Sample records for examined oxygen consumption

  1. Intraoperative Oxygen Consumption During Liver Transplantation.

    PubMed

    Shibata, M; Matsusaki, T; Kaku, R; Umeda, Y; Yagi, T; Morimatsu, H

    2015-12-01

    The aim of this study was to investigate the changes in oxygen consumption during liver transplantation and to examine the relationship between intraoperatively elevated systemic oxygen consumption and postoperative liver function. This study was performed in 33 adult patients undergoing liver transplantation between September 2011 and March 2014. We measured intraoperative oxygen consumption through the use of indirect calorimetry, preoperative and intraoperative data, liver function tests, and postoperative complications and outcomes. The mean age of patients was 52 ± 9.7 years; 14 (42%) of them were women. Average Model for End-Stage Liver Disease scores were 20 ± 8.9. Oxygen consumption significantly increased after reperfusion from 172 ± 30 mL/min during the anhepatic phase to 209 ± 30 mL/min (P < .0001). We divided patients into 2 groups according to the increase in oxygen consumption after reperfusion (oxygen consumption after reperfusion minus anhepatic phase oxygen consumption: 40 mL/min increase as cutoff). The higher consumption group had a longer cold ischemia time and higher postoperative aspartate aminotransferase and alanine aminotransferase levels as compared with the lower oxygen consumption group. There were no statistically significant differences in major postoperative complications, but the higher oxygen consumption group tended to have shorter hospital stays than the lower consumption group (58 versus 95 days). We have demonstrated that oxygen consumption significantly increased after reperfusion. Furthermore, this increased oxygen consumption was associated with a longer cold ischemia time and shorter hospital stays. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. [Study on Oxygen Consumption, Oxygen Consumption Rate and Asphyxiation Point of Poecilobdella manillensis].

    PubMed

    Zhou, Wei-guan; Lv, Wei-ping; Qiu, Yi; Zhou, Wei-hai

    2014-12-01

    To investigate the oxygen consumption, oxygen consumption rate and asphyxiation point of Poecilobdella ma- nillensis. Oxygen consumption, oxygen consumption rate and asphyxiation point on juvenile (the average weight of 0. 29 g) and adult leech (the average weight of 2.89 g) of Poecilobdella manillensis were measured at water temperature conditions of 20. 2 and 30. 4 °C respectively using an airtight container with flowing water. Oxygen consumptions of Poecilobdella manillensis were increased with the increase of temperature and body weight respectively; However, their oxygen consumption rates circadian variation and the aver- age oxygen consumption rate at daytime were higher than those at night. In addition, their asphyxiation point was declined accordingly with the increase of temperature and body weight respectively. Oxygen consumption and oxygen consumption rate of Poeci- lobdella manillensis were closely associated with their activities and influenced by circadian variation, the preferable feeding time were the period of 6:00-10:00 in the morning or 17:00-19:00 in the afternoon; Meanwhile, Poecilobdella manillensis had a higher ability of the hypoxia tolerance for high density or factory farming, the long time living preservation and the long distance transport.

  3. Oxygen consumption by bovine granulosa cells with prediction of oxygen transport in preantral follicles.

    PubMed

    Li, Dongxing; Redding, Gabe P; Bronlund, John E

    2013-01-01

    The rate of oxygen consumption by granulosa cells is a key parameter in mathematical models that describe oxygen transport across ovarian follicles. This work measured the oxygen consumption rate of bovine granulosa cells in vitro to be in the range 2.1-3.3×10⁻¹⁶ mol cell⁻¹ s⁻¹ (0.16-0.25 mol m⁻³ s⁻¹). The implications of the rates for oxygen transport in large bovine preantral follicles were examined using a mathematical model. The results indicate that oocyte oxygenation becomes increasingly constrained as preantral follicles grow, reaching hypoxic levels near the point of antrum formation. Beyond a preantral follicle radius of 134 µm, oxygen cannot reach the oocyte surface at typical values of model parameters. Since reported sizes of large bovine preantral follicles range from 58 to 145 µm in radius, this suggests that oocyte oxygenation is possible in all but the largest preantral follicles, which are on the verge of antrum formation. In preantral bovine follicles, the oxygen consumption rate of granulosa cells and fluid voidage will be the key determinants of oxygen levels across the follicle.

  4. [Oxygen consumption rate of Sepia pharaonis embryos.

    PubMed

    Wang, Peng Shuai; Jiang, Xia Min; Ruan, Peng; Peng, Rui Bing; Jiang, Mao Wang; Han, Qing Xi

    2016-07-01

    This research was conducted to unravel the variation of oxygen consumption rate during different developmental stages and the effects of different ecological factors on embryonic oxygen consumption rate of Sepia pharaonis. The oxygen consumption rates were measured at twelve deve-lopmental stages by the sealed volumetric flasks, and four embryonic developmental periods (oosperm, gastrula, the formation of organization, endoskeleton) were selected under various ecological conditions, such as salinity (21, 24, 27, 30, 33), water temperature (18, 21, 24, 27, 30 ℃) and pH (7.0, 7.5, 8.0, 8.5, 9.0). The results showed that the oxygen consumption rate rose along with the developmental progress, and distinctly differed from each other. The oxygen consumption rate was 0.082 mg·(100 eggs) -1 ·h -1 during oosperm period, and rose to 0.279 mg·(100 eggs) -1 ·h -1 during gastrula period, which was significantly higher than that of blastula period. Finally, the oxygen consumption rate rose to 1.367 mg·(100 eggs) -1 ·h -1 during hatching period. The salinity showed a significant effect on oxygen consumption rate during the formation of organization and endoskeleton formation stage (P<0.05), but no significant effect during oosperm and gastrula periods (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of salinity, and reached the highest values [0.082, 0.200, 0.768 and 1.301 mg·(100 eggs) -1 ·h -1 , respectively] at salinity 30. The water temperature had a significant effect on the embryo oxygen consumption rates of gastrula, and the formation of organization and endoskeleton formation stage (P<0.05), with the exception of oosperm (P>0.05). The oxygen consumption rates of four studied embryonic stages all rose and then declined along with the increase of temperature, and reached the highest values at 27 ℃ [0.082, 0.286, 0.806 and 1.338 mg·(100 eggs) -1 ·h -1 , respectively]. The pH had no

  5. Oxygen consumption of human heart cells in monolayer culture.

    PubMed

    Sekine, Kaori; Kagawa, Yuki; Maeyama, Erina; Ota, Hiroki; Haraguchi, Yuji; Matsuura, Katsuhisa; Shimizu, Tatsuya

    2014-09-26

    Tissue engineering in cardiovascular regenerative therapy requires the development of an efficient oxygen supply system for cell cultures. However, there are few studies which have examined human cardiomyocytes in terms of oxygen consumption and metabolism in culture. We developed an oxygen measurement system equipped with an oxygen microelectrode sensor and estimated the oxygen consumption rates (OCRs) by using the oxygen concentration profiles in culture medium. The heart is largely made up of cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Therefore, we measured the oxygen consumption of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), cardiac fibroblasts, human cardiac microvascular endothelial cell and aortic smooth muscle cells. Then we made correlations with their metabolisms. In hiPSC-CMs, the value of the OCR was 0.71±0.38pmol/h/cell, whereas the glucose consumption rate and lactate production rate were 0.77±0.32pmol/h/cell and 1.61±0.70pmol/h/cell, respectively. These values differed significantly from those of the other cells in human heart. The metabolism of the cells that constitute human heart showed the molar ratio of lactate production to glucose consumption (L/G ratio) that ranged between 1.97 and 2.2. Although the energy metabolism in adult heart in vivo is reported to be aerobic, our data demonstrated a dominance of anaerobic glycolysis in an in vitro environment. With our measuring system, we clearly showed the differences in the metabolism of cells between in vivo and in vitro monolayer culture. Our results regarding cell OCRs and metabolism may be useful for future tissue engineering of human heart. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Single Cell Oxygen Mapping (SCOM) by Scanning Electrochemical Microscopy Uncovers Heterogeneous Intracellular Oxygen Consumption.

    PubMed

    Santos, Carla Santana; Kowaltowski, Alicia J; Bertotti, Mauro

    2017-09-12

    We developed a highly sensitive oxygen consumption scanning microscopy system using platinized platinum disc microelectrodes. The system is capable of reliably detecting single-cell respiration, responding to classical regulators of mitochondrial oxygen consumption activity as expected. Comparisons with commercial multi-cell oxygen detection systems show that the system has comparable errors (if not smaller), with the advantage of being able to monitor inter and intra-cell heterogeneity in oxygen consumption characteristics. Our results uncover heterogeneous oxygen consumption characteristics between cells and within the same cell´s microenvironments. Single Cell Oxygen Mapping (SCOM) is thus capable of reliably studying mitochondrial oxygen consumption characteristics and heterogeneity at a single-cell level.

  7. Oxygen consumption of keloids and hypertrophic scars.

    PubMed

    Ichioka, Shigeru; Ando, Taichi; Shibata, Masahiro; Sekiya, Naomi; Nakatsuka, Takashi

    2008-02-01

    The oxygen consumption of keloids and hypertrophic scars has never been quantitatively presented, although abnormal metabolic conditions must be associated with their pathophysiology. We invented an original measurement system equipped with a Clark oxygen electrode for ex vivo samples. The measurement of a mouse wound-healing model revealed immature repairing tissues consumed more oxygen than mature tissues. This finding is in accord with the current thinking and supported the validity of our measurement system. The analysis of fresh human samples clearly demonstrated the high oxygen consumption rate of keloid hypertrophic scars and the comparatively low consumption of mature scars. A high oxygen consuming potential, as well as insufficient oxygen diffusion, may possibly contribute to the pathophysiology of keloids and hypertrophic scars.

  8. Oxygen consumption, oxygen cost, heart rate, and perceived effort during split-belt treadmill walking in young healthy adults.

    PubMed

    Roper, Jaimie A; Stegemöller, Elizabeth L; Tillman, Mark D; Hass, Chris J

    2013-03-01

    During split-belt treadmill walking the speed of the treadmill under one limb is faster than the belt under the contralateral limb. This unique intervention has shown evidence of acutely improving gait impairments in individuals with neurologic impairment such as stroke and Parkinson's disease. However, oxygen use, heart rate and perceived effort associated with split-belt treadmill walking are unknown and may limit the utility of this locomotor intervention. To better understand the intensity of this new intervention, this study was undertaken to examine the oxygen consumption, oxygen cost, heart rate, and rating of perceived exertion associated with split-belt treadmill walking in young healthy adults. Fifteen participants completed three sessions of treadmill walking: slow speed with belts tied, fast speed with belts tied, and split-belt walking with one leg walking at the fast speed and one leg walking at the slow speed. Oxygen consumption, heart rate, and rating of perceived exertion were collected during each walking condition and oxygen cost was calculated. Results revealed that oxygen consumption, heart rate, and perceived effort associated with split-belt walking were higher than slow treadmill walking, but only oxygen consumption was significantly lower during both split-belt walking than fast treadmill walking. Oxygen cost associated with slow treadmill walking was significantly higher than fast treadmill walking. These findings have implications for using split-belt treadmill walking as a rehabilitation tool as the cost associated with split-belt treadmill walking may not be higher or potentially more detrimental than that associated with previously used treadmill training rehabilitation strategies.

  9. Effects of electrical muscle stimulation on oxygen consumption.

    PubMed

    Hayter, Tina L; Coombes, Jeff S; Knez, Wade L; Brancato, Tania L

    2005-02-01

    Electrical muscle stimulation (EMS) devices are being marketed as weight/ fat loss devices throughout the world. Commercially available stimulators have the ability to evoke muscle contractions that may affect caloric expenditure while the device is being used. The aim of this study was to test the effects of two different EMS devices (Abtronic and Feminique) on oxygen consumption at rest. Subjects arrived for testing after an overnight fast, had the devices fitted, and then positioned supine with expired air measured to determine oxygen consumption. After a 10-minute acclimation period, oxygen consumption was measured for 20 minutes with the device switched off (resting) then 20 minutes with the device switched on (stimulated). There were no significant differences (p > 0.05) in oxygen consumption between the resting and stimulated periods with either the Abtronic (mean +/- SD; resting, 3.40 +/- 0.44; stimulated, 3.45 +/- 0.53 ml of O(2).kg(-1).min(-1)) or the Feminique (resting, 3.73 +/- 0.45; stimulated, 3.75 +/- 0.46 ml of O(2).kg(-1).min(-1)). In summary, the EMS devices tested had no effect on oxygen consumption during muscle stimulation.

  10. Microvascular oxygen consumption during sickle cell pain crisis.

    PubMed

    Rowley, Carol A; Ikeda, Allison K; Seidel, Miles; Anaebere, Tiffany C; Antalek, Matthew D; Seamon, Catherine; Conrey, Anna K; Mendelsohn, Laurel; Nichols, James; Gorbach, Alexander M; Kato, Gregory J; Ackerman, Hans

    2014-05-15

    Sickle cell disease is an inherited blood disorder characterized by chronic hemolytic anemia and episodic vaso-occlusive pain crises. Vaso-occlusion occurs when deoxygenated hemoglobin S polymerizes and erythrocytes sickle and adhere in the microvasculature, a process dependent on the concentration of hemoglobin S and the rate of deoxygenation, among other factors. We measured oxygen consumption in the thenar eminence during brachial artery occlusion in sickle cell patients and healthy individuals. Microvascular oxygen consumption was greater in sickle cell patients than in healthy individuals (median [interquartile range]; sickle cell: 0.91 [0.75-1.07] vs healthy: 0.75 [0.62-0.94] -ΔHbO2/min, P < .05) and was elevated further during acute pain crisis (crisis: 1.10 [0.78-1.30] vs recovered: 0.88 [0.76-1.03] -ΔHbO2/min, P < .05). Increased microvascular oxygen consumption during pain crisis could affect the local oxygen saturation of hemoglobin when oxygen delivery is limiting. Identifying the mechanisms of elevated oxygen consumption during pain crisis might lead to the development of new therapeutic interventions. This trial was registered at www.clinicaltrials.gov as #NCT01568710.

  11. Aerobic composting of waste activated sludge: Kinetic analysis for microbiological reaction and oxygen consumption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Y.; Kawase, Y.

    2006-07-01

    In order to examine the optimal design and operating parameters, kinetics for microbiological reaction and oxygen consumption in composting of waste activated sludge were quantitatively examined. A series of experiments was conducted to discuss the optimal operating parameters for aerobic composting of waste activated sludge obtained from Kawagoe City Wastewater Treatment Plant (Saitama, Japan) using 4 and 20 L laboratory scale bioreactors. Aeration rate, compositions of compost mixture and height of compost pile were investigated as main design and operating parameters. The optimal aerobic composting of waste activated sludge was found at the aeration rate of 2.0 L/min/kg (initial compostingmore » mixture dry weight). A compost pile up to 0.5 m could be operated effectively. A simple model for composting of waste activated sludge in a composting reactor was developed by assuming that a solid phase of compost mixture is well mixed and the kinetics for microbiological reaction is represented by a Monod-type equation. The model predictions could fit the experimental data for decomposition of waste activated sludge with an average deviation of 2.14%. Oxygen consumption during composting was also examined using a simplified model in which the oxygen consumption was represented by a Monod-type equation and the axial distribution of oxygen concentration in the composting pile was described by a plug-flow model. The predictions could satisfactorily simulate the experiment results for the average maximum oxygen consumption rate during aerobic composting with an average deviation of 7.4%.« less

  12. Low levels of lipopolysaccharide modulate mitochondrial oxygen consumption in skeletal muscle

    PubMed Central

    Frisard, Madlyn I.; Wu, Yaru; McMillan, Ryan P.; Voelker, Kevin A.; Wahlberg, Kristin A.; Anderson, Angela S.; Boutagy, Nabil; Resendes, Kyle; Ravussin, Eric; Hulver, Matthew W.

    2014-01-01

    Objective We have previously demonstrated that activation of toll-like receptor 4 (TLR4) in skeletal muscle results in an increased reliance on glucose as an energy source and a concomitant decrease in fatty acid oxidation under basal conditions. Herein, we examined the effects of lipopolysaccharide (LPS), the primary ligand for TLR4, on mitochondrial oxygen consumption in skeletal muscle cell culture and isolated mitochondria. Materials/ methods Skeletal muscle cell cultures were exposed to LPS and oxygen consumption was assessed using a Seahorse Bioscience extracellular flux analyzer. Mice were also exposed to LPS and oxygen consumption was assessed in mitochondria isolated from skeletal muscle. Results Acute LPS exposure resulted in significant reductions in cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP)-stimulated maximal respiration (state 3u) and increased oligomycin induced state 4 (state 4O) respiration in C2C12 and human primary myotubes. These findings were observed in conjunction with increased mRNA of uncoupling protein 3 (UCP3), superoxide dismutase 2 (SOD2), and pyruvate dehydrogenase activity. The LPS-mediated changes in substrate oxidation and maximal mitochondrial respiration were prevented in the presence of the antioxidants N-acetylcysteine and catalase, suggesting a potential role of reactive oxygen species in mediating these effects. Mitochondria isolated from red gastrocnemius and quadriceps femoris muscle from mice injected with LPS also demonstrated reduced respiratory control ratio (RCR), and ADP- and FCCP-stimulated respiration. Conclusion LPS exposure in skeletal muscle alters mitochondrial oxygen consumption and substrate preference, which is absent when antioxidants are present. PMID:25528444

  13. Spatial Variations in Vitreous Oxygen Consumption.

    PubMed

    Murali, Karthik; Kang, Dongyang; Nazari, Hossein; Scianmarello, Nicholas; Cadenas, Enrique; Tai, Yu-Chong; Kashani, Amir; Humayun, Mark

    2016-01-01

    We investigated the spatial variation of vitreous oxygen consumption in enucleated porcine eyes. A custom made oxygen source was fabricated that could be localized to either the mid or posterior vitreous cavity and steady state vitreous oxygen tension was measured as a function of distance from the source using a commercially available probe. The reaction rate constant of ascorbate oxidation was estimated ex vivo by measuring the change in oxygen tension over time using vitreous harvested from porcine eyes. Vitreous ascorbate from mid and posterior vitreous was measured spectrophotometrically. When the oxygen source was placed in either the mid-vitreous (N = 6) or the posterior vitreous (N = 6), we measured a statistically significant decrease in vitreous oxygen tension as a function of distance from the oxygen source when compared to control experiments without an oxygen source; (p<0.005 for mid-vitreous and p<0.018 for posterior vitreous at all distances). The mid-vitreous oxygen tension change was significantly different from the posterior vitreous oxygen tension change at 2 and 3mm distances from the respective oxygen source (p<0.001). We also found a statistically significant lower concentration of ascorbate in the mid-vitreous as compared to posterior vitreous (p = 0.02). We determined the reaction rate constant, k = 1.61 M(-1) s(-1) ± 0.708 M(-1) s(-1) (SE), of the oxidation of ascorbate which was modeled following a second order rate equation. Our data demonstrates that vitreous oxygen consumption is higher in the posterior vitreous compared to the mid-vitreous. We also show spatial variations in vitreous ascorbate concentration.

  14. Spatial Variations in Vitreous Oxygen Consumption

    PubMed Central

    Murali, Karthik; Kang, Dongyang; Nazari, Hossein; Scianmarello, Nicholas; Cadenas, Enrique; Tai, Yu-Chong; Kashani, Amir; Humayun, Mark

    2016-01-01

    We investigated the spatial variation of vitreous oxygen consumption in enucleated porcine eyes. A custom made oxygen source was fabricated that could be localized to either the mid or posterior vitreous cavity and steady state vitreous oxygen tension was measured as a function of distance from the source using a commercially available probe. The reaction rate constant of ascorbate oxidation was estimated ex vivo by measuring the change in oxygen tension over time using vitreous harvested from porcine eyes. Vitreous ascorbate from mid and posterior vitreous was measured spectrophotometrically. When the oxygen source was placed in either the mid-vitreous (N = 6) or the posterior vitreous (N = 6), we measured a statistically significant decrease in vitreous oxygen tension as a function of distance from the oxygen source when compared to control experiments without an oxygen source; (p<0.005 for mid-vitreous and p<0.018 for posterior vitreous at all distances). The mid-vitreous oxygen tension change was significantly different from the posterior vitreous oxygen tension change at 2 and 3mm distances from the respective oxygen source (p<0.001). We also found a statistically significant lower concentration of ascorbate in the mid-vitreous as compared to posterior vitreous (p = 0.02). We determined the reaction rate constant, k = 1.61 M-1s-1 ± 0.708 M-1s-1 (SE), of the oxidation of ascorbate which was modeled following a second order rate equation. Our data demonstrates that vitreous oxygen consumption is higher in the posterior vitreous compared to the mid-vitreous. We also show spatial variations in vitreous ascorbate concentration. PMID:26930281

  15. Anomalous oxygen consumption in porcine somatic cell nuclear transfer embryos.

    PubMed

    Sugimura, Satoshi; Yokoo, Masaki; Yamanaka, Ken-ichi; Kawahara, Manabu; Moriyasu, Satoru; Wakai, Takuya; Nagai, Takashi; Abe, Hiroyuki; Sato, Eimei

    2010-08-01

    Oxygen consumption reflects overall metabolic activity of mammalian embryos. We measured oxygen consumption in individual porcine somatic cell nuclear transfer (SCNT) and in vitro-fertilized (IVF) embryos by modified scanning electrochemical microscopy. Oxygen consumption in IVF embryos rapidly increased at day 5 of the blastocyst stage (D5BL). IVF embryos that consumed >0.81 x 10(14)/mol sec(-1) of oxygen at D5BL exhibited significantly higher hatching and hatched rates at D7BL, whereas D5BL SCNT embryos using porcine fetal fibroblasts did not show an increase in oxygen consumption until D7BL. The numbers of inner cell mass and trophectoderm (TE) cells and incidence of apoptosis did not significantly differ between IVF and SCNT embryos at D5BL. At D7BL, a significant lower number of TE cell and higher incidence of apoptosis were observed in SCNT than in IVF embryos; this significantly correlated with their oxygen consumption at D5BL. Use of cumulus cells as donor cells neutralized the low oxygen consumption in SCNT embryos at D5BL, regardless of the difference between the recipient cytoplasm and donor nucleus. Some of SCNT embryos at D7BL were retrieved the hatching completion and were improved the number of TE cell and apoptosis incidence by using cumulus cells. Thus, anomalous oxygen consumption in porcine SCNT embryos at D5BL could be sign of limited hatchability, which may be responsible for the low TE cell number and high apoptosis incidence.

  16. Circadian rhythm of energy expenditure and oxygen consumption.

    PubMed

    Leuck, Marlene; Levandovski, Rosa; Harb, Ana; Quiles, Caroline; Hidalgo, Maria Paz

    2014-02-01

    This study aimed to evaluate the effect of continuous and intermittent methods of enteral nutrition (EN) administration on circadian rhythm. Thirty-four individuals, aged between 52 and 80 years, were fed through a nasoenteric tube. Fifteen individuals received a continuous infusion for 24 hours/d, and 19 received an intermittent infusion in comparable quantities, every 4 hours from 8:00 to 20:00. In each patient, 4 indirect calorimetric measurements were carried out over 24 hours (A: 7:30, B: 10:30, C: 14:30, and D: 21:30) for 3 days. Energy expenditure and oxygen consumption were significantly higher in the intermittent group than in the continuous group (1782 ± 862 vs 1478 ± 817 kcal/24 hours, P = .05; 257 125 vs 212 117 ml/min, P = .048, respectively). The intermittent group had higher levels of energy expenditure and oxygen consumption at all the measured time points compared with the continuous group. energy expenditure and oxygen consumption in both groups were significantly different throughout the day for 3 days. There is circadian rhythm variation of energy expenditure and oxygen consumption with continuous and intermittent infusion for EN. This suggests that only one indirect daily calorimetric measurement is not able to show the patient's true needs. Energy expenditure is higher at night with both food administration methods. Moreover, energy expenditure and oxygen consumption are higher with the intermittent administration method at all times.

  17. Embryogenesis and oxygen consumption in benthic egg clutches of a tropical clownfish, Amphiprion melanopus (Pomacentridae).

    PubMed

    Green, Bridget S

    2004-05-01

    Variation in size at hatching is common in demersal spawning organisms, suggesting that processes during embryonic development may be critical in determining growth and development. To examine critical periods during embryonic development in the demersal spawning reef fish Amphiprion melanopus, the rate of oxygen consumption within an egg clutch was compared to morphological changes in the embryos. Oxygen consumption was least on day 1 of development where organ differentiation had not begun (mean 1.73+/-0.34x10(-5) micromol O(2) egg(-1) s(-1)). Tail movement throughout the perivitelline fluid began on day 3 and is likely to assist in moving oxygen around the embryo, complementing diffusive transport. The appearance of haemoglobin in the blood corresponded to a peak in oxygen consumption on day 4, where the highest mean rate of oxygen consumption was recorded (6.73+/-0.82x10(-5) micromol O(2) egg(-1) s(-1)). This could be a critical period in development whereby risk of mortality is increased through increased embryo requirements at developmental thresholds.

  18. Oxygen consumption of animals under conditions of hypokinesia

    NASA Technical Reports Server (NTRS)

    Loginova, Y. N.; Volozhin, A. I.; Krasnyku, I. G.; Stroganova, Y. A.

    1980-01-01

    The influence of hypokinesia on the oxygen consumption of rats, dog, and squirrels was investigated. Three periods of gaseous exchange were revealed in rats under conditions of a limited motor activity. During the first 10-15 days O2 consumption displayed a sharp elevation; on the 20th-30th day, it became stabilized at a higher level (in comparison with control) and it sharply rose again on the 40th-100th day. In dogs, hypokinesia produced a reduction of O2 consumption and then a tendency to its elevation was seen. A short period of physical exercises in squirrels after hypokinesia led to increased oxygen consumption at rest.

  19. Non-invasive MRI measurements of venous oxygenation, oxygen extraction fraction and oxygen consumption in neonates.

    PubMed

    De Vis, J B; Petersen, E T; Alderliesten, T; Groenendaal, F; de Vries, L S; van Bel, F; Benders, M J N L; Hendrikse, J

    2014-07-15

    Brain oxygen consumption reflects neuronal activity and can therefore be used to investigate brain development or neuronal injury in neonates. In this paper we present the first results of a non-invasive MRI method to evaluate whole brain oxygen consumption in neonates. For this study 51 neonates were included. The T1 and T2 of blood in the sagittal sinus were fitted using the 'T2 prepared tissue relaxation inversion recovery' pulse sequence (T2-TRIR). From the T1 and the T2 of blood, the venous oxygenation and the oxygen extraction fraction (OEF) were calculated. The cerebral metabolic rate of oxygen (CMRO2) was the resultant of the venous oxygenation and arterial spin labeling whole brain cerebral blood flow (CBF) measurements. Venous oxygenation was 59±14% (mean±sd), OEF was 40±14%, CBF was 14±5ml/100g/min and CMRO2 was 30±12μmol/100g/min. The OEF in preterms at term-equivalent age was higher than in the preterms and in the infants with hypoxic-ischemic encephalopathy (p<0.01). The OEF, CBF and CMRO2 increased (p<0.01, <0.05 and <0.01, respectively) with postnatal age. We presented an MRI technique to evaluate whole-brain oxygen consumption in neonates non-invasively. The measured values are in line with reference values found by invasive measurement techniques. Preterms and infants with HIE demonstrated significant lower oxygen extraction fraction than the preterms at term-equivalent age. This could be due to decreased neuronal activity as a reflection of brain development or as a result of tissue damage, increased cerebral blood flow due to immature or impaired autoregulation, or could be caused by differences in postnatal age. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Development of a model to determine oxygen consumption when crawling

    PubMed Central

    Pollard, J.P.; Heberger, J.R.; Dempsey, P.G.

    2016-01-01

    During a mine disaster or emergency, underground air can quickly become contaminated. In these circumstances, all underground mine workers are taught to don breathable air supply units at the first sign of an emergency. However, no contemporary oxygen consumption data is available for the purposes of designing breathing air supply equipment specifically for mine escape. Further, it would be useful to quantify the oxygen requirements of breathing air supply users for various escape scenarios. To address this need, 14 participants crawled a distance of 305 m each while their breath-by-breath oxygen consumption measurements were taken. Using these data, linear regression models were developed to determine peak and average oxygen consumption rates as well as total oxygen consumption. These models can be used by manufacturers of breathing air supply equipment to aid in the design of devices that would be capable of producing sufficient on-demand oxygen to allow miners to perform self-escape. PMID:26997858

  1. [Monitoring oxygen consumption in energy metabolism in pediatric anesthesia: clinical utility].

    PubMed

    Calvo Vecino, J M; Abad Gurumeta, A; Navarro Pérez, R; Stolle Dueñas, D; Nieto Moreno, E; De Juan García, S

    2010-01-01

    To determine changes in oxygen consumption as a marker of energy metabolism during general inhaled anesthesia in pediatric patients and to identify factors that might influence consumption. Prospective, observational, double-blind study in children under inhaled anesthesia in spontaneous ventilation. We monitored heart rate electrocardiogram, noninvasive blood pressure, respiratory frequency, carbon dioxide (CO2) end-expiratory pressure, oxygen saturation by pulse oximetry, state entropy, response entropy, esophageal temperature, and (by indirect calorimetry) oxygen consumption and the respiratory quotient. Capillary blood was extracted every 5 minutes to determine lactate concentration. Thirty-six patients (ASA 1-2) between 5 and 11 years old were included. Mean (SD) oxygen consumption was 0.6 (0.12) mL x kg(-1)min(-1) at baseline, 5.3 (03) mL x kg(-1) min(-1) during maintenance of anesthesia, and 8.1 (1.1) mL x kg(-1) min(-1) on awakening. A progressive increase was detected in lactic acid concentration, from a baseline mean of 0.8 (0.1) mmol/L to 2.2 (0.9) mmol/L half an hour later; the change was unrelated to oxygen consumption. After correcting the flow of normal saline solution to 0.9%, a significant increase in oxygen consumption (P < .05) was detected. Factors that were significantly correlated (P < 0.1 and r of +/- 0.95) were temperature (oxygen consumption decreased > 10% for each degree centigrade decrease), inspired oxygen fraction > 0.8; sharp changes in the expired CO2 fraction exceeding 2 standard deviations (+/- 6), use of nitrous oxide in the gas mix (inspired nitrous oxide fraction > 20%), the length of the sampling line, and increased respiratory frequency. A model with 3 factors was constructed to explain the kinetics of oxygen consumption during anesthesia. Oxygen consumption monitoring may provide an indirect indicator of homeostatic changes during surgery. The ideal system for carrying out such monitoring during anesthesia remains to be found

  2. Normal Muscle Oxygen Consumption and Fatigability in Sickle Cell Patients Despite Reduced Microvascular Oxygenation and Hemorheological Abnormalities

    PubMed Central

    Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe

    2012-01-01

    Background/Aim Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. Methods We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Results Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Conclusions Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit

  3. Normal muscle oxygen consumption and fatigability in sickle cell patients despite reduced microvascular oxygenation and hemorheological abnormalities.

    PubMed

    Waltz, Xavier; Pichon, Aurélien; Lemonne, Nathalie; Mougenel, Danièle; Lalanne-Mistrih, Marie-Laure; Lamarre, Yann; Tarer, Vanessa; Tressières, Benoit; Etienne-Julan, Maryse; Hardy-Dessources, Marie-Dominique; Hue, Olivier; Connes, Philippe

    2012-01-01

    Although it has been hypothesized that muscle metabolism and fatigability could be impaired in sickle cell patients, no study has addressed this issue. We compared muscle metabolism and function (muscle microvascular oxygenation, microvascular blood flow, muscle oxygen consumption and muscle microvascular oxygenation variability, which reflects vasomotion activity, maximal muscle force and local muscle fatigability) and the hemorheological profile at rest between 16 healthy subjects (AA), 20 sickle cell-hemoglobin C disease (SC) patients and 16 sickle cell anemia (SS) patients. Muscle microvascular oxygenation was reduced in SS patients compared to the SC and AA groups and this reduction was not related to hemorhelogical abnormalities. No difference was observed between the three groups for oxygen consumption and vasomotion activity. Muscle microvascular blood flow was higher in SS patients compared to the AA group, and tended to be higher compared to the SC group. Multivariate analysis revealed that muscle oxygen consumption was independently associated with muscle microvascular blood flow in the two sickle cell groups (SC and SS). Finally, despite reduced muscle force in sickle cell patients, their local muscle fatigability was similar to that of the healthy subjects. Sickle cell patients have normal resting muscle oxygen consumption and fatigability despite hemorheological alterations and, for SS patients only, reduced muscle microvascular oxygenation and increased microvascular blood flow. Two alternative mechanisms can be proposed for SS patients: 1) the increased muscle microvascular blood flow is a way to compensate for the lower muscle microvascular oxygenation to maintain muscle oxygen consumption to normal values or 2) the reduced microvascular oxygenation coupled with a normal resting muscle oxygen consumption could indicate that there is slight hypoxia within the muscle which is not sufficient to limit mitochondrial respiration but increases muscle

  4. Comparative quantification of oxygen release by wetland plants: electrode technique and oxygen consumption model.

    PubMed

    Wu, Haiming; Liu, Jufeng; Zhang, Jian; Li, Cong; Fan, Jinlin; Xu, Xiaoli

    2014-01-01

    Understanding oxygen release by plants is important to the design of constructed wetlands for wastewater treatment. Lab-scale systems planted with Phragmites australis were studied to evaluate the amount of oxygen release by plants using electrode techniques and oxygen consumption model. Oxygen release rate (0.14 g O2/m(2)/day) measured using electrode techniques was much lower than that (3.94-25.20 gO2/m(2)/day) calculated using the oxygen consumption model. The results revealed that oxygen release by plants was significantly influenced by the oxygen demand for the degradation of pollutants, and the oxygen release rate increased with the rising of the concentration of degradable materials in the solution. The summary of the methods in qualifying oxygen release by wetland plants demonstrated that variations existed among different measuring methods and even in the same measuring approach. The results would be helpful for understanding the contribution of plants in constructed wetlands toward actual wastewater treatment.

  5. On-line monitoring of oxygen as a method to qualify the oxygen consumption rate of wines.

    PubMed

    Nevares, Ignacio; Martínez-Martínez, Víctor; Martínez-Gil, Ana; Martín, Roberto; Laurie, V Felipe; Del Álamo-Sanza, María

    2017-08-15

    Measuring the oxygen content during winemaking and bottle storage has become increasingly popular due to its impact on the sensory quality and longevity of wines. Nevertheless, only a few attempts to describe the kinetics of oxygen consumption based on the chemical composition of wines have been published. Therefore, this study proposes firstly a new fitting approach describing oxygen consuming kinetics and secondly the use of an Artificial Neural Network approach to describe and compare the oxygen avidity of wines according to their basic chemical composition (i.e. the content of ethanol, titratable acidity, total sulfur dioxide, total phenolics, iron and copper). The results showed no significant differences in the oxygen consumption rate between white and red wines, and allowed the sorting of the wines studied according to their oxygen consumption rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption

    PubMed Central

    SCHLEPPENBACH, LINDSAY N.; EZER, ANDREAS B.; GRONEMUS, SARAH A.; WIDENSKI, KATELYN R.; BRAUN, SAORI I.; JANOT, JEFFREY M.

    2017-01-01

    Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise. PMID:29170696

  7. Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption.

    PubMed

    Schleppenbach, Lindsay N; Ezer, Andreas B; Gronemus, Sarah A; Widenski, Katelyn R; Braun, Saori I; Janot, Jeffrey M

    2017-01-01

    Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise.

  8. Cerebral ischemia and reperfusion increases the heterogeneity of local oxygen supply/consumption balance.

    PubMed

    Weiss, Harvey R; Grayson, Jeremy; Liu, Xia; Barsoum, Sylviana; Shah, Harsh; Chi, Oak Z

    2013-09-01

    After cerebral vessel blockage, local blood flow and O2 consumption becomes lower and oxygen extraction increases. With reperfusion, blood flow is partially restored. We examined the effects of ischemia-reperfusion on the heterogeneity of local venous oxygen saturation in rats in order to determine the pattern of microregional O2 supply/consumption balance in reperfusion. The middle cerebral artery was blocked for 1 hour using the internal carotid approach in 1 group (n=9) and was then reperfused for 2 hours in another group (n=9) of isoflurane-anesthetized rats. Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small vessel arterial and venous oxygen saturations were determined microspectrophotometrically. After 1 hour of ischemia, local cerebral blood flow (92±10 versus 50±10 mL/min per 100 g) and O2 consumption (4.5±0.6 versus 2.7±0.5 mL O2/min per 100 g) decreased compared with the contralateral cortex. Oxygen extraction increased (4.7±0.2 versus 5.4±0.3 mL O2/100 mL) and the variation in small vein (20-60 μm) O2 saturation as determined by its coefficient of variation (=100×SD/mean) increased (5.5 versus 10.5). With 2 hours of reperfusion, the blood flow decrement was reduced and O2 consumption returned to the value in the contralateral cortex. Oxygen extraction remained elevated in the ischemic-reperfused area and the coefficient of variation of small vein O2 saturation increased further (17.3). These data indicated continued reduction of O2 supply/consumption balance with reperfusion. They also demonstrated many small regions of low oxygenation within the reperfused cortical region.

  9. Oxygen consumption along bed forms under losing and gaining streamflow conditions

    NASA Astrophysics Data System (ADS)

    De Falco, Natalie; Arnon, Shai; Boano, Fulvio

    2016-04-01

    Recent studies have demonstrated that bed forms are the most significant geomorphological structure that drives hyporheic exchange and biogeochemical processes in stream networks. Other studies also demonstrated that due to the hyporheic flow patterns within bed form, biogeochemical processes do not occur uniformly along and within the bed forms. The objective of this work was to systematically evaluate how losing or gaining flow conditions affect oxygen consumption by biofilm along sandy bed forms. We measured the effects of losing and gaining flow conditions on oxygen consumption by combining modeling and experiments in a novel laboratory flume system that enable the control of losing and gaining fluxes. Oxygen consumption was measured after growing a benthic biofilm fed with Sodium Benzoate (as a carbon source) and measuring the distribution of oxygen in the streambed with microelectrodes. The experimental results were analyzed using a novel code that calculates vertical profiles of reaction rates in the presence of hyporheic water fluxes. These experimental observations and modeling revealed that oxygen distribution varied along the bed forms. The zone of oxygen consumption (i.e. depth of penetration) was the largest at the upstream side of the bed form and the smallest in the lee side (at the lowest part of the bed form), regardless of the flow conditions. Also, the zone of oxygen consumption was the largest under losing conditions, the smallest under gaining conditions, and in-between under neutral conditions. The distribution of oxygen consumption rates determined with our new model will be also discussed. Our preliminary results enable us to show the importance of the coupling between flow conditions and oxygen consumption along bed forms and are expected to improve our understanding of nutrient cycling in streams.

  10. Simultaneous sampling of tissue oxygenation and oxygen consumption in skeletal muscle.

    PubMed

    Nugent, William H; Song, Bjorn K; Pittman, Roland N; Golub, Aleksander S

    2016-05-01

    Under physiologic conditions, microvascular oxygen delivery appears to be well matched to oxygen consumption in respiring tissues. We present a technique to measure interstitial oxygen tension (PISFO2) and oxygen consumption (VO2) under steady-state conditions, as well as during the transitions from rest to activity and back. Phosphorescence Quenching Microscopy (PQM) was employed with pneumatic compression cycling to achieve 1 to 10 Hz sampling rates of interstitial PO2 and simultaneous recurrent sampling of VO2 (3/min) in the exteriorized rat spinotrapezius muscle. The compression pressure was optimized to 120-130 mmHg without adverse effect on the tissue preparation. A cycle of 5s compression followed by 15s recovery yielded a resting VO2 of 0.98 ± 0.03 ml O2/100 cm(3)min while preserving microvascular oxygen delivery. The measurement system was then used to assess VO2 dependence on PISFO2 at rest and further tested under conditions of isometric muscle contraction to demonstrate a robust ability to monitor the on-kinetics of tissue respiration and the compensatory changes in PISFO2 during contraction and recovery. The temporal and spatial resolution of this approach is well suited to studies seeking to characterize microvascular oxygen supply and demand in thin tissues. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effect of training in minimalist footwear on oxygen consumption during walking and running.

    PubMed

    Bellar, D; Judge, L W

    2015-06-01

    The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg(-1)·min(-1)) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr(-1)), light running (7.2 km·hr(-1)), and moderate running (9.6 km·hr(-1)). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, [Formula: see text]=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr(-1) (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr(-1). At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar.

  12. In vivo mapping of tumor oxygen consumption using (19)F MRI relaxometry.

    PubMed

    Diepart, Caroline; Magat, Julie; Jordan, Bénédicte F; Gallez, Bernard

    2011-06-01

    Recently, we have developed a new electron paramagnetic resonance (EPR) protocol in order to estimate tissue oxygen consumption in vivo. Because it is crucial to probe the heterogeneity of response in tumors, the aim of this study was to apply our protocol, together with (19)F MRI relaxometry, to the mapping of the oxygen consumption in tumors. The protocol includes the continuous measurement of tumor po(2) during the following respiratory challenge: (i) basal values during air breathing; (ii) increasing po(2) values during carbogen breathing until saturation of tissue with oxygen; (iii) switching back to air breathing. We have demonstrated previously using EPR oximetry that the kinetics of return to the basal value after oxygen saturation are mainly governed by tissue oxygen consumption. This challenge was applied in hyperthyroid mice (generated by chronic treatment with L-thyroxine) and control mice, as hyperthyroidism is known to dramatically affect the oxygen consumption rate of tumor cells. Our recently developed snapshot inversion recovery MRI fluorocarbon oximetry technique allowed the po(2) return kinetics to be measured with a high temporal resolution. The kinetic constants (i.e. oxygen consumption rates) were higher for tumors from hyperthyroid mice than from control mice, data that are consistent with our previous EPR study. The corresponding histograms of the (19)F MRI data showed that the kinetic constants displayed a shift to the right for the hyperthyroid group, indicating a higher oxygen consumption in these tumors. The color maps showed a large heterogeneity in terms of oxygen consumption rate within a tumor. In conclusion, (19)F MRI relaxometry allows the noninvasive mapping of the oxygen consumption in tumors. The ability to assess the heterogeneity of tumor response is critical in order to identify potential tumor regions that might be resistant to treatment and therefore produce a poor response to therapy. Copyright © 2010 John Wiley & Sons

  13. Regional cell density distribution and oxygen consumption rates in porcine TMJ discs: an explant study.

    PubMed

    Kuo, J; Shi, C; Cisewski, S; Zhang, L; Kern, M J; Yao, H

    2011-07-01

    To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. TMJ discs from pigs aged 6-8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve-fitting of the recorded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. The overall cell density [mean, 95% confidence interval (CI)] was 51.3 (21.3-81.3) × 10(6) cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (P<0.02) and 29.1% higher than the posterior band (P<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (P<0.04) and 25.4% higher than the lateral region (P<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44 (0.44-2.44) μmol/mL wet tissue/h and 28.7 (12.2-45.2)nmol/10(6)cells/h, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (P<0.02) and cell based (P<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be vulnerable to

  14. Regional Cell Density Distribution and Oxygen Consumption Rates in Porcine TMJ Discs: An Explant Study

    PubMed Central

    Kuo, Jonathan; Shi, Changcheng; Cisewski, Sarah; Zhang, Lixia; Kern, Michael J.; Yao, Hai

    2011-01-01

    Objective To determine the regional cell density distribution and basal oxygen consumption rates (based on tissue volume and cell number) of temporomandibular joint (TMJ) discs and further examine the impact of oxygen tension on these rates. Design TMJ discs from pigs aged 6–8 months were divided into five regions: anterior, intermediate, posterior, lateral and medial. The cell density was determined using confocal laser scanning microscopy. The change in oxygen tension was recorded while TMJ disc explants were cultured in sealed metabolism chambers. The volume based oxygen consumption rate of explants was determined by theoretical curve fitting of the recoded oxygen tension data with the Michaelis-Menten equation. The rate on a per-cell basis was calculated based on the cell density measurements and volume based rate measured in another group of discs. Results The overall cell density (mean, 95% CI) was 51.3(21.3–81.3)×106cells/mL wet tissue. Along the anteroposterior axis, the anterior band had 25.5% higher cell density than the intermediate zone (p<0.02) and 29.1% higher than the posterior band (p<0.008). Along the mediolateral axes, the medial region had 26.2% higher cell density than the intermediate zone (p<0.04) and 25.4% higher than the lateral region (p<0.045). The overall volume and cell based maximum oxygen consumption rates were 1.44(0.44–2.44) μmol/mL wet tissue/hr and 28.7(12.2–45.2) nmol/106 cells/hr, respectively. The central regions (intermediate, lateral, and medial) had significantly higher volume based (p<0.02) and cell based (p<0.005) oxygen consumption rates than the anterior and posterior bands. At high oxygen tension, the oxygen consumption rate remained constant, but dropped as oxygen tension fell below 5%. Conclusions The TMJ disc had higher cell density and oxygen consumption rates than articular cartilage reported in the literature. These results suggest that a steeper oxygen gradient may exist in the TMJ disc and may be

  15. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.

    PubMed

    Han, Guomin; Webb, Michael R; Richter, Chandra; Parsons, Jessica; Waterhouse, Andrew L

    2017-08-01

    Micro-oxygenation (MOx) is a common winemaking treatment used to improve red wine color development and diminish vegetal aroma, amongst other effects. It is commonly applied to wine immediately after yeast fermentation (phase 1) or later, during aging (phase 2). Although most winemakers avoid MOx during malolactic (ML) fermentation, it is often not possible to avoid because ML bacteria are often present during phase 1 MOx treatment. We investigated the effect of common yeast and bacteria on the outcome of micro-oxygenation. Compared to sterile filtered wine, Saccharomyces cerevisiae inoculation significantly increased oxygen consumption, keeping dissolved oxygen in wine below 30 µg L -1 during micro-oxygenation, whereas Oenococcus oeni inoculation was not associated with a significant impact on the concentration of dissolved oxygen. The unfiltered baseline wine also had both present, although with much higher populations of bacteria and consumed oxygen. The yeast-treated wine yielded much higher levels of acetaldehyde, rising from 4.3 to 29 mg L -1 during micro-oxygenation, whereas no significant difference was found between the bacteria-treated wine and the filtered control. The unfiltered wine exhibited rapid oxygen consumption but no additional acetaldehyde, as well as reduced pyruvate. Analysis of the acetaldehyde-glycerol acetal levels showed a good correlation with acetaldehyde concentrations. The production of acetaldehyde is a key outcome of MOx and it is dramatically increased in the presence of yeast, although it is possibly counteracted by the metabolism of O. oeni bacteria. Additional controlled experiments are necessary to clarify the interaction of yeast and bacteria during MOx treatments. Analysis of the glycerol acetals may be useful as a proxy for acetaldehyde levels. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Effect of training in minimalist footwear on oxygen consumption during walking and running

    PubMed Central

    Judge, LW

    2015-01-01

    The present study sought to examine the effect of 5 weeks of training with minimalist footwear on oxygen consumption during walking and running. Thirteen college-aged students (male n = 7, female n = 6, age: 21.7±1.4 years, height: 168.9±8.8 cm, weight: 70.4±15.8 kg, VO2max: 46.6±6.6 ml·kg−1·min−1) participated in the present investigation. The participants did not have experience with minimalist footwear. Participants underwent metabolic testing during walking (5.6 km·hr−1), light running (7.2 km·hr−1), and moderate running (9.6 km·hr−1). The participants completed this assessment barefoot, in running shoes, and in minimalist footwear in a randomized order. The participants underwent 5 weeks of training with the minimalist footwear. Afterwards, participants repeated the metabolic testing. Data was analyzed via repeated measures ANOVA. The analysis revealed a significant (F4,32= 7.576, ηp2=0.408, p ≤ 0.001) interaction effect (time × treatment × speed). During the initial assessment, the minimalist footwear condition resulted in greater oxygen consumption at 9.6 km·hr−1 (p ≤ 0.05) compared to the barefoot condition, while the running shoe condition resulted in greater oxygen consumption than both the barefoot and minimalist condition at 7.2 and 9.6 km·hr−1. At post-testing the minimalist footwear was not different at any speed compared to the barefoot condition (p> 0.12). This study suggests that initially minimalist footwear results in greater oxygen consumption than running barefoot, however; with utilization the oxygen consumption becomes similar. PMID:26060339

  17. Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise.

    PubMed

    Chan, Huan Hao; Burns, Stephen Francis

    2013-02-01

    This study examined the acute effect of sprint interval exercise (SIE) on postexercise oxygen consumption, substrate oxidation, and blood pressure. The participants were 10 healthy males aged 21-27 years. Following overnight fasts, each participant undertook 2 trials in a random balanced order: (i) four 30-s bouts of SIE on a cycle ergometer, separated by 4.5 min of recovery, and (ii) resting (control) in the laboratory for an equivalent period. Time-matched measurements of oxygen consumption, respiratory exchange ratio, and blood pressure were made for 2 h into recovery. Total 2-h oxygen consumption was significantly higher in the SIE than in the control trial (mean ± SD: 31.9 ± 6.7 L vs Exercise: 45.5 ± 6.8 L, p < 0.001). The rate of fat oxidation was 75% higher 2 h after the exercise trial compared with the control trial ( 0.08 ± 0.05 g·min(-1) vs Exercise: 0.14 ± 0.06 g·min(-1), p = 0.035). Systolic blood pressure ( 117 ± 8 mm Hg vs Exercise: 109 ± 8 mm Hg, p < 0.05) and diastolic blood pressure ( 84 ± 6 mm Hg vs Exercise: 77 ± 5 mm Hg, p < 0.05) were significantly lower 2 h after the exercise trial compared with the control trial. These data showed a 42% increase in oxygen consumption (∼13.6 L) over 2 h after a single bout of SIE. Moreover, the rate of fat oxidation increased by 75%, whereas blood pressure was reduced by ∼8 mm Hg 2 h after SIE. Whether these acute benefits of SIE can translate into long-term changes in body composition and an improvement in vascular health needs investigation.

  18. CORRECTING ENERGY EXPENDITURES FOR FATIGUE AND EXCESS POST-EXERCISE OXYGEN CONSUMPTION

    EPA Science Inventory

    The EPA's human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the individual's current level of physical activity (PA), which is determined from activity diaries selected from the Conso...

  19. Therapeutic effect of forearm low level light treatment on blood flow, oxygenation, and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Wang, Pengbo; Sun, Jiajing; Meng, Lingkang; Li, Zebin; Li, Ting

    2018-02-01

    Low level light/laser therapy (LLLT) is considered as a novel, non-invasive, and potential therapy in a variety of psychological and physical conditions, due to its effective intricate photobiomodulation. The mechanism of LLLT is that when cells are stimulated by photons, mitochondria produce a large quantity of ATP, which accelerates biochemical responses in the cell. It is of great significance to gain a clear insight into the change or interplay of various physiological parameters. In this study, we used functional near-infrared spectroscopy (fNIRS) and venous-occlusion plethysmography to measure the LLLT-induced changes in blood flow, oxygenation, and oxygen consumption in human forearms in vivo. Six healthy human participants (4 males and 2 females) were administered with 810-nm light emitted by LED array in ten minutes and blood flow, oxygenation and oxygen consumption were detected in the entire experiment. We found that LLLT induced an increase of blood flow and oxygen consumption on the treated site. Meanwhile, LLLT took a good role in promoting oxygenation of regional tissue, which was indicated by a significant increase of oxygenated hemoglobin concentration (Δ[HbO2]), a nearly invariable deoxygenated hemoglobin concentration (Δ[Hb]) and a increase of differential hemoglobin concentration (Δ[HbD] = Δ[HbO2] - Δ[Hb]). These results not only demonstrate enormous potential of LLLT, but help to figure out mechanisms of photobiomodulation.

  20. An automatic, closed-circuit oxygen consumption apparatus for small animals.

    PubMed

    Stock, M J

    1975-11-01

    An apparatus suitable for the continuous measurement of oxygen consumption of rats and mice is described. The system uses a motorized syringe dispenser to deliver fixed volumes of oxygen to a closed animal chamber. The dispenser is controlled by a micro-differential pressure switch to maintain chamber pressure slightly above ambient. The rate of oxygen consumption is determined by timing the interval between successive operations of the dispenser. The system has proved suitable for a range of experimental conditions and treatments.

  1. Development of a new clinically applicable device for embryo evaluation which measures embryo oxygen consumption.

    PubMed

    Kurosawa, Hiroki; Utsunomiya, Hiroki; Shiga, Naomi; Takahashi, Aiko; Ihara, Motomasa; Ishibashi, Masumi; Nishimoto, Mitsuo; Watanabe, Zen; Abe, Hiroyuki; Kumagai, Jin; Terada, Yukihiro; Igarashi, Hideki; Takahashi, Toshifumi; Fukui, Atsushi; Suganuma, Ryota; Tachibana, Masahito; Yaegashi, Nobuo

    2016-10-01

    Does a new system-the chip-sensing embryo respiration monitoring system (CERMs)-enable evaluation of embryo viability for potential application in a clinical IVF setting? The system enabled the oxygen consumption rate of spheroids, bovine embryos and frozen-thawed human embryos to be measured, and this rate corresponded to the developmental potential of embryos. To date, no reliable and clinically suitable objective evaluation methods for embryos are available, which circumvent the differences in inter-observer subjective view. Existing systems such as the scanning electrochemical microscopy (SECM) technique, which enables the measurement of oxygen consumption rate in embryos, need improvement in usability before they can be applied to a clinical setting. This is a prospective original research study. The feasibility of measuring the oxygen consumption rate was assessed using CERMs for 9 spheroids, 9 bovine embryos and 30 redundant frozen-thawed human embryos. The endpoints for the study were whether CERMs could detect a dissolved oxygen gradient with high sensitivity, had comparable accuracy to the SECM measuring system with improved usability, and could predict the development of an embryo to a blastocyst by measuring the oxygen consumption rate. The relationship between the oxygen consumption rate and standard morphological evaluation was also examined. We developed a new CERMs, which enables the oxygen consumption rate to be measured automatically using an electrochemical method. The device was initially used for measuring a dissolved oxygen concentration gradient in order to calculate oxygen consumption rate using nine spheroids. Next, we evaluated data correlation between the CERMs and the SECM measuring systems using nine bovine embryos. Finally, the oxygen consumption rates of 30 human embryos, which were frozen-thawed on 2nd day after fertilization, were measured by CERMs at 6, 24, 48, 72 and 96 h after thawing with standard morphological evaluation

  2. Oxygen consumption rates by different oenological tannins in a model wine solution.

    PubMed

    Pascual, Olga; Vignault, Adeline; Gombau, Jordi; Navarro, Maria; Gómez-Alonso, Sergio; García-Romero, Esteban; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Teissedre, Pierre-Louis; Zamora, Fernando

    2017-11-01

    The kinetics of oxygen consumption by different oenological tannins were measured in a model wine solution using the non-invasive method based on luminiscence. The results indicate that the oxygen consumption rate follows second-order kinetics depending on tannin and oxygen concentrations. They also confirm that the oxygen consumption rate is influenced by temperature in accordance with Arrhenius law. The indications are that ellagitannins are the fastest oxygen consumers of the different oenological tannins, followed in decreasing order by quebracho tannins, skin tannins, seed tannins and finally gallotannins. This methodology can therefore be proposed as an index for determining the effectiveness of different commercial tannins in protecting wines against oxidation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Computational Model for Oxygen Transport and Consumption in Human Vitreous

    PubMed Central

    Filas, Benjamen A.; Shui, Ying-Bo; Beebe, David C.

    2013-01-01

    Purpose. Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. Methods. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. Results. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Conclusions. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts. PMID:24008409

  4. Computational model for oxygen transport and consumption in human vitreous.

    PubMed

    Filas, Benjamen A; Shui, Ying-Bo; Beebe, David C

    2013-10-15

    Previous studies that measured liquefaction and oxygen content in human vitreous suggested that exposure of the lens to excess oxygen causes nuclear cataracts. Here, we developed a computational model that reproduced available experimental oxygen distributions for intact and degraded human vitreous in physiologic and environmentally perturbed conditions. After validation, the model was used to estimate how age-related changes in vitreous physiology and structure alter oxygen levels at the lens. A finite-element model for oxygen transport and consumption in the human vitreous was created. Major inputs included ascorbate-mediated oxygen consumption in the vitreous, consumption at the posterior lens surface, and inflow from the retinal vasculature. Concentration-dependent relations were determined from experimental human data or estimated from animal studies, with the impact of all assumptions explored via parameter studies. The model reproduced experimental data in humans, including oxygen partial pressure (Po2) gradients (≈15 mm Hg) across the anterior-posterior extent of the vitreous body, higher oxygen levels at the pars plana relative to the vitreous core, increases in Po2 near the lens after cataract surgery, and equilibration in the vitreous chamber following vitrectomy. Loss of the antioxidative capacity of ascorbate increases oxygen levels 3-fold at the lens surface. Homogeneous vitreous degeneration (liquefaction), but not partial posterior vitreous detachment, greatly increases oxygen exposure to the lens. Ascorbate content and the structure of the vitreous gel are critical determinants of lens oxygen exposure. Minimally invasive surgery and restoration of vitreous structure warrant further attention as strategies for preventing nuclear cataracts.

  5. Matching of postcontraction perfusion to oxygen consumption across submaximal contraction intensities in exercising humans.

    PubMed

    Buck, Amanda K W; Elder, Christopher P; Donahue, Manus J; Damon, Bruce M

    2015-08-01

    Studying the magnitude and kinetics of blood flow, oxygen extraction, and oxygen consumption at exercise onset and during the recovery from exercise can lead to insights into both the normal control of metabolism and blood flow and the disturbances to these processes in metabolic and cardiovascular diseases. The purpose of this study was to examine the on- and off-kinetics for oxygen delivery, extraction, and consumption as functions of submaximal contraction intensity. Eight healthy subjects performed four 1-min isometric dorsiflexion contractions, with two at 20% MVC and two at 40% MVC. During one contraction at each intensity, relative perfusion changes were measured by using arterial spin labeling, and the deoxyhemoglobin percentage (%HHb) was estimated using the spin- and gradient-echo sequence and a previously published empirical calibration. For the whole group, the mean perfusion did not increase during contraction. The %HHb increased from ∼28 to 38% during contractions of each intensity, with kinetics well described by an exponential function and mean response times (MRTs) of 22.7 and 21.6 s for 20 and 40% MVC, respectively. Following contraction, perfusion increased ∼2.5-fold. The %HHb, oxygen consumption, and perfusion returned to precontraction levels with MRTs of 27.5, 46.4, and 50.0 s, respectively (20% MVC), and 29.2, 75.3, and 86.0 s, respectively (40% MVC). These data demonstrate in human subjects the varied recovery rates of perfusion and oxygen consumption, along with the similar rates of %HHb recovery, across these exercise intensities. Copyright © 2015 the American Physiological Society.

  6. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  7. Oxygen Consumption is Limited at an Ecologically Relevant Rearing Temperature in Pupfish Eggs.

    PubMed

    Jones, Alexander C; Lim, David; Wayne-Thompson, Jacoby J; Urbina, Natasha; Puentedura, Georgina; Hillyard, Stanley; Breukelen, Frank Van

    2016-10-01

    The habitat of the critically endangered Devils Hole Pupfish, Cyprinodon diabolis is marked by constant high temperatures and low oxygen availability. In order to explore the effects of these conditions on development and recruitment of eggs in Devils Hole, we tested the effects of two ecologically relevant temperatures on the development, hatch success, and oxygen consumption of eggs from a refuge population of pupfish derived from C. diabolis and eggs from its close sister species, Cyprinodon nevadensis mionectes. We developed a simple method to measure oxygen consumption in a single egg. Parent acclimation temperature, rather than incubation temperature, was the most important factor influencing hatch success. Eggs incubated at 33°C hatched more quickly compared to those incubated at 28°C. Despite this accelerated development, larvae from both temperatures were of similar size at hatch. Unexpectedly, eggs incubated at 33°C experience lower than expected oxygen consumption rates compared to those incubated at 28°C. Oxygen consumption rates would be limited at PO 2 values that are much higher than environmental oxygen tensions. Oxygen consumption increased dramatically upon hatch, indicating that low oxygen conditions such as those present in Devils Hole may limit developing eggs. © 2016 Wiley Periodicals, Inc.

  8. Effect of Training Status on Oxygen Consumption in Women After Resistance Exercise.

    PubMed

    Benton, Melissa J; Waggener, Green T; Swan, Pamela D

    2016-03-01

    This study compared acute postexercise oxygen consumption in 11 trained women (age, 46.5 ± 1.6 years; body mass index [BMI], 28.4 ± 1.7 kg·m(-2) and 11 untrained women (age, 46.5 ± 1.5 years; BMI, 27.5 ± 1.5 kg·m(-2)) after resistance exercise (RE). Resistance exercise consisted of 3 sets of 8 exercises (8-12 repetitions at 50-80% 1 repetition maximum). Oxygen consumption (VO2 ml·min(-1)) was measured before and after (0, 20, 40, 60, 90, and 120 minutes) RE. Immediately after cessation of RE (time 0), oxygen consumption increased in both trained and untrained women and remained significantly above baseline through 60 minutes after exercise (p < 0.01). Total oxygen consumption during recovery was 31.3 L in trained women and 27.4 L in untrained women (p = 0.07). In trained women, total oxygen consumption was strongly related to absolute (kg) lean mass (r = 0.88; p < 0.001), relative (kilogram per square meter) lean mass (r = 0.91; p < 0.001), and duration of exercise (r = 0.68; p ≤ 0.05), but in untrained women, only training volume-load was related to total oxygen consumption (r = 0.67; p ≤ 0.05). In trained women, 86% of the variance in oxygen consumption was explained by lean mass and exercise duration, whereas volume-load explained 45% in untrained women. Our findings suggest that, in women, resistance training increases metabolic activity of lean tissue. Postexercise energy costs of RE are determined by the duration of stimulation provided by RE rather than absolute work (volume-load) performed. This phenomenon may be related to type II muscle fibers and increased protein synthesis.

  9. Oxygen monitor for semi-closed rebreathers: design and use for estimating metabolic oxygen consumption

    NASA Astrophysics Data System (ADS)

    Clarke, John R.; Southerland, David

    1999-07-01

    Semi-closed circuit underwater breathing apparatus (UBA) provide a constant flow of mixed gas containing oxygen and nitrogen or helium to a diver. However, as a diver's work rate and metabolic oxygen consumption varies, the oxygen percentages within the UBA can change dramatically. Hence, even a resting diver can become hypoxic and become at risk for oxygen induced seizures. Conversely, a hard working diver can become hypoxic and lose consciousness. Unfortunately, current semi-closed UBA do not contain oxygen monitors. We describe a simple oxygen monitoring system designed and prototyped at the Navy Experimental Diving Unit. The main monitor components include a PIC microcontroller, analog-to-digital converter, bicolor LED, and oxygen sensor. The LED, affixed to the diver's mask is steady green if the oxygen partial pressure is within pre- defined acceptable limits. A more advanced monitor with a depth senor and additional computational circuitry could be used to estimate metabolic oxygen consumption. The computational algorithm uses the oxygen partial pressure and the diver's depth to compute O2 using the steady state solution of the differential equation describing oxygen concentrations within the UBA. Consequently, dive transients induce errors in the O2 estimation. To evalute these errors, we used a computer simulation of semi-closed circuit UBA dives to generate transient rich data as input to the estimation algorithm. A step change in simulated O2 elicits a monoexponential change in the estimated O2 with a time constant of 5 to 10 minutes. Methods for predicting error and providing a probable error indication to the diver are presented.

  10. Determining oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus using an improved respirometer chamber

    NASA Astrophysics Data System (ADS)

    Geng, Longwu; Jiang, Haifeng; Tong, Guangxiang; Xu, Wei

    2017-03-01

    Knowledge of oxygen consumption rates and asphyxiation points in fish is important to determine appropriate stocking and water quality management in aquaculture. The oxygen consumption rate and asphyxiation point in Chanodichthys mongolicus were detected under laboratory conditions using an improved respirometer chamber. The results revealed that more accurate estimates can be obtained by adjusting the volume of the respirometer chamber, which may avoid system errors caused by either repeatedly adjusting fish density or selecting different equipment specifications. The oxygen consumption rate and asphyxiation point of C. mongolicus increased with increasing water temperature and decreasing fish size. Changes in the C. mongolicus oxygen consumption rate were divided into three stages at water temperatures of 11-33°C: (1) a low temperature oxygen consumption rate stage when water temperature was 11-19°C, (2) the optimum temperature oxygen consumption rate stage when water temperature was 19-23°C, and (3) a high temperature oxygen consumption rate stage when water temperature was > 27°C. The temperature quotients (Q10) obtained suggested that C. mongolicus preferred a temperature range of 19-23°C. At 19°C, C. mongolicus exhibited higher oxygen consumption rates during the day when the maximum values were observed at 10:00 and 14:00 than at night when the minimum occurred at 02:00.

  11. Quantifying consumption rates of dissolved oxygen along bed forms

    NASA Astrophysics Data System (ADS)

    Boano, Fulvio; De Falco, Natalie; Arnon, Shai

    2016-04-01

    Streambed interfaces represent hotspots for nutrient transformations because they host different microbial species, and the evaluation of these reaction rates is important to assess the fate of nutrients in riverine environments. In this work we analyze a series of flume experiments on oxygen demand in dune-shaped hyporheic sediments under losing and gaining flow conditions. We employ a new modeling code to quantify oxygen consumption rates from observed vertical profiles of oxygen concentration. The code accounts for transport by molecular diffusion and water advection, and automatically determines the reaction rates that provide the best fit between observed and modeled concentration values. The results show that reaction rates are not uniformly distributed across the streambed, in agreement with the expected behavior predicted by hyporheic exchange theory. Oxygen consumption was found to be highly influenced by the presence of gaining or losing flow conditions, which controlled the delivery of labile DOC to streambed microorganisms.

  12. Ocular oxygen consumption during vitreoperfusion in the cat.

    PubMed

    Blair, N P

    2000-01-01

    Little is known about the total ocular oxygen consumption rate (QO2) in human diseases. Reductions in QO2 may indicate the amount of tissue loss produced by conditions such as retinal ischemia. We sought a method to estimate QO2 that eventually could be used in patients during vitrectomy surgery. We performed vitreoperfusion (perfusion of the vitreous cavity after vitrectomy) in 22 cat eyes with no ocular blood flow. The solution contained nutrients and a high partial pressure of oxygen (PO2). In 8 eyes we placed an oxygen electrode on the sclera, choroid, or outer retina to evaluate oxygen delivery from the vitreoperfusion solution (group 1). In 8 eyes the retinas were undisturbed (group 2), and in 6 eyes we excised the retinas (group 3). In groups 2 and 3 we estimated QO2 from the temporal decline of PO2 in the vitreoperfusion solution according to a pharmacokinetic model. Group 1 demonstrated oxygenation of the entire retina. The means and standard deviations of QO2 were 3.2 +/- 0.8 and 0.4 +/- 0.7 microL/min in groups 2 and 3, respectively, the difference being the retinal contribution, 88%. In group 2, metabolism accounted for an average of 82% of the oxygen loss from the vitreoperfusion solution, whereas flow and diffusion accounted for 13% and 5%, respectively. Ocular oxygen consumption can be estimated by means of vitreoperfusion. Further developments may allow measurements in patients during vitreous surgery to clarify the pathophysiology of their diseases and assess the amount of retinal tissue that has been lost.

  13. Propranolol blocks the stimulatory effects of naloxone on ventilation and oxygen consumption in hamsters.

    PubMed

    Schlenker, E H; Eikanger, J

    1997-06-01

    The purposes of these studies were: 1) to determine the effects of various doses of propranolol, a nonspecific beta-adrenergic antagonist, on ventilation, oxygen consumption, and body temperature in hamsters, and 2) to test the hypothesis that in hamsters the stimulatory effects of naloxone, an opioid receptor antagonist, on ventilation and oxygen consumption occur, at least in part, through the release of catecholamines that act via beta-adrenergic receptors. Propranolol, a non-specific beta adrenergic receptor antagonist, at a 20 mg/kg depressed body temperature, oxygen consumption, tidal volume, and ventilation relative to saline. The lower dose of 10 mg/kg had only transitory effects on tidal volume at 60 min and ventilation at 30 min post-injection-Naloxone (1 mg/kg) relative to saline stimulated ventilation and oxygen consumption. These effects were blocked by propranolol pretreatment. The results of these experiments demonstrate that in the hamster, 1) body temperature, oxygen consumption, and ventilation appear to be modulated by beta-adrenergic receptors, and 2) the stimulatory effects of naloxone on oxygen consumption and ventilation may occur through the interaction of endogenous opioids and beta-adrenergic receptor systems.

  14. Effect of surfactants on apparent oxygen consumption of photosystem I isolated from Arthrospira platensis.

    PubMed

    Yu, Daoyong; Huang, Guihong; Xu, Fengxi; Ge, Baosheng; Liu, Shuang; Xu, Hai; Huang, Fang

    2014-11-01

    Surfactants play a significant role in solubilization of photosystem I (PSI) in vitro. Triton X-100 (TX), n-Dodecyl-β-D-maltoside (DDM), and sodium dodecyl sulfate (SDS) were employed to solubilize PSI particles in MES buffer to compare the effect of surfactant and its dosage on the apparent oxygen consumption rate of PSI. Through a combined assessment of sucrose density gradient centrifugation, Native PAGE and 77 K fluorescence with the apparent oxygen consumption, the nature of the enhancement of the apparent oxygen consumption activity of PSI by surfactants has been analyzed. Aggregated PSI particles can be dispersed by surfactant molecules into micelles, and the apparent oxygen consumption rate is higher for surfactant-solubilized PSI than for integral PSI particles. For DDM, PSI particles are solubilized mostly as the integral trimeric form. For TX, PSI particles are solubilized as incomplete trimeric and some monomeric forms. For the much harsher surfactant, SDS, PSI particles are completely solubilized as monomeric and its subunit forms. The enhancement of the oxygen consumption rate cannot be explained only by the effects of surfactant on the equilibrium between monomeric and trimeric forms of solubililized PSI. Care must be taken when the electron transfer activity of PSI is evaluated by methods based on oxygen consumption because the apparent oxygen consumption rate is influenced by uncoupled chlorophyll (Chl) from PSI, i.e., the larger the amount of uncoupled Chl, the higher the rate of apparent oxygen consumption. 77 K fluorescence spectra can be used to ensure that there is no uncoupled Chl present in the system. In order to eliminate the effect of trace uncoupled Chl, an efficient physical quencher of (1)O2, such as 1 mM NaN3, may be added into the mixture.

  15. Cross-validation of Peak Oxygen Consumption Prediction Models From OMNI Perceived Exertion.

    PubMed

    Mays, R J; Goss, F L; Nagle, E F; Gallagher, M; Haile, L; Schafer, M A; Kim, K H; Robertson, R J

    2016-09-01

    This study cross-validated statistical models for prediction of peak oxygen consumption using ratings of perceived exertion from the Adult OMNI Cycle Scale of Perceived Exertion. 74 participants (men: n=36; women: n=38) completed a graded cycle exercise test. Ratings of perceived exertion for the overall body, legs, and chest/breathing were recorded each test stage and entered into previously developed 3-stage peak oxygen consumption prediction models. There were no significant differences (p>0.05) between measured and predicted peak oxygen consumption from ratings of perceived exertion for the overall body, legs, and chest/breathing within men (mean±standard deviation: 3.16±0.52 vs. 2.92±0.33 vs. 2.90±0.29 vs. 2.90±0.26 L·min(-1)) and women (2.17±0.29 vs. 2.02±0.22 vs. 2.03±0.19 vs. 2.01±0.19 L·min(-1)) participants. Previously developed statistical models for prediction of peak oxygen consumption based on subpeak OMNI ratings of perceived exertion responses were similar to measured peak oxygen consumption in a separate group of participants. These findings provide practical implications for the use of the original statistical models in standard health-fitness settings. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Oxygen consumption, ammonia excretion and protein use in response to thermal changes in juvenile Atlantic salmon Salmo salar.

    PubMed

    Kieffer, J D; Wakefield, A M

    2009-02-01

    Experiments were designed to examine the effects of various temperature challenges on oxygen consumption and ammonia excretion rates and protein utilization in juvenile Atlantic salmon Salmo salar. Fish acclimated to 15 degrees C were acutely and abruptly exposed to either 20 or 25 degrees C for a period of 3 h. To simulate a more environmentally relevant temperature challenge, a third group of fish was exposed to a gradual increase in temperature from 15 to 20 degrees C over a period of 3 h (c. 1.7 degrees C h(-1)). Oxygen consumption and ammonia excretion rates were monitored before, during and after the temperature shift. From the ammonia excretion and oxygen consumption rates, protein utilization rates were calculated. Acute temperature changes (15-20 degrees C or 15-25 degrees C) caused large and immediate increases in the oxygen consumption rates. When the temperature was gradually changed (i.e. 1.7 degrees C h(-1)), however, the rates of oxygen consumption and ammonia excretion were only marginally altered. When fish were exposed to warmer temperatures (i.e. 15-20 degrees C or 15-25 degrees C) protein use generally remained at pre-exposure (15 degrees C) levels. A rapid transfer back to 15 degrees C (20-15 degrees C or 25-15 degrees C) generally increased protein use in S. salar. These results indicate that both the magnitude and the rate of temperature change are important in describing the physiological response in juvenile salmonids.

  17. Effect of Acute Dietary Nitrate Consumption on Oxygen Consumption During Submaximal Exercise in Hypobaric Hypoxia.

    PubMed

    Carriker, Colin R; Mermier, Christine M; Van Dusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; Vaughan, Roger A; McCormick, James J; Cole, Nathan H; Witt, Christopher C; Gibson, Ann L

    2016-08-01

    Reduced partial pressure of oxygen impairs exercise performance at altitude. Acute nitrate supplementation, at sea level, may reduce oxygen cost during submaximal exercise in hypobaric hypoxia. Therefore, we investigated the metabolic response during exercise at altitude following acute nitrate consumption. Ten well-trained (61.0 ± 7.4 ml/kg/min) males (age 28 ± 7 yr) completed 3 experimental trials (T1, T2, T3). T1 included baseline demographics, a maximal aerobic capacity test (VO2max) and five submaximal intensity cycling determination bouts at an elevation of 1600 m. A 4-day dietary washout, minimizing consumption of nitrate-rich foods, preceded T2 and T3. In a randomized, double-blind, placebo-controlled, crossover fashion, subjects consumed either a nitrate-depleted beetroot juice (PL) or ~12.8 mmol nitrate rich (NR) beverage 2.5 hr before T2 and T3. Exercise at 3500 m (T2 and T3) via hypobaric hypoxia consisted of a 5-min warm-up (25% of normobaric VO2max) and four 5-min cycling bouts (40, 50, 60, 70% of normobaric VO2max) each separated by a 4-min rest period. Cycling RPM and watts for each submaximal bout during T2 and T3 were determined during T1. Preexercise plasma nitrite was elevated following NR consumption compared with PL (1.4 ± 1.2 and 0.7 ± 0.3 uM respectively; p < .05). There was no difference in oxygen consumption (-0.5 ± 1.8, 0.1 ± 1.7, 0.7 ± 2.1, and 1.0 ± 3.0 ml/kg/min) at any intensity (40, 50, 60, 70% of VO2max, respectively) between NR and PL. Further, respiratory exchange ratio, oxygen saturation, heart rate and rating of perceived exertion were not different at any submaximal intensity between NR and PL either. Blood lactate, however, was reduced following NR consumption compared with PL at 40 and 60% of VO2max (p < .0.05). Our findings suggest that acute nitrate supplementation before exercise at 3500 m does not reduce oxygen cost but may reduce blood lactate accumulation at lower intensity workloads.

  18. Relationships between oxygen consumption rate, viability, and subsequent development of in vivo-derived porcine embryos.

    PubMed

    Sakagami, N; Nishida, K; Akiyama, K; Abe, H; Hoshi, H; Suzuki, C; Yoshioka, K

    2015-01-01

    Oxygen consumption rate of in vivo-derived porcine embryos was measured, and its value as an objective method for the assessment of embryo quality was evaluated. Embryos were surgically collected 5 or 6 days after artificial insemination (AI), and oxygen consumption rate of embryos was measured using an embryo respirometer. The average oxygen consumption rate (F × 10(14)/mol s(-1)) of the embryos that developed to the compacted morula stage on Day 5 (Day 0 = the day of artificial insemination) was 0.58 ± 0.03 (mean ± standard error of the mean). The Day-6 embryos had consumption rates of 0.56 ± 0.13, 0.87 ± 0.06, and 1.13 ± 0.07 at the early blastocyst, blastocyst, and expanded blastocyst stages, respectively, showing a gradual increase as the embryos developed. Just after collection, the average oxygen consumption rates of embryos that hatched and of those that did not hatch after culture were 0.60 ± 0.04 and 0.50 ± 0.04 for Day 5 (P = 0.08) and 1.05 ± 0.09 and 0.77 ± 0.05 for Day 6 (P < 0.05), respectively. The value and probability of discrimination by measuring the oxygen consumption rates of embryos to predict their hatching ability after culture were 0.56 and 63.6% for Day-5 embryos and 0.91 and 68.4% for Day-6 blastocysts, respectively. When Day-5 embryos were classified based on the oxygen consumption rate and then transferred non-surgically to recipient sows, three of the seven sows, to which embryos having a high oxygen consumption rate (≥ 0.59) were transferred, became pregnant and farrowed a total of 20 piglets. However, none of the four sows, to which embryos having low oxygen consumption rate (< 0.59) were transferred, became pregnant. These results suggest that the viability of in vivo-derived porcine embryos and subsequent development can be estimated by measuring the oxygen consumption rate. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Oxygen consumption is a quality marker for human oocyte competence conditioned by ovarian stimulation regimens.

    PubMed

    Tejera, Aberto; Herrero, Javier; de Los Santos, M J; Garrido, Nicolás; Ramsing, Niels; Meseguer, Marcos

    2011-09-01

    To evaluate the effect of different ovarian stimulation protocols on oocyte respiration and to investigate the relationship between oocyte oxygen consumption and reproductive outcome. Prospective observational cohort study. Infertility clinic in a university hospital. A total of 349 oocytes from 56 IVF treatment cycles in our oocyte donation program. None. Average oocyte oxygen consumption rate in fmol/s. We correlated oxygen consumption values with ovarian stimulation features, fertilization, embryo quality on days 2 and 3, and implantation. Differences in the measured oxygen consumption rates were found depending on which type of gonadotropins were used in the stimulation protocol. Higher consumption rates were found for oocytes that underwent normal fertilization compared with rates from nonfertilized or abnormal oocytes (odds ratio = 1.340; 95% confidence intervals = 1.037-1.732). Furthermore, higher oxygen consumption was observed for those oocytes which generated embryos that implanted compared with those that did not implant (6.21 ± 0.849 fmol/s vs. 5.23 ± 0.345 fmol/s. Measurement of oxygen consumption rates for individual oocytes before fertilization provides a noninvasive marker of oocyte quality and hence a quantitative assessment of the reproductive potential for the oocyte. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Estimation of cerebral metabolic rate of oxygen consumption using combined multiwavelength photoacoustic microscopy and Doppler microultrasound

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Zemp, Roger

    2018-01-01

    The metabolic rate of oxygen consumption is an important metric of tissue oxygen metabolism and is especially critical in the brain, yet few methods are available for measuring it. We use a custom combined photoacoustic-microultrasound system and demonstrate cerebral oxygen consumption estimation in vivo. In particular, the cerebral metabolic rate of oxygen consumption was estimated in a murine model during variation of inhaled oxygen from hypoxia to hyperoxia. The hypothesis of brain autoregulation was confirmed with our method even though oxygen saturation and flow in vessels changed.

  1. [A possibility of using increased oxygen consumption as a criterion for mechanical respiration weaning in pediatric practice].

    PubMed

    Grigoliia, G N; Chokhonelidze, I K; Gvelesiani, L G; Sulakvelidze, K R; Tutberidze, K N

    2007-01-01

    The body oxygen consumption and the oxygen cost of breathing (which is the difference in oxygen consumption measured during controlled ventilation and again during spontaneous ventilation) were measured in 46 children with congenital heart diseases after open-heart surgery. There was a significant exponential correlation between the body oxygen consumption (ml/m(2)/min) and the oxygen cost of breathing as a percentage of total oxygen consumption during spontaneous ventilation and the duration of weaning in minutes (r=+0,882, p<0,02). Therefore, as the oxygen cost of breathing was correlated with the total weaning time, this may be a useful index on the weaning process (sensitivity 92%, specificity 85%).

  2. Energetics of osmoregulation: I. Oxygen consumption by Fundulus heteroclitus.

    PubMed

    Kidder, George W; Petersen, Christopher W; Preston, Robert L

    2006-04-01

    We have developed a flow-through method for measuring oxygen consumption in fish which allows continuous monitoring over periods of days with good accuracy. Our goal was to determine the changes in basal metabolic rate in estuarine fish as a function of salinity. We show that in Fundulus heteroclitus, the oxygen consumption drops by 50% during the first 12 hr in the respirometer, as the fish cease exploratory movements. We have determined the influence of temperature and body size on resting respiratory rate, but failed to find any circadian or tidal rhythm in aerobic respiration. With these variables controlled, we determined that changing from 10 to 30 ppt water had no demonstrable effect on oxygen uptake. Since there must be a large change in osmotic flux due to this change in salinity, it appears that the fish might be diverting energy from other uses rather than increasing aerobic energy production to meet the increased osmoregulatory work load.

  3. Response time of mitochondrial oxygen consumption following stepwise changes in cardiac energy demand.

    PubMed

    van Beek, J H; Westerhof, N

    1990-01-01

    We determined the speed with which mitochondrial oxygen consumption and therefore the mitochondrial ATP-synthesis adapted to changes in metabolic demand in the rabbit heart. This was done by measuring the oxygen uptake of the whole heart during a stepwise change in heart rate and correcting for the time taken by diffusion and by convective transport in the blood vessels. Data for the correction for transport time were obtained from the response of venous oxygen concentration to a stepwise change of arterial oxygen concentration. The time constant of the response of mitochondrial oxygen consumption to a step change in heart rate was found to be 4-8 s.

  4. A novel approach to the assess biotic oxygen consumption in marine sediment communities

    NASA Astrophysics Data System (ADS)

    Baranov, Victor; Queiros, Ana; Widdicombe, Stephen; Stephens, Nick; Lessin, Gennadi; Krause, Stefan; Lewandowski, Joerg

    2016-04-01

    Bioturbation , the mixing of the sediment matrix by burrowing animals impacts sediment metabolism, including respiration through redistribution of particulate organics, changes in bacterial biota diversity and acitivity, as well as via burrowing fauna's own metabolism. Bioturbation, reflecting faunal activity, is also a proxy for the general sedimentary ecosystem health, and can be impacted by many of emerging marine environmental issues such as ocean acidification, warming and the occurrence of heat waves. Sedimentary oxygen consumption is often taken as a proxy for the activity of bioturbating fauna, but determining baselines can be difficult because of the confounding effects of other fauna and microbes present in sediments, as well as irnorganic processes that consume oxygen. Limitations therefore exist in current methodologies, and numerous confounding factors are hampering progress in this area. Here, we present novel method for the assessment of sediment respiration which is expected to be affected only by the biogenic oxygen consumption (namely aerobic respiration). As long as tracer reduction "immune" to inorganic oxygen consumption, so that measurements using this method can be used, alongside traditional methods, to decouple biological respiration from inorganic oxygen consumption reactions. The tracer is easily detectable, non-toxic and can be applied in systems with constant oxygen supply. The latter allow for incubation without the need to to work with unsealed experimental units, bringing procedural advantage over traditional methods. Consequently assessed bioturbating fauna is not exposed to hypoxia and additional stress. Here, we had applied system for the first time to investigate impacts of a common North-Atlantic bioturbator, the brittle star Amphiura filiformis, - on respiration of marine sediments. Two series of experiments were conducted with animals and sediment collected from Cawsand Bay, Plymouth, UK Preliminary results show that tracer

  5. 17 O MRS assesses the effect of mild hypothermia on oxygen consumption rate in tumors.

    PubMed

    Neveu, Marie-Aline; Joudiou, Nicolas; De Preter, Géraldine; Dehoux, Jean-Paul; Jordan, Bénédicte F; Gallez, Bernard

    2017-08-01

    Although oxygen consumption is a key factor in metabolic phenotyping, its assessment in tumors remains critical, as current technologies generally display poor specificity. The objectives of this study were to explore the feasibility of direct 17 O nuclear magnetic resonance (NMR) spectroscopy to assess oxygen metabolism in tumors and its modulations. To investigate the impact of hypometabolism induction in the murine fibrosarcoma FSAII tumor model, we monitored the oxygen consumption of normothermic (37°C) and hypothermic (32°C) tumor-bearing mice. Hypothermic animals showed an increase in tumor pO 2 (measured by electron paramagnetic resonance oximetry) contrary to normothermic animals. This was related to a decrease in oxygen consumption rate (assessed using 17 O magnetic resonance spectroscopy (MRS) after the inhalation of 17 O 2 -enriched gas). This study highlights the ability of direct 17 O MRS to measure oxygen metabolism in tumors and modulations of tumor oxygen consumption rate. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Glucose consumption rate critically depends on redox state in Corynebacterium glutamicum under oxygen deprivation.

    PubMed

    Tsuge, Yota; Uematsu, Kimio; Yamamoto, Shogo; Suda, Masako; Yukawa, Hideaki; Inui, Masayuki

    2015-07-01

    Rapid sugar consumption is important for the microbial production of chemicals and fuels. Here, we show that overexpression of the NADH dehydrogenase gene (ndh) increased glucose consumption rate in Corynebacterium glutamicum under oxygen-deprived conditions through investigating the relationship between the glucose consumption rate and intracellular NADH/NAD(+) ratio in various mutant strains. The NADH/NAD(+) ratio was strongly repressed under oxygen deprivation when glucose consumption was accelerated by the addition of pyruvate or sodium hydrogen carbonate. Overexpression of the ndh gene in the wild-type strain under oxygen deprivation decreased the NADH/NAD(+) ratio from 0.32 to 0.13, whereas the glucose consumption rate increased by 27%. Similarly, in phosphoenolpyruvate carboxylase gene (ppc)- or malate dehydrogenase gene (mdh)-deficient strains, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.66 to 0.37 and 2.20 to 0.57, respectively, whereas the glucose consumption rate increased by 57 and 330%, respectively. However, in a lactate dehydrogenase gene (L-ldhA)-deficient strain, although the NADH/NAD(+) ratio decreased from 5.62 to 1.13, the glucose consumption rate was not markedly altered. In a tailored D-lactate-producing strain, which lacked ppc and L-ldhA genes, but expressed D-ldhA from Lactobacillus delbrueckii, overexpression of the ndh gene decreased the NADH/NAD(+) ratio from 1.77 to 0.56, and increased the glucose consumption rate by 50%. Overall, the glucose consumption rate was found to be inversely proportional to the NADH/NAD(+) ratio in C. glutamicum cultured under oxygen deprivation. These findings could provide an option to increase the productivity of chemicals and fuels under oxygen deprivation.

  7. Assumed oxygen consumption based on calculation from dye dilution cardiac output: an improved formula.

    PubMed

    Bergstra, A; van Dijk, R B; Hillege, H L; Lie, K I; Mook, G A

    1995-05-01

    This study was performed because of observed differences between dye dilution cardiac output and the Fick cardiac output, calculated from estimated oxygen consumption according to LaFarge and Miettinen, and to find a better formula for assumed oxygen consumption. In 250 patients who underwent left and right heart catheterization, the oxygen consumption VO2 (ml.min-1) was calculated using Fick's principle. Either pulmonary or systemic flow, as measured by dye dilution, was used in combination with the concordant arteriovenous oxygen concentration difference. In 130 patients, who matched the age of the LaFarge and Miettinen population, the obtained values of oxygen consumption VO2(dd) were compared with the estimated oxygen consumption values VO2(lfm), found using the LaFarge and Miettinen formulae. The VO2(lfm) was significantly lower than VO2(dd); -21.8 +/- 29.3 ml.min-1 (mean +/- SD), P < 0.001, 95% confidence interval (95% CI) -26.9 to -16.7, limits of agreement (LA) -80.4 to 36.9. A new regression formula for the assumed oxygen consumption VO2(ass) was derived in 250 patients by stepwise multiple regression analysis. The VO2(dd) was used as a dependent variable, and body surface area BSA (m2). Sex (0 for female, 1 for male), Age (years), Heart rate (min-1) and the presence of a left to right shunt as independent variables. The best fitting formula is expressed as: VO2(ass) = (157.3 x BSA + 10.0 x Sex - 10.5 x In Age + 4.8) ml.min-1, where ln Age = the natural logarithm of the age. This formula was validated prospectively in 60 patients. A non-significant difference between VO2(ass) and VO2(dd) was found; mean 2.0 +/- 23.4 ml.min-1, P = 0.771, 95% Cl = -4.0 to +8.0, LA -44.7 to +48.7. In conclusion, assumed oxygen consumption values, using our new formula, are in better agreement with the actual values than those found according to LaFarge and Miettinen's formulae.

  8. Simultaneous measurement of macro- and microvascular blood flow and oxygen saturation for quantification of muscle oxygen consumption.

    PubMed

    Englund, Erin K; Rodgers, Zachary B; Langham, Michael C; Mohler, Emile R; Floyd, Thomas F; Wehrli, Felix W

    2018-02-01

    To investigate the relationship between blood flow and oxygen consumption in skeletal muscle, a technique called "Velocity and Perfusion, Intravascular Venous Oxygen saturation and T2*" (vPIVOT) is presented. vPIVOT allows the quantification of feeding artery blood flow velocity, perfusion, draining vein oxygen saturation, and muscle T2*, all at 4-s temporal resolution. Together, the measurement of blood flow and oxygen extraction can yield muscle oxygen consumption ( V˙O2) via the Fick principle. In five subjects, vPIVOT-derived results were compared with those obtained from stand-alone sequences during separate ischemia-reperfusion paradigms to investigate the presence of measurement bias. Subsequently, in 10 subjects, vPIVOT was applied to assess muscle hemodynamics and V˙O2 following a bout of dynamic plantar flexion contractions. From the ischemia-reperfusion paradigm, no significant differences were observed between data from vPIVOT and comparison sequences. After exercise, the macrovascular flow response reached a maximum 8 ± 3 s after relaxation; however, perfusion in the gastrocnemius muscle continued to rise for 101 ± 53 s. Peak V˙O2 calculated based on mass-normalized arterial blood flow or perfusion was 15.2 ± 6.7 mL O 2 /min/100 g or 6.0 ± 1.9 mL O 2 /min/100 g, respectively. vPIVOT is a new method to measure blood flow and oxygen saturation, and therefore to quantify muscle oxygen consumption. Magn Reson Med 79:846-855, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  9. Estimate of oxygen consumption and intracellular zinc concentration of human spermatozoa in relation to motility.

    PubMed

    Henkel, Ralf R; Defosse, Kerstin; Koyro, Hans-Wilhelm; Weissmann, Norbert; Schill, Wolf-Bernhard

    2003-03-01

    To investigate the human sperm oxygen/energy consumption and zinc content in relation to motility. In washed spermatozoa from 67 ejaculates, the oxygen consumption was determined. Following calculation of the total oxygen consumed by the Ideal Gas Law, the energy consumption of spermatozoa was calculated. In addition, the zinc content of the sperm was determined using an atomic absorption spectrometer. The resulting data were correlated to the vitality and motility. The oxygen consumption averaged 0.24 micromol/10(6) sperm x 24h, 0.28 micromol/10(6) live sperm x 24h and 0.85 micromol/10(6) live motile sperm x 24h. Further calculations revealed that sperm motility was the most energy consuming process (164.31 mJ/10(6) motile spermatozoa x 24h), while the oxygen consumption of the total spermatozoa was 46.06 mJ/10(6) spermatozoa x 24h. The correlation of the oxygen/energy consumption and zinc content with motility showed significant negative correlations (r= -0.759; P<0.0001 and r=-0.441; P<0.0001, respectively). However, when correlating sperm energy consumption with the zinc content, a significant positive relation (r=0.323; P=0.01) was observed. Poorly motile sperm are actually wasting the available energy. Moreover, our data clearly support the "Geometric Clutch Model" of the axoneme function and demonstrate the importance of the outer dense fibers for the generation of sperm motility, especially progressive motility.

  10. Effects of TFM and Bayer 73 on in vivo oxygen consumption of the aquatic midge Chironomus tentans

    USGS Publications Warehouse

    Kawatski, J.A.; Dawson, V.K.; Reuvers, J.L.

    1974-01-01

    Exposure of fourth instar larvae of Chironomus tentans to 2.0-8.0 mg/liter of TFM (3-trifluormethyl-4-nitrophenol) for 6 hr at 22 A? 0.5 C in soft water resulted in a significantly increased rate of larval oxygen consumption compared to that of control larvae, as measured with the Warburg respirometer. Maximum stimulation of oxygen consumption occurred with 8.0 mg/liter of TFM, and 1.0 mg/liter of TFM had no measurable effect on basal respiration. When hardness of exposure water was progressively increased, the effect of TFM on oxygen consumption was diminished. Bayer 73 (5,2'-dichloro-4'-nitrosalicylanilide) stimulated oxygen consumption at 0.75 and 1.0 mg/liter, had no significant effect at concentrations less that 0.75 mg/liter, and inhibited oxygen consumption at concentrations of 1.20 mg/liter or greater. Mixtures of TFM and Bayer 73, in the ratio of 98:2, had no greater effect on oxygen consumption than TFM alone.

  11. Non-linear scaling of oxygen consumption and heart rate in a very large cockroach species (Gromphadorhina portentosa): correlated changes with body size and temperature.

    PubMed

    Streicher, Jeffrey W; Cox, Christian L; Birchard, Geoffrey F

    2012-04-01

    Although well documented in vertebrates, correlated changes between metabolic rate and cardiovascular function of insects have rarely been described. Using the very large cockroach species Gromphadorhina portentosa, we examined oxygen consumption and heart rate across a range of body sizes and temperatures. Metabolic rate scaled positively and heart rate negatively with body size, but neither scaled linearly. The response of these two variables to temperature was similar. This correlated response to endogenous (body mass) and exogenous (temperature) variables is likely explained by a mutual dependence on similar metabolic substrate use and/or coupled regulatory pathways. The intraspecific scaling for oxygen consumption rate showed an apparent plateauing at body masses greater than about 3 g. An examination of cuticle mass across all instars revealed isometric scaling with no evidence of an ontogenetic shift towards proportionally larger cuticles. Published oxygen consumption rates of other Blattodea species were also examined and, as in our intraspecific examination of G. portentosa, the scaling relationship was found to be non-linear with a decreasing slope at larger body masses. The decreasing slope at very large body masses in both intraspecific and interspecific comparisons may have important implications for future investigations of the relationship between oxygen transport and maximum body size in insects.

  12. Ocular oxygen consumption: estimates using vitreoperfusion in the cat.

    PubMed

    Blair, Norman P; Liu, Ting; Warren, Keith A; Glaser, David A; Kennedy, Marc; Tran, Huan; Larson, Christopher A; Atluri, Prasant; Saidel, Michael A; Blair, Michael P

    2004-02-01

    Little is known about the ocular oxygen consumption rate (QO2) in human diseases. Alterations in QO2 must occur in many conditions, such as retinal ischemia. We present a method of estimating QO2 that eventually could be used in patients during vitrectomy surgery. We performed vitreoperfusion (i.e., perfusion of the vitreous cavity after vitrectomy) in 14 cat eyes with no ocular blood flow. The solution contained nutrients at a high partial pressure of oxygen (PO2). In eight eyes, the retinas were undisturbed (Group 1), and in six eyes, we excised the retinas (Group 2). We estimated QO2 in both groups on the basis of the temporal decline of PO2 in the vitreoperfusion solution according to a pharmacokinetic model. The mean and standard deviation of QO2 was 3.2 +/- 0.8 microL/min in Group 1 and 0.4+/- 0.7 microL/min in Group 2, with the difference being the retinal contribution, 88%. In Group 1, metabolism, bulk flow, and diffusion accounted for 82, 13, and 5%, respectively, of the oxygen loss from the vitreoperfusion solution. We estimated ocular oxygen consumption by means of vitreoperfusion. Eventually, the pathophysiology of human diseases may be clarified by similar measurements during vitrectomy.

  13. How diverse is the oxygen consumption during the life cycle of the pelagic tunicate Dolioletta gegenbauri?

    NASA Astrophysics Data System (ADS)

    Koester, M.; Paffenhofer, G. A.

    2016-02-01

    The goal of our study was to study the intraspecies physiological diversity of different life stages of the pelagic tunicate Dolioletta gegenbauri (Tunicata, Thaliacea) that occur intermittently in high abundances on the shelf off the southeastern US. The complex life cycle of this species starts with solitary oozooids that develop to nurses with colonies of feeding trophozooids and phorozooids. As the latter mature they produce clusters of gonozooids. As oxygen consumption is a good physiological indicator for metabolic expenditures, we quantified the oxygen consumption of different zooids of D. gegenbauri (nurses, phorozooids and gonozooids) at environmental conditions. Oxygen consumption rates were determined from changes in oxygen concentration that were monitored non-invasively and continuously by an innovative sensor system in time-series-experiments. Specific oxygen consumption rates varied considerably and were related to moving activity, feeding behaviour, biomass, and growth of different life stages of doliolids. The results of our study will advance our understanding of variability in oxygen consumption of different stages of doliolid development due to their specific ecological role.

  14. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    PubMed Central

    Müller, Jonas; Schmidt, Dominik

    2016-01-01

    Summary Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine. PMID:28115896

  15. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions.

    PubMed

    Schneider, Volker; Müller, Jonas; Schmidt, Dominik

    2016-12-01

    Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine.

  16. Oxygen consumption in T-47D cells immobilized in alginate.

    PubMed

    Larsen, B E; Sandvik, J A; Karlsen, J; Pettersen, E O; Melvik, J E

    2013-08-01

    Encapsulation or entrapment of cells is increasingly being used in a wide variety of scientific studies for tissue engineering and development of novel medical devices. The effect on cell metabolism of such systems is, in general, not well characterized. In this work, a simple system for monitoring respiration of cells embedded in 3-D alginate cultures was characterized. T-47D cells were cultured in alginate gels. Oxygen concentration curves were recorded within cell-gel constructs using two different sensor systems, and cell viability and metabolic state were characterized using confocal microscopy and commercially available stains. At sufficient depth within constructs, recorded oxygen concentration curves were not significantly influenced by influx of oxygen through cell-gel layers and oxygen consumption rate could be calculated simply by dividing oxygen loss in the system per time, by the number of cells. This conclusion was supported by a 3-D numeric simulation. For the T-47D cells, the oxygen consumption rate was found to be 61 ± 6 fmol/cell/h, 3-4 times less than has previously been found for these cells, when grown exponentially in monolayer culture. The experimental set-up presented here may be varied in multiple ways by changing the cell-gel construct 3-D microenvironment, easily allowing investigation of a variety of factors on cell respiration. © 2013 John Wiley & Sons Ltd.

  17. Synthesis and characterization of mitoQ and idebenone analogues as mediators of oxygen consumption in mitochondria.

    PubMed

    Duveau, Damien Y; Arce, Pablo M; Schoenfeld, Robert A; Raghav, Nidhi; Cortopassi, Gino A; Hecht, Sidney M

    2010-09-01

    Analogues of mitoQ and idebenone were synthesized to define the structural elements that support oxygen consumption in the mitochondrial respiratory chain. Eight analogues were prepared and fully characterized, then evaluated for their ability to support oxygen consumption in the mitochondrial respiratory chain. While oxygen consumption was strongly inhibited by mitoQ analogues 2-4 in a chain length-dependent manner, modification of idebenone by replacement of the quinone methoxy groups by methyl groups (analogues 6-8) reduced, but did not eliminate, oxygen consumption. Idebenone analogues 6-8 also displayed significant cytoprotective properties toward cultured mammalian cells in which glutathione had been depleted by treatment with diethyl maleate. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Mechanisms controlling the oxygen consumption in experimentally induced hypochloremic alkalosis in calves.

    PubMed

    Cambier, Carole; Clerbaux, Thierry; Amory, Hélène; Detry, Bruno; Florquin, Sandra; Marville, Vincent; Frans, Albert; Gustin, Pascal

    2002-01-01

    The study was carried out on healthy Friesian calves (n = 10) aged between 10 and 30 days. Hypochloremia and alkalosis were induced by intravenous administration of furosemide and isotonic sodium bicarbonate. The venous and arterial blood samples were collected repeatedly. 2,3-diphosphoglycerate (2,3-DPG), hemoglobin and plasmatic chloride concentrations were determined. The red blood cell chloride concentration was also calculated. pH, PCO2 and PO2 were measured in arterial and mixed venous blood. The oxygen equilibrium curve (OEC) was measured in standard conditions. The correspondence of the OEC to the arterial and mixed venous compartments was calculated, taking blood temperature, pH and PCO2 values into account. The oxygen exchange fraction (OEF%), corresponding to the degree of blood desaturation between the arterial and mixed venous compartments and the amount of oxygen released at the tissue level by 100 mL of blood (OEF Vol%) were calculated from the arterial and mixed venous OEC, combined with PO2 and hemoglobin concentration. Oxygen delivery (DO2) was calculated using the arterial oxygen content, the cardiac output measured by thermodilution, and the body weight of the animal. The oxygen consumption (VO2) was derived from the cardiac output, OEF Vol% and body weight values. Despite the plasma hypochloremia, the erythrocyte chloride concentration was not influenced by furosemide and sodium bicarbonate infusion. Due to the alkalosis-induced increase in the 2,3-DPG, the standard OEC was shifted to the right, allowing oxygen to dissociate from hemoglobin more rapidly. These changes opposed the increased affinity of hemoglobin for oxygen induced by alkalosis. Moreover, respiratory acidosis, hemoconcentration, and the slight decrease in the partial oxygen pressure in mixed venous blood (Pvo2) tended to improve the OEF Vol% and maintain the oxygen consumption in a physiological range while the cardiac output, and the oxygen delivery were significantly decreased

  19. Sources of variation in oxygen consumption of aquatic animals demonstrated by simulated constant oxygen consumption and respirometers of different sizes.

    PubMed

    Svendsen, M B S; Bushnell, P G; Christensen, E A F; Steffensen, J F

    2016-01-01

    As intermittent-flow respirometry has become a common method for the determination of resting metabolism or standard metabolic rate (SMR), this study investigated how much of the variability seen in the experiments was due to measurement error. Experiments simulated different constant oxygen consumption rates (M˙O2 ) of a fish, by continuously injecting anoxic water into a respirometer, altering the injection rate to correct for the washout error. The effect of respirometer-to-fish volume ratio (RFR) on SMR measurement and variability was also investigated, using the simulated constant M˙O2 and the M˙O2 of seven roach Rutilus rutilus in respirometers of two different sizes. The results show that higher RFR increases measurement variability but does not change the mean SMR established using a double Gaussian fit. Further, the study demonstrates that the variation observed when determining oxygen consumption rates of fishes in systems with reasonable RFRs mainly comes from the animal, not from the measuring equipment. © 2016 The Fisheries Society of the British Isles.

  20. Oxygen consumption in Plasmodium berghei-infected murine red cells: a direct spectrophotometric assay in intact erythrocytes.

    PubMed

    Deslauriers, R; Moffatt, D J; Smith, I C

    1986-05-29

    A spectrophotometric assay has been devised to measure oxygen consumption non-invasively in intact murine red cells parasitized by Plasmodium berghei. The method uses oxyhemoglobin in the erythrocytes both as a source of oxygen and as an indicator of oxygen consumption. Spectra of intact cells show broad peaks and sloping baselines due to light-scattering. In order to ascertain the number of varying components in the 370-450 nm range, the resolution of the spectra was enhanced using Fourier transforms of the frequency domain spectra. Calculation of oxygen consumption was carried out for two-component systems (oxyhemoglobin, deoxyhemoglobin) using absorbances at 415 and 431 nm. Samples prepared from highly parasitized mice (greater than 80% parasitemia, 5% hematocrit) showed oxygen consumption rates of (4-8) X 10(-8) microliter/cell per h. This rate was not attributable to the presence of white cells or reticulocytes. The rate of oxygen consumption in the erythrocytes is shown to be modulated by various agents: the respiratory inhibitors NaN3 and KCN (1 mM) reduced oxygen consumption 2-3-fold; salicylhydroxamic acid (2.5 mM) caused a 20% reduction in rate and 10 mM NaN3, completely blocked deoxygenation. Antimalarial drugs and metal-chelating agents were also tested. Chloroquine, EDTA and desferal (desferoxamine mesylate) did not decrease the deoxygenation rate of hemoglobin in parasitized cells. Quinacrine, quinine and primaquine reduced the rate of formation of deoxyhemoglobin but also produced substantial quantities of methemoglobin. The lipophilic chelator, 5-hydroxyquinoline, decreased the rate of deoxygenation one-third. The spectrophotometric assay provides a convenient means to monitor oxygen consumption in parasitized red cells, to test the effects of various agents thereon, and potentially to explore possible mechanisms for oxygen utilization.

  1. [Effect of antihypoxants on the consumption of oxygen in animals with traumatic brain injury].

    PubMed

    Novikov, V E; Ponamareva, N S; Kokhonov, K V

    2008-01-01

    The effect of drugs on the dynamics of oxygen consumption in experimental animals with traumatic brain injury (TBI) has been measured. It is established that the antihypoxants bemithyl, amtizole, trymeen, and ethomersol in a dose of 25 mg/kg decrease the consumption of oxygen and reduced oxygen demands of tissues in the acute posttraumatic period. These phenomena can play a significant role in the mechanism of the protective action of drugs under conditions of TBI.

  2. Crouch severity is a poor predictor of elevated oxygen consumption in cerebral palsy.

    PubMed

    Steele, Katherine M; Shuman, Benjamin R; Schwartz, Michael H

    2017-07-26

    Children with cerebral palsy (CP) expend more energy to walk compared to typically-developing peers. One of the most prevalent gait patterns among children with CP, crouch gait, is often singled out as especially exhausting. The dynamics of crouch gait increase external flexion moments and the demand on extensor muscles. This elevated demand is thought to dramatically increase energy expenditure. However, the impact of crouch severity on energy expenditure has not been investigated among children with CP. We evaluated oxygen consumption and gait kinematics for 573 children with bilateral CP. The average net nondimensional oxygen consumption during gait of the children with CP (0.18±0.06) was 2.9 times that of speed-matched typically-developing peers. Crouch severity was only modestly related to oxygen consumption, with measures of knee flexion angle during gait explaining only 5-20% of the variability in oxygen consumption. While knee moment and muscle activity were moderately to strongly correlated with crouch severity (r 2 =0.13-0.73), these variables were only weakly correlated with oxygen consumption (r 2 =0.02-0.04). Thus, although the dynamics of crouch gait increased muscle demand, these effects did not directly result in elevated energy expenditure. In clinical gait analysis, assumptions about an individual's energy expenditure should not be based upon kinematics or kinetics alone. Identifying patient-specific factors that contribute to increased energy expenditure may provide new pathways to improve gait for children with CP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. MODELING ENERGY EXPENDITURE AND OXYGEN CONSUMPTION IN HUMAN EXPOSURE MODELS: ACCOUNTING FOR FATIGUE AND EPOC

    EPA Science Inventory

    Human exposure and dose models often require a quantification of oxygen consumption for a simulated individual. Oxygen consumption is dependent on the modeled Individual's physical activity level as described in an activity diary. Activity level is quantified via standardized val...

  4. Reduced maximal oxygen consumption and overproduction of proinflammatory cytokines in athletes.

    PubMed

    Vaisberg, Mauro; de Mello, Marco Tulio; Seelaender, Marília Cerqueira Leite; dos Santos, Ronaldo Vagner Thomatieli; Costa Rosa, Luis Fernando Bicudo Pereira

    2007-01-01

    It was the aim of this study to evaluate whether chronic pain in athletes is related to performance, measured by the maximum oxygen consumption and production of hormones and cytokines. Fifty-five athletes with a mean age of 31.9 +/- 4.2 years engaged in regular competition and showing no symptoms of acute inflammation, particularly fever, were studied. They were divided into 2 subgroups according to the occurrence of pain. Plasma concentrations of adrenaline, noradrenaline, cortisol, prolactin, growth hormone and dopamine were measured by radioimmunoassay, and the production of the cytokines interleukin (IL)-1, IL-2, IL-4, IL-6, tumor necrosis factor-alpha, interferon-alpha and prostaglandin E(2) by whole-blood culture. Maximal oxygen consumption was determined during an incremental treadmill test. There was no change in the concentration of stress hormones, but the athletes with chronic pain showed a reduction in maximum oxygen consumption (22%) and total consumption at the anaerobic threshold (25%), as well as increased cytokine production. Increases of 2.7-, 8.1-, 1.7- and 3.7-fold were observed for IL-1, IL-2, tumor necrosis factor-alpha and interferon-alpha, respectively. Our data show that athletes with chronic pain have enhanced production of proinflammatory cytokines and lipid mediators and reduced performance in the ergospirometric test. (c) 2008 S. Karger AG, Basel.

  5. Relation of Mitochondrial Oxygen Consumption in Peripheral Blood Mononuclear Cells to Vascular Function in Type 2 Diabetes Mellitus

    PubMed Central

    Hartman, Mor-Li; Shirihai, Orian S.; Holbrook, Monika; Xu, Guoquan; Kocherla, Marsha; Shah, Akash; Fetterman, Jessica L.; Kluge, Matthew A.; Frame, Alissa A.; Hamburg, Naomi M.; Vita, Joseph A.

    2014-01-01

    Recent studies have shown mitochondrial dysfunction and increased production of reactive oxygen species in peripheral blood mononuclear cells (PBMC’s) and endothelial cells from patients with diabetes mellitus. Mitochondria oxygen consumption is coupled to ATP production and also occurs in an uncoupled fashion during formation of reactive oxygen species by components of the electron transport chain and other enzymatic sites. We therefore hypothesized that diabetes would be associated with higher total and uncoupled oxygen consumption in PBMC’s that would correlate with endothelial dysfunction. We developed a method to measure oxygen consumption in freshly isolated PBMC’s and applied it to 26 patients with type 2 diabetes mellitus and 28 non-diabetic controls. Basal (192±47 vs. 161±44 pMoles/min, P=0.01), uncoupled (64±16 vs. 53±16 pMoles/min, P=0.007), and maximal (795±87 vs. 715±128 pMoles/min, P=0.01) oxygen consumption rates were higher in diabetic patients compared to controls. There were no significant correlations between oxygen consumption rates and endothelium-dependent flow-mediated dilation measured by vascular ultrasound. Non-endothelium-dependent nitroglycerin-mediated dilation was lower in diabetics (10.1±6.6 vs. 15.8±4.8%, P=0.03) and correlated with maximal oxygen consumption (R= −0.64, P=0.001). In summary, we found that diabetes mellitus is associated with a pattern of mitochondrial oxygen consumption consistent with higher production of reactive oxygen species. The correlation between oxygen consumption and nitroglycerin-mediated dilation may suggest a link between mitochondrial dysfunction and vascular smooth muscle cell dysfunction that merits further study. Finally, the described method may have utility for assessment of mitochondrial function in larger scale observational and interventional studies in humans. PMID:24558030

  6. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    PubMed

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor

  7. Oxygen consumption during exercise in a heated pool.

    PubMed

    Kirby, R L; Sacamano, J T; Balch, D E; Kriellaars, D J

    1984-01-01

    The heated hydrotherapy pool is a common exercise site for patients with painful musculoskeletal conditions. Oxygen consumption of swimming is 87 to 89% of maximum in postmyocardial infarction patients according to one recent investigation. We studied 13 able-bodied subjects to test the hypothesis that enough energy could be expended during various forms of hydrotherapy to produce both an aerobic training effect and a risk to patients with coronary artery disease. Oxygen consumption (VO2) was measured in six settings: resting supine; resting seated shoulder deep in the pool (36C); walking at comfortable speed in chest-deep water; running at the fastest speed possible in chest-deep water; using hand paddles; and running in place at shoulder depth. The mean VO2 expressed in ml/kg/min (and metabolic equivalents) were 4.91 (1.00), 4.93 (1.02), 9.34 (2.01), 27.79 (6.23), 18.25 (4.30) and 29.11 (7.09) respectively, suggesting that the more vigorous exercises stress aerobic capacity heavily but not excessively.

  8. Oxygen diffusion and consumption in extracellular matrix gels: implications for designing three-dimensional cultures.

    PubMed

    Colom, Adai; Galgoczy, Roland; Almendros, Isaac; Xaubet, Antonio; Farré, Ramon; Alcaraz, Jordi

    2014-08-01

    Three-dimensional (3D) cultures are increasingly used as tissue surrogates to study many physiopathological processes. However, to what extent current 3D culture protocols provide physiologic oxygen tension conditions remains ill defined. To address this limitation, oxygen tension was measured in a panel of acellular or cellularized extracellular matrix (ECM) gels with A549 cells, and analyzed in terms of oxygen diffusion and consumption. Gels included reconstituted basement membrane, fibrin and collagen. Oxygen diffusivity in acellular gels was up to 40% smaller than that of water, and the lower values were observed in the denser gels. In 3D cultures, physiologic oxygen tension was achieved after 2 days in dense (≥3 mg/mL) but not sparse gels, revealing that the latter gels are not suitable tissue surrogates in terms of oxygen distribution. In dense gels, we observed a dominant effect of ECM composition over density in oxygen consumption. All diffusion and consumption data were used in a simple model to estimate ranges for gel thickness, seeding density and time-window that may support physiologic oxygen tension. Thus, we identified critical variables for oxygen tension in ECM gels, and introduced a model to assess initial values of these variables, which may short-cut the optimization step of 3D culture studies. © 2013 Wiley Periodicals, Inc.

  9. AICAR inhibits oxygen consumption by intact skeletal muscle cells in culture.

    PubMed

    Spangenburg, Espen E; Jackson, Kathryn C; Schuh, Rosemary A

    2013-12-01

    Activation of 5' adenosine monophosphate-activated protein kinase (AMPK) with aminoimidazole carboxamide ribonucleotide (AICAR) increases skeletal muscle glucose uptake and fatty acid oxidation. The purpose of these experiments was to utilize AICAR to enhance palmitate consumption by mitochondria in cultured skeletal muscle cells. In these experiments, we treated C2C12 myotubes or adult single skeletal muscle fibers with varying concentrations of AICAR for different lengths of time. Surprisingly, acute AICAR exposure at most concentrations (0.25-1.5 mM), but not all (0.1 mM), modestly inhibited oxygen consumption even though AICAR increased AMPK phosphorylation. The data suggest that AICAR inhibited oxygen consumption by the cultured muscle in a non-specific manner. The results of these experiments are expected to provide valuable information to investigators interested in using AICAR in cell culture studies.

  10. Effect of rocker shoe radius on oxygen consumption rate in young able-bodied persons.

    PubMed

    Hansen, Andrew H; Wang, Charles C

    2011-04-07

    We studied oxygen consumption rate of eleven young able-bodied persons walking at self-selected speed with five different pairs of shoes: one regular pair without rocker soles (REG) and four pairs with uniform hardness (35-40 shore A durometer) rocker soles of different radii (25% of leg length (LL) (R25), 40% LL (R40), 55% LL (R55), and infinite radius (FLAT)). Rocker soled shoes in the study were developed to provide similar vertical lift (three inches higher than the REG shoes condition). Oxygen consumption rate was significantly affected by the use of the different shoes (p<0.001) and pairwise comparisons indicated that persons consumed significantly less oxygen (per minute per kilogram of body mass) when walking on the R40 shoes when compared with both the FLAT (p<0.001) and REG (p=0.021) shoe conditions. Oxygen consumption was also significantly less for the R25 shoes compared with the FLAT shoes (p=0.005) and for the R55 shoes compared with FLAT shoes (p=0.027). The three-inch lift on the FLAT shoe did not cause a significant change in oxygen consumption compared to the shoe without the lift (REG). Published by Elsevier Ltd.

  11. Guided inquiry lab exercises in development and oxygen consumption using zebrafish.

    PubMed

    Bagatto, Brian

    2009-06-01

    Zebrafish have become a model organism in many areas of research and are now being used with more frequency in the classroom to teach important biological concepts. The two guided inquiry exercises in this article are each aimed at a different level of instruction, but each can be modified to fit the needs of many high school or college-level courses. The "Zebrafish Development and Environment" exercise teaches high school students about zebrafish development by presenting a series of embryos at different ages. Without access to visual references, students are asked to rank developing zebrafish by age and explain their choices. The students also learn about the heart and circulatory system and the effects of temperature on physiological processes. The second exercise, "Oxygen Consumption," is a 2-week laboratory designed for introductory college biology majors and involves the concept of oxygen consumption as a predictor of metabolic rate. During the first week of lab, students are introduced to the concept and learn how to measure oxygen consumption in zebrafish. In the second week, they perform an instructor-approved experiment of their own design, analyze the results using statistics, and write a report.

  12. Oxygen consumption and distribution in the Long-Evans rat retina

    PubMed Central

    Lau, Jennifer C.M.; Linsenmeier, Robert A.

    2012-01-01

    The purpose of this study was to investigate the oxygen distribution and consumption in the pigmented Long-Evans rat retina in vivo during dark and light adaptation, and to compare these results to previous work on cat and albino rat. Double-barreled microelectrodes recorded both intraretinal PO2 depth profiles and the electroretinogram (ERG), which was used to identify the boundaries of the retina. Light adaptation decreased photoreceptor oxygen consumption per unit volume (Qav) from 3.0±0.4 ml•100 g−1•min−1 (mean ± SEM) in darkness to 1.8±0.2 ml•100 g−1•min−1 and increased minimum outer retinal PO2 at the inner segments (Pmin) from 17.4±3.0 to 29.9±5.3 mmHg. The effects of light on outer retinal PO2 and Qav were similar to those previously observed in cat, monkey, and albino rats; however, dark-adapted Pmin was higher in rat than cat. The parameters derived from fitting the oxygen diffusion model to the rat data were compared to those from cat. Oxygen consumption of the inner segments (Q2) and choroidal PO2 (PC) in rat and cat were similar. Pmin was higher in rat than in cat for two reasons: first, rat photoreceptors have a shorter oxygen consuming region; and second, the retinal circulation supplied a greater fraction of consumed oxygen to rat photoreceptors. The average PO2 across the inner retina (PIR) was not different in dark adaptation (25.4±4.8 mm Hg) and light adaptation (28.8±5.4 mmHg) when measured from PO2 profiles. However, with the microelectrode stationary at 9–18% retinal depth, a small consistent decrease in PO2 occurred during illumination. Flickering light at 6 Hz decreased inner retinal PO2 significantly more than an equivalent steady illumination, suggesting that changes in blood flow did not completely compensate for increased metabolism. This study comprehensively characterized rat retinal oxygenation in both light and dark, and determined the similarities and differences between rat and cat retinas. PMID:22828049

  13. Transfer and consumption of oxygen during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens in an airlift bioreactor.

    PubMed

    Rossi, Márcio José; Nascimento, Francisco Xavier; Giachini, Admir José; Oliveira, Vetúria Lopes; Furigo, Agenor

    2017-02-01

    The study had the objective of examining the aspects involved in the cultivation of ectomycorrhizal fungi for the production of commercially sustainable inoculant to attend the demands of the seedling nursery industry. It focused on certain parameters, such as the oxygen consumption levels, during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens CBMAI 1472, which was performed in a 5-L airlift bioreactor. The dynamic method was employed to determine the volumetric coefficient for the oxygen transfer (k L a) and the specific oxygen uptake rate (Q O2 ). The results indicate that specific growth rates (μ X ) and oxygen consumption decline rapidly with time, affected mainly by increases in biomass concentration (X). Increases in X are obtained primarily by increases in the size of pellets that are formed, altering, consequently, the cultivation dynamics. This is the result of natural increases in transferring resistance that are observed in these environments. Therefore, to avoid critical conditions that affect viability and the productivity of the process, particular settings are discussed.

  14. Acute detachment of hexokinase II from mitochondria modestly increases oxygen consumption of the intact mouse heart.

    PubMed

    Nederlof, Rianne; Denis, Simone; Lauzier, Benjamin; Rosiers, Christine Des; Laakso, Markku; Hagen, Jacob; Argmann, Carmen; Wanders, Ronald; Houtkooper, Riekelt H; Hollmann, Markus W; Houten, Sander M; Zuurbier, Coert J

    2017-07-01

    Cardiac hexokinase II (HKII) can translocate between cytosol and mitochondria and change its cellular expression with pathologies such as ischemia-reperfusion, diabetes and heart failure. The cardiac metabolic consequences of these changes are unknown. Here we measured energy substrate utilization in cytosol and mitochondria using stabile isotopes and oxygen consumption of the intact perfused heart for 1) an acute decrease in mitochondrial HKII (mtHKII), and 2) a chronic decrease in total cellular HKII. We first examined effects of 200nM TAT (Trans-Activator of Transcription)-HKII peptide treatment, which was previously shown to acutely decrease mtHKII by ~30%. In Langendorff-perfused hearts TAT-HKII resulted in a modest, but significant, increased oxygen consumption, while cardiac performance was unchanged. At the metabolic level, there was a nonsignificant (p=0.076) ~40% decrease in glucose contribution to pyruvate and lactate formation through glycolysis and to mitochondrial citrate synthase flux (6.6±1.1 vs. 11.2±2.2%), and an 35% increase in tissue pyruvate (27±2 vs. 20±2pmol/mg; p=0.033). Secondly, we compared WT and HKII +/- hearts (50% chronic decrease in total HKII). RNA sequencing revealed no differential gene expression between WT and HKII +/- hearts indicating an absence of metabolic reprogramming at the transcriptional level. Langendorff-perfused hearts showed no significant differences in glycolysis (0.34±0.03μmol/min), glucose contribution to citrate synthase flux (35±2.3%), palmitate contribution to citrate synthase flux (20±1.1%), oxygen consumption or mechanical performance between WT and HKII +/- hearts. These results indicate that acute albeit not chronic changes in mitochondrial HKII modestly affect cardiac oxygen consumption and energy substrate metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Estimating the effect of burrowing shrimp on deep-sea sediment community oxygen consumption.

    PubMed

    Leduc, Daniel; Pilditch, Conrad A

    2017-01-01

    Sediment community oxygen consumption (SCOC) is a proxy for organic matter processing and thus provides a useful proxy of benthic ecosystem function. Oxygen uptake in deep-sea sediments is mainly driven by bacteria, and the direct contribution of benthic macro- and mega-infauna respiration is thought to be relatively modest. However, the main contribution of infaunal organisms to benthic respiration, particularly large burrowing organisms, is likely to be indirect and mainly driven by processes such as feeding and bioturbation that stimulate bacterial metabolism and promote the chemical oxidation of reduced solutes. Here, we estimate the direct and indirect contributions of burrowing shrimp ( Eucalastacus cf. torbeni ) to sediment community oxygen consumption based on incubations of sediment cores from 490 m depth on the continental slope of New Zealand. Results indicate that the presence of one shrimp in the sediment is responsible for an oxygen uptake rate of about 40 µmol d -1 , only 1% of which is estimated to be due to shrimp respiration. We estimate that the presence of ten burrowing shrimp m -2 of seabed would lead to an oxygen uptake comparable to current estimates of macro-infaunal community respiration on Chatham Rise based on allometric equations, and would increase total sediment community oxygen uptake by 14% compared to sediment without shrimp. Our findings suggest that oxygen consumption mediated by burrowing shrimp may be substantial in continental slope ecosystems.

  16. Oxygen Consumption of Tilapia and Preliminary Mass Flows through a Prototype Closed Aquaculture System

    NASA Technical Reports Server (NTRS)

    Muller, Matthew S.; Bauer, Clarence F.

    1994-01-01

    Performance of NASA's prototype CELSS Breadboard Project Closed Aquaculture System was evaluated by estimating gas exchange quantification and preliminary carbon and nitrogen balances. The total system oxygen consumption rate was 535 mg/hr kg/fish (cv = 30%) when stocked with Tilapia aurea populations (fresh weights of 97 +/- 19 to 147 +/- 36 g/fish for various trials). Oxygen consumption by T. aurea (260 mg/hr kg/fish) contributed to approximately one-half of total system demand. Continuous carbon dioxide quantification methods were analyzed using the,relation of carbon dioxide to oxygen consumption. Overall food conversion rates averaged 18.2 +/- 3.2%. Major pathways for nitrogen and carbon in the system were described with preliminary mass closure of 60-80% and 60% for nitrogen and carbon.

  17. Effects of circuit low-intensity resistance exercise with slow movement on oxygen consumption during and after exercise.

    PubMed

    Mukaimoto, Takahiro; Ohno, Makoto

    2012-01-01

    The purpose of this study was to examine oxygen consumption (VO(2)) during and after a single bout of low-intensity resistance exercise with slow movement. Eleven healthy men performed the following three types of circuit resistance exercise on separate days: (1) low-intensity resistance exercise with slow movement: 50% of one-repetition maximum (1-RM) and 4 s each of lifting and lowering phases; (2) high-intensity resistance exercise with normal movement: 80% of 1-RM and 1 s each of lifting and lowering phases; and (3) low-intensity resistance exercise with normal movement: 50% of 1-RM and 1 s each of lifting and lowering phases. These three resistance exercise trials were performed for three sets in a circuit pattern with four exercises, and the participants performed each set until exhaustion. Oxygen consumption was monitored continuously during exercise and for 180 min after exercise. Average VO(2) throughout the exercise session was significantly higher with high- and low-intensity resistance exercise with normal movement than with low-intensity resistance exercise with slow movement (P < 0.05); however, total VO(2) was significantly greater in low-intensity resistance exercise with slow movement than in the other trials. In contrast, there were no significant differences in the total excess post-exercise oxygen consumption among the three exercise trials. The results of this study suggest that low-intensity resistance exercise with slow movement induces much greater energy expenditure than resistance exercise with normal movement of high or low intensity, and is followed by the same total excess post-exercise oxygen consumption for 180 min after exercise.

  18. Benthic oxygen consumption on continental shelves off eastern Canada

    NASA Astrophysics Data System (ADS)

    Grant, Jonathan; Emerson, Craig W.; Hargrave, Barry T.; Shortle, Jeannette L.

    1991-08-01

    The consumption of phytoplankton production by the benthos is an important component of organic carbon budgets for continental shelves. Sediment texture is a major factor regulating benthic processes because fine sediment areas are sites of enhanced deposition from the water column, resulting in increased organic content, bacterial biomass and community metabolism. Although continental shelves at mid- to high latitudes consist primarily of coarse relict sediments ( PIPER, Continental Shelf Research, 11, 1013-1035), shelf regions of boreal and subarctic eastern Canada contain large areas of silt and clay sediments ( FADER, Continental Shelf Research, 11, 1123-1153). We collated estimates of benthic oxygen consumption in coarse (<20% silt-clay, <0.5% organic matter) and fine sediments (20% silt-clay, 0.5% organic matter) for northwest Atlantic continental shelves including new data for Georges Bank, the Scotian Shelf, the Grand Banks of Newfoundland and Labrador Shelf. Estimates were applied to the areal distribution of sediment type on these shelves to obtain a general relationship between sediment texture and benthic carbon consumption. Mean benthic oxygen demand was 2.7 times greater in fine sediment than in coarse sediment, when normalized to mean annual temperature. In terms of carbon equivalents, shelf regions with minimal fine sediment (Georges Bank, the Grand Banks of Newfoundland-northeast Newfoundland) consumed only 5-8% of annual primary production. Benthos of the Gulf of Maine (100% fine sediment) and the Scotian Shelf (35% fine sediment) utilized 16-19% of primary production. Although 32% of the Labrador Shelf area contained fine sediments, benthic consumption of pelagic production (8%) was apparently limited by low mean annual temperature (2°C). These results indicate that incorporation of sediment-specific oxygen uptake into shelf carbon budgets may increase estimates of benthic consumption by 50%. Furthermore, respiration and production by large

  19. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy

    PubMed Central

    Eshaq, Randa S.; Wright, William S.; Harris, Norman R.

    2014-01-01

    Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. PMID:24936440

  20. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy.

    PubMed

    Eshaq, Randa S; Wright, William S; Harris, Norman R

    2014-01-01

    Retinal tissue receives its supply of oxygen from two sources - the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C.

  1. [Oxygen consumption rate and effects of hypoxia stress on enzyme activities of Sepiella maindron].

    PubMed

    Wang, Chun-lin; Wu, Dan-hua; Dong, Tian-ye; Jiang, Xia-min

    2008-11-01

    The oxygen consumption rate and suffocation point of Sepiella maindroni were determined through the measurement of dissolved oxygen in control and experimental respiration chambers by Winkler's method, and the changes of S. maindroni enzyme activities under different levels of hypoxia stress were studied. The results indicated that the oxygen consumption rate of S. maindroni exhibited an obvious diurnal fluctuation of 'up-down-up-down', and positively correlated with water temperature (16 degrees C-28 degrees C) and illumination (3-500 micromol x m(-2) x s(-1)) while negatively correlated with water pH (6.25-9.25). With increasing water salinity from 18.1 to 29.8, the oxygen consumption rate had a variation of 'up-down-up', being the lowest at salinity 24. 8. Female S. maindroni had a higher oxygen consumption rate than male S. maindroni. The suffocation point of S. maindroni decreased with its increasing body mass, and that of (38.70 +/- 0.52) g in mass was (0.9427 +/- 0.0318) mg x L(-1). With the increase of hypoxia stress, the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) decreased after an initial increase, lipase activity decreased, protease activity had a variation of 'decrease-increase-decrease', and lactate dehydrogenase (LDH) activity had a trend of increasing first and decreasing then. The enzyme activities were higher under hypoxia stress than under normal conditions.

  2. Oxygen consumption and distribution in the Long-Evans rat retina.

    PubMed

    Lau, Jennifer C M; Linsenmeier, Robert A

    2012-09-01

    The purpose of this study was to investigate the oxygen distribution and consumption in the pigmented Long-Evans rat retina in vivo during dark and light adaptation, and to compare these results to previous work on cat and albino rat. Double-barreled microelectrodes recorded both intraretinal PO(2) depth profiles and the electroretinogram (ERG), which was used to identify the boundaries of the retina. Light adaptation decreased photoreceptor oxygen consumption per unit volume (Q(av)) from 3.0 ± 0.4 ml·100 g(-1) min(-1) (mean ± SEM) in darkness to 1.8 ± 0.2 ml·100 g(-1) min(-1) and increased minimum outer retinal PO(2) at the inner segments (P(min)) from 17.4 ± 3.0 to 29.9 ± 5.3 mmHg. The effects of light on outer retinal PO(2) and Q(av) were similar to those previously observed in cat, monkey, and albino rats; however, dark-adapted P(min) was higher in rat than cat. The parameters derived from fitting the oxygen diffusion model to the rat data were compared to those from cat. Oxygen consumption of the inner segments (Q(2)) and choroidal PO(2) (P(C)) in rat and cat were similar. P(min) was higher in rat than in cat for two reasons: first, rat photoreceptors have a shorter oxygen consuming region; and second, the retinal circulation supplied a greater fraction of consumed oxygen to rat photoreceptors. The average PO(2) across the inner retina (P(IR)) was not different in dark adaptation (25.4 ± 4.8 mmHg) and light adaptation (28.8 ± 5.4 mmHg) when measured from PO(2) profiles. However, with the microelectrode stationary at 9-18% retinal depth, a small consistent decrease in PO(2) occurred during illumination. Flickering light at 6 Hz decreased inner retinal PO(2) significantly more than an equivalent steady illumination, suggesting that changes in blood flow did not completely compensate for increased metabolism. This study comprehensively characterized rat retinal oxygenation in both light and dark, and determined the similarities

  3. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear.

    PubMed

    Del Castillo, Luis F; da Silva, Ana R Ferreira; Hernández, Saul I; Aguilella, M; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2015-01-01

    We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (P(O2) ) obtained from in vivo estimation previously reported by other authors. (1) METHODS: Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low P(O2)) are considered at the interface cornea-tears film. Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. Copyright © 2014. Published by Elsevier Espana.

  4. Diffusion and Monod kinetics model to determine in vivo human corneal oxygen-consumption rate during soft contact lens wear

    PubMed Central

    Del Castillo, Luis F.; da Silva, Ana R. Ferreira; Hernández, Saul I.; Aguilella, M.; Andrio, Andreu; Mollá, Sergio; Compañ, Vicente

    2014-01-01

    Purpose We present an analysis of the corneal oxygen consumption Qc from non-linear models, using data of oxygen partial pressure or tension (pO2) obtained from in vivo estimation previously reported by other authors.1 Methods Assuming that the cornea is a single homogeneous layer, the oxygen permeability through the cornea will be the same regardless of the type of lens that is available on it. The obtention of the real value of the maximum oxygen consumption rate Qc,max is very important because this parameter is directly related with the gradient pressure profile into the cornea and moreover, the real corneal oxygen consumption is influenced by both anterior and posterior oxygen fluxes. Results Our calculations give different values for the maximum oxygen consumption rate Qc,max, when different oxygen pressure values (high and low pO2) are considered at the interface cornea-tears film. Conclusion Present results are relevant for the calculation on the partial pressure of oxygen, available at different depths into the corneal tissue behind contact lenses of different oxygen transmissibility. PMID:25649636

  5. MODELING NITROGEN-CARBON CYCLING AND OXYGEN CONSUMPTION IN BOTTOM SEDIMENTS

    EPA Science Inventory

    A model framework is presented for simulating nitrogen and carbon cycling at the sediment–water interface, and predicting oxygen consumption by oxidation reactions inside the sediments. Based on conservation of mass and invoking simplifying assumptions, a coupled system of diffus...

  6. The effects of amiloride and age on oxygen consumption coupled to electrogenic sodium transport in the human sigmoid colon.

    PubMed

    Carra, Graciela E; Matus, Daniel; Ibáñez, Jorge E; Saraví, Fernando D

    2015-01-01

    Aerobic metabolism is necessary for ion transport in many transporting epithelia, including the human colonic epithelium. We assessed the effects of the epithelial sodium channel blocker, amiloride, on oxygen consumption and short-circuit current of the human sigmoid epithelium to determine whether these effects were influenced by the age of the subject. Segments of the sigmoid colon were obtained from the safety margin of resections performed in patients of 62-77 years of age. Isolated mucosa preparations were obtained and mounted in airtight Ussing chambers, fit for simultaneous measurement of short-circuit current and oxygen concentration, before and after blocking epithelial sodium channels with amiloride (0.1 mmol/L). Regression analyses were performed to assess the associations between short-circuit current, oxygen consumption, and age of the subject as well as to define the relationship between the decreases in short-circuit current and oxygen consumption after blockade. Epithelial sodium channel blockade caused an 80% reduction in short-circuit current and a 26% reduction in oxygen consumption. Regression analysis indicated that both changes were significantly related (r = 0.884;P = 0.0007). Oxygen consumption decreased by 1 m mol/h/cm2 for each 25 m A/cm2 decrease in short-circuit current. Neither short-circuit current nor oxygen consumption had any significant relationship with the age of the subjects. The decrease in epithelial oxygen consumption caused by amiloride is proportional to the decrease in short-circuit current and independent of the age of the subject.

  7. Correlation of Gerkin, Queen's College, George, and Jackson methods in estimating maximal oxygen consumption.

    PubMed

    Heydari, Payam; Varmazyar, Sakineh; Variani, Ali Safari; Hashemi, Fariba; Ataei, Seyed Sajad

    2017-10-01

    Test of maximal oxygen consumption is the gold standard for measuring cardio-pulmonary fitness. This study aimed to determine correlation of Gerkin, Queen's College, George, and Jackson methods in estimating maximal oxygen consumption, and demographic factors affecting maximal oxygen consumption. This descriptive cross-sectional study was conducted in a census of medical emergency students (n=57) in Qazvin University of Medical Sciences in 2016. The subjects firstly completed the General Health Questionnaire (PAR-Q) and demographic characteristics. Then eligible subjects were assessed using exercise tests of Gerkin treadmill, Queen's College steps and non-exercise George, and Jackson. Data analysis was carried out using independent t-test, one way analysis of variance and Pearson correlation in the SPSS software. The mean age of participants was 21.69±4.99 years. The mean of maximal oxygen consumption using Gerkin, Queen's College, George, and Jackson tests was 4.17, 3.36, 3.64, 3.63 liters per minute, respectively. Pearson statistical test showed a significant correlation among fours tests. George and Jackson tests had the greatest correlation (r=0.85, p>0.001). Results of tests of one-way analysis of variance and t-test showed a significant relationship between independent variable of weight and height in four tests, and dependent variable of maximal oxygen consumption. Also, there was a significant relationship between variable of body mass index in two tests of Gerkin and Queen's College and variable of exercise hours per week with the George and Jackson tests (p>0.001). Given the obtained correlation, these tests have the potential to replace each other as necessary, so that the non-exercise Jackson test can be used instead of the Gerkin test.

  8. Swimming for your life: locomotor effort and oxygen consumption during the green turtle (Chelonia mydas) hatchling frenzy.

    PubMed

    Booth, David T

    2009-01-01

    Swimming effort and oxygen consumption of newly emerged green turtle Chelonia mydas hatchlings was measured simultaneously and continuously for the first 18 h of swimming after hatchlings entered the water. Oxygen consumption was tightly correlated to swimming effort during the first 12 h of swimming indicating that swimming is powered predominantly by aerobic metabolism. The patterns of swimming effort and oxygen consumption could be divided into three distinct phases: (1) the rapid fatigue phase from 0 to 2 h when the mean swim thrust decreased from 45 to 30 mN and oxygen consumption decreased from 33 to 18 ml h(-1); (2) the slow fatigue phase from 2 to 12 h when the mean swim thrust decreased from 30 to 22 mN and oxygen consumption decreased from 18 to 10 ml h(-1); and (3) the sustained effort phase from 12 to 18 h when mean swim thrust averaged 22 mN and oxygen consumption averaged 10 ml h(-1). The decrease in mean swim thrust was caused by a combination of a decrease in front flipper stroke rate during a power stroking bout, a decrease in mean maximum thrust during a power stroking bout and a decrease in the proportion of time spent power stroking. Hence hatchlings maximise their swimming thrust as soon as they enter the water, a time when a fast swimming speed will maximise the chance of surviving the gauntlet of predators inhabiting the shallow fringing reef before reaching the relative safety of deeper water.

  9. Effects of cadmium chloride on oxygen consumption and gill morphology of Indian flying barb, Esomus danricus.

    PubMed

    Das, Suchismita; Gupta, Abhik

    2012-11-01

    Effects of three sub lethal concentrations of cadmium chloride (0.636, 0.063 and 0.006 mg l(-1)) on oxygen consumption and gill morphology in Indian flying barb, Esomus danricus (Hamilton-Buchanan), a teleost fish, were studied. When compared to control, 0.636 mg l(-1) of cadmium chloride after 7,14, 21 and 28 day exposure showed a significant decline in rates of oxygen consumption at 32.98, 28.40, 23.88 and 21.69 ml hr(1) 100 g(-1) of tissue, respectively; while, 0.063 mg l(-1) of cadmium chloride for the same exposure durations showed a significant decline in rates of oxygen consumption at 34.28, 29.30, 28.05 and 26.47 ml hr(1)100 g(-1) of tissue, respectively. However, significant decline in the rate of oxygen consumption at 0.006 mg l(-1) of cadmium chloride could be observed from 21st day of exposure. Gill tissue showed various histopathological changes including epithelial lifting, hyperplasia, mucous secretion, marked leucocyte infiltration in the epithelium after 28 days of cadmium chloride exposure.

  10. Diffusion Limitation and Hyperoxic Enhancement of Oxygen Consumption in Zooxanthellate Sea Anemones, Zoanthids, and Corals.

    PubMed

    Shick, J M

    1990-08-01

    Depending on their size and morphology, anthozoan polyps and colonies may be diffusion-limited in their oxygen consumption, even under well-stirred, air-saturated conditions. This is indicated by an enhancement of oxygen consumption under steady-state hyperoxic conditions that simulate the levels of O2 produced photosynthetically by zooxanthellae in the hosts' tissues. Such hyperoxia in the tissues of zooxanthellate species negates the effect of the diffusive boundary layer, and increases the rate of oxygen consumption; thus, in many cases, the rate of respiration measured under normoxia in the dark may not be representative of the rate during the day when the zooxanthellae are photosynthesizing and when the supply of oxygen for respiration is in the tissues themselves, not from the environment. These results have implications in respirometric methodology and in calculating the rate of gross photosynthesis in energetic studies. The activity of cytochrome c oxidase is higher in aposymbiotic than in zooxanthellate specimens of the sea anemone Aiptasia pulchella, and this may indicate a compensation for the relative hypoxia in the tissues of the former, enhancing the delivery of oxygen to the mitochondria from the environment.

  11. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    NASA Astrophysics Data System (ADS)

    Gurley, Katelyn; Shang, Yu; Yu, Guoqiang

    2012-07-01

    This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (\\Vdot O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and \\Vdot O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (r\\Vdot O2). The rBF and r\\Vdot O2 signals were calibrated with absolute baseline BF and \\Vdot O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology.

  12. Noninvasive optical quantification of absolute blood flow, blood oxygenation, and oxygen consumption rate in exercising skeletal muscle

    PubMed Central

    Gurley, Katelyn; Shang, Yu

    2012-01-01

    Abstract. This study investigates a method using novel hybrid diffuse optical spectroscopies [near-infrared spectroscopy (NIRS) and diffuse correlation spectroscopy (DCS)] to obtain continuous, noninvasive measurement of absolute blood flow (BF), blood oxygenation, and oxygen consumption rate (V˙O2) in exercising skeletal muscle. Healthy subjects (n=9) performed a handgrip exercise to increase BF and V˙O2 in forearm flexor muscles, while a hybrid optical probe on the skin surface directly monitored oxy-, deoxy-, and total hemoglobin concentrations ([HbO2], [Hb], and THC), tissue oxygen saturation (StO2), relative BF (rBF), and relative oxygen consumption rate (rV˙O2). The rBF and rV˙O2 signals were calibrated with absolute baseline BF and V˙O2 obtained through venous and arterial occlusions, respectively. Known problems with muscle-fiber motion artifacts in optical measurements during exercise were mitigated using a novel gating algorithm that determined muscle contraction status based on control signals from a dynamometer. Results were consistent with previous findings in the literature. This study supports the application of NIRS/DCS technology to quantitatively evaluate hemodynamic and metabolic parameters in exercising skeletal muscle and holds promise for improving diagnosis and treatment evaluation for patients suffering from diseases affecting skeletal muscle and advancing fundamental understanding of muscle and exercise physiology. PMID:22894482

  13. Islet oxygen consumption rate (OCR) dose predicts insulin independence for first clinical islet allotransplants

    PubMed Central

    Kitzmann, JP; O’Gorman, D; Kin, T; Gruessner, AC; Senior, P; Imes, S; Gruessner, RW; Shapiro, AMJ; Papas, KK

    2014-01-01

    Human islet allotransplant (ITx) for the treatment of type 1 diabetes is in phase III clinical registration trials in the US and standard of care in several other countries. Current islet product release criteria include viability based on cell membrane integrity stains, glucose stimulated insulin release (GSIR), and islet equivalent (IE) dose based on counts. However, only a fraction of patients transplanted with islets that meet or exceed these release criteria become insulin independent following one transplant. Measurements of islet oxygen consumption rate (OCR) have been reported as highly predictive of transplant outcome in many models. In this paper we report on the assessment of clinical islet allograft preparations using islet oxygen consumption rate (OCR) dose (or viable IE dose) and current product release assays in a series of 13 first transplant recipients. The predictive capability of each assay was examined and successful graft function was defined as 100% insulin independence within 45 days post-transplant. Results showed that OCR dose was most predictive of CTO. IE dose was also highly predictive, while GSIR and membrane integrity stains were not. In conclusion, OCR dose can predict CTO with high specificity and sensitivity and is a useful tool for evaluating islet preparations prior to clinical ITx. PMID:25131089

  14. Benthic photosynthesis and oxygen consumption in permeable carbonate sediments at Heron Island, Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Rasheed, Mohammed; Wild, Christian; Franke, Ulrich; Huettel, Markus

    2004-01-01

    In order to investigate benthic photosynthesis and oxygen demand in permeable carbonate sands and the impact of benthic boundary layer flow on sedimentary oxygen consumption, in situ and laboratory chamber experiments were carried out at Heron Island, Great Barrier Reef, Australia. Total photosynthesis, net primary production and respiration were estimated to be 162.9±43.4, 98.0±40.7, and 64.9±15.0 mmol C m -2 d -1, respectively. DIN and DIP fluxes for these sands reached 0.34 and 0.06 mmol m -2 d -1, respectively. Advective pore water exchange had a strong impact on oxygen consumption in the permeable sands. Consumption rates in the chamber with larger pressure gradient (20 rpm, 1.2 Pa between centre and rim) simulating a friction velocity of 0.6 cm s -1 were approximately two-fold higher than in the chambers with slow stirring (10 rpm, 0.2 Pa between centre and rim, friction velocity of 0.3 cm s -1). In the laboratory chamber experiments with stagnant water column, oxygen consumption was eight times lower than in the chamber with fast stirring. Laboratory chamber experiments with Br - tracer revealed solute exchange rates of 2.6, 2.2, 0.7 ml cm -2 d -1 at stirring rates of 20, 10, and 0 rpm, respectively. In a laboratory experiment investigating the effect of sediment permeability on oxygen and DIC fluxes, a three-fold higher permeability resulted in two- to three-fold higher oxygen consumption and DIC release rates. These experiments demonstrate the importance of boundary flow induced flushing of the upper layer of permeable carbonate sediment on oxygen uptake in the coral sands. The high filtration and oxidation rates in the sub-tropical permeable carbonate sediments and the subsequent release of nutrients and DIC reveal the importance of these sands for the recycling of matter in this oligotrophic environment.

  15. The relationship between oxygen consumption rate and viability of in vivo-derived pig embryos vitrified by the micro volume air cooling method.

    PubMed

    Sakagami, N; Nishida, K; Misumi, K; Hirayama, Y; Yamashita, S; Hoshi, H; Misawa, H; Akiyama, K; Suzuki, C; Yoshioka, K

    2016-01-01

    The aim of this study was to assess the viability of vitrified-warmed in vivo-derived pig embryos after measuring the oxygen consumption rate. Six days after artificial insemination, blastocysts were collected from gilts and vitrified by the micro volume air cooling method. The oxygen consumption rate was measured in 60 vitrified-warmed embryos, which were then cultured for 48h to assess the viability. The survival (re-expansion) rate of embryos after warming was 85.0%. The average oxygen consumption rate of embryos immediately after warming was greater in embryos which could re-expand during subsequent culture (F=0.75±0.04) than that in those which failed to re-expand (F=0.33±0.05). Moreover, the oxygen consumption rate of vitrified-warmed embryos was greater in the hatched (F=0.88±0.06) than that in the not-hatched group (F=0.53±0.04). When the oxygen consumption rate of the vitrified-warmed embryos and the numbers of viable and dead cells in embryos were determined, there was a positive correlation between the oxygen consumption rate and the number of live cells (P<0.01, r=0.538). A total of 29 vitrified embryos after warming and measuring the oxygen consumption rate were surgically transferred into uterine horns of two recipients. Both of the recipients become pregnant and farrowed 12 healthy piglets. These results demonstrate that the oxygen consumption rate of vitrified-warmed pig embryos can be related to the number of live cells and that the measurement of oxygen consumption of embryos after cryopreservation may be useful for estimating embryo survivability. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Protein expression and oxygen consumption rate of early postmortem mitochondria relate to meat tenderness.

    PubMed

    Grabež, V; Kathri, M; Phung, V; Moe, K M; Slinde, E; Skaugen, M; Saarem, K; Egelandsdal, B

    2015-04-01

    Oxygen consumption rate (OCR) of muscle fibers from bovine semimembranosus muscle of 41 animals was investigated 3 to 4 h and 3 wk postmortem. Significant relations (P < 0.05) were found between OCR measurements and Warner-Bratzler shear force measurement. Muscles with high mitochondrial OCR after 3 to 4 h and low nonmitochondrial oxygen consumption gave more tender meat. Tender (22.92 ± 2.2 N/cm2) and tough (72.98 ± 7.2 N/cm2) meat samples (4 samples each), separated based on their OCR measurements, were selected for proteomic studies using mitochondria isolated approximately 2.5 h postmortem. Twenty-six differently expressed proteins (P < 0.05) were identified in tender meat and 19 in tough meat. In tender meat, the more prevalent antioxidant and chaperon enzymes may reduce reactive oxygen species and prolong oxygen removal by the electron transport system (ETS). Glycolytic, Krebs cycle, and ETS enzymes were also more abundant in tender meat

  17. Ion transport and oxygen consumption in kidney cortex slices from young and old rats.

    PubMed

    Proverbio, F; Proverbio, T; Marín, R

    1985-01-01

    The effects of aging on active Na+ extrusion and oxygen consumption associated with it were studied in rat kidney cortex cells. It was found that (a) the active extrusion of Na+ undergoing Na/K exchange and the active extrusion of Na+ with Cl- and water were diminished in old rats (24 months) as compared with young rats (3 months); (b) the oxygen consumption associated with each of the two active mechanisms of Na+ extrusion was also diminished in the old rats; (c) the calculated turnover rate of the Na/K pump was significantly lower for the old rats.

  18. Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity.

    PubMed

    Bakkehaug, Jens Petter; Kildal, Anders Benjamin; Engstad, Erik Torgersen; Boardman, Neoma; Næsheim, Torvind; Rønning, Leif; Aasum, Ellen; Larsen, Terje Steinar; Myrmel, Truls; How, Ole-Jakob

    2015-07-01

    Omecamtiv mecarbil (OM) is a novel inotropic agent that prolongs systolic ejection time and increases ejection fraction through myosin ATPase activation. We hypothesized that a potentially favorable energetic effect of unloading the left ventricle, and thus reduction of wall stress, could be counteracted by the prolonged contraction time and ATP-consumption. Postischemic left ventricular dysfunction was created by repetitive left coronary occlusions in 7 pigs (7 healthy pigs also included). In both groups, systolic ejection time and ejection fraction increased after OM (0.75 mg/kg loading for 10 minutes, followed by 0.5 mg/kg/min continuous infusion). Cardiac efficiency was assessed by relating myocardial oxygen consumption to the cardiac work indices, stroke work, and pressure-volume area. To circumvent potential neurohumoral reflexes, cardiac efficiency was additionally assessed in ex vivo mouse hearts and isolated myocardial mitochondria. OM impaired cardiac efficiency; there was a 31% and 23% increase in unloaded myocardial oxygen consumption in healthy and postischemic pigs, respectively. Also, the oxygen cost of the contractile function was increased by 63% and 46% in healthy and postischemic pigs, respectively. The increased unloaded myocardial oxygen consumption was confirmed in OM-treated mouse hearts and explained by an increased basal metabolic rate. Adding the myosin ATPase inhibitor, 2,3-butanedione monoxide abolished all surplus myocardial oxygen consumption in the OM-treated hearts. Omecamtiv mecarbil, in a clinically relevant model, led to a significant myocardial oxygen wastage related to both the contractile and noncontractile function. This was mediated by that OM induces a continuous activation in resting myosin ATPase. © 2015 American Heart Association, Inc.

  19. Step Test: a method for evaluating maximum oxygen consumption to determine the ability kind of work among students of medical emergencies

    PubMed Central

    Heydari, Payam; Varmazyar, Sakineh; Nikpey, Ahmad; Variani, Ali Safari; Jafarvand, Mojtaba

    2017-01-01

    Introduction Maximum oxygen consumption shows the maximum oxygen rate of muscle oxygenation that is acceptable in many cases, to measure the fitness between person and the desired job. Given that medical emergencies are important, and difficult jobs in emergency situations require people with high physical ability and readiness for the job, the aim of this study was to evaluate the maximum oxygen consumption, to determine the ability of work type among students of medical emergencies in Qazvin in 2016. Methods This study was a descriptive – analytical, and in cross-sectional type conducted among 36 volunteer students of medical emergencies in Qazvin in 2016. After necessary coordination for the implementation of the study, participants completed health questionnaires and demographic characteristics and then the participants were evaluated with step tests of American College of Sport Medicine (ACSM). Data analysis was done by SPSS version 18 and U-Mann-Whitney tests, Kruskal-Wallis and Pearson correlation coefficient. Results Average of maximum oxygen consumption of the participants was estimated 3.15±0.50 liters per minute. 91.7% of medical emergencies students were selected as appropriate in terms of maximum oxygen consumption and thus had the ability to do heavy and too heavy work. Average of maximum oxygen consumption evaluated by the U-Mann-Whitney test and Kruskal-Wallis, had significant relationship with age (p<0.05) and weight groups (p<0.001). There was a significant positive correlation between maximum oxygen consumption with weight and body mass index (p<0.001). Conclusion The results of this study showed that demographic variables of weight and body mass index are the factors influencing the determination of maximum oxygen consumption, as most of the students had the ability to do heavy, and too heavy work. Therefore, people with ability to do average work are not suitable for medical emergency tasks. PMID:28461880

  20. Step Test: a method for evaluating maximum oxygen consumption to determine the ability kind of work among students of medical emergencies.

    PubMed

    Heydari, Payam; Varmazyar, Sakineh; Nikpey, Ahmad; Variani, Ali Safari; Jafarvand, Mojtaba

    2017-03-01

    Maximum oxygen consumption shows the maximum oxygen rate of muscle oxygenation that is acceptable in many cases, to measure the fitness between person and the desired job. Given that medical emergencies are important, and difficult jobs in emergency situations require people with high physical ability and readiness for the job, the aim of this study was to evaluate the maximum oxygen consumption, to determine the ability of work type among students of medical emergencies in Qazvin in 2016. This study was a descriptive - analytical, and in cross-sectional type conducted among 36 volunteer students of medical emergencies in Qazvin in 2016. After necessary coordination for the implementation of the study, participants completed health questionnaires and demographic characteristics and then the participants were evaluated with step tests of American College of Sport Medicine (ACSM). Data analysis was done by SPSS version 18 and U-Mann-Whitney tests, Kruskal-Wallis and Pearson correlation coefficient. Average of maximum oxygen consumption of the participants was estimated 3.15±0.50 liters per minute. 91.7% of medical emergencies students were selected as appropriate in terms of maximum oxygen consumption and thus had the ability to do heavy and too heavy work. Average of maximum oxygen consumption evaluated by the U-Mann-Whitney test and Kruskal-Wallis, had significant relationship with age (p<0.05) and weight groups (p<0.001). There was a significant positive correlation between maximum oxygen consumption with weight and body mass index (p<0.001). The results of this study showed that demographic variables of weight and body mass index are the factors influencing the determination of maximum oxygen consumption, as most of the students had the ability to do heavy, and too heavy work. Therefore, people with ability to do average work are not suitable for medical emergency tasks.

  1. Oxygen consumption and labile dissolved organic carbon uptake by benthic biofilms

    NASA Astrophysics Data System (ADS)

    de Falco, Natalie; Boano, Fulvio; Arnon, Shai

    2015-04-01

    Biogeochemical activity in streams is often magnified at interfaces, such as in the case of biofilm growth near the surface of the stream sediments. The objective of this study was to evaluate the relative importance of surficial biofilms versus the biofilm in the hyporheic zone to the processes of biodegradation of a labile dissolved organic carbon (DOC) and to oxygen consumption. Experiments were conducted in a recirculating flume, equipped with a drainage system that enables the control on losing and gaining fluxes. A surficial biofilm was developed over a sandy streambed with dune-shaped bed forms, by providing labile DOC (sodium benzoate) and nitrate. Homogeneously distributed biofilm was obtained by the same feeding strategy but with mixing the sediments manually on a daily basis. After the biofilm growth period, transformation of the labile DOC under different overlying velocities and losing or gaining fluxes was studied after spiking with sodium benzoate and by monitoring the decrease in DOC concentration in the bulk water over time using an online UV/Vis spectrophotometer. In addition, oxygen profiles across the water-streambed interface were measured at different locations along the bed form using oxygen microelectrodes. Preliminary results showed that the rate of labile DOC degradation increased exponentially with increasing overlying water velocity, regardless of the type of biofilm. Gaining and losing conditions did not play a critical role in the DOC degradation regardless of the type of biofilm, because the labile DOC was quickly utilized close to the surface. Under losing conditions, complete depletion of oxygen was observed within the top 5 millimeters, regardless of the biofilm type. In contrast, oxygen profiles under gaining condition showed an incomplete consumption of oxygen followed by an increase in the concentration of oxygen deeper in the sediments due to the upward flow of oxygenated groundwater. The results suggest that the transformation

  2. Oxygen consumption during cold exposure at 2.1 G in rats adapted to hypergravic fields

    NASA Technical Reports Server (NTRS)

    Horowitz, J.; Patterson, S.; Monson, C.

    1985-01-01

    The thermoregulation ability of rats exposed to various gravitational fields is examined. Male Sprague-Dawley rats were exposed to 22 C and 1 G, and 9 C and 2.1 G in experiment one, 1 G, 2.4 G, 5.8 G and 22 + or - 1.5 C in experiment two, and 1 G, 19-22 C, and 5 C in experiment three. It is observed that the core temperature in the control rats was 36.8 + or 0.4 C at 22C and 30.8 + or - 0.6 C at 9 C, and oxygen consumption dropped from 37 + or - 0.3 C core temperature at 22 C, 36.4 + or - 0.3 C at 9 C, 0.4 oxygen consumption was 8.18 + or - 0.9 ml/min at 22 C, and 14.2 + or - 0.4 ml/min at 9 C. The data from experiment two reveal that tail temperature in the control rats peaked at 2.4 G and at 5.8 G for the acclimated rats, and in experiment three a greater decrease in core temperature is detected in the 2.1-G rats. It is noted that prior acclimation to 2.1 G enhances the thermoregulation ability when exposed to the cold.

  3. Renal transplantation induces mitochondrial uncoupling, increased kidney oxygen consumption, and decreased kidney oxygen tension.

    PubMed

    Papazova, Diana A; Friederich-Persson, Malou; Joles, Jaap A; Verhaar, Marianne C

    2015-01-01

    Hypoxia is an acknowledged pathway to renal injury and ischemia-reperfusion (I/R) and is known to reduce renal oxygen tension (Po2). We hypothesized that renal I/R increases oxidative damage and induces mitochondrial uncoupling, resulting in increased oxygen consumption and hence kidney hypoxia. Lewis rats underwent syngenic renal transplantation (TX) and contralateral nephrectomy. Controls were uninephrectomized (1K-CON) or left untreated (2K-CON). After 7 days, urinary excretion of protein and thiobarbituric acid-reactive substances were measured, and after 14 days glomerular filtration rate (GFR), renal blood flow, whole kidney Qo2, cortical Po2, kidney cortex mitochondrial uncoupling, renal oxidative damage, and tubulointerstitial injury were assessed. TX, compared with 1K-CON, resulted in mitochondrial uncoupling mediated via uncoupling protein-2 (16 ± 3.3 vs. 0.9 ± 0.4 pmol O2 · s(-1)· mg protein(-1), P < 0.05) and increased whole kidney Qo2 (55 ± 16 vs. 33 ± 10 μmol O2/min, P < 0.05). Corticomedullary Po2 was lower in TX compared with 1K-CON (30 ± 13 vs. 47 ± 4 μM, P < 0.05) whereas no significant difference was observed between 2K-CON and 1K-CON rats. Proteinuria, oxidative damage, and the tubulointerstitial injury score were not significantly different in 1K-CON and TX. Treatment of donors for 5 days with mito-TEMPO reduced mitochondrial uncoupling but did not affect renal hemodynamics, Qo2, Po2, or injury. Collectively, our results demonstrate increased mitochondrial uncoupling as an early event after experimental renal transplantation associated with increased oxygen consumption and kidney hypoxia in the absence of increases in markers of damage. Copyright © 2015 the American Physiological Society.

  4. Influence of silver nanoparticles on benthic oxygen consumption of microbial communities in freshwater sediments determined by microelectrodes.

    PubMed

    Miao, Lingzhan; Wang, Chao; Hou, Jun; Wang, Peifang; Ao, Yanhui; Li, Yi; Yao, Yu; Lv, Bowen; Yang, Yangyang; You, Guoxiang; Xu, Yi

    2017-05-01

    The increased use of silver nanoparticles (AgNPs) will inevitably result in the release of these particles into aquatic environments, with sediments as a substantial sink. However, we do not know whether AgNPs present potential impacts in sediment functioning. In this study, a microcosm approach was constructed, and the potential impacts of AgNPs and PVP-coated AgNPs on oxygen consumption in freshwater sediments (collected from Taihu Lake) were determined using oxygen microelectrodes. To our knowledge, this is the first time that microelectrodes have been used to estimate the impacts of AgNPs in sediments. The steady-state oxygen microprofiles showed that environmental relevant concentration (1 mg/L nano-Ag) did not lead to an apparent change in the oxygen consumption rates of benthic microbial communities in sediment. The addition of 10 mg/L uncoated AgNPs resulted in remarkable differences in the oxygen concentration profiles within 4-5 h and significantly inhibited the oxygen consumption of benthic microbial communities in the upper sediment layer (∼1 mm) after 100 h. Simultaneously, an increase of oxygen consumption in sediment lower zones was observed. These results may suggest that aerobic microorganisms in the upper layer of the sediment reduced metabolic activity to avoid the toxic stress from AgNPs. Concomitantly, facultative aerobes below the metabolically active upper layer switched from fermentation or anaerobic respiration to aerobic respiration as oxygen bioavailability increased in the lower zones of the sediment. In addition, PVP coating reduced the nanotoxicity of AgNPs in benthic microorganisms due to the decreased dissolution of AgNPs in the filtered overlying water, a phenomenon that merits further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Effect of bottom water oxygenation on oxygen consumption and benthic biogeochemical processes at the Crimean Shelf (Black Sea)

    NASA Astrophysics Data System (ADS)

    Lichtschlag, A.; Janssen, F.; Wenzhöfer, F.; Holtappels, M.; Struck, U.; Jessen, G.; Boetius, A.

    2012-04-01

    Hypoxia occurs where oxygen concentrations fall below a physiological threshold of many animals, usually defined as <63 µmol L-1. Oxygen depletion can be caused by anthropogenic influences, such as global warming and eutrophication, but as well occurs naturally due to restricted water exchange in combination with high nutrient loads (e.g. upwelling). Bottom-water oxygen availability not only influences the composition of faunal communities, but is also one of the main factors controlling sediment-water exchange fluxes and organic carbon degradation in the sediment, usually shifting processes towards anaerobic mineralization pathways mediated by microorganisms. The Black Sea is one of the world's largest meromictic marine basins with an anoxic water column below 180m. The outer shelf edge, where anoxic waters meet the seafloor, is an ideal natural laboratory to study the response of benthic ecosystems to hypoxia, including benthic biogeochemical processes. During the MSM 15/1 expedition with the German research vessel MARIA S. MERIAN, the NW area of the Black Sea (Crimean Shelf) was studied. The study was set up to investigate the influence of bottom water oxygenation on, (1) the respective share of fauna-mediated oxygen uptake, microbial respiration, or re-oxidation of reduced compounds formed in the deeper sediments for the total oxygen flux and (2) on the efficiency of benthic biogeochemical cycles. During our study, oxygen consumption and pathways of organic carbon degradation were estimated from benthic chamber incubations, oxygen microprofiles measured in situ, and pore water and solid phase profiles measured on retrieved cores under oxic, hypoxic, and anoxic water column conditions. Benthic oxygen fluxes measured in Crimean Shelf sediments in this study were comparable to fluxes from previous in situ and laboratory measurements at similar oxygen concentrations (total fluxes -8 to -12 mmol m-2 d-1; diffusive fluxes: -2 to -5 mmol m-2 d-1) with oxygen

  6. Conventional testing methods produce submaximal values of maximum oxygen consumption.

    PubMed

    Beltrami, Fernando G; Froyd, Christian; Mauger, Alexis R; Metcalfe, Alan J; Marino, Frank; Noakes, Timothy D

    2012-01-01

    This study used a novel protocol to test the hypothesis that a plateau in oxygen consumption (VO(2 max)) during incremental exercise testing to exhaustion represents the maximal capacity of the cardiovascular system to transport oxygen. Twenty-six subjects were randomly divided into two groups matched by their initial VO(2 max). On separate days, the reverse group performed (i) an incremental uphill running test on a treadmill (INC(1)) plus verification test (VER) at a constant workload 1 km h(-1) higher than the last completed stage in INC(1); (ii) a decremental test (DEC) in which speed started as same as the VER but was reduced progressively and (iii) a final incremental test (INC(F)). The control group performed only INC on the same days that the reverse group was tested. VO(2 max) remained within 0.6 ml kg(-1) min(-1) across the three trials for the control group (p=0.93) but was 4.4% higher during DEC compared with INC(1) (63.9 ± 3.8 vs 61.2 ± 4.8 ml kg(-1) min(-1), respectively, p=0.004) in the reverse group, even though speed at VO(2 max) was lower (14.3 ± 1.1 vs 16.2 ± 0.7 km h(-1) for DEC and INC(1), respectively, p=0.0001). VO(2 max) remained significantly higher during INC(F) (63.6 ± 3.68 ml kg(-1) min(-1), p=0.01), despite an unchanged exercise time between INC(1) and INC(F). These findings go against the concept that a plateau in oxygen consumption measured during the classically described INC and VER represents a systemic limitation to oxygen use. The reasons for a higher VO(2) during INC(F) following the DEC test are unclear.

  7. Comparison of closed circuit and Fick-derived oxygen consumption in patients undergoing simultaneous aortocaval occlusion.

    PubMed

    Hofland, J; Tenbrinck, R; van Eijck, C H J; Eggermont, A M M; Gommers, D; Erdmann, W

    2003-04-01

    Agreement between continuously measured oxygen consumption during quantitative closed system anaesthesia and intermittently Fick-derived calculated oxygen consumption was assessed in 11 patients undergoing simultaneous occlusion of the aorta and inferior vena cava for hypoxic treatment of pancreatic cancer. All patients were mechanically ventilated using a quantitative closed system anaesthesia machine (PhysioFlex) and had pulmonary and radial artery catheters inserted. During the varying haemodynamic conditions that accompany this procedure, 73 paired measurements were obtained. A significant correlation between Fick-derived and closed system-derived oxygen consumption was found (r = 0.78, p = 0.006). Linear regression showed that Fick-derived measure = [(1.19 x closed system derived measure) - 72], with the overall closed circuit-derived values being higher. However, the level of agreement between the two techniques was poor. Bland-Altman analysis found that the bias was 36 ml.min(-1), precision 39 ml.min(-1), difference between 95% limits of agreement 153 ml.min(-1). Therefore, we conclude that the two measurement techniques are not interchangeable in a clinical setting.

  8. Oxygenation, local muscle oxygen consumption and joint specific power in cycling: the effect of cadence at a constant external work rate.

    PubMed

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille C P

    2016-06-01

    The present study investigates the effect of cadence on joint specific power and oxygenation and local muscle oxygen consumption in the vastus lateralis and vastus medialis in addition to the relationship between joint specific power and local muscle oxygen consumption (mVO2). Seventeen recreationally active cyclists performed 6 stages of constant load cycling using cadences of 60, 70, 80, 90, 100 and 110 rpm. Joint specific power was calculated using inverse dynamics and mVO2 and oxygenation were measured using near-infrared spectroscopy. Increasing cadence led to increased knee joint power and decreased hip joint power while the ankle joint was unaffected. Increasing cadence also led to an increased deoxygenation in both the vastus lateralis and vastus medialis. Vastus lateralis mVO2 increased when cadence was increased. No effect of cadence was found for vastus medialis mVO2. This study demonstrates a different effect of cadence on the mVO2 of the vastus lateralis and vastus medialis. The combined mVO2 of the vastus lateralis and medialis showed a linear increase with increasing knee joint specific power, demonstrating that the muscles combined related to power generated over the joint.

  9. Locomotor-respiratory coupling patterns and oxygen consumption during walking above and below preferred stride frequency.

    PubMed

    O'Halloran, Joseph; Hamill, Joseph; McDermott, William J; Remelius, Jebb G; Van Emmerik, Richard E A

    2012-03-01

    Locomotor respiratory coupling patterns in humans have been assessed on the basis of the interaction between different physiological and motor subsystems; these interactions have implications for movement economy. A complex and dynamical systems framework may provide more insight than entrainment into the variability and adaptability of these rhythms and their coupling. The purpose of this study was to investigate the relationship between steady state locomotor-respiratory coordination dynamics and oxygen consumption [Formula: see text] of the movement by varying walking stride frequency from preferred. Twelve male participants walked on a treadmill at a self-selected speed. Stride frequency was varied from -20 to +20% of preferred stride frequency (PSF) while respiratory airflow, gas exchange variables, and stride kinematics were recorded. Discrete relative phase and return map techniques were used to evaluate the strength, stability, and variability of both frequency and phase couplings. Analysis of [Formula: see text] during steady-state walking showed a U-shaped response (P = 0.002) with a minimum at PSF and PSF - 10%. Locomotor-respiratory frequency coupling strength was not greater (P = 0.375) at PSF than any other stride frequency condition. The dominant coupling across all conditions was 2:1 with greater occurrences at the lower stride frequencies. Variability in coupling was the greatest during PSF, indicating an exploration of coupling strategies to search for the coupling frequency strategy with the least oxygen consumption. Contrary to the belief that increased strength of frequency coupling would decrease oxygen consumption; these results conclude that it is the increased variability of frequency coupling that results in lower oxygen consumption.

  10. Bilateral changes in forearm oxygen consumption at rest and after exercise in patients with unilateral repetitive strain injury: a case-control study.

    PubMed

    Brunnekreef, Jaap J J; Thijssen, Dick H J; Oosterhof, Jan; Hopman, Maria T E

    2012-04-01

    Case-control study. To investigate whether oxygen consumption and blood flow at rest and after exercise are lower in the affected arm of patients with repetitive strain injury (RSI) compared to controls, and lower in the healthy nonaffected forearm within patients with unilateral RSI. RSI is considered an upper extremity overuse injury. Despite the local presentation of complaints, RSI may be represented by systemic adaptations. Insight into the pathophysiology of RSI is important to better understand the development of RSI complaints and to develop effective treatment and prevention strategies. Twenty patients with unilateral RSI and 20 gender-matched control subjects participated in this study. Forearm muscle blood flow and oxygen consumption were measured using near-infrared spectroscopy at baseline and immediately after isometric handgrip exercises at 10%, 20%, and 40% of the individual maximal voluntary contraction. Unilateral RSI resulted in a lower oxygen consumption and blood flow in the affected forearm at baseline and lower oxygen consumption after incremental handgrip exercises compared to controls (P<.05). In addition, exercise-induced blood flow and oxygen consumption in the nonaffected forearm in patients with RSI were similarly reduced. Blood flow and oxygen consumption after exercise are similarly attenuated in the affected and nonaffected arms of patients with unilateral RSI. Our findings suggest that, despite the unilateral character in clinical symptoms, RSI demonstrates systemic adaptations in forearm blood flow and oxygen consumption at rest and after exercise.

  11. Measurement of systemic oxygen consumption in patients during extracorporeal membrane oxygenation--description of a new method and the first clinical observations.

    PubMed

    Cheypesh, A; Yu, X; Li, J

    2014-01-01

    Extracorporeal membrane oxygenation (ECMO) provides temporary life-saving support for patients with severe cardiac failure, but is associated with significant morbidity and mortality. While ECMO enables oxygen delivery (DO2), little is known about oxygen consumption (VO2), largely due to technical difficulties. We aimed to introduce the adaptation of respiratory mass spectrometry to measure VO2 in patients during ECMO and to use this unique model to determine the pathological dependency of VO2 on DO2 in humans. Respiratory mass spectrometry remains the 'state-of-the-art' method, allowing the highly sensitive and rapid measurement of VO2 in critically ill patients. The principle and design of the respiratory mass spectrometer are described, together with the setting up of this machine with the ECMO oxygenator and the native lungs of the patients. In two patients with severe dilated cardiomyopathy and little cardiac contraction, the decrease in pump flow and, hence, DO2 by 20% was associated with a decrease in VO2 by 5% and 8%, respectively, whereas the increase in pump flow was not associated with any significant change in VO2. The direct measurement of VO2 by respiratory mass spectrometry in ECMO patients provides a unique technique for clinical research on the metabolism and VO2-DO2 relationship in this special group of critically ill patients. Our pilot study is the first to demonstrate a pathological dependency of VO2 on DO2 in humans. Further studies are warranted with this technique to examine the changes and the factors affecting systemic oxygen transport in patients during ECMO.

  12. Effect of 29 days of simulated microgravity on maximal oxygen consumption and fat-free mass of rats

    NASA Technical Reports Server (NTRS)

    Woodman, Christopher R.; Stump, Craig S.; Stump, Jane A.; Rahman, Zia; Tipton, Charles M.

    1991-01-01

    Effects of a 29-days exposure to simulated microgravity on the values of maximal oxygen consumption and fat-free mass (FFM) and on the mechanical efficiency of running were investigated in rats randomly assigned to one of three regimens: head-down suspension (HDS) at 45 deg, horizontal suspension (HS), or cage control (CC). Before suspension and on days 7, 14, 21, and 28, five exercise performance tests were carried out, with measurements related to maximal oxygen consumption, treadmill run time, and mechanical efficiency. It was found that maximal oxygen consumption of both HDS and HS groups decreased significantly at day 7, after which the HDS rats remained decreased while the HS rats returned to presuspension values. Apparent mechanical efficiency in the HDS and HS groups decreased by 22-35 percent during the experimental period, and FFM decreased significantly.

  13. Neither Hematocrit Normalization nor Exercise Training Restores Oxygen Consumption to Normal Levels in Hemodialysis Patients

    PubMed Central

    Stray-Gundersen, James; Parsons, Dora Beth; Thompson, Jeffrey R.

    2016-01-01

    Patients treated with hemodialysis develop severely reduced functional capacity, which can be partially ameliorated by correcting anemia and through exercise training. In this study, we determined perturbations of an erythroid-stimulating agent and exercise training to examine if and where limitation to oxygen transport exists in patients on hemodialysis. Twenty-seven patients on hemodialysis completed a crossover study consisting of two exercise training phases at two hematocrit (Hct) values: 30% (anemic) and 42% (physiologic; normalized by treatment with erythroid-stimulating agent). To determine primary outcome measures of peak power and oxygen consumption (VO2) and secondary measures related to components of oxygen transport and utilization, all patients underwent numerous tests at five time points: baseline, untrained at Hct of 30%, after training at Hct of 30%, untrained at Hct of 42%, and after training at Hct of 42%. Hct normalization, exercise training, or the combination thereof significantly improved peak power and VO2 relative to values in the untrained anemic phase. Hct normalization increased peak arterial oxygen and arteriovenous oxygen difference, whereas exercise training improved cardiac output, citrate synthase activity, and peak tissue diffusing capacity. However, although the increase in arterial oxygen observed in the combination phase reached a value similar to that in healthy sedentary controls, the increase in peak arteriovenous oxygen difference did not. Muscle biopsy specimens showed markedly thickened endothelium and electron–dense interstitial deposits. In conclusion, exercise and Hct normalization had positive effects but failed to normalize exercise capacity in patients on hemodialysis. This effect may be caused by abnormalities identified within skeletal muscle. PMID:27153927

  14. Event-Associated Oxygen Consumption Rate Increases ca. Five-Fold When Interictal Activity Transforms into Seizure-Like Events In Vitro.

    PubMed

    Schoknecht, Karl; Berndt, Nikolaus; Rösner, Jörg; Heinemann, Uwe; Dreier, Jens P; Kovács, Richard; Friedman, Alon; Liotta, Agustin

    2017-09-07

    Neuronal injury due to seizures may result from a mismatch of energy demand and adenosine triphosphate (ATP) synthesis. However, ATP demand and oxygen consumption rates have not been accurately determined, yet, for different patterns of epileptic activity, such as interictal and ictal events. We studied interictal-like and seizure-like epileptiform activity induced by the GABA A antagonist bicuculline alone, and with co-application of the M-current blocker XE-991, in rat hippocampal slices. Metabolic changes were investigated based on recording partial oxygen pressure, extracellular potassium concentration, and intracellular flavine adenine dinucleotide (FAD) redox potential. Recorded data were used to calculate oxygen consumption and relative ATP consumption rates, cellular ATP depletion, and changes in FAD/FADH₂ ratio by applying a reactive-diffusion and a two compartment metabolic model. Oxygen-consumption rates were ca. five times higher during seizure activity than interictal activity. Additionally, ATP consumption was higher during seizure activity (~94% above control) than interictal activity (~15% above control). Modeling of FAD transients based on partial pressure of oxygen recordings confirmed increased energy demand during both seizure and interictal activity and predicted actual FAD autofluorescence recordings, thereby validating the model. Quantifying metabolic alterations during epileptiform activity has translational relevance as it may help to understand the contribution of energy supply and demand mismatches to seizure-induced injury.

  15. Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (Final Report, 2009)

    EPA Science Inventory

    EPA announced the availability of the final report, Metabolically Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates. This report provides a revised approach for calculating an individual's ventilation rate directly from their oxygen c...

  16. Metabolic oxygen consumption measurement with a single-cell biosensor after particle microbeam irradiation

    PubMed Central

    Zhang, Bo; Messerli, Mark; Randers-Pehrson, Gerhard; Hei, Tom K.; Brenner, David J.

    2015-01-01

    A noninvasive, self-referencing biosensor/probe system has been integrated into the Columbia University Radiological Research Accelerator Facility Microbeam II end station. A single-cell oxygen consumption measurement has been conducted with this type of oxygen probe in 37°C Krebs–Ringer Bicarbonate buffer immediately before and after a single-cell microbeam irradiation. It is the first such measurement made for a microbeam irradiation, and a six fold increment of oxygen flux induced during a 15-s period of time has been observed following radiation exposure. The experimental procedure and the results are discussed. PMID:25335641

  17. Nitrate-containing beetroot juice reduces oxygen consumption during submaximal exercise in low but not high aerobically fit male runners

    PubMed Central

    Carriker, Colin R.; Vaughan, Roger A.; VanDusseldorp, Trisha A.; Johnson, Kelly E.; Beltz, Nicholas M.; McCormick, James J.; Cole, Nathan H.; Gibson, Ann L.

    2016-01-01

    [Purpose] To examine the effect of a 4-day NO3- loading protocol on the submaximal oxygen cost of both low fit and high fit participants at five different exercise intensities. [Methods] Eleven (6 high fit, VO2max 60.1 ± 4.6ml/kg/min; 5 low fit, VO2max 42.4 ± 3.2ml/ kg/min) participants were initially assigned to a placebo (PL; negligible NO3-) or inorganic nitrate-rich (NR; 6.2 mmol nitrate/day) group using a double-blind, placebo-controlled, crossover design. Participants completed three trials (T1, T2 and T3). T1 included a maximal aerobic capacity (VO2max) treadmill test. A 6-day washout, minimizing nitrate consumption, preceded T2. Each of the four days prior to T2 and T3, participants consumed either PL or NR with the final dose 2.5 hours prior to exercise. A 14-day washout followed T2. T2 and T3 consisted of 5-minute submaximal treadmill bouts (45, 60, 70, 80 and 85% VO2max) determined during T1. [Results] Low fit nitrate-supplemented participants consumed less oxygen (p<0.05) at lower workloads (45% and 60% VO2max) compared to placebo trials; changes were not observed in high fit participants. The two lowest intensity workloads of 45 and 60% VO2max revealed the greatest correlation (r=0.54, p=0.09 and r=0.79, p<0.05; respectively) between VO2max and change in oxygen consumption. No differences were found between conditions for heart rate, respiratory exchange ratio or rating of perceived exertion for either fitness group. [Conclusion] Nitrate consumption promotes reduced oxygen consumption at lower exercise intensities in low fit, but not high fit males. Lesser fit individuals may receive greater benefit than higher fit participants exercising at intensities <60% VO2max. PMID:28150476

  18. Mitochondrial oxygen consumption is a unique indicator of stallion spermatozoal health and varies with cryopreservation media.

    PubMed

    Darr, Christa R; Cortopassi, Gino A; Datta, Sandipan; Varner, Dickson D; Meyers, Stuart A

    2016-09-15

    Mitochondrial oxygen consumption is a sensitive indicator of spermatozoal health in the context of cryopreservation. We investigated oxygen consumption of equine sperm mitochondria during incubation in four commercially available sperm cryopreservation extenders: modified INRA 96, BotuCrio, EZ Freezin-"LE" and "MFR5", in addition to several other parameters including motility, reactive oxygen species (ROS) production and viability. All experimental endpoints, with the exception of average path velocity, were affected significantly by freezing extender type after freezing and thawing. Sperm in INRA 96 had the lowest average progressive motility after thawing (24 ± 4.8%, P < 0.05). Sperm in EZ Freezin-"LE" had the highest post thaw viability (79 ± 3.1%, P < 0.05) and lowest post thaw ROS production (13 ± 2.4%), but sperm in BotuCrio had the highest maximal oxygen consumption levels, while also demonstrating similar ROS production and viability. This difference would not have been detected using conventional sperm analytical methods. In addition, sperm in BotuCrio had the highest average total motility (49 ± 7.4%), progressive motility (41 ± 6.4%), and velocity (VAP, 90 ± 3.6 μm/s) indicating that this medium preserved mitochondrial function optimally after cryopreservation. Mitochondrial oxygen consumption was positively correlated with traditional measures of sperm function including motility and viability (r = 0.62 and r = 0.49, respectively, P < 0.05), thus making it a sensitive method for determining cryopreservation success and mitochondrial function in stallion sperm. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Intermediates of Krebs cycle correct the depression of the whole body oxygen consumption and lethal cooling in barbiturate poisoning in rat.

    PubMed

    Ivnitsky, Jury Ju; Schäfer, Timur V; Malakhovsky, Vladimir N; Rejniuk, Vladimir L

    2004-10-01

    Rats poisoned with one LD50 of thiopental or amytal are shown to increase oxygen consumption when intraperitoneally given sucinate, malate, citrate, alpha-ketoglutarate, dimethylsuccinate or glutamate (the Krebs cycle intermediates or their precursors) but not when given glucose, pyruvate, acetate, benzoate or nicotinate (energy substrates of other metabolic stages etc). Survival was increased with succinate or malate from control groups, which ranged from 30-83% to 87-100%. These effects were unrelated to respiratory depression or hypoxia as judged by little or no effect of succinate on ventilation indices and by the lack of effect of oxygen administration. Body cooling of comatose rats at ambient temperature approximately 19 degrees C became slower with succinate, the rate of cooling correlated well with oxygen consumption decrease. Succinate had no potency to modify oxygen consumption and body temperature in intact rats. A condition for antidote effect of the Krebs intermediate was sufficiently high dosage (5 mmol/kg), further dose increase made no odds. Repeated dosing of succinate had more marked protective effect, than a single one, to oxygen consumption and tended to promote the attenuation of lethal effect of barbiturates. These data suggest that suppression of whole body oxygen consumption with barbiturate overdose could be an important contributor to both body cooling and mortality. Intermediates of Krebs cycle, not only succinate, may have a pronounced therapeutic effect under the proper treatment regimen. Availability of Krebs cycle intermediates may be a limiting factor for the whole body oxygen consumption in barbiturate coma, its role in brain needs further elucidation.

  20. Effect of Feeding-Fasting Cycles on Oxygen Consumption and Bioenergetics of Yellow Perch

    USGS Publications Warehouse

    Chipps, Steven R.; Travis W. Schaeffer,; Daniel E. Spengler,; Casey W. Schoenebeck,; Michael L. Brown,

    2012-01-01

    We measured growth and oxygen consumption of age-1 yellow perch Perca flavescenssubjected to ad libitum (control) or variable feeding cycles of 2 (i.e., 2 d of feed, 2 d of deprivation), 6, or 12 d for a 72-d period. Individual, female yellow perch (initial weight = 51.9 ± 0.9 g [mean ± SE]) were stocked in 110-L aquaria to provide six replicates per treatment and fed measured rations of live fathead minnow Pimephales promelas. Consumption, absolute growth rate, growth efficiency, and oxygen consumption were similar among feeding regimens. However, growth trajectories for fish on the 2-d cycle were significantly lower than other feed–fast cycles. Hyperphagia occurred in all treatments. Bioenergetics model simulations indicated that consumption was significantly underestimated (t = 5.4, df = 4, P = 0.006), while growth was overestimated (t = −5.5, df = 4, P = 0.005) for fish on the 12-d cycle. However, model errors detected between observed and predicted values were low, ranging from −10.1% to +7.8%. We found that juvenile yellow perch exhibited compensatory growth (CG), but none of the feed–fast treatments resulted in growth overcompensation. Likewise, we found no evidence that respiration rates varied with CG, implying that yellow perch bioenergetics models could be used to predict the effects of feeding history and CG response on food consumption and fish growth.

  1. [Study on correlation of oxygen consumption rate and suffocation point of Whitmania pigra and Bellamya purificata and optimum way of feeding Whitmania pigra].

    PubMed

    Li, Meng-Meng; Shi, Hong-Zhuan; Guo, Qiao-Sheng; Wang, Jia; Dai, Dao-Xin

    2016-08-01

    The oxygen consumption, oxygen consumption rate and suffocation point of different quality Whitmania pigra and Bellamya purificata were determined by hydrostatic breathing room method. The effects of feeding modes on growth of W.pigra were determined by biomass. The results showed that the oxygen consumption correlated positively with the weight of W.pigra and B. purificata(P<0.05), suffocation point increased with the increases of the weight(P<0.05).Oxygen consumption correlated negatively with the weight of W. pigra, the oxygen consumption rate of B.purificata first increased and then decreased with the increasing of the weight. Feeding modes had no significant effects on the finial weight, SGR, WGR, death rates of W. pigra. Feeding modes had significant effects on eating ratio. It suggested that the optimum feeding frequency of W. pigra was once every three days. Scientific and reasonable feeding amount of B. purificata should be calculated based on oxygen consumption and suffocation point of W.pigra and B.purificata at every period. Meanwhile, stocking density, water area and water exchanging frequency should be taken into consideration. Copyright© by the Chinese Pharmaceutical Association.

  2. Quantification of Oxygen Consumption in Retina Ex Vivo Demonstrates Limited Reserve Capacity of Photoreceptor Mitochondria

    PubMed Central

    Kooragayala, Keshav; Gotoh, Norimoto; Cogliati, Tiziana; Nellissery, Jacob; Kaden, Talia R.; French, Stephanie; Balaban, Robert; Li, Wei; Covian, Raul; Swaroop, Anand

    2015-01-01

    Purpose Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration. Methods Circular punches of freshly isolated mouse retina, adjacent to the optic nerve head, were used in the microplate-based Seahorse Extracellular Flux Analyzer to measure oxygen consumption. Tissue integrity was evaluated by propidium iodide staining and live imaging. Different substrates were tested for mitochondrial respiration. Basal and maximal respiration were expressed as oxygen consumption rate (OCR) and respectively measured in Ames' medium before and after the addition of mitochondrial uncoupler, BAM15. Results We show that glucose is an essential substrate for retinal mitochondria. At baseline, mitochondria respiration in the intact wild-type retina was close to maximal, with limited reserve capacity. Similar OCR and limited mitochondrial reserve capacity was also observed in cone-only Nrl−/− retina. However, the retina of Pde6brd1/rd1, Cep290rd16/rd16 and Rpgrip1−/− mice, all with dysfunctional or no photoreceptors, had reduced OCR and higher mitochondrial reserve capacity. Conclusions We have optimized a method to directly measure oxygen consumption in acutely isolated, ex vivo mouse retina and demonstrate that photoreceptors have low mitochondrial reserve capacity. Our data provide a plausible explanation for the high vulnerability of photoreceptors to altered energy homeostasis caused by mutations or metabolic challenges. PMID:26747773

  3. Relationship between level of forage intake, blood flow and oxygen consumption by splanchnic tissues of sheep fed a tropical grass forage.

    PubMed

    Hentz, F; Kozloski, G V; Zeni, D; Brun, M V; Stefanello, S

    2017-02-01

    Four Polwarth castrated male sheep (42 ± 4.4 kg live weight (LW) surgically implanted with chronic indwelling catheters into the mesenteric, portal and hepatic veins, housed in metabolism cages and offered Cynodon sp. hay at rates (g of dry matter (DM)/kg LW) of 7, 14, 21 or ad libitum, were used in a 4 × 4 Latin square experiment to evaluate the effect of the level of forage intake on blood flow and oxygen consumption by the portal-drained viscera (PDV), liver and total splanchnic tissues (ST). The portal blood flow and the oxygen consumption by PDV linearly increased at increased organic matter (OM) intake. No effect of level of OM intake was obtained for the hepatic artery blood flow and oxygen consumption by liver. As a consequence, the level of OM intake only tended to directly affect hepatic blood flow and oxygen consumption by total ST. Oxygen consumption was linearly and positively related to blood flow across PDV, liver and total ST. The heat production by PDV and total ST, as proportion of metabolizable energy (ME) intake, decreased curvilinearly at increased ME intake. In conclusion, the oxygen consumption by PDV, but not by liver, was directly related to the level of forage intake by sheep. Moreover, when ingested at levels below maintenance, most of ME was spent as heat produced by ST. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  4. Oxygen Consumption Rates of Bacteria under Nutrient-Limited Conditions

    PubMed Central

    Riedel, Timothy E.; Nealson, Kenneth H.; Finkel, Steven E.

    2013-01-01

    Many environments on Earth experience nutrient limitation and as a result have nongrowing or very slowly growing bacterial populations. To better understand bacterial respiration under environmentally relevant conditions, the effect of nutrient limitation on respiration rates of heterotrophic bacteria was measured. The oxygen consumption and population density of batch cultures of Escherichia coli K-12, Shewanella oneidensis MR-1, and Marinobacter aquaeolei VT8 were tracked for up to 200 days. The oxygen consumption per CFU (QO2) declined by more than 2 orders of magnitude for all three strains as they transitioned from nutrient-abundant log-phase growth to the nutrient-limited early stationary phase. The large reduction in QO2 from growth to stationary phase suggests that nutrient availability is an important factor in considering environmental respiration rates. Following the death phase, during the long-term stationary phase (LTSP), QO2 values of the surviving population increased with time and more cells were respiring than formed colonies. Within the respiring population, a subpopulation of highly respiring cells increased in abundance with time. Apparently, as cells enter LTSP, there is a viable but not culturable population whose bulk community and per cell respiration rates are dynamic. This result has a bearing on how minimal energy requirements are met, especially in nutrient-limited environments. The minimal QO2 rates support the extension of Kleiber's law to the mass of a bacterium (100-fg range). PMID:23770901

  5. CH-19 sweet, a non-pungent cultivar of red pepper, increased body temperature and oxygen consumption in humans.

    PubMed

    Ohnuki, K; Niwa, S; Maeda, S; Inoue, N; Yazawa, S; Fushiki, T

    2001-09-01

    We investigated the effect of CH-19 Sweet, a non-pungent cultivar of red pepper, on body temperature and oxygen consumption in humans. CH-19 Sweet was given to 11 healthy volunteers, and core body temperature, body surface temperature and oxygen consumption were measured. The control group ingested California-Wandar, which contained neither capsaicin nor capsiate. The core body temperature in the CH-19 Sweet group was significantly higher than that in the control group (P<0.01). The forehead temperature measured by infrared thermography in the CH-19 Sweet group was significantly higher than that in the control group. The body surface temperature was increased for about 20 min after consumption of CH-19 Sweet intake, and the neck temperature was significantly higher (P<0.001) than when the subjects consumed California-Wandar. We also measured respiratory gas by indirect calorimetry while subjects wore a face mask. A significant difference was detected in oxygen consumption between the two groups, and the value was significantly higher in the CH-19 Sweet group (P<0.03). These results suggest that CH-19 Sweet increased thermogenesis and energy consumption.

  6. The jumbo squid, Dosidicus gigas (Ommastrephidae), living in oxygen minimum zones I: Oxygen consumption rates and critical oxygen partial pressures

    NASA Astrophysics Data System (ADS)

    Trueblood, Lloyd A.; Seibel, Brad A.

    2013-10-01

    Dosidicus gigas is a large, metabolically active, epipelagic squid known to undertake diel vertical migrations across a large temperature and oxygen gradient in the Eastern Pacific. Hypoxia is known to cause metabolic suppression in D. gigas. However, the precise oxygen level at which metabolic suppression sets in is unknown. Here we describe a novel ship-board swim tunnel respirometer that was used to measure metabolic rates and critical oxygen partial pressures (Pcrit) for adult squids (2-7kg). Metabolic rate measurements were validated by comparison to the activity of the Krebs cycle enzyme, citrate synthase, in mantle muscle tissue (2-17kg). We recorded a mean routine metabolic rate of 5.91μmolg-1h-1 at 10°C and 12.62μmolg-1h-1 at 20°C. A temperature coefficient, Q10, of 2.1 was calculated. D. gigas had Pcrits of 1.6 and 3.8kPa at 10 and 20°C, respectively. Oxygen consumption rate (MO2) varied with body mass (M) according to MO2=11.57M-0.12±0.03 at 10°C. Citrate synthase activity varied with body mass according to Y=9.32M-0.19±0.02.

  7. Beetroot juice supplementation reduces whole body oxygen consumption but does not improve indices of mitochondrial efficiency in human skeletal muscle.

    PubMed

    Whitfield, J; Ludzki, A; Heigenhauser, G J F; Senden, J M G; Verdijk, L B; van Loon, L J C; Spriet, L L; Holloway, G P

    2016-01-15

    Oral consumption of nitrate (NO3(-)) in beetroot juice has been shown to decrease the oxygen cost of submaximal exercise; however, the mechanism of action remains unresolved. We supplemented recreationally active males with beetroot juice to determine if this altered mitochondrial bioenergetics. Despite reduced submaximal exercise oxygen consumption, measures of mitochondrial coupling and respiratory efficiency were not altered in muscle. In contrast, rates of mitochondrial hydrogen peroxide (H2O2) emission were increased in the absence of markers of lipid or protein oxidative damage. These results suggest that improvements in mitochondrial oxidative metabolism are not the cause of beetroot juice-mediated improvements in whole body oxygen consumption. Ingestion of sodium nitrate (NO3(-)) simultaneously reduces whole body oxygen consumption (V̇O2) during submaximal exercise while improving mitochondrial efficiency, suggesting a causal link. Consumption of beetroot juice (BRJ) elicits similar decreases in V̇O2 but potential effects on the mitochondria remain unknown. Therefore we examined the effects of 7-day supplementation with BRJ (280 ml day(-1), ∼26 mmol NO3(-)) in young active males (n = 10) who had muscle biopsies taken before and after supplementation for assessments of mitochondrial bioenergetics. Subjects performed 20 min of cycling (10 min at 50% and 70% V̇O2 peak) 48 h before 'Pre' (baseline) and 'Post' (day 5 of supplementation) biopsies. Whole body V̇O2 decreased (P < 0.05) by ∼3% at 70% V̇O2 peak following supplementation. Mitochondrial respiration in permeabilized muscle fibres showed no change in leak respiration, the content of proteins associated with uncoupling (UCP3, ANT1, ANT2), maximal substrate-supported respiration, or ADP sensitivity (apparent Km). In addition, isolated subsarcolemmal and intermyofibrillar mitochondria showed unaltered assessments of mitochondrial efficiency, including ADP consumed/oxygen consumed (P/O ratio

  8. Nitric oxide inhibits succinate dehydrogenase-driven oxygen consumption in potato tuber mitochondria in an oxygen tension-independent manner.

    PubMed

    Simonin, Vagner; Galina, Antonio

    2013-01-01

    NO (nitric oxide) is described as an inhibitor of plant and mammalian respiratory chains owing to its high affinity for COX (cytochrome c oxidase), which hinders the reduction of oxygen to water. In the present study we show that in plant mitochondria NO may interfere with other respiratory complexes as well. We analysed oxygen consumption supported by complex I and/or complex II and/or external NADH dehydrogenase in Percoll-isolated potato tuber (Solanum tuberosum) mitochondria. When mitochondrial respiration was stimulated by succinate, adding the NO donors SNAP (S-nitroso-N-acetyl-DL-penicillamine) or DETA-NONOate caused a 70% reduction in oxygen consumption rate in state 3 (stimulated with 1 mM of ADP). This inhibition was followed by a significant increase in the Km value of SDH (succinate dehydrogenase) for succinate (Km of 0.77±0.19 to 34.3±5.9 mM, in the presence of NO). When mitochondrial respiration was stimulated by external NADH dehydrogenase or complex I, NO had no effect on respiration. NO itself and DETA-NONOate had similar effects to SNAP. No significant inhibition of respiration was observed in the absence of ADP. More importantly, SNAP inhibited PTM (potato tuber mitochondria) respiration independently of oxygen tensions, indicating a different kinetic mechanism from that observed in mammalian mitochondria. We also observed, in an FAD reduction assay, that SNAP blocked the intrinsic SDH electron flow in much the same way as TTFA (thenoyltrifluoroacetone), a non-competitive SDH inhibitor. We suggest that NO inhibits SDH in its ubiquinone site or its Fe-S centres. These data indicate that SDH has an alternative site of NO action in plant mitochondria.

  9. Fractional Consumption of Liquid Hydrogen and Liquid Oxygen During the Space Shuttle Program

    NASA Technical Reports Server (NTRS)

    Partridge, Jonathan K.

    2011-01-01

    The Space Shuttle uses the propellants, liquid hydrogen and liquid oxygen, to meet part of the propulsion requirements from ground to orbit. The Kennedy Space Center procured over 25 million kilograms of liquid hydrogen and over 250 million kilograms of liquid oxygen during the 3D-year Space Shuttle Program. Because of the cryogenic nature of the propellants, approximately 55% of the total purchased liquid hydrogen and 30% of the total purchased liquid oxygen were used in the Space Shuttle Main Engines. The balance of the propellants were vaporized during operations for various purposes. This paper dissects the total consumption of liqUid hydrogen and liqUid oxygen and determines the fraction attributable to each of the various processing and launch operations that occurred during the entire Space Shuttle Program at the Kennedy Space Center.

  10. ICI D7114 a novel selective beta-adrenoceptor agonist selectively stimulates brown fat and increases whole-body oxygen consumption.

    PubMed Central

    Holloway, B. R.; Howe, R.; Rao, B. S.; Stribling, D.; Mayers, R. M.; Briscoe, M. G.; Jackson, J. M.

    1991-01-01

    1. ICI D7114 is a novel, beta-adrenoceptor agonist which stimulates whole body oxygen consumption in conscious rats, cats and dogs and brown adipose tissue (BAT) activity in conscious rats. Treatment of rats with ICI D7114 stimulated oxygen consumption (ED50, 0.04 mg kg-1, p.o.) and BAT mitochondrial guanosine diphosphate (GDP)-binding (ED50, 0.15 mg kg-1, p.o.) with no chronotropic effects on the heart at these doses. 2. Reference beta-adrenoceptor agonists, isoprenaline and clenbuterol, also stimulated oxygen consumption and BAT activity but were less selective because they also produced effects on heart rate at these doses. 3. Treatment of conscious rats with ICI D7114 did not attenuate the chronotropic effects on the heart of a subsequent isoprenaline challenge. 4. Administration of ICI D7114 or of its acid metabolite had no effect in a cat soleus muscle model of tremor or on blood potassium levels in the conscious dog, indicating lack of effects at beta 2-adrenoceptors. 5. The results indicate that ICI D7114 may have activity at atypical beta-adrenoceptors in brown adipose tissue leading to increased whole body oxygen consumption. PMID:1686210

  11. Oxygen consumption by mitochondria from an endotherm and an ectotherm.

    PubMed

    Berner, N J

    1999-09-01

    Comparisons of metabolic properties of mitochondria from an endothermic and an ectothermic vertebrate were performed. Oxygen (O2) consumption rates of liver mitochondria from laboratory mice and western fence lizard (Sceloporus occidentalis) were determined over a range of temperatures (10, 20, 30 and 37 degrees C) and in the presence of a variety of substrates. At 37 degrees C the O2 consumption rate of mouse mitochondria was 4-11 times higher than lizard mitochondria in the presence of five of eight substrates. This range of differences is similar to differences reported for O2 consumption of endothermic animals, tissues and cells over those of ectotherms. Thermal sensitivity of mitochondria was measured by calculation of Q10s for O2 consumption. Q10s were highest for mouse mitochondria overall. The range that showed the highest Q10s for the mouse mitochondria was 30-20 degrees C, whereas for the lizard mitochondria it was 20-10 degrees C. Thus, mitochondria from the ectotherm showed a lower degree of temperature sensitivity than did mitochondria from the endotherm. The preferred substrate for all mitochondria at all temperatures was succinate, but mouse mitochondria then showed some preference for alpha-ketoglutarate and citrate, whereas lizard mitochondria showed a preference for pyruvate and malate + pyruvate.

  12. Continuous Real-time Viability Assessment of Kidneys Based on Oxygen Consumption

    PubMed Central

    Weegman, B.P.; Kirchner, V.A.; Scott, W.E.; Avgoustiniatos, E.S.; Suszynski, T.M.; Ferrer-Fabrega, J.; Rizzari, M.D.; Kidder, L.S.; Kandaswamy, R.; Sutherland, D.E.R.; Papas, K.K.

    2010-01-01

    Background Current ex vivo quality assessment of donor kidneys is limited to vascular resistance measurements and histological analysis. New techniques for the assessment of organ quality before transplantation may further improve clinical outcomes while expanding the depleted deceased-donor pool. We propose the measurement of whole organ oxygen consumption rate (WOOCR) as a method to assess the quality of kidneys in real time before transplantation. Methods Five porcine kidneys were procured using a donation after cardiac death (DCD) model. The renal artery and renal vein were cannulated and the kidney connected to a custom-made hypothermic machine perfusion (HMP) system equipped with an inline oxygenator and fiber-optic oxygen sensors. Kidneys were perfused at 8°C, and the perfusion parameters and partial oxygen pressures (pO2) were measured to calculate WOOCR. Results Without an inline oxygenator, the pO2 of the perfusion solution at the arterial inlet and venous outlet diminished to near 0 within minutes. However, once adequate oxygenation was provided, a significant pO2 difference was observed and used to calculate the WOOCR. The WOOCR was consistently measured from presumably healthy kidneys, and results suggest that it can be used to differentiate between healthy and purposely damaged organs. Conclusions Custom-made HMP systems equipped with an oxygenator and inline oxygen sensors can be applied for WOOCR measurements. We suggest that WOOCR is a promising approach for the real-time quality assessment of kidneys and other organs during preservation before transplantation. PMID:20692397

  13. Effect of the Combination of Ezetimibe and Simvastatin on Gluconeogenesis and Oxygen Consumption in the Rat Liver.

    PubMed

    Bracht, Lívia; Caparroz-Assef, Silvana Martins; Bracht, Adelar; Bersani-Amado, Ciomar Aparecida

    2016-06-01

    The aim of this work was to investigate the effects of chronic treatment with the combination of ezetimibe and simvastatin on gluconeogenesis in rat liver. Rats were treated daily for 28 days with the combination of ezetimibe and simvastatin (10/40 mg/kg) by oral gavage. To measure gluconeogenesis and the associated pathways, isolated perfused rat liver was used. In addition, subcellular fractions, such as microsomes and mitochondria, were used for complementary measures of enzymatic activities. Treatment with the combination of simvastatin and ezetimibe resulted in a decrease in gluconeogenesis from pyruvate (-62%). Basal oxygen consumption of the treated animals was higher (+22%) than that of the control rats, but the resulting oxygen consumption that occurred after pyruvate infusion was 43% lower in animals treated with the combination of simvastatin and ezetimibe. Oxygen consumption in the livers from treated animals was completely inhibited by cyanide (electron transport chain inhibitor), but not by proadifen (cytochrome P450 inhibitor). Chronic treatment with ezetimibe/simvastatin decreased the activity of the key enzymes glucose-6-phosphatase and fructose-1,6-bisphosphatase by 59% and 45%, respectively, which is probably the major reason for the decreased gluconeogenesis seen in ezetimibe-/simvastatin-treated rats. It is also possible that part of the effect of this combination on gluconeogenesis and on the oxygen consumption is related to the impairment of mitochondrial energy transduction. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  14. Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.

    PubMed

    Chi, O Z; Barsoum, S; Vega-Cotto, N M; Jacinto, E; Liu, X; Mellender, S J; Weiss, H R

    2016-03-01

    Activation of the mammalian target of rapamycin (mTOR) leads to cell growth and survival. We tested the hypothesis that inhibition of mTOR would increase infarct size and decrease microregional O2 supply/consumption balance after cerebral ischemia-reperfusion. This was tested in isoflurane-anesthetized rats with middle cerebral artery blockade for 1h and reperfusion for 2h with and without rapamycin (20mg/kg once daily for two days prior to ischemia). Regional cerebral blood flow was determined using a C(14)-iodoantipyrine autoradiographic technique. Regional small-vessel arterial and venous oxygen saturations were determined microspectrophotometrically. The control ischemic-reperfused cortex had a similar blood flow and O2 consumption to the contralateral cortex. However, microregional O2 supply/consumption balance was significantly reduced in the ischemic-reperfused cortex. Rapamycin significantly increased cerebral O2 consumption and further reduced O2 supply/consumption balance in the reperfused area. This was associated with an increased cortical infarct size (13.5±0.8% control vs. 21.5±0.9% rapamycin). We also found that ischemia-reperfusion increased AKT and S6K1 phosphorylation, while rapamycin decreased this phosphorylation in both the control and ischemic-reperfused cortex. This suggests that mTOR is important for not only cell survival, but also for the control of oxygen balance after cerebral ischemia-reperfusion. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Acute effects of dobutamine on myocardial oxygen consumption and cardiac efficiency measured using carbon-11 acetate kinetics in patients with dilated cardiomyopathy.

    PubMed

    Beanlands, R S; Bach, D S; Raylman, R; Armstrong, W F; Wilson, V; Montieth, M; Moore, C K; Bates, E; Schwaiger, M

    1993-11-01

    The aim of this study was to use positron emission tomography (PET)-derived carbon (C)-11 acetate kinetics to determine the effects of dobutamine on oxidative metabolism and its effects on myocardial efficiency in a group of patients with dilated cardiomyopathy. Dobutamine is known to improve myocardial function but may do so at the expense of myocardial oxygen consumption, which could be a potential deleterious effect. Carbon-11 acetate kinetics correlate with myocardial oxygen consumption as shown in animal models. Combining these scintigraphic measurements of oxygen consumption with estimates of cardiac work results in a work-metabolic index, which reflects cardiac efficiency. Eight patients with nonischemic dilated cardiomyopathy underwent dynamic PET imaging, echocardiography and hemodynamic measurements. Seven of these patients were also studied while receiving dobutamine. Direct measurements of myocardial oxygen consumption using coronary sinus catheterization were obtained with eight of the PET studies to validate C-11 acetate in patients with cardiomyopathy. The mean (+/- SD) C-11 clearance rate significantly increased with dobutamine from 0.105 +/- 0.027 to 0.155 +/- 0.023 min-1 (p = 0.001). Directly measured myocardial oxygen consumption had a linear relation to the mean C-11 clearance rate (r = 0.8, p = 0.018). Dobutamine was noted to significantly reduce systemic vascular resistance as well as the severity of mitral regurgitation. The work-metabolic index determined using hemodynamic variables and PET data increased from 2 +/- 0.7 x 10(4) to 2.6 +/- 0.6 x 10(4) (p = 0.04). Efficiency, estimated by employing the oxygen consumption to k2 relation, also increased from 13 +/- 4.5% to 16.9 +/- 6.4% (p = 0.04). Despite an increase in myocardial oxygen consumption, dobutamine led to an increase in work-metabolic index in patients with dilated nonischemic cardiomyopathy. Dobutamine reduced systemic vascular resistance and mitral regurgitation, suggesting that

  16. Nitrate-Containing Beetroot Juice Reduces Oxygen Consumption During Submaximal Exercise in Low but Not High Aerobically Fit Male Runners.

    PubMed

    Carriker, Colin R; Vaughan, Roger A; VanDusseldorp, Trisha A; Johnson, Kelly E; Beltz, Nicholas M; McCormick, James J; Cole, Nathan H; Gibson, Ann L

    2016-12-31

    to examine the effect of a 4-day NO3- loading protocol on the submaximal oxygen cost of both low fit and high fit participants at five different exercise intensities. participants were initially assigned to a placebo (PL; negligible NO3-) or inorganic nitrate-rich (NR; 6.2 mmol nitrate/day) group; double-blind, placebo-controlled, crossover. Participants completed three trials (T1, T2 and T3). T1 included a maximal aerobic capacity (VO2max) treadmill test. A 6-day washout, minimizing nitrate consumption, preceded T2. Each of the four days prior to T2 and T3, participants consumed either PL or NR; final dose 2.5 hours prior to exercise. A 14-day washout followed T2. T2 and T3 consisted of 5-minute submaximal treadmill bouts (45, 60, 70, 80 and 85% VO2max) determined during T1. Low fit nitrate-supplemented participants consumed less oxygen (p<0.05) at lower workloads (45% and 60% VO2max) compared to placebo trials; changes not observed in high fit participants. The two lowest intensity workloads of 45 and 60% VO2max revealed the greatest correlation (r=0.54, p=0.09 and r=0.79, p<0.05; respectively). No differences were found between conditions for heart rate, respiratory exchange ratio or rating of perceived exertion for either fitness group. Nitrate consumption promotes reduced oxygen consumption at lower exercise intensities in low fit, but not high fit males. Lesser fit individuals may receive greater benefit than higher fit participants exercising at intensities <60% VO2max.

  17. Patterns of oxygen consumption during simultaneously occurring elevated metabolic states in the viviparous snake Thamnophis marcianus.

    PubMed

    Jackson, Alexander G S; Leu, Szu-Yun; Ford, Neil B; Hicks, James W

    2015-11-01

    Snakes exhibit large factorial increments in oxygen consumption during digestion and physical activity, and long-lasting sub-maximal increments during reproduction. Under natural conditions, all three physiological states may occur simultaneously, but the integrated response is not well understood. Adult male and female checkered gartersnakes (Thamnophis marcianus) were used to examine increments in oxygen consumption (i.e. V̇(O2)) and carbon dioxide production (i.e. V̇(CO2)) associated with activity (Act), digestion (Dig) and post-prandial activity (Act+Dig). For females, we carried out these trials in the non-reproductive state, and also during the vitellogenic (V) and embryogenic (E) phases of a reproductive cycle. Endurance time (i.e. time to exhaustion, TTE) was recorded for all groups during Act and Act+Dig trials. Our results indicate that male and non-reproductive female T. marcianus exhibit significant increments in V̇(O2) during digestion (∼5-fold) and activity (∼9-fold), and that Act+Dig results in a similar increment in V̇(O2) (∼9- to 10-fold). During reproduction, resting V̇(O2) increased by 1.6- to 1.7-fold, and peak increments during digestion were elevated by 30-50% above non-reproductive values, but values associated with Act and Act+Dig were not significantly different from non-reproductive values. During Act+Dig, endurance time remained similar for all of the groups in the present study. Overall, our results indicate that prioritization is the primary pattern of interaction in oxygen delivery exhibited by this species. We propose that the metabolic processes associated with digestion, and perhaps reproduction, are temporarily compromised during activity. © 2015. Published by The Company of Biologists Ltd.

  18. Atrial natriuretic peptide regulates lipid mobilization and oxygen consumption in human adipocytes by activating AMPK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, Sandra C.; Chau, Mary D.L.; Yang, Qing

    2011-07-08

    Highlights: {yields} Treatment of differentiated human adipocytes with atrial natriuretic peptide (ANP) increased lipolysis and oxygen consumption by activating AMP-activated protein kinase (AMPK). {yields} ANP stimulated lipid mobilization by selective activation of the alpha2 subunit of AMPK and increased energy utilization through activation of both the alpha1 and alpha2 subunits of AMPK. {yields} ANP enhanced adipocyte mitochondrial oxidative capacity as evidenced by induction of oxidative mitochondrial genes and increase in oxygen consumption. {yields} Exposure of human adipocytes to fatty acids and (TNF{alpha}) induced insulin resistance and decreased expression of mitochondrial genes which was restored to normal by ANP. -- Abstract:more » Atrial natriuretic peptide (ANP) has been shown to regulate lipid and carbohydrate metabolism providing a possible link between cardiovascular function and metabolism by mediating the switch from carbohydrate to lipid mobilization and oxidation. ANP exerts a potent lipolytic effect via cGMP-dependent protein kinase (cGK)-I mediated-stimulation of AMP-activated protein kinase (AMPK). Activation of the ANP/cGK signaling cascade also promotes muscle mitochondrial biogenesis and fat oxidation. Here we demonstrate that ANP regulates lipid metabolism and oxygen utilization in differentiated human adipocytes by activating the alpha2 subunit of AMPK. ANP treatment increased lipolysis by seven fold and oxygen consumption by two fold, both of which were attenuated by inhibition of AMPK activity. ANP-induced lipolysis was shown to be mediated by the alpha2 subunit of AMPK as introduction of dominant-negative alpha2 subunit of AMPK attenuated ANP effects on lipolysis. ANP-induced activation of AMPK enhanced mitochondrial oxidative capacity as evidenced by a two fold increase in oxygen consumption and induction of mitochondrial genes, including carnitine palmitoyltransferase 1A (CPT1a) by 1.4-fold, cytochrome C (CytC) by 1.3-fold, and

  19. Seasonal and ontogenetic changes modulate oxygen consumption and antioxidant defenses in the cutlassfish Trichiurus lepturus (Pisces, Trichiuridae).

    PubMed

    Wilhelm-Filho, Danilo; Fraga, César G; Boveris, Alberto

    2017-09-01

    Several oxidative stress markers and liver oxygen consumption were measured in different tissues of the marine fish Trichiurus lepturus in late summer and late winter, as well as in juveniles and adult females. Oxygen consumption in liver, superoxide dismutase (SOD) and catalase (CAT) activity in liver, red cells, lens and roe, vitamin E, ubiquinol 10 , β-carotene in liver, red cells, and roe, as well as contents of reduced glutathione (GSH) and lipoperoxidation (TBARS) in red cells were evaluated. Regarding ontogeny, compared to adult fish, juveniles showed significant higher SOD activity in liver and lens, as well as higher liver contents of vitamin E. In contrast, adult females showed higher contents of vitamin E in roe, ubiquinol 10 in liver and roe, and higher GSH levels in red cells, while the other markers remained unchanged. Regarding seasonal changes, no differences were detected in adult females for liver CAT and ubiquinol 10 , CAT in roe, vitamin E in roe and in red cells, liver and red cell ubiquinol 10 , and in GSH in red cells. However, and coinciding with the spawning period of late summer, liver oxygen consumption, SOD and CAT activity and ubiquinol 10 contents in roe and SOD activity in red cells, and red cell TBARS contents were higher compared to late winter. These temporal antioxidant adjustments of Trichiurus lepturus seem to be parallel to the higher oxygen consumption typical of juvenile forms and also to the intense spawning and foraging activities of adult females in late summer. Copyright © 2017. Published by Elsevier Inc.

  20. Quantifying salinity and season effects on eastern oyster clearance and oxygen consumption rates

    USGS Publications Warehouse

    Casas, S.M.; Lavaud, Romain; LaPeyre, Megan K.; Comeau, L. A.; Filgueira, R.; LaPeyre, Jerome F.

    2018-01-01

    There are few data on Crassostrea virginica physiological rates across the range of salinities and temperatures to which they are regularly exposed, and this limits the applicability of growth and production models using these data. The objectives of this study were to quantify, in winter (17 °C) and summer (27 °C), the clearance and oxygen consumption rates of C. virginica from Louisiana across a range of salinities typical of the region (3, 6, 9, 15 and 25). Salinity and season (temperature and reproduction) affected C. virginica physiology differently; salinity impacted clearance rates with reduced feeding rates at low salinities, while season had a strong effect on respiration rates. Highest clearance rates were found at salinities of 9–25, with reductions ranging from 50 to 80 and 90 to 95% at salinities of 6 and 3, respectively. Oxygen consumption rates in summer were four times higher than in winter. Oxygen consumption rates were within a narrow range and similar among salinities in winter, but varied greatly among individuals and salinities in summer. This likely reflected varying stages of gonad development. Valve movements measured at the five salinities indicated oysters were open 50–60% of the time in the 6–25 salinity range and ~ 30% at a salinity of 3. Reduced opening periods, concomitant with narrower valve gap amplitudes, are in accord with the limited feeding at the lowest salinity (3). These data indicate the need for increased focus on experimental determination of optimal ranges and thresholds to better quantify oyster population responses to environmental changes.

  1. Assessment by near-infrared spectroscopy of the consumption of oxygen provoked by the human body weight in the vastus medialis muscle

    NASA Astrophysics Data System (ADS)

    Verdaguer-Codina, Joan

    1996-12-01

    This study has been focused to find the importance of the consumption of oxygen for a muscle that works supporting the weight of the human body. The oxygen uptake at rest level is a data know, but by near-IR spectroscopy can be assessed the oxygen uptake used for a muscle. The energy required by the human body is partially used to produce the energy that help to move the human structure. The oxygen required by the muscles to produce the energy to support the human body has been defined as weight oxygen consumption. The purpose of this study was to assess by near-IR spectroscopy the amount of relative oxygenation/deoxygenation that a muscle requires at rest level and a middle-term rest level.

  2. Is rate-pressure product of any use in the isolated rat heart? Assessing cardiac 'effort' and oxygen consumption in the Langendorff-perfused heart.

    PubMed

    Aksentijević, Dunja; Lewis, Hannah R; Shattock, Michael J

    2016-02-01

    What is the central question of this study? Rate-pressure product (RPP) is commonly used as an index of cardiac 'effort'. In canine and human hearts (which have a positive force-frequency relationship), RPP is linearly correlated with oxygen consumption and has therefore been widely adopted as a species-independent index of cardiac work. However, given that isolated rodent hearts demonstrate a negative force-frequency relationship, its use in this model requires validation. What is the main finding and its importance? Despite its widespread use, RPP is not correlated with oxygen consumption (or cardiac 'effort') in the Langendorff-perfused isolated rat heart. This lack of correlation was also evident when perfusions included a range of metabolic substrates, insulin or β-adrenoceptor stimulation. Langendorff perfusion of hearts isolated from rats and mice has been used extensively for physiological, pharmacological and biochemical studies. The ability to phenotype these hearts reliably is, therefore, essential. One of the commonly used indices of function is rate-pressure product (RPP); a rather ill-defined index of 'work' or, more correctly, 'effort'. Rate-pressure product, as originally described in dog or human hearts, was shown to be correlated with myocardial oxygen consumption (MV̇O2). Despite its widespread use, the application of this index to rat or mouse hearts (which, unlike the dog or human, have a negative force-frequency relationship) has not been characterized. The aim of this study was to examine the relationship between RPP and MV̇O2 in Langendorff-perfused rat hearts. Paced hearts (300-750 beats min(-1)) were perfused either with Krebs-Henseleit (KH) buffer (11 mm glucose) or with buffer supplemented with metabolic substrates and insulin. The arteriovenous oxygen consumption (MV̇O2) was recorded. Metabolic status was assessed using (31) P magnetic resonance spectroscopy and lactate efflux. Experiments were repeated in the presence of

  3. Case Studies in Physiology: Maximal oxygen consumption and performance in a centenarian cyclist.

    PubMed

    Billat, Véronique; Dhonneur, Gilles; Mille-Hamard, Laurence; Le Moyec, Laurence; Momken, Iman; Launay, Thierry; Koralsztein, Jean Pierre; Besse, Sophie

    2017-03-01

    The purpose of this study was to examine the physiological characteristics of an elite centenarian cyclist who, at 101 yr old, established the 1-h cycling record for individuals ≥100 yr old (24.25 km) and to determine the physiological factors associated with his performance improvement 2 yr later at 103 yr old (26.92 km; +11%). Before each record, he performed an incremental test on a cycling ergometer. For 2 yr, he trained 5,000 km/yr with a polarized training that involved cycling 80% of mileage at "light" rate of perceived exertion (RPE) ≤12 and 20% at "hard" RPE ≥15 at a cadence between 50 and 70 rpm. His body weight and lean body mass did not change, while his maximal oxygen consumption (V̇o 2max ) increased (31-35 ml·kg -1 ·min -1 ; +13%). Peak power output increased from 90 to 125 W (+39%), mainly because of increasing the maximal pedaling frequency (69-90 rpm; +30%). Maximal heart rate did not change (134-137 beats/min) in contrast to the maximal ventilation (57-70 l/min, +23%), increasing with both the respiratory frequency (38-41 cycles/min; +8%) and the tidal volume (1.5-1.7 liters; +13%). Respiratory exchange ratio increased (1.03-1.14) to the same extent as tolerance to V̇co 2 In conclusion, it is possible to increase performance and V̇o 2max with polarized training focusing on a high pedaling cadence even after turning 100 yr old. NEW & NOTEWORTHY This study shows, for the first time, that maximal oxygen consumption (+13%) and performance (+11%) can still be increased between 101 and 103 yr old with 2 yr of training and that a centenarian is able, at 103 yr old, to cover 26.9 km/h in 1 h. Copyright © 2017 the American Physiological Society.

  4. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice

    PubMed Central

    Ferguson, Melissa; Sohal, Barbara H.; Forster, Michael J.; Sohal, Rajindar S.

    2007-01-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice. PMID:17822741

  5. Effect of long-term caloric restriction on oxygen consumption and body temperature in two different strains of mice.

    PubMed

    Ferguson, Melissa; Sohal, Barbara H; Forster, Michael J; Sohal, Rajindar S

    2007-10-01

    The hypothesis, that a decrease in metabolic rate mediates the life span prolonging effect of caloric restriction (CR), was tested using two strains of mice, one of which, C57BL/6, exhibits life span extension as a result of CR, while the other, DBA/2, shows little or no effect. Comparisons of the rate of resting oxygen consumption and body temperature were made between the strains after they were fed ad libitum (AL) or maintained under 40% CR, from 4 to 16 months of age. Ad libitum-fed mice of the two strains weighed the same when young and consumed similar amounts of food throughout the experiment; however, the C57BL/6 mice weighed 25% more than DBA/2 mice at 15 months of age. The rate of oxygen consumption was normalized as per gram body weight, lean body mass or organ weight as well as per animal. The body temperature and the rate of oxygen consumption, expressed according to all of the four criteria, were decreased in the DBA/2 mice following CR. The C57BL/6 mice also showed a CR-related decrease in body temperature and in the rate of oxygen consumption per animal and when normalized according to lean body mass or organ weight. The results of this study indicate that CR indeed lowers the rate of metabolism; however, this effect by CR does not necessarily entail the prolongation of the life span of mice.

  6. [Effects of temperature and salinity on oxygen consumption rate and asphyxiation point of Sagitta crassa].

    PubMed

    Liu, Qing; Zhu, Hai-Yan; Liu, Fang; Ding, Zi-Yuan

    2011-11-01

    A laboratory test was conducted to study the effects of different temperature and salinity on the oxygen consumption rate and asphyxiation point of chaetognath Sagitta crassa. Both temperature and salinity had significant effects on the oxygen consumption rate (IO) and specific oxygen consumption rate (SO) of S. crassa. When the temperature raised from 5 degrees C to 25 degrees C, the IO and SO of S. crassa increased first, and then presented an obvious decreasing trend, with the regression function being y = 0.0058x3-0.2956x2 +4.415x-8.7816 (R2 = 0.99, P < 0.05) for IO and y = 0.0011x3-0.0546x2+0.8161x-1.6232 (R2 = 0.99, P < 0.05) for SO. The IO and SO at different temperature were in the ranges of 6.30-11.71 microg x ind(-1) x h(-1) and 1.22-2.16 microg x mg(-1) x h(-1), respectively, and the asphyxiation point was 4.18-6.87 mg x L(-1). When the salinity increased from 10 to 40, the IO and SO of S. crassa decreased gradually, with the regression function being y = -0.0068x2-0.1412x+21.702 (R2 = 0.89, P < 0.05) for IO and y = -0.0013x2 -0.0261x+ 4.0114 (R2 = 0.89, P < 0.05) for SO. The IO and SO at different salinity were in the ranges of 4.98-17.73 microg x ind(-1) x h(-1) and 0.92-3.56 microg x mg(-1) x h(-1), respectively, and the asphyxiation point was 4.02-6.24 mg x L(-1). Based on the differences in the oxygen consumption rate and asphyxiation point between S. crassa and other aquatic animals, it was concluded that S. crassa was a stenooxybiotic zooplankton species.

  7. Intrauterine inflammation, cerebral oxygen consumption and susceptibility to early brain injury in very preterm newborns.

    PubMed

    Stark, Michael J; Hodyl, Nicolette A; Belegar V, Kiran Kumar; Andersen, Chad C

    2016-03-01

    In utero exposure to inflammation results in elevated cerebral oxygen consumption. This increased metabolic demand may contribute to the association between chorioamnionitis and intraventricular haemorrhage (P/IVH). We hypothesised that intrauterine inflammation imposes an elevated cerebral metabolic load and increased fractional oxygen extraction (cFTOE) with cFTOE further increased in the presence of early P/IVH. Eighty-three infants ≤30 weeks gestation were recruited. Exposure to intrauterine inflammation was determined by placental histology. Total internal carotid blood flow (Doppler ultrasound) and near infrared spectroscopy were measured and cerebral oxygen delivery (mcerbDO2), consumption (mcerbVO2) and cFTOE were calculated on days 1 and 3 of life. Primary outcome was defined as death or P/IVH >grade II (cranial sonograph) by day 3. Infants exposed to intrauterine inflammation had higher total internal carotid blood flow (92 vs 63 mL/kg/min) and mcerbDO2 (13.7 vs 10.1 mL/kg/min) than those not exposed to inflammation. Newborns with P/IVH had both higher oxygen consumption and extraction compared with those without sonographic injury regardless of exposure to intrauterine inflammation. Further, in preterms exposed to inflammation, those with P/IVH had higher consumption (6.1 vs 4.8 mL/kg/min) and extraction than those without injury. These differences were observed only on day 1 of life. Although P/IVH is multifactorial in preterm newborns, it is likely that cerebral hypoxic-ischaemia plays a central pathophysiological role. These data provide a mechanistic insight into this process and suggests that the increased cerebral metabolic load imposed by the presence of inflammation results in a higher risk of critical hypoxic ischaemia in the preterm with increased susceptibility to significant P/IVH. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  8. Reliability of muscle blood flow and oxygen consumption response from exercise using near-infrared spectroscopy.

    PubMed

    Lucero, Adam A; Addae, Gifty; Lawrence, Wayne; Neway, Beemnet; Credeur, Daniel P; Faulkner, James; Rowlands, David; Stoner, Lee

    2018-01-01

    What is the central question of this study? Continuous-wave near-infrared spectroscopy, coupled with venous and arterial occlusions, offers an economical, non-invasive alternative to measuring skeletal muscle blood flow and oxygen consumption, but its reliability during exercise has not been established. What is the main finding and its importance? Continuous-wave near-infrared spectroscopy devices can reliably assess local skeletal muscle blood flow and oxygen consumption from the vastus lateralis in healthy, physically active adults. The patterns of response exhibited during exercise of varying intensity agree with other published results using similar methodologies, meriting potential applications in clinical diagnosis and therapeutic assessment. Near-infrared spectroscopy (NIRS), coupled with rapid venous and arterial occlusions, can be used for the non-invasive estimation of resting local skeletal muscle blood flow (mBF) and oxygen consumption (mV̇O2), respectively. However, the day-to-day reliability of mBF and mV̇O2 responses to stressors such as incremental dynamic exercise has not been established. The aim of this study was to determine the reliability of NIRS-derived mBF and mV̇O2 responses from incremental dynamic exercise. Measurements of mBF and mV̇O2 were collected in the vastus lateralis of 12 healthy, physically active adults [seven men and five women; 25 (SD 6) years old] during three non-consecutive visits within 10 days. After 10 min rest, participants performed 3 min of rhythmic isotonic knee extension (one extension every 4 s) at 5, 10, 15, 20, 25 and 30% of maximal voluntary contraction (MVC), before four venous occlusions and then two arterial occlusions. The mBF and mV̇O2 increased proportionally with intensity [from 0.55 to 7.68 ml min -1  (100 ml) -1 and from 0.05 to 1.86 ml O 2  min -1  (100 g) -1 , respectively] up to 25% MVC, where they began to plateau at 30% MVC. Moreover, an mBF/mV̇O2 muscle oxygen consumption

  9. The influence of grip on oxygen consumption and leg forces when using classical style roller skis.

    PubMed

    Ainegren, M; Carlsson, P; Laaksonen, M S; Tinnsten, M

    2014-04-01

    The purpose of this study was to investigate the influence of classical style roller skis' grip (static friction coefficients, μS) on cross-country skiers' oxygen consumption and leg forces during treadmill roller skiing, when using the diagonal stride and kick double poling techniques. The study used ratcheted wheel roller skis from the open market and a uniquely designed roller ski with an adjustable camber and grip function. The results showed significantly (P ≤ 0.05) higher oxygen consumption (∼ 14%), heart rate (∼ 7%), and lower propulsive forces from the legs during submaximal exercise and a shorter time to exhaustion (∼ 30%) in incremental maximal tests when using roller skis with a μS similar to on-snow skiing, while there was no difference between tests when using different pairs of roller skis with a similar, higher μS. Thus, we concluded that oxygen consumption (skiing economy), propulsive leg forces, and performance time are highly changed for the worse when using roller skis with a lower μS, such as for on-snow skiing with grip-waxed cross-country skis, in comparison to ratcheted wheel roller skis with several times higher μS. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    NASA Astrophysics Data System (ADS)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  11. Loading and concurrent synchronous whole-body vibration interaction increases oxygen consumption during resistance exercise.

    PubMed

    Serravite, Daniel H; Edwards, David; Edwards, Elizabeth S; Gallo, Sara E; Signorile, Joseph F

    2013-01-01

    Exercise is commonly used as an intervention to increase caloric output and positively affect body composition. A major challenge is the low compliance often seen when the prescribed exercise is associated with high levels of exertion. Whole-body vibration (WBV) may allow increased caloric output with reduced effort; however, there is limited information concerning the effect of WBV on oxygen consumption (VO2). Therefore, this study assessed the synergistic effects of resistance training and WBV on VO2. We examined VO2 at different loads (0%, 20%, and 40% body weight (BW)) and vibration intensities (No vibration (NV), 35HZ, 2-3mm (35L), 50Hz, 57mm (50H)) in ten men (26.5 ± 5.1 years). Data were collected during different stages (rest, six 30s sets of squatting, and recovery). Repeated measures ANOVA showed a stage x load x vibration interaction. Post hoc analysis revealed no differences during rest; however, a significant vibration x load interaction occurred during exercise. Both 35L and 50H produced greater VO2 than NV at a moderate load of 20%BW. Although 40%BW produced greater VO2 than 20%BW or 0%BW using NV, no significant difference in VO2 was seen among vibratory conditions at 40%BW. Moreover, no significant differences were seen between 50H and 35L at 20%BW and NV at 40%BW. During recovery there was a main effect for load. Post hoc analyses revealed that VO2 at 40%BW was significantly higher than 20%BW or 0%BW, and 20%BW produced higher VO2 than no load. Minute-by-minute analysis revealed a significant impact on VO2 due to load but not to vibratory condition. We conclude that the synergistic effect of WBV and active squatting with a moderate load is as effective at increasing VO2 as doubling the external load during squatting without WBV. Key PointsSynchronous whole body vibration in conjunction with moderate external loading (app 20% BW) can increase oxygen consumption to the same extent as heavier loading (40% BW) during performance of the parallel squat

  12. Effect of time of measurement on the relationship between metmyoglobin reducing activity and oxygen consumption to instrumental measures of beef longissimus color stability

    USDA-ARS?s Scientific Manuscript database

    The contribution of initial and retained levels of oxygen consumption and reducing capacity to animal variation in color stability were evaluated. Instrumental color values were determined on longissimus thoracis steaks (n=257) during 6 d of display. Oxygen consumption (OC), nitric oxide metmyoglo...

  13. Oxygen consumption and heart rate during repeated squatting exercises with or without whole-body vibration in the elderly.

    PubMed

    Avelar, Núbia Cp; Simão, Adriano P; Tossige-Gomes, Rosalina; Neves, Camila Dc; Mezencio, Bruno; Szmuchrowski, Leszek; Coimbra, Cândido C; Lacerda, Ana Cr

    2011-12-01

    Avelar, NCP, Simão, AP, Tossige-Gomes, R, Neves, CDC, Mezencio, B, Szmuchrowski, L, Coimbra, CC, and Lacerda, ACR. Oxygen consumption and heart rate during repeated squatting exercises with or without whole-body vibration in the elderly. J Strength Cond Res 25(12): 3495-3500, 2011-The aim of this study was to investigate whether vibration plus squatting would increase cardiovascular demand to the optimal exercise limits needed for the prescription of cardiovascular training. Oxygen consumption, measured breath by breath by a portable gas analysis system, and heart rate (HR), measured using an HR monitor, were evaluated in 18 elderly individuals, 15 women and 3 men with a mean age of 72 ± 6 years. These variables were measured simultaneously and at the same time points in each subject during rest and randomly during the performance of squatting exercises (8 series of 40 seconds, with 40 seconds of rest between series of performing squats in 3-second cycles with 10-60° of flexion, a total of 5 repetitions for 40 seconds) with or without vibration at a frequency of 40 Hz and amplitude of 4 mm, separated by at least 1 day. Associating whole-body vibration with squatting exercise resulted in an additional increase of around 20% in oxygen consumption and 7.5% in the HR recorded during exercise. However, during squatting exercise with vibration, the increase achieved in oxygen consumption was limited to around 2 metabolic equivalents, and mean HR represented around 56% of the predicted maximum HR for age. The results of this study show that, despite the fact that vibration increased oxygen consumption and HR during the performance of squatting exercise, the minimum standards of intensity for the prescription of physical exercise with the specific objective of improving cardiorespiratory fitness were not achieved. Therefore, a protocol such as that used in the study does not meet the threshold for cardiovascular training prescription.

  14. Oxygen and SO2 Consumption Rates in White and Rosé Wines: Relationship with and Effects on Wine Chemical Composition.

    PubMed

    Carrascón, Vanesa; Bueno, Mónica; Fernandez-Zurbano, Purificación; Ferreira, Vicente

    2017-11-01

    This Article addresses the study of O 2 and SO 2 consumption rates of white and rosé wines, their relationship to the initial chemical composition, and their effects on the chemical changes experienced by wine during oxidation. Eight wines were subjected to five consecutive air-saturation cycles. O 2 was monitored periodically; SO 2 , color, and antioxidant indexes were determined after each cycle, and the initial and final compositions of the wines were thoroughly determined. Wines consumed oxygen at progressively decreasing rates. In the last cycles, after a strong decrease, consistent increases of oxygen levels were seen. Oxygen consumption rates were satisfactorily modeled, being proportional to wine copper, quercetin, and kaempherol contents and negatively proportional to cinnamic acids. SO 2 consumption rates were highly diverse between wines and were positively related to free SO 2 , Mn, and pH, among others. In the last saturations, SO 2 consumption took place regardless of O 2 consumption, implying that SO 2 should reduce chemical species oxidized in previous saturations. Some volatile phenols seem to be the end point of radical-mediated oxidation of polyphenols taking place preferably in the first saturation.

  15. Dynamics of oxygen supply and consumption during mainstream large-scale composting in China.

    PubMed

    Zeng, Jianfei; Shen, Xiuli; Han, Lujia; Huang, Guangqun

    2016-11-01

    This study characterized some physicochemical and biological parameters to systematically evaluate the dynamics of oxygen supply and consumption during large-scale trough composting in China. The results showed that long active phases, low maximum temperatures, low organic matter losses and high pore methane concentrations were observed in different composting layers. Pore oxygen concentrations in the top, middle and bottom layers maintained <5vol.% for 40, 42 and 45days, respectively, which accounted for more than 89% of the whole period. After each mechanical turning, oxygen was consumed at a stable respiration rate to a concentration of 5vol.% in no more than 99min and remained anaerobic in the subsequent static condition. The daily percentage of time under aerobic condition was no more than 14% of a single day. Therefore, improving FAS, adjusting aeration interval or combining turning with forced aeration was suggested to provide sufficient oxygen during composting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Influence of protein ingestion on human splanchnic and whole-body oxygen consumption, blood flow, and blood temperature.

    PubMed

    Brundin, T; Wahren, J

    1994-05-01

    Splanchnic and whole-body oxygen uptake, blood flow, and blood temperature were studied in 10 healthy subjects before and during 2 hours after oral ingestion of 900 kJ of fish protein. Indirect calorimetry and catheter techniques were used, including blood thermometry in arterial, pulmonary arterial, and hepatic venous blood. After the meal, pulmonary oxygen uptake increased from a basal value of 272 +/- 11 to 332 +/- 23 mL/min. During the first postprandial hour, splanchnic oxygen uptake increased from 62 +/- 5 to 93 +/- 9 mL/min (+50%, P < .05), thereby accounting for 62% +/- 17% of the simultaneous increase in whole-body oxygen consumption. During the second postprandial hour, splanchnic oxygen uptake increased no further, whereas in the extrasplanchnic tissues the oxygen consumption increased, now accounting for the entire simultaneous increase in pulmonary oxygen uptake. Cardiac output increased from basal 6.4 +/- 0.4 to 7.5 +/- 0.5 L/min. Splanchnic blood flow changed little while the arteriohepatic venous oxygen difference increased from 46 +/- 3 to 54 +/- 4 mL/L. Arterial and hepatic venous blood temperatures increased by almost 0.3 degrees C, reflecting a considerable accumulation of heat, indicating a conversion into a positive thermal balance. It is concluded that after protein ingestion, (1) oxygen uptake increases mainly in the splanchnic organs during the first hour, and thereafter exclusively in the extrasplanchnic tissues; (2) the blood flow increases mainly in extrasplanchnic tissues; and (3) the blood temperature increases almost linearly, indicating an upward adjustment of the temperature setpoint in the central thermosensors.

  17. Decreased endothelial nitric oxide bioavailability, impaired microvascular function, and increased tissue oxygen consumption in children with falciparum malaria.

    PubMed

    Yeo, Tsin W; Lampah, Daniel A; Kenangalem, Enny; Tjitra, Emiliana; Weinberg, J Brice; Granger, Donald L; Price, Ric N; Anstey, Nicholas M

    2014-11-15

    Endothelial nitric oxide (NO) bioavailability, microvascular function, and host oxygen consumption have not been assessed in pediatric malaria. We measured NO-dependent endothelial function by using peripheral artery tonometry to determine the reactive hyperemia index (RHI), and microvascular function and oxygen consumption (VO2) using near infrared resonance spectroscopy in 13 Indonesian children with severe falciparum malaria and 15 with moderately severe falciparum malaria. Compared with 19 controls, children with severe malaria and those with moderately severe malaria had lower RHIs (P = .03); 12% and 8% lower microvascular function, respectively (P = .03); and 29% and 25% higher VO2, respectively. RHIs correlated with microvascular function in all children with malaria (P < .001) and all with severe malaria (P < .001). Children with malaria have decreased endothelial and microvascular function and increased oxygen consumption, likely contributing to the pathogenesis of the disease. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Is rate–pressure product of any use in the isolated rat heart? Assessing cardiac ‘effort’ and oxygen consumption in the Langendorff‐perfused heart

    PubMed Central

    Aksentijević, Dunja; Lewis, Hannah R.

    2016-01-01

    New Findings What is the central question of this study? Rate–pressure product (RPP) is commonly used as an index of cardiac ‘effort’. In canine and human hearts (which have a positive force–frequency relationship), RPP is linearly correlated with oxygen consumption and has therefore been widely adopted as a species‐independent index of cardiac work. However, given that isolated rodent hearts demonstrate a negative force–frequency relationship, its use in this model requires validation. What is the main finding and its importance? Despite its widespread use, RPP is not correlated with oxygen consumption (or cardiac ‘effort’) in the Langendorff‐perfused isolated rat heart. This lack of correlation was also evident when perfusions included a range of metabolic substrates, insulin or β‐adrenoceptor stimulation. Langendorff perfusion of hearts isolated from rats and mice has been used extensively for physiological, pharmacological and biochemical studies. The ability to phenotype these hearts reliably is, therefore, essential. One of the commonly used indices of function is rate–pressure product (RPP); a rather ill‐defined index of ‘work’ or, more correctly, ‘effort’. Rate–pressure product, as originally described in dog or human hearts, was shown to be correlated with myocardial oxygen consumption (MV˙O2). Despite its widespread use, the application of this index to rat or mouse hearts (which, unlike the dog or human, have a negative force–frequency relationship) has not been characterized. The aim of this study was to examine the relationship between RPP and MV˙O2 in Langendorff‐perfused rat hearts. Paced hearts (300–750 beats min−1) were perfused either with Krebs–Henseleit (KH) buffer (11 mm glucose) or with buffer supplemented with metabolic substrates and insulin. The arteriovenous oxygen consumption (MV˙O2) was recorded. Metabolic status was assessed using 31P magnetic resonance spectroscopy and lactate efflux

  19. Effects of denopamine (TA-064), a new positive inotropic agent, on myocardial oxygen consumption and left ventricular dimension in anesthetized dogs.

    PubMed

    Ikeo, T; Nagao, T

    1985-10-01

    We compared the effects of denopamine (TA-064) and isoproterenol on hemodynamics, myocardial oxygen consumption and the left ventricular (LV) dimension in halothane-N2O anesthetized dogs. Denopamine (0.25-1 micrograms/kg/min, i.v., infusion X 15 min) produced a maximum increase in LV dp/dtmax by 64% of the control, without affecting aortic pressure significantly. Doses of isoproterenol (0.01-0.04 micrograms/kg/min, i.v., infusion X 15 min) were selected to produce a positive inotropic action similar to that of denopamine. Denopamine produced significantly less increasing effects in heart rate, cardiac output and myocardial oxygen consumption and had more reducing effects in LV internal diameter than isoproterenol, while isoproterenol tended to produce a more potent increase in coronary blood flow, but a smaller decrease in LV end-diastolic pressure than denopamine. PQ interval was similarly reduced. Denopamine caused no substantial increase in myocardial oxygen consumption at a lower dose, at which LV dp/dtmax was significantly increased. A weak effect of denopamine on myocardial oxygen consumption may result partly from a weak positive chronotropic effect and partly from a reduction of preload and cardiac size.

  20. Effects of reduced oxygen availability on the vascular response and oxygen consumption of the activated human visual cortex.

    PubMed

    Rodrigues Barreto, Felipe; Mangia, Silvia; Garrido Salmon, Carlos Ernesto

    2017-07-01

    To identify the impact of reduced oxygen availability on the evoked vascular response upon visual stimulation in the healthy human brain by magnetic resonance imaging (MRI). Functional MRI techniques based on arterial spin labeling (ASL), blood oxygenation level-dependent (BOLD), and vascular space occupancy (VASO)-dependent contrasts were utilized to quantify the BOLD signal, cerebral blood flow (CBF), and volume (CBV) from nine subjects at 3T (7M/2F, 27.3 ± 3.6 years old) during normoxia and mild hypoxia. Changes in visual stimulus-induced oxygen consumption rates were also estimated with mathematical modeling. Significant reductions in the extension of activated areas during mild hypoxia were observed in all three imaging contrasts: by 42.7 ± 25.2% for BOLD (n = 9, P = 0.002), 33.1 ± 24.0% for ASL (n = 9, P = 0.01), and 31.9 ± 15.6% for VASO images (n = 7, P = 0.02). Activated areas during mild hypoxia showed responses with similar amplitude for CBF (58.4 ± 18.7% hypoxia vs. 61.7 ± 16.1% normoxia, P = 0.61) and CBV (33.5 ± 17.5% vs. 25.2 ± 13.0%, P = 0.27), but not for BOLD (2.5 ± 0.8% vs. 4.1 ± 0.6%, P = 0.009). The estimated stimulus-induced increases of oxygen consumption were smaller during mild hypoxia as compared to normoxia (3.1 ± 5.0% vs. 15.5 ± 15.1%, P = 0.04). Our results demonstrate an altered vascular and metabolic response during mild hypoxia upon visual stimulation. 2 Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;46:142-149. © 2016 International Society for Magnetic Resonance in Medicine.

  1. [Oxygen consumption in the lungs and systemic circulation--different methods of measurement of one data or different data?].

    PubMed

    Perfilova, A V; Gromova, T A; Lebedinskiĭ, K M; Zaĭchik, A M

    2014-01-01

    The article deals with calculation of oxygen consumption in the lungs by means of breathing gas mixture analysis and in parallel--in the systemic circulation by reverse Fick method; 32 paired measurements were performed in 8 patients after cardiac surgery with cardiopulmonary bypass. The mean pulmonary oxygen consumption was higher than the same value calculated by the reverse Fick principle--148.4 +/- 39.9 ml x min(-1) x m(-2) and 120 +/- 35.1 ml x min(-1) x m(-2), respectively, the mean difference between two methods was 28.4 +/- 18.4 ml x min(-1) x m(-2). However, in two observations the interrelation was inversed. While analyzing physiological and methodological reasons for these differences, the authors concluded that, despite both methods can be used in monitoring systemic oxygen transport in the critically ill, they are not interchangeable, and valuable additional data could be derived from fast changes in lungs oxygen uptake.

  2. Alcohol consumption and cardiorespiratory fitness in five population-based studies.

    PubMed

    Baumeister, Sebastian E; Finger, Jonas D; Gläser, Sven; Dörr, Marcus; Markus, Marcello Rp; Ewert, Ralf; Felix, Stephan B; Grabe, Hans-Jörgen; Bahls, Martin; Mensink, Gert Bm; Völzke, Henry; Piontek, Katharina; Leitzmann, Michael F

    2018-01-01

    Background Poor cardiorespiratory fitness is a risk factor for cardiovascular morbidity. Alcohol consumption contributes substantially to the burden of disease, but its association with cardiorespiratory fitness is not well described. We examined associations between average alcohol consumption, heavy episodic drinking and cardiorespiratory fitness. Design The design of this study was as a cross-sectional population-based random sample. Methods We analysed data from five independent population-based studies (Study of Health in Pomerania (2008-2012); German Health Interview and Examination Survey (2008-2011); US National Health and Nutrition Examination Survey (NHANES) 1999-2000; NHANES 2001-2002; NHANES 2003-2004) including 7358 men and women aged 20-85 years, free of lung disease or asthma. Cardiorespiratory fitness, quantified by peak oxygen uptake, was assessed using exercise testing. Information regarding average alcohol consumption (ethanol in grams per day (g/d)) and heavy episodic drinking (5+ or 6+ drinks/occasion) was obtained from self-reports. Fractional polynomial regression models were used to determine the best-fitting dose-response relationship. Results Average alcohol consumption displayed an inverted U-type relation with peak oxygen uptake ( p-value<0.0001), after adjustment for age, sex, education, smoking and physical activity. Compared to individuals consuming 10 g/d (moderate consumption), current abstainers and individuals consuming 50 and 60 g/d had significantly lower peak oxygen uptake values (ml/kg/min) (β coefficients = -1.90, β = -0.06, β = -0.31, respectively). Heavy episodic drinking was not associated with peak oxygen uptake. Conclusions Across multiple adult population-based samples, moderate drinkers displayed better fitness than current abstainers and individuals with higher average alcohol consumption.

  3. Gene expression profiling reveals decreased expression of two hemoglobin genes associated with increased consumption of oxygen in Chironomus tentans exposed to atrazine: a possible mechanism for adapting to oxygen deficiency.

    PubMed

    Anderson, Troy D; Jin-Clark, Ying; Begum, Khurshida; Starkey, Sharon R; Zhu, Kun Yan

    2008-01-31

    Atrazine is an extensively used triazine herbicide in agricultural and residential areas and has been routinely detected in many surface and ground waters. This study reveals various up- and down-regulated genes associated with hypoxic stress in atrazine-treated fourth-instar Chironomus tentans larvae (midges) by using restriction fragment differential display-PCR. Two down-regulated hemoglobin cDNAs were isolated from the midges. Northern blot analysis indicated CteHb-IIbeta and CteHb-III mRNA expressions decreased by 36 and 21%, respectively, in midges exposed to atrazine at 1 microg/L for 96h. Decreased hemoglobin gene expression was associated with elevated oxygen consumption in atrazine-treated midges. Midges exposed to atrazine at 1 microg/L increased their oxygen consumption by 47%, whereas midges exposed to atrazine at 1000 microg/L for 48h increased their oxygen consumption by 66%. Our study demonstrates for the first time that atrazine, at environmentally relevant concentrations, can elevate respiration, possibly eliciting counteractive measures at the transcriptional level to adapt to oxygen deficiency in an ecologically important aquatic insect. Our results further suggest that the ability to modulate both the quantity and quality of Hb serves as an adaptive response to counteract the initial onset of oxygen deficiency induced by atrazine in midges.

  4. Effects of homocysteine and its related compounds on oxygen consumption of the rat heart tissue homogenate: the role of different gasotransmitters.

    PubMed

    Uzelac, Jovana Jakovljević; Stanić, Marina; Krstić, Danijela; Čolović, Mirjana; Djurić, Dragan

    2017-11-29

    The objective of this study was to investigate in vitro effects of 10 µM DL-homocysteine (DL-Hcy), DL-homocysteine thiolactone-hydrochloride (DL-Hcy TLHC), and L-homocysteine thiolactone-hydrochloride (L-Hcy TLHC) on the oxygen consumption of rat heart tissue homogenate, as well as the involvement of the gasotransmitters NO, H 2 S and CO in the effects of the most toxic homocysteine compound, DL-Hcy TLHC. The possible contribution of the gasotransmitters in these effects was estimated by using the appropriate inhibitors of their synthesis (N ω -nitro-L-arginine methyl ester (L-NAME), DL-propargylglycine (DL-PAG), and zinc protoporphyrin IX (ZnPPR IX), respectively). The oxygen consumption of rat heart tissue homogenate was measured by Clark/type oxygen electrode in the absence and presence of the investigated compounds. All three homocysteine-based compounds caused a similar decrease in the oxygen consumption rate compared to control: 15.19 ± 4.01%, 12.42 ± 1.01%, and 16.43 ± 4.52% for DL-Hcy, DL-Hcy TLHC, or L-Hcy TLHC, respectively. All applied inhibitors of gasotransmitter synthesis also decreased the oxygen consumption rate of tissue homogenate related to control: 13.53 ± 1.35% for L-NAME (30 µM), 5.32 ± 1.23% for DL-PAG (10 µM), and 5.56 ± 1.39% for ZnPPR IX (10 µM). Simultaneous effect of L-NAME (30 µM) or ZnPPR IX (10 µM) with DL-Hcy TLHC (10 µM) caused a larger decrease of oxygen consumption compared to each of the substances individually. However, when DL-PAG (10 µM) was applied together with DL-Hcy TLHC (10 µM), it attenuated the effect of DL-Hcy TLHC from 12.42 ± 1.01 to 9.22 ± 1.58%. In conclusion, cardiotoxicity induced by Hcy-related compounds, which was shown in our previous research, could result from the inhibition of the oxygen consumption, and might be mediated by the certain gasotransmitters.

  5. [Age-related dynamics of the maximum oxygen consumption associated with different regimens of locomotor activity].

    PubMed

    Miakotnykh, V V; Khodasevich, L S; Ermakov, B A

    2011-01-01

    This study included a total of 234 practically healthy men at the age from 40 to 69 years differing in the regimen of daily locomotor activity. They were divided into 4 groups, each comprised of subjects ranged by age with a ten-year interval. Group 1 included former high-level athletes continuing active physical training, group 2 was comprised of former high-level athletes living a sedentary life style, group 3 consisted of subjects regularly engaged in health-giving physical exercises, and group 4 included subjects who were never engaged in physical exercises. The energy consumption by the members of all four groups was estimated when they were undergoing a stepwise increasing workload on the veloergometer measured with the help of a computerized diagnostic system. The results of the study indicate that the high oxygen consumption at a limiting load in the former high-level athletes is associated with the significant economization of basal metabolism and the reduction of oxygen consumption at rest. This mechanism accounts for the possibility to retain adequate physical activity of the organism up to the age of 70 years.

  6. Analysis of the application of the generalized monod kinetics model to describe the human corneal oxygen-consumption rate during soft contact lens wear.

    PubMed

    Compañ, V; Aguilella-Arzo, M; Del Castillo, L F; Hernández, S I; Gonzalez-Meijome, J M

    2017-11-01

    This work is an analysis of the application of the generalized Monod kinetics model describing human corneal oxygen consumption during soft contact lens wear to models previously used by Chhabra et al. (J Biomed Mater Res B Appl Biomater, 2009a;90:202-209, Optom Vis Sci 2009b;86:454-466) and Larrea and Büchler (Invest Ophthalmol Vis Sci 2009;50:1076-1080). We use oxygen tension from in vivo estimations provided by Bonanno [Bonanno et al., Invest Ophthalmol Vis Sci 2002;43:371-376, and Bonanno et al 2009]. We consider four hydrogel and six silicone hydrogel lenses. The cornea is considered a single homogeneous layer, with constant oxygen permeability regardless of the type of lens worn. Our calculations yield different values for the maximum oxygen consumption rate Q c,max , whith differents oxygen tensions (high and low p c ) at the cornea-tears interface. Surprisingly, for both models, we observe an increase in oxygen consumption near an oxygen tension of 105 mmHg until a maximum is reached, then decreasing for higher levels of oxygen pressure. That is, when lowering the pressure of oxygen, the parameter Q c,max initially increases depending on the intensity of the change in pressure. Which, it could be related with the variation of the pH. Furthermore, it is also noted that to greater reductions in pressure, this parameter decreases, possibly due to changes in the concentration of glucose related to the anaerobic respiration. The averaged in vivo human corneal oxygen consumption rate of 1.47 × 10 -4 cm 3 of O 2 /cm 3 tissue s, with Monod kinetics model, considering all the lenses studied, is smaller than the average oxygen consumption rate value obtained using the Larrea and Büchler model. The impact that these calculations have on the oxygen partial pressure available at different depths in the corneal tissue is presented and discussed, taking into consideration previous models used in this study. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B

  7. Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus

    PubMed Central

    Llanos, Aníbal J; Riquelme, Raquel A; Sanhueza, Emilia M; Herrera, Emilio; Cabello, Gertrudis; Giussani, Dino A; Parer, Julian T

    2002-01-01

    Unlike fetal animals of lowland species, the llama fetus does not increase its cerebral blood flow during an episode of acute hypoxaemia. This study tested the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral O2 extraction rather than decreasing cerebral oxygen utilisation during acute hypoxaemia. Six llama fetuses were surgically instrumented under general anaesthesia at 217 days of gestation (term ca 350 days) with vascular and amniotic catheters in order to carry out cardiorespiratory studies. Following a control period of 1 h, the llama fetuses underwent 3 × 20 min episodes of progressive hypoxaemia, induced by maternal inhalational hypoxia. During basal conditions and during each of the 20 min of hypoxaemia, fetal cerebral blood flow was measured with radioactive microspheres, cerebral oxygen extraction was calculated, and fetal cerebral hemispheric O2 consumption was determined by the modified Fick principle. During hypoxaemia, fetal arterial O2 tension and fetal pH decreased progressively from 24 ± 1 to 20 ± 1 Torr and from 7.36 ± 0.01 to 7.33 ± 0.01, respectively, during the first 20 min episode, to 16 ± 1 Torr and 7.25 ± 0.05 during the second 20 min episode and to 14 ± 1 Torr and 7.21 ± 0.04 during the final 20 min episode. Fetal arterial partial pressure of CO2 (Pa,CO2, 42 ± 2 Torr) remained unaltered from baseline throughout the experiment. Fetal cerebral hemispheric blood flow and cerebral hemispheric oxygen extraction were unaltered from baseline during progressive hypoxaemia. In contrast, a progressive fall in fetal cerebral hemispheric oxygen consumption occurred during the hypoxaemic challenge. In conclusion, these data do not support the hypothesis that the fetal llama brain maintains cerebral hemispheric O2 consumption by increasing cerebral hemispheric O2 extraction. Rather, the data show that in the llama fetus, a reduction in cerebral hemispheric metabolism occurs during acute

  8. Temperature induced variation in oxygen consumption of juvenile and adult stage of the dog conch Laevistrombus canarium (Linnaeus 1758)

    NASA Astrophysics Data System (ADS)

    Hassan, Wan Nurul Husna Wan; Amin, S. M. Nurul; Ghaffar, Mazlan Abd; Cob, Zaidi Che

    2015-09-01

    Laevistrombus canarium Linnaeus, 1758 is one of the important edible sea snail within the western Johor Straits, Malaysia. In this study, the impact of temperature on oxygen consumption (MO2) of L. canarium based on their ontogenetic changes (juvenile and adult) was measured in the laboratory condition at 22.0, 26.0, 30.0 and 34.0°C. Measurement of MO2 were taken every 1 s for 60 min on 4.20 - 34.00 g dog conch using respirometry chamber. All experiments were carried out in static conditions in five replicates with one snail per chambers. The results of oxygen consumption showed that juvenile dog conch respired at the rate of 0.163 ml h-1 and adult respired at the rate of 0.119 ml h-1. Consequently, the oxygen consumption in juvenile and adult dog conch was expressed as a total energy spends. The results indicates that total energy spend for oxygen consumed (ml h-1) of L. canarium at different temperature regimes (22.0 to 34.0°C) slightly increased over time period (0.63 ± 0.12 to 3.24 ± 0.05 J h-1) respectively. This finding of the present study suggested L. canarium is well adapted for life in high temperature environment.

  9. PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia.

    PubMed

    Banh, Robert S; Iorio, Caterina; Marcotte, Richard; Xu, Yang; Cojocari, Dan; Rahman, Anas Abdel; Pawling, Judy; Zhang, Wei; Sinha, Ankit; Rose, Christopher M; Isasa, Marta; Zhang, Shuang; Wu, Ronald; Virtanen, Carl; Hitomi, Toshiaki; Habu, Toshiyuki; Sidhu, Sachdev S; Koizumi, Akio; Wilkins, Sarah E; Kislinger, Thomas; Gygi, Steven P; Schofield, Christopher J; Dennis, James W; Wouters, Bradly G; Neel, Benjamin G

    2016-07-01

    Tumours exist in a hypoxic microenvironment and must limit excessive oxygen consumption. Hypoxia-inducible factor (HIF) controls mitochondrial oxygen consumption, but how/if tumours regulate non-mitochondrial oxygen consumption (NMOC) is unknown. Protein-tyrosine phosphatase-1B (PTP1B) is required for Her2/Neu-driven breast cancer (BC) in mice, although the underlying mechanism and human relevance remain unclear. We found that PTP1B-deficient HER2(+) xenografts have increased hypoxia, necrosis and impaired growth. In vitro, PTP1B deficiency sensitizes HER2(+) BC lines to hypoxia by increasing NMOC by α-KG-dependent dioxygenases (α-KGDDs). The moyamoya disease gene product RNF213, an E3 ligase, is negatively regulated by PTP1B in HER2(+) BC cells. RNF213 knockdown reverses the effects of PTP1B deficiency on α-KGDDs, NMOC and hypoxia-induced death of HER2(+) BC cells, and partially restores tumorigenicity. We conclude that PTP1B acts via RNF213 to suppress α-KGDD activity and NMOC. This PTP1B/RNF213/α-KGDD pathway is critical for survival of HER2(+) BC, and possibly other malignancies, in the hypoxic tumour microenvironment.

  10. Palmitoleic acid (16:1n7) increases oxygen consumption, fatty acid oxidation and ATP content in white adipocytes.

    PubMed

    Cruz, Maysa M; Lopes, Andressa B; Crisma, Amanda R; de Sá, Roberta C C; Kuwabara, Wilson M T; Curi, Rui; de Andrade, Paula B M; Alonso-Vale, Maria I C

    2018-03-20

    We have recently demonstrated that palmitoleic acid (16:1n7) increases lipolysis, glucose uptake and glucose utilization for energy production in white adipose cells. In the present study, we tested the hypothesis that palmitoleic acid modulates bioenergetic activity in white adipocytes. For this, 3 T3-L1 pre-adipocytes were differentiated into mature adipocytes in the presence (or absence) of palmitic (16:0) or palmitoleic (16:1n7) acid at 100 or 200 μM. The following parameters were evaluated: lipolysis, lipogenesis, fatty acid (FA) oxidation, ATP content, oxygen consumption, mitochondrial mass, citrate synthase activity and protein content of mitochondrial oxidative phosphorylation (OXPHOS) complexes. Treatment with 16:1n7 during 9 days raised basal and isoproterenol-stimulated lipolysis, FA incorporation into triacylglycerol (TAG), FA oxidation, oxygen consumption, protein expression of subunits representing OXPHOS complex II, III, and V and intracellular ATP content. These effects were not observed in adipocytes treated with 16:0. Palmitoleic acid, by concerted action on lipolysis, FA esterification, mitochondrial FA oxidation, oxygen consumption and ATP content, does enhance white adipocyte energy expenditure and may act as local hormone.

  11. System for measuring oxygen consumption rates of mammalian cells in static culture under hypoxic conditions.

    PubMed

    Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi

    2016-01-01

    Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design. © 2015 American Institute of Chemical Engineers.

  12. Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements.

    PubMed

    Nelson, J A

    2016-01-01

    Accounting for energy use by fishes has been taking place for over 200 years. The original, and continuing gold standard for measuring energy use in terrestrial animals, is to account for the waste heat produced by all reactions of metabolism, a process referred to as direct calorimetry. Direct calorimetry is not easy or convenient in terrestrial animals and is extremely difficult in aquatic animals. Thus, the original and most subsequent measurements of metabolic activity in fishes have been measured via indirect calorimetry. Indirect calorimetry takes advantage of the fact that oxygen is consumed and carbon dioxide is produced during the catabolic conversion of foodstuffs or energy reserves to useful ATP energy. As measuring [CO2 ] in water is more challenging than measuring [O2 ], most indirect calorimetric studies on fishes have used the rate of O2 consumption. To relate measurements of O2 consumption back to actual energy usage requires knowledge of the substrate being oxidized. Many contemporary studies of O2 consumption by fishes do not attempt to relate this measurement back to actual energy usage. Thus, the rate of oxygen consumption (M˙O2 ) has become a measurement in its own right that is not necessarily synonymous with metabolic rate. Because all extant fishes are obligate aerobes (many fishes engage in substantial net anaerobiosis, but all require oxygen to complete their life cycle), this discrepancy does not appear to be of great concern to the fish biology community, and reports of fish oxygen consumption, without being related to energy, have proliferated. Unfortunately, under some circumstances, these measures can be quite different from one another. A review of the methodological history of the two measurements and a look towards the future are included. © 2016 The Fisheries Society of the British Isles.

  13. Oxygen consumption, heart rate and oxygen pulse associated with selected exercise-to-muscle class elements.

    PubMed Central

    Abernethy, P; Batman, P

    1994-01-01

    The purpose of the investigation was to determine the relative oxygen consumption (VO2), heart rate and oxygen pulse associated with the constituent elements of an exercise-to-music class. Six women exercise-to-music leaders with a mean(s.d.) age, weight and height of 33.2(5.2) years, 51.0(2.8) kg and 157.9(5.6) cm respectively, completed five distinct exercise-to-music movement elements. The movement elements were of a locomoter (circuit, jump and low impact) and callisthenic (prone and side/supine) nature. The movement elements were distinguishable from one another in terms of their movement patterns, posture and tempo. Relative VO2 values were greatest for the circuit element (40.6 ml kg-1 min-1) and least for the side/supine element (20.0 ml kg-1 min-1). The differences in VO2 between the locomotrr and callisthenic elements were significant (circuit approximately jump approximately low impact > prone approximately side/supine). However, effect size data suggested that the differences between the low impact and jump elements and the prone and side/supine elements were of practical significance (circuit approximately jump > low impact > prone > side/supine). With a single exception similar parametric statistics and effect size trends were identified for absolute heart rate. Specifically, the heart rate associated with the low impact element was not significantly greater than the prone element. The oxygen pulse associated with the locomotor elements was significantly greater than the callisthenic elements (circuit approximately jump approximately low impact > prone > side/supine). This suggested that heart rate may be an inappropriate index for making comparisons between exercise-to-music elements. Reasons for differences in oxygen uptake values between movement elements are discussed. PMID:8044493

  14. Impact of wine production on the fractionation of copper and iron in Chardonnay wine: Implications for oxygen consumption.

    PubMed

    Rousseva, Michaela; Kontoudakis, Nikolaos; Schmidtke, Leigh M; Scollary, Geoffrey R; Clark, Andrew C

    2016-07-15

    Copper and iron in wine can influence oxidative, reductive and colloidal stability. The current study utilises a solid phase extraction technique to fractionate these metals into hydrophobic, cationic and residual forms, with quantification by ICP-OES. The impact of aspects of wine production on the metal fractions was examined, along with the relationship between metal fractions and oxygen decay rates. Addition of copper and iron to juice, followed by fermentation, favoured an increase in all of their respective metal fractions in the wine, with the largest increase observed for the cationic form of iron. Bentonite fining of the protein-containing wines led to a significant reduction in the cationic fraction of copper and an increase in the cationic form of iron. Total copper correlated more closely with oxygen consumption in the wine compared to total iron, and the residual and cationic forms of copper provided the largest contribution to this impact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessment protocols of maximum oxygen consumption in young people with Down syndrome--a review.

    PubMed

    Seron, Bruna Barboza; Greguol, Márcia

    2014-03-01

    Maximum oxygen consumption is considered the gold standard measure of cardiorespiratory fitness. Young people with Down syndrome (DS) present low values of this indicator compared to their peers without disabilities and to young people with an intellectual disability but without DS. The use of reliable and valid assessment methods provides more reliable results for the diagnosis of cardiorespiratory fitness and the response of this variable to exercise. The aim of the present study was to review the literature on the assessment protocols used to measure maximum oxygen consumption in children and adolescents with Down syndrome giving emphasis to the protocols used, the validation process and their feasibility. The search was carried out in eight electronic databases--Scopus, Medline-Pubmed, Web of science, SportDiscus, Cinhal, Academic Search Premier, Scielo, and Lilacs. The inclusion criteria were: (a) articles which assessed VO2peak and/or VO2max (independent of the validation method), (b) samples composed of children and/or adolescents with Down syndrome, (c) participants of up to 20 years old, and (d) studies performed after 1990. Fifteen studies were selected and, of these, 11 measured the VO2peak using tests performed in a laboratory, 2 used field tests and the remaining 2 used both laboratory and field tests. The majority of the selected studies used maximal tests and conducted familiarization sessions. All the studies took into account the clinical conditions that could hamper testing or endanger the individuals. However, a large number of studies used tests which had not been specifically validated for the evaluated population. Finally, the search emphasized the small number of studies which use field tests to evaluate oxygen consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery.

    PubMed

    Mann, Theresa N; Webster, Christopher; Lamberts, Robert P; Lambert, Michael I

    2014-09-01

    There is some evidence that measures of acute post-exercise recovery are sensitive to the homeostatic stress of the preceding exercise and these measurements warrant further investigation as possible markers of training load. The current study investigated which of four different measures of metabolic and autonomic recovery was most sensitive to changes in exercise intensity. Thirty-eight moderately trained runners completed 20-min bouts of treadmill exercise at 60, 70 and 80% of maximal oxygen uptake (VO2max) and four different recovery measurements were determined: the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the oxygen consumption recovery curve (EPOCτ), heart rate recovery within 1 min (HRR60s) and the time constant of the heart rate recovery curve (HRRτ) . Despite significant differences in exercise parameters at each exercise intensity, only EPOCMAG showed significantly slower recovery with each increase in exercise intensity at the group level and in the majority of individuals. EPOCτ was significantly slower at 70 and 80% of VO₂max vs. 60% VO₂max and HRRτ was only significantly slower when comparing the 80 vs. 60% VO₂max exercise bouts. In contrast, HRR60s reflected faster recovery at 70 and 80% of VO₂max than at 60% VO₂max. Of the four recovery measurements investigated, EPOCMAG was the most sensitive to changes in exercise intensity and shows potential to reflect changes in the homeostatic stress of exercise at the group and individual level. Determining EPOCMAG may help to interpret the homeostatic stress of laboratory-based research trials or training sessions.

  17. Changes in oxygen consumption of human muscle and tendon following repeat muscle contractions.

    PubMed

    Kubo, Keitaro; Ikebukuro, Toshihiro; Tsunoda, Naoya; Kanehisa, Hiroaki

    2008-11-01

    The purpose of this study was to investigate changes in the oxygen consumption (VO(2)) of muscle and tendon following repeat muscle contractions. During endurance tests (50 repetitions at 70% of the maximum voluntary contraction with 5-s contractions and 5-s rest) and the recovery period (0-10 min), we measured the blood volume and oxygen saturation (StO(2)) of the medial gastrocnemius muscle and Achilles tendon using near infrared spectroscopy and red laser light. Nine male subjects performed the endurance tests three times on separate days (tests-1, 2, and 3). Before and after (test-1: immediately after, test-2: at the 5-min recovery point, test-3: at the 10-min recovery point) the endurance tests, the rate of StO(2) during 8-min period of arterial occlusion was measured to estimate the VO(2) of muscle and tendon. In test-3, after the end of exercise, the THb and StO(2) of the Achilles tendon increased gradually, and these values were higher than the pre-exercise levels until the end of the recovery period. The VO(2) of tendon as well as muscle increased significantly after the repeat muscle contractions. Furthermore, the VO(2) of tendon returned to the pre-exercise level at the 10-min point of recovery, although that of muscle was significantly higher compared to the pre-exercise level until the end of the recovery period. These results indicate that the difference between oxygen supply and consumption within tendon was greater after compared to before exercise.

  18. Changes in Oxygen Consumption and Heart Rate After Acute Myocardial Infarction During 6-Month Follow-up.

    PubMed

    Choe, Yuri; Han, Jae-Young; Choi, In-Sung; Park, Hyeng-Kyu

    2018-06-01

    Exercise intensity is a particularly important determinant of physiological responses to exercise training in patients with acute myocardial infarction. Heart rate (HR) is commonly used as a practical way of prescribing and monitoring exercise as specific intensities based on a linear relationship between the percentage of maximum HR (%HR max ) and the percentage of maximum oxygen consumption (%VO 2max ) regardless of age, gender, or exercise mode. To examine the change in variability in the correlation between %HR max and %VO 2max after acute myocardial infarction. Retrospective study. Regional cardio-cerebrovascular center at a tertiary hospital. A total of 66 patients were enrolled who were referred for cardiac rehabilitation (CR) after percutaneous intervention, and who had reached stage 3 of the modified Bruce Protocol (mBP) on an exercise tolerance test (ETT). There were 54 men and 12 women with an average age of 56.7 ± 9.48 years, ejection fraction (EF) of 56.4% ± 8.89%, and body mass index (BMI) of 24.73 ± 2.86 kg/m 2 . All patients participated in a 4-week outpatient CR program and underwent ETT with a gas analyzer to determine maximal heart rate and maximal oxygen consumption before CR and 1 month, 3 months, and 6 months after CR. VO 2max and HR max were defined as the highest values attained during the ETT. The HR and VO 2 values at each stage of the mBP were expressed as percentages of their maximum. %HR max and %VO 2max were calculated at each stage of the mBP. The maximum METs and VO 2max significantly improved at 1 month after CR, but not significantly at 3 and 6 months after CR. The correlation between VO 2max and HR max progressively changed in a favorable manner during CR. The relationship between %HR max and %VO 2max indicated a coefficient of variation before and 1, 3, and 6 months after of 0.800, 0.826, 0.832, and 0.880, respectively. This study showed that the %HR max correlates better with the %VO 2max in the late-stage post-AMI than in

  19. Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates (External Review Draft)

    EPA Science Inventory

    EPA has released a draft report entitled, Metabolically-Derived Human Ventilation Rates: A Revised Approach Based Upon Oxygen Consumption Rates, for independent external peer review and public comment. NCEA published the Exposure Factors Handbook in 1997. This comprehens...

  20. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise.

    PubMed

    Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio

    2016-04-01

    Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.

  1. Excess post-exercise oxygen consumption in adult sockeye (Oncorhynchus nerka) and coho (O. kisutch) salmon following critical speed swimming.

    PubMed

    Lee, C G; Farrell, A P; Lotto, A; Hinch, S G; Healey, M C

    2003-09-01

    The present study measured the excess post-exercise oxygen cost (EPOC) following tests at critical swimming speed (Ucrit) in three stocks of adult, wild, Pacific salmon (Oncorhynchus sp.) and used EPOC to estimate the time required to return to their routine level of oxygen consumption (recovery time) and the total oxygen cost of swimming to Ucrit. Following exhaustion at Ucrit, recovery time was 42-78 min, depending upon the fish stock. The recovery times are several-fold shorter than previously reported for juvenile, hatchery-raised salmonids. EPOC varied fivefold among the fish stocks, being greatest for Gates Creek sockeye salmon (O. nerka), which was the salmon stock that had the longest in-river migration, experienced the warmest temperature and achieved the highest maximum oxygen consumption compared with the other salmon stocks that were studied. EPOC was related to Ucrit, which in turn was directly influenced by ambient test temperature. The non-aerobic cost of swimming to Ucrit was estimated to add an additional 21.4-50.5% to the oxygen consumption measured at Ucrit. While these non-aerobic contributions to swimming did not affect the minimum cost of transport, they were up to three times higher than the value used previously for an energetic model of salmon migration in the Fraser River, BC, Canada. As such, the underestimate of non-aerobic swimming costs may require a reevaluation of the importance of how in-river barriers like rapids and bypass facilities at dams, and year-to-year changes in river flows and temperatures, affect energy use and hence migration success.

  2. Sensitivity of Hypoxia Predictions for the Northern Gulf of Mexico to Sediment Oxygen Consumption and Model Nesting

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Hu, Jiatang; Laurent, Arnaud; Marta-Almeida, Martinho; Hetland, Robert

    2014-05-01

    Interannual variations of the hypoxic area that develops every summer over the Texas-Louisiana Shelf are large. The 2008 Action Plan put forth by an alliance of multiple state and federal agencies and tribes calls for a decrease of the hypoxic area through nutrient management in the watershed. Realistic models help build mechanistic understanding of the processes underlying hypoxia formation and are thus indispensable for devising efficient nutrient reduction strategies. Here we present such a model, evaluate its hypoxia predictions against monitoring observations and assess the sensitivity of hypoxia predictions to model resolution, variations in sediment oxygen consumption and choice of physical horizontal boundary conditions. We find that hypoxia predictions on the shelf are very sensitive to the parameterization of sediment oxygen consumption, a result of the fact that hypoxic conditions are restricted to a relatively thin layer above the bottom over most of the shelf. We also show that the strength of vertical stratification is an important predictor of oxygen concentration in bottom waters and that modification of physical horizontal boundary conditions can have a large effect on hypoxia predictions.

  3. Progressively heterogeneous mismatch of regional oxygen delivery to consumption during graded coronary stenosis in pig left ventricle.

    PubMed

    Alders, David J C; Groeneveld, A B Johan; Binsl, Thomas W; van Beek, Johannes H G M

    2015-11-15

    In normal hearts, myocardial perfusion is fairly well matched to regional metabolic demand, although both are distributed heterogeneously. Nonuniform regional metabolic vulnerability during coronary stenosis would help to explain nonuniform necrosis during myocardial infarction. In the present study, we investigated whether metabolism-perfusion correlation diminishes during coronary stenosis, indicating increasing mismatch of regional oxygen supply to demand. Thirty anesthetized male pigs were studied: controls without coronary stenosis (n = 11); group I, left anterior descending (LAD) coronary stenosis leading to coronary perfusion pressure reduction to 70 mmHg (n = 6); group II, stenosis with perfusion pressure of about 35 mmHg (n = 6); and group III, stenosis with perfusion pressure of 45 mmHg combined with adenosine infusion (n = 7). [2-(13)C]- and [1,2-(13)C]acetate infusion was used to calculate regional O2 consumption from glutamate NMR spectra measured for multiple tissue samples of about 100 mg dry mass in the LAD region. Blood flow was measured with microspheres in the same regions. In control hearts without stenosis, regional oxygen extraction did not correlate with basal blood flow. Average myocardial O2 delivery and consumption decreased during coronary stenosis, but vasodilation with adenosine counteracted this. Regional oxygen extraction was on average decreased during stenosis, suggesting adaptation of metabolism to lower oxygen supply after half an hour of ischemia. Whereas regional O2 delivery correlated with O2 consumption in controls, this relation was progressively lost with graded coronary hypotension but partially reestablished by adenosine infusion. Therefore, coronary stenosis leads to heterogeneous metabolic stress indicated by decreasing regional O2 supply to demand matching in myocardium during partial coronary obstruction. Copyright © 2015 the American Physiological Society.

  4. The use of an optical method to evaluate prokaryotic oxygen consumption under high pressure condition

    NASA Astrophysics Data System (ADS)

    Garel, M.; Martini, S.; Lefèvre, D.; Tamburini, C.

    2016-02-01

    The heterotrophic prokaryotes are the main contributor to organic matter degradation in the ocean and particularly in the deep ocean. Nowadays, a classical way to evaluate the prokaryotic carbon demand (PCD) needs the estimation of both prokaryotic heterotrophic production (PHP) and prokaryotic respiration (PR). PHP measurements in deep-sea waters are relatively well documented and the importance of maintaining the in situ conditions (pressure and temperature) to avoid bias of the real deep-sea activities has been highlighted. However, no accurate methodology is available to measure directly, under in situ conditions (pressure and temperature) PR in the dark ocean. This study is presenting PR measurements under in situ conditions. High-pressure bottles have been adapted with a non-invasive sensor to measure prokaryotic oxygen consumption. The methodology is based on fluorescence quenching where molecular oxygen quenches the luminescence of planar-optode-oxygen sensor widely used in oceanography. Firstly, accuracy, detection limit, precision and response time of oxygen concentration measurements have been investigated in relation to an increase of hydrostatic pressure. Secondly, we will present experiments performed on natural prokaryotic consortium mixed with freshly collected particles to assess the O2 consumption in relation with increasing hydrostatic pressure (150 m depth per day). Finally, first results of coupled PHP and PR measurements at in situ conditions (temperature and pressure) from mesopelagic and bathypelagic samples of the Atlantic Ocean (PAP site), will be discussed. Finally, we will discuss first results of coupled PHP and PR measurements at in situ conditions (temperature and pressure) from Atlantic Ocean mesopelagic and bathypelagic samples (PAP site).

  5. Two-photon luminescence lifetime imaging microscopy (LIM) to follow up cell metabolism and oxygen consumption during theranostic applications

    NASA Astrophysics Data System (ADS)

    Rück, A.; Breymayer, J.; Lilge, L.; Mandel, A.; Schäfer, P.; von Einem, B.; von Arnim, C.; Kalinina, S.

    2018-02-01

    A common property during tumor development is altered energy metabolism, which could lead to a switch from oxidative phosphorylation and glycolysis. The impact of this switch for theranostic applications could be significant. Interestingly altered metabolism could be correlated with a change in the fluorescence lifetimes of both NAD(P)H and FAD. However, as observed in a variety of investigations, the situation is complex and the result is influenced by parameters like oxidative stress, pH or viscosity. Besides metabolism, oxygen levels and consumption has to be taken into account in order to understand treatment responses. For this, correlated imaging of phosphorescence and fluorescence lifetime parameters has been investigated by us and used to observe metabolic markers simultaneously with oxygen concentrations. The technique is based on time correlated single photon counting to detect the fluorescence lifetime of NAD(P)H and FAD by FLIM and the phosphorescence lifetime of newly developed phosphors and photosensitizers by PLIM. For this, the photosensitizer TLD1433 from Theralase, which is based on a ruthenium (II) coordination complex, was used. TLD1433 which acts as a redox indicator was mainly found in cytoplasmatic organelles. The most important observation was that TLD1433 can be used as a phosphor to follow up local oxygen concentration and consumption during photodynamic therapy. Oxygen consumption was accompanied by a change in cell metabolism, observed by simultaneous FLIM/PLIM. The combination of autofluorescence-FLIM and phosphor-PLIM in luminescence lifetime microscopy provides new insights in light induced reactions.

  6. Mode of exercise and sex are not important for oxygen consumption during and in recovery from sprint interval training.

    PubMed

    Townsend, Logan K; Couture, Katie M; Hazell, Tom J

    2014-12-01

    Most sprint interval training (SIT) research involves cycling as the mode of exercise and whether running SIT elicits a similar excess postexercise oxygen consumption (EPOC) response to cycling SIT is unknown. As running is a more whole-body-natured exercise, the potential EPOC response could be greater when using a running session compared with a cycling session. The purpose of the current study was to determine the acute effects of a running versus cycling SIT session on EPOC and whether potential sex differences exist. Sixteen healthy recreationally active individuals (8 males and 8 females) had their gas exchange measured over ∼2.5 h under 3 experimental sessions: (i) a cycle SIT session, (ii) a run SIT session, and (iii) a control (CTRL; no exercise) session. Diet was controlled. During exercise, both SIT modes increased oxygen consumption (cycle: male, 1.967 ± 0.343; female, 1.739 ± 0.296 L·min(-1); run: male, 2.169 ± 0.369; female, 1.791 ± 0.481 L·min(-1)) versus CTRL (male, 0.425 ± 0.065 L·min(-1); female, 0.357 ± 0.067; P < 0.001), but not compared with each other (P = 0.234). In the first hour postexercise, oxygen consumption was still increased following both run (male, 0.590 ± 0.065; female, 0.449 ± 0.084) and cycle SIT (male, 0.556 ± 0.069; female, 0.481 ± 0.110 L·min(-1)) versus CTRL and oxygen consumption was maintained through the second hour postexercise (CTRL: male, 0.410 ± 0.048; female, 0.332 ± 0.062; cycle: male, 0.430 ± 0.047; female, 0.395 ± 0.087; run: male, 0.463 ± 0.051; female, 0.374 ± 0.087 L·min(-1)). The total EPOC was not significantly different between modes of exercise or males and females (P > 0.05). Our data demonstrate that the mode of exercise during SIT (cycling or running) is not important to O2 consumption and that males and females respond similarly.

  7. Effects of Deepwater Horizon crude oil exposure, temperature and developmental stage on oxygen consumption of embryonic and larval mahi-mahi (Coryphaena hippurus).

    PubMed

    Pasparakis, Christina; Mager, Edward M; Stieglitz, John D; Benetti, Daniel; Grosell, Martin

    2016-12-01

    The timing and location of the 2010 Deepwater Horizon (DWH) incident within the Gulf of Mexico resulted in crude oil exposure of many commercially and ecologically important fish species, such as mahi-mahi (Coryphaena hippurus), during the sensitive early life stages. Previous research has shown that oil exposure during the embryonic stage of predatory pelagic fish reduces cardiac function - a particularly important trait for fast-swimming predators with high aerobic demands. However, it is unclear whether reductions in cardiac function translate to impacts on oxygen consumption in these developing embryos and larvae. A 24-channel optical-fluorescence oxygen-sensing system for high-throughput respiration measurements was used to investigate the effects of oil exposure, temperature and developmental stage on oxygen consumption rates in embryonic and larval mahi-mahi. Oil-exposed developing mahi-mahi displayed increased oxygen consumption, despite clear cardiac deformities and bradycardia, confirming oxygen uptake and delivery from a source other than the circulatory system. In addition to metabolic rate measurements, nitrogenous waste excretion was measured to test the hypothesis that increased energy demand was fueled by protein catabolism. This is the first study to our knowledge that demonstrates increased energy demand and energy depletion in oil-exposed developing mahi-mahi. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Turbulent flow reduces oxygen consumption in the labriform swimming shiner perch, Cymatogaster aggregata.

    PubMed

    van der Hoop, Julie M; Byron, Margaret L; Ozolina, Karlina; Miller, David L; Johansen, Jacob L; Domenici, Paolo; Steffensen, John F

    2018-06-12

    Fish swimming energetics are often measured in laboratory environments which attempt to minimize turbulence, though turbulent flows are common in the natural environment. To test whether the swimming energetics and kinematics of shiner perch, Cymatogaster aggregata (a labriform swimmer), were affected by turbulence, two flow conditions were constructed in a swim-tunnel respirometer. A low-turbulence flow was created using a common swim-tunnel respirometry setup with a flow straightener and fine-mesh grid to minimize velocity fluctuations. A high-turbulence flow condition was created by allowing large velocity fluctuations to persist without a flow straightener or fine grid. The two conditions were tested with particle image velocimetry to confirm significantly different turbulence properties throughout a range of mean flow speeds. Oxygen consumption rate of the swimming fish increased with swimming speed and pectoral fin beat frequency in both flow conditions. Higher turbulence also caused a greater positional variability in swimming individuals (versus low-turbulence flow) at medium and high speeds. Surprisingly, fish used less oxygen in high-turbulence compared with low-turbulence flow at medium and high swimming speeds. Simultaneous measurements of swimming kinematics indicated that these reductions in oxygen consumption could not be explained by specific known flow-adaptive behaviours such as Kármán gaiting or entraining. Therefore, fish in high-turbulence flow may take advantage of the high variability in turbulent energy through time. These results suggest that swimming behaviour and energetics measured in the lab in straightened flow, typical of standard swimming respirometers, might differ from that of more turbulent, semi-natural flow conditions. © 2018. Published by The Company of Biologists Ltd.

  9. Changes in Whole-Body Oxygen Consumption and Skeletal Muscle Mitochondria During Linezolid-Induced Lactic Acidosis.

    PubMed

    Protti, Alessandro; Ronchi, Dario; Bassi, Gabriele; Fortunato, Francesco; Bordoni, Andreina; Rizzuti, Tommaso; Fumagalli, Roberto

    2016-07-01

    To better clarify the pathogenesis of linezolid-induced lactic acidosis. Case report. ICU. A 64-year-old man who died with linezolid-induced lactic acidosis. Skeletal muscle was sampled at autopsy to study mitochondrial function. Lactic acidosis developed during continuous infusion of linezolid while oxygen consumption and oxygen extraction were diminishing from 172 to 52 mL/min/m and from 0.27 to 0.10, respectively. Activities of skeletal muscle respiratory chain complexes I, III, and IV, encoded by nuclear and mitochondrial DNA, were abnormally low, whereas activity of complex II, entirely encoded by nuclear DNA, was not. Protein studies confirmed stoichiometric imbalance between mitochondrial (cytochrome c oxidase subunits 1 and 2) and nuclear (succinate dehydrogenase A) DNA-encoded respiratory chain subunits. These findings were not explained by defects in mitochondrial DNA or transcription. There were no compensatory mitochondrial biogenesis (no induction of nuclear respiratory factor 1 and mitochondrial transcript factor A) or adaptive unfolded protein response (reduced concentration of heat shock proteins 60 and 70). Linezolid-induced lactic acidosis is associated with diminished global oxygen consumption and extraction. These changes reflect selective inhibition of mitochondrial protein synthesis (probably translation) with secondary mitonuclear imbalance. One novel aspect of linezolid toxicity that needs to be confirmed is blunting of reactive mitochondrial biogenesis and unfolded protein response.

  10. Cerebral blood flow and oxygen consumption during ethanol withdrawal in the rat.

    PubMed

    Hemmingsen, R; Barry, D I; Hertz, M M; Klinken, L

    1979-09-14

    The ethanol withdrawal syndrome in man and animals is characterized by signs of CNS hyperactivity although a direct measurement of a physiological variable reflecting this CNS hyperactivity has never been performed in untreated man or in animals. We induced ethanol dependence in the rat by means of intragastric intubation with a 20% w/v ethanol solution, thus keeping the animals in a state of continuous severe intoxication for 3--4 days; during the subsequent state of withdrawal characterized by tremor, rigidity, stereotyped movements and general seizures a 25% increase in cerebral oxygen consumption (CMRO2) could be measured; this increase was not due to catecholamines originating from adrenal medulla as adrenomedullectomized animals showed a similar increase in CMRO2 (28%); the withdrawing animals showed a corresponding cerebral blood flow (CBF) increase. The elevated CMRO2 and CBF could be reduced to normal by administration of a beta-adrenergic receptor blocker (propranolol 2 mg/kg i.v.), and hence the increased CMRO2 during ethanol withdrawal could be related to catecholaminergic systems in the brain, e.g. the noradrenergic locus coeruleus system which is anatomically well suited as a general activating system. This interpretation is supported by the earlier neurochemical finding of an increased cerebral noradrenaline turnover during ethanol withdrawal. The exact mechanism underlying the increased cerebral oxygen consumption during ethanol withdrawal and the effect of propranolol on cerebral function during this condition remains to be clarified.

  11. Oxygen consumption of the chicken embryo: interaction between temperature and oxygenation.

    PubMed

    Mortola, Jacopo P; Labbè, Katherine

    2005-03-01

    We measured the effects of hypoxia and changes in ambient temperature (T) on the oxygen consumption (VO2) of chicken embryos at embryonic days 11, 16 and 20 (E11, E16 and E20, respectively), and post-hatching day 1 (H1). Between 30 and 39 degrees C, at E11 and E16, VO2 changed linearly with T, as in ectothermic animals, with a Q10 of about 2.1. At E20, VO2 did not significantly change with T, indicating the onset of endothermy. At H1, a drop in T increased VO2, a clear thermogenic response. Hypoxia (11% O2 for 30 min) decreased VO2, by an amount that varied with T and age. At H1, hypoxia lowered VO2 especially at low T. At E20, hypoxic hypometabolism was similar at all T. At E11 and E16, hypoxia lowered VO2 only at the higher T. In fact, at E11, with T=39 degrees C even a modest hypoxia (15-18% O2) decreased VO2. Upon return to normoxia after 40 min of 11% O2, VO2 did not rise above the pre-hypoxic level, indicating that the hypometabolism during hypoxia did not generate an O2 debt. At E11, during modest hypoxia (16% O2) at 36 degrees C, the drop in VO2 was lifted by raising the T to 39 degrees C, suggesting that the hypoxic hypometabolism at 36 degrees C was not due to O2-supply limitation. In conclusion, the hypometabolic effects of hypoxia on the chicken embryo's VO2 depend on the development of the thermogenic ability, occurring predominantly at high T during the early (ectothermic phase) and at low T during the late (endothermic) phase. At E11, both low T and low oxygen force VO2 to drop. However, at a near-normal T, modest hypoxia promotes a hypometabolic response with the characteristics of regulated O2 conformism.

  12. Fungal mitochondrial oxygen consumption induces the growth of strict anaerobic bacteria.

    PubMed

    Lambooij, Joost M; Hoogenkamp, Michel A; Brandt, Bernd W; Janus, Marleen M; Krom, Bastiaan P

    2017-12-01

    Fungi are commonly encountered as part of a healthy oral ecosystem. Candida albicans is the most often observed and investigated fungal species in the oral cavity. The role of fungi in the oral ecosystem has remained enigmatic for decades. Recently, it was shown that C. albicans, in vitro, influences the bacterial composition of young oral biofilms, indicating it possibly plays a role in increasing diversity in the oral ecosystem. C. albicans favored growth of strictly anaerobic species under aerobic culture conditions. In the present study, the role of mitochondrial respiration, as mechanism by which C. albicans modifies its environment, was investigated. Using oxygen sensors, a rapid depletion of dissolved oxygen (dO 2 ) was observed. This decrease was not C. albicans specific as several non-albicans Candida species showed similar oxygen consumption. Heat inactivation as well as addition of the specific mitochondrial respiration inhibitor Antimycin A inhibited depletion of dO 2 . Using 16S rDNA sequencing, it is shown that mitochondrial activity, more than physical presence of C. albicans is responsible for inducing growth of strictly anaerobic oral bacteria in aerobic growth conditions. The described mechanism of dO 2 depletion may be a general mechanism by which fungi modulate their direct environment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Oxygen Consumption of Elite Distance Runners on an Anti-Gravity Treadmill®

    PubMed Central

    McNeill, David K.P.; Kline, John R.; de Heer, Hendrick D.; Coast, J. Richard

    2015-01-01

    increasing amounts of body weight-support (BWS), the slope of the relationship between velocity and oxygen consumption (ΔVO2/Δv) decreases significantly. This means the change in oxygen consumption (VO2) is significantly smaller over a given change in velocity at higher amounts of BWS. There is a non-linear decrease in VO2 with increasing BWS. As such, with each increment in the amount of BWS provided, the reduction in VO2 becomes increasingly smaller. This paper provides first of its kind data on the effects of BWS on the cost of running among highly trained, elite runners. The outcomes of this study are in line with previous findings among non-elite runners. PMID:25983582

  14. Oxygen consumption of elite distance runners on an anti-gravity treadmill®.

    PubMed

    McNeill, David K P; Kline, John R; de Heer, Hendrick D; Coast, J Richard

    2015-06-01

    amounts of body weight-support (BWS), the slope of the relationship between velocity and oxygen consumption (ΔVO2/Δv) decreases significantly. This means the change in oxygen consumption (VO2) is significantly smaller over a given change in velocity at higher amounts of BWS.There is a non-linear decrease in VO2 with increasing BWS. As such, with each increment in the amount of BWS provided, the reduction in VO2 becomes increasingly smaller.This paper provides first of its kind data on the effects of BWS on the cost of running among highly trained, elite runners. The outcomes of this study are in line with previous findings among non-elite runners.

  15. A Stirred Microchamber for Oxygen Consumption Rate Measurements With Pancreatic Islets

    PubMed Central

    Papas, Klearchos K.; Pisania, Anna; Wu, Haiyan; Weir, Gordon C.; Colton, Clark K.

    2010-01-01

    Improvements in pancreatic islet transplantation for treatment of diabetes are hindered by the absence of meaningful islet quality assessment methods. Oxygen consumption rate (OCR) has previously been used to assess the quality of organs and primary tissue for transplantation. In this study, we describe and characterize a stirred microchamber for measuring OCR with small quantities of islets. The device has a titanium body with a chamber volume of about 200 µL and is magnetically stirred and water jacketed for temperature control. Oxygen partial pressure (pO2) is measured by fluorescence quenching with a fiber optic probe, and OCR is determined from the linear decrease of pO2 with time. We demonstrate that measurements can be made rapidly and with high precision. Measurements with βTC3 cells and islets show that OCR is directly proportional to the number of viable cells in mixtures of live and dead cells and correlate linearly with membrane integrity measurements made with cells that have been cultured for 24 h under various stressful conditions. PMID:17497731

  16. Intravenous thiamine is associated with increased oxygen consumption in critically ill patients with preserved cardiac index.

    PubMed

    Berg, Katherine M; Gautam, Shiva; Salciccioli, Justin D; Giberson, Tyler; Saindon, Brian; Donnino, Michael W

    2014-12-01

    Oxygen consumption may be impaired in critically ill patients. To evaluate the effect of intravenous thiamine on oxygen consumption ([Formula: see text]o2) in critically ill patients. This was a small, exploratory open-label pilot study conducted in the intensive care units at a tertiary care medical center. Critically ill adults requiring mechanical ventilation were screened for enrollment. Oxygen consumption ([Formula: see text]o2) and cardiac index (CI) were recorded continuously for 9 hours. After 3 hours of baseline data collection, 200 mg of intravenous thiamine was administered. The outcome was change in [Formula: see text]o2 after thiamine administration. Twenty patients were enrolled and 3 were excluded because of incomplete [Formula: see text]o2 data, leaving 17 patients for analysis. There was a trend toward increase in [Formula: see text]o2 after thiamine administration (16.3 ml/min, SE 8.5; P = 0.052). After preplanned adjustment for changes in CI in case of a delivery-dependent state in some patients (with exclusion of one additional patient because of missing CI data), this became statistically significant (16.9 ml/min, SE 8.6; P = 0.047). In patients with average CI greater than our cohort's mean value of 3 L/min/m(2), [Formula: see text]o2 increased by 70.9 ml/min (±16; P < 0.0001) after thiamine. Thiamine had no effect in patients with reduced CI (< 2.4 L/min/m(2)). There was no association between initial thiamine level and change in [Formula: see text]o2 after thiamine administration. The administration of a single dose of thiamine was associated with a trend toward increase in [Formula: see text]o2 in critically ill patients. There was a significant increase in [Formula: see text]o2 in those patients with preserved or elevated CI. Further study is needed to better characterize the role of thiamine in oxygen extraction. Clinical trial registered with www.clinicaltrials.gov (NCT01462279).

  17. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.

    PubMed

    Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A

    2009-06-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.

  18. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL

    PubMed Central

    Etzkorn, James R.; McQuaide, Sarah C.; Anderson, Judy B.; Meldrum, Deirdre R.; Parviz, Babak A.

    2010-01-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing “single-cell” biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells. PMID:20694048

  19. Oxygen-Concentrating Cell

    NASA Technical Reports Server (NTRS)

    Buehler, K.

    1986-01-01

    High-purity oxygen produced from breathing air or from propellantgrade oxygen in oxygen-concentrating cell. Operating economics of concentrator attractive: Energy consumption about 4 Wh per liter of oxygen, slightly lower than conventional electrochemical oxygen extractors.

  20. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students.

    PubMed

    Scheer, Krista S; Siebrant, Sarah M; Brown, Gregory A; Shaw, Brandon S; Shaw, Ina

    Nintendo Wii, Sony Playstation Move , and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, K inect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a "physically active" home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system.

  1. Wii, Kinect, and Move. Heart Rate, Oxygen Consumption, Energy Expenditure, and Ventilation due to Different Physically Active Video Game Systems in College Students

    PubMed Central

    SCHEER, KRISTA S.; SIEBRANT, SARAH M.; BROWN, GREGORY A.; SHAW, BRANDON S.; SHAW, INA

    2014-01-01

    Nintendo Wii, Sony Playstation Move, and Microsoft XBOX Kinect are home video gaming systems that involve player movement to control on-screen game play. Numerous investigations have demonstrated that playing Wii is moderate physical activity at best, but Move and Kinect have not been as thoroughly investigated. The purpose of this study was to compare heart rate, oxygen consumption, and ventilation while playing the games Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat. Heart rate, oxygen consumption, and ventilation were measured at rest and during a graded exercise test in 10 males and 9 females (19.8 ± 0.33 y, 175.4 ± 2.0 cm, 80.2 ± 7.7 kg,). On another day, in a randomized order, the participants played Wii Boxing, Kinect Boxing, and Move Gladiatorial Combat while heart rate, ventilation, and oxygen consumption were measured. There were no differences in heart rate (116.0 ± 18.3 vs. 119.3 ± 17.6 vs. 120.1 ± 17.6 beats/min), oxygen consumption (9.2 ± 3.0 vs. 10.6 ± 2.4 vs. 9.6 ± 2.4 ml/kg/min), or minute ventilation (18.9 ± 5.7 vs. 20.8 ± 8.0 vs. 19.7 ± 6.4 L/min) when playing Wii boxing, Kinect boxing, or Move Gladiatorial Combat (respectively). Playing Nintendo Wii Boxing, XBOX Kinect Boxing, and Sony PlayStation Move Gladiatorial Combat all increase heart rate, oxygen consumption, and ventilation above resting levels but there were no significant differences between gaming systems. Overall, playing a “physically active” home video game system does not meet the minimal threshold for moderate intensity physical activity, regardless of gaming system. PMID:27182399

  2. Low Oxygen Consumption is Related to a Hypomethylation and an Increased Secretion of IL-6 in Obese Subjects with Sleep Apnea-Hypopnea Syndrome.

    PubMed

    Lopez-Pascual, Amaya; Lasa, Arrate; Portillo, María P; Arós, Fernando; Mansego, María L; González-Muniesa, Pedro; Martinez, J Alfredo

    2017-01-01

    Deoxyribonucleic acid (DNA) methylation is an epigenetic modification involved in gene expression regulation, usually via gene silencing, which contributes to the risks of many multifactorial diseases. The aim of the present study was to analyze the influence of resting oxygen consumption on global and gene DNA methylation as well as protein secretion of inflammatory markers in blood cells from obese subjects with sleep apnea-hypopnea syndrome (SAHS). A total of 44 obese participants with SAHS were categorized in 2 groups according to their resting oxygen consumption. DNA methylation levels were evaluated using a methylation-sensitive high resolution melting approach. The analyzed interleukin 6 (IL6) gene cytosine phosphate guanine (CpG) islands showed a hypomethylation, while serum IL-6 was higher in the low compared to the high oxygen consumption group (p < 0.05). Moreover, an age-related loss of DNA methylation of tumor necrosis factor (B = -0.82, 95% CI -1.33 to -0.30) and long interspersed nucleotide element 1 (B = -0.46; 95% CI -0.87 to -0.04) gene CpGs were found. Finally, studied CpG methylation levels of serpin peptidase inhibitor, clade E member 1 (r = 0.43; p = 0.01), and IL6 (r = 0.41; p = 0.02) were positively associated with fat-free mass. These findings suggest a potential role of oxygen in the regulation of inflammatory genes. Oxygen consumption measurement at rest could be proposed as a clinical biomarker of metabolic health. © 2017 S. Karger AG, Basel.

  3. The Effect of Postoperative Skin-Surface Warming on Oxygen Consumption and the Shivering Threshold

    PubMed Central

    Alfonsi, P.; Nourredine, K.; Adam, F.; Chauvin, M.; Sessler, D. I.

    2005-01-01

    Summary Cutaneous warming is reportedly an effective treatment for shivering during epidural and after general anaesthesia. We quantified the efficacy of cutaneous warming as a treatment for shivering. Unwarmed surgical patients (final intraoperative core temperatures ≈35°C) were randomly assigned to be covered with a blanket (n=9) or full-body forced-air cover (n=9). Shivering was evaluated clinically and by oxygen consumption. Forced-air heating increased mean-skin temperature (35.7±0.4 °C vs. 33.2±0.8°C, P< 0.0001) and lowered core temperature at the shivering threshold (35.7±0.2 °C vs. 36.4±0.2°C, P< 0.0001). Active warming improved thermal comfort and significantly reduced oxygen consumption from 9.7±4.4 to 5.6±1.9 mL·min−1·kg−1(P=0.038). However, duration of shivering was similar in the two groups (37±11 min [warming] and 36±10 min [control]). Core temperature thus contributed about four times as much as skin temperature to control of shivering. Cutaneous warming improved thermal comfort and reduced metabolic stress in postoperative patients, but did not quickly obliterate shivering. PMID:14705689

  4. Using carbon emissions, oxygen consumption, and retained energy to calculate dietary ME intake by beef steers

    USDA-ARS?s Scientific Manuscript database

    Eight cross-bred beef steers (initial BW = 241 ± 4.10 kg) were used in a 77-d feeding experiment to determine if ME intake can be determined from carbon emissions, oxygen consumption, and energy retention estimates. Steers were housed in a pen equipped with individual feed bunks and animal access w...

  5. Autonomic control of cardiac function and myocardial oxygen consumption during hypoxic hypoxia.

    NASA Technical Reports Server (NTRS)

    Erickson, H. H.; Stone, H. L.

    1972-01-01

    Investigation in 19 conscious dogs of the importance of the sympathetic nervous system in the coronary and cardiac response to altitude (hypoxic) hypoxia. Beta-adrenergic blockade was used to minimize the cardiac effect associated with sympathetic receptors. It is shown that the autonomic nervous system, and particularly the sympathetic nervous system, is responsible for the increase in ventricular function and myocardial oxygen consumption that occurs during hypoxia. Minimizing this response through appropriate conditioning and training may improve the operating efficiency of the heart and reduce the hazard of hypoxia and other environmental stresses, such as acceleration, which are encountered in advanced aircraft systems.

  6. Restoration of Normal Cerebral Oxygen Consumption with Rapamycin Treatment in a Rat Model of Autism-Tuberous Sclerosis.

    PubMed

    Chi, Oak Z; Wu, Chang-Chih; Liu, Xia; Rah, Kang H; Jacinto, Estela; Weiss, Harvey R

    2015-09-01

    Tuberous sclerosis (TSC) is associated with autism spectrum disorders and has been linked to metabolic dysfunction and unrestrained signaling of the mammalian target of rapamycin (mTOR). Inhibition of mTOR by rapamycin can mitigate some of the phenotypic abnormalities associated with TSC and autism, but whether this is due to the mTOR-related function in energy metabolism remains to be elucidated. In young Eker rats, an animal model of TSC and autism, which harbors a germ line heterozygous Tsc2 mutation, we previously reported that cerebral oxygen consumption was pronouncedly elevated. Young (4 weeks) male control Long-Evans and Eker rats were divided into control and rapamycin-treated (20 mg/kg once daily for 2 days) animals. Cerebral regional blood flow ((14)C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. We found significantly increased basal O2 consumption in the cortex (8.7 ± 1.5 ml O2/min/100 g Eker vs. 2.7 ± 0.2 control), hippocampus, pons and cerebellum. Regional cerebral blood flow and cerebral O2 extractions were also elevated in all brain regions. Rapamycin had no significant effect on O2 consumption in any brain region of the control rats, but significantly reduced consumption in the cortex (4.1 ± 0.3) and all other examined regions of the Eker rats. Phosphorylation of mTOR and S6K1 was similar in the two groups and equally reduced by rapamycin. Thus, a rapamycin-sensitive, mTOR-dependent but S6K1-independent, signal led to enhanced oxidative metabolism in the Eker brain. We found decreased Akt phosphorylation in Eker but not Long-Evans rat brains, suggesting that this may be related to the increased cerebral O2 consumption in the Eker rat. Our findings suggest that rapamycin targeting of Akt to restore normal cerebral metabolism could have therapeutic potential in tuberous sclerosis and autism.

  7. An Examination of Drunkorexia, Greek Affiliation, and Alcohol Consumption

    ERIC Educational Resources Information Center

    Ward, Rose Marie; Galante, Marina; Trivedi, Rudra; Kahrs, Juliana

    2015-01-01

    The purpose of this study is to examine the relation between Greek affiliation, the College Life Alcohol Salience Scale, alcohol consumption, disordered eating, and drunkorexia (i.e., using disordered eating practices as compensation for calories consumed through alcohol). A total of 349 college students (254 females, 89 males) participated in the…

  8. A procedure for the measurement of Oxygen Consumption Rates (OCRs) in red wines and some observations about the influence of wine initial chemical composition.

    PubMed

    Marrufo-Curtido, Almudena; Carrascón, Vanesa; Bueno, Mónica; Ferreira, Vicente; Escudero, Ana

    2018-05-15

    The rates at which wine consumes oxygen are important technological parameters for whose measurement there are not accepted procedures. In this work, volumes of 8 wines are contacted with controlled volumes of air in air-tight tubes containing oxygen-sensors and are further agitated at 25 °C until O 2 consumption is complete. Three exposure levels of O 2 were used: low (10 mg/L) and medium or high (18 or 32 mg/L plus the required amount to oxidize all wine SO 2 ). In each oxygen level, 2-4 independent segments following pseudo-first order kinetics were identified, plus an initial segment at which wine consumed O 2 very fast. Overall, multivariate data techniques identify six different Oxygen-Consumption-Rates (OCRs) as required to completely define wine O 2 consumption. Except the last one, all could be modeled from the wine initial chemical composition. Total acetaldehyde, Mn, Cu/Fe, blue and red pigments and gallic acid seem to be essential to determine these OCRs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Which type of cane is the most efficient, based on oxygen consumption and balance capacity, in chronic stroke patients?

    PubMed

    Jeong, Yeon-Gyu; Jeong, Yeon-Jae; Myong, Jun-Pyo; Koo, Jung-Wan

    2015-02-01

    Canes are widely prescribed as walking aids, but little is known about the effects of canes on the physiological cost of walking. The purpose of this study was to investigate the differences in oxygen consumption associated with the gaits of hemiplegic patients in terms of balance capacity according to the type of cane used. Twenty-nine patients with chronic stroke were divided into poor-balance (n=15) and relatively-better-balance groups (n=14) based on a cutoff score of 49 on the Berg balance scale (BBS). Each patient completed three consecutive days of walking with a randomly assigned singlepoint cane, quad cane, or hemi-walker. We measured the oxygen expenditure and oxygen cost using a portable gas analyzer and heart rate during a 6-min walk test (6MWT) and a 10-m walk test (10MWT). The oxygen expenditure, gait endurance, and gait velocity were higher with the single-point cane (p<0.01) than with any of the other cane types, and the oxygen costs were lower (p<0.01) with the single-point cane among the patients with relatively better balance. The oxygen cost for the quad cane was lower (p<0.01) than that found for any the other cane types among the patients with relatively poor balance. Our study revealed that single-point canes require less oxygen use at a given speed and permits greater speed at the same oxygen consumption for hemiplegic patients with good balance. Walking aids with a greater base support may be more suitable than those with a smaller base support for patients with relatively poor balance. However, our conclusions are only preliminary because of the small sample size (KCT0001076). Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Effect of catalase inactivation on levels of inorganic peroxides, superoxide dismutase, glutathione, oxygen consumption and life span in adult houseflies (Musca domestica).

    PubMed Central

    Allen, R G; Farmer, K J; Sohal, R S

    1983-01-01

    The effects of total inhibition of catalase, induced by 3-amino-1,2,4-triazole, on the adult housefly (Musca domestica) were examined. The lack of catalase activity had no effect on the longevity of the houseflies. Inorganic-peroxide concentration was elevated at younger ages, but declined in older flies. The rate of oxygen consumption by the flies was greatly decreased and the levels of oxidized as well as reduced glutathione were augmented. Superoxide dismutase activity showed a slight increase. This study suggests that loss of catalase activity does not affect survival of houseflies due to adaptive responses. PMID:6661212

  11. An innovative coupling between column leaching and oxygen consumption tests to assess behavior of contaminated marine dredged sediments.

    PubMed

    Couvidat, Julien; Benzaazoua, Mostafa; Chatain, Vincent; Zhang, Fan; Bouzahzah, Hassan

    2015-07-01

    Contaminated dredged sediments are often considered hazardous wastes, so they have to be adequately managed to avoid leaching of pollutants. The mobility of inorganic contaminants is a major concern. Metal sulfides (mainly framboïdal pyrite, copper, and zinc sulfides) have been investigated in this study as an important reactive metal-bearing phase sensitive to atmospheric oxygen action. An oxygen consumption test (OC-Test) has been adapted to assess the reactivity of dredged sediments when exposed to atmospheric oxygen. An experimental column set-up has been developed allowing the coupling between leaching and oxygen consumption test to investigate the reactivity of the sediment. This reactivity, which consisted of sulfide oxidation, was found to occur for saturation degree between 60 and 90 % and until the 20th testing week, through significant sulfates releases. These latter were assumed to come from sulfide oxidation in the first step of the test, then probably from gypsum dissolution. Confrontation results of OC-Test and leachate quality shows that Cu was well correlated to sulfates releases, which in turn, leads to Ca and Mg dissolution (buffer effect). Cu, and mostly Zn, was associated to organic matter, phyllosilicates, and other minerals through organo-clay complexes. This research confirmed that the OC-Test, originally developed for mine tailings, could be a useful tool in the dredged sediment field which can allow for intrinsic characterization of reactivity of a material suspected to readily reacting with oxygen and for better understanding of geochemical processes that affect pollutants behavior, conversion, and transfer in the environment.

  12. Exercise Heart Rate as a Predictor of Oxygen Consumption During Decompression from Saturation Diving

    DTIC Science & Technology

    2002-11-01

    Swimming," nt. J. Sports Med., Vol. 18, (1997), pp. 347-353 3. L. B. Rowell, Human Circulation: Regulation during Physical Stress (New York: Oxford...University Press, 1986). 4. American College of Sports Medicine; B. A. Franklin, W. H. Whaley, and E. T. Howley, eds., ACSM’s Guidelines for Exercise...function of oxygen consumption (VO 2)(L/min). Averages of regression parameters for individual subjects. IMMERSED HRvs . V0 2 Depth Slope Min Max Incpt, Min

  13. Pyruvate induces transient tumor hypoxia by enhancing mitochondrial oxygen consumption and potentiates the anti-tumor effect of a hypoxia-activated prodrug TH-302.

    PubMed

    Takakusagi, Yoichi; Matsumoto, Shingo; Saito, Keita; Matsuo, Masayuki; Kishimoto, Shun; Wojtkowiak, Jonathan W; DeGraff, William; Kesarwala, Aparna H; Choudhuri, Rajani; Devasahayam, Nallathamby; Subramanian, Sankaran; Munasinghe, Jeeva P; Gillies, Robert J; Mitchell, James B; Hart, Charles P; Krishna, Murali C

    2014-01-01

    TH-302 is a hypoxia-activated prodrug (HAP) of bromo isophosphoramide mustard that is selectively activated within hypoxic regions in solid tumors. Our recent study showed that intravenously administered bolus pyruvate can transiently induce hypoxia in tumors. We investigated the mechanism underlying the induction of transient hypoxia and the combination use of pyruvate to potentiate the anti-tumor effect of TH-302. The hypoxia-dependent cytotoxicity of TH-302 was evaluated by a viability assay in murine SCCVII and human HT29 cells. Modulation in cellular oxygen consumption and in vivo tumor oxygenation by the pyruvate treatment was monitored by extracellular flux analysis and electron paramagnetic resonance (EPR) oxygen imaging, respectively. The enhancement of the anti-tumor effect of TH-302 by pyruvate treatment was evaluated by monitoring the growth suppression of the tumor xenografts inoculated subcutaneously in mice. TH-302 preferentially inhibited the growth of both SCCVII and HT29 cells under hypoxic conditions (0.1% O2), with minimal effect under aerobic conditions (21% O2). Basal oxygen consumption rates increased after the pyruvate treatment in SCCVII cells in a concentration-dependent manner, suggesting that pyruvate enhances the mitochondrial respiration to consume excess cellular oxygen. In vivo EPR oxygen imaging showed that the intravenous administration of pyruvate globally induced the transient hypoxia 30 min after the injection in SCCVII and HT29 tumors at the size of 500-1500 mm(3). Pretreatment of SCCVII tumor bearing mice with pyruvate 30 min prior to TH-302 administration, initiated with small tumors (∼ 550 mm(3)), significantly delayed tumor growth. Our in vitro and in vivo studies showed that pyruvate induces transient hypoxia by enhancing mitochondrial oxygen consumption in tumor cells. TH-302 therapy can be potentiated by pyruvate pretreatment if started at the appropriate tumor size and oxygen concentration.

  14. Estimation of oxygen consumption during cycling and rowing.

    PubMed

    Baig, Dur-e-Zehra; Savkin, Andrey V; Celler, Branko G

    2012-01-01

    The aim of this paper is to develop estimator that can predict oxygen consumption (V(O2)) during cycling and rowing exercises, by using non-invasive and easily measurable quantities such as heart rate (HR), respiratory rate (RespR) and frequency of exercising activity. The frequency of exercise is quantified as a universal measure of exercise intensity and is known as Exercise Rate (ER). This ER is responsible for deviation in V(O2) (ΔV(O2)), HR (ΔHR), and RespR (ΔRespR) from their respective baseline measurements during exercise. Therefore, ΔV(O2) can be estimated from Δ, ΔRespR and ER. The resting measured of V(O2) is referred as V(O(2rest)); this is computed from the physical fitness of an individual. The Hammerstein model is adopted for the estimation of ΔV(O2). Results in this study demonstrate that the developed estimators for each type of exercise are capable of estimating V(O2) by adding up V(O(2rest)) and ΔV(O2) at various intensities during cycling and rowing.

  15. Effects of zilpaterol hydrochloride on methane production, total body oxygen consumption, and blood metabolites in finishing beef steers

    USDA-ARS?s Scientific Manuscript database

    An indirect calorimetry experiment was conducted to determine the effects of feeding zilpaterol hydrochloride (ZH) for 20 d on total body oxygen consumption, respiratory quotient, methane production, and blood metabolites in finishing beef steers. Sixteen Angus steers (initial BW = 555 ± 12.7 kg) w...

  16. CELL RESPIRATION STUDIES : II. A COMPARATIVE STUDY OF THE OXYGEN CONSUMPTION OF BLOOD FROM NORMAL INDIVIDUALS AND PATIENTS WITH INCREASED LEUCOCYTE COUNTS (SEPSIS; CHRONIC MYELOGENOUS LEUCEMIA).

    PubMed

    Daland, G A; Isaacs, R

    1927-06-30

    1. The oxygen consumption of blood of normal individuals, when the hemoglobin is saturated with oxygen, is practically zero within the limits of experimental error of the microspirometer used. 2. The oxygen consumed in a microspirometer by the blood of patients with chronic myelogenous leucemia with a high white blood cell count, and of one with leucocytosis from sepsis, was proportional to the number of adult polymorphonuclear neutrophils in the blood. 3. No correlation could be made between the rate of oxygen absorption and the total number of white blood cells in the blood, or the total number of immature cells, or the number of red blood cells, or the amount of oxyhemoglobin. 4. The blood of patients with chronic myelogenous leucemia continued to use oxygen in the microspirometer longer than that of normal individuals, and the hemoglobin, in the leucemic bloods, became desaturated even though exposed to air. 5. In blood in which the bulk. of the cells were immature and the mature cells few, the oxygen consumption was lower than in blood in which the mature cells predominated. The rate of oxygen consumption of the immature cells was relatively low as compared to the mature. 6. The slower rate of oxygen absorption by the immature leucocytes in chronic myelogenous leucemia as compared to the mature cells, places them, in accord with Warburg's reports, in the class of the malignant tissues in this respect rather than in the group of young or embryonic cells.

  17. Quantitative 17O imaging towards oxygen consumption study in tumor bearing mice at 7 T.

    PubMed

    Narazaki, Michiko; Kanazawa, Yoko; Koike, Sachiko; Ando, Koichi; Ikehira, Hiroo

    2013-06-01

    (17)O magnetic resonance imaging (MRI) using a conventional pulse sequence was explored as a method of quantitative imaging towards regional oxygen consumption rate measurement for tumor evaluation in mice. At 7 T, fast imaging with steady state (FISP) was the best among gradient echo, fast spin echo and FISP for the purpose. The distribution of natural abundance H2(17)O in mice was visualized under spatial resolution of 2.5 × 2.5mm(2) by FISP in 10 min. The signal intensity by FISP showed a linear relationship with (17)O quantity both in phantom and mice. Following the injection of 5% (17)O enriched saline, (17)O re-distribution was monitored in temporal resolution down to 5 sec with an image quality sufficient to distinguish each organ. The image of labeled water produced from inhaled (17)O2 gas was also obtained. The present method provides quantitative (17)O images under sufficient temporal and spatial resolution for the evaluation of oxygen consumption rate in each organ. Experiments using various model compounds of R-OH type clarified that the signal contribution of body constituents other than water in the present in vivo(17)O FISP image was negligible. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Somatosensory evoked changes in cerebral oxygen consumption measured non-invasively in premature neonates.

    PubMed

    Roche-Labarbe, Nadege; Fenoglio, Angela; Radhakrishnan, Harsha; Kocienski-Filip, Marcia; Carp, Stefan A; Dubb, Jay; Boas, David A; Grant, P Ellen; Franceschini, Maria Angela

    2014-01-15

    The hemodynamic functional response is used as a reliable marker of neuronal activity in countless studies of brain function and cognition. In newborns and infants, however, conflicting results have appeared in the literature concerning the typical response, and there is little information on brain metabolism and functional activation. Measurement of all hemodynamic components and oxygen metabolism is critical for understanding neurovascular coupling in the developing brain. To this end, we combined multiple near infrared spectroscopy techniques to measure oxy- and deoxy-hemoglobin concentrations, cerebral blood volume (CBV), and relative cerebral blood flow (CBF) in the somatosensory cortex of 6 preterm neonates during passive tactile stimulation of the hand. By combining these measures we estimated relative changes in the cerebral metabolic rate of oxygen consumption (rCMRO2). CBF starts increasing immediately after stimulus onset, and returns to baseline before blood volume. This is consistent with the model of pre-capillary arteriole active dilation driving the CBF response, with a subsequent CBV increase influenced by capillaries and veins dilating passively to accommodate the extra blood. rCMRO2 estimated using the steady-state formulation shows a biphasic pattern: an increase immediately after stimulus onset, followed by a post-stimulus undershoot due to blood flow returning faster to baseline than oxygenation. However, assuming a longer mean transit time from the arterial to the venous compartment, due to the immature vascular system of premature infants, reduces the post-stimulus undershoot and increases the flow/consumption ratio to values closer to adult values reported in the literature. We are the first to report changes in local rCBF and rCMRO2 during functional activation in preterm infants. The ability to measure these variables in addition to hemoglobin concentration changes is critical for understanding neurovascular coupling in the developing

  19. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care

    PubMed Central

    Ciaffoni, Luca; O’Neill, David P.; Couper, John H.; Ritchie, Grant A. D.; Hancock, Gus; Robbins, Peter A.

    2016-01-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible. PMID:27532048

  20. In-airway molecular flow sensing: A new technology for continuous, noninvasive monitoring of oxygen consumption in critical care.

    PubMed

    Ciaffoni, Luca; O'Neill, David P; Couper, John H; Ritchie, Grant A D; Hancock, Gus; Robbins, Peter A

    2016-08-01

    There are no satisfactory methods for monitoring oxygen consumption in critical care. To address this, we adapted laser absorption spectroscopy to provide measurements of O2, CO2, and water vapor within the airway every 10 ms. The analyzer is integrated within a novel respiratory flow meter that is an order of magnitude more precise than other flow meters. Such precision, coupled with the accurate alignment of gas concentrations with respiratory flow, makes possible the determination of O2 consumption by direct integration over time of the product of O2 concentration and flow. The precision is illustrated by integrating the balance gas (N2 plus Ar) flow and showing that this exchange was near zero. Measured O2 consumption changed by <5% between air and O2 breathing. Clinical capability was illustrated by recording O2 consumption during an aortic aneurysm repair. This device now makes easy, accurate, and noninvasive measurement of O2 consumption for intubated patients in critical care possible.

  1. Loss of BIM increases mitochondrial oxygen consumption and lipid oxidation, reduces adiposity and improves insulin sensitivity in mice.

    PubMed

    Wali, Jibran A; Galic, Sandra; Tan, Christina Yr; Gurzov, Esteban N; Frazier, Ann E; Connor, Timothy; Ge, Jingjing; Pappas, Evan G; Stroud, David; Varanasi, L Chitra; Selck, Claudia; Ryan, Michael T; Thorburn, David R; Kemp, Bruce E; Krishnamurthy, Balasubramanian; Kay, Thomas Wh; McGee, Sean L; Thomas, Helen E

    2018-01-01

    BCL-2 proteins are known to engage each other to determine the fate of a cell after a death stimulus. However, their evolutionary conservation and the many other reported binding partners suggest an additional function not directly linked to apoptosis regulation. To identify such a function, we studied mice lacking the BH3-only protein BIM. BIM -/- cells had a higher mitochondrial oxygen consumption rate that was associated with higher mitochondrial complex IV activity. The consequences of increased oxygen consumption in BIM -/- mice were significantly lower body weights, reduced adiposity and lower hepatic lipid content. Consistent with reduced adiposity, BIM -/- mice had lower fasting blood glucose, improved insulin sensitivity and hepatic insulin signalling. Lipid oxidation was increased in BIM -/- mice, suggesting a mechanism for their metabolic phenotype. Our data suggest a role for BIM in regulating mitochondrial bioenergetics and metabolism and support the idea that regulation of metabolism and cell death are connected.

  2. UV radiation impacts body weight, oxygen consumption, and shelter selection in the intertidal vertebrate Girella laevifrons.

    PubMed

    Pulgar, José; Waldisperg, Melany; Galbán-Malagón, Cristóbal; Maturana, Diego; Pulgar, Victor M; Aldana, Marcela

    2017-02-01

    The amount of ultraviolet (UV) radiation reaching the earth's surface has increased due to ozone layer depletion, and this fact represents an opportunity to evaluate the physiological and behavioral responses of animals to this global-scale stressor. The transitory fish Girella laevifrons inhabits pools in the upper intertidal zone, which is characterized by exposure to a wide range of stressors, including UV radiation. We documented the field magnitude and the impact of UV radiation on oxygen consumption, body mass variations, and shelter (rocky and algae) selection by G. laevifrons. UV-exposed animals showed increased oxygen consumption, slower body weight increase, and active rocky shelter selection. Control fish showed increased body weight and no evident shelter selection. The results indicated that UV exposure affects fish energetic balance and habitat selection to favor greater protection against radiation. Increased UV exposure in transitory intertidal animals at levels observed in upper intertidal pools may alter the residency time of fish before leaving for the subtidal zone. Therefore, UV-induced energetic changes may determine animal performance and ontogenetic physiological itineraries, whereas shelter quality might determine habitat use. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Lung antioxidant enzymes, peroxidation, glutathione system and oxygen consumption in catalase inactivated young and old Rana perezi frogs.

    PubMed

    Perez-Campo, R; López-Torres, M; Paton, D; Sequeros, E; Barja de Quiroga, G

    1990-12-01

    In the lung of Rana perezi no differences as a function of age have been found for any of the five major antioxidant enzymes, reduced (GSH), oxidized (GSSG) or glutathione ratio (GSSG/GSH), oxygen consumption (VO2) and for in vivo or in vitro stimulated tissue peroxidation. This frog shows a moderate rate of oxygen consumption and a life span substantially longer than that of rats and mice. Chronic (2.5 months) catalase depletion in the lung did not affect survival or any additional antioxidant enzyme, GSH, GSSG or in vivo and in vitro lung peroxidation in any age group. Only the GSSG/GSH ratio and the VO2 were elevated in catalase depleted old but not young frogs. After comparison of these results with those obtained in other animal species by other authors we suggest the possibility that decreases in antioxidant capacity in old age be restricted to species with high basal metabolic rates. Nevertheless, scavenging of oxygen radicals can not be 100% effective in any species. Thus, aging can still be due to the continuous presence of small concentrations of O2 radicals in the tissues throughout the life span in animals with either high or low metabolic rates.

  4. Oxygen consumption by oak chips in a model wine solution; Influence of the botanical origin, toast level and ellagitannin content.

    PubMed

    Navarro, María; Kontoudakis, Nikolaos; Giordanengo, Thomas; Gómez-Alonso, Sergio; García-Romero, Esteban; Fort, Francesca; Canals, Joan Miquel; Hermosín-Gutíerrez, Isidro; Zamora, Fernando

    2016-05-15

    The botanical origin, toast level and ellagitannin content of oak chips in a model wine solution have been studied in terms of their influence on oxygen consumption. French oak chips released significantly higher amounts of ellagitannins than American oak chips at any toast level. The release of ellagitannins by oak chips decreased as the toast level increased in the French oak but this trend was not so clear in American oak. Oxygen consumption rate was clearly related to the level of released ellagitannins. Therefore, oak chips should be chosen for their potential to release ellagitannins release should be considered, not only because they can have a direct impact on the flavor and body of the wine, but also because they can protect against oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Oxygen uptake efficiency slope and peak oxygen consumption predict prognosis in children with tetralogy of Fallot.

    PubMed

    Tsai, Yun-Jeng; Li, Min-Hui; Tsai, Wan-Jung; Tuan, Sheng-Hui; Liao, Tin-Yun; Lin, Ko-Long

    2016-07-01

    Oxygen uptake efficiency slope (OUES) and peak oxygen consumption (VO2peak) are exercise parameters that can predict cardiac morbidity in patients with numerous heart diseases. But the predictive value in patients with tetralogy of Fallot is still undetermined, especially in children. We evaluated the prognostic value of OUES and VO2peak in children with total repair of tetralogy of Fallot. Retrospective cohort study. Forty tetralogy of Fallot patients younger than 12 years old were recruited. They underwent a cardiopulmonary exercise test during the follow-up period after total repair surgery. The results of the cardiopulmonary exercise test were used to predict the cardiac related hospitalization in the following two years after the test. OUES normalized by body surface area (OUES/BSA) and the percentage of predicted VO2peak appeared to be predictive for two-year cardiac related hospitalization. Receiver operating characteristic curve analysis demonstrated that the best threshold value for OUES/BSA was 1.029 (area under the curve = 0.70, p = 0.03), and for VO2peak was 74% of age prediction (area under the curve = 0.72, p = 0.02). The aforementioned findings were confirmed by Kaplan-Meier plots and log-rank test. OUES/BSA and VO2peak are useful predictors of cardiac-related hospitalization in children with total repair of tetralogy of Fallot. © The European Society of Cardiology 2015.

  6. Additive Effects of Intermittent Hypobaric Hypoxia and Endurance Training on Bodyweight, Food Intake, and Oxygen Consumption in Rats.

    PubMed

    Cabrera-Aguilera, Ignacio; Rizo-Roca, David; Marques, Elisa A; Santocildes, Garoa; Pagès, Teresa; Viscor, Gines; Ascensão, António A; Magalhães, José; Torrella, Joan Ramon

    2018-06-29

    Cabrera-Aguilera, Ignacio, David Rizo-Roca, Elisa A. Marques, Garoa Santocildes, Teresa Pagès, Gines Viscor, António A. Ascensão, José Magalhães, and Joan Ramon Torrella. Additive effects of intermittent hypobaric hypoxia and endurance training on bodyweight, food intake, and oxygen consumption in rats. High Alt Med Biol 00:000-000, 2018.-We used an animal model to elucidate the effects of an intermittent hypobaric hypoxia (IHH) and endurance exercise training (EET) protocol on bodyweight (BW), food and water intake, and oxygen consumption. Twenty-eight young adult male rats were divided into four groups: normoxic sedentary (NS), normoxic exercised (NE), hypoxic sedentary (HS), and hypoxic exercised (HE). Normoxic groups were maintained at an atmospheric pressure equivalent to sea level, whereas the IHH protocol consisted of 5 hours per day for 33 days at a simulated altitude of 6000 m. Exercised groups ran in normobaric conditions on a treadmill for 1 hour/day for 5 weeks at a speed of 25 m/min. At the end of the protocol, both hypoxic groups showed significant decreases in BW from the ninth day of exposure, reaching final 10% (HS) to 14.5% (HE) differences when compared with NS. NE rats also showed a significant weight reduction after the 19th day, with a decrease of 7.4%. The BW of hypoxic animals was related to significant hypophagia elicited by IHH exposure (from 8% to 12%). In contrast, EET had no effect on food ingestion. Total water intake was not affected by hypoxia but was significantly increased by exercise. An analysis of oxygen consumption at rest (mL O 2 /[kg·min]) revealed two findings: a significant decrease in both hypoxic groups after the protocol (HS, 21.7 ± 0.70 vs. 19.1 ± 0.78 and HE, 22.8 ± 0.80 vs. 17.1 ± 0.90) and a significant difference at the end of the protocol between NE (21.3 ± 0.77) and HE (17.1 ± 0.90). These results demonstrate that IHH and EET had an additive effect on BW loss, providing

  7. Effects of environmental salinity and 17alpha-methyltestosterone on growth and oxygen consumption in the tilapia, Oreochromis mossambicus.

    PubMed

    Sparks, Russell T; Shepherd, Brian S; Ron, Benny; Harold Richman, N; Riley, Larry G; Iwama, George K; Hirano, Tetsuya; Gordon Grau, E

    2003-12-01

    Effects of environmental salinity and 17alpha-methyltestosterone (MT) on growth and oxygen consumption were examined in the tilapia, Oreochromis mossambicus. Yolk-sac fry were collected from brood stock in fresh water (FW). After yolk-sac absorption, they were assigned randomly to one of four groups: FW, MT treatment in FW, seawater (SW) and MT treatment in SW. All treatment groups were fed to satiation three times daily. The fish reared in SW (both control and MT-treated groups) grew significantly larger than either group in FW from day 43 throughout the experiment (195 days). The fish fed with MT added to their feed grew significantly larger than their respective controls from day 85 in FW and in SW until the end of the experiment. The routine metabolic rate (RMR) was determined monthly from month 2 (day 62) to month 5 (day 155). A significant negative correlation was seen between RMR and body mass in all treatment groups. Among fish of the same age, the SW-reared tilapia had significantly lower RMRs than the FW-reared fish. The MT-treated fish in SW showed significantly lower RMRs than the SW control group at months 3-5, whereas MT treatment in FW significantly increased the RMR at month 3. Comparison of regression lines between RMR and body mass indicates that MT treatment in FW caused a significant increase in oxygen consumption at a given mass of the fish, whereas MT treatment was without effect on RMR in SW-reared fish. These results clearly indicate that SW-rearing and MT treatment accelerate growth of tilapia, and that RMR decreases as fish size increased. It is also likely that the increased RMR and growth in MT-treated tilapia in FW may be due to the metabolic actions of MT, although the reason for the absence of MT treatment in SW is unclear.

  8. Nonlinear analysis of gait kinematics to track changes in oxygen consumption in prolonged load carriage walking: a pilot study.

    PubMed

    Schiffman, Jeffrey M; Chelidze, David; Adams, Albert; Segala, David B; Hasselquist, Leif

    2009-09-18

    Linking human mechanical work to physiological work for the purpose of developing a model of physical fatigue is a complex problem that cannot be solved easily by conventional biomechanical analysis. The purpose of the study was to determine if two nonlinear analysis methods can address the fundamental issue of utilizing kinematic data to track oxygen consumption from a prolonged walking trial: we evaluated the effectiveness of dynamical systems and fractal analysis in this study. Further, we selected, oxygen consumption as a measure to represent the underlying physiological measure of fatigue. Three male US Army Soldier volunteers (means: 23.3 yr; 1.80 m; 77.3 kg) walked for 120 min at 1.34 m/s with a 40-kg load on a level treadmill. Gait kinematic data and oxygen consumption (VO(2)) data were collected over the 120-min period. For the fractal analysis, utilizing stride interval data, we calculated fractal dimension. For the dynamical systems analysis, kinematic angle time series were used to estimate phase space warping based features at uniform time intervals: smooth orthogonal decomposition (SOD) was used to extract slowly time-varying trends from these features. Estimated fractal dimensions showed no apparent trend or correlation with independently measured VO(2). While inter-individual difference did exist in the VO(2) data, dominant SOD time trends tracked and correlated with the VO(2) for all volunteers. Thus, dynamical systems analysis using gait kinematics may be suitable to develop a model to predict physiologic fatigue based on biomechanical work.

  9. Role of macrofauna on benthic oxygen consumption in sandy sediments of a high-energy tidal beach

    NASA Astrophysics Data System (ADS)

    Charbonnier, Céline; Lavesque, Nicolas; Anschutz, Pierre; Bachelet, Guy; Lecroart, Pascal

    2016-06-01

    Sandy beaches exposed to tide and waves are characterized by low abundance and diversity of benthic macrofauna, because of high-energy conditions. This is the reason why there are few studies on benthic communities living in such highly dynamic environments. It has been shown recently that tidal sandy beaches may act as biogeochemical reactors. Marine organic matter that is supplied in the sand during each flood tide is efficiently mineralized through aerobic respiration. In order to quantify the role of macrofauna in the whole beach benthic respiration, we studied the macrofauna and the pore water oxygen content of an exposed sandy beach (Truc Vert, SW of France) during four seasons in 2011. The results showed that macrofauna was characterised by a low number of species of specialized organisms such as the crustaceans Eurydice naylori and Gastrosaccus spp. and the polychaetes Ophelia bicornis and Scolelepis squamata. The distribution and abundance of macrofauna were clearly affected by exposure degree and emersion time. The combined monitoring of benthic macrofauna and pore waters chemistry allowed us to estimate (1) the macrofauna oxygen uptake, calculated with a standard allometric relationship using biomass data, and (2) the total benthic oxygen uptake, calculated from the oxygen deficit measured in pore waters. This revealed that benthic macrofauna respiration represented a variable but low (<10%) contribution to the total benthic oxygen consumption. This suggests that oxygen was mainly consumed by microbial respiration.

  10. In situ analysis of oxygen consumption and diffusive transport in high-temperature acidic iron-oxide microbial mats.

    PubMed

    Bernstein, Hans C; Beam, Jacob P; Kozubal, Mark A; Carlson, Ross P; Inskeep, William P

    2013-08-01

    The role of dissolved oxygen as a principal electron acceptor for microbial metabolism was investigated within Fe(III)-oxide microbial mats that form in acidic geothermal springs of Yellowstone National Park (USA). Specific goals of the study were to measure and model dissolved oxygen profiles within high-temperature (65-75°C) acidic (pH = 2.7-3.8) Fe(III)-oxide microbial mats, and correlate the abundance of aerobic, iron-oxidizing Metallosphaera yellowstonensis organisms and mRNA gene expression levels to Fe(II)-oxidizing habitats shown to consume oxygen. In situ oxygen microprofiles were obtained perpendicular to the direction of convective flow across the aqueous phase/Fe(III)-oxide microbial mat interface using oxygen microsensors. Dissolved oxygen concentrations dropped from ∼ 50-60 μM in the bulk-fluid/mat surface to below detection (< 0.3 μM) at a depth of ∼ 700 μm (∼ 10% of the total mat depth). Net areal oxygen fluxes into the microbial mats were estimated to range from 1.4-1.6 × 10(-4)  μmol cm(-2)  s(-1) . Dimensionless parameters were used to model dissolved oxygen profiles and establish that mass transfer rates limit the oxygen consumption. A zone of higher dissolved oxygen at the mat surface promotes Fe(III)-oxide biomineralization, which was supported using molecular analysis of Metallosphaera yellowstonensis 16S rRNA gene copy numbers and mRNA expression of haem Cu oxidases (FoxA) associated with Fe(II)-oxidation. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.

  11. Sodium cyanide induced alteration in the whole animal oxygen consumption and behavioural pattern of freshwater fish Labeo rohita.

    PubMed

    David, Muniswamy; Sangeetha, Jeyabalan; Harish, Etigemane R

    2015-03-01

    Sodium cyanide is a common environmental pollutant which is mainly used in many industries such as mining, electroplating, steel manufacturing, pharmaceutical production and other specialized applications including dyes and agricultural products. It enters aquatic environment through effluents from these industries. Static renewal bioassay test has been conducted to determine LC, of sodium cyanide on indigenous freshwater carp, Labeo rohita. The behavioural pattern and oxygen consumption were observed in fish at both lethal and sub lethal concentrations. Labeo rohita in toxic media exhibited irregular and erratic swimming movements, hyper excitability, loss of equilibrium and shrinking to the bottom, which may be due to inhibition of cytochrome C oxidase activity and decreased blood pH. The combination of cytotoxic hypoxia with lactate acidosis depresses the central nervous system resulting in respiratory arrest and death. Decrease in oxygen consumption was observed at both lethal and sub lethal concentrations of sodium cyanide. Mortality was insignificant at sub lethal concentration test when fishes were found under stress. Consequence of impaired oxidative metabolism and elevated physiological response by fish against sodium cyanide stress showed alteration in respiratory rate.

  12. An examination of the demographic predictors of adolescent breakfast consumption, content, and context

    PubMed Central

    2014-01-01

    Background Breakfast consumption is important to health; however, adolescents often skip breakfast, and an increased understanding of the breakfast consumption patterns of adolescents is needed. The purpose of this study was to identify the predictors of breakfast eating, including the content and context, in an adolescent sample from Australia and England. Methods Four-hundred and eighty-one students completed an online questionnaire measuring breakfast skipping, and breakfast content (what was eaten) and context (who they ate with, involvement in preparation). Logistic regression was conducted to investigate the predictors of skipping breakfast, breakfast context, and consumption of the ten most commonly consumed foods. Chi-square analyses were used to examine differences in breakfast content according to context. Results Most students (88%) had consumed breakfast on the day of the survey; breakfast skipping was more common in England (18%) than in Australia (8%). Country, gender, socioeconomic status, and body mass index (BMI) were all predictors of breakfast content and context. Whether adolescents ate with others and/or were involved in breakfast preparation predicted the content of breakfast consumed. Conclusions This study provides a comprehensive examination of the factors underlying breakfast consumption (content and context) and has important implications for the development of evidence-based interventions to improve rates of breakfast consumption and the quality of food consumed amongst adolescents. PMID:24645936

  13. Oxygen consumption and body temperature of active and resting honeybees.

    PubMed

    Stabentheiner, Auton; Vollmann, Jutta; Kovac, Helmut; Crailsheim, Karl

    2003-09-01

    We measured the energy turnover (oxygen consumption) of honeybees (Apis mellifera carnica), which were free to move within Warburg vessels. Oxygen consumption of active bees varied widely depending on ambient temperature and level of activity, but did not differ between foragers (>18 d) and middle-aged hive bees (7-10 d). In highly active bees, which were in an endothermic state ready for flight, it decreased almost linearly, from a maximum of 131.4 microl O(2) min(-1) at 15 degrees C ambient temperature to 81.1 microl min(-1) at 25 degrees C, and reached a minimum of 29.9 microl min(-1) at 40 degrees C. In bees with low activity, it decreased from 89.3 microl O(2) min(-1) at 15 degrees C to 47.9 microl min(-1) at 25 degrees C and 14.7 microl min(-1) at 40 degrees C. Thermographic measurements of body temperature showed that with increasing activity, the bees invested more energy to regulate the thorax temperature at increasingly higher levels (38.8-41.2 degrees C in highly active bees) and were more accurate. Resting metabolism was determined in young bees of 1-7 h age, which are not yet capable of endothermic heat production with their flight muscles. Their energy turnover increased from 0.21 microl O(2) min(-1) at 10 degrees C to 0.38 microl min(-1) at 15 degrees C, 1.12 microl min(-1) at 25 degrees C, and 3.03 microl min(-1) at 40 degrees C. At 15, 25 and 40 degrees C, this was 343, 73 and 10 times below the values of the highly active bees, respectively. The Q(10) value of the resting bees, however, was not constant but varied in a U-shaped manner with ambient temperature. It decreased from 4.24 in the temperature range 11-21 degrees C to 1.35 in the range 21-31 degrees C, and increased again to 2.49 in the range 30-40 degrees C. We conclude that attempts to describe the temperature dependence of the resting metabolism of honeybees by Q(10) values can lead to considerable errors if the measurements are performed at only two temperatures. An acceptable

  14. No effect of acute beetroot juice ingestion on oxygen consumption, glucose kinetics, or skeletal muscle metabolism during submaximal exercise in males.

    PubMed

    Betteridge, Scott; Bescós, Raúl; Martorell, Miquel; Pons, Antoni; Garnham, Andrew P; Stathis, Christos C; McConell, Glenn K

    2016-02-15

    Beetroot juice, which is rich in nitrate (NO3 (-)), has been shown in some studies to decrease oxygen consumption (V̇o2) for a given exercise workload, i.e., increasing efficiency and exercise tolerance. Few studies have examined the effect of beetroot juice or nitrate supplementation on exercise metabolism. Eight healthy recreationally active males participated in three trials involving ingestion of either beetroot juice (Beet; ∼8 mmol NO3 (-)), Placebo (nitrate-depleted Beet), or Beet + mouthwash (Beet+MW), all of which were performed in a randomized single-blind crossover design. Two-and-a-half hours later, participants cycled for 60 min on an ergometer at 65% of V̇o2 peak. [6,6-(2)H]glucose was infused to determine glucose kinetics, blood samples obtained throughout exercise, and skeletal muscle biopsies that were obtained pre- and postexercise. Plasma nitrite [NO2 (-)] increased significantly (∼130%) with Beet, and this was attenuated in MW+Beet. Beet and Beet+MW had no significant effect on oxygen consumption, blood glucose, blood lactate, plasma nonesterified fatty acids, or plasma insulin during exercise. Beet and Beet+MW also had no significant effect on the increase in glucose disposal during exercise. In addition, Beet and Beet+MW had no significant effect on the decrease in muscle glycogen and phosphocreatine and the increase in muscle creatine, lactate, and phosphorylated acetyl CoA carboxylase during exercise. In conclusion, at the dose used, acute ingestion of beetroot juice had little effect on skeletal muscle metabolism during exercise. Copyright © 2016 the American Physiological Society.

  15. Effects of dance movement therapy on selected cardiovascular parameters and estimated maximum oxygen consumption in hypertensive patients.

    PubMed

    Aweto, H A; Owoeye, O B A; Akinbo, S R A; Onabajo, A A

    2012-01-01

    Objective:Arterial hypertension is a medical condition associated with increased risks of of death, cardiovascular mortality and cardiovascular morbidity including stroke, coronary heart disease, atrial fibrillation and renal insufficiency. Regular physical exercise is considered to be an important part of the non-pharmacologictreatment of hypertension. The purpose of this study was to investigate the effects of dance movement therapy (DMT) on selected cardiovascular parameters and estimated maximum oxygen consumption in hypertensive patients. Fifty (50) subjects with hypertension participated in the study. They were randomly assigned to 2 equal groups; A (DMT group) and B (Control group). Group A carried out dance movement therapy 2 times a week for 4 weeks while group B underwent some educational sessions 2 times a week for the same duration. All the subjects were on anti-hypertensive drugs. 38 subjects completed the study with the DMTgroup having a total of 23 subjects (10 males and 13 females) and the control group 15 subjects (6 males and 9 females). Descriptive statistics of mean, standard deviation and inferential statistics of paired and independentt-testwere used for data analysis. Following four weeks of dance movement therapy, paired t-test analysis showed that there was a statistically significant difference in the Resting systolic blood pressure (RSBP) (p < 0.001*), Resting diastolic blood pressure (RDBP) (p < 0.001*), Resting heart rate (RHR) (p = 0.024*), Maximum heart rate (MHR) (p=0.002*) and Estimated oxygen consumption (VO2max) (p = 0.023*) in subjects in group A (p < 0.05) while there was no significant difference observed in outcome variables of subjects in group B (p > 0.05). Independent t-test analysis between the differences in the pre and post intervention scores of groups A and B also showed statistically significant differences in all the outcome variables (p <0.05). DMT was effective in improving cardiovascular parameters and estimated

  16. Oxygen consumption in weakly electric Neotropical fishes.

    PubMed

    Julian, David; Crampton, William G R; Wohlgemuth, Stephanie E; Albert, James S

    2003-12-01

    Weakly electric gymnotiform fishes with wave-type electric organ discharge (EOD) are less hypoxia-tolerant and are less likely to be found in hypoxic habitats than weakly electric gymnotiforms with pulse-type EOD, suggesting that differences in metabolism resulting from EOD type affects habitat choice. Although gymnotiform fishes are common in most Neotropical freshwaters and represent the dominant vertebrates in some habitats, the metabolic rates of these unique fishes have never been determined. In this study, O(2) consumption rates during EOD generation are reported for 34 gymnotiforms representing 23 species, all five families and 17 (59%) of the 28 genera. Over the size range sampled (0.4 g to 125 g), O(2) consumption of gymnotiform fishes was dependent on body mass, as expected, fitting a power function with a scaling exponent of 0.74, but the O(2) consumption rate was generally about 50% of that expected by extrapolation of temperate teleost metabolic rates to a similar ambient temperature (26 degrees C). O(2) consumption rate was not dependent on EOD type, but maintenance of "scan swimming" (continuous forwards and backwards swimming), which is characteristic only of gymnotiforms with wave-type EODs, increased O(2) consumption 2.83+/-0.49-fold (mean+/-SD). This suggests that the increased metabolic cost of scan swimming could restrict gymnotiforms with wave-type EODs from hypoxic habitats.

  17. Increased oxygen consumption in the somatosensory cortex of alpha-chloralose anesthetized rats during forepaw stimulation determined using MRS at 11.7 Tesla.

    PubMed

    Yang, Jehoon; Shen, Jun

    2006-09-01

    The significance of changes in cerebral oxygen consumption in focally activated brain tissue is still controversial. Since the rate of cerebral oxygen consumption is tightly coupled to that of tricarboxylic acid cycle which can be measured from the turnover kinetics of [4-(13)C]glutamate using in vivo (1)H{(13)C} magnetic resonance spectroscopy, changes in tricarboxylic acid cycle flux rate were assessed in primary somatosensory cortex of alpha-chloralose anesthetized rats during electrical forepaw stimulation. With markedly improved (1)H{(13)C} magnetic resonance spectroscopy technique and the use of high magnetic field strength of 11.7 T accessible to the current study, [4-(13)C]glutamate at 2.35 ppm was spectrally resolved from overlapping resonances of [4-(13)C]glutamine at 2.46 ppm and [2-(13)C]GABA at 2.28 ppm as well as the more distal [3-(13)C]glutamate and [3-(13)C]glutamine. The results showed a significantly increased V(TCA) in focally activated primary somatosensory cortex during forepaw stimulation, corresponding to approximately 51 +/- 27% (n = 6, mean +/- SD) increase in cerebral oxygen consumption rate. Considering the high efficiency in producing adenosine triphosphate by oxidative metabolism of glucose, the results demonstrate that aerobic oxidative metabolism provides the majority of energy required for cerebral focal activation in alpha-chloralose anesthetized rats subjected to forepaw stimulation.

  18. Sensitivity of hypoxia predictions for the northern Gulf of Mexico to sediment oxygen consumption and model nesting

    NASA Astrophysics Data System (ADS)

    Fennel, Katja; Hu, Jiatang; Laurent, Arnaud; Marta-Almeida, Martinho; Hetland, Robert

    2013-02-01

    Every summer, a large area (15,000 km2 on average) over the Texas-Louisiana shelf in the northern Gulf of Mexico turns hypoxic due to decay of organic matter that is primarily derived from nutrient inputs from the Mississippi/Atchafalaya River System. Interannual variability in the size of the hypoxic zone is large. The 2008 Action Plan put forth by the Mississippi River/Gulf of Mexico Watershed Nutrient Task Force, an alliance of multiple state and federal agencies and tribes, calls for a reduction of the size of the hypoxic zone through nutrient management in the watershed. Comprehensive models help build mechanistic understanding of the processes underlying hypoxia formation and variability and are thus indispensable tools for devising efficient nutrient reduction strategies and for building reasonable expectations as to what responses can be expected for a given nutrient reduction. Here we present such a model, evaluate its hypoxia simulations against monitoring observations, and assess the sensitivity of the hypoxia simulations to model resolution, variations in sediment oxygen consumption, and choice of physical horizontal boundary conditions. We find that hypoxia simulations on the shelf are very sensitive to the parameterization of sediment oxygen consumption, a result of the fact that hypoxic conditions are restricted to a relatively thin layer above the bottom over most of the shelf. We show that the strength of vertical stratification is an important predictor of dissolved oxygen concentration in bottom waters and that modification of physical horizontal boundary conditions can have a large effect on hypoxia simulations because it can affect stratification strength.

  19. ARGON, XENON, HYDROGEN, AND THE OXYGEN CONSUMPTION AND GLYCOLYSIS OF MOUSE TISSUE SLICES

    PubMed Central

    South, Frank E.; Cook, Sherburne F.

    1954-01-01

    The effects of xenon, argon, and hydrogen on the aerobic and anaerobic metabolism of mouse liver, brain, and sarcoma slices have been investigated. Xenon was found to alter the rates of metabolism of these tissues in a manner almost identical with helium. The gas increased the rate of oxygen consumption in all three tissues and significantly depressed that of anaerobic glycolysis in brain and liver. The depression of glycolysis in sarcoma was less pronounced and not highly significant. Although both the magnitude and statistical significance of the effects observed with argon were much smaller, there was a seeming adherence to the general pattern established by xenon and helium. Hydrogen while remaining essentially ineffective insofar as oxygen uptake was concerned, depressed glycolysis in both liver and brain slices but did not significantly affect sarcoma slices. The following points are stressed in the Discussion: (1) the magnitude and direction of effects exerted by helium, argon, xenon, hydrogen, and nitrogen do not conform with the relative values of molecular weight, density, and solubility of these gases; (2) the effect of these gases on tissue metabolism does not necessarily parallel that exerted upon the whole organism. PMID:13118104

  20. Effects of a whole-body spandex garment on rectal temperature and oxygen consumption in healthy dogs.

    PubMed

    Reimer, S Brent; Schulz, Kurt S; Mason, David R; Jones, James H

    2004-01-01

    To determine whether a full-body spandex garment would alter rectal temperatures of healthy dogs at rest in cool and warm environments. Prospective study. 10 healthy dogs. Each dog was evaluated at a low (20 degrees to 25 degrees C [68 degrees to 77 degrees F]) or high (30 degrees to 35 degrees C [86 degrees to 95 degrees F]) ambient temperature while wearing or not wearing a commercially available whole-body spandex garment designed for dogs. Oxygen consumption was measured by placing dogs in a flow-through indirect calorimeter for 90 to 120 minutes. Rectal temperature was measured before dogs were placed in the calorimeter and after they were removed. Rectal temperature increased significantly more at the higher ambient temperature than at the lower temperature and when dogs were not wearing the garment than when they were wearing it. The specific rate of oxygen consumption was significantly higher at the lower ambient temperature than at the higher temperature. Results suggest that wearing a snug spandex body garment does not increase the possibility that dogs will overheat while in moderate ambient temperatures. Instead, wearing such a garment may enable dogs to better maintain body temperature during moderate heat loading. These results suggest that such garments might be used for purposes such as wound or suture protection without causing dogs to overheat.

  1. The effect of temperature on post-feeding ammonia excretion and oxygen consumption in the southern catfish.

    PubMed

    Luo, Yiping; Xie, Xiaojun

    2009-08-01

    The post-prandial rates of ammonia excretion (TAN) and oxygen consumption MO2 in the southern catfish (Silurus meridionalis) were assessed at 2 h intervals post-feeding until the rates returned to those of the fasting rates, at 17.5, 22.5, 27.5, and 32.5 degrees C, respectively. Both fasting TAN and MO2 increased with temperature, and were lower than those previously reported for many fish species. The relationship between fasting TAN (mmol NH(3)-N kg(-1) h(-1)) and temperature (T, degrees C) was described as: fasting TAN = 0.144e (0.0266T) (r = 0.526, n = 27, P < 0.05). The magnitude of ammonia excretion and its ratio to total N intake EXNH3-N during the specific dynamic action (SDA) tended to increase initially, and then decrease with increasing temperature. The ammonia quotient (AQ), calculated as mol NH(3)-N/mol O(2), following feeding decreased as temperature increased. The relationship between AQ during SDA and temperature was described as: AQ(during SDA) = 0.303e (-0.0143T) (r = 0.739, n = 21, P < 0.05). Our results suggest that ammonia excretion and oxygen consumption post-feeding are operating independently of each other. Furthermore, it appears that the importance of protein as a metabolic substrate in postprandial fish decreases with temperature.

  2. Local muscle oxygen consumption related to external and joint specific power.

    PubMed

    Skovereng, Knut; Ettema, Gertjan; van Beekvelt, Mireille

    2016-02-01

    The purpose of the present study was to examine the effects of external work rate on joint specific power and the relationship between knee extension power and vastus lateralis muscle oxygen consumption (mVO2). We measured kinematics and pedal forces and used inverse dynamics to calculate joint power for the hip, knee and ankle joints during an incremental cycling protocol performed by 21 recreational cyclists. Vastus lateralis mVO2 was estimated using near-infrared spectroscopy with an arterial occlusion. The main finding was a non-linear relationship between vastus lateralis mVO2 and external work rate that was characterised by an increase followed by a tendency for a levelling off (R(2)=0.99 and 0.94 for the quadratic and linear models respectively, p<0.05). When comparing 100W and 225W, there was a ∼43W increase in knee extension but still a ∼9% decrease in relative contribution of knee extension to external work rate resulting from a ∼47W increase in hip extension. When vastus lateralis mVO2 was related to knee extension power, the relationship was still non-linear (R(2)=0.99 and 0.97 for the quadratic and linear models respectively, p<0.05). These results demonstrate a non-linear response in mVO2 relative to a change in external work rate. Relating vastus lateralis mVO2 to knee extension power showed a better fit to a linear equation compared to external work rate, but it is not a straight line. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Hypoxic Induced Decrease in Oxygen Consumption in Cuttlefish (Sepia officinalis) Is Associated with Minor Increases in Mantle Octopine but No Changes in Markers of Protein Turnover

    PubMed Central

    Capaz, Juan C.; Tunnah, Louise; MacCormack, Tyson J.; Lamarre, Simon G.; Sykes, Antonio V.; Driedzic, William R.

    2017-01-01

    The common cuttlefish (Sepia officinalis), a dominant species in the north-east Atlantic ocean and Mediterranean Sea, is potentially subject to hypoxic conditions due to eutrophication of coastal waters and intensive aquaculture. Here we initiate studies on the biochemical response to an anticipated level of hypoxia. Cuttlefish challenged for 1 h at an oxygen level of 50% dissolved oxygen saturation showed a decrease in oxygen consumption of 37% associated with an 85% increase in ventilation rate. Octopine levels were increased to a small but significant level in mantle, whereas there was no change in gill or heart. There were no changes in mantle free glucose or glycogen levels. Similarly, the hypoxic period did not result in changes in HSP70 or polyubiquinated protein levels in mantle, gill, or heart. As such, it appears that although there was a decrease in metabolic rate there was only a minor increase in anaerobic metabolism as evidenced by octopine accumulation and no biochemical changes that are hallmarks of alterations in protein trafficking. Experiments with isolated preparations of mantle, gill, and heart revealed that pharmacological inhibition of protein synthesis could decrease oxygen consumption by 32 to 42% or Na+/K+ ATPase activity by 24 to 54% dependent upon tissue type. We propose that the decrease in whole animal oxygen consumption was potentially the result of controlled decreases in the energy demanding processes of both protein synthesis and Na+/K+ ATPase activity. PMID:28603503

  4. The effect of exercise intensity and excess postexercise oxygen consumption on postprandial blood lipids in physically inactive men.

    PubMed

    Littlefield, Laurel A; Papadakis, Zacharias; Rogers, Katie M; Moncada-Jiménez, José; Taylor, J Kyle; Grandjean, Peter W

    2017-09-01

    Reductions in postprandial lipemia have been observed following aerobic exercise of sufficient energy expenditure. Increased excess postexercise oxygen consumption (EPOC) has been documented when comparing high- versus low-intensity exercise. The contribution of EPOC energy expenditure to alterations in postprandial lipemia has not been determined. The purpose of this study was to evaluate the effects of low- and high-intensity exercise on postprandial lipemia in healthy, sedentary, overweight and obese men (age, 43 ± 10 years; peak oxygen consumption, 31.1 ± 7.5 mL·kg -1 ·min -1 ; body mass index, 31.8 ± 4.5 kg/m 2 ) and to determine the contribution of EPOC to reductions in postprandial lipemia. Participants completed 4 conditions: nonexercise control, low-intensity exercise at 40%-50% oxygen uptake reserve (LI), high-intensity exercise at 70%-80% oxygen uptake reserve (HI), and HI plus EPOC re-feeding (HI+EERM), where the difference in EPOC energy expenditure between LI and HI was re-fed in the form of a sports nutrition bar (Premier Nutrition Corp., Emeryville, Calif., USA). Two hours following exercise participants ingested a high-fat (1010 kcals, 99 g sat fat) test meal. Blood samples were obtained before exercise, before the test meal, and at 2, 4, and 6 h postprandially. Triglyceride incremental area under the curve was significantly reduced following LI, HI, and HI+EERM when compared with nonexercise control (p < 0.05) with no differences between the exercise conditions (p > 0.05). In conclusions, prior LI and HI exercise equally attenuated postprandial triglyceride responses to the test meal. The extra energy expended during EPOC does not contribute significantly to exercise energy expenditure or to reductions in postprandial lipemia in overweight men.

  5. Simultaneous measurement of brain tissue oxygen partial pressure, temperature, and global oxygen consumption during hibernation, arousal, and euthermy in non-sedated and non-anesthetized Arctic ground squirrels.

    PubMed

    Ma, Yilong; Wu, Shufen

    2008-09-30

    This study reports an online temperature correction method for determining tissue oxygen partial pressure P(tO2) in the striatum and a novel simultaneous measurement of brain P(tO2) and temperature (T(brain)) in conjunction with global oxygen consumption V(O2) in non-sedated and non-anesthetized freely moving Arctic ground squirrels (AGS, Spermophilus parryii). This method fills an important research gap-the lack of a suitable method for physiologic studies of tissue P(O2) in hibernating or other cool-blooded species. P(tO2) in AGS brain during euthermy (21.22+/-2.06 mmHg) is significantly higher (P=0.016) than during hibernation (13.21+/-0.46 mmHg) suggests brain oxygenation in the striatum is normoxic during euthermy and hypoxic during hibernation. These results in P(tO2) are different from blood oxygen partial pressure P(aO2) in AGS, which are significantly lower during euthermy than during hibernation and are actually hypoxic during euthermy and normoxic during hibernation in our previous study. This intriguing difference between the P(O2) of brain tissue and blood during these two physiological states suggests that regional mechanisms in the brain play a role in maintaining tissue oxygenation and protect against hypoxia during hibernation.

  6. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms

    PubMed Central

    Gillooly, James F.; Gomez, Juan Pablo; Mavrodiev, Evgeny V.; Rong, Yue; McLamore, Eric S.

    2016-01-01

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick’s law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption. PMID:27118837

  7. Body mass scaling of passive oxygen diffusion in endotherms and ectotherms.

    PubMed

    Gillooly, James F; Gomez, Juan Pablo; Mavrodiev, Evgeny V; Rong, Yue; McLamore, Eric S

    2016-05-10

    The area and thickness of respiratory surfaces, and the constraints they impose on passive oxygen diffusion, have been linked to differences in oxygen consumption rates and/or aerobic activity levels in vertebrates. However, it remains unclear how respiratory surfaces and associated diffusion rates vary with body mass across vertebrates, particularly in relation to the body mass scaling of oxygen consumption rates. Here we address these issues by first quantifying the body mass dependence of respiratory surface area and respiratory barrier thickness for a diversity of endotherms (birds and mammals) and ectotherms (fishes, amphibians, and reptiles). Based on these findings, we then use Fick's law to predict the body mass scaling of oxygen diffusion for each group. Finally, we compare the predicted body mass dependence of oxygen diffusion to that of oxygen consumption in endotherms and ectotherms. We find that the slopes and intercepts of the relationships describing the body mass dependence of passive oxygen diffusion in these two groups are statistically indistinguishable from those describing the body mass dependence of oxygen consumption. Thus, the area and thickness of respiratory surfaces combine to match oxygen diffusion capacity to oxygen consumption rates in both air- and water-breathing vertebrates. In particular, the substantially lower oxygen consumption rates of ectotherms of a given body mass relative to those of endotherms correspond to differences in oxygen diffusion capacity. These results provide insights into the long-standing effort to understand the structural attributes of organisms that underlie the body mass scaling of oxygen consumption.

  8. Endurance training and maximal oxygen consumption with ageing: Role of maximal cardiac output and oxygen extraction.

    PubMed

    Montero, David; Díaz-Cañestro, Candela

    2016-05-01

    The increase in maximal oxygen consumption (VO2max) with endurance training is associated with that of maximal cardiac output (Qmax), but not oxygen extraction, in young individuals. Whether such a relationship is altered with ageing remains unclear. Therefore, we sought systematically to review and determine the effect of endurance training on and the associations among VO2max, Qmax and arteriovenous oxygen difference at maximal exercise (Ca-vO2max) in healthy aged individuals. We conducted a systematic search of MEDLINE, Scopus and Web of Science, from their inceptions until May 2015 for articles assessing the effect of endurance training lasting 3 weeks or longer on VO2max and Qmax and/or Ca-vO2max in healthy middle-aged and/or older individuals (mean age ≥40 years). Meta-analyses were performed to determine the standardised mean difference (SMD) in VO2max, Qmax and Ca-vO2max between post and pre-training measurements. Subgroup and meta-regression analyses were used to evaluate the associations among SMDs and potential moderating factors. Sixteen studies were included after systematic review, comprising a total of 153 primarily untrained healthy middle-aged and older subjects (mean age 42-71 years). Endurance training programmes ranged from 8 to 52 weeks of duration. After data pooling, VO2max (SMD 0.89; P < 0.0001) and Qmax (SMD 0.61; P < 0.0001) were increased after endurance training; no heterogeneity among studies was detected. Ca-vO2max was only increased with endurance training interventions lasting more than 12 weeks (SMD 0.62; P = 0.001). In meta-regression, the SMD in Qmax was positively associated with the SMD in VO2max (B = 0.79, P = 0.04). The SMD in Ca-vO2max was not associated with the SMD in VO2max (B = 0.09, P = 0.84). The improvement in VO2max following endurance training is a linear function of Qmax, but not Ca-vO2max, through healthy ageing. © The European Society of Cardiology 2015.

  9. Monitoring Intracellular Oxygen Concentration: Implications for Hypoxia Studies and Real-Time Oxygen Monitoring.

    PubMed

    Potter, Michelle; Badder, Luned; Hoade, Yvette; Johnston, Iain G; Morten, Karl J

    2016-01-01

    The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time.

  10. Duration of effects of acute environmental changes on food anticipatory behaviour, feed intake, oxygen consumption, and cortisol release in Atlantic salmon parr.

    PubMed

    Folkedal, Ole; Torgersen, Thomas; Olsen, Rolf Erik; Fernö, Anders; Nilsson, Jonatan; Oppedal, Frode; Stien, Lars H; Kristiansen, Tore S

    2012-01-18

    We compared behavioural and physiological responses and recovery time after different acute environmental challenges in groups of salmon parr. The fish were prior to the study conditioned to a flashing light signalling arrival of food 30 s later to study if the strength of Pavlovian conditioned food anticipatory behaviour can be used to assess how salmon parr cope with various challenges. The effect on anticipatory behaviour was compared to the effect on feed intake and physiological responses of oxygen hyper-consumption and cortisol excretion. The challenges were temperature fluctuation (6.5C° over 4 h), hyperoxia (up to 380% O(2) saturation over 4 h), and intense chasing for 10 min. Cortisol excretion was only elevated after hyperoxia and chasing, and returned to baseline levels after around 3 h or less. Oxygen hyper-consumption persisted for even shorter periods. Feed intake was reduced the first feeding after all challenges and recovered within 3 h after temperature and hyperoxia, but was reduced for days after chasing. Food anticipatory behaviour was reduced for a longer period than feed intake after hyperoxia and was low at least 6 h after chasing. Our findings suggest that a recovery of challenged Atlantic salmon parr to baseline levels of cortisol excretion and oxygen consumption does not mean full recovery of all psychological and physiological effects of environmental challenges, and emphasise the need for measuring several factors including behavioural parameters when assessing fish welfare. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Ketosis After Cardiopulmonary Bypass in Children Is Associated With an Inadequate Balance Between Oxygen Transport and Consumption.

    PubMed

    Klee, Philippe; Arni, Delphine; Saudan, Sonja; Schwitzgebel, Valérie M; Sharma, Ruchika; Karam, Oliver; Rimensberger, Peter C

    2016-09-01

    Hyperglycemia after cardiac surgery and cardiopulmonary bypass in children has been associated with worse outcome; however, causality has never been proven. Furthermore, the benefit of tight glycemic control is inconsistent. The purpose of this study was to describe the metabolic constellation of children before, during, and after cardiopulmonary bypass, in order to identify a subset of patients that might benefit from insulin treatment. Prospective observational study, in which insulin treatment was initiated when postoperative blood glucose levels were more than 12 mmol/L (216 mg/dL). Tertiary PICU. Ninety-six patients 6 months to 16 years old undergoing cardiac surgery with cardiopulmonary bypass. None. Metabolic tests were performed before anesthesia, at the end of cardiopulmonary bypass, at PICU admission, and 4 and 12 hours after PICU admission, as well as 4 hours after initiation of insulin treatment. Ketosis was present in 17.9% patients at the end of cardiopulmonary bypass and in 31.2% at PICU admission. Young age was an independent risk factor for this condition. Ketosis at PICU admission was an independent risk factor for an increased difference between arterial and venous oxygen saturation. Four hours after admission (p = 0.05). Insulin corrected ketosis within 4 hours. In this study, we found a high prevalence of ketosis at PICU admission, especially in young children. This was independently associated with an imbalance between oxygen transport and consumption and was corrected by insulin. These results set the basis for future randomized controlled trials, to test whether this subgroup of patients might benefit from increased glucose intake and insulin during surgery to avoid ketosis, as improving oxygen transport and consumption might improve patient outcome.

  12. The effects of recovery duration during high-intensity interval exercise on time spent at high rates of oxygen consumption, oxygen kinetics and blood lactate.

    PubMed

    Smilios, Ilias; Myrkos, Aristides; Zafeiridis, Andreas; Toubekis, Argyris; Spassis, Apostolos; Tokmakidis, Savas P

    2017-03-13

    The recovery duration and the work to recovery ratio are important aspects to consider when designing a high-intensity aerobic interval exercise (HIIE). This study examined the effects of recovery duration on total exercise time performed above 80, 90 and 95% of maximum oxygen consumption (VO2max) and heart rate (HRmax) during a single-bout HIIE. We also evaluated the effects on VO2 and HR kinetics, blood lactate concentration and rating of perceived exertion (RPE). Eleven moderately trained males (22.1±1 yrs.) executed, on three separate sessions, 4×4-min runs at 90% of maximal aerobic velocity (MAV) with 2-min, 3-min and 4-min of active recovery. Recovery duration did not affect the percentage of VO2max attained and the total exercise time above 80, 90 and 95% of VO2max. Exercise time above 80 and 90% of HRmax was longer with 2 and 3 min (p<0.05) as compared with the 4-min recovery. Oxygen uptake and HR amplitude were lower, mean response time slower (p<0.05), and blood lactate and RPE higher with 2-min compared to 4-min recovery (p<0.05). In conclusion, aerobic metabolism attains its upper functional limits with either 2, or 3 or 4 min of recovery during the 4×4 min HIIE; thus, all rest durations could be used for the enhancement of aerobic capacity in sports, fitness, and clinical settings. The short (2 min) compared to longer (4 min) recovery, however, evokes greater cardiovascular and metabolic stress, and activates to a greater extent anaerobic glycolysis, and hence, could be used by athletes to induce greater overall physiological challenge.

  13. Analysis of beat fluctuations and oxygen consumption in cardiomyocytes by scanning electrochemical microscopy.

    PubMed

    Hirano, Yu; Kodama, Mikie; Shibuya, Masahiro; Maki, Yoshiyuki; Komatsu, Yasuo

    2014-02-15

    The contractile behavior of cardiomyocytes can be monitored by measuring their action potentials, and the analysis is essential for screening the safety of potential drugs. However, immobilizing cardiac cells on a specific electrode is considerably complicated. In this study, we demonstrate that scanning electrochemical microscopy (SECM) can be used to analyze rapid topographic changes in beating cardiomyocytes in a standard culture dish. Various cardiomyocyte contraction parameters and oxygen consumption based on cell respiration could be determined from SECM data. We also confirmed that cellular changes induced by adding the cardiotonic agent digoxin were conveniently monitored by this SECM system. These results show that SECM can be a potentially powerful tool for use in drug development for cardiovascular diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Consumption and diffusion of dissolved oxygen in sedimentary rocks.

    PubMed

    Manaka, M; Takeda, M

    2016-10-01

    Fe(II)-bearing minerals (e.g., biotite, chlorite, and pyrite) are a promising reducing agent for the consumption of atmospheric oxygen in repositories for the geological disposal of high-level radioactive waste. To estimate effective diffusion coefficients (D e , in m 2 s -1 ) for dissolved oxygen (DO) and the reaction rates for the oxidation of Fe(II)-bearing minerals in a repository environment, we conducted diffusion-chemical reaction experiments using intact rock samples of Mizunami sedimentary rock. In addition, we conducted batch experiments on the oxidation of crushed sedimentary rock by DO in a closed system. From the results of the diffusion-chemical reaction experiments, we estimated the values of D e for DO to lie within the range 2.69×10 -11

  15. Drivers of summer oxygen depletion in the central North Sea

    NASA Astrophysics Data System (ADS)

    Queste, B. Y.; Fernand, L.; Jickells, T. D.; Heywood, K. J.; Hind, A. J.

    2015-06-01

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≈ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of CTD, dissolved oxygen concentrations, backscatter and fluorescence during a three day deployment. The high temporal resolution observations revealed occasional small scale events that supply oxygenated water into the bottom layer at a rate of 2±1 μmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5±1 μmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8±0.3 μmol dm-3 day-1 indicating a localised or short-lived increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localised depocentres and rapid remineralisation of resuspensded organic matter. The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date rates to be used in the development of ecosystem models.

  16. Drivers of summer oxygen depletion in the central North Sea

    NASA Astrophysics Data System (ADS)

    Queste, Bastien Y.; Fernand, Liam; Jickells, Timothy D.; Heywood, Karen J.; Hind, Andrew J.

    2016-02-01

    In stratified shelf seas, oxygen depletion beneath the thermocline is a result of a greater rate of biological oxygen demand than the rate of supply of oxygenated water. Suitably equipped gliders are uniquely placed to observe both the supply through the thermocline and the consumption of oxygen in the bottom layers. A Seaglider was deployed in the shallow (≍ 100 m) stratified North Sea in a region of known low oxygen during August 2011 to investigate the processes regulating supply and consumption of dissolved oxygen below the pycnocline. The first deployment of such a device in this area, it provided extremely high-resolution observations, 316 profiles (every 16 min, vertical resolution of 1 m) of conductivity, temperature, and depth (CTD), dissolved oxygen concentrations, backscatter, and fluorescence during a 3-day deployment.The high temporal resolution observations revealed occasional small-scale events (< 200 m or 6 h) that supply oxygenated water to the bottom layer at a rate of 2 ± 1 µmol dm-3 day-1. Benthic and pelagic oxygen sinks, quantified through glider observations and past studies, indicate more gradual background consumption rates of 2.5 ± 1 µmol dm-3 day-1. This budget revealed that the balance of oxygen supply and demand is in agreement with previous studies of the North Sea. However, the glider data show a net oxygen consumption rate of 2.8 ± 0.3 µmol dm-3 day-1, indicating a localized or short-lived (< 200 m or 6 h) increase in oxygen consumption rates. This high rate of oxygen consumption is indicative of an unidentified oxygen sink. We propose that this elevated oxygen consumption is linked to localized depocentres and rapid remineralization of resuspended organic matter.The glider proved to be an excellent tool for monitoring shelf sea processes despite challenges to glider flight posed by high tidal velocities, shallow bathymetry, and very strong density gradients. The direct observation of these processes allows more up to date

  17. The effects of interval- vs. continuous exercise on excess post-exercise oxygen consumption and substrate oxidation rates in subjects with type 2 diabetes.

    PubMed

    Karstoft, Kristian; Wallis, Gareth A; Pedersen, Bente K; Solomon, Thomas P J

    2016-09-01

    For unknown reasons, interval training often reduces body weight more than energy-expenditure matched continuous training. We compared the acute effects of time-duration and oxygen-consumption matched interval- vs. continuous exercise on excess post-exercise oxygen consumption (EPOC), substrate oxidation rates and lipid metabolism in the hours following exercise in subjects with type 2 diabetes (T2D). Following an overnight fast, ten T2D subjects (M/F: 7/3; age=60.3±2.3years; body mass index (BMI)=28.3±1.1kg/m(2)) completed three 60-min interventions in a counterbalanced, randomized order: 1) control (CON), 2) continuous walking (CW), 3) interval-walking (IW - repeated cycles of 3min of fast and 3min of slow walking). Indirect calorimetry was applied during each intervention and repeatedly for 30min per hour during the following 5h. A liquid mixed meal tolerance test (MMTT, 450kcal) was consumed by the subjects 45min after completion of the intervention with blood samples taken regularly. Exercise interventions were successfully matched for total oxygen consumption (CW=1641±133mL/min; IW=1634±126mL/min, P>0.05). EPOC was higher after IW (8.4±1.3l) compared to CW (3.7±1.4l, P<0.05). Lipid oxidation rates were increased during the MMTT in IW (1.03±0.12mg/kg per min) and CW (0.87±0.04mg/kg per min) compared with CON (0.73±0.04mg/kg per min, P<0.01 and P<0.05, respectively), with no difference between IW and CW. Moreover, free fatty acids and glycerol concentrations, and glycerol kinetics were increased comparably during and after IW and CW compared to CON. Interval exercise results in greater EPOC than oxygen-consumption matched continuous exercise during a post-exercise MMTT in subjects with T2D, whereas effects on substrate oxidation and lipid metabolism are comparable. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Hyperoxia Reduces Oxygen Consumption in Children with Pulmonary Hypertension.

    PubMed

    Guo, Long; Bobhate, Prashant; Kumar, Shine; Vadlamudi, Karunakar; Kaddoura, Tarek; Elgendi, Mohamed; Holinski, Paula; Coe, James Y; Rutledge, Jennifer; Adatia, Ian

    2017-06-01

    High inspired oxygen concentration (FiO 2  > 0.85) is administered to test pulmonary vascular reactivity in children with pulmonary hypertension (PH). It is difficult to measure oxygen consumption (VO 2 ) if the subject is breathing a hyperoxic gas mixture so the assumption is made that baseline VO 2 does not change. We hypothesized that hyperoxia changes VO 2 . We sought to compare the VO 2 measured by a thermodilution catheter in room air and hyperoxia. A retrospective review of the hemodynamic data obtained in children with PH who underwent cardiac catheterization was conducted between 2009 and 2014. Cardiac index (CI) was measured by a thermodilution catheter in room air and hyperoxia. VO 2 was calculated using the equation CI = VO 2 /arterial-venous oxygen content difference. Data were available in 24 subjects (males = 10), with median age 8.3 years (0.8-17.6 years), weight 23.3 kg (7.5-95 kg), and body surface area 0.9 m 2 (0.4-2.0 m 2 ). In hyperoxia compared with room air, we measured decreased VO 2 (154 ± 38 to 136 ± 34 ml/min/m 2 , p = 0.007), heart rate (91 [Formula: see text] 20 to 83 [Formula: see text] 21 beats/minute, p=0.005), mean pulmonary artery pressure (41 [Formula: see text] 16 to 35 [Formula: see text] 14 mmHg, p=0.024), CI (3.6 [Formula: see text] 0.8 to 3.3 [Formula: see text] 0.9 L/min/m 2 , p = 0.03), pulmonary vascular resistance (9 [Formula: see text] 6 to 7 [Formula: see text] 3 WU m 2 , p = 0.029), increased mean aortic (61 [Formula: see text] 11 to 67 [Formula: see text] 11 mmHg, p = 0.005), pulmonary artery wedge pressures (11 [Formula: see text] 8 to 13 [Formula: see text] 9 mmHg, p = 0.006), and systemic vascular resistance (12 [Formula: see text] 6 to 20 [Formula: see text] 7 WU m 2 , p=0.001). Hyperoxia decreased VO 2 and CI and caused pulmonary vasodilation and systemic vasoconstriction in children with PH. The

  19. Benthic nutrient fluxes and sediment oxygen consumption in a full-scale facultative pond in Patagonia, Argentina.

    PubMed

    Faleschini, M; Esteves, J L

    2013-01-01

    The study of benthic metabolism is an interesting tool to understand the process that occurs in bottom water at wastewater stabilization ponds. Here, rates of benthic oxygen consumption and nutrient exchange across the water-sludge interface were measured in situ using a benthic chamber. The research was carried out during autumn, winter, and summer at a municipal facultative stabilization pond working in a temperate region (Puerto Madryn city, Argentina). Both a site near the raw wastewater inlet (Inlet station) and a site near the outlet (Outlet station) were sampled. Important seasonal and spatial patterns were identified as being related to benthic fluxes. Ammonium release ranged from undetectable (autumn/summer - Inlet station) to +30.7 kg-NH4(+) ha(-1) d(-1) (autumn - Outlet station), denitrification ranged from undetectable (winter - in both sites) to -4.0 kg-NO3(-) ha(-1) d(-1) (autumn - Outlet station), and oxygen consumption ranged from 0.07 kg-O2ha(-1) d(-1) (autumn/summer - Outlet station) to 0.84 kg-O2ha(-1) d(-1) (autumn - Inlet station). During the warmer months, the mineralization of organic matter from the bottom pond acts as a source of nutrients, which seem to support the important development of phytoplankton and nitrification activity recorded in the surface water. Bottom processes could be related to the advanced degree and efficiency of the treatment, the temperature, and probably the strong and frequent wind present in the region.

  20. Oxygen consumption and heart rate responses to isolated ballet exercise sets.

    PubMed

    Rodrigues-Krause, Josianne; Dos Santos Cunha, Giovani; Alberton, Cristine Lima; Follmer, Bruno; Krause, Mauricio; Reischak-Oliveira, Alvaro

    2014-01-01

    Ballet stage performances are associated with higher cardiorespiratory demand than rehearsals and classes. Hence, new interest is emerging to create periodized training that enhances dancers' fitness while minimizing delayed exercise-induced fatigue and possible injuries. Finding out in what zones of intensity dancers work during different ballet movements may support the use of supplemental training adjusted to the needs of the individual dancer. Therefore, the main purpose of this study was to describe dancers' oxygen consumption (VO2) and heart rate (HR) responses during the performance of nine isolated ballet exercise sets, as correlated with their first and second ventilatory thresholds (VT1 and VT2). Twelve female ballet dancers volunteered for the study. Their maximum oxygen consumption (VO2max), VT1, and VT2 were determined by use of an incremental treadmill test. Nine sets of ballet movements were assessed: pliés, tendus, jetés, rond de jambes, fondus, grand adage (adage), grand battements, temps levés, and sautés. The sets were randomly executed and separated by 5 minute rest periods. ANOVA for repeated measurements followed by the Bonferroni Post-hoc test were applied (p < 0.05). VO2 responses were as follows: pliés (17.6 ± 1.6 ml·kg(-1)·min(-1)); tendus and adage were not significantly greater than VT1; rond de jambes (21.8 ± 3.1 ml·kg(-1) ·min(-1)); fondus and jetés were higher than VT1 and the previous exercises; grand battements (25.8 ± 2.9 ml·kg(-1)·min(-1)) was greater than all the other exercises and VT1; and VT2 was significantly higher than all ballet sets. This stratification followed closely, but not exactly, the variation in HR. For example, rond de jambes (156.8 ± 19 b·min(-1)) did not show any significant difference from all the other ballet sets, nor VT1 or VT2. It is concluded that the workloads of isolated ballet sets, based on VO2 responses, vary between low and moderate aerobic intensity in relation to dancers' VT1 and

  1. Quantitative real-time optical imaging of the tissue metabolic rate of oxygen consumption

    NASA Astrophysics Data System (ADS)

    Ghijsen, Michael; Lentsch, Griffin R.; Gioux, Sylvain; Brenner, Matthew; Durkin, Anthony J.; Choi, Bernard; Tromberg, Bruce J.

    2018-03-01

    The tissue metabolic rate of oxygen consumption (tMRO2) is a clinically relevant marker for a number of pathologies including cancer and arterial occlusive disease. We present and validate a noncontact method for quantitatively mapping tMRO2 over a wide, scalable field of view at 16 frames / s. We achieve this by developing a dual-wavelength, near-infrared coherent spatial frequency-domain imaging (cSFDI) system to calculate tissue optical properties (i.e., absorption, μa, and reduced scattering, μs‧, parameters) as well as the speckle flow index (SFI) at every pixel. Images of tissue oxy- and deoxyhemoglobin concentration ( [ HbO2 ] and [HHb]) are calculated from optical properties and combined with SFI to calculate tMRO2. We validate the system using a series of yeast-hemoglobin tissue-simulating phantoms and conduct in vivo tests in humans using arterial occlusions that demonstrate sensitivity to tissue metabolic oxygen debt and its repayment. Finally, we image the impact of cyanide exposure and toxicity reversal in an in vivo rabbit model showing clear instances of mitochondrial uncoupling and significantly diminished tMRO2. We conclude that dual-wavelength cSFDI provides rapid, quantitative, wide-field mapping of tMRO2 that can reveal unique spatial and temporal dynamics relevant to tissue pathology and viability.

  2. Influence of different production strategies on the stability of color, oxygen consumption and metmyoglobin reducing activity of meat from Ningxia Tan sheep.

    PubMed

    Gao, Xiaoguang; Wang, Zhenyu; Miao, Jing; Xie, Li; Dai, Yan; Li, Xingmin; Chen, Yong; Luo, Hailing; Dai, Ruitong

    2014-02-01

    Fifty male Ningxia Tan sheep were randomly divided into five groups (10 per group). Different feeding strategies were applied to each group for 120 days prior to slaughter. The sheep belong to five groups were pastured for 0 h (feedlot-fed), 2h, 4h, 8h, 12h per day on a natural grazing ground, respectively. M. semitendinosus muscle from Tan sheep was obtained after slaughter. Instrumental color, pH values, oxygen consumption rate, metmyoglobin reducing activity and relative metmyoglobin percentages were analyzed after 1, 3, 5, 7 and 9 days of refrigerated storage. Long-term daily grazing and herbage-based diet were conducive to maintain a lower oxygen consumption rate, higher metmyoglobin reducing activity and lower metmyoglobin accumulation. The combination of pasture-fed and feedlot-fed was conducive to weight gain, and at the same time, increased the color stability of the meat from Ningxia Tan sheep. © 2013.

  3. Effects of Low-Permeability Layers in the Hyporheic Zone on Oxygen Consumption Under Losing and Gaining Groundwater Flow Conditions

    NASA Astrophysics Data System (ADS)

    Arnon, S.; Krause, S.; Gomez-Velez, J. D.; De Falco, N.

    2017-12-01

    Recent studies at the watershed scale have demonstrated the dominant role that river bedforms play in driving hyporheic exchange and constraining biogeochemical processes along river corridors. At the reach and bedform scales, modeling studies have shown that sediment heterogeneity significantly modifies hyporheic flow patterns within bedforms, resulting in spatially heterogeneous biogeochemical processes. In this work, we summarize a series of flume experiments to evaluate the effect that low-permeability layers, representative of structural heterogeneity, have on hyporheic exchange and oxygen consumption in sandy streambeds. In this case, we systematically changed the geometry of the heterogeneities, the surface channel flow driving the exchange, and groundwater fluxes (gaining/losing) modulating the exchange. The flume was packed with natural sediments, which were amended with compost to minimize carbon limitations. Structural heterogeneities were represented by continuous and discontinuous layers of clay material. Flow patterns were studied using dye imaging through the side walls. Oxygen distribution in the streambed was measured using planar optodes. The experimental observations revealed that the clay layer had a significant effect on flow patterns and oxygen distribution in the streambed under neutral and losing conditions. Under gaining conditions, the aerobic zone was limited to the upper sections of the bedform and thus was less influenced by the clay layers that were located at a depth of 1-3 cm below the water-sediment interface. We are currently analyzing the results with a numerical flow and transport model to quantify the reactions rates under the different flow conditions and spatial sediment structures. Our preliminary results enable us to show the importance of the coupling between flow conditions, local heterogeneity within the streambed and oxygen consumption along bed forms and are expected to improve our ability to model the effect of stream

  4. Effect of music-movement synchrony on exercise oxygen consumption.

    PubMed

    Bacon, C J; Myers, T R; Karageorghis, C I

    2012-08-01

    Past research indicates that endurance is improved when exercise movements are synchronised with a musical beat, however it is unclear whether such benefits are associated with reduced metabolic cost. We compared oxygen consumption (.VO2) and related physiological effects of exercise conducted synchronously and asynchronously with music. Three music tracks, each recorded at three different tempi (123, 130, and 137 beats.min-1), accompanied cycle ergometry at 65 pedal revolutions.min-1. Thus three randomly-assigned experimental conditions were administered: slow tempo asynchronous, synchronous, and fast tempo asynchronous. Exercise response of .VO2, HR, and ratings of perceived exertion (RPE), to each condition was monitored in 10 untrained male participants aged 21.7±0.8 years (mean±SD) who cycled for 12 min at 70% maximal heart rate (HR). Mean .VO2 differed among conditions (P=0.008), being lower in the synchronous (1.80±0.22 L.min-1) compared to the slow tempo asynchronous condition (1.94±0.21 L.min-1; P<0.05). There was no difference in HR or RPE among conditions, although HR showed a similar trend to .VO2. The present results indicate that exercise is more efficient when performed synchronously with music than when musical tempo is slightly slower than the rate of cyclical movement.

  5. Efficacy of treadmill exercises on arterial blood oxygenation, oxygen consumption and walking distance in healthy elderly people: a controlled trial.

    PubMed

    Bichay, Ashraf Adel Fahmy; Ramírez, Juan M; Núñez, Víctor M; Lancho, Carolina; Poblador, María S; Lancho, José L

    2016-05-25

    Regular physical exercise and healthy lifestyle can improve aerobic power of the elderly, although lung capacity gradually deteriorates with age. The aims of the study are: a) to evaluate the therapeutic effect of a treadmill exercise program on arterial blood oxygenation (SaO2), maximum oxygen consumption (VO2max) and maximum walking distance (MWD) in healthy elderly people; b) to examine the outcome of the program at a supervised short-term and at an unsupervised long-term. A prospective, not-randomized controlled intervention trial (NRCT) was conducted. Eighty participants were allocated into two homogeneous groups (training group, TG, n = 40; control group, CG, n = 40). Each group consisted of 20 men and 20 women. Pre-intervention measures of SaO2, VO2max and MWD were taken of each participant 1-week before the training program to establish the baseline. Also, during the training program, the participants were followed up at the 12, 30 and 48th week. The exercise program consisted of walking on a treadmill with fixed 0 % grade of inclination 3 times weekly for 48 weeks; the first 12 weeks were supervised and the remaining 36 weeks of the program were unsupervised. Participants in the control group were encouraged to walk twice a week during 45 min, and received standard recommendations for proper health. Related to the baseline, the SaO2, VO2max, and MWD is greater in the intervention group at the 12(th) (p <.001), 30(th) (p <.001) and 48(th) week (p <.001). Compared with the control group, there was also a significant improvement of SaO2, VO2max, and MWD valuesin the intervention group (p <.001) at the 12(th) (p <.001), 30(th) (p <.001) and 48(th) week (p <.001). Supervised intervention shows greater improvement of SaO2, VO2max, and MWD values than in the unsupervised one. These results show that performing moderate exercise, specifically walking 3 days a week, is highly recommended for healthy older people, improving aerobic power. Current

  6. Oxygen consumption rates in hovering hummingbirds reflect substrate-dependent differences in P/O ratios: carbohydrate as a 'premium fuel'.

    PubMed

    Welch, Kenneth C; Altshuler, Douglas L; Suarez, Raul K

    2007-06-01

    The stoichiometric relationship of ATP production to oxygen consumption, i.e. the P/O ratio, varies depending on the nature of the metabolic substrate used. The latest estimates reveal a P/O ratio approximately 15% higher when glucose is oxidized compared with fatty acid oxidation. Because the energy required to produce aerodynamic lift for hovering is independent of the metabolic fuel oxidized, we hypothesized that the rate of oxygen consumption, VO2, should decline as the respiratory quotient, RQ (VCO2/VO2), increases from 0.71 to 1.0 as hummingbirds transition from a fasted to a fed state. Here, we show that hovering VO2 values in rufous (Selasphorus rufus) and Anna's hummingbirds (Calypte anna) are significantly greater when fats are metabolized (RQ=0.71) than when carbohydrates are used (RQ=1.0). Because hummingbirds gained mass during our experiments, making mass a confounding variable, we estimated VO2 per unit mechanical power output. Expressed in this way, the difference in VO2 when hummingbirds display an RQ=0.71 (fasted) and an RQ=1.0 (fed) is between 16 and 18%, depending on whether zero or perfect elastic energy storage is assumed. These values closely match theoretical expectations, indicating that a combination of mechanical power estimates and ;indirect calorimetry', i.e. the measurement of rates of gas exchange, enables precise estimates of ATP turnover and metabolic flux rates in vivo. The requirement for less oxygen when oxidizing carbohydrate suggests that carbohydrate oxidation may facilitate hovering flight in hummingbirds at high altitude.

  7. Differences in oxygen consumption and external power between male and female speed skaters during supramaximal cycling.

    PubMed

    van Ingen Schenau, G J; de Groot, G

    1983-01-01

    Differences in performance levels between elite male and female endurance athletes are often explained by differences found in VO2 max even when expressed in VO2 max per kilogram lean body mass (VO2/LBM). Such an explanation is only a matter of course when less or no difference exists in mechanical efficiency, anaerobic power and technical variables like friction constants between males and females. Particularly during supramaximal exercises. In this study five elite male speed skaters were compared with five elite female speed skaters with respect to oxygen consumption and external power during a 3 min supramaximal bicycle ergometer test. The training background and training history of both groups were comparable. Although the elite males showed a 20% higher VO2/BW and 8% higher VO2/LBM (71.0 versus 65.01 x min-1 . kg-1) than the females, the female group showed the same mean external power Pc per kilogram body weight, and a surprising 12% higher Pc/LBM than the males (6.47 versus 5.79 W x kg-1). Hence the female group delivered 22% more external power per liter of oxygen consumption. With the help of additional data from 14 male and 11 female sub-elite skaters it is shown that the differences between the elite groups are mainly due to sex differences. In the light of differences between men and women reported in other studies, it seems likely that the differences found in this study are due to a difference in mechanical efficiency which particularly occurs in supramaximal tasks.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Mitochondrial oxygen consumption in permeabilized fibers and its link to colour changes in bovine M. semimembranosus muscle.

    PubMed

    Phung, V T; Khatri, M; Liland, K H; Slinde, E; Sørheim, O; Almøy, T; Saarem, K; Egelandsdal, B

    2013-01-01

    Animal and muscle characteristics were recorded for 41 cattle. The oxygen consumption rate (OCR) of M. semimembranosus was measured between 3.0-6.4h post mortem (PM3-6) and after 3 weeks in a vacuum pack at 4°C. Colour change measurements were performed following the 3 weeks using reflectance spectra (400-1,100 nm) and the colour coordinates L, a and b, with the samples being packaged in oxygen permeable film and stored at 4°C for 167 h. Significant individual animal differences in OCR at PM3-6 were found for mitochondrial complexes I and II. OCR of complex I declined with increased temperature and time PM, while residual oxygen-consuming side-reactions (ROX) did not. OCR of stored muscles was dominated by complex II respiration. A three-way regression between samples, colour variables collected upon air exposure and OCR of 3 weeks old fibres revealed a positive relationship between OCR and complex II activity and also between OCR and OCR(ROX). The presence of complex I and β-oxidation activities increased metmyoglobin formation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Noninvasive in vivo optical characterization of blood flow and oxygen consumption in the superficial plexus of skin

    NASA Astrophysics Data System (ADS)

    Liasi, Faezeh Talebi; Samatham, Ravikant; Jacques, Steven L.

    2017-11-01

    Assessing the metabolic activity of a tissue, whether normal, damaged, aged, or pathologic, is useful for diagnosis and evaluating the effects of drugs. This report describes a handheld optical fiber probe that contacts the skin, applies pressure to blanch the superficial vascular plexus of the skin, then releases the pressure to allow refill of the plexus. The optical probe uses white light spectroscopy to record the time dynamics of blanching and refilling. The magnitude and dynamics of changes in blood content and hemoglobin oxygen saturation yield an estimate of the oxygen consumption rate (OCR) in units of attomoles per cell per second. The average value of OCR on nine forearm sites on five subjects was 10±5 (amol/cell/s). This low-cost, portable, rapid, noninvasive optical probe can characterize the OCR of a skin site to assess the metabolic activity of the epidermis or a superficial lesion.

  10. Correlating two-photon excited fluorescence imaging of breast cancer cellular redox state with seahorse flux analysis of normalized cellular oxygen consumption

    NASA Astrophysics Data System (ADS)

    Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.

    2016-06-01

    Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.

  11. Oxygen Transport: A Simple Model for Study and Examination.

    ERIC Educational Resources Information Center

    Gaar, Kermit A., Jr.

    1985-01-01

    Describes an oxygen transport model computer program (written in Applesoft BASIC) which uses such variables as amount of time lapse from beginning of the simulation, arterial blood oxygen concentration, alveolar oxygen pressure, and venous blood oxygen concentration and pressure. Includes information on obtaining the program and its documentation.…

  12. Analysis and comparison of oxygen consumption of HepG2 cells in a monolayer and three-dimensional high density cell culture by use of a matrigrid®.

    PubMed

    Weise, Frank; Fernekorn, Uta; Hampl, Jörg; Klett, Maren; Schober, Andreas

    2013-09-01

    By the use of a MatriGrid® we have established a three-dimensional high density cell culture. The MatriGrid® is a culture medium permeable, polymeric scaffold with 187 microcavities. In these cavities (300 μm diameter and 207 μm deep) the cells can growth three-dimensionally. For these experiments we measured the oxygen consumption of HepG2 cell cultures in order to optimize cultivation conditions. We measured and compared the oxygen consumption, growth rate and vitality under three different cultivation conditions: monolayer, three-dimensional static and three-dimensional actively perfused. The results show that the cells in a three-dimensional cell culture consume less oxygen as in a monolayer cell culture and that the actively perfused three-dimensional cell culture in the MatriGrid® has a similar growth rate and vitality as the monolayer culture. Copyright © 2013 Wiley Periodicals, Inc.

  13. Changes in oxygen consumption and respiratory enzymes as stress indicators in an estuarine edible crab Scylla serrata exposed to naphthalene.

    PubMed

    Vijayavel, K; Balasubramanian, M P

    2006-06-01

    The sublethal effect of naphthalene was studied on the physiology of a mud crab Scylla serrata. The 96 h acute toxicity of naphthalene was determined and found to be 28 mg 1(-1) (LC100), 18 mg 1(-1) (LC50), 10 mg 1(-1) (LC0) respectively. The 30 days sublethal effect (LC0) 9 mg 1(-1), 8 mg 1(-1), 10 mg 1(-1), of naphthalene was investigated in the crab S. serrata with reference to oxygen consumption and changes in the activity of respiratory enzymes. The results indicated that naphthalene caused disturbance in the normal physiology of the crab. The bioaccumulation of naphthalene was also investigated in gills, hepatopancreas, haemolymph and ovary. The consumption of oxygen increased in the naphthalene medium when compared with that of the crabs exposed to naphthalene free medium. A decreased trend in the activity of respiratory enzymes such as lactate dehydrogenase (LDH), isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), malate dehydrogenase (MDH), alpha-ketoglutarate dehydrogenase (alpha-KDH) and glutathione (GSH) were recorded in the hepatopancreas, ovary and gills of S. serrata for all the tested concentrations of naphthalene and the results were analyzed for their significance.

  14. Oxygen Consumption and Heat Balance in the Cot-nursed Baby

    PubMed Central

    Hey, E. N.; O'Connell, Bridget

    1970-01-01

    Oxygen consumption and heat balance have been studied in 42 clothed babies under varied environmental temperature conditions. The information obtained has made it possible to compare the thermal environment provided by an incubator with that provided by an ordinary nursery cot. Some of the merits of cots and incubators are contrasted. Resistance to heat loss in a naked newborn baby lying on a mattress in a moderately humid draught-free room is approximately 1 `clo' unit. Provision of a vest, napkin, and long nightdress increases this resistance to about 2·3 units, while wrapping the clothed baby in a flannelette sheet and covering it with 2 layers of cotton blanket increases the total resistance to 2·9 clo units. A draught-free environment of 24 °C. (75 °F.) is necessary to provide completely neutral thermal conditions for most cot-nursed babies insulated against heat loss with clothes and blankets in the first month of life, while a room temperature of up to 29 °C. (85 °F.) may be necessary to ensure comparable conditions for a baby weighing less than 1½ kg. during much of the first week of life. ImagesFIG. 1 PMID:5427847

  15. Effect of BMI, Body Fat Percentage and Fat Free Mass on Maximal Oxygen Consumption in Healthy Young Adults.

    PubMed

    Mondal, Himel; Mishra, Snigdha Prava

    2017-06-01

    Maximal oxygen consumption (VO 2max ) is an important measure of cardiorespiratory capacity of an individual at a given degree of fitness and oxygen availability. Risk of cardiovascular diseases increases with increasing degree of obesity and a low level of VO 2max has been established as an independent risk factor for cardiovascular mortality. To determine VO 2max in young adults and to find its correlation with Body Mass Index (BMI), Body Fat% and Fat Free Mass (FFM). Fifty four (male=30, female=24) healthy young adults of age group18-25 years after screening by Physical Activity Readiness Questionnaire (PAR-Q) participated in the study. Height was measured by stadiometer. Weight was measured by digital weighing scale with 0.1 kg sensitivity. Body fat% was measured by Bioelectrical Impedance Analysis (BIA) method. FFM was calculated by subtracting fat mass from the body weight. VO 2max (mL.kg -1 .min -1 ) was obtained by Submaximal Exercise Test (SET) by first two stages of Bruce Protocol with the basis of linear relationship between Heart Rate (HR) and oxygen consumption (VO 2 ). Data were analysed statistically in GraphPad Prism software version 6.01 for windows. VO 2max (mL.kg -1 .min -1 ) of male (43.25±7.25) was significantly (p<0.001) higher than female (31.65±2.10). BMI showed weak negative correlation (r= -0.3232, p=0.0171) with VO 2max but Body Fat% showed strong negative correlation (r= -0.7505, p<0.001) with VO 2max . FFM positively correlated (r=0.3727, p=0.0055) with VO 2max . Increased body fat is associated with decreased level of VO 2max in young adults. Obesity in terms of Fat% is a better parameter than BMI for prediction of low VO 2max .

  16. The Effects of a Lower Body Exoskeleton Load Carriage Assistive Device on Oxygen Consumption and Kinematics During Walking with Loads

    DTIC Science & Technology

    2006-11-01

    analyze the associated gait biomechanics . Ten Army enlisted men participated in the study. Oxygen consumption (VO2) and gait biomechanics were...measured while Soldiers walked at 4.83 km/h and 0% grade under three realistic load weight configurations that were comprised of Army clothing and...increases users’ metabolic cost while carrying various loads and alters their gait biomechanics compared to conventional load carriage using a backpack

  17. Modeling the oxygen microheterogeneity of tumors for photodynamic therapy dosimetry

    NASA Astrophysics Data System (ADS)

    Pogue, Brian W.; Paulsen, Keith D.; O'Hara, Julia A.; Hoopes, P. Jack; Swartz, Harold

    2000-03-01

    Photodynamic theory of tumors uses optical excitation of a sensitizing drug within tissue to produce large deposits of singlet oxygen, which are thought to ultimately cause the tumor destruction. Predicting dose deposition of singlet oxygen in vivo is challenging because measurement of this species in vivo is not easily achieved. But it is possible to follow the concentration of oxygen in vivo, and so measuring the oxygen concentration transients during PDT may provide a viable method of estimating the delivered dose of singlet oxygen. However modeling the microscopic heterogeneity of the oxygen distribution within a tumor is non-trivial, and predicting the microscopic dose deposition requires further study, but this study present the framework and initial calibration needed or modeling oxygen transport in complex geometries. Computational modeling with finite elements provides a versatile structure within which oxygen diffusion and consumption can be modeled within realistic tissue geometries. This study develops the basic tools required to simulate a tumor region, and examines the role of (i) oxygen supply and consumption rates, (ii) inter- capillary spacing, (iii) photosensitizer distribution, and (iv) differences between simulated tumors and those derived directly from histology. The result of these calculations indicate that realistic tumor tissue capillary networks can be simulated using the finite element method, without excessive computational burden for 2D regions near 1 mm2, and 3D regions near 0.1mm3. These simulations can provide fundamental information about tissue and ways to implement appropriate oxygen measurements. These calculations suggest that photodynamic therapy produces the majority of singlet oxygen in and near the blood vessels, because these are the sites of highest oxygen tension. These calculations support the concept that tumor vascular regions are the major targets for PDT dose deposition.

  18. Differential Effects of Temperature on Oxygen Consumption and Branchial Fluxes of Urea, Ammonia, and Water in the Dogfish Shark (Squalus acanthias suckleyi).

    PubMed

    Giacomin, Marina; Schulte, Patricia M; Wood, Chris M

    Environmental temperature can greatly influence the homeostasis of ectotherms through its effects on biochemical reactions and whole-animal physiology. Elasmobranchs tend to be N limited and are osmoconformers, retaining ammonia and urea-N at the gills and using the latter as a key osmolyte to maintain high blood osmolality. However, the effects of temperature on these key processes remain largely unknown. We evaluated the effects of acute exposure to different temperatures (7°, 12°, 15°, 18°, 22°C) on oxygen consumption, ammonia, urea-N, and diffusive water fluxes at the gills of Squalus acanthias suckleyi. We hypothesized that as metabolic demand for oxygen increased with temperature, the fluxes of ammonia, urea-N, and 3 H 2 O at the gills would increase in parallel with those of oxygen. Oxygen consumption (overall [Formula: see text] from 7.5° to 22°C) and water fluxes (overall [Formula: see text]) responded to increases in temperature in a similar, almost linear, manner. Ammonia-N efflux rates varied the most, increasing almost 15-fold from 7.5° to 22°C ([Formula: see text]). Urea-N efflux was tightly conserved over the 7.5°-15°C range ([Formula: see text]) but increased greatly at higher temperatures, yielding an overall [Formula: see text]. These differences likely reflect differences in the transport pathways for the four moieties. They also suggest the failure of urea-N- and ammonia-N-conserving mechanisms at the gill above 15°C. Hyperoxia did not alleviate the effects of high temperature. Indeed, urea-N and ammonia-N effluxes were dramatically increased when animals were exposed to high temperatures in the presence of hyperoxia, suggesting that high partial pressure of oxygen may have caused oxidative damage to gill epithelial membranes.

  19. Effects of commonly used inotropes on myocardial function and oxygen consumption under constant ventricular loading conditions

    PubMed Central

    DeWitt, Elizabeth S.; Black, Katherine J.; Thiagarajan, Ravi R.; DiNardo, James A.; Colan, Steven D.; McGowan, Francis X.

    2016-01-01

    Inotropic medications are routinely used to increase cardiac output and arterial blood pressure during critical illness. However, few comparative data exist between these medications, particularly independent of their effects on venous capacitance and systemic vascular resistance. We hypothesized that an isolated working heart model that maintained constant left atrial pressure and aortic blood pressure could identify load-independent differences between inotropic medications. In an isolated heart preparation, the aorta and left atrium of Sprague Dawley rats were cannulated and placed in working mode with fixed left atrial and aortic pressure. Hearts were then exposed to common doses of a catecholamine (dopamine, epinephrine, norepinephrine, or dobutamine), milrinone, or triiodothyronine (n = 10 per dose per combination). Cardiac output, contractility (dP/dtmax), diastolic performance (dP/dtmin and tau), stroke work, heart rate, and myocardial oxygen consumption were compared during each 10-min infusion to an immediately preceding baseline. Of the catecholamines, dobutamine increased cardiac output, contractility, and diastolic performance more than clinically equivalent doses of norepinephrine (second most potent), dopamine, or epinephrine (P < 0.001). The use of triiodothyronine and milrinone was not associated with significant changes in cardiac output, contractility or diastolic function, either alone or added to a baseline catecholamine infusion. Myocardial oxygen consumption was closely related to dP/dtmax (r2 = 0.72), dP/dtmin (r2 = 0.70), and stroke work (r2 = 0.53). In uninjured, isolated working rodent hearts under constant ventricular loading conditions, dobutamine increased contractility and cardiac output more than clinically equivalent doses of norepinephrine, dopamine, and epinephrine; milrinone and triiodothyronine did not have significant effects on contractility. PMID:27150829

  20. Validating the relationship between 3-dimensional body acceleration and oxygen consumption in trained Steller sea lions.

    PubMed

    Volpov, Beth L; Rosen, David A S; Trites, Andrew W; Arnould, John P Y

    2015-08-01

    We tested the ability of overall dynamic body acceleration (ODBA) to predict the rate of oxygen consumption ([Formula: see text]) in freely diving Steller sea lions (Eumetopias jubatus) while resting at the surface and diving. The trained sea lions executed three dive types-single dives, bouts of multiple long dives with 4-6 dives per bout, or bouts of multiple short dives with 10-12 dives per bout-to depths of 40 m, resulting in a range of activity and oxygen consumption levels. Average metabolic rate (AMR) over the dive cycle or dive bout calculated was calculated from [Formula: see text]. We found that ODBA could statistically predict AMR when data from all dive types were combined, but that dive type was a significant model factor. However, there were no significant linear relationships between AMR and ODBA when data for each dive type were analyzed separately. The potential relationships between AMR and ODBA were not improved by including dive duration, food consumed, proportion of dive cycle spent submerged, or number of dives per bout. It is not clear whether the lack of predictive power within dive type was due to low statistical power, or whether it reflected a true absence of a relationship between ODBA and AMR. The average percent error for predicting AMR from ODBA was 7-11 %, and standard error of the estimated AMR was 5-32 %. Overall, the extensive range of dive behaviors and physiological conditions we tested indicated that ODBA was not suitable for estimating AMR in the field due to considerable error and the inconclusive effects of dive type.

  1. Incubation Temperature Alters Temperature-Dependent Oxygen Consumption in Northern Bobwhite Quail Hatchlings (Colinus virginianus).

    PubMed

    Marks, Christopher; Nickles, Natalie E; Wise, Tom; Mavroidis, Spiro

    This study investigated the effect of mismatching incubation and posthatch temperatures in northern bobwhite quail hatchlings. Quail embryos were incubated at 35.5° or 37.5°C. Metabolic rates were then measured in hatchlings acclimated to either the same or the opposite temperature treatment. While hatchlings expressed higher oxygen consumption when posthatch temperature did not match incubation temperature, the effect of mismatching temperatures was significant only when posthatch temperature was higher than incubation temperature. Our data suggest that bobwhite quail hatchlings may express increased metabolism due to mismatches between incubation and posthatch temperatures. More specifically, the nature or direction of the mismatch can determine the magnitude of the metabolic effect. These findings highlight the importance of considering the context of specific conditions experienced throughout ontogeny when observing phenotypic outcomes.

  2. Bio-filtration capacity, oxygen consumption and ammonium excretion of Dosinia ponderosa and Chione gnidia (Veneroida: Veneridae) from areas impacted and non-impacted by shrimp aquaculture effluents.

    PubMed

    Ramos-Corella, Karime; Martínez-Córdova, Luis Rafael; Enríquez-Ocaña, Luis Fernando; Miranda-Baeza, Anselmo; López-Elías, José Antonio

    2014-09-01

    Mollusks are some of the most important, abundant and diverse organisms inhabiting not only aquatic ecosystems, but also terrestrial environments. Recently, they have been used for bioremediation of aquaculture effluents; nevertheless, for that purpose it is necessary to analyze the capacity of a particular species. In this context, an experimental investigation was developed to evaluate the performance of two bivalves C. gnidia and D. ponderosa, collected from areas with or without shrimp aquaculture effluents. For this, the filtration capacity (as clearance rate) as well as the oxygen consumption and ammonia excretion rates were measured following standard methods. The clearance rate was significantly higher for D. ponderosa from impacted areas, when com- pared to C. gnidia, from both areas. Contrarily, the oxygen consumption was greater for C. gnidia from impacted areas compared to D. ponderosa from both areas. The same tendency was observed for the ammonia excretion with the highest rates observed for C. gnidia from impacted areas, whereas no differences were observed among D. ponderosa from both areas. The results suggest that both species developed different strategies to thrive and survive under the impacted conditions; D. ponderosa improved its filtration efficiency, while C. gnidia modified its oxygen consumption and ammonia excretion. We concluded that both species, and particularly D. ponderosa, can be used for bioremediation purposes.

  3. Effect of temperature on excess post-exercise oxygen consumption in juvenile southern catfish (Silurus meridionalis Chen) following exhaustive exercise.

    PubMed

    Zeng, Ling-Qing; Zhang, Yao-Guang; Cao, Zhen-Dong; Fu, Shi-Jian

    2010-12-01

    The effects of temperature on resting oxygen consumption rate (MO2rest) and excess post-exercise oxygen consumption (EPOC) after exhaustive exercise (chasing) were measured in juvenile southern catfish (Silurus meridionalis) (8.40±0.30 g, n=40) to test whether temperature has a significant influence on MO2rest, maximum post-exercise oxygen consumption rate (MO2peak) and EPOC and to investigate how metabolic scope (MS: MO2peak - MO2rest) varies with acclimation temperature. The MO2rest increased from 64.7 (10°C) to 160.3 mg O2 h(-1) kg(-1) (25°C) (P<0.05) and reached a plateau between 25 and 30°C. The post-exercise MO2 in all temperature groups increased immediately to the peak values and then decreased slowly to a steady state that was higher than the pre-exercise MO2. The MO2peak did not significantly differ among the 20, 25 and 30°C groups, though these values were much higher than those of the lower temperature groups (10 and 15°C) (P<0.05). The duration of EPOC varied from 32.9 min at 10°C to 345 min at 20°C, depending on the acclimation temperatures. The MS values of the lower temperature groups (10 and 15°C) were significantly smaller than those of the higher temperature groups (20, 25 and 30°C) (P<0.05). The magnitude of EPOC varied ninefold among all of the temperature groups and was the largest for the 20°C temperature group (about 422.4 mg O2 kg(-1)). These results suggested that (1) the acclimation temperature had a significant effect on maintenance metabolism (as indicated by MO2rest) and the post-exercise metabolic recovery process (as indicated by MO2peak, duration and magnitude of EPOC), and (2) the change of the MS as a function of acclimation temperature in juvenile southern catfish might be related to their high degree of physiological flexibility, which allows them to adapt to changes in environmental conditions in their habitat in the Yangtze River and the Jialing River.

  4. The Role of Oxygen in Avascular Tumor Growth

    PubMed Central

    Grimes, David Robert; Kannan, Pavitra; McIntyre, Alan; Kavanagh, Anthony; Siddiky, Abul; Wigfield, Simon; Harris, Adrian; Partridge, Mike

    2016-01-01

    The oxygen status of a tumor has significant clinical implications for treatment prognosis, with well-oxygenated subvolumes responding markedly better to radiotherapy than poorly supplied regions. Oxygen is essential for tumor growth, yet estimation of local oxygen distribution can be difficult to ascertain in situ, due to chaotic patterns of vasculature. It is possible to avoid this confounding influence by using avascular tumor models, such as tumor spheroids, a much better approximation of realistic tumor dynamics than monolayers, where oxygen supply can be described by diffusion alone. Similar to in situ tumours, spheroids exhibit an approximately sigmoidal growth curve, often approximated and fitted by logistic and Gompertzian sigmoid functions. These describe the basic rate of growth well, but do not offer an explicitly mechanistic explanation. This work examines the oxygen dynamics of spheroids and demonstrates that this growth can be derived mechanistically with cellular doubling time and oxygen consumption rate (OCR) being key parameters. The model is fitted to growth curves for a range of cell lines and derived values of OCR are validated using clinical measurement. Finally, we illustrate how changes in OCR due to gemcitabine treatment can be directly inferred using this model. PMID:27088720

  5. Enhanced oxygen consumption in Herbaspirillum seropedicae fnr mutants leads to increased NifA mediated transcriptional activation.

    PubMed

    Batista, Marcelo Bueno; Wassem, Roseli; Pedrosa, Fábio de Oliveira; de Souza, Emanuel Maltempi; Dixon, Ray; Monteiro, Rose Adele

    2015-05-07

    Orthologous proteins of the Crp/Fnr family have been previously implicated in controlling expression and/or activity of the NifA transcriptional activator in some diazotrophs. This study aimed to address the role of three Fnr-like proteins from H. seropedicae SmR1 in controlling NifA activity and consequent NifA-mediated transcription activation. The activity of NifA-dependent transcriptional fusions (nifA::lacZ and nifB::lacZ) was analysed in a series of H. seropedicae fnr deletion mutant backgrounds. We found that combined deletions in both the fnr1 and fnr3 genes lead to higher expression of both the nifA and nifB genes and also an increased level of nifH transcripts. Expression profiles of nifB under different oxygen concentrations, together with oxygen consumption measurements suggest that the triple fnr mutant has higher respiratory activity when compared to the wild type, which we believe to be responsible for greater stability of the oxygen sensitive NifA protein. This conclusion was further substantiated by measuring the levels of NifA protein and its activity in fnr deletion strains in comparison with the wild-type. Fnr proteins are indirectly involved in controlling the activity of NifA in H. seropedicae, probably as a consequence of their influence on respiratory activity in relation to oxygen availability. Additionally we can suggest that there is some redundancy in the physiological function of the three Fnr paralogs in this organism, since altered respiration and effects on NifA activity are only observed in deletion strains lacking both fnr1 and fnr3.

  6. Fish as a model in investigations about the relationship between oxygen consumption and hydroxyl radical production in permeabilized muscle fibers.

    PubMed

    Mortelette, H; Moisan, C; Sébert, P; Belhomme, M; Amérand, A

    2010-08-01

    Mitochondrion is the main production site for reactive oxygen species (ROS). In endotherms, the existence of a positive relationship between ROS production and metabolic rate is acknowledged. But, little is known about ectotherms, especially fish, with a metabolic rate dependent on the environmental temperature. The maximal oxygen consumption and the production of highly reactive hydroxyl radicals by permeabilized red muscles of yellow and silver eels and trouts were measured concomitantly and compared to those of rats chosen for their comparable body mass, but different metabolic rate. The positive correlation found in fish between the metabolic rate and the ROS production showed a shift with respect to mammals. (c) 2010 Mitochondria Research Society. Published by Elsevier B.V. All rights reserved.

  7. Temperature effect on behaviour, oxygen consumption, ammonia excretion and tolerance limit of the fish fingerlings of Alepes djidaba.

    PubMed

    Krishnamoorthy, R; Syed Mohamed, H E; Shahul Hameed, P

    2008-07-01

    The present study has been carried out to determine the effect of temperature on behaviour, oxygen consumption, ammonia excretion and tolerance limit of the fish fingerlings of Alepes djidaba, which were collected at Kalpakkam. The fish fingerlings were placed at different temperatures, based on the thermal tolerance limit of fish and thermal outfall of the Madras Atomic Power Station (MAPS). The thermal tolerance experiments were conducted in two ways: in direct exposure and in gradually increasing temperature for duration of 48 hr. The upper and lower lethal temperatures for the fish fingerlings of Alepes djidaba were 38.5 degrees C and 14 degrees C respectively. During tolerance experiment, no mortality was observed at 33 degrees C and 35 degrees C. But at 38 degrees C with gradual increase in temperature, 100% loss of equilibrium was observed at 37.7 degrees C in 36 min and mortality was observed at 38 degrees C in 55 min. On the contrary, when the fish fingerlings A. djidaba were directly exposed to 38 degrees C, almost 100% loss of equilibrium and mortality were recorded in 15 min and 31 min respectively. At 40 degrees C with gradual increase in temperature, 100% loss of equilibrium was recorded at 38.5 degrees C in 46 min and mortality was recorded at 39 degrees C in 50 min. On the other hand, when the fish fingerlings of Alepes djidaba were directly exposed to 40 degrees C, 100% mortality occurred immediately within one minute. These behavioral responses include an elevated temperature of deltaT 10 degrees C, surfacing, dashing against glass wall, jumping out of the water, etc. In general, the rate of oxygen consumption and ammonia excretion was found to enhance with increasing temperature. The oxygen consumption was found to increase from 0.97 mg O2/g/hr at 30 degrees C to 2.2 mg O2/g/hr at 35 degrees C. Similarly, the excretion of ammonia also increased from 3.18 microg/g/hr at 30 degrees C to 5.91 microg/g/hr at 35 degrees C. In the present study, it was

  8. Using carbon emissions and oxygen consumption to estimate energetics parameters of cattle consuming forages

    USDA-ARS?s Scientific Manuscript database

    To evaluate newer indirect calorimetry system to quantify energetic parameters, 8 cross-bred beef steers (initial BW = 241 ± 4.10 kg) were used in a 77-d experiment to examine energetics parameters calculated from carbon dioxide (CO2), methane (CH4), and oxygen (O2) fluxes. Steers were individually ...

  9. Proanthocyanidin-containing polyphenol extracts from fruits prevent the inhibitory effect of hydrogen sulfide on human colonocyte oxygen consumption.

    PubMed

    Andriamihaja, Mireille; Lan, Annaïg; Beaumont, Martin; Grauso, Marta; Gotteland, Martin; Pastene, Edgar; Cires, Maria Jose; Carrasco-Pozo, Catalina; Tomé, Daniel; Blachier, François

    2018-06-01

    Hydrogen sulfide (H 2 S), a metabolic end product synthesized by the microbiota from L-cysteine, has been shown to act at low micromolar concentration as a mineral oxidative substrate in colonocytes while acting as an inhibitor of oxygen consumption at higher luminal concentrations (65 µM and above). From the previous works showing that polyphenols can bind volatile sulfur compounds, we hypothesized that different dietary proanthocyanidin-containing polyphenol (PACs) plant extracts might modulate the inhibitory effect of H 2 S on colonocyte respiration. Using the model of human HT-29 Glc-/+ cell colonocytes, we show here that pre-incubation of 65 µM of the H 2 S donor NaHS with the different polyphenol extracts markedly reduced the inhibitory effect of NaHS on colonocyte oxygen consumption. Our studies on HT-29 Glc-/+ cell respiration performed in the absence or the presence of PACs reveal rapid binding of H 2 S with the sulfide-oxidizing unit and slower binding of H 2 S to the cytochrome c oxidase (complex IV of the respiratory chain). Despite acute inhibition of colonocyte respiration, no measurable effect of NaHS on paracellular permeability was recorded after 24 h treatment using the Caco-2 colonocyte monolayer model. The results are discussed in the context of the binding of excessive bacterial metabolites by unabsorbed dietary compounds and of the capacity of colonocytes to adapt to changing luminal environment.

  10. Modeling and experimental methods to predict oxygen distribution in bone defects following cell transplantation.

    PubMed

    Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F

    2014-04-01

    We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.

  11. Aircraft Oxygen Generation

    DTIC Science & Technology

    2012-02-01

    a slight increase in oxygen consumption during exercise, without a decrement in capillary hemoglobin oxygen saturation compared to exercise on 85...must be provided.  HSI education and training for program managers and acquisition professionals are required.  Meaningful, quantifiable...positions were transferred to the 711th HPW at WPAFB. Only two of the analysts moved to WPAFB, creating a major shortfall in HSI education , training, and

  12. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines.

    PubMed

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO 2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO 2 non-bleachable pigments during aging

  13. Impact of Increasing Levels of Oxygen Consumption on the Evolution of Color, Phenolic, and Volatile Compounds of Nebbiolo Wines

    PubMed Central

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-01-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments during aging

  14. Impact of increasing levels of oxygen consumption on the evolution of color, phenolic and volatile compounds of Nebbiolo wines

    NASA Astrophysics Data System (ADS)

    Petrozziello, Maurizio; Torchio, Fabrizio; Piano, Federico; Giacosa, Simone; Ugliano, Maurizio; Bosso, Antonella; Rolle, Luca

    2018-04-01

    Since the end of the last century, many works have been carried out to verify the effect of controlled oxygen intake on the chemical and organoleptic characteristics of red wines. In spite of the large number of studies on this subject, oxygen remains a cutting-edge research topic in oenology. Oxygen consumption leads to complex and not univocal changes in wine composition, sometimes positive such as color stabilization, softening of mouthfeel, increase of aroma complexity. However, the variability of these effects, which depend both on the oxygenation conditions and the composition of the wine, require more efforts in this research field to effectively manage wine oxygen exposure. The present study is focused on the evolution of the chemical composition of four different Nebbiolo wines, each of them added with 4 different doses of oxygen (7, 14, 21, and 28 mg/L total intake) during the first month of storage. In this perspective, the evolution over time of wine color and polyphenols was studied. Acetaldehyde, glyceraldehyde and glyoxylic acid were quantified by HPLC. These compounds can play a role in wine aging creating condensed colored and stable products involving anthocyanins with or without tannins. Moreover, some volatile aldehydes correlated with oxidized olfactory notes, including methional and (E)-2-alkenals, have been quantified by GC-MS. Overall, during storage a decrease of color intensity, total and free anthocyanins and an increase in polymeric pigments (in particular the contribution to the red color of pigments not-bleachable by SO2 or dTAT%) and some minor aldehydes was observed. Nevertheless, the differences in color parameters between the samples with different doses of oxygen were modest. These evidences were in contrast with an evident and detectable increase of free acetaldehyde content at increasing doses of oxygen measured after 60 days of storage. The effect of oxygen on color and production of SO2 non-bleachable pigments during ageing

  15. Effect of dietary supplementation of l-tryptophan on thermal tolerance and oxygen consumption rate in Cirrhinus mrigala fingerlings under varied stocking density.

    PubMed

    Tejpal, C S; Sumitha, E B; Pal, A K; Shivananda Murthy, H; Sahu, N P; Siddaiah, G M

    2014-04-01

    A 60 day feeding trial was conducted to study the effect of dietary l-tryptophan on thermal tolerance and oxygen consumption rate of freshwater fish, mrigala, Cirrhinus mrigala reared under ambient temperature at low and high stocking density. Four hundred eighty fingerlings were distributed into eight experimental groups. Four groups each of low density group (10 fishes/75L water) and higher density group (30 fishes/75L water) were fed a diet containing 0, 0.68, 1.36 or 2.72% l-tryptophan in the diet, thus forming eight experimental groups namely, Low density control (LC) (basal feed +0% l-tryptophan); LT1 (basal feed+0.68% l-tryptophan); LT2 (basal feed+1.36% l-tryptophan); LT3 (basal feed+2.72% l-tryptophan); high density control (HC) (basal feed+0% l-tryptophan); HT1 (basal feed+0.68% l-tryptophan); HT2 (basal feed+1.36% l-tryptophan); and HT3 (basal feed+2.72% l-tryptophan) were fed at 3% of the body weight. The test diets having crude protein 34.33±0.23 to 35.81±0.18% and lipid 423.49±1.76 to 425.85±0.31KCal/100g were prepared using purified ingredients. The possible role of dietary l-tryptophan on thermal tolerance and oxygen consumption rate was assessed in terms of critical thermal maxima (CTMax), critical thermal minima (CTMin), lethal thermal maxima (LTMax) and lethal thermal minima (LTMin). The CTMax, CTMin, LTMax and LTMin values were found to be significantly higher (p<0.05) in the treatment groups with CTMax 42.94±0.037 (LT2); LT Max 43.18±0.070 (LT2); CTMin 10.47±0.088 (LT2) and LTMin 9.42±0.062 (LT3), whereas the control group showed a lower tolerance level. The same trend was observed in the high density group (CTMax 42.09±0.066 (LT3); LTMax 43 23±0.067 (HT3); CTMin 10.98±0.040 (HT3) and LTMin 9.74±0.037 (HT3). However, gradual supplementation of dietary l-tryptophan in the diet significantly reduced the oxygen consumption rate in both the low density group (Y=-26.74x+222.4, r²=0.915) and the high density group (Y=-32.96x+296.5, r²=0

  16. The lack of bicuculline and picrotoxin influence on midazolam depressant action on brain oxygen consumption.

    PubMed

    Obradović, Dragan I; Savić, Miroslav M; Obradović, Miljana M; Ugresić, Nenad D; Bokonjić, Dubravko R

    2006-04-24

    In the previous study of the rat frontal cortex slices oxygen consumption (QO2), polarographically determined using the biological oxygen monitor, a moderate respiratory depressant action of midazolam ex vivo (1.0 mg/kg) has been observed. Antagonist of the benzodiazepine binding site, flumazenil, blocked the effect of the agonist. However, midazolam-gamma-aminobutyric acid (GABA) interactions pointed to the possibility that a part of midazolam action is independent of the classical GABA potentiation. To test this presumption, GABAA receptor antagonists bicuculline and picrotoxin were administered. Both blockers antagonized the QO2 reducing effect of the combination of per se effective doses of midazolam (1.0 mg/kg) and GABA (5 x 10(-4) mol/l), as well as of GABA (5 x 10(-4) mol/l) itself. However, neither effects of midazolam (1.0 mg/kg) on its own, nor those of midazolam in presence of the physiological, per se ineffective, concentration of GABA (10(-6) mol/l), were susceptible to antagonism. These results show that ex vivo influence of midazolam on cerebral metabolic activity should be partly ascribed to some of its cellular mechanisms probably associated to the GABA modulation, but distinct from the standard GABA-potentiating effects of benzodiazepines.

  17. Seasonal variation in thermal tolerance, oxygen consumption, antioxidative enzymes and non-specific immune indices of Indian hill trout, Barilius bendelisis (Hamilton, 1807) from central Himalaya, India.

    PubMed

    Sharma, Neeraj Kumar; Akhtar, M S; Pandey, Nityanand; Singh, Ravindra; Singh, Atul Kumar

    2015-08-01

    We studied the season dependent thermal tolerance, oxygen consumption, respiratory burst response and antioxidative enzyme activities in juveniles of Barilius bendelisis. The critical thermal maximum (CTmax), lethal thermal maximum (LTmax), critical thermal minimum (CTmin) and lethal thermal minimum (LTmin) were significantly different at five different seasons viz. winter (10.64°C), spring (16.25°C), summer (22.11°C), rainy (20.87°C) and autumn (17.77°C). The highest CTmax was registered in summer (36.02°C), and lowest CTmin was recorded during winter (2.77°C). Water temperature, dissolved oxygen and pH were strongly related to CTmax, LTmax, CTmin and LTmin suggesting seasonal acclimatization of B. bendelisis. The thermal tolerance polygon area of the B. bendelisis juveniles within the range of seasonal temperature (10.64-22.11°C) was calculated as 470.92°C(2). Oxygen consumption rate was significantly different (p<0.05) between seasons with maximum value during summer (57.66mgO2/kg/h) and lowest in winter (32.60mgO2/kg/h). Total white blood cell count including neutrophil and monocytes also showed significant difference (p<0.05) between seasons with maximum value during summer and minimum number in winter and were found correlated to temperature, dissolved oxygen, pH and respiratory burst activity. Respiratory burst activity of blood phagocytes significantly differed (p<0.05) among seasons with higher value during summer (0.163 OD540nm) and minimum in winter season (0.054 OD540nm). The activity of superoxide dismutase, catalase and glutathione-s-transferase both in liver and gill, also varied significantly (p<0.05) during different seasons. Overall results of this study suggest that multiple environmental factors play a role in seasonal acclimation in B. bendelisis, which modulate the thermal tolerance, oxygen consumption, respiratory burst activity and status of anti-oxidative potential in wild environment. Copyright © 2015 Elsevier Ltd. All rights

  18. Myocardial Blood Volume Is Associated with Myocardial Oxygen Consumption: An Experimental Study with CMR in a Canine Model

    PubMed Central

    McCommis, Kyle S.; Zhang, Haosen; Goldstein, Thomas A.; Misselwitz, Bernd; Abendschein, Dana R.; Gropler, Robert J.; Zheng, Jie

    2009-01-01

    OBJECTIVES To evaluate the feasibility of cardiovascular MR (CMR) to determine regional myocardial perfusion and O2 metabolism, and assess the role of myocardial blood volume (MBV) on oxygen supply. BACKGROUND Coronary artery disease presents as an imbalance of myocardial oxygen supply and demand. We have developed relevant CMR methods to determine the relationship of myocardial blood flow (MBF) and MBV to oxygen consumption (MVO2) during pharmacologic hyperemia. METHODS Twenty-one mongrel dogs were studied with varying stenosis severities imposed on the proximal left anterior descending (LAD) coronary artery. MBF and MBV were determined by CMR first-pass perfusion, while the oxygen extraction fraction (OEF) and MVO2 were determined by the myocardial Blood-Oxygen-Level-Dependent (BOLD) effect and Fick’s law, respectively. MR imaging was performed at rest, and during either dipyridamole-induced vasodilation or dobutamine-induced hyperemia. Regional differences in myocardial perfusion and oxygenation were then evaluated. RESULTS Dipyridamole and dobutamine both led to 145–200% increases in MBF and 50–80% increases in MBV in normal perfused myocardium. As expected, MVO2 increased more significantly with dobutamine (~175%) than dipyridamole (~40%). Coronary stenosis resulted in an attenuation of MBF, MBV, and MVO2 in both the LAD-subtended stenosis region and the left circumflex subtended remote region. Liner regression analysis showed that MBV reserve appears to be more correlated with MVO2 reserve during dobutamine stress than MBF reserve, particularly in the stenotic regions. Conversely, MBF reserve appears to be more correlated with MVO2 reserve during dipyridamole, although neither of these differences was significant. CONCLUSIONS Noninvasive evaluation of both myocardial perfusion and oxygenation by CMR facilitates direct monitoring of regional myocardial ischemia and provides a valuable tool for better understanding microvascular pathophysiology. These

  19. Examining the Relationship Between Soda Consumption and Eating Disorder Pathology

    PubMed Central

    Bragg, M.A.; White, M. A.

    2013-01-01

    Objective This study aimed to compare diet soda drinkers, regular soda drinkers, and individuals who do not regularly consume soda on clinically significant eating disorder psychopathology, including binge eating, overeating, and purging. Method Participants (n=2077) were adult community volunteers who completed an online survey that included the Eating Disorder Examination Questionnaire and questions regarding binge eating behaviors, purging, current weight status, and the type and frequency of soda beverages consumed. Results Diet soda drinkers (34%, n=706) reported significantly higher levels of eating, shape, and weight concerns than regular soda drinkers (22%, n=465), who in turn reported higher levels on these variables than non-soda drinkers (44%, n=906). Diet soda drinkers were more likely to report binge eating and purging than regular soda drinkers, who were more likely to report these behaviors than non-soda drinkers. Consumption of any soda was positively associated with higher BMI, though individuals who consumed regular soda reported significantly higher BMI than diet soda drinkers, who in turn reported higher weight than those who do not consume soda regularly. Conclusions Individuals who consume soda regularly reported higher BMI and more eating psychopathology than those who do not consume soda. These findings extend previous research demonstrating positive associations between soda consumption and weight. PMID:24167775

  20. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia

    PubMed Central

    Sims, David T.; Onambélé-Pearson, Gladys L.; Burden, Adrian; Payton, Carl; Morse, Christopher I.

    2018-01-01

    The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption (V͘O2) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal V͘O2 and C during a range of set walking speeds (SWS; 0.56 – 1.94 m⋅s-1, increment 0.28 m⋅s-1), set running speeds (SRS; 1.67 – 3.33 m⋅s-1, increment 0.28 m⋅s-1) and a self-selected walking speed (SSW). V͘O2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude’s number (Fr). Achondroplasic V͘O2TBM and V͘O2FFM were on average 29 and 35% greater during SWS (P < 0.05) and 12 and 18% higher during SRS (P < 0.05) than controls, respectively. Achondroplasic CTBM and CFFM were 29 and 33% greater during SWS (P < 0.05) and 12 and 18% greater during SRS (P < 0.05) than controls, respectively. There was no difference in SSW V͘O2TBM or V͘O2FFM between groups (P > 0.05), but CTBM and CFFM at SSW were 23 and 29% higher (P < 0.05) in the Achondroplasic group compared to controls, respectively. V͘O2TBM and V͘O2FFM correlated with Fr for both groups (r = 0.984 – 0.999, P < 0.05). Leg length accounted for the majority of the higher V͘O2TBM and V͘O2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic CTBM and CFFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched non-Achondroplasic individuals, suggesting biomechanical differences between the groups. PMID:29720948

  1. Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes

    PubMed Central

    Sun, Xiaocun; Zemel, Michael B

    2009-01-01

    Background The effects of dairy on energy metabolism appear to be mediated, in part, by leucine and calcium which regulate both adipocyte and skeletal muscle energy metabolism. We recently demonstrated that leucine and calcitriol regulate fatty acid oxidation in skeletal muscle cells in vitro, with leucine promoting and calcitriol suppressing fatty acid oxidation. Moreover, leucine coordinately regulated adipocyte lipid metabolism to promote flux of lipid to skeletal muscle and regulate metabolic flexibility. We have now investigated the role of mitochondrial biogenesis in mediating these effects. Methods We tested the effect of leucine, calcitriol and calcium in regulation of mitochondrial mass using a fluorescence method and tested mitochondrial biogenesis regulatory genes as well mitochondrial component genes using real-time PCR. We also evaluated the effect of leucine on oxygen consumption with a modified perfusion system. Results Leucine (0.5 mM) increased mitochondrial mass by 30% and 53% in C2C12 myocytes and 3T3-L1 adipocytes, respectively, while calcitriol (10 nM) decreased mitochondrial abundance by 37% and 27% (p < 0.02). Leucine also stimulated mitochondrial biogenesis genes SIRT-1, PGC-1α and NRF-1 as well as mitochondrial component genes UCP3, COX, and NADH expression by 3–5 fold in C2C12 cells (p < 0.003). Adipocyte-conditioned medium reduced mitochondrial abundance (p < 0.001) and decreased UCP3 but increased PGC-1α expression in myocytes, suggesting a feedback stimulation of mitochondrial biogenesis. Similar data were observed in C2C12 myocytes co-cultured with adipocytes, with co-culture markedly suppressing mitochondrial abundance (p < 0.02). Leucine stimulated oxygen consumption in both C2C12 cells and adipocytes compared with either control or valine-treated cells. Transfection of C2C12 myocytes with SIRT-1 siRNA resulted in parallel suppression of SIRT-1 expression and leucine-induced stimulation of PGC-1α and NRF-1, indicating that SIRT

  2. Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts.

    PubMed

    Carrascon, Vanesa; Fernandez-Zurbano, Purificación; Bueno, Mónica; Ferreira, Vicente

    2015-12-30

    Chemical changes caused by oxidation of red wines during 5 consecutive air-saturation cycles have been assessed. In order to investigate the existing relationship between the effects caused by O2 and the levels and consumption rates of wine SO2, the total oxygen consumed by the wines (16-25 mg/L) was subdivided into different nonmutually exclusive categories. The ones found most influential on chemical changes were the O2 consumed in the first saturation without equivalent SO2 consumption (O2preSO2) and the O2 consumed when levels of free SO2 were below 5 mg/L (radical forming O2). Chromatic changes were strongly related to both O2 categories, even though anthocyanidin degradation was not related to any O2 category. Radical forming O2 prevented both formation of red pigments and reduction of epigallocatechin and other proanthocyanidins, induced accumulation of phenolic acids, and caused losses of β-damascenone and whiskylactone without evidence of acetaldehyde formation. O2preSO2 seemed to play a key role in the formation of blue pigments and in the decrease of Folin index and of many important aroma compounds.

  3. Oxygen Consumption and Usage During Physical Exercise: The Balance Between Oxidative Stress and ROS-Dependent Adaptive Signaling

    PubMed Central

    Zhao, Zhongfu; Koltai, Erika; Ohno, Hideki; Atalay, Mustafa

    2013-01-01

    Abstract The complexity of human DNA has been affected by aerobic metabolism, including endurance exercise and oxygen toxicity. Aerobic endurance exercise could play an important role in the evolution of Homo sapiens, and oxygen was not important just for survival, but it was crucial to redox-mediated adaptation. The metabolic challenge during physical exercise results in an elevated generation of reactive oxygen species (ROS) that are important modulators of muscle contraction, antioxidant protection, and oxidative damage repair, which at moderate levels generate physiological responses. Several factors of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α), mitogen-activated protein kinase, and SIRT1, are modulated by exercise-associated changes in the redox milieu. PGC-1α activation could result in decreased oxidative challenge, either by upregulation of antioxidant enzymes and/or by an increased number of mitochondria that allows lower levels of respiratory activity for the same degree of ATP generation. Endogenous thiol antioxidants glutathione and thioredoxin are modulated with high oxygen consumption and ROS generation during physical exercise, controlling cellular function through redox-sensitive signaling and protein–protein interactions. Endurance exercise-related angiogenesis, up to a significant degree, is regulated by ROS-mediated activation of hypoxia-inducible factor 1α. Moreover, the exercise-associated ROS production could be important to DNA methylation and post-translation modifications of histone residues, which create heritable adaptive conditions based on epigenetic features of chromosomes. Accumulating data indicate that exercise with moderate intensity has systemic and complex health-promoting effects, which undoubtedly involve regulation of redox homeostasis and signaling. Antioxid. Redox Signal. 18, 1208–1246. PMID:22978553

  4. Nonoxidative Glucose Consumption during Focal Physiologic Neural Activity

    NASA Astrophysics Data System (ADS)

    Fox, Peter T.; Raichle, Marcus E.; Mintun, Mark A.; Dence, Carmen

    1988-07-01

    Brain glucose uptake, oxygen metabolism, and blood flow in humans were measured with positron emission tomography, and a resting-state molar ratio of oxygen to glucose consumption of 4.1:1 was obtained. Physiological neural activity, however, increased glucose uptake and blood flow much more (51 and 50 percent, respectively) than oxygen consumption (5 percent) and produced a molar ratio for the increases of 0.4:1. Transient increases in neural activity cause a tissue uptake of glucose in excess of that consumed by oxidative metabolism, acutely consume much less energy than previously believed, and regulate local blood flow for purposes other than oxidative metabolism.

  5. Oxygen consumption estimation with combined color doppler ultrasound and photoacoustic microscopy: a phantom study

    NASA Astrophysics Data System (ADS)

    Jiang, Yan; Harrison, Tyler; Forbrich, Alex; Zemp, Roger J.

    2011-03-01

    The metabolic rate of oxygen consumption (MRO2) quantifies tissue metabolism, which is important for diagnosis of many diseases. For a single vessel model, the MRO2 can be estimated in terms of the mean flow velocity, vessel crosssectional area, total concentration of hemoglobin (CHB), and the difference between the oxygen saturation (sO2) of blood flowing into and out of the tissue region. In this work, we would like to show the feasibility to estimate MRO2 with our combined photoacoustic and high-frequency ultrasound imaging system. This system uses a swept-scan 25-MHz ultrasound transducer with confocal dark-field laser illumination optics. A pulse-sequencer enables ultrasonic and laser pulses to be interlaced so that photoacoustic and Doppler ultrasound images are co-registered. Since the mean flow velocity can be measured by color Doppler ultrasound, the vessel cross-sectional area can be measured by power Doppler or photoacoustic imaging, and multi-wavelength photoacoustic methods can be used to estimate sO2 and CHB, all of these parameters necessary for MRO2 estimation can be provided by our system. Experiments have been performed on flow phantoms to generate co-registered color Doppler and photoacoustic images. To verify the sO2 estimation, two ink samples (red and blue) were mixed in various concentration ratios to mimic different levels of sO2, and the result shows a good match between the calculated concentration ratios and actual values.

  6. Net production of oxygen in the subtropical ocean.

    PubMed

    Riser, Stephen C; Johnson, Kenneth S

    2008-01-17

    The question of whether the plankton communities in low-nutrient regions of the ocean, comprising 80% of the global ocean surface area, are net producers or consumers of oxygen and fixed carbon is a key uncertainty in the global carbon cycle. Direct measurements in bottle experiments indicate net oxygen consumption in the sunlit zone, whereas geochemical evidence suggests that the upper ocean is a net source of oxygen. One possible resolution to this conflict is that primary production in the gyres is episodic and thus difficult to observe: in this model, oligotrophic regions would be net consumers of oxygen during most of the year, but strong, brief events with high primary production rates might produce enough fixed carbon and dissolved oxygen to yield net production as an average over the annual cycle. Here we examine the balance of oxygen production over three years at sites in the North and South Pacific subtropical gyres using the new technique of oxygen sensors deployed on profiling floats. We find that mixing events during early winter homogenize the upper water column and cause low oxygen concentrations. Oxygen then increases below the mixed layer at a nearly constant rate that is similar to independent measures of net community production. This continuous oxygen increase is consistent with an ecosystem that is a net producer of fixed carbon (net autotrophic) throughout the year, with episodic events not required to sustain positive oxygen production.

  7. Oxygen requirement of separated hybrid catfish eggs

    USDA-ARS?s Scientific Manuscript database

    Channel catfish egg masses require hatchery water with over 7.8 ppm dissolved oxygen at 80° F (95% air saturation) to maintain maximum oxygen consumption as they near hatching. This concentration is called the critical oxygen requirement by scientists but for the purpose of this article we will call...

  8. Effects of increased inspired oxygen concentration on tissue oxygenation: theoretical considerations.

    PubMed

    Lumb, Andrew B; Nair, Sindhu

    2010-03-01

    Breathing increased fractional oxygen concentration (FiO2) is recommended for the treatment of tissue ischaemia. The theoretical benefits of increasing FiO2 on tissue oxygenation were evaluated using standard physiological equations. Assuming constant oxygen consumption by tissues throughout the length of a capillary, the oxygen content at 20 arbitrary points along a capillary was calculated. Using mathematical representations of the haemoglobin dissociation curve and an iterative approach to include the dissolved oxygen component of oxygen content, the oxygen partial pressure (PO2) profile along a capillary was estimated. High FiO2 concentrations cause large increases in PO2 at the arteriolar end of capillaries but these large PO2 values, caused by the extra dissolved oxygen, rapidly decline along the capillary. At the venular end of the capillary (the area of tissue most likely to be hypoxic), breathing oxygen causes only a modest improvement in PO2. Increasing FiO2 to treat tissue hypoxia has clear benefits, but a multimodal approach to management is required.

  9. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS)

    PubMed Central

    Fantini, Sergio

    2013-01-01

    This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. PMID:23583744

  10. Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: Implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS).

    PubMed

    Fantini, Sergio

    2014-01-15

    This article presents a dynamic model that quantifies the temporal evolution of the concentration and oxygen saturation of hemoglobin in tissue, as determined by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity, and oxygen consumption. This multi-compartment model determines separate contributions from arterioles, capillaries, and venules that comprise the tissue microvasculature, and treats them as a complete network, without making assumptions on the details of the architecture and morphology of the microvascular bed. A key parameter in the model is the effective blood transit time through the capillaries and its associated probability of oxygen release from hemoglobin to tissue, as described by a rate constant for oxygen diffusion. The solution of the model in the time domain predicts the signals measured by hemodynamic-based neuroimaging techniques such as functional near-infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) in response to brain activation. In the frequency domain, the model yields an analytical solution based on a phasor representation that provides a framework for quantitative spectroscopy of coherent hemodynamic oscillations. I term this novel technique coherent hemodynamics spectroscopy (CHS), and this article describes how it can be used for the assessment of cerebral autoregulation and the study of hemodynamic oscillations resulting from a variety of periodic physiological challenges, brain activation protocols, or physical maneuvers. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Oxygen consumption and survival prediction in neonatal rats exposed to prenatal hypervitaminosis A.

    PubMed

    Newman, L M; Johnson, E M; Cadogan, A S

    1983-10-01

    Fetal exposure to excess vitamin A results in a highly variable degree of lung pathology and high neonatal mortality in the Long-Evans rat. The present study evaluated O2 consumption in newborn of vitamin A-treated, vehicle-treated, and untreated pregnancies on five consecutive postnatal days beginning with the day of delivery (D0). Pregnant female rats were treated by gavage with 160,000 USP units of retinyl acetate dissolved in 0.5 ml corn oil on days 15 through 19 of gestation. Vehicle and undisturbed controls were run concurrently. All animals delivered spontaneously, and the pups were tattooed and individually tested in a closed system consisting of three chambers submerged within a thermostatically controlled water bath at 33 degrees C. Vitamin A-exposed pups, as a group, have significantly lower QO2 (ml O2 consumed/min/kg body weight) values than controls through postnatal day 2 (p less than 0.05). By days 3 and 4 of age, the mean QO2 values of surviving vitamin A-treated pups were similar to those of controls. A QO2 of 30 or greater on day 0 appears to be critical for early neonatal survival of vitamin A-exposed pups, as 87% of the pups with initial QO2 less than 30 died prior to day 4. Oxygen consumption rates in teratogen-exposed pups exhibiting low QO2 on day 0 rarely reached normal levels. In contrast, the occasional control pup with such low initial levels were well within normal limits (means +/- 1 SD) by the following day.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Modelling geochemical and microbial consumption of dissolved oxygen after backfilling a high level radiactive waste repository.

    PubMed

    Yang, Changbing; Samper, Javier; Molinero, Jorge; Bonilla, Mercedes

    2007-08-15

    Dissolved oxygen (DO) left in the voids of buffer and backfill materials of a deep geological high level radioactive waste (HLW) repository could cause canister corrosion. Available data from laboratory and in situ experiments indicate that microbes play a substantial role in controlling redox conditions near a HLW repository. This paper presents the application of a coupled hydro-bio-geochemical model to evaluate geochemical and microbial consumption of DO in bentonite porewater after backfilling of a HLW repository designed according to the Swedish reference concept. In addition to geochemical reactions, the model accounts for dissolved organic carbon (DOC) respiration and methane oxidation. Parameters for microbial processes were derived from calibration of the REX in situ experiment carried out at the Aspö underground laboratory. The role of geochemical and microbial processes in consuming DO is evaluated for several scenarios. Numerical results show that both geochemical and microbial processes are relevant for DO consumption. However, the time needed to consume the DO trapped in the bentonite buffer decreases dramatically from several hundreds of years when only geochemical processes are considered to a few weeks when both geochemical reactions and microbially-mediated DOC respiration and methane oxidation are taken into account simultaneously.

  13. Effect of olive mill wastewaters on the oxygen consumption by activated sludge microorganisms: an acute toxicity test method.

    PubMed

    Paixão, S M; Anselmo, A M

    2002-01-01

    The test for inhibition of oxygen consumption by activated sludge (ISO 8192-1986 (E)) was evaluated as a tool for assessing, the acute toxicity of olive mill wastewaters (OMW). According to the ISO test, information generated by this method may be helpful in estimating the effect of a test material on bacterial communities in the aquatic environment, especially in aerobic biological treatment systems. However, the lack of standardized bioassay methodology for effluents imposed that the test conditions were modified and adapted. The experiments were conducted in the presence or absence of an easily biodegradable carbon source (glucose) with different contact times (20 min and 24 h). The results obtained showed a remarkable stimulatory effect of this effluent to the activated sludge microorganisms. In fact, the oxygen uptake rate values increase with increasing effluent concentrations and contact times up to 0.98 microl O(2) h(-1) mg(-1) dry weight for a 100% OMW sample, 24 h contact time, with blanks exhibiting an oxygen uptake rate of ca. 1/10 of this value (0.07-0.10). It seems that the application of the ISO test as an acute toxicity test for effluents should be reconsidered, with convenient adaptation for its utilization as a method of estimating the effect on bacterial communities present in aerobic biological treatment systems. Copyright 2002 John Wiley & Sons, Ltd.

  14. The cost of muscle power production: muscle oxygen consumption per unit work increases at low temperatures in Xenopus laevis.

    PubMed

    Seebacher, Frank; Tallis, Jason A; James, Rob S

    2014-06-01

    Metabolic energy (ATP) supply to muscle is essential to support activity and behaviour. It is expected, therefore, that there is strong selection to maximise muscle power output for a given rate of ATP use. However, the viscosity and stiffness of muscle increases with a decrease in temperature, which means that more ATP may be required to achieve a given work output. Here, we tested the hypothesis that ATP use increases at lower temperatures for a given power output in Xenopus laevis. To account for temperature variation at different time scales, we considered the interaction between acclimation for 4 weeks (to 15 or 25°C) and acute exposure to these temperatures. Cold-acclimated frogs had greater sprint speed at 15°C than warm-acclimated animals. However, acclimation temperature did not affect isolated gastrocnemius muscle biomechanics. Isolated muscle produced greater tetanus force, and faster isometric force generation and relaxation, and generated more work loop power at 25°C than at 15°C acute test temperature. Oxygen consumption of isolated muscle at rest did not change with test temperature, but oxygen consumption while muscle was performing work was significantly higher at 15°C than at 25°C, regardless of acclimation conditions. Muscle therefore consumed significantly more oxygen at 15°C for a given work output than at 25°C, and plastic responses did not modify this thermodynamic effect. The metabolic cost of muscle performance and activity therefore increased with a decrease in temperature. To maintain activity across a range of temperature, animals must increase ATP production or face an allocation trade-off at lower temperatures. Our data demonstrate the potential energetic benefits of warming up muscle before activity, which is seen in diverse groups of animals such as bees, which warm flight muscle before take-off, and humans performing warm ups before exercise. © 2014. Published by The Company of Biologists Ltd.

  15. Mid-childhood fruit and vegetable consumption: The roles of early liking, early consumption, and maternal consumption.

    PubMed

    Kong, Kai Ling; Gillman, Matthew W; Rifas-Shiman, Sheryl L; Wen, Xiaozhong

    2016-10-01

    Previous studies have shown that early liking, early consumption, and maternal consumption of fruits and vegetables (F&V) each predict children's F&V consumption, but no one has examined the independent contributions of these three correlated factors. We aim to examine the extent to which each of these 3 factors is associated with F&V consumption in mid-childhood after accounting for the other 2 in the analysis. We analyzed data from 901 mother-child dyads from Project Viva, a prospective pre-birth cohort study. Mothers reported their child's early liking and consumption of F&V at age 2 years and later consumption at mid-childhood (median age 7.7 years). They also reported their own consumption of F&V at 6 months postpartum. We used multivariable linear regression models to examine the independent associations of these 3 factors with mid-childhood consumption, adjusting for socio-demographic, pregnancy, and child confounders. At 2 years, 53% of the mothers strongly agreed that their child liked fruit and 25% strongly agreed that their child liked vegetables. F&V consumption was 2.5 (1.3) and 1.8 (1.1) times/d at age 2 y and 1.5 (1.1) and 1.3 (0.8) times/d in mid-childhood. Maternal F&V consumption was 1.4 (1.1) and 1.5 (1.0) times/d, respectively. Children's early consumption played the most predominant role. For every 1 time/d increment in children's early consumption of F&V, mid-childhood consumption was higher by 0.25 (95% confidence interval [CI]: 0.19, 0.30) times/d for fruits and 0.21 (95% CI: 0.16, 0.26) times/d for vegetables, adjusted for confounders plus the other 2 exposures. In conclusion, children's early F&V consumption has the most significant influence on children's later consumption. Published by Elsevier Ltd.

  16. Oxygenated thawing and rewarming alleviate rewarming injury of cryopreserved pancreatic islets.

    PubMed

    Komatsu, Hirotake; Barriga, Alyssa; Medrano, Leonard; Omori, Keiko; Kandeel, Fouad; Mullen, Yoko

    2017-05-06

    Pancreatic islet transplantation is an effective treatment for Type 1 diabetic patients to eliminate insulin injections; however, a shortage of donor organs hinders the widespread use. Although long-term islet storage, such as cryopreservation, is considered one of the key solutions, transplantation of cryopreserved islets is still not practical due to the extensive loss during the cryopreservation-rewarming process. We have previously reported that culturing islets in a hyperoxic environment is an effective treatment to prevent islet death from the hypoxic injury during culture. In this study, we explored the effectiveness of thawing and rewarming cryopreserved islets in a hyperoxic environment. Following cryopreservation of isolated human islets, the thawing solution and culture media were prepared with or without pre-equilibration to 50% oxygen. Thawing/rewarming and the pursuant two-day culture were performed with or without oxygenation. Short-term recovery rate, defined as the volume change during cryopreservation and thawing/rewarming, was assessed. Ischemia-associated and inflammation-associated gene expressions were examined using qPCR after the initial rewarming period. Long-term recovery rate, defined as the volume change during the two-day culture after the thawing/rewarming, was also examined. Islet metabolism and function were assessed by basal oxygen consumption rate and glucose stimulated insulin secretion after long-term recovery. Oxygenated thawing/rewarming did not alter the short-term recovery rate. Inflammation-associated gene expressions were elevated by the conventional thawing/rewarming method and suppressed by the oxygenated thawing/rewarming, whereas ischemia-associated gene expressions did not change between the thawing/rewarming methods. Long-term recovery rate experiments revealed that only the combination therapy of oxygenated thawing/rewarming and oxygenated culture alleviated islet volume loss. These islets showed higher metabolism

  17. Modeling of Oxygen Transport Across Tumor Multicellular Layers

    PubMed Central

    Braun, Rod D.; Beatty, Alexis L.

    2007-01-01

    Purpose Tumor oxygen level plays a major role in the response of tumors to different treatments. The purpose of this study was to develop a method of determining oxygen transport properties in a recently developed 3-D model of tumor parenchyma, the multicellular layer (MCL). Methods OCM-1 human choroidal melanoma cells were grown as 3-D MCL on collagen-coated culture plate inserts. A recessed-cathode oxygen microelectrode was used to measure oxygen tension (PO2) profiles across 8 different MCL from the free surface to the insert membrane. The profiles were fitted to four different one-dimensional diffusion models: 1-, 2-, and 3-region models with uniform oxygen consumption (q) in each region and a modified 3-region model with a central region where q=0 and PO2=0. Results Depending upon the presence of a central region of anoxia, the PO2 profiles were fitted best by either the two-region model or the modified 3-region model. Consumption of tumor cells near the insert membrane was higher than that of cells close to the free surface (33.1 ± 13.6 x 10−4 vs. 11.8 ± 6.7 x 10−4 mm Hg/μm2, respectively). Conclusions The model is useful for determining oxygenation and consumption in MCL, especially for cell lines that cannot be grown as spheroids. In the future, this model will permit the study of parameters important in tumor oxygenation in vitro. PMID:17196225

  18. The relationship between body temperature, heart rate, breathing rate, and rate of oxygen consumption, in the tegu lizard (Tupinambis merianae) at various levels of activity.

    PubMed

    Piercy, Joanna; Rogers, Kip; Reichert, Michelle; Andrade, Denis V; Abe, Augusto S; Tattersall, Glenn J; Milsom, William K

    2015-12-01

    The present study determined whether EEG and/or EMG recordings could be used to reliably define activity states in the Brazilian black and white tegu lizard (Tupinambis merianae) and then examined the interactive effects of temperature and activity states on strategies for matching O2 supply and demand. In a first series of experiments, the rate of oxygen consumption (VO2), breathing frequency (fR), heart rate (fH), and EEG and EMG (neck muscle) activity were measured in different sleep/wake states (sleeping, awake but quiet, alert, or moving). In general, metabolic and cardio-respiratory changes were better indictors of the transition from sleep to wake than were changes in the EEG and EMG. In a second series of experiments, the interactive effects of temperature (17, 27 and 37 °C) and activity states on fR, tidal volume (VT), the fraction of oxygen extracted from the lung per breath (FIO2-FEO2), fH, and the cardiac O2 pulse were quantified to determine the relative roles of each of these variables in accommodating changes in VO2. The increases in oxygen supply to meet temperature- and activity-induced increases in oxygen demand were produced almost exclusively by increases in fH and fR. Regression analysis showed that the effects of temperature and activity state on the relationships between fH, fR and VO2 was to extend a common relationship along a single curve, rather than separate relationships for each metabolic state. For these lizards, the predictive powers of fR and fH were maximized when the effects of changes in temperature, digestive state and activity were pooled. However, the best r(2) values obtained were 0.63 and 0.74 using fR and fH as predictors of metabolic rate, respectively.

  19. Oxygen Consumption in the First Stages of Strenuous Work as a Function of Prior Exercise.

    ERIC Educational Resources Information Center

    Gutin, Bernard; And Others

    This study examined the extent to which 10 minutes of prior exercise (PE) at a workload adjusted to maintain a heart rate (HR) of 140 beats per minute could facilitate the mobilization of the oxygen transport system in a strenuous criterion task (CT). The control treatment involved completion of the CT following 10 minutes of rest on the…

  20. In vitro measurements of oxygen consumption rates in hTERT-RPE cells exposed to low levels of red light

    NASA Astrophysics Data System (ADS)

    Wigle, Jeffrey C.; Castellanos, Cherry C.

    2016-03-01

    Exposure to 2.88 J/cm2 of red light induces an adaptive response against a lethal pulse of 2.0 μm laser radiation in hTERT-RPE cells in vitro, but not in a knockdown mutant for vascular endothelial growth factor c (VEGF-C). The generally accepted initiation sequence for photobiomodulation is that absorption of red light by cytochome c oxidase (CCOX) of the electron transport chain increases the binding affinity of CCOX for O2 vs. nitric oxide (NO). This results in displacement of NO by O2 in the active site of CCOX, thereby increasing cellular respiration and intracellular ATP. We've previously reported that red-light exposure induces a small, but consistently reproducible, increase in NO levels in these cells. But the relative importance of NO and oxidative phosphorylation is unclear because little is known about the relative contributions of NO and ATP to the response. However, if NO dissociation from CCOX actually increases oxidative phosphorylation, one should see a corresponding increase in oxygen consumption. A Seahorse Extracellular Flux Analyzer was used to measure oxygen consumption rates (OCR) in normal and mutant cells as a proxy for oxidative phosphorylation. Both basal respiration and maximum respiration rates in normal cells are significantly higher than in the mutant. The normal cells have a significant amount of "excess capacity," whereas the VEGF-C(KD) have little or none. The OCR in exposed normal cells is lower than in unexposed cells when measured immediately after exposure. The exposures used for these experiments had no effect on the OCR in mutant cells.

  1. Aerobic Microbial Respiration in Oceanic Oxygen Minimum Zones

    NASA Astrophysics Data System (ADS)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene M.; Revsbech, Niels Peter; Schunck, Harald; Loescher, Carolin; Desai, Dhwani K.; LaRoche, Julie; Schmitz-Streit, Ruth; Kuypers, Marcel M. M.

    2014-05-01

    In the oxygen minimum zones (OMZs) of the tropical oceans, sluggish ventilation combined with strong microbial respiration of sinking organic matter results in the depletion of oxygen (O2). When O2 concentrations drop below ~5 µmol/L, organic matter is generally assumed to be respired with nitrate, ultimately leading to the loss of fixed inorganic nitrogen via anammox and denitrification. However, direct measurements of microbial O2 consumption at low O2 levels are - apart from a single experiment conducted in the OMZ off Peru - so far lacking. At the same time, consistently observed active aerobic ammonium and nitrite oxidation at non-detectable O2 concentrations (<1 µmol/L) in all major OMZs, suggests aerobic microorganisms, likely including heterotrophs, to be well adapted to near-anoxic conditions. Consequently, microaerobic (≤5 µmol/L) remineralization of organic matter, and thus release of ammonium, in low- O2 environments might be significantly underestimated at present. Here we present extensive measurements of microbial O2 consumption in OMZ waters, combined with highly sensitive O2 (STOX) measurements and meta-omic functional gene analyses. Short-term incubation experiments with labelled O2 (18-18O2) carried out in the Namibian and Peruvian OMZ, revealed persistent aerobic microbial activity at depths with non-detectable concentrations of O2 (≤50 nmol/L). In accordance, examination of metagenomes and metatranscriptomes from Chilean and Peruvian OMZ waters identified genes encoding for terminal respiratory oxidases with high O2 affinities as well as their expression by diverse microbial communities. Oxygen consumption was particularly enhanced near the upper OMZ boundaries and could mostly (~80%) be assigned to heterotrophic microbial activity. Compared to previously identified anaerobic microbial processes, microaerobic organic matter respiration was the dominant remineralization pathway and source of ammonium (~90%) in the upper Namibian and

  2. Reduction in Post-Marathon Peak Oxygen Consumption: Sign of Cardiac Fatigue in Amateur Runners?

    PubMed Central

    Sierra, Ana Paula Rennó; da Silveira, Anderson Donelli; Francisco, Ricardo Contesini; Barretto, Rodrigo Bellios de Mattos; Sierra, Carlos Anibal; Meneghelo, Romeu Sergio; Kiss, Maria Augusta Peduti Dal Molin; Ghorayeb, Nabil; Stein, Ricardo

    2016-01-01

    Background Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. Objective To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. Methods The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. Results The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). Conclusions In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur. PMID:26760783

  3. Reduction in Post-Marathon Peak Oxygen Consumption: Sign of Cardiac Fatigue in Amateur Runners?

    PubMed

    Sierra, Ana Paula Rennó; da Silveira, Anderson Donelli; Francisco, Ricardo Contesini; Barretto, Rodrigo Bellios de Mattos; Sierra, Carlos Anibal; Meneghelo, Romeu Sergio; Kiss, Maria Augusta Peduti Dal Molin; Ghorayeb, Nabil; Stein, Ricardo

    2016-02-01

    Prolonged aerobic exercise, such as running a marathon, produces supraphysiological stress that can affect the athlete's homeostasis. Some degree of transient myocardial dysfunction ("cardiac fatigue") can be observed for several days after the race. To verify if there are changes in the cardiopulmonary capacity, and cardiac inotropy and lusitropy in amateur marathoners after running a marathon. The sample comprised 6 male amateur runners. All of them underwent cardiopulmonary exercise testing (CPET) one week before the São Paulo Marathon, and 3 to 4 days after that race. They underwent echocardiography 24 hours prior to and immediately after the marathon. All subjects were instructed not to exercise, to maintain their regular diet, ingest the same usual amount of liquids, and rest at least 8 hours a day in the period preceding the CPET. The athletes completed the marathon in 221.5 (207; 250) minutes. In the post-marathon CPET, there was a significant reduction in peak oxygen consumption and peak oxygen pulse compared to the results obtained before the race (50.75 and 46.35 mL.kg-1 .min-1; 19.4 and 18.1 mL.btm, respectively). The echocardiography showed a significant reduction in the s' wave (inotropic marker), but no significant change in the E/e' ratio (lusitropic marker). In amateur runners, the marathon seems to promote changes in the cardiopulmonary capacity identified within 4 days after the race, with a reduction in the cardiac contractility. Such changes suggest that some degree of "cardiac fatigue" can occur.

  4. Oxygen consumption rate of early pre-antral follicles from vitrified human ovarian cortical tissue

    PubMed Central

    ISHIKAWA, Takayuki; KYOYA, Toshihiko; NAKAMURA, Yusuke; SATO, Eimei; TOMIYAMA, Tatsuhiro; KYONO, Koichi

    2014-01-01

    The study of human ovarian tissue transplantation and cryopreservation has advanced significantly. Autotransplantation of human pre-antral follicles isolated from cryopreserved cortical tissue is a promising option for the preservation of fertility in young cancer patients. The purpose of the present study was to reveal the effect of vitrification after low-temperature transportation of human pre-antral follicles by using the oxygen consumption rate (OCR). Cortical tissues from 9 ovaries of female-to-male transsexuals were vitrified after transportation (6 or 18 h). The follicles were enzymatically isolated from nonvitrified tissue (group I, 18 h of transportation), vitrified-warmed tissue (group II, 6 and 18 h of transportation) and vitrified-warmed tissue that had been incubated for 24 h (group III, 6 and 18 h of transportation). OCR measurement and the LIVE/DEAD viability assay were performed. Despite the ischemic condition, the isolated pre-antral follicles in group I consumed oxygen, and the mean OCRs increased with developmental stage. Neither the transportation time nor patient age seemed to affect the OCR in this group. Meanwhile, the mean OCR was significantly lower (P < 0.05) in group II but was comparable to that of group I after 24 h of incubation. The integrity of vitrified-warmed primordial and primary follicles was clearly corroborated by the LIVE/DEAD viability assay. These results demonstrate that the OCR can be used to directly estimate the effect of vitrification on the viability of primordial and primary follicles and to select the viable primordial and primary follicles from vitrified-warmed follicles. PMID:25262776

  5. The influence of systemic hemodynamics and oxygen transport on cerebral oxygen saturation in neonates after the Norwood procedure.

    PubMed

    Li, Jia; Zhang, Gencheng; Holtby, Helen; Guerguerian, Anne-Marie; Cai, Sally; Humpl, Tilman; Caldarone, Christopher A; Redington, Andrew N; Van Arsdell, Glen S

    2008-01-01

    Ischemic brain injury is an important morbidity in neonates after the Norwood procedure. Its relationship to systemic hemodynamic oxygen transport is poorly understood. Sixteen neonates undergoing the Norwood procedure were studied. Continuous cerebral oxygen saturation was measured by near-infrared spectroscopy. Continuous oxygen consumption was measured by respiratory mass spectrometry. Pulmonary and systemic blood flow, systemic vascular resistance, oxygen delivery, and oxygen extraction ratio were derived with measurements of arterial, and superior vena cava and pulmonary venous gases and pressures at 2- to 4-hour intervals during the first 72 hours in the intensive care unit. Mean cerebral oxygen saturation was 66% +/- 12% before the operation, reduced to 51% +/- 13% on arrival in the intensive care unit, and remained low during the first 8 hours; it increased to 56% +/- 9% at 72 hours, still significantly lower than the preoperative level (P < .05). Postoperatively, cerebral oxygen saturation was closely and positively correlated with systemic arterial pressure, arterial oxygen saturation, and arterial oxygen tension and negatively with oxygen extraction ratio (P < .0001 for all). Cerebral oxygen saturation was moderately and positively correlated with systemic blood flow and oxygen delivery (P < .0001 for both). It was weakly and positively correlated with pulmonary blood flow (P = .001) and hemoglobin (P = .02) and negatively correlated with systemic vascular resistance (P = .003). It was not correlated with oxygen consumption (P > .05). Cerebral oxygen saturation decreased significantly in neonates during the early postoperative period after the Norwood procedure and was significantly influenced by systemic hemodynamic and metabolic events. As such, hemodynamic interventions to modify systemic oxygen transport may provide further opportunities to reduce the risk of cerebral ischemia and improve neurodevelopmental outcomes.

  6. The Oxygen Consumption and Metabolic Cost of Walking and Running in Adults With Achondroplasia.

    PubMed

    Sims, David T; Onambélé-Pearson, Gladys L; Burden, Adrian; Payton, Carl; Morse, Christopher I

    2018-01-01

    The disproportionate body mass and leg length of Achondroplasic individuals may affect their net oxygen consumption ([Formula: see text]O 2 ) and metabolic cost (C) when walking at running compared to those of average stature (controls). The aim of this study was to measure submaximal [Formula: see text]O 2 and C during a range of set walking speeds (SWS; 0.56 - 1.94 m⋅s -1 , increment 0.28 m⋅s -1 ), set running speeds (SRS; 1.67 - 3.33 m⋅s -1 , increment 0.28 m⋅s -1 ) and a self-selected walking speed (SSW). [Formula: see text]O 2 and C was scaled to total body mass (TBM) and fat free mass (FFM) while gait speed was scaled to leg length using Froude's number (Fr). Achondroplasic [Formula: see text]O 2TBM and [Formula: see text]O 2FFM were on average 29 and 35% greater during SWS ( P < 0.05) and 12 and 18% higher during SRS ( P < 0.05) than controls, respectively. Achondroplasic C TBM and C FFM were 29 and 33% greater during SWS ( P < 0.05) and 12 and 18% greater during SRS ( P < 0.05) than controls, respectively. There was no difference in SSW [Formula: see text]O 2TBM or [Formula: see text]O 2FFM between groups ( P > 0.05), but C TBM and C FFM at SSW were 23 and 29% higher ( P < 0.05) in the Achondroplasic group compared to controls, respectively. [Formula: see text]O 2TBM and [Formula: see text]O 2FFM correlated with Fr for both groups ( r = 0.984 - 0.999, P < 0.05). Leg length accounted for the majority of the higher [Formula: see text]O 2TBM and [Formula: see text]O 2FFM in the Achondroplasic group, but further work is required to explain the higher Achondroplasic C TBM and C FFM at all speeds compared to controls. New and Noteworthy: There is a leftward shift of oxygen consumption scaled to total body mass and fat free mass in Achondroplasic adults when walking and running. This is nullified when talking into account leg length. However, despite these scalars, Achondroplasic individuals have a higher walking and metabolic cost compared to age matched

  7. Effect of salinity on oxygen consumption in fishes: a review.

    PubMed

    Ern, R; Huong, D T T; Cong, N V; Bayley, M; Wang, T

    2014-04-01

    The effect of salinity on resting oxygen uptake was measured in the perch Perca fluviatilis and available information on oxygen uptake in teleost species at a variety of salinities was reviewed. Trans-epithelial ion transport against a concentration gradient requires energy and exposure to salinities osmotically different from the body fluids therefore imposes an energetic demand that is expected to be lowest in brackish water compared to fresh and sea water. Across species, there is no clear trend between oxygen uptake and salinity, and estimates of cost of osmotic and ionic regulation vary from a few per cent to >30% of standard metabolism. © 2014 The Fisheries Society of the British Isles.

  8. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo.

    PubMed Central

    Portman, M A; Standaert, T A; Ning, X H

    1995-01-01

    This study investigates the relation between myocardial oxygen consumption (MVO2), function, and high energy phosphates during severe hypoxia and reoxygenation in sheep in vivo. Graded hypoxia was performed in open-chested sheep to adjust PO2 to values where rapid depletion of energy stores occurred. Highly time-resolved 31P nuclear magnetic resonance spectroscopy enabled monitoring of myocardial phosphates throughout hypoxia and recovery with simultaneous MVO2 measurement. Sheep undergoing graded hypoxia (n = 5) with an arterial PO2 nadir of 13.4 +/- 0.5 mmHg, demonstrated maintained rates of oxygen consumption with large changes in coronary flow as phosphocreatine (PCr) decreased within 4 min to 40 +/- 7% of baseline. ATP utilization rate increased simultaneously 59 +/- 20%. Recovery was accompanied by marked increases in MVO2 from 2.0 +/- 0.5 to 7.2 +/- 1.9 mumol/g per min, while PCr recovery rate was 4.3 +/- 0.6 mumol/g per min. ATP decreased to 75 +/- 6% of baseline during severe hypoxia and did not recover. Sheep (n = 5) which underwent moderate hypoxia (PO2 maintained 25-35 mmHg for 10 min) did not demonstrate change in PCr or ATP. Functional and work assessment (n = 4) revealed that cardiac power increased during the graded hypoxia and was maintained through early reoxygenation. These studies show that (a) MVO2 does not decrease during oxygen deprivation in vivo despite marked and rapid decreases in high energy phosphates; (b) contractile function during hypoxia in vivo does not decrease during periods of PCr depletion and intracellular phosphate accumulation, and this may be related to marked increases in circulating catecholamines during global hypoxia. The measured creatine rephosphorylation rate is 34 +/- 11% of predicted (P < 0.01) calculated from reoxygenation parameters, which indicates that some mitochondrial respiratory uncoupling also occurs during the rephosphorylation period. Images PMID:7738181

  9. DPPH and oxygen free radicals as pro-oxidant of biomolecules.

    PubMed

    Letelier, María Eugenia; Molina-Berríos, Alfredo; Cortés-Troncoso, Juan; Jara-Sandoval, José; Holst, Marianne; Palma, Karina; Montoya, Margarita; Miranda, Dante; González-Lira, Víctor

    2008-03-01

    Numerous investigations exist about the alterations that oxygen free radicals can provoke on biomolecules; these modifications can be prevented and/or reversed by different antioxidants agents. On the other hand, 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), a stable nitrogen synthetic radical, is used to evaluate the antioxidant capacity of medicinal herbal products; however, the structural changes that this radical provoke on the herbal active principles are not clear yet. In this work, we compared the redox reactivity of oxygen free radicals and DPPH radical on phospholipids and protein thiol groups present in rat liver microsomes. Cu2+/ascorbate was used as generator system of oxygen free radical and as antioxidant, an extract of Buddleja globosa's leaves. Cu2+/ascorbate provoked microsomal lipid peroxidation, microsomal thiols oxidation and oxygen consumption; all of these phenomena were inhibited by B. globosa extract. On the other hand, DPPH was bleached in different extension by the herbal extract and phosphatidyl choline; beside, DPPH decreased microsomal thiols content, but this phenomenon were not prevented by the herbal extract. Furthermore, DPPH did not induce oxygen consumption and neither modified the oxygen consumption induced by Cu2+/ascorbate. Distinct redox mechanisms may explain the differences between the reactivity of DPPH and oxygen free radicals on biomolecules, which is discussed.

  10. The Decremental Protocol as an Alternative Protocol to Measure Maximal Oxygen Consumption in Athletes.

    PubMed

    Taylor, Katrina; Seegmiller, Jeffrey; Vella, Chantal A

    2016-11-01

    To determine whether a decremental protocol could elicit a higher maximal oxygen consumption (VO 2 max) than an incremental protocol in trained participants. A secondary aim was to examine whether cardiac-output (Q) and stroke-volume (SV) responses differed between decremental and incremental protocols in this sample. Nineteen runners/triathletes were randomized to either the decremental or incremental group. All participants completed an initial incremental VO 2 max test on a treadmill, followed by a verification phase. The incremental group completed 2 further incremental tests. The decremental group completed a second VO 2 max test using the decremental protocol, based on their verification phase. The decremental group then completed a final incremental test. During each test, VO 2 , ventilation, and heart rate were measured, and cardiac variables were estimated with thoracic bioimpedance. Repeated-measures analysis of variance was conducted with an alpha level set at .05. There were no significant main effects for group (P = .37) or interaction (P = .10) over time (P = .45). VO 2 max was similar between the incremental (57.29 ± 8.94 mL · kg -1 · min -1 ) and decremental (60.82 ± 8.49 mL · kg -1 · min -1 ) groups over time. Furthermore, Q and SV were similar between the incremental (Q 22.72 ± 5.85 L/min, SV 119.64 ± 33.02 mL/beat) and decremental groups (Q 20.36 ± 4.59 L/min, SV 109.03 ± 24.27 mL/beat) across all 3 trials. The findings suggest that the decremental protocol does not elicit higher VO 2 max than an incremental protocol but may be used as an alternative protocol to measure VO 2 max in runners and triathletes.

  11. Effect of limb cooling on peripheral and global oxygen consumption in neonates

    PubMed Central

    Hassan, I; Wickramasinghe, Y; Spencer, S

    2003-01-01

    Aim: To evaluate peripheral oxygen consumption (VO2) measurements using near infrared spectroscopy (NIRS) with arterial occlusion in healthy term neonates by studying the effect of limb cooling on peripheral and global VO2. Subjects and methods: Twenty two healthy term neonates were studied. Peripheral VO2 was measured by NIRS using arterial occlusion and measurement of the oxyhaemoglobin (HbO2) decrement slope. Global VO2 was measured by open circuit calorimetry. Global and peripheral VO2 was measured in each neonate before and after limb cooling. Results: In 10 neonates, a fall in forearm temperature of 2.2°C (mild cooling) decreased forearm VO2 by 19.6% (p < 0.01). Global VO2 did not change. In 12 neonates, a fall in forearm temperature of 4°C (moderate cooling) decreased forearm VO2 by 34.7% (p < 0.01). Global VO2 increased by 17.6% (p < 0.05). Conclusions: The NIRS arterial occlusion method is able to measure changes in peripheral VO2 induced by limb cooling. The changes are more pronounced with moderate limb cooling when a concomitant rise in global VO2 is observed. Change in peripheral temperature must be taken into consideration in the interpretation of peripheral VO2 measurements in neonates. PMID:12598504

  12. Effect of limb cooling on peripheral and global oxygen consumption in neonates.

    PubMed

    Hassan, I A-A; Wickramasinghe, Y A; Spencer, S A

    2003-03-01

    To evaluate peripheral oxygen consumption (VO(2)) measurements using near infrared spectroscopy (NIRS) with arterial occlusion in healthy term neonates by studying the effect of limb cooling on peripheral and global VO(2). Twenty two healthy term neonates were studied. Peripheral VO(2) was measured by NIRS using arterial occlusion and measurement of the oxyhaemoglobin (HbO(2)) decrement slope. Global VO(2) was measured by open circuit calorimetry. Global and peripheral VO(2) was measured in each neonate before and after limb cooling. In 10 neonates, a fall in forearm temperature of 2.2 degrees C (mild cooling) decreased forearm VO(2) by 19.6% (p < 0.01). Global VO(2) did not change. In 12 neonates, a fall in forearm temperature of 4 degrees C (moderate cooling) decreased forearm VO(2) by 34.7% (p < 0.01). Global VO(2) increased by 17.6% (p < 0.05). The NIRS arterial occlusion method is able to measure changes in peripheral VO(2) induced by limb cooling. The changes are more pronounced with moderate limb cooling when a concomitant rise in global VO(2) is observed. Change in peripheral temperature must be taken into consideration in the interpretation of peripheral VO(2) measurements in neonates.

  13. Maximal Oxygen Consumption, Respiratory Volume and Some Related Factors in Fire-fighting Personnel.

    PubMed

    Khazraee, Touraj; Fararouei, Mohammad; Daneshmandi, Hadi; Mobasheri, Farzane; Zamanian, Zahra

    2017-01-01

    Firefighters for difficult activities and rescue of damaged people must be in appropriate physical ability. Maximal oxygen capacity is an indicator for diagnosis of physical ability of workers. This study aimed to assess the cardiorespiratory system and its related factors in firefighters. This study was conducted on 110 firefighters from various stations. An self-administered questionnaire (respiratory disorders questionnaire, Tuxworth-Shahnavaz step test, and pulmonary function test) was used to collection of required data. Average of humidity and temperature was 52% and 17°C, respectively. Background average noise levels were between 55 and 65 dB. Data were analyzed using SPSS software (version 19). The mean age of the study participants was 32 ± 6.2 years. The means of forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and FEV1/FVC were 92% ±9.4%, 87% ±9.2%, and 80% ±6.1%, respectively. The participants' mean VO 2 -max was 2.79 ± 0.29 L/min or 37.34 ± 4.27 ml/kg body weight per minute. The results revealed that weight has a direct association with vital capacity (VC), FVC, and peak expiratory flow. In addition, height was directly associated with VC, FVC, and VO 2 -max ( P < 0.05). However, there was an inverse and significant association between height and FEV1/FVC ( r = -0.23, P < 0.05). Height, weight, body mass index, and waist circumference were directly associated with VO 2 -max. The findings of this study showed that the amount of maximum oxygen consumption is close with the proposed range of this parameter among firefighters in other studies. Furthermore, the results of the study revealed that individuals had normal amounts of lung volume index. This issue can be attributed to the appropriate usage of respiratory masks.

  14. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells

    PubMed Central

    Xun, Zhiyin; Lee, Do-Yup; Lim, James; Canaria, Christie A.; Barnebey, Adam; Yanonne, Steven M.; McMurray, Cynthia T.

    2012-01-01

    Retinoic acid (RA) is used in differentiation therapy to treat a variety of cancers including neuroblastoma. The contributing factors for its therapeutic efficacy are poorly understood. However, mitochondria (MT) have been implicated as key effectors in RA-mediated differentiation process. Here we utilize the SH-SY5Y human neuroblastoma cell line as a model to examine how RA influences MT during the differentiation process. We find that RA confers an approximately 6-fold increase in the oxygen consumption rate while the rate of glycolysis modestly increases. RA treatment does not increase the number of MT or cause measurable changes in the composition of the electron transport chain. Rather, RA treatment significantly increases the mitochondrial spare respiratory capacity. We propose a competition model for the therapeutic effects of RA. Specifically, the high metabolic rate in differentiated cells limits the availability of metabolic nutrients for use by the undifferentiated cells and suppresses their growth. Thus, RA treatment provides a selective advantage for the differentiated state. PMID:22336883

  15. Review of Survey and Experimental Research That Examines the Relationship Between Alcohol Consumption and Men's Sexual Aggression Perpetration

    PubMed Central

    Abbey, Antonia; Wegner, Rhiana; Woerner, Jacqueline; Pegram, Sheri E.; Pierce, Jennifer

    2015-01-01

    This article systematically reviews empirical studies that examine associations between alcohol consumption and men's sexual aggression with the goal of identifying major findings; gaps in current knowledge; and directions for future research, practice, and policy. We identified 25 cross-sectional surveys, 6 prospective studies, and 12 alcohol administration experiments published between 1993 and August 2013 with male college students and young adult (nonincarcerated) samples. Many cross-sectional surveys have demonstrated that distal and proximal measures of men's alcohol consumption are positively associated with sexual assault perpetration, although very few of these studies evaluated how alcohol interacts with other risk and protective factors to exacerbate or inhibit sexual aggression. There are surprisingly few surveys that examine alcohol's effects at the event level and over short-time intervals to identify how changes in alcohol consumption are associated with changes in perpetration status. Alcohol administration studies suggest some important mechanisms that warrant additional investigation. PMID:24776459

  16. [Oxygen-transporting function of the blood circulation system in sevoflurane anesthesia during myocardial revascularization under extracorporeal circulation].

    PubMed

    Skopets, A A; Lomivorotov, V V; Karakhalis, N B; Makarov, A A; Duman'ian, E S; Lomivorotova, L V

    2009-01-01

    The purpose of the study was to evaluate the efficiency of oxygen-transporting function of the circulatory system under sevoflurane anesthesia during myocardial revascularization operations under extracorporeal circulation. Twenty-five patients with coronary heart disease were examined. Mean blood pressure, heart rate, cardiac index, total peripheral vascular resistance index, pulmonary pressure, pulmonary wedge pressure, and central venous pressure were measured. Arterial and mixed venous blood oxygen levels, oxygen delivery and consumption index, arteriovenous oxygen difference, and glucose and lactate concentrations were calculated. The study has demonstrated that sevoflurane is an effective and safe anesthetic for myocardial revascularization operations in patients with coronary heart disease. The use of sevoflurane contributes to steady-state oxygen-transporting function of the circulatory system at all surgical stages.

  17. Oxygen production by urban trees in the United States

    Treesearch

    David J. Nowak; Robert Hoehn; Daniel E. Crane

    2007-01-01

    Urban forests in the coterminous United States are estimated to produce ≈61 million metric tons (67 million tons) of oxygen annually, enough oxygen to offset the annual oxygen consumption of approximately two-thirds of the U.S. opulation. Although oxygen production is often cited as a significant benefit of trees, this benefit is relatively insignificant and...

  18. Ventilation and oxygen uptake during escape from a civil aircraft.

    PubMed

    Ross, J A; Watt, S J; Henderson, G D; Vant, J H

    1990-01-01

    To help develop a specification for equipment providing personal respiratory protection in the event of aircraft fire a study was carried out to quantify ventilation and oxygen consumption during escape from a Trident aircraft. Data were gathered using the P.K. Morgan 'Oxylog' apparatus after its response time to rapid changes in inspired to expired oxygen concentration difference was assessed using a bench test. The 'Oxylog' had a lag time of 30-32 s and a 5-95% response typified by a half time of 20 s. The data gathered were corrected in the light of these findings. Fourteen male subjects aged 17-38 years were studied under two conditions. Four mass evacuations each involving 40 people; a total of nine subjects escaping from the front rank over eight seats being monitored. Six evacuations each involving only two people escaping from the rear of the cabin; a total of 11 subjects escaping over 14 seats being monitored. Escape was made over the seat backs, down an escape chute to a position 12 m from the base of the chute. Resting minute ventilation (mean 16.7 1 STPD) and oxygen consumption (mean 0.41 min-1 STPD) were similar before both evacuations. There were no significant differences between the two conditions either during, or up to 180 s after escape. Ventilation and oxygen consumption were greatest in the recovery period. The highest oxygen consumption seen was 2.08 l min-1 and maximum minute ventilation was 641. Mean total oxygen consumption for the escape and a 150 s recovery period was 2.41 l (s.d. 0.64, max. 3.11) for the mass evacuation and 2.97 l (s.d. 0.68, max. 4.09) for the two person evacuation. The mean total amount of gas inhaled during the same time period was 89.3 l (s.d. 25.6, max. 121.3) for the mass evacuation and 99.01 (s.d. 26.2, max. 137.3) for the other. These was no correlation between ventilation or oxygen consumption and either escape time, body weight, height or age.

  19. Effect of aeration interval on oxygen consumption and GHG emission during pig manure composting.

    PubMed

    Zeng, Jianfei; Yin, Hongjie; Shen, Xiuli; Liu, Ning; Ge, Jinyi; Han, Lujia; Huang, Guangqun

    2018-02-01

    To verify the optimal aeration interval for oxygen supply and consumption and investigate the effect of aeration interval on GHG emission, reactor-scale composting was conducted with different aeration intervals (0, 10, 30 and 50 min). Although O 2 was sufficiently supplied during aeration period, it could be consumed to <10 vol% only when the aeration interval was 50 min, indicating that an aeration interval more than 50 min would be inadvisable. Compared to continuous aeration, reductions of the total CH 4 and N 2 O emissions as well as the total GHG emission equivalent by 22.26-61.36%, 8.24-49.80% and 12.36-53.20%, respectively, was achieved through intermittent aeration. Specifically, both the total CH 4 and N 2 O emissions as well as the total GHG emission equivalent were inversely proportional to the duration of aeration interval (R 2  > 0.902), suggesting that lengthening the duration of aeration interval to some extent could effectively reduce GHG emission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Comparison of 1.5 and 3 T BOLD MR to study oxygenation of kidney cortex and medulla in human renovascular disease.

    PubMed

    Gloviczki, Monika L; Glockner, James; Gomez, Sabas I; Romero, Juan C; Lerman, Lilach O; McKusick, Michael; Textor, Stephen C

    2009-09-01

    Imaging of the kidney using blood oxygen level dependent MR presents a major opportunity to examine differences in tissue oxygenation within the cortex and medulla applicable to human disease. We sought to define the differences between regions within kidneys and to optimize selection of regions of interest for study with 1.5 and 3 Tesla systems. Studies in 38 subjects were performed under baseline conditions and after administration of furosemide intravenously to examine changes in R2* as a result of suppressing oxygen consumption related to medullary tubular solute transport. These studies were carried out in patients with atherosclerotic renal artery stenosis (n = 24 kidneys) or essential hypertension or nonstenotic kidneys (n = 39). All patients but one were treated with agents to block the renin angiotensin system (ACE inhibitors or angiotensin receptor blockers). For each kidney, 3 levels (upper pole, hilum, and lower pole) were examined, including 3 individual segments (anterior, lateral, and posterior). Low basal R2* levels in kidney cortex (12.06 +/- 0.84 s(-1)) at 1.5 Tesla reflected robust blood flow and oxygenation and agreed closely with values obtained at 3.0 Tesla (13.62 +/- 0.56 s(-1), NS). Coefficients of variation ranged between 15% and 20% between segments and levels at both field strengths. By contrast, inner medullary R2* levels were higher at 3 T (31.66 +/- 0.74 s(-1)) as compared with 1.5 T (22.19 +/- 1.52 s(-1), P < 0.01). Medullary R2* values fell after furosemide administration reflecting reduced deoxyhemoglobin levels associated with blocked energy-dependent transport. The fall in medullary R2* at 3.0 Tesla (-12.61 +/- 0.97 s(-1)) was greater than observed at 1.5 T (-6.07 +/- 1.38 s(-1), P < 0.05). Cortical R2* levels remained low after furosemide and did not vary with field strength. Correlations between measurements of defined cortical and medullary regions of interest within kidneys were greater at each sampling level and segment at 3

  1. Evaluation of the effects of the metals Cd, Cr, Pb and their mixture on the filtration and oxygen consumption rates in catarina scallop, Argopecten ventricosus juveniles.

    PubMed

    Sobrino-Figueroa, Alma S; Cáceres-Martinez, Carlos

    2014-01-01

    In this work, we evaluated the effect of sublethal concentrations ( LC25, LC10 and LC5) of cadmium, chromium, lead, and their mixture on the filtration rate and oxygen consumption rate of Catarina scallop, Argopecten ventricosus (Sowerby, 1842), juveniles, in order to evaluate the use of these biomarkers as a reliable tool in environmental monitoring studies, because these metals have been found at high levels in water and sediments in the Mexican Pacific systems. An inverse dose-response relationship was observed when metal concentration and exposure time increased, the filtration rate and oxygen consumption rate reduced. The physiological responses evaluated in this study were sufficiently sensitive to detect alterations in the organisms at 0.014 mg l(-1) Cd, 0.311 mg l(-1) Cr, 0.125 mg l(-1) Pb and 0.05 mg l(-1) Cd + Cr + Pb at 24 and 72 hrs. Cd showed the most drastic effect. The Catarina scallop juveniles were more sensitive to Cd, Cr and Pb as compared to other bivalves. The biomarkers evaluated are a reliable tool to carry out environmental monitoring studies.

  2. Ecological Citizenship and Sustainable Consumption: Examining Local Organic Food Networks

    ERIC Educational Resources Information Center

    Seyfang, Gill

    2006-01-01

    Sustainable consumption is gaining in currency as a new environmental policy objective. This paper presents new research findings from a mixed-method empirical study of a local organic food network to interrogate the theories of both sustainable consumption and ecological citizenship. It describes a mainstream policy model of sustainable…

  3. Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO₂.

    PubMed

    Ferreira, Vicente; Carrascon, Vanesa; Bueno, Mónica; Ugliano, Maurizio; Fernandez-Zurbano, Purificación

    2015-12-30

    Fifteen Spanish red wines extensively characterized in terms of SO2, color, antioxidant indexes, metals, and polyphenols were subjected to five consecutive sensor-controlled cycles of air saturation at 25 °C. Within each cycle, O2 consumption rates cannot be interpreted by simple kinetic models. Plots of cumulated consumed O2 made it possible to define a fast and highly wine-dependent initial O2 consumption rate and a second and less variable average O2 consumption rate which remains constant in saturations 2 to 5. Both rates have been satisfactorily modeled, and in both cases they were independent of Fe and SO2 and highly dependent on Cu levels. Average rates were also related to Mn, pH, Folin, protein precipitable proanthocyanidins (PPAs), and polyphenolic profile. Initial rates were strong and negatively correlated to SO2 consumption, indicating that such an initial rate is either controlled by an unknown antioxidant present in some wines or affected by a poor real availability of SO2. Remaining unreacted SO2 is proportional to initial combined SO2 and to final free acetaldehyde.

  4. Fundamental understanding of distracted oxygen delignification efficiency by dissolved lignin during biorefinery process of eucalyptus.

    PubMed

    Zhao, Huifang; Li, Jing; Zhang, Xuejin

    2018-06-01

    In this work, a fundamental understanding of oxygen delignification distracted by dissolved lignin was investigated. In the new biorefinery model of shortening kraft pulping integrated with extended oxygen delignification process, increasing content of residual lignin in the original pulp could result in enhanced delignification efficiency, higher pulp viscosity and less carbonyl groups. However, the invalid oxygen consumption by dissolved lignin could be increased with the increase of process temperature and alkali dosage. The normalized ultraviolet absorbance (divided by absorbance at 280 nm) also showed that the content of chromophoric group in dissolved lignin decreased with oxygen delignification proceeded, both of which indicated that dissolved lignin could enhance the invalid oxygen consumption. Therefore, a conclusion that replacement of the liquor at the initial phase of oxygen delignification process would balance the enhancement of delignification efficiency and invalid oxygen consumption was achieved. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Operational Considerations for Oxygen Flammability Risks: Concentrated Oxygen Diffusion and Permeation Behaviors

    NASA Technical Reports Server (NTRS)

    Harper, Susana; Smith, Sarah; Juarez, Alfredo; Hirsch, David

    2010-01-01

    Increased human spaceflight operations utilize oxygen concentrations that are frequently varied with use of concentrations up to 100 percent oxygen. Even after exiting a higher percentage oxygen environment, high oxygen concentrations can still be maintained due to material saturation and oxygen entrapment between barrier materials. This paper examines the material flammability concerns that arise from changing oxygen environments during spaceflight operations. We examine the time required for common spacecraft and spacesuit materials exposed to oxygen to return to reduced ignitability and flammability once removed from the increased concentration. Various common spacecraft materials were considered: spacecraft cabin environment foams, Extra Vehicular Mobility Unit materials and foams, Advanced Crew Escape Suit materials, and other materials of interest such as Cotton, Nomex^ HT90-40, and Tiburon Surgical Drape. This paper presents calculated diffusion coefficients derived from experimentally obtained oxygen transmission rates for the tested materials and the analytically derived times necessary for reduced flammability to be achieved based on NASA flammability criteria. Oxygen material saturation and entrapment scenarios are examined. Experimental verification data on oxygen diffusion in saturation scenarios are also presented and discussed. We examine how to use obtained data to address flammability concerns during operational planning to reduce the likelihood of fires while improving efficiency for procedures.

  6. Effect of continuous and intermittent bouts of isocaloric cycling and running exercise on excess postexercise oxygen consumption.

    PubMed

    Cunha, Felipe A; Midgley, Adrian W; McNaughton, Lars R; Farinatti, Paulo T V

    2016-02-01

    The purpose of this study was to investigate excess postexercise oxygen consumption (EPOC) induced by isocaloric bouts of continuous and intermittent running and cycling exercise. This was a counterbalanced randomized cross-over study. Ten healthy men, aged 23-34yr, performed six bouts of exercise: (a) two maximal cardiopulmonary exercise tests for running and cycling to determine exercise modality-specific peak oxygen uptake (VO2peak); and (b) four isocaloric exercise bouts (two continuous bouts expending 400kcal and two intermittent bouts split into 2×200kcal) performed at 75% of the running and cycling oxygen uptake reserve. Exercise bouts were separated by 72h and performed in a randomized, counter-balanced order. The VO2 was monitored for 60-min postexercise and for 60-min during a control non-exercise day. The VO2 was significantly greater in all exercise conditions compared to the control session (P<0.001). The combined magnitude of the EPOC from the two intermittent bouts was significantly greater than that of the continuous cycling (mean difference=3.5L, P=0.001) and running (mean difference=6.4L, P<0.001). The exercise modality had a significant effect on net EPOC, where running elicited a higher net EPOC than cycling (mean difference=2.2L, P<0.001). Intermittent exercise increased the EPOC compared to a continuous exercise bout of equivalent energy expenditure. Furthermore, the magnitude of EPOC was influenced by exercise modality, with the greatest EPOC occurring with isocaloric exercise involving larger muscle mass (i.e., treadmill running vs. cycling). Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  7. Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.

    PubMed

    Bucci, Enrico

    2009-06-01

    Oxygen is a toxic gas, still indispensable to aerobic life. This paper explores how normal physiology uses the physico-chemical and thermodynamic characteristics of oxygen for transforming a toxic gas into a non toxic indispensable metabolite. Plasma oxygen concentration is in the range of 10(-5) M, insufficient to sustain metabolism. Oxygen carriers, present in blood, release oxygen into plasma, thereby replacing consumed oxygen and buffering PO(2) near their P(50). They are the natural cell-bound carriers, like hemoglobin inside red cells, myoglobin inside myocytes, and artificial cell-free hemoglobin-based oxygen carriers (HBOC) dissolved in plasma. Metabolic oxygen replacement can be defined as cell-bound and cell-free delivery. Cell-bound delivery is retarded by the slow diffusion of oxygen in plasma and interstitial fluids. The 40% hematocrit of normal blood compensates for the delay, coping with the fast oxygen consumption by mitochondria. Facilitated oxygen diffusion by HBOCs corrects for the slow diffusion, making cell-free delivery relatively independent from P(50). At all oxygen affinities, HBOCs produce hyperoxygenations that are compensated by vasoconstrictions. There is a strict direct correlation between the rate of oxygen replacement and hemoglobin content of blood. The free energy loss of the gradient adds a relevant regulation of tissues oxygenation. Oxygen is retained intravascularly by the limited permeability to gases of vessel walls.

  8. Examining the Unique Influence of Interpersonal and Intrapersonal Drinking Perceptions on Alcohol Consumption Among College Students*

    PubMed Central

    Mallett, Kimberly A.; Bachrach, Rachel L.; Turrisi, Rob

    2009-01-01

    Objective: Interventions for college student drinking often incorporate interpersonal factors such as descriptive and/or injunctive norms to correct misperceptions about campus drinking (e.g., BASICS [Brief Alcohol Screening and Intervention for College Students] and social-norms campaigns). Some interventions also focus on intra-personal factors of alcohol consumption, which can be considered as one's own perception of drinking, one's attitude toward drinking, and one's intended outcome related to drinking. The current study sought to extend previous work by examining relationships between both inter- and intrapersonal perceptions of drinking and reported drinking behavior. Method: College students (N = 303) completed questionnaires assessing drinking behaviors, perceptions of other students' attitudes toward drinking (i.e., injunctive norms), their perception of the quantity and frequency of student/friend drinking (i.e., descriptive norms), and their attitudes and perceptions toward their own alcohol consumption (i.e., intrapersonal factors). Results: Multiple regressions were used to analyze the unique influence between inter- and intrapersonal drinking perceptions and drinking behavior. Conclusions: Among the interpersonal perceptions of drinking, only closest friend's drinking significantly predicted alcohol consumption, whereas all three intrapersonal factors significantly predicted alcohol consumption. Suggestions for enhancing college student drinking interventions are discussed. PMID:19261229

  9. Oxygen consumption during pouch development of the macropod marsupial Setonix brachyurus

    PubMed Central

    Shield, John

    1966-01-01

    1. Measurements of O2 consumption at 9 or 10 temperatures in the 20-40° C ambient temperature range were made on joeys with ages selected to cover the 180-day period of pouch occupancy. 2. The rate of O2 consumption of joeys younger than 100 days increased directly with ambient temperature. 3. After 100 days of age the O2 consumption rate at low temperatures rose and at about 140 days of age a constant rate was maintained over the full ambient temperature range. 4. Heat transfer from joey to mother commenced after 100 days of age. 5. At 150-180 days of age the rate of O2 consumption at 20° C was approximately 12 times greater than at ages less than 100 days. A thermal neutral zone was established in the range 32-36° C by joeys older than 150 days. 6. At the usual pouch temperature of 36·5° C, O2 consumption per unit wet body weight rose from 12 ml./kg.min at birth to 17 ml./kg.min at the end of pouch life. On a unit dry body weight basis it fell from 120 to 56 ml./kg.min. This decline parallels the decrease in growth rate. PMID:5972171

  10. [Gradation in the level of vitamin consumption: possible risk of excessive consumption].

    PubMed

    Kodentsova, V M

    2014-01-01

    The ratio between the levels of consumption of certain vitamins and minerals [recommended daily allowance for labelling purposes < maximum supplement levels < tolerable upper intake level (UL) < safe level (limit) of consumption < or = therapeutic dose has been characterized. Vitamin A and beta-carotene maximum supplement levels coincides with UL, and recommended daily allowance for these micronutrients coincides with the maximal level of consumption through dietary supplements and/or multivitamins. Except for vitamin A and beta-carotene recommended daily allowance for other vitamins adopted in Russia are considerably lower than the upper safe level of consumption. For vitamin A and beta-carotene there is a potential risk for excess consumption. According to the literature data (meta-analysis) prolonged intake of high doses of antioxidant vitamins (above the RDA) both alone and in combination with two other vitamins or vitamin C [> 800 microg (R.E.) of vitamin A, > 9.6 mg of beta-carotene, > 15 mg (T.E.) of vitamin E] do not possess preventive effects and may be harmful with unwanted consequences to health, especially in well-nourished populations, persons having risk of lung cancer (smokers, workers exposed to asbestos), in certain conditions (in the atmosphere with high oxygen content, hyperoxia, oxygen therapy). Proposed mechanisms of such action may be due to the manifestation of prooxidant action when taken in high doses, shifting balance with other important natural antioxidants, their displacement (substitution), interference with the natural defense mechanisms. Athletes are the population group that requires attention as used antioxidant vitamins A, C, E, both individually and in combination in extremely high doses. In summary, it should be noted that intake of physiological doses which are equivalent to the needs of the human organism, as well as diet inclusion of fortified foods not only pose no threat to health, but will bring undoubted benefits, filling

  11. Impact of extreme oxygen consumption by pollutants on macroinvertebrate assemblages in plain rivers of the Ziya River Basin, north China.

    PubMed

    Ding, Yuekui; Rong, Nan; Shan, Baoqing

    2016-07-01

    The aim of the study was to estimate the impact of oxygen depletion on macroinvertebrate community structure in benthic space. Macroinvertebrate assemblages and potential of dissolved oxygen (DO) consumption were investigated simultaneously in the plain rivers of the Ziya River Basin. The degree of DO depletion was represented by sediment oxygen demand (SOD) and DO, chemical oxygen demand (CODCr), and ammonia nitrogen (NH4 (+)-N) in the overlying water. The results showed an all-around hypoxia environment formed, and the values of DO, SOD, CODCr, and NH4 (+)-N were separately 0.11-4.03 mg L(-1), 0.41-2.60 g m(-2) day(-1), 27.50-410.00 mg L(-1), and 1.79-101.41 mg L(-1). There was an abnormal macroinvertebrate assemblage, and only 3 classes, Insecta, Gastropoda, and Oligochaeta, were found, which included 9 orders, 30 families, and 54 genera. The biodiversity was at a low level, and Shannon-Wiener index was 0.00-1.72. SOD, and NH4 (+)-N had major impact on the macroinvertebrate community, and the former had negative effect on most taxa, for instance, Nais, Branchiura, Paraleptophlebia, etc., which were sensitive or had a moderate-high tolerance to pollution. NH4 (+)-N had both positive and negative impacts on benthic animals, for instance, Dicrotendipes, Gomphus, Cricotopus, etc., for the former, and Procladius, Limnodrilus, Hippeutis, etc., for the latter. They all had a moderate-high tolerance to pollution. It is significant to improve DO condition and macroinvertebrate diversity in river harnessing and management.

  12. Visible light optical coherence tomography measures retinal oxygen metabolic response to systemic oxygenation

    PubMed Central

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2015-01-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28 ± 0.08 μL min−1 (p < 0.001), and 0.20 ± 0.04 μL min−1 (p < 0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation. Results from an oxygen diffusion model based on previous oxygen electrode measurements corroborated our in vivo observations. We believe that vis-OCT has the potential to reveal the fundamental role of oxygen metabolism in various retinal diseases. PMID:26658555

  13. Effects of exercise-induced muscle damage on resting metabolic rate, sub-maximal running and post-exercise oxygen consumption.

    PubMed

    Burt, Dean Gareth; Lamb, Kevin; Nicholas, Ceri; Twist, Craig

    2014-01-01

    Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.

  14. Four Weeks of Off-Season Training Improves Peak Oxygen Consumption in Female Field Hockey Players

    PubMed Central

    Funch, Lindsey T.; Lind, Erik; Van Langen, Deborah; Hokanson, James F.

    2017-01-01

    The purpose of the study was to examine the changes in peak oxygen consumption (V˙O2peak) and running economy (RE) following four-weeks of high intensity training and concurrent strength and conditioning during the off-season in collegiate female field hockey players. Fourteen female student-athletes (age 19.29 ± 0.91 years) were divided into two training groups, matched from baseline V˙O2peak: High Intensity Training (HITrun; n = 8) and High Intensity Interval Training (HIIT; n = 6). Participants completed 12 training sessions. HITrun consisted of 30 min of high-intensity running, while HIIT consisted of a series of whole-body high intensity Tabata-style intervals (75–85% of age predicted maximum heart rate) for a total of four minutes. In addition to the interval training, the off-season training included six resistance training sessions, three team practices, and concluded with a team scrimmage. V˙O2peak was measured pre- and post-training to determine the effectiveness of the training program. A two-way mixed (group × time) ANOVA showed a main effect of time with a statistically significant difference in V˙O2peak from pre- to post-testing, F(1, 12) = 12.657, p = 0.004, partial η2 = 0.041. Average (±SD) V˙O2peak increased from 44.64 ± 3.74 to 47.35 ± 3.16 mL·kg−1·min−1 for HIIT group and increased from 45.39 ± 2.80 to 48.22 ± 2.42 mL·kg−1·min−1 for HITrun group. Given the similar improvement in aerobic power, coaches and training staff may find the time saving element of HIIT-type conditioning programs attractive. PMID:29910449

  15. Water consumption in Iron Age, Roman, and Early Medieval Croatia.

    PubMed

    Lightfoot, E; Slaus, M; O'Connell, T C

    2014-08-01

    Patterns of water consumption by past human populations are rarely considered, yet drinking behavior is socially mediated and access to water sources is often socially controlled. Oxygen isotope analysis of archeological human remains is commonly used to identify migrants in the archeological record, but it can also be used to consider water itself, as this technique documents water consumption rather than migration directly. Here, we report an oxygen isotope study of humans and animals from coastal regions of Croatia in the Iron Age, Roman, and Early Medieval periods. The results show that while faunal values have little diachronic variation, the human data vary through time, and there are wide ranges of values within each period. Our interpretation is that this is not solely a result of mobility, but that human behavior can and did lead to human oxygen isotope ratios that are different from that expected from consumption of local precipitation. © 2014 Wiley Periodicals, Inc.

  16. Increases in Cardiac Output and Oxygen Consumption During Enhanced External Counterpulsation.

    PubMed

    Ahlbom, Magnus; Hagerman, Inger; Ståhlberg, Marcus; Manouras, Aristomenis; Förstedt, Gunilla; Wu, Eline; Lund, Lars H

    2016-11-01

    Regular enhanced external counterpulsation (EECP) improves exercise capacity possibly through a training effect, but the roles of oxygen consumption (VO 2 ) vs. direct EECP effects (diastolic augmentation, DA-ratio), and their relation to cardiac index (CI) during EECP are unknown. We studied eight patients with angina pectoris (median [range] age 72 [53-85], 25% women), who underwent EECP for 35 daily sessions. Before, during and after the first and last sessions, we assessed VO 2 , DA-ratio and CI. At first EECP, CI increased from 2.2 (1.7-2.9) L/min/m 2 prior to EECP to 3.0 (2.2-3.8) during EECP (p=0.011), and returned to 2.4 (0.8-3.0). Similarly, VO 2 increased during EECP and returned to baseline after EECP. These patterns were reproduced at the last EECP session. Absolute values of CI and VO 2 correlated with each other during but not prior to or after EECP. The increase in CI correlated with the increase in VO 2 by trend: (first session, r 0.52, p=0.19; second session r 0.69, p=0.09), but not with DA-ratio. Acutely during EECP, there is an increase in cardiac output that is unrelated to direct EECP effects but related to, and may be secondary to, an increase in peripheral O 2 demand. This may represent a training effect. Copyright © 2016 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  17. Effect of Moderate-Intensity Exercise Training on Peak Oxygen Consumption in Patients With Hypertrophic Cardiomyopathy: A Randomized Clinical Trial.

    PubMed

    Saberi, Sara; Wheeler, Matthew; Bragg-Gresham, Jennifer; Hornsby, Whitney; Agarwal, Prachi P; Attili, Anil; Concannon, Maryann; Dries, Annika M; Shmargad, Yael; Salisbury, Heidi; Kumar, Suwen; Herrera, Jonathan J; Myers, Jonathan; Helms, Adam S; Ashley, Euan A; Day, Sharlene M

    2017-04-04

    Formulating exercise recommendations for patients with hypertrophic cardiomyopathy is challenging because of concern about triggering ventricular arrhythmias and because a clinical benefit has not been previously established in this population. To determine whether moderate-intensity exercise training improves exercise capacity in adults with hypertrophic cardiomyopathy. A randomized clinical trial involving 136 patients with hypertrophic cardiomyopathy was conducted between April 2010 and October 2015 at 2 academic medical centers in the United States (University of Michigan Health System and Stanford University Medical Center). Date of last follow-up was November 2016. Participants were randomly assigned to 16 weeks of moderate-intensity exercise training (n = 67) or usual activity (n = 69). The primary outcome measure was change in peak oxygen consumption from baseline to 16 weeks. Among the 136 randomized participants (mean age, 50.4 [SD, 13.3] years; 42% women), 113 (83%) completed the study. At 16 weeks, the change in mean peak oxygen consumption was +1.35 (95% CI, 0.50 to 2.21) mL/kg/min among participants in the exercise training group and +0.08 (95% CI, -0.62 to 0.79) mL/kg/min among participants in the usual-activity group (between-group difference, 1.27 [95% CI, 0.17 to 2.37]; P = .02). There were no occurrences of sustained ventricular arrhythmia, sudden cardiac arrest, appropriate defibrillator shock, or death in either group. In this preliminary study involving patients with hypertrophic cardiomyopathy, moderate-intensity exercise compared with usual activity resulted in a statistically significant but small increase in exercise capacity at 16 weeks. Further research is needed to understand the clinical importance of this finding in patients with hypertrophic cardiomyopathy, as well as the long-term safety of exercise at moderate and higher levels of intensity. clinicaltrials.gov Identifier: NCT01127061.

  18. Increased sediment oxygen flux in lakes and reservoirs: The impact of hypolimnetic oxygenation

    NASA Astrophysics Data System (ADS)

    Bierlein, Kevin A.; Rezvani, Maryam; Socolofsky, Scott A.; Bryant, Lee D.; Wüest, Alfred; Little, John C.

    2017-06-01

    Hypolimnetic oxygenation is an increasingly common lake management strategy for mitigating hypoxia/anoxia and associated deleterious effects on water quality. A common effect of oxygenation is increased oxygen consumption in the hypolimnion and predicting the magnitude of this increase is the crux of effective oxygenation system design. Simultaneous measurements of sediment oxygen flux (JO2) and turbulence in the bottom boundary layer of two oxygenated lakes were used to investigate the impact of oxygenation on JO2. Oxygenation increased JO2 in both lakes by increasing the bulk oxygen concentration, which in turn steepens the diffusive gradient across the diffusive boundary layer. At high flow rates, the diffusive boundary layer thickness decreased as well. A transect along one of the lakes showed JO2 to be spatially quite variable, with near-field and far-field JO2 differing by a factor of 4. Using these in situ measurements, physical models of interfacial flux were compared to microprofile-derived JO2 to determine which models adequately predict JO2 in oxygenated lakes. Models based on friction velocity, turbulence dissipation rate, and the integral scale of turbulence agreed with microprofile-derived JO2 in both lakes. These models could potentially be used to predict oxygenation-induced oxygen flux and improve oxygenation system design methods for a broad range of reservoir systems.

  19. Simultaneously Occurring Elevated Metabolic States Expose Constraints in Maximal Levels of Oxygen Consumption in the Oviparous Snake Lamprophis fuliginosus.

    PubMed

    Jackson, Alexander Garrett Schavran; Leu, Szu-Yun; Hicks, James W

    African house snakes (Lamprophis fuliginosus) were used to compare the metabolic increments associated with reproduction, digestion, and activity both individually and when combined simultaneously. Rates of oxygen consumption ([Formula: see text]) and carbon dioxide production ([Formula: see text]) were measured in adult female (nonreproductive and reproductive) and adult male snakes during rest, digestion, activity while fasting, and postprandial activity. We also compared the endurance time (i.e., time to exhaustion) during activity while fasting and postprandial activity in males and females. For nonreproductive females and males, our results indicate that the metabolic increments of digestion (∼3-6-fold) and activity while fasting (∼6-10-fold) did not interact in an additive fashion; instead, the aerobic scope associated with postprandial activity was 40%-50% lower, and animals reached exhaustion up to 11 min sooner. During reproduction, there was no change in digestive [Formula: see text], but aerobic scope for activity while fasting was 30% lower than nonreproductive values. The prioritization pattern of oxygen delivery exhibited by L. fuliginosus during postprandial activity (in both males and females) and for activity while fasting (in reproductive females) was more constrained than predicted (i.e., instead of unchanged [Formula: see text], peak values were 30%-40% lower). Overall, our results indicate that L. fuliginosus's cardiopulmonary system's capacity for oxygen delivery was not sufficient to maintain the metabolic increments associated with reproduction, digestion, and activity simultaneously without limiting aerobic scope and/or activity performance.

  20. The Effects of Capillary Transit Time Heterogeneity (CTH) on the Cerebral Uptake of Glucose and Glucose Analogs: Application to FDG and Comparison to Oxygen Uptake

    PubMed Central

    Angleys, Hugo; Jespersen, Sune N.; Østergaard, Leif

    2016-01-01

    Glucose is the brain's principal source of ATP, but the extent to which cerebral glucose consumption (CMRglc) is coupled with its oxygen consumption (CMRO2) remains unclear. Measurements of the brain's oxygen-glucose index OGI = CMRO2/CMRglc suggest that its oxygen uptake largely suffices for oxidative phosphorylation. Nevertheless, during functional activation and in some disease states, brain tissue seemingly produces lactate although cerebral blood flow (CBF) delivers sufficient oxygen, so-called aerobic glycolysis. OGI measurements, in turn, are method-dependent in that estimates based on glucose analog uptake depend on the so-called lumped constant (LC) to arrive at CMRglc. Capillary transit time heterogeneity (CTH), which is believed to change during functional activation and in some disease states, affects the extraction efficacy of oxygen from blood. We developed a three-compartment model of glucose extraction to examine whether CTH also affects glucose extraction into brain tissue. We then combined this model with our previous model of oxygen extraction to examine whether differential glucose and oxygen extraction might favor non-oxidative glucose metabolism under certain conditions. Our model predicts that glucose uptake is largely unaffected by changes in its plasma concentration, while changes in CBF and CTH affect glucose and oxygen uptake to different extents. Accordingly, functional hyperemia facilitates glucose uptake more than oxygen uptake, favoring aerobic glycolysis during enhanced energy demands. Applying our model to glucose analogs, we observe that LC depends on physiological state, with a risk of overestimating relative increases in CMRglc during functional activation by as much as 50%. PMID:27790110

  1. Respiration, respiratory metabolism and energy consumption under weightless conditions

    NASA Technical Reports Server (NTRS)

    Kasyan, I. I.; Makarov, G. F.

    1975-01-01

    Changes in the physiological indices of respiration, respiratory metabolism and energy consumption in spacecrews under weightlessness conditions manifest themselves in increased metabolic rates, higher pulmonary ventilation volume, oxygen consumption and carbon dioxide elimination, energy consumption levels in proportion to reduction in neuroemotional and psychic stress, adaptation to weightlessness and work-rest cycles, and finally in a relative stabilization of metabolic processes due to hemodynamic shifts.

  2. Effects of metal contamination in situ on osmoregulation and oxygen consumption in the mudflat fiddler crab Uca rapax (Ocypodidae, Brachyura).

    PubMed

    Capparelli, Mariana V; Abessa, Denis M; McNamara, John C

    2016-01-01

    The contamination of estuaries by metals can impose additional stresses on estuarine species, which may exhibit a limited capability to adjust their regulatory processes and maintain physiological homeostasis. The mudflat fiddler crab Uca rapax is a typical estuarine crab, abundant in both pristine and contaminated areas along the Atlantic coast of Brazil. This study evaluates osmotic and ionic regulatory ability and gill Na(+)/K(+)-ATPase activity in different salinities (<0.5, 25 and 60‰ S) and oxygen consumption rates at different temperatures (15, 25 and 35°C) in U. rapax collected from localities along the coast of São Paulo State showing different histories of metal contamination (most contaminated Ilha Diana, Santos>Rio Itapanhaú, Bertioga>Picinguaba, Ubatuba [pristine reference site]). Our findings show that the contamination of U. rapax by metals in situ leads to bioaccumulation and induces biochemical and physiological changes compared to crabs from the pristine locality. U. rapax from the contaminated sites exhibit stronger hyper- and hypo-osmotic regulatory abilities and show greater gill Na(+)/K(+)-ATPase activities than crabs from the pristine site, revealing that the underlying biochemical machinery can maintain systemic physiological processes functioning well. However, oxygen consumption, particularly at elevated temperatures, decreases in crabs showing high bioaccumulation titers but increases in crabs with low/moderate bioaccumulation levels. These data show that U. rapax chronically contaminated in situ exhibits compensatory biochemical and physiological adjustments, and reveal the importance of studies on organisms exposed to metals in situ, particularly estuarine invertebrates subject to frequent changes in natural environmental parameters like salinity and temperature. Copyright © 2016. Published by Elsevier Inc.

  3. Fruit and vegetable consumption and its recommended intake associated with sociodemographic factors: Thailand National Health Examination Survey III.

    PubMed

    Satheannoppakao, Warapone; Aekplakorn, Wichai; Pradipasen, Mandhana

    2009-11-01

    To examine the fruit and vegetable consumption in Thailand, the percentage of Thais meeting recommended intakes and the association with sociodemographic factors. Cross-sectional survey with a stratified, three-stage, cluster probability sampling design. Community-dwelling men and women participating in the Thailand National Health Examination Survey III. A total of 39 290 individuals aged >or=15 years were interviewed using a questionnaire to obtain information on sociodemographic characteristics and fruit and vegetable consumption. Daily fruit and vegetable consumption was estimated through the use of a short semi-qualitative FFQ. Overall, participants had average frequencies of fruit and vegetable consumption equal to 4.56 and 5.97 d/week, respectively. Average daily number of servings of fruit, vegetables and fruit plus vegetables were 1.46, 1.78 and 3.24, respectively. Intake amounts of fruit, vegetables and fruit plus vegetables varied by marital status and region, and were lower among males (except for vegetable intake), those of older age, those with low educational attainment, those with low monthly household income and those living in a rural area. Only 1/3, 1/4 and 1/4 of the population consumed the recommended >or=2, >or=3 and >or=5 servings/d for fruit, vegetables and fruit plus vegetables. Sociodemographic factors related to meeting the recommended intake of >or=5 servings/d for fruit plus vegetables included being female (OR = 1.13) and household income >or=50,000 Baht/month (OR = 1.66). The amounts of fruit and vegetables consumed by Thai participants were far below the level of current recommendations. Public education and campaigns on adequate consumption of fruits and vegetables should be targeted more towards low socio-economic groups.

  4. Global Transportation Energy Consumption Examination of Scenarios to 2040 using ITEDD

    EIA Publications

    2017-01-01

    Energy consumption in the transportation sector is evolving. Over the next 25 years, the U.S. Energy Information Administration’s (EIA) International Energy Outlook (IEO) 2016 Reference case projects that Organization for Economic Cooperation and Development (OECD) countries’ transportation energy consumption will remain relatively flat. In contrast, non-OECD countries will grow to levels higher than in OECD countries by the early 2020s. This rapid non-OECD growth results in continued transportation energy consumption growth through at least 2040.

  5. Oxygen dynamics and transport in the Mediterranean sponge Aplysina aerophoba.

    PubMed

    Hoffmann, Friederike; Røy, Hans; Bayer, Kristina; Hentschel, Ute; Pfannkuchen, Martin; Brümmer, Franz; de Beer, Dirk

    2008-01-01

    The Mediterranean sponge Aplysina aerophoba kept in aquaria or cultivation tanks can stop pumping for several hours or even days. To investigate changes in the chemical microenvironments, we measured oxygen profiles over the surface and into the tissue of pumping and non-pumping A. aerophoba specimens with Clark-type oxygen microelectrodes (tip diameters 18-30 μm). Total oxygen consumption rates of whole sponges were measured in closed chambers. These rates were used to back-calculate the oxygen distribution in a finite-element model. Combining direct measurements with calculations of diffusive flux and modeling revealed that the tissue of non-pumping sponges turns anoxic within 15 min, with the exception of a 1 mm surface layer where oxygen intrudes due to molecular diffusion over the sponge surface. Molecular diffusion is the only transport mechanism for oxygen into non-pumping sponges, which allows total oxygen consumption rates of 6-12 μmol cm -3  sponge day -1 . Sponges of different sizes had similar diffusional uptake rates, which is explained by their similar surface/volume ratios. In pumping sponges, oxygen consumption rates were between 22 and 37 μmol cm -3  sponge day -1 , and the entire tissue was oxygenated. Combining different approaches of direct oxygen measurement in living sponges with a dynamic model, we can show that tissue anoxia is a direct function of the pumping behavior. The sponge-microbe system of A. aerophoba thus has the possibility to switch actively between aerobic and anaerobic metabolism by stopping the water flow for more than 15 min. These periods of anoxia will greatly influence physiological variety and activity of the sponge microbes. Detailed knowledge about the varying chemical microenvironments in sponges will help to develop protocols to cultivate sponge-associated microbial lineages and improve our understanding of the sponge-microbe-system.

  6. Nitrite produced by Mycobacterium tuberculosis in human macrophages in physiologic oxygen impacts bacterial ATP consumption and gene expression

    PubMed Central

    Cunningham-Bussel, Amy; Zhang, Tuo; Nathan, Carl F.

    2013-01-01

    In high enough concentrations, such as produced by inducible nitric oxide synthase (iNOS), reactive nitrogen species (RNS) can kill Mycobacterium tuberculosis (Mtb). Lesional macrophages in macaques and humans with tuberculosis express iNOS, and mice need iNOS to avoid succumbing rapidly to tuberculosis. However, Mtb’s own ability to produce RNS is rarely considered, perhaps because nitrate reduction to nitrite is only prominent in axenic Mtb cultures at oxygen tensions ≤1%. Here we found that cultures of Mtb-infected human macrophages cultured at physiologic oxygen tensions produced copious nitrite. Surprisingly, the nitrite arose from the Mtb, not the macrophages. Mtb responded to nitrite by ceasing growth; elevating levels of ATP through reduced consumption; and altering the expression of 120 genes associated with adaptation to acid, hypoxia, nitric oxide, oxidative stress, and iron deprivation. The transcriptomic effect of endogenous nitrite was distinct from that of nitric oxide. Thus, whether or not Mtb is hypoxic, the host expresses iNOS, or hypoxia impairs the action of iNOS, Mtb in vivo is likely to encounter RNS by producing nitrite. Endogenous nitrite may slow Mtb’s growth and prepare it to resist host stresses while the pathogen waits for immunopathology to promote its transmission. PMID:24145454

  7. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells.

    PubMed

    Xun, Zhiyin; Lee, Do-Yup; Lim, James; Canaria, Christie A; Barnebey, Adam; Yanonne, Steven M; McMurray, Cynthia T

    2012-04-01

    Retinoic acid (RA) is used in differentiation therapy to treat a variety of cancers including neuroblastoma. The contributing factors for its therapeutic efficacy are poorly understood. However, mitochondria (MT) have been implicated as key effectors in RA-mediated differentiation process. Here we utilize the SH-SY5Y human neuroblastoma cell line as a model to examine how RA influences MT during the differentiation process. We find that RA confers an approximately sixfold increase in the oxygen consumption rate while the rate of glycolysis modestly increases. RA treatment does not increase the number of MT or cause measurable changes in the composition of the electron transport chain. Rather, RA treatment significantly increases the mitochondrial spare respiratory capacity. We propose a competition model for the therapeutic effects of RA. Specifically, the high metabolic rate in differentiated cells limits the availability of metabolic nutrients for use by the undifferentiated cells and suppresses their growth. Thus, RA treatment provides a selective advantage for the differentiated state. Published by Elsevier Ireland Ltd.

  8. Aerobic photoreactivity of synthetic eumelanins and pheomelanins: generation of singlet oxygen and superoxide anion.

    PubMed

    Szewczyk, Grzegorz; Zadlo, Andrzej; Sarna, Michal; Ito, Shosuke; Wakamatsu, Kazumasa; Sarna, Tadeusz

    2016-11-01

    In this work, we examined photoreactivity of synthetic eumelanins, formed by autooxidation of DOPA, or enzymatic oxidation of 5,6-dihydroxyindole-2-carboxylic acid and synthetic pheomelanins obtained by enzymatic oxidation of 5-S-cysteinyldopa or 1:1 mixture of DOPA and cysteine. Electron paramagnetic resonance oximetry and spin trapping were used to measure oxygen consumption and formation of superoxide anion induced by irradiation of melanin with blue light, and time-resolved near-infrared luminescence was employed to determine the photoformation of singlet oxygen between 300 and 600 nm. Both superoxide anion and singlet oxygen were photogenerated by the synthetic melanins albeit with different efficiency. At 450-nm, quantum yield of singlet oxygen was very low (~10 -4 ) but it strongly increased in the UV region. The melanins quenched singlet oxygen efficiently, indicating that photogeneration and quenching of singlet oxygen may play an important role in aerobic photochemistry of melanin pigments and could contribute to their photodegradation and photoaging. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Oxygen production using solid-state zirconia electrolyte technology

    NASA Technical Reports Server (NTRS)

    Suitor, Jerry W.; Clark, Douglas J.

    1991-01-01

    High purity oxygen is required for a number of scientific, medical, and industrial applications. Traditionally, these needs have been met by cryogenic distillation or pressure swing adsorption systems designed to separate oxygen from air. Oxygen separation from air via solid-state zirconia electrolyte technology offers an alternative to these methods. The technology has several advantages over the traditional methods, including reliability, compactness, quiet operation, high purity output, and low power consumption.

  10. Singlet oxygen-induced photodegradation of the polymers and dyes in optical sensing materials and the effect of stabilizers on these processes.

    PubMed

    Enko, Barbara; Borisov, Sergey M; Regensburger, Johannes; Bäumler, Wolfgang; Gescheidt, Georg; Klimant, Ingo

    2013-09-12

    A comprehensive study of photodegradation processes in optical sensing materials caused by photosensitized singlet oxygen in different polymers is presented. The stabilities of the polymers are accessed in the oxygen consumption measurements performed with help of optical oxygen sensors. Polystyrene and poly(phenylsilesquioxane) are found to be the most stable among the polymers investigated, whereas poly(2,6-dimethyl-p-phenylene oxide) and particularly poly(methyl methacrylate) and their derivatives show the fastest oxygen consumption. The effect of the stabilizers (singlet oxygen quenchers) on the oxygen consumption rates, the photostability of the sensitizer, and the total photon emission (TPE) by singlet oxygen is studied. 1,4-Diazabicyclo[2.2.2]octane (DABCO) was found to significantly reduce both the TPE and the oxygen consumption rates, indicating its role as a physical quencher of singlet oxygen. The addition of DABCO also significantly improved the photostability of the sensitizer. The N-alkylated derivative of DABCO and DABCO covalently grafted to the polystyrene backbone are prepared in an attempt to overcome the volatility and water solubility of the quencher. These derivatives as well as other tertiary amines investigated were found to be inefficient as stabilizing agents, and some of them even negatively affected the oxygen consumption rates.

  11. The kinetics of oxygen and SO2 consumption by red wines. What do they tell about oxidation mechanisms and about changes in wine composition?

    PubMed

    Carrascón, Vanesa; Vallverdú-Queralt, Anna; Meudec, Emmanuelle; Sommerer, Nicolas; Fernandez-Zurbano, Purificación; Ferreira, Vicente

    2018-02-15

    This work seeks to understand the kinetics of O 2 and SO 2 consumption of air-saturated red wine as a function of its chemical composition, and to describe the chemical changes suffered during the process in relation to the kinetics. Oxygen Consumption Rates (OCRs) are faster with higher copper and epigallocatechin contents and with higher absorbance at 620nm and slower with higher levels of gallic acid and catechin terminal units in tannins. Acetaldehyde Reactive Polyphenols (ARPs) may be key elements determining OCRs. It is confirmed that SO 2 is poorly consumed in the first saturation. Phenylalanine, methionine and maybe, cysteine, seem to be consumed instead. A low SO 2 consumption is favoured by low levels of SO 2 , by a low availability of free SO 2 caused by a high anthocyanin/tannin ratio, and by a polyphenolic profile poor in epigallocatechin and rich in catechin-rich tannins. Wines consuming SO 2 efficiently consume more epigallocatechin, prodelphinidins and procyanidins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Oxygen measurement in interstitially perfused cellularized constructs cultured in a miniaturized bioreactor.

    PubMed

    Raimondi, Manuela T; Giordano, Carmen; Pietrabissa, Riccardo

    2015-12-18

    The possibility of developing engineered tissue in vitro and maintaining the cell viability and functionality is primarily related to the possibility of controlling key culture parameters such as oxygen concentration and cell-specific oxygen consumption. We measured these parameters in a three-dimensional (3D) cellularized construct maintained under interstitially perfused culture in a miniaturized bioreactor. MG63 osteosarcoma cells were seeded at high density on a 3D polystyrene scaffold. The 3D scaffolds were sensorized with sensor foils made of a polymer, which fluoresce with intensity proportional to the local oxygen tension. Images of the sensor foil in contact with the cellularized construct were acquired with a video camera every four hours for six culture days and were elaborated with analytical imaging software to obtain oxygen concentration maps. The data collected indicate a globally decreasing oxygen concentration profile, with a total drop of 28% after six days of culture and an average drop of 10.5% between the inlet and outlet of the perfused construct. Moreover, by importing the measured oxygen concentration data and the cell counts in a model of mass transport, we calculated the cell-specific oxygen consumption over the whole culture period. The consumption increased with oxygen availability and ranged from 0.1 to 0.7 µmol/h/106 cells. The sensors used here allowed a non-invasive, contamination-free and non-destructive oxygen measurement over the whole culture period. This study is the basis for optimization of the culture parameters involved in oxygen supply, in order to guarantee maintenance of cell viability in our system.

  13. Light-addressable measurements of cellular oxygen consumption rates in microwell arrays based on phase-based phosphorescence lifetime detection

    PubMed Central

    Huang, Shih-Hao; Hsu, Yu-Hsuan; Wu, Chih-Wei; Wu, Chang-Jer

    2012-01-01

    A digital light modulation system that utilizes a modified commercial digital micromirror device (DMD) projector, which is equipped with a UV light-emitting diode as a light modulation source, has been developed to spatially direct excited light toward a microwell array device to detect the oxygen consumption rate (OCR) of single cells via phase-based phosphorescence lifetime detection. The microwell array device is composed of a combination of two components: an array of glass microwells containing Pt(II) octaethylporphine (PtOEP) as the oxygen-sensitive luminescent layer and a microfluidic module with pneumatically actuated glass lids set above the microwells to controllably seal the microwells of interest. By controlling the illumination pattern on the DMD, the modulated excitation light can be spatially projected to only excite the sealed microwell for cellular OCR measurements. The OCR of baby hamster kidney-21 fibroblast cells cultivated on the PtOEP layer within a sealed microwell has been successfully measured at 104 ± 2.96 amol s−1 cell−1. Repeatable and consistent measurements indicate that the oxygen measurements did not adversely affect the physiological state of the measured cells. The OCR of the cells exhibited a good linear relationship with the diameter of the microwells, ranging from 400 to 1000 μm and containing approximately 480 to 1200 cells within a microwell. In addition, the OCR variation of single cells in situ infected by Dengue virus with a different multiplicity of infection was also successfully measured in real-time. This proposed platform provides the potential for a wide range of biological applications in cell-based biosensing, toxicology, and drug discovery. PMID:24348889

  14. Oxygen dependence of respiration in rat spinotrapezius muscle in situ

    PubMed Central

    Pittman, Roland N.

    2012-01-01

    The oxygen dependence of respiration in striated muscle in situ was studied by measuring the rate of decrease of interstitial Po2 [oxygen disappearance curve (ODC)] following rapid arrest of blood flow by pneumatic tissue compression, which ejected red blood cells from the muscle vessels and made the ODC independent from oxygen bound to hemoglobin. After the contribution of photo-consumption of oxygen by the method was evaluated and accounted for, the corrected ODCs were converted into the Po2 dependence of oxygen consumption, V̇o2, proportional to the rate of Po2 decrease. Fitting equations obtained from a model of heterogeneous intracellular Po2 were applied to recover the parameters describing respiration in muscle fibers, with a predicted sigmoidal shape for the dependence of V̇o2 on Po2. This curve consists of two regions connected by the point for critical Po2 of the cell (i.e., Po2 at the sarcolemma when the center of the cell becomes anoxic). The critical Po2 was below the Po2 for half-maximal respiratory rate (P50) for the cells. In six muscles at rest, the rate of oxygen consumption was 139 ± 6 nl O2/cm3·s and mitochondrial P50 was k = 10.5 ± 0.8 mmHg. The range of Po2 values inside the muscle fibers was found to be 4–5 mmHg at the critical Po2. The oxygen dependence of respiration can be studied in thin muscles under different experimental conditions. In resting muscle, the critical Po2 was substantially lower than the interstitial Po2 of 53 ± 2 mmHg, a finding that indicates that V̇o2 under this circumstance is independent of oxygen supply and is discordant with the conventional hypothesis of metabolic regulation of the oxygen supply to tissue. PMID:22523254

  15. Quantitative Microplate-Based Respirometry with Correction for Oxygen Diffusion

    PubMed Central

    2009-01-01

    Respirometry using modified cell culture microplates offers an increase in throughput and a decrease in biological material required for each assay. Plate based respirometers are susceptible to a range of diffusion phenomena; as O2 is consumed by the specimen, atmospheric O2 leaks into the measurement volume. Oxygen also dissolves in and diffuses passively through the polystyrene commonly used as a microplate material. Consequently the walls of such respirometer chambers are not just permeable to O2 but also store substantial amounts of gas. O2 flux between the walls and the measurement volume biases the measured oxygen consumption rate depending on the actual [O2] gradient. We describe a compartment model-based correction algorithm to deconvolute the biological oxygen consumption rate from the measured [O2]. We optimize the algorithm to work with the Seahorse XF24 extracellular flux analyzer. The correction algorithm is biologically validated using mouse cortical synaptosomes and liver mitochondria attached to XF24 V7 cell culture microplates, and by comparison to classical Clark electrode oxygraph measurements. The algorithm increases the useful range of oxygen consumption rates, the temporal resolution, and durations of measurements. The algorithm is presented in a general format and is therefore applicable to other respirometer systems. PMID:19555051

  16. In vivo oxygen transport in the normal rabbit femoral arterial wall.

    PubMed Central

    Crawford, D W; Back, L H; Cole, M A

    1980-01-01

    In vivo measurements of tissue oxygen tension were made at 10-micrometer intervals through functioning in situ rabbit femoral arterial walls, using inhalation anesthesia and recessed microcathodes with approximately 4-micrometer external diameters. External environment was controlled with a superfusion well at 30 torr PO2, 35 torr PCO2. Blood pressure, gas tension levels, and blood pH were held within the normal range. Radial PO2 measurements closely fit a mathematical model for unidimensional diffusion into a thick-walled artery with uniform oxygen consumption, and the distances traversed fit measured dimensions of quick-frozen in vivo sections. Using standard values of diffusion and solubility coefficients, mean calculated medial oxygen consumption was 99 nl0/ml-s. Mural oxygen consumption appeared to be related linearly to mean tangential wall stress. Differences in experimental design and technique were compared with previous in vivo and in vitro measurements of wall oxygenation, and largely account for the varying results obtained. Control of environment external to the artery, and maintenance of normally flowing blood in the lumen in vivo appeared critical to an understanding of mural oxygenation in life. If the conditions of this experiment prevailed in arteries with thicker avascular layers, PO2 could have been 20 torr at approximately 156 micrometer and 10 torr at 168 micrometer from blood (average values). Images PMID:7410554

  17. The role of intraluminal thrombus on oxygen transport in abdominal aortic aneurysms

    NASA Astrophysics Data System (ADS)

    Madhavan, Sudharsan; Cherry Kemmerling, Erica

    2017-11-01

    Abdominal aortic aneurysm is ranked as the 13th leading cause of death in the United States. The presence of intraluminal thrombus is thought to cause hypoxia in the vessel wall eventually aggravating the condition. Our work investigates oxygen transport and consumption in a patient-specific model of an abdominal aortic aneurysm. The model includes intraluminal thrombus and consists of the abdominal aorta, renal arteries, and iliac arteries. Oxygen transport to and within the aortic wall layer was modeled, accounting for oxygen consumption and diffusion. Flow and transport in the lumen layer were modeled using coupled Navier-Stokes and scalar transport equations. The thrombus layer was assumed to be biomechanically inactive but permeable to oxygen transport in accordance with previously-measured diffusion coefficients. Plots of oxygen concentration through the layers illustrating reduced oxygen supply to the vessel walls in parts of the model that include thrombus will be presented.

  18. The S factor--a new derived hemodynamic oxygenation parameter--a useful tool for simplified mathematical modeling of global problems of oxygen transport.

    PubMed

    Farrell, K; Wasser, T

    1997-01-01

    We describe a new derived hemodynamic oxygenation parameter, the S factor (S). The factor is based on oxygen delivery and oxygen consumption and can range from -3 to 1. It allows simplified mathematical modeling of clinical problems of oxygen transport and can be applied to many clinical situations. A new hemodynamic oxygenation parameter, the S factor (S), is introduced as an aid to mathematical modeling. It is defined as follows: [formula: see text] (DO2 = oxygen delivery, VO2 = oxygen consumption) S can theoretically vary from -3 (DO2 = VO2) to +1 (VO2 = 0). When DO2/VO2 = 4 (ie. OER = 0.25), S = 0. An S < 0 implies utilization of reserve oxygen transport capacity. An S > 0 implies increased oxygen delivery in relation to oxygen consumption (ie. "shunted oxygen delivery"). By algebraic manipulation and substitution of the components of DO2 into Equation 1: DO2 = Q x Ca x 10 DO2 = Q [(Hb)(Sat)(1.36) + PaO2(.0031)] 10 (2) the following equations can be derived: [formula: see text] [formula: see text] Ca - Cv (Ca = arterial content, Cv = venous content) can be determined by substituting components of oxygen consumption: VO2 = Q (Ca - Cv) x 10 (5) into equation 1 and solving for Ca - Cv. [formula: see text] Equation 6 can be simplified to: [formula: see text] A previously defined relationship between mixed venous PO2 (PvO2) and DO2/VO2 (where calculated P50 is 26.6 +/- 1.0) can be used to modify S in a clinically relevant manner. PvO2 = 5.44D O2/VO2 + 18.16 (8) The relationship between S and PvO2 can be defined by substituting Equation 4 into Equation 1 and solving for PvO2 PvO2 = [21.76/(1-S)] + 18.16 (9) As an example, at a PvO2 of 28 torr (anaerobic threshold), S = -1.2. The relationship between PvO2 and S is shown in Figure 1. S, which can also be defined as 1-4(VO2/DO2) or 1-4(OER), is a useful tool for mathematical modeling of global problems of oxygen transport because the previously derived equations with the S value allow the components of oxygen transport

  19. Reservoir Cannulas for Pediatric Oxygen Therapy: A Proof-of-Concept Study

    PubMed Central

    Wu, Grace; DiBlasi, Robert M.; Saxon, Eugene; Austin, Glenn; Ginsburg, Amy Sarah

    2016-01-01

    Hypoxemia is a complication of pneumonia—the leading infectious cause of death in children worldwide. Treatment generally requires oxygen-enriched air, but access in low-resource settings is expensive and unreliable. We explored use of reservoir cannulas (RCs), which yield oxygen savings in adults but have not been examined in children. Toddler, small child, and adolescent breathing profiles were simulated with artificial lung and airway models. An oxygen concentrator provided flow rates of 0 to 5 L/min via a standard nasal cannula (NC) or RC, and delivered oxygen fraction (FdO2) was measured. The oxygen savings ratio (SR) and absolute flow savings (AFS) were calculated, comparing NC and RC. We demonstrated proof-of-concept that pendant RCs could conserve oxygen during pediatric therapy. SR mean and standard deviation were 1.1 ± 0.2 to 1.4 ± 0.4, 1.1 ± 0.1 to 1.7 ± 0.3, and 1.3 ± 0.1 to 2.4 ± 0.3 for toddler, small child, and adolescent models, respectively. Maximum AFS observed were 0.3 ± 0.3, 0.2 ± 0.1, and 1.4 ± 0.3 L/min for the same models. RCs have the potential to reduce oxygen consumption during treatment of hypoxemia in children; however, further evaluation of products is needed, followed by clinical analysis in patients. PMID:27999601

  20. Oxygen Generation Assembly Technology Development

    NASA Technical Reports Server (NTRS)

    Bagdigian, Robert; Cloud, Dale

    1999-01-01

    Hamilton Standard Space Systems International (HSSI) is under contract to NASA Marshall Space Flight Center (MSFC) to develop an Oxygen Generation Assembly (OGA) for the International Space Station (ISS). The International Space Station Oxygen Generation Assembly (OGA) electrolyzes potable water from the Water Recovery System (WRS) to provide gaseous oxygen to the Space Station module atmosphere. The OGA produces oxygen for metabolic consumption by crew and biological specimens. The OGA also replenishes oxygen lost by experiment ingestion, airlock depressurization, CO2 venting, and leakage. As a byproduct, gaseous hydrogen is generated. The hydrogen will be supplied at a specified pressure range above ambient to support future utilization. Initially, the hydrogen will be vented overboard to space vacuum. This paper describes the OGA integration into the ISS Node 3. It details the development history supporting the design and describes the OGA System characteristics and its physical layout.

  1. Effects of early life exposure to ultraviolet C radiation on mitochondrial DNA content, transcription, ATP production, and oxygen consumption in developing Caenorhabditis elegans

    PubMed Central

    2013-01-01

    Background Mitochondrial DNA (mtDNA) is present in multiple copies per cell and undergoes dramatic amplification during development. The impacts of mtDNA damage incurred early in development are not well understood, especially in the case of types of mtDNA damage that are irreparable, such as ultraviolet C radiation (UVC)-induced photodimers. Methods We exposed first larval stage nematodes to UVC using a protocol that results in accumulated mtDNA damage but permits nuclear DNA (nDNA) repair. We then measured the transcriptional response, as well as oxygen consumption, ATP levels, and mtDNA copy number through adulthood. Results Although the mtDNA damage persisted to the fourth larval stage, we observed only a relatively minor ~40% decrease in mtDNA copy number. Transcriptomic analysis suggested an inhibition of aerobic metabolism and developmental processes; mRNA levels for mtDNA-encoded genes were reduced ~50% at 3 hours post-treatment, but recovered and, in some cases, were upregulated at 24 and 48 hours post-exposure. The mtDNA polymerase γ was also induced ~8-fold at 48 hours post-exposure. Moreover, ATP levels and oxygen consumption were reduced in response to UVC exposure, with marked reductions of ~50% at the later larval stages. Conclusions These results support the hypothesis that early life exposure to mitochondrial genotoxicants could result in mitochondrial dysfunction at later stages of life, thereby highlighting the potential health hazards of time-delayed effects of these genotoxicants in the environment. PMID:23374645

  2. Fat-free mass and excess post-exercise oxygen consumption in the 40 minutes after short-duration exhaustive exercise in young male Japanese athletes.

    PubMed

    Tahara, Yasuaki; Moji, Kazuhiko; Honda, Sumihisa; Nakao, Rieko; Tsunawake, Noriaki; Fukuda, Rika; Aoyagi, Kiyoshi; Mascie-Taylor, Nicholas

    2008-05-01

    The relationship between fat-free mass (FFM) and excess post-exercise oxygen consumption (EPOC) has not been well researched because of the relatively small number of subjects studied. This study investigated the effects of FFM on EPOC and EPOC/maximum oxygen consumption. 250 Japanese male athletes between 16 and 21 years old from Nagasaki prefecture had their EPOC measured up to 40 minutes after short-duration exhaustive exercise. The value was named as EPOC40 min. The proportions of EPOC up to 1, 3, 6, 10, and 25 minutes to EPOC40 min were calculated and named as P1, P3, P6, P10, and P25, respectively. Body size and composition, VO2max and resting metabolic rate (RMR) were also measured. Mean EPOC40 min was 9.04 L or 158 ml/kg FFM. EPOC40 min was related to FFM (r=0.55, p<0.001) and VO2max (r=0.37, p<0.001). The ratio of EPOC40 min to VO2max was related to FFM (r=0.28, p<0.001). P1, P3, P6, P10, and P25 were negatively related to EPOC40 min/FFM, EPOC40 min/VO2max, and FFM. Athletes who had larger FFM had larger EPOC40 40 min and EPOC40 40 min/VO2max, and smaller P1, P3, P10, and P25.

  3. Increased cerebral oxygen consumption in Eker rats and effects of N-methyl-D-aspartate blockade: Implications for autism.

    PubMed

    Weiss, Harvey R; Liu, Xia; Zhang, Qihang; Chi, Oak Z

    2007-08-15

    Because there is a strong correlation between tuberous sclerosis and autism, we used a tuberous sclerosis model (Eker rat) to test the hypothesis that these animals would have an altered regional cerebral O2 consumption that might be associated with autism. We also examined whether the altered cerebral O2 consumption was related to changes in the importance of N-methyl-D-aspartate (NMDA) receptors. Young (4 weeks) male control Long Evans (N = 14) and Eker (N = 14) rats (70-100 g) were divided into control and CGS-19755 (10 mg/kg, competitive NMDA antagonist)-treated animals. Cerebral regional blood flow (14C-iodoantipyrine) and O2 consumption (cryomicrospectrophotometry) were determined in isoflurane-anesthetized rats. NMDA receptor protein levels were determined by Western immunoblotting. We found significantly increased basal O2 consumption in the cortex (6.2 +/- 0.6 ml O2/min/100 g Eker vs. 4.7 +/- 0.4 Long Evans), hippocampus, cerebellum, and pons. Regional cerebral blood flow was also elevated in Eker rats at baseline, but cerebral O2 extraction was similar. CGS-19755 significantly lowered O2 consumption in the cortex (2.8 +/- 0.3), hippocampus, and pons of the Long Evans rats but had no effect on cortex (5.8 +/- 0.8) or other regions of the Eker rats. Cerebral blood flow followed a similar pattern. NMDA receptor protein levels (NR1 subunit) were similar between groups. In conclusion, Eker rats had significantly elevated cerebral O2 consumption and blood flow, but this was not related to NMDA receptor activation. In fact, the importance of NMDA receptors in the control of basal cerebral O2 consumption was reduced. This might have important implications in the treatment of autism. Copyright 2007 Wiley-Liss, Inc.

  4. Incremental exercise test for the evaluation of peak oxygen consumption in paralympic swimmers.

    PubMed

    de Souza, Helton; DA Silva Alves, Eduardo; Ortega, Luciana; Silva, Andressa; Esteves, Andrea M; Schwingel, Paulo A; Vital, Roberto; DA Rocha, Edilson A; Rodrigues, Bruno; Lira, Fabio S; Tufik, Sergio; DE Mello, Marco T

    2016-04-01

    Peak oxygen consumption (VO2peak) is a fundamental parameter used to evaluate physical capacity. The objective of this study was to explore two types of incremental exercise tests used to determine VO2peak in four Paralympic swimmers: arm ergometer testing in the laboratory and testing in the swimming pool. On two different days, the VO2peak values of the four athletes were measured in a swimming pool and by a cycle ergometer. The protocols identified the VO2peak by progressive loading until the volitional exhaustion maximum was reached. The results were analyzed using the paired Student's t-test, Cohen's d effect sizes and a linear regression. The results showed that the VO2peak values obtained using the swimming pool protocol were higher (P=0.02) than those obtained by the arm ergometer (45.8±19.2 vs. 30.4±15.5; P=0.02), with a large effect size (d=3.20). When analyzing swimmers 1, 2, 3 and 4 individually, differences of 22.4%, 33.8%, 60.1% and 27.1% were observed, respectively. Field tests similar to the competitive setting are a more accurate way to determine the aerobic capacity of Paralympic swimmers. This approach provides more sensitive data that enable better direction of training, consequently facilitating improved performance.

  5. Soda and cell aging: associations between sugar-sweetened beverage consumption and leukocyte telomere length in healthy adults from the National Health and Nutrition Examination Surveys.

    PubMed

    Leung, Cindy W; Laraia, Barbara A; Needham, Belinda L; Rehkopf, David H; Adler, Nancy E; Lin, Jue; Blackburn, Elizabeth H; Epel, Elissa S

    2014-12-01

    We tested whether leukocyte telomere length maintenance, which underlies healthy cellular aging, provides a link between sugar-sweetened beverage (SSB) consumption and the risk of cardiometabolic disease. We examined cross-sectional associations between the consumption of SSBs, diet soda, and fruit juice and telomere length in a nationally representative sample of healthy adults. The study population included 5309 US adults, aged 20 to 65 years, with no history of diabetes or cardiovascular disease, from the 1999 to 2002 National Health and Nutrition Examination Surveys. Leukocyte telomere length was assayed from DNA specimens. Diet was assessed using 24-hour dietary recalls. Associations were examined using multivariate linear regression for the outcome of log-transformed telomere length. After adjustment for sociodemographic and health-related characteristics, sugar-sweetened soda consumption was associated with shorter telomeres (b = -0.010; 95% confidence interval [CI] = -0.020, -0.001; P = .04). Consumption of 100% fruit juice was marginally associated with longer telomeres (b = 0.016; 95% CI = -0.000, 0.033; P = .05). No significant associations were observed between consumption of diet sodas or noncarbonated SSBs and telomere length. Regular consumption of sugar-sweetened sodas might influence metabolic disease development through accelerated cell aging.

  6. Soda and Cell Aging: Associations Between Sugar-Sweetened Beverage Consumption and Leukocyte Telomere Length in Healthy Adults From the National Health and Nutrition Examination Surveys

    PubMed Central

    Laraia, Barbara A.; Needham, Belinda L.; Rehkopf, David H.; Adler, Nancy E.; Lin, Jue; Blackburn, Elizabeth H.

    2014-01-01

    Objectives. We tested whether leukocyte telomere length maintenance, which underlies healthy cellular aging, provides a link between sugar-sweetened beverage (SSB) consumption and the risk of cardiometabolic disease. Methods. We examined cross-sectional associations between the consumption of SSBs, diet soda, and fruit juice and telomere length in a nationally representative sample of healthy adults. The study population included 5309 US adults, aged 20 to 65 years, with no history of diabetes or cardiovascular disease, from the 1999 to 2002 National Health and Nutrition Examination Surveys. Leukocyte telomere length was assayed from DNA specimens. Diet was assessed using 24-hour dietary recalls. Associations were examined using multivariate linear regression for the outcome of log-transformed telomere length. Results. After adjustment for sociodemographic and health-related characteristics, sugar-sweetened soda consumption was associated with shorter telomeres (b = –0.010; 95% confidence interval [CI] = −0.020, −0.001; P = .04). Consumption of 100% fruit juice was marginally associated with longer telomeres (b = 0.016; 95% CI = −0.000, 0.033; P = .05). No significant associations were observed between consumption of diet sodas or noncarbonated SSBs and telomere length. Conclusions. Regular consumption of sugar-sweetened sodas might influence metabolic disease development through accelerated cell aging. PMID:25322305

  7. Plant respirometer enables high resolution of oxygen consumption rates

    NASA Technical Reports Server (NTRS)

    Foster, D. L.

    1966-01-01

    Plant respirometer permits high resolution of relatively small changes in the rate of oxygen consumed by plant organisms undergoing oxidative metabolism in a nonphotosynthetic state. The two stage supply and monitoring system operates by a differential pressure transducer and provides a calibrated output by digital or analog signals.

  8. Comparison of Minimally and More Invasive Methods of Determining Mixed Venous Oxygen Saturation.

    PubMed

    Smit, Marli; Levin, Andrew I; Coetzee, Johan F

    2016-04-01

    To investigate the accuracy of a minimally invasive, 2-step, lookup method for determining mixed venous oxygen saturation compared with conventional techniques. Single-center, prospective, nonrandomized, pilot study. Tertiary care hospital, university setting. Thirteen elective cardiac and vascular surgery patients. All participants received intra-arterial and pulmonary artery catheters. Minimally invasive oxygen consumption and cardiac output were measured using a metabolic module and lithium-calibrated arterial waveform analysis (LiDCO; LiDCO, London), respectively. For the minimally invasive method, Step 1 involved these minimally invasive measurements, and arterial oxygen content was entered into the Fick equation to calculate mixed venous oxygen content. Step 2 used an oxyhemoglobin curve spreadsheet to look up mixed venous oxygen saturation from the calculated mixed venous oxygen content. The conventional "invasive" technique used pulmonary artery intermittent thermodilution cardiac output, direct sampling of mixed venous and arterial blood, and the "reverse-Fick" method of calculating oxygen consumption. LiDCO overestimated thermodilution cardiac output by 26%. Pulmonary artery catheter-derived oxygen consumption underestimated metabolic module measurements by 27%. Mixed venous oxygen saturation differed between techniques; the calculated values underestimated the direct measurements by between 12% to 26.3%, this difference being statistically significant. The magnitude of the differences between the minimally invasive and invasive techniques was too great for the former to act as a surrogate of the latter and could adversely affect clinical decision making. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Prediction of maximal oxygen uptake by bioelectrical impedance analysis in overweight adolescents.

    PubMed

    Roberts, M D; Drinkard, B; Ranzenhofer, L M; Salaita, C G; Sebring, N G; Brady, S M; Pinchbeck, C; Hoehl, J; Yanoff, L B; Savastano, D M; Han, J C; Yanovski, J A

    2009-09-01

    Maximal oxygen uptake (VO(2max)), the gold standard for measurement of cardiorespiratory fitness, is frequently difficult to assess in overweight individuals due to physical limitations. Reactance and resistance measures obtained from bioelectrical impedance analysis (BIA) have been suggested as easily obtainable predictors of cardiorespiratory fitness, but the accuracy with which ht(2)/Z can predict VO(2max) has not previously been examined in overweight adolescents. The impedance index was used as a predictor of VO(2max) in 87 overweight girls and 47 overweight boys ages 12 to 17 with mean BMI of 38.6 + or - 7.3 and 42.5 + or - 8.2 in girls and boys respectively. The Bland Altman procedure assessed agreement between predicted and actual VO(2max). Predicted VO(2max) was significantly correlated with measured VO(2max) (r(2)=0.48, P<0.0001). Using the Bland Altman procedure, there was significant magnitude bias (r(2)=0.10; P<0.002). The limits of agreement for predicted relative to actual VO(2max) were -589 to 574 mL O(2)/min. The impedance index was highly correlated with VO(2max) in overweight adolescents. However, using BIA data to predict maximal oxygen uptake over-predicted VO(2max) at low levels of oxygen consumption and under-predicted VO(2max) at high levels of oxygen consumption. This magnitude bias, along with the large limits of agreement of BIA-derived predicted VO(2max), limit its usefulness in the clinical setting for overweight adolescents.

  10. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    PubMed Central

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  11. Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavousian, A; Rajagopal, R; Fischer, M

    2013-06-15

    We propose a method to examine structural and behavioral determinants of residential electricity consumption, by developing separate models for daily maximum (peak) and minimum (idle) consumption. We apply our method on a data set of 1628 households' electricity consumption. The results show that weather, location and floor area are among the most important determinants of residential electricity consumption. In addition to these variables, number of refrigerators and entertainment devices (e.g., VCRs) are among the most important determinants of daily minimum consumption, while number of occupants and high-consumption appliances such as electric water heaters are the most significant determinants of dailymore » maximum consumption. Installing double-pane windows and energy-efficient lights helped to reduce consumption, as did the energy-conscious use of electric heater. Acknowledging climate change as a motivation to save energy showed correlation with lower electricity consumption. Households with individuals over 55 or between 19 and 35 years old recorded lower electricity consumption, while pet owners showed higher consumption. Contrary to some previous studies, we observed no significant correlation between electricity consumption and income level, home ownership, or building age. Some otherwise energy-efficient features such as energy-efficient appliances, programmable thermostats, and insulation were correlated with slight increase in electricity consumption. (C) 2013 Elsevier Ltd. All rights reserved.« less

  12. Laser-induced changes in intraretinal oxygen distribution in pigmented rabbits.

    PubMed

    Yu, Dao-Yi; Cringle, Stephen J; Su, Erning; Yu, Paula K; Humayun, Mark S; Dorin, Giorgio

    2005-03-01

    To make the first measurements of intraretinal oxygen distribution and consumption after laser photocoagulation of the retina and to compare the efficiency of micropulsed (MP) and continuous wave (CW) laser delivery in achieving an oxygen benefit in the treated area. Oxygen-sensitive microelectrodes were used to measure oxygen tension as a function of retinal depth before and after laser treatment in anesthetized, mechanically ventilated, Dutch Belted rabbits (n = 11). Laser lesions were created by using a range of power levels from an 810-nm diode laser coupled with an operating microscope delivery system. MP duty cycles of 5%, 10%, and 15% were compared with CW delivery in each eye. Sufficient power levels of both the CW and MP laser reduced outer retinal oxygen consumption and increased oxygen level within the retina. At these power levels, which correlated with funduscopically visible lesions, there was histologically visible damage to the RPE and photoreceptors. Retinal damage was energy dependent but short-duty-cycle MP delivery was more selective in terms of retinal cell damage, with a wider safety range in comparison with CW delivery. The relationship between laser power level and mode of delivery and the resultant changes in oxygen metabolism and oxygen level in the retina was determined. Only partial destruction of RPE and photoreceptors is necessary, to produce a measurable oxygen benefit in the treated area of retina.

  13. Postprandial gastrointestinal blood flow, oxygen consumption and heart rate in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Eliason, Erika J; Higgs, David A; Farrell, Anthony P

    2008-04-01

    The present study is the first to simultaneously and continuously measure oxygen consumption (MO(2)) and gastrointestinal blood flow (q(gi)) in fish. In addition, while it is the first to compare the effects of three isoenergetic diets on q(gi) in fish, no significant differences among diets were found for postprandial MO(2), q(gi) or heart rate (f(H)) in rainbow trout, Oncorhynchus mykiss. Postprandial q(gi), f(H) and MO(2) were significantly elevated above baseline levels by 4 h. Postprandial q(gi) peaked at 136% above baseline after 11 h, f(H) peaked at 110% above baseline after 14 h and MO(2) peaked at 96% above baseline after 27 h. Moreover, postprandial MO(2) remained significantly elevated above baseline longer than q(gi) (for 41 h and 30 h, respectively), perhaps because most of the increase in MO(2) associated with feeding is due to protein handling, a process that continues following the absorption of nutrients which is thought to be the primary reason for the elevation of q(gi). In addition to the positive relationships found between postprandial MO(2) and q(gi) and between postprandial MO(2) and f(H), we discovered a novel relationship between postprandial q(gi) and f(H).

  14. Oxygen Pathways and Budget for the Eastern South Pacific Oxygen Minimum Zone

    NASA Astrophysics Data System (ADS)

    Llanillo, P. J.; Pelegrí, J. L.; Talley, L. D.; Peña-Izquierdo, J.; Cordero, R. R.

    2018-03-01

    Ventilation of the eastern South Pacific Oxygen Minimum Zone (ESP-OMZ) is quantified using climatological Argo and dissolved oxygen data, combined with reanalysis wind stress data. We (1) estimate all oxygen fluxes (advection and turbulent diffusion) ventilating this OMZ, (2) quantify for the first time the oxygen contribution from the subtropical versus the traditionally studied tropical-equatorial pathway, and (3) derive a refined annual-mean oxygen budget for the ESP-OMZ. In the upper OMZ layer, net oxygen supply is dominated by tropical-equatorial advection, with more than one-third of this supply upwelling into the Ekman layer through previously unevaluated vertical advection, within the overturning component of the regional Subtropical Cell (STC). Below the STC, at the OMZ's core, advection is weak and turbulent diffusion (isoneutral and dianeutral) accounts for 89% of the net oxygen supply, most of it coming from the oxygen-rich subtropical gyre. In the deep OMZ layer, net oxygen supply occurs only through turbulent diffusion and is dominated by the tropical-equatorial pathway. Considering the entire OMZ, net oxygen supply (3.84 ± 0.42 µmol kg-1 yr-1) is dominated by isoneutral turbulent diffusion (56.5%, split into 32.3% of tropical-equatorial origin and 24.2% of subtropical origin), followed by isoneutral advection (32.0%, split into 27.6% of tropical-equatorial origin and 4.4% of subtropical origin) and dianeutral diffusion (11.5%). One-quarter (25.8%) of the net oxygen input escapes through dianeutral advection (most of it upwelling) and, assuming steady state, biological consumption is responsible for most of the oxygen loss (74.2%).

  15. Characterization of Adipose Tissue Product Quality Using Measurements of Oxygen Consumption Rate.

    PubMed

    Suszynski, Thomas M; Sieber, David A; Mueller, Kathryn; Van Beek, Allen L; Cunningham, Bruce L; Kenkel, Jeffrey M

    2018-03-14

    Fat grafting is a common procedure in plastic surgery but associated with unpredictable graft retention. Adipose tissue (AT) "product" quality is affected by the methods used for harvest, processing and transfer, which vary widely amongst surgeons. Currently, there is no method available to accurately assess the quality of AT. In this study, we present a novel method for the assessment of AT product quality through direct measurements of oxygen consumption rate (OCR). OCR has exhibited potential in predicting outcomes following pancreatic islet transplant. Our study aim was to reapportion existing technology for its use with AT preparations and to confirm that these measurements are feasible. OCR was successfully measured for en bloc and postprocessed AT using a stirred microchamber system. OCR was then normalized to DNA content (OCR/DNA), which represents the AT product quality. Mean (±SE) OCR/DNA values for fresh en bloc and post-processed AT were 149.8 (± 9.1) and 61.1 (± 6.1) nmol/min/mg DNA, respectively. These preliminary data suggest that: (1) OCR and OCR/DNA measurements of AT harvested using conventional protocol are feasible; and (2) standard AT processing results in a decrease in overall AT product quality. OCR measurements of AT using existing technology can be done and enables accurate, real-time, quantitative assessment of the quality of AT product prior to transfer. The availability and further validation of this type of assay could enable optimization of fat grafting protocol by providing a tool for the more detailed study of procedural variables that affect AT product quality.

  16. Using a Morphine Equivalence Metric to Quantify Opioid Consumption: Examining the Capacity to Provide Effective Treatment of Debilitating Pain at the Global, Regional, and Country Levels

    PubMed Central

    Gilson, Aaron M.; Maurer, Martha A.; Ryan, Karen M.; Cleary, James F.; Rathouz, Paul J.

    2014-01-01

    Context Morphine has been considered the gold standard for treating moderate to severe pain, although many new opioid products and formulations have been marketed in the last two decades and should be considered when examining opioid consumption. Understanding opioid consumption is improved by using an equianalgesic measure that controls for the strengths of all examined opioids. Objectives The research objective was to utilize a morphine equivalence metric to determine the extent that morphine consumption relates to the total consumption of all other study opioids. Methods A Morphine Equivalence (ME) metric was created for morphine and for the aggregate consumption of each study opioid (Total ME), adjusted for country population to allow for uniform equianalgesic comparisons. Graphical and statistical evaluations of morphine use and Total ME consumption trends (between 1980 and 2009) were made for the global and geographic regional levels, and for selected developed and developing countries. Results Global morphine consumption rose dramatically in the early 1980s but has been significantly outpaced by Total ME since 1996. As expected, the extent of morphine and Total ME consumption varied notably among regions, with the Americas, Europe, and Oceania regions accounting for the highest morphine use and Total ME in 2009. Developing and least developed countries, compared to developed countries, demonstrated lower overall Total ME consumption. Conclusion Generally, worldwide morphine use has not increased at the rate of Total ME, especially in recent years. Examining a country's ability to effectively manage moderate to severe pain should extend beyond morphine to account for all available potent opioids. PMID:23017614

  17. Oxygen and Carbon Dioxide Fluxes from Barley Shoots Depend on Nitrate Assimilation 1

    PubMed Central

    Bloom, Arnold J.; Caldwell, Richard M.; Finazzo, John; Warner, Robert L.; Weissbart, Joseph

    1989-01-01

    A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport. PMID:16667024

  18. Association of vegetables and fruits consumption with sarcopenia in older adults: the Fourth Korea National Health and Nutrition Examination Survey.

    PubMed

    Kim, Jinhee; Lee, Yunhwan; Kye, Seunghee; Chung, Yoon-Sok; Kim, Kwang-Min

    2015-01-01

    several studies have found nutrients, including antioxidants, to be associated with sarcopenia. However, whether specific foods, such as vegetables and fruits, are associated with sarcopenia has not been studied. to examine the association of the frequency of vegetables and fruits consumption with sarcopenia in older people. this study used cross-sectional data from the Fourth Korea National Health and Nutrition Examination Survey in 2008-09. Subjects were community-dwelling 823 men and 1,089 women aged ≥65 years. Frequency of food group consumption was obtained by using the food frequency questionnaire. Body composition was measured with the dual-energy X-ray absorptiometry and sarcopenia was defined as appendicular lean mass adjusted for height and fat mass. Logistic regression was used to assess the association of the frequency of food group consumption with sarcopenia, controlling for sociodemographics and health-related variables. dietary intake of vegetables, fruits and both vegetables and fruits was associated with a significantly reduced risk of sarcopenia after controlling for covariates in men (P = 0.026 for trend, P = 0.012 for trend, P = 0.003 for trend, respectively). Men in the highest quintile, compared with those in the lowest quintile, of vegetables [odds ratio (OR) = 0.48; 95% confidence interval (CI): 0.24-0.95], fruits (OR = 0.30; 95% CI: 0.13-0.70) and vegetables and fruits consumption (OR = 0.32; 95% CI: 0.16-0.67) demonstrated a lower risk of sarcopenia. In women, high consumption of fruits demonstrated a lower risk of sarcopenia (OR = 0.39; 95% CI: 0.18-0.83). frequent vegetables and fruits consumption was inversely associated with sarcopenia in older adults. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Examining the Impact of a Public Health Message on Fish Consumption in Bermuda

    PubMed Central

    McLean Pirkle, Catherine; Peek-Ball, Cheryl; Outerbridge, Eugene; Rouja, Philippe Max

    2015-01-01

    Background In 2003 mean cord blood mercury concentrations in pregnant Bermudian women exceeded levels associated with adverse health outcomes in children. The principal mercury source was local fish species. Public health messages were developed suggesting pregnant women reduce consumption of fish species with higher mercury concentrations (e.g. swordfish), substituting species containing lower mercury concentrations, and elevated omega-3 fatty acids (e.g. anchovies). Recent evidence indicates mercury concentrations in Bermuda’s pregnant women have fallen five- fold. Objectives Assess whether changes in women’s fish eating patterns during pregnancy are consistent with the public health messaging. Determine who is making changes to their diet during pregnancy and why. Methods Mixed methods study with a cross-sectional survey of 121 pregnant women, including 13 opened-ended interviews. Health system, social vulnerability, public health messaging, and socio-demographic variables were characterized and related to changes in fish consumption during pregnancy. Qualitative data were coded according to nutritional advice messages, comprehension of communication strategies, and sources of information. Results 95% of women surveyed encountered recommendations about fish consumption during pregnancy. 75% reported modifying fish eating behaviors because of recommendations. Principal sources of information about fish consumption in pregnancy were health care providers and the Internet. 71% of women reported reducing consumption of large fish species with greater mercury levels, but 60% reported reduced consumption of smaller, low mercury fish. No participant mentioned hearing about the benefits of fish consumption. More frequent exposure to public health messages during pregnancy was associated with lower reported consumption. Bermudian born women were less likely to reduce consumption of large fish species during pregnancy. Conclusions In Bermuda, public health messages

  20. Examining the Impact of a Public Health Message on Fish Consumption in Bermuda.

    PubMed

    McLean Pirkle, Catherine; Peek-Ball, Cheryl; Outerbridge, Eugene; Rouja, Philippe Max

    2015-01-01

    In 2003 mean cord blood mercury concentrations in pregnant Bermudian women exceeded levels associated with adverse health outcomes in children. The principal mercury source was local fish species. Public health messages were developed suggesting pregnant women reduce consumption of fish species with higher mercury concentrations (e.g. swordfish), substituting species containing lower mercury concentrations, and elevated omega-3 fatty acids (e.g. anchovies). Recent evidence indicates mercury concentrations in Bermuda's pregnant women have fallen five- fold. Assess whether changes in women's fish eating patterns during pregnancy are consistent with the public health messaging. Determine who is making changes to their diet during pregnancy and why. Mixed methods study with a cross-sectional survey of 121 pregnant women, including 13 opened-ended interviews. Health system, social vulnerability, public health messaging, and socio-demographic variables were characterized and related to changes in fish consumption during pregnancy. Qualitative data were coded according to nutritional advice messages, comprehension of communication strategies, and sources of information. 95% of women surveyed encountered recommendations about fish consumption during pregnancy. 75% reported modifying fish eating behaviors because of recommendations. Principal sources of information about fish consumption in pregnancy were health care providers and the Internet. 71% of women reported reducing consumption of large fish species with greater mercury levels, but 60% reported reduced consumption of smaller, low mercury fish. No participant mentioned hearing about the benefits of fish consumption. More frequent exposure to public health messages during pregnancy was associated with lower reported consumption. Bermudian born women were less likely to reduce consumption of large fish species during pregnancy. In Bermuda, public health messages advocating reduced consumption of larger, higher mercury

  1. Intraportal islet oxygenation.

    PubMed

    Suszynski, Thomas M; Avgoustiniatos, Efstathios S; Papas, Klearchos K

    2014-05-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO(2)), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. © 2014 Diabetes Technology Society.

  2. Intraportal Islet Oxygenation

    PubMed Central

    Suszynski, Thomas M.; Avgoustiniatos, Efstathios S.

    2014-01-01

    Islet transplantation (IT) is a promising therapy for the treatment of diabetes. The large number of islets required to achieve insulin independence limit its cost-effectiveness and the number of patients who can be treated. It is believed that >50% of islets are lost in the immediate post-IT period. Poor oxygenation in the early post-IT period is recognized as a possible reason for islet loss and dysfunction but has not been extensively studied. Several key variables affect oxygenation in this setting, including (1) local oxygen partial pressure (pO2), (2) islet oxygen consumption, (3) islet size (diameter, D), and (4) presence or absence of thrombosis on the islet surface. We discuss implications of oxygen-limiting conditions on intraportal islet viability and function. Of the 4 key variables, the islet size appears to be the most important determinant of the anoxic and nonfunctional islet volume fractions. Similarly, the effect of thrombus formation on the islet surface may be substantial. At the University of Minnesota, average size distribution data from clinical alloislet preparations (n = 10) indicate that >150-µm D islets account for only ~30% of the total islet number, but >85% of the total islet volume. This suggests that improved oxygen supply to the islets may have a profound impact on islet survivability and function since most of the β-cell volume is within large islets which are most susceptible to oxygen-limiting conditions. The assumption that the liver is a suitable islet transplant site from the standpoint of oxygenation should be reconsidered. PMID:24876622

  3. Oxygen utilization of the human left ventricle - An indirect method for its evaluation and clinical considerations

    NASA Technical Reports Server (NTRS)

    Ghista, D. N.; Sandler, H.

    1974-01-01

    An analytical method is presented for determining the oxygen consumption rate of the intact heart working (as opposed to empty but beating) human left ventricle. Use is made of experimental recordings obtained for the chamber pressure and the associated dimensions of the LV. LV dimensions are determined by cineangiocardiography, and the chamber pressure is obtained by means of fluid-filled catheters during retrograde or transeptal catheterization. An analytical method incorporating these data is then employed for the evaluation of the LV coronary oxygen consumption in five subjects. Oxygen consumption for these subjects was also obtained by the conventional clinical method in order to evaluate the reliability of the proposed method.

  4. Flavanol-rich cocoa consumption enhances exercise-induced executive function improvements in humans.

    PubMed

    Tsukamoto, Hayato; Suga, Tadashi; Ishibashi, Aya; Takenaka, Saki; Tanaka, Daichi; Hirano, Yoshitaka; Hamaoka, Takafumi; Goto, Kazushige; Ebi, Kumiko; Isaka, Tadao; Hashimoto, Takeshi

    2018-02-01

    Aerobic exercise is known to acutely improve cognitive functions, such as executive function (EF) and memory function (MF). Additionally, consumption of flavanol-rich cocoa has been reported to acutely improve cognitive function. The aim of this study was to determine whether high cocoa flavanol (CF; HCF) consumption would enhance exercise-induced improvement in cognitive function. To test this hypothesis, we examined the combined effects of HCF consumption and moderate-intensity exercise on EF and MF during postexercise recovery. Ten healthy young men received either an HCF (563 mg of CF) or energy-matched low CF (LCF; 38 mg of CF) beverage 70 min before exercise in a single-blind counterbalanced manner. The men then performed moderate-intensity cycling exercise at 60% of peak oxygen uptake for 30 min. The participants performed a color-word Stroop task and face-name matching task to evaluate EF and MF, respectively, during six time periods throughout the experimental session. EF significantly improved immediately after exercise compared with before exercise in both conditions. However, EF was higher after HCF consumption than after LCF consumption during all time periods because HCF consumption improved EF before exercise. In contrast, HCF consumption and moderate-intensity exercise did not improve MF throughout the experiment. The present findings demonstrated that HCF consumption before moderate-intensity exercise could enhance exercise-induced improvement in EF, but not in MF. Therefore, we suggest that the combination of HCF consumption and aerobic exercise may be beneficial for improving EF. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Induction of microcin B17 formation in Escherichia coli ZK650 by limitation of oxygen and glucose is independent of glucose consumption rate

    NASA Technical Reports Server (NTRS)

    Gao, Q.; Fang, A.; Demain, A. L.

    2001-01-01

    We examined the consumption of glucose from the media in which Escherichia coli ZK650 was grown. This organism, which produces the polypeptide antibiotic microcin B17 best under conditions of limiting supplies of glucose and air, was grown with a low level of glucose (0.5 mg/ml) as well as a high level (5.0 mg/ml) under both high and low aeration. Glucose consumption rates were virtually identical under both high and low aeration. Thus, glucose consumption rate is not a regulating factor in microcin B17 formation.

  6. Seasonal Oxygen Dynamics in a Thermokarst Bog in Interior Alaska: Implications for Rates of Methane Oxidation

    NASA Astrophysics Data System (ADS)

    Neumann, R. B.; Moorberg, C.; Wong, A.; Waldrop, M. P.; Turetsky, M. R.

    2015-12-01

    Methane is a potent greenhouse gas, and wetlands represent the largest natural source of methane to the atmosphere. However, much of the methane generated in anoxic wetlands never gets emitted to the atmosphere; up to >90% of generated methane can get oxidized to carbon dioxide. Thus, oxidation is an important methane sink and changes in the rate of methane oxidation can affect wetland methane emissions. Most methane is aerobically oxidized at oxic-anoxic interfaces where rates of oxidation strongly depend on methane and oxygen concentrations. In wetlands, oxygen is often the limiting substrate. To improve understanding of belowground oxygen dynamics and its impact on methane oxidation, we deployed two planar optical oxygen sensors in a thermokarst bog in interior Alaska. Previous work at this site indicated that, similar to other sites, rates of methane oxidation decrease over the growing season. We used the sensors to track spatial and temporal patterns of oxygen concentrations over the growing season. We coupled these in-situ oxygen measurements with periodic oxygen injection experiments performed against the sensor to quantify belowground rates of oxygen consumption. We found that over the season, the thickness of the oxygenated water layer at the peatland surface decreased. Previous research has indicated that in sphagnum-dominated peatlands, like the one studied here, rates of methane oxidation are highest at or slightly below the water table. It is in these saturated but oxygenated locations that both methane and oxygen are available. Thus, a seasonal reduction in the thickness of the oxygenated water layer could restrict methane oxidation. The decrease in thickness of the oxygenated layer coincided with an increase in the rate of oxygen consumption during our oxygen injection experiments. The increase in oxygen consumption was not explained by temperature; we infer it was due to an increase in substrate availability for oxygen consuming reactions and

  7. Angiotensin II inhibits ADH-stimulated cAMP: role on O2- and transport-related oxygen consumption in the loop of Henle.

    PubMed

    Silva, G B; Juncos, L I; Baigorria, S T; Garcia, N H

    2013-01-01

    Dehydration and acute reductions of blood pressure increases ADH and Ang II levels. These hormones increase transport along the distal nephron. In the thick ascending limb (TAL) ADH increases transport via cAMP, while Ang II acts via superoxide (O2-). However, the mechanism of interaction of these hormones in this segment remains unclear. The aim of this study was to explore ADH/Ang II interactions on TAL transport. For this, we measured the effects of ADH/Ang II, added sequentially to TAL suspensions from Wistar rats, on oxygen consumption (QO2) -as a transport index-, cAMP and O2-. Basal QO2 was 112+-5 nmol O2/min/mg protein. Addition of ADH (1nM) increased QO2 by 227 percent. In the presence of ADH, Ang II (1nM) elicited a QO2 transient response. During an initial 3.1+-0.7 minutes after adding Ang II, QO2 decreased 58 percent (p less than 0.03 initial vs. ADH) and then rose by 188 percent (p less than 0.03 late vs initial Ang II). We found that Losartan blocked the initial effects of Ang II and the latter blocked ADH and forskolin-stimulated cAMP. The NOS inhibitor L-NAME or the AT2 receptor antagonist PD123319 showed no effect on transported related oxygen consumption. Then, we assessed the late period after adding Ang II. The O2- scavenger tempol blocked the late Ang II effects on QO2, while Ang II increased O2- production during this period. We conclude that 1) Ang II has a transient effect on ADH-stimulated transport; 2) this effect is mediated by AT1 receptors; 3) the initial period is mediated by decreased cAMP and 4) the late period is mediated by O2-.

  8. Alcohol consumption and the risk of type 2 diabetes mellitus: effect modification by hypercholesterolemia: the Third Korea National Health and Nutrition Examination Survey (2005).

    PubMed

    Jang, Hyeongap; Jang, Won-Mo; Park, Jong-Heon; Oh, Juhwan; Oh, Mu-Kyung; Hwang, Soo-Hee; Kim, Yong-Ik; Lee, Jin-Seok

    2012-01-01

    While the protective nature of moderate alcohol consumption against diabetes mellitus is well known, inconsistent findings continue to be reported. The possibility of different mixes of effect modifiers has been raised as a reason for those inconsistent findings. Our study aim was to examine potential effect modifiers that can change the effect of alcohol consumption on type 2 diabetes. From data in the third Korea National Health and Nutrition Examination Survey, 3,982 individuals over the age of 30 years who had not been diagnosed with diabetes were selected for inclusion in the study population. Breslow and Day's test and the Wald test between hypercholesterolemia and alcohol consumption in a multiple logistic regression model were used to assess effect modification. Odds ratios for diabetes stratified by alcohol consumption strata and assessed using Breslow and Day's tests for homogeneity indicated that hypercholesterolemia was not a significant confounding factor (p=0.01). However, the Wald test for interaction terms, which is a conservative method of effect modification, was significant (p=0.03). The results indicate that moderate alcohol consumption is not necessarily protective for type 2 diabetes mellitus, if a person has hypercholesterolemia. People who have hypercholesterolemia should be aware of the risk associated with alcohol consumption, a risk that contrasts with the reported protective effect of moderate alcohol consumption on diabetes.

  9. The quantitative genetics of maximal and basal rates of oxygen consumption in mice.

    PubMed Central

    Dohm, M R; Hayes, J P; Garland, T

    2001-01-01

    A positive genetic correlation between basal metabolic rate (BMR) and maximal (VO(2)max) rate of oxygen consumption is a key assumption of the aerobic capacity model for the evolution of endothermy. We estimated the genetic (V(A), additive, and V(D), dominance), prenatal (V(N)), and postnatal common environmental (V(C)) contributions to individual differences in metabolic rates and body mass for a genetically heterogeneous laboratory strain of house mice (Mus domesticus). Our breeding design did not allow the simultaneous estimation of V(D) and V(N). Regardless of whether V(D) or V(N) was assumed, estimates of V(A) were negative under the full models. Hence, we fitted reduced models (e.g., V(A) + V(N) + V(E) or V(A) + V(E)) and obtained new variance estimates. For reduced models, narrow-sense heritability (h(2)(N)) for BMR was <0.1, but estimates of h(2)(N) for VO(2)max were higher. When estimated with the V(A) + V(E) model, the additive genetic covariance between VO(2)max and BMR was positive and statistically different from zero. This result offers tentative support for the aerobic capacity model for the evolution of vertebrate energetics. However, constraints imposed on the genetic model may cause our estimates of additive variance and covariance to be biased, so our results should be interpreted with caution and tested via selection experiments. PMID:11560903

  10. Oxygen Gradients in the Microcirculation

    PubMed Central

    Pittman, Roland N.

    2010-01-01

    Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO2 gradient and that the permeability for oxygen along the intervening pathway is sufficient. PMID:21281453

  11. The Role of Red Meat and Flavonoid Consumption on Cancer Prevention: The Korean Cancer Screening Examination Cohort.

    PubMed

    Kim, So Young; Wie, Gyung-Ah; Cho, Yeong-Ah; Kang, Hyun-Hee; Ryu, Kyoung-A; Yoo, Min-Kyong; Jun, Shinyoung; Kim, Seong-Ah; Ha, Kyungho; Kim, Jeongseon; Cho, Yoon Hee; Shin, Sangah; Joung, Hyojee

    2017-08-25

    Markedly increased red meat consumption is a cancer risk factor, while dietary flavonoids may help prevent the disease. The purpose of this study was to investigate the associations of red meat and flavonoid consumption with cancer risk, based on data from 8024 subjects, drawn from the 2004-2008 Cancer Screening Examination Cohort of the Korean National Cancer Center. Hazard ratios (HRs) were obtained by using a Cox proportional hazard model. During the mean follow-up period of 10.1 years, 443 cases were newly diagnosed with cancer. After adjusting for age, there was a significant correlation between cancer risk and the daily intake of ≥43 g of red meat per day (HR 1.31; 95% CI 1.01, 1.71; p = 0.045), and total flavonoid intake tended to decrease cancer risk (HR 0.70; 95% CI 0.49, 0.99; highest vs. lowest quartile; p -trend = 0.073) in men. Following multivariable adjustment, there were no statistically significant associations between flavonoid intake and overall cancer risk in individuals with high levels of red meat intake. Men with low daily red meat intake exhibited an inverse association between flavonoid consumption and cancer incidence (HR 0.41; 95% CI 0.21, 0.80; highest vs. lowest; p -trend = 0.017). Additional research is necessary to clarify the effects of flavonoid consumption on specific cancer incidence, relative to daily red meat intake.

  12. A comparison of the shuttle and 6 minute walking tests with measured peak oxygen consumption in patients with heart failure.

    PubMed

    Green, D J; Watts, K; Rankin, S; Wong, P; O'Driscoll, J G

    2001-09-01

    This study investigated the use of an incremental, externally-paced 10 m shuttle walk test (SWT) as an objective, reliable and predictive test of functional capacity in patients with heart failure (CHF). The SWT was compared to a 6 minute walk test (6WT) and a maximal symptom-limited treadmill peak oxygen consumption (VO2peak) test. Experiment 1 examined the reproducibility of the SWT. Two SWF trials were performed and distance ambulated (DA), heart rate (HR) and rate of perceived exertion (RPE) results compared. In experiment 2, SWT, 6WT, and VO2 peak tests were performed and HR. RPE and ambulatory VO2 compared. The SWT demonstrated strong test/retest reliability for DA (r = 0.98). HR (r = 0.96) and RPE (r = 0.89). Treadmill VO2 peak was significantly correlated with DA during the SWT (r = 0.83, P < 0.05), but not the 6WT. SWT peak VO2 (18.5 +/- 1.8 ml.kg(-1) x min(-1)) and treadmill VO2 peak (18.3 +/-2.0 ml.kg(-1) x min(-1)) were also highly correlated (r = 0.78, P < 0.05). Conversely, 6WT peak VO2 and treadmill VO2 peak were not significantly correlated. This study suggests the SWT is a reliable, objective test, highly predictive of VO2 peak which may be a more optimal field exercise test than the self paced 6WT.

  13. Impaired nitric oxide modulation of myocardial oxygen consumption in genetically cardiomyopathic hamsters.

    PubMed

    Loke, K E; Messina, E J; Mital, S; Hintze, T H

    2000-12-01

    We investigated the role of kinin and nitric oxide (NO) in the modulation of cardiac O(2)consumption in Syrian hamsters with overt heart failure (HF) and age-matched normal hamsters. Using echocardiography, the hamsters with heart failure had reduced ejection fraction [31(+/-8) v 76(+/-5)%] and LV dilation [4.9(+/-0. 2) v 5.7(+/-0.3) mm, both P<0.05 from normal]. O(2)consumption in the left ventricular free wall was measured using a Clark-type O(2)electrode in an air-tight chamber, containing Krebs solution buffered with Hepes (37 degrees C, pH 7.4). Concentration response curves to bradykinin (BK), ramiprilat (RAM), amlodipine (AMLO) and the NO donor, S -nitroso- N -acetyl-penicillamine (SNAP) were performed. Basal myocardial O(2)consumption was lower in the HF group compared to normal [316(+/-21) v 404(+/-36) nmol O(2)/min/g, respectively, P<0.05]. In the hearts from normal hamsters BK (10(-4)mol/l), RAM (10(-4)mol/l), and AMLO (10(-5)mol/l) all significantly reduced myocardial O(2)consumption by 42(+/-6)%, 29(+/-7)% and 27(+/-5)% respectively. This reduction was attenuated in the presence of N -nitro- l -arginine methyl ester (l -NAME) [BK: 3.3(+/-1.5)%, RAM: 3.3(+/-1.2)%, AMLO: 2.3(+/-1.2)%, P<0.05]. Interestingly in the hearts from HF group, BK, RAM and AMLO caused a significantly smaller reduction in myocardial O(2)consumption [10(+/-2)%, 2.5(+/-1.3)%, 6.3(+/-2.3)%, P<0.05]. In contrast, the NO donor SNAP reduced myocardial O(2)consumption in both groups and all those responses were not affected by l -NAME. These data indicate that endogenous NO production through the kinin-dependent mechanism is impaired at end-stage heart failure. The loss of kinin and NO control of mitochondrial respiration may contribute to the pathogenesis of heart failure. Copyright 2000 Academic Press.

  14. Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana shelf

    NASA Astrophysics Data System (ADS)

    Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.

    2015-04-01

    The Louisiana shelf, in the northern Gulf of Mexico, receives large amounts of freshwater and nutrients from the Mississippi-Atchafalaya river system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year, except near the mouths of the Mississippi and Atchafalaya rivers, where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e., primary production and water column respiration). With this experiment we show that below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes (advection and vertical diffusion) and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.

  15. Numerical analysis of the primary processes controlling oxygen dynamics on the Louisiana Shelf

    NASA Astrophysics Data System (ADS)

    Yu, L.; Fennel, K.; Laurent, A.; Murrell, M. C.; Lehrter, J. C.

    2014-10-01

    The Louisiana shelf in the northern Gulf of Mexico receives large amounts of freshwater and nutrients from the Mississippi/Atchafalaya River system. These river inputs contribute to widespread bottom-water hypoxia every summer. In this study, we use a physical-biogeochemical model that explicitly simulates oxygen sources and sinks on the Louisiana shelf to identify the key mechanisms controlling hypoxia development. First, we validate the model simulation against observed dissolved oxygen concentrations, primary production, water column respiration, and sediment oxygen consumption. In the model simulation, heterotrophy is prevalent in shelf waters throughout the year except near the mouths of the Mississippi and Atchafalaya Rivers where primary production exceeds respiratory oxygen consumption during June and July. During this time, efflux of oxygen to the atmosphere, driven by photosynthesis and surface warming, becomes a significant oxygen sink while the well-developed pycnocline isolates autotrophic surface waters from the heterotrophic and hypoxic waters below. A substantial fraction of primary production occurs below the pycnocline in summer. We investigate whether this primary production below the pycnocline is mitigating the development of hypoxic conditions with the help of a sensitivity experiment where we disable biological processes in the water column (i.e. primary production and water column respiration). In this experiment below-pycnocline primary production reduces the spatial extent of hypoxic bottom waters only slightly. Our results suggest that the combination of physical processes and sediment oxygen consumption largely determine the spatial extent and dynamics of hypoxia on the Louisiana shelf.

  16. The effects on increasing cardiac output with adrenaline or isoprenaline on arterial haemoglobin oxygen saturation and shunt during one-lung ventilation.

    PubMed

    Russell, W J; James, M F

    2000-12-01

    Theoretically, if the cardiac output were increased in the presence of a given intrapulmonary shunt, the arterial haemoglobin oxygen saturation (SaO2) should improve as the venous oxygen extraction per ml of blood decreases. To test this hypothesis, eight pigs were subjected to one-lung ventilation and adrenaline and isoprenaline infusions used to increase the cardiac output. The mixed venous oxygen, shunt fraction and oxygen consumption were measured. With both adrenaline and isoprenaline, although there was a small rise in mixed venous oxygen content, there was a fall in SaO2. With adrenaline, the mean shunt rose from 48% to 65%, the mean oxygen consumption rose from 126 ml/min to 134 ml/min and the mean SaO2 fell from 86.9% to 82.5%. With isoprenaline, the mean shunt rose from 45% to 59%, the mean oxygen consumption rose from 121 ml/min to 137 ml/min and the mean SaO2 fell from 89.5% to 84.7%. It is concluded that potential improvement in SaO2, which might occur from a catecholamine-induced increase in mixed venous oxygen content during one-lung ventilation, is more than offset by increased shunting and oxygen consumption which reduce SaO2.

  17. Kinetic studies of lipid oxidation induced by hemoglobin measured by consumption of dissolved oxygen in a liposome model system.

    PubMed

    Carvajal, Ana Karina; Rustad, Turid; Mozuraityte, Revilija; Storrø, Ivar

    2009-09-09

    The effect of hemoglobin (Hb) and lipid concentration, pH, temperature, and different antioxidants on heme-mediated lipid oxidation of liposomes from marine phospholipids was studied. The rate of lipid oxidation was measured by consumption of dissolved oxygen. Heme-mediated lipid oxidation at different Hb and lipid concentrations was modeled by Michaelis-Menten kinetics. The maximum rate (V(max)) for the reaction with cod and bovine Hb as a pro-oxidant was 66.2 +/- 3.4 and 56.6 +/- 3.4 microM/min, respectively. The Michaelis-Menten constant (K(m)) for the reaction with cod and bovine Hb was 0.67 +/- 0.09 and 1.2 +/- 0.2 microM, respectively. V(max) for the relationship between the oxygen uptake rate and lipid concentration was 43.2 +/- 1.5 microM/min, while the K(m) was 0.93 +/- 0.14 mg/mL. The effect of the temperature followed Arrhenius kinetics, and there was no significant difference in activation energy between cod and bovine Hb. The rate of lipid oxidation induced by bovine Hb was highest around pH 6. Ethylenediaminetetraacetic acid (EDTA) had no significant effect on heme-mediated lipid oxidation, but alpha-tocopherol and astaxanthin worked well as antioxidants. Kinetic differences were found between iron and Hb as pro-oxidants, and the efficacy of the antioxidants depended upon the pro-oxidant in the system.

  18. Intracellular oxygen tension limits muscle contraction-induced change in muscle oxygen consumption under hypoxic conditions during Hb-free perfusion.

    PubMed

    Takakura, Hisashi; Ojino, Minoru; Jue, Thomas; Yamada, Tatsuya; Furuichi, Yasuro; Hashimoto, Takeshi; Iwase, Satoshi; Masuda, Kazumi

    2017-01-01

    Under acute hypoxic conditions, the muscle oxygen uptake (mV˙O 2 ) during exercise is reduced by the restriction in oxygen-supplied volume to the mitochondria within the peripheral tissue. This suggests the existence of a factor restricting the mV˙O 2 under hypoxic conditions at the peripheral tissue level. Therefore, this study set out to test the hypothesis that the restriction in mV˙O 2 is regulated by the net decrease in intracellular oxygen tension equilibrated with myoglobin oxygen saturation (∆P mb O 2 ) during muscle contraction under hypoxic conditions. The hindlimb of male Wistar rats (8 weeks old, n = 5) was perfused with hemoglobin-free Krebs-Henseleit buffer equilibrated with three different fractions of O 2 gas: 95.0%O 2 , 71.3%O 2 , and 47.5%O 2 The deoxygenated myoglobin (Mb) kinetics during muscle contraction were measured under each oxygen condition with a near-infrared spectroscopy. The ∆[deoxy-Mb] kinetics were converted to oxygen saturation of myoglobin (S mb O 2 ), and the P mb O 2 was then calculated based on the S mb O 2 and the O 2 dissociation curve of the Mb. The S mb O 2 and P mb O 2 at rest decreased with the decrease in O 2 supply, and the muscle contraction caused a further decrease in S mb O 2 and P mb O 2 under all O 2 conditions. The net increase in mV˙O 2 from the muscle contraction (∆mV˙O 2 ) gradually decreased as the ∆P mb O 2 decreased during muscle contraction. The results of this study suggest that ΔP mb O 2 is a key determinant of the ΔmV˙O 2 . © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Serum Lipid Levels in Relation to Consumption of Yogurt: The 2012 Korea National Health and Nutrition Examination Survey

    PubMed Central

    Seo, Bong-Kyung; Kim, Nam-Eun; Park, Kyong-Min; Park, Kye-Yeung; Park, Hoon-Ki

    2017-01-01

    Background The purpose of this study was to evaluate serum lipid levels in Korean adults after consumption of different types of yogurt. Methods Study subjects were 3,038 individuals (≥19 years of age) who participated in the 2012 Korean National Health and Nutrition Examination Survey. Yogurt intake was assessed with a food frequency questionnaire by using the 24-hour recall method. We conducted complex samples general linear analysis with adjustment for covariates. Results The serum triglyceride levels in the group consuming viscous yogurt were lower than those in the group consuming non-viscous yogurt. Conclusion Consumption of viscous yogurt is associated with low serum triglyceride levels in Korean adults. PMID:29026484

  20. Oxygen Production on Mars Using Solid Oxide Electrolysis

    NASA Technical Reports Server (NTRS)

    Sridhar, K. R.

    1997-01-01

    If oxygen for propulsion and life support needs were to be extracted from martian resources, significant savings in launch mass and costs could be attained for both manned and unmanned missions. In addition to reduced cost the ability to produce oxygen from martian resources would decrease the risks associated with long duration stays on the surface of Mars. One method of producing the oxygen from the carbon dioxide rich atmosphere of Mars involves solid oxide electrolysis. A brief summary of the theory of operation will be presented followed by a schematic description of a Mars oxygen production pland and a discussion of its power consumption characteristics.

  1. Modeling oxygen consumption in the proximal tubule: effects of NHE and SGLT2 inhibition

    PubMed Central

    Vallon, Volker; Edwards, Aurélie

    2015-01-01

    The objective of this study was to investigate how physiological, pharmacological, and pathological conditions that alter sodium reabsorption (TNa) in the proximal tubule affect oxygen consumption (QO2) and Na+ transport efficiency (TNa/QO2). To do so, we expanded a mathematical model of solute transport in the proximal tubule of the rat kidney. The model represents compliant S1, S2, and S3 segments and accounts for their specific apical and basolateral transporters. Sodium is reabsorbed transcellularly, via apical Na+/H+ exchangers (NHE) and Na+-glucose (SGLT) cotransporters, and paracellularly. Our results suggest that TNa/QO2 is 80% higher in S3 than in S1–S2 segments, due to the greater contribution of the passive paracellular pathway to TNa in the former segment. Inhibition of NHE or Na-K-ATPase reduced TNa and QO2, as well as Na+ transport efficiency. SGLT2 inhibition also reduced proximal tubular TNa but increased QO2; these effects were relatively more pronounced in the S3 vs. the S1–S2 segments. Diabetes increased TNa and QO2 and reduced TNa/QO2, owing mostly to hyperfiltration. Since SGLT2 inhibition lowers diabetic hyperfiltration, the net effect on TNa, QO2, and Na+ transport efficiency in the proximal tubule will largely depend on the individual extent to which glomerular filtration rate is lowered. PMID:25855513

  2. Oxygen and Oxygen Toxicity: The Birth of Concepts

    PubMed Central

    Zhu, Hong; Traore, Kassim; Santo, Arben; Trush, Michael A.; Li, Y. Robert

    2018-01-01

    Molecular dioxygen (O2) is an essential element of aerobic life, yet incomplete reduction or excitation of O2 during aerobic metabolisms generates diverse oxygen-containing reactive species, commonly known as reactive oxygen species (ROS). On the one hand, ROS pose a serious threat to aerobic organisms via inducing oxidative damage to cellular constituents. On the other hand, these reactive species, when their generation is under homeostatic control, also play important physiological roles (e.g., constituting an important component of immunity and participating in redox signaling). This article defines oxygen and the key facts about oxygen, and discusses the relationship between oxygen and the emergence of early animals on Earth. The article then describes the discovery of oxygen by three historical figures and examines the birth of the concepts of oxygen toxicity and the underlying free radical mechanisms. The article ends with a brief introduction to the emerging field of ROS-mediated redox signaling and physiological responses. PMID:29707642

  3. Sugary soda consumption and albuminuria: results from the National Health and Nutrition Examination Survey, 1999-2004.

    PubMed

    Shoham, David A; Durazo-Arvizu, Ramon; Kramer, Holly; Luke, Amy; Vupputuri, Suma; Kshirsagar, Abhijit; Cooper, Richard S

    2008-01-01

    End-stage renal disease rates rose following widespread introduction of high fructose corn syrup in the American diet, supporting speculation that fructose harms the kidney. Sugar-sweetened soda is a primary source of fructose. We therefore hypothesized that sugary soda consumption was associated with albuminuria, a sensitive marker for kidney disease. Design was a cross-sectional analysis. Data were drawn from the National Health and Nutrition Examination Survey (NHANES), 1999-2004. The setting was a representative United States population sample. Participants included adults 20 years and older with no history of diabetes mellitus (n = 12,601); after exclusions for missing outcome and covariate information (n = 3,243), the analysis dataset consisted of 9,358 subjects. Exposure was consumption of two or more sugary soft drinks, based on 24-hour dietary recall. The main outcome measure was Albuminuria, defined by albumin to creatinine ratio cutpoints of >17 mg/g (males) and >25 mg/g (females). Logistic regression adjusted for confounders (diet soda, age, race-ethnicity, gender, poverty). Interactions between age, race-ethnicity, gender, and overweight-obesity were explored. Further analysis adjusted for potential mediators: energy intake, basal metabolic rate, obesity, hypertension, lipids, serum uric acid, smoking, energy expenditure, and glycohemoglobin. Alternative soda intake definitions and cola consumption were employed. Weighted albuminuria prevalence was 11%, and 17% consumed 2+ sugary soft drinks/day. The confounder-adjusted odds ratio for sugary soda was 1.40 (95% confidence interval: 1.13, 1.74). Associations were modified by gender (p = 0.008) and overweight-obesity (p = 0.014). Among women, the OR was 1.86 (95% CI: 1.37, 2.53); the OR among males was not significant. In the group with body mass under 25 kg/m(2), OR = 2.15 (95% confidence interval: 1.42, 3.25). Adjustment for potential mediators and use of alternative definitions of albuminuria and soda

  4. Oxygen gradients in the microcirculation.

    PubMed

    Pittman, R N

    2011-07-01

    Early in the last century August Krogh embarked on a series of seminal studies to understand the connection between tissue metabolism and mechanisms by which the cardiovascular system supplied oxygen to meet those needs. Krogh recognized that oxygen was supplied from blood to the tissues by passive diffusion and that the most likely site for oxygen exchange was the capillary network. Studies of tissue oxygen consumption and diffusion coefficient, coupled with anatomical studies of capillarity in various tissues, led him to formulate a model of oxygen diffusion from a single capillary. Fifty years after the publication of this work, new methods were developed which allowed the direct measurement of oxygen in and around microvessels. These direct measurements have confirmed the predictions by Krogh and have led to extensions of his ideas resulting in our current understanding of oxygenation within the microcirculation. Developments during the last 40 years are reviewed, including studies of oxygen gradients in arterioles, capillaries, venules, microvessel wall and surrounding tissue. These measurements were made possible by the development and use of new methods to investigate oxygen in the microcirculation, so mention is made of oxygen microelectrodes, microspectrophotometry of haemoglobin and phosphorescence quenching microscopy. Our understanding of oxygen transport from the perspective of the microcirculation has gone from a consideration of oxygen gradients in capillaries and tissue to the realization that oxygen has the ability to diffuse from any microvessel to another location under the conditions that there exists a large enough PO(2) gradient and that the permeability for oxygen along the intervening pathway is sufficient. © 2011 The Author. Acta Physiologica © 2011 Scandinavian Physiological Society.

  5. Oxygen consumption of a pneumatically controlled ventilator in a field anesthesia machine.

    PubMed

    Szpisjak, Dale F; Javernick, Elizabeth N; Kyle, Richard R; Austin, Paul N

    2008-12-01

    Field anesthesia machines (FAM) have been developed for remote locations where reliable supplies of compressed medical gases or electricity may be absent. In place of electricity, pneumatically controlled ventilators use compressed gas to power timing circuitry and actuate valves. We sought to determine the total O(2) consumption and ventilator gas consumption (drive gas [DG] plus pneumatic control [PC] gas) of a FAM's pneumatically controlled ventilator in mechanical models of high (HC) and low (LC) total thoracic compliance. The amount of total O(2) consumed by the Magellan-2200 (Oceanic Medical Products, Atchison, KS) FAM with pneumatically controlled ventilator was calculated using the ideal gas law and the measured mass of O(2) consumed from E cylinders. DG to the bellows canister assembly was measured with the Wright Respirometer Mk 8 (Ferraris Respiratory Europe, Hertford, UK). PC gas consumption was calculated by subtracting DG and fresh gas flow (FGF) from the total O(2) consumed from the E cylinder. The delivered tidal volume (V(T)) was measured with a pneumotach (Hans Rudolph, KS City, MO). Three different V(T) were tested (500, 750, and 1000 mL) with two lung models (HC and LC) using the Vent Aid Training Test Lung (MI Instruments, Grand Rapids, MI). Respiratory variables included an I:E of 1:2, FGF of 1 L/min, and respiratory rate of 10 breaths/min. Total O(2) consumption was directly proportional to V(T) and inversely proportional to compliance. The smallest total O(2) consumption rate (including FGF) was 9.3 +/- 0.4 L/min in the HC-500 model and the largest was 15.9 +/- 0.5 L/min in the LC-1000 model (P < 0.001). The mean PC circuitry consumption was 3.9 +/- 0.24 L/min or 390 mL +/- 24 mL/breath. To prepare for loss of central DG supply, patient safety will be improved by estimating cylinder duration for low total thoracic compliance. Using data from the smaller compliance and greatest V(T) model (LC-1000), a full O(2) E cylinder would be depleted in

  6. Association between Consumption of Coffee and the Prevalence of Periodontitis: The 2008-2010 Korea National Health and Nutrition Examination Survey.

    PubMed

    Han, Kyungdo; Hwang, Eunkyung; Park, Jun-Beom

    2016-01-01

    This study was performed to assess the relationship between the consumption of coffee and periodontitis using nationally representative data. The data from the Korea National Health and Nutrition Examination Survey were used; the analysis in this study was confined to a total of 16,730 respondents over 19 years old who had no missing values for the consumption of coffee or outcome variables. A community periodontal index greater than or equal to code 3 was defined as periodontal disease. Consumption of coffee was significantly higher in the individuals with periodontitis in males. The odds ratios of the percentage of individuals with periodontitis tended to increase with the consumption of coffee. Adjusted odds ratios and their 95% confidence intervals of the male participants were 1, 1.131(0.792-1.617), 1.161(0.857-1.573), 1.053(0.805-1.379), 1.299(1.007-1.676), and 1.458(1.141-1.862) for once per month or less, once per monthConsumption of coffee may be considered an independent risk indicator of periodontal disease in Korean male adults, and we suggest that the periodontal health of male may benefit from reduction of coffee consumption.

  7. The Role of Red Meat and Flavonoid Consumption on Cancer Prevention: The Korean Cancer Screening Examination Cohort

    PubMed Central

    Cho, Yeong-Ah; Ryu, Kyoung-A.; Yoo, Min-Kyong; Kim, Seong-Ah; Ha, Kyungho; Kim, Jeongseon; Cho, Yoon Hee; Shin, Sangah; Joung, Hyojee

    2017-01-01

    Markedly increased red meat consumption is a cancer risk factor, while dietary flavonoids may help prevent the disease. The purpose of this study was to investigate the associations of red meat and flavonoid consumption with cancer risk, based on data from 8024 subjects, drawn from the 2004–2008 Cancer Screening Examination Cohort of the Korean National Cancer Center. Hazard ratios (HRs) were obtained by using a Cox proportional hazard model. During the mean follow-up period of 10.1 years, 443 cases were newly diagnosed with cancer. After adjusting for age, there was a significant correlation between cancer risk and the daily intake of ≥43 g of red meat per day (HR 1.31; 95% CI 1.01, 1.71; p = 0.045), and total flavonoid intake tended to decrease cancer risk (HR 0.70; 95% CI 0.49, 0.99; highest vs. lowest quartile; p-trend = 0.073) in men. Following multivariable adjustment, there were no statistically significant associations between flavonoid intake and overall cancer risk in individuals with high levels of red meat intake. Men with low daily red meat intake exhibited an inverse association between flavonoid consumption and cancer incidence (HR 0.41; 95% CI 0.21, 0.80; highest vs. lowest; p-trend = 0.017). Additional research is necessary to clarify the effects of flavonoid consumption on specific cancer incidence, relative to daily red meat intake. PMID:28841199

  8. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish.

    PubMed

    Kojima, Mari; Takehara, Hiroaki; Akagi, Takanori; Shiono, Hirofumi; Ichiki, Takanori

    2015-01-01

    A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH) and poly(dimethylsiloxane) (PDMS) having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min). We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3) and dentate gyrus (DG).

  9. Atmospheric oxygen levels affect mudskipper terrestrial performance: implications for early tetrapods.

    PubMed

    Jew, Corey J; Wegner, Nicholas C; Yanagitsuru, Yuzo; Tresguerres, Martin; Graham, Jeffrey B

    2013-08-01

    The Japanese mudskipper (Periophthalmus modestus), an amphibious fish that possesses many respiratory and locomotive specializations for sojourns onto land, was used as a model to study how changing atmospheric oxygen concentrations during the middle and late Paleozoic Era (400-250 million years ago) may have influenced the emergence and subsequent radiation of the first tetrapods. The effects of different atmospheric oxygen concentrations (hyperoxia = 35%, normoxia = 21%, and hypoxia = 7% O2) on terrestrial performance were tested during exercise on a terrestrial treadmill and during recovery from exhaustive exercise. Endurance and elevated post-exercise oxygen consumption (EPOC; the immediate O2 debt repaid post-exercise) correlated with atmospheric oxygen concentration indicating that when additional oxygen is available P. modestus can increase oxygen utilization both during and following exercise. The time required post-exercise for mudskippers to return to a resting metabolic rate did not differ between treatments. However, in normoxia, oxygen consumption increased above hyperoxic values 13-20 h post-exercise suggesting a delayed repayment of the incurred oxygen debt. Finally, following exercise, ventilatory movements associated with buccopharyngeal aerial respiration returned to their rest-like pattern more quickly at higher concentrations of oxygen. Taken together, the results of this study show that P. modestus can exercise longer and recover quicker under higher oxygen concentrations. Similarities between P. modestus and early tetrapods suggest that increasing atmospheric oxygen levels during the middle and late Paleozoic allowed for elevated aerobic capacity and improved terrestrial performance, and likely led to an accelerated diversification and expansion of vertebrate life into the terrestrial biosphere.

  10. Oxygen consumption is depressed in patients with lactic acidosis due to biguanide intoxication.

    PubMed

    Protti, Alessandro; Russo, Riccarda; Tagliabue, Paola; Vecchio, Sarah; Singer, Mervyn; Rudiger, Alain; Foti, Giuseppe; Rossi, Anna; Mistraletti, Giovanni; Gattinoni, Luciano

    2010-01-01

    Lactic acidosis can develop during biguanide (metformin and phenformin) intoxication, possibly as a consequence of mitochondrial dysfunction. To verify this hypothesis, we investigated whether body oxygen consumption (VO2), that primarily depends on mitochondrial respiration, is depressed in patients with biguanide intoxication. Multicentre retrospective analysis of data collected from 24 patients with lactic acidosis (pH 6.93 +/- 0.20; lactate 18 +/- 6 mM at hospital admission) due to metformin (n = 23) or phenformin (n = 1) intoxication. In 11 patients, VO2 was computed as the product of simultaneously recorded arterio-venous difference in O2 content [C(a-v)O2] and cardiac index (CI). In 13 additional cases, C(a-v)O2, but not CI, was available. On day 1, VO2 was markedly depressed (67 +/- 28 ml/min/m2) despite a normal CI (3.4 +/- 1.2 L/min/m2). C(a-v)O2 was abnormally low in both patients either with (2.0 +/- 1.0 ml O2/100 ml) or without (2.5 +/- 1.1 ml O2/100 ml) CI (and VO2) monitoring. Clearance of the accumulated drug was associated with the resolution of lactic acidosis and a parallel increase in VO2 (P < 0.001) and C(a-v)O2 (P < 0.05). Plasma lactate and VO2 were inversely correlated (R2 0.43; P < 0.001, n = 32). VO2 is abnormally low in patients with lactic acidosis due to biguanide intoxication. This finding is in line with the hypothesis of inhibited mitochondrial respiration and consequent hyperlactatemia.

  11. Brazilian Cardiorespiratory Fitness Classification Based on Maximum Oxygen Consumption.

    PubMed

    Herdy, Artur Haddad; Caixeta, Ananda

    2016-05-01

    Cardiopulmonary exercise test (CPET) is the most complete tool available to assess functional aerobic capacity (FAC). Maximum oxygen consumption (VO2 max), an important biomarker, reflects the real FAC. To develop a cardiorespiratory fitness (CRF) classification based on VO2 max in a Brazilian sample of healthy and physically active individuals of both sexes. We selected 2837 CEPT from 2837 individuals aged 15 to 74 years, distributed as follows: G1 (15 to 24); G2 (25 to 34); G3 (35 to 44); G4 (45 to 54); G5 (55 to 64) and G6 (65 to 74). Good CRF was the mean VO2 max obtained for each group, generating the following subclassification: Very Low (VL): VO2 < 50% of the mean; Low (L): 50% - 80%; Fair (F): 80% - 95%; Good (G): 95% -105%; Excellent (E) > 105%. Men VL < 50% L 50-80% F 80-95% G 95-105% E > 105% G1 < 25.30 25.30-40.48 40.49-48.07 48.08-53.13 > 53.13 G2 < 23.70 23.70-37.92 37.93-45.03 45.04-49.77 > 49.77 G3 < 22.70 22.70-36.32 36.33-43.13 43.14-47.67 > 47.67 G4 < 20.25 20.25-32.40 32.41-38.47 38.48-42.52 > 42.52 G5 < 17.54 17.65-28.24 28.25-33.53 33.54-37.06 > 37.06 G6 < 15 15.00-24.00 24.01-28.50 28.51-31.50 > 31.50 Women G1 < 19.45 19.45-31.12 31.13-36.95 36.96-40.84 > 40.85 G2 < 19.05 19.05-30.48 30.49-36.19 36.20-40.00 > 40.01 G3 < 17.45 17.45-27.92 27.93-33.15 33.16-34.08 > 34.09 G4 < 15.55 15.55-24.88 24.89-29.54 29.55-32.65 > 32.66 G5 < 14.30 14.30-22.88 22.89-27.17 27.18-30.03 > 30.04 G6 < 12.55 12.55-20.08 20.09-23.84 23.85-26.35 > 26.36 CONCLUSIONS: This chart stratifies VO2 max measured on a treadmill in a robust Brazilian sample and can be used as an alternative for the real functional evaluation of physically and healthy individuals stratified by age and sex.

  12. Effects of antenatal magnesium sulfate treatment for neonatal neuro-protection on cerebral oxygen kinetics.

    PubMed

    Stark, Michael J; Hodyl, Nicolette A; Andersen, Chad C

    2015-09-01

    The underlying neuro-protective mechanisms of antenatal magnesium sulfate (MgSO(4)) in infants born preterm remain poorly understood. Early neonatal brain injury may be preceded by low cerebral blood flow (CBF) and elevated cerebral fractional tissue oxygen extraction (cFTOE). This study investigated the effect of antenatal MgSO(4) on cerebral oxygen delivery, consumption, and cFTOE in preterm infants. CBF and tissue oxygenation index were measured, and oxygen delivery, consumption, and cFTOE calculated within 24 h of birth and at 48 and 72 h of life in 36 infants ≤ 30 wk gestation exposed to MgSO(4) and 29 unexposed infants. Total internal carotid blood flow and cerebral oxygen delivery did not differ between the groups at the three study time-points. Cerebral oxygen consumption and cFTOE were lower in infants exposed to antenatal MgSO(4) (P = 0.012) compared to unexposed infants within 24 h of delivery. This difference was not evident by 48 h of age. Fewer infants in the MgSO(4) group developed P/IVH by 72 h of age (P = 0.03). Infants exposed to MgSO(4) had similar systemic and cerebral hemodynamics but lower cFTOE compared to nonexposed. These findings suggest reduced cerebral metabolism maybe a component of the neuro-protective actions of antenatal MgSO(4).

  13. Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury

    DTIC Science & Technology

    2017-09-01

    oxygen delivery and oxygen consumption . The oxygen portion of the Oxylite probe emits short pulses of blue LED light resulting in a fluorescent...Award Number: W81XWH-16-1-0602 TITLE: Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation after Acute Spinal Cord Injury...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Noninvasive Optical Monitoring of Spinal Cord Hemodynamics and Oxygenation

  14. Prediction of Maximum Oxygen Consumption from Walking, Jogging, or Running.

    ERIC Educational Resources Information Center

    Larsen, Gary E.; George, James D.; Alexander, Jeffrey L.; Fellingham, Gilbert W.; Aldana, Steve G.; Parcell, Allen C.

    2002-01-01

    Developed a cardiorespiratory endurance test that retained the inherent advantages of submaximal testing while eliminating reliance on heart rate measurement in predicting maximum oxygen uptake (VO2max). College students completed three exercise tests. The 1.5-mile endurance test predicted VO2max from submaximal exercise without requiring heart…

  15. Effect of Endurance Training on the Determinants of Peak Exercise Oxygen Consumption in Elderly Patients with Stable Compensated Heart Failure and Preserved Ejection Fraction

    PubMed Central

    Haykowsky, Mark J.; Brubaker, Peter H.; Stewart, Kathryn P.; Morgan, Timothy M.; Eggebeen, Joel; Kitzman, Dalane W.

    2012-01-01

    Objective Evaluate the mechanism(s) for improved exercise capacity after endurance exercise training (ET) in elderly patients with heart failure and preserved ejection fraction (HFPEF). Background: Exercise intolerance, measured objectively by reduced peak oxygen consumption (VO2), is the primary chronic symptom in HFPEF and is improved by ET. However, the mechanism(s) are unknown. Methods Forty stable, compensated HFPEF outpatients (mean age 69 ± 6 yrs) were examined at baseline and after 4 months of ET (n=22) or attention control (n=18). VO2 and its determinants were assessed during rest and peak upright cycle exercise. Results Following ET, peak VO2 was higher than controls (16.3 ± 2.6 vs. 13.1 ± 3.4 ml/kg/min; p=0.002). This was associated with higher peak heart rate (139 ± 16 vs. 131 ± 20 beats/min; p=0.03), but no difference in peak end-diastolic volume (77 ± 18 vs. 77 ± 17 ml; p=0.51), stroke volume (48 ± 9 vs. 46 ± 9 ml; p=0.83), or cardiac output (6.6 ± 1.3 vs. 5.9 ± 1.5 L/min; p=0.32). However, estimated peak arterial-venous oxygen difference (A-VO2 Diff) was significantly higher in ET (19.8 ± 4.0 vs. 17.3 ± 3.7 ml/dl; p=0.03). The effect of ET on cardiac output was responsible for < 15% of the improvement in peak VO2. Conclusions In elderly stable compensated HFPEF patients, peak A-VO2 Diff was higher following ET and was the primary contributor to improved peak VO2. This suggests that peripheral mechanisms (improved microvascular and/or skeletal muscle function) contribute to the improved exercise capacity after ET in HFPEF. PMID:22766338

  16. Clarification of cyanide's effect on oxygen transport characteristics in a canine model.

    PubMed

    Pham, Julius Cuong; Huang, David T; McGeorge, Francis T; Rivers, Emanuel P

    2007-03-01

    To clarify the cardiovascular mechanisms of cyanide poisoning by evaluating oxygen transport characteristics using a canine model. A prospective controlled experiment was performed at a hospital-based animal laboratory. Five male beagle (17 (2) kg) dogs were anesthetised with alpha-chloralose, paralysed with pancuronium bromide and mechanically ventilated. Potassium cyanide was infused at 0.045 mg/kg/min for 110 min. Heart rate, blood pressure, cardiac output, oxygen delivery (DO2), oxygen consumption (VO2) and oxygen extraction ratio (OER) were measured every 10 min for 140 min. DO2 was measured by an indirect calorimeter. Cyanide and lactate levels peaked at 1.52 (0.25) mg/l and 9.1 (1.5) mmol/l, respectively. Systolic blood pressure remained relatively constant whereas diastolic blood pressure decreased by 19%. Cardiac output, heart rate and DO2 increased to a maximum of 6%, 10% and 10%, respectively, at 40 min, after which they declined to a low of 32%, 28% and 30% below baseline, respectively. Stroke volume remained constant. Oxygen consumption initially increased by 5%, then decreased to 24% below baseline. The OER initially declined to 35% below baseline, then increased throughout the rest of the study. Cyanide poisoning in the canine model showed two phases of injury. The first (compensated) phase had a mechanism consistent with a traditional global oxygen consumption defect. The second (decompensated) phase had a mechanism consistent with heart failure. This heart failure was due to bradycardia. These data suggest chronotropy as an avenue of further study in the temporary treatment of cyanide poisoning.

  17. Dynamic characteristics of oxygen consumption.

    PubMed

    Ye, Lin; Argha, Ahmadreza; Yu, Hairong; Celler, Branko G; Nguyen, Hung T; Su, Steven

    2018-04-23

    Previous studies have indicated that oxygen uptake ([Formula: see text]) is one of the most accurate indices for assessing the cardiorespiratory response to exercise. In most existing studies, the response of [Formula: see text] is often roughly modelled as a first-order system due to the inadequate stimulation and low signal to noise ratio. To overcome this difficulty, this paper proposes a novel nonparametric kernel-based method for the dynamic modelling of [Formula: see text] response to provide a more robust estimation. Twenty healthy non-athlete participants conducted treadmill exercises with monotonous stimulation (e.g., single step function as input). During the exercise, [Formula: see text] was measured and recorded by a popular portable gas analyser ([Formula: see text], COSMED). Based on the recorded data, a kernel-based estimation method was proposed to perform the nonparametric modelling of [Formula: see text]. For the proposed method, a properly selected kernel can represent the prior modelling information to reduce the dependence of comprehensive stimulations. Furthermore, due to the special elastic net formed by [Formula: see text] norm and kernelised [Formula: see text] norm, the estimations are smooth and concise. Additionally, the finite impulse response based nonparametric model which estimated by the proposed method can optimally select the order and fit better in terms of goodness-of-fit comparing to classical methods. Several kernels were introduced for the kernel-based [Formula: see text] modelling method. The results clearly indicated that the stable spline (SS) kernel has the best performance for [Formula: see text] modelling. Particularly, based on the experimental data from 20 participants, the estimated response from the proposed method with SS kernel was significantly better than the results from the benchmark method [i.e., prediction error method (PEM)] ([Formula: see text] vs [Formula: see text]). The proposed nonparametric modelling

  18. Importance of atomic oxygen in preheating zone in plasma-assisted combustion of a steady-state premixed burner flame

    NASA Astrophysics Data System (ADS)

    Zaima, K.; Akashi, H.; Sasaki, K.

    2015-09-01

    It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.

  19. The generation of singlet oxygen (o(2)) by the nitrodiphenyl ether herbicide oxyfluorfen is independent of photosynthesis.

    PubMed

    Haworth, P; Hess, F D

    1988-03-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10(-4) molar and paraquat) and also under temperature conditions (3 degrees C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10(-9) molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane.

  20. Vertical migration of aggregated aerobic and anaerobic ammonium oxidizers enhances oxygen uptake in a stagnant water layer.

    PubMed

    Vlaeminck, Siegfried E; Dierick, Katleen; Boon, Nico; Verstraete, Willy

    2007-07-01

    Ammonium can be removed as dinitrogen gas by cooperating aerobic and anaerobic ammonium-oxidizing bacteria (AerAOB and AnAOB). The goal of this study was to verify putative mutual benefits for aggregated AerAOB and AnAOB in a stagnant freshwater environment. In an ammonium fed water column, the biological oxygen consumption rate was, on average, 76 kg O(2) ha(-1) day(-1). As the oxygen transfer rate of an abiotic control column was only 17 kg O(2) ha(-1) day(-1), biomass activity enhanced the oxygen transfer. Increasing the AnAOB gas production increased the oxygen consumption rate with more than 50% as a result of enhanced vertical movement of the biomass. The coupled decrease in dissolved oxygen concentration increased the diffusional oxygen transfer from the atmosphere in the water. Physically preventing the biomass from rising to the upper water layer instantaneously decreased oxygen and ammonium consumption and even led to the occurrence of some sulfate reduction. Floating of the biomass was further confirmed to be beneficial, as this allowed for the development of a higher AerAOB and AnAOB activity, compared to settled biomass. Overall, the results support mutual benefits for aggregated AerAOB and AnAOB, derived from the biomass uplifting effect of AnAOB gas production.

  1. Diurnal Variations in Maximal Oxygen Uptake.

    ERIC Educational Resources Information Center

    McClellan, Powell D.

    A study attempted to determine if diurnal (daily cyclical) variations were present during maximal exercise. The subjects' (30 female undergraduate physical education majors) oxygen consumption and heart rates were monitored while they walked on a treadmill on which the grade was raised every minute. Each subject was tested for maximal oxygen…

  2. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins

    PubMed Central

    Rey, Benjamin; Halsey, Lewis G.; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J.; Duchamp, Claude

    2008-01-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (V̇o2; −33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1-α) mRNA in pectoralis muscle (−54%, −36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting V̇o2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting. PMID:18495832

  3. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins.

    PubMed

    Rey, Benjamin; Halsey, Lewis G; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J; Duchamp, Claude

    2008-07-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (Vo2; -33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-alpha) mRNA in pectoralis muscle (-54%, -36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting Vo2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting.

  4. Influence of simulated microgravity on the maximal oxygen consumption of nontrained and trained rats

    NASA Technical Reports Server (NTRS)

    Woodman, Christopher R.; Monnin, Kimberly A.; Sebastian, Lisa A.; Tipton, Charles M.

    1993-01-01

    The effects of microgravity and endurance training (TR) on maximal O2 consumption was investigated in trained and nontrained (NT) rats subjected to head-down suspension (HDS) by comparing maximal O2 consumption, treadmill run time (RT), and mechanical efficiency (ME) of treadmill running in HDS rats, both NT and TR, and in respective cage controls. It was found that HDS for 28 days was associated with significant reduction in absolute maximal O2 consumption in both TR and NT rats. Relative maximal O2 consumption, however, was significantly reduced in TR but not NT rats. Reductions in RT and ME occurring in both TR and NT rats after 28 days of HDS were similar. The TR rats exhibited greater diuretic, natriuretic, and kaliuretic responses to HDS than the NT rats.

  5. Aeration optimization through operation at low dissolved oxygen concentrations: Evaluation of oxygen mass transfer dynamics in different activated sludge systems.

    PubMed

    Fan, Haitao; Qi, Lu; Liu, Guoqiang; Zhang, Yuankai; Fan, Qiang; Wang, Hongchen

    2017-05-01

    In wastewater treatment plants (WWTPs) using the activated sludge process, two methods are widely used to improve aeration efficiency - use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics (such as concentrations of mixed liquor suspended solids (MLSS) and microbial communities) and operating conditions (such as air flow rate and operational dissolved oxygen (DO) concentrations). Moreover, operational DO is closely linked to effluent quality. This study, which is in reference to WWTP discharge class A Chinese standard effluent criteria, determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3mg/L, and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions, as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model (determined using different air flow rate (Q' air ) and mixed liquor volatile suspended solids (MLVSS) values), theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however, operating at low DO and low MLVSS could significantly reduce energy consumption. Finally, a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed, which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology. Copyright © 2016. Published by Elsevier B.V.

  6. Reductions in greenhouse gas (GHG) generation and energy consumption in wastewater treatment plants.

    PubMed

    Yerushalmi, L; Ashrafi, O; Haghighat, F

    2013-01-01

    Greenhouse gas (GHG) emission and energy consumption by on-site and off-site sources were estimated in two different wastewater treatment plants that used physical-chemical or biological processes for the removal of contaminants, and an anaerobic digester for sludge treatment. Physical-chemical treatment processes were used in the treatment plant of a locomotive repair factory that processed wastewater at 842 kg chemical oxygen demand per day. Approximately 80% of the total GHG emission was related to fossil fuel consumption for energy production. The emission of GHG was reduced by 14.5% with the recovery of biogas that was generated in the anaerobic digester and its further use as an energy source, replacing fossil fuels. The examined biological treatment system used three alternative process designs for the treatment of effluents from pulp and paper mills that processed wastewater at 2,000 kg biochemical oxygen demand per day. The three designs used aerobic, anaerobic, or hybrid aerobic/anaerobic biological processes for the removal of carbonaceous contaminants, and nitrification/denitrification processes for nitrogen removal. Without the recovery and use of biogas, the aerobic, anaerobic, and hybrid treatment systems generated 3,346, 6,554 and 7,056 kg CO(2)-equivalent/day, respectively, while the generated GHG was reduced to 3,152, 6,051, and 6,541 kg CO(2)-equivalent/day with biogas recovery. The recovery and use of biogas was shown to satisfy and exceed the energy needs of the three examined treatment plants. The reduction of operating temperature of the anaerobic digester and anaerobic reactor by 10°C reduced energy demands of the treatment plants by 35.1, 70.6 and 62.9% in the three examined treatment systems, respectively.

  7. Corneal Equilibrium Flux as a Function of Corneal Surface Oxygen Tension.

    PubMed

    Compañ, Vicente; Aguilella-Arzo, Marcel; Weissman, Barry A

    2017-06-01

    Oxygen is essential for aerobic mammalian cell physiology. Oxygen tension (PO2) should reach a minimum at some position within the corneal stroma, and oxygen flux should be zero, by definition, at this point as well. We found the locations and magnitudes of this "corneal equilibrium flux" (xmin) and explored its physiological implications. We used an application of the Monod kinetic model to calculate xmin for normal human cornea as anterior surface PO2 changes from 155 to 20 mmHg. We find that xmin deepens, broadens, and advances from 1.25 μm above the endothelial-aqueous humor surface toward the epithelium (reaching a position 320 μm above the endothelial-aqueous humor surface) as anterior corneal surface PO2 decreases from 155 to 20 mmHg. Our model supports an anterior corneal oxygen flux of 9 μL O2 · cm · h and an epithelial oxygen consumption of approximately 4 μL O2 · cm · h. Only at the highest anterior corneal PO2 does our model predict that oxygen diffuses all the way through the cornea to perhaps reach the anterior chamber. Of most interest, corneal oxygen consumption should be supported down to a corneal surface PO2 of 60 to 80 mmHg but declines below this range. We conclude that the critical oxygen tension for hypoxia induced corneal swelling is more likely this range rather than a fixed value.

  8. Transcutaneous oxygen tension monitoring in critically ill patients receiving packed red blood cells.

    PubMed

    Schlager, Oliver; Gschwandtner, Michael E; Willfort-Ehringer, Andrea; Kurz, Martin; Mueller, Markus; Koppensteiner, Renate; Heinz, Gottfried

    2014-12-01

    Whether transfusions of packed red blood cells (PRBCs) affect tissue oxygenation in stable critically ill patients is still matter of discussion. The microvascular capacity for tissue oxygenation can be determined noninvasively by measuring transcutaneous oxygen tension (tcpO2). The aim of this study was to assess tissue oxygenation by measuring tcpO2 in stable critically ill patients receiving PRBC transfusions. Nineteen stable critically ill patients, who received 2 units of PRBC, were prospectively included into this pilot study. Transcutaneous oxygen tension was measured continuously during PRBC transfusions using Clark's electrodes. In addition, whole blood viscosity and global hemodynamics were determined. Reliable measurement signals during continuous tcpO2 monitoring were observed in 17 of 19 included patients. Transcutaneous oxygen tension was related to the global oxygen consumption (r=-0.78; P=.003), the arterio-venous oxygen content difference (r=-0.65; P=.005), and the extraction rate (r=-0.71; P=.02). The transfusion-induced increase of the hemoglobin concentration was paralleled by an increase of the whole blood viscosity (P<.001). Microvascular tissue oxygenation by means of tcpO2 was not affected by PRBC transfusions (P=.46). Packed red blood cell transfusions resulted in an increase of global oxygen delivery (P=.02) and central venous oxygen saturation (P=.01), whereas oxygen consumption remained unchanged (P=.72). In stable critically ill patients, microvascular tissue oxygenation can be continuously monitored by Clark's tcpO2 electrodes. According to continuous tcpO2 measurements, the microvascular tissue oxygenation is not affected by PRBC transfusions. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Temperature dependence of O2 consumption; opposite effects of leptin and etomoxir on respiratory quotient in mice.

    PubMed

    Högberg, Helena; Engblom, Lars; Ekdahl, Asa; Lidell, Veronica; Walum, Erik; Alberts, Peteris

    2006-04-01

    The aims were to compare the temperature dependence of the metabolic rate in young ob/ob mice with that in mature ob/ob and db/db mice and to examine the effect on the metabolic substrate preference of leptin and etomoxir in ob/ob, C57BL/6J (wild-type), and db/db mice. In vivo oxygen consumption and carbon dioxide production were continuously measured by indirect calorimetry, and body temperature and total locomotor activity were measured by an implanted transponder. Leptin, etomoxir, or vehicle was administered intraperitoneally. The temperature dependence of the metabolic rate of mature ob/ob and db/db mice were similar to that in wild-type mice. In young 6-week-old ob/ob mice, the metabolic rate was almost doubled at 15 degrees C. Leptin (2 x 3 mg/kg) decreased the respiratory quotient (RQ) and carbon dioxide production but did not alter oxygen consumption, body temperature, or locomotor activity in ob/ob and C57BL/6J mice and had no effect in the db/db mice. Etomoxir (2 x 30 mg/kg) enhanced RQ and decreased oxygen consumption, carbon dioxide production, and body temperature in ob/ob, C57BL/6J, and db/db mice. Total locomotor activity was reduced in ob/ob and C57BL/6J mice. In young ob/ob mice, the temperature sensitivity was enhanced compared with mature mice. Leptin and etomoxir had opposite effects on metabolic substrate preference. Leptin and lowered environmental temperature increased the relative fat oxidation as indicated by decreased RQ, possibly through activation of the sympathetic nervous system.

  10. Complementary methods for the determination of dissolved oxygen content in perfluorocarbon emulsions and other solutions.

    PubMed

    Fraker, Christopher A; Mendez, Armando J; Stabler, Cherie L

    2011-09-08

    Perfluorocarbons (PFCs) are compounds with increased oxygen solubility and effective diffusivity, making them ideal candidates for improving oxygen mass transfer in numerous biological applications. Historically, quantification of the mass transfer characteristics of these liquids has relied on the use of elaborate laboratory equipment and complicated methodologies, such as in-line gas chromatography coupled with temperature-controlled glass fritted diffusion cells. In this work, we present an alternative method for the determination of dissolved oxygen content in PFC emulsions and, by extrapolation, pure PFCs. We implemented a simple stirred oxygen consumption microchamber coupled with an enzymatic reaction for the quantitative determination of oxygen by optical density measurements. Chambers were also custom fitted with lifetime oxygen sensors to permit simultaneous measurement of internal chamber oxygen levels. Analyzing the consumption of oxygen during the enzymatic reaction via recorded oxygen depletion traces, we found a strong degree of correlation between the zero-order reaction rate and the total measured oxygen concentrations, relative to control solutions. The values obtained were in close agreement with published values in the literature, establishing the accuracy of this method. Overall, this method allows for easy, reliable, and reproducible measurements of oxygen content in aqueous solutions, including, but not limited to PFC emulsions.

  11. Examining the Associations among Severity of Injunctive Drinking Norms, Alcohol Consumption, and Alcohol-Related Negative Consequences: The Moderating Roles of Alcohol Consumption and Identity

    PubMed Central

    Lewis, Melissa A.; Neighbors, Clayton; Geisner, Irene Markman; Lee, Christine M.; Kilmer, Jason R.; Atkins, David C.

    2009-01-01

    The present study examined a range of injunctive norms for alcohol use and related consequences from less severe behaviors (e.g., drinking with friends) to more severe behaviors (e.g., drinking enough alcohol to pass out), and their relationship with alcohol consumption and alcohol-related negative consequences among college students. In addition, this research aimed to determine if these relationships between injunctive norms and consequences were moderated by alcohol consumption and level of identification with the typical same-sex college student. A random sample (N = 1,002) of undergraduates (56.9% female) completed a Web–based survey that was comprised of measures of drinking behavior, perceived approval of drinking behaviors that ranged in severity (i.e., injunctive norms), and level of identification with the typical same-sex college student. Results suggest that the association between negative consequences and injunctive drinking norms depend on one's own drinking behavior, identification with other students, and the severity of the alcohol use and related consequences for which injunctive norms are assessed. Findings are discussed in terms of false consensus and false uniqueness effects, and deviance regulation perspectives. Implications for preventative interventions are discussed. PMID:20565144

  12. Visible light optical coherence tomography measure retinal oxygen metabolic response to systemic oxygenation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yi, Ji; Liu, Wenzhong; Chen, Siyu; Backman, Vadim; Sheibani, Nader; Sorenson, Christine M.; Fawzi, Amani A.; Linsenmeier, Robert A.; Zhang, Hao F.

    2016-03-01

    The lack of capability to quantify oxygen metabolism noninvasively impedes both fundamental investigation and clinical diagnosis of a wide spectrum of diseases including all the major blinding diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Using visible light optical coherence tomography (vis-OCT), we demonstrated accurate and robust measurement of retinal oxygen metabolic rate (rMRO2) noninvasively in rat eyes. The rMRO2 was calculated by concurrent measurement of blood flow and blood oxygen saturation (sO2). Blood flow was calculated by the principle of Doppler optical coherence tomography, where the phase shift between two closely spaced A-lines measures the axial velocity. The distinct optical absorption spectra of oxy- and deoxy-hemoglobin provided the contrast for sO2 measurement, combined with the spectroscopic analysis of vis-OCT signal within the blood vessels. We continuously monitored the regulatory response of oxygen consumption to a progressive hypoxic challenge. We found that both oxygen delivery, and rMRO2 increased from the highly regulated retinal circulation (RC) under hypoxia, by 0.28+/-0.08 μL/min (p<0.001), and 0.20+/-0.04 μL/min (p<0.001) per 100 mmHg systemic pO2 reduction, respectively. The increased oxygen extraction compensated for the deficient oxygen supply from the poorly regulated choroidal circulation (CC).

  13. Two-photon microscopy measurement of cerebral metabolic rate of oxygen using periarteriolar oxygen concentration gradients.

    PubMed

    Sakadžić, Sava; Yaseen, Mohammad A; Jaswal, Rajeshwer; Roussakis, Emmanuel; Dale, Anders M; Buxton, Richard B; Vinogradov, Sergei A; Boas, David A; Devor, Anna

    2016-10-01

    The cerebral metabolic rate of oxygen ([Formula: see text]) is an essential parameter for evaluating brain function and pathophysiology. However, the currently available approaches for quantifying [Formula: see text] rely on complex multimodal imaging and mathematical modeling. Here, we introduce a method that allows estimation of [Formula: see text] based on a single measurement modality-two-photon imaging of the partial pressure of oxygen ([Formula: see text]) in cortical tissue. We employed two-photon phosphorescence lifetime microscopy (2PLM) and the oxygen-sensitive nanoprobe PtP-C343 to map the tissue [Formula: see text] distribution around cortical penetrating arterioles. [Formula: see text] is subsequently estimated by fitting the changes of tissue [Formula: see text] around arterioles with the Krogh cylinder model of oxygen diffusion. We measured the baseline [Formula: see text] in anesthetized rats and modulated tissue [Formula: see text] levels by manipulating the depth of anesthesia. This method provides [Formula: see text] measurements localized within [Formula: see text] and it may provide oxygen consumption measurements in individual cortical layers or within confined cortical regions, such as in ischemic penumbra and the foci of functional activation.

  14. Longitudinal measurements of oxygen consumption in growing infants during the first weeks after birth: old data revisited.

    PubMed

    Sinclair, J C; Thorlund, K; Walter, S D

    2013-01-01

    In a study conducted in 1966-1969, longitudinal measurements were made of the metabolic rate in growing infants. Statistical methods for analyzing longitudinal data weren't readily accessible at that time. To measure minimal rates of oxygen consumption (V·O2, ml/min) in growing infants during the first postnatal weeks and to determine the relationships between postnatal increases in V·O2, body size and postnatal age. We studied 61 infants of any birth weight or gestational age, including 19 of very low birth weight. The infants, nursed in incubators, were clinically well and without need of oxygen supplementation or respiratory assistance. Serial measures of V·O2 using a closed-circuit method were obtained at approximately weekly intervals. V·O2 was measured under thermoneutral conditions with the infant asleep or resting quietly. Data were analyzed using mixed-effects models. During early postnatal growth, V·O2 rises as surface area (m(2))(1.94) (standard error, SE 0.054) or body weight (kg)(1.24) (SE 0.033). Multivariate analyses show statistically significant effects of both size and age. Reference intervals (RIs) for V·O2 for fixed values of body weight and postnatal age are presented. As V·O2 rises with increasing size and age, there is an increase in the skin-operative environmental temperature gradient (T skin-op) required for heat loss. Required T skin-op can be predicted from surface area and heat loss (heat production minus heat storage). Generation of RIs for minimal rates of V·O2 in growing infants from the 1960s was enabled by application of mixed-effects statistical models for analyses of longitudinal data. Results apply to the precaffeine era of neonatal care. Copyright © 2013 S. Karger AG, Basel.

  15. Study on Oxygen Supply Standard for Physical Health of Construction Personnel of High-Altitude Tunnels.

    PubMed

    Guo, Chun; Xu, Jianfeng; Wang, Mingnian; Yan, Tao; Yang, Lu; Sun, Zhitao

    2015-12-22

    The low atmospheric pressure and low oxygen content in high-altitude environment have great impacts on the functions of human body. Especially for the personnel engaged in complicated physical labor such as tunnel construction, high altitude can cause a series of adverse physiological reactions, which may result in multiple high-altitude diseases and even death in severe cases. Artificial oxygen supply is required to ensure health and safety of construction personnel in hypoxic environments. However, there are no provisions for oxygen supply standard for tunnel construction personnel in high-altitude areas in current tunnel construction specifications. As a result, this paper has theoretically studied the impacts of high-altitude environment on human bodies, analyzed the relationship between labor intensity and oxygen consumption in high-altitude areas and determined the critical oxygen-supply altitude values for tunnel construction based on two different standard evaluation systems, i.e., variation of air density and equivalent PIO₂. In addition, it has finally determined the oxygen supply standard for construction personnel in high-altitude areas based on the relationship between construction labor intensity and oxygen consumption.

  16. Consumption of apples is associated with a better diet quality and reduced risk of obesity in children: National Health and Nutrition Examination Survey (NHANES) 2003-2010

    USDA-ARS?s Scientific Manuscript database

    Most children do not meet the recommendation for fruit consumption. Apples are the second most commonly consumed fruit in the US; however, no studies have examined the association of total apple products, apples, apple sauce, and 100 % apple juice consumption on diet quality and weight/adiposity in ...

  17. Clarification of cyanide's effect on oxygen transport characteristics in a canine model

    PubMed Central

    Pham, Julius Cuong; Huang, David T; McGeorge, Francis T; Rivers, Emanuel P

    2007-01-01

    Objective To clarify the cardiovascular mechanisms of cyanide poisoning by evaluating oxygen transport characteristics using a canine model. Methods A prospective controlled experiment was performed at a hospital‐based animal laboratory. Five male beagle (17 (2) kg) dogs were anesthetised with α‐chloralose, paralysed with pancuronium bromide and mechanically ventilated. Potassium cyanide was infused at 0.045 mg/kg/min for 110 min. Heart rate, blood pressure, cardiac output, oxygen delivery (DO2), oxygen consumption (VO2) and oxygen extraction ratio (OER) were measured every 10 min for 140 min. DO2 was measured by an indirect calorimeter. Results Cyanide and lactate levels peaked at 1.52 (0.25) mg/l and 9.1 (1.5) mmol/l, respectively. Systolic blood pressure remained relatively constant whereas diastolic blood pressure decreased by 19%. Cardiac output, heart rate and DO2 increased to a maximum of 6%, 10% and 10%, respectively, at 40 min, after which they declined to a low of 32%, 28% and 30% below baseline, respectively. Stroke volume remained constant. Oxygen consumption initially increased by 5%, then decreased to 24% below baseline. The OER initially declined to 35% below baseline, then increased throughout the rest of the study. Conclusion Cyanide poisoning in the canine model showed two phases of injury. The first (compensated) phase had a mechanism consistent with a traditional global oxygen consumption defect. The second (decompensated) phase had a mechanism consistent with heart failure. This heart failure was due to bradycardia. These data suggest chronotropy as an avenue of further study in the temporary treatment of cyanide poisoning. PMID:17351216

  18. Declining oxygen in the global ocean and coastal waters.

    PubMed

    Breitburg, Denise; Levin, Lisa A; Oschlies, Andreas; Grégoire, Marilaure; Chavez, Francisco P; Conley, Daniel J; Garçon, Véronique; Gilbert, Denis; Gutiérrez, Dimitri; Isensee, Kirsten; Jacinto, Gil S; Limburg, Karin E; Montes, Ivonne; Naqvi, S W A; Pitcher, Grant C; Rabalais, Nancy N; Roman, Michael R; Rose, Kenneth A; Seibel, Brad A; Telszewski, Maciej; Yasuhara, Moriaki; Zhang, Jing

    2018-01-05

    Oxygen is fundamental to life. Not only is it essential for the survival of individual animals, but it regulates global cycles of major nutrients and carbon. The oxygen content of the open ocean and coastal waters has been declining for at least the past half-century, largely because of human activities that have increased global temperatures and nutrients discharged to coastal waters. These changes have accelerated consumption of oxygen by microbial respiration, reduced solubility of oxygen in water, and reduced the rate of oxygen resupply from the atmosphere to the ocean interior, with a wide range of biological and ecological consequences. Further research is needed to understand and predict long-term, global- and regional-scale oxygen changes and their effects on marine and estuarine fisheries and ecosystems. Copyright © 2018, American Association for the Advancement of Science.

  19. Systemic oxygen transport derived by using continuous measured oxygen consumption after the Norwood procedure-an interim review.

    PubMed

    Li, Jia

    2012-07-01

    The balance between systemic O(2)consumption (VO(2)) and O(2)delivery (DO(2)) is impaired in children after cardiopulmonary bypass surgery, with decreased DO(2)and increased VO(2). The major goal, and the major challenge, of postoperative management has been to match DO(2)to VO(2)in order to sustain cellular metabolism, particularly in neonates after the Norwood procedure. While much effort has been put into augmenting cardiac output and DO(2), VO(2)remains largely ignored. Respiratory mass spectrometry allows the precise and continuous measurement of VO(2). Measured VO(2), using the direct Fick principle, allows for the calculation of each element of systemic O(2)transport in the complex Norwood circulation. The actual measurements of O(2)transport have allowed us, in the past five years or so, to extensively investigate the Norwood physiology in terms of the VO(2)-DO(2)relationship and the factors affecting it in clinical treatments. Therefore, the first objective of this article is to introduce the technique of respiratory mass spectrometry and its adaption to measure VO(2)across paediatric ventilators with continuous flow. The second objective is to give an interim review of the main findings in our studies on systemic O(2)transport in 17 neonates in the first 72 h after the Norwood procedure. These findings include the profiles of systemic O(2)transport, the important contribution of VO(2)to the impaired balance of O(2)transport and the complex effects of some routine clinical treatments on the VO(2)-DO(2)relationship (including catecholamines, PaCO(2), Mg(2+)and hyperglycaemia, as well as patient-specific anatomical variations). The influence of systemic O(2)transport on cerebral oxygenation is also introduced. This information may help us to refine postoperative management in neonates after the Norwood procedure. Our initial studies mark the end of the beginning, but much is yet explored. Ultimately, the resultant improved systemic and regional O(2

  20. Prediction and innovative control strategies for oxygen and hazardous gases from diesel emission in underground mines.

    PubMed

    Kurnia, Jundika C; Sasmito, Agus P; Wong, Wai Yap; Mujumdar, Arun S

    2014-05-15

    Diesel engine is widely used in underground mining machines due to its efficiency, ease of maintenance, reliability and durability. However, it possesses significant danger to the miners and mining operations as it releases hazardous gases (CO, NO, CO2) and fine particles which can be easily inhaled by the miners. Moreover, the diesel engine consumes significant amount of oxygen which can lead to insufficient oxygen supply for miners. It is therefore critical to maintain sufficient oxygen supply while keeping hazardous gas concentrations from diesel emission below the maximum allowable level. The objective of this study is to propose and to examine various innovative ventilation strategies to control oxygen and hazardous gas concentrations in underground mine to ensure safety, productivity and cost related to energy consumption. Airflow distribution, oxygen and hazardous gas dispersion as well as ambient temperature within the mining area are evaluated by utilizing the well-established computational fluid dynamics (CFD) approach. The results suggest that our newly proposed ventilation design performs better as compared to the conventional design to handle hazardous gases from diesel emission. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. It Doesn't Matter, But: Examining the Impact of Ambient Learning Displays on Energy Consumption and Conservation at the Workplace

    ERIC Educational Resources Information Center

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2015-01-01

    This study reports an intervention to initiate environmental learning and facilitate pro-environmental behaviour. The purpose was to examine the impact of ambient learning displays on energy consumption and conservation at the workplace, more specifically the evaluation of learning outcome and behaviour change. Using a quasi-experimental design,…

  2. Measurement of oxygen tension in the ischemic myocardium using encased polargraphic oxygen electrodes.

    PubMed

    Barrett, J A; Lynch, V D; Balkon, J; Wolf, P S

    1986-06-01

    The ability to continuously monitor the delicate balance between blood flow and oxygen consumption would be a great asset in the study of myocardial ischemia. The present study was performed, in anesthetized dogs, to validate the use of encased polargraphic oxygen electrodes in the study of myocardial ischemia. Polargraphic oxygen electrodes were placed in the area to be rendered ischemic at fixed tissue depths of 3 mm (epicardium) and 9 mm (endocardium). Endocardial and epicardial oxygen tensions as well as the ratio of endocardial to epicardial oxygen tension and left circumflex coronary flow were monitored. Ischemia was induced by decreasing left circumflex coronary flow by 50%. Upon completion of a 20-min poststenotic period, endocardial pO2, endocardial/epicardial ratio, and coronary flow were significantly decreased (59 +/- 7, 52 +/- 7, and 55 +/- 4%, respectively) whereas epicardial pO2 was slightly decreased. Nitroglycerin (10 micrograms/kg, i.v.) markedly increased endocardial pO2 and endocardial/epicardial ratio above poststenotic control (13 +/- 5 mmHg and 64 +/- 10%, respectively) whereas epicardial pO2 was not significantly decreased. The increases in endocardial pO2 occurred at a point where coronary flow and mean arterial pressure were not significantly changed. Conversely, dipyridamole (125 micrograms/kg, i.v.) significantly increased coronary flow (26 +/- 2 ml/min/100 g) although it did not appreciably alter endocardial or epicardial pO2. It is concluded that encased polargraphic oxygen electrodes provide a quantitative method for determination of oxygen tension in the ischemic myocardium.

  3. The Generation of Singlet Oxygen (1O2) by the Nitrodiphenyl Ether Herbicide Oxyfluorfen Is Independent of Photosynthesis

    PubMed Central

    Haworth, Phil; Hess, F. Dan

    1988-01-01

    The mechanism of action of the p-nitrodiphenyl ether herbicides has remained ambiguous because of conflicting reports in the literature. The diphenyl ether herbicide oxyfluorfen causes a light induced consumption of oxygen which resembles the electron acceptor reaction of paraquat. However, this reaction is not linked to the transport of electrons through photosystem I. This conclusion is based on the observation that the rate of oxygen consumption, in the presence of oxyfluorfen, does not demonstrate a first order rate dependence on light intensity. Using the bleaching of N,N-dimethyl p-nitrosoaniline as a specific detector of singlet oxygen, we demonstrate that oxyfluorfen is a potent generator of this toxic radical. The production of singlet oxygen occurs in the presence of inhibitors of photosynthetic electron transport (oxyfluorfen at 10−4 molar and paraquat) and also under temperature conditions (3°C) which prevent electron transport. This light induced reaction results in oxygen consumption and is the primary cause of lethality for oxyfluorfen. The production of singlet oxygen occurs rapidly and at low herbicide concentrations (10−9 molar). The reaction occurs without photosynthetic electron transport but does require an intact thylakoid membrane. PMID:16665968

  4. Low energy consumption method for separating gaseous mixtures and in particular for medium purity oxygen production

    DOEpatents

    Jujasz, Albert J.; Burkhart, James A.; Greenberg, Ralph

    1988-01-01

    A method for the separation of gaseous mixtures such as air and for producing medium purity oxygen, comprising compressing the gaseous mixture in a first compressor to about 3.9-4.1 atmospheres pressure, passing said compressed gaseous mixture in heat exchange relationship with sub-ambient temperature gaseous nitrogen, dividing the cooled, pressurized gaseous mixture into first and second streams, introducing the first stream into the high pressure chamber of a double rectification column, separating the gaseous mixture in the rectification column into a liquid oxygen-enriched stream and a gaseous nitrogen stream and supplying the gaseous nitrogen stream for cooling the compressed gaseous mixture, removing the liquid oxygen-enriched stream from the low pressure chamber of the rectification column and pumping the liquid, oxygen-enriched steam to a predetermined pressure, cooling the second stream, condensing the cooled second stream and evaporating the oxygen-enriched stream in an evaporator-condenser, delivering the condensed second stream to the high pressure chamber of the rectification column, and heating the oxygen-enriched stream and blending the oxygen-enriched stream with a compressed blend-air stream to the desired oxygen concentration.

  5. Examining Multiple Parenting Behaviors on Young Children's Dietary Fat Consumption

    ERIC Educational Resources Information Center

    Eisenberg, Christina M.; Ayala, Guadalupe X.; Crespo, Noe C.; Lopez, Nanette V.; Zive, Michelle Murphy; Corder, Kirsten; Wood, Christine; Elder, John P.

    2012-01-01

    Objective: To understand the association between parenting and children's dietary fat consumption, this study tested a comprehensive model of parenting that included parent household rules, parent modeling of rules, parent mediated behaviors, and parent support. Design: Cross-sectional. Setting: Baseline data from the "MOVE/me Muevo"…

  6. Hepatic blood flow and splanchnic oxygen consumption in patients with liver failure. Effect of high-volume plasmapheresis.

    PubMed

    Clemmesen, J O; Gerbes, A L; Gülberg, V; Hansen, B A; Larsen, F S; Skak, C; Tygstrup, N; Ott, P

    1999-02-01

    Liver failure represents a major therapeutic challenge, and yet basic pathophysiological questions about hepatic perfusion and oxygenation in this condition have been poorly investigated. In this study, hepatic blood flow (HBF) and splanchnic oxygen delivery (DO2, sp) and oxygen consumption (VO2,sp) were assessed in patients with liver failure defined as hepatic encephalopathy grade II or more. Measurements were repeated after high-volume plasmapheresis (HVP) with exchange of 8 to 10 L of plasma. HBF was estimated by use of constant infusion of D-sorbitol and calculated according to Fick's principle from peripheral artery and hepatic vein concentrations. In 14 patients with acute liver failure (ALF), HBF (1.78 +/- 0.78 L/min) and VO2,sp (3.9 +/- 0.9 mmol/min) were higher than in 11 patients without liver disease (1.07 +/- 0.19 L/min, P <.01) and (2.3 +/- 0.7 mmol/min, P <.001). In 9 patients with acute on chronic liver disease (AOCLD), HBF (1.96 +/- 1.19 L/min) and VO2,sp (3.9 +/- 2.3 mmol/min) were higher than in 18 patients with stable cirrhosis (1.00 +/- 0.36 L/min, P <.005; and 2.0 +/- 0.6 mmol/min, P <.005). During HVP, HBF increased from 1.67 +/- 0.72 to 2.07 +/- 1.11 L/min (n=11) in ALF, and from 1.89 +/- 1.32 to 2.34 +/- 1.54 L/min (n=7) in AOCLD, P <.05 in both cases. In patients with ALF, cardiac output (thermodilution) was unchanged (6.7 +/- 2.5 vs. 6.6 +/- 2.2 L/min, NS) during HVP. Blood flow was redirected to the liver as the systemic vascular resistance index increased (1,587 +/- 650 vs. 2, 020 +/- 806 Dyne. s. cm-5. m2, P <.01) whereas splanchnic vascular resistance was unchanged. In AOCLD, neither systemic nor splanchnic vascular resistance was affected by HVP, but as cardiac output increased from 9.1 +/- 2.8 to 10.1 +/- 2.9 L/min (P <.01) more blood was directed to the splanchnic region. In all liver failure patients treated with HVP (n=18), DO2,sp increased by 15% (P <.05) whereas VO2,sp was unchanged. Endothelin-1 (ET-1) and ET-3 were determined

  7. Seawater-temperature and UV-radiation interaction modifies oxygen consumption, digestive process and growth of an intertidal fish.

    PubMed

    García-Huidobro, M Roberto; Aldana, Marcela; Duarte, Cristian; Galbán-Malagón, Cristóbal; Pulgar, José

    2017-08-01

    UV-radiation (UVR) and temperatures have increased substantially over recent decades in many regions of the world. Both stressors independently have shown to affect the metabolism and growth in fish. However, because increase of both stressors are occurring concomitantly, to better understand their influences on marine species, their combined effects were evaluated. We test the hypothesis that UVR and temperature act synergistically affecting the metabolism, digestive process and growth of an intertidal fish. Two UVR conditions (with and without UVR) and two temperature levels (20° C and 25° C) were used. UVR increase the oxygen consumption and this was associated to opaque feces production. The absorption efficiency was higher without UVR at high temperatures (25 °C) and with UVR at low temperatures (20 °C). Finally, independent of UVR treatment, fish subjected to low temperature have higher biomass than those of high temperature. The interaction between UVR and temperature may influence on the physiology and growth of animals that inhabit in extreme habitats as upper intertidal, it could pose significant functional for aquatic animal survivorship. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Theoretical examination of effective oxygen diffusion coefficient and electrical conductivity of polymer electrolyte fuel cell porous components

    NASA Astrophysics Data System (ADS)

    Inoue, Gen; Yokoyama, Kouji; Ooyama, Junpei; Terao, Takeshi; Tokunaga, Tomomi; Kubo, Norio; Kawase, Motoaki

    2016-09-01

    The reduction of oxygen transfer resistance through porous components consisting of a gas diffusion layer (GDL), microporous layer (MPL), and catalyst layer (CL) is very important to reduce the cost and improve the performance of a PEFC system. This study involves a systematic examination of the relationship between the oxygen transfer resistance of the actual porous components and their three-dimensional structure by direct measurement with FIB-SEM and X-ray CT. Numerical simulations were carried out to model the properties of oxygen transport. Moreover, based on the model structure and theoretical equations, an approach to the design of new structures is proposed. In the case of the GDL, the binder was found to obstruct gas diffusion with a negative effect on performance. The relative diffusion coefficient of the MPL is almost equal to that of the model structure of particle packing. However, that of CL is an order of magnitude less than those of the other two components. Furthermore, an equation expressing the relative diffusion coefficient of each component can be obtained with the function of porosity. The electrical conductivity of MPL, which is lower than that of the carbon black packing, is considered to depend on the contact resistance.

  9. Dark chocolate supplementation reduces the oxygen cost of moderate intensity cycling.

    PubMed

    Patel, Rishikesh Kankesh; Brouner, James; Spendiff, Owen

    2015-01-01

    Dark chocolate (DC) is abundant in flavanols which have been reported to increase the bioavailability and bioactivity of nitric oxide (NO). Increasing NO bioavailability has often demonstrated reduced oxygen cost and performance enhancement during submaximal exercise. Nine moderately-trained male participants volunteered to undertake baseline (BL) measurements that comprised a cycle V̇O(2max) test followed by cycling at 80% of their established gas exchange threshold (GET) for 20-min and then immediately followed by a two-minute time-trial (TT). Using a randomised crossover design participants performed two further trials, two weeks apart, with either 40 g of DC or white chocolate (WC) being consumed daily. Oxygen consumption, RER, heart rate and blood lactate (BLa) were measured during each trial. DC consumption increased GET and TT performance compared to both BL and WC (P < 0.05). DC consumption increased V̇O(2max) by 6% compared to BL (P < 0.05), but did not reach statistical significance compared to WC. There were no differences in the moderate-intensity cycling for V̇O₂, RER, BLa and heart rate between conditions, although, V̇O₂ and RER exhibited consistently lower trends following DC consumption compared to BL and WC, these did not reach statistical significance. Chronic supplementation with DC resulted in a higher GET and enhanced TT performance. Consequently, ingestion of DC reduced the oxygen cost of moderate intensity exercise and may be an effective ergogenic aid for short-duration moderate intensity exercise.

  10. The Effects of the Habitual Consumption of Miso Soup on the Blood Pressure and Heart Rate of Japanese Adults: A Cross-sectional Study of a Health Examination.

    PubMed

    Ito, Koji; Miyata, Kenji; Mohri, Masahiro; Origuchi, Hideki; Yamamoto, Hideo

    Objective It is recommended that middle-aged and elderly individuals reduce their salt intake because of the high prevalence of hypertension. The consumption of miso soup is associated with salt intake, and the reduced consumption of miso soup has been recommended. Recent studies have demonstrated that the consumption of miso soup can attenuate an autonomic imbalance in animal models. However, it is unclear whether these results are applicable to humans. This study examined the cross-sectional association between the frequency of miso soup consumption and the blood pressure and heart rate of human subjects. Methods A total of 527 subjects of 50 to 81 years of age who participated in our hospital health examination were enrolled in the present study and divided into four groups based on the frequency of their miso soup consumption ([bowl(s) of miso soup/week] Group 1, <1; Group2, <4; Group3, <7; Group4, ≥7). The blood pressure levels and heart rates of the subjects in each group were compared. Furthermore, a multivariable analysis was performed to determine whether miso soup consumption was an independent factor affecting the incidence of hypertension or the heart rate. Results The frequency of miso soup consumption was not associated with blood pressure. The heart rate was, however, lower in the participants who reported a high frequency of miso soup consumption. A multivariable analysis revealed that the participants who reported a high frequency of miso soup consumption were more likely to have a lower heart rate, but that the consumption of miso soup was not associated with the incidence of hypertension. Conclusion These results indicate that miso soup consumption might decrease the heart rate, but not have a significant effect on the blood pressure of in middle-aged and elderly Japanese individuals.

  11. The Effects of the Habitual Consumption of Miso Soup on the Blood Pressure and Heart Rate of Japanese Adults: A Cross-sectional Study of a Health Examination

    PubMed Central

    Ito, Koji; Miyata, Kenji; Mohri, Masahiro; Origuchi, Hideki; Yamamoto, Hideo

    2017-01-01

    Objective It is recommended that middle-aged and elderly individuals reduce their salt intake because of the high prevalence of hypertension. The consumption of miso soup is associated with salt intake, and the reduced consumption of miso soup has been recommended. Recent studies have demonstrated that the consumption of miso soup can attenuate an autonomic imbalance in animal models. However, it is unclear whether these results are applicable to humans. This study examined the cross-sectional association between the frequency of miso soup consumption and the blood pressure and heart rate of human subjects. Methods A total of 527 subjects of 50 to 81 years of age who participated in our hospital health examination were enrolled in the present study and divided into four groups based on the frequency of their miso soup consumption ([bowl(s) of miso soup/week] Group 1, <1; Group2, <4; Group3, <7; Group4, ≥7). The blood pressure levels and heart rates of the subjects in each group were compared. Furthermore, a multivariable analysis was performed to determine whether miso soup consumption was an independent factor affecting the incidence of hypertension or the heart rate. Results The frequency of miso soup consumption was not associated with blood pressure. The heart rate was, however, lower in the participants who reported a high frequency of miso soup consumption. A multivariable analysis revealed that the participants who reported a high frequency of miso soup consumption were more likely to have a lower heart rate, but that the consumption of miso soup was not associated with the incidence of hypertension. Conclusion These results indicate that miso soup consumption might decrease the heart rate, but not have a significant effect on the blood pressure of in middle-aged and elderly Japanese individuals. PMID:28049996

  12. Effect of natural ageing and antioxidant inhibition on liver antioxidant enzymes, glutathione system, peroxidation, and oxygen consumption in Rana perezi.

    PubMed

    López-Torres, M; Pérez-Campo, R; Barja de Quiroga, G

    1991-01-01

    A study of the physiological role of oxygen free radicals in relation to the ageing process was performed using the liver of Rana perezi, an animal with a moderate rate of oxygen consumption and a life span substantially longer than that of laboratory rodents. Among the five different antioxidant enzymes only superoxide dismutase (SOD) showed an age-dependent decrease. Cytochrome oxidase (COX), glutathione status, in vivo and in vitro liver peroxidation, and metabolic rate did not vary as a function of age. Long-term (2.5 months) treatment with aminotriazole and diethyldithiocarbamate depleted catalase (CAT) activity and did not change both glutathione peroxidases (GPx), COX, reduced (GSH) and oxidized (GSSG) glutathione, or metabolic rate. This treatment resulted in great compensatory increases in SOD (to 250-460% of controls) and glutathione reductase (GR) (to 200%) which are possibly responsible for the lack of increase of in vivo and in vitro liver peroxidation and for the absence of changes in survival rate. The comparison of these results with previous data from other species suggests the possibility that decreases in antioxidant capacity in old age are restricted to animal species with high metabolic rates. Nevertheless, ageing can still be due to the continuous presence of small concentrations of O2 radicals in the tissues throughout life in animals with either high or low metabolic rates, because radical scavenging can not be 100% effective. Compensatory homeostasis among antioxidants seems to be a general phenomenon in different species.

  13. Taurine Supplementation Improves Functional Capacity, Myocardial Oxygen Consumption, and Electrical Activity in Heart Failure.

    PubMed

    Ahmadian, Mehdi; Dabidi Roshan, Valiollah; Ashourpore, Eadeh

    2017-07-04

    Taurine is an amino acid found abundantly in the heart in very high concentrations. It is assumed that taurine contributes to several physiological functions of mammalian cells, such as osmoregulation, anti-inflammation, membrane stabilization, ion transport modulation, and regulation of oxidative stress and mitochondrial protein synthesis. The objective of the current study was to evaluate the effectiveness of taurine supplementation on functional capacity, myocardial oxygen consumption, and electrical activity in patients with heart failure. In a double-blind and randomly designed study, 16 patients with heart failure were assigned to two groups: taurine (TG, n = 8) and placebo (PG, n = 8). TG received 500-mg taurine supplementation three times per day for two weeks. Significant decrease in the values of Q-T segments (p < 0.01) and significant increase in the values of P-R segments (p < 0.01) were detected following exercise post-supplementation in TG rather than in PG. Significantly higher values of taurine concentration, T wave, Q-T segment, physical capacities, and lower values of cardiovascular capacities were detected post-supplementation in TG as compared with PG (all p values <0.01). Taurine significantly enhanced the physical function and significantly reduced the cardiovascular function parameters following exercise. Our results also suggest that the short-term taurine supplementation is an effective strategy for improving some selected hemodynamic parameters in heart failure patients. Together, these findings support the view that taurine improves cardiac function and functional capacity in patients with heart failure. This idea warrants further study.

  14. Muscle contraction duration and fibre recruitment influence blood flow and oxygen consumption independent of contractile work during steady-state exercise in humans.

    PubMed

    Richards, Jennifer C; Crecelius, Anne R; Kirby, Brett S; Larson, Dennis G; Dinenno, Frank A

    2012-06-01

    We tested the hypothesis that, among conditions of matched contractile work, shorter contraction durations and greater muscle fibre recruitment result in augmented skeletal muscle blood flow and oxygen consumption ( ) during steady-state exercise in humans. To do so, we measured forearm blood flow (FBF; Doppler ultrasound) during 4 min of rhythmic hand-grip exercise in 24 healthy young adults and calculated forearm oxygen consumption ( ) via blood samples obtained from a catheter placed in retrograde fashion into a deep vein draining the forearm muscle. In protocol 1 (n = 11), subjects performed rhythmic isometric hand-grip exercise at mild and moderate intensities during conditions in which time-tension index (isometric analogue of work) was held constant but contraction duration was manipulated. In this protocol, shorter contraction durations led to greater FBF (184 ± 25 versus 164 ± 25 ml min(-1)) and (23 ± 3 versus 17 ± 2 ml min(-1); both P < 0.05) among mild workloads, whereas this was not the case for moderate-intensity exercise. In protocol 2 (n = 13), subjects performed rhythmic dynamic hand-grip exercise at mild and moderate intensities in conditions of matched total work, but muscle fibre recruitment was manipulated. In this protocol, greater muscle fibre recruitment led to significantly greater FBF (152 ± 15 versus 127 ± 13 ml min(-1)) and (20 ± 2 versus 17 ± 2 ml min(-1); both P < 0.05) at mild workloads, and there was a trend for similar responses at the moderate intensity but this was not statistically significant. In both protocols, the ratio of the change in FBF to change in was similar across all exercise intensities and manipulations, and the strongest correlation among all variables was between and blood flow. Our collective data indicate that, among matched workloads, shorter contraction duration and greater muscle fibre recruitment augment FBF and during mild-intensity forearm exercise, and that muscle blood flow is more closely related

  15. Fate of leaf litter deposits and impacts on oxygen availability in bank filtration column studies.

    PubMed

    Bayarsaikhan, Uranchimeg; Filter, Josefine; Gernert, Ulrich; Jekel, Martin; Ruhl, Aki Sebastian

    2018-07-01

    Degradation of particulate organic carbon (POC) such as leaf litter might deplete dissolved oxygen within the upper layers of bank filtration, an efficient and robust barrier for pathogens and for various organic micro-pollutants (OMP) in water supply systems worldwide. The degradation of OMP during bank filtration depends on the redox conditions. The present study aimed at identifying the impacts and fates of different local leaves on the oxygen consumption and the possible biological degradation of indicator OMP. Oxygen concentrations initially decreased within the columns from around 8 mg/L in the influent to low concentrations indicating extensive consumption within a short travel distance. Still a substantial oxygen consumption was observed after 250 days. OMP concentrations were not significantly affected by the microbial processes. A layer of calcium carbonate crystallites was observed on the POC layer. Some leaf fragments appeared to be persistant towards degradation and the carbon content relative to nitrogen and sulfur contents decreased within 250 days. The results demonstrate that trees at bank filtration sites might have a strong long-term impact on the subsurface redox conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Perfluoroalkyl substances and fish consumption.

    PubMed

    Christensen, Krista Y; Raymond, Michelle; Blackowicz, Michael; Liu, Yangyang; Thompson, Brooke A; Anderson, Henry A; Turyk, Mary

    2017-04-01

    Perfluoroalkyl substances (PFAS) are an emerging class of contaminants. Certain PFAS are regulated or voluntarily limited due to concern about environmental persistence and adverse health effects, including thyroid disease and dyslipidemia. The major source of PFAS exposure in the general population is thought to be consumption of seafood. In this analysis we examine PFAS levels and their determinants, as well as associations between PFAS levels and self-reported fish and shellfish consumption, using a representative sample of the U.S. Data on PFAS levels and self-reported fish consumption over the past 30 days were collected from the 2007-2008, 2009-2010, 2011-2012, and 2013-2014 cycles of the National Health and Nutrition Examination Survey. Twelve different PFAS were measured in serum samples from participants. Ordinary least squares regression models were used to identify factors (demographic characteristics and fish consumption habits) associated with serum PFAS concentrations. Additional models were further adjusted for other potential exposures including military service and consumption of ready-to-eat and fast foods. Seven PFAS were detected in at least 30% of participants and were examined in subsequent analyses (PFDA, PFOA, PFOS, PFHxS, MPAH, PFNA, PFUA). The PFAS with the highest concentrations were PFOS, followed by PFOA, PFHxS and PFNA (medians of 8.3, 2.7, 1.5 and 1.0ng/mL). Fish consumption was generally low, with a median of 1.2 fish meals and 0.14 shellfish meals, reported over the past 30 days. After adjusting for demographic characteristics, total fish consumption was associated with reduced MPAH, and with elevated PFDE, PFNA and PFuDA. Shellfish consumption was associated with elevations of all PFAS examined except MPAH. Certain specific fish and shellfish types were also associated with specific PFAS. Adjustment for additional exposure variables resulted in little to no change in effect estimates for seafood variables. PFAS are emerging

  17. Workload of horses on a water treadmill: effect of speed and water height on oxygen consumption and cardiorespiratory parameters.

    PubMed

    Greco-Otto, Persephone; Bond, Stephanie; Sides, Raymond; Kwong, Grace P S; Bayly, Warwick; Léguillette, Renaud

    2017-11-28

    Despite the use of water treadmills (WT) in conditioning horses, the intensity of WT exercise has not been well documented. The workload on a WT is a function of water height and treadmill speed. Therefore, the purpose of this study was to determine the effects of these factors on workload during WT exercise. Fifteen client-owned Quarter Horses were used in a randomized, controlled study. Three belt speeds and three water heights (mid cannon, carpus and stifle), along with the control condition (dry treadmill, all three speeds), were tested. Measured outcomes were oxygen consumption (V̇O 2 ), ventilation (respiratory frequency, tidal volume (V T )), heart rate (HR), and blood lactate. An ergospirometry system was used to measure V̇O 2 and ventilation. Linear mixed effects models were used to examine the effects of presence or absence of water, water height and speed (as fixed effects) on measured outcomes. Water height and its interaction with speed had a significant effect on V̇O 2 , V T and HR, all peaking at the highest water level and speed (stifle at 1.39 m/s, median V̇O 2  = 16.70 ml/(kg.min), V T  = 6 L, HR = 69 bpm). Respiratory frequency peaked with water at the carpus at 1.39 m/s (median 49 breaths/min). For a given water height, the small increments in speed did not affect the measured outcomes. Post-exercise blood lactate concentration did not change. Varying water height and speed affects the workload associated with WT exercise. The conditions utilized in this study were associated with low intensity exercise. Water height had a greater impact on exercise intensity than speed.

  18. Improving the Accuracy of Predicting Maximal Oxygen Consumption (VO2pk)

    NASA Technical Reports Server (NTRS)

    Downs, Meghan E.; Lee, Stuart M. C.; Ploutz-Snyder, Lori; Feiveson, Alan

    2016-01-01

    Maximal oxygen (VO2pk) is the maximum amount of oxygen that the body can use during intense exercise and is used for benchmarking endurance exercise capacity. The most accurate method to determineVO2pk requires continuous measurements of ventilation and gas exchange during an exercise test to maximal effort, which necessitates expensive equipment, a trained staff, and time to set-up the equipment. For astronauts, accurate VO2pk measures are important to assess mission critical task performance capabilities and to prescribe exercise intensities to optimize performance. Currently, astronauts perform submaximal exercise tests during flight to predict VO2pk; however, while submaximal VO2pk prediction equations provide reliable estimates of mean VO2pk for populations, they can be unacceptably inaccurate for a given individual. The error in current predictions and logistical limitations of measuring VO2pk, particularly during spaceflight, highlights the need for improved estimation methods.

  19. Decline in global oceanic oxygen content during the past five decades.

    PubMed

    Schmidtko, Sunke; Stramma, Lothar; Visbeck, Martin

    2017-02-15

    Ocean models predict a decline in the dissolved oxygen inventory of the global ocean of one to seven per cent by the year 2100, caused by a combination of a warming-induced decline in oxygen solubility and reduced ventilation of the deep ocean. It is thought that such a decline in the oceanic oxygen content could affect ocean nutrient cycles and the marine habitat, with potentially detrimental consequences for fisheries and coastal economies. Regional observational data indicate a continuous decrease in oceanic dissolved oxygen concentrations in most regions of the global ocean, with an increase reported in a few limited areas, varying by study. Prior work attempting to resolve variations in dissolved oxygen concentrations at the global scale reported a global oxygen loss of 550 ± 130 teramoles (10 12  mol) per decade between 100 and 1,000 metres depth based on a comparison of data from the 1970s and 1990s. Here we provide a quantitative assessment of the entire ocean oxygen inventory by analysing dissolved oxygen and supporting data for the complete oceanic water column over the past 50 years. We find that the global oceanic oxygen content of 227.4 ± 1.1 petamoles (10 15  mol) has decreased by more than two per cent (4.8 ± 2.1 petamoles) since 1960, with large variations in oxygen loss in different ocean basins and at different depths. We suggest that changes in the upper water column are mostly due to a warming-induced decrease in solubility and biological consumption. Changes in the deeper ocean may have their origin in basin-scale multi-decadal variability, oceanic overturning slow-down and a potential increase in biological consumption.

  20. Oxygen diffusion: an enzyme-controlled variable parameter.

    PubMed

    Erdmann, Wilhelm; Kunke, Stefan

    2014-01-01

    Previous oxygen microelectrode studies have shown that the oxygen diffusion coefficient (DO₂) increases during extracellular PO₂ decreases, while intracellular PO₂ remained unchanged and thus cell function (spike activity of neurons). Oxygen dependency of complex multicellular organisms requires a stable and adequate oxygen supply to the cells, while toxic concentrations have to be avoided. Oxygen brought to the tissue by convection diffuses through the intercellular and cell membranes, which are potential barriers to diffusion. In gerbil brain cortex, PO₂ and DO₂ were measured by membrane-covered and by bare gold microelectrodes, as were also spike potentials. Moderate respiratory hypoxia was followed by a primary sharp drop of tissue PO₂ that recovered to higher values concomitant with an increase of DO₂. A drop in intracellular PO₂ recovered immediately. Studies on the abdominal ganglion of aplysia californica showed similar results.Heterogeneity is a feature of both normal oxygen supply to tissue and supply due to a wide range of disturbances in oxygen supply. Oxygen diffusion through membranes is variable thereby ensuring adequate intracellular PO₂. Cell-derived glucosamine oxidase seems to regulate the polymerization/depolymerisation ratio of membrane mucopolysaccharides and thus oxygen diffusion.Variability of oxygen diffusion is a decisive parameter for regulating the supply/demand ratio of oxygen supply to the cell; this occurs in highly developed animals as well as in species of a less sophisticated nature. Autoregulation of oxygen diffusion is as important as the distribution/perfusion ratio of the capillary meshwork and as the oxygen extraction ratio in relation to oxygen consumption of the cell. Oxygen diffusion resistance is the cellular protection against luxury oxygen supply (which can result in toxic oxidative species leading to mutagenesis).