visualization of EC inspection results. Finite-element modeling has been utilized to study conventional and emerging EC probe designs. This research is aimed at determining probe responses to flaw morphologies of current interest. Application of signal processing and automated data analysis algorithms has also been addressed. Efforts have focused on assessment of frequency and spatial domain filters and implementation of more effective data analysis and display methods. Data analysis studies have dealt with implementation of linear and nonlinear multivariate models to relate EC inspection parameters to steam generator tubing defect size and structural integrity. Various signal enhancement and visualization schemes are also being evaluated and will serve as integral parts of computer-aided data analysis algorithms. Results from this research will ultimately be substantiated through testing on laboratory-grown and in-service-degraded tubes.

  17. Assessing the Reliability of Ultrasound Imaging to Examine Radial Nerve Excursion.

    PubMed

    Kasehagen, Ben; Ellis, Richard; Mawston, Grant; Allen, Scott; Hing, Wayne

    2016-07-01

    Ultrasound imaging allows cost effective in vivo analysis for quantifying peripheral nerve excursion. This study used ultrasound imaging to quantify longitudinal radial nerve excursion during various active and passive wrist movements in healthy participants. Frame-by-frame cross-correlation software allowed calculation of nerve excursion from video sequences. The reliability of ultrasound measurement of longitudinal radial nerve excursion was moderate to high (intraclass correlation coefficient range = 0.63-0.86, standard error of measurement 0.19-0.48). Radial nerve excursion ranged from 0.41 to 4.03 mm induced by wrist flexion and 0.28 to 2.91 mm induced by wrist ulnar deviation. No significant difference was seen in radial nerve excursion during either wrist movement (p > 0.05). Wrist movements performed in forearm supination produced larger overall nerve excursion (1.41 ± 0.32 mm) compared with those performed in forearm pronation (1.06 ± 0.31 mm) (p < 0.01). Real-time ultrasound is a reliable, cost-effective, in vivo method for analysis of radial nerve excursion. PMID:27087692

  18. [Examination of safety improvement by failure record analysis that uses reliability engineering].

    PubMed

    Kato, Kyoichi; Sato, Hisaya; Abe, Yoshihisa; Ishimori, Yoshiyuki; Hirano, Hiroshi; Higashimura, Kyoji; Amauchi, Hiroshi; Yanakita, Takashi; Kikuchi, Kei; Nakazawa, Yasuo

    2010-08-20

    How the maintenance checks of the medical treatment system, including start of work check and the ending check, was effective for preventive maintenance and the safety improvement was verified. In this research, date on the failure of devices in multiple facilities was collected, and the data of the trouble repair record was analyzed by the technique of reliability engineering. An analysis of data on the system (8 general systems, 6 Angio systems, 11 CT systems, 8 MRI systems, 8 RI systems, and the radiation therapy system 9) used in eight hospitals was performed. The data collection period assumed nine months from April to December 2008. Seven items were analyzed. (1) Mean time between failures (MTBF) (2) Mean time to repair (MTTR) (3) Mean down time (MDT) (4) Number found by check in morning (5) Failure generation time according to modality. The classification of the breakdowns per device, the incidence, and the tendency could be understood by introducing reliability engineering. Analysis, evaluation, and feedback on the failure generation history are useful to keep downtime to a minimum and to ensure safety. PMID:20953108

  19. Inter-examiner reliability of diplomats in the mechanical diagnosis and therapy system in assessing patients with shoulder pain

    PubMed Central

    Abady, Afshin Heidar; Rosedale, Richard; Overend, Tom J; Chesworth, Bert M; Rotondi, Michael A

    2014-01-01

    Objective: To investigate the inter-examiner reliability of Mechanical Diagnosis and Therapy (MDT)-trained diplomats in classifying patients with shoulder disorders. The MDT system has demonstrated acceptable reliability when used in patients with spinal disorders; however, little is known about its utility when used for appendicular conditions. Methods: Fifty-four clinical scenarios were created by a group of 11 MDT diploma holders based on their clinical experience with patients with shoulder pain. The vignettes were made anonymous, and their clinical diagnoses sections were left blank. The vignettes were sent to a second group of six international McKenzie Institute diploma holders who were asked to classify each vignette according to the MDT categories for upper extremity. Inter-examiner agreement was evaluated with kappa statistics. Results: There was ‘very good’ agreement among the six MDT diplomats for classifying the McKenzie syndromes in patients with shoulder pain (kappa = 0.90, SE = 0.018). The raw overall level of multi-rater agreement among the six clinicians in classifying the vignettes was 96%. After accounting for the actual MDT category for each vignette, kappa and the raw overall level of agreement decreased negligibly (0.89 and 95%, respectively). Discussion: Using clinical vignettes, the McKenzie system of MDT has very good reliability in classifying patients with shoulder pain. As an alternative, future reliability studies could use real patients instead of written vignettes. PMID:25395828

  20. Test-retest reliability of the eating disorder examination-questionnaire (EDE-Q) in a college sample

    PubMed Central

    2013-01-01

    Background The Eating Disorder Examination-Questionnaire (EDE-Q), a widely used self-report instrument, is often used for measuring change in eating disorder symptoms over the course of treatment. However, limited data exist about test-retest reliability, particularly for men. The current study evaluated EDE-Q 7-day test-retest reliability in male (n = 47) and female (n = 44) undergraduate students together and separately by gender. Results Internal consistency was consistently higher for women and at Time 2, but remained acceptable for both men and women at both time points. Cronbach’s α ranged from .75 (Restraint at Time 1) to .93 (Shape Concern at Time 2) for women and from .73 (Eating Concern at Time 2) to .89 (Shape Concern at Time 2) for men. With the exception of some of the eating disorder behaviors, test re-test reliability was fairly strong for both men and women. Shape Concern and the global EDE-Q score were highest for both men and women (Spearman’s rho > 0.89 with the exception of Shape Concern for women for which Spearman’s rho = .86). Test re-test reliability was lower for the eating disorder behavior measures, particularly for men, for whom Kendall’s tau-b for frequency and phi for occurrence was less than 0.70 for all but objective bulimic episodes. Conclusions Results were consistent with past research for women, indicating strong test re-test reliability in attitudinal features of eating disorders, but lower test re-test reliability in behavioral features. Internal consistency and test re-test reliability was good for the attitudinal features of eating disorder in men, but tended to be lower for men compared to women. The EDE-Q appears to be a reliable instrument for assessing eating disorder attitudes in both male and female undergraduate students, but is less reliable for assessing ED behaviors, particularly in men. PMID:24999420

  1. Improving the Reliability of Autism Diagnoses: Examining the Utility of Adaptive Behavior

    ERIC Educational Resources Information Center

    Tomanik, Stacey S.; Pearson, Deborah A.; Loveland, Katherine A.; Lane, David M.; Shaw, J. Bryant

    2007-01-01

    The classification agreement of the Autism Diagnostic Interview-Revised (ADI-R) and the Autism Diagnostic Observation Schedule (ADOS) was examined in 129 children and adolescents (aged 7-18 years) who were evaluated for autism. Participants received a diagnosis of autism or non-autism based on the ADI-R. Linear discriminant analysis revealed…

  2. Examining Interrater Reliability and Validity of a Paediatric Cardiopulmonary Physiotherapy Discharge Tool

    PubMed Central

    Pellow, Vanessa; Sproule, Jeannine; Brooks, Dina; Ellerton, Cindy

    2014-01-01

    ABSTRACT Purpose: To determine the interrater reliability (IRR) of the individual items in the Paediatric Cardiopulmonary Physiotherapy (CPT) Discharge Tool. This tool identifies six critical items that physiotherapists should consider when determining a paediatric patient's readiness for discharge from CPT after upper-abdominal, cardiac, or thoracic surgery: oxygen saturation, mobility, secretion retention, discharge planning, auscultation, and signs of respiratory distress. Methods: A total of 33 paediatric patients (ages 2 to <19 years) who received at least 1 day of CPT following cardiac, thoracic, or upper-abdominal surgery were independently assessed using the Paediatric CPT Discharge Tool by two designated assessors, who assessed each patient within 4 hours of each other. Results: Kappa analysis showed the following levels of interrater agreement for the six items of the Paediatric CPT Discharge Tool: Oxygen Saturation, excellent (κ=0.80); Mobility, substantial (κ=0.62); Secretion Clearance, moderate (κ=0.39); Discharge Planning, fair (κ=0.37); and Auscultation and Respiratory Distress, poor (κ=0.24 and κ=−0.08, respectively). Conclusion: Several of the items in the Paediatric CPT Discharge Tool demonstrate good IRR. The discharge tool is ready for further psychometric testing, specifically validity testing. PMID:24799752

  3. Narrative Review: Should Teaching of the Respiratory Physical Examination Be Restricted Only to Signs with Proven Reliability and Validity?

    PubMed Central

    Baumal, Reuben

    2010-01-01

    OBJECTIVE To review the reported reliability (reproducibility, inter-examiner agreement) and validity (sensitivity, specificity and likelihood ratios) of respiratory physical examination (PE) signs, and suggest an approach to teaching these signs to medical students. METHODS Review of the literature. We searched Paper Chase between 1966 and June 2009 to identify and evaluate published studies on the diagnostic accuracy of respiratory PE signs. RESULTS Most studies have reported low to fair reliability and sensitivity values. However, some studies have found high specificites for selected PE signs. None of the studies that we reviewed adhered to all of the STARD criteria for reporting diagnostic accuracy. CONCLUSIONS Possible flaws in study designs may have led to underestimates of the observed diagnostic accuracy of respiratory PE signs. The reported poor reliabilities may have been due to differences in the PE skills of the participating examiners, while the sensitivities may have been confounded by variations in the severity of the diseases of the participating patients. IMPLICATION FOR PRACTICE AND MEDICAL EDUCATION Pending the results of properly controlled studies, the reported poor reliability and sensitivity of most respiratory PE signs do not necessarily detract from their clinical utility. Therefore, we believe that a meticulously performed respiratory PE, which aims to explore a diagnostic hypothesis, as opposed to a PE that aims to detect a disease in an asymptomatic person, remains a cornerstone of clinical practice. We propose teaching the respiratory PE signs according to their importance, beginning with signs of life-threatening conditions and those that have been reported to have a high specificity, and ending with signs that are "nice to know," but are no longer employed because of the availability of more easily performed tests. PMID:20349154

  4. NEW NONLINEAR ACOUSTIC TECHNIQUES FOR NDE

    SciTech Connect

    J. A. TENCATE

    2000-09-01

    Acoustic nonlinearity in a medium may occur as a result of a variety of mechanisms. Some of the more common nonlinear effects may come from: (1) one or several cracks, volumetrically distributed due to age or fatigue or single disbonds or delamination; (2) imperfect grain-to-grain contacts, e.g., materials like concretes that are cemented together and have less than perfect bonds; (3) hard parts in a soft matrix, e.g., extreme duty materials like tungsten/copper alloys; or (4) atomic-scale nonlinearities. Nonlinear effects that arise from the first two mechanisms are considerably larger than the last two; thus, we have focused considerable attention on these. The most pervasive nonlinear measure of damage today is a second harmonic measurement. We show that for many cases of interest to NDE, a second harmonic measurement may not be the best choice. We examine the manifestations of nonlinearity in (nonlinear) materials with cracks and/or imperfect bonds and illustrate their applicability to NDE. For example, nonlinear resonance frequency shifts measured at increasing drive levels correlate strongly with the amount of ASR (alkali-silica reaction) damage of concrete cores. Memory effects (slow dynamics) also seem to correlate with the amount of damage.

  5. Terahertz NDE for Under Paint Corrosion Detection and Evaluation

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Corrosion under paint is not visible until it has caused paint to blister, crack, or chip. If corrosion is allowed to continue then structural problems may develop. Identifying corrosion before it becomes visible would minimize repairs and costs and potential structural problems. Terahertz NDE imaging under paint for corrosion is being examined as a method to inspect for corrosion by examining the terahertz response to paint thickness and to surface roughness.

  6. Challenges of NDE Simulation Tool Challenges of NDE Simulation Tool

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Juarez, Peter D.; Seebo, Jeffrey P.; Frank, Ashley L.

    2015-01-01

    Realistic nondestructive evaluation (NDE) simulation tools enable inspection optimization and predictions of inspectability for new aerospace materials and designs. NDE simulation tools may someday aid in the design and certification of advanced aerospace components; potentially shortening the time from material development to implementation by industry and government. Furthermore, modeling and simulation are expected to play a significant future role in validating the capabilities and limitations of guided wave based structural health monitoring (SHM) systems. The current state-of-the-art in ultrasonic NDE/SHM simulation cannot rapidly simulate damage detection techniques for large scale, complex geometry composite components/vehicles with realistic damage types. This paper discusses some of the challenges of model development and validation for composites, such as the level of realism and scale of simulation needed for NASA' applications. Ongoing model development work is described along with examples of model validation studies. The paper will also discuss examples of the use of simulation tools at NASA to develop new damage characterization methods, and associated challenges of validating those methods.

  7. Through the looking glass: The future for NDE?

    NASA Astrophysics Data System (ADS)

    Bond, Leonard J.

    2014-02-01

    Nondestructive testing (NDT) is a mature industry, with global equipment sales fast moving towards 2B. per year. The use of conventional NDT will grow in developing countries and in developed countries the challenges will include those associated with maintaining aging infrastructure. For some systems the future will move to structural health monitoring (SHM) and for others into integration of online measurements in manufacturing. Nondestructive Evaluation (NDE) is a multi-disciplinary area of endeavor that has its origins in materials science and NDT. It seeks to provide an adequate science base for NDT to become a quantitative science. It was seen to be necessary to better detect, size and type defects, improve the reliability of inspection, and probability of detection (POD). There is particular interest in estimating the potential defects could have on performance or potential for loss of structural integrity, under various loading or stressor conditions, and ultimately implement risk-based reliability assessments. NDE must be seen more as a part of the wide field of engineering, as an interdisciplinary endeavor, that brings together the expertise of materials science and metrology, together with the underlying physics for inspection methods, as well as statistics, computers, robotics and software. The adoption of advanced manufacturing, will require new metrology tools and methods to provide data for assessing new materials including powder metals, as used in additive manufacturing, and various composites. The lessons from the past proceedings of this conference series include that the problems faced today are harder than was expected during the first decade of quantitative NDE research. Even with new types of transducers and much improved A/D and powerful computers new approaches and more basic measurement physics being understood, new insights are needed to provide the data needed to solve many real-world NDE problems, to understand and measure early

  8. Learning objectives for NDE education

    NASA Astrophysics Data System (ADS)

    Thompson, R. B.

    2001-04-01

    A brainstorming session regarding learning objectives or desired outcomes for NDE education, held on Thursday afternoon, July 20, 2000 at the Review of Progress in Quantitative Nondestructive Evaluation, is discussed. Primary attention is paid to undergraduate education with some discussion of graduate education. The proposed learning objectives are first presented, as formulated by an international group of NDE educators representing the World Federation of NDE Centers. This is followed by a summary of the discussions of those objectives by a group of educators, industrialists and government employees who participated in the brainstorming session. Viewpoints were wide ranging and a unanimous consensus position was not reached in all cases. Nevertheless, some important trends emerged in the discussions and a number of issues were framed more clearly than in the past. These are documented to provide a basis of continued discussions in the future. Generally speaking, the proposed learning objectives were believed to be appropriate but further discussion is required to define the appropriate title to associate with an individual who has achieved those objectives.

  9. Terahertz NDE Application for Corrosion Detection and Evaluation under Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  10. Application of damage mechanism-specific NDE methods in support of risk-informed inspections

    SciTech Connect

    Walker, S.M.; Ammirato, F.V.

    1996-12-01

    Risk-informed inservice inspection (RISI) programs effectively concentrate limited and costly examination resources on systems and locations most relevant to plant safety. The thought process used in the selection of nondestructive evaluation (NDE) methods and procedures in a RISI program is expected to change toward integrating NDE into integrity management, with a concentration on understanding failure mechanisms. Identifying which damage mechanisms may be operative in specific locations and applying appropriate NDE methods to detect the presence of these damage mechanisms is fundamental to effective RISI application. Considerable information is already available on inspection for damage mechanisms such as intergranular stress corrosion cracking (IGSCC), thermal fatigue, and erosion-corrosion. Similar procedures are under development for other damage mechanisms that may occur individually or in combination with other mechanisms. Guidance is provided on application of NDE procedures in an RISI framework to facilitate implementation by utility staff (Gosselin, 1996).

  11. Fixed Eigenvector Analysis of Thermographic NDE Data

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    2011-01-01

    Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. This paper will discuss an alternative method of analysis that has been developed where a predetermined set of eigenvectors is used to process the thermal data from both reinforced carbon-carbon (RCC) and graphiteepoxy honeycomb materials. These eigenvectors can be generated either from an analytic model of the thermal response of the material system under examination, or from a large set of experimental data. This paper provides the details of the analytic model, an overview of the PCA process, as well as a quantitative signal-to-noise comparison of the results of performing both conventional PCA and fixed eigenvector analysis on thermographic data from two specimens, one Reinforced Carbon-Carbon with flat bottom holes and the second a sandwich construction with graphite-epoxy face sheets and aluminum honeycomb core.

  12. The reliability of the examination of foods, processed for safety, for enteric pathogens and Enterobacteriaceae: a mathematical and ecological study

    PubMed Central

    Drion, E. F.; Mossel, D. A. A.

    1977-01-01

    Because of the paucity of quantitative data on numbers of other enteric pathogens in food, the reliability of the examination of processed foods for Enterobacteriaceae was estimated taking Salmonella as a model. For this purpose an assessment was carried out of the risk of accepting Salmonella contaminated consignments of foods, despite a negative outcome of (i) examination of 1·5 kg samples for Salmonella; (ii) examination of one or two 1 g samples for Enterobacteriaceae; (iii) simultaneous application of both tests. The computations were based on the results of the examination of 6830 samples of dried foods, processed for safety, out of a total of 18170 samples. Only 69 samples permitted the exact calculation of the ε-factor, defined as c.f.u./g of Enterobacteriaceae/c.f.u./g of Salmonella; 4642 were positive for the former group but `free' from Salmonella, and the rest were negative in both tests. Numbers of c.f.u./g for both groups, and hence the ε-factors, varied widely between commodities and also between different consignments of the same food product. The average for ε amounted to 5·8 × 103, far from the base-line value of 0·75 × 103 assessed earlier. In only 0·1% of samples did the Enterobacteriaceae test fail to achieve the required consumer protection. This investigation therefore substantiates that testing foods processed for safety by examining accurately chosen quantities for ecologically well selected and taxonomically thoroughly defined index organisms is a most effective procedure in terms both of consumer protection and simplicity of examination without compelling the food industry to achieve hardly attainable microbiological quality standards. PMID:325125

  13. Orbiter Cold Plate Intergranular Corrosion: Development of NDE Standards and Assessment of NDE Methods

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Winfree, William P.; Piascik, Robert S.

    2002-01-01

    During pre-servicing of a space shuttle (orbiter vehicle, OV-102), helium leak detection of an avionics cold plate identified a leak located in the face sheet oriented towards the support shelf. Subsequent destructive examination of the leaking cold plate revealed that intergranular corrosion had penetrated the 0.017-inch thick aluminum (AA6061) face sheet. The intergranular attack (IGA) was likely caused by an aggressive crevice environment created by condensation of water vapor between the cold plate and support shelf. Face sheet susceptibility to IGA is a result of the brazing process used in the fabrication of the cold plates. Cold plate components were brazed at 1000 F followed by a slow cooling process to avoid distortion of the bonded cold plate. The slow cool process caused excessive grain boundary precipitation resulting in a material that is susceptible to IGA. The objectives of this work are as follows: (1) Develop first-of-a-kind nondestructive evaluation (NDE) standards that contain IGA identical to that found in the orbiter cold plates; and (2) Assess advanced NDE techniques for corrosion detection and recommend methods for cold plate examination. This report documents the results of work performed at Langley Research Center to fulfill these objectives.

  14. Finite element analysis simulations for ultrasonic array NDE inspections

    NASA Astrophysics Data System (ADS)

    Dobson, Jeff; Tweedie, Andrew; Harvey, Gerald; O'Leary, Richard; Mulholland, Anthony; Tant, Katherine; Gachagan, Anthony

    2016-02-01

    Advances in manufacturing techniques and materials have led to an increase in the demand for reliable and robust inspection techniques to maintain safety critical features. The application of modelling methods to develop and evaluate inspections is becoming an essential tool for the NDE community. Current analytical methods are inadequate for simulation of arbitrary components and heterogeneous materials, such as anisotropic welds or composite structures. Finite element analysis software (FEA), such as PZFlex, can provide the ability to simulate the inspection of these arrangements, providing the ability to economically prototype and evaluate improved NDE methods. FEA is often seen as computationally expensive for ultrasound problems however, advances in computing power have made it a more viable tool. This paper aims to illustrate the capability of appropriate FEA to produce accurate simulations of ultrasonic array inspections - minimizing the requirement for expensive test-piece fabrication. Validation is afforded via corroboration of the FE derived and experimentally generated data sets for a test-block comprising 1D and 2D defects. The modelling approach is extended to consider the more troublesome aspects of heterogeneous materials where defect dimensions can be of the same length scale as the grain structure. The model is used to facilitate the implementation of new ultrasonic array inspection methods for such materials. This is exemplified by considering the simulation of ultrasonic NDE in a weld structure in order to assess new approaches to imaging such structures.

  15. NDE Activity at Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1993-01-01

    None, This is a viewgraph outline from an oral presentation. From Intro.: Our speaker will review the NDE technology under development at the Jet Propulsion Laboratory (JPL). Emphasis will be given to Ultrasonics and application of sensors to space technology. Further, the efforts of JPL in technology transfer to the industry in the area of NDE will be covered.

  16. NDE Methodologies for Composite Flywheels Certification

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Konno, Kevin E.; Martin, Richard E.; Thompson, Richard

    2000-01-01

    Manufacturing readiness of composite rotors and certification of flywheels depend in part on the maturity of nondestructive evaluation (NDE) technology for process optimization and quality assurance, respectively. Capabilities and limitations of x-ray-computed tomography and radiography, as well as advanced ultrasonics were established on NDE ring and rotor standards with EDM notches and drilled holes. Also, intentionally seeded delamination, tow break, and insert of bagging material were introduced in hydroburst-rings to study the NDE detection capabilities of such anomalies and their effect on the damage tolerance and safe life margins of subscale rings and rotors. Examples of possible occurring flaws or anomalies in composite rings as detected by NDE and validated by destructive metallography are shown. The general NDE approach to ensure quality of composite rotors and to help in the certification of flywheels is briefly outlined.

  17. Microwave NDE for Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Melapudi, Vikram R.; Rothwell, Edward J.; Udpa, Lalita; Udpa, Satish S.

    2006-03-01

    Nondestructive assessment of the integrity of civil structures is of paramount importance for ensuring safety. In concrete imaging, radiography, ground penetrating radar and infrared thermography are some of the widely used techniques for health monitoring. Other emerging technologies that are gaining impetus for detecting and locating flaws in steel reinforcement bar include radioactive computed tomography, microwave holography, microwave and acoustic tomography. Of all the emerging techniques, microwave NDT is a promising imaging modality largely due to their ability to penetrate thick concrete structures, contrast between steel rebar and concrete and their non-radioactive nature. This paper investigates the feasibility of a far field microwave NDE technique for reinforced concrete structures.

  18. The point-to-point test: A new diagnostic tool for measuring lumbar tactile acuity? Inter and intra-examiner reliability study of pain-free subjects.

    PubMed

    Adamczyk, Wacław; Sługocka, Anna; Saulicz, Oskar; Saulicz, Edward

    2016-04-01

    A two-point discrimination test (TPD) is commonly used to investigate lumbar tactile acuity. However, low inter-examiner reliability and difficulties in execution significantly limit its application. Therefore the aim of this study was to compare the inter- and intra-examiner reliability of a new approach, the point-to-point test (PTP), with the TPD. Twenty-one pain-free subjects attended the inter-examiner stage of the study. Eighteen of them were further recruited into an intra-examiner (reproducibility and repeatability) reliability study. PTP was performed on the three points plotted at the L3 spinal level. Point '0' overlapped with the L3 spinous process, from which points '1' and '2' were horizontally separated by 5 and 10 cm, respectively. Participants manually indicated a point previously touched by the examiner, while the distance (error) was measured. Reliability was determined with the intraclass correlation coefficient (ICC2,3). The results revealed good and moderate inter- and intra-examiner reliability at point '1' (ICC2,3 = 0.68-0.84) and good reliability at point '2' (ICC2,3 = 0.84-0.86). At point '0', reliability was moderate to poor (ICC2,3 = 0.13-0.63). TPD was characterised by a poor to moderate level of inter- (ICC2,1 = 0.51; ICC2,3 = 0.56) and intra-examiner reliability (ICC(2,1) = 0.50; ICC2,3 = 0.74). Our findings suggest that PTP is more reliable than TPD at two investigated points at the L3 spinal level. However, further research on PTP validity data is strongly warranted. PMID:26797175

  19. NDE of PWA 1480 single crystal turbine blade material

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Orange, Thomas W.; Dreshfield, Robert L.

    1993-01-01

    Cantilever bending fatigue specimens were examined by fluorescent liquid penetrant and radioactive gas penetrant (Krypton) Nondestructive Evaluation (NDE) methods and tested. Specimens with cast, ground, or polished surfaces were evaluated to study the effect of surface condition on NDE and fatigue crack initiation. Fractographic and metallurgical analyses were performed to determine the nature of crack precursors. Preliminary results show that fatigue strength was lower for specimens with cast surfaces than for specimens with machined surfaces. The liquid penetrant and gas penetrant techniques both provided indications of a large population of defects on the cast surfaces. On ground or polished specimen surfaces, the gas penetrant appeared to estimate the actual number of voids more accurately than the liquid penetrant.

  20. NDE of PWA 1480 single crystal turbine blade material

    NASA Technical Reports Server (NTRS)

    Klima, Stanley J.; Orange, Thomas W.; Dreshfield, Robert L.

    1993-01-01

    Cantilever bending fatigue specimens were examined by fluorescent liquid penetrant and radioactive gas penetrant (Krypton) non-destructive evaluation (NDE) methods and tested. Specimens with cast, ground, or polished surface were evaluated to study the effect of surface condition on NDE and fatigue crack initiation. Fractographic and metallurgical analyses were performed to determine the nature of crack precursors. Preliminary results show that fatigue strength was lower for specimens with cast surfaces than for specimens with machined surfaces. The liquid penetrant and gas penetrant techniques both provided indications of a large population of defects on the cast surfaces. On ground or polished specimen surfaces, the gas penetrant appeared to estimate the actual number of voids more accurately than the liquid penetrant.

  1. NDE of titanium alloy MMC rings for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Percival, Larry D.; Yancey, Robert N.; Kautz, Harold E.

    1993-01-01

    Progress in the processing and fabrication of metal matrix composites (MMC's) requires appropriate mechanical and nondestructive testing methods. These methods are needed to characterize properties, assess integrity, and predict the life of engine components such as compressor rotors, blades, and vanes. Capabilities and limitations of several state-of-the-art nondestructive evaluation (NDE) technologies are investigated for characterizing titanium MMC rings for gas turbine engines. The use of NDE technologies such as x-ray computed tomography, radiography, and ultrasonics in identifying fabrication-related problems that caused defects in components is examined. Acousto-ultrasonics was explored to assess degradation of material mechanical properties by using stress wave factor and ultrasonic velocity measurements before and after the burst testing of the rings.

  2. Developing NDE Techniques for Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan

    2009-01-01

    The Shuttle and Constellation Programs require very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing LC-39 pad tanks, which will be passed onto Constellation, are 40 years old and have received minimal refurbishment or even inspection, because they can only be temperature cycled a few times before being overhauled (a costly operation in both time and dollars). Numerous questions exist on the performance and reliability of these old tanks which could cause a major Program schedule disruption. Consequently, with the passing of the first two tanks to Constellation to occur this year, there is growing awareness that NDE is needed to detect problems early in these tanks so that corrective actions can be scheduled when least disruptive. Time series thermal images of two sides of the Pad B LH2 tank have been taken over multiple days to demonstrate the effects of environmental conditions to the solar heating of the tank and therefore the effectiveness of thermal imaging.

  3. Simple Syringe Filtration Methods for Reliably Examining Dissolved and Colloidal Trace Element Distributions in Remote Field Locations

    NASA Astrophysics Data System (ADS)

    Shiller, A. M.

    2002-12-01

    Methods for obtaining reliable dissolved trace element samples frequently utilize clean labs, portable laminar flow benches, or other equipment not readily transportable to remote locations. In some cases unfiltered samples can be obtained in a remote location and transported back to a lab for filtration. However, this may not always be possible or desirable. Additionally, methods for obtaining information on colloidal composition are likewise frequently too cumbersome for remote locations as well as being time-consuming. For that reason I have examined clean methods for collecting samples filtered through 0.45 and 0.02 micron syringe filters. With this methodology, only small samples are collected (typically 15 mL). However, with the introduction of the latest generation of ICP-MS's and microflow nebulizers, sample requirements for elemental analysis are much lower than just a few years ago. Thus, a determination of a suite of first row transition elements is frequently readily obtainable with samples of less than 1 mL. To examine the "traditional" (<0.45 micron) dissolved phase, 25 mm diameter polypropylene syringe filters and all polyethylene/polypropylene syringes are utilized. Filters are pre-cleaned in the lab using 40 mL of approx. 1 M HCl followed by a clean water rinse. Syringes are pre-cleaned by leaching with hot 1 M HCl followed by a clean water rinse. Sample kits are packed in polyethylene bags for transport to the field. Results are similar to results obtained using 0.4 micron polycarbonate screen filters, though concentrations may differ somewhat depending on the extent of sample pre-rinsing of the filter. Using this method, a multi-year time series of dissolved metals in a remote Rocky Mountain stream has been obtained. To examine the effect of colloidal material on dissolved metal concentrations, 0.02 micron alumina syringe filters have been utilized. Other workers have previously used these filters for examining colloidal Fe distributions in lake

  4. An Examination of Temporal Trends in Electricity Reliability Based on Reports from U.S. Electric Utilities

    SciTech Connect

    Eto, Joseph H.; LaCommare, Kristina Hamachi; Larsen, Peter; Todd, Annika; Fisher, Emily

    2012-01-06

    Since the 1960s, the U.S. electric power system has experienced a major blackout about once every 10 years. Each has been a vivid reminder of the importance society places on the continuous availability of electricity and has led to calls for changes to enhance reliability. At the root of these calls are judgments about what reliability is worth and how much should be paid to ensure it. In principle, comprehensive information on the actual reliability of the electric power system and on how proposed changes would affect reliability ought to help inform these judgments. Yet, comprehensive, national-scale information on the reliability of the U.S. electric power system is lacking. This report helps to address this information gap by assessing trends in U.S. electricity reliability based on information reported by electric utilities on power interruptions experienced by their customers. Our research augments prior investigations, which focused only on power interruptions originating in the bulk power system, by considering interruptions originating both from the bulk power system and from within local distribution systems. Our research also accounts for differences among utility reliability reporting practices by employing statistical techniques that remove the influence of these differences on the trends that we identify. The research analyzes up to 10 years of electricity reliability information collected from 155 U.S. electric utilities, which together account for roughly 50% of total U.S. electricity sales. The questions analyzed include: 1. Are there trends in reported electricity reliability over time? 2. How are trends in reported electricity reliability affected by the installation or upgrade of an automated outage management system? 3. How are trends in reported electricity reliability affected by the use of IEEE Standard 1366-2003?

  5. Reliability and Validity of the SE-HEPA: Examining Physical Activity- and Healthy Eating-Specific Self-Efficacy among a Sample of Preadolescents

    ERIC Educational Resources Information Center

    Steele, Michael M.; Burns, Leonard G.; Whitaker, Brandi N.

    2013-01-01

    Objective. The purpose of this study was to examine the psychometric properties of the self-efficacy for healthy eating and physical activity measure (SE-HEPA) for preadolescents. Method. The reliability of the measure was examined to determine if the internal consistency of the measure was adequate (i.e., [alpha]s greater than 0.70). Next, in an…

  6. Assessment of NDE for key indicators of aging cables in nuclear power plants - Interim status

    NASA Astrophysics Data System (ADS)

    Glass, S. W.; Ramuhalli, P.; Fifield, L. S.; Prowant, M. S.; Dib, G.; Tedeschi, J. R.; Suter, J. D.; Jones, A. M.; Good, M. S.; Pardini, A. F.; Hartman, T. S.

    2016-02-01

    Degradation of the cable jacket, electrical insulation, and other cable components of installed cables within nuclear power plants (NPPs) is known to occur as a function of age, temperature, radiation, and other environmental factors. System tests verify cable function under normal loads; however, the concern is over cable performance under exceptional loads associated with design-basis events (DBEs). The cable's ability to perform safely over the initial 40-year planned and licensed life has generally been demonstrated and there have been very few age-related cable failures. With greater than 1000 km of power, control, instrumentation, and other cables typically found in an NPP, replacing all the cables would be a severe cost burden. Justification for life extension to 60 and 80 years requires a cable aging management program to justify cable performance under normal operation as well as accident conditions. Currently the gold standard for determining cable insulation degradation is the elongation-at-break (EAB). This, however, is an ex-situ measurement and requires removal of a sample for laboratory investigation. A reliable nondestructive examination (NDE) in-situ approach is desirable to objectively determine the suitability of the cable for service. A variety of tests are available to assess various aspects of electrical and mechanical cable performance, but none of these tests are suitable for all cable configurations nor does any single test confirm all features of interest. Nevertheless, the complete collection of test possibilities offers a powerful range of tools to assure the integrity of critical cables. Licensees and regulators have settled on a practical program to justify continued operation based on condition monitoring of a lead sample set of cables where test data is tracked in a database and the required test data are continually adjusted based on plant and fleet-wide experience. As part of the Light Water Reactor Sustainability program sponsored

  7. Test-retest reliability of an active range of motion test for the shoulder and hip joints by unskilled examiners using a manual goniometer

    PubMed Central

    Kim, Seong-Gil; Kim, Eun-Kyung

    2016-01-01

    [Purpose] The purpose of this study was to analyze test-retest reliability of an active range of motion test using a manual goniometer by unskilled examiners. [Subjects and Methods] Active range of motion was measured in 30 students attending U university (4 males, 26 females). Range of motion during flexion and extension of the shoulder and hip joints were measured using a manual goniometer. [Results] Flexion and extension of the shoulder joint (ICC=0.906 and ICC=0.808) and (ICC=0.946 and ICC=0. 955) of the hip joint showed excellent reliabilities. [Conclusion] The active range of motion test using a manual goniometer showed very high test-retest reliability in unskilled examiners. When examiners are aware of the method of the test, an objective assessment can be conducted. PMID:27134347

  8. Micro- and nano-NDE systems for aircraft: great things in small packages

    NASA Astrophysics Data System (ADS)

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny

    2003-07-01

    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  9. Characterization of melt-infiltrated SiC/SiC composite combustor liners using meso- and micro-NDE techniques

    SciTech Connect

    Ellingson, W. A.; Sun, J. G.; More, K. L.; Hines, R.

    2000-01-26

    Melt-infiltrated ceramic matrix composite SiC/SiC material systems are under development for use in combustor liners for low-emission advanced gas turbines. Uncertainty in repeatability of processing methods for these large components (33--76 cm diameter), and hence possible reduced reliability for the end user. This requires that appropriate test methods, at both meso- and micro-scale, be used to ensure that the liners are acceptable for use. Nondestructive evaluation (NDE) methods, if demonstrated to reliably detect changes caused by processing, would be of significant benefit to both manufacturer and end user. This paper describes the NDE methods and their applications in detecting a process upset in a melt-infiltrated 33 cm combustor liner and how high-resolution scanning electron microscopy was used to verify the NDE data.

  10. Examining the Reliability of Scores from the Consensual Assessment Technique in the Measurement of Individual and Small Group Creativity

    ERIC Educational Resources Information Center

    Stefanic, Nicholas; Randles, Clint

    2015-01-01

    The purpose of this study was to explore the reliability of measures of both individual and group creative work using the consensual assessment technique (CAT). CAT was used to measure individual and group creativity among a population of pre-service music teachers enrolled in a secondary general music class (n = 23) and was evaluated from…

  11. An Examination of Coach and Player Relationships According to the Adapted LMX 7 Scale: A Validity and Reliability Study

    ERIC Educational Resources Information Center

    Caliskan, Gokhan

    2015-01-01

    The current study aims to test the reliability and validity of the Leader-Member Exchange (LMX 7) scale with regard to coach--player relationships in sports settings. A total of 330 professional soccer players from the Turkish Super League as well as from the First and Second Leagues participated in this study. Factor analyses were performed to…

  12. An NDE approach for characterizing quality problems in polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Baaklini, George Y.; Sutter, James K.; Bodis, James R.; Leonhardt, Todd A.; Crane, Elizabeth A.

    1994-01-01

    Polymer matrix composite (PMC) materials are periodically identified appearing optically uniform but containing a higher than normal level of global nonuniformity as indicated from preliminary ultrasonic scanning. One such panel was thoroughly examined by nondestructive (NDE) and destructive methods to quantitatively characterize the nonuniformity. The NDE analysis of the panel was complicated by the fact that the panel was not uniformly thick. Mapping of ultrasonic velocity across a region of the panel in conjunction with an error analysis was necessary to (1) characterize properly the porosity gradient that was discovered during destructive analyses and (2) account for the thickness variation effects. Based on this study, a plan for future NDE characterization of PMC's is presented to the PMC community.

  13. Complimentary single technique and multi-physics modeling tools for NDE challenges

    NASA Astrophysics Data System (ADS)

    Le Lostec, Nechtan; Budyn, Nicolas; Sartre, Bernard; Glass, S. W.

    2014-02-01

    The challenges of modeling and simulation for Non Destructive Examination (NDE) research and development at AREVA NDE Solutions Technical Center (NETEC) are presented. In particular, the choice of a relevant software suite covering different applications and techniques and the process/scripting tools required for simulation and modeling are discussed. The software portfolio currently in use is then presented along with the limitations of the different software: CIVA for ultrasound (UT) methods, PZFlex for UT probes, Flux for eddy current (ET) probes and methods, plus Abaqus for multiphysics modeling. The finite element code, Abaqus is also considered as the future direction for many of our NDE modeling and simulation tasks. Some application examples are given on modeling of a piezoelectric acoustic phased array transducer and preliminary thermography configurations.

  14. Recent developments in SQUID NDE

    NASA Astrophysics Data System (ADS)

    Krause, H.-J.; Kreutzbruck, M. v.

    2002-03-01

    By presenting brief summaries of recent application highlights, an overview of NDE methods using SQUIDs is given. Bridge inspection with a SQUID array integrated with a yoke magnet excitation was shown by scanning along the pre-stressed steel of bridges and verified by opening the bridge deck. As the construction of the megaliner Airbus aircraft progresses, testing procedures for extremely thick-walled structures are needed. Defects at a depth of up to 40 mm were measured in a bolted three-layer aluminum sample with a total thickness of 62 mm. For the investigation of aircraft wheels, a remote eddy current (EC) excitation scheme yields better depth selectivity. Defects with an inside penetration of only 10% could be detected. SQUID magnetometers are well suited for pulsed EC techniques which cover a broader depth range than standard single frequency EC. An inversion procedure is presented providing a tomographic-like conductivity image of stacked aluminum samples. A recent SQUID application is nondestructive testing of niobium sheets used for superconducting cavities of particle accelerators. The detection of tantalum inclusions and other impurities which lower the cavity performance is based on the measurement of local current inhomogeneities caused by EC excitation or thermal gradients. Alternate techniques using SQUID sensors, such as modulated excitation arrays, rotating field schemes, sensor multiplexing, magnetic moment detection, and microscopy setups, are discussed.

  15. NDE of Fiber Reinforced Foam Composite Structures for Future Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, james; Roth, Don; Hopkins, Dale

    2010-01-01

    This slide presentation reviews the complexities of non-destructive evaluation (NDE) of fiber reinforced foam composite structures to be used for aerospace vehicles in the future.Various views of fiber reinforced foam materials are shown and described. Conventional methods of NDE for composites are reviewed such as Micro-computed X-Ray Tomography, Thermography, Shearography, and Phased Array Ultrasonics (PAUT). These meth0ods appear to work well on the face sheet and face sheet ot core bond, they do not provide adequate coverage for the webs. There is a need for additional methods that will examine the webs and web to foam core bond.

  16. An examination of maintenance activities in liquid metal reactor facilities: An analysis by the Centralized Reliability Data Organization (CREDO)

    SciTech Connect

    Haire, M J; Knee, H E; Manning, J J; Manneschmidt, J F; Setoguchi, K

    1987-01-01

    The Centralized Reliability Data Organization (CREDO) is the largest repository of liquid metal reactor (LMR) component reliability data in the world. It is jointly sponsored by the US Department of Energy (DOE) and the Power Reactor and Nuclear fuel Development Corporation (PNC) of Japan. The CREDO database contains information on a population of more than 21,000 components and approximately 1300 event records. Total experience is approaching 1.2 billion component operating hours. Although data gathering for CREDO concentrates on event (failure) information, the work reported here focuses on the maintenance information contained in CREDO and the development of maintenance critical items lists. That is, components are ranked in prioritized lists from worse to best performers from a maintenance standpoint.

  17. What Are You Measuring? Dimensionality and Reliability Analysis of Ability and Speed in Medical School Didactic Examinations.

    PubMed

    Thompson, James J

    2016-01-01

    Summative didactic evaluation often involves multiple choice questions which are then aggregated into exam scores, course scores, and cumulative grade point averages. To be valid, each of these levels should have some relationship to the topic tested (dimensionality) and be sufficiently reproducible between persons (reliability) to justify student ranking. Evaluation of dimensionality is difficult and is complicated by the classic observation that didactic performance involves a generalized component (g) in addition to subtest specific factors. In this work, 183 students were analyzed over two academic years in 13 courses with 44 exams and 3352 questions for both accuracy and speed. Reliability at all levels was good (>0.95). Assessed by bifactor analysis, g effects dominated most levels resulting in essential unidimensionality. Effect sizes on predicted accuracy and speed due to nesting in exams and courses was small. There was little relationship between person ability and person speed. Thus, the hierarchical grading system appears warrented because of its g-dependence. PMID:26784380

  18. Review of progress in quantitative NDE

    SciTech Connect

    Not Available

    1992-01-01

    Abstracts of 386 papers and plenary presentations are included. The plenary sessions related to the national technology initiative. The other sessions covered the following NDE topics: corrosion, electromagnetic arrays, elastic wave scattering and backscattering/noise, civil structures, material properties, holography, shearography, UT wave propagation, eddy currents, coatings, signal processing, radiography, computed tomography, EM imaging, adhesive bonds, NMR, laser ultrasonics, composites, thermal, magnetic measurements, nonlinear acoustics, interface modeling and characterization, UT transducers, new techniques, joined materials, probes and systems, fatigue cracks and fracture, imaging and sizing, NDE in engineering and process control, acoustics of cracks, and sensors. An author index is included. (DLC)

  19. Review of progress in quantitative NDE. Abstracts

    SciTech Connect

    Not Available

    1992-09-01

    Abstracts of 386 papers and plenary presentations are included. The plenary sessions related to the national technology initiative. The other sessions covered the following NDE topics: corrosion, electromagnetic arrays, elastic wave scattering and backscattering/noise, civil structures, material properties, holography, shearography, UT wave propagation, eddy currents, coatings, signal processing, radiography, computed tomography, EM imaging, adhesive bonds, NMR, laser ultrasonics, composites, thermal, magnetic measurements, nonlinear acoustics, interface modeling and characterization, UT transducers, new techniques, joined materials, probes and systems, fatigue cracks and fracture, imaging and sizing, NDE in engineering and process control, acoustics of cracks, and sensors. An author index is included. (DLC)

  20. Study on the Interrater Reliability of an OSPE (Objective Structured Practical Examination) – Subject to the Evaluation Mode in the Phantom Course of Operative Dentistry

    PubMed Central

    Schmitt, Laura; Möltner, Andreas; Rüttermann, Stefan; Gerhardt-Szép, Susanne

    2016-01-01

    Introduction: The aim of the study presented here was to evaluate the reliability of an OSPE end-of-semester exam in the phantom course for operative dentistry in Frankfurt am Main taking into consideration different modes of evaluation (examiner’s checklist versus instructor’s manual) and number of examiners (three versus four). Methods: In an historic, monocentric, comparative study, two different methods of evaluation were examined in a real end-of-semester setting held in OSPE form (Group I: exclusive use of an examiner’s checklist versus Group II: use of an examiner’s checklist including an instructor’s manual). For the analysis of interrater reliability, the generalisability theory was applied that contains a generalisation of the concept of internal consistency (Cronbach’s alpha). Results: The results show that the exclusive use of the examiner’s checklist led to higher interrater reliability values than the in-depth instructor’s manual used in addition to the list. Conclusion: In summary it can be said that the examiner’s checklists used in the present study, without the instructor’s manual, resulted in the highest interrater reliability in combination with three evaluators within the context of the completed OSPE. PMID:27579361

  1. Design considerations for NDE systems in a factory setting and the application to transmission manufacture at the Chrysler Transmission Plant in Kokomo, Indiana

    SciTech Connect

    LaChapell, M.; Perkins, D.E.; Schneberk, D.J.; Erb, S.H.; Nicholson, R.E.

    1994-10-01

    Chrysler Corp. and LLNL have entered into a collaboration to enhance the NDE technology at the Kokomo transmission plant. The project spans 3 years and a wide variety of different projects. Goals are making NDE automated, reliable, and capable of avoiding destructive testing. This requires NDE systems to be better utilized by quality teams on the shop floor and better connected for providing in one place a sufficient set of data for identifying problems in a manufacturing operation, and prescribing an adjustment. The approach is illustrated on two different processes, laser welding and pressure die casting; in each case data are combined from different NDE systems to enable a decision on an adjustment in process variables.

  2. NDE Assessments of Cast Stainless Steel Reactor Piping Components

    SciTech Connect

    Diaz, Aaron A.; Anderson, Michael T.; Cumblidge, Stephen E.; Doctor, Steven R.; Mathews, Royce

    2006-02-01

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, have focused on developing and evaluating the effectiveness and reliability of novel NDE approaches for the inspection of coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the utility, effectiveness and reliability of ultrasonic testing (UT) and eddy current testing (ET) inspection techniques as related to the in-service inspection of primary piping components in pressurized water reactors (PWRs). This paper describes recent developments and results from assessments of three different NDE approaches including an ultrasonic phased array inspection methodology, an eddy current testing technique and a low-frequency ultrasonic inspection methodology coupled with a synthetic aperture focusing technique (SAFT). Westinghouse Owner’s Group (WOG) cast stainless steel pipe segments with thermal and mechanical fatigue cracks located close to the weld roots, were used for assessing the inspection methods. ET studies were conducted on the inner diameter (ID) surface of piping specimens while the ultrasonic inspection methods were performed from the outer diameter (OD) surface of the specimens. The ET technique employed a ZETEC MIZ-27SI Eddy Current instrument and a ZETEC Z0000857-1 cross point spot probe with an operating frequency of 250 kHz. On some samples where noise levels were high, degaussing of the sample resulted in significant improvements. The phased array approach was implemented using an RD Tech Tomoscan III system operating at 1 MHz and composite volumetric images of the samples were generated. The low-frequency ultrasonic method employs a zone-focused, multi-incident angle; inspection protocol (operating at 250-450 kHz) coupled with a synthetic aperture focusing technique (SAFT) for improved signal-to-noise and advanced imaging

  3. Polymer Piezoelectric Transducers for Ultrasonic NDE

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Xue, Tianji; Lih, Shyh-Shiuh

    1996-01-01

    Piezoelectric polymers are associated with a low noise and inherent damping that makes them very effective receivers as well as broadband transmitters for high frequencies tasks. This paper reviews polymer piezoelectric materials, the origin of their piezoelectric behavior and their applications to ultrasonic NDE.

  4. NDE and SHM Simulation for CFRP Composites

    NASA Technical Reports Server (NTRS)

    Leckey, Cara A. C.; Parker, F. Raymond

    2014-01-01

    Ultrasound-based nondestructive evaluation (NDE) is a common technique for damage detection in composite materials. There is a need for advanced NDE that goes beyond damage detection to damage quantification and characterization in order to enable data driven prognostics. The damage types that exist in carbon fiber-reinforced polymer (CFRP) composites include microcracking and delaminations, and can be initiated and grown via impact forces (due to ground vehicles, tool drops, bird strikes, etc), fatigue, and extreme environmental changes. X-ray microfocus computed tomography data, among other methods, have shown that these damage types often result in voids/discontinuities of a complex volumetric shape. The specific damage geometry and location within ply layers affect damage growth. Realistic threedimensional NDE and structural health monitoring (SHM) simulations can aid in the development and optimization of damage quantification and characterization techniques. This paper is an overview of ongoing work towards realistic NDE and SHM simulation tools for composites, and also discusses NASA's need for such simulation tools in aeronautics and spaceflight. The paper describes the development and implementation of a custom ultrasound simulation tool that is used to model ultrasonic wave interaction with realistic 3-dimensional damage in CFRP composites. The custom code uses elastodynamic finite integration technique and is parallelized to run efficiently on computing cluster or multicore machines.

  5. Dose evaluation for paediatric chest x-ray examinations in Brazil and Sudan: low doses and reliable examinations can be achieved in developing countries

    NASA Astrophysics Data System (ADS)

    Mohamadain, K. E. M.; da Rosa, L. A. R.; Azevedo, A. C. P.; Guebel, M. R. N.; Boechat, M. C. B.; Habani, F.

    2004-03-01

    Radiation protection in paediatric radiology deserves special attention since it is assumed that children are more sensitive to radiation than adults. The aim of this work is to estimate the entrance skin dose (ESD), the body organ dose (BOD) and the effective dose (E) for chest x-ray exposure of paediatric patients in five large units, three in Sudan and two in Brazil, and to compare the results obtained in both countries with each other and with other values obtained by some European countries. Two examination projections have been investigated, namely, postero-anterior (PA) and antero-posterior (AP). The age intervals considered were: 0-1 year, 1-5 years, 5-10 years and 10-15 years. The results have been obtained with the use of a software called DoseCal. Results of mean ESD for the age interval 1-5 years and AP projection are: 66 µGy (Instituto de Pediatria e Puericultura Martagão Gesteira—IPPMG Hospital), 41, 86 and 68 µGy (Instituto Fernandes Figueira—IFF Hospital), 161 µGy (Omdurman Hospital), 395 µGy (Khartoum Hospital) and 23 µGy (Ahmed Gasim Hospital). In the case of the IFF Hospital, the results refer, respectively, to rooms 1, 2 and for the six mobile equipments. The reference dose values given by the European Guidelines were exceeded in the Khartoum Hospital whilst in all the other hospitals results obtained were below CEC reference values and comparable with the results found in Sweden, Germany, Spain and Italy. The mean E for the same age interval was 11 µSv in the IPPMG, 6, 15 and 11 µSv in the IFF, respectively for rooms 1, 2 and the 6 mobiles, 25 µSv in the Omdurman Hospital, 45 µSv in the Khartoum Hospital and 3 µSv in the Ahmed Gasim Hospital. These are some examples of the large discrepancies that have been detected in this survey.

  6. Manufacturing and NDE of Large Composite Aerospace Structures at MSFC

    NASA Technical Reports Server (NTRS)

    Whitaker, Ann

    2000-01-01

    NASA's vision for transportation to orbit calls for new vehicles built with new materials technology. The goals of this new launch system development are to improve safety, dramatically reduce cost to orbit, and improve vehicle turn around time. Planned Space Shuttle upgrades include new reusable liquid propellant boosters to replace the solid propellant boosters. These boosters are to have wings and return to the launch site for a horizontal landing on an airport runway. New single and two stages to orbit concepts are being investigated. To reduce weight and improve performance composite materials are proposed for fuel and oxidizer tanks, fuel feedlines, valve bodies, aerostructures, turbomachinery components. For large composite structures new methods of fabrication are being proposed and developed. Containment of cryogenic fuel or oxidizer requires emphases on composite material densification and chemical compatibility. Ceramic matrix and fiber composites for hot rotating turbomachinery have been developed with new fabrication processes. The new requirements on the materials for launcher components are requiring development of new manufacturing and inspection methods. This talk will examine new and proposed manufacturing methods to fabricate the revolutionary components. New NDE methods under consideration include alternative X-ray methods, X-ray laminagraphy, advanced CT, Thermography, new ultrasonic methods, and imbedded sensors. The sizes, complexity, use environment, and contamination restrictions will challenge the inspection process. In flight self-diagnosis and rapid depot inspection are also goals of the NDE development.

  7. The intra-examiner reliability of manual muscle testing of the hip and shoulder with a modified sphygmomanometer: a preliminary study of normal subjects

    PubMed Central

    Perossa, Daniel R; Dziak, Martin; Vernon, Howard T; Hayashita, Kaye

    1998-01-01

    The purpose of this study was to investigate the intrarater reliability of manual muscle assessment of the hip and shoulder using a modified sphygmomanometer. In addition, it was intended to establish a preliminary database of values from normal, healthy male and female volunteers. Eighty subjects participated in the test sessions, 40 males and 40 females between the ages of 19-22. Forty subjects participated in each of the hip and shoulder test sessions. Each examiner tested different paired movements on the subjects in one single session for the two separate joints. The tested movements consisted of hip extension, flexion and abduction and shoulder abduction, extension, flexion, internal and external rotation. All movements were tested by the patient-initiated method. Each movement was repeated twice, with a 30-35 second rest interval between the trials. The results showed that the intratester reliability coefficients for the hip ranged from 0.94-0.97, while, for the shoulder, the range was 0.86-0.97. Norms are expressed as mean (SD) values. These data conformed to previously established expectations, in that side-to-side differences were less than 10% and test values for males were larger than females in all tests. It was concluded that manual muscle assessment using a modified sphygmomanometer has acceptable intra-examiner reliability for the hip and shoulder when using the patient-initiated method. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8

  8. How reliable are the risk estimates for X-ray examinations in forensic age estimations? A safety update.

    PubMed

    Ramsthaler, F; Proschek, P; Betz, W; Verhoff, M A

    2009-05-01

    Possible biological side effects of exposure to X-rays are stochastic effects such as carcinogenesis and genetic alterations. In recent years, a number of new studies have been published about the special cancer risk that children may suffer from diagnostic X-rays. Children and adolescents who constitute many of the probands in forensic age-estimation proceedings are considerably more sensitive to the carcinogenic risks of ionizing radiation than adults. Established doses for X-ray examinations in forensic age estimations vary from less than 0.1 microSv (left hand X-ray) up to more than 800 microSv (computed tomography). Computed tomography in children, as a relatively high-dose procedure, is of particular interest because the doses involved are near to the lower limit of the doses observed and analyzed in A-bombing survivor studies. From these studies, direct epidemiological data exist concerning the lifetime cancer risk. Since there is no medical indication for forensic age examinations, it should be stressed that only safe methods are generally acceptable. This paper reviews current knowledge on cancer risks associated with diagnostic radiation and aims to help forensic experts, dentists, and pediatricians evaluate the risk from radiation when using X-rays in age-estimation procedures. PMID:19153756

  9. Nuclear Technology Series. Course 32: Nondestructive Examination (NDE) Techniques II.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  10. Nuclear Technology Series. Course 26: Nondestructive Examination (NDE) Techniques I.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…

  11. Modeling ultrasonic NDE and guided wave based structural health monitoring

    NASA Astrophysics Data System (ADS)

    Ravi, Nitin B.; Rathod, Vivek T.; Chakraborty, Nibir.; Mahapatra, D. R.; Sridaran, Ramanan; Boller, Christian

    2015-04-01

    Structural Health Monitoring (SHM) systems require integration of non-destructive technologies into structural design and operational processes. Modeling and simulation of complex NDE inspection processes are important aspects in the development and deployment of SHM technologies. Ray tracing techniques are vital simulation tools to visualize the wave path inside a material. These techniques also help in optimizing the location of transducers and their orientation with respect to the zone of interrogation. It helps in increasing the chances of detection and identification of a flaw in that zone. While current state-of-the-art techniques such as ray tracing based on geometric principle help in such visualization, other information such as signal losses due to spherical or cylindrical shape of wave front are rarely taken into consideration. The problem becomes a little more complicated in the case of dispersive guided wave propagation and near-field defect scattering. We review the existing models and tools to perform ultrasonic NDE simulation in structural components. As an initial step, we develop a ray-tracing approach, where phase and spectral information are preserved. This enables one to study wave scattering beyond simple time of flight calculation of rays. Challenges in terms of theory and modelling of defects of various kinds are discussed. Various additional considerations such as signal decay and physics of scattering are reviewed and challenges involved in realistic computational implementation are discussed. Potential application of this approach to SHM system design is highlighted and by applying this to complex structural components such as airframe structures, SHM is demonstrated to provide additional value in terms of lighter weight and/or longevity enhancement resulting from an extension of the damage tolerance design principle not compromising safety and reliability.

  12. Electrostatic Capacitive Imaging: A New NDE Technique

    NASA Astrophysics Data System (ADS)

    Diamond, G.; Hutchins, D. A.; Leong, K. K.; Gan, T. H.

    2007-03-01

    A new technique for NDE has been developed which is capable of imaging a wide range of materials and structures, ranging from insulators to metallic conductors. The approach, known as Capacitive Imaging (CI) uses electrode arrays in air to produce an AC electric field distribution within the material. Scanning the electrodes over the material causes a change in the field distribution, and hence changes in output voltage. Capacitive coupling allows the technique to work on a wide variety of material conductivities without some of the disadvantages associated with conventional eddy current and potential drop methods. Images are presented of carbon fibre composite materials, concrete and Plexiglas, illustrating the range of application in NDE. The effect of electrode shape and excitation frequency will be discussed in terms of image resolution and depth of penetration.

  13. NASA DOEPOD NDE Capabilities Data Book

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    2015-01-01

    This data book contains the Directed Design of Experiments for Validating Probability of Detection (POD) Capability of NDE Systems (DOEPOD) analyses of the nondestructive inspection data presented in the NTIAC, Nondestructive Evaluation (NDE) Capabilities Data Book. DOEPOD is designed as a decision support system to validate inspection system, personnel, and protocol demonstrating 0.90 POD with 95% confidence at critical flaw sizes, a90/95. Although 0.90 POD with 95% confidence at critical flaw sizes is often stated as an inspection requirement in inspection documents, including NASA Standards, NASA critical aerospace applications have historically only accepted 0.978 POD or better with a 95% one-sided lower confidence bound exceeding 0.90 at critical flaw sizes, a90/95.

  14. Additive manufacturing: Overview and NDE challenges

    NASA Astrophysics Data System (ADS)

    Slotwinski, J. A.

    2014-02-01

    Additive manufacturing (AM) processes are capable of producing highly complex and customized parts, without the need for dedicated tooling, and can produce parts directly from the part design information. These types of processes are poised to revolutionize the manufacturing industry, yet there are several challenges that are currently preventing more widespread adoption of AM technologies. Traditional Non-Destructive Evaluation (NDE) methods could be utilized in both in-process and post-process applications to help overcome these challenges, although currently there are very few examples of in-situ sensors for monitoring AM processes. This paper gives an overview of AM technology, and discusses the potential benefits and challenges of using NDE in AM applications.

  15. Quantitative NDE applied to composites and metals

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.; Parker, F. Raymond; Heath, D. Michele; Welch, Christopher S.

    1989-01-01

    Research at the NASA/Langley Research Center concerning quantitative NDE of composites and metals is reviewed. The relationship between ultrasonics and polymer cure is outlined. NDE models are presented, which can be used to develop measurement technologies for characterizing the curing of a polymer system for composite materials. The models can be used to determine the glass transition temperature, the degree of cure, and the cure rate. The application of the model to control autoclave processing of composite materials is noted. Consideration is given to the use of thermal diffusion models combined with controlled thermal input measurements to determine the thermal diffusivity of materials. Also, a two-dimensional physical model is described that permits delaminations in samples of Space Shuttle Solid Rocket Motors to be detected in thermograms in the presence of cooling effects and uneven heating.

  16. NDE and the microgravity sciences at NASA

    NASA Astrophysics Data System (ADS)

    Roth, D. J.

    2002-05-01

    NASA has programs in the physical and life sciences areas that include micro- and variable-gravity-based science, and offers very unique facilities including ground- and space-based facilities to support this science. For the physical microgravity sciences, areas of investigation include biotechnology, combustion science, fluid physics, fundamental physics, and materials science. A reformulation of the physical sciences program is underway in which the "stovepipe" disciplines will be combined over time to form interdisciplinary themes. This article will focus on what role NDE has played in the microgravity sciences area to date, which has primarily been as a support technology for monitoring and recording results of discipline-based microgravity research. Additionally, a proposed experiment is described that will investigate how microgravity affects a fundamental NDE process: that of air-coupled ultrasonic wave propagation. A review of basic microgravity concepts will be provided including the various facilities that NASA has to create a microgravity environment (including drop towers, aircraft, rockets, space shuttle, and the International Space Station). Applications of NDE for Life Science experiments will be briefly mentioned.

  17. NDE of Possible Service-Induced PWSCC in Control Rod Drive Mechanism Housings Removed from Service

    SciTech Connect

    Cumblidge, Stephen E.; Doctor, Steven R.; Schuster, George J.; Harris, Robert V.; Crawford, Susan L.

    2006-09-22

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are being performed to assess the effectiveness of nondestructive examination (NDE) techniques on removed-from-service control rod drive mechanism (CRDM) nozzles and the associated J-groove attachment welds. This work is being performed to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE techniques such as ultrasonic testing (UT), eddy current testing (ET), and visual testing (VT) as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. The basic NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory-based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on the J-groove weld and buttering. This paper describes the NDE measurements that were employed on the two CRDMs to detect and characterize the indications and the analysis of these indications. The two CRDM assemblies were removed from service from the North Anna 2 vessel head, including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material. One nozzle contains suspected PWSCC, based on in-service inspection data; the second contains evidence suggesting through-wall leakage, although this was unconfirmed. A destructive test plan is being developed to directly characterize the indications found using nondestructive testing. The results of this destructive testing will be included when the destructive testing is completed.

  18. The National Aeronautics and Space Administration Nondestructive Evaluation Program for Safe and Reliable Operations

    NASA Technical Reports Server (NTRS)

    Generazio, Ed

    2005-01-01

    The National Aeronautics and Space Administration (NASA) Nondestructive Evaluation (NDE) Program is presented. As a result of the loss of seven astronauts and the Space Shuttle Columbia on February 1, 2003, NASA has undergone many changes in its organization. NDE is one of the key areas that are recognized by the Columbia Accident Investigation Board (CAIB) that needed to be strengthened by warranting NDE as a discipline with Independent Technical Authority (iTA). The current NASA NDE system and activities are presented including the latest developments in inspection technologies being applied to the Space Transportation System (STS). The unfolding trends and directions in NDE for the future are discussed as they apply to assuring safe and reliable operations.

  19. On-orbit NDE: A novel approach to tube weld inspection

    NASA Technical Reports Server (NTRS)

    Michaels, Kerry; Hughes, Greg

    1994-01-01

    The challenge of fabrication and repair of structures in space must be met if we are to utilize and maintain long-duration space facilities. Welding techniques have been demonstrated to provide the most reliable means to accomplish this task. Over the past few years, methods have been developed to perform orbital tube welding employing space-based welding technology pioneered by the former Soviet Union. Welding can result in the formation of defects, which threaten the structural integrity of the welded joint. Implementation of welding on-orbit, therefore, must also include methods to evaluate the quality and integrity of the welded joints. To achieve this goal, the development of an on-orbit tube weld inspection system, utilizing alternating current field measurement (ACFM) technology, has been under taken. This paper describes the development of the ACFM on-orbit tube weld inspection tool. Topics discussed include: requirements for on-orbit NDE, basic theory of ACFM, its advantages over other NDE methods for on-orbit applications, and the ACFM NDE system design. System operation and trial inspection results are also discussed. Future work with this technology is also considered.

  20. NASA Engineering and Safety Center NDE Super Problem Resolution Team

    NASA Astrophysics Data System (ADS)

    Prosser, W. H.

    2007-03-01

    The NASA Engineering and Safety Center (NESC) is an independent organization, which was charted in the wake of the Space Shuttle Columbia accident to serve as an Agency-wide technical resource focused on engineering excellence. The objective of the NESC is to improve safety by performing in-depth independent engineering assessments, testing, and analysis to uncover technical vulnerabilities and to determine appropriate preventative and corrective actions for problems, trends or issues within NASA's programs, projects and institutions. Critical to the NESC are teams of experts in a number of core disciplines including nondestructive evaluation (NDE). These teams, designated Super Problem Resolution Teams (SPRTs), draw upon the best engineering expertise from across the Agency and include partnerships with other government agencies, national laboratories, universities and industry. The NESC NDE SPRT provides a ready resource of NDE technical expertise to support NESC Independent Technical Assessments and Investigations. The purpose of this session will be to provide an overview of the NESC and the NDE SPRT along with a few examples of NDE related problems that the team has addressed for NASA Programs. It is hoped that this session will be of interest to the general NDE community and will foster contacts with additional NDE experts that might provide future support to the NASA NESC NDE SPRT.

  1. Nondestructive Evaluation (NDE) research progress in 1988: Proceedings from the ninth annual EPRI NDE information meeting

    SciTech Connect

    Avioli, M.J. Jr.; Dau, G.J.; Liu, S.N.; Stein, J.; Welty, C.S.

    1989-05-01

    The increasing cost of equipment for power generating plants and the potential increases in productivity and safety analysis through rapidly developing Nondestructive Evaluation (NDE) technology led EPRI to initiate a Nondestructive Evaluation Program in 1974. To date, the major focus has been on light water reactor inspection problems; however, increased application to other systems is now underway. This report presents a comprehensive review of the EPRI effort in the NDE area. Most of the report consists of contractor-supplied progress reports on each current project. An organizational plan of the program is presented in overview. In addition, organization from several viewpoints is presented, e.g., in-service inspection operators, R and D personnel, and utility representatives. As the tenth in a planned series of annual progress reports of EPRI-funded NDE activities, this report also serves as the proceedings of the Ninth Annual EPRI NDE Information Meeting held in Charlotte, North Carolina, on November 15--16, 1988. It summarizes significant progress made since the previous EPRI Special Report NP-5490-SR was issued in June 1988. Section 1 contains information about the program organization, and the sections that follow contain contractor-supplied progress reports on each current project. The progress reports are grouped by plant components -- pipe, pressure vessel, and steam generator and boiler tubes. In addition, Part 5 is devoted to discussions of technology transfer.

  2. Probabilistic collocation method for NDE problems with uncertain parameters with arbitrary distributions

    NASA Astrophysics Data System (ADS)

    Cherry, M. R.; Knopp, J. S.; Blodgett, M. P.

    2012-05-01

    In order to quantify the reliability of NDE systems, large numbers of experiments are performed to develop a probability of detection (POD) curve for the system. These POD studies require a substantial amount of experimentation which can sometimes be cost prohibitive. To expedite the process of developing these curves, highly precise numerical models are used in conjunction with NDE sensors to understand the uncertainties associated with the inspections. Numerical models are also used in stochastic inversion methods such as Bayesian inversion, which provide a means of characterizing system properties with uncertainties. A strong basis has been developed in the modeling and simulation community for deterministic forward models in NDE, but to fully incorporate these models in model-assisted probability of detection (MAPOD) studies or stochastic inversion schemes, the models must be treated in a stochastic sense. A method of taking random inputs to a "black box" forward model and developing the full probability distribution function (PDF) of the response has been proposed. This method, called the probabilistic collocation method (PCM), takes random inputs to a forward model and uses orthogonal polynomials to construct a surrogate model in the area of the expected values of the inputs which is solved much quicker than the original forward model. In the NDE community, this method has only been used with inputs of known, named distributions. In this work, inputs of arbitrary distribution were used and the orthogonal polynomials for these inputs were developed with a recursion relationship that has been shown to produce orthogonal polynomials with respect to a given, continuous function. A concise code was written to make testing the method and incorporating it into MAPOD studies and inversion schemes relatively easy. The routine was tested with academic problems as well as eddy current problems.

  3. NDE in aerospace - Requirements for science, sensors and sense

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1989-01-01

    The complexity of modern nondestructive evaluation (NDE) arises from four main factors: quantitative measurement science, physical models for computational analysis, realistic interfacing with engineering decisions, and direct access to management priorities. Recent advances in the four factors of NDE are addressed. Physical models of acoustic propagation are presented that have led to the development of measurement technologies advancing the ability to assure that materials and structures will perform as designed. In addition, a brief discussion is given of current research for future mission needs such as smart structures that sense their own health. Such advances permit projects to integrate design for inspection into their plans, bringing NDE into engineering and management priorities. The measurement focus is on ultrasonics with generous case examples. Problem solutions highlighted include critical stress in fasteners, residual stress in steel, NDE laminography, and solid rocket motor NDE.

  4. NDE in aerospace-requirements for science, sensors and sense.

    PubMed

    Heyman, J S

    1989-01-01

    The complexity of modern NDE (nondestructive evaluation) arises from four main factors: quantitative measurement, science, physical models for computational analysis, realistic interfacing with engineering decisions, and direct access to management priorities. Recent advances in the four factors of NDE are addressed. Physical models of acoustic propagation are presented that have led to the development of measurement technologies advancing the ability to assure that materials and structures will perform a design. In addition, a brief discussion is given of current research for future mission needs such as smart structures that sense their own health. Such advances permit projects to integrate design for inspection into their plans, bringing NDE into engineering and management priorities. The measurement focus is on ultrasonics with generous case examples. Problem solutions highlighted include critical stress in fasteners, residual stress in steel, NDE laminography, and solid rocket motor NDE. PMID:18290237

  5. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    SciTech Connect

    Meyer, Ryan M.; Pardini, Allan F.; Cuta, Judith M.; Adkins, Harold E.; Casella, Andrew M.; Qiao, Hong; Larche, Michael R.; Diaz, Aaron A.; Doctor, Steven R.

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  6. Measurement of body dissatisfaction in college-enrolled Mexican American Women: A Rasch-based examination of the validity and reliability of the EDI-III.

    PubMed

    Stein, Karen Farchaus; Riley, Barth Brian; Hoyland-Domenico, Lisa; Lee, Chia-Kuei

    2015-12-01

    Measures of body dissatisfaction have not been validated for Mexican American (MA) women, who evaluate their bodies differently than Caucasian women. In this study, the psychometric properties of the EDI-III, Body Dissatisfaction Subscale (BDS) were examined in a sample of college-enrolled MA women using the Rasch Rating Scale Model. Criterion validity was also addressed. BDS evidenced good item fit, person and item reliability, once poorly correlated items were removed. Two qualitatively distinct dimensions of body dissatisfaction were identified: (1) overall body shape and stomach, and (2) the lower body. Validity of the scales was supported. Results suggest: MA women's satisfaction with overall body shape is not synonymous with attitudes toward their lower body. PMID:26164669

  7. Reliability Generalization: "Lapsus Linguae"

    ERIC Educational Resources Information Center

    Smith, Julie M.

    2011-01-01

    This study examines the proposed Reliability Generalization (RG) method for studying reliability. RG employs the application of meta-analytic techniques similar to those used in validity generalization studies to examine reliability coefficients. This study explains why RG does not provide a proper research method for the study of reliability,…

  8. NDE and mechanical removal of sludge in PWR steam generators: Volume 2, Vendor practices: Final report

    SciTech Connect

    Kidd, C.C.; Scharton, T.D.; Spencer, R.B.; Taylor, G.B.; Stewart, D.R.; Gallagher, M.J.; Johnson, L.E.; Sapia, M.A.; Edwards, L.J.; Dashukewich, M.L.

    1988-01-01

    A study was made to identify the needs of utilities for detecting, measuring, and mechanically removing sludge and related corrosion products from PWR steam generators, both recirculating U-tube and once through designs. The study determining, from the utility-user viewpoint, how well these needs are being met by currently available technology; identified opportunities for improvement; and made recommendations for research efforts to realize these opportunities. Methods for chemically removing sludge and corrosion products from steam generators, i.e., use of chemical solvents, were not addressed. Reports from nuclear steam supply system vendors and independent service vendors on their current processes and prior developmental efforts to realize these opportunities. Methods for chemically removing sludge and corrosion products from steam generators, i.e., use of chemical solvents, were not addressed. Reports from nuclear steam supply system vendors and independent service vendors on their current processes and prior developmental efforts with mechanical removal methods and NDE techniques are included in the study. In addition, information was obtained from the technical literature and from discussions and visits with knowledgeable individuals at utilities, service vendors, and engineering and consulting firms. Current removal methods examined included sludge lancing, pressure pulse and water slap; current NDE techniques examined included eddy current, optical instruments, sludge sampling, and water balance measurements. Additional NDE techniques reported on by the service vendors included Hall effect and magnetic field sensing probes, ultrasonic, and radiation attenuation techniques.

  9. Assessment of NDE Methods to Detect Lack of Fusion in HDPE Butt Fusion Joints

    SciTech Connect

    Crawford, Susan L.; Doctor, Steven R.; Cinson, Anthony D.; Watts, Michael W.; Moran, Traci L.; Anderson, Michael T.

    2011-07-31

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, were conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provided information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-inch (30.5-cm) IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer diameter (OD) weld beads were removed for microwave evaluation and the pipes ultrasonically re-evaluated. In two of the six pipes, both the outer and inner diameter (ID) weld beads were removed and the pipe joints re-evaluated. Some of the pipes were sectioned and the joints destructively evaluated with the high-speed tensile test and the side-bend test. The fusion parameters, nondestructive and destructive evaluation results have been correlated to validate the effectiveness of what each NDE technology detects and what each does not detect. There was no single NDE method that detected all of the lack-of-fusion flaws but a combination of NDE methods did detect most of the flaws.

  10. Application of NDE in aerospace coatings

    NASA Astrophysics Data System (ADS)

    Fahr, Abbas; Giguere, Sylvain; Roge, Bruno; McRae, Kenneth

    2002-06-01

    Wear resistant cermet coatings are used in aircraft landing gears and thermal barrier coatings (TBC) are applied to hot- section components of turbine engines. A series of experiments have been conducted to characterize cermet and TBC coatings using NDE techniques. A cermet coating is tested using conventional ultrasonic and eddy current methods as well as an ultrasonic leaky surface wave technique. The results demonstrate the ability of these techniques to detect the presence of defects on the surface or beneath the surface of the coating and at the coating- substrate interface. Ultrasonic time-of-flight and eddy current quadrature measurements also show the ability to detect minute changes in the thickness of cermet coatings. Knowing the coating thickness, the density of the coating is estimated by comparison of the theoretical and the experimental transfer functions of the ultrasonic signals. NDE techniques were also used to inspect thermal barrier coatings. In particular, eddy current technique was used to measure the thickness of plasma-sprayed TBC specimens, and knowing the thickness, ultrasonic techniques were applied to obtain an estimate of the porosity content.

  11. Terahertz NDE for Metallic Surface Roughness Evaluation

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2006-01-01

    Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.

  12. NDE standards for high temperature materials

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1991-01-01

    High temperature materials include monolithic ceramics for automotive gas turbine engines and also metallic/intermetallic and ceramic matrix composites for a range of aerospace applications. These are materials that can withstand extreme operating temperatures that will prevail in advanced high-efficiency gas turbine engines. High temperature engine components are very likely to consist of complex composite structures with three-dimensionality interwoven and various intermixed ceramic fibers. The thermomechanical properties of components made of these materials are actually created in-place during processing and fabrication stages. The complex nature of these new materials creates strong incentives for exact standards for unambiguous evaluations of defects and microstructural characteristics. NDE techniques and standards that will ultimately be applicable to production and quality control of high temperature materials and structures are still emerging. The needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in composites. The needs are different depending on the processing stage, fabrication method, and nature of the finished product. The standards are discussed that must be developed in concert with advances in NDE technology, materials processing research, and fabrication development. High temperature materials and structures that fail to meet stringent specifications and standards are unlikely to compete successfully either technologically or in international markets.

  13. Nde Challenges with Future Commercial Aircraft-A Boeing Perspective

    NASA Astrophysics Data System (ADS)

    Kollgaard, J. R.; LaRiviere, S. G.

    2008-02-01

    Commercial aircraft have undergone revolutionary changes in design, configuration and materials. This produces new challenges to the NDE community ranging from process controls of raw materials, to testing and fabrication of structural components, to service damage assessments. As we drive NDE up the value stream, it will become imperative to understand variousprocess parameters and their relationship to product quality. NDE may play a key role in characterizing and controlling those parameters. In production, inspection has become a critical aspect in the processing of large, unitized structures. Penetrant, radiographic, and magnetic particle techniques are less applicable while ultrasonics has taken on a critical role, earlier in the build process. NDE data are acquired over large areas at rates far faster than before, creating challenges in the time required to analyze and document the data. Qualified inspectors, equipment, and techniques are essential. In the field, eddy current and shear wave ultrasonic methods, long a mainstay of aircraft maintenance, are beginning to yield to ultrasonic techniques involving C-scans and linear arrays. The building of new-generation airplanes has revealed shortcomings in existing NDE technology and in some cases enhanced the case for non-traditional methods. This paper will review Boeing's experience with NDE of advanced structures, in particular those present on the Boeing 787, and summarize the Boeing outlook for future NDE needs.

  14. Nondestructive examination development and demonstration plan

    SciTech Connect

    Weber, J.R.

    1991-08-21

    Nondestructive examination (NDE) of waste matrices using penetrating radiation is by nature very subjective. Two candidate systems of examination have been identified for use in WRAP 1. This test plan describes a method for a comparative evaluation of different x-ray examination systems and techniques.

  15. Application of Hilbert-Huang Transform for Improved Defect Detection in Terahertz NDE of Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Terahertz NDE is being examined as a method to inspect the adhesive bond-line of Space Shuttle tiles for defects. Terahertz signals are generated and detected, using optical excitation of biased semiconductors with femtosecond laser pulses. Shuttle tile samples were manufactured with defects that included repair regions unbond regions, and other conditions that occur in Shuttle structures. These samples were inspected with a commercial terahertz NDE system that scanned a tile and generated a data set of RF signals. The signals were post processed to generate C-scan type images that are typically seen in ultrasonic NDE. To improve defect visualization the Hilbert-Huang Transform, a transform that decomposes a signal into oscillating components called intrinsic mode functions, was applied to test signals identified as being in and out of the defect regions and then on a complete data set. As expected with this transform, the results showed that the decomposed low-order modes correspond to signal noise while the high-order modes correspond to low frequency oscillations in the signal and mid-order modes correspond to local signal oscillations. The local oscillations compare well with various reflection interfaces and the defect locations in the original signal.

  16. Materials characterization and flaw detection by acoustic NDE

    NASA Astrophysics Data System (ADS)

    Buck, Otto

    1992-10-01

    This overview lists the potential applications of acoustic NDE for characterizing and assessing structural inhomogeneities in varied materials. Acoustic NDE is discussed in terms of its application to inhomogeneities such as: interstitials, precipitates, dislocations, phase transformations, porosity, cracks, and dislocation-point defect interactions. Acoustic velocity measurements provide data on interstitial concentrations, and nonlinear acoustics can describe the volume fraction of second-phase precipitates. Ultrasonic NDE can be used to determine the oxygen present in Ti-6211, binary alloys, and other alloys, and theoretical progress is noted in the characterization of porosity and cracks by means of sound velocity and attenuation as well as backscattering. Quantitative acoustic NDE can be used to detect flaws and characterize materials both during processing and by means of periodic inspections.

  17. Contamination detection NDE for cleaning process inspection

    NASA Technical Reports Server (NTRS)

    Marinelli, W. J.; Dicristina, V.; Sonnenfroh, D.; Blair, D.

    1995-01-01

    In the joining of multilayer materials, and in welding, the cleanliness of the joining surface may play a large role in the quality of the resulting bond. No non-intrusive techniques are currently available for the rapid measurement of contamination on large or irregularly shaped structures prior to the joining process. An innovative technique for the measurement of contaminant levels in these structures using laser based imaging is presented. The approach uses an ultraviolet excimer laser to illuminate large and/or irregular surface areas. The UV light induces fluorescence and is scattered from the contaminants. The illuminated area is viewed by an image-intensified CCD (charge coupled device) camera interfaced to a PC-based computer. The camera measures the fluorescence and/or scattering from the contaminants for comparison with established standards. Single shot measurements of contamination levels are possible. Hence, the technique may be used for on-line NDE testing during manufacturing processes.

  18. Porosity estimation of concrete by ultrasonic NDE

    PubMed

    Hernandez; Izquierdo; Ibanez; Anaya; Ullate

    2000-03-01

    The increasing number of concrete structures with symptoms of premature deterioration due to environmental action demands procedures to estimate the durability of this type of component. Concrete durability is related to porosity, which determines the intensity of interactions of the material with aggressive agents. The pores and capillaries inside the structure facilitate the destructive processes that generally begin in the surface. In this work, an ultrasonic NDE technique to estimate the porosity of concrete is developed. The method is based on the analysis of the mechanical behaviour of mortar probes built with calibrated sand, in which the concentration of water-cement mixture has been varied. In this sense, data of sound velocity are correlated with data of porosity, which have been previously measured by destructive measurements. PMID:10829720

  19. Use of the consultation satisfaction questionnaire to examine patients' satisfaction with general practitioners and community nurses: reliability, replicability and discriminant validity.

    PubMed Central

    Poulton, B C

    1996-01-01

    BACKGROUND: Primary health care services are the most frequently used in the health care system. Consumer feedback on these services is important. Research in this area relates mainly to doctor-patient relationships which fails to reflect the multidisciplinary nature of primary health care. AIM: A pilot study aimed to examine the feasibility of using a patient satisfaction questionnaire designed for use with general practitioner consultations as an instrument for measuring patient satisfaction with community nurses. METHOD: The questionnaire measuring patient satisfaction with general practitioner consultations was adapted for measuring satisfaction with contacts with a nurse practitioner, district nurses, practice nurses and health visitors. A total of 1575 patients in three practices consulting general practitioners or community nurses were invited to complete a questionnaire. Data were subjected to principal components analysis and the dimensions identified were tested for internal reliability and replicability. To establish discriminant validity, patients' mean satisfaction scores for consultations with general practitioners, the nurse practitioner, health visitors and nurses (district and practice nurses) were compared. RESULTS: Questionnaires were returned relating to 400 general practitioner, 54 nurse practitioner, 191 district/practice nurse and 83 health visitor consultations (overall response rate 46%). Principal components analysis demonstrated a factor structure similar to that found in an earlier study of the consultation satisfaction questionnaire. Three dimensions of patient satisfaction were identified: professional care, depth of relationship and perceived time spent with the health professional. The dimensions were found to have acceptable levels of reliability. Factor structures obtained from data relating to general practitioner and community nurse consultations were found to correlate significantly. Comparison between health professionals

  20. Understanding Schools as High-Reliability Organizations: An Exploratory Examination of Teachers' and School Leaders' Perceptions of Success

    ERIC Educational Resources Information Center

    Lorton, Juli A.; Bellamy, G. Thomas; Reece, Anne; Carlson, Jill

    2013-01-01

    Drawing on research on high-reliability organizations, this interviewbased qualitative case study employs four characteristics of such organizations as a lens for analyzing the operations of one very successful K-5 public school. Results suggest that the school had processes similar to those characteristic of high-reliability organizations: a…

  1. Detection sensitivity of x-ray CT imaging for NDE of green-state ceramics

    SciTech Connect

    Gopalsami, N.; Rizo, P.; Ellingson, W.A. ); Tracey, D.M. . Advanced Ceramics Div.)

    1991-01-01

    Improved ceramic-processing methods that use pressure slip-casting and injection molding are being developed at Norton Advanced Ceramics, with a goal of producing reliable structural ceramics for advanced heat engines. Nondestructive evaluation (NDE) of ceramic parts at different stages of processing can provide useful diagnostic information to help improve processing techniques. For example, an evaluation of density gradients in as-cast green-body samples can be used to judge mold performance and make changes in mold design. Also, the ability to detect minute flaws (20 to 50 {mu}m), such as agglomerates, inclusions, and voids, in green-body, presintered, and densified parts is important in ensuring structural reliability of the final parts, because these flaws, above certain critical sizes, can lead to catastrophic failure. Three-dimensional microfocus X-ray computed tomography (CT) and nuclear magnetic resonance imaging (MRI) systems have been developed at Argonne National Laboratory (ANL) for application to quantitative NDE evaluation of ceramics. This paper evaluates the detection sensitivity of the ANL X-ray CT system when used to determine density gradients, inclusions, and voids in green-state Si{sub 3}N{sub 4} ceramics. A theoretical account of key system- and sample-related parameters affecting X-ray CT detection sensitivity is given, and results of experimental evaluation are presented. Density calibration phantoms and net-shape-formed tensile rods with seeded defects were used in the experimental evaluation of detection limits. 6 refs., 6 figs., 1 tab.

  2. Life assessment of boiler pressure parts. Volume 6, Guidelines for NDE of heavy section components: Final report

    SciTech Connect

    Grunloh, H.J.; Hoosic, P.T.; Berasi, M.L.; Sherlock, T.P.; Evans, R.S.; Lawrie, W.E.; Buttram, J.D.; Flora, J.H.

    1993-11-01

    The use of nondestructive techniques to assess current condition of metallic components is an integral part of the life assessment methodology developed under the RP2253-10 project and incorporated into the BLESS code. This report provides an overview of the applicable NDE methods currently available and gives detailed guidelines on their use in assessing the condition of the material in elevated temperature headers and pipes. The overview covers visual, dimensional, magnetic particle, liquid penetrant, metallographic replication, radiographic, eddy current, ultrasonic, nuclear fluorescence, electromagnetic acoustic, and acoustic emission nondestructive examination methods. A discussion of typical damage mechanisms observed in heavy section components is provided covering both high and low temperature power plant headers and pipes. Detailed guidelines on the use of the various techniques are given, including guidance on flaw disposition. Detailed and specific procedural aspects are covered in extensive appendices on ultrasonic detection, surface preparation for NDE, magnetic particle examination, and liquid penetrant examination.

  3. Fatigue strength reduction factors for welds based on nondestructive examination

    SciTech Connect

    Hechmer, J.L.; Kuhn, E.J. III

    1999-02-01

    Based on the author`s hypothesis that nondestructive examination (NDE) has a major role in predicting the fatigue life of pressure vessels, a project was initiated to develop a defined relationship between NDE and fatigue strength reduction factors (FSRF). Even though a relationship should apply to both base metal and weld metal, the project was limited to weld metal because NDE for base metal is reasonably well established, whereas NDE for weld metal is more variable, depending on application. A matrix of FSRF was developed based on weld type (full penetration, partial penetration, and fillet weld) versus the NDE that is applied. The NDE methods that are included are radiographic testing (RT), ultrasonic testing (UT), magnetic particle testing (MT), dye penetrant testing (PT), and visual testing (VT). The first two methods (RT and UT) are volumetric examinations, and the remaining three are surface examinations. Seven combinations of volumetric and surface examinations were defined; thus, seven levels of FSRF are defined. Following the initial development of the project, a PVRC (Pressure Vessel Research Council) grant was obtained for the purpose of having a broad review. The report (Hechmer, 1998) has been accepted by PVRC. This paper presents the final matrix, the basis for the FSRF, and key definitions for accurate application of the FSRF matrix. A substantial amount of additional information is presented in the PVRC report (Hechmer, 1998).

  4. Investigation of a comprehensive confidence measure in NDE

    NASA Astrophysics Data System (ADS)

    Banerjee, Portia; Safdarnejad, Seyed; Udpa, Lalita; Udpa, Satish

    2015-03-01

    Quantitative assessment of reliability of classification results is critical in detection and characterization of anomalies in any non-destructive evaluation (NDE) application. Particularly in automated data analysis systems, such a measure enables the system to automatically flag indications where operator intervention is required, and reduces maintenance costs and risks. Classification results are affected by inherent ambiguity of defect classes, non-discriminative features, inadequate training samples and poor data quality. Although these sources of uncertainties in classification have been studied, formulating a single measure which quantifies all of them together has not been done to date. Generally, from Bayesian point of view, the posterior probability is considered as a confidence measure. Posterior probability of occurrence of an event is representative of inter-class similarities and intra-class distance and thus, may be used as a measure of inherent ambiguity of classes and discriminative quality of features. However, estimation of posterior probability itself is affected by size of available training samples. In this paper, we develop a framework to incorporate these two major sources of classification error in a single quantity. In lieu of the simplistic assumption, we assume that parameters of the distribution of a class are random variables. We utilize bootstrap method to find empirical distribution of parameters of the class conditional densities based on which a distribution of confidence is found. Utilizing this distribution, different interpretations of the confidence measure may be provided. Analytical results show how statistical properties of the confidence distribution depend on number of training samples and quality of features. Initial results of the approach on eddy current data is presented.

  5. The History and Future of NDE in the Management of Nuclear Power Plant Materials Degradation

    SciTech Connect

    Doctor, Steven R.

    2009-04-01

    The author has spent more than 25 years conducting engineering and research studies to quantify the performance of nondestructive evaluation (NDE) in nuclear power plant (NPP) applications and identifying improvements to codes and standards for NDE to manage materials degradation. This paper will review this fundamental NDE engineering/research work and then look to the future on how NDE can be optimized for proactively managing materials degradation in NPP components.

  6. Study Methods to Standardize Thermography NDE

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1998-01-01

    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include various graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Keviar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary.

  7. Study Methods to Standardize Thermography NDE

    NASA Technical Reports Server (NTRS)

    Walker, James L.; Workman, Gary L.

    1998-01-01

    The purpose of this work is to develop thermographic inspection methods and standards for use in evaluating structural composites and aerospace hardware. Qualification techniques and calibration methods are investigated to standardize the thermographic method for use in the field. Along with the inspections of test standards structural hardware, support hardware is designed and fabricated to aid in the thermographic process. Also, a standard operating procedure is developed for performing inspections with the Bales Thermal Image Processor (TIP). Inspections are performed on a broad range of structural composites. These materials include graphite/epoxies, graphite/cyanide-ester, graphite/silicon-carbide, graphite phenolic and Kevlar/epoxy. Also metal honeycomb (titanium and aluminum faceplates over an aluminum honeycomb core) structures are investigated. Various structural shapes are investigated and the thickness of the structures vary from as few as 3 plies to as many as 80 plies. Special emphasis is placed on characterizing defects in attachment holes and bondlines, in addition to those resulting from impact damage and the inclusion of foreign matter. Image processing through statistical analysis and digital filtering is investigated to enhance the quality and quantify the NDE thermal images when necessary.

  8. Developing NDE Techniques for Large Cryogenic Tanks

    NASA Technical Reports Server (NTRS)

    Parker, Don; Starr, Stan; Arens, Ellen

    2011-01-01

    The Shuttle Program requires very large cryogenic ground storage tanks in which to store liquid oxygen and hydrogen. The existing Pads A and B Launch Complex-39 tanks, which will be passed onto future launch programs, are 45 years old and have received minimal refurbishment and only external inspections over the years. The majority of the structure is inaccessible without a full system drain of cryogenic liquid and granular insulation in the annular region. It was previously thought that there was a limit to the number of temperature cycles that the tanks could handle due to possible insulation compaction before undergoing a costly and time consuming complete overhaul; therefore the tanks were not drained and performance issues with these tanks, specifically the Pad B liquid hydrogen tank, were accepted. There is a needind an opportunity, as the Shuttle program ends and work to upgrade the launch pads progresses, to develop innovative non-destructive evaluation (NDE) techniques to analyze the current tanks. Techniques are desired that can aid in determining the extent of refurbishment required to keep the tanks in service for another 20+ years. A nondestructive technique would also be a significant aid in acceptance testing of new and refurbished tanks, saving significant time and money, if corrective actions can be taken before cryogen is introduced to the systems.

  9. Rough surface reconstruction for ultrasonic NDE simulation

    SciTech Connect

    Choi, Wonjae; Shi, Fan; Lowe, Michael J. S.; Skelton, Elizabeth A.; Craster, Richard V.

    2014-02-18

    The reflection of ultrasound from rough surfaces is an important topic for the NDE of safety-critical components, such as pressure-containing components in power stations. The specular reflection from a rough surface of a defect is normally lower than it would be from a flat surface, so it is typical to apply a safety factor in order that justification cases for inspection planning are conservative. The study of the statistics of the rough surfaces that might be expected in candidate defects according to materials and loading, and the reflections from them, can be useful to develop arguments for realistic safety factors. This paper presents a study of real rough crack surfaces that are representative of the potential defects in pressure-containing power plant. Two-dimensional (area) values of the height of the roughness have been measured and their statistics analysed. Then a means to reconstruct model cases with similar statistics, so as to enable the creation of multiple realistic realizations of the surfaces, has been investigated, using random field theory. Rough surfaces are reconstructed, based on a real surface, and results for these two-dimensional descriptions of the original surface have been compared with those from the conventional model based on a one-dimensional correlation coefficient function. In addition, ultrasonic reflections from them are simulated using a finite element method.

  10. Quantitative NDE of Composite Structures at NASA

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Leckey, Cara A. C.; Howell, Patricia A.; Johnston, Patrick H.; Burke, Eric R.; Zalameda, Joseph N.; Winfree, William P.; Seebo, Jeffery P.

    2015-01-01

    The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable the use and certification of composites in aircraft structures through the Advanced Composites Project (ACP). The rapid, in situ characterization of a wide range of the composite materials and structures has become a critical concern for the industry. In many applications it is necessary to monitor changes in these materials over a long time. The quantitative characterization of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking are of particular interest. The research approaches of NASA's Nondestructive Evaluation Sciences Branch include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on current research activities related to large area NDE for rapidly characterizing aerospace composites.

  11. A Destructive Validation of NDE Responses of Service-Induced PWSCC Found in North Anna 2 Control Rod Drive Nozzle 31

    SciTech Connect

    Cumblidge, Stephen E.; Doctor, Steven R.; Schuster, George J.; Harris, Robert V.; Crawford, Susan L.; Seffens, Rob J.; Toloczko, Mychailo B.; Bruemmer, Stephen M.; Moyer, C.

    2009-07-01

    Studies conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies.

  12. Summary of NDE of additive manufacturing efforts in NASA

    NASA Astrophysics Data System (ADS)

    Waller, Jess M.; Saulsberry, Regor L.; Parker, Bradford H.; Hodges, Kenneth L.; Burke, Eric R.; Taminger, Karen M.

    2015-03-01

    One of the major obstacles slowing the acceptance of parts made by additive manufacturing (AM) in NASA applications is the lack of a broadly accepted materials and process quality systems; and more specifically, the lack of adequate nondestructive evaluation (NDE) processes integrated into AM. Matching voluntary consensus standards are also needed to control the consistency of input materials, process equipment, process methods, finished part properties, and how those properties are characterized. As for nondestructive characterization, procedures are needed to interrogate features unique to parts made by AM, such as fine-scale porosity, deeply embedded flaws, complex part geometry, and intricate internal features. The NDE methods developed must be tailored to meet materials, design and test requirements encountered throughout the part life cycle, whether during process optimization, real-time process monitoring, finished part qualification and certification (especially of flight hardware), or in situ health monitoring. Restated, individualized process/product-specific NDE methods are needed to satisfy NASA's various quality assurance requirements. To date, only limited data have been acquired by NASA on parts made by AM. This paper summarizes the NASA AM effort, highlights available NDE data, and outlines the approach NASA is taking to apply NDE to its various AM efforts.

  13. NDE activities and technology transfer at Sandia National Laboratories

    SciTech Connect

    Shurtleff, W.W.

    1993-12-31

    The NDE, Photometrics, and Optical Data Reduction Department at Sandia National Laboratories in New Mexico (S provides nondestructive evaluation (NDE) support for all phases of research and development at Sandia. Present facilities and personnel provide radiography, acoustic monitoring, ultrasonic scanning, computed tomography, shearography/ESPI, infrared imaging, high speed and ultra-high speed photometrics, and image processing. Although the department includes photometrics and optical data reduction as well as NDE, I will refer to the NDE department from now on for simplicity. The NDE department has worked on technology transfer to organizations inside and outside the weapons complex. This work has been performed in all the Sandia business sectors: Defense Programs, Energy and Environment, and Work for Others. The technology transfer has been in the form of testing for product improvement such as validation of aircraft inspection equipment, consultation such as detecting lathe bearing slip for a major machine tool manufacturer, and products such as an acoustic sand detector for the oil and gas industry.

  14. Best practices for evaluating the capability of nondestructive evaluation (NDE) and structural health monitoring (SHM) techniques for damage characterization

    NASA Astrophysics Data System (ADS)

    Aldrin, John C.; Annis, Charles; Sabbagh, Harold A.; Lindgren, Eric A.

    2016-02-01

    A comprehensive approach to NDE and SHM characterization error (CE) evaluation is presented that follows the framework of the `ahat-versus-a' regression analysis for POD assessment. Characterization capability evaluation is typically more complex with respect to current POD evaluations and thus requires engineering and statistical expertise in the model-building process to ensure all key effects and interactions are addressed. Justifying the statistical model choice with underlying assumptions is key. Several sizing case studies are presented with detailed evaluations of the most appropriate statistical model for each data set. The use of a model-assisted approach is introduced to help assess the reliability of NDE and SHM characterization capability under a wide range of part, environmental and damage conditions. Best practices of using models are presented for both an eddy current NDE sizing and vibration-based SHM case studies. The results of these studies highlight the general protocol feasibility, emphasize the importance of evaluating key application characteristics prior to the study, and demonstrate an approach to quantify the role of varying SHM sensor durability and environmental conditions on characterization performance.

  15. An Examination of Test-Retest, Alternate Form Reliability, and Generalizability Theory Study of the easyCBM Reading Assessments: Grade 1. Technical Report #1216

    ERIC Educational Resources Information Center

    Anderson, Daniel; Park, Jasmine, Bitnara; Lai, Cheng-Fei; Alonzo, Julie; Tindal, Gerald

    2012-01-01

    This technical report is one in a series of five describing the reliability (test/retest/and alternate form) and G-Theory/D-Study research on the easy CBM reading measures, grades 1-5. Data were gathered in the spring 2011 from a convenience sample of students nested within classrooms at a medium-sized school district in the Pacific Northwest. Due…

  16. The reliability of a 10-test package for patients with prolonged back and neck pain: could an examiner without formal medical education be used without loss of quality? A methodological study

    PubMed Central

    Lindell, Odd; Eriksson, Lars; Strender, Lars-Erik

    2007-01-01

    Background In the rehabilitation of patients with prolonged back and neck pain, the physical impairment should be assessed. Previous research has exclusively engaged medically educated examiners, mostly physiotherapists. However, less biased evaluations of efforts at rehabilitation might be achieved by personnel standing outside the treatment work itself. Therefore, if medically untrained examiners could be used without cost to the quality, this might produce a better evaluation at defensible cost and could also be useful in a research context. The aim of this study was to answer the question: given a 10-test package for patients with prolonged back and neck pain, could an examiner without formal medical education be used without loss of quality? Five of the ten tests required the examiner to keep a firm hold against the foundation of those parts of the participant's body that were not supposed to move during the test. Methods Examination by an experienced physiotherapist (A) in performing the package was compared with that by a research assistant (B) without formal medical education. The reliability, including inter- and intra-rater reliability, was assessed. In the inter-rater reliability study, 50 participants (30 patients + 20 healthy subjects) were tested once each by A and B. In the intra-rater reliability study, the 20 healthy subjects were tested twice by A or B. One-way ANOVA intra-class-correlation coefficient (ICC) was calculated and its possible systematic error was determined using a t-test. Results All five tests that required no manual fixation had acceptable reliability (ICC > .60 and no indication of systematic error). Only one of the five tests that required fixation had acceptable reliability. The difference (five vs. one) was significant (p = .01). Conclusion In a 10-test package for patients with prolonged back and neck pain, an examiner without formal medical education could be used without loss of quality, at least for the five tests

  17. NASA NDE Applications for Mobile MEMS Devices and Sensors

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Atkinson, Gary M.; Barclay, R. O.

    2008-01-01

    NASA would like new devices and sensors for performing nondestructive evaluation (NDE) of aerospace vehicles. These devices must be small in size/volume, mass, and power consumption. The devices must be autonomous and mobile so they can access the internal structures of aircraft and spacecraft and adequately monitor the structural health of these craft. The platforms must be mobile in order to transport NDE sensors for evaluating structural integrity and determining whether further investigations will be required. Microelectromechanical systems (MEMS) technology is crucial to the development of the mobile platforms and sensor systems. This paper presents NASA s needs for micro mobile platforms and MEMS sensors that will enable NDE to be performed on aerospace vehicles.

  18. Summary of NDE of Additive Manufacturing Efforts in NASA

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Saulsberry, Regor; Parker, Bradford; Hodges, Kenneth; Burke, Eric; Taminger, Karen

    2014-01-01

    (1) General Rationale for Additive Manufacturing (AM): (a) Operate under a 'design-to-constraint' paradigm, make parts too complicated to fabricate otherwise, (b) Reduce weight by 20 percent with monolithic parts, (c) Reduce waste (green manufacturing), (e) Eliminate reliance on Original Equipment Manufacturers for critical spares, and (f) Extend life of in-service parts by innovative repair methods; (2) NASA OSMA NDE of AM State-of-the-Discipline Report; (3) Overview of NASA AM Efforts at Various Centers: (a) Analytical Tools, (b) Ground-Based Fabrication (c) Space-Based Fabrication; and (d) Center Activity Summaries; (4) Overview of NASA NDE data to date on AM parts; and (5) Gap Analysis/Recommendations for NDE of AM.

  19. An Integrated NDE and FEM Characterization of Composite Rotors

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.

    2000-01-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 49 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  20. Predicting software reliability

    NASA Technical Reports Server (NTRS)

    Littlewood, B.

    1989-01-01

    A detailed look is given to software reliability techniques. A conceptual model of the failure process is examined, and some software reliability growth models are discussed. Problems for which no current solutions exist are addressed, emphasizing the very difficult problem of safety-critical systems for which the reliability requirements can be enormously demanding.

  1. An Examination of Test-Retest, Alternate Form Reliability, and Generalizability Theory Study of the easyCBM Passage Reading Fluency Assessments: Grade 4. Technical Report #1219

    ERIC Educational Resources Information Center

    Park, Bitnara Jasmine; Anderson, Daniel; Alonzo, Julie; Lai, Cheng-Fei; Tindal, Gerald

    2012-01-01

    This technical report is one in a series of five describing the reliability (test/retest and alternate form) and G-Theory/D-Study research on the easyCBM reading measures, grades 1-5. Data were gathered in the spring of 2011 from a convenience sample of students nested within classrooms at a medium-sized school district in the Pacific Northwest.…

  2. An Examination of Test-Retest, Alternate Form Reliability, and Generalizability Theory Study of the easyCBM Reading Assessments: Grade 5. Technical Report #1220

    ERIC Educational Resources Information Center

    Lai, Cheng-Fei; Park, Bitnara Jasmine; Anderson, Daniel; Alonzo, Julie; Tindal, Gerald

    2012-01-01

    This technical report is one in a series of five describing the reliability (test/retest and alternate form) and G-Theory/D-Study research on the easyCBM reading measures, grades 1-5. Data were gathered in the spring of 2011 from a convenience sample of students nested within classrooms at a medium-sized school district in the Pacific Northwest.…

  3. An Examination of Test-Retest, Alternate Form Reliability, and Generalizability Theory Study of the easyCBM Reading Assessments: Grade 2. Technical Report #1217

    ERIC Educational Resources Information Center

    Anderson, Daniel; Lai, Cheg-Fei; Park, Bitnara Jasmine; Alonzo, Julie; Tindal, Gerald

    2012-01-01

    This technical report is one in a series of five describing the reliability (test/retest an alternate form) and G-Theory/D-Study on the easyCBM reading measures, grades 1-5. Data were gathered in the spring of 2011 from the convenience sample of students nested within classrooms at a medium-sized school district in the Pacific Northwest. Due to…

  4. Eddy current NDE performance demonstrations using simulation tools

    NASA Astrophysics Data System (ADS)

    Maurice, L.; Costan, V.; Guillot, E.; Thomas, P.

    2013-01-01

    To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code_Carmel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

  5. Experimental techniques in ultrasonics for NDE and material characterization

    NASA Astrophysics Data System (ADS)

    Tittmann, B. R.

    A development status evaluation is presented for ultrasonics NDE characterization of aerospace alloys and composites in such application as the Space Shuttle, Space Station Freedom, and hypersonic aircraft. The use of such NDE techniques extends to composite-cure monitoring, postmanufacturing quality assurance, and in-space service inspection of such materials as graphite/epoxy, Ti alloys, and Al honeycomb. Attention is here given to the spectroscopy of elastically scattered wave pulses from flaws, the acoustical imaging of flaws in honeycomb structures, and laser-based ultrasonics for the noncontact inspection of composite structures.

  6. Preview of the NASA NNWG NDE Sample Preparation Handbook

    NASA Technical Reports Server (NTRS)

    2010-01-01

    This viewgraph presents a step-by-step how-to fabrication documentation of every kind of sample that is fabricated for MSFC by UA Huntsville, including photos and illustrations. The tabulation of what kind of samples are being fabricated for what NDE method, detailed instructions/documentation of the inclusion/creation of defects, detailed specifications for materials, processes, and equipment, case histories and/or experiences with the different fabrication methods and defect inclusion techniques, discussion of pitfalls and difficulties associated with sample fabrication and defect inclusion techniques, and a discussion of why certain fabrication techniques are needed as related to the specific NDE methods are included in this presentation.

  7. Eddy current NDE performance demonstrations using simulation tools

    SciTech Connect

    Maurice, L.; Costan, V.; Guillot, E.; Thomas, P.

    2013-01-25

    To carry out performance demonstrations of the Eddy-Current NDE processes applied on French nuclear power plants, EDF studies the possibility of using simulation tools as an alternative to measurements on steam generator tube mocks-up. This paper focuses on the strategy led by EDF to assess and use code{sub C}armel3D and Civa, on the case of Eddy-Current NDE on wears problem which may appear in the U-shape region of steam generator tubes due to the rubbing of anti-vibration bars.

  8. Flight-vehicle materials, structures, and dynamics - Assessment and future directions. Vol. 4 - Tribological materials and NDE

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L. (Editor); Achenbach, J. D. (Editor)

    1993-01-01

    The present volume on tribological materials and NDE discusses liquid lubricants for advanced aircraft engines, a liquid lubricant for space applications, solid lubricants for aeronautics, and thin solid-lubricant films in space. Attention is given to the science and technology of NDE, tools for an NDE engineering base, experimental techniques in ultrasonics for NDE and material characterization, and laser ultrasonics. Topics addressed include thermal methods of NDE and quality control, digital radiography in the aerospace industry, materials characterization by ultrasonic methods, and NDE of ceramics and ceramic composites. Also discussed are smart materials and structures, intelligent processing of materials, implementation of NDE technology on flight structures, and solid-state weld evaluation.

  9. Results of NDE Technique Evaluation of Clad Hydrides

    SciTech Connect

    Dennis C. Kunerth

    2014-09-01

    This report fulfills the M4 milestone, M4FT-14IN0805023, Results of NDE Technique Evaluation of Clad Hydrides, under Work Package Number FT-14IN080502. During service, zirconium alloy fuel cladding will degrade via corrosion/oxidation. Hydrogen, a byproduct of the oxidation process, will be absorbed into the cladding and eventually form hydrides due to low hydrogen solubility limits. The hydride phase is detrimental to the mechanical properties of the cladding and therefore it is important to be able to detect and characterize the presence of this constituent within the cladding. Presently, hydrides are evaluated using destructive examination. If nondestructive evaluation techniques can be used to detect and characterize the hydrides, the potential exists to significantly increase test sample coverage while reducing evaluation time and cost. To demonstrate the viability this approach, an initial evaluation of eddy current and ultrasonic techniques were performed to demonstrate the basic ability to these techniques to detect hydrides or their effects on the microstructure. Conventional continuous wave eddy current techniques were applied to zirconium based cladding test samples thermally processed with hydrogen gas to promote the absorption of hydrogen and subsequent formation of hydrides. The results of the evaluation demonstrate that eddy current inspection approaches have the potential to detect both the physical damage induced by hydrides, e.g. blisters and cracking, as well as the combined effects of absorbed hydrogen and hydride precipitates on the electrical properties of the zirconium alloy. Similarly, measurements of ultrasonic wave velocities indicate changes in the elastic properties resulting from the combined effects of absorbed hydrogen and hydride precipitates as well as changes in geometry in regions of severe degradation. However, for both approaches, the signal responses intended to make the desired measurement incorporate a number of contributing

  10. Miniaturized hand held microwave interference scanning system for NDE of dielectric armor and armor systems

    SciTech Connect

    Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Meitzler, Thomas J.; Green, William

    2011-06-23

    Inspection of ceramic-based armor has advanced through development of a microwave-based, portable, non-contact NDE system. Recently, this system was miniaturized and made wireless for maximum utility in field applications. The electronic components and functionality of the laboratory system are retained, with alternative means of position input for creation of scan images. Validation of the detection capability was recently demonstrated using specially fabricated surrogates and ballistic impact-damaged specimens. The microwave data results have been compared to data from laboratory-based microwave interferometry systems and digital x-ray imaging. The microwave interference scanning has been shown to reliably detect cracks, laminar features and material property variations. The authors present details of the system operation, descriptions of the test samples used and recent results obtained.

  11. Extending the use of the Web-based HIV Testing Belief Inventory to students attending historically Black colleges and universities: an examination of reliability and validity.

    PubMed

    Hou, Su-I

    2009-02-01

    This study sought to extend the use of a Web-based HIV Testing Belief Inventory (wHITBI), developed and validated in a majority White university in the southeastern United States, to students attending historically Black colleges and universities (HBCUs). The 19-item wHITBI was reviewed by experts to qualitatively assess its construct validity, clarity, relevancy, and comprehensiveness to HBCU students. Participants were recruited from 15 HBCUs (valid N = 372). Mean age was 20.5 years (SD = 2.4), 80% were females, 92% were heterosexual-oriented, and 58% had prior HIV test(s). Reliability coefficients revealed satisfactory internal consistencies (Cronbach's alphas: .58 approximately .85). Confirmatory factor analysis showed that items were loaded consistently with the four constructs: perceived benefits, concerns of HIV risk, stigma, and testing availability/accessibility. Data indicated good model fits (RMSEA = .06; CFI = .93; IFI = .93; RMS = .07), with all items loaded significantly. Findings showed that the psychometrics of wHITBI appears to maintain its integrity in this sample with satisfactory reliability coefficients and validities. PMID:19243233

  12. NDE for Material Characterization in Aeronautic and Space Applications

    NASA Technical Reports Server (NTRS)

    Baaklini, George Y.; Kautz, Harold E.; Gyekenyesi, Andrew L.; Abdul-Aziz, Ali; Martin, Richard E.

    2000-01-01

    This paper describes selected nondestructive evaluation (NDE) approaches that were developed or tailored at the NASA Glenn Research Center for characterizing advanced material systems. The emphasis is on high-temperature aerospace propulsion applications. The material systems include monolithic ceramics, superalloys, and high temperature composites. In the aeronautic area, the highlights are cooled ceramic plate structures for turbine applications, F-TiAl blade materials for low-pressure turbines, thermoelastic stress analysis (TSA) for residual stress measurements in titanium based and nickel based engine materials, and acousto ultrasonics (AU) for creep damage assessment in nickel-based alloys. In the space area, examples consist of cooled carbon-carbon composites for gas generator combustors and flywheel rotors composed of carbon fiber reinforced polymer matrix composites for energy storage on the international space station (ISS). The role of NDE in solving manufacturing problems, the effect of defects on structural behavior, and the use of NDE-based finite element modeling are discussed. NDE technology needs for improved microelectronic and mechanical systems as well as health monitoring of micro-materials and components are briefly discussed.

  13. Sparse signal representation and its applications in ultrasonic NDE.

    PubMed

    Zhang, Guang-Ming; Zhang, Cheng-Zhong; Harvey, David M

    2012-03-01

    Many sparse signal representation (SSR) algorithms have been developed in the past decade. The advantages of SSR such as compact representations and super resolution lead to the state of the art performance of SSR for processing ultrasonic non-destructive evaluation (NDE) signals. Choosing a suitable SSR algorithm and designing an appropriate overcomplete dictionary is a key for success. After a brief review of sparse signal representation methods and the design of overcomplete dictionaries, this paper addresses the recent accomplishments of SSR for processing ultrasonic NDE signals. The advantages and limitations of SSR algorithms and various overcomplete dictionaries widely-used in ultrasonic NDE applications are explored in depth. Their performance improvement compared to conventional signal processing methods in many applications such as ultrasonic flaw detection and noise suppression, echo separation and echo estimation, and ultrasonic imaging is investigated. The challenging issues met in practical ultrasonic NDE applications for example the design of a good dictionary are discussed. Representative experimental results are presented for demonstration. PMID:22040650

  14. A CAD Approach to Integrating NDE With Finite Element

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Downey, James; Ghosn, Louis J.; Baaklini, George Y.

    2004-01-01

    Nondestructive evaluation (NDE) is one of several technologies applied at NASA Glenn Research Center to determine atypical deformities, cracks, and other anomalies experienced by structural components. NDE consists of applying high-quality imaging techniques (such as x-ray imaging and computed tomography (CT)) to discover hidden manufactured flaws in a structure. Efforts are in progress to integrate NDE with the finite element (FE) computational method to perform detailed structural analysis of a given component. This report presents the core outlines for an in-house technical procedure that incorporates this combined NDE-FE interrelation. An example is presented to demonstrate the applicability of this analytical procedure. FE analysis of a test specimen is performed, and the resulting von Mises stresses and the stress concentrations near the anomalies are observed, which indicates the fidelity of the procedure. Additional information elaborating on the steps needed to perform such an analysis is clearly presented in the form of mini step-by-step guidelines.

  15. Platform for Post-Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    2010-01-01

    Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.

  16. NASA OSMA NDE Program Additive Manufacturing Foundational Effort

    NASA Technical Reports Server (NTRS)

    Waller, Jess; Walker, James; Burke, Eric; Wells, Douglas

    2016-01-01

    NASA is providing key leadership in an international effort linking NASA and non-NASA resources to speed adoption of additive manufacturing (AM) to meet NASA's mission goals. Participants include industry, NASA's space partners, other government agencies, standards organizations and academia. Nondestructive Evaluation (NDE) is identified as a universal need for all aspects of additive manufacturing.

  17. Advanced NDE techniques for quantitative characterization of aircraft

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.; Winfree, William P.

    1990-01-01

    Recent advances in nondestructive evaluation (NDE) at NASA Langley Research Center and their applications that have resulted in quantitative assessment of material properties based on thermal and ultrasonic measurements are reviewed. Specific applications include ultrasonic determination of bolt tension, ultrasonic and thermal characterization of bonded layered structures, characterization of composite materials, and disbonds in aircraft skins.

  18. NDE Elastic Properties of Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1995-01-01

    Fiber-reinforced composites are increasingly replacing metallic alloys as structural materials for primary components of fracture-critical structures. This trend is a result of the growing understanding of material behavior and recognition of the desirable properties of composites. A research program was conducted on NDE methods for determining the elastic properties of composites.

  19. Rocket center Peenemünde — Personal memories

    NASA Astrophysics Data System (ADS)

    Dannenberg, Konrad; Stuhlinger, Ernst

    Von Braun built his first rockets as a young teenager. At 14, he started making plans for rockets for human travel to the Moon and Mars. The German Army began a rocket program in 1929. Two years later, Colonel (later General) Becker contacted von Braun who experimented with rockets in Berlin, gave him a contract in 1932, and, jointly with the Air Force, in 1936 built the rocket center Peenemünde where von Braun and his team developed the A-4 (V-2) rocket under Army auspices, while the Air Force developed the V-1 (buzz bomb), wire-guided bombs, and rocket planes. Albert Speer, impressed by the work of the rocketeers, allowed a modest growth of the Peenemünde project; this brought Dannenberg to the von Braun team in 1940. Hitler did not believe in rockets; he ignored the A-4 project until 1942 when he began to support it, expecting that it could turn the fortunes of war for him. He drastically increased the Peenemünde work force and allowed the transfer of soldiers from the front to Peenemünde; that was when Stuhlinger, in 1943, came to Peenemünde as a Pfc.-Ph.D. Later that year, Himmler wrenched the authority over A-4 production out of the Army's hands, put it under his command, and forced production of the immature rocket at Mittelwerk, and its military deployment against targets in France, Belgium, and England. Throughout the development of the A-4 rocket, von Braun was the undisputed leader of the project. Although still immature by the end of the war, the A-4 had proceeded to a status which made it the first successful long-range precision rocket, the prototype for a large number of military rockets built by numerous nations after the war, and for space rockets that launched satellites and traveled to the Moon and the planets.

  20. Water content and its effect on ultrasound propagation in concrete--the possibility of NDE

    PubMed

    Ohdaira; Masuzawa

    2000-03-01

    It is known that water content or moisture affects the strength of concrete. The purpose of this study is to examine the possibility of the NDE of concrete from a knowledge of the relationship between water content and ultrasonic propagation in concrete. The results of measurements made on the ultrasound velocity and the frequency component on ultrasonic propagation as a function of the water content in concrete are reported. Test pieces of concrete made from common materials were made for the fundamental studies. The test piece dimensions were 10 cm in diameter and 20 cm in length. Test pieces were immersed in water for about 50 days to saturate them. To measure the effect of different water contents, test pieces were put in a drying chamber to change the amount of water between measurements. This procedure was repeated until the concrete was completely dried and the weight no longer changed. Water contents were defined as weight percentage to full dried state. Thus water content could be changed from 8% to 0%. Using the pulse transmission method, ultrasonic propagation in the frequency range 20 to 100 kHz was measured as a function of water content. The sound velocity varied gradually from 3000 m/s to 4500 m/s according to the water content. The frequency of maximum transmission also depended on the water content in this frequency range. It is considered that the ultrasonic NDE of concrete strength is feasible. PMID:10829724

  1. Replacing methyl chloroform for cleaning turbine generator components and NDE applications

    SciTech Connect

    Bailey, K.P.; O'Shanka, J.J.; Corley, T.J. . Power Generation Business Unit); Sadhir, R.K. )

    1993-08-01

    Industrial applications of methyl chloroform (1,1,1-trichloroethane) have proven to be a significant concern to the environment. As a chlorofluorocarbon (CFC), the chemical is classified by the Environmental Protection Agency as an ozone-layer-depleting substance (OLDS). CFCs are effective cleaners of organic-based materials (oils, greases, cutting fluids, etc.). The Westinghouse Power Generation Business Unit (PGBU) has taken a proactive approach to this problem and instituted two programs in 1991 and 1992 to eliminate their consumption of CFCs. The scope of the first program was to establish an alternate cleaner for the removal of oil on generator stator windings. The second program built on the work of the first program, extending the scope to include general purpose cleaning of various contaminants prior to and at the completion of nondestructive examinations (NDE). The article that follows details the methodology, results, discussions, and conclusions of the second program and the data extrapolated from the first program. The specific NDE qualification requirements are highlighted in the methodology section.

  2. Photoelastic measurements of residual stresses for NDE

    NASA Technical Reports Server (NTRS)

    Redner, Alex S.

    1988-01-01

    Photoelastic measurements of residual strains are used extensively in the QC and inspection of transparent materials. A new method of measurements, based on Spectral Contents Analysis, is described in this paper. The method uses a personal computer for photoelastic data acquisition, eliminating personal skill and subjectivity. the new tool should make the measurements of residual strains for QC simpler and more reliable.

  3. Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Ely, Thomas M.

    2009-01-01

    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold.

  4. Nondestructive assay and nondestructive examination of remote-handled transuranic waste at the ORNL waste handling and packaging plant

    SciTech Connect

    Schultz, F.J.; Caldwell, J.T.; Pajarito Scientific Corp. )

    1989-01-01

    The purpose of this investigation is to examine the use of an electron linear accelerator (LINAC) in the performance of nondestructive assay (NDA) and nondestructive examination (NDE) measurements of remote-handled transuranic wastes. The system will be used to perform waste characterization and certification activities at the Oak Ridge National Laboratory's proposed Waste Handling and Packaging Plant. The NDA and NDE technologies which were developed for contact-handled wastes are inadequate to perform such measurements on high gamma and neutron dose-rate wastes. A single LINAC will provide the interrogating fluxes required for both NDA and NDE measurements of the wastes. 11 refs., 6 figs.

  5. Recent Improvements in Display and Analysis of Nde Data at NASA

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Rauser, R. W.; Abdul-Aziz, A.; Cotton, R.; Burke, E.; Zhang, S.; Marsh, M.; Davis, B. A.; Studor, G. F.

    2011-06-01

    This talk reviews several recent NDE data visualization and analysis improvements implemented at NASA Glenn Research Center. Examples will be shown in the areas of X-ray computed tomography and waveform-based NDE. Emphasis is on methods that are most useful not only for the NDE professional analyzing the data but also for sharing of the data with customers such as material processors, testers, and modelers who need to use the data for various engineering decisions.

  6. Reliability and validity of the modified child and adolescent physical activity and nutrition survey (CAPANS-C) questionnaire examining potential correlates of physical activity participation among Chinese-Australian youth

    PubMed Central

    2014-01-01

    Background To date, few questionnaires examining psychosocial influences of physical activity (PA) participation have been psychometrically tested among Culturally and Linguistically Diverse (CALD) youth. An understanding of these influences may help explain the observed differences in PA among CALD youth. Therefore, this study examined the reliability and predictive validity of a brief self-report questionnaire examining potential psychological and social correlates of physical activity among a sample of Chinese-Australian youth. Methods Two Chinese-weekend cultural schools from eastern metropolitan Melbourne consented to participate in this study. In total, 505 students aged 11 to 16 years were eligible for inclusion in the present study, and of these, 106 students agreed to participate (21% response rate). Participants completed at 37-item self-report questionnaire examining perceived psychological and social influences on physical activity participation twice, with a test–retest interval of 7 days. Predictive validity, internal consistency and test–retest reliability were evaluated using exploratory factor analyses, Cronbach’s α coefficient, and the intraclass correlation coefficient (ICC) respectively. Predictive validity was assessed by correlating responses against duration spent in self-reported moderate-to-vigorous physical activity (MVPA). Results The exploratory factor analysis revealed a nine factor structure, with the majority of factors exhibiting high internal consistency (α ≥ 0.6). In addition, four of the nine factors had an ICC ≥ 0.6. Spearman rank-order correlations coefficients between the nine factors and self-reported minutes spent in MVPA ranged from -0.5 to 0.3 for all participants. Conclusion This is the first study to examine the psychometric properties of a potential psychological and social correlates questionnaire among Chinese-Australian youth. The questionnaire was found to provide reliable estimates on a range

  7. Mechanics aspects of NDE by sound and ultrasound

    NASA Technical Reports Server (NTRS)

    Fu, L. S.

    1982-01-01

    Nondestructive evaluation (NDE) is considered as a means to detect the energy release mechanism of defects and the interaction of microstructures within materials with sound waves and/or ultrasonic waves. Ultrasonic inspection involves the frequency range 20 kHz-1 GHz with amplitudes depending on the sensitivity of the test instrumentation. Pulse echo systems are most frequently used in NDE. Information is extracted from the signals through measurements of the signal velocity, attenuation, the acoustic emission when stress is applied, and calculation of the acoustoelastic coefficients. Fracture properties, tensile and shear strengths, the interlaminar shear strength, the cohesive strength, yield and impact strengths, the hardness, and the residual stress can be assayed by ultrasonic methods. Finally, attention is given to analytical treatment of the derived data, with mention given to transition matrix, integral equation, and eigenstrain approaches.

  8. System for NDE of thermal spray coating bonds

    SciTech Connect

    Green, D.R.; Wandling, C.R.; Gatto, F.B.; Rogers, F.S.

    1984-09-01

    A nondestructive testing system that is especially well suited to NDE of bonds between coatings and substrates has been developed. It injects heat into the test specimen surface from a hot gas pulse and detects and other coating problems by means of an emissivity independent infrared scanning method. This method is very practical and has been proven in numerous demonstrations. It is the only method known by the authors to be applicable to such a wide variety of coatings. Qualitative correlation between bond strength and scan results from the system was demonstrated on one small group of test specimens. Due to its emissivity independence, the method yields results that are, in many cases, far superior to other infrared-thermal NDE methods. It can be applied to coatings having tough surfaces, and no physical contact with the test specimen is required.

  9. Determining material properties of metal-matrix composites by NDE

    NASA Astrophysics Data System (ADS)

    Liaw, P. K.; Shannon, R. E.; Clark, W. G.; Harrigan, W. C.; Jeong, H.; Hsu, D. K.

    1992-10-01

    Nondestructive evaluation (NDE) is a promising means of studying silicon carbide particulate (SiCp)-reinforced aluminum metal-matrix composite (MMC) products at various processing stages. Eddy current techniques are effective in characterizing alloy powders and in evaluating the percentage of reinforcement in Al/SiCp powder mixtures. Ultrasonic methods can be used to identify SiCp clusters in large-scale, powder metallurgy processed MMC billets, while eddy current techniques can detect near-surface density variations. Ultrasonic techniques can also be used to determine the anisotropic stiffness constants of composite extrusions; the measured moduli are in good agreement with those determined by tensile testing. These results suggest that NDE can be used to provide on-line, closed-loop control of MMC manufacturing.

  10. Nondestructive examination technologies for inspection of radioactive waste storage tanks

    SciTech Connect

    Anderson, M.T.; Kunerth, D.C.; Davidson, J.R.

    1995-08-01

    The evaluation of underground radioactive waste storage tank structural integrity poses a unique set of challenges. Radiation fields, limited access, personnel safety and internal structures are just some of the problems faced. To examine the internal surfaces a sensor suite must be deployed as an end effector on a robotic arm. The purpose of this report is to examine the potential failure modes of the tanks, rank the viability of various NDE technologies for internal surface evaluation, select a technology for initial EE implementation, and project future needs for NDE EE sensor suites.

  11. Toward automated interpretation of integrated information: Managing "big data" for NDE

    NASA Astrophysics Data System (ADS)

    Gregory, Elizabeth; Lesthaeghe, Tyler; Holland, Stephen

    2015-03-01

    Large scale automation of NDE processes is rapidly maturing, thanks to recent improvements in robotics and the rapid growth of computer power over the last twenty years. It is fairly straightforward to automate NDE data collection itself, but the process of NDE remains largely manual. We will discuss three threads of technological needs that must be addressed before we are able to perform automated NDE. Spatial context, the first thread, means that each NDE measurement taken is accompanied by metadata that locates the measurement with respect to the 3D physical geometry of the specimen. In this way, the geometry of the specimen acts as a database key. Data context, the second thread, means that we record why the data was taken and how it was measured in addition to the NDE data itself. We will present our software tool that helps users interact with data in context, Databrowse. Condition estimation, the third thread, is maintaining the best possible knowledge of the condition (serviceability, degradation, etc.) of an object or part. In the NDE context, we can prospectively use Bayes' Theorem to integrate the data from each new NDE measurement with prior knowledge. These tools, combined with robotic measurements and automated defect analysis, will provide the information needed to make high-level life predictions and focus NDE measurements where they are needed most.

  12. Technology Transfer of Plate Wave NDE to Ultrasonic Rotary Actuation

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1995-01-01

    Plate waves have been the subject of NDE research and applications. These waves, also known as guided waves of Lamb waves, are formed in two distinct modes--symmetric and antisymmetric --depending on their vibration characteristics in relation to the plate geometry. Experiments have corroborated the predictions for various plate wave modes, allowing the elastic properties of composite materials and adhesive bonded joints to be determined.

  13. NDE Software Developed at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Martin, Richard E.; Rauser, Richard W.; Nichols, Charles; Bonacuse, Peter J.

    2014-01-01

    NASA Glenn Research Center has developed several important Nondestructive Evaluation (NDE) related software packages for different projects in the last 10 years. Three of the software packages have been created with commercial-grade user interfaces and are available to United States entities for download on the NASA Technology Transfer and Partnership Office server (https://sr.grc.nasa.gov/). This article provides brief overviews of the software packages.

  14. Approaches to hybrid SHM and NDE of composite aerospace structures

    NASA Astrophysics Data System (ADS)

    Michaels, Jennifer E.; Dawson, Alexander J.; Michaels, Thomas E.; Ruzzene, Massimo

    2014-03-01

    Periodic inspection of aerospace structures, while essential for ensuring their safety, incurs significant costs over a structure's life and also can result in significant loss of service. Structural health monitoring (SHM), which is also referred to as in situ nondestructive evaluation (NDE), offers the promise of more frequent assessments of structural integrity with little or no loss of service; however, such systems are not in common use. Here we consider a combined SHM and NDE approach to inspection of composite, plate-like components where the SHM system detects sites of possible damage and the follow-up NDE method utilizes the in situ SHM sensors to facilitate the inspection. The specific SHM approach considered is that of a sparse guided wave array using simple transducers that are spatially distributed on the structure. The NDE approach is non-contact guided wavefield imaging whereby one or more of the SHM transducers is used as a source and full wavefield data are recorded over the area of interest. This method has the advantage over conventional ultrasonic methods of being non-contact and requiring minimal surface preparation. Sparse array and wavefield data from a composite specimen with simulated sites of damage are presented here to illustrate the concept. Damage is simulated via glued-on steel plate pieces at multiple locations, and localization is performed using delay-and-sum imaging. A small, single site of simulated damage is well-localized, whereas larger and multiple sites of damage are not; however, their presence is readily detected. The follow-up wavefield imaging using a single sparse array transducer as a source is able to not only locate the sites of damage, but is able to provide a reasonable estimate of their sizes.

  15. Nondestructive Examination of Possible PWSCC in Control Rod Drive Mechanism Housings

    SciTech Connect

    Doctor, Steven R.; Cumblidge, Stephen E.; Schuster, George J.; Harris, Rob V.; Crawford, Susan L.

    2007-01-01

    Studies being conducted at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington are focused on assessing the effectiveness of nondestructive examination (NDE) techniques for inspecting control rod drive mechanism (CRDM) nozzles and J-groove weldments. The primary objective of this work is to provide information to the United States Nuclear Regulatory Commission (US NRC) on the effectiveness of NDE methods as related to the in-service inspection of CRDM nozzles and J-groove weldments, and to enhance the knowledge base of primary water stress corrosion cracking (PWSCC) through destructive characterization of the CRDM assemblies. In describing two CRDM assemblies removed from service, decontaminated, and then used in a series of NDE measurements, this paper will address the following questions: 1) What did each technique detect? 2) What did each technique miss? and 3) How accurately did each technique characterize the detected flaws? Two CRDM assemblies including the CRDM nozzle, the J-groove weld, buttering, and a portion of the ferritic head material were selected for this study. One contained suspected PWSCC, based on in-service inspection data and through-wall leakage; the other contained evidence suggesting through-wall leakage, but this was unconfirmed. The selected NDE measurements follow standard industry techniques for conducting in-service inspections of CRDM nozzles and the crown of the J-groove welds and buttering. In addition, laboratory based NDE methods were employed to conduct inspections of the CRDM assemblies, with particular emphasis on inspecting the J-groove weld and buttering. This paper will also describe the NDE methods used and discuss the NDE results. Future work will involve using the results from these NDE studies to guide the development of a destructive characterization plan to reveal the crack morphology and a comparison of the degradation found by the destructive evaluation with the recorded NDE responses.

  16. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  17. Probability of detection models for eddy current NDE methods

    SciTech Connect

    Rajesh, S.N.

    1993-04-30

    The development of probability of detection (POD) models for a variety of nondestructive evaluation (NDE) methods is motivated by a desire to quantify the variability introduced during the process of testing. Sources of variability involved in eddy current methods of NDE include those caused by variations in liftoff, material properties, probe canting angle, scan format, surface roughness and measurement noise. This thesis presents a comprehensive POD model for eddy current NDE. Eddy current methods of nondestructive testing are used widely in industry to inspect a variety of nonferromagnetic and ferromagnetic materials. The development of a comprehensive POD model is therefore of significant importance. The model incorporates several sources of variability characterized by a multivariate Gaussian distribution and employs finite element analysis to predict the signal distribution. The method of mixtures is then used for estimating optimal threshold values. The research demonstrates the use of a finite element model within a probabilistic framework to the spread in the measured signal for eddy current nondestructive methods. Using the signal distributions for various flaw sizes the POD curves for varying defect parameters have been computed. In contrast to experimental POD models, the cost of generating such curves is very low and complex defect shapes can be handled very easily. The results are also operator independent.

  18. Optimal matched filter design for ultrasonic NDE of coarse grain materials

    NASA Astrophysics Data System (ADS)

    Li, Minghui; Hayward, Gordon

    2016-02-01

    Coarse grain materials are widely used in a variety of key industrial sectors like energy, oil and gas, and aerospace due to their attractive properties. However, when these materials are inspected using ultrasound, the flaw echoes are usually contaminated by high-level, correlated grain noise originating from the material microstructures, which is time-invariant and demonstrates similar spectral characteristics as flaw signals. As a result, the reliable inspection of such materials is highly challenging. In this paper, we present a method for reliable ultrasonic non-destructive evaluation (NDE) of coarse grain materials using matched filters, where the filter is designed to approximate and match the unknown defect echoes, and a particle swarm optimization (PSO) paradigm is employed to search for the optimal parameters in the filter response with an objective to maximise the output signal-to-noise ratio (SNR). Experiments with a 128-element 5MHz transducer array on mild steel and INCONEL Alloy 617 samples are conducted, and the results confirm that the SNR of the images is improved by about 10-20 dB if the optimized matched filter is applied to all the A-scan waveforms prior to image formation. Furthermore, the matched filter can be implemented in real-time with low extra computational cost.

  19. New international Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT)

    NASA Astrophysics Data System (ADS)

    Prokofiev, Iouri; Cumblidge, Stephen E.; Csontos, Aladar A.; Braatz, Brett G.; Doctor, Steven R.

    2013-01-01

    The Nuclear Regulatory Commission established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) to follow on from the successful Program for the Inspection of Nickel alloy Components. The goals of PARENT are to conduct a confirmatory assessment of the reliability of nondestructive evaluation (NDE) techniques for detecting and sizing primary water stress corrosion cracks and apply the lessons learned from PINC to a series of round-robin tests. These open and blind round-robin tests will comprise a new set of typical pressure boundary components including dissimilar metal welds and bottom-mounted instrumentation penetrations. Open round-robin tests will engage research and industry teams worldwide to investigate and demonstrate the reliability of emerging NDE techniques to detect and size flaws with a wide range of lengths, depths, orientations, and locations. Blind round-robin tests will utilize various testing organizations, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from relatively easy to very difficult for detection and sizing. Blind and open round-robin testing started in late 2011 and early 2012, respectively. This paper will present the work scope with reports on progress, NDE methods evaluated, and project timeline for PARENT.

  20. New International Program to Asses the Reliability of Emerging Nondestructive Techniques (PARENT)

    SciTech Connect

    Prokofiev, Iouri; Cumblidge, Stephen E.; Csontos, Aladar A.; Braatz, Brett G.; Doctor, Steven R.

    2013-01-25

    The Nuclear Regulatory Commission (NRC) established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) to follow on from the successful Program for the Inspection of Nickel alloy Components (PINC). The goal of the PARENT is to conduct a confirmatory assessment of the reliability of nondestructive evaluation (NDE) techniques for detecting and sizing primary water stress corrosion cracks (PWSCC) and applying the lessons learned from PINC to a series of round-robin tests. These open and blind round-robin tests will comprise a new set of typical pressure boundary components including dissimilar metal welds (DMWs) and bottom-mounted instrumentation penetrations. Open round-robin tests will engage research and industry teams worldwide to investigate and demonstrate the reliability of emerging NDE techniques to detect and size flaws with a wide range of lengths, depths, orientations, and locations. Blind round-robin tests will utilize various testing organizations, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from relatively easy to very difficult for detection and sizing. Blind and open round-robin testing started in late 2011 and early 2012, respectively. This paper will present the work scope with reports on progress, NDE methods evaluated, and project timeline for PARENT.

  1. Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Rogers, Craig A.

    1998-07-01

    -mechanical impedance method is warranted. A further examination of the complex interaction between wave propagation, drive-point impedance, structural damage and electro-mechanical impedance of the piezo-electric wafer transducer is needed. Once these aspects are better understood, the E/M impedance method has the potential to become a widely used NDE technique with large applicability in diverse engineering fields (aerospace, automotive, infrastructure and biomedical implants).

  2. Iowa State University's undergraduate minor, online graduate certificate and resource center in NDE

    NASA Astrophysics Data System (ADS)

    Bowler, Nicola; Larson, Brian F.; Gray, Joseph N.

    2014-02-01

    Nondestructive evaluation is a `niche' subject that is not yet offered as an undergraduate or graduate major in the United States. The undergraduate minor in NDE offered within the College of Engineering at Iowa State University (ISU) provides a unique opportunity for undergraduate aspiring engineers to obtain a qualification in the multi-disciplinary subject of NDE. The minor requires 16 credits of course work within which a core course and laboratory in NDE are compulsory. The industrial sponsors of Iowa State's Center for Nondestructive Evaluation, and others, strongly support the NDE minor and actively recruit students from this pool. Since 2007 the program has graduated 10 students per year and enrollment is rising. In 2011, ISU's College of Engineering established an online graduate certificate in NDE, accessible not only to campus-based students but also to practicing engineers via the web. The certificate teaches the fundamentals of three major NDE techniques; eddy-current, ultrasonic and X-ray methods. This paper describes the structure of these programs and plans for development of an online, coursework-only, Master of Engineering in NDE and thesis-based Master of Science degrees in NDE.

  3. NDE of the universe - New ways to look at old facts

    NASA Technical Reports Server (NTRS)

    Vary, Alex

    1993-01-01

    The paper investigates the relation between cosmology and NDE, emphasizing the need for new approaches and models imposed by new space-age materials. These are frontier materials with tailored microstructures and specially designed properties, such as the ceramic and intermetallic matrix composites for very high temperature power and propulsion systems. These materials require new NDE approaches, which are discussed in this paper.

  4. Role of NDE in bridge health monitoring

    NASA Astrophysics Data System (ADS)

    Aktan, A. Emin; Grimmelsman, Kirk A.

    1999-02-01

    In the last decade, many advanced sensing and measurement technologies have been developed or transferred from defense use to infrastructure applications. It is now possible to measure various properties of a structural system, its elements and materials. However, the development of new technologies and tools should be considered in conjunction with fundamental changes and new paradigms as opposed to simple modifications to civil infrastructure systems engineering practice. It may be useful to start with a bold vision for an integrated bridge structural and operational management capability, and to properly design, develop, validate, demonstrate and standardize the technologies that are needed in conjunction with this vision. The term `health-monitoring', used in relation to intelligent infrastructure, will be helpful for formulating a complete and coherent vision for the bridge management of the future. The writers define `health monitoring,' as the measurement of the operating and loading environment and the critical responses of a structure in order to track and evaluate the symptoms of operational anomalies and/or deterioration or damage that may impact service or safety reliability.

  5. Novel NDE fiber optic corrosion sensor

    NASA Astrophysics Data System (ADS)

    Rutherford, Paul S.; Ikegami, Roy; Shrader, John E.; Sherrer, David; Zabaronick, Noel; Zeakes, Jason S.; Murphy, Kent A.; Claus, Richard O.

    1996-05-01

    Life extension programs for military metallic aircraft are becoming increasingly important as defense budgets shrink and world economies realign themselves to an uncertain future. For existing military weapon systems, metallic corrosion damage costs an estimated $8 billion per year. One approach to reducing this cost is to develop a reliable method to detect and monitor corrosion in hidden metallic structure with the use of corrosion sensors which would give an early indication of corrosion without significant disassembly. This paper describes the current status of the development, analysis, and testing of a fiber optic corrosion sensor developed jointly by Boeing and Virginia Tech Fiber & Electro-Optics Research Center and sponsored by USAF Wright Laboratory, Materials Directorate, contract #F33615-93-C-5368. In the sensor which is being developed under this contract, the normal cladding is removed in the sensor region, and replaced with aluminum alloy and allowed to corrode on coupons representative of C/KC-135 body structure in an ASTM B117 salt spray chamber. In this approach, the optical signal out of the sensor is designed to increase as corrosion takes place. These test results to determine the correlation between sensor output and structural degradation due to corrosion are discussed.

  6. Primary Water Stress Corrosion Crack Morphology and Nondestructive Evaluation Reliability

    SciTech Connect

    Doctor, Steven R.; Schuster, George J.; Anderson, Michael T.

    2004-12-01

    A research program on primary stress corrosion crack (PWSCC) is being conducted by Pacific Northwest National Laboratory (PNNL). In this program, the material degradation problem in Alloys 600, 182, and 82 is being investigated with objectives that include compling a knowledge base on all cracking in nickel based materials at all degradation sites in nuclear power plants, assessing NDE methods using mockups to quantify the detection, sizing, and using mockups to quantify the detection sizing and characterization of tight cracks, and determining the role of welding processes in degradation. In this paper, the resuts of the initial literature searchs are presented. The relevant data on crack properties such as shape and orientation are presented and their impace on nondestructive evaluation (NDE) reliability is discussed.

  7. Recalibrating software reliability models

    NASA Technical Reports Server (NTRS)

    Brocklehurst, Sarah; Chan, P. Y.; Littlewood, Bev; Snell, John

    1989-01-01

    In spite of much research effort, there is no universally applicable software reliability growth model which can be trusted to give accurate predictions of reliability in all circumstances. Further, it is not even possible to decide a priori which of the many models is most suitable in a particular context. In an attempt to resolve this problem, techniques were developed whereby, for each program, the accuracy of various models can be analyzed. A user is thus enabled to select that model which is giving the most accurate reliability predictions for the particular program under examination. One of these ways of analyzing predictive accuracy, called the u-plot, in fact allows a user to estimate the relationship between the predicted reliability and the true reliability. It is shown how this can be used to improve reliability predictions in a completely general way by a process of recalibration. Simulation results show that the technique gives improved reliability predictions in a large proportion of cases. However, a user does not need to trust the efficacy of recalibration, since the new reliability estimates produced by the technique are truly predictive and so their accuracy in a particular application can be judged using the earlier methods. The generality of this approach would therefore suggest that it be applied as a matter of course whenever a software reliability model is used.

  8. Recalibrating software reliability models

    NASA Technical Reports Server (NTRS)

    Brocklehurst, Sarah; Chan, P. Y.; Littlewood, Bev; Snell, John

    1990-01-01

    In spite of much research effort, there is no universally applicable software reliability growth model which can be trusted to give accurate predictions of reliability in all circumstances. Further, it is not even possible to decide a priori which of the many models is most suitable in a particular context. In an attempt to resolve this problem, techniques were developed whereby, for each program, the accuracy of various models can be analyzed. A user is thus enabled to select that model which is giving the most accurate reliability predicitons for the particular program under examination. One of these ways of analyzing predictive accuracy, called the u-plot, in fact allows a user to estimate the relationship between the predicted reliability and the true reliability. It is shown how this can be used to improve reliability predictions in a completely general way by a process of recalibration. Simulation results show that the technique gives improved reliability predictions in a large proportion of cases. However, a user does not need to trust the efficacy of recalibration, since the new reliability estimates prodcued by the technique are truly predictive and so their accuracy in a particular application can be judged using the earlier methods. The generality of this approach would therefore suggest that it be applied as a matter of course whenever a software reliability model is used.

  9. Reliability training

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R. (Editor); Malec, Henry A. (Editor); Dillard, Richard B.; Wong, Kam L.; Barber, Frank J.; Barina, Frank J.

    1992-01-01

    Discussed here is failure physics, the study of how products, hardware, software, and systems fail and what can be done about it. The intent is to impart useful information, to extend the limits of production capability, and to assist in achieving low cost reliable products. A review of reliability for the years 1940 to 2000 is given. Next, a review of mathematics is given as well as a description of what elements contribute to product failures. Basic reliability theory and the disciplines that allow us to control and eliminate failures are elucidated.

  10. High Frequency Ultrasonic NDE of Titanium Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Smith, Robert A.; Pettigrew, Irene; Kirk, Katherine

    2006-03-01

    Pulse-echo wave propagation through a multi-layered TiMMC with a honeycomb-layered structural arrangement was measured experimentally. Embedded in each of the layers are unidirectional, horizontally positioned, parallel oriented silicon carbide fibers cored with tungsten. During the manufacturing process it has been realised that NDE of TiMMC is necessary because fibers are vulnerable to misalignment and breakage resulting in a reduction in mechanical properties. In this paper, results show that frequency dependence exists within the structure. This paper presents the results of fiber position, waviness and orientation detection in TiMMCs. Influences of step size, transducer frequency, focus and filtering are investigated.