Science.gov

Sample records for exchange coupled pairs

  1. Spin signatures of exchange-coupled triplet pairs formed by singlet fission

    NASA Astrophysics Data System (ADS)

    Bayliss, Sam L.; Weiss, Leah R.; Rao, Akshay; Friend, Richard H.; Chepelianskii, Alexei D.; Greenham, Neil C.

    2016-07-01

    We study the effect of an exchange interaction on the magnetic-field-dependent photoluminescence in singlet fission materials. We show that, for strongly interacting triplet exciton pairs (intertriplet exchange interaction greater than the intratriplet spin-dipolar interaction), quantum beating and magnetic-field effects vanish apart from at specific magnetic fields where singlet and quintet levels are mixed by a level anticrossing. We characterize these effects and show that the absence of a magnetic-field effect or zero-field quantum beats does not necessarily mean that fission is inoperative. These results call for a reconsideration of the observations that are considered hallmarks of singlet fission and demonstrate how the spin coherence and exchange coupling of interacting triplet pairs can be measured through magneto-photoluminescence experiments.

  2. Quantifying exchange coupling in f-ion pairs using the diamagnetic substitution method

    SciTech Connect

    Lukens, Wayne W.; Walter, Marc D.

    2010-04-01

    One of the challenges in the chemistry of actinide and lanthanide (f-ion) is quantifying exchange coupling between f-ions. While qualitative information about exchange coupling may be readily obtained using the diamagnetic substitution approach, obtaining quantitative information is much more difficult. This article describes how exchange coupling may be quantified using the susceptibility of a magnetically isolated analog, as in the diamagnetic substitution approach, along with the anisotropy of the ground state as determined by EPR spectroscopy. Several examples are used to illustrate and test this approach.

  3. Anomalous photon-gauge boson coupling contribution to the exclusive vector boson pair production from two photon exchange in pp collisions at 13 TeV

    SciTech Connect

    Martins, D. E.; Vilela Pereira, A.; Sá Borges, J.; Rebello Teles, P.

    2015-04-10

    We study the W and Z pair production from two-photon exchange in proton-proton collisions at the LHC in order to evaluate the contributions of anomalous photon-gauge boson couplings, that simulates new particles and couplings predicted in many Standard Model (SM) extensions. The experimental results of W{sup +} W{sup −} exclusive production (pp → pW{sup +}W{sup −} p) at 7 TeV from the CMS collaboration [1] updates the experimental limits on anomalous couplings obtained at the Large Electron-Positron Collider (LEP). This motivates our present analysis hopefully anticipating the expected results using the Precision Proton Spectrometer (PPS) to be installed as part of CMS. In this work, we consider the W{sup +}W{sup −} exclusive production to present the p{sub T} distribution of the lepton pair corresponding to the SM signal with p{sub T} (e, μ) > 10 GeV. Next, we consider the photon-gauge boson anomalous couplings by calculating, from the FPMC and MadGraph event generators, the process γγ → W{sup +}W{sup −} from a model with gauge boson quartic couplings, by considering a 1 TeV scale for new physical effects. We present our results for an integrated luminosity of 5 fb{sup −1} at center-of-mass energy of 7 TeV and for an integrated luminosity of 100 fb{sup −1} at 13 TeV. We present our preliminary results for Z pair exclusive production from two-photon exchange with anomalous couplings, where the ZZγγ quartic coupling is absent in the SM. We calculate the total cross section for the exclusive process and present the four lepton invariant mass distribution. Finally we present an outlook for the present analysis.

  4. Pair extended coupled cluster doubles

    SciTech Connect

    Henderson, Thomas M.; Scuseria, Gustavo E.; Bulik, Ireneusz W.

    2015-06-07

    The accurate and efficient description of strongly correlated systems remains an important challenge for computational methods. Doubly occupied configuration interaction (DOCI), in which all electrons are paired and no correlations which break these pairs are permitted, can in many cases provide an accurate account of strong correlations, albeit at combinatorial computational cost. Recently, there has been significant interest in a method we refer to as pair coupled cluster doubles (pCCD), a variant of coupled cluster doubles in which the electrons are paired. This is simply because pCCD provides energies nearly identical to those of DOCI, but at mean-field computational cost (disregarding the cost of the two-electron integral transformation). Here, we introduce the more complete pair extended coupled cluster doubles (pECCD) approach which, like pCCD, has mean-field cost and reproduces DOCI energetically. We show that unlike pCCD, pECCD also reproduces the DOCI wave function with high accuracy. Moreover, pECCD yields sensible albeit inexact results even for attractive interactions where pCCD breaks down.

  5. Nuclear magnetic relaxation induced by exchange-mediated orientational randomization: Longitudinal relaxation dispersion for a dipole-coupled spin-1/2 pair

    NASA Astrophysics Data System (ADS)

    Chang, Zhiwei; Halle, Bertil

    2013-10-01

    In complex biological or colloidal samples, magnetic relaxation dispersion (MRD) experiments using the field-cycling technique can characterize molecular motions on time scales ranging from nanoseconds to microseconds, provided that a rigorous theory of nuclear spin relaxation is available. In gels, cross-linked proteins, and biological tissues, where an immobilized macromolecular component coexists with a mobile solvent phase, nuclear spins residing in solvent (or cosolvent) species relax predominantly via exchange-mediated orientational randomization (EMOR) of anisotropic nuclear (electric quadrupole or magnetic dipole) couplings. The physical or chemical exchange processes that dominate the MRD typically occur on a time scale of microseconds or longer, where the conventional perturbation theory of spin relaxation breaks down. There is thus a need for a more general relaxation theory. Such a theory, based on the stochastic Liouville equation (SLE) for the EMOR mechanism, is available for a single quadrupolar spin I = 1. Here, we present the corresponding theory for a dipole-coupled spin-1/2 pair. To our knowledge, this is the first treatment of dipolar MRD outside the motional-narrowing regime. Based on an analytical solution of the spatial part of the SLE, we show how the integral longitudinal relaxation rate can be computed efficiently. Both like and unlike spins, with selective or non-selective excitation, are treated. For the experimentally important dilute regime, where only a small fraction of the spin pairs are immobilized, we obtain simple analytical expressions for the auto-relaxation and cross-relaxation rates which generalize the well-known Solomon equations. These generalized results will be useful in biophysical studies, e.g., of intermittent protein dynamics. In addition, they represent a first step towards a rigorous theory of water 1H relaxation in biological tissues, which is a prerequisite for unravelling the molecular basis of soft

  6. Exchange coupling between laterally adjacent nanomagnets.

    PubMed

    Dey, H; Csaba, G; Bernstein, G H; Porod, W

    2016-09-30

    We experimentally demonstrate exchange-coupling between laterally adjacent nanomagnets. Our results show that two neighboring nanomagnets that are each antiferromagnetically exchange-coupled to a common ferromagnetic bottom layer can be brought into strong ferromagnetic interaction. Simulations show that interlayer exchange coupling effectively promotes ferromagnetic alignment between the two nanomagnets, as opposed to antiferromagnetic alignment due to dipole-coupling. In order to experimentally demonstrate the proposed scheme, we fabricated arrays of pairs of elongated, single-domain nanomagnets. Magnetic force microscopy measurements show that most of the pairs are ferromagnetically ordered. The results are in agreement with micromagnetic simulations. The presented scheme can achieve coupling strengths that are significantly stronger than dipole coupling, potentially enabling far-reaching applications in Nanomagnet Logic, spin-wave devices and three-dimensional storage and computing. PMID:27535227

  7. Seniority zero pair coupled cluster doubles theory

    SciTech Connect

    Stein, Tamar; Henderson, Thomas M.; Scuseria, Gustavo E.

    2014-06-07

    Coupled cluster theory with single and double excitations accurately describes weak electron correlation but is known to fail in cases of strong static correlation. Fascinatingly, however, pair coupled cluster doubles (p-CCD), a simplified version of the theory limited to pair excitations that preserve the seniority of the reference determinant (i.e., the number of unpaired electrons), has mean field computational cost and is an excellent approximation to the full configuration interaction (FCI) of the paired space provided that the orbital basis defining the pairing scheme is adequately optimized. In previous work, we have shown that optimization of the pairing scheme in the seniority zero FCI leads to a very accurate description of static correlation. The same conclusion extends to p-CCD if the orbitals are optimized to make the p-CCD energy stationary. We here demonstrate these results with numerous examples. We also explore the contributions of different seniority sectors to the coupled cluster doubles (CCD) correlation energy using different orbital bases. We consider both Hartree-Fock and Brueckner orbitals, and the role of orbital localization. We show how one can pair the orbitals so that the role of the Brueckner orbitals at the CCD level is retained at the p-CCD level. Moreover, we explore ways of extending CCD to accurately describe strongly correlated systems.

  8. Series-Coupled Pairs of Silica Microresonators

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Maleki, Lute; Handley, Tim

    2009-01-01

    Series-coupled pairs of whispering-gallery-mode optical microresonators have been demonstrated as prototypes of stable, narrow-band-pass photonic filters. Characteristics that are generally considered desirable in a photonic or other narrow-band-pass filter include response as nearly flat as possible across the pass band, sharp roll-off, and high rejection of signals outside the pass band. A single microresonator exhibits a Lorentzian filter function: its peak response cannot be made flatter and its roll-off cannot be made sharper. However, as a matter of basic principle applicable to resonators in general, it is possible to (1) use multiple resonators, operating in series or parallel, to obtain a roll-off sharper, and out-of-band rejection greater, relative to those of a Lorentzian filter function and (2) to make the peak response (the response within the pass band) flatter by tuning the resonators to slightly different resonance frequencies that span the pass band. The first of the two microresonators in each series-coupled pair was a microtorus made of germania-doped silica (containing about 19 mole percent germania), which is a material used for the cores of some optical fibers. The reasons for choosing this material is that exposing it to ultraviolet light causes it to undergo a chemical change that changes its index of refraction and thereby changes the resonance frequency. Hence, this material affords the means to effect the desired slight relative detuning of the two resonators. The second microresonator in each pair was a microsphere of pure silica. The advantage of making one of the resonators a torus instead of a sphere is that its spectrum of whispering-gallery-mode resonances is sparser, as needed to obtain a frequency separation of at least 100 GHz between resonances of the filter as a whole.

  9. The role of Na(+)-Ca2+ exchange in paired pulse potentiation of ferret ventricular muscle.

    PubMed Central

    Kirby, M S; McCall, E; Orchard, C H; Boyett, M R

    1993-01-01

    , the more positive the membrane potential during the second pulse of the pair. This voltage dependence is consistent with a role for the Na(+)-Ca2+ exchanger in paired pulse potentiation. 7. During paired pulse stimulation of ventricular myocytes under voltage clamp control, changes in putative Na(+)-Ca2+ exchange current were observed consistent with a decrease of Ca2+ efflux (or increase of Ca2+ influx) via the exchanger during the second pulse of the pair. 8. A computer model of excitation-contraction coupling (Harrison, McCall & Boyett, 1992) has been used to simulate paired pulse stimulation and the results described above.(ABSTRACT TRUNCATED AT 400 WORDS) Images Fig. 1 Fig. 8 PMID:8145152

  10. Excitonic couplings between molecular crystal pairs by a multistate approximation

    SciTech Connect

    Aragó, Juan Troisi, Alessandro

    2015-04-28

    In this paper, we present a diabatization scheme to compute the excitonic couplings between an arbitrary number of states in molecular pairs. The method is based on an algebraic procedure to find the diabatic states with a desired property as close as possible to that of some reference states. In common with other diabatization schemes, this method captures the physics of the important short-range contributions (exchange, overlap, and charge-transfer mediated terms) but it becomes particularly suitable in presence of more than two states of interest. The method is formulated to be usable with any level of electronic structure calculations and to diabatize different types of states by selecting different molecular properties. These features make the diabatization scheme presented here especially appropriate in the context of organic crystals, where several excitons localized on the same molecular pair may be found close in energy. In this paper, the method is validated on the tetracene crystal dimer, a well characterized case where the charge transfer (CT) states are closer in energy to the Frenkel excitons (FE). The test system was studied as a function of an external electric field (to explore the effect of changing the relative energy of the CT excited state) and as a function of different intermolecular distances (to probe the strength of the coupling between FE and CT states). Additionally, we illustrate how the approximation can be used to include the environment polarization effect.

  11. Excitonic couplings between molecular crystal pairs by a multistate approximation.

    PubMed

    Aragó, Juan; Troisi, Alessandro

    2015-04-28

    In this paper, we present a diabatization scheme to compute the excitonic couplings between an arbitrary number of states in molecular pairs. The method is based on an algebraic procedure to find the diabatic states with a desired property as close as possible to that of some reference states. In common with other diabatization schemes, this method captures the physics of the important short-range contributions (exchange, overlap, and charge-transfer mediated terms) but it becomes particularly suitable in presence of more than two states of interest. The method is formulated to be usable with any level of electronic structure calculations and to diabatize different types of states by selecting different molecular properties. These features make the diabatization scheme presented here especially appropriate in the context of organic crystals, where several excitons localized on the same molecular pair may be found close in energy. In this paper, the method is validated on the tetracene crystal dimer, a well characterized case where the charge transfer (CT) states are closer in energy to the Frenkel excitons (FE). The test system was studied as a function of an external electric field (to explore the effect of changing the relative energy of the CT excited state) and as a function of different intermolecular distances (to probe the strength of the coupling between FE and CT states). Additionally, we illustrate how the approximation can be used to include the environment polarization effect. PMID:25933752

  12. Accurate theoretical chemistry with coupled pair models.

    PubMed

    Neese, Frank; Hansen, Andreas; Wennmohs, Frank; Grimme, Stefan

    2009-05-19

    almost forgotten) of this class of methods, the coupled-electron pair approximation (CEPA), performs exceedingly well in chemical applications. In this Account, we examine the performance of CEPA in chemical applications. One attractive feature of CEPA, in addition to its surprising accuracy that surpasses that of DFT and MP2 theory, is a simplicity that allows for straightforward and very efficient approximations and extensions to be developed; these are much more difficult or even impossible with the more rigorous CC theory. Thus, approximate CEPA methods can be implemented efficiently enough to allow for calculations on molecules of 50-100 atoms, perhaps the most common range in contemporary chemical research. PMID:19296607

  13. Implementing Diffie-Hellman key exchange using quantum EPR pairs

    NASA Astrophysics Data System (ADS)

    Mandal, Sayonnha; Parakh, Abhishek

    2015-05-01

    This paper implements the concepts of perfect forward secrecy and the Diffie-Hellman key exchange using EPR pairs to establish and share a secret key between two non-authenticated parties and transfer messages between them without the risk of compromise. Current implementations of quantum cryptography are based on the BB84 protocol, which is susceptible to siphoning attacks on the multiple photons emitted by practical laser sources. This makes BB84-based quantum cryptography protocol unsuitable for network computing environments. Diffie-Hellman does not require the two parties to be mutually authenticated to each other, yet it can provide a basis for a number of authenticated protocols, most notably the concept of perfect forward secrecy. The work proposed in this paper provides a new direction in utilizing quantum EPR pairs in quantum key exchange. Although, classical cryptography boasts of efficient and robust protocols like the Diffie-Hellman key exchange, in the current times, with the advent of quantum computing they are very much vulnerable to eavesdropping and cryptanalytic attacks. Using quantum cryptographic principles, however, these classical encryption algorithms show more promise and a more robust and secure structure for applications. The unique properties of quantum EPR pairs also, on the other hand, go a long way in removing attacks like eavesdropping by their inherent nature of one particle of the pair losing its state if a measurement occurs on the other. The concept of perfect forward secrecy is revisited in this paper to attribute tighter security to the proposed protocol.

  14. Communication: Improved pair approximations in local coupled-cluster methods

    SciTech Connect

    Schwilk, Max; Werner, Hans-Joachim; Usvyat, Denis

    2015-03-28

    In local coupled cluster treatments the electron pairs can be classified according to the magnitude of their energy contributions or distances into strong, close, weak, and distant pairs. Different approximations are introduced for the latter three classes. In this communication, an improved simplified treatment of close and weak pairs is proposed, which is based on long-range cancellations of individually slowly decaying contributions in the amplitude equations. Benchmark calculations for correlation, reaction, and activation energies demonstrate that these approximations work extremely well, while pair approximations based on local second-order Møller-Plesset theory can lead to errors that are 1-2 orders of magnitude larger.

  15. Exchange coupled ferrite nanocomposites through chemical synthesis.

    PubMed

    Dai, Qilin; Patel, Ketan; Ren, Shenqiang

    2016-08-16

    Exchange coupling between magnetically hard and soft phases has the potential to yield a large gain in the energy product. In this work, we present a scalable chemical synthetic route to produce magnetic iron oxide based nanocomposites, consisting of cobalt ferrite (CoFe2O4) and strontium ferrite (SrFe12O19) components. PMID:27476744

  16. Quantifying exchange coupling in segregated granular materials

    NASA Astrophysics Data System (ADS)

    Morrison, C.; Saharan, L.; Ikeda, Y.; Takano, K.; Hrkac, G.; Thomson, T.

    2013-11-01

    The volume of a magnetic grain, together with its anisotropy, determines the probability of thermally activated reversal. Thus for grain volume distributions where the median volume is close to the superparamagnetic limit there will be a sub-set of grains which are either superparamagnetic on the time scale of a typical magnetic measurement (10 s), or the reverse due to magnetostatic fields from surrounding grains. We use this effect to probe exchange coupling in segregated granular materials, using CoCrPt-SiOx granular recording media as model systems. As the film thickness is reduced below 10 nm, the remanent magnetization of these films decreases, due to thermal activation and magnetostatic reversal. Varying film thickness and temperature allows us to thermally select a population of grains that contribute to the measurement. Exchange coupling is characterized by the angle dependence of remanent coercivity where we associate a breaking of symmetry from the Stoner-Wohlfarth model towards the Kondorsky model as a measure of the incoherency of reversal. Combining these models allows an estimate to be made of the volume fraction of grains that are exchange coupled and we find that, for well segregated CoCrPt-SiOx media, approximately 8% of the magnetic volume undergoes some degree of exchange coupling.

  17. Micro-fluid exchange coupling apparatus

    NASA Technical Reports Server (NTRS)

    Johnson, J. E., Jr.; Swartz, P. F. (Inventor)

    1980-01-01

    In a macro-fluid exchange, a hollow needle, such as a syringe needle, is provided for penetrating the fluid conduit of the animal. The syringe needle is coupled to a plenum chamber having an inlet and outlet port. The plenum chamber is coupled to the syringe needle via the intermediary of a standard quick disconnect coupling fitting. The plenum chamber is carried at the end of a drive rod which is coupled to a micrometer drive head. The micrometer drive head is slidably and pivotably coupled to a pedestal for adjusting the height and angle of inclination of the needle relative to a reference base support. The needle is positioned adjacent to the incised trachea or a blood vessel of a small animal and the micrometer drive head is operated for penetrating the fluid conduit of the animal.

  18. Photon pair source via two coupling single quantum emitters

    NASA Astrophysics Data System (ADS)

    Peng, Yong-Gang; Zheng, Yu-Jun

    2015-10-01

    We study the two coupling two-level single molecules driven by an external field as a photon pair source. The probability of emitting two photons, P2, is employed to describe the photon pair source quality in a short time, and the correlation coefficient RAB is employed to describe the photon pair source quality in a long time limit. The results demonstrate that the coupling single quantum emitters can be considered as a stable photon pair source. Project supported by the National Natural Science Foundation of China (Grand Nos. 91021009, 21073110, and 11374191), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2013AQ020), the Postdoctoral Science Foundation of China (Grant No. 2013M531584), the Doctoral Program of Higher Education of China (Grant Nos. 20130131110005 and 20130131120006), and the Taishan Scholarship Project of Shandong Province, China.

  19. Singlet-paired coupled cluster theory for open shells.

    PubMed

    Gomez, John A; Henderson, Thomas M; Scuseria, Gustavo E

    2016-06-28

    Restricted single-reference coupled cluster theory truncated to single and double excitations accurately describes weakly correlated systems, but often breaks down in the presence of static or strong correlation. Good coupled cluster energies in the presence of degeneracies can be obtained by using a symmetry-broken reference, such as unrestricted Hartree-Fock, but at the cost of good quantum numbers. A large body of work has shown that modifying the coupled cluster ansatz allows for the treatment of strong correlation within a single-reference, symmetry-adapted framework. The recently introduced singlet-paired coupled cluster doubles (CCD0) method is one such model, which recovers correct behavior for strong correlation without requiring symmetry breaking in the reference. Here, we extend singlet-paired coupled cluster for application to open shells via restricted open-shell singlet-paired coupled cluster singles and doubles (ROCCSD0). The ROCCSD0 approach retains the benefits of standard coupled cluster theory and recovers correct behavior for strongly correlated, open-shell systems using a spin-preserving ROHF reference. PMID:27369507

  20. Magnetic stability of novel exchange coupled systems

    SciTech Connect

    Inomata, A.; Jiang, J. S.; You, C.-Y.; Pearson, J. E.; Bader, S. D.

    1999-11-08

    The magnetic stability of two different interracial exchange coupled systems are investigated using the magneto-optic Kerr effect during repeated reversal of the soft layer magnetization by field cycling up to 10{sup 7} times. For Fe/Cr double-superlattice exchange biased systems, small but rapid initial decay of exchange bias field H{sub E} and the remanent magnetization is observed. Also the Sin-Co/Fe bilayers grown epitaxially with uniaxial in-plane anisotropy show similar decay. However, the H{sub E} of biaxial and random in-plane bilayers, shows gradual decay without large reduction of the magnetization. These different decay behaviors explained by their different microstructure and interracial spin configurations.

  1. Paired kidney exchange transplantation: Maximizing the donor pool

    PubMed Central

    Jha, P. K.; Sethi, S.; Bansal, S. B.; Jain, M.; Sharma, R.; Phanish, M. K.; Duggal, R.; Ahlawat, R.; Kher, V.

    2015-01-01

    In the last decade, paired kidney exchange (PKE) transplantation has gained popularity worldwide as a viable alternative for end stage renal disease (ESRD) patients who have incompatible or sensitized donors. This study presents our experience with PKE transplantation and compares outcome between PKE and non-PKE renal transplant recipients. Between February 2010 and November 2013, 742 transplants were performed, of which 26 (3.5%) were PKE transplantations. All were two-way exchanges. PKE recipients were significantly older than non-PKE (46.73 ± 9.71 vs. 40.08 ± 13.36 years; P = 0.012) while donor ages were comparable. PKE patients had significantly higher number of HLA mismatches (5.03 ± 1.14 vs. 3.49 ± 1.57; P < 0.0001). After a median follow-up of 20 months (range: 3–47 months), there was no significant difference in patient survival (PKE 96.16% vs. non-PKE 96.65%; P = 0.596) and death censored graft survival (PKE 96.16% vs. non-PKE 96.37%; P = 1). Mean serum creatinine at 1 month and at last follow-up was lower in PKE versus non-PKE group (0.98 ± 0.33 vs. 1.3 ± 0.61 mg/dl; P = 0.008 and 0.96 ± 0.30 vs. 1.27 ± 0.57 mg/dl, P = 0.006, respectively). Biopsy proven acute rejection rate was 11.5% in PKE group and 16.89% in non-PKE patients (P = 0.6). To conclude, paired kidney donation is an excellent way of increasing the donor pool and needs to be promoted to overcome the shortage of suitable kidney in our country. PMID:26664210

  2. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    2015-11-01

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength in a Jaynes-Cummings Hamiltonian and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iswap gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter.

  3. Long distance coupling of resonant exchange qubits

    NASA Astrophysics Data System (ADS)

    Russ, Maximilian; Burkard, Guido

    We investigate the effectiveness of a microwave cavity as a mediator of interactions between two resonant exchange (RX) qubits in semiconductor quantum dots (QDs) over long distances, limited only by the extension of the cavity. Our interaction model includes the orthonormalized Wannier orbitals constructed from Fock-Darwin states under the assumption of a harmonic QD confinement potential. We calculate the qubit-cavity coupling strength gr in a Jaynes Cummings Hamiltonian, and find that dipole transitions between two states with an asymmetric charge configuration constitute the relevant RX qubit-cavity coupling mechanism. The effective coupling between two RX qubits in a shared cavity yields a universal two-qubit iSWAP-gate with gate times on the order of nanoseconds over distances on the order of up to a millimeter. Funded by ARO through Grant No. W911NF-15-1-0149.

  4. TRP-Na(+)/Ca(2+) Exchanger Coupling.

    PubMed

    Harper, Alan G S; Sage, Stewart O

    2016-01-01

    Na(+)/Ca(2+) exchangers (NCXs) have traditionally been viewed principally as a means of Ca(2+) removal from non-excitable cells. However there has recently been increasing interest in the operation of NCXs in reverse mode acting as a means of eliciting Ca(2+) entry into these cells. Reverse mode exchange requires a significant change in the normal resting transmembrane ion gradients and membrane potential, which has been suggested to occur principally via the coupling of NCXs to localised Na(+) entry through non-selective cation channels such as canonical transient receptor potential (TRPC) channels. Here we review evidence for functional or physical coupling of NCXs to non-selective cation channels, and how this affects NCX activity in non-excitable cells. In particular we focus on the potential role of nanojunctions, where the close apposition of plasma and intracellular membranes may help create the conditions needed for the generation of localised rises in Na(+) concentration that would be required to trigger reverse mode exchange. PMID:27161225

  5. Paired Quantum Hall States at Weak Coupling: Phenomenology

    NASA Astrophysics Data System (ADS)

    Parameswaran, S. A.; Kivelson, S. A.; Sondhi, S. L.; Spivak, B. Z.

    2012-02-01

    Paired quantum Hall states such as the Pfaffian exhibit a weak-coupling regime much like that of BCS superconductivity. In this regime their lowest energy excitations are neutral fermions -- Bogoliubov quasiparticles constructed from the composite fermions -- and not the charged vortices which generally govern the behavior of quantum Hall states. We discuss a rich set of phenomena which follow from this observation. At finite temperatures of order the pairing scale these include (i) an almost sharp phase transition (ii) a new finite-temperature length scale for the penetration of longitudinal electric fields, and (iii) the existence of a new collective excitation in paired QH states which is a cousin to the well known Artemenko-Volkov-Carlson-Goldman-Schmid-Schon mode in conventional superconductors. At lower temperatures, we find (i) a proximity effect between the paired states and their ancestor metals, which in turn mediates (ii) `Josephson' couplings between paired QH droplets separated by metallic regions and leads to (iii) a distinctive response of such states to disorder; and finally, we also comment on (iv) an analog of Andreev reflection in these systems.

  6. Exchange-coupled nanocomposites: chemical synthesis, characterization and applications.

    PubMed

    Liu, Fei; Hou, Yanglong; Gao, Song

    2014-12-01

    Nanocomposites containing soft and hard magnetic phases have attracted immense attention for energy-related and biomedical applications. With exchange coupling between nanoscale grains in the composites, magnetization of the soft magnetic phase can rotate coherently with that of the hard magnetic phase. In particular, good control of the soft and hard phases at the nanoscale in the composites is of great importance for effective exchange coupling, allowing us to make the best of the strengths of soft and hard magnetic phases and to optimize the magnetic properties for targeted applications. In this review, we present the recent progress in the chemical synthesis and applications of exchange-coupled nanocomposites. Firstly, the principle of nanomagnetism and exchange coupling is introduced. Secondly, the characterization of exchange-coupled nanocomposites is summarized. Thirdly, the chemical methods for the production of different exchange-coupled nanocomposites are presented. Finally, applications of exchange-coupled nanocomposites in magnetic energy storage and biomedicine are addressed. PMID:25130706

  7. Synergy between pair coupled cluster doubles and pair density functional theory

    SciTech Connect

    Garza, Alejandro J.; Bulik, Ireneusz W.; Henderson, Thomas M.; Scuseria, Gustavo E.

    2015-01-28

    Pair coupled cluster doubles (pCCD) has been recently studied as a method capable of accounting for static correlation with low polynomial cost. We present three combinations of pCCD with Kohn–Sham functionals of the density and on-top pair density (the probability of finding two electrons on top of each other) to add dynamic correlation to pCCD without double counting. With a negligible increase in computational cost, these pCCD+DFT blends greatly improve upon pCCD in the description of typical problems where static and dynamic correlations are both important. We argue that—as a black-box method with low scaling, size-extensivity, size-consistency, and a simple quasidiagonal two-particle density matrix—pCCD is an excellent match for pair density functionals in this type of fusion of multireference wavefunctions with DFT.

  8. Dynamics of a coupled spin-vortex pair in dipolar spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Li, Tiantian; Yi, Su; Zhang, Yunbo

    2016-05-01

    The collisional and magnetic field quench dynamics of a coupled spin-vortex pair in dipolar spinor Bose-Einstein condensates in a double-well potential are numerically investigated in the mean-field theory. Upon a sudden release of the potential barrier the two layers of condensates collide with each other in the trap center with the chirality of the vortex pair exchanged after each collision, showing the typical signature of in-phase collision for the parallel spin-vortex phase, and out-of-phase collision for the antiparallel phase. When quenching the transverse magnetic field, the vortex center in the single-layered condensate starts to make a helical motion with oval-shaped trajectories and the displacement of the center position is found to exhibit a damped simple harmonic oscillation with an intrinsic frequency and damping rate. The oscillation mode of the spin-vortex pair may be tuned by the initial magnetic field and the height of the Gaussian barrier; e.g., the gyrotropic motions for a parallel spin-vortex pair are out of sync with each other in the two layers, while those for the antiparallel pair exhibit a double-helix structure with the vortex centers moving opposite to each other with the same amplitude.

  9. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly.

    PubMed

    Zeng, Hao; Li, Jing; Liu, J P; Wang, Zhong L; Sun, Shouheng

    2002-11-28

    Exchange-spring magnets are nanocomposites that are composed of magnetically hard and soft phases that interact by magnetic exchange coupling. Such systems are promising for advanced permanent magnetic applications, as they have a large energy product--the combination of permanent magnet field and magnetization--compared to traditional, single-phase materials. Conventional techniques, including melt-spinning, mechanical milling and sputtering, have been explored to prepare exchange-spring magnets. However, the requirement that both the hard and soft phases are controlled at the nanometre scale, to ensure efficient exchange coupling, has posed significant preparation challenges. Here we report the fabrication of exchange-coupled nanocomposites using nanoparticle self-assembly. In this approach, both FePt and Fe3O4 particles are incorporated as nanometre-scale building blocks into binary assemblies. Subsequent annealing converts the assembly into FePt-Fe3Pt nanocomposites, where FePt is a magnetically hard phase and Fe3Pt a soft phase. An optimum exchange coupling, and therefore an optimum energy product, can be obtained by independently tuning the size and composition of the individual building blocks. We have produced exchange-coupled isotropic FePt-Fe3Pt nanocomposites with an energy product of 20.1 MG Oe, which exceeds the theoretical limit of 13 MG Oe for non-exchange-coupled isotropic FePt by over 50 per cent. PMID:12459779

  10. Exchange bias in nearly perpendicularly coupled ferromagnetic/ferromagnetic system

    NASA Astrophysics Data System (ADS)

    Bu, K. M.; Kwon, H. Y.; Oh, S. W.; Won, C.

    2012-04-01

    Exchange bias phenomena appear not only in ferromagnetic/antiferromagnetic systems but also in ferromagnetic/ferromagnetic systems in which two layers are nearly perpendicularly coupled. We investigated the origin of the symmetry-breaking mechanism and the relationship between the exchange bias and the system's energy parameters. We compared the results of computational Monte Carlo simulations with those of theoretical model calculation. We found that the exchange bias exhibited nonlinear behaviors, including sign reversal and singularities. These complicated behaviors were caused by two distinct magnetization processes depending on the interlayer coupling strength. The exchange bias reached a maximum at the transition between the two magnetization processes.

  11. Exchange coupling and its applications in magnetic data storage.

    PubMed

    Li, Kebin; Wu, Yihong; Guo, Zaibing; Zheng, Yuankai; Han, Guchang; Qiu, Jinjun; Luo, Ping; An, Lihua; Zhou, Tiejun

    2007-01-01

    The continuing scaling of magnetic recording is facing more and more scientific and technological challenges because both the read sensor and recording bit are approaching sub-50 nm regime with the ever increasing areal density in hard disk drives. One of the key and indispensable elements for both high-sensitivity sensors and high-density media is the exchange bias between a ferromagnetic and an antiferromagnetic layer or the exchange coupling between two ferromagnets via a non-magnetic spacer. In the nanometer regime, the exchange coupling between ferromagnet and antiferromagnet or two ferromagnets through a conductive spacer is governed by the intergrain exchange interaction which has its origin in electron spins. Interlayer exchange coupling in multilayer or trilayer essentially originates from the quantum confinement effect. In this paper, we first review the physical origin and various theoretical models of the two types of exchange couplings, followed by a review of the applications of the exchange bias and interlayer exchange coupling in data storage with emphasis on the advanced read sensor and advanced media including perpendicular media and patterned media. PMID:17455474

  12. Acid-induced exchange of the imino proton in G.C pairs.

    PubMed Central

    Nonin, S; Leroy, J L; Gueron, M

    1996-01-01

    Acid-induced catalysis of imino proton exchange in G.C pairs of DNA duplexes is surprisingly fast, being nearly as fast as for the isolated nucleoside, despite base-pair dissociation constants in the range of 10(-5) at neutral or basic pH. It is also observed in terminal G.C pairs of duplexes and in base pairs of drug-DNA complexes. We have measured imino proton exchange in deoxyguanosine and in the duplex (ATATAGATCTATAT) as a function of pH. We show that acid-induced exchange can be assigned to proton transfer from N7-protonated guanosine to cytidine in the open state of the pair. This is faster than transfer from neutral guanosine (the process of intrinsic catalysis previously characterized at neutral ph) due to the lower imino proton pK of the protonated form, 7.2 instead of 9.4. Other interpretations are excluded by a study of exchange catalysis by formiate and cytidine as exchange catalysts. The cross-over pH between the regimes of pH-independent and acid-induced exchange rates is more basic in the case of base pairs than in the mononucleoside, suggestive of an increase by one to two decades in the dissociation constant of the base pair upon N7 protonation of G. Acid-induced catalysis is much weaker in A.T base pairs, as expected in view of the low pK for protonation of thymidine. PMID:8604298

  13. Optimal Decisions for Organ Exchanges in a Kidney Paired Donation Program.

    PubMed

    Li, Yijiang; Song, Peter X-K; Zhou, Yan; Leichtman, Alan B; Rees, Michael A; Kalbfleisch, John D

    2014-05-01

    The traditional concept of barter exchange in economics has been extended in the modern era to the area of living-donor kidney transplantation, where one incompatible donor-candidate pair is matched to another pair with a complementary incompatibility, such that the donor from one pair gives an organ to a compatible candidate in the other pair and vice versa. Kidney paired donation (KPD) programs provide a unique and important platform for living incompatible donor-candidate pairs to exchange organs in order to achieve mutual benefit. In this paper, we propose novel organ allocation strategies to arrange kidney exchanges under uncertainties with advantages, including (i) allowance for a general utility-based evaluation of potential kidney transplants and an explicit consideration of stochastic features inherent in a KPD program; and (ii) exploitation of possible alternative exchanges when the originally planned allocation cannot be fully executed. This allocation strategy is implemented using an integer programming (IP) formulation, and its implication is assessed via a data-based simulation system by tracking an evolving KPD program over a series of match runs. Extensive simulation studies are provided to illustrate our proposed approach. PMID:24795783

  14. Magnetic exchange coupling through superconductors: A trilayer study

    NASA Astrophysics Data System (ADS)

    Sá de Melo, C. A.

    2000-11-01

    The possibility of magnetic exchange coupling between two ferromagnets (F) separated by a superconductor (S) spacer is analyzed using the functional integral method. For this coupling to occur three prima facie conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity to ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled to below its critical temperature, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below the the critical temperature of the superconductor, as well as strongly temperature-dependent. However, at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above the critical temperature of the superconductor the magnetic coupling decay length is controlled by the thermal length.

  15. FAST TRACK COMMUNICATION: Interlayer exchange coupling across a ferroelectric barrier

    NASA Astrophysics Data System (ADS)

    Zhuravlev, M. Ye; Vedyayev, A. V.; Tsymbal, E. Y.

    2010-09-01

    A new magnetoelectric effect is predicted originating from the interlayer exchange coupling between two ferromagnetic layers separated by an ultrathin ferroelectric barrier. It is demonstrated that ferroelectric polarization switching driven by an external electric field leads to a sizable change in the interlayer exchange coupling. The effect occurs in asymmetric ferromagnet/ferroelectric/ferromagnet junctions due to a change in the electrostatic potential profile across the junction affecting the interlayer coupling. The predicted phenomenon indicates the possibility of switching the magnetic configuration by reversing the polarization of the ferroelectric barrier layer.

  16. Coupling of Carbon Monoxide with Nitrogen Monoxide at a Frustrated Lewis Pair Template.

    PubMed

    Ye, Ke-Yin; Kehr, Gerald; Daniliuc, Constantin G; Liu, Lei; Grimme, Stefan; Erker, Gerhard

    2016-08-01

    Coupling of carbon monoxide with nitrogen monoxide was achieved at a frustrated Lewis pair template. This unique reaction uses hydride as an auxiliary, which reductively activates carbon monoxide at the frustrated Lewis pair. The CO/NO coupling reaction then takes place through a pathway involving a radical reaction in which the hydrogen atom auxiliary is eventually removed again. PMID:27328914

  17. Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    SciTech Connect

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika; Grein, Matthew E.; Bennink, Ryan S.; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Wong, Franco N. C.

    2014-10-06

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory and we demonstrated a correlated-mode coupling efficiency of 97%±2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. We expect that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.

  18. Heralding efficiency and correlated-mode coupling of near-IR fiber-coupled photon pairs

    DOE PAGESBeta

    Dixon, P. Ben; Rosenberg, Danna; Stelmakh, Veronika; Grein, Matthew E.; Bennink, Ryan S.; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Wong, Franco N. C.

    2014-10-06

    We report on a systematic experimental study of heralding efficiency and generation rate of telecom-band infrared photon pairs generated by spontaneous parametric down-conversion and coupled to single mode optical fibers. We define the correlated-mode coupling efficiency--an inherent source efficiency--and explain its relation to heralding efficiency. For our experiment, we developed a reconfigurable computer controlled pump-beam and collection-mode optical apparatus which we used to measure the generation rate and correlated-mode coupling efficiency. The use of low-noise, high-efficiency superconducting-nanowire single-photon-detectors in this setup allowed us to explore focus configurations with low overall photon flux. The measured data agree well with theory andmore » we demonstrated a correlated-mode coupling efficiency of 97%±2%, which is the highest efficiency yet achieved for this type of system. These results confirm theoretical treatments and demonstrate that very high overall heralding efficiencies can, in principle, be achieved in quantum optical systems. We expect that these results and techniques will be widely incorporated into future systems that require, or benefit from, a high heralding efficiency.« less

  19. Effect of interlayer exchange coupling on magnetic chiral structures

    SciTech Connect

    Kang, S. P.; Kwon, H. Y.; Kim, H. S.; Shim, J. H.; Won, C.

    2015-07-28

    We numerically investigated the effect of interlayer exchange coupling on magnetic chiral structures, such as a helical/cycloidal spin structure and magnetic skyrmion crystal (SkX), which are produced in a magnetic system involving the Dzyaloshinskii-Moriya interaction (DMI). We report the existence of a phase transition where the length scale of magnetic structure discontinuously changes, and that there can be a novel magnetic structure around the phase boundary that exhibits double-ordering lengths of magnetic structure. Therefore, the system has multiple ground phases determined by the ratio of interlayer exchange coupling strength and DMI strength. Furthermore, we investigated the critical condition of the external perpendicular field required for the SkX. The critical field is significantly reduced under the effect of interlayer exchange coupling, which can stabilize the SkX without the external field.

  20. Magnetic Exchange Coupling in Ferromagnetic/Superconducting/Ferromagnetic Multilayers

    NASA Astrophysics Data System (ADS)

    de Melo, C. A. R. Sa

    2001-03-01

    The possibility of magnetic exchange coupling between ferromagnets (F) separated by superconductor (S) spacers in F/S/F multilayers is analysed theoretically [1,2]. Ideal systems for the observation of magnetic coupling through superconductors are complex oxide multilayers consisting of Colossal Magneto-Resistance (CMR) Ferromagnets and High Critical Temperature Cuprate Superconductors. For this coupling to occur, three "prima facie" conditions need to be satisfied. First, an indirect exchange coupling between the ferromagnets must exist when the superconductor is in its normal state. Second, superconductivity must not be destroyed due to the proximity of ferromagnetic boundaries. Third, roughness of the F/S interfaces must be small. Under these conditions, when the superconductor is cooled below its critical temperature T_c, the magnetic coupling changes. The appearance of the superconducting gap introduces a new length scale (the coherence length of the superconductor) and modifies the temperature dependence of the indirect exchange coupling existent in the normal state. The magnetic coupling is oscillatory both above and below T_c, as well as strongly temperature-dependent. However at low temperatures the indirect exchange coupling decay length is controlled by the coherence length of the superconductor, while at temperatures close to and above Tc the magnetic coupling decay length is controlled by the thermal length. [I would like to thank the Georgia Institute of Technology, NSF (Grant No. DMR-9803111) and NATO (Grant No. CRG-972261) for financial support.] [1] C. A. R. Sa de Melo, Phys. Rev. Lett. 79, 1933 (1997). [2] C. A. R. Sa de Melo, Phys. Rev. B 62, 12303 (2000).

  1. Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures

    PubMed Central

    Oezelt, Harald; Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon; Gusenbauer, Markus; Schubert, Christian; Albrecht, Manfred; Schrefl, Thomas

    2015-01-01

    Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau–Lifshitz–Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed. PMID:25937693

  2. Micromagnetic simulation of exchange coupled ferri-/ferromagnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Oezelt, Harald; Kovacs, Alexander; Reichel, Franz; Fischbacher, Johann; Bance, Simon; Gusenbauer, Markus; Schubert, Christian; Albrecht, Manfred; Schrefl, Thomas

    2015-05-01

    Exchange coupled ferri-/ferromagnetic heterostructures are a possible material composition for future magnetic storage and sensor applications. In order to understand the driving mechanisms in the demagnetization process, we perform micromagnetic simulations by employing the Landau-Lifshitz-Gilbert equation. The magnetization reversal is dominated by pinning events within the amorphous ferrimagnetic layer and at the interface between the ferrimagnetic and the ferromagnetic layer. The shape of the computed magnetization reversal loop corresponds well with experimental data, if a spatial variation of the exchange coupling across the ferri-/ferromagnetic interface is assumed.

  3. Ferromagnetic resonance of exchange-coupled perpendicularly magnetized bilayers

    NASA Astrophysics Data System (ADS)

    Devolder, Thibaut

    2016-04-01

    Strong ferromagnetic interlayer exchange couplings J in perpendicularly magnetized systems are becoming increasingly desirable for applications. We study whether ferromagnetic interlayer exchange couplings can be measured by a combination of broadband ferromagnetic resonance methods and magnetometry hysteresis loops. For this, we model the switching and the eigenexcitations in bilayer systems comprising a soft layer coupled to a thicker harder layer that possesses higher perpendicular magnetic anisotropy. For large J > 0, the switching fields are essentially independent of J but the frequency of the optical eigenmode of the bilayer and the linewidth of the acoustical and optical eigenmode are directly sensitive to the coupling. We derive a corpus of compact analytical expressions to analyze these frequencies, their linewidth and discuss the meaning thereof. We illustrate this corpus on a system mimicking the fixed layers of a magnetic tunnel junction meant for spin torque applications.

  4. A Framework of Computing Multipolar Exchange Interactions in Systems with Strong Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Pi, Shu-Ting

    We intro duce a theoretical framework for computations of anisotropic multipolar exchange interactions found in many spin-orbit coupled magnetic systems and propose a method to extract these coupling constants using a density functional total energy calculation. This method is develop ed using a multipolar expansion of lo cal density matrices for correlated orbitals that are responsible for magnetic degrees of freedom. Within the mean-field approximation, we show that each coupling constant can b e recovered from a series of total energy calculations via what we call the "pair-flip" technique. This technique flips the relative phase of a pair of multipoles and computes the corresponding total energy cost associated with the given exchange constant. To test it, we apply our method to Uranium Dioxide, which is a system known to have pseudospin J = 1 superexchange induced dipolar, and superexchange plus spin-lattice induced quadrupolar orderings. Our calculation reveals that the superexchange and spin-lattice contributions to the quadrupolar exchange interactions are about the same order with ferro- and antiferro-magnetic contributions, respectively. This highlights a competition rather than a cooperation between them. Our method could be a promising tool to explore magnetic properties of rare-earth compounds and hidden-order materials.

  5. Anisotropic multipolar exchange interactions in systems with strong spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Pi, Shu-Ting; Nanguneri, Ravindra; Savrasov, Sergey

    2014-07-01

    We introduce a theoretical framework for computations of anisotropic multipolar exchange interactions found in many spin-orbit coupled magnetic systems and propose a method to extract these coupling constants using a density functional total energy calculation. This method is developed using a multipolar expansion of local density matrices for correlated orbitals that are responsible for magnetic degrees of freedom. Within the mean-field approximation, we show that each coupling constant can be recovered from a series of total energy calculations via what we call the "pair-flip" technique. This technique flips the relative phase of a pair of multipoles and computes the corresponding total energy cost associated with the given exchange constant. To test it, we apply our method to uranium dioxide, which is a system known to have pseudospin J =1 superexchange induced dipolar, and superexchange plus spin-lattice induced quadrupolar orderings. Our calculation reveals that the superexchange and spin-lattice contributions to the quadrupolar exchange interactions are about the same order with ferro- and antiferromagnetic contributions, respectively. This highlights a competition rather than a cooperation between them. Our method could be a promising tool to explore magnetic properties of rare-earth compounds and hidden-order materials.

  6. Interlayer exchange coupling effect of L1(0) CoPt based exchange coupled composite media.

    PubMed

    Yang, Yang; Pandey, K K M; Chen, J S; Chow, G M; Hu, J F

    2011-03-01

    In this work, effects of exchange coupling of soft magnetic layer on switching field and magnetization reversal behaviour of CoPt-SiO2(soft)/CoPt-SiO2(hard) exchange coupled media were investigated. With increasing the thickness of the soft layer, both the coercivity and magnetization squareness of composite media decreased. Soft layer thickness 4 nm and below was more effective to significantly reduce the switching field than that above 4 nm. More incoherent switching behavior was observed with increasing soft layer thickness. PMID:21449436

  7. Magnetization dynamics in exchange coupled antiferromagnet spin superfluids

    NASA Astrophysics Data System (ADS)

    Liu, Yizhou; Barlas, Yafis; Yin, Gen; Zang, Jiadong; Lake, Roger

    Antiferromagnets (AFMs) are commonly used as the exchange bias layer in magnetic recording and spintronic devices. Recently, several studies on the spin transfer torque and spin pumping in AFMs reveal much more interesting physics in AFMs. Properties of AFMs such as the ultrafast switching within picoseconds and spin superfluidity demonstrate the potential to build AFM based spintronic devices. Here, we study the magnetization dynamics in an exchange coupled AFM systems. Beginning from the Landau-Lifshitz-Gilbert equation, we derive a Josephson-like equation for the exchange coupled system. We investigate the detailed magnetization dynamics by employing spin injection and spin pumping theory. We also propose a geometry that could be used to measure this magnetization dynamics. This work was supported as part of the Spins and Heat in Nanoscale Electronic Systems (SHINES) an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award #SC0012670.

  8. Exchange coupling between localized defect states in graphene nanoflakes

    NASA Astrophysics Data System (ADS)

    Droth, Matthias; Burkard, Guido

    2014-03-01

    Graphene nanoflakes are interesting because electrons are naturally confined in these quasi zero-dimensional structures, thus eluding the need for a bandgap. Defects inside the graphene lattice lead to localized states and the spins of two such localized states may be used for spintronics. We perform a tight-binding description on the entire system and, by virtue of a Schrieffer-Wolff-transformation on the bonding and antibonding states, we extract the coupling strength between the localized states. The coupling strength allows us to estimate the exchange coupling, which governs the dynamics of singlet-triplet spintronics.

  9. Magnetoelectricity coupled exchange bias in BaMnF4.

    PubMed

    Zhou, Shuang; Wang, Ji; Chang, Xiaofeng; Wang, Shuangbao; Qian, Bin; Han, Zhida; Xu, Qingyu; Du, Jun; Wang, Peng; Dong, Shuai

    2015-01-01

    Multiferroic BaMnF4 powder was prepared by hydrothermal method. Hysteretic field dependent magnetization curve at 5 K confirms the weak ferromagnetism aroused from the canted antiferromagnetic spins by magnetoelectric coupling. The blocking temperature of 65 K for exchange bias coincides well with the peak at 65 K in the zero-field cooled temperature-dependent magnetization curve, which has been assigned to the onset temperature of two-dimensional antiferromagnetism. An upturn kink of exchange field and coercivity with decreasing temperature was observed from 40 K to 20 K, which is consistent with the two-dimensional to three-dimensional antiferromagnetic transition at Néel temperature (~26 K). In contrast to the conventional mechanism of magnetization pinned by interfacial exchange coupling in multiphases, the exchange bias in BaMnF4 is argued to be a bulk effect in single phase, due to the magnetization pinned by the polarization through magnetoelectric coupling. PMID:26671575

  10. Magnetoelectricity coupled exchange bias in BaMnF4

    PubMed Central

    Zhou, Shuang; Wang, Ji; Chang, Xiaofeng; Wang, Shuangbao; Qian, Bin; Han, Zhida; Xu, Qingyu; Du, Jun; Wang, Peng; Dong, Shuai

    2015-01-01

    Multiferroic BaMnF4 powder was prepared by hydrothermal method. Hysteretic field dependent magnetization curve at 5 K confirms the weak ferromagnetism aroused from the canted antiferromagnetic spins by magnetoelectric coupling. The blocking temperature of 65 K for exchange bias coincides well with the peak at 65 K in the zero-field cooled temperature-dependent magnetization curve, which has been assigned to the onset temperature of two-dimensional antiferromagnetism. An upturn kink of exchange field and coercivity with decreasing temperature was observed from 40 K to 20 K, which is consistent with the two-dimensional to three-dimensional antiferromagnetic transition at Néel temperature (~26 K). In contrast to the conventional mechanism of magnetization pinned by interfacial exchange coupling in multiphases, the exchange bias in BaMnF4 is argued to be a bulk effect in single phase, due to the magnetization pinned by the polarization through magnetoelectric coupling. PMID:26671575

  11. Bidirectional private key exchange using delay-coupled semiconductor lasers.

    PubMed

    Porte, Xavier; Soriano, Miguel C; Brunner, Daniel; Fischer, Ingo

    2016-06-15

    We experimentally demonstrate a key exchange cryptosystem based on the phenomenon of identical chaos synchronization. In our protocol, the private key is symmetrically generated by the two communicating partners. It is built up from the synchronized bits occurring between two current-modulated bidirectionally coupled semiconductor lasers with additional self-feedback. We analyze the security of the exchanged key and discuss the amplification of its privacy. We demonstrate private key generation rates up to 11  Mbit/s over a public channel. PMID:27304310

  12. Strong Electron-Hole Exchange in Coherently Coupled Quantum Dots

    NASA Astrophysics Data System (ADS)

    Fält, Stefan; Atatüre, Mete; Türeci, Hakan E.; Zhao, Yong; Badolato, Antonio; Imamoglu, Atac

    2008-03-01

    We have investigated few-body states in vertically stacked quantum dots. Because of a small interdot tunneling rate, the coupling in our system is in a previously unexplored regime where electron-hole exchange plays a prominent role. By tuning the gate bias, we are able to turn this coupling off and study a complementary regime where total electron spin is a good quantum number. The use of differential transmission allows us to obtain unambiguous signatures of the interplay between electron and hole-spin interactions. Small tunnel coupling also enables us to demonstrate all-optical charge sensing, where a conditional exciton energy shift in one dot identifies the charging state of the coupled partner.

  13. Exchangers man the pumps: Functional interplay between proton pumps and proton-coupled Ca(2+) exchangers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tonoplast-localised proton-coupled Ca(2+) transporters encoded by cation/H(+) exchanger (CAX) genes play a critical role in sequestering Ca(2+) into the vacuole. These transporters may function in coordination with Ca(2+) release channels, to shape stimulus-induced cytosolic Ca(2+) elevations. Recen...

  14. Exchange coupling in metals as understood then and now

    SciTech Connect

    Watson, R.E. )

    1989-01-01

    The first US magnetism conference occurred in 1952 and featured an invited session on exchange coupling in metals with Zener, Slater, Wohlfarth and Van Vleck speaking. All were concerned with intra- and interatomic exchange with Zener discussing coupling via conduction electron polarization while Wohlfarth and Slater were preoccupied with itinerant ferromagnetism. Van Vleck verbalized the Hubbard Hamiltonian (prior to its derivation). That meeting may be viewed as the ultimate discussion of magnetism prior to modern day computation and many of the ideas expressed there underlie our computational activities today. Solutions of the Hubbard Hamiltonian and electronic structure calculations, as applied to magnetism, come to mind. We will concentrate on the latter here, since solving the Hubbard Hamiltonian will be of great concern elsewhere in this meeting, and we will attempt to juxtapose current findings with some of the thoughts of that pioneering meeting. 30 refs., 5 figs.

  15. Bimagnetic nanoparticles with enhanced exchange coupling and energy products

    NASA Astrophysics Data System (ADS)

    Nandwana, Vikas; Chaubey, Girija S.; Yano, Kazuaki; Rong, Chuan-bing; Liu, J. Ping

    2009-01-01

    Bimagnetic FePt/Fe3O4 nanoparticles with core/shell or heterodimer structure have been prepared using a sequential synthetic method. The dimension of both FePt and Fe3O4 was tuned by varying the synthesis parameters. The as-synthesized bimagnetic nanoparticles were superparamagnetic at room temperature. After being annealed in a reducing atmosphere, the FePt/Fe3O4 bimagnetic nanoparticles were converted to a hard magnetic nanocomposite with enhanced energy products due to the exchange coupling between the hard and soft magnetic phases. It was found that the exchange coupling in nanocomposites made from the core/shell nanoparticles is stronger than that from the heterodimer nanoparticles. By tuning the dimensions of the FePt and Fe3O4 phases, the energy product up to 17.8 MGOe was achieved in the annealed nanocomposites, which is 36% higher than the isotropic single-phase FePt counterpart.

  16. Confinement and precession of vortex pairs in coherently coupled Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Tylutki, Marek; Pitaevskii, Lev P.; Recati, Alessio; Stringari, Sandro

    2016-04-01

    The dynamic behavior of vortex pairs in two-component coherently (Rabi) coupled Bose-Einstein condensates is investigated in the presence of harmonic trapping. We discuss the role of the surface tension associated with the domain wall connecting two vortices in condensates of atoms occupying different spin states and its effect on the precession of the vortex pair. The results, based on the numerical solution of the Gross-Pitaevskii equations, are compared with the predictions of an analytical macroscopic model and are discussed as a function of the size of the pair, the Rabi coupling, and the intercomponent interaction. We show that the increase of the Rabi coupling results in the disintegration of the domain wall into smaller pieces, connecting vortices of newly created vortex pairs. The resulting scenario is the analog of quark confinement and string breaking in quantum chromodynamics.

  17. Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method

    NASA Astrophysics Data System (ADS)

    Neese, Frank; Wennmohs, Frank; Hansen, Andreas

    2009-03-01

    Coupled-electron pair approximations (CEPAs) and coupled-pair functionals (CPFs) have been popular in the 1970s and 1980s and have yielded excellent results for small molecules. Recently, interest in CEPA and CPF methods has been renewed. It has been shown that these methods lead to competitive thermochemical, kinetic, and structural predictions. They greatly surpass second order Møller-Plesset and popular density functional theory based approaches in accuracy and are intermediate in quality between CCSD and CCSD(T) in extended benchmark studies. In this work an efficient production level implementation of the closed shell CEPA and CPF methods is reported that can be applied to medium sized molecules in the range of 50-100 atoms and up to about 2000 basis functions. The internal space is spanned by localized internal orbitals. The external space is greatly compressed through the method of pair natural orbitals (PNOs) that was also introduced by the pioneers of the CEPA approaches. Our implementation also makes extended use of density fitting (or resolution of the identity) techniques in order to speed up the laborious integral transformations. The method is called local pair natural orbital CEPA (LPNO-CEPA) (LPNO-CPF). The implementation is centered around the concepts of electron pairs and matrix operations. Altogether three cutoff parameters are introduced that control the size of the significant pair list, the average number of PNOs per electron pair, and the number of contributing basis functions per PNO. With the conservatively chosen default values of these thresholds, the method recovers about 99.8% of the canonical correlation energy. This translates to absolute deviations from the canonical result of only a few kcal mol-1. Extended numerical test calculations demonstrate that LPNO-CEPA (LPNO-CPF) has essentially the same accuracy as parent CEPA (CPF) methods for thermochemistry, kinetics, weak interactions, and potential energy surfaces but is up to 500

  18. Intergrain Exchange Coupling in PrCo/Co Films

    NASA Astrophysics Data System (ADS)

    Liu, J. P.; Shan, Z. S.; Sellmyer, D. J.

    1997-03-01

    Magnetic hardening and the intergrain exchange coupling in the PrCo/Co multilayer films have been investigated. The PrCo/Co multilayer thin films with Cr underlayer and cover layer were prepared by sputtering and followed by heat treatment. The as-deposited PrCo layer is amorphous and magnetically soft. Considerable coercivity is developed after the films are annealed at 500(C for 40 minutes. The maximum coercivity is 10 kOe. From the hysteresis loop it can be seen that the ratio Mr/Ms is larger than 0.5, suggesting an intergrain exchange coupling. It is interesting to note that the coercivity of the films with the Co interlayers is as large as that of the single-layer films, if the thickness of Co layers is less than 6 nm. This may be connected to the theoretical prediction that the intergrain exchange coupling remains strong if the dimension of the soft phase is less than the twice of the domain wall thickness in the hard phase (typically 3 nm in the rare earth-transition metal phases). Moreover, the insertion of Co layer enhances the magnetization remarkably. In the best situation, we obtained a maximum energy product of the film of 20 MGOe at room temperature.

  19. Coherence of Coupled Dangling-Bond Pairs on the Silicon Surface

    NASA Astrophysics Data System (ADS)

    Shaterzadeh-Yazdi, Zahra

    We characterize coherent dynamics of closely-spaced dangling bond (DB) pairs positioned on a silicon surface and sharing an excess electron. We investigate whether a coupled-DB pair is a potential candidate for a charge qubit. A dangling bond is an atomic-scale entity that acts like a quantum dot. By shrinking the scale of the quantum dots and the spacing between them, we expect that the excess-electron tunneling rate increases dramatically with decreasing inter-dot separation, while decoherence scales weakly. Our analysis of the coherent dynamics of coupled-DB pairs shows promise in this respect. The extremely high tunneling rate of the DB excess charge greatly exceeds the expected decoherence rates for a silicon-based system, thereby overcoming the critical obstacle of charge qubits for quantum computing purposes. However, this scaling advantage comes at the price of requiring rapid control and readout. We devise a scheme for measuring the DB-pair dynamics, but investigating the fast control is beyond the scope of this thesis. Furthermore, we investigate the effect of the silicon-surface structure on the coherence of a coupled-DB pair. The silicon surface of interest is well patterned, but it has an anisotropic structure. Therefore, the coupling strength of a DB pair depends on the arrangement of the DBs on the silicon surface. We employ ab initio techniques and calculate the energy splitting for a wide variety of coupled DB-pair configurations on this surface. The results show that the energy splitting (and consequently the tunneling rate of the DB-pair excess charge) is a function of the DBs' location on the surface and also it strongly depends on the structural orientation of the DBs' orbital. Based on the results, DB-pair configurations are categorized into four groups, such that the changing rate of energy splitting versus DB-pair separation is different among the groups. Knowing about the effect of the surface structure on the DB-pair energy splitting is

  20. Characterizing formation of interfacial domain wall and exchange coupling strength in laminated exchange coupled composites

    NASA Astrophysics Data System (ADS)

    Hou, H.-C.; Kirby, B. J.; Gao, K. Z.; Lai, C.-H.

    2013-04-01

    We have studied the N-dependent switching behavior of composite magnets, comprised of a hard CoPtCr-SiO2 (CPCS) film and a laminated soft [Pt/CPCS]N multilayer. First order reversal curve magnetometry provides evidence of interfacial domain wall (iDW) assisted reversal for N ≥ 5. The magnetic depth profiles determined from polarized neutron reflectometry (PNR) explicitly demonstrate that the composite magnets are more rigidly coupled for N = 3 than for N = 7, and suggest that for N = 7 reversal occurs via formation of iDW. By fitting the PNR profile into the energy surface calculations, we can further deduce the vertical coupling strength in the laminated soft layer.

  1. Magnetic Exchange Couplings in Transition Metal Complexes from DFT

    NASA Astrophysics Data System (ADS)

    Peralta, Juan

    In this talk I will review our current efforts for the evaluation of magnetic exchange couplings in transition metal complexes from density functional theory. I will focus on the performance of different DFT approximations, including a variety of hybrid density functionals, and show that hybrid density functionals containing approximately 30% Hartree-Fock type exchange are in general among the best choice in terms of accuracy. I will also describe a novel computational method to evaluate exchange coupling parameters using analytic self-consistent linear response theory. This method avoids the explicit evaluation of energy differences, which can become impractical for large systems. Our approach is based on the evaluation of the transversal magnetic torque between two magnetic centers for a given spin configuration using explicit constraints of the local magnetization direction via Lagrange multipliers. This method is applicable in combination with any modern density functional with a noncollinear spin generalization and can be utilized as a ``black-box''. I will show proof-of-concept calculations in frustrated Fe7IIIdisk-shaped clusters, and dinuclear CuII, FeIII, and heteronuclear complexes. NSF DMR-1206920.

  2. Manipulation by exchange coupling in layered magnetic structures

    SciTech Connect

    Moskalenko, M. A.; Uzdin, V. M.; Zabel, H.

    2014-02-07

    Exchange coupling in magnetic heterostructures can be modified via introduction of additional magnetic spacer layers at the interfaces. The magnetic characteristics and the spacer layer thickness determine the functional properties of the whole system. We show that the hysteresis loop area of trilayer spring magnets with two different soft magnetic layers (s1, s2) and one hard magnetic layer (h) with the sequence s1/s2/h can be increased as compared to both bilayer structures s1/h and s2/h with the same total thickness of the soft layers and for definite thickness ratios of the soft layers and their sequences. For ferrimagnetic spin valves, the perpendicular exchange bias effect can be tuned via the thickness of non-magnetic spacer layers at the interface, which determine the exchange coupling between ferrimagnets. A simple quasi one-dimensional phenomenological model is able to describe the magnetic hysteresis of even complex layered structures and to predict optimal geometrical and magnetic parameters of such heterostructures.

  3. Exchange coupling between silicon donors: The crucial role of the central cell and mass anisotropy

    NASA Astrophysics Data System (ADS)

    Pica, G.; Lovett, B. W.; Bhatt, R. N.; Lyon, S. A.

    2014-06-01

    Donors in silicon are now demonstrated as one of the leading candidates for implementing qubits and quantum information processing. Single qubit operations, measurements, and long coherence times are firmly established, but progress on controlling two qubit interactions has been slower. One reason for this is that the interdonor exchange coupling has been predicted to oscillate with separation, making it hard to estimate in device designs. We present a multivalley effective mass theory of a donor pair in silicon, including both a central cell potential and the effective mass anisotropy intrinsic in the Si conduction band. We are able to accurately describe the single donor properties of valley-orbit coupling and the spatial extent of donor wave functions, highlighting the importance of fitting measured values of hyperfine coupling and the orbital energy of the 1s levels. Ours is a simple framework that can be applied flexibly to a range of experimental scenarios, but it is nonetheless able to provide fast and reliable predictions. We use it to estimate the exchange coupling between two donor electrons and we find a smoothing of its expected oscillations, and predict a monotonic dependence on separation if two donors are spaced precisely along the [100] direction.

  4. Stabilization of magnetic helix in exchange-coupled thin films

    PubMed Central

    Dzemiantsova, L. V.; Meier, G.; Röhlsberger, R.

    2015-01-01

    Based on micromagnetic simulations, we report on a novel magnetic helix in a soft magnetic film that is sandwiched between and exchange-coupled to two hard magnetic layers with different anisotropies. We show that such a confined helix stays stable without the presence of an external magnetic field. The magnetic stability is determined by the energy minimization and is a result of an internal magnetic field created by the exchange interaction. We show that this internal field stores a magnetic energy density of a few kJ/m3. We also find that it dramatically modifies ferromagnetic resonances, such that the helix can be used as a ferromagnetic resonance filter and a fast acting attenuator. PMID:26537574

  5. Stabilization of magnetic helix in exchange-coupled thin films.

    PubMed

    Dzemiantsova, L V; Meier, G; Röhlsberger, R

    2015-01-01

    Based on micromagnetic simulations, we report on a novel magnetic helix in a soft magnetic film that is sandwiched between and exchange-coupled to two hard magnetic layers with different anisotropies. We show that such a confined helix stays stable without the presence of an external magnetic field. The magnetic stability is determined by the energy minimization and is a result of an internal magnetic field created by the exchange interaction. We show that this internal field stores a magnetic energy density of a few kJ/m(3). We also find that it dramatically modifies ferromagnetic resonances, such that the helix can be used as a ferromagnetic resonance filter and a fast acting attenuator. PMID:26537574

  6. Effect of ionophores on the rate of intramolecular cation exchange in durosemiquinone ion pairs

    NASA Technical Reports Server (NTRS)

    Eastman, M. P.; Bruno, G. V.; Mcguyer, C. A.; Gutierrez, A. R.; Shannon, J. M.

    1979-01-01

    The effects of the ionophores 15-crown-5 (15C5), 18-crown-6 (18C6), dibenzo-18-crown-6 (DBC) and cryptand 222 (C222) on intramolecular cation exchange in ion pairs of the sodium salt of the durosemiquinone anion in benzene solution are investigated. Electron paramagnetic resonance spectra of the 18C6 and 15C5 complexes with durosemiquinone reduced by contact with a sodium mirror show an alternating line width which indicates that the sodium ion is being exchanged between equivalent sites near the oxygens of the semiquinone with activation energies of 8.7 and 6.0 kcal/mole and Arrhenius preexponential factors of 9 x 10 to the 12th/sec and 10 to the 12th/sec, respectively. Spectra obtained for the DBC complexes show no evidence of exchange, while those of C222 indicate rapid exchange. It is also noted that the hyperfine splitting constants measured do not change over the 50-K temperature interval studied.

  7. Common Coupled Fixed Point Theorems for Two Hybrid Pairs of Mappings under φ-ψ Contraction

    PubMed Central

    Handa, Amrish

    2014-01-01

    We introduce the concept of (EA) property and occasional w-compatibility for hybrid pair F : X × X → 2X and f : X → X. We also introduce common (EA) property for two hybrid pairs F, G : X → 2X and f, g : X → X. We establish some common coupled fixed point theorems for two hybrid pairs of mappings under φ-ψ contraction on noncomplete metric spaces. An example is also given to validate our results. We improve, extend and generalize several known results. The results of this paper generalize the common fixed point theorems for hybrid pairs of mappings and essentially contain fixed point theorems for hybrid pair of mappings. PMID:27340688

  8. Positive exchange bias observed in Pt-inserted Cr2O3/Co exchange coupled bilayers

    NASA Astrophysics Data System (ADS)

    Nozaki, T.; Oida, M.; Ashida, T.; Shimomura, N.; Shibata, T.; Sahashi, M.

    2014-11-01

    We investigated the effect of Pt insertion on a Cr2O3/Co exchange coupling system. The perpendicular exchange bias μ0Hex decreased with increasing Pt insertion layer thickness, and we observed positive μ0Hex for samples with relatively thick Pt insertion layers. We also examined the cooling field μ0Hfc dependence of μ0Hex for the samples. At small μ0Hfc, all samples exhibited negative μ0Hex. With increasing μ0Hfc, a shift of μ0Hex from negative to positive was observed. In the past, similar behaviors were observed for FeF2/Fe systems exhibiting positive μ0Hex. In addition, the μ0Hfc dependence of μ0Hex was well fitted by an equation taking into account the Zeeman energy at the surface of an antiferromagnet as well as an antiferromagnetic exchange coupling. The results strongly suggest that (1) Cr2O3 surface spin is affected by the external magnetic field and (2) the coupling at the Cr2O3/Pt/Co interface is antiferromagnetic.

  9. Observation of anisotropic energy transfer in magnetically coupled magnetic vortex pair

    NASA Astrophysics Data System (ADS)

    Hasegawa, N.; Sugimoto, S.; Kumar, D.; Barman, S.; Barman, A.; Kondou, K.; Otani, Y.

    2016-06-01

    We have experimentally investigated the energy transfer and storage in the magnetostatically coupled vortices in a pair of disks. By measuring the frequency dependence of the rectified dc voltage, we observed a specific gyrating motion due to anomalous energy storage at the off-resonant frequency for anti-parallel polarities. Micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation qualitatively reproduce the experimental results and reveal that the behavior arises from the anisotropic energy transfer, i.e., the modulation of effective damping constant of the pair disks, originating from the phase difference between coupled vortex cores. These findings can be of use in magnetic vortex based logic operations.

  10. On the bilinear exchange coupling in ferromagnetic multilayers

    NASA Astrophysics Data System (ADS)

    Tilioua, M.

    2009-04-01

    We investigate a mathematical model describing the bilinear interlayer exchange coupling (IEC) of ferromagnets through spacers. We propose an extension in the case of the Maxwell system of the results obtained in Hamdache K and Tilioua M (2004 SIAM J. Appl. Math. 64 1077-97). The model couples the Landau-Lifshitz-Gilbert (LLG) equations with the Maxwell system. The Hoffmann interfacial boundary condition is considered to take into account bilinear IEC. The behavior of the electromagnetic field in the two cases of a thin and large nonmagnetic spacer is discussed. For example we obtain that the magnetic field in the nonmagnetic spacer vanishes in the case of a thin spacer. However the electric field depends explicitly on the initial data. Various other convergence results are also given.

  11. Integrable pair-transition-coupled nonlinear Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.

  12. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system. PMID:26382492

  13. Crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators

    NASA Astrophysics Data System (ADS)

    Yang, Chui-Ping; Su, Qi-Ping; Zheng, Shi-Biao; Nori, Franco

    2016-04-01

    In a circuit consisting of two or more resonators, the intercavity crosstalk is inevitable, which could create some problems, such as degrading the performance of quantum operations and the fidelity of various quantum states. The focus of this work is to propose a crosstalk-insensitive method for simultaneously coupling multiple pairs of resonators, which is important in large-scale quantum information processing and communication in a network consisting of resonators or cavities. In this work, we consider 2 N resonators of different frequencies, which are coupled to a three-level quantum system (qutrit). By applying a strong pulse to the coupler qutrit, we show that an effective Hamiltonian can be constructed for simultaneously coupling multiple pairs of resonators. The main advantage of this proposal is that the effect of inter-resonator crosstalks is greatly suppressed by using resonators of different frequencies. In addition, by employing the qutrit-resonator dispersive interaction, the intermediate higher-energy level of the qutrit is virtually excited and thus decoherence from this level is suppressed. This effective Hamiltonian can be applied to implement quantum operations with photonic qubits distributed in different resonators. As one application of this Hamiltonian, we show how to simultaneously generate multiple Einstein-Podolsky-Rosen pairs of photonic qubits distributed in 2 N resonators. Numerical simulations show that it is feasible to prepare two high-fidelity EPR photonic pairs using a setup of four one-dimensional transmission line resonators coupled to a superconducting flux qutrit with current circuit QED technology.

  14. Scaling properties of the pairing problem in the strong coupling limit

    SciTech Connect

    Barbaro, M.B.; Cenni, R.; Molinari, A.; Quaglia, M.R.

    2013-10-15

    We study the excited states of the pairing Hamiltonian providing an expansion for their energy in the strong coupling limit. To assess the role of the pairing interaction we apply the formalism to the case of a heavy atomic nucleus. We show that only a few statistical moments of the level distribution are sufficient to yield an accurate estimate of the energy for not too small values of the coupling G and we give the analytic expressions of the first four terms of the series. Further, we discuss the convergence radius G{sub sing} of the expansion showing that it strongly depends upon the details of the level distribution. Furthermore G{sub sing} is not related to the critical values of the coupling G{sub crit}, which characterize the physics of the pairing Hamiltonian, since it can exist even in the absence of these critical points. -- Highlights: •We study the excitation spectrum of the pairing Hamiltonian. •We provide an analytic expansion around the strong coupling limit. •We discuss the convergence radius of the expansion. •We connect the radius with the critical points of H.

  15. Pair-eigenstates and mutual alignment of coupled molecular rotors in a magnetic field.

    PubMed

    Sharma, Ketan; Friedrich, Bretislav

    2016-05-11

    We examine the rotational states of a pair of polar (2)Σ molecules subject to a uniform magnetic field. The electric dipole-dipole interaction between the molecules creates entangled pair-eigenstates of two types. In one type, the Zeeman interaction between the inherently paramagnetic molecules and the magnetic field destroys the entanglement of the pair-eigenstates, whereas in the other type it does not. The pair-eigenstates exhibit numerous intersections, which become avoided for pair-eigenstates comprised of individual states that meet the selection rules ΔJi = 0, ± 1, ΔNi = 2n (n = 0, ±1, ±2,…), and ΔMi = 0, ± 1 imposed by the electric dipole-dipole operator. Here Ji, Ni and Mi are the total, rotational and projection angular momentum quantum numbers of molecules i = 1, 2 in the absence of the electric dipole-dipole interaction. We evaluate the mutual alignment of the pair-eigenstates and find it to be independent of the magnetic field, except for states that undergo avoided crossings, in which case the alignment of the interacting states is interchanged at the magnetic field corresponding to the crossing point. We present an analytic model which provides ready estimates of the pairwise alignment cosine that characterises the mutual alignment of the pair of coupled rotors. PMID:27126576

  16. Electron-phonon-coupling-driven pairing symmetry transition in a ladder

    NASA Astrophysics Data System (ADS)

    Tam, Ka-Ming; Castro Neto, Antonio H.; Tsai, Shan-Wen; Campbell, David K.

    2006-03-01

    We address the effects of electron-phonon coupling in the electron-electron interacting ladder using the recently developed functional renormalization group method, in which the full retardation effects can be taken into account impartially. We study the doped Holstein-Hubbard ladder as a typical example and show that there is a transition between s-wave and d-wave pairing as a function of electron-phonon coupling and doping level. This contrasts with recent results from a two-step renormalization group, which suggest that the electron-phonon coupling only contributes in a subdominant fashion and that the spin-gapped pairing phase always has d-wave symmetry, unchanged from the doped Hubbard ladder without electron-phonon interaction. S.-W. Tsai, A.H. Castro Neto, R. Shankar, D.K. Campbell, Phys. Rev. B 72, 054531 (2005). Alexander Seidel, Hsiu-Hau Lin, Dung-Hai Lee, Phys. Rev. B 71, 220501 (2005).

  17. CO2 exchange following peat extraction - a comparison of two paired restored/unrestored peatlands

    NASA Astrophysics Data System (ADS)

    Strachan, Ian; Strack, Maria; Pelletier, Luc; Nugent, Kelly; Rankin, Tracy

    2016-04-01

    Peat extraction is an important industry in parts of Canada and elsewhere globally. The resulting disturbance from drainage and vacuum-harvesting is mitigated through best practices which now incorporate restoration intended to return the peatland's biodiversity and greenhouse gas (GHG) exchange to that resembling the pre-disturbance state. We examine the net ecosystem exchange of CO2 (NEE) in two sets of paired peatlands. Within each pair, the extraction year was the same and the sites were treated identically post-extraction in terms of management (blocking drains or leveling as applicable). The first pair is located in the vicinity of Rivière-du-Loup, Québec, Canada and were harvested in 1980. The Bois-des-Bel (BDB) site was restored in 1999 following the methods of Quinty and Rochefort (2003). GHG fluxes have been studied at various points since restoration (e.g. Strack and Zuback, 2013) largely using chamber measurements. The site now hosts a thriving bog ecosystem with Sphagnum, Eriophorum and shrub communities. A site 30 km away near Saint-Alexandre de Kamouraska (SAK) was managed post-harvest as BDB with drains blocked but was left unrestored and now has only sparse Eriophorum with invasive species. The second pair of peatlands represents a newly extracted site near Seba Beach, Alberta, Canada. One field was restored (SBR) in autumn 2012 as per the Québec sites but with ditches infilled when the fields were levelled while the other (SBU) was left unrestored. In the summer of 2013, eddy covariance towers were installed at each location and measured NEE continuously at 10Hz throughout the subsequent periods. BDB and SBR remain operational today while SBU was removed in fall 2014 and SAK in fall 2015. In this presentation, we will focus on the coincident years of operation. After 15 years, BDB has measured NEE in the range of that observed at natural peatlands. A summer sink and winter release lead to annual uptake of CO2. At SAK, the lack of establishment

  18. A comparative study of single reference correlation methods of the coupled-pair type

    NASA Astrophysics Data System (ADS)

    Wennmohs, Frank; Neese, Frank

    2008-01-01

    Several variants of coupled electron pair type approximations are compared with respect to their accuracy in the prediction of bond distances, harmonic vibrational frequencies and anharmonic corrections for a range of closed-shell diatomic molecules. In the first part of the paper the coupled-electron pair (CEPA) methods (CEPA/1,2,3) are discussed. Extensions of these methods allow the derivation of the correlation energy from the stationarization of a correlation energy functional (CPF/1,2,3 methods). All methods are formulated as diagonally dressed configuration-interaction with single- and double-excitations (CISD) eigenvalue problems. Averaging the diagonal shifts of the CPF methods in various ways lead to the ACPF and AQCC methods. Several small modifications of the shifts for the single excitations are proposed that enhance the stability of the methods (NCPF/1,2,3, NCEPA/1,2,3, NACPF). The reduced shifts are justified by linear response arguments. The implementation of the methods for a closed-shell ground state is described. In the application part, we first tested the size-consistency, exactness for two-electron systems and unitary invariance of the methods. Extensive numerical studies with polarized quadruple- ζ basis sets are employed to test the accuracy of the coupled pair approaches relative to the more elaborate quadratic CI (QCISD) and coupled-cluster (CCSD and CCSD(T)) approaches. Not surprisingly, the CCSD(T) method is the most accurate approach on average. However, the proposed NCPF/1 variant led to even smaller average errors for bond distances (˜0.2 pm relative to ˜0.3 pm for CCSD(T)) while predicting still accurate harmonic frequencies (av. Error ˜25 cm -1 for NCPF/1, ˜8 cm -1 for CCSD(T) and ˜45 cm -1 for CCSD). All coupled pair methods are more accurate than present day DFT approaches (BP86, B3LYP). The exception is the recently proposed double-hybrid B2PLYP functional that approaches the coupled pair performance. Some more difficult

  19. Segregation parameters and pair-exchange mixing models for turbulent nonpremixed flames

    NASA Technical Reports Server (NTRS)

    Chen, J.-Y.; Kollman, W.

    1991-01-01

    The progress of chemical reactions in nonpremixed turbulent flows depends on the coexistence of reactants, which are brought together by mixing. The degree of mixing can strongly influence the chemical reactions and it can be quantified by segregation parameters. In this paper, the relevance of segregation parameters to turbulent mixing and chemical reactions is explored. An analysis of the pair-exchange mixing models is performed and an explanation is given for the peculiar behavior of such models in homogeneous turbulence. The nature of segregation parameters in a H2/Ar-air nonpremixed jet flame is investigated. The results show that Monte Carlo simulation with the modified Curl's mixing model predicts segregation parameters in close agreement with the experimental values, providing an indirect validation for the theoretical model.

  20. Room temperature skyrmion ground state stabilized through interlayer exchange coupling

    SciTech Connect

    Chen, Gong Schmid, Andreas K.; Mascaraque, Arantzazu; N'Diaye, Alpha T.

    2015-06-15

    Possible magnetic skyrmion device applications motivate the search for structures that extend the stability of skyrmion spin textures to ambient temperature. Here, we demonstrate an experimental approach to stabilize a room temperature skyrmion ground state in chiral magnetic films via exchange coupling across non-magnetic spacer layers. Using spin polarized low-energy electron microscopy to measure all three Cartesian components of the magnetization vector, we image the spin textures in Fe/Ni films. We show how tuning the thickness of a copper spacer layer between chiral Fe/Ni films and perpendicularly magnetized Ni layers permits stabilization of a chiral stripe phase, a skyrmion phase, and a single domain phase. This strategy to stabilize skyrmion ground states can be extended to other magnetic thin film systems and may be useful for designing skyrmion based spintronics devices.

  1. Optimization of perpendicular recording on exchange coupled composite media

    NASA Astrophysics Data System (ADS)

    Tang, Yuhui; Zhu, Jian-Gang; Hong, Sooyoul; Che, Xiaodong

    2008-04-01

    Using micromagnetic modeling, the recording performance of exchange coupled composite (ECC) media with perpendicular heads was systematically studied. The simulations indicated that the switching field angular dependency of ECC media is similar to the continuous media switching behavior. By tuning the magnetic properties of the soft/hard layers, it was found that a soft layer with high saturation magnetization and low anisotropy energy caused large dc noise and unfavorable Adjacent Track Erasure (ATE) performance in recording, which is mainly due to the small nucleation field. A quantitative optimization of ECC media was given. Recording with different head designs on ECC media was also evaluated and this showed that large head field gradients at both the trailing edge and track edges are crucial to the implementation of ECC media at high recording areal density.

  2. Exchange-coupled magnetic nanoparticles for efficient heat induction

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Hyun; Jang, Jung-Tak; Choi, Jin-Sil; Moon, Seung Ho; Noh, Seung-Hyun; Kim, Ji-Wook; Kim, Jin-Gyu; Kim, Il-Sun; Park, Kook In; Cheon, Jinwoo

    2011-07-01

    The conversion of electromagnetic energy into heat by nanoparticles has the potential to be a powerful, non-invasive technique for biotechnology applications such as drug release, disease treatment and remote control of single cell functions, but poor conversion efficiencies have hindered practical applications so far. In this Letter, we demonstrate a significant increase in the efficiency of magnetic thermal induction by nanoparticles. We take advantage of the exchange coupling between a magnetically hard core and magnetically soft shell to tune the magnetic properties of the nanoparticle and maximize the specific loss power, which is a gauge of the conversion efficiency. The optimized core-shell magnetic nanoparticles have specific loss power values that are an order of magnitude larger than conventional iron-oxide nanoparticles. We also perform an antitumour study in mice, and find that the therapeutic efficacy of these nanoparticles is superior to that of a common anticancer drug.

  3. High energy products in exchange-coupled nanocomposite films

    SciTech Connect

    Liu, J.P.; Liu, Y.; Skomski, R.; Sellmyer, D.J.

    1999-09-01

    Several systems of nanocomposite thin films have been prepared by plasma sputtering and heat treatment. By choosing suitable multilayer structures of the as-deposited films and subsequent heat-treatment processes, the nanostructures of the films have been tailored. The thermal processing is the key to control the morphology. Appropriate heat-treatment processes have been found for the systems studied, which result in the desired nanostructures. For the first time a nearly ideal nanostructure with the soft-phase grains embedded homogeneously in the hard phase grains has been obtained for the FePt-Fe{sub 1{minus}x}Pt{sub x} (x{approximately}0.3) system. Effective intergrain exchange coupling has been realized. As a consequence, high energy products up to 50 MGOe have been achieved.

  4. Energy exchange in strongly coupled plasmas with electron drift

    SciTech Connect

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-15

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  5. Energy exchange in strongly coupled plasmas with electron drift

    NASA Astrophysics Data System (ADS)

    Akbari-Moghanjoughi, M.; Ghorbanalilu, M.

    2015-11-01

    In this paper, the generalized viscoelastic collisional quantum hydrodynamic model is employed in order to investigate the linear dielectric response of a quantum plasma in the presence of strong electron-beam plasma interactions. The generalized Chandrasekhar's relativistic degeneracy pressure together with the electron-exchange and Coulomb interaction effects are taken into account in order to extend current research to a wide range of plasma number density relevant to big planetary cores and astrophysical compact objects. The previously calculated shear viscosity and the electron-ion collision frequencies are used for strongly coupled ion fluid. The effect of the electron-beam velocity on complex linear dielectric function is found to be profound. This effect is clearly interpreted in terms of the wave-particle interactions and their energy-exchange according to the sign of the imaginary dielectric function, which is closely related to the wave attenuation coefficient in plasmas. Such kinetic effect is also shown to be in close connection with the stopping power of a charged-particle beam in a quantum plasma. The effect of many independent plasma parameters, such as the ion charge-state, electron beam-velocity, and relativistic degeneracy, is shown to be significant on the growing/damping of plasma instability or energy loss/gain of the electron-beam.

  6. Wealth distribution of simple exchange models coupled with extremal dynamics

    NASA Astrophysics Data System (ADS)

    Bagatella-Flores, N.; Rodríguez-Achach, M.; Coronel-Brizio, H. F.; Hernández-Montoya, A. R.

    2015-01-01

    Punctuated Equilibrium (PE) states that after long periods of evolutionary quiescence, species evolution can take place in short time intervals, where sudden differentiation makes new species emerge and some species extinct. In this paper, we introduce and study the effect of punctuated equilibrium on two different asset exchange models: the yard sale model (YS, winner gets a random fraction of a poorer player's wealth) and the theft and fraud model (TF, winner gets a random fraction of the loser's wealth). The resulting wealth distribution is characterized using the Gini index. In order to do this, we consider PE as a perturbation with probability ρ of being applied. We compare the resulting values of the Gini index at different increasing values of ρ in both models. We found that in the case of the TF model, the Gini index reduces as the perturbation ρ increases, not showing dependence with the agents number. While for YS we observe a phase transition which happens around ρc = 0.79. For perturbations ρ <ρc the Gini index reaches the value of one as time increases (an extreme wealth condensation state), whereas for perturbations greater than or equal to ρc the Gini index becomes different to one, avoiding the system reaches this extreme state. We show that both simple exchange models coupled with PE dynamics give more realistic results. In particular for YS, we observe a power low decay of wealth distribution.

  7. Conserved arginines on the rim of Hfq catalyze base pair formation and exchange

    PubMed Central

    Panja, Subrata; Schu, Daniel J.; Woodson, Sarah A.

    2013-01-01

    The Sm-like protein Hfq is required for gene regulation by small RNAs (sRNAs) in bacteria and facilitates base pairing between sRNAs and their mRNA targets. The proximal and distal faces of the Hfq hexamer specifically bind sRNA and mRNA targets, but they do not explain how Hfq accelerates the formation and exchange of RNA base pairs. Here, we show that conserved arginines on the outer rim of the hexamer that are known to interact with sRNA bodies are required for Hfq’s chaperone activity. Mutations in the arginine patch lower the ability of Hfq to act in sRNA regulation of rpoS translation and eliminate annealing of natural sRNAs or unstructured oligonucleotides, without preventing binding to either the proximal or distal face. Stopped-flow FRET and fluorescence anisotropy show that complementary RNAs transiently form a ternary complex with Hfq, but the RNAs are not released as a double helix in the absence of rim arginines. RNAs bound to either face of Hfq quench the fluorescence of a tryptophan adjacent to the arginine patch, demonstrating that the rim can simultaneously engage two RNA strands. We propose that the arginine patch overcomes entropic and electrostatic barriers to helix nucleation and constitutes the active site for Hfq’s chaperone function. PMID:23771143

  8. Phase diagram of a cyclic predator-prey model with neutral-pair exchange.

    PubMed

    Guisoni, Nara C; Loscar, Ernesto S; Girardi, Mauricio

    2013-08-01

    In this paper we obtain the phase diagram of a four-species predator-prey lattice model by using the proposed gradient method. We consider cyclic transitions between consecutive states, representing invasion or predation, and allowed the exchange between neighboring neutral pairs. By applying a gradient in the invasion rate parameter one can see, in the same simulation, the presence of two symmetric absorbing phases, composed by neutral pairs, and an active phase that includes all four species. In this sense, the study of a single-valued interface and its fluctuations give the critical point of the irreversible phase transition and the corresponding universality classes. Also, the consideration of a multivalued interface and its fluctuations bring the percolation threshold. We show that the model presents two lines of irreversible first-order phase transition between the two absorbing phases and the active phase. Depending on the value of the system parameters, these lines can converge into a triple point, which is the beginning of a first-order irreversible line between the two absorbing phases, or end in two critical points belonging to the directed percolation universality class. Standard simulations for some characteristic values of the parameters confirm the order of the transitions as determined by the gradient method. Besides, below the triple point the model presents two standard percolation lines in the active phase and above a first-order percolation transition as already found in other similar models. PMID:24032801

  9. Analysis of transmission lines loaded with pairs of coupled resonant elements and application to sensors

    NASA Astrophysics Data System (ADS)

    Naqui, J.; Su, L.; Mata, J.; Martín, F.

    2015-06-01

    This paper is focused on the analysis of transmission lines loaded with pairs of magnetically coupled resonators. We have considered two different structures: (i) a microstrip line loaded with pairs of stepped impedance resonators (SIRs), and (ii) a coplanar waveguide (CPW) transmission line loaded with pairs of split ring resonators (SRRs). In both cases, the line exhibits a single resonance frequency (transmission zero) if the resonators are identical (symmetric structure with regard to the line axis), and this resonance is different to the one of the line loaded with a single resonator due to inter-resonator coupling. If the structures are asymmetric, inter-resonator coupling enhances the distance between the two split resonance frequencies that arise. In spite that the considered lines and loading resonators are very different and are described by different lumped element equivalent circuit models, the phenomenology associated to the effects of coupling is exactly the same, and the resonance frequencies are given by identical expressions. The reported lumped element circuit models of both structures are validated by comparing the circuit simulations with extracted parameters with both electromagnetic simulations and experimental data. These structures can be useful for the implementation of microwave sensors based on symmetry properties.

  10. Determination of SrSO 04 ion pair formation using conductimetric and ion exchange techniques

    NASA Astrophysics Data System (ADS)

    Reardon, E. J.

    1983-11-01

    The dissociation constant for SrSO 04 ion pair was determined at 25°C using conductance and ion-exchange techniques. Both approaches yield values for pK of SrSO 04 at zero ionic strength in the range 2.28-2.31. Previously reported values range from 2.1 to 3.0. The refinement in the dissociation constant should allow more reliable appraisals of the extent of strontium mineral solubility controls on strontium concentrations in natural water systems. The Lee and Wheaton conductance model was used to interpret the results of the conductivity measurements in strontium sulphate solutions at 25°C. Because of the limitations imposed by the solubility of celestite, a sufficiently-wide concentration range to enable determination of all three of the parameters - dissociation constant, Λ0, and the distance parameter could not be made. Instead, values are reported for the dissociation constant and Λ0 using reasonable limiting values for the distance parameter. Dowex-50 was used in the ion-exchange technique to determine the dissociation constant for SrSO 04. This method was used to determine values at other temperatures as well. Although there is considerable scatter in the temperature data, a standard enthalpy for the dissociation reaction: SrSO04→ Sr2+ + SO2-4 is computed to be 8.7 ± 2 kJmole-1 at 25°C.

  11. F-OH exchange equilibria between mica-amphibole mineral pairs

    NASA Astrophysics Data System (ADS)

    Westrich, Henry R.

    1982-01-01

    Fluoride-hydroxyl exchange equilibria between phlogopite-pargasite and phlogopite-tremolite mineral pairs were experimentally determined at 1,173 K, 500 bars and 1,073 1,173 K, 500 bars respectively. The distribution of fluorine between phlogopite and pargasite was found to favor phlogopite slightly, Δ G {ex/.}(1,173 K)=-1.71 kJ anion-1, while in the case of phlogopite-tremolite, fluorine was preferentially incorporated in the mica, Δ G {ex/.}(1,073)=- 5.67 kJ anion-1 and Δ G {ex/.}(1,173K)=-5.84 kJ anion-1. These results have yielded new values of entropy and Gibbs energy of formation for fluortremolite, Δ S {f/∘}=-2,293.4±16.0JK-1 mol-1 and Δ G {f/∘}= -11,779.3±25.0 kJ mol-1, respectively. In addition, F-OH mineral exchange equilibria support a recent molten oxide calorimetric value for the Gibbs energy of fluorphlogopite, Δ G {f/∘}=-6,014.0±7.0 kJ mol-1, which is approximately 40 kJ mol-1 more exothermic than the tabulated value.

  12. Asymmetric Preorganization of Inverted Pair Residues in the Sodium-Calcium Exchanger

    PubMed Central

    Giladi, Moshe; Almagor, Lior; van Dijk, Liat; Hiller, Reuben; Man, Petr; Forest, Eric; Khananshvili, Daniel

    2016-01-01

    In analogy with many other proteins, Na+/Ca2+ exchangers (NCX) adapt an inverted twofold symmetry of repeated structural elements, while exhibiting a functional asymmetry by stabilizing an outward-facing conformation. Here, structure-based mutant analyses of the Methanococcus jannaschii Na+/Ca2+ exchanger (NCX_Mj) were performed in conjunction with HDX-MS (hydrogen/deuterium exchange mass spectrometry) to identify the structure-dynamic determinants of functional asymmetry. HDX-MS identified hallmark differences in backbone dynamics at ion-coordinating residues of apo-NCX_Mj, whereas Na+or Ca2+ binding to the respective sites induced relatively small, but specific, changes in backbone dynamics. Mutant analysis identified ion-coordinating residues affecting the catalytic capacity (kcat/Km), but not the stability of the outward-facing conformation. In contrast, distinct “noncatalytic” residues (adjacent to the ion-coordinating residues) control the stability of the outward-facing conformation, but not the catalytic capacity. The helix-breaking signature sequences (GTSLPE) on the α1 and α2 repeats (at the ion-binding core) differ in their folding/unfolding dynamics, while providing asymmetric contributions to transport activities. The present data strongly support the idea that asymmetric preorganization of the ligand-free ion-pocket predefines catalytic reorganization of ion-bound residues, where secondary interactions with adjacent residues couple the alternating access. These findings provide a structure-dynamic basis for ion-coupled alternating access in NCX and similar proteins. PMID:26876271

  13. Strong exchange coupling in lanthanide bis-(phthalocyaninato) sandwich compounds

    SciTech Connect

    Trojan, K.L.; Hatfield, W.E.; Kepler, K.D.; Kirk, M.L. )

    1991-04-15

    Bis (phthalocyaninato) lanthanide sandwich compounds, which have the formula Pc{sup 2-}LnPc{sup 1-}, have been synthesized for Ln=terbium, holmium, and lutecium. Low-temperature magnetic susceptibility data for Ho(Pc){sub 2} and Tb(Pc){sub 2} show a reduction in moment from that which is expected for the lanthanide free ion value, which correlates with an antiferromagnetic exchange between the lanthanide {ital f} electrons and the phthalocyaninato ligand radical electron. The {ital g} factors determined from least-squares fitting of the Curie--Weiss law to the magnetic data show excellent agreement to the {ital g} factors calculated for the strongly coupled state. Magnetic moments calculated from the experimentally determined Curie constants are also in good agreement with those expected for the strongly coupled state. Low-temperature magnetic susceptibility data for Lu(Pc){sub 2} follows the Curie--Weiss law with a limiting moment of 1.8 {mu}{sub {ital B}} at 100 K. Since lutecium has a {sup 1}{ital S}{sub 0} ground state, only the phthalocyanine(1-) ligand would be expected to contribute to the magnetic susceptibility in this system. Room-temperature electron paramagnetic resonance measurements show no transitions at or near {ital g}=2, indicative of a free radical, due to the strong antiferromagnetic coupling of the ligand radical electron with the lanthanide {ital f} electrons. In the case of LuPc{sub 2}, where no unpaired {ital f} electrons exist, a transition at {ital g}=2.00 is present.

  14. Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.

    PubMed

    Dang, Liem X; Chang, Tsun-Mei

    2016-09-01

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li(+) and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li(+) in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li(+)-[BF4] and Li(+)-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li(+). We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li(+)-[BF4] and Li(+)-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems. PMID:27608999

  15. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    SciTech Connect

    Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna; Grein, Matthew E.; Stelmakh, Veronika; Bennink, Ryan S; Wong, Franco N. C.

    2015-01-01

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  16. High heralding-efficiency of near-IR fiber coupled photon pairs for quantum technologies

    NASA Astrophysics Data System (ADS)

    Dixon, P. Ben; Murphy, Ryan; Rosenberg, Danna; Grein, Matthew E.; Stelmakh, Veronika; Bennink, Ryan S.; Wong, Franco N. C.

    2015-05-01

    We report on the development and use of a high heralding-efficiency, single-mode-fiber coupled telecom-band source of entangled photons for quantum technology applications. The source development efforts consisted of theoretical and experimental efforts and we demonstrated a correlated-mode coupling efficiency of 97% ± 2%, the highest efficiency yet achieved for this type of system. We then incorporated these beneficial source development techniques in a Sagnac configured telecom-band entangled photon source that generates photon pairs entangled in both time/energy and polarization degrees of freedom. We made use of these highly desirable entangled states to investigate several promising quantum technologies.

  17. Target duality in N= 8 superconformal mechanics and the coupling of dual pairs

    SciTech Connect

    Gonzales, Marcelo; Lechtenfeld, Olaf

    2013-07-15

    We couple dual pairs of N= 8 superconformal mechanics with conical targets of dimension d and 8−d. The superconformal coupling generates an oscillator-type potential on each of the two target factors, with a frequency depending on the respective dual coordinates. In the case of the inhomogeneous (3,8,5) model, which entails a monopole background, it is necessary to add an extra supermultiplet of constants for half of the supersymmetry. The N= 4 analog, joining an inhomogeneous (1,4,3) with a (3,4,1) multiplet, is also analyzed in detail.

  18. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1983-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem.

  19. ESTIMATING GASEOUS EXCHANGES BETWEEN THE ATMOSPHERE AND PLANTS USING A COUPLED BIOCHEMICAL DRY DEPOSITION MODEL

    EPA Science Inventory

    To study gaseous exchanges between the soil, biosphere and atmosphere, a biochemical model was coupled with the latest version of Meyers Multi-Layer Deposition Model. The biochemical model describes photosynthesis and respiration and their coupling with stomatal resistance for...

  20. Engineering the interlayer exchange coupling in magnetic trilayers

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Hao; Dou, Kun-Peng; Chen, Ying-Chin; Hong, Tzay-Ming; Kaun, Chao-Cheng

    2015-11-01

    When the thickness of metal film approaches the nanoscale, itinerant carriers resonate between its boundaries and form quantum well states (QWSs), which are crucial to account for the film’s electrical, transport and magnetic properties. Besides the classic origin of particle-in-a-box, the QWSs are also susceptible to the crystal structures that affect the quantum resonance. Here we investigate the QWSs and the magnetic interlayer exchange coupling (IEC) in the Fe/Ag/Fe (001) trilayer from first-principles calculations. We find that the carriers at the Brillouin-zone center (belly) and edge (neck) separately form electron- and hole-like QWSs that give rise to an oscillatory feature for the IEC as a function of the Ag-layer thickness with long and short periods. Since the QWS formation sensitively depends on boundary conditions, one can switch between these two IEC periods by changing the Fe-layer thickness. These features, which also occur in the magnetic trilayers with other noble-metal spacers, open a new degree of freedom to engineer the IEC in magnetoresistance devices.

  1. Engineering the interlayer exchange coupling in magnetic trilayers.

    PubMed

    Chang, Ching-Hao; Dou, Kun-Peng; Chen, Ying-Chin; Hong, Tzay-Ming; Kaun, Chao-Cheng

    2015-01-01

    When the thickness of metal film approaches the nanoscale, itinerant carriers resonate between its boundaries and form quantum well states (QWSs), which are crucial to account for the film's electrical, transport and magnetic properties. Besides the classic origin of particle-in-a-box, the QWSs are also susceptible to the crystal structures that affect the quantum resonance. Here we investigate the QWSs and the magnetic interlayer exchange coupling (IEC) in the Fe/Ag/Fe (001) trilayer from first-principles calculations. We find that the carriers at the Brillouin-zone center (belly) and edge (neck) separately form electron- and hole-like QWSs that give rise to an oscillatory feature for the IEC as a function of the Ag-layer thickness with long and short periods. Since the QWS formation sensitively depends on boundary conditions, one can switch between these two IEC periods by changing the Fe-layer thickness. These features, which also occur in the magnetic trilayers with other noble-metal spacers, open a new degree of freedom to engineer the IEC in magnetoresistance devices. PMID:26596253

  2. Phonon coupling in optical transitions for singlet-triplet pairs of bound excitons in semiconductors

    NASA Astrophysics Data System (ADS)

    Pistol, M. E.; Monemar, B.

    1986-05-01

    A model is presented for the observed strong difference in selection rules for coupling of phonons in the one-phonon sideband of optical spectra related to bound excitons in semiconductors. The present treatment is specialized to the case of a closely spaced pair of singlet-triplet character as the lowest electronic states, as is common for bound excitons associated with neutral complexes in materials like GaP and Si. The optical transition for the singlet bound-exciton state is found to couple strongly only to symmetric A1 modes. The triplet state has a similar coupling strength to A1 modes, but in addition strong contributions are found for replicas corresponding to high-density-of-states phonons TAX, LAX, and TOX. This can be explained by a treatment of particle-phonon coupling beyond the ordinary adiabatic approximation. A weak mixing between the singlet and triplet states is mediated by the phonon coupling, as described in first-order perturbation theory. The model derived in this work, for such phonon-induced mixing of closely spaced electronic states, is shown to explain the observed phonon coupling for several bound-exciton systems of singlet-triplet character in GaP. In addition, the observed oscillator strength of the forbidden triplet state may be explained as partly derived from phonon-induced mixing with the singlet state, which has a much larger oscillator strength.

  3. Monte Carlo study on exchange bias and coercivity properties in coupled ferromagnetic/antiferromagnetic films

    NASA Astrophysics Data System (ADS)

    Jiang, Liqin; Shen, Shuangjuan; Zhang, Jian-Min; Feng, Qian; Huang, Zhigao

    2015-12-01

    Based on Monte Carlo simulation, a model consisting of an antiferromagnetic (AFM) film coupled to a ferromagnetic (FM) film is developed to study the exchange bias and coercivity phenomenon. It is suggested that exchange bias is a consequence of exchange coupling in the AFM/FM interface, and the AFM anisotropy needs to have a threshold value for the occurrence of exchange bias. Simultaneously, exchange bias and coercivity as functions of the value of anisotropy, exchange coupling and film thickness are studied. By inducing a thickness dependence of the anisotropy in FM film, the coercivity can be reduced or enhanced by choosing suitable magnetic parameters, which can better account for the discrepancies found in previous studies. The results also provide evidence for the absence of a direct correlation between coercivity and exchange bias, which is in agreement with other studies.

  4. Voltage-Induced Switching Dynamics of a Coupled Spin Pair in a Molecular Junction.

    PubMed

    Saygun, T; Bylin, J; Hammar, H; Fransson, J

    2016-04-13

    Molecular spintronics is made possible by the coupling between electronic configuration and magnetic polarization of the molecules. For control and application of the individual molecular states, it is necessary to both read and write their spin states. Conventionally, this is achieved by means of external magnetic fields or ferromagnetic contacts, which may change the intentional spin state and may present additional challenges when downsizing devices. Here, we predict that coupling magnetic molecules together opens up possibilities for all electrical control of both the molecular spin states as well as the current flow through the system. By tuning between the regimes of ferromagnetic and antiferromagnetic exchange interaction, the current can be at least an order of magnitude enhanced or reduced. The effect is susceptible to the tunnel coupling and molecular level alignment that can be used to achieve current rectification. PMID:27010805

  5. Linear and nonlinear coupled drift and ion acoustic waves in collisional pair ion-electron magnetoplasma

    SciTech Connect

    Mushtaq, A.; Saeed, R.; Haque, Q.

    2011-04-15

    Linear and nonlinear coupled electrostatic drift and ion acoustic waves are studied in inhomogeneous, collisional pair ion-electron plasma. The Korteweg-de Vries-Burgers (KdVB) equation for a medium where both dispersion and dissipation are present is derived. An attempt is made to obtain exact solution of KdVB equation by using modified tanh-coth method for arbitrary velocity of nonlinear drift wave. Another exact solution for KdVB is obtained, which gives a structure of shock wave. Korteweg-de Vries (KdV) and Burgers equations are derived in limiting cases with solitary and monotonic shock solutions, respectively. Effects of species density, magnetic field, obliqueness, and the acoustic to drift velocity ratio on the solitary and shock solutions are investigated. The results discussed are useful in understanding of low frequency electrostatic waves at laboratory pair ion plasmas.

  6. Spin-orbit coupling, electron transport and pairing instabilities in two-dimensional square structures

    NASA Astrophysics Data System (ADS)

    Kocharian, Armen N.; Fernando, Gayanath W.; Fang, Kun; Palandage, Kalum; Balatsky, Alexander V.

    2016-05-01

    Rashba spin-orbit effects and electron correlations in the two-dimensional cylindrical lattices of square geometries are assessed using mesoscopic two-, three- and four-leg ladder structures. Here the electron transport properties are systematically calculated by including the spin-orbit coupling in tight binding and Hubbard models threaded by a magnetic flux. These results highlight important aspects of possible symmetry breaking mechanisms in square ladder geometries driven by the combined effect of a magnetic gauge field spin-orbit interaction and temperature. The observed persistent current, spin and charge polarizations in the presence of spin-orbit coupling are driven by separation of electron and hole charges and opposite spins in real-space. The modeled spin-flip processes on the pairing mechanism induced by the spin-orbit coupling in assembled nanostructures (as arrays of clusters) engineered in various two-dimensional multi-leg structures provide an ideal playground for understanding spatial charge and spin density inhomogeneities leading to electron pairing and spontaneous phase separation instabilities in unconventional superconductors. Such studies also fall under the scope of current challenging problems in superconductivity and magnetism, topological insulators and spin dependent transport associated with numerous interfaces and heterostructures.

  7. Enhanced interlayer exchange coupling in antiferromagnetically coupled ultrathin (Co70Fe30/Pd) multilayers

    NASA Astrophysics Data System (ADS)

    Meng, Zhaoliang; Qiu, Jinjun; Han, Guchang; Teo, Kie Leong

    2015-12-01

    We report the studies of magnetization reversal and magnetic interlayer coupling in synthetic antiferromagnetic (SAF) [Pd/Co70Fe30]9/Ru(tRu)/Pd(tPd)/[Co70Fe30/Pd]9 structure as functions of inserted Pd layer (tPd) and Ru layer (tRu) thicknesses. We found the exchange coupling field (Hex) and perpendicular magnetic anisotropy (PMA) can be controlled by both the tPd and tRu, The Hex shows a Ruderman-Kittel-Kasuya-Yosida-type oscillatory decay dependence on tRu and a maximum interlayer coupling strength Jex = 0.522 erg/cm2 is achieved at tPd + tRu ≈ 0.8 nm in the as-deposited sample. As it is known that a high post-annealing stability of SAF structure is required for magnetic random access memory applications, the dependence of Hex and PMA on the post-annealing temperature (Ta) is also investigated. We found that both high PMA of the top Co70Fe30/Pd multilayer is maintained and Hex is enhanced with increasing Ta up to 350 °C for tRu > 0.7 nm in our SAF structure.

  8. Cooling Mechanism for a Nonmechanical Resonator by Periodic Coupling to a Cooper Pair Box

    SciTech Connect

    Zhang, P.; Wang, Y.D.; Sun, C.P.

    2005-08-26

    We propose and study an active cooling mechanism for the nanomechanical resonator (NAMR) based on periodical coupling to a Cooper pair box (CPB), which is implemented by a designed series of magnetic flux pluses threading through the CPB. When the initial phonon number of the NAMR is not too large, this cooling protocol is efficient in decreasing the phonon number by 2 to 3 orders of magnitude. Our proposal is theoretically universal in cooling various boson systems of a single mode. It can be specifically generalized to prepare the nonclassical state of the NAMR.

  9. Soliton-dark pulse pair formation in birefringent cavity fiber lasers through cross phase coupling.

    PubMed

    Shao, Guodong; Song, Yufeng; Zhao, Luming; Shen, Deyuan; Tang, Dingyuan

    2015-10-01

    We report on the experimental observation of soliton-dark pulse pair formation in a birefringent cavity fiber laser. Temporal cavity solitons are formed in one polarization mode of the cavity. It is observed that associated with each of the cavity solitons a dark pulse is induced on the CW background of the orthogonal polarization mode. We show that the dark pulse formation is a result of the incoherent cross polarization coupling between the soliton and the CW beam and has a mechanism similar to that of the polarization domain formation observed in the fiber lasers. PMID:26480138

  10. Numerical solution of a coupled pair of elliptic equations from solid state electronics

    NASA Technical Reports Server (NTRS)

    Phillips, T. N.

    1984-01-01

    Iterative methods are considered for the solution of a coupled pair of second order elliptic partial differential equations which arise in the field of solid state electronics. A finite difference scheme is used which retains the conservative form of the differential equations. Numerical solutions are obtained in two ways, by multigrid and dynamic alternating direction implicit methods. Numerical results are presented which show the multigrid method to be an efficient way of solving this problem. Previously announced in STAR as N83-30109

  11. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  12. A modified coupled pair functional approach. [for dipole moment calculation of metal hydride ground states

    NASA Technical Reports Server (NTRS)

    Chong, D. P.; Langhoff, S. R.

    1986-01-01

    A modified coupled pair functional (CPF) method is presented for the configuration interaction problem that dramatically improves properties for cases where the Hartree-Fock reference configuration is not a good zeroth-order wave function description. It is shown that the tendency for CPF to overestimate the effect of higher excitations arises from the choice of the geometric mean for the partial normalization denominator. The modified method is demonstrated for ground state dipole moment calculations of the NiH, CuH, and ZnH transition metal hydrides, and compared to singles-plus-doubles configuration interaction and the Ahlrichs et al. (1984) CPF method.

  13. Limits on WWγ and WWZ couplings from W boson pair production

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Babukhadia, L.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Barberis, E.; Bartlett, J. F.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Casilum, Z.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Coney, L.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; Davis, K.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M. K.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Gavrilov, V.; Geld, T. L.; Genik, R. J.; Genser, K.; Gerber, C. E.; Gershtein, Y.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goldschmidt, A.; Gómez, B.; Gómez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Gounder, K.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Greenlee, H.; Grinstein, S.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, G.; Gutierrez, P.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hanlet, P.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johari, H.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Karmanov, D.; Karmgard, D.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klima, B.; Klopfenstein, C.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovsky, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kuleshov, S.; Kunori, S.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Manankov, V.; Mani, S.; Mao, H. S.; Markeloff, R.; Marshall, T.; Martin, M. I.; Mauritz, K. M.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Norman, D.; Oesch, L.; Oguri, V.; Oliveira, E.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Pawlik, B.; Perkins, J.; Peters, M.; Piegaia, R.; Piekarz, H.; Pischalnikov, Y.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roco, M.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Sirotenko, V.; Smart, W.; Smith, E.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Steinbrück, G.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stichelbaut, F.; Stoker, D.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhou, Z.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1998-09-01

    The results of a search for W boson pair production in pp¯ collisions at s=1.8 TeV with subsequent decay to eμ, ee, and μμ channels are presented. Five candidate events are observed with an expected background of 3.1+/-0.4 events for an integrated luminosity of approximately 97 pb-1. Limits on the anomalous couplings are obtained from a maximum likelihood fit of the ET spectra of the leptons in the candidate events. Assuming identical WWγ and WWZ couplings, the 95% C.L. limits are -0.62<Δκ<0.77 (λ=0) and -0.53<λ <0.56 (Δκ=0) for a form factor scale Λ=1.5 TeV.

  14. Phase locking of spin-torque nano-oscillator pairs with magnetic dipolar coupling

    NASA Astrophysics Data System (ADS)

    Chen, Hao-Hsuan; Lee, Ching-Ming; Zhang, Zongzhi; Liu, Yaowen; Wu, Jong-Ching; Horng, Lance; Chang, Ching-Ray

    2016-06-01

    A spin-torque nanopillar oscillator (STNO) that combines a perpendicular-to-plane polarizer (PERP) with an in-plane magnetized free layer is a good candidate for phase locking, which opens a potential approach to enhancement of the output power of STNOs. In this paper, the magnetic dipolar coupling effect is used as the driving force to synchronize two STNOs. We develop an approximation theory for synchronizing two identical and nonidentical pairs of PERP STNOs, by which the critical current of synchronization, dipolar coupling strength, phase-locking transient time, and frequency can be analytically predicted. These predictions are further confirmed by macrospin and micromagnetic simulations. Finally, we show the phase diagrams of the phase locking as a function of applied current and separation between two STNOs.

  15. Antiferromagnetic Interlayer Exchange Coupling in All-Semiconducting EuS/PbS/EuS Trilayers

    NASA Technical Reports Server (NTRS)

    Smits, C. J. P.; Filip, A. T.; Swagten, H. J. M.; Koopmans, B.; deJonge, W. J. M.; Chernyshova, M.; Kowalczyk, L.; Grasza, K.; Szczerbakow, A.; Story, T.

    2003-01-01

    A comprehensive experimental study on the antiferromagnetic interlayer exchange coupling in high quality epitaxial all-semiconducting EuSPbSEuS trilayers is reported. The influence of substrates, the thickness of the non-magnetic PbS spacer layer, and of temperature, was investigated by means of SQUID magnetometry. In trilayers with a PbS thickness between 4 and 12 deg A the low temperature hysteresis loops showed the signature of antiferromagnetic coupling. The value of the interlayer exchange coupling energy was determined by simulating the data with a modified Stoner model, including Zeeman, anisotropy, and exchange coupling energies. An important observation was of a strong dependence of the interlayer exchange coupling energy on temperature, consistent with a power law dependence of the exchange coupling constant on the saturation magnetization of the EuS layers. While no theoretical description is readily available, we conjecture that the observed behavior is due to a dependence of the interlayer exchange coupling energy on the exchange splitting of the EuS conduction band.

  16. Topology of spin meron pairs in coupled Ni/Fe/Co/Cu(001) disks

    NASA Astrophysics Data System (ADS)

    Tan, A.; Li, J.; Scholl, A.; Arenholz, E.; Young, A. T.; Li, Q.; Hwang, C.; Qiu, Z. Q.

    2016-07-01

    The meron is a special topological object that carries only one-half of the topological charge unit. In condensed matter physics, a spin meron corresponds to one-half of a spin skyrmion. As compared to the many fascinating topological properties of skyrmion materials, little is known of the properties of spin merons especially about their formation. It was confirmed only recently that hedgehog merons could exist in pairs with opposite helicities via a spin flux closure. However, it is unclear whether a single hedgehog meron could ever exist by pairing with another type of meron. Using element-resolved magnetic imaging measurements on epitaxial trilayer disks, we show that a spin meron with a full range of helicity, including the hedgehog meron, can be stabilized by pairing with another vortex meron with a fine tuning of the magnetic coupling between the two merons. Furthermore, the meron divergence is fully controlled by the polarity of the vortex meron, independent of the vortex helicity.

  17. Origin and control of magnetic exchange coupling in between focused electron beam deposited cobalt nanostructures

    SciTech Connect

    Nikulina, E.; Idigoras, O.; Porro, J. M.; Berger, A.; Vavassori, P.; Chuvilin, A.; Ikerbasque, Basque Foundation for Science, Alameda Urquijo 36-5, 48011 Bilbao

    2013-09-16

    We demonstrate the existence and control of inter-particle magnetic exchange coupling in densely packed nanostructures fabricated by focused electron beam induced deposition. With Xe beam post-processing, we have achieved the controlled reduction and eventual elimination of the parasitic halo-like cobalt deposits formed in the proximity of intended nanostructures, which are the identified source of the magnetic exchange coupling. The elimination of the halo-mediated exchange coupling is demonstrated by magnetic measurements using Kerr microscopy on Co pillar arrays. Electron microscopy studies allowed us to identify the mechanisms underlying this process and to verify the efficiency and opportunities of the described nano-scale fabrication approach.

  18. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    SciTech Connect

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; Agramunt-Puig, Sebastià; del Valle, Nuria; Navau, Carles; López-Barbera, José Francisco; Buchanan, Kristen S.; Hoffmann, Axel; Sánchez, Alvar; Sort, Jordi; Liu, Kai; Nogués, Josep

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpected asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.

  19. A new reversal mode in exchange coupled antiferromagnetic/ferromagnetic disks: distorted viscous vortex

    DOE PAGESBeta

    Gilbert, Dustin A.; Ye, Li; Varea, Aïda; Agramunt-Puig, Sebastià; del Valle, Nuria; Navau, Carles; López-Barbera, José Francisco; Buchanan, Kristen S.; Hoffmann, Axel; Sánchez, Alvar; et al

    2015-04-28

    Magnetic vortices have generated intense interest in recent years due to their unique reversal mechanisms, fascinating topological properties, and exciting potential applications. In addition, the exchange coupling of magnetic vortices to antiferromagnets has also been shown to lead to a range of novel phenomena and functionalities. Here we report a new magnetization reversal mode of magnetic vortices in exchange coupled Ir20Mn80/Fe20Ni80 microdots: distorted viscous vortex reversal. In contrast to the previously known or proposed reversal modes, the vortex is distorted close to the interface and viscously dragged due to the uncompensated spins of a thin antiferromagnet, which leads to unexpectedmore » asymmetries in the annihilation and nucleation fields. These results provide a deeper understanding of the physics of exchange coupled vortices and may also have important implications for applications involving exchange coupled nanostructures.« less

  20. Cholesterol exchange and lateral cholesterol pools in synaptosomal membranes of pair-fed control and chronic ethanol-treated mice.

    PubMed

    Wood, W G; Rao, A M; Igbavboa, U; Semotuk, M

    1993-04-01

    Most studies on effects of ethanol on membrane cholesterol have reported on changes in the total or bulk amount of cholesterol. Membrane cholesterol, however, can be described in terms of its kinetics and domains. The kinetics and size of lateral cholesterol exchangeable and nonexchangeable pools were examined in synaptosomes of pair-fed controls and chronic ethanol-treated mice. Effects of sphingomyelin, an exofacial leaflet phospholipid, that has been shown to affect cholesterol pools, were also examined. Radiolabeled small unilamellar vesicles were used to exchange cholesterol with synaptosomes. The total amounts of membrane cholesterol, phospholipid phosphorus, and the ratio of cholesterol to phospholipid did not differ between the pair-fed control and ethanol groups. In control mice, the rate constant (hr-1) and the t1/2 (hr) of cholesterol exchange were 0.065 +/- 0.001 and 10.7 +/- 0.25 (hr), respectively. The rate constant was significantly slower (0.053 +/- 0.001, p < 0.05) and the t1/2 significantly longer (13.33 +/- 0.58, p < 0.05) in synaptosomes of the ethanol group compared with the control group. The size of the exchangeable pool of cholesterol did not differ significantly between the two groups. Sphingomyelinase-induced hydrolysis of sphingomyelin significantly slowed cholesterol exchange with the largest effect in synaptosomes of the control group as compared with the ethanol group (p < 0.05). Hydrolysis of sphingomyelin had significantly (p < 0.05) less of an effect on cholesterol exchange in synaptosomes of the ethanol group. Membrane cholesterol can be described in terms of total content, transbilayer distribution, kinetics, and size of lateral pools.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8488977

  1. Coercivity and exchange coupling in PrCo:Co nanocomposite films

    SciTech Connect

    Liu, J.P.; Liu, Y.; Sellmyer, D.J.

    1998-06-01

    Magnetic hysteresis and intergrain exchange coupling in nanostructured PrCo:Co composite films have been investigated. The composite thin films were made by multilayer sputtering and subsequent annealing. It is found that the coercivity mechanism is related to film morphology, especially the Co phase fraction. Evidence for the hard-soft-phase exchange coupling has been found and high energy products have been obtained. {copyright} {ital 1998 American Institute of Physics.}

  2. Coercivity and exchange coupling in PrCo:Co nanocomposite films

    NASA Astrophysics Data System (ADS)

    Liu, J. P.; Liu, Y.; Sellmyer, D. J.

    1998-06-01

    Magnetic hysteresis and intergrain exchange coupling in nanostructured PrCo:Co composite films have been investigated. The composite thin films were made by multilayer sputtering and subsequent annealing. It is found that the coercivity mechanism is related to film morphology, especially the Co phase fraction. Evidence for the hard-soft-phase exchange coupling has been found and high energy products have been obtained.

  3. Exchange coupled CoPd/TbCo magneto-optic storage films

    SciTech Connect

    Gambino, R.J.; Ruf, R.R.; Rishi, R. )

    1989-09-01

    Films of CoPd with weak perpendicular anisotropy are shown to exchange couple to square loop TbCo films on both the Tb and Co sides of compensation. The exchange is sensitive to reactive impurities at the interface and is broken under conditions that produce as little as one monolayer of paramagnetic compound. Even when the coupling at the interface is strong, the authors show that only a limited thickness of the CoPd layer is spin oriented perpendicular.

  4. A Cu(II)2 Paramagnetic Chemical Exchange Saturation Transfer Contrast Agent Enabled by Magnetic Exchange Coupling.

    PubMed

    Du, Kang; Harris, T David

    2016-06-29

    The ability of magnetic exchange coupling to enable observation of paramagnetic chemical exchange saturation transfer (PARACEST) in transition metal ions with long electronic relaxation times (τs) is demonstrated. Metalation of the dinucleating, tetra(carboxamide) ligand HL with Cu(2+) in the presence of pyrophosphate (P2O7)(4-) affords the complex [LCu(II)2(P2O7)](-). Solution-phase variable-temperature magnetic susceptibility data reveal weak ferromagnetic superexchange coupling between the two S = 1/2 Cu(II) centers, with a coupling constant of J = +2.69(5) cm(-1), to give an S = 1 ground state. This coupling results in a sharpened NMR line width relative to a GaCu analogue, indicative of a shortening of τs. Presaturation of the amide protons in the Cu2 complex at 37 °C leads to a 14% intensity decrease in the bulk water (1)H NMR signal through the CEST effect. Conversely, no CEST effect is observed in the GaCu complex. These results provide the first example of a Cu-based PARACEST magnetic resonance contrast agent and demonstrate the potential to expand the metal ion toolbox for PARACEST agents through introduction of magnetic exchange coupling. PMID:27276533

  5. Exchange coupling in transition metal monoxides: Electronic structure calculations

    SciTech Connect

    Fischer, Guntram; Daene, Markus W; Ernst, Arthur; Bruno, Patrick; Lueders, Martin; Szotek, Zdzislawa; Temmerman, Walter M; Wolfam, Hergert

    2009-01-01

    An ab initio study of magnetic-exchange interactions in antiferromagnetic and strongly correlated 3d transition metal monoxides is presented. Their electronic structure is calculated using the local self-interaction correction approach, implemented within the Korringa-Kohn-Rostoker band-structure method, which is based on multiple scattering theory. The Heisenberg exchange constants are evaluated with the magnetic force theorem. Based on these the corresponding Neel temperatures TN and spin-wave dispersions are calculated. The Neel temperatures are obtained using mean-field approximation, random-phase approximation and Monte Carlo simulations. The pressure dependence of TN is investigated using exchange constants calculated for different lattice constants. All the calculated results are compared to experimental data.

  6. Actinide chemistry using singlet-paired coupled cluster and its combinations with density functionals.

    PubMed

    Garza, Alejandro J; Sousa Alencar, Ana G; Scuseria, Gustavo E

    2015-12-28

    Singlet-paired coupled cluster doubles (CCD0) is a simplification of CCD that relinquishes a fraction of dynamic correlation in order to be able to describe static correlation. Combinations of CCD0 with density functionals that recover specifically the dynamic correlation missing in the former have also been developed recently. Here, we assess the accuracy of CCD0 and CCD0+DFT (and variants of these using Brueckner orbitals) as compared to well-established quantum chemical methods for describing ground-state properties of singlet actinide molecules. The f(0) actinyl series (UO2(2+), NpO2(3+), PuO2(4+)), the isoelectronic NUN, and thorium (ThO, ThO(2+)) and nobelium (NoO, NoO2) oxides are studied. PMID:26723650

  7. Precision measurements of Higgs-chargino couplings in chargino pair production at a muon collider

    NASA Astrophysics Data System (ADS)

    Fraas, H.; Franke, F.; Moortgat-Pick, G.; von der Pahlen, F.; Wagner, A.

    2003-08-01

    We study chargino pair production on the heavy Higgs resonances at a muon collider in the MSSM. At sqrt{s} ≈ 350 GeV cross sections up to 2 pb are reached depending on the supersymmetric scenario and the beam energy spread. The resonances of the scalar and pseudoscalar Higgs bosons may be separated for tanβ < 8. Our aim is to determine the ratio of the chargino couplings to the heavy scalar and pseudoscalar Higgs boson independently of the specific chargino decay characteristics. The precision of the measurement depends on the energy resolution of the muon collider and on the error in the measurement of the cross sections of the non-Higgs channels including an irreducible standard model background. With a high energy resolution the systematic error can be reduced to the order of a few percent.

  8. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device

    NASA Astrophysics Data System (ADS)

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-01

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction’s perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule’s magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs’ electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ˜50% of the interatomic exchange coupling for the FM electrodes.

  9. Paramagnetic molecule induced strong antiferromagnetic exchange coupling on a magnetic tunnel junction based molecular spintronics device.

    PubMed

    Tyagi, Pawan; Baker, Collin; D'Angelo, Christopher

    2015-07-31

    This paper reports our Monte Carlo (MC) studies aiming to explain the experimentally observed paramagnetic molecule induced antiferromagnetic coupling between ferromagnetic (FM) electrodes. Recently developed magnetic tunnel junction based molecular spintronics devices (MTJMSDs) were prepared by chemically bonding the paramagnetic molecules between the FM electrodes along the tunnel junction's perimeter. These MTJMSDs exhibited molecule-induced strong antiferromagnetic coupling. We simulated the 3D atomic model analogous to the MTJMSD and studied the effect of molecule's magnetic couplings with the two FM electrodes. Simulations show that when a molecule established ferromagnetic coupling with one electrode and antiferromagnetic coupling with the other electrode, then theoretical results effectively explained the experimental findings. Our studies suggest that in order to align MTJMSDs' electrodes antiparallel to each other, the exchange coupling strength between a molecule and FM electrodes should be ∼50% of the interatomic exchange coupling for the FM electrodes. PMID:26159362

  10. A molecular dynamics study of phase transition in strongly coupled pair-ion plasmas

    SciTech Connect

    Baruah, Swati; Ganesh, R.; Avinash, K.

    2015-08-15

    Existence of phase transition in strongly coupled pair-ion plasmas with soft core is investigated. Extensive Molecular Dynamics (MD) simulations are performed in the canonical ensemble, for such plasmas, at different temperatures, to analyze phase stability. Our studies show interesting phase co-existence between liquid-like and vapor-like phases. The different phases are identified by calculating the ensemble averaged density. This and the corresponding critical properties are calculated directly from MD simulation. The critical temperature of vapor-liquid coexistence is obtained, and the corresponding critical value of density is also estimated for different sizes of the soft core. We have used a novel method that allows the location of phase coexistence through a constant density simulation in which the temperature is changed in a single time-step (quenching) in order to place the system in a thermodynamically and mechanically unstable state, resulting in spontaneous separation of two coexisting phases. The results obtained from this temperature quench MD method also show the coexistence of vapor-liquid phase in pair-ion plasmas. The critical exponents obtained directly from MD simulation are found to be in close agreement with the values predicted by a mean-field theory.

  11. Interaction effects on the tunneling of electron-hole pairs in coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Guerrero, Hector M.; Cocoletzi, Gregorio H.; Ulloa, Sergio E.

    2001-03-01

    The transit time of carriers is beginning to be an important parameter in the physical operation of semiconductor quantum dot `devices'. In the present work, we study the coherent propagation of electron-hole pairs in coupled self-assembled quantum dots in close proximity. These systems, achieved experimentally in a number of different geometries, have been recently implemented as a novel storage of optical information that may give rise to smart pixel technology in the near future [1]. Here, we apply an effective mass hamiltonian approach and solve numerically the time dependent Schroedinger equation of a system of photo-created electron-hole pairs in the dots. Our approach takes into account both Coulomb interactions and confinement effects. The time evolution is investigated in terms of the structural parameters for typical InAs-GaAs dots. Different initial conditions are considered, reflecting the basic processes that would take place in these experiments. We study the probabilities of finding the electron and hole in either the same or adjacent quantum dot, and study carefully the role of interactions in this behavior. [1] T. Lundstrom, W. Schoenfeld, H. Lee, and P. M. Petroff, Science 286, 2312 (1999).

  12. N-H stretching vibrations of guanosine-cytidine base pairs in solution: ultrafast dynamics, couplings, and line shapes.

    PubMed

    Fidder, Henk; Yang, Ming; Nibbering, Erik T J; Elsaesser, Thomas; Röttger, Katharina; Temps, Friedrich

    2013-02-01

    Dynamics and couplings of N-H stretching vibrations of chemically modified guanosine-cytidine (G·C) base pairs in chloroform are investigated with linear infrared spectroscopy and ultrafast two-dimensional infrared (2D-IR) spectroscopy. Comparison of G·C absorption spectra before and after H/D exchange reveals significant N-H stretching absorption in the region from 2500 up to 3300 cm(-1). Both of the local stretching modes ν(C)(NH(2))(b) of the hydrogen-bonded N-H moiety of the cytidine NH(2) group and ν(G)(NH) of the guanosine N-H group contribute to this broad absorption band. Its complex line shape is attributed to Fermi resonances of the N-H stretching modes with combination and overtones of fingerprint vibrations and anharmonic couplings to low-frequency modes. Cross-peaks in the nonlinear 2D spectra between the 3491 cm(-1) free N-H oscillator band and the bands centered at 3145 and 3303 cm(-1) imply N-H···O═C hydrogen bond character for both of these transitions. Time evolution illustrates that the 3303 cm(-1) band is composed of a nearly homogeneous band absorbing at 3301 cm(-1), ascribed to ν(G)(NH(2))(b), and a broad inhomogeneous band peaking at 3380 cm(-1) with mainly guanosine carbonyl overtone character. Kinetics and signal strengths indicate a <0.2 ps virtually complete population transfer from the excited ν(G)(NH(2))(b) mode to the ν(G)(NH) mode at 3145 cm(-1), suggesting lifetime broadening as the dominant source for the homogeneous line shape of the 3301 cm(-1) transition. For the 3145 cm(-1) band, a 0.3 ps population lifetime was obtained. PMID:23317104

  13. Influence of ion bombardment induced patterning of exchange bias in pinned artificial ferrimagnets on the interlayer exchange coupling

    SciTech Connect

    Hoeink, V.; Schmalhorst, J.; Reiss, G.; Weis, T.; Lengemann, D.; Engel, D.; Ehresmann, A.

    2008-06-15

    Artificial ferrimagnets have many applications as, e.g., pinned reference electrodes in magnetic tunnel junctions. It is known that the application of ion bombardment (IB) induced patterning of the exchange bias coupling of a single layer reference electrode in magnetic tunnel junctions with He ions is possible. For applications as, e.g., special types of magnetic logic, a combination of the IB induced patterning of the exchange bias coupling and the implementation of an artificial ferrimagnet as reference electrode is desirable. Here, investigations for a pinned artificial ferrimagnet with a Ru interlayer, which is frequently used in magnetic tunnel junctions, are presented. It is shown that in this kind of samples the exchange bias can be increased or rotated by IB induced magnetic patterning with 10 keV He ions without a destruction of the antiferromagnetic interlayer exchange coupling. An IrMn/Py/Co/Cu/Co stack turned out to be more sensitive to the influence of IB than the Ru based artificial ferrimagnet.

  14. An efficient and near linear scaling pair natural orbital based local coupled cluster method

    NASA Astrophysics Data System (ADS)

    Riplinger, Christoph; Neese, Frank

    2013-01-01

    In previous publications, it was shown that an efficient local coupled cluster method with single- and double excitations can be based on the concept of pair natural orbitals (PNOs) [F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009), 10.1063/1.3173827]. The resulting local pair natural orbital-coupled-cluster single double (LPNO-CCSD) method has since been proven to be highly reliable and efficient. For large molecules, the number of amplitudes to be determined is reduced by a factor of 105-106 relative to a canonical CCSD calculation on the same system with the same basis set. In the original method, the PNOs were expanded in the set of canonical virtual orbitals and single excitations were not truncated. This led to a number of fifth order scaling steps that eventually rendered the method computationally expensive for large molecules (e.g., >100 atoms). In the present work, these limitations are overcome by a complete redesign of the LPNO-CCSD method. The new method is based on the combination of the concepts of PNOs and projected atomic orbitals (PAOs). Thus, each PNO is expanded in a set of PAOs that in turn belong to a given electron pair specific domain. In this way, it is possible to fully exploit locality while maintaining the extremely high compactness of the original LPNO-CCSD wavefunction. No terms are dropped from the CCSD equations and domains are chosen conservatively. The correlation energy loss due to the domains remains below <0.05%, which implies typically 15-20 but occasionally up to 30 atoms per domain on average. The new method has been given the acronym DLPNO-CCSD ("domain based LPNO-CCSD"). The method is nearly linear scaling with respect to system size. The original LPNO-CCSD method had three adjustable truncation thresholds that were chosen conservatively and do not need to be changed for actual applications. In the present treatment, no additional truncation parameters have been introduced. Any additional truncation

  15. Magnetic susceptibility and exchange coupling in the mineral ardennite

    USGS Publications Warehouse

    Thorpe, A.N.; Senftle, F.E.; Donnay, G.

    1969-01-01

    Ardennite, a rare silicate mineral, contains about 19 wt.% manganese. Some of the manganese atoms are in positions which are close enough to allow negative exchange and hence a reduction of the total magnetic susceptibility. It is shown that the susceptibility can be accounted for approximately by the treatment of Earnshaw and Lewis (1958) for S = 5 2 and a Hamiltonian H = -2g??Hb-2JS1??S2. ?? 1969.

  16. Spin-orbit coupling induced magnetic field effects in electron-transfer reactions with excited triplets: The role of triplet exciplexes and radical pairs in geminate recombination

    SciTech Connect

    Steiner, U.E.; Haas, W. )

    1991-03-07

    The magnetic field dependence of free-radical yield in the electron-transfer quenching of methylene blue triplet by p-iodoaniline has been determined between 0.00 and 3.30 T in methanol/ethylene glycol mixtures of various viscosities by using laser flash spectroscopy and a photostationary flow technique. The observed decrease of the free-radical yield with the magnetic field is interpreted by heavy-atom-induced spin-orbit coupling causing magnetic field sensitivity according to the triplet mechanism (TM) in intermediate triplet exciplexes and to the {Delta}g type radical pair mechanism (RPM) in germinate triplet radical pairs originating from dissociation of the triplet exciplexes. Analytical expressions are provided for a treatment of a combination of both mechanisms including the case of reversible formation of the triplet exciplex from the geminate radical pair. The formalism of Pedersen developed for the high field radical pair mechanism and modified by Vollenweider and Fischer to account for effects of exchange interaction is generalized to include various boundary conditions for the electron spin density matrix suggested in the literature to describe the effects of encounters and chemical reaction. With a physically consistent choice of TM and RPM parameters model calculations provide a very good quantitative fit of the observed magnetic field and viscosity dependence of the yield of free radicals.

  17. Magnetoelectric coupling and exchange bias effects in multiferroic NdCrO3.

    PubMed

    Indra, A; Dey, K; Midya, A; Mandal, P; Gutowski, O; Rütt, U; Majumdar, S; Giri, S

    2016-04-27

    We report ferroelectricity around  ∼88 K that appears well below T N (∼25 K), unlike other members of RCrO3 series. A synchrotron diffraction study suggests that the occurrence of ferroelectricity in NdCrO3 is coupled to the structural transformation from centrosymmetric Pnma to a non-centrosymmetric Pna21 space group. A strong magnetoelectric coupling is observed in the electric polarization [P(T)]. This coupling is significantly influenced by the magnetic field cooling effect, suggesting an exchange bias effect in P(T). This exchange bias effect is also revealed by the systematic shift of the magnetic hysteresis loops below T N. The rare occurrence of an exchange bias effect in both the magnetic and electric polarizations associated with a strong magnetoelectric coupling is of fundamental interest, as well as being attractive for technological applications close to liquid nitrogen temperature. PMID:27009362

  18. Magnetoelectric coupling and exchange bias effects in multiferroic NdCrO3

    NASA Astrophysics Data System (ADS)

    Indra, A.; Dey, K.; Midya, A.; Mandal, P.; Gutowski, O.; Rütt, U.; Majumdar, S.; Giri, S.

    2016-04-01

    We report ferroelectricity around  ∼88 K that appears well below T N (∼25 K), unlike other members of RCrO3 series. A synchrotron diffraction study suggests that the occurrence of ferroelectricity in NdCrO3 is coupled to the structural transformation from centrosymmetric Pnma to a non-centrosymmetric Pna21 space group. A strong magnetoelectric coupling is observed in the electric polarization [P(T)]. This coupling is significantly influenced by the magnetic field cooling effect, suggesting an exchange bias effect in P(T). This exchange bias effect is also revealed by the systematic shift of the magnetic hysteresis loops below T N. The rare occurrence of an exchange bias effect in both the magnetic and electric polarizations associated with a strong magnetoelectric coupling is of fundamental interest, as well as being attractive for technological applications close to liquid nitrogen temperature.

  19. Positive exchange bias observed in Pt-inserted Cr{sub 2}O{sub 3}/Co exchange coupled bilayers

    SciTech Connect

    Nozaki, T. Oida, M.; Ashida, T.; Shimomura, N.; Sahashi, M.; Shibata, T.

    2014-11-24

    We investigated the effect of Pt insertion on a Cr{sub 2}O{sub 3}/Co exchange coupling system. The perpendicular exchange bias μ{sub 0}H{sub ex} decreased with increasing Pt insertion layer thickness, and we observed positive μ{sub 0}H{sub ex} for samples with relatively thick Pt insertion layers. We also examined the cooling field μ{sub 0}H{sub fc} dependence of μ{sub 0}H{sub ex} for the samples. At small μ{sub 0}H{sub fc}, all samples exhibited negative μ{sub 0}H{sub ex}. With increasing μ{sub 0}H{sub fc}, a shift of μ{sub 0}H{sub ex} from negative to positive was observed. In the past, similar behaviors were observed for FeF{sub 2}/Fe systems exhibiting positive μ{sub 0}H{sub ex}. In addition, the μ{sub 0}H{sub fc} dependence of μ{sub 0}H{sub ex} was well fitted by an equation taking into account the Zeeman energy at the surface of an antiferromagnet as well as an antiferromagnetic exchange coupling. The results strongly suggest that (1) Cr{sub 2}O{sub 3} surface spin is affected by the external magnetic field and (2) the coupling at the Cr{sub 2}O{sub 3}/Pt/Co interface is antiferromagnetic.

  20. Energy Exchange in Driven Open Quantum Systems at Strong Coupling

    NASA Astrophysics Data System (ADS)

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-01

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K =1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2 .

  1. Energy Exchange in Driven Open Quantum Systems at Strong Coupling.

    PubMed

    Carrega, Matteo; Solinas, Paolo; Sassetti, Maura; Weiss, Ulrich

    2016-06-17

    The time-dependent energy transfer in a driven quantum system strongly coupled to a heat bath is studied within an influence functional approach. Exact formal expressions for the statistics of energy dissipation into the different channels are derived. The general method is applied to the driven dissipative two-state system. It is shown that the energy flows obey a balance relation, and that, for strong coupling, the interaction may constitute the major dissipative channel. Results in analytic form are presented for the particular value K=1/2 of strong Ohmic dissipation. The energy flows show interesting behaviors including driving-induced coherences and quantum stochastic resonances. It is found that the general characteristics persists for K near 1/2. PMID:27367367

  2. Effects of temperature on intergranular exchange coupling in L10 FePt thin films

    NASA Astrophysics Data System (ADS)

    Huang, Efrem Y.; Kryder, Mark H.

    2014-06-01

    The effects of temperature on intergranular exchange coupling for FePt:X:FePt (X = TaOx, SiOx, Cr) sputtered thin film stacks were investigated. In-plane FePt layers separated by a thin layer of segregant were used as an experimental model for the intergranular region in perpendicular recording media. Magnetic hysteresis was measured for varying segregant thicknesses (0.5 nm-1.5 nm) at varying temperatures (300 K-700 K). Exchange coupling energies were calculated using the reversal field, saturation magnetization, and coercivity. The intergranular exchange coupling energy was observed to be well-behaved, decreasing linearly with increasing temperature to 600 K. TaOx resulted in the lowest exchange coupling energy at any given temperature, while SiOx and Cr showed similar decoupling capabilities. At 600 K and beyond, antiferromagnetic behavior was observed. Exchange coupling was found to be negligible at operating temperatures above 600 K even with as little as 0.5 nm of TaOx segregant or 1 nm of SiOx segregant.

  3. Effects of exchange coupling between cap layer and oxide layer on the recording performance in perpendicular media

    NASA Astrophysics Data System (ADS)

    Zhang, Kezhao; Choe, Gunn; Duan, Shanlin

    2009-04-01

    To understand the effects of exchange coupling between the CoCr-alloy cap layer and the CoCrPt-oxide layer in perpendicular media, we measured switching dynamics and recording performances of a series of media with various exchange-coupling layer thicknesses on a high-precision spinstand. This study shows that the cap and the oxide layers have different switching dynamics and sufficiently strong exchange coupling is necessary for adequate thermal stability. Exchange coupling improves the signal-to-noise ratio (SNR) through improved writability and reduced noise from the cap. In the strong coupling region, overwrite and write widths can be varied without loss in SNR.

  4. Irreversible adiabatic decoherence of dipole-interacting nuclear-spin pairs coupled with a phonon bath

    NASA Astrophysics Data System (ADS)

    Domínguez, F. D.; González, C. E.; Segnorile, H. H.; Zamar, R. C.

    2016-02-01

    We study the quantum adiabatic decoherence of a multispin array, coupled with an environment of harmonic phonons, in the framework of the theory of open quantum systems. We follow the basic formal guidelines of the well-known spin-boson model, since in this framework it is possible to derive the time dependence of the reduced density matrix in the adiabatic time scale, without resorting to coarse-graining procedures. However, instead of considering a set of uncoupled spins interacting individually with the boson field, the observed system in our model is a network of weakly interacting spin pairs; the bath corresponds to lattice phonons, and the system-environment interaction is generated by the variation of the dipole-dipole energy due to correlated shifts of the spin positions, produced by the phonons. We discuss the conditions that the model must meet in order to fit within the adiabatic regime. By identifying the coupling of the dipole-dipole spin interaction with the low-frequency acoustic modes as the source of decoherence, we calculate the decoherence function of the reduced spin density matrix in closed way, and estimate the decoherence rate of a typical element of the reduced density matrix in one- and three-dimensional models of the spin array. Using realistic values for the various parameters of the model we conclude that the dipole-phonon mechanism can be particularly efficient to degrade multispin coherences, when the number of active spins involved in a given coherence is high. The model provides insight into the microscopic irreversible spin dynamics involved in the buildup of quasiequilibrium states and in the coherence leakage during refocusing experiments in nuclear magnetic resonance of crystalline solids.

  5. Roles of Surface and Interface Spins in Exchange Coupled Nanostructures

    NASA Astrophysics Data System (ADS)

    Phan, Manh-Huong

    Exchange bias (EB) in magnetic nanostructures has remained a topic of global interest because of its potential use in spin valves, MRAM circuits, magnetic tunnel junctions, and spintronic devices. The exploration of EB on the nanoscale provides a novel approach to overcoming the superparamagnetic limit and increasing the thermoremanence of magnetic nanoparticles, a critical bottleneck for magnetic data storage applications. Recent advances in chemical synthesis have given us a unique opportunity to explore the EB in a variety of nanoparticle systems ranging from core/shell nanoparticles of Fe/γFe2O3, Co/CoO,and FeO/Fe3O4 to hollow nanoparticles of γFe2O3 and hybrid composite nanoparticles of Au/Fe3O4. Our studies have addressed the following fundamental and important questions: (i) Can one decouple collective contributions of the interface and surface spins to the EB in a core/shell nanoparticle system? (ii) Can the dynamic and static response of the core and shell be identified separately? (iii) Can one tune ``minor loop'' to ``exchange bias'' effects in magnetic hollow nanoparticles by varying the number of surface spins? (iv) Can one decouple collective contributions of the inner and outer surface spins to the EB in a hollow nanoparticle system? (v) Can EB be induced in a magnetic nanoparticle by forming its interface with a non-magnetic metal? Such knowledge is essential to tailor EB in magnetic nanostructures for spintronics applications. In this talk, we will discuss the aforementioned findings in terms of our experimental and atomistic Monte Carlo studies. The work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award No. DE-FG02-07ER46438.

  6. Search for anomalous couplings in the decay of polarized Z bosons to tau lepton pairs

    SciTech Connect

    Torrence, E.C.

    1997-06-01

    Using a sample of 4,500 polarized Z decays to {tau} lepton pairs accumulated with the SLD detector at the SLAC Linear Collider (SLC) in 1993-95, a search has been made for anomalous couplings in the neutral current reaction e{sup +}e{sup {minus}}{yields}{tau}{sup +}{tau}{sup {minus}}. A measurement of the CP violating Weak Electric Dipole Moment (WEDM) and the CP conserving Weak Magnetic Dipole Moment (WMDM) of the {tau} lepton has been performed by considering the transverse spin polarization of {tau} leptons produced at the Z pole. Using a maximum likelihood technique, the observed {tau} decay spectra in the e, {mu}, {pi}, and {rho} decay channels are used to infer the net transverse polarization of the underlying tau leptons, and a fit for the anomalous dipole moments is performed. No evidence for these dipole movements is observed, and limits are placed on both the real and imaginary parts of the WEDM and WMDM.

  7. Homoclinic orbits and chaos in a pair of parametrically driven coupled nonlinear resonators.

    PubMed

    Kenig, Eyal; Tsarin, Yuriy A; Lifshitz, Ron

    2011-07-01

    We study the dynamics of a pair of parametrically driven coupled nonlinear mechanical resonators of the kind that is typically encountered in applications involving microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). We take advantage of the weak damping that characterizes these systems to perform a multiple-scales analysis and obtain amplitude equations, describing the slow dynamics of the system. This picture allows us to expose the existence of homoclinic orbits in the dynamics of the integrable part of the slow equations of motion. Using a version of the high-dimensional Melnikov approach, developed by G. Kovačič and S. Wiggins [Physica D 57, 185 (1992)], we are able to obtain explicit parameter values for which these orbits persist in the full system, consisting of both Hamiltonian and non-Hamiltonian perturbations, to form so-called Šilnikov orbits, indicating a loss of integrability and the existence of chaos. Our analytical calculations of Šilnikov orbits are confirmed numerically. PMID:21867278

  8. Modelling interfacial coupling in thin film magnetic exchange springs at finite temperature

    NASA Astrophysics Data System (ADS)

    Saharan, L.; Morrison, C.; Miles, J. J.; Thomson, T.; Schrefl, T.; Hrkac, G.

    2013-10-01

    We report a numerical study that demonstrates the interface layer between a soft and hard magnetic phase, the exchange transition layer, is the dominant factor that influences the magnetization reversal process at room temperature and long measurement times. It is found that the exchange transition layer thickness affects the magnetization reversal and the coupling of a bi-layer system by lowering the switching field and changing the angle dependent magnetization reversal. We show that the change in angle dependence of reversal is due to an increased incoherency in the lateral spin behavior. Changing the value of exchange coupling in the exchange transition layer affects only the angle dependent behavior and does not lower the switching field.

  9. Wave-vector-dependent spin pumping as a probe of exchange-coupled magnons

    NASA Astrophysics Data System (ADS)

    Fukami, Masaya; Tateno, Yuma; Sekiguchi, Koji; Ando, Kazuya

    2016-05-01

    We demonstrate that short-wavelength exchange-coupled magnons can be identified electrically through the combination of their spin-pumping and damping properties in a metal/magnetic insulator heterostructure. We present clear wave-vector dependence of the spin pumping from parametrically excited exchange-coupled magnons in the heterostructure. The efficiency of spin pumping by dipole-exchange magnons was measured to be sensitive to their wave numbers and propagation angles, while the efficiency was found to be almost constant in the exchange limit. This dependence enabled us to uncover nontrivial dual bistability in the system originating from drastic change in dominant nonequilibrium magnon modes. These findings pave a path for direct electric access to short-wavelength spin dynamics that cannot be probed by optical techniques.

  10. Modeling and experiment reveal an unexpected stereoelectronic effect on conformation and scalar couplings of alpha-aminoorganostannanes, with possible relevance to the tin-lithium exchange reaction.

    PubMed

    Santiago, Marcelina; Low, Eddy; Chambournier, Gilles; Gawley, Robert E

    2003-10-31

    The solution conformation of N-methyl-2-(tributylstannyl)piperidines has been determined through the use of vicinal 119Sn-13C coupling constants, revealing a conformational distortion caused by an unexpected stereoelectronic effect in some cases. Specifically, the "equatorial" conformer is distorted into a half-chair, in which the nitrogen lone pair eclipses the C-Sn bond. This distortion, which "costs" approximately 1 kcal/mol, correlates with a conformational dependence of geminal 119Sn-15N couplings and a possible correlation with reactivity in the tin-lithium exchange reaction. PMID:14575474

  11. Density functional study on anisotropic magnetic exchange couplings in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Oh, Hyungju; Choi, Hyoung Joon

    2013-03-01

    Iron-based superconductors exhibit many different antiferromagnetically ordered ground states. An understanding of the magnetic exchange couplings and ground-state Hamiltonian in the parent compounds of these materials is important because such an information could be the basis to unveil the mechanism of unconventional superconductivity. By performing first-principles calculations of the electronic and magnetic properties with non-collinear spin configurations, we study the anisotropic magnetic exchange couplings in iron-based superconductors. We obtain magnetic excitations using the anisotropic magnetic exchange couplings, and compare the results with published inelastic neutron scattering data. This work was supported by the NRF of Korea (Grant No. 2011-0018306). Computational resources have been provided by KISTI Supercomputing Center (Project No. KSC-2012-C2-14).

  12. Magnetic patterning: local manipulation of the intergranular exchange coupling via grain boundary engineering

    PubMed Central

    Huang, Kuo-Feng; Liao, Jung-Wei; Hsieh, Cheng-Yu; Wang, Liang-Wei; Huang, Yen-Chun; Wen, Wei-Chih; Chang, Mu-Tung; Lo, Shen-Chuan; Yuan, Jun; Lin, Hsiu-Hau; Lai, Chih-Huang

    2015-01-01

    Magnetic patterning, with designed spatial profile of the desired magnetic properties, has been a rising challenge for developing magnetic devices at nanoscale. Most existing methods rely on locally modifying magnetic anisotropy energy or saturation magnetization, and thus post stringent constraints on the adaptability in diverse applications. We propose an alternative route for magnetic patterning: by manipulating the local intergranular exchange coupling to tune lateral magnetic properties. As demonstration, the grain boundary structure of Co/Pt multilayers is engineered by thermal treatment, where the stress state of the multilayers and thus the intergranular exchange coupling can be modified. With Ag passivation layers on top of the Co/Pt multilayers, we can hinder the stress relaxation and grain boundary modification. Combining the pre-patterned Ag passivation layer with thermal treatment, we can design spatial variations of the magnetic properties by tuning the intergranular exchange coupling, which diversifies the magnetic patterning process and extends its feasibility for varieties of new devices. PMID:26156786

  13. Strain-modulated antiferromagnetic spin orientation and exchange coupling in Fe/CoO(001)

    SciTech Connect

    Zhu, J.; Li, Q.; Li, J. X.; Ding, Z.; Wu, Y. Z.; Hua, C. Y.; Huang, M. J.; Lin, H.-J.; Hu, Z.; Won, C.

    2014-05-21

    The effect of CoO spin orientation on exchange coupling was investigated in single-crystalline Fe/CoO/MnO/MgO(001) systems. An antiferromagnetic CoO spin reorientation transition from the in-plane direction to the out-of-plane direction was found to be associated with the in-plane strain transition in CoO film from compression to expansion. The induced uniaxial anisotropies by exchange coupling at the Fe/CoO interface are significantly stronger for the in-plane CoO spin orientation than for the out-of-plane CoO spin orientation. Our study provides a way to modify the exchange coupling in the ferromagnetic (FM)/antiferromagnetic (AFM) bilayer by modulating the strain in the AFM film.

  14. Experimental modeling of intergranular exchange coupling for perpendicular thin film media

    NASA Astrophysics Data System (ADS)

    Sokalski, Vincent; Laughlin, David E.; Zhu, Jian-Gang

    2009-09-01

    We present an experimental model system that enables quantitative assessment of intergranular exchange coupling in CoCrPt-oxide perpendicular magnetic recording media. A thin film structure consisting of a high coercivity CoPt unicrystal layer and a lower coercivity CoPt layer separated by a thin oxide interlayer is used to model perpendicularly magnetized grains separated by oxide grain boundaries. Exchange coupling energy between the CoPt layers was obtained for SiOx, TiOx, and CrOx interlayers by measuring field shifts from the lower coercivity layer. Cr segregation in CoCrPt grains to grain boundaries is also modeled experimentally and found to significantly suppress exchange coupling.

  15. Ignition calculations using a reduced coupled-mode electron- ion energy exchange model*

    NASA Astrophysics Data System (ADS)

    Garbett, W. J.; Chapman, D. A.

    2016-03-01

    Coupled-mode models for electron-ion energy exchange can predict large deviations from standard binary collision models in some regimes. A recently developed reduced coupled-mode model for electron-ion energy exchange, which accurately reproduces full numerical results over a wide range of density and temperature space, has been implemented in the Nym hydrocode and used to assess the impact on ICF capsule fuel assembly and performance. Simulations show a lack of sensitivity to the model, consistent with results from a range of simpler alternative models. Since the coupled-mode model is conceptually distinct to models based on binary collision theory, this result provides increased confidence that uncertainty in electron-ion energy exchange will not impact ignition attempts.

  16. Enhancing Inter-phase Exchange Coupling in SmCo5/Co Nanocomposite Materials

    NASA Astrophysics Data System (ADS)

    Wu, Dangxin; Zhang, Qiming; Liu, J. P.

    2006-10-01

    Exchange-coupled hard/soft phase nanocomposite magnets were proposed to increase the maximum energy product by combining the large anisotropy of hard phase materials and the high saturation magnetization of soft phase materials. To understand the inter-phase exchange coupling is very important for design of nanocomposite magnets. In this work, we performed first-principles calculations to investigate the inter-phase exchange coupling between hard phase SmCo5 and soft phase Co using superlattice model. The calculations were based on Density Functional Theory, using projector augmented wave (PAW) method and linear-muffin-tin-orbital (LMTO) method in the atomic sphere approximation. The atomic structures were optimized and the electronic ground state was obtained. Then the noncollinear magnetic calculations were performed to calculate the exchange interactions. We found that the total energy is a quadratic function of angle (θ) between the directions of magnetic moments of hard phase and middle layer of soft phase. We found that Fe doped soft phase strengths the exchange coupling between SmCo5/Co in our models, which in turn may lead to higher maximum energy product.

  17. Thermodynamics of information exchange between two coupled quantum dots

    NASA Astrophysics Data System (ADS)

    Kutvonen, Aki; Sagawa, Takahiro; Ala-Nissila, Tapio

    2016-03-01

    We propose a setup based on two coupled quantum dots where thermodynamics of a measurement can be quantitatively characterized. The information obtained in the measurement can be utilized by performing feedback in a manner apparently breaking the second law of thermodynamics. In this way the setup can be operated as a Maxwell's demon, where both the measurement and feedback are performed separately by controlling an external parameter. This is analogous to the case of the original Szilard engine. Since the setup contains both the microscopic demon and the engine itself, the operation of the whole measurement-feedback cycle can be explained in detail at the level of single realizations. In addition, we derive integral fluctuation relations for both the bare and coarse-grained entropy productions in the setup.

  18. Enhanced exchange-coupling effect in Nd-Fe-B/Fe-B nanocomposite magnet.

    PubMed

    Cha, Hyungil; Kim, Changwoo; Ji, Eunsun; Kim, Younghwan; Jadhav, Abhijit; Kang, Dongin; Kang, Youngsoo

    2010-01-01

    Soft phase magnetic Fe-B nanoparticles were prepared by coprecipitation and the hard phase magnetic Nd-Fe-B nanoparticles were obtained from mechanical ball mill of the bulk Nd-Fe-B with a shaker mill. Also mechanical ball mill technique was applied to the mixture of Nd-Fe-B and Fe-B nanoparticles to build up an exchange-coupled nanocomposite magnet. It was loaded in electronic furnace and annealed under a flow of hydrogen at 953 K for 30 min. The exchange coupled interaction of isotropic magnets was characterized by smooth hysteresis loop with a high value of remanence (Mr/Ms > 0.5). PMID:20352831

  19. Impact of orthogonal exchange coupling on magnetic anisotropy in antiferromagnetic oxides/ferromagnetic systems.

    PubMed

    Kuświk, Piotr; Gastelois, Pedro Lana; Głowiński, Hubert; Przybylski, Marek; Kirschner, Jürgen

    2016-10-26

    The influence of interface exchange coupling on magnetic anisotropy in the antiferromagnetic oxide/Ni system is investigated. We show how interfacial exchange coupling can be employed not only to pin the magnetization of the ferromagnetic layer but also to support magnetic anisotropy to orient the easy magnetization axis perpendicular to the film plane. The fact that this effect is only observed below the Néel temperature of all investigated antiferromagnetic oxides with significantly different magnetocrystalline anisotropies gives evidence that antiferromagnetic ordering is a source of the additional contribution to the perpendicular effective magnetic anisotropy. PMID:27589202

  20. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation

    SciTech Connect

    Aggelen, Helen van; Department of Chemistry, Duke University, Durham, North Carolina 27708 ; Yang, Yang; Yang, Weitao

    2014-05-14

    Despite their unmatched success for many applications, commonly used local, semi-local, and hybrid density functionals still face challenges when it comes to describing long-range interactions, static correlation, and electron delocalization. Density functionals of both the occupied and virtual orbitals are able to address these problems. The particle-hole (ph-) Random Phase Approximation (RPA), a functional of occupied and virtual orbitals, has recently known a revival within the density functional theory community. Following up on an idea introduced in our recent communication [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013)], we formulate more general adiabatic connections for the correlation energy in terms of pairing matrix fluctuations described by the particle-particle (pp-) propagator. With numerical examples of the pp-RPA, the lowest-order approximation to the pp-propagator, we illustrate the potential of density functional approximations based on pairing matrix fluctuations. The pp-RPA is size-extensive, self-interaction free, fully anti-symmetric, describes the strong static correlation limit in H{sub 2}, and eliminates delocalization errors in H{sub 2}{sup +} and other single-bond systems. It gives surprisingly good non-bonded interaction energies – competitive with the ph-RPA – with the correct R{sup −6} asymptotic decay as a function of the separation R, which we argue is mainly attributable to its correct second-order energy term. While the pp-RPA tends to underestimate absolute correlation energies, it gives good relative energies: much better atomization energies than the ph-RPA, as it has no tendency to underbind, and reaction energies of similar quality. The adiabatic connection in terms of pairing matrix fluctuation paves the way for promising new density functional approximations.

  1. Multidimensionally-constrained relativistic mean-field study of spontaneous fission: Coupling between shape and pairing degrees of freedom

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; Lu, Bing-Nan; Nikšić, Tamara; Vretenar, Dario; Zhou, Shan-Gui

    2016-04-01

    Background: Studies of fission dynamics, based on nuclear energy density functionals, have shown that the coupling between shape and pairing degrees of freedom has a pronounced effect on the nonperturbative collective inertia and, therefore, on dynamic (least-action) spontaneous fission paths and half-lives. Purpose: The aim is to analyze the effects of particle-number fluctuation degrees of freedom on symmetric and asymmetric spontaneous fission (SF) dynamics, and to compare the findings with the results of recent studies based on the self-consistent Hartree-Fock-Bogoliubov (HFB) method. Methods: Collective potentials and nonperturbative cranking collective inertia tensors are calculated using the multidimensionally-constrained relativistic-mean-field (MDC-RMF) model. Pairing correlations are treated in the BCS approximation using a separable pairing force of finite range. Pairing fluctuations are included as a collective variable using a constraint on particle-number dispersion. Fission paths are determined with the dynamic programming method by minimizing the action in multidimensional collective spaces. Results: The dynamics of spontaneous fission of 264Fm and 250Fm are explored. Fission paths, action integrals, and corresponding half-lives computed in the three-dimensional collective space of shape and pairing coordinates, using the relativistic functional DD-PC1 and a separable pairing force of finite range, are compared with results obtained without pairing fluctuations. Results for 264Fm are also discussed in relation with those recently obtained using the HFB model. Conclusions: The inclusion of pairing correlations in the space of collective coordinates favors axially symmetric shapes along the dynamic path of the fissioning system, amplifies pairing as the path traverses the fission barriers, significantly reduces the action integral, and shortens the

  2. O2 activation by binuclear Cu sites: Noncoupled versus exchange coupled reaction mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Solomon, Edward I.

    2004-09-01

    Binuclear Cu proteins play vital roles in O2 binding and activation in biology and can be classified into coupled and noncoupled binuclear sites based on the magnetic interaction between the two Cu centers. Coupled binuclear Cu proteins include hemocyanin, tyrosinase, and catechol oxidase. These proteins have two Cu centers strongly magnetically coupled through direct bridging ligands that provide a mechanism for the 2-electron reduction of O2 to a µ-2:2 side-on peroxide bridged species. This side-on bridged peroxo-CuII2 species is activated for electrophilic attack on the phenolic ring of substrates. Noncoupled binuclear Cu proteins include peptidylglycine -hydroxylating monooxygenase and dopamine -monooxygenase. These proteins have binuclear Cu active sites that are distant, that exhibit no exchange interaction, and that activate O2 at a single Cu center to generate a reactive CuII/O2 species for H-atom abstraction from the C-H bond of substrates. O2 intermediates in the coupled binuclear Cu enzymes can be trapped and studied spectroscopically. Possible intermediates in noncoupled binuclear Cu proteins can be defined through correlation to mononuclear CuII/O2 model complexes. The different intermediates in these two classes of binuclear Cu proteins exhibit different reactivities that correlate with their different electronic structures and exchange coupling interactions between the binuclear Cu centers. These studies provide insight into the role of exchange coupling between the Cu centers in their reaction mechanisms.

  3. Wehrl information and mixedness of a Cooper-pair box coupled to a cavity in a thermal reservoir

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdel-Baset A.; Eleuch, Hichem

    2016-02-01

    An analytical description of a Cooper-pair box coupled to a dissipative cavity in a thermal bath is derived. The Wehrl entropy and the Wehrl density are used to investigate the dynamics of the mixedness and the information loss of the phase space for the state of the Cooper-pair box. We show that the Wehrl entropy and density are very sensitive not only to the damping rate and the number of thermal photons but also to the intensity of the coherent state and the qubit distribution angle of the initial state. The information of the phase space and the coherence are quickly lost due to the thermal photons.

  4. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    SciTech Connect

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  5. First principles calculations of interlayer exchange coupling in bcc Fe/Cu/Fe structures

    SciTech Connect

    Kowalewski, M.; Heninrich, B.; Schulthess, T.C.; Butler, W.H.

    1998-01-01

    The authors report on theoretical calculations of interlayer exchange coupling between two Fe layers separated by a modified Cu spacer. These calculations were motivated by experimental investigations of similar structures by the SFU group. The multilayer structures of interest have the general form: Fe/Cu(k)/Fe and Fe/Cu(m)/X(1)/Cu(n)/Fe where X indicates one AL (atomic layer) of foreign atoms X (Cr, Ag, or Fe) and k, m, n represent the number of atomic layers of Cu. The purpose of the experimental and theoretical work was to determine the effect of modifying the pure Cu spacer by replacing the central Cu atomic layer with the atomic layer of foreign atoms X. The first principles calculation were performed using the Layer Korringa-Kohn-Rostoker (LKKR) method. The theoretical thickness dependence of the exchange coupling between two semi-infinite Fe layers was calculated for pure Cu spacer thicknesses in the range of 0 < k < 16. The effect of the foreign atoms X on the exchange coupling was investigated using the structure with 9 AL Cu spacer as a reference sample. The calculated changes in the exchange coupling are in qualitative agreement with experiment.

  6. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    PubMed Central

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  7. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes.

    PubMed

    Ma, X; Fang, F; Li, Q; Zhu, J; Yang, Y; Wu, Y Z; Zhao, H B; Lüpke, G

    2015-01-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation. PMID:26508587

  8. Effects of Exchange Energy and Spin-Orbit Coupling on Bond Energies

    ERIC Educational Resources Information Center

    Smith, Derek W.

    2004-01-01

    Since chemical reactions involve the breaking and making of bonds, understanding the relative strengths of bonds is of paramount importance in the study, teaching, and practice of chemistry. Further, it is showed that free atoms having p(super n) configuration with n = 2,3, or 4 are stabilized by exchange energy, and by spin-orbit coupling for n =…

  9. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    DOE PAGESBeta

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-28

    In this study, optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recoverymore » time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.« less

  10. Unconventional pairings of spin-orbit coupled attractive degenerate Fermi gas in a one-dimensional optical lattice.

    PubMed

    Liang, Junjun; Zhou, Xiaofan; Chui, Pak Hong; Zhang, Kuang; Gu, Shi-jian; Gong, Ming; Chen, Gang; Jia, Suotang

    2015-01-01

    Understanding novel pairings in attractive degenerate Fermi gases is crucial for exploring rich superfluid physics. In this report, we reveal unconventional pairings induced by spin-orbit coupling (SOC) in a one-dimensional optical lattice, using a state-of-the-art density-matrix renormalization group method. When both bands are partially occupied, we find a strong competition between the interband Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and intraband Bardeen-Cooper-Schrieffer (BCS) pairings. In particular, for the weak and moderate SOC strengths, these two pairings can coexist, giving rise to a new phase called the FFLO-BCS phase, which exhibits a unique three-peak structure in pairing momentum distribution. For the strong SOC strength, the intraband BCS pairing always dominates in the whole parameter regime, including the half filling. We figure out the whole phase diagrams as functions of filling factor, SOC strength, and Zeeman field. Our results are qualitatively different from recent mean-field predictions. Finally, we address that our predictions could be observed in a weaker trapped potential. PMID:26443006

  11. Unconventional pairings of spin-orbit coupled attractive degenerate Fermi gas in a one-dimensional optical lattice

    PubMed Central

    Liang, Junjun; Zhou, Xiaofan; Chui, Pak Hong; Zhang, Kuang; Gu, Shi-jian; Gong, Ming; Chen, Gang; Jia, Suotang

    2015-01-01

    Understanding novel pairings in attractive degenerate Fermi gases is crucial for exploring rich superfluid physics. In this report, we reveal unconventional pairings induced by spin-orbit coupling (SOC) in a one-dimensional optical lattice, using a state-of-the-art density-matrix renormalization group method. When both bands are partially occupied, we find a strong competition between the interband Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) and intraband Bardeen-Cooper-Schrieffer (BCS) pairings. In particular, for the weak and moderate SOC strengths, these two pairings can coexist, giving rise to a new phase called the FFLO-BCS phase, which exhibits a unique three-peak structure in pairing momentum distribution. For the strong SOC strength, the intraband BCS pairing always dominates in the whole parameter regime, including the half filling. We figure out the whole phase diagrams as functions of filling factor, SOC strength, and Zeeman field. Our results are qualitatively different from recent mean-field predictions. Finally, we address that our predictions could be observed in a weaker trapped potential. PMID:26443006

  12. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    SciTech Connect

    Morrison, C. Miles, J. J.; Thomson, T.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  13. Exchange Coupling Inversion in a High-Spin Organic Triradical Molecule.

    PubMed

    Gaudenzi, R; Burzurí, E; Reta, D; Moreira, I de P R; Bromley, S T; Rovira, C; Veciana, J; van der Zant, H S J

    2016-03-01

    The magnetic properties of a nanoscale system are inextricably linked to its local environment. In adatoms on surfaces and inorganic layered structures, the exchange interactions result from the relative lattice positions, layer thicknesses, and other environmental parameters. Here, we report on a sample-dependent sign inversion of the magnetic exchange coupling between the three unpaired spins of an organic triradical molecule embedded in a three-terminal device. This ferro-to-antiferromagnetic transition is due to structural distortions and results in a high-to-low spin ground-state change in a molecule traditionally considered to be a robust high-spin quartet. Moreover, the flexibility of the molecule yields an in situ electric tunability of the exchange coupling via the gate electrode. These findings open a route to the controlled reversal of the magnetic states in organic molecule-based nanodevices by mechanical means, electrical gating, or chemical tailoring. PMID:26862681

  14. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    NASA Astrophysics Data System (ADS)

    Morrison, C.; Miles, J. J.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.; Thomson, T.

    2015-05-01

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  15. Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect

    SciTech Connect

    Jiang, Xin Li, Zhipeng; Zheng, Yuankai; Kaiser, Christian; Diao, Zhitao; Fang, Jason; Leng, Qunwen

    2015-09-15

    Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field.

  16. Modulation of interlayer exchange coupling strength in magnetic tunnel junctions via strain effect

    NASA Astrophysics Data System (ADS)

    Jiang, Xin; Li, Zhipeng; Zheng, Yuankai; Kaiser, Christian; Diao, Zhitao; Fang, Jason; Leng, Qunwen

    2015-09-01

    Interlayer exchange coupling of two ferromagnetic electrodes separated by a thin MgO tunnel barrier is investigated using magneto-optical Kerr effect. We find that the coupling field can be reduced by more than 40% as the thickness of a top Ta capping layer increases from 0.5 to 1.2 nm. In contrast, a similar film stack with an additional 3 nm Ru capping layer displays no such dependence on Ta thickness. Transmission electron microscopy study shows that the oxidation of the exposed Ta capping layer induces changes in the crystalline structures of the underlying films, giving rise to the observed reduction of the interlayer coupling field.

  17. On the use of a weak-coupling thermostat in replica-exchange molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lin, Zhixiong; van Gunsteren, Wilfred F.

    2015-07-01

    In a molecular dynamics (MD) simulation, various thermostat algorithms, including Langevin dynamics (LD), Nosé-Hoover (NH), and weak-coupling (WC) thermostats, can be used to keep the simulation temperature constant. A canonical ensemble is generated by the use of LD and NH, while the nature of the ensemble produced by WC has not yet been identified. A few years ago, it was shown that when using a WC thermostat with particular values of the temperature coupling time for liquid water at ambient temperature and pressure, the distribution of the potential energy is less wide than the canonical one. This led to an artifact in temperature replica-exchange molecular dynamics (T-REMD) simulations in which the potential energy distributions appear not to be equal to the ones of standard MD simulations. In this paper, we re-investigate this problem. We show that this artifact is probably due to the ensemble generated by WC being incompatible with the T-REMD replica-exchange criterion, which assumes a canonical configurational ensemble. We also show, however, that this artifact can be reduced or even eliminated by particular choices of the temperature coupling time of WC and the replica-exchange time period of T-REMD, i.e., when the temperature coupling time is chosen very close to the MD time step or when the exchange time period is chosen large enough. An attempt to develop a T-REMD replica-exchange criterion which is likely to be more compatible with the WC configurational ensemble is reported. Furthermore, an exchange criterion which is compatible with a microcanonical ensemble is used in total energy REMD simulations.

  18. Chemical trend of exchange coupling in diluted magnetic II-VI semiconductors: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Chanier, T.; Virot, F.; Hayn, R.

    2009-05-01

    We have calculated the chemical trend of magnetic exchange parameters ( Jdd , Nα , and Nβ ) of Zn-based II-VI semiconductors ZnA ( A=O , S, Se, and Te) doped with Co or Mn. We show that a proper treatment of electron correlations by the local spin-density approximation (LSDA)+U method leads to good agreement between experimental and theoretical values of the nearest-neighbor exchange coupling Jdd between localized 3d spins in contrast to the LSDA method. The exchange couplings between localized spins and doped electrons in the conduction band Nα are in good agreement with experiment as well. But the values for Nβ (coupling to doped holes in the valence band) indicate a crossover from weak coupling (for A=Te and Se) to strong coupling (for A=O ) and a localized hole state in ZnO:Mn. This hole localization explains the apparent discrepancy between photoemission and magneto-optical data for ZnO:Mn.

  19. Magnetic Exchange Couplings in Heterodinuclear Complexes Based on Differential Local Spin Rotations.

    PubMed

    Joshi, Rajendra P; Phillips, Jordan J; Peralta, Juan E

    2016-04-12

    We analyze the performance of a new method for the calculation of magnetic exchange coupling parameters for the particular case of heterodinuclear transition metals complexes of Cu, Ni, and V. This method is based on a generalized perturbative approach which uses differential local spin rotations via formal Lagrange multipiers (Phillips, J. J.; Peralta, J. E. J. Chem. Phys. 2013, 138, 174115). The reliability of the calculated couplings has been assessed by comparing with results from traditional energy differences with different density functional approximations and with experimental values. Our results show that this method to calculate magnetic exchange couplings can be reliably used for heteronuclear transition metal complexes, and at the same time, that it is independent from the different mapping schemes used in energy difference methods. PMID:26953521

  20. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads. PMID:20462180

  1. Tightly coupled tripole conductor pairs as constituents for a planar 2D-isotropic negative refractive index metamaterial.

    PubMed

    Vallecchi, Andrea; Capolino, Filippo

    2009-08-17

    A metamaterial, arranged by stacking layers of planar constituents suitably shaped to be responsive to arbitrarily linearly polarized incident waves is here shown to exhibit 2D-isotropic effective negative refractive index (NRI). The general concept underlying this metamaterial design consists of closely pairing two metallic particles to accomplish, as a result of their tight coupling, both symmetric and antisymmetric resonance modes, whose proper superposition can lead to an effective negative refraction response. The proposed structure is composed by layers of periodically arranged pairs of face coupled loaded tripoles printed on the opposite sides of a single dielectric substrate. Through a comprehensive characterization of the transmission properties of such metamaterial, together with the analysis of its dispersion diagram, conclusive evidence that the medium exhibits effective NRI properties as well as good impedance matching to free space is provided. We also describe some guidelines to design the proposed metamaterial with a prescribed operational frequency bandwidth, dependently on the structure parameters. PMID:19688000

  2. Coupled-electron-pair approximation calculations on open-shell molecules: The two lowest states of HeNe/sup +/

    SciTech Connect

    Wasilewski, J.; Staemmler, V.; Koch, S.

    1988-08-01

    Extensive ab initio calculations at coupled-electron-pair approximation and multireference configuration interaction levels have been performed for the two lowest states X /sup 2/..sigma../sup +/ and A/sup 2/Pi of HeNe/sup +/. Spin-orbit coupling has been included on a semiempirical basis in order to account for the strong mixing between the X /sup 2/..sigma../sub 1/2//sup +/ and A/sub 2//sup 2/Pi/sub 1/2/ components, which influences the properties of both these states in the experimentally observed region at large internuclear distances.

  3. Investigation on intergranular exchange coupling effect in Pr9Fe85.5B5.5 ribbons

    NASA Astrophysics Data System (ADS)

    Li, Z. B.; Zhang, M.; Wang, L. C.; Shen, B. G.; Zhang, X. F.; Li, Y. F.; Hu, F. X.; Sun, J. R.

    2014-02-01

    The intergranular exchange coupling effects are investigated via thermal activation of magnetization reversal in the magnetic relaxation process, combined with Henkel plots and the measurement of susceptibilities in three types of Pr9Fe85.5B5.5 ribbons. Exchange interaction between hard-hard grains is proposed in optimal melt-spun ribbons, as well as in over melt-spun ribbons even bearing a weak exchange coupling between soft-hard grains. In under melt-spun ribbons, the decoupled effect is proposed between hard-hard grains. These investigations may contribute to a clear understanding about the complicated nature of the intergranular exchange coupling in nanocomposite magnets.

  4. Iron-free hexagonal pnictide superconductor SrPtAs: pairing interaction from electron-phonon coupling and possible d + id pairing?

    NASA Astrophysics Data System (ADS)

    Rhim, Sonny; Agterberg, Daniel F.; Weinert, Michael; Freeman, A. J.

    2014-03-01

    The iron-free hexagonal pnictide superconductor, SrPtAs, exhibits a prime example of staggered non-centrosymmetricity with non-negligible spin-orbit coupling, where locally broken inversion symmetry, despite the presence of global inversion, results in non-trivial consequences- an enhancement of the spin susceptibility and the paramagnetic limiting field.[2] Earlier calculations revealed that SrPtAs has three bands with quasi-two-dimensional features, where corresponding Fermi surfaces have two sheets around the zone center and one around the zone corner. We extended our first-principels calculations to include phonon dispersions. From this, the electron-phonon interaction is investigted in the framework of Eliashberg theory. Phonons near the K point contribute mostly to the pairing via both inter- and intra-band scattering. Further, the possibility of pairing symmetry with chiral d + id is discussed, which has been suggested when EF moves to a van Hove singularity either by n- or p-type doping.[3] DOE (DE-FG02-05ER45372).

  5. Magnetic field-controlled hysteresis loop bias in orthogonal exchange-spring coupling composite magnetic films

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Yu, Tian; Pan, Rui; Zhang, Qin-Tong; Liu, Pan; Naganuma, Hiroshi; Oogane, Mikihiko; Ando, Yasuo; Han, Xiufeng

    2016-06-01

    The exchange bias (EB) is an effective fundamental and applicational method to realize magnetic hysteresis loop shifting. However, further manipulation of EB unidirectional anisotropy is difficult after setup using either field deposition or post-annealing. In this work, we experimentally show a new approach to control the magnetic hysteresis loop bias in a [Co(0.2)/Pd(1)]5/CoFeB orthogonal exchange-spring (ES) coupling system, where the direction and strength of unidirectional anisotropy can be easily manipulated by applying an external magnetic field.

  6. Strong coupling theory for electron-mediated interactions in double-exchange models

    NASA Astrophysics Data System (ADS)

    Ishizuka, Hiroaki; Motome, Yukitoshi

    2015-07-01

    We present a theoretical framework for evaluating effective interactions between localized spins mediated by itinerant electrons in double-exchange models. Performing the expansion with respect to the spin-dependent part of the electron hopping terms, we show a systematic way of constructing the effective spin model in the large Hund's coupling limit. As a benchmark, we examine the accuracy of this method by comparing the results with the numerical solutions for the spin-ice type model on a pyrochlore lattice. We also discuss an extension of the method to the double-exchange models with Heisenberg and X Y localized spins.

  7. Full counting statistics for orbital-degenerate impurity Anderson model with Hund's rule exchange coupling.

    PubMed

    Sakano, Rui; Nishikawa, Yunori; Oguri, Akira; Hewson, Alex C; Tarucha, Seigo

    2012-06-29

    We study nonequilibrium current fluctuations through a quantum dot, which includes a ferromagnetic Hund's rule coupling J, in the low-energy Fermi liquid regime using the renormalized perturbation theory. The resulting cumulant for the current distribution in the particle-hole symmetric case shows that spin-triplet and spin-singlet pairs of quasiparticles are formed in the current due to the Hund's rule coupling, and these pairs enhance the current fluctuations. In the fully screened higher-spin Kondo limit, the Fano factor takes a value F(b)=(9M+6)/(5M+4) determined by the orbital degeneracy M. We also investigate the crossover between the small and large J limits in the two-orbital case M=2, using the numerical renormalization group approach. PMID:23004997

  8. Virtual Antiparticle Pairs, the Unit of Charge Epsilon and the QCD Coupling Alpha(sub s)

    NASA Technical Reports Server (NTRS)

    Batchelor, David

    2001-01-01

    New semi-classical models of virtual antiparticle pairs are used to compute the pair lifetimes, and good agreement with the Heisenberg lifetimes from quantum field theory (QFT) is found. When the results of the new models and QFT are combined, formulae for e and alpha(sub s)(q) are derived in terms of only h and c. The modeling method applies to both the electromagnetic and color forces. Evaluation of the action integral of potential field fluctuation for each interaction potential yields approx. = h/2 for both electromagnetic and color fluctuations, in agreement with QFT. Thus each model is a quantized semiclassical representation for such virtual antiparticle pairs, to good approximation. This work reduces the number of arbitrary parameters of the Standard Model by two from 18 to 16. These are remarkable, unexpected results from a basically classical method.

  9. Mutual interactions of redox couples via electron exchange in silicate melts - Models for geochemical melt systems

    NASA Technical Reports Server (NTRS)

    Schreiber, Henry D.; Merkel, Robert C., Jr.; Schreiber, V. Lea; Balazs, G. Bryan

    1987-01-01

    The mutual interactions via electron exchange of redox couples in glass-forming melts were investigated both theoretically and experimentally. A thermodynamic approach for considering the mutual interactions leads to conclusion that the degree of mutual interaction in the melt should be proportional in part to the difference in relative reduction potentials of the interacting redox couples. Experimental studies verify this conclusion for numerous redox couples in several composition/temperature/oxygen fugacity regimes. Geochemical systems simultaneously possess many potentially multivalent elements; the stabilized redox states in the resulting magmas can be explained in part by mutual interactions and by redox buffering through the central Fe(III)- Fe(II) couples in the melts. The significance of these results for basaltic magmas of the earth, moon, and meteorites is addressed.

  10. Magnetization process in a two-phase exchange-coupled system: A microscopic study

    SciTech Connect

    Ryan, D.H.; Feutrill, E.H.; Ding, J.

    1997-04-01

    The magnetization process in an exchange-coupled {alpha}-Fe+Nd{sub 2}Fe{sub 14}B nanocomposite has been studied by M{umlt o}ssbauer spectroscopy. Measurements in fields of up to 2 T confirm that the magnetization of the soft phase is strongly coupled to that of the hard phase. Analysis of magnetization curves and magic-angle spectra of saturated samples shows that the remanence is dominated by the hard phase. {copyright} {ital 1997 American Institute of Physics.}

  11. A Perspective on Designing Chiral Organic Magnetic Molecules with Unusual Behavior in Magnetic Exchange Coupling.

    PubMed

    Sarbadhikary, Prodipta; Shil, Suranjan; Panda, Anirban; Misra, Anirban

    2016-07-01

    A total of nine diradical-based organic chiral magnetic molecules with allene and cumulene couplers have been theoretically designed, and subsequently, their magnetic property has been studied by density functional theory. It is found that with an increase in length of the coupler, a remarkable increase in spin density within the coupler takes place. An increase in the length of the coupler reduces the energy of LUMO, and a smaller HOMO-LUMO gap facilitates stronger magnetic coupling and thereby a higher magnetic exchange coupling constant (J). This observation is supported by the occupation number of natural orbitals. PMID:27285309

  12. Magnetic coupling and exchange stiffness in striped MnAs films

    NASA Astrophysics Data System (ADS)

    Tolinski, T.; Lindner, J.; Lenz, K.; Baberschke, K.; Ney, A.; Hesjedal, T.; Pampuch, C.; Däweritz, L.; Koch, R.; Ploog, K. H.

    2004-12-01

    We provide the first direct evidence of interactions in a self-organized pattern of coexisting ferromagnetic and paramagnetic MnAs stripe domains as a function of the coupling strength between the stripes (inter) and within one stripe (intra). The value of the intra exchange constant A = 17.7 × 10-10 erg/cm is determined unambiguously from spin wave resonance. Additionally, in-plane ferromagnetic resonance measurements reveal the presence of a strong coupling between the neighboring stripes, which can dominate the weak intra-stripe interaction.

  13. Spin orbital torque driven magnetization switching in magnetic tunnel junction with inter-layer exchange coupling

    SciTech Connect

    Xu, Lei; Ma, Zhongshui; Wei, Dan

    2015-01-14

    The switching processes of elliptically shaped magnetic tunnel junction bits with the structure Ta/CoFeB/MgO/CoFeB have been studied by the micromagnetic models. By comparing the tunneling magneto-resistance minor and major loops calculated by our model with related experimental results, we found that the inter-layer exchange coupling between the two CoFeB layers and a reduced saturation magnetization M{sub s} distribution at the edge of the elliptical bit should be included. The chosen strength of the inter-layer exchange coupling also matches well with experimental observations. The current induced magnetization switching is generated from the spin Hall effect in the Ta layer. The critical switching currents calculated by our model are coincident with experiment. This shows the reliability of our micromagnetic model with the spin orbital torque term.

  14. Exchange Coupling Nanophase Fe-Pd Ferromagnets Through Solid State Transformation

    SciTech Connect

    Shugart, Kathleen N.; Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz-; Soffa, William A

    2011-01-01

    This study continues previous work on off stoichiometric Fe-Pd alloys using a combined reaction strategy during thermomechanical processing [1,2]. Severe plastic deformation of the initial disordered fcc gamma phase ( ), followed by heat treatment in the two phase field produces a nano-composite ferromagnet comprised of soft alpha-Fe/ferrite in a high-anisotropy L10 FePd matrix. The length scale and morphology of the transformation products have been characterized using x-ray diffraction, and scanning and transmission electron microscopy. The transformed microstructures exhibit strong texture retention similar to the stoichiometric alloy suggesting a massive ordering mode. The alloy has shown a proclivity to exchange couple at a length scale not in agreement with proposed theories of exchange coupling [3,4]. The magnetic properties were measured using standard vibrating sample magnetometry (VSM). This research has been supported by the National Science Foundation (NSF-DMR).

  15. The charge-exchange induced coupling between plasma-gas counterflows in the heliosheath

    NASA Astrophysics Data System (ADS)

    Fahr, H. J.

    2003-06-01

    Many hydrodynamic models have been presented which give similar views of the interaction of the solar wind plasma bubble with the counterstreaming partially ionized interstellar medium. In the more recent of these models it is taken into account that the solar and interstellar hydrodynamic flows of neutral atoms and protons are coupled by mass-, momentum-, and energy-exchange terms due to charge exchange processes. We shall reinvestigate the theoretical basis of this coupling here by use of a simplified description of the heliospheric interface and describe the main physics of the H-atom penetration through the more or less standing well-known plasma wall ahead of the heliopause. Thereby we can show that the type of charge exchange coupling terms used in up-to-now hydrodynamic treatments unavoidably leads to an O-type critical point at the sonic point of the H-atom flow, thus not allowing for a continuation of the integration of the hydrodynamic set of differential equations. The remedy for this problem is given by a more accurate formulation of the momentum exchange term for quasi-and sub-sonic H-atom flows. With a refined momentum exchange term derived from basic kinetic Boltzmann principles, we instead arrive at a characteristic equation with an X-type critical point, allowing for a continuous solution from supersonic to subsonic flow conditions. This necessitates that the often treated problem of the propagation of inter-stellar H-atoms through the heliosheath has to be solved using these newly derived, differently effective plasma - gas friction forces. Substantially different results are to be expected from this context for the filtration efficiency of the heliospheric interface.

  16. Exchange coupling driven omnidirectional rotatable anisotropy in ferrite doped CoFe thin film

    PubMed Central

    Chai, Guozhi; Phuoc, Nguyen N.; Ong, C. K.

    2012-01-01

    Isotropic magnetic materials with high resonant frequencies are useful for applications in microwave devices. Undoped CoFe thin films, as common soft magnetic materials with high saturation magnetization, show isotropic characteristics but no high frequency response. Here, we use ferrite doped CoFe thin film to realize a resonant frequency higher than 4.5 GHz at all orientations. The exchange coupling between ferrimagnet and ferromagnet is assumed to play a key role on the omnidirectional rotatable anisotropy. PMID:23145323

  17. Magnetism behaviours dominated by the interplay of magnetic anisotropy and exchange coupling in local Co discs.

    PubMed

    Yang, En-Cui; Liu, Zhong-Yi; Zhang, Lei; Yang, Na; Zhao, Xiao-Jun

    2016-05-10

    Disc-like Co core-derived (4,4)- and (3,6)-connected layers, {[Co7(C2H5OH)1.5(H2O)0.5(Hdatrz)2(μ3-OH)4(ip)5]·2.5H2O·C2H5OH}n () and [Co7(H2O)4(ade)2(μ3-OH)6(sip)2]n () (Hdatrz = 3,5-diamino-1,2,4-triazole, ade(-) = adeninate, ip(2-) = isophthalate and sip(3-) = 5-sulfoisophthalate) were solvothermally generated and structurally and magnetically characterized. The effect of magnetic anisotropy and exchange coupling from the local Co cores on the resulting magnetism properties are discussed. A crystallographically asymmetric Co core in exhibited an unusual single-molecule magnet (SMM)-like response under zero dc field resulting from strong anisotropy generated by two different types of Co(II) polyhedra and highly anisotropic exchange interactions. By contrast, a highly symmetric Co disc in belonging to the C2h point group showed only strong ferromagnetic exchange, to lead to an overall ST = 7/2 spin ground-state at low temperature. Thus, the interplay of magnetic anisotropy and exchange coupling has a great and complicated influence on the overall magnetic phenomena, which should be fully considered for the design and preparation of new Co(II)-SMMs. PMID:27089955

  18. High-Efficiency Cooper-Pair Splitter in Quantum Anomalous Hall Insulator Proximity-Coupled with Superconductor

    PubMed Central

    Zhang, Ying-Tao; Deng, Xinzhou; Sun, Qing-Feng; Qiao, Zhenhua

    2015-01-01

    The quantum entanglement between two qubits is crucial for applications in the quantum communication. After the entanglement of photons was experimentally realized, much effort has been taken to exploit the entangled electrons in solid-state systems. Here, we propose a Cooper-pair splitter, which can generate spatially-separated but entangled electrons, in a quantum anomalous Hall insulator proximity-coupled with a superconductor. After coupling with a superconductor, the chiral edge states of the quantum anomalous Hall insulator can still survive, making the backscattering impossible. Thus, the local Andreev reflection becomes vanishing, while the crossed Andreev reflection becomes dominant in the scattering process. This indicates that our device can serve as an extremely high-efficiency Cooper-pair splitter. Furthermore, because of the chiral characteristic, our Cooper-pair splitter is robust against disorders and can work in a wide range of system parameters. Particularly, it can still function even if the system length exceeds the superconducting coherence length. PMID:26450824

  19. High-Efficiency Cooper-Pair Splitter in Quantum Anomalous Hall Insulator Proximity-Coupled with Superconductor.

    PubMed

    Zhang, Ying-Tao; Deng, Xinzhou; Sun, Qing-Feng; Qiao, Zhenhua

    2015-01-01

    The quantum entanglement between two qubits is crucial for applications in the quantum communication. After the entanglement of photons was experimentally realized, much effort has been taken to exploit the entangled electrons in solid-state systems. Here, we propose a Cooper-pair splitter, which can generate spatially-separated but entangled electrons, in a quantum anomalous Hall insulator proximity-coupled with a superconductor. After coupling with a superconductor, the chiral edge states of the quantum anomalous Hall insulator can still survive, making the backscattering impossible. Thus, the local Andreev reflection becomes vanishing, while the crossed Andreev reflection becomes dominant in the scattering process. This indicates that our device can serve as an extremely high-efficiency Cooper-pair splitter. Furthermore, because of the chiral characteristic, our Cooper-pair splitter is robust against disorders and can work in a wide range of system parameters. Particularly, it can still function even if the system length exceeds the superconducting coherence length. PMID:26450824

  20. Experiments and Simulations on a Heat Exchanger of an Automotive Exhaust Thermoelectric Generation System Under Coupling Conditions

    NASA Astrophysics Data System (ADS)

    Liu, X.; Yu, C. G.; Chen, S.; Wang, Y. P.; Su, C. Q.

    2014-06-01

    The present experimental and computational study investigates an exhaust gas waste heat recovery system for vehicles, using thermoelectric modules and a heat exchanger to produce electric power. It proposes a new plane heat exchanger of a thermoelectric generation (TEG) system, producing electricity from a limited hot surface area. To investigate the new plane heat exchanger, we make a coupling condition of heat-flow and flow-solid coupling analysis on it to obtain the temperature, heat, and pressure field of the heat exchanger, and compared it with the old heat exchanger. These fields couple together to solve the multi-field coupling of the flow, solid, and heat, and then the simulation result is compared with the test bench experiment of TEG, providing a theoretical and experimental basis for the present exhaust gas waste heat recovery system.

  1. Exchange coupled L10-FePt/fcc-FePt nanomagnets: Synthesis, characterization and magnetic properties

    NASA Astrophysics Data System (ADS)

    Srivastava, Sachchidanand; Gajbhiye, Namdeo S.

    2016-03-01

    We report synthesis, characterization and magnetic properties of exchange-coupled L10-FePt/fcc-FePt nanomagnets. Structural and morphological characterization of exchange-coupled L10-FePt/fcc-FePt was carried out by powder X-ray diffraction, Mössbauer spectroscopy and transmission electron microscopy. Rietveld refinement of powder X-ray diffraction pattern has been used to quantify L10-FePt and fcc-FePt phases present in samples. Room temperature Mössbauer spectroscopy showed sextets of both L10-FePt and fcc-FePt phases with their respective hyperfine interaction parameters. Transmission electron microscopic (TEM and HRTEM) images confirmed nanocrystalline nature of exchange-coupled nanomagnets with particle size ranges from 15 nm to 50 nm after annealing for different time at 700 °C. Room temperature magnetic studies showed ferromagnetic nature of nanomagnets and maximum energy product (BH)max~10.92 MGOe was obtained for sample containing 89.0% volume fraction of L10-FePt phase.

  2. Quantum interference and correlations in single dopants and exchange-coupled dopants in silicon

    NASA Astrophysics Data System (ADS)

    Salfi, Joe

    2015-03-01

    Quantum electronics exploiting the highly coherent states of single dopants in silicon invariably requires interactions between states and interfaces, and inter-dopant coupling by exchange interactions. We have developed a low temperature STM scheme for spatially resolved single-electron transport in a device-like environment, providing the first wave-function measurements of single donors and exchange-coupled acceptors in silicon. For single donors, we directly observed valley quantum interference due to linear superpositions of the valleys, and found that valley degrees of freedom are highly robust to the symmetry-breaking perturbation of nearby (3 nm) surfaces. For exchange-coupled acceptors, we measured the singlet-triplet splitting, and from the spatial tunneling probability, extracted enough information about the 2-body wavefunction amplitudes to determine the entanglement entropy, a measure of the quantum inseparability (quantum correlations) generated by the interactions between indistinguishable particles. Entanglement entropy of the J=3/2 holes was found to increase with increasing dopant distance, as Coulomb interactions overcome tunneling, coherently localizing spin towards a Heitler-London singlet, mimicing S=1/2 particles. In the future these capabilities will be exploited to peer into the inner workings of few-dopant quantum devices and shed new light on multi-dopant correlated states, engineered atom-by-atom. Work done collaboratively with J. A. Mol, R. Rahman, G. Klimeck, M. Y. Simmons, L. C. L. Hollenberg, and S. Rogge. Primary financial support from the ARC.

  3. Exchange bias and antiferromagnetic interfacial exchange coupling in the mixed-spin oxide Li2/7Ni5/7O

    NASA Astrophysics Data System (ADS)

    Shi, C. X.; Ren, W. J.; Liu, W.; Zhang, Z. D.

    2014-01-01

    We present a detailed study on magnetic properties of mixed spin oxide Li2/7Ni5/7O, where small ferromagnetic (FM) clusters (with averaged diameter of ˜18 Å) immersed with an antiferromagnetic (AFM) host. The exchange bias (EB) with shifts of the hysteresis loop along both the field and magnetization axes is found, which is due to the interfacial interaction between the FM clusters and the AFM host. An AFM interfacial exchange coupling is deduced from the exchange interactions between Ni ions. The type and strength of this interfacial exchange interaction are discussed in terms of the EB at low temperature.

  4. Effect of annealing on magnetic exchange coupling in CoPt/Co bilayer thin films

    SciTech Connect

    Kim, J.; Barmak, K.; De Graef, M.; Lewis, L. H.; Crew, D. C.

    2000-05-01

    Thin film CoPt/Co bilayers have been prepared as a model system to investigate the relationship between microstructure and exchange coupling in two-phase nanocomposite permanent magnets. The bilayers were prepared by magnetron sputter deposition of near-equiatomic CoPt with a thickness of 25 nm onto oxidized Si wafers. In the as-deposited state, CoPt had the A1 (fcc) structure and was magnetically soft. Before reinsertion into the sputtering chamber for the deposition of 2.8-16.7 nm thick Co layers, the CoPt films were annealed at 700 degree sign C for 120 min to produce the magnetically hard, fully ordered L1{sub 0} phase. The presence of exchange coupling in the bilayers was verified by magnetic hysteresis and recoil measurements and showed that only for Co thicknesses below 6.3 nm was this layer (in its as-deposited state) coupled through its full thickness to the CoPt layer. Annealing the bilayer samples at 300 and 550 degree sign C for 20 min resulted in improvement of the interlayer magnetic coupling and produced clear differences in the magnetic reversal coherency and the recoil curves. However, for some samples, the improved coupling resulted in a decrease in coercivity, indicating that there is an optimum in the coupling strength for the attainment of high coercivity. Transmission electron microscopy studies of the bilayers in plan view showed that the increased interlayer coupling with annealing was a result of improved granular epitaxy of Co to CoPt. (c) 2000 American Institute of Physics.

  5. Analytical description of spin-Rabi oscillation controlled electronic transitions rates between weakly coupled pairs of paramagnetic states with S=(1)/(2)

    NASA Astrophysics Data System (ADS)

    Glenn, R.; Baker, W. J.; Boehme, C.; Raikh, M. E.

    2013-04-01

    We report on the theoretical and experimental study of spin-dependent electronic transition rates which are controlled by a radiation-induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled paramagnetic states (S=(1)/(2)). The oscillation components [the Fourier content, F(s)] of the net transition rates within spin-pair ensembles are derived for randomly distributed spin resonances, with an account of a possible correlation between the two distributions corresponding to individual pair partners. Our study shows that when electrically detected Rabi spectroscopy is conducted under an increasing driving field B1, the Rabi spectrum, F(s), evolves from a single peak at s=ΩR, where ΩR=γB1 is the Rabi frequency (γ is the gyromagnetic ratio), to three peaks at s=ΩR, s=2ΩR, and low s≪ΩR. The crossover between the two regimes takes place when ΩR exceeds the expectation value δ0 of the difference in the Zeeman energies within the pairs, which corresponds to the broadening of the magnetic resonance by disorder caused by a hyperfine field or distributions of Landé g factors. We capture this crossover by analytically calculating the shapes of all three peaks at an arbitrary relation between ΩR and δ0. When the peaks are well developed their widths are Δs˜δ02/ΩR. We find a good quantitative agreement between the theory and experiment.

  6. Magnetic properties of epitaxial-grown exchange-coupled FePt/FeRh bilayer films

    NASA Astrophysics Data System (ADS)

    Lu, Wei; He, Chenchong; Chen, Zhe; Fan, Junwei; Yan, Biao

    2012-07-01

    In this paper, (001) textured FeRh/FePt bilayer thin film was fabricated by sputtering and the temperature-dependent magnetic behavior of FePt/FeRh bilayers was investigated in detail. The magnetic regime passes from exchange bias to exchange spring when the temperature increases from low to high, resulting from the first-order antiferromagnetic (AFM) to ferromagnetic (FM) phase transition in ordered FeRh alloy layer. Controlling the temperature-allowed modification of the hysteresis loops of exchange-spring-like FeRh/FePt bilayer due to the nanoscale soft/hard interface exchange coupling, our experimental results clearly show that the coercive field decreases strongly at the temperature where FeRh completely transforms to ferromagnetic state. In an exchange-spring-like FeRh/FePt bilayer film, the out-of-plane magnetization reversal process was in two steps and resulted from domain wall nucleation and propagation from the FeRh layer into the FePt layer.

  7. Exchange coupling and magnetic anisotropy at Fe/FePt interfaces

    NASA Astrophysics Data System (ADS)

    Aas, C. J.; Hasnip, P. J.; Cuadrado, R.; Plotnikova, E. M.; Szunyogh, L.; Udvardi, L.; Chantrell, R. W.

    2013-11-01

    We perform fully relativistic first-principles calculations of the exchange interactions and the magnetocrystalline anisotropy energy (MAE) in an Fe/FePt/Fe sandwich system in order to elucidate how the presence of Fe/FePt (soft/hard magnetic) interfaces impacts on the magnetic properties of Fe/FePt/Fe multilayers. Throughout our study we make comparisons between a geometrically unrelaxed system and a geometrically relaxed system. We observe that the Fe layer at the Fe/FePt interface plays a crucial role inasmuch as its (isotropic) exchange coupling to the soft (Fe) phase of the system is substantially reduced. Moreover, this interfacial Fe layer has a substantial impact on the MAE of the system. We show that the MAE of the FePt slab, including the contribution from the Fe/FePt interface, is dominated by anisotropic intersite exchange interactions. Our calculations indicate that the change in the MAE of the FePt slab with respect to the corresponding bulk value is negative, i.e., the presence of Fe/FePt interfaces appears to reduce the perpendicular MAE of the Fe/FePt/Fe system. However, for the relaxed system, this reduction is marginal. It is also shown that the relaxed system exhibits a reduced interfacial exchange. Using a simple linear chain model, we demonstrate that the reduced exchange leads to a discontinuity in the magnetization structure at the interface.

  8. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Incoherently Coupled Grey-Grey Spatial Soliton Pairs in Biased Two-Photon Photovoltaic Photorefractive Crystals

    NASA Astrophysics Data System (ADS)

    Su, Yan-Li; Jiang, Qi-Chang; Ji, Xuan-Mang

    2010-05-01

    The incoherently coupled grey-grey screening-photovoltaic spatial soliton pairs are predicted in biased two-photon photovoltaic photorefractive crystals under steady-state conditions. These grey-grey screening-photovoltaic soliton pairs can be established provided that the incident beams have the same polarization, wavelength, and are mutually incoherent. The grey-grey screening-photovoltaic soliton pairs can be considered as the united form of grey-grey screening soliton pairs and open or closed-circuit grey-grey photovoltaic soliton pairs.

  9. Nonclassical properties of coherent light in a pair of coupled anharmonic oscillators

    NASA Astrophysics Data System (ADS)

    Alam, Nasir; Mandal, Swapan

    2016-01-01

    The Hamiltonian and hence the equations of motion involving the field operators of two anharmonic oscillators coupled through a linear one is framed. It is found that these equations of motion involving the non-commuting field operators are nonlinear and are coupled to each other and hence pose a great problem for getting the solutions. In order to investigate the dynamics and hence the nonclassical properties of the radiation fields, we obtain approximate analytical solutions of these coupled nonlinear differential equations involving the non-commuting field operators up to the second orders in anharmonic and coupling constants. These solutions are found useful for investigating the squeezing of pure and mixed modes, amplitude squared squeezing, principal squeezing, and the photon antibunching of the input coherent radiation field. With the suitable choice of the parameters (photon number in various field modes, anharmonic, and coupling constants, etc.), we calculate the second order variances of field quadratures of various modes and hence the squeezing, amplitude squared, and mixed mode squeezing of the input coherent light. In the absence of anharmonicities, it is found that these nonlinear nonclassical phenomena (squeezing of pure and mixed modes, amplitude squared squeezing and photon antibunching) are completely absent. The percentage of squeezing, mixed mode squeezing, amplitude squared squeezing increase with the increase of photon number and the dimensionless interaction time. The collapse and revival phenomena in squeezing, mixed mode squeezing and amplitude squared squeezing are exhibited. With the increase of the interaction time, the monotonic increasing nature of the squeezing effects reveal the presence of unwanted secular terms. It is established that the mere coupling of two oscillators through a third one does not produces the squeezing effects of input coherent light. However, the pure nonclassical phenomena of antibunching of photons in vacuum

  10. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers.

    PubMed

    Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-05-01

    The rice canopy in paddy fields can influence the air-soil exchange of organic chemicals. We used paired passive air samplers to assess the exchange of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the air below and above the rice canopy, implying contributions of different sources. Paired passive air samplers can be used effectively to assess the in situ air-soil exchange of PAHs and OCPs in subtropical paddy fields. PMID:25686886

  11. A Mean Field Analysis of the Exchange Coupling (J) For 2- and 3-D Structured Tetracyanoethylenide (TCNE -)-based Magnets

    SciTech Connect

    McConnell, Amber C.; Fishman, Randy Scott; Miller, Joel S.

    2012-01-01

    Mean field expressions based on the simple Heisenberg model were derived to correlate the inter- and intralayer exchange coupling to the critical temperatures, Tc, for several TCNE (tetracyanoethylene) based magnets with extended 2- and 3-D structure types. These expressions were used to estimate the exchange coupling, J, for 2-D ferrimagnetic [MII(TCNE)(NCMe)2]+ (M = Mn, Fe), 3-D antiferromagnetic MnII(TCNE)[C4(CN)8]1/2, and 3-D ferrimagnetic MnII(TCNE)3/2(I3)1/2. The sign and magnitude of the exchange coupling are in accord with previously reported magnetic data.

  12. A Mean Field Analysis of the Exchange Coupling (J) for Non-cubic Prussian Blue Analogue Magnets

    SciTech Connect

    DaSilva, Jack G.; McConnell, Amber C.; Fishman, Randy Scott; Miller, Joel S.

    2012-01-01

    Mean field expressions based on the simple Heisenberg model were derived to correlate the intra- and interlayer exchange couplings to the critical temperatures, Tc, for three metallocyanide-based magnets with extended 2- and 3-D structure types. These expressions were used to estimate the exchange coupling, J, for 2-D ferrimagnetic [NEt4]2MnII3(CN)8, 3-D antiferromagnetic [NEt4]MnII3(CN)7, and 3-D antiferromagnetic interpenetrating 3-D MnII(CN)2. The type and magnitude of the exchange coupling are in accord with the previously reported magnetic data.

  13. Interfacial exchange coupling and magnetization reversal in perpendicular [Co/Ni]N/TbCo composite structures

    PubMed Central

    Tang, M. H.; Zhang, Zongzhi; Tian, S. Y.; Wang, J.; Ma, B.; Jin, Q. Y.

    2015-01-01

    Interfacial exchange coupling and magnetization reversal characteristics in the perpendicular heterostructures consisting of an amorphous ferrimagnetic (FI) TbxCo100–x alloy layer exchange-coupled with a ferromagnetic (FM) [Co/Ni]N multilayer have been investigated. As compared with pure TbxCo100–x alloy, the magnetization compensation composition of the heterostructures shift to a higher Tb content, implying Co/Ni also serves to compensate the Tb moment in TbCo layer. The net magnetization switching field Hc⊥ and interlayer interfacial coupling field Hex, are not only sensitive to the magnetization and thickness of the switched TbxCo100–x or [Co/Ni]N layer, but also to the perpendicular magnetic anisotropy strength of the pinning layer. By tuning the layer structure we achieve simultaneously both large Hc⊥ = 1.31 T and Hex = 2.19 T. These results, in addition to the fundamental interest, are important to understanding of the interfacial coupling interaction in the FM/FI heterostructures, which could offer the guiding of potential applications in heat-assisted magnetic recording or all-optical switching recording technique. PMID:26074295

  14. Interfacial exchange coupling and magnetization reversal in perpendicular [Co/Ni]N/TbCo composite structures.

    PubMed

    Tang, M H; Zhang, Zongzhi; Tian, S Y; Wang, J; Ma, B; Jin, Q Y

    2015-01-01

    Interfacial exchange coupling and magnetization reversal characteristics in the perpendicular heterostructures consisting of an amorphous ferrimagnetic (FI) TbxCo(100-x) alloy layer exchange-coupled with a ferromagnetic (FM) [Co/Ni]N multilayer have been investigated. As compared with pure TbxCo(100-x) alloy, the magnetization compensation composition of the heterostructures shift to a higher Tb content, implying Co/Ni also serves to compensate the Tb moment in TbCo layer. The net magnetization switching field Hc⊥ and interlayer interfacial coupling field Hex, are not only sensitive to the magnetization and thickness of the switched TbxCo(100-x) or [Co/Ni]N layer, but also to the perpendicular magnetic anisotropy strength of the pinning layer. By tuning the layer structure we achieve simultaneously both large Hc⊥ = 1.31 T and Hex = 2.19 T. These results, in addition to the fundamental interest, are important to understanding of the interfacial coupling interaction in the FM/FI heterostructures, which could offer the guiding of potential applications in heat-assisted magnetic recording or all-optical switching recording technique. PMID:26074295

  15. Magnetic proximity effect and interlayer exchange coupling of ferromagnetic/topological insulator/ferromagnetic trilayer

    NASA Astrophysics Data System (ADS)

    Li, Mingda; Cui, Wenping; Yu, Jin; Dai, Zuyang; Wang, Zhe; Katmis, Ferhat; Guo, Wanlin; Moodera, Jagadeesh

    2015-01-01

    The magnetic proximity effect between the topological insulator (TI) and ferromagnetic insulator (FMI) is considered to have great potential in spintronics. However, a complete determination of interfacial magnetic structure has been highly challenging. We theoretically investigate the interlayer exchange coupling of two FMIs separated by a TI thin film, and show that the particular electronic states of the TI contributing to the proximity effect can be directly identified through the coupling behavior between two FMIs, together with a tunability of the coupling constant. Such an FMI/TI/FMI structure not only serves as a platform to clarify the magnetic structure of the FMI/TI interface, but also provides insights in designing the magnetic storage devices with ultrafast response.

  16. Synthesis of Lithium Boracarbonate Ion Pairs by Copper-Catalyzed Multi-Component Coupling of Carbon Dioxide, Diboron, and Aldehydes.

    PubMed

    Carry, Béatrice; Zhang, Liang; Nishiura, Masayoshi; Hou, Zhaomin

    2016-05-17

    The catalytic selective multi-component coupling of CO2 , bis(pinacolato)diboron, LiOtBu, and a wide range of aldehydes has been achieved for the first time by using an NHC-copper catalyst. This transformation has efficiently afforded a series of novel lithium cyclic boracarbonate ion pair compounds in high yields from readily available starting materials. This protocol has not only provided a new catalytic process for the utilization of CO2 , but it has also constituted a novel route for the efficient synthesis of a new class of lithium borate compounds that might be of interest as potential electrolyte candidates for lithium ion batteries. PMID:27061244

  17. Enhanced Cooper pairing versus suppressed phase coherence shaping the superconducting dome in coupled aluminum nanograins

    NASA Astrophysics Data System (ADS)

    Pracht, Uwe S.; Bachar, Nimrod; Benfatto, Lara; Deutscher, Guy; Farber, Eli; Dressel, Martin; Scheffler, Marc

    2016-03-01

    The development of the fundamental superconducting (SC) energy scales—the SC energy gap Δ and the superfluid stiffness J —of granular aluminum, i.e., thin films composed of coupled nanograins, is studied by means of optical THz spectroscopy. Starting from well-coupled grains, Δ grows as the grains are progressively decoupled, causing the unconventional increase of Tc with sample resistivity. When the grain coupling is suppressed further, Δ saturates while the critical temperature Tc decreases, concomitantly with a sharp decline of J , delimiting a SC dome in the phase diagram. This crossover to a phase-driven SC transition is accompanied by an optical gap surviving into the normal state above Tc. We demonstrate that granular aluminum is an ideal testbed to understand the interplay between quantum confinement and global SC phase coherence due to nanoinhomogeneity.

  18. Ledge-type Co/L10-FePt exchange-coupled composites

    NASA Astrophysics Data System (ADS)

    Speliotis, Th.; Giannopoulos, G.; Niarchos, D.; Li, W. F.; Hadjipanayis, G.; Barucca, G.; Agostinelli, E.; Laureti, S.; Peddis, D.; Testa, A. M.; Varvaro, G.

    2016-06-01

    FePt-based exchange-coupled composites consisting of a magnetically hard L10-FePt phase exchange-coupled with a soft ferromagnetic material are promising candidates for future ultra-high density (>1 Tbit/in2) perpendicular magnetic recording media, also being of interest for other applications including spin torque oscillators and micro-electro-mechanical systems, among others. In this paper, the effect of the thickness of a soft Co layer (3 < thCo < 20 nm) on the magnetic behavior of ledge-type fcc(100)-Co/L10(001)-FePt composites deposited on an MgO (100) substrate is systematically studied by combining morpho-structural analyses and angular magnetization measurements. Starting from a film consisting of isolated L10(001)-FePt islands, the ledge-type structure was obtained by depositing a Co layer that either covered the FePt islands or filled-up the inter-island region, gradually forming a continuous layer with increasing Co thickness. A perpendicular anisotropy was maintained up to thCo ˜ 9.5 nm and a significant reduction in the coercivity (about 50% for thCo ˜ 3 nm) with the increase in thCo was observed, indicating that, by coupling hard FePt and soft Co phases in a ledge-type configuration, the writability can be greatly improved. Recoil loops' measurements confirmed the exchange-coupled behavior, reinforcing a potential interest in these systems for future magnetic recording media.

  19. Dynamical behavior and peak power reduction in a pair of energy storage oscillators coupled by delayed power price

    NASA Astrophysics Data System (ADS)

    Fukunaga, Tomohiro; Imasaka, Tomoaki; Ito, Akira; Sugitani, Yoshiki; Konishi, Keiji; Hara, Naoyuki

    2016-02-01

    This paper investigates dynamics of a management system for controlling a pair of energy storages. The system involves the following two characteristics: each storage behaves in a manner that reduces the number of charge noncharge cycles and begins to be charged when the price of power is lower than a particular price threshold. The price is proportional to the past total power flow from a power grid to all storages. A peak of the total power flow occurs when these storages are charged simultaneously. From the viewpoint of nonlinear dynamics, the energy storages can be considered as relaxation oscillators coupled by a delay connection. Our analytical results suggest that the peak can be reduced by inducing an antiphase synchronization in coupled oscillators. We confirm these analytical results through numerical simulations. In addition, we numerically investigate the dynamical behavior in 10 storages and find that time delay in the connection is important in reducing the peak.

  20. Exchange-bias-like coupling in a Cu-diluted-Fe/Tb multilayer

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saumya; Kreuzpaintner, Wolfgang; Stahn, Jochen; Zheng, Jian-Guo; Bauer, Andreas; Böni, Peter; Paul, Amitesh

    2015-03-01

    Transition metal-rare earth (TM-RE) Fe/Tb-multilayer systems have been known to show exchange-bias-like shifts in the form of double hysteresis loop (DHL) along and opposite to the field cooling axis. Planar domain walls, with opposite handedness at the interfaces, are held responsible for such DHL. Here, we report on the formation of nanoparticulated Fe layers in the Cu-matrix within a Fe-Cu/Tb multilayer and their eventual low-temperature characteristics. AC susceptibility measurements indicate that these diluted magnetic clusters have a superspin-glass-type of freezing behavior. Eventually, this Fe-cluster/Tb interlayer interaction, which is conjectured to be mediated by the pinned moments within the individual clusters, has helped in increasing the exchange bias field in the system to a high value of ≈1.3 kOe, which gradually vanishes around 50 K. Polarized neutron reflectivity confirms a very strong antiferromagnetic (AF) coupling between the individual layers. The magnitude of the magnetic moment of each of the individual Tb or Fe-Cu layer remains similar, but due to the strong AF-coupling at the interfaces, the entire ferrimagnetic Fe-Cu/Tb entity flips its direction at a compensation field of around 3.7 kOe. This study shows that magnetic dilution can be an effective way to manipulate the possible domain walls or the clusters in TM and thereby the exchange bias in TM-RE systems.

  1. Quantum transport through a multi-quantum-dot-pair chain side-coupled with Majorana bound states

    NASA Astrophysics Data System (ADS)

    Zhao-Tan, Jiang; Cheng-Cheng, Zhong

    2016-06-01

    We investigate the quantum transport properties through a special kind of quantum dot (QD) system composed of a serially coupled multi-QD-pair (multi-QDP) chain and side-coupled Majorana bound states (MBSs) by using the Green functions method, where the conductance can be classified into two kinds: the electron tunneling (ET) conductance and the Andreev reflection (AR) one. First we find that for the nonzero MBS-QDP coupling a sharp AR-induced zero-bias conductance peak with the height of e 2/h is present (or absent) when the MBS is coupled to the far left (or the other) QDP. Moreover, the MBS-QDP coupling can suppress the ET conductance and strengthen the AR one, and further split into two sub-peaks each of the total conductance peaks of the isolated multi-QDPs, indicating that the MBS will make obvious influences on the competition between the ET and AR processes. Then we find that the tunneling rate Γ L is able to affect the conductances of leads L and R in different ways, demonstrating that there exists a Γ L-related competition between the AR and ET processes. Finally we consider the effect of the inter-MBS coupling on the conductances of the multi-QDP chains and it is shown that the inter-MBS coupling will split the zero-bias conductance peak with the height of e 2/h into two sub-peaks. As the inter-MBS coupling becomes stronger, the two sub-peaks are pushed away from each other and simultaneously become lower, which is opposite to that of the single QDP chain where the two sub-peaks with the height of about e 2/2h become higher. Also, the decay of the conductance sub-peaks with the increase of the MBS-QDP coupling becomes slower as the number of the QDPs becomes larger. This research should be an important extension in studying the transport properties in the kind of QD systems coupled with the side MBSs, which is helpful for understanding the nature of the MBSs, as well as the MBS-related QD transport properties. Project supported by the National Natural

  2. Thickness dependence of exchange coupling in (111)-oriented perovskite oxide superlattices

    NASA Astrophysics Data System (ADS)

    Jia, Yue; Chopdekar, Rajesh V.; Arenholz, Elke; Liu, Zhiqi; Biegalski, Michael D.; Porter, Zachary D.; Mehta, Apurva; Takamura, Yayoi

    2016-03-01

    Epitaxial L a0.7S r0.3Mn O3(LSMO )/L a0.7S r0.3Fe O3 (LSFO) superlattices on (111)-oriented SrTi O3 substrates with sublayer thicknesses ranging from 3 to 60 unit cells (u.c.) were synthesized and characterized. Detailed analysis of their structural, electronic, and magnetic properties were performed to explore the effect of sublayer thickness on the magnetic structure and exchange coupling at (111)-oriented perovskite oxide interfaces. In the ultrathin limit (3-6 u.c.), we find that the antiferromagnetic (AF) properties of the LSFO sublayers are preserved with an out-of-plane canting of the AF spin axis, while the ferromagnetic (FM) properties of the LSMO sublayers are significantly depressed. For thicker LSFO layers (>9 u.c.), the out-of-plane canting of the AF spin axis is only present in superlattices with thick LSMO sublayers. As a result, exchange coupling in the form of spin-flop coupling exists only in superlattices which display both robust ferromagnetism and out-of-plane canting of the AF spin axis.

  3. Joint perpendicular anisotropy and strong interlayer exchange coupling in systems with thin vanadium spacers

    SciTech Connect

    Devolder, T. Le Goff, A.; Eimer, S.; Adam, J.-P.

    2015-04-28

    We study the influence of the insertion of a vanadium spacer layer between an FeCoB layer and a [Co/Ni] multilayer in an MgO substrate-based system mimicking the reference system of a perpendicular anisotropy magnetic tunnel junction. The anisotropy of the [Co/Ni] multilayer gradually improves with the vanadium thicknesses t, up to an optimized state for t = 8 Å, with little influence of the thermal annealing. The interlayer exchange coupling is ferromagnetic and very strong for t≤6 Å. It can be adjusted by thermal treatment at t = 8 Å from no coupling in the as-grown state to more than 2 mJ/m{sup 2} after 250 °C annealing. For this spacer thickness, the magnetic properties are consistent with the occurrence of a bcc (001) to an fcc (111) crystalline structure transition at the vanadium spacer. The remaining interlayer exchange coupling at t = 8 Å is still substantially higher than the one formerly obtained with a Tantalum spacer, which holds promise for further optimization of the reference layers of tunnel junctions meant for magnetic random access memories.

  4. Joint perpendicular anisotropy and strong interlayer exchange coupling in systems with thin vanadium spacers

    NASA Astrophysics Data System (ADS)

    Devolder, T.; Le Goff, A.; Eimer, S.; Adam, J.-P.

    2015-04-01

    We study the influence of the insertion of a vanadium spacer layer between an FeCoB layer and a [Co/Ni] multilayer in an MgO substrate-based system mimicking the reference system of a perpendicular anisotropy magnetic tunnel junction. The anisotropy of the [Co/Ni] multilayer gradually improves with the vanadium thicknesses t, up to an optimized state for t = 8 Å, with little influence of the thermal annealing. The interlayer exchange coupling is ferromagnetic and very strong for t ≤6 Å. It can be adjusted by thermal treatment at t = 8 Å from no coupling in the as-grown state to more than 2 mJ/m2 after 250 °C annealing. For this spacer thickness, the magnetic properties are consistent with the occurrence of a bcc (001) to an fcc (111) crystalline structure transition at the vanadium spacer. The remaining interlayer exchange coupling at t = 8 Å is still substantially higher than the one formerly obtained with a Tantalum spacer, which holds promise for further optimization of the reference layers of tunnel junctions meant for magnetic random access memories.

  5. Analysis of phosphorus herbicides by ion-pairing reversed-phase liquid chromatography coupled to inductively coupled plasma mass spectrometry with octapole reaction cell.

    PubMed

    Sadi, Baki B M; Vonderheide, Anne P; Caruso, Joseph A

    2004-09-24

    A reversed phase ion-pairing high performance liquid chromatographic (RPIP-HPLC) method is developed for the separation of two phosphorus herbicides, Glufosinate and Glyphosate as well as Aminomethylphosphonic acid (AMPA), the major metabolite of Glyphosate. Tetrabutylammonium hydroxide is used as the ion-pairing reagent in conjunction with an ammonium acetate/acetic acid buffering system at pH 4.7. An inductively coupled plasma mass spectrometer (ICP-MS) is coupled to the chromatographic system to detect the herbicides at m/z = 31P. Historically, phosphorus has been recognized as one of the elements difficult to analyze in argon plasma. This is due to its relatively high ionization potential (10.5 eV) as well as the inherent presence of the polyatomic interferences 14N16O1H+ and 15N16O+ overlapping its only isotope at m/z = 31. An octapole reaction cell is utilized to minimize the isobaric polyatomic interferences and to obtain the highest signal-to-background ratio. Detection limits were found to be in the low ppt range (25-32 ng/l). The developed method is successfully applied to the analysis of water samples collected from the Ohio River and spiked with a standard compounds at a level of 20 microg/l. PMID:15503930

  6. Dislocation network with pair-coupling structure in {111} γ/γ' interface of Ni-based single crystal superalloy.

    PubMed

    Ru, Yi; Li, Shusuo; Zhou, Jian; Pei, Yanling; Wang, Hui; Gong, Shengkai; Xu, Huibin

    2016-01-01

    The γ/γ' interface dislocation network is reported to improve the high temperature creep resistance of single crystal superalloys and is usually found to deposit in {001} interface. In this work, a new type of dislocation network was found in {111} γ/γ' interface at a single crystal model superalloy crept at 1100 °C/100 MPa. The dislocations in the network are screw with Burgers vectors of 1/2 a<110> and most interestingly, they exhibit a pair-coupling structure. Further investigation indicates that the formation of {111} interface dislocation network occurs when the γ' raft structure begins to degrade by the dislocations cutting into the rafted γ' through the interface. In this condition, the pair-coupling structure is established by the dislocations gliding in a single {111} plane of γ', in order to remove the anti-phase boundary in γ'; these dislocations also act as diffusion channels for dissolving of the γ' particle that is unstable under the interfacial stress from lattice misfit, which leads to the formation of {111}-type zigzag interface. The formation of this network arises as a consequence of more negative misfit, low-alloying γ' particle and proper test conditions of temperature and stress. PMID:27511822

  7. Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers

    PubMed Central

    Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya

    2016-01-01

    Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691

  8. Exchange coupling in metallic multilayers with a top FeRh layer

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Tanikawa, K.; Hirayama, J.; Kanashima, T.; Taniyama, T.; Hamaya, K.

    2016-05-01

    We study magnetic properties of metallic multilayers with FeRh/ferromagnet interfaces grown by low-temperature molecular beam epitaxy. Room-temperature coercivity of the ferromagnetic layers is significantly enhanced after the growth of FeRh, proving the existence of the exchange coupling between the antiferromagnetic FeRh layer and the ferromagnetic layer. However, exchange bias is not clearly observed probably due to the presence of disordered structures, which result from the lattice strain at the FeRh/ferromagnet interfaces due to the lattice mismatch. We infer that the lattice matched interface between FeRh and ferromagnetic layers is a key parameter for controlling magnetic switching fields in such multilayer systems.

  9. XY ring exchange model with frustrated Ising coupling on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-07-01

    We investigate the nature of a Z2-invariant XY ring-exchange interaction with a frustrated Ising coupling on the triangular lattice. Within the limits of pure XY ring-exchange interaction, we show that the classical ground state is degenerate resulting from the Z2-invariance of the Hamiltonian. Quantum fluctuations lift these classical degenerate ground states and produce an unusual state whose excitation spectrum exhibits a gapped maximum quadratic dispersion near k = 0 and vanishes at the midpoints of each side of the Brillouin zone. This result is in contrast to a gapless quadratic dispersion near k = 0 in the U(1)-invariant counterpart. We also study the effects of frustration when competing with a classically frustrated Ising interaction. We provide a glimpse into the possible quantum phases that could emerge. A comprehensive understanding of this Hamiltonian, however, cannot be elucidated analytically and requires an explicit numerical simulation.

  10. Gate-tunable indirect exchange interaction in spin-orbit-coupled mesoscopic rings

    NASA Astrophysics Data System (ADS)

    Nikoofard, H.; Heidari Semiromi, E.

    2015-05-01

    We study the carrier-mediated exchange interaction, the so-called Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling, between two magnetic impurity moments embedded in a semiconductor mesoscopic ring. We treat the ring in the presence of an Aharonov-Bohm-type magnetic flux and the Rashba and Dresselhaus spin-orbit interactions (RSOI and DSOI). Energy eigenvalues of the system are obtained within a tight-binding framework and the strength of the indirect exchange interaction vs. RSOI strengths are plotted for different values of DSOI strength. The results show that the type of the impurity magnetic order, ferromagnetic (F) or antiferromagnetic (AF), depends on the RSOI and DSOI strengths. This leads to a full electrical control on the magnetic alignment of the system through, e.g., an external gate voltage.

  11. Exchange coupling, antiphase boundaries, and the origin of self-reversed thermoremanent magnetization

    NASA Astrophysics Data System (ADS)

    Harrison, R. J.; Kasama, T.; White, T. A.; Simpson, E. T.; Dunin-Borkowski, R. E.

    2005-12-01

    Self-reversed thermoremanent magnetization (SR-TRM) in the ilmenite-hematite system is thought to result from negative exchange coupling between antiphase domains (APDs) and antiphase domain boundaries (APBs), which form during rapid cooling of the mineral after volcanic eruption. Here we present a study of exchange coupling at APBs using a combination of off-axis electron holography and Monte Carlo simulations. A solid solution containing 70% ilmenite and 30% hematite (ilm70) was synthesised at 1573 K, quenched through the cation ordering phase transition and annealed for 10 hours at 1023 K. The sample was examined using off-axis electron holography, a technique that allows the phase shift of a high-energy electron wave to be recorded in a transmission electron microscope (TEM). Quantitative analysis of the phase shift shows that three distinct types of magnetic wall exist in quenched ilmenite-hematite. The first type corresponds to conventional free-standing 180° Bloch walls. These walls are free to move within the interior of an APD under the influence of an applied magnetic field. The second type forms when a 180° reversal in magnetization coincides exactly with the position of an APB. These walls are referred to as a 180° `chemical' walls. The reversal of magnetization results from negative exchange coupling between adjacent APDs, and occurs without any out-of-plane rotation of the magnetic moments. Chemical walls have a magnetization profile distinct from conventional Bloch walls and have a smaller wall width. A third type of magnetic wall appears when the negative exchange coupling between adjacent APDs is overcome at sufficiently large fields, forcing the magnetization in adjacent APDs to point in the same direction. We refer to these walls as 0° magnetic walls. Monte Carlo simulations have been used to investigate the nature of exchange coupling between ordered/antiordered APDs and disordered APBs. APBs are enriched in Fe relative to the ordered

  12. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles.

    PubMed

    Baud, Olivia; Yuan, Shuguang; Veya, Luc; Filipek, Slawomir; Vogel, Horst; Pick, Horst

    2015-01-01

    A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level. PMID:26449412

  13. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles

    PubMed Central

    Baud, Olivia; Yuan, Shuguang; Veya, Luc; Filipek, Slawomir; Vogel, Horst; Pick, Horst

    2015-01-01

    A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level. PMID:26449412

  14. Gapped graphene-based Josephson junction with d-wave pair coupling

    NASA Astrophysics Data System (ADS)

    Goudarzi, H.; Khezerlou, M.; Dezhaloud, T.

    2013-06-01

    The Josephson current passing through a S/I/S gapped graphene-based junction, where superconductivity in the S region is induced by depositing unconventional d-wave superconductor is investigated. The energy levels of massive Dirac fermions are exactly found for Andreev bound states. We illustrate the effect of characteristic of d-wave pairing symmetry on the Andreev bound states and the Josephson current. It is shown that the Josephson current vanishes for special range of superconductivity phase, φ = φ1 - φ2 and the position of the maximum current depends on the mass gap of graphene. The critical supercurrent varies in an oscillatory manner as function of the barrier strength, so that the period of oscillations does not change by increasing the effective mass of quasiparticles.

  15. Microphysics of mass-transport in coupled droplet-pairs at low Reynolds number and the role of convective dynamics

    NASA Astrophysics Data System (ADS)

    Dong, Qingming; Sau, Amalendu

    2016-06-01

    Interfacial mass-transport and redistribution in the micro-scale liquid droplets are important in diverse fields of research interest. The role of the "inflow" and the "outflow" type convective eddy-pairs in the entrainment of outer solute and internal relocation are examined for different homogeneous and heterogeneous water droplet pairs appearing in a tandem arrangement. Two micro-droplets of pure (rain) water interact with an oncoming outer air stream (Re ≤ 100) contaminated by uniformly distributed SO2. By virtue of separation/attachment induced non-uniform interfacial shear-stress gradient, the well-defined inflow/outflow type pairs of recirculating eddy-based convective motion quickly develops, and the eddies effectively attract/repel the accumulated outer solute and control the physical process of mass-transport in the droplet-pair. The non-uniformly shear-driven flow interaction and bifurcation of the circulatory internal flow lead to growth of important micro-scale "secondary" eddies which suitably regroup with the adjacent "primary" one to create the sustained inflow/outflow type convective dynamics. The presently derived flow characteristics and in-depth analysis help to significantly improve our understanding of the micro-droplet based transport phenomena in a wider context. By tuning "Re" (defined in terms of the droplet diameter and the average oncoming velocity of the outer air) and gap-ratio "α," the internal convective forcing and the solute entrainment efficiency could be considerably enhanced. The quantitative estimates for mass entrainment, convective strength, and saturation characteristics for different coupled micro-droplet pairs are extensively examined here for 0.2 ≤ α ≤ 2.0 and 30 ≤ Re ≤ 100. Interestingly, for the compound droplets, with suitably tuned radius-ratio "B" (of upstream droplet with respect to downstream one) the generated "inflow" type coherent convective dynamics helped to significantly augment the centre

  16. MAGNETIC EXCHANGE-COUPLING IN CoPt/Co BILAYER THIN FILMS

    SciTech Connect

    KIM,J.; BARMAK,K.; LEWIS,L.H.; CREW,D.C.; WELCH,D.O.

    1999-04-05

    Thin film CoPt/Co bilayers have been prepared as a model system to investigate the relationship between microstructure and exchange coupling in two-phase hard/soft composite magnets. CoPt films, with a thickness of 25 nm, were sputter-deposited from a nearly equiatomic alloy target onto oxidized Si wafers. The films were subsequently annealed at 700 C and fully transformed from the FCC phase to the magnetically hard, ordered L1{sub 0} phase. The coercivity of the films increased rapidly with annealing time until it reached a plateau at approximately 9.5 kOe. Fully-ordered CoPt films were then used as substrates for deposition of Co layers, with thicknesses in the range of 2.8--225 nm, in order to produce the hard/soft composite bilayers. As predicted by theory, the magnetic coherency between the soft Co phase and the hard, ordered CoPt phase decreased as the thickness of the soft phase increased. This decrease in coupling was clearly seen in the magnetic hysteresis loops of the bilayers. At small thicknesses of Co (a few nanometers), the shape of the loop was one of a uniform material showing no indication of the presence of two phases with extremely different coercivities. At larger Co thicknesses, constricted loops, i.e., ones showing the presence of a mixture of two ferromagnetic phases of different hardnesses, were obtained. The magnetic exchange present in the bilayer samples was qualitatively analyzed using magnetic recoil curves and the dependence of exchange coupling on the soft phase dimension in the bilayer hard/soft composite magnet films is discussed.

  17. Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system

    NASA Astrophysics Data System (ADS)

    C, X. Sang; G, P. Zhao; W, X. Xia; X, L. Wan; F, J. Morvan; X, C. Zhang; L, H. Xie; J, Zhang; J, Du; A, R. Yan; P, Liu

    2016-03-01

    The hysteresis loops as well as the spin distributions of Sm-Co/α-Fe bilayers have been investigated by both three-dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Ahs between the hard and soft layers varies from 1.8 × 10-6 erg/cm to 0.45 × 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/α-Fe multilayers. Project supported by the National Natural Science Foundation of China (Grant Nos. 11074179 and 10747007), the National Basic Research Program of China (Grant No. 2014CB643702), the Zhejiang Provincial Natural Science Foundation of China (Grant No. LY14E010006), the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province, China (Grant No. 12TD008), the Scientific Research Foundation for the Returned Overseas Chinese Scholars of the Education Ministry, China, and the Program for Key Science and Technology Innovation Team of Zhejiang Province, China (Grant No. 2013TD08).

  18. Entanglement distillation using the exchange interaction

    NASA Astrophysics Data System (ADS)

    Auer, Adrian; Schwonnek, René; Schoder, Christian; Dammeier, Lars; Werner, Reinhard F.; Burkard, Guido

    2016-03-01

    A key ingredient of quantum repeaters is entanglement distillation, i.e., the generation of high-fidelity entangled qubits from a larger set of pairs with lower fidelity. Here, we present entanglement distillation protocols based on qubit couplings that originate from exchange interaction. First, we make use of asymmetric bilateral two-qubit operations generated from anisotropic exchange interaction and show how to distill entanglement using two input pairs. We furthermore consider the case of three input pairs coupled through isotropic exchange. Here, we characterize a set of protocols which are optimizing the trade-off between the fidelity increase and the probability of a successful run.

  19. Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: Applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations

    USGS Publications Warehouse

    Gregory, R.T.; Criss, R.E.; Taylor, H.P., Jr.

    1989-01-01

    The systematics of stable-isotope exchange between minerals and fluids are examined in the context of modal mineralogical variations and mass-balance considerations, both in closed and in open systems. On mineral-pair ??18O plots, samples from terranes that have exchanged with large amounts of fluid typically map out steep positively-sloped non-equilibrium arrays. Analytical models are derived to explain these effects; these models allow for different exchange rates between the various minerals and the external fluids, as well as different fluid fluxes. The steep arrays are adequately modelled by calculated isochron lines that involve the whole family of possible exchange trajectories. These isochrons have initially-steep near-vertical positive slopes that rotate toward a 45?? equilibrium slope as the exchange process proceeds to completion. The actual data-point array is thus analogous to the hand of an "isotopic clock" that measures the duration of the hydrothermal episode. The dimensionless ratio of the volumetric fluid flux to the kinetic rate parameter ( u k) determines the shape of each individual exchange trajectory. In a fluid-buffered system ( u k ??? 1), the solutions to the equations: (1) are independent of the mole fractions of the solid phases; (2) correspond to Taylor's open-system water/rock equation; and (3) yield straight-line isochrons that have slopes that approach 1 f, where f is the fraction reacted of the more sluggishly exchanging mineral. The isochrons for this simple exchange model are closely congruent with the isochrons calculated for all of the more complex models, thereby simplifying the application of theory to actual hydrothermal systems in nature. In all of the models an order of magnitude of time (in units of kt) separates steep non-equilibrium arrays (e.g., slope ??? 10) from arrays approaching an equilibrium slope of unity on a ??-?? diagram. Because we know the approximate lifetimes of many hydrothermal systems from geologic and

  20. Calculation of the exchange coupling in Si:P donor systems

    NASA Astrophysics Data System (ADS)

    Starling, Timothy R.; Wellard, Cameron J.; Quiney, Harry M.; Haig, Wayne; Hollenberg, Lloyd C. L.

    2005-02-01

    We examine exchange coupling in the Kate quantum computer, which consists of isolated spin-1/2 31P donors in a pure Si lattice. A calculation is made using full configuration interaction, a reasonably large basis set, and a simple physical model. Basis set convergence was not obtained, and increasing the size of the matrix further appears to be computationally impractical. We therefore consider a Gaussian basis set approach. A brief description of the McMurchie-Davidson algorithm for the expansion of SGTF functions into Hermite polynomials is given. We also give the results of a single-donor computation in this basis.

  1. Carboxymethylated polyethylenimine-polymethylenepolyphenylene isocyanate chelating ion exchange resin preconcentration for inductively coupled plasma spectrometry

    SciTech Connect

    Horvath, A.; Barnes, R.M.

    1986-06-01

    A carboxymethylated polyethylenimine-polylmethylenepolyphenylene isocyanate chelating ion exchange resin was prepared, characterized, and used for metals preconcentration for inductively coupled plasma spectrometry. The uptake of copper, cadmium, lead, and zinc by the resin was quantitative in the presence of high concentrations of ammonium, calcium, magnesium, potassium, sodium, and acetate and citrate salts. These metals could be collected from artificial seawater, Dead Sea water, and dissolved bone with a recovery of nearly 100%. The resin also chelates heavy metals and rare earths. Complexed metals can be eluted from the resin column with strong acids. The resin does not change volume with ionic form changes and can be regenerated for repeated use.

  2. Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Perna, P.; Ajejas, F.; Maccariello, D.; Fernandez Cuñado, J. L.; Guerrero, R.; Niño, M. A.; Bollero, A.; Miranda, R.; Camarero, J.

    2015-12-01

    We demonstrate that the interfacial exchange coupling in ferromagnetic/antiferromagnetic (FM/AFM) systems induces symmetry breaking of the spin-orbit (SO) effects. This has been done by studying the field and angle dependencies of anisotropic magnetoresistance and vectorial-resolved magnetization hysteresis loops, measured simultaneously and reproduced with numerical simulations. We show how the induced unidirectional magnetic anisotropy at the FM/AFM interface results in strong asymmetric transport behaviors, which are chiral around the magnetization hard-axis direction. Similar asymmetric features are anticipated in other SO-driven phenomena.

  3. An investigation of the liquid to glass transition using integral equations for the pair structure of coupled replicae

    SciTech Connect

    Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio

    2014-11-07

    Extensive numerical solutions of the hypernetted-chain (HNC) and Rogers-Young (RY) integral equations are presented for the pair structure of a system of two coupled replicae (1 and 2) of a “soft-sphere” fluid of atoms interacting via an inverse-12 pair potential. In the limit of vanishing inter-replica coupling ε{sub 12}, both integral equations predict the existence of three branches of solutions: (1) A high temperature liquid branch (L), which extends to a supercooled regime upon cooling when the two replicae are kept at ε{sub 12} = 0 throughout; upon separating the configurational and vibrational contributions to the free energy and entropy of the L branch, the Kauzmann temperature is located where the configurational entropy vanishes. (2) Starting with an initial finite coupling ε{sub 12}, two “glass” branches G{sub 1} and G{sub 2} are found below some critical temperature, which are characterized by a strong remnant spatial inter-replica correlation upon taking the limit ε{sub 12} → 0. Branch G{sub 2} is characterized by an increasing overlap order parameter upon cooling, and may hence be identified with the hypothetical “ideal glass” phase. Branch G{sub 1} exhibits the opposite trend of increasing order parameter upon heating; its free energy lies consistently below that of the L branch and above that of the G{sub 2} branch. The free energies of the L and G{sub 2} branches are found to intersect at an alleged “random first-order transition” (RFOT) characterized by weak discontinuities of the volume and entropy. The Kauzmann and RFOT temperatures predicted by RY differ significantly from their HNC counterparts.

  4. An investigation of the liquid to glass transition using integral equations for the pair structure of coupled replicae.

    PubMed

    Bomont, Jean-Marc; Hansen, Jean-Pierre; Pastore, Giorgio

    2014-11-01

    Extensive numerical solutions of the hypernetted-chain (HNC) and Rogers-Young (RY) integral equations are presented for the pair structure of a system of two coupled replicae (1 and 2) of a "soft-sphere" fluid of atoms interacting via an inverse-12 pair potential. In the limit of vanishing inter-replica coupling ɛ12, both integral equations predict the existence of three branches of solutions: (1) A high temperature liquid branch (L), which extends to a supercooled regime upon cooling when the two replicae are kept at ɛ12 = 0 throughout; upon separating the configurational and vibrational contributions to the free energy and entropy of the L branch, the Kauzmann temperature is located where the configurational entropy vanishes. (2) Starting with an initial finite coupling ɛ12, two "glass" branches G1 and G2 are found below some critical temperature, which are characterized by a strong remnant spatial inter-replica correlation upon taking the limit ɛ12 → 0. Branch G2 is characterized by an increasing overlap order parameter upon cooling, and may hence be identified with the hypothetical "ideal glass" phase. Branch G1 exhibits the opposite trend of increasing order parameter upon heating; its free energy lies consistently below that of the L branch and above that of the G2 branch. The free energies of the L and G2 branches are found to intersect at an alleged "random first-order transition" (RFOT) characterized by weak discontinuities of the volume and entropy. The Kauzmann and RFOT temperatures predicted by RY differ significantly from their HNC counterparts. PMID:25381529

  5. Strong Exchange Coupling in a Trimetallic Radical-Bridged Cobalt(II)-Hexaazatrinaphthylene Complex.

    PubMed

    Moilanen, Jani O; Chilton, Nicholas F; Day, Benjamin M; Pugh, Thomas; Layfield, Richard A

    2016-04-25

    Reducing hexaazatrinaphthylene (HAN) with potassium in the presence of 18-c-6 produces [{K(18-c-6)}HAN], which contains the S=1/2 radical [HAN](.-) . The [HAN](.-) radical can be transferred to the cobalt(II) amide [Co{N(SiMe3 )2 }2 ], forming [K(18-c-6)][(HAN){Co(N'')2 }3 ]; magnetic measurements on this compound reveal an S=4 spin system with strong cobalt-ligand antiferromagnetic exchange and J≈-290 cm(-1) (-2 J formalism). In contrast, the Co(II) centres in the unreduced analogue [(HAN){Co(N'')2 }3 ] are weakly coupled (J≈-4.4 cm(-1) ). The finding that [HAN](.-) can be synthesized as a stable salt and transferred to cobalt introduces potential new routes to magnetic materials based on strongly coupled, triangular HAN building blocks. PMID:26997130

  6. Sexual Satisfaction in Spanish Heterosexual Couples: Testing the Interpersonal Exchange Model of Sexual Satisfaction.

    PubMed

    Sánchez-Fuentes, María Del Mar; Santos-Iglesias, Pablo

    2016-04-01

    The study of sexual satisfaction in Spain is scarce and has proceeded atheoretically. This study aimed at examining sexual satisfaction in 197 Spanish heterosexual couples based on the Interpersonal Exchange Model of Sexual Satisfaction. Men and women reported equal satisfaction. Men's sexual satisfaction was predicted by their own relationship satisfaction, balance of sexual rewards and costs, and comparison level of sexual rewards and costs. Women's sexual satisfaction was predicted by their own relationship satisfaction, balance of sexual rewards and costs, comparison level of sexual rewards and costs, equality of sexual costs, and their partner's balance of sexual rewards and costs. These results provide with a better understanding of the mechanisms that explain sexual satisfaction in Spanish couples. Implications for research and therapy are discussed. PMID:25629546

  7. Magnetic interactions in exchange-coupled yet unbiased IrMn/NiCu bilayers.

    PubMed

    Cichelero, R; Harres, A; Sossmeier, K D; Schmidt, J E; Geshev, J

    2013-10-23

    This paper reports experimental and model magnetization results obtained on exchange-coupled ferromagnet/antiferromagnet (FM/AF) bilayers that show zero net bias. The coercivity of the films, either irradiated with He or implanted with Ge ions at 40 keV, varies significantly with the fluence used. We employed the remanence plots technique in order to estimate the nature of the interactions present and check if there exists a correlation between their type and the coercivity variations. The analysis of the remanence plots through numerical simulations based on the Landau-Lifshitz-Gilbert equation demonstrated that outcomes of interactions within the FM layer could be distinguished from those coming from coupling at the FM/AF interface and that demagnetizing interaction effects could be achieved without the presence of dipolar interactions. Our findings indicate that such experiments could give selective information on modifications caused by a post-deposition treatment in each layer of the film. PMID:24065441

  8. Thermally activated switching at long time scales in exchange-coupled magnetic grains

    NASA Astrophysics Data System (ADS)

    Almudallal, Ahmad M.; Mercer, J. I.; Whitehead, J. P.; Plumer, M. L.; van Ek, J.; Fal, T. J.

    2015-10-01

    Rate coefficients of the Arrhenius-Néel form are calculated for thermally activated magnetic moment reversal for dual layer exchange-coupled composite (ECC) media based on the Langer formalism and are applied to study the sweep rate dependence of M H hysteresis loops as a function of the exchange coupling I between the layers. The individual grains are modeled as two exchange-coupled Stoner-Wohlfarth particles from which the minimum energy paths connecting the minimum energy states are calculated using a variant of the string method and the energy barriers and attempt frequencies calculated as a function of the applied field. The resultant rate equations describing the evolution of an ensemble of noninteracting ECC grains are then integrated numerically in an applied field with constant sweep rate R =-d H /d t and the magnetization calculated as a function of the applied field H . M H hysteresis loops are presented for a range of values I for sweep rates 105Oe /s ≤R ≤1010Oe /s and a figure of merit that quantifies the advantages of ECC media is proposed. M H hysteresis loops are also calculated based on the stochastic Landau-Lifshitz-Gilbert equations for 108Oe /s ≤R ≤1010Oe /s and are shown to be in good agreement with those obtained from the direct integration of rate equations. The results are also used to examine the accuracy of certain approximate models that reduce the complexity associated with the Langer-based formalism and which provide some useful insight into the reversal process and its dependence on the coupling strength and sweep rate. Of particular interest is the clustering of minimum energy states that are separated by relatively low-energy barriers into "metastates." It is shown that while approximating the reversal process in terms of "metastates" results in little loss of accuracy, it can reduce the run time of a kinetic Monte Carlo (KMC) simulation of the magnetic decay of an ensemble of dual layer ECC media by 2 -3 orders of magnitude

  9. Local instability driving extreme events in a pair of coupled chaotic electronic circuits

    NASA Astrophysics Data System (ADS)

    de Oliveira, Gilson F.; Di Lorenzo, Orlando; de Silans, Thierry Passerat; Chevrollier, Martine; Oriá, Marcos; Cavalcante, Hugo L. D. de Souza

    2016-06-01

    For a long time, extreme events happening in complex systems, such as financial markets, earthquakes, and neurological networks, were thought to follow power-law size distributions. More recently, evidence suggests that in many systems the largest and rarest events differ from the other ones. They are dragon kings, outliers that make the distribution deviate from a power law in the tail. Understanding the processes of formation of extreme events and what circumstances lead to dragon kings or to a power-law distribution is an open question and it is a very important one to assess whether extreme events will occur too often in a specific system. In the particular system studied in this paper, we show that the rate of occurrence of dragon kings is controlled by the value of a parameter. The system under study here is composed of two nearly identical chaotic oscillators which fail to remain in a permanently synchronized state when coupled. We analyze the statistics of the desynchronization events in this specific example of two coupled chaotic electronic circuits and find that modifying a parameter associated to the local instability responsible for the loss of synchronization reduces the occurrence of dragon kings, while preserving the power-law distribution of small- to intermediate-size events with the same scaling exponent. Our results support the hypothesis that the dragon kings are caused by local instabilities in the phase space.

  10. Local instability driving extreme events in a pair of coupled chaotic electronic circuits.

    PubMed

    de Oliveira, Gilson F; Di Lorenzo, Orlando; de Silans, Thierry Passerat; Chevrollier, Martine; Oriá, Marcos; Cavalcante, Hugo L D de Souza

    2016-06-01

    For a long time, extreme events happening in complex systems, such as financial markets, earthquakes, and neurological networks, were thought to follow power-law size distributions. More recently, evidence suggests that in many systems the largest and rarest events differ from the other ones. They are dragon kings, outliers that make the distribution deviate from a power law in the tail. Understanding the processes of formation of extreme events and what circumstances lead to dragon kings or to a power-law distribution is an open question and it is a very important one to assess whether extreme events will occur too often in a specific system. In the particular system studied in this paper, we show that the rate of occurrence of dragon kings is controlled by the value of a parameter. The system under study here is composed of two nearly identical chaotic oscillators which fail to remain in a permanently synchronized state when coupled. We analyze the statistics of the desynchronization events in this specific example of two coupled chaotic electronic circuits and find that modifying a parameter associated to the local instability responsible for the loss of synchronization reduces the occurrence of dragon kings, while preserving the power-law distribution of small- to intermediate-size events with the same scaling exponent. Our results support the hypothesis that the dragon kings are caused by local instabilities in the phase space. PMID:27415257