Science.gov

Sample records for exchange cross section

  1. Charge exchange cross sections for the Io plasma torus

    NASA Astrophysics Data System (ADS)

    McGrath, M. A.; Johnson, R. E.

    1989-03-01

    An impact parameter method for calculating cross sections as a function of incident ion energy is used in conjunction with an improved exchange energy formulation to update several of the charge exchange cross sections currently used in Io plasma torus modeling. New cross sections for S(+) + S(2+) yielding S(2+) + S(+) and Na(+) on neutral targets, useful in analyzing the fast Na jets observed at Io, are also calculated.

  2. Krypton charge exchange cross sections for Hall effect thruster models

    SciTech Connect

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2013-04-28

    Following discharge from a Hall effect thruster, charge exchange occurs between ions and un-ionized propellant atoms. The low-energy cations produced can disturb operation of onboard instrumentation or the thruster itself. Charge-exchange cross sections for both singly and doubly charged propellant atoms are required to model these interactions. While xenon is the most common propellant currently used in Hall effect thrusters, other propellants are being considered, in particular, krypton. We present here guided-ion beam measurements and comparisons to semiclassical calculations for Kr{sup +} + Kr and Kr{sup 2+} + Kr cross sections. The measurements of symmetric Kr{sup +} + Kr charge exchange are in good agreement with both the calculations including spin-orbit effects and previous measurements. For the symmetric Kr{sup 2+} + Kr reaction, we present cross section measurements for center-of-mass energies between 1 eV and 300 eV, which spans energies not previously examined experimentally. These cross section measurements compare well with a simple one-electron transfer model. Finally, cross sections for the asymmetric Kr{sup 2+} + Kr {yields} Kr{sup +} + Kr{sup +} reaction show an onset near 12 eV, reaching cross sections near constant value of 1.6 A{sup 2} with an exception near 70-80 eV.

  3. Excitation and Charge Exchange Phenomena in Astronomical Objects: Measurement of Cross Sections and Lifetimes

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara; Smith, S.; Lozano, J.; Cadez, I.; Greewnood, J.; Mawhovter, R.; Williams, I.; Niimura, M.

    2003-01-01

    This document addresses extreme ultraviolet radiation and X-ray emissions from comets, planets and heliospheric gases focusing on the measurement of charge-exchange cross sections and radiative lifetimes. Highly-charged heavy ions present in the solar wind, and their abundance relative to the total oxygen-ion abundance are detailed. The plan for the Jet Propulsion Laboratory high-charge ion facility is outlined detailing its ability to measure absolute collisional excitation cross sections, absolute charge-exchange cross sections, lifetimes of metastable ion levels, and X-ray emission spectra following charge changes.

  4. Dipole-exchange spin wave spectrum in an anisotropic ferromagnetic waveguide with a rectangular cross section

    NASA Astrophysics Data System (ADS)

    Grigoryeva, N. Yu.; Popov, D. A.; Kalinikos, B. A.

    2014-09-01

    A theory has been constructed that strictly describes the spectrum of dipole-exchange spin waves in an arbitrarily magnetized anisotropic ferrite waveguide with a rectangular cross section. The theory takes into account the spatial inhomogeneity of the internal magnetic field in the waveguide cross section. The influence of parameters of the ferrite waveguide on the distribution of the internal magnetic field in the waveguide cross section is analyzed. The dispersion characteristics of two waveguide types most widely used in practice are investigated. The dipole-exchange spin wave spectra calculated for a transversely magnetized waveguide are presented and the distributions of the dynamic magnetization in the waveguide cross section for several types of volume and localized spin-wave modes are constructed.

  5. Meson-exchange currents and quasielastic neutrino cross sections in the superscaling approximation model

    NASA Astrophysics Data System (ADS)

    Amaro, J. E.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Williamson, C. F.

    2011-01-01

    We evaluate the quasielastic double differential neutrino cross sections obtained in a phenomenological model based on the superscaling behavior of electron scattering data. We compare our results with the recent experimental data for neutrinos of MiniBooNE and estimate the contribution of the vector meson-exchange currents in the 2p-2h sector.

  6. Observation of large enhancements of charge exchange cross sections with neutron-rich carbon isotopes

    NASA Astrophysics Data System (ADS)

    Tanihata, I.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Toki, H.; Vargas, J.; Winfield, J. S.; Weick, H.

    2016-04-01

    Production cross sections of nitrogen isotopes from high-energy (˜ 950 MeV per nucleon) carbon isotopes on hydrogen and carbon targets have been measured for the first time for a wide range of isotopes (A = 12 to 19). The fragment separator FRS at GSI was used to deliver C-isotope beams. The cross sections of the production of N-isotopes were determined by charge measurements of forward-going fragments. The cross sections show a rapid increase with the number of neutrons in the projectile. Since the production of nitrogen is mostly due to charge-exchange (Cex) reactions below the proton separation energies, the present data suggests a concentration of Gamow-Teller and/or Fermi transition strength at low excitation energies for neutron-rich carbon isotopes. It was also observed that the Cex cross sections were enhanced much more strongly for neutron-rich isotopes in the C-target data.

  7. ^129Xe-Rb spin-exchange cross section measurement at high magnetic field

    NASA Astrophysics Data System (ADS)

    Jau, Yuan-Yu; Kuzma, N. N.; Walter, D. K.; Griffith, W. M.; Happer, W.

    2002-05-01

    We report NMR measurements of the velocity-averaged ^129Xe-Rb spin-exchange cross section <σ_exv> using isotopically enriched xenon gas in a sealed aluminosilicate cell. At 9.4 T, it is possible to detect Boltzmann polarization of xenon gas nuclei without optical pumping. Over the temperature range from 160 to 200^rcC, binary collisions with Rb atoms dominate the ^129Xe spin-relaxation rate (1/T_1) through spin-exchange. Our data show that the spin-exchange contribution of van der Waals RbXe molecules at high magnetic field is very small compared to the contribition of binary collisions. From the observed linear dependence of 1/T1 on Rb density, we extract the value <σ_exv>=1.720.29× 10-16 cm^3/sec at 180^rcC and 9.4 T, where we deduce the Rb number density from our Faraday rotation measurements. In addition, we discuss a theoretical prediction of <σ_exv> based on our numerical computations and compare it to the experimental result.

  8. Cometary X-Rays: Line Emission Cross Sections for Multiply Charged Solar Wind Ion Charge Exchange

    SciTech Connect

    Otranto, S; Olson, R E; Beiersdorfer, P

    2006-12-22

    Absolute line emission cross sections are presented for 1 keV/amu charge exchange collisions of multiply charged solar wind ions with H{sub 2}O, H, O, CO{sub 2}, and CO cometary targets. The present calculations are contrasted with available laboratory data. A parameter-free model is used to successfully predict the recently observed x-ray spectra of comet C/LINEAR 1999 S4. We show that the resulting spectrum is extremely sensitive to the time variations of the solar wind composition. Our results suggest that orbiting x-ray satellites may be a viable way to predict the solar wind intensities and composition on the Earth many hours before the ions reach the earth.

  9. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H[sub 2] [yields] H[sub 2] + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a 'perfect experiment', measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H[sub 2] reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H[sub 2] molecules. DH molecules formed in the D + H[sub 2] reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10[sup 3] molecules/cc. This thesis does not contain experimental results for the D + H[sub 2] reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  10. Towards rotationally state-resolved differential cross sections for the hydrogen exchange reaction

    SciTech Connect

    Vrakking, M.J.J.

    1992-11-01

    The hydrogen exchange reaction H + H{sub 2} {yields} H{sub 2} + H (and its isotopic variants) plays a pivotal role in chemical reaction dynamics. It is the only chemical reaction for which fully converged quantum scattering calculations have been carried out using a potential energy surface which is considered to be chemically accurate. To improve our ability to test the theory, a `perfect experiment`, measuring differential cross sections with complete specification of the reactant and product states, is called for. In this thesis, the design of an experiment is described that aims at achieving this goal for the D + H{sub 2} reaction. A crossed molecular beam arrangement is used, in which a photolytic D atom beam is crossed by a pulsed beam of H{sub 2} molecules. DH molecules formed in the D + H{sub 2} reaction are state-specifically ionized using Doppler-free (2+1) Resonance-Enhanced Multi-Photon Ionization (REMPI) and detected using a Position-sensitive microchannel plate detector. This detection technique has an unprecedented single shot detection sensitivity of 6.8 10{sup 3} molecules/cc. This thesis does not contain experimental results for the D + H{sub 2} reaction yet, but progress that has been made towards achieving this goal is reported. In addition, results are reported for a study of the Rydberg spectroscopy of the water molecule.

  11. Upper-limit charge exchange cross sections for mercury (plus) on molybdenum and cesium (plus) on aluminum

    NASA Technical Reports Server (NTRS)

    Dugan, J. V., Jr.

    1972-01-01

    Upper-limit charge exchange cross sections are calculated for Hg(+) on Mo and Cs(+) on Al. The cross sections are calculated from the polarization interaction at low ion energies (1 to 500 eV) and by assuming favorable curve crossings with a hard-core reaction radius at higher energies (500 eV to 10 keV). The cross sections for Hg(+) on Mo becomes greater than corresponding Hg Hg(+) resonance values at ion energies below 2 eV, whereas the Cs(+) Al values remain considerably lower than the Cs(+)Cs resonance value at all ion energies. It is also shown that charge exchange of slow Hg(+) with Mo may be important for spacecraft with electron bombardment thrusters.

  12. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  13. Multidimensional Separations of Ubiquitin Conformers in the Gas Phase: Relating Ion Cross Sections to H/D Exchange Measurements

    PubMed Central

    Robinson, Errol W.; Williams, Evan R.

    2009-01-01

    Investigating gas-phase structures of protein ions can lead to an improved understanding of intramolecular forces that play an important role in protein folding. Both hydrogen/deuterium (H/D) exchange and ion mobility spectrometry provide insight into the structures and stabilities of different gas-phase conformers, but how best to relate the results from these two methods has been hotly debated. Here, high-field asymmetric waveform ion mobility spectrometry (FAIMS) is combined with Fourier-transform ion cyclotron resonance mass spectrometry (FT/ICR MS) and is used to directly relate ubiquitin ion cross sections and H/D exchange extents. Multiple conformers can be identified using both methods. For the 9+ charge state of ubiquitin, two conformers (or unresolved populations of conformers) that have cross sections differing by 10% are resolved by FAIMS, but only one conformer is apparent using H/D exchange at short times. For the 12+ charge state, two conformers (or conformer populations) have cross sections differing by <1%, yet H/D exchange of these conformers differ significantly (6 versus 25 exchanges). These and other results show that ubiquitin ion collisional cross sections and H/D exchange distributions are not strongly correlated and that factors other than surface accessibility appear to play a significant role in determining rates and extents of H/D exchange. Conformers that are not resolved by one method could be resolved by the other, indicating that these two methods are highly complementary and that more conformations can be resolved with this combination of methods than by either method alone. PMID:16023362

  14. Outdoor heat exchanger section

    SciTech Connect

    Kessler, A.F.; Smiley, W.A. III; Wendt, M.E.

    1988-02-09

    An outdoor section for an air conditioning system is described comprising: a compressor; a heat exchanger; a cabinet having an upper cabinet section, a lower cabinet section and a louvered lower section top cover, the heat exchanger and the compressor being housed in the lower cabinet section and the upper cabinet section having a solid top which overlies the louvers in the lower section top cover; and a fan disposed in the lower cabinet section to draw air through the sides of the lower cabinet section and through the heat exchanger housed therein, the fan discharging air, after having been drawn through the heat exchanger, upward through the louvers in the lower cabinet section top cover and into the interior of the upper cabinet section.

  15. Cometary X-ray emission: theoretical cross sections following charge exchange by multiply charged ions of astrophysical interest

    SciTech Connect

    Otranto, S; Olson, R E; Beiersdorfer, P

    2007-02-13

    The CTMC method is used to calculate emission cross sections following charge exchange collisions involving highly charged ions of astrophysical interest and typical cometary targets. Comparison is made to experimental data obtained on the EBIT machine at Lawrence Livermore National Laboratory (LLNL) for O{sup 8+} projectiles impinging on different targets at a collision energy of 10 eV/amu. The theoretical cross sections are used together with ion abundances measured by the Advanced Composition Explorer as well as those obtained by a fitting procedure using laboratory emission cross sections in order to reproduce the x-ray spectrum of comet C/LINEAR S4 measured on July 14th 2001.

  16. Asymptotic form of the charge exchange cross section in the three body rearrangement collisions

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1975-01-01

    A three body general rearrangement collision is considered where the initial and final bound states are described by the hydrogen-like wave functions. Mathematical models are developed to establish the relationships of quantum number, the reduced mass, and the nuclear charge of the final state. It is shown that for the low lying levels, the reciprocal of n cubed scaling law at all incident energies is only approximately satisfied. The case of the symmetric collisions is considered and it is shown that for high n and high incident energy, E, the cross section behaves as the reciprocal of E cubed. Zeros and minima in the differential cross sections in the limit of high n for protons on atomic hydrogen and positrons on atomic hydrogen are given.

  17. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  18. Apparatus for measuring electron-impact excitation cross sections using fast metastable atoms produced via charge exchange

    SciTech Connect

    Boffard, J.B.; Lagus, M.E.; Anderson, L.W.; Lin, C.C.

    1996-08-01

    An apparatus for measuring absolute cross sections due to electron-impact excitation out of the metastable levels of rare-gas atoms via the optical method is described with the focus specifically on excitation out of the 2{sup 3}{ital S} metastable helium level. The metastable helium target (He{asterisk}) is prepared by charge exchange between 1.6 keV He{sup +} ions and cesium vapor. An electron beam crosses the fast metastable beam target at a right angle and the fluorescence is collected at right angles to both beams. The charge transfer reaction produces He atoms mainly in the {ital n}=2 He levels. Because the target contains a negligible ground state He fraction, we can measure excitation cross sections from excitation threshold up to an arbitrarily high energy (keV regime) which represents a major improvement over previous metastable excitation cross sections measurements. The He{asterisk} target density is extremely small ({approximately}10{sup 6} atoms/cm{sup 3}) yielding minuscule signal rates. We describe steps taken to maximize the signal-to-noise ratio. We discuss the implications of using a fast beam target including both the finite flight time of the excited atoms across the light gathering region and the reduction of the cascade contributions to the apparent cross sections. A discussion of the identification and elimination of various systematic effects is also given. To measure absolute cross sections, we explicitly determine the spatial distributions of both the electron and metastable beams, as well as the spatially dependent response of the fluorescence gathering region. We determine the absolute flux of fast metastable atoms using a thermal detector calibrated with a He{sup +} ion beam. As examples, we present absolute cross sections for excitation out of the 2{sup 3}{ital S} metastable level into the 3{sup 3}{ital D} and 4{sup 3}{ital D} levels. {copyright} {ital 1996 American Institute of Physics.}

  19. Symmetric Resonance Charge Exchange Cross Section Based on Impact Parameter Treatment

    NASA Technical Reports Server (NTRS)

    Omidvar, Kazem; Murphy, Kendrah; Atlas, Robert (Technical Monitor)

    2002-01-01

    Using a two-state impact parameter approximation, a calculation has been carried out to obtain symmetric resonance charge transfer cross sections between nine ions and their parent atoms or molecules. Calculation is based on a two-dimensional numerical integration. The method is mostly suited for hydrogenic and some closed shell atoms. Good agreement has been obtained with the results of laboratory measurements for the ion-atom pairs H+-H, He+-He, and Ar+-Ar. Several approximations in a similar published calculation have been eliminated.

  20. Charged-current inclusive neutrino cross sections in the superscaling model including quasielastic, pion production and meson-exchange contributions

    NASA Astrophysics Data System (ADS)

    Ivanov, M. V.; Megias, G. D.; González-Jiménez, R.; Moreno, O.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.

    2016-08-01

    Charged current inclusive neutrino-nucleus cross sections are evaluated using the superscaling model for quasielastic scattering and its extension to the pion production region. The contribution of two-particle-two-hole vector meson-exchange current excitations is also considered within a fully relativistic model tested against electron scattering data. The results are compared with the inclusive neutrino-nucleus data from the T2K and SciBooNE experiments. For experiments where < {E}ν > ∼ 0.8 {{GeV}}, the three mechanisms considered in this work provide good agreement with the data. However, when the neutrino energy is larger, effects from beyond the Δ also appear to be playing a role. The results show that processes induced by vector two-body currents play a minor role in the inclusive cross sections at the kinematics considered.

  1. Energy-loss cross sections for inclusive charge-exchange reactions at intermediate energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Dubey, Rajendra R.

    1993-01-01

    Charge-exchange reactions for scattering to the continuum are considered in a high-energy multiple scattering model. Calculations for (p,n) and (He-3,H-3) reactions are made and compared with experimental results for C-12, O-16, and Al-27 targets. Coherent effects are shown to lead to an important role for inelastic multiple scattering terms when light projectiles are considered.

  2. Laboratory Measurements of Solar-Wind/Comet X-Ray Emission and Charge Exchange Cross Sections

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Cadez, I.; Greenwood, J. B.; Mawhorter, R. J.; Smith, S. J.; Lozano, J.

    2002-01-01

    The detection of X-rays from comets such as Hyakutake, Hale-Bopp, d Arrest, and Linear as they approach the Sun has been unexpected and exciting. This phenomenon, moreover, should be quite general, occurring wherever a fast solar or stellar wind interacts with neutrals in a comet, a planetary atmosphere, or a circumstellar cloud. The process is, O(+8) + H2O --> O(+7*) + H2O(+), where the excited O(+7*) ions are the source of the X-ray emissions. Detailed modeling has been carried out of X-ray emissions in charge-transfer collisions of heavy solar-wind Highly Charged Ions (HCIs) and interstellar/interplanetary neutral clouds. In the interplanetary medium the solar wind ions, including protons, can charge exchange with interstellar H and He. This can give rise to a soft X-ray background that could be correlated with the long-term enhancements seen in the low-energy X-ray spectrum of ROSAT. Approximately 40% of the soft X-ray background detected by Exosat, ROSAT, Chandra, etc. is due to Charge Exchange (CXE): our whole heliosphere is glowing in the soft X-ray due to CXE.

  3. Calculations and analysis of cross sections required for argon charge exchange recombination spectroscopy

    SciTech Connect

    Schultz, David Robert; Lee, Teck; Loch, Stuart D

    2010-01-01

    A large set of calculations has been carried out providing a basis for diagnostics of fusion plasmas through emission resulting from radiative deexcitation following charge transfer between hydrogen and highly charged argon ions, so-called argon charge exchange recombination spectroscopy. These results have been obtained using the classical trajectory Monte Carlo (CTMC) method to treat charge transfer to states with principal quantum numbers up to 30 or more. Nine collision energies between 13.3333 and 250 keV/u pertinent to neutral beam injection have been considered for Arq+ (q=15-18) colliding with atomic hydrogen in both the ground and metastable states. Atomic orbital close coupling calculations have also been undertaken in order to provide a fully quantum mechanical test of the CTMC results for Ar18+ + H(1s) collisions. The results of the calculations are discussed here and the full set of data is made available through a web posting.

  4. Correlation of Resonance Charge Exchange Cross-Section Data in the Low-Energy Range

    NASA Technical Reports Server (NTRS)

    Sheldon, John W.

    1962-01-01

    During the course of a literature survey concerning resonance charge exchange, an unusual degree of agreement was noted between an extrapolation of the data reported by Kushnir, Palyukh, and Sena and the data reported by Ziegler. The data of Kushnir et al. are for ion-atom relative energies from 10 to 1000 ev, while the data of Ziegler are for a relative energy of about 1 ev. Extrapolation of the data of Kushnir et al. was made in accordance with Holstein's theory, 3 which is a combination of time-dependent perturbation methods and classical orbit theory. The results of this theory may be discussed in terms of a critical impact parameter b(sub c).

  5. Cross-Shelf Exchange.

    PubMed

    Brink, K H

    2016-01-01

    Cross-shelf exchange dominates the pathways and rates by which nutrients, biota, and materials on the continental shelf are delivered and removed. This follows because cross-shelf gradients of most properties are usually far greater than those in the alongshore direction. The resulting transports are limited by Earth's rotation, which inhibits flow from crossing isobaths. Thus, cross-shelf flows are generally weak compared with alongshore flows, and this leads to interesting observational issues. Cross-shelf flows are enabled by turbulent mixing processes, nonlinear processes (such as momentum advection), and time dependence. Thus, there is a wide range of possible effects that can allow these critical transports, and different natural settings are often governed by different combinations of processes. This review discusses examples of representative transport mechanisms and explores possible observational and theoretical paths to future progress. PMID:26747520

  6. Charge state distributions and charge exchange cross sections of carbon in helium at 30-258 keV

    NASA Astrophysics Data System (ADS)

    Maxeiner, Sascha; Seiler, Martin; Suter, Martin; Synal, Hans-Arno

    2015-10-01

    With the introduction of helium stripping in radiocarbon (14C) accelerator mass spectrometry (AMS), higher +1 charge state yields in the 200 keV region and fewer beam losses are observed compared to nitrogen or argon stripping. To investigate the feasibility of even lower beam energies for 14C analyses the stripping characteristics of carbon in helium need to be further studied. Using two different AMS systems at ETH Zurich (myCADAS and MICADAS), ion beam transmissions of carbon ions for the charge states -1, +1, +2 and +3 were measured in the range of 258 keV down to 30 keV. The correction for beam losses and the extraction of charge state yields and charge exchange cross sections will be presented. An increase in population of the +1 charge state towards the lowest measured energies up to 75% was found as well as agreement with previous data from literature. The findings suggest that more compact radiocarbon AMS systems are possible and could provide even higher efficiency than current systems operating in the 200 keV range.

  7. Jet inclusive cross sections

    SciTech Connect

    Del Duca, V.

    1992-11-01

    Minijet production in jet inclusive cross sections at hadron colliders, with large rapidity intervals between the tagged jets, is evaluated by using the BFKL pomeron. We describe the jet inclusive cross section for an arbitrary number of tagged jets, and show that it behaves like a system of coupled pomerons.

  8. Calculation of the cross section for the d(e,e') reaction near the threshold with inclusion of meson exchange currents

    SciTech Connect

    Korchin, A.Y.; Shebeko, A.V.

    1984-01-01

    The dependence of the cross section near the deuteron electrodisintegration threshold on the choice of the model for the NN interaction and for the form factors entering into the meson exchange current operator is studied. The results of the calculations are compared with new experimental data in a broad momentum-transfer range.

  9. Measurement and Calculation of Absolute Single- and Multiple-Charge-Exchange Cross Sections for Feq+ Ions Impacting CO and CO2

    SciTech Connect

    Simcic, J.; Mawhorter, R. J.; Cadez, I.; Greenwood, J. B.; Chutjian, A.; Smith, S. J.

    2010-01-01

    Absolute cross sections are reported for single, double, and triple charge exchange of Feq+ (q=5- 13) ions with CO and CO2. The highly-charged Fe ions are generated in an electron cyclotron resonance ion source. Absolute data are derived from knowledge of the target gas pressure, target path length, and incident and charge-exchanged ion currents. Experimental results are compared with new calculations of these cross sections in the n-electron classical trajectory Monte-Carlo approximation, in which the ensuing radiative and non-radiative cascades are approximated with scaled hydrogenic transition probabilities and scaled Auger rates. The present data are needed in astrophysical applications of solar- and stellar-wind charge-exchange with comets, planetary atmospheres, and circumstellar clouds.

  10. Accurate Cross Sections for Microanalysis

    PubMed Central

    Rez, Peter

    2002-01-01

    To calculate the intensity of x-ray emission in electron beam microanalysis requires a knowledge of the energy distribution of the electrons in the solid, the energy variation of the ionization cross section of the relevant subshell, the fraction of ionizations events producing x rays of interest and the absorption coefficient of the x rays on the path to the detector. The theoretical predictions and experimental data available for ionization cross sections are limited mainly to K shells of a few elements. Results of systematic plane wave Born approximation calculations with exchange for K, L, and M shell ionization cross sections over the range of electron energies used in microanalysis are presented. Comparisons are made with experimental measurement for selected K shells and it is shown that the plane wave theory is not appropriate for overvoltages less than 2.5 V. PMID:27446747

  11. First order calculation of the inclusive cross section pp→ZZ by graviton exchange in large extra dimensions

    NASA Astrophysics Data System (ADS)

    Kober, Martin; Koch, Benjamin; Bleicher, Marcus

    2007-12-01

    We calculate the inclusive cross section of double Z-boson production within large extra dimensions at the Large Hadron Collider (LHC). Using perturbatively quantized gravity in the ADD (Arkani-Hamed, Dvali, Dimopoulos) model we perform a first order calculation of the graviton mediated contribution to the pp→ZZ+x cross section. At low energies (e.g. Tevatron) this additional contribution is very small, making it virtually unobservable, for a fundamental mass scale above 2500 GeV. At LHC energies, however, the calculation indicates that the ZZ-production rate within the ADD model should differ significantly from the standard model if the new fundamental mass scale would be below 15000 GeV. A comparison with the observed production rate at the LHC might therefore provide direct hints on the number and structure of the extra dimensions.

  12. Momentum-transfer, differential and spin-exchange cross sections in the elastic scattering of low-energy electrons by heavy alkali-metal atoms.

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian; Thumm, Uwe; Fabrikant, Ilya I.

    2000-06-01

    Based on the relativistic Dirac R-matrix method, we analyze various angle-dependent cross sections for electron scattering by Rb, Cs and Fr targets at energies below 3 eV. We show our angle-dependent and total spin-exchange cross sections for scattering of non-polarized (or polarized) electrons by polarized (or non-polarized) Rb, Cs and Fr targets, and we compare them with available experimental data (B. Jaduszliwer, N.D. Bhaskar, and B. Bederson Phys.Rev. A 14), 162 (1976).. The influence of relativistic effects is discussed. From the energy and angular dependence analysis of the differential cross section, we obtain clear evidence of the Cs^-(^3F^o) shape resonance at 1.528 eV, in excellent agreement with accurate experiments (W. Gehenn and E. Reichert, J.Phys. B 10), 3105 (1977).. We compare our electron momentum-transfer cross section with available data obtained in swarm experiments for Rb (Y. Nakamura, Trans. IEE of Japan 102-A), 23 (1982). and Cs (H.T. Saelee and J. Lucas, J.Phys. D 12), 1275 (1979)..

  13. Absolute single and multiple charge exchange cross sections for highly charged C, O, and Ne ions on H{sub 2}O, CO, and CO{sub 2}

    SciTech Connect

    Mawhorter, R. J.; Chutjian, A.; Djuric, N.; Hossain, S.; MacAskill, J. A.; Smith, S. J.; Simcic, J.; Cravens, T. E.; Lisse, C. M.; Williams, I. D.

    2007-03-15

    Reported herein are measured absolute single, double, and triple charge exchange (CE) cross sections for the highly charged ions (HCIs) C{sup q+} (q=5,6), O{sup q+} (q=6,7,8), and Ne{sup q+} (q=7,8) colliding with the molecular species H{sub 2}O, CO, and CO{sub 2}. Present data can be applied to interpreting observations of x-ray emissions from comets as they interact with the solar wind. As such, the ion impact energies of 7.0q keV (1.62-3.06 keV/amu) are representative of the fast solar wind, and data at 1.5q keV for O{sup 6+} (0.56 keV/amu) on CO and CO{sub 2} and 3.5q keV for O{sup 5+} (1.09 keV/amu) on CO provide checks of the energy dependence of the cross sections at intermediate and typical slow solar wind velocities. The HCIs are generated within a 14 GHz electron cyclotron resonance ion source. Absolute CE measurements are made using a retarding potential energy analyzer, with measurement of the target gas cell pressure and incident and final ion currents. Trends in the cross sections are discussed in light of the classical overbarrier model (OBM), extended OBM, and with recent results of the classical trajectory Monte Carlo theory.

  14. Empirical parametrization of the two-photon-exchange effect contributions to the electron-proton elastic scattering cross section

    SciTech Connect

    Qattan, I. A.; Alsaad, A.

    2011-05-15

    The most recent electron-proton elastic scattering data were re-analyzed using an empirical parametrization of the two-photon-exchange (TPE) effect contributions to {sigma}{sub R}. The TPE effect contribution F(Q{sup 2},{epsilon}) was double Taylor series expanded as a polynomial of order n keeping only terms linear in {epsilon} to account for the experimentally observed and verified linearity of the Rosenbluth plots. We fix the ratio R=G{sub Ep}/G{sub Mp} to be that obtained from a fit to the recoil-polarization data and parametrize {sigma}{sub R} first by a three-parameter formula (fit I) and then by a two-parameter formula (fit III). In contrast to previous analyses, the fit parameter G{sub Mp}{sup 2} as obtained from these fits is either smaller or equal to the values obtained from our conventional Rosenbluth fit (fit II) but never larger. The ratio g(Q{sup 2})/G{sub Mp}{sup 2} which represents the ratio of the TPE and one-photon-exchange (OPE) effect contributions to the intercept of {sigma}{sub R} is large and it ranges 3%-88%. The ratio R{sub 1{gamma}x2{gamma}={tau}}f(Q{sup 2})/G{sub Ep}{sup 2} which represents the ratio of the TPE and OPE effect contributions to the slope of {sigma}{sub R} is also large, reaching a value of 12.0-14.4 at Q{sup 2}= 5.25 (GeV/c){sup 2}. The ratio R{sub 1{gamma}x2{gamma}} as obtained from fits I and III is consistent, within error, with those obtained from previous analyses. Our formulas seem to explain the linearity of {sigma}{sub R}. Moreover, our analysis shows that the extracted G{sub Ep}{sup 2} and G{sub Mp}{sup 2} using the conventional Rosenbluth separation method can in fact be broken into the usual OPE and TPE contributions. Therefore, {sigma}{sub R} can in fact be derived under weaker conditions than those imposed by the Born approximation. Our results show that the TPE amplitudes, g(Q{sup 2})/G{sub Mp}{sup 2} and f(Q{sup 2})/G{sub Mp}{sup 2}, are sizable and grow with Q{sup 2} value up to Q{sup 2}{approx}6 (Ge

  15. Radar cross section of insects

    NASA Astrophysics Data System (ADS)

    Riley, J. R.

    1985-02-01

    X-band measurements of radar cross section as a function of the angle between insect body axis and the plane of polarization are presented. A finding of particular interest is that in larger insects, maximum cross section occurs when the E-vector is perpendicular to the body axis. A new range of measurements on small insects (aphids, and planthoppers) is also described, and a comprehensive summary of insect cross-section data at X-band is given.

  16. Classical description of H(1 s ) and H*(n =2 ) for cross-section calculations relevant to charge-exchange diagnostics

    NASA Astrophysics Data System (ADS)

    Cariatore, N. D.; Otranto, S.; Olson, R. E.

    2015-04-01

    In this work, we introduce a classical trajectory Monte Carlo (CTMC) methodology, specially conceived to provide a more accurate representation of charge-exchange processes between highly charged ions and H (1 s ) and H*(n=2 ) . These processes are of particular relevance in power fusion reactor programs, for which charge-exchange spectroscopy has become a useful plasma diagnostics tool. To test the methodology, electron-capture reactions from these targets by 6C ,7+N, and 8+O are studied at impact energies in the 10 -150 keV/amu range. State-selective cross sections are contrasted with those predicted by the standard microcanonical formulation of the CTMC method, the CTMC method with an energy variation of initial binding energies that produces an improved radial electron density, and the atomic orbital close-coupling method. The present results are found in to be much better agreement with the quantum-mechanical results than the results of former formulations of the CTMC method.

  17. Cross Sections From Scalar Field Theory

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank; Norman, Ryan B.; Nasto, Rachel

    2008-01-01

    A one pion exchange scalar model is used to calculate differential and total cross sections for pion production through nucleon- nucleon collisions. The collisions involve intermediate delta particle production and decay to nucleons and a pion. The model provides the basic theoretical framework for scalar field theory and can be applied to particle production processes where the effects of spin can be neglected.

  18. The total charm cross section

    SciTech Connect

    Vogt, R

    2007-09-14

    We assess the theoretical uncertainties on the total charm cross section. We discuss the importance of the quark mass, the scale choice and the parton densities on the estimate of the uncertainty. We conclude that the uncertainty on the total charm cross section is difficult to quantify.

  19. XCOM: Photon Cross Sections Database

    National Institute of Standards and Technology Data Gateway

    SRD 8 XCOM: Photon Cross Sections Database (Web, free access)   A web database is provided which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture (Z <= 100) at energies from 1 keV to 100 GeV.

  20. a Calculation of the Doubly Differential Cross Section for Inclusive Pion - HELIUM-4 Double Charge Exchange at Incident Pion Kinetic Energy Less than 270 Mev

    NASA Astrophysics Data System (ADS)

    Kulkarni, Arun Venkatesh

    Pi-nuclear scattering calculations that use multiple scattering usually require the knowledge not only of the pi-nucleon interaction in free space but also its modification inside a nuclear medium. A relativistic 3-Body model consisting of the pion, the i^ {rm th}-nucleon and the residual nucleus also called the core, is developed. In this model the nucleon core separation in co-ordinate space is approximated by the separation between the center of mass of the pi-i^{rm th} nucleon subsystem called the Composite, and the core. The instant form of dynamics was employed to introduce interactions between the pion and the nucleon and between the pi N Composite and the Core. The Composite-Core Hamiltonian is assumed to admit no bound states. The relativistic 3-Body total Hamiltonian is then diagonalized by nested-separable eigenfunctions. This diagonalization allows the construction of an expression for matrix elements of the medium modified pi N scattering operator tau_ {i} in the lab frame in terms of the CM pi N free space t-matrix elements. Terms that are quadratic in the pi N t -matrix elements in this expression are neglected. The Sequential Single Charge eXchange (SSCX) mechanism contribution to inclusive pi- ^4He Double Charge eXchange (DCX) is calculated using only the double scattering term of the Watson multiple scattering series. The tau-matrix elements obtained from the 3-Body model are used for the first scattering. It contains explicit dependance upon the matrix elements of the Composite-Core scattering operator t_{pi N-C}. This explicit dependance is ignored in the second scattering. The pole of the intermediate pion Green function is fixed from 3-Body model considerations and the requirement that pion be on the mass shell at the pole. The calculated inclusive cross sections {{d^2sigma}over{d Omega dT_pi}} are compared with the Kinney et al. experimental results and essential agreement with the spectrum for incident pion kinetic energy T_sp{pi}{rm In

  1. Cross sections at hadron colliders

    SciTech Connect

    Paige, F.E.

    1982-01-01

    The predicted cross sections are given for new Z'/sup 0/ bosons, for the Drell-Yan continuum of ..mu../sup +/..mu../sup -/ pairs, for high p/sub T/ hadron jets, for high p/sub T/ single photons, and for the associated production of heavy quarks. These processes have been selected not to cover the most interesting physics, but to provide a representative selection of cross sections for which to compare various energies and luminosities.

  2. 242Amm fission cross section

    NASA Astrophysics Data System (ADS)

    Browne, J. C.; White, R. M.; Howe, R. E.; Landrum, J. H.; Dougan, R. J.; Dupzyk, R. J.

    1984-06-01

    The neutron-induced fission cross section of 242Amm has been measured over the energy region from 10-3 eV to ~20 MeV in a series of experiments utilizing a linac-produced "white" neutron source and a monoenergetic source of 14.1 MeV neutrons. The cross section was measured relative to that of 235U in the thermal (0.001 to ~3 eV) and high energy (1 keV to ~20 MeV) regions and normalized to the ENDF/B-V 235U(n,f) evaluated cross section. In the resonance energy region (0.5 eV to 10 keV) the neutron flux was measured using thin lithium glass scintillators and the relative cross section thus obtained was normalized to the thermal energy measurement. This procedure allowed a consistency check between the thermal and high energy data. The cross section data have a statistical accuracy of ~0.5% at thermal energies and in the 1-MeV energy region, and a systematic uncertainty of ~5%. We confirmed that 242Amm has the largest thermal fission cross section known with a 2200 m/sec value of 6328 b. Results of a Breit-Wigner sum-of-single-levels analysis of 48 fission resonances up to 20 eV are presented and the connection of these resonance properties to the large thermal cross section is discussed. Our measurements are compared with previously reported results.

  3. The cross section for double Compton scattering

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1984-01-01

    Employing elementary methods in nonrelativistic quantum electrodynamics, the cross section for gamma sub 0 + e yields e + gamma + gamma is computed for arbitrary energy in the spectrum of the outgoing photons. The final result is given, differential in the energy of one of these photons, for the case where the incident photon is unpolarized and has energy E sub 0 much less than mc-squared, a polarization sum and angular integration being performed for the final-state photons. The cross section has a simple algebraic form resulting from contributions from the sum of squared direct and exchange amplitudes; interference terms from these amplitudes do not contribute to the angular-integrated cross section.

  4. Neutrino cross-sections: Experiments

    SciTech Connect

    Sánchez, F.

    2015-07-15

    Neutrino-nucleus cross-sections are as of today the main source of systematic errors for oscillation experiments together with neutrino flux uncertainties. Despite recent experimental and theoretical developments, future experiments require even higher precisions in their search of CP violation. We will review the experimental status and explore possible future developments required by next generation of experiments.

  5. Electron-impact-ionization cross section for the hydrogen atom

    NASA Astrophysics Data System (ADS)

    Hu, W.; Fang, D.; Wang, Y.; Yang, F.

    1994-02-01

    A distorted-wave Born exchange approximation was used to calculate the cross section for electron-impact ionization of the hydrogen atoms. Both the integral and energy-differential cross section were calculated. The results were compared with the latest experimental data and other theoretical calculations. Comparison shows that the calculations agree with differential cross-section measurements in general. For integral cross sections the calculation shows a better agreement with an earlier measurement [M.B. Shah, D. S. Elliott, and H. B. Gilbody, J. Phys. B 20, 3501 (1987)] in which the cross sections are normalized to the first Born approximation.

  6. Heat exchanger with a removable tube section

    DOEpatents

    Wolowodiuk, W.; Anelli, J.

    1975-07-29

    A heat exchanger is described in which the tube sheet is secured against primary liquid pressure, but which allows for easy removal of the tube section. The tube section is supported by a flange which is secured by a number of shear blocks, each of which extends into a slot which is immovable with respect to the outer shell of the heat exchanger. (auth)

  7. Recommended Dosimetry Cross Section Compendium.

    Energy Science and Technology Software Center (ESTSC)

    1994-07-11

    Version 00 The data is recommended for spectrum determination applications and for the prediction of neutron activation of typical radiation sensor materials. The library has been tested for consistency of the cross sections in a wide variety of neutron environments. The results and cautions from this testing have been documented. The data has been interfaced with radiation transport codes, such as TWODANT-SYS (CCC-547) and MCNP (CCC-200), in order to compare calculated and measured activities formore » benchmark reactor experiments.« less

  8. (Fast neutron cross section measurements)

    SciTech Connect

    Not Available

    1991-01-01

    In the 14 MeV Neutron Laboratory, we have continued the development of a facility that is now the only one of its kind in operation in the United States. We have refined the klystron bunching system described in last year's report to the point that 1.2 nanosecond pulses have been directly measured. We have tested the pulse shape discrimination capability of our primary NE 213 neutron detector. We have converted the RF sweeper section of the beamline to a frequency of 1 MHz to replace the function of the high voltage pulser described in last year's report which proved to be difficult to maintain and unreliable in its operation. We have also overcome several other significant experimental difficulties, including a major problem with a vacuum leak in the main accelerator column. We have completed additional testing to prove the remainder of the generation and measurement systems, but overcoming some of these experimental difficulties has delayed the start of actual data taking. We are now in a position to begin our first series of ring geometry elastic scattering measurements, and these will be underway before the end of the current contract year. As part of our longer term planning, we are continuing the conceptual analysis of several schemes to improve the intensity of our current pulsed beam. These include the provision of a duoplasmatron ion source and/or the provision of preacceleration bunching. Additional details are given later in this report. A series of measurements were carried out at the Tandem Dynamatron Facility involving the irradiation of a series of yttrium foils and the determination of activation cross sections using absolute counting techniques. The experimental work has been completed, and final analysis of the cross section data will be completed within several months.

  9. Electron-Impact Ionization Cross Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 107 Electron-Impact Ionization Cross Section Database (Web, free access)   This is a database primarily of total ionization cross sections of molecules by electron impact. The database also includes cross sections for a small number of atoms and energy distributions of ejected electrons for H, He, and H2. The cross sections were calculated using the Binary-Encounter-Bethe (BEB) model, which combines the Mott cross section with the high-incident energy behavior of the Bethe cross section. Selected experimental data are included.

  10. Photoproduction total cross section and shower development

    NASA Astrophysics Data System (ADS)

    Cornet, F.; García Canal, C. A.; Grau, A.; Pancheri, G.; Sciutto, S. J.

    2015-12-01

    The total photoproduction cross section at ultrahigh energies is obtained using a model based on QCD minijets and soft-gluon resummation and the ansatz that infrared gluons limit the rise of total cross sections. This cross section is introduced into the Monte Carlo system AIRES to simulate extended air showers initiated by cosmic ray photons. The impact of the new photoproduction cross section on common shower observables, especially those related to muon production, is compared with previous results.

  11. Cross Sections: No. 1 Hold section at Fr 24 Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cross Sections: No. 1 Hold section at Fr 24 Looking Fwd, No 1 Hold Section at Fr 28 Looking Aft, No 2 Hold Section at Fr 48 Looking Aft, No 3 Hold Section at Fr 70 Looking Aft, No 4 Hold Section at Fr 90 Looking Aft - General John Pope, Suisun Bay Reserve Fleet, Benicia, Solano County, CA

  12. Electron Photon Interaction Cross Sections

    SciTech Connect

    Cullen, D. E.

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text format that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).

  13. Electron Photon Interaction Cross Sections

    Energy Science and Technology Software Center (ESTSC)

    2014-11-01

    Version 00 The Electron Photon Interaction Cross Sections, EPICS, provides the atomic data needed to perform coupled Electron-Photon transport calculations, to produce accurate macroscopic results, such as energy deposit and dose. Atomic data is provided for elements, Z = 1 to 100, over the energy range 10 eV to 100 GeV; note that nuclear data, such as photo-nuclear, and data for compounds, are not included. All data is in a simple computer independent text formatmore » that is standard and presented to a high precision that can be easily read by computer codes written in any computer language, e.g., C, C++, and FORTRAN. EPICS includes four separate data bases that are designed to be used in combination, these include, • The Evaluated Electron Data Library (EEDL), to describe the interaction of electrons with matter. • The Evaluated Photon Data Library (EPDL), to describe the interaction of photons with matter. • The Evaluated Atomic Data Library (EADL), to describe the emission of electrons and photons back to neutrality following an ionizing event, caused by either electron or photon interactions. • The Evaluated Excitation Data Library (EXDL), to describe the excitation of atoms due to photon interaction. All of these are available in the Extended ENDL format (ENDLX) in which the evaluations were originally performed. The first three are also available in the ENDF format; as yet ENDF does not include formats to handle excitation data (EXDL).« less

  14. [Fast neutron cross section measurements

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are clean'' and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its data production'' phase.

  15. Recent fission cross section standards measurements

    SciTech Connect

    Wasson, O.A.

    1985-01-01

    The /sup 235/U(n,f) reaction is the standard by which most neutron induced fission cross sections are determined. Most of these cross sections are derived from relatively easy ratio measurements to /sup 235/U. However, the more difficult /sup 235/U(n,f) cross section measurements require the use of advanced neutron detectors for the determination of the incident neutron fluence. Examples of recent standard cross section measurements are discussed, various neutron detectors are described, and the status of the /sup 235/U(n,f) cross section standard is assessed. 23 refs., 8 figs., 4 tabs.

  16. SNL RML recommended dosimetry cross section compendium

    SciTech Connect

    Griffin, P.J.; Kelly, J.G.; Luera, T.F.; VanDenburg, J.

    1993-11-01

    A compendium of dosimetry cross sections is presented for use in the characterization of fission reactor spectrum and fluence. The contents of this cross section library are based upon the ENDF/B-VI and IRDF-90 cross section libraries and are recommended as a replacement for the DOSCROS84 multigroup library that is widely used by the dosimetry community. Documentation is provided on the rationale for the choice of the cross sections selected for inclusion in this library and on the uncertainty and variation in cross sections presented by state-of-the-art evaluations.

  17. Cross Sections: No 6 Hold Section at Fr 178 Looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Cross Sections: No 6 Hold Section at Fr 178 Looking Fwd, No 7 Hold Section at No 154 Looking Fwd, No 7 Hold Section at Fr 195 Looking Fwd Showing Trans 194, No 7 Hold Section at Fr 198 Looking Fwd - General John Pope, Suisun Bay Reserve Fleet, Benicia, Solano County, CA

  18. Differential Cross Sections for Proton-Proton Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  19. Vertically stabilized elongated cross-section tokamak

    DOEpatents

    Sheffield, George V.

    1977-01-01

    This invention provides a vertically stabilized, non-circular (minor) cross-section, toroidal plasma column characterized by an external separatrix. To this end, a specific poloidal coil means is added outside a toroidal plasma column containing an endless plasma current in a tokamak to produce a rectangular cross-section plasma column along the equilibrium axis of the plasma column. By elongating the spacing between the poloidal coil means the plasma cross-section is vertically elongated, while maintaining vertical stability, efficiently to increase the poloidal flux in linear proportion to the plasma cross-section height to achieve a much greater plasma volume than could be achieved with the heretofore known round cross-section plasma columns. Also, vertical stability is enhanced over an elliptical cross-section plasma column, and poloidal magnetic divertors are achieved.

  20. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  1. Cross Sections for Electron Collisions with Methane

    SciTech Connect

    Song, Mi-Young Yoon, Jung-Sik; Cho, Hyuck; Itikawa, Yukikazu; Karwasz, Grzegorz P.; Kokoouline, Viatcheslav; Nakamura, Yoshiharu; Tennyson, Jonathan

    2015-06-15

    Cross section data are compiled from the literature for electron collisions with methane (CH{sub 4}) molecules. Cross sections are collected and reviewed for total scattering, elastic scattering, momentum transfer, excitations of rotational and vibrational states, dissociation, ionization, and dissociative attachment. The data derived from swarm experiments are also considered. For each of these processes, the recommended values of the cross sections are presented. The literature has been surveyed through early 2014.

  2. Theoretical antideuteron-nucleus absorptive cross sections

    NASA Technical Reports Server (NTRS)

    Buck, W. W.; Norbury, J. W.; Townsend, L. W.; Wilson, J. W.

    1993-01-01

    Antideuteron-nucleus absorptive cross sections for intermediate to high energies are calculated using an ion-ion optical model. Good agreement with experiment (within 15 percent) is obtained in this same model for (bar p)-nucleus cross sections at laboratory energies up to 15 GeV. We describe a technique for estimating antinucleus-nucleus cross sections from NN data and suggest that further cosmic ray studies to search for antideuterons and other antinuclei be undertaken.

  3. Comment on "Classical description of H (1 s ) and H*(n =2 ) for cross-section calculations relevant to charge-exchange diagnostics"

    NASA Astrophysics Data System (ADS)

    Jorge, A.; Errea, L. F.; Illescas, Clara; Méndez, L.

    2016-06-01

    Cariatore et al. [Phys. Rev. A 91, 042709 (2015), 10.1103/PhysRevA.91.042709] have introduced a modification of the classical trajectory Monte Carlo (CTMC) method, specially conceived to provide an accurate representation of charge-exchange processes between highly charged ions and H (1 s ) , H*(n =2 ) . We point out that this new CTMC treatment is based on nonstable initial distributions for H*(n =2 ) targets and an improper description of the H (1 s ) target.

  4. Electron impact rotationally elastic total cross section for formamide

    SciTech Connect

    Vinodkumar, Minaxi; Limbachiya, Chetan; Desai, Hardik Vinodkumar, P. C.

    2014-09-28

    This paper reports computational results of the total cross sections for electron impact on formamide (HCONH₂) over a wide range of energies from 0.01 eV to 5 keV. Total cross sections over such a wide range are reported for the first time as the earlier reported data is up to maximum of 12 eV. Below ionization threshold of the target, we performed ab initio calculations using UK molecular R-Matrix code within static, exchange plus polarization (SEP), and close coupling approximations. Twenty eight target states are included in close coupling formalism. Total 350 channels and 2410 configuration state functions are included in the calculations. We observe a π* shape resonance at 3.41 eV and a σ* resonance at 15.3 eV as against similar resonances reported at 3.77 eV and 14.9 eV, respectively, by Goumans et al. [J. Chem. Theory Comput. 5, 217 (2009)] using SEP model. The cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent with a smooth cross over at 18 eV. The vertical excitation energies, electronic excitation cross sections, differential cross sections, momentum transfer, and total cross sections are computed. In absence of experimental data, we compared our computed total cross sections with available other theoretical results.

  5. Electron impact rotationally elastic total cross section for formamide

    NASA Astrophysics Data System (ADS)

    Vinodkumar, Minaxi; Limbachiya, Chetan; Desai, Hardik; Vinodkumar, P. C.

    2014-09-01

    This paper reports computational results of the total cross sections for electron impact on formamide (HCONH2) over a wide range of energies from 0.01 eV to 5 keV. Total cross sections over such a wide range are reported for the first time as the earlier reported data is up to maximum of 12 eV. Below ionization threshold of the target, we performed ab initio calculations using UK molecular R-Matrix code within static, exchange plus polarization (SEP), and close coupling approximations. Twenty eight target states are included in close coupling formalism. Total 350 channels and 2410 configuration state functions are included in the calculations. We observe a π* shape resonance at 3.41 eV and a σ* resonance at 15.3 eV as against similar resonances reported at 3.77 eV and 14.9 eV, respectively, by Goumans et al. [J. Chem. Theory Comput. 5, 217 (2009)] using SEP model. The cross sections at higher energies are evaluated using the spherical complex optical potential formalism. The two methods are found to be consistent with a smooth cross over at 18 eV. The vertical excitation energies, electronic excitation cross sections, differential cross sections, momentum transfer, and total cross sections are computed. In absence of experimental data, we compared our computed total cross sections with available other theoretical results.

  6. Neutrino flux predictions for cross section measurements

    SciTech Connect

    Hartz, Mark

    2015-05-15

    Experiments that measure neutrino interaction cross sections using accelerator neutrino sources require a prediction of the neutrino flux to extract the interaction cross section from the measured neutrino interaction rate. This article summarizes methods of estimating the neutrino flux using in-situ and ex-situ measurements. The application of these methods by current and recent experiments is discussed.

  7. Absolute partial photoionization cross sections of ozone.

    SciTech Connect

    Berkowitz, J.; Chemistry

    2008-04-01

    Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

  8. International Evaluation of Neutron Cross Section Standards

    NASA Astrophysics Data System (ADS)

    Carlson, A. D.; Pronyaev, V. G.; Smith, D. L.; Larson, N. M.; Chen, Zhenpeng; Hale, G. M.; Hambsch, F.-J.; Gai, E. V.; Oh, Soo-Youl; Badikov, S. A.; Kawano, T.; Hofmann, H. M.; Vonach, H.; Tagesen, S.

    2009-12-01

    Neutron cross section standards are the basis for the determination of most neutron cross sections. They are used for both measurements and evaluations of neutron cross sections. Not many cross sections can be obtained absolutely - most cross sections are measured relative to the cross section standards and converted using evaluations of the standards. The previous complete evaluation of the neutron cross section standards was finished in 1987 and disseminated as the NEANDC/INDC and ENDF/B-VI standards. R-matrix model fits for the light elements and non-model least-squares fits for all the cross sections in the evaluation were the basis of the combined fits for all of the data. Some important reactions and constants are not standards, but they assist greatly in the determination of the standard cross sections and reduce their uncertainties - these data were also included in the combined fits. The largest experimental database used in the evaluation was prepared by Poenitz and included about 400 sets of experimental data with covariance matrices of uncertainties that account for all cross-energy, cross-reaction and cross-material correlations. For the evaluation GMA, a least-squares code developed by Poenitz, was used to fit all types of cross sections (absolute and shape), their ratios, spectrum-averaged cross sections and thermal constants in one full analysis. But, the uncertainties derived in this manner, and especially those obtained in the R-matrix model fits, have been judged to be too low and unrealistic. These uncertainties were substantially increased prior to their release in the recommended data files of 1987. Modified percentage uncertainties were reassigned by the United States Cross Section Evaluation Working Group's Standards Subcommittee for a wide range of energies, and no covariance (or correlation) matrices were supplied at that time. The need to re-evaluate the cross section standards is based on the appearance of a significant amount of precise

  9. Nucleon-Nucleon Total Cross Section

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    2008-01-01

    The total proton-proton and neutron-proton cross sections currently used in the transport code HZETRN show significant disagreement with experiment in the GeV and EeV energy ranges. The GeV range is near the region of maximum cosmic ray intensity. It is therefore important to correct these cross sections, so that predictions of space radiation environments will be accurate. Parameterizations of nucleon-nucleon total cross sections are developed which are accurate over the entire energy range of the cosmic ray spectrum.

  10. Cross Section Evaluations for Arsenic Isotopes

    SciTech Connect

    Pruet, J; McNabb, D P; Ormand, W E

    2005-03-10

    The authors present an evaluation of cross sections describing reactions with neutrons incident on the arsenic isotopes with mass numbers 75 and 74. Particular attention is paid to (n,2n) reactions. The evaluation for {sup 75}As, the only stable As isotope, is guided largely by experimental data. Evaluation for {sup 74}As is made through calculations with the EMPIRE statistical-model reaction code. Cross sections describing the production and destruction of the 26.8 ns isomer in {sup 74}As are explicitly considered. Uncertainties and covariances in some evaluated cross sections are also estimated.

  11. A nuclear cross section data handbook

    SciTech Connect

    Fisher, H.O.M.

    1989-12-01

    Isotopic information, reaction data, data availability, heating numbers, and evaluation information are given for 129 neutron cross-section evaluations, which are the source of the default cross sections for the Monte Carlo code MCNP. Additionally, pie diagrams for each nuclide displaying the percent contribution of a given reaction to the total cross section are given at 14 MeV, 1 MeV, and thermal energy. Other information about the evaluations and their availability in continuous-energy, discrete-reaction, and multigroup forms is provided. The evaluations come from ENDF/B-V, ENDL85, and the Los Alamos Applied Nuclear Science Group T-2. Graphs of all neutron and photon production cross-section reactions for these nuclides have been categorized and plotted. 21 refs., 5 tabs.

  12. The radar cross section of dielectric disks

    NASA Technical Reports Server (NTRS)

    Levine, D. M.

    1982-01-01

    A solution is presented for the backscatter (nonstatic) radar cross section of dielectric disks of arbitrary shape, thickness and dielectric constant. The result is obtained by employing a Kirchhoff type approximation to obtain the fields inside the disk. The internal fields induce polarization and conduction currents from which the scattered fields and the radar cross section can be computed. The solution for the radar cross section obtained in this manner is shown to agree with known results in the special cases of normal incidence, thin disks and perfect conductivity. The solution can also be written as a product of the reflection coefficient of an identically oriented slab times the physical optics solution for the backscatter cross section of a perfectly conducting disk of the same shape. This result follows directly from the Kirchhoff type approximation without additional assumptions.

  13. Bibliography of photoabsorption cross-section data

    NASA Technical Reports Server (NTRS)

    Hudson, R. D.; Kieffer, L. J.

    1970-01-01

    This bibliography contains only references which report a measured or calculated photoabsorption cross section (relative or normalized) in regions of continuous absorption. The bibliography is current as of January 1, 1970.

  14. Absorption cross section of canonical acoustic holes

    SciTech Connect

    Crispino, Luis C. B.; Oliveira, Ednilton S.; Matsas, George E. A.

    2007-11-15

    We compute numerically the absorption cross section of a canonical acoustic hole for sound waves with arbitrary frequencies. Our outputs are in full agreement with the expected low- and high-frequency limits.

  15. MODELING AND FISSION CROSS SECTIONS FOR AMERICIUM.

    SciTech Connect

    ROCHMAN, D.; HERMAN, M.; OBLOZINSKY, P.

    2005-05-01

    This is the final report of the work performed under the LANL contract on the modeling and fission cross section for americium isotopes (May 2004-June 2005). The purpose of the contract was to provide fission cross sections for americium isotopes with the nuclear reaction model code EMPIRE 2.19. The following work was performed: (1) Fission calculations capability suitable for americium was implemented to the EMPIRE-2.19 code. (2) Calculations of neutron-induced fission cross sections for {sup 239}Am to {sup 244g}Am were performed with EMPIRE-2.19 for energies up to 20 MeV. For the neutron-induced reaction of {sup 240}Am, fission cross sections were predicted and uncertainties were assessed. (3) Set of fission barrier heights for each americium isotopes was chosen so that the new calculations fit the experimental data and follow the systematics found in the literature.

  16. Reaction cross sections of unstable nuclei

    SciTech Connect

    Ozawa, Akira

    2006-11-02

    Experimental studies on reaction cross sections are reviewed. The recent developments of radioactive nuclear beams have enabled us to measure reaction cross-sections for unstable nuclei. Using Glauber-model analysis, effective nuclear matter density distributions of unstable nuclei can be studied. Recent measurements in RIBLL at IMP and RIPS at RIKEN are introduced. The effective matter density distributions for 14-18C are also mentioned.

  17. Shuttle orbiter radar cross-sectional analysis

    NASA Technical Reports Server (NTRS)

    Cooper, D. W.; James, R.

    1979-01-01

    Theoretical and model simulation studies on signal to noise levels and shuttle radar cross section are described. Pre-mission system calibrations, system configuration, and postmission system calibration of the tracking radars are described. Conversion of target range, azimuth, and elevation into radar centered east north vertical position coordinates are evaluated. The location of the impinging rf energy with respect to the target vehicles body axis triad is calculated. Cross section correlation between the two radars is presented.

  18. Path forward for dosimetry cross sections

    SciTech Connect

    Griffin, P.J.; Peters, C.D.

    2011-07-01

    In the 1980's the dosimetry community embraced the need for a high fidelity quantification of uncertainty in nuclear data used for dosimetry applications. This led to the adoption of energy-dependent covariance matrices as the accepted manner of quantifying the uncertainty data. The trend for the dosimetry community to require high fidelity treatment of uncertainty estimates has continued to the current time where requirements on nuclear data are codified in standards such as ASTM E 1018. This paper surveys the current state of the dosimetry cross sections and investigates the quality of the current dosimetry cross section evaluations by examining calculated-to-experimental ratios in neutron benchmark fields. In recent years more nuclear-related technical areas are placing an emphasis on uncertainty quantification. With the availability of model-based cross sections and covariance matrices produced by nuclear data codes, some nuclear-related communities are considering the role these covariance matrices should play. While funding within the dosimetry community for cross section evaluations has been very meager, other areas, such as the solar-related astrophysics community and the US Nuclear Criticality Safety Program, have been supporting research in the area of neutron cross sections. The Cross Section Evaluation Working Group (CSEWG) is responsible for the creation and maintenance of the ENDF/B library which has been the mainstay for the reactor dosimetry community. Given the new trends in cross section evaluations, this paper explores the path forward for the US nuclear reactor dosimetry community and its use of the ENDF/B cross-sections. The major concern is maintenance of the sufficiency and accuracy of the uncertainty estimate when used for dosimetry applications. The two major areas of deficiency in the proposed ENDF/B approach are: 1) the use of unrelated covariance matrices in ENDF/B evaluations and 2) the lack of 'due consideration' of experimental data

  19. Ultraviolet absorption cross sections of hydrogen peroxide

    NASA Technical Reports Server (NTRS)

    Lin, C. L.; Rohatgi, N. K.; Demore, W. B.

    1978-01-01

    Absorption cross-sections of hydrogen peroxide vapor and of neutral aqueous solutions of hydrogen peroxide were measured in the wavelength range from 195 to 350 nm at 296 K. The spectrophotometric procedure is described, and the reported cross-sections are compared with values obtained by other researchers. Photodissociation coefficients of atmospheric H2O2 were calculated for direct absorption of unscattered solar radiation, and the vertical distributions of these coefficients are shown for various solar zenith angles.

  20. Photon gluon fusion cross sections at HERA energy

    NASA Astrophysics Data System (ADS)

    Engelen, J. J.; Dejong, S. J.; Poletiek, M.; Vermaseren, J. A. M.

    1988-01-01

    Cross sections for heavy flavor production through photon gluon fusion in electron proton collisions are presented. The electron photon vertex is taken into account explicitly, and the Q sq of the exchanged photon ranges from nearly zero (almost real photon) to the kinematically allowed maximum. The QCD scale is set by the mass of the produced quarks. The formalism is also applicable to the production of light quarks as long as the invariant mass of the pair is sufficiently high, so cross sections for u anti-u, d anti-d, and s anti-s production are also given.

  1. QuickSite Cross Section Processing

    Energy Science and Technology Software Center (ESTSC)

    2003-05-27

    This AGEM-developed system produces cross sections by inputting data in both standard and custom file formats and outputting a graphic file that can be printed or further modified in a commercial graphic program. The system has evolved over several years in order to combine and visualize a changing set of field data more rapidly than was possible with commercially available cross section software packages. It uses some commercial packages to produce the input and tomore » modify the output files. Flexibility is provided by a dynamic set of programs that are customized to accept varying input and accomodate varying output requirements. There are two basic types of routines: conversion routines and cross section generation routines. The conversion routines convery various data files to logger file format which is compatible with a standard file format for LogPlot 98, a commonly used commercial log plotting program. The cross section routines generate cross sections and apply topography to these cross sections. All of the generation routines produce a standard graphic DXF file, which is the format used in AutoCAD and can then be modified in a number of available graphics programs.« less

  2. Predicting the Total Charm Cross Section

    SciTech Connect

    Vogt, R

    2008-05-29

    We discuss the energy dependence of the total charm cross section and some of its theoretical uncertainties including the quark mass, scale choice and the parton densities. Extracting the total charm cross section from data is a non-trivial task. To go from a finite number of measured D mesons in a particular decay channel to the total c{bar c} cross section one must: divide by the branching ratio for that channel; correct for the luminosity, {sigma}{sub D} = N{sub D}/Lt; extrapolate to full phase space from the finite detector acceptance; divide by two to get the pair cross section from the single Ds; and multiply by a correction factor to account for unmeasured charm hadrons. Early fixed-target data were at rather low p{sub T}, making the charm quark mass the most relevant scale. At proton and ion colliders, although the RHIC experiments can access the full pT range and thus the total cross section, the data reach rather high p{sub T}, p{sub T} >> m, making p{sub T} (m{sub T}) the most relevant scale. Here we focus on the total cross section calculation where the quark mass is the only relevant scale.

  3. abo-cross: Hydrogen broadening cross-section calculator

    NASA Astrophysics Data System (ADS)

    Barklem, P. S.; Anstee, S. D.; O'Mara, B. J.

    2015-07-01

    Line broadening cross sections for the broadening of spectral lines by collisions with neutral hydrogen atoms have been tabulated by Anstee & O'Mara (1995), Barklem & O'Mara (1997) and Barklem, O'Mara & Ross (1998) for s-p, p-s, p-d, d-p, d-f and f-d transitions. abo-cross, written in Fortran, interpolates in these tabulations to make these data more accessible to the end user. This code can be incorporated into existing spectrum synthesis programs or used it in a stand-alone mode to compute line broadening cross sections for specific transitions.

  4. Revised cross section for RHIC dipole magnets

    SciTech Connect

    Thompson, P.A.; Gupta, R.C.; Kahn, S.A.; Hahn, H.; Morgan, G.H.; Wanderer, P.J.; Willen, E.

    1991-01-01

    Using the experience gained in designing and building Relativistic Heavy Ion Collider (RHIC) dipole prototype magnets an improved cross section has been developed. Significant features of this design include the use of only three wedges for field shaping and wedge cross sections which are sectors of an annulus. To aid in the understanding of the actual magnets, one has been sectioned, and detailed mechanical and photographic measurements made of the wire positions. The comparison of these measurements with the magnetic field measurements will is presented. 2 refs, 3 figs., 2 tabs.

  5. Actinide cross section program at ORELA

    SciTech Connect

    Dabbs, J.W.T.

    1980-01-01

    The actinide cross section program at ORELA, the Oak Ridge Electron Linear Accelerator, is aimed at obtaining accurate neutron cross sections (primarily fission, capture, and total) for actinide nuclides which occur in fission reactors. Such cross sections, measured as a function of neutron energy over as wide a range of energies as feasible, comprise a data base that permits calculated predictions of the formation and removal of these nuclides in reactors. The present program is funded by the Division of Basic Energy Sciences of DOE, and has components in several divisions at ORNL. For intensively ..cap alpha..-active nuclides, many of the existing fission cross section data have been provided by underground explosions. New measurement techniques, developed at ORELA, now permit linac measurements on fissionable nuclides with alpha half-lives as short as 28 years. Capture and capture-plus-fission measurements utilize scintillation detectors (of capture ..gamma.. rays and fission neutrons) in which pulse shape discrimination plays an important role. Total cross sections can be measured at ORELA on samples of only a few milligrams. A simultaneous program of chemical and isotopic analyses of samples irradiated in EBR-II is in progress to provide benchmarks for the existing differential measurements. These analyses are being studied with updated versions of ORIGEN and with sensitivity determinations. Calculations of the sensitivity to cross section changes of various aspects of the nuclear fuel cycle are also being made. Even in this relatively mature field, many cross sections still require improvements to provide an adequate data base. Examples of recent techniques and measurements are presented. 12 figures, 3 tables.

  6. Reduction Methods for Total Reaction Cross Sections

    NASA Astrophysics Data System (ADS)

    Gomes, P. R. S.; Mendes Junior, D. R.; Canto, L. F.; Lubian, J.; de Faria, P. N.

    2016-03-01

    The most frequently used methods to reduce fusion and total reaction excitation functions were investigated in a very recent paper Canto et al. (Phys Rev C 92:014626, 2015). These methods are widely used to eliminate the influence of masses and charges in comparisons of cross sections for weakly bound and tightly bound systems. This study reached two main conclusions. The first is that the fusion function method is the most successful procedure to reduce fusion cross sections. Applying this method to theoretical cross sections of single channel calculations, one obtains a system independent curve (the fusion function), that can be used as a benchmark to fusion data. The second conclusion was that none of the reduction methods available in the literature is able to provide a universal curve for total reaction cross sections. The reduced single channel cross sections keep a strong dependence of the atomic and mass numbers of the collision partners, except for systems in the same mass range. In the present work we pursue this problem further, applying the reduction methods to systems within a limited mass range. We show that, under these circumstances, the reduction of reaction data may be very useful.

  7. Modeling the heavy ion upset cross section

    NASA Astrophysics Data System (ADS)

    Connell, L. W.; McDaniel, P. J.; Prinja, A. K.; Sexton, F. W.

    1995-04-01

    The standard Rectangular Parallelepiped (RPP) construct is used to derive a closed form expression for, sigma-bar (theta, phi, L) the directional-spectral heavy ion upset cross section. This is an expected value model obtained by integrating the point-value cross section model, sigma (theta, phi, L, E), also developed here, with the Weibull density function, f(E), assumed to govern the stochastic behavior of the upset threshold energy, E. A comparison of sigma-bar (theta, phi, L) with experimental data show good agreement, lending strong credibility to the hypothesis that E-randomness is responsible for the shape of the upset cross section curve. The expected value model is used as the basis for a new, rigorous mathematical formulation of the effective cross section concept. The generalized formulation unifies previous corrections to the inverse cosine scaling, collapsing to Petersen's correction, (cos theta - (h/l) sin theta)(sup -1), near threshold and Sexton's, (cos theta + (h/l) sin theta)(sup -1), near saturation. The expected value cross section model therefore has useful applications in both upset rate prediction and test data analysis.

  8. Undergraduate Measurements of Neutron Cross Sections

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Vanhoy, J. R.; French, A. J.; Santonil, Z. C.; Crider, B. P.; Peters, E. E.; McEllistrem, M. T.; Prados-Estévez, F. M.; Ross, T. J.; Yates, S. W.

    Undergraduate students at the University of Dallas have investigated basic properties of nuclei through γ-ray and neutron spectroscopy following neutron scattering. The former has been used primarily for nuclear structure investigations, while the latter has been used to measure neutron scattering cross sections important for fission reactor applications. A series of (n,n') and (n,n'γ) measurements have been made on 54Fe and 56Fe to determine neutron cross sections for scattering to excited levels in these nuclei. The former provides the cross sections directly and the latter are used to deduce inelastic neutron scattering cross sections by measuring the γ-ray production cross sections to states not easily resolved in neutron spectroscopy. All measurements have been completed at the University of Kentucky Accelerator Laboratory using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. Students participate in accelerator operation, experimental setup, data acquisition, and data analyses. An overview of the research program and student contributions is presented.

  9. Top differential cross section measurements (Tevatron)

    SciTech Connect

    Jung, Andreas W.

    2012-01-01

    Differential cross sections in the top quark sector measured at the Fermilab Tevatron collider are presented. CDF used 2.7 fb{sup -1} of data and measured the differential cross section as a function of the invariant mass of the t{bar t} system. The measurement shows good agreement with the standard model and furthermore is used to derive limits on the ratio {kappa}/M{sub Pl} for gravitons which decay to top quarks in the Randall-Sundrum model. D0 used 1.0 fb{sup -1} of data to measure the differential cross section as a function of the transverse momentum of the top-quark. The measurement shows a good agreement to the next-to-leading order perturbative QCD prediction and various other standard model predictions.

  10. Algorithmic analysis of quantum radar cross sections

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco; Venegas-Andraca, Salvador

    2015-05-01

    Sidelobe structures on classical radar cross section graphs are a consequence of discontinuities in the surface currents. In contrast, quantum radar theory states that sidelobe structures on quantum radar cross section graphs are due to quantum interference. Moreover, it is conjectured that quantum sidelobe structures may be used to detect targets oriented off the specular direction. Because of the high data bandwidth expected from quantum radar, it may be necessary to use sophisticated quantum signal analysis algorithms to determine the presence of stealth targets through the sidelobe structures. In this paper we introduce three potential quantum algorithmic techniques to compute classical and quantum radar cross sections. It is our purpose to develop a computer science-oriented tool for further physical analysis of quantum radar models as well as applications of quantum radar technology in various fields.

  11. Infrared absorption cross sections of alternative CFCs

    NASA Technical Reports Server (NTRS)

    Clerbaux, Cathy; Colin, Reginald; Simon, Paul C.

    1994-01-01

    Absorption cross sections have obtained in the infrared atmospheric window, between 600 and 1500 cm(exp -1), for 10 alternative hydrohalocarbons: HCFC-22, HCFC-123, HCFC-124, HCFC-141b, HCFC-142b, HCFC-225ca, HCFC-225cb, HFC-125, HFC-134a, and HFC-152a. The measurements were made at three temperatures (287K, 270K and 253K) with a Fourier transform spectrometer operating at 0.03 cm(exp -1) apodized resolution. Integrated cross sections are also derived for use in radiative models to calculate the global warming potentials.

  12. Improved cross section calculations for astrophysical applications

    NASA Technical Reports Server (NTRS)

    Silberberg, R.; Tsao, C. H.; Letaw, J. R.

    1985-01-01

    Modifications are proposed for the semiempirical equations and parameters of Silberberg and Tsao (1973) for partial cross section calculations of proton-nucleus reactions in cosmic rays. These modifications include: adjustment of general parameters; modification of energy dependence; effects of nuclear alpha-particle structure, deuteron emission, and even-charged products; peripheral reactions; fission reactions; averaging cross sections near boundaries of different parameters; elimination of certain special cases; and treatment of the Pt to Pb group that cannot yet be generalized to Z(t) less than 76.

  13. Covariance Evaluation Methodology for Neutron Cross Sections

    SciTech Connect

    Herman,M.; Arcilla, R.; Mattoon, C.M.; Mughabghab, S.F.; Oblozinsky, P.; Pigni, M.; Pritychenko, b.; Songzoni, A.A.

    2008-09-01

    We present the NNDC-BNL methodology for estimating neutron cross section covariances in thermal, resolved resonance, unresolved resonance and fast neutron regions. The three key elements of the methodology are Atlas of Neutron Resonances, nuclear reaction code EMPIRE, and the Bayesian code implementing Kalman filter concept. The covariance data processing, visualization and distribution capabilities are integral components of the NNDC methodology. We illustrate its application on examples including relatively detailed evaluation of covariances for two individual nuclei and massive production of simple covariance estimates for 307 materials. Certain peculiarities regarding evaluation of covariances for resolved resonances and the consistency between resonance parameter uncertainties and thermal cross section uncertainties are also discussed.

  14. New Parameterization of Neutron Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Wilson, John W.; Cucinotta, Francis A.

    1997-01-01

    Recent parameterization of absorption cross sections for any system of charged ion collisions, including proton-nucleus collisions, is extended for neutron-nucleus collisions valid from approx. 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pairs (charged or uncharged). The parameters are associated with the physics of the problem. At lower energies, optical potential at the surface is important, and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  15. Precise neutron inelastic cross section measurements

    SciTech Connect

    Negret, Alexandru

    2012-11-20

    The design of a new generation of nuclear reactors requires the development of a very precise neutron cross section database. Ongoing experiments performed at dedicated facilities aim to the measurement of such cross sections with an unprecedented uncertainty of the order of 5% or even smaller. We give an overview of such a facility: the Gamma Array for Inelastic Neutron Scattering (GAINS) installed at the GELINA neutron source of IRMM, Belgium. Some of the most challenging difficulties of the experimental approach are emphasized and recent results are shown.

  16. Cross sections of neutron-induced reactions

    SciTech Connect

    Mukhopadhyay, Tapan; Lahiri, Joydev; Basu, D. N.

    2010-10-15

    We study the properties of the neutron-nucleus total and reaction cross sections for several nuclei. We have applied an analytical model, the nuclear Ramsauer model, justified it from the nuclear reaction theory approach, and extracted the values of 12 parameters used in the model. The given parametrization has an advantage as phenomenological optical model potentials are limited up to 150-200 MeV. The present model provides good estimates of the total cross sections for several nuclei particularly at high energies.

  17. Neutron capture cross section of 136 Xe

    NASA Astrophysics Data System (ADS)

    Daugherty, Sean; Albert, Joshua; Johnson, Tessa; O'Conner, Thomasina; Kaufman, Lisa

    2015-04-01

    136 Xe is an important 0 νββ candidate, studied in experiments such as EXO-200 and, in the future, nEXO. These experiments require a precise study of neutron capture for their background models. The neutron capture cross section of 136 Xe has been measured at the Detector for Advanced Capture Experiments (DANCE) at the Los Alamos Neutron Science Center. A neutron beam ranging from thermal energy to 100 keV was incident on a gas cell filled with isotopically pure 136 Xe . We will discuss the measurement of partial neutron capture cross sections at thermal and first neutron resonance energies along with corresponding capture gamma cascades.

  18. Neutron Capture Cross Section of 239Pu

    NASA Astrophysics Data System (ADS)

    Mosby, S.; Arnold, C.; Bredeweg, T. A.; Couture, A.; Jandel, M.; O'Donnell, J. M.; Rusev, G.; Ullmann, J. L.; Chyzh, A.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2014-09-01

    The 239Pu(n,γ) cross section has been measured over the energy range 10 eV - 10 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) as part of a campaign to produce precision (n,γ) measurements on 239Pu in the keV region. Fission coincidences were measured with a PPAC and used to characterize the prompt fission γ-ray spectrum in this region. The resulting spectra will be used to better characterize the fission component of another experiment with a thicker target to extend the (n,γ) cross section measurement well into the keV region.

  19. Optical Model and Cross Section Uncertainties

    SciTech Connect

    Herman,M.W.; Pigni, M.T.; Dietrich, F.S.; Oblozinsky, P.

    2009-10-05

    Distinct minima and maxima in the neutron total cross section uncertainties were observed in model calculations using spherical optical potential. We found this oscillating structure to be a general feature of quantum mechanical wave scattering. Specifically, we analyzed neutron interaction with 56Fe from 1 keV up to 65 MeV, and investigated physical origin of the minima.We discuss their potential importance for practical applications as well as the implications for the uncertainties in total and absorption cross sections.

  20. Cross sections relevant to gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Dyer, P.; Bodansky, D.; Maxson, D. R.

    1978-01-01

    Gamma-ray production cross sections were measured for protons and alpha particles incident on targets consisting of nuclei of high cosmic abundance: C-12, N-14, O-16, Ne-20, Mg-24, Si-28 and Fe-56. Solid or gaseous targets were bombarded by monoenergetic beams of protons and alpha particles, and gamma rays were detected by two Ge(Li) detectors. The proton energy for each target was varied from threshold to about 24 MeV (lab); for alphas the range was from threshold to about 27 MeV. For most transitions, it was possible to measure the total cross section by placing the detectors at 30.5 deg and 109.9 deg where the fourth-order Legendre polynomial is zero. For the case of the 16O (E sub gamma = 6.13 MeV, multipolarity E3) cross sections, yields were measured at four angles. Absolute cross sections were obtained by integrating the beam current and by measuring target thicknesses and detector efficiencies. The Ge(Li) detector resolution was a few keV (although the peak widths were greater, due to Doppler broadening).

  1. Photoelectric absorption cross sections with variable abundances

    NASA Technical Reports Server (NTRS)

    Balucinska-Church, Monika; Mccammon, Dan

    1992-01-01

    Polynomial fit coefficients have been obtained for the energy dependences of the photoelectric absorption cross sections of 17 astrophysically important elements. These results allow the calculation of X-ray absorption in the energy range 0.03-10 keV in material with noncosmic abundances.

  2. Testing (Validating?) Cross Sections with ICSBEP Benchmarks

    SciTech Connect

    Kahler, Albert C. III

    2012-06-28

    We discuss how to use critical benchmarks from the International Handbook of Evaluated Criticality Safety Benchmark Experiments to determine the applicability of specific cross sections to the end-user's problem of interest. Particular attention is paid to making sure the selected suite of benchmarks includes the user's range of applicability (ROA).

  3. Cross-sectional structural parameters from densitometry

    NASA Technical Reports Server (NTRS)

    Cleek, Tammy M.; Whalen, Robert T.

    2002-01-01

    Bone densitometry has previously been used to obtain cross-sectional properties of bone from a single X-ray projection across the bone width. Using three unique projections, we have extended the method to obtain the principal area moments of inertia and orientations of the principal axes at each scan cross-section along the length of the scan. Various aluminum phantoms were used to examine scanner characteristics to develop the highest accuracy possible for in vitro non-invasive analysis of cross-sectional properties. Factors considered included X-ray photon energy, initial scan orientation, the angle spanned by the three scans (included angle), and I(min)/I(max) ratios. Principal moments of inertia were accurate to within +/-3.1% and principal angles were within +/-1 degrees of the expected value for phantoms scanned with included angles of 60 degrees and 90 degrees at the higher X-ray photon energy (140 kVp). Low standard deviations in the error (0.68-1.84%) also indicate high precision of calculated measurements with these included angles. Accuracy and precision decreased slightly when the included angle was reduced to 30 degrees. The method was then successfully applied to a pair of excised cadaveric tibiae. The accuracy and insensitivity of the algorithms to cross-sectional shape and changing isotropy (I(min)/I(max)) values when various included angles are used make this technique viable for future in vivo studies.

  4. Neutron Capture Cross Sections for Radioactive Nuclei

    NASA Astrophysics Data System (ADS)

    Tonchev, Anton; Bedrossian, Peter; Escher, Jutta; Scielzo, Nicholas

    2015-10-01

    Accurate neutron-capture cross sections for radioactive nuclei near or far away from the line of beta stability are crucial for understanding the nucleosynthesis of heavy elements. However, neutron-capture cross sections for short-lived radionuclides are difficult to measure due to the fact that the measurements require both highly radioactive samples and intense neutron sources. Essential ingredients for describing the γ decays following neutron capture are the γ-ray strength function and level densities. We will compare different indirect approaches for obtaining observables that can constrain Hauser-Feshbach statistical model calculations of capture cross sections. Specifically, we will consider photon scattering, transfer reactions, and beta-delayed neutron emission. Challenges that exist on the path to obtaining neutron-capture cross sections for reactions on isotopes far from stability will be discussed. This work was performed under the auspices of US DOE by LLNL under contract DE-AC52-07NA27344. Funding was provided via the LDRD-ERD-069 project.

  5. Electron impact excitation cross sections for carbon

    NASA Astrophysics Data System (ADS)

    Ganas, P. S.

    1981-04-01

    A realistic analytic atomic independent particle model is used to generate wave functions for the valence and excited states of carbon. Using these wave functions in conjunction with the Born approximation and the Russell-Saunders LS-coupling scheme, we calculate generalized oscillator strengths and integrated cross sections for various excitations from the 2p 2( 3P O) valence state.

  6. SU-E-I-43: Photoelectric Cross Section Revisited

    SciTech Connect

    Haga, A; Nakagawa, K; Kotoku, J; Horikawa, Y

    2015-06-15

    Purpose: The importance of the precision in photoelectric cross-section value increases for recent developed technology such as dual energy computed tomography, in which some reconstruction algorithms require the energy dependence of the photo-absorption in each material composition of human being. In this study, we revisited the photoelectric cross-section calculation by self-consistent relativistic Hartree-Fock (HF) atomic model and compared with that widely distributed as “XCOM database” in National Institute of Standards and Technology, which was evaluated with localdensity approximation for electron-exchange (Fock)z potential. Methods: The photoelectric cross section can be calculated with the electron wave functions in initial atomic state (bound electron) and final continuum state (photoelectron). These electron states were constructed based on the selfconsistent HF calculation, where the repulsive Coulomb potential from the electron charge distribution (Hartree term) and the electron exchange potential with full electromagnetic interaction (Fock term) were included for the electron-electron interaction. The photoelectric cross sections were evaluated for He (Z=2), Be (Z=4), C (Z=6), O (Z=8), and Ne (Z=10) in energy range of 10keV to 1MeV. The Result was compared with XCOM database. Results: The difference of the photoelectric cross section between the present calculation and XCOM database was 8% at a maximum (in 10keV for Be). The agreement tends to be better as the atomic number increases. The contribution from each atomic shell has a considerable discrepancy with XCOM database except for K-shell. However, because the photoelectric cross section arising from K-shell is dominant, the net photoelectric cross section was almost insensitive to the different handling in Fock potential. Conclusion: The photoelectric cross-section program has been developed based on the fully self-consistent relativistic HF atomic model. Due to small effect on the Fock

  7. Calculation of total electron excitation cross-sections and partial electron ionization cross-sections for the elements. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Green, T. J.

    1973-01-01

    Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.

  8. Tables of nuclear cross sections for galactic cosmic rays: Absorption cross sections

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.

    1985-01-01

    A simple but comprehensive theory of nuclear reactions is presented. Extensive tables of nucleon, deuteron, and heavy-ion absorption cross sections over a broad range of energies are generated for use in cosmic ray shielding studies. Numerous comparisons of the calculated values with available experimental data show agreement to within 3 percent for energies above 80 MeV/nucleon and within approximately 10 percent for energies as low as 30 MeV/nucleon. These tables represent the culmination of the development of the absorption cross section formalism and supersede the preliminary absorption cross sections published previously in NASA TN D-8107, NASA TP-2138, and NASA TM-84636.

  9. Absolute np and pp cross section determinations aimed at improving the standard for cross section measurements

    SciTech Connect

    Laptev, Alexander B; Haight, Robert C; Tovesson, Fredrik; Arndt, Richard A; Briscoe, William J; Paris, Mark W; Strakovsky, Igor I; Workman, Ron L

    2010-01-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1000 MeV are determined based on partial-wave analyses (PW As) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-V11.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  10. Absolute np and pp Cross Section Determinations Aimed At Improving The Standard For Cross Section Measurements

    SciTech Connect

    Laptev, A. B.; Haight, R. C.; Tovesson, F.; Arndt, R. A.; Briscoe, W. J.; Paris, M. W.; Strakovsky, I. I.; Workman, R. L.

    2011-06-01

    Purpose of present research is a keeping improvement of the standard for cross section measurements of neutron-induced reactions. The cross sections for np and pp scattering below 1 GeV are determined based on partial-wave analyses (PWAs) of nucleon-nucleon scattering data. These cross sections are compared with the most recent ENDF/B-VII.0 and JENDL-4.0 data files, and the Nijmegen PWA. Also a comparison of evaluated data with recent experimental data was made to check a quality of evaluation. Excellent agreement was found between the new experimental data and our PWA predictions.

  11. Universal Parameterization of Absorption Cross Sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Cucinotta, Francis A.; Wilson, John W.

    1997-01-01

    This paper presents a simple universal parameterization of total reaction cross sections for any system of colliding nuclei that is valid for the entire energy range from a few AMeV to a few AGeV. The universal picture presented here treats proton-nucleus collision as a special case of nucleus-nucleus collision, where the projectile has charge and mass number of one. The parameters are associated with the physics of the collision system. In general terms, Coulomb interaction modifies cross sections at lower energies, and the effects of Pauli blocking are important at higher energies. The agreement between the calculated and experimental data is better than all earlier published results.

  12. Calculation of improved spallation cross sections

    NASA Technical Reports Server (NTRS)

    Tsao, C. H.; Silberberg, R.; Letaw, J. R.

    1985-01-01

    Several research groups have recently carried out highly precise measurements (to about 10 percent) of high-energy nuclear spallation cross sections. These measurements, above 5 GeV, cover a broad range of elements: V, Fe, Cu, Ag, Ta and Au. Even the small cross sections far off the peak of the isotopic distribution curves have been measured. The semiempirical calculations are compared with the measured values. Preliminary comparisons indicate that the parameters of our spallation relations (Silberberg and Tsao, 1973) for atomic numbers 20 to 83 need modifications, e.g. a reduced slope of the mass yield distribution, broader isotopic distributions, and a shift of the isotopic distribution toward the neutron-deficient side. The required modifications are negligible near Fe and Cu, but increase with increasing target mass.

  13. Cross sections required for FMIT dosimetry

    SciTech Connect

    Gold, R.; McElroy, W.N.; Lippincott, E.P.; Mann, F.M.; Oberg, D.L.; Roberts, J.H.; Ruddy, F.H.

    1980-05-02

    The Fusion Materials Irradiation Test (FMIT) facility, currently under construction, is designed to produce a high flux of high energy neutrons for irradiation effects experiments on fusion reactor materials. Characterization of the flux-fluence-spectrum in this rapidly varying neutron field requires adaptation and extension of currently available dosimetry techniques. This characterization will be carried out by a combination of active, passive, and calculational dosimetry. The goal is to provide the experimenter with accurate neutron flux-fluence-spectra at all positions in the test cell. Plans have been completed for a number of experimental dosimetry stations and provision for these facilities has been incorporated into the FMIT design. Overall needs of the FMIT irradiation damage program delineate goal accuracies for dosimetry that, in turn, create new requirements for high energy neutron cross section data. Recommendations based on these needs have been derived for required cross section data and accuracies.

  14. Inclusive jet cross section measurement at CDF

    SciTech Connect

    Pagliarone, C.

    1996-08-01

    The CDF Collaboration has measured the inclusive jet cross section using 1992-93 collider data at 1.8 TeV. The CDF measurement is in very good agreement with NLO QCD predictions for transverse energies (E{sub T}) below 200 GeV. However, it is systematically higher than NLO QCD predictions for E{sub T} above 200 GeV.

  15. {sup 231}Pa photofission cross section

    SciTech Connect

    Soldatov, A.S.; Rudnikov, V.E.; Smirenkin, G.N.

    1995-12-01

    The measurements of the {sup 231}Pa yield and cross section photofission in the energy range 7-9 MeV are presented. These measurements are a continuation of similar measurements performed for the {gamma}-ray energy range 4.8-7 MeV. The entire collection of experimental data which combine the results obtained in the present work and in Ref. 1 was analyzed.

  16. Neutron cross section standards and instrumentation

    NASA Astrophysics Data System (ADS)

    1992-09-01

    This report from the National Institute of Standards and Technology contains a summary of the accomplishments of the Neutron Cross Section Standards and Instrumentation Project during the second year of a three-year interagency agreement. This program includes a broad range of data measurements and evaluations. An emphasis has been focused on the (sup 10)B cross sections where serious discrepancies in the nuclear data base remain. In particular, there are important problems with the interpretation of the helium gas production associated with diagnostic measurements of interest in nuclear technology. The enhanced use of this isotope for medical treatment is also of significance. New measurements of neutron reaction cross sections for (sup 10)B are in progress in collaboration with scientists at the Oak Ridge National Laboratory. New experiments are in progress on the important dosimetry standards (sup 237)Np(n,f) and (sup 239)Pu(n,f) below 1 MeV neutron energy. In addition, new measurements of charged-particle production in basic biological elements for medical applications are underway. Further measurements are planned or in progress in collaborations which include fission fragment energy and angular distributions, and neutron energy spectra and angular distributions from neutron-induced fission. Also measurements of angular distributions of neutrons from scattering on protons, and determinations of capture cross section of gold are planned for a later time. Data evaluation will shift to include a unified international effort to motivate new measurements and evaluations. In response to the requests of the measurement community, NIST is beginning the formation of a national depository for fissionable isotope mass standards. This action will preserve for future measurements the valuable and irreplaceable critical samples whose masses and composition have been carefully determined and documented over the past 30 years of the nuclear program.

  17. Inclusive jet cross section at D0

    SciTech Connect

    Bhattacharjee, M.

    1996-09-01

    Preliminary measurement of the central ({vert_bar}{eta}{vert_bar} {<=} 0.5) inclusive jet cross sections for jet cone sizes of 1.0, 0.7, and 0.5 at D{null} based on the 1992-1993 (13.7 {ital pb}{sup -1}) and 1994-1995 (90 {ital pb}{sup -1}) data samples are presented. Comparisons to Next-to-Leading Order (NLO) Quantum Chromodynamics (QCD) calculations are made.

  18. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1985-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  19. Absolute photoionization cross sections of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Pareek, P. N.

    1982-01-01

    The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

  20. Fusion cross sections measurements with MUSIC

    NASA Astrophysics Data System (ADS)

    Carnelli, P. F. F.; Fernández Niello, J. O.; Almaraz-Calderon, S.; Rehm, K. E.; Albers, M.; Digiovine, B.; Esbensen, H.; Henderson, D.; Jiang, C. L.; Nusair, O.; Palchan-Hazan, T.; Pardo, R. C.; Ugalde, C.; Paul, M.; Alcorta, M.; Bertone, P. F.; Lai, J.; Marley, S. T.

    2014-09-01

    The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. The interaction between exotic nuclei plays an important role for understanding the reaction mechanism of the fusion processes as well as for the energy production in stars. With the advent of radioactive beams new frontiers for fusion reaction studies have become accessible. We have performed the first measurements of the total fusion cross sections in the systems 10 , 14 , 15C + 12C using a newly developed active target-detector system (MUSIC). Comparison of the obtained cross sections with theoretical predictions show a good agreement in the energy region accessible with existing radioactive beams. This type of comparison allows us to calibrate the calculations for cases that cannot be studied in the laboratory with the current experimental capabilities. The high efficiency of this active detector system will allow future measurements with even more neutron-rich isotopes. This work is supported by the U.S. DOE Office of Nuclear Physics under Contract No. DE-AC02-06CH11357 and the Universidad Nacional de San Martin, Argentina, Grant SJ10/39.

  1. How to Calculate Colourful Cross Sections Efficiently

    SciTech Connect

    Gleisberg, Tanju; Hoeche, Stefan; Krauss, Frank

    2008-09-03

    Different methods for the calculation of cross sections with many QCD particles are compared. To this end, CSW vertex rules, Berends-Giele recursion and Feynman-diagram based techniques are implemented as well as various methods for the treatment of colours and phase space integration. We find that typically there is only a small window of jet multiplicities, where the CSW technique has efficiencies comparable or better than both of the other two methods.

  2. Quality Quantification of Evaluated Cross Section Covariances

    SciTech Connect

    Varet, S.; Dossantos-Uzarralde, P.

    2015-01-15

    Presently, several methods are used to estimate the covariance matrix of evaluated nuclear cross sections. Because the resulting covariance matrices can be different according to the method used and according to the assumptions of the method, we propose a general and objective approach to quantify the quality of the covariance estimation for evaluated cross sections. The first step consists in defining an objective criterion. The second step is computation of the criterion. In this paper the Kullback-Leibler distance is proposed for the quality quantification of a covariance matrix estimation and its inverse. It is based on the distance to the true covariance matrix. A method based on the bootstrap is presented for the estimation of this criterion, which can be applied with most methods for covariance matrix estimation and without the knowledge of the true covariance matrix. The full approach is illustrated on the {sup 85}Rb nucleus evaluations and the results are then used for a discussion on scoring and Monte Carlo approaches for covariance matrix estimation of the cross section evaluations.

  3. Measurement of electron-impact ionization cross sections for hydrogenlike high-Z ions

    SciTech Connect

    Marrs, R.E.; Elliott, S.R.; Scofield, J.H.

    1997-08-01

    Electron-impact ionization cross sections have been measured for the hydrogenlike ions of molybdenum, dysprosium, gold, and bismuth at selected electron energies between 1.3 and 3.9 times threshold. The cross sections were obtained from x-ray measurements of the equilibrium ionization balance in an electron beam ion trap. The measured cross sections agree with recent relativistic distorted-wave calculations that include both the Moeller interaction and exchange. {copyright} {ital 1997} {ital The American Physical Society}

  4. Preliminary cross section of Englebright Lake sediments

    USGS Publications Warehouse

    Snyder, Noah P.; Hampton, Margaret A.

    2003-01-01

    Overview -- The Upper Yuba River Studies Program is a CALFED-funded, multidisciplinary investigation of the feasibility of introducing anadromous fish species to the Yuba River system upstream of Englebright Dam. Englebright Lake (Figure 1 on poster) is a narrow, 14-km-long reservoir located in the northern Sierra Nevada, northeast of Marysville, CA. The dam was completed in 1941 for the primary purpose of trapping sediment derived from mining operations in the Yuba River watershed. Possible management scenarios include lowering or removing Englebright Dam, which could cause the release of stored sediments and associated contaminants, such as mercury used extensively in 19th-century hydraulic gold mining. Transport of released sediment to downstream areas could increase existing problems including flooding and mercury bioaccumulation in sport fish. To characterize the extent, grain size, and chemistry of this sediment, a coring campaign was done in Englebright Lake in May and June 2002. More than twenty holes were drilled at 7 different locations along the longitudinal axis of the reservoir (Figure 4 on poster), recovering 6 complete sequences of post-reservoir deposition and progradation. Here, a longitudinal cross section of Englebright Lake is presented (Figure 5 on poster), including pre-dam and present-day topographic profiles, and sedimentologic sections for each coring site. This figure shows the deltaic form of the reservoir deposit, with a thick upper section consisting of sand and gravel overlying silt, a steep front, and a thinner lower section dominated by silt. The methodologies used to create the reservoir cross section are discussed in the lower part of this poster.

  5. Averaging cross section data so we can fit it

    SciTech Connect

    Brown, D.

    2014-10-23

    The 56Fe cross section we are interested in have a lot of fluctuations. We would like to fit the average of the cross section with cross sections calculated within EMPIRE. EMPIRE is a Hauser-Feshbach theory based nuclear reaction code, requires cross sections to be smoothed using a Lorentzian profile. The plan is to fit EMPIRE to these cross sections in the fast region (say above 500 keV).

  6. The calculation of radar cross sections

    NASA Astrophysics Data System (ADS)

    Pizer, R.

    1980-04-01

    The FORTRAN program CHAOS, used for calculating cross sections is described including the physical approximations used to simplify Maxwell's equations. The scattering bodies are extended to both open and closed surfaces. The numerical methods used are supplied. The problems of wire junctions, of finite conductivity and the attaching of lumped loads to the structure are considered. Techniques for dealing with bodies having rotational or left-right symmetries are examined as well as the sparse matrix approximation and the complex frequency version of CHAOS. The formula used to calculate the impedance matrix elements, and the conventions adopted concerning coordinate systems and polarization are included.

  7. Correlation cross sections along the international border

    SciTech Connect

    Martiniuk, C.D. ); Le Fever, J.A.; Anderson, S.B. )

    1991-06-01

    The Manitoba-North Dakota (Canada-US) stratigraphic correlation project is a joint study between the Petroleum Branch of Manitoba Energy and Mines and the North Dakota Geological Survey. It is an attempt to correlate the differing stratigraphic terminologies established in the two jurisdictions by providing a reference cross section across the international boundary. The study involves the subsurface correlation of logs of the Paleozoic and Mesozoic sequences in the Manitoba and North Dakota portions of the Williston basin. The Paleozoic and Mesozoic sequences are subdivided for presentation into the following stratigraphic intervals: (a) Cambrian-Ordovician-Silurian, (b) Devonian, (c) Mississippian, (d) Jurassic, and (e) Cretaceous. Wireline logs show the actual stratigraphic correlations. A nomenclature chart is also presented from each sequence. In addition, the sections include a generalized description of lithologies, thicknesses, environments of deposition, and petroleum potential for each geographic area.

  8. Windowed multipole for cross section Doppler broadening

    NASA Astrophysics Data System (ADS)

    Josey, C.; Ducru, P.; Forget, B.; Smith, K.

    2016-02-01

    This paper presents an in-depth analysis on the accuracy and performance of the windowed multipole Doppler broadening method. The basic theory behind cross section data is described, along with the basic multipole formalism followed by the approximations leading to windowed multipole method and the algorithm used to efficiently evaluate Doppler broadened cross sections. The method is tested by simulating the BEAVRS benchmark with a windowed multipole library composed of 70 nuclides. Accuracy of the method is demonstrated on a single assembly case where total neutron production rates and 238U capture rates compare within 0.1% to ACE format files at the same temperature. With regards to performance, clock cycle counts and cache misses were measured for single temperature ACE table lookup and for windowed multipole. The windowed multipole method was found to require 39.6% more clock cycles to evaluate, translating to a 7.9% performance loss overall. However, the algorithm has significantly better last-level cache performance, with 3 fewer misses per evaluation, or a 65% reduction in last-level misses. This is due to the small memory footprint of the windowed multipole method and better memory access pattern of the algorithm.

  9. Neutronic Cross Section Calculations on Fluorine Nucleus

    NASA Astrophysics Data System (ADS)

    Kara, A.; Tel, E.

    2013-06-01

    Certain light nuclei such as Lithium (Li), Beryllium (Be), Fluorine (F) (which are known as FLİBE) and its molten salt compounds (LiF, BeF2 and NaF) can serve as a coolant which can be used at high temperatures without reaching a high vapor pressure. These molten salt compounds are also a good neutron moderator. In this study, cross sections of neutron induced reactions have been calculated for fluorine target nucleus. The new calculations on the excitation functions of 19F( n, 2n), 19F( n, p), 19F( n, xn), 19F( n, xp) have been made. In these calculations, the pre-equilibrium and equilibrium effects have been investigated. The pre-equilibrium calculations involve the full exciton model and the cascade exciton model. The equilibrium effects are calculated according to the Weisskopf-Ewing model. Also in the present work, the ( n, 2n) and ( n, p) reaction cross sections have calculated by using evaluated empirical formulas developed by Tel et al. at 14-15 MeV energy. The multiple pre-equilibrium mean free path constant from internal transition have been investigated for 19F nucleus. The obtained results have been discussed and compared with the available experimental data.

  10. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  11. Accurate universal parameterization of absorption cross sections II--neutron absorption cross sections

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, J. W.; Cucinotta, F. A.

    1997-01-01

    A recent parameterization (here after referred as paper I, Ref. [4]) of absorption cross sections for any system of charged ions collisions including proton -nucleus collisions, is extended for neutron-nucleus collisions valid from approximately 1 MeV to a few GeV, thus providing a comprehensive picture of absorption cross sections for any system of collision pair (charged and/or uncharged). The parameters are associated with the physics of the problem. At lower energies, the optical potential at the surface is important and the Pauli operator plays an increasingly important role at intermediate energies. The agreement between the calculated and experimental data is better than earlier published results.

  12. Lunar Radar Cross Section at Low Frequency

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  13. Photofission cross section of /sup 232/Th

    SciTech Connect

    Zhang, H.X.; Yeh, T.R.; Lancman, H.

    1986-10-01

    The photofission cross section of /sup 232/Th was measured in the 5.8-12 MeV energy range with an average photon energy resolution of 600 eV. Intermediate structure was observed at 5.91, 5.97, and 6.31 MeV. The experimental fission probability and various properties of the intermediate structure were compared with calculated values based on a double-humped fission barrier as well as a triple-humped one. The results favor, though not decisively, the presence of a shallow third well in the barrier. Certain features of both barriers, a rather high first hump and a deep secondary well, are quite different from those predicted by current theoretical barrier calculations.

  14. Geophysical Fluid Flow Cell (GFFC) Cross Section

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This drawing shows a cross-section view of the test cell at the heart of the Geophysical Fluid Flow Cell (GFFC) that flew on two Spacelab missions. The middle and lower drawings depict the volume of the silicone oil layer that served as the atmosphere as the steel ball rotated and an electrostatic field pulled the oil inward to mimic gravity's effects during the experiments. The GFFC thus produced flow patterns that simulated conditions inside the atmospheres of Jupiter and the Sun and other stars. The principal investigator was John Hart of the University of Colorado at Boulder. It was managed by NASA's Marshall Space Flight Center (MSFC). An Acrobat PDF copy of this drawing is available at http://microgravity.nasa.gov/gallery. (Credit: NASA/Marshall Space Flight Center)

  15. Absolute photoneutron cross sections of Sm isotopes

    SciTech Connect

    Gheorghe, I.; Glodariu, T.; Utsunomiya, H.; Filipescu, D.; Nyhus, H.-T.; Renstrom, T.; Tesileanu, O.; Shima, T.; Takahisa, K.; Miyamoto, S.

    2015-02-24

    Photoneutron cross sections for seven samarium isotopes, {sup 144}Sm, {sup 147}Sm, {sup 148}Sm, {sup 149}Sm, {sup 150}Sm, {sup 152}Sm and {sup 154}Sm, have been investigated near neutron emission threshold using quasimonochromatic laser-Compton scattering γ-rays produced at the synchrotron radiation facility NewSUBARU. The results are important for nuclear astrophysics calculations and also for probing γ-ray strength functions in the vicinity of neutron threshold. Here we describe the neutron detection system and we discuss the related data analysis and the necessary method improvements for adapting the current experimental method to the working parameters of the future Gamma Beam System of Extreme Light Infrastructure - Nuclear Physics facility.

  16. Top cross section measurement at CDF

    SciTech Connect

    Compostella, Gabriele; /INFN, CNAF /Padua U.

    2010-01-01

    This paper describes the latest measurements of the t{bar t} pair production cross section performed by the CDF Collaboration analyzing p{bar p} collisions at a center-of-mass energy of 1.96 TeV from Fermilab Tevatron, as presented at the XVIII International Workshop on Deep-Inelastic Scattering and Related Subjects. In order to test Standard Model predictions, several analysis methods are explored and all the top decay channels are considered, to better constrain the properties of the top quark and to search for possible sources of new physics affecting the pair production mechanism. Experimental results using an integrated luminosity up to 5.1 fb{sup -1} are presented.

  17. Collision cross sections for structural proteomics.

    PubMed

    Marklund, Erik G; Degiacomi, Matteo T; Robinson, Carol V; Baldwin, Andrew J; Benesch, Justin L P

    2015-04-01

    Ion mobility mass spectrometry (IM-MS) allows the structural interrogation of biomolecules by reporting their collision cross sections (CCSs). The major bottleneck for exploiting IM-MS in structural proteomics lies in the lack of speed at which structures and models can be related to experimental data. Here we present IMPACT (Ion Mobility Projection Approximation Calculation Tool), which overcomes these twin challenges, providing accurate CCSs up to 10(6) times faster than alternative methods. This allows us to assess the CCS space presented by the entire structural proteome, interrogate ensembles of protein conformers, and monitor molecular dynamics trajectories. Our data demonstrate that the CCS is a highly informative parameter and that IM-MS is of considerable practical value to structural biologists. PMID:25800554

  18. Experiments on Antiprotons: Antiproton-Nucleon Cross Sections

    DOE R&D Accomplishments Database

    Chamberlain, Owen; Keller, Donald V.; Mermond, Ronald; Segre, Emilio; Steiner, Herbert M.; Ypsilantis, Tom

    1957-07-22

    In this paper experiments are reported on annihilation and scattering of antiprotons in H{sub 2}O , D{sub 2}O, and O{sub 2}. From the data measured it is possible to obtain an antiproton-proton and an antiproton-deuteron cross section at 457 Mev (lab). Further analysis gives the p-p and p-n cross sections as 104 mb for the p-p reaction cross section and 113 mb for the p-n reaction cross section. The respective annihilation cross sections are 89 and 74 mb. The Glauber correction necessary in order to pass from the p-d to the p-n cross section by subtraction of the p-p cross section is unfortunately large and somewhat uncertain. The data are compared with the p-p and p-n cross sections and with other results on p-p collisions.

  19. Single-level resonance parameters fit nuclear cross-sections

    NASA Technical Reports Server (NTRS)

    Drawbaugh, D. W.; Gibson, G.; Miller, M.; Page, S. L.

    1970-01-01

    Least squares analyses of experimental differential cross-section data for the U-235 nucleus have yielded single level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross sections of capture, fission, and total.

  20. Electron Elastic-Scattering Cross-Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge)   This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).

  1. Electron cross section set for CHF{sub 3}

    SciTech Connect

    Morgan, W. Lowell; Winstead, Carl; McKoy, Vincent

    2001-08-15

    We describe the development of a consistent set of low-energy electron collision cross sections for trifluoromethane, CHF{sub 3}. First-principles calculations are used to obtain key elastic and inelastic cross sections. These are combined with literature values of the ionization cross section and with vibrational excitation cross sections obtained from the Born approximation to form a preliminary set, which is then adjusted to achieve consistency with measured swarm parameters. {copyright} 2001 American Institute of Physics.

  2. A simple approach to SEU cross section evaluation

    SciTech Connect

    Miroshkin, V.V.; Tverskoy, M.G.

    1998-12-01

    The simplified method for determination of proton induced SEU cross section is presented. The method is based on results of the analysis of experimental SEU cross sections initiated by fast nucleons. The possibility of SEU cross section measurement at single proton energy for SEU rate prediction is shown.

  3. Viscous Flow through Pipes of Various Cross-Sections

    ERIC Educational Resources Information Center

    Lekner, John

    2007-01-01

    An interesting variety of pipe cross-sectional shapes can be generated, for which the Navier-Stokes equations can be solved exactly. The simplest cases include the known solutions for elliptical and equilateral triangle cross-sections. Students can find pipe cross-sections from solutions of Laplace's equation in two dimensions, and then plot the…

  4. Mental Visualization of Objects from Cross-Sectional Images

    ERIC Educational Resources Information Center

    Wu, Bing; Klatzky, Roberta L.; Stetten, George D.

    2012-01-01

    We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object…

  5. Cross sections for actinide burner reactors

    SciTech Connect

    Difilippo, F.C.

    1991-01-01

    Recent studies have shown the feasibility of burning higher actinides (i.e., transuranium (TRU) elements excluding plutonium) in ad hoc designed reactors (Actinide Burner Reactors: ABR) which, because of their hard neutron spectra, enhance the fission of TRU. The transmutation of long-lived radionuclides into stable or short-lived isotopes reduces considerably the burden of handling high-level waste from either LWR or Fast Breeder Reactors (FBR) fuels. Because of the large concentrations of higher actinides in these novel reactor designs the Doppler effect due to TRU materials is the most important temperature coefficient from the point of view of reactor safety. Here we report calculations of energy group-averaged capture and fission cross sections as function of temperature and dilution for higher actinides in the resolved and unresolved resonance regions. The calculations were done with the codes SAMMY in the resolved region and URR in the unresolved regions and compared with an independent calculation. 4 refs., 2 figs., 2 tabs.

  6. APPARATUS FOR MEASURING TOTAL NEUTRON CROSS SECTIONS

    DOEpatents

    Cranberg, L.

    1959-10-13

    An apparatus is described for measuring high-resolution total neutron cross sections at high counting rate in the range above 50-kev neutron energy. The pulsed-beam time-of-flight technique is used to identify the neutrons of interest which are produced in the target of an electrostatic accelerator. Energy modulation of the accelerator . makes it possible to make observations at 100 energy points simultaneously. 761O An apparatus is described for monitoring the proton resonance of a liquid which is particulariy useful in the continuous purity analysis of heavy water. A hollow shell with parallel sides defines a meander chamber positioned within a uniform magnetic fieid. The liquid passes through an inlet at the outer edge of the chamber and through a spiral channel to the central region of the chamber where an outlet tube extends into the chamber perpendicular to the magnetic field. The radiofrequency energy for the monitor is coupled to a coil positioned coaxially with the outlet tube at its entrance point within the chamber. The improvement lies in the compact mechanical arrangement of the monitor unit whereby the liquid under analysis is subjected to the same magnetic field in the storage and sensing areas, and the entire unit is shielded from external electrostatic influences.

  7. Normalization of experimental electron cross sections.

    NASA Astrophysics Data System (ADS)

    Avdonina, N.; Felfli, Z.; Msezane, A. Z.

    1997-10-01

    Absolute experimental electron-impact differential cross sections (DCSs) can be obtained through an extrapolation of the relative generalized oscillator strength (GOS) values at some given impact energy E to zero momentum transfer squared K^2, the optical oscillator strength (OOS) [1]. We propose to normalize the relative experimental DCS data to the corresponding OOS value by extrapolating the GOS to K^2 = 0 without involving the nonphysical region. This is possible only by simultaneously increasing E and decreasing K^2 so that K^2 = 0 corresponds to E = ∞. Thus is avoided a divergence of fracd(GOS)d(K^2) at K^2 = 0 [2]. Another advantage of our method is that, over a wide range of small K^2 values the contribution of higher order terms of the Born series to the GOS function is negligible, contrary to the constant E case in which even order K^2 terms are non-Born [2]. Thus first Born approximation can be used to normalize relative experimental DCSs to the OOS. This method is applicable to both the excitation and ionization of atomic and molecular targets by electron impact. The latter case generalizes the method of ref. [3]. ^*Supported by AFOSR, NSF and DoE Div. of Chemical Sciences, OBES. ^1 E. N. Lassettre et al., J. Chem. Phys \\underline50, (1829) ^2 W. M. Huo, J. Chem. Phys \\underline71, 1593 (1979) ^3 A. Saenz, W Weyrich and P. Froelich, J. Phys. B \\underline29, 97 (1996)

  8. [Fast neutron cross section measurements]. Progress report

    SciTech Connect

    Knoll, G.F.

    1992-10-26

    From its inception, the Nuclear Data Project at the University of Michigan has concentrated on two major objectives: (1) to carry out carefully controlled nuclear measurements of the highest possible reliability in support of the national nuclear data program, and (2) to provide an educational opportunity for students with interests in experimental nuclear science. The project has undergone a successful transition from a primary dependence on our photoneutron laboratory to one in which our current research is entirely based on a unique pulsed 14 MeV fast neutron facility. The new experimental facility is unique in its ability to provide nanosecond bursts of 14 MeV neutrons under conditions that are ``clean`` and as scatter-free as possible, and is the only one of its type currently in operation in the United States. It has been designed and put into operation primarily by graduate students, and has met or exceeded all of its important initial performance goals. We have reached the point of its routine operation, and most of the data are now in hand that will serve as the basis for the first two doctoral dissertations to be written by participating graduate students. Our initial results on double differential neutron cross sections will be presented at the May 1993 Fusion Reactor Technology Workshop. We are pleased to report that, after investing several years in equipment assembly and optimization, the project has now entered its ``data production`` phase.

  9. Partial Photoneutron Cross Sections for 207,208Pb

    NASA Astrophysics Data System (ADS)

    Kondo, T.; Utsunomiya, H.; Goriely, S.; Iwamoto, C.; Akimune, H.; Yamagata, T.; Toyokawa, H.; Harada, H.; Kitatani, F.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2014-05-01

    Using linearly-polarized laser-Compton scattering γ-rays, partial E1 and M1 photoneutron cross sections along with total cross sections were determined for 207,208Pb at four energies near neutron threshold by measuring anisotropies in photoneutron emission. Separately, total photoneutron cross sections were measured for 207,208Pb with a high-efficiency 4π neutron detector. The partial cross section measurement provides direct evidence for the presence of pygmy dipole resonance (PDR) in 207,208Pb in the vicinity of neutron threshold. The strength of PDR amounts to 0.32%-0.42% of the Thomas-Reiche-Kuhn sum rule. Several μN2 units of B(M1)↑ strength were observed in 207,208Pb just above neutron threshold, which correspond to M1 cross sections less than 10% of the total photoneutron cross sections.

  10. Experimental verification of theoretical cross sections for FIB PIXE

    NASA Astrophysics Data System (ADS)

    Streib, Kenneth L.; Alford, Terry L.; Mayer, James W.

    2006-08-01

    X-ray production cross sections were found for films of Cr, Cu, Ge, Ag, W and Au, using incident H+ and Be+ ions at energies from 300 keV to 3.5 MeV. These experimental cross section results were compared with the cross section results obtained using software which calculates inner shell ionization and X-ray production cross sections. The software uses the ECPSSR-UA approach to finding X-ray production cross sections. This program was found to be useful for predicting cross sections for H+ and Be+ ions at the energies in this study. The software was then used to predict results for Li+, Be+ and B+ ions at 280 keV, energies available in the Arizona State University focused ion beam laboratory.

  11. High E{sub T} jet cross sections at CDF

    SciTech Connect

    Flaugher, B.; CDF Collaboration

    1996-08-01

    The inclusive jet cross section for {ital p}{ital {anti p}} collisions at {radical}s = 1.8 TeV as measured by the CDF collaboration will be presented. Preliminary CDF measurements of the {Sigma} E{sub T} cross section at {radical}s = 1.8 TeV and the central inclusive jet cross section at {radical}s = 0.630 TeV will also be shown.

  12. Single event upset cross sections at various data rates

    SciTech Connect

    Reed, R.A.; Marshall, C.J.; McMorrow, D.; Carts, M.A.; Marshall, P.W.; Buchner, S.; La Macchia, M.; Mathes, B.

    1996-12-01

    The authors present data which show that Single Event Upset (SEU) cross section varies linearly with frequency for most devices tested. They show that the SEU cross section can increase dramatically away from a linear relationship when the test setup is not optimized, or when testing near the maximum operating frequency. They also observe non-linear behavior in some complex circuit topologies. Knowledge of the relationship between SEU cross section and frequency is important for estimates of on-orbit SEU rates.

  13. Measured microwave scattering cross sections of three meteorite specimens

    NASA Technical Reports Server (NTRS)

    Hughes, W. E.

    1972-01-01

    Three meteorite specimens were used in a microwave scattering experiment to determine the scattering cross sections of stony meteorites and iron meteorites in the frequency range from 10 to 14 GHz. The results indicate that the stony meteorites have a microwave scattering cross section that is 30 to 50 percent of their projected optical cross section. Measurements of the iron meteorite scattering were inconclusive because of specimen surface irregularities.

  14. Analytical formulation of the quantum electromagnetic cross section

    NASA Astrophysics Data System (ADS)

    Brandsema, Matthew J.; Narayanan, Ram M.; Lanzagorta, Marco

    2016-05-01

    It has been found that the quantum radar cross section (QRCS) equation can be written in terms of the Fourier transform of the surface atom distribution of the object. This paper uses this form to provide an analytical formulation of the quantum radar cross section by deriving closed form expressions for various geometries. These expressions are compared to the classical radar cross section (RCS) expressions and the quantum advantages are discerned from the differences in the equations. Multiphoton illumination is also briefly discussed.

  15. Projectile and Lab Frame Differential Cross Sections for Electromagnetic Dissociation

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Adamczyk, Anne; Dick, Frank

    2008-01-01

    Differential cross sections for electromagnetic dissociation in nuclear collisions are calculated for the first time. In order to be useful for three - dimensional transport codes, these cross sections have been calculated in both the projectile and lab frames. The formulas for these cross sections are such that they can be immediately used in space radiation transport codes. Only a limited amount of data exists, but the comparison between theory and experiment is good.

  16. Electron-Impact Total Ionization Cross Sections of Hydrocarbon Ions

    PubMed Central

    Irikura, Karl K.; Kim, Yong-Ki; Ali, M. A.

    2002-01-01

    The Binary-Encounter-Bethe (BEB) model for electron-impact total ionization cross sections has been applied to CH2+, CH3+, CH4+, C2H2+, C2H4+, C2H6+ and H3O+. The cross sections for the hydrocarbon ions are needed for modeling cool plasmas in fusion devices. No experimental data are available for direct comparison. Molecular constants to generate total ionization cross sections at arbitrary incident electron energies using the BEB formula are presented. A recent experimental result on the ionization of H3O+ is found to be almost 1/20 of the present theory at the cross section peak.

  17. Positive Scattering Cross Sections using Constrained Least Squares

    SciTech Connect

    Dahl, J.A.; Ganapol, B.D.; Morel, J.E.

    1999-09-27

    A method which creates a positive Legendre expansion from truncated Legendre cross section libraries is presented. The cross section moments of order two and greater are modified by a constrained least squares algorithm, subject to the constraints that the zeroth and first moments remain constant, and that the standard discrete ordinate scattering matrix is positive. A method using the maximum entropy representation of the cross section which reduces the error of these modified moments is also presented. These methods are implemented in PARTISN, and numerical results from a transport calculation using highly anisotropic scattering cross sections with the exponential discontinuous spatial scheme is presented.

  18. Neutron-capture Cross Sections from Indirect Measurements

    SciTech Connect

    Escher, J E; Burke, J T; Dietrich, F S; Ressler, J J; Scielzo, N D; Thompson, I J

    2011-10-18

    Cross sections for compound-nuclear reactions play an important role in models of astrophysical environments and simulations of the nuclear fuel cycle. Providing reliable cross section data remains a formidable task, and direct measurements have to be complemented by theoretical predictions and indirect methods. The surrogate nuclear reactions method provides an indirect approach for determining cross sections for reactions on unstable isotopes, which are difficult or impossible to measure otherwise. Current implementations of the method provide useful cross sections for (n,f) reactions, but need to be improved upon for applications to capture reactions.

  19. Documentation of Uncertainties in Experimental Cross Sections for EXFOR

    SciTech Connect

    Otuka, N.; Smith, D.L.

    2014-06-15

    Documentation of uncertainties and covariances in experimental nuclear reaction cross sections has been assessed. Following consideration of the importance of covariances for nuclear data in various nuclear applications, and presentation of a simple numerical example to demonstrate this point, the minimum basic concepts (mean, covariance, standard derivation, partial uncertainties, micro- and macro-correlation coefficients) are introduced. A deterministic approach to propagating the covariances in primary measured parameters (e.g., counts) to the derived cross sections is discussed, using a neutron-induced activation cross section measurement as an example. Finally, various approaches to documentation (publication, compilation) of experimental cross sections to facilitate their use in future evaluations are mentioned.

  20. DBCC Software as Database for Collisional Cross-Sections

    NASA Astrophysics Data System (ADS)

    Moroz, Daniel; Moroz, Paul

    2014-10-01

    Interactions of species, such as atoms, radicals, molecules, electrons, and photons, in plasmas used for materials processing could be very complex, and many of them could be described in terms of collisional cross-sections. Researchers involved in plasma simulations must select reasonable cross-sections for collisional processes for implementing them into their simulation codes to be able to correctly simulate plasmas. However, collisional cross-section data are difficult to obtain, and, for some collisional processes, the cross-sections are still not known. Data on collisional cross-sections can be obtained from numerous sources including numerical calculations, experiments, journal articles, conference proceedings, scientific reports, various universities' websites, national labs and centers specifically devoted to collecting data on cross-sections. The cross-sections data received from different sources could be partial, corresponding to limited energy ranges, or could even not be in agreement. The DBCC software package was designed to help researchers in collecting, comparing, and selecting cross-sections, some of which could be constructed from others or chosen as defaults. This is important as different researchers may place trust in different cross-sections or in different sources. We will discuss the details of DBCC and demonstrate how it works and why it is beneficial to researchers working on plasma simulations.

  1. Derivation of reaction cross sections from experimental elastic backscattering probabilities

    NASA Astrophysics Data System (ADS)

    Sargsyan, V. V.; Adamian, G. G.; Antonenko, N. V.; Gomes, P. R. S.

    2013-10-01

    The relationship between the backward elastic scattering probabilities and the reaction cross sections is derived. This is a very simple and useful method to extract reaction cross sections for heavy-ion systems. We compare the results of our method with those that use the traditional full elastic scattering angular distributions for several systems at energies near and above the Coulomb barrier. From the calculated reaction and capture cross sections that use the present method, we derive the cross sections of other mechanisms for weak nearly spherical systems.

  2. Cross Sections for Inner-Shell Ionization by Electron Impact

    SciTech Connect

    Llovet, Xavier; Powell, Cedric J.; Salvat, Francesc; Jablonski, Aleksander

    2014-03-15

    An analysis is presented of measured and calculated cross sections for inner-shell ionization by electron impact. We describe the essentials of classical and semiclassical models and of quantum approximations for computing ionization cross sections. The emphasis is on the recent formulation of the distorted-wave Born approximation by Bote and Salvat [Phys. Rev. A 77, 042701 (2008)] that has been used to generate an extensive database of cross sections for the ionization of the K shell and the L and M subshells of all elements from hydrogen to einsteinium (Z = 1 to Z = 99) by electrons and positrons with kinetic energies up to 1 GeV. We describe a systematic method for evaluating cross sections for emission of x rays and Auger electrons based on atomic transition probabilities from the Evaluated Atomic Data Library of Perkins et al. [Lawrence Livermore National Laboratory, UCRL-ID-50400, 1991]. We made an extensive comparison of measured K-shell, L-subshell, and M-subshell ionization cross sections and of Lα x-ray production cross sections with the corresponding calculated cross sections. We identified elements for which there were at least three (for K shells) or two (for L and M subshells) mutually consistent sets of cross-section measurements and for which the cross sections varied with energy as expected by theory. The overall average root-mean-square deviation between the measured and calculated cross sections was 10.9% and the overall average deviation was −2.5%. This degree of agreement between measured and calculated ionization and x-ray production cross sections was considered to be very satisfactory given the difficulties of these measurements.

  3. 17 CFR 270.30h-1 - Applicability of section 16 of the Exchange Act to section 30(h).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Applicability of section 16 of the Exchange Act to section 30(h). 270.30h-1 Section 270.30h-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.30h-1 Applicability of section 16 of...

  4. Section Builder: A finite element tool for analysis and design of composite beam cross-sections

    NASA Astrophysics Data System (ADS)

    Chakravarty, Uttam Kumar

    SectionBuilder is an innovative finite element based tool, developed for analysis and design of composite beam cross-sections. The tool can handle the cross-sections with parametric shapes and arbitrary configurations. It can also handle arbitrary lay-ups for predefined beam cross-section geometries in a consistent manner. The material properties for each layer of the cross-section can be defined on the basis of the design requirements. This tool is capable of dealing with multi-cell composite cross-sections with arbitrary lay-ups. It has also the benefit of handling the variation of thickness of skin and D-spars for beams such as rotor blades. A typical cross-section is considered as a collection of interconnected walls. Walls with arbitrary lay-ups based on predefined geometries and material properties are generated first. The complex composite beam cross-sections are developed by connecting the walls using various types of connectors. These connectors are compatible with the walls, i.e., the thickness of the layers of the walls must match with those of the connectors at the place of connection. Cross-sections are often reinforced by core material for constructing realistic rotor blade cross-sections. The tool has the ability to integrate core materials into the cross-sections. A mapped mesh is considered for meshing parametric shapes, walls and various connectors, whereas a free mesh is considered for meshing the core materials. A new algorithm based on the Delaunay refinement algorithm is developed for creating the best possible free mesh for core materials. After meshing the cross-section, the tool determines the sectional properties using finite element analysis. This tool computes sectional properties including stiffness matrix, compliance matrix, mass matrix, and principal axes. A visualization environment is integrated with the tool for visualizing the stress and strain distributions over the cross-section.

  5. Bent solenoids for spectrometers and emittance exchange sections.

    SciTech Connect

    Norem, J.

    1999-03-26

    Bent solenoids can be used to transport low energy beams as they provide both confinement and dispersion of particle orbits. Solenoids are being considered both as emittance exchange sections and spectrometers in the muon cooling system as part of the study of the muon collider. They present the results of a study of bent solenoids which considers the design of coupling sections between bent solenoids to straight solenoids, drift compensation fields, aberrations, and factors relating to the construction, such as field ripple, stored energy, coil forces and field errors.

  6. Analysis of cross sections using various nuclear potential

    SciTech Connect

    Aziz, Azni Abdul; Kassim, Hasan Abu; Yusof, Norhasliza; Muhammad Zamrun, F.

    2014-05-02

    The relevant astrophysical reaction rates which are derived from the reaction cross sections are necessary input to the reaction network. In this work, we analyse several theoretical models of the nuclear potential which give better prediction of the cross sections for some selected reactions.

  7. Benchmark Calculations of Electron-Impact Differential Cross Sections

    SciTech Connect

    Bray, I.; Bostock, C. J.; Fursa, D. V.; Hines, C. W.; Kadyrov, A. S.; Stelbovics, A. T.

    2011-05-11

    The calculation of electron-atom excitation and ionization cross section is considered in both the non-relativistic and relativistic scattering theory. We consider electron collisions with H, He, Cs, and Hg. Differential cross sections for elastic scattering and ionization are presented.

  8. Determination of Electron Collision Cross Sections Set for Tetramethysilane

    NASA Astrophysics Data System (ADS)

    Bordage, Marie-Claude

    2007-12-01

    A swarm analysis technique based on the solution of the Boltzmann equation is used to derive low energy electron collision cross sections for tetramethylsilane (TMS). The calculated swarm parameters with this first available cross sections set is consistent with measured values of the swarm parameters. Calculations of transport parameters in mixtures of TMS with argon are also presented.

  9. Temperature dependence of the HNO3 UV absorption cross sections

    NASA Technical Reports Server (NTRS)

    Burkholder, James B.; Talukdar, Ranajit K.; Ravishankara, A. R.; Solomon, Susan

    1993-01-01

    The temperature dependence of the HNO3 absorption cross sections between 240 and 360 K over the wavelength range 195 to 350 nm has been measured using a diode array spectrometer. Absorption cross sections were determined using both (1) absolute pressure measurements at 298 K and (2) a dual absorption cell arrangement in which the absorption spectrum at various temperatures is measured relative to the room temperature absorption spectrum. The HNO3 absorption spectrum showed a temperature dependence which is weak at short wavelengths but stronger at longer wavelengths which are important for photolysis in the lower stratosphere. The 298 K absorption cross sections were found to be larger than the values currently recommended for atmospheric modeling (DeMore et al., 1992). Our absorption cross section data are critically compared with the previous measurements of both room temperature and temperature-dependent absorption cross sections. Temperature-dependent absorption cross sections of HNO3 are recommended for use in atmospheric modeling. These temperature dependent HNO3 absorption cross sections were used in a two-dimensional dynamical-photochemical model to demonstrate the effects of the revised absorption cross sections on loss rate of HNO3 and the abundance of NO2 in the stratosphere.

  10. Learning of Cross-Sectional Anatomy Using Clay Models

    ERIC Educational Resources Information Center

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  11. The energy dependence of the total charm cross section

    SciTech Connect

    Vogt, R

    2007-10-18

    We discuss the energy dependence of the total charm cross section and some of its theoretical uncertainties including the quark mass, scale choice and the parton densities. We compare the next-to-leading order calculation of the total cross section with results obtained using PYTHIA.

  12. Cross Sections for Electron Collisions with Carbon Monoxide

    SciTech Connect

    Itikawa, Yukikazu

    2015-03-15

    Cross section data are collected and reviewed for electron collisions with carbon monoxide. Collision processes included are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational and electronic states, ionization, and dissociation. For each process, recommended values of the cross sections are presented, when possible. The literature has been surveyed through to the end of 2013.

  13. Fission cross section measurements of actinides at LANSCE

    SciTech Connect

    Tovesson, Fredrik; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications. By combining measurement at two LANSCE facilities, Lujan Center and the Weapons Neutron Research center (WNR), differential cross sections can be measured from sub-thermal energies up to 200 MeV. Incident neutron energies are determined using the time-of-flight method, and parallel-plate ionization chambers are used to measure fission cross sections relative to the {sup 235}U standard. Recent measurements include the {sup 233,238}U, {sup 239,242}Pu and {sup 243}Am neutron-induced fission cross sections. In this paper preliminary results for cross section data of {sup 243}Am and {sup 233}U will be presented.

  14. Temperature-dependent high resolution absorption cross sections of propane

    NASA Astrophysics Data System (ADS)

    Beale, Christopher A.; Hargreaves, Robert J.; Bernath, Peter F.

    2016-10-01

    High resolution (0.005 cm-1) absorption cross sections have been measured for pure propane (C3H8). These cross sections cover the 2550-3500 cm-1 region at five temperatures (from 296 to 700 K) and were measured using a Fourier transform spectrometer and a quartz cell heated by a tube furnace. Calibrations were made by comparison to the integrated cross sections of propane from the Pacific Northwest National Laboratory. These are the first high resolution absorption cross sections of propane for the 3 μm region at elevated temperatures. The cross sections provided may be used to monitor propane in combustion environments and in astronomical sources such as the auroral regions of Jupiter, brown dwarfs and exoplanets.

  15. Consistent set of electron cross sections for methane

    NASA Astrophysics Data System (ADS)

    Alves, L. L.; Guerra, V.; Pintassilgo, C. D.

    2013-09-01

    This contribution presents a complete consistent set of electron-impact cross sections for methane (CH4) , recently made available on the IST-LISBON database with the LXCat website. The set is based on the cross sections originally compiled and adjusted in and first used in. The elementary processes taken into account are elastic momentum-transfer, vibrational excitation of the (1,3) and (2,4) modes, total dissociation into neutrals, and ionization producing CH4+and CH3++ H. For the latter two processes we have adjusted the partial ionization cross section of Chatham et al. as to reproduce their measured total ionization. The new cross-section set is validated by comparing calculated and measured electron swarm parameters for E / N = 0.1-400 Td. A discussion of similarities and differences with sets of CH4 cross sections from other databases is also presented. Work partially supported by FCT (Pest-OE/SADG/LA0010/2011).

  16. Temperature-dependent absorption cross sections for hydrogen peroxide vapor

    NASA Technical Reports Server (NTRS)

    Nicovich, J. M.; Wine, P. H.

    1988-01-01

    Relative absorption cross sections for hydrogen peroxide vapor were measured over the temperature ranges 285-381 K for lambda = 230 nm-295 nm and 300-381 K for lambda = 193 nm-350 nm. The well established 298 K cross sections at 202.6 and 228.8 nm were used as an absolute calibration. A significant temperature dependence was observed at the important tropospheric photolysis wavelengths lambda over 300 nm. Measured cross sections were extrapolated to lower temperatures, using a simple model which attributes the observed temperature dependence to enhanced absorption by molecules possessing one quantum of O-O stretch vibrational excitation. Upper tropospheric photodissociation rates calculated using the extrapolated cross sections are about 25 percent lower than those calculated using currently recommended 298 K cross sections.

  17. Ab initio electron scattering cross-sections and transport in liquid xenon

    NASA Astrophysics Data System (ADS)

    Boyle, G. J.; McEachran, R. P.; Cocks, D. G.; Brunger, M. J.; Buckman, S. J.; Dujko, S.; White, R. D.

    2016-09-01

    Ab initio fully differential cross-sections for electron scattering in liquid xenon are developed from a solution of the Dirac–Fock scattering equations, using a recently developed framework (Boyle et al 2015 J. Chem. Phys. 142 154507) which considers multipole polarizabilities, a non-local treatment of exchange, and screening and coherent scattering effects. A multi-term solution of Boltzmann’s equation accounting for the full anisotropic nature of the differential cross-section is used to calculate transport properties of excess electrons in liquid xenon. The results were found to agree to within 25% of the measured mobilities and characteristic energies over the reduced field range of 10‑4–1 Td. The accuracies are comparable to those achieved in the gas phase. A simple model, informed by highly accurate gas-phase cross-sections, is presented to improve the liquid cross-sections, which was found to enhance the accuracy of the transport coefficient calculations.

  18. Elastic cross sections for low-energy electron collisions with tetrahydropyran

    NASA Astrophysics Data System (ADS)

    Souza Barbosa, Alessandra; Bettega, Márcio H. F.

    2016-02-01

    We report on calculated elastic cross sections for low-energy electron collisions with the cyclic ether tetrahydropyran (C5H10O). The calculations were carried out with the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange-polarization approximation for energies up to 20 eV. Our cross sections are compared with previous results obtained for cyclohexane and 1,4-dioxane, since the three molecules present similar structures. The calculated differential cross sections for these three molecules present similarities, except at low scattering angles, where the differential cross sections of tetrahydropyran present a sharp increase due to the permanent dipole moment of the molecule. The similarities observed in the cross sections reveal that the molecular geometry plays an important role in the description of scattering process. We also compared our calculated elastic integral cross section for tetrahydropyran with experimental total cross sections data available in the literature and found a good qualitative agreement between both results. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  19. Elastic cross sections for low-energy electron collisions with tetrahydropyran

    NASA Astrophysics Data System (ADS)

    Barbosa, Alessandra Souza; Bettega, Márcio H. F.

    2016-02-01

    We report on calculated elastic cross sections for low-energy electron collisions with the cyclic ether tetrahydropyran (C5H10O). The calculations were carried out with the Schwinger multichannel method implemented with norm-conserving pseudopotentials in the static-exchange-polarization approximation for energies up to 20 eV. Our cross sections are compared with previous results obtained for cyclohexane and 1,4-dioxane, since the three molecules present similar structures. The calculated differential cross sections for these three molecules present similarities, except at low scattering angles, where the differential cross sections of tetrahydropyran present a sharp increase due to the permanent dipole moment of the molecule. The similarities observed in the cross sections reveal that the molecular geometry plays an important role in the description of scattering process. We also compared our calculated elastic integral cross section for tetrahydropyran with experimental total cross sections data available in the literature and found a good qualitative agreement between both results.

  20. Cross-Sectional Drawing Techniques And The Artist

    NASA Astrophysics Data System (ADS)

    Berry, William A.

    1980-07-01

    Although Democritus, a Greek pholosopher of the fifth century B.C. described the use of cross-sections in analyzing a solid form, this method was not extensively developed in art until the Renaissance. The earliest treatise documenting the integration of the cross-section and linear perspective is Piero della Francesca's De prospective pingendi (c. 1480), in which a drawing of the human head is mathematically conceived and plotted by means of cross-section contours. Piero's method anticipates contemporary biostereometric techniques and current theories of visual perception. Outside of theoretical treatises the complete cross-section rarely occurs in art, though certain pictorial elements such as the religious halo can be interpreted as cross-sections. The chan-ging representation of the halo in art of the Medieval, Renaissance and Baroque periods parallels the development of the artist's concepts and techniques for representing form and space. During the Renaissance and Baroque periods the widespread use of contour hatching, a drawing technique based on the cross-section, indicates that the cross-section concept has played a greater role in pictorial representation than has generally been recognized.

  1. Modeling elastic momentum transfer cross-sections from mobility data

    NASA Astrophysics Data System (ADS)

    Nikitović, Ž. D.; Stojanović, V. D.; Raspopović, Z. M.

    2016-04-01

    In this letter we present a new method to simply obtain the elastic momentum transfer cross-section which predicts a maximum of reduced mobility and its sensitivity to the temperature variation at low energies. We first determined the transport cross-section which resembles mobility data for similar closed-shell systems by using the Monte Carlo method. Second, we selected the most probable reactive processes and compiled cross-sections from experimental and theoretical data. At the end, an elastic momentum transfer cross-section is obtained by subtracting the compiled cross-sections from the momentum transfer cross-section, taking into account the effects of the angular scattering distributions. Finally, the cross-section set determined in such a way is used as an input in a final Monte Carlo code run, to calculate the flux and bulk reduced mobility for Ne+ + CF4 which were discussed as functions of the reduced electric field E/N (N is the gas density) for the temperature T = 300 K.

  2. Cross Section Sensitivity and Propagated Errors in HZE Exposures

    NASA Technical Reports Server (NTRS)

    Heinbockel, John H.; Wilson, John W.; Blatnig, Steve R.; Qualls, Garry D.; Badavi, Francis F.; Cucinotta, Francis A.

    2005-01-01

    It has long been recognized that galactic cosmic rays are of such high energy that they tend to pass through available shielding materials resulting in exposure of astronauts and equipment within space vehicles and habitats. Any protection provided by shielding materials result not so much from stopping such particles but by changing their physical character in interaction with shielding material nuclei forming, hopefully, less dangerous species. Clearly, the fidelity of the nuclear cross-sections is essential to correct specification of shield design and sensitivity to cross-section error is important in guiding experimental validation of cross-section models and database. We examine the Boltzmann transport equation which is used to calculate dose equivalent during solar minimum, with units (cSv/yr), associated with various depths of shielding materials. The dose equivalent is a weighted sum of contributions from neutrons, protons, light ions, medium ions and heavy ions. We investigate the sensitivity of dose equivalent calculations due to errors in nuclear fragmentation cross-sections. We do this error analysis for all possible projectile-fragment combinations (14,365 such combinations) to estimate the sensitivity of the shielding calculations to errors in the nuclear fragmentation cross-sections. Numerical differentiation with respect to the cross-sections will be evaluated in a broad class of materials including polyethylene, aluminum and copper. We will identify the most important cross-sections for further experimental study and evaluate their impact on propagated errors in shielding estimates.

  3. Cross sections for electron scattering by atomic potassium

    SciTech Connect

    Msezane, A.Z.; Awuah, P.; Hiamang, S. Center for Theoretical Studies of Physical Systems, Clark Atlanta University, Atlanta, Georgia 30314 ); Allotey, F.K.A. )

    1992-12-01

    Electron elastic and collisional excitation cross sections from the ground state of potassium are calculated using the noniterative integral-equation method of Henry, Rountree, and Smith (Comput. Phys. Commun. 23, 233 (1981)) in the electron energy range 4{le}{ital E}{le}200 eV. Configuration-interaction target wave functions that take account of correlation and polarization effects are used to represent the ground state and the six lowest excited states 4{ital p} {sup 2}{ital P}{degree}, 5{ital s} {sup 2}{ital S}, 3{ital d} {sup 2}{ital D}, 5{ital p} {sup 2}{ital P}{degree}, 4{ital d} {sup 2}{ital D}, and 6{ital s} {sup 2}{ital S}. Elastic and discrete excitation cross sections are obtained in a seven-state close-coupling (7CC) approximation. The 7CC elastic and excitation cross sections are compared and contrasted. Near threshold the elastic cross section dominates the resonance, 4{ital s} {sup 2}{ital S}{r arrow}4{ital p} {sup 2}{ital P}{degree}, and the sum of the other remaining excitation cross sections. Comparison of our total cross sections with some available experimental and theoretical data is also effected. The discrepancy between the recent measurement of the total cross section by Kwan {ital et} {ital al}. (Phys. Rev. A 44, 1620 (1991)) on the one hand and other measurements near threshold on the other hand is explained.

  4. Review of electron impact excitation cross sections for copper atom

    SciTech Connect

    Winter, N.W.; Hazi, A.U.

    1982-02-01

    Excitation of atomic copper by electron impact plays an important role in the copper vapor laser and accurate cross sections are needed for understanding and modeling laser performance. During the past seven years, there have been several attempts to normalize the relative elastic and inelastic cross sections measured by Trajmar and coworkers. However, each of these efforts have yielded different cross sections, and the uncertainty in the correct normalization of the data has been a source of confusion and concern for the kinetic modeling efforts. This difficulty has motivated us to review previous work on the electron impact excitation of copper atom and to perform new calculations of the inelastic cross sections using the impact parameter method. In this memorandum we review the previous attempts to normalize the experimental data and provide a critical assessment of the accuracy of the resulting cross sections. We also present new theoretical cross sections for the electron impact excitation of the /sup 2/S ..-->.. /sup 2/P/sup 0/ and /sup 2/S ..-->.. /sup 2/D transitions in copper. When the experimental cross sections are renormalized to the results of the impact parameter calculations, they are a factor of three smaller than those published in the latest paper of Trajmar et. al. At impact energies above 60 eV the excitation cross sections obtained with the impact parameter method agree well with the results of the very recent, unpublished, close-coupling calculations of Henry. This agreement suggests that the present normalization of the experimental cross sections is probably the most reliable one obtained to date.

  5. Electron impact ionization cross sections of beryllium-tungsten clusters*

    NASA Astrophysics Data System (ADS)

    Sukuba, Ivan; Kaiser, Alexander; Huber, Stefan E.; Urban, Jan; Probst, Michael

    2016-01-01

    We report calculated electron impact ionization cross sections (EICSs) of beryllium-tungsten clusters, BenW with n = 1,...,12, from the ionization threshold to 10 keV using the Deutsch-Märk (DM) and the binary-encounter-Bethe (BEB) formalisms. The positions of the maxima of DM and BEB cross sections are mostly close to each other. The DM cross sections are more sensitive with respect to the cluster size. For the clusters smaller than Be4W they yield smaller cross sections than BEB and vice versa larger cross sections than BEB for clusters larger than Be6W. The maximum cross section values for the singlet-spin groundstate clusters range from 7.0 × 10-16 cm2 at 28 eV (BeW) to 54.2 × 10-16 cm2 at 43 eV (Be12W) for the DM cross sections and from 13.5 × 10-16 cm2 at 43 eV (BeW) to 38.9 × 10-16 cm2 at 43 eV (Be12W) for the BEB cross sections. Differences of the EICSs in different isomers and between singlet and triplet states are also explored. Both the DM and BEB cross sections could be fitted perfectly to a simple expression used in modeling and simulation codes in the framework of nuclear fusion research. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2015-60583-7

  6. Relative charge transfer cross section from Rb (4d)

    NASA Astrophysics Data System (ADS)

    Shah, M. H.; Camp, H. A.; Trachy, M. L.; Fléchard, X.; Gearba, M. A.; Nguyen, H.; Brédy, R.; Lundeen, S. R.; Depaola, B. D.

    2005-08-01

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7keV Na+ is reported. The specific channels reported are Na++Rb(4d5/2)→Na(nl)+Rb+ , where the dominant transfer cross sections channels were nl=3d and 4s . Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na++Rb(5s,5p) systems at the same collision energy.

  7. Relative charge transfer cross section from Rb(4d)

    SciTech Connect

    Shah, M.H.; Camp, H.A.; Trachy, M.L.; De Paola, B.D.; Flechard, X.; Gearba, M.A.; Nguyen, H.; Bredy, R.; Lundeen, S.R.

    2005-08-15

    Relative charge transfer cross section measurements for the excited state Rb(4d) with 7 keV Na{sup +} is reported. The specific channels reported are Na{sup +}+Rb(4d{sub 5/2}){yields}Na(nl)+Rb{sup +}, where the dominant transfer cross sections channels were nl=3d and 4s. Using a combination of a magneto-optical trap and recoil ion momentum spectroscopy (MOTRIMS methodology), the cross sections were measured relative to the previously studied Na{sup +}+Rb(5s,5p) systems at the same collision energy.

  8. Cross sections for electron scattering from α-tetrahydrofurfuryl alcohol

    NASA Astrophysics Data System (ADS)

    Duque, H. V.; Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z.; da Silva, G. B.; Limão-Vieira, P.; Duflot, D.; Hubin-Franskin, M.-J.; Delwiche, J.; Blanco, F.; García, G.; Lopes, M. C. A.; Ratnavelu, K.; White, R. D.; Brunger, M. J.

    2014-07-01

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol. The energy range of these experiments was 20-50 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely for the total cross section, elastic ICS, inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. Where possible, our calculated cross sections are compared to the limited available data of each scattering process.

  9. Actinide neutron-induced fission cross section measurements at LANSCE

    SciTech Connect

    Tovesson, Fredrik K; Laptev, Alexander B; Hill, Tony S

    2010-01-01

    Fission cross sections of a range of actinides have been measured at the Los Alamos Neutron Science Center (LANSCE) in support of nuclear energy applications in a wide energy range from sub-thermal energies up to 200 MeV. A parallel-plate ionization chamber are used to measure fission cross sections ratios relative to the {sup 235}U standard while incident neutron energies are determined using the time-of-flight method. Recent measurements include the {sup 233,238}U, {sup 239-242}Pu and {sup 243}Am neutron-induced fission cross sections. Obtained data are presented in comparison with ex isting evaluations and previous data.

  10. Momentum transfer cross sections for the heavy noble gases

    NASA Astrophysics Data System (ADS)

    McEachran, R. P.; Stauffer, A. D.

    2014-06-01

    We present momentum transfer cross sections for elastic electron scattering from argon, krypton and xenon atoms over the energy range from zero to 1 keV. These have been calculated using the Dirac equations with a relativistic complex optical potential which includes polarization of the target atom by the incident electron and allows for the absorption of some of the incident electron flux into channels representing excitation and ionization of the atom. In order to aid in plasma modelling calculations, we provide simple analytic fits to these cross sections as well as to the elastic scattering cross sections. Comparisons are made with previous experimental and theoretical results.

  11. Fission cross sections in the intermediate energy region

    SciTech Connect

    Lisowski, P.W.; Gavron, A.; Parker, W.E.; Ullmann, J.L.; Balestrini, S.J. ); Carlson, A.D.; Wasson, O.A. ); Hill, N.W. )

    1991-01-01

    Until recently there has been very little cross section data for neutron-induced fission in the intermediate energy region, primarily because no suitable neutron source has existed. At Los Alamos, the WNR target-4 facility provides a high-intensity source of neutrons nearly ideal for fission measurements extending from a fraction of a MeV to several hundred MeV. This paper summarizes the status of fission cross section data in the intermediate energy range (En > 30 MeV) and presents our fission cross section data for {sup 235}U and {sup 238}U compared to intranuclear cascade and statistical model predictions.

  12. Rotational Energy Transfer Cross Sections in N2-N2 Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Green, Sheldon; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    Rotational inelastic transitions of N2 have been studied in the coupled state (CS, also called centrifugal sudden) and infinite-order-sudden (IOS) approximations, using the N2-N2 rigid-rotor potential of van der Avoird et al. For benchmarking purposes, close coupling (CC) calculations have also been carried out over a limited energy range and for even j - even j collisions only. Both the CC and CS cross sections have been obtained with and without exchange symmetry, whereas exchange is neglected in the IOS calculations. The CS results track the CC cross sections rather well. At total energies between 113 to 219 cm(exp -1) the average deviation is 14%. The deviation decrease with increasing energy, indicating that the CS approximation can be used as a substitute at higher energies when the CC calculations become impractical. Comparison between the CS and IOS cross sections at the high energy end of the CS calculation, 500 - 680 cm(exp-1), shows significant differences between the two. In addition, the IOS results exhibits sensitivity to the amount of inelasticity and the results for large DELTA J transitions are subjected to bigger errors. At total energy 113 cm(exp -1) and above, the average deviation between state-to-state cross sections calculated with even and odd exchange symmetries is 1.5%.

  13. Theoretical and experimental study on electron interactions with chlorobenzene: Shape resonances and differential cross sections.

    PubMed

    Barbosa, Alessandra Souza; Varella, Márcio T do N; Sanchez, Sergio d'A; Ameixa, João; Blanco, Francisco; García, Gustavo; Limão-Vieira, Paulo; Ferreira da Silva, Filipe; Bettega, Márcio H F

    2016-08-28

    In this work, we report theoretical and experimental cross sections for elastic scattering of electrons by chlorobenzene (ClB). The theoretical integral and differential cross sections (DCSs) were obtained with the Schwinger multichannel method implemented with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR). The calculations with the SMCPP method were done in the static-exchange (SE) approximation, for energies above 12 eV, and in the static-exchange plus polarization approximation, for energies up to 12 eV. The calculations with the IAM-SCAR method covered energies up to 500 eV. The experimental differential cross sections were obtained in the high resolution electron energy loss spectrometer VG-SEELS 400, in Lisbon, for electron energies from 8.0 eV to 50 eV and angular range from 7(∘) to 110(∘). From the present theoretical integral cross section (ICS) we discuss the low-energy shape-resonances present in chlorobenzene and compare our computed resonance spectra with available electron transmission spectroscopy data present in the literature. Since there is no other work in the literature reporting differential cross sections for this molecule, we compare our theoretical and experimental DCSs with experimental data available for the parent molecule benzene. PMID:27586926

  14. 17 CFR 201.550 - Summary suspensions pursuant to Exchange Act Section 12(k)(1)(A).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to Exchange Act Section 12(k)(1)(A). 201.550 Section 201.550 Commodity and Securities Exchanges... Suspensions § 201.550 Summary suspensions pursuant to Exchange Act Section 12(k)(1)(A). (a) Petition for termination of suspension. Any person adversely affected by a suspension pursuant to Section 12(k)(1)(A)...

  15. 17 CFR 201.550 - Summary suspensions pursuant to Exchange Act Section 12(k)(1)(A).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to Exchange Act Section 12(k)(1)(A). 201.550 Section 201.550 Commodity and Securities Exchanges... Suspensions § 201.550 Summary suspensions pursuant to Exchange Act Section 12(k)(1)(A). (a) Petition for termination of suspension. Any person adversely affected by a suspension pursuant to Section 12(k)(1)(A)...

  16. 17 CFR 201.550 - Summary suspensions pursuant to Exchange Act Section 12(k)(1)(A).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to Exchange Act Section 12(k)(1)(A). 201.550 Section 201.550 Commodity and Securities Exchanges... Suspensions § 201.550 Summary suspensions pursuant to Exchange Act Section 12(k)(1)(A). (a) Petition for termination of suspension. Any person adversely affected by a suspension pursuant to Section 12(k)(1)(A)...

  17. 17 CFR 201.550 - Summary suspensions pursuant to Exchange Act Section 12(k)(1)(A).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to Exchange Act Section 12(k)(1)(A). 201.550 Section 201.550 Commodity and Securities Exchanges... Suspensions § 201.550 Summary suspensions pursuant to Exchange Act Section 12(k)(1)(A). (a) Petition for termination of suspension. Any person adversely affected by a suspension pursuant to Section 12(k)(1)(A)...

  18. Cross polarization caused by perturbed circular cross sections of waveguides and horn antennas

    NASA Astrophysics Data System (ADS)

    Lier, Erik

    1987-03-01

    The cross polarization caused by a perturbed cross section of the conical hybrid-mode horn is analyzed. The perturbed cross section is assumed to be slightly elliptical. The theory of Lier and Bergh (1986) for cross polarization in a smooth-walled waveguide supporting the TE11-mode is referred and applied to the HE11 mode as well. Simple analytical formulas which are sufficiently accurate for small ellipticites of the cross-section ellipse are presented. These show that the tolerances on the waveguide diameter are extremely strong, typically on the order of 0.02-0.04 mm in the horn throat for typical horn geometries at 12 GHz.

  19. Topological Optimization of Beam Cross Section by Employing Extrusion Constraint

    NASA Astrophysics Data System (ADS)

    Zuberi, Rehan H.; Zhengxing, Zuo; Kai, Long

    2010-05-01

    Optimal cross-section design of beams plays a characteristic role which signifies the rigidity of the member in bending, shear and torsion load conditions. Practically modern overhead crane girders, railway bridge girders or rail tracks etc. require constant cross-section along the axial direction. Conventional topological optimization modeling procedures in such cases prove inadequate for the reason that these procedures generate non-uniform topologies along the axis of the bending member. To examine optimal topology of those structural bending members which commonly possess constant cross-section along the axis the topology optimization with extrusion constraint is more appropriate. The extrusion constraint method suggests a fresh approach to investigate optimal topologies of beam cross-section under the influence of realistic loading condition across the section at the beginning of design cycle. Presented study is focused upon the influence of various configuration and location of the load and boundary conditions on the topology of the of the beam cross-section which was not possible prior to the materialization of the extrusion or stamping constraint method. Several realistic loads and boundary conditions have been applied on the 3D beam model and optimal cross-section topologies obtained have uniform compliance history and convergent solutions. The lowest compliance criteria have been suggested to choose topologies as furthers shape and size optimization candidates during beam design process.

  20. A genetic algorithm to reduce stream channel cross section data

    USGS Publications Warehouse

    Berenbrock, C.

    2006-01-01

    A genetic algorithm (GA) was used to reduce cross section data for a hypothetical example consisting of 41 data points and for 10 cross sections on the Kootenai River. The number of data points for the Kootenai River cross sections ranged from about 500 to more than 2,500. The GA was applied to reduce the number of data points to a manageable dataset because most models and other software require fewer than 100 data points for management, manipulation, and analysis. Results indicated that the program successfully reduced the data. Fitness values from the genetic algorithm were lower (better) than those in a previous study that used standard procedures of reducing the cross section data. On average, fitnesses were 29 percent lower, and several were about 50 percent lower. Results also showed that cross sections produced by the genetic algorithm were representative of the original section and that near-optimal results could be obtained in a single run, even for large problems. Other data also can be reduced in a method similar to that for cross section data.

  1. 56. CROSS SECTIONS OF CANAL AND TUNNELS. POWER CANAL, SALT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. CROSS SECTIONS OF CANAL AND TUNNELS. POWER CANAL, SALT RIVER RESERVOIR Courtesy of U.S.G.S., Reclamation Service - Roosevelt Power Canal & Diversion Dam, Parallels Salt River, Roosevelt, Gila County, AZ

  2. 8. VIEW OF CROSS SECTION OF THE EASTERNMOST WALL SEGMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF CROSS SECTION OF THE EASTERNMOST WALL SEGMENT THAT SHOWS THE TRENCHING AND 1960 PIPELINE CORRIDOR BETWEEN THE WALL SEGMENTS, LOOKING WEST-NORTHWEST - Rock Wall, North side of Battle Creek Canyon, Shingletown, Shasta County, CA

  3. 15. Power plant elevations and cross sections, sheet 64 of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Power plant elevations and cross sections, sheet 64 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  4. Photoionization cross section for He in the hyperspherical coordinate method

    SciTech Connect

    Miller, D.L.; Starace, A.F.

    1980-01-01

    In order to more fully explore the role of electron correlations in the photoionization process the hyperspherical coordinate method of Macek was employed in calculating photoionization cross sections of He. Results are presented and discussed. (WHK)

  5. Differential cross sections of positron–hydrogen collisions

    NASA Astrophysics Data System (ADS)

    Rong-Mei, Yu; Chun-Ying, Pu; Xiao-Yu, Huang; Fu-Rong, Yin; Xu-Yan, Liu; Li-Guang, Jiao; Ya-Jun, Zhou

    2016-07-01

    We make a detailed study on the angular differential cross sections of positron–hydrogen collisions by using the momentum-space coupled-channels optical (CCO) method for incident energies below the H ionization threshold. The target continuum and the positronium (Ps) formation channels are included in the coupled-channels calculations via a complex equivalent-local optical potential. The critical points, which show minima in the differential cross sections, as a function of the scattering angle and the incident energy are investigated. The resonances in the angular differential cross sections are reported for the first time in this energy range. The effects of the target continuum and the Ps formation channels on the different cross sections are discussed. Project supported by the Nanyang Normal University Science Foundation of China (Grant No. ZX2013017) and the National Natural Science Foundation of China (Grant Nos. 11174066, 61306007, and U1304114).

  6. 56. CROSS SECTION OF POWERHOUSE, PROJECT 1933, EXHIBIT F, SANTA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. CROSS SECTION OF POWERHOUSE, PROJECT 1933, EXHIBIT F, SANTA ANA POWERHOUSE NO. 1. SCE drawing no. 5206856 (no date; FERC no. 1933-46). - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA

  7. Photocopy of longitudinal, cross sections and roof plan of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of longitudinal, cross sections and roof plan of the C.B. & Q. R.R. roundhouse and locomotive shops. June 1980. - Chicago, Burlington & Quincy Railroad, Roundhouse & Shops, Broadway & Spring Streets, Aurora, Kane County, IL

  8. Photocopy of "sheet 6 of 8" showing cross section of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of "sheet 6 of 8" showing cross section of house, front elevation, fire finder stand, hip roof cap, and shiplap roof sheathing. - Badger Mountain Lookout, .125 mile northwest of Badger Mountain summit, East Wenatchee, Douglas County, WA

  9. 12. CLOSEUP VIEW OF CROSS SECTION OF SPILLWAY FIFTY FEET ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. CLOSE-UP VIEW OF CROSS SECTION OF SPILLWAY FIFTY FEET FROM LAKESHORE, SHOWING REMAINS OF SPILLWAY TIMBERS, LOOKING WEST - Three Bears Lake & Dams, North of Marias Pass, East Glacier Park, Glacier County, MT

  10. 4. DETAIL VIEW OF CROSS SECTION OF STRUCTURE, SHOWING EXTERIOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. DETAIL VIEW OF CROSS SECTION OF STRUCTURE, SHOWING EXTERIOR FACINGS LINED WITH RUBBLE BACKING AND EARTH INFILL, LOOKING EAST - Rock Wall, North side of Battle Creek Canyon, Shingletown, Shasta County, CA

  11. Local Deplanation Of Double Reinforced Beam Cross Section Under Bending

    NASA Astrophysics Data System (ADS)

    Baltov, Anguel; Yanakieva, Ana

    2015-12-01

    Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).

  12. Viscosity cross sections for the heavy noble gases

    NASA Astrophysics Data System (ADS)

    McEachran, Robert P.; Stauffer, Allan Daniel

    2015-04-01

    We have calculated viscosity cross sections for argon, krypton and xenon from zero to 1 keV using the phase shifts from our previous publication [R.P. McEachran, A.D. Stauffer, Eur. Phys. J. D 68, 153 (2014)] which presented total elastic and momentum transfer cross sections for these gases. As previously, we present simple analytic fits to our results to aid in modelling plasmas containing these atoms. By using the current results and those in reference [R.P. McEachran, A.D. Stauffer, Eur. Phys. J. D 68, 153 (2014)] the first two `partial cross sections' used in the general moment method of solving the Boltzmann equation can be obtained. The agreement of our viscosity cross sections with experimentally derived results indicates the overall reliability of our calculations.

  13. A new technique for dosimetry reaction cross-section evaluation

    SciTech Connect

    Badikov, S.A.

    2011-07-01

    Document available in abstract form only, full text of document follows: An objective of this paper is a unification of the procedure for dosimetry reaction cross-section evaluation. A set of requirements for the unified evaluation procedure is presented. A new code (ORTHO) was developed in order to meet these requirements. A statistical model, an algorithm, and the basic formulae employed in the code are described. The code was used for Ti48(n,p) reaction cross-section evaluation. The results of the evaluation are compared to International Reactor Dosimetry File (IRDF)-2002 data. The evaluated cross-sections and their correlations from this work are in good agreement with the IRDF-2002 evaluated data, whereas the uncertainties of the evaluated cross-sections are inconsistent. (authors)

  14. Extraordinarily Large Optical Cross Section for Localized Single Nanoresonator

    NASA Astrophysics Data System (ADS)

    Zhou, Ming; Shi, Lei; Zi, Jian; Yu, Zongfu

    2015-07-01

    Using an optical nanoresonator to realize extreme concentration of light at subwavelength nanoscale dimensions is of both fundamental and practical significance. Unfortunately, the optical cross section of an isotropic nanoresonator is determined by the resonant wavelength, which unfavorably limits the highest concentration ratio. Here we show that the cross section of a localized subwavelength resonator can be drastically enhanced by orders of magnitude. A single microscopic nanoresonator could exhibit a macroscopic optical cross section. We further show that the enhancement can be implemented in simple dielectric structures that are readily compatible with optoelectronic integration. The giant optical cross section of a nano-object provides a versatile platform to create extremely strong light-matter interactions at the nanoscale.

  15. 36. CROSS SECTIONAL VIEW OF ORIGINAL HORSE MESA DAM POWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. CROSS SECTIONAL VIEW OF ORIGINAL HORSE MESA DAM POWER PLANT, LOOKING NORTH. ONLY TWO OF THE THREE UNITS ARE VISIBLE - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  16. 20. CROSS SECTIONAL VIEW OF HORSE MESA, SHOWING RIGHT SPILLWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. CROSS SECTIONAL VIEW OF HORSE MESA, SHOWING RIGHT SPILLWAY SUPERSTRUCTURE AND CONCRETE PLACEMENT LINES August 2, 1927 - Horse Mesa Dam, Salt River, 65 miles East of Phoenix, Phoenix, Maricopa County, AZ

  17. Section B, general view of steel cross with new World ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Section B, general view of steel cross with new World Trade Center 7 in background, looking northwest. (BH) - World Trade Center Site, Bounded by Vesey, Church, Liberty Streets, & Route 9A, New York County, NY

  18. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  19. Scaling Cross Sections for Ion-atom Impact Ionization

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2003-06-06

    The values of ion-atom ionization cross sections are frequently needed for many applications that utilize the propagation of fast ions through matter. When experimental data and theoretical calculations are not available, approximate formulas are frequently used. This paper briefly summarizes the most important theoretical results and approaches to cross section calculations in order to place the discussion in historical perspective and offer a concise introduction to the topic. Based on experimental data and theoretical predictions, a new fit for ionization cross sections is proposed. The range of validity and accuracy of several frequently used approximations (classical trajectory, the Born approximation, and so forth) are discussed using, as examples, the ionization cross sections of hydrogen and helium atoms by various fully stripped ions.

  20. Totem Results on Elastic Scattering and Total Cross-Section

    NASA Astrophysics Data System (ADS)

    Kašpar, Jan

    2015-06-01

    TOTEM is an LHC experiment dedicated to forward hadronic physics. In this contribution, an update on two main parts of its physics programme is given: proton-proton elastic scattering and total cross-section.

  1. On the interweaving of partial cross sections of different parity

    NASA Technical Reports Server (NTRS)

    Devries, P. L.; George, T. F.

    1979-01-01

    Partial cross sections of definite parity, calculated for electronic-rotational energy transfer in the F +H2 collision system, interweave with increasing total angular momentum J. An explanation, in terms of diabatic curve crossings induced by the centrifugal potential in the body-fixed coordinate system, predicts the interweaving to occur only in systems having half-integer J.

  2. Differential double capture cross sections in p+He collisions

    SciTech Connect

    Schulz, M.; Brand, J. A.; Vajnai, T.

    2007-02-15

    We have measured differential double capture cross sections for 15 to 150 keV p+He collisions. We also analyzed differential double to single capture ratios, where we find pronounced peak structures. An explanation of these structures probably requires a quantum-mechanical description of elastic scattering between the projectile and the target nucleus. Strong final-state correlations have a large effect on the magnitude of the double capture cross sections.

  3. Top Quark Pair Production Cross Section at the Tevatron

    SciTech Connect

    Peters, Reinhild Yvonne

    2015-09-25

    The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron proton antiproton collider at Fermilab, has undergone intense studies in the last 20 years. Currently, CDF and D0 converge on their measurements of top-antitop quark production cross sections using the full Tevatron data sample. In these proceedings, the latest results on inclusive and differential measurements of top-antitop quark production cross sections at the Tevatron are reported.

  4. Absorption cross sections of the ClO dimer

    NASA Technical Reports Server (NTRS)

    Huder, K. J.; DeMore, W. B.

    1995-01-01

    The absorption cross sections of the ClO dimer, ClOOCl, are important to the photochemistry of ozone depletion in the Antarctic. In this work, new measurements were made of the dimer cross sections at 195 K. the results yield somewhat lower values in the long wavelength region, compared to those currently recommended in the NASA data evaluation (JPL 94-26). The corresponding solar photodissociation rates in the Antarctic are reduced by about 40%.

  5. Nucleon-nucleon cross sections in nuclear matter

    SciTech Connect

    Schulze, H.; Schnell, A.; Roepke, G.; Lombardo, U.

    1997-06-01

    We provide a microscopic calculation of neutron-proton and neutron-neutron cross sections in symmetric nuclear matter at various densities, using the Brueckner-Hartree-Fock approximation scheme with the Paris potential. We investigate separately the medium effects on the effective mass and on the scattering amplitude. We determine average cross sections suitable for application in the dynamical simulation of heavy ion collisions, including a parametrization of their energy and density dependence. {copyright} {ital 1997} {ital The American Physical Society}

  6. Experimental nuclear cross sections for spacecraft shield analysis

    NASA Technical Reports Server (NTRS)

    Peelle, R. W.

    1972-01-01

    Experiments have been performed to validate and to supplement the intranuclear cascade model as a method for estimating cross sections of importance to spacecraft shield design. The experimental situation is inconclusive particularly for neutron-producing reactions, but is relatively sound for reaction cross sections and for proton spectra at several hundred MeV at medium forward angles. Secondary photon contributions are imprecisely known.

  7. Thermoelastic damping in microrings with circular cross-section

    NASA Astrophysics Data System (ADS)

    Li, Pu; Fang, Yuming; Zhang, Jianrun

    2016-01-01

    Predicting thermoelastic damping (TED) is crucial in the design of high Q micro-resonators. Microrings are often critical components in many micro-resonators. Some analytical models for TED in microrings have already been developed in the past. However, the previous works are limited to the microrings with rectangular cross-section. The temperature field in the rectangular cross-section is one-dimensional. This paper deals with TED in the microrings with circular cross-section. The temperature field in the circular cross-section is two-dimensional. This paper first presents a 2-D analytical model for TED in the microrings with circular cross-section. Only the two-dimensional heat conduction in the circular cross-section is considered. The heat conduction along the circumferential direction of the microring is neglected in the 2-D model. Then the 2-D model has been extended to cover the circumferential heat conduction, and a 3-D analytical model for TED has been developed. The analytical results from the present 2-D and 3-D models show good agreement with the numerical results of FEM model. The limitations of the present 2-D analytical model are assessed.

  8. Differential Cross Sections for Positrons Scattered from Molecules

    NASA Astrophysics Data System (ADS)

    Przybyla, D. A.; Addo-Asah, W.; Kauppila, W. E.; Stein, T. S.

    1998-05-01

    We have measured relative quasi-elastic (elastic scattering plus vibrational and rotational excitations) differential cross sections (DCS's) for positrons scattered at 30^o to 135^o from CH_4, N_2, O_2, CO, CO2 , and SF6 at energies extending from below the positronium (Ps) formation thresholds to well above them.(D. A. Przybyla, Nucl. Instr. and Meth. in Phys. Res. B, to be pub.) For each molecule we find (by extrapolating our DCS's to 0^o and 180^o) that below the Ps formation threshold there are significant large angle contributions to the total quasi-elastic cross sections. This observation is consistent with Ps formation cross sections measured by our group(C. K. Kwan, Nucl. Instr. and Meth. in Phys. Res. B, to be pub.), where we make "upper limit" measurements using a beam-transmisson technique with the angular discrimination deliberately made as poor as possible. In that case, there are still significant upper limit cross section values below the Ps formation threshold which must be due to elastically scattered positrons removed from the beam by scattering into large angles and the backward hemisphere. Below the Ps formation threshold, molecules with the greatest large angle DCS's have "upper limit" cross sections that are the greatest percentage of the total cross section.

  9. General Constraints on Cross Sections Deduced from Surrogate Reactions

    SciTech Connect

    Younes, W

    2003-08-14

    Cross sections that cannot be measured in the laboratory, e.g. because the target lifetime is too short, can be inferred indirectly from a different reaction forming the same compound system, but with a more accessible beam/target combination (the ''surrogate-reaction'' technique). The reactions share the same compound system and a common decay mechanism, but they involve different formation processes. Therefore, an implicit constraint is imposed on the inferred cross section deduced from the measured surrogate-reaction data, through the common decay mechanism. In this paper, the mathematical consequences of this implicit constraint are investigated. General formulas are derived from upper and lower bounds on the inferred cross section, estimated from surrogate data in a procedure which does not require any modeling of the common decay process. As an example, the formulas developed here are applied to the case of the {sup 235}U(n,f) cross section, deduced from {sup 234}U(t,pf) surrogate data. The calculated bounds are not very tight in this particular case. However, by introducing a few qualitative assumptions about the physics of the fission process, meaningful bounds on the deduced cross section are obtained. Upper and lower limits for the cross-section ratio of the (n,f) reaction on the {sup 235}U isomer at E{sub x} = 77 eV relative to the (n,f) reaction on the ground state are also calculated. The generalization of this technique to other surrogate reactions is discussed.

  10. Studies of 54,56Fe Neutron Scattering Cross Sections

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Vanhoy, J. R.; French, A. J.; Henderson, S. L.; Howard, T. J.; Pecha, R. L.; Santonil, Z. C.; Crider, B. P.; Liu, S.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Ross, T. J.; Yates, S. W.

    2015-05-01

    Elastic and inelastic neutron scattering differential cross sections and γ-ray production cross sections have been measured on 54,56Fe at several incident energies in the fast neutron region between 1.5 and 4.7 MeV. All measurements were completed at the University of Kentucky Accelerator Laboratory (UKAL) using a 7-MV Model CN Van de Graaff accelerator, along with the neutron production and neutron and γ-ray detection systems located there. The facilities at UKAL allow the investigation of both elastic and inelastic scattering with nearly mono-energetic incident neutrons. Time-of-flight techniques were used to detect the scattered neutrons for the differential cross section measurements. The measured cross sections are important for fission reactor applications and also for testing global model calculations such as those found at ENDF, since describing both the elastic and inelastic scattering is important for determining the direct and compound components of the scattering mechanism. The γ-ray production cross sections are used to determine cross sections to unresolved levels in the neutron scattering experiments. Results from our measurements and comparisons to model calculations are presented.

  11. Methodology Series Module 3: Cross-sectional Studies

    PubMed Central

    Setia, Maninder Singh

    2016-01-01

    Cross-sectional study design is a type of observational study design. In a cross-sectional study, the investigator measures the outcome and the exposures in the study participants at the same time. Unlike in case–control studies (participants selected based on the outcome status) or cohort studies (participants selected based on the exposure status), the participants in a cross-sectional study are just selected based on the inclusion and exclusion criteria set for the study. Once the participants have been selected for the study, the investigator follows the study to assess the exposure and the outcomes. Cross-sectional designs are used for population-based surveys and to assess the prevalence of diseases in clinic-based samples. These studies can usually be conducted relatively faster and are inexpensive. They may be conducted either before planning a cohort study or a baseline in a cohort study. These types of designs will give us information about the prevalence of outcomes or exposures; this information will be useful for designing the cohort study. However, since this is a 1-time measurement of exposure and outcome, it is difficult to derive causal relationships from cross-sectional analysis. We can estimate the prevalence of disease in cross-sectional studies. Furthermore, we will also be able to estimate the odds ratios to study the association between exposure and the outcomes in this design. PMID:27293245

  12. Updating the IST-LISBON electron cross sections for nitrogen

    NASA Astrophysics Data System (ADS)

    Alves, L. L.; Sombreireiro, L.; Viegas, P.; Guerra, V.

    2013-09-01

    In this work we update the complete and consistent set of nitrogen (N2) electron-impact cross-section with the IST-LISBON database, available on the LXCat website. The update has extended, in energy scale up to 1 keV, the cross sections for effective momentum-transfer, excitation to electronic states and ionization. The set further accounts for excitation to rotational and vibrational excited states. Calculations using BOLSIG + with the new cross sections give swarm parameters in very good agreement with available experimental data for the reduced mobility, the characteristic energy and the reduced ionization coefficient, for a very extended E / N range up to 1000 Td. The influence of rotational excitations/de-excitations at low E / N and different rotational temperatures is discussed. A critical evaluation of similarities and differences with sets of N2 cross sections from other databases is carried out. Moreover, the procedure to de-convolute global cross sections into state-to-state vibrational level dependent cross sections is outlined and discussed. Work partially supported by FCT (Pest-OE/SADG/LA0010/2011).

  13. Absolute cross section for recoil detection of deuterium

    NASA Astrophysics Data System (ADS)

    Besenbacher, F.; Stensgaard, I.; Vase, P.

    1986-04-01

    The D( 4He, D) 4He cross section used for recoil detection of deuterium (D) has been calibrated on an absolute scale against the cross section of the D( 3He, α)p nuclear reaction which is often used for D profiling. For 4He energies ranging from 0.8 to ~1.8 MeV. the D( 4He, D) 4He cross section varies only slightly with incident energy and recoil angle θ (for 0° ⩽ 8 ⩽ 35°) and has a value of ~ 500 mb/sr which is significantly higher than the ~ 65 mb/sr c.m.s. cross section of the D( 3He, α)p nuclear reaction. For 4He energies ranging from ~ 1.9 to ~ 2.3 MeV, the D( 4He,D) 4He cross section exhibits a fairly narrow resonance peak (fwhm ~ 70 keV), with a maximum value (for θ = 0°) of ~ 8.5 b/sr, corresponding to a 4He energy of ~ 2130 keV. The large values of the cross section in connection with the described energy dependence makes the use of forward-recoil detection of D attractive for many purposes, e.g., D Jepth profiling (with an extreme gain in sensitivity), absolute concentration or coverage measurements, and lattice-location experiments by transmission channeling.

  14. Mental visualization of objects from cross-sectional images

    PubMed Central

    Wu, Bing; Klatzky, Roberta L.; Stetten, George D.

    2011-01-01

    We extended the classic anorthoscopic viewing procedure to test a model of visualization of 3D structures from 2D cross-sections. Four experiments were conducted to examine key processes described in the model, localizing cross-sections within a common frame of reference and spatiotemporal integration of cross sections into a hierarchical object representation. Participants used a hand-held device to reveal a hidden object as a sequence of cross-sectional images. The process of localization was manipulated by contrasting two displays, in-situ vs. ex-situ, which differed in whether cross sections were presented at their source locations or displaced to a remote screen. The process of integration was manipulated by varying the structural complexity of target objects and their components. Experiments 1 and 2 demonstrated visualization of 2D and 3D line-segment objects and verified predictions about display and complexity effects. In Experiments 3 and 4, the visualized forms were familiar letters and numbers. Errors and orientation effects showed that displacing cross-sectional images to a remote display (ex-situ viewing) impeded the ability to determine spatial relationships among pattern components, a failure of integration at the object level. PMID:22217386

  15. Updated ozone absorption cross section will reduce air quality compliance

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Evans, M. J.; Lewis, A. C.

    2015-12-01

    Photometric ozone measurements rely upon an accurate value of the ozone absorption cross section at 253.65 nm. This has recently been re-evaluated by Viallon et al. (2015) as 1.8 % smaller than the accepted value (Hearn, 1961) used for the preceding 50 years. Thus, ozone measurements that applied the older cross section systematically underestimate the amount of ozone in air. We correct the reported historical surface data from North America and Europe and find that this modest change in cross section has a significant impact on the number of locations that are out of compliance with air quality regulations if the air quality standards remain the same. We find 18, 23, and 20 % increases in the number of sites that are out of compliance with current US, Canadian, and European ozone air quality health standards for the year 2012. Should the new cross-section value be applied, it would impact attainment of air quality standards and compliance with relevant clean air acts, unless the air quality target values themselves were also changed proportionately. We draw attention to how a small change in gas metrology has a global impact on attainment and compliance with legal air quality standards. We suggest that further laboratory work to evaluate the new cross section is needed and suggest three possible technical and policy responses should the new cross section be adopted.

  16. Updated ozone absorption cross section will reduce air quality compliance

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Evans, M. J.; Lewis, A. C.

    2015-07-01

    Photometric ozone measurements rely upon an accurate value of the ozone absorption cross section at 253.65 nm. This has recently been reevaluated by Viallon et al. (2015) as 1.8 % smaller than the accepted value (Hearn, 1961) used for the preceding fifty years. Thus, ozone measurements that applied the older cross section systematically underestimate the amount of ozone in air. We correct the reported historical surface data from North America and Europe and find that this modest change in cross section has a significant impact on the number of locations that are out of compliance with air quality regulations if the air quality standards remain the same. We find 18, 23, and 20 % increases in the number of sites that are out of compliance with current US, Canadian, and European ozone air quality health standards for the year 2012. Should the new cross section value be applied, it would impact attainment of air quality standards and compliance with relevant clean air acts, unless the air quality target values themselves were also changed proportionately. We draw attention to how a small change in gas metrology has a global impact on attainment and compliance with legal air quality standards. We suggest that further laboratory work to evaluate the new cross section is needed and suggest three possible technical and policy responses should the new cross section be adopted.

  17. Solar-wind Ion-driven X-Ray Emission from Cometary and Planetary Atmospheres: Measurements and Theoretical Predictions of Charge-Exchange Cross-sections and Emission Spectra for O6+ + H2O, Co, Co2, Ch4, N2, NO, N2O, and Ar

    NASA Astrophysics Data System (ADS)

    Machacek, J. R.; Mahapatra, D. P.; Schultz, D. R.; Ralchenko, Yu.; Moradmand, A.; El Ghazaly, M. O. A.; Chutjian, A.

    2015-08-01

    Relevant to modeling and understanding X-ray emission from cometary and planetary atmospheres, total cross-sections for 1.17 and 2.33 keV/u O6+ colliding with H2O, CO, CO2, CH4, N2, NO, N2O, and Ar have been measured for the processes of single, double, and triple charge exchanges. Using these measurements as benchmarks, synthetic emission spectra spanning the X-ray, UV, and visible range have been calculated based on theoretical treatment of the transfer of between one and six electrons from the target neutrals to the projectile ion, followed by radiative and non-radiative decay of the highly excited states produced in these collisions. The results help add to the base of knowledge required to simulate ion-neutral processes in astrophysical environments; refine the present understanding of these fundamental atomic processes; and guide future observations, laboratory measurements, and theoretical predictions.

  18. Calculation of cross sections for binary reactions between heavy ion projectiles and heavy actinide targets

    SciTech Connect

    Hoffman, D.C.; Hoffman, M.M.

    1990-11-01

    The computer program, described in this report, is identified as PWAVED5. It was developed to calculate cross sections for nucleon transfer reactions in low energy heavy ion bombardments. The objective was to calculate cross sections that agree with experimental results for ions of different charge and mass and to develop a predictive capability. It was undertaken because previous heavy ion calculations, for which programs were readily available, appeared to focus primarily on reactions resulting in compound nucleus formation and were not particularly applicable to calculations of binary reaction cross sections at low interaction energies. There are to principal areas in which this computation differs from several other partial wave calculations of heavy-ion reaction cross sections. First, this program is designed specifically to calculate cross sections for nucleon exchange interactions and to exclude interactions that are expected to result in fusion of the two nuclei. A second major difference in this calculation is the use of a statistical distribution to assign the total interaction cross section to individual final mass states.

  19. A Multigroup Reaction Cross-Section Collapsing Code and Library of 154-Group Fission-Product Cross Sections.

    Energy Science and Technology Software Center (ESTSC)

    1983-03-23

    Version 01/02 The code reads multigroup cross sections from a compatible data file and collapses user-selected reaction cross sections to any few-group structure using one of a variety of user neutron flux spectrum options given below: Option Flux description 1 Built-in function including Maxwellian, fission, fusion and slowing-down regions and requiring user-specified parameters and energy-region boundaries. 2 Set of log-log flux-energy interpolation points read from input cross-section data file. 3 Set of log-log flux-energy interpolationmore » points read from user-supplied card input. 4 - 6 Histogram flux values read from user-supplied card input in arbitrary group structure in units of flux-per unit-energy, flux-per-unit lethargy, or integral group flux. LAFPX-E may be used to collapse any set of multigroup reaction cross sections furnished in the required format. However, the code was developed for, and is furnished with, a library of 154-group fission-product cross sections processed from ENDF/B-IV with a typical light water reactor (LWR) flux spectrum and temperature. Four-group radiative capture cross sections produced for LWR calculations are tabulated in the code documentation and are incorporated in the EPRI-CINDER data library, RSIC Code Package CCC-309.« less

  20. A design method for entrance sections of transonic wind tunnels with rectangular cross sections

    NASA Technical Reports Server (NTRS)

    Lionel, L.; Mcdevitt, J. B.

    1975-01-01

    A mathematical technique developed to design entrance sections for transonic or high-speed subsonic wind tunnels with rectangular cross sections is discribed. The transition from a circular cross-section setting chamber to a rectangular test section is accomplished smoothly so as not to introduce secondary flows (vortices or boundary-layer separation) into a uniform test stream. The results of static-pressure measurements in the transition region and of static and total-pressure surveys in the test section of a pilot model for a new facility at the Ames Research Center are presented.

  1. ACTIV87: Fast Neutron Activation Cross Section File

    Energy Science and Technology Software Center (ESTSC)

    1993-08-01

    4. HISTORICAL BACKGROUND AND INFORMATION ACTIV87 is a compilation of fast neutron induced activation reaction cross-sections. The compilation covers energies from threshold to 20 MeV and is based on evaluated data taken from other evaluated data libraries and individual evaluations. The majority of these evaluations were performed by using available experimental data. The aforementioned available experimental data were used in the selection of needed parameters for theoretical computations and for normalizing the results of suchmore » computations. Theoretical calculations were also used for interpolation and extrapolation of experimental cross-section data. All of the evaluated data curves were compared with experimental data that had been reported over the four year period preceding 1987. Only those cross-sections not in contradiction with experimental data that was current in 1987 were retained in the activation file, ACTIV87. In cases of several conflicting evaluations, that evaluation was chosen which best corresponded to the experimental data. A few evaluated curves were renormalized in accordance with the results of the latest precision measurements. 5. APPLICATION OF THE DATA 6. SOURCE AND SCOPE OF DATA The following libraries and individual files of evaluated neutron cross-section data were used for the selection of the activation cross-sections: the BOSPOR Library, the Activation File of the Evaluated Nuclear Data Library, the Evaluated Neutron Data File (ENDF/B-V) Activation File, the International Reactor Dosimetry File (IRDF-82), and individual evaluations carried out under various IAEA research contracts. The file of selected reactions contains 206 evaluated cross-section curves of the (n,2n), (n,p) and (n,a) reactions which lead to radioactive products and may be used in many practical applications of neutron activation analysis. Some competing activation reactions, usually with low cross-section values, are given for completeness.« less

  2. /sup 242/Am/sup m/ fission cross section

    SciTech Connect

    Browne, J.C.; White, R.M.; Howe, R.E.; Landrum, J.H.; Dougan, R.J.; Dupzyk, R.J.

    1984-06-01

    The neutron-induced fission cross section of /sup 242/Am/sup m/ has been measured over the energy region from 10/sup -3/ eV to approx.20 MeV in a series of experiments utilizing a linac-produced ''white'' neutron source and a monoenergetic source of 14.1 MeV neutrons. The cross section was measured relative to that of /sup 235/U in the thermal (0.001 to approx.3 eV) and high energy (1 keV to approx.20 MeV) regions and normalized to the ENDF/B-V /sup 235/U(n,f) evaluated cross section. In the resonance energy region (0.5 eV to 10 keV) the neutron flux was measured using thin lithium glass scintillators and the relative cross section thus obtained was normalized to the thermal energy measurement. This procedure allowed a consistency check between the thermal and high energy data. The cross section data have a statistical accuracy of approx.0.5% at thermal energies and in the 1-MeV energy region, and a systematic uncertainty of approx.5%. We confirmed that /sup 242/Am/sup m/ has the largest thermal fission cross section known with a 2200 m/sec value of 6328 b. Results of a Breit-Wigner sum-of-single-levels analysis of 48 fission resonances up to 20 eV are presented and the connection of these resonance properties to the large thermal cross section is discussed. Our measurements are compared with previously reported results.

  3. Measurement of the 242Pu neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  4. Improved Actinide Neutron Capture Cross Sections Using Accelerator Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Bauder, W.; Pardo, R. C.; Kondev, F. G.; Kondrashev, S.; Nair, C.; Nusair, O.; Palchan, T.; Scott, R.; Seweryniak, D.; Vondrasek, R.; Collon, P.; Paul, M.; Youinou, G.; Salvatores, M.; Palmotti, G.; Berg, J.; Maddock, T.; Imel, G.

    2014-09-01

    The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are developing a technique to inject solid material into the ECR with laser ablation. With laser ablation, we can better control material injection and potentially increase efficiency in the ECR, thus creating less contamination in the source and reducing cross talk. I will present work on the laser ablation system and preliminary results from our AMS measurements. The MANTRA (Measurement of Actinide Neutron TRAnsmutations) project will improve energy-integrated neutron capture cross section data across the actinide region. These data are incorporated into nuclear reactor models and are an important piece in understanding Generation IV reactor designs. We will infer the capture cross sections by measuring isotopic ratios from actinide samples, irradiated in the Advanced Test Reactor at INL, with Accelerator Mass Spectrometry (AMS) at ATLAS (ANL). The superior sensitivity of AMS allows us to extract multiple cross sections from a single sample. In order to analyze the large number of samples needed for MANTRA and to meet the goal of extracting multiple cross sections per sample, we have made a number of modifications to the AMS setup at ATLAS. In particular, we are

  5. Positron-proton to electron-proton elastic cross section ratios from CLAS

    NASA Astrophysics Data System (ADS)

    Adikaram, Dasuni; Rimal, Dipak; Weinstein, Larry; Raue, Brian

    2014-03-01

    There is a significant discrepancy between the ratio of the electromagnetic form factors of the proton measured by the Rosenbluth and the polarization transfer technique. The most likely explanation of this discrepancy is the inclusion of two-photon exchange (TPE) amplitude contributions to the elastic electron-proton cross section. The CLAS TPE experiment measured the TPE contribution in the wide range of Q2 and ɛ range using a comparison of positron-proton to electron-proton elastic cross sections (R = σ (e+ p) / σ (e- p)). Preliminary results will be presented, along with the estimations of systematic uncertainties. A detailed comparison of new results with previous R measurements and theoretical calculations will be presented. Implications of the CLAS TPE measurements on the elastic electron-proton cross section will be also discussed.

  6. Cross-section measurement of charged-pion photoproduction from hydrogen and deuterium.

    PubMed

    Zhu, L Y; Arrington, J; Averett, T; Beise, E; Calarco, J; Chang, T; Chen, J P; Chudakov, E; Coman, M; Clasie, B; Crawford, C; Dieterich, S; Dohrmann, F; Dutta, D; Fissum, K; Frullani, S; Gao, H; Gilman, R; Glashausser, C; Gomez, J; Hafidi, K; Hansen, J-O; Higinbotham, D W; Holt, R J; De Jager, C W; Jiang, X; Kinney, E; Kramer, K; Kumbartzki, G; LeRose, J; Liyanage, N; Mack, D; Markowitz, P; McCormick, K; Meekins, D; Meziani, Z-E; Michaels, R; Mitchell, J; Nanda, S; Potterveld, D; Ransome, R; Reimer, P E; Reitz, B; Saha, A; Schulte, E C; Seely, J; Sirca, S; Strauch, S; Sulkosky, V; Vlahovic, B; Weinstein, L B; Wijesooriya, K; Williamson, C F; Wojtsekhowski, B; Xiang, H; Xiong, F; Xu, W; Zeng, J; Zheng, X

    2003-07-11

    We have measured the differential cross section for the gamman-->pi(-)p and gammap-->pi(+)n reactions at theta(c.m.)=90 degrees in the photon energy range from 1.1 to 5.5 GeV at Jefferson Lab (JLab). The data at E(gamma) greater, similar 3.3 GeV exhibit a global scaling behavior for both pi(-) and pi(+) photoproduction, consistent with the constituent counting rule and the existing pi(+) photoproduction data. Possible oscillations around the scaling value are suggested by these new data. The data show enhancement in the scaled cross section at a center-of-mass energy near 2.2 GeV. The cross section ratio of exclusive pi(-) to pi(+) photoproduction at high energy is consistent with the prediction based on one-hard-gluon-exchange diagrams. PMID:12906473

  7. Cross-ligation and exchange reactions catalyzed by hairpin ribozymes.

    PubMed Central

    Komatsu, Y; Koizumi, M; Sekiguchi, A; Ohtsuka, E

    1993-01-01

    The negative strand of the satellite RNA of tobacco ringspot virus (sTobRV(-)) contains a hairpin catalytic domain that shows self-cleavage and self-ligation activities in the presence of magnesium ions. We describe here that the minimal catalytic domain can catalyze a cross-ligation reaction between two kinds of substrates in trans. The cross-ligated product increased when the reaction temperature was decreased during the reaction from 37 degrees C to 4 degrees C. A two-stranded hairpin ribozyme, divided into two fragments between G45 and U46 in a hairpin loop, showed higher ligation activity than the nondivided ribozyme. The two stranded ribozyme also catalyzed an exchange reaction of the 3'-portion of the cleavage site. Images PMID:8441626

  8. Inclined Bodies of Various Cross Sections at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Jorgensen, Leland H.

    1958-01-01

    To aid in assessing effects of cross-sectional shape on body aerodynamics, the forces and moments have been measured for bodies with circular, elliptic, square, and triangular cross sections at Mach numbers 1.98 and 3.88. Results for bodies with noncircular cross sections have been compared with results for bodies of revolution having the same axial distribution of cross-sectional area (and, thus, the same equivalent fineness ratio). Comparisons have been made for bodies of fineness ratios 6 and 10 at angles of attack from 0 deg to about 20 deg and for Reynolds numbers, based on body length, of 4.0 x 10(exp 6) and 6.7 x 10(exp 6). The results of this investigation show that distinct aerodynamic advantages can be obtained by using bodies with noncircular cross sections. At certain angles of bank, bodies with elliptic, square, and triangular cross sections develop considerably greater lift and lift-drag ratios than equivalent bodies of revolution. For bodies with elliptic cross sections, lift and pitching-moment coefficients can be correlated with corresponding coefficients for equivalent circular bodies. It has been found that the ratios of lift and pitching-moment coefficients for an elliptic body to those for an equivalent circular body are practically constant with change in both angle of attack and Mach number. These lift and moment ratios are given very accurately by slender-body theory. As a result of this agreement, the method of NACA Rep. 1048 for computing forces and moments for bodies of revolution has been simply extended to bodies with elliptic cross sections. For the cases considered (elliptic bodies of fineness ratios 6 and 10 having cross-sectional axis ratios of 1.5 and 2), agreement of theory with experiment is very good. As a supplement to the force and moment results, visual studies of the flow over bodies have been made by use of the vapor-screen, sublimation, and white-lead techniques. Photographs from these studies are included in the report.

  9. Can cross sections be accurately known for priori?

    SciTech Connect

    Pigni,M.T.; Dietrich, F.S.; Herman, M.; Oblozinsky, P.

    2008-06-24

    Distinct maxima and minima in the neutron total cross section uncertainties were observed in our large scale covariance calculations using a spherical optical potential. In this contribution we investigate the physical origin of this oscillating structure. Specifically, we analyze the case of neutron reactions on {sup 56}Fe, for which total cross section uncertainties are characterized by the presence of five distinct minima at 0.1, 1.1, 5, 25, and 70 MeV. To investigate their origin, we calculated total cross sections by perturbing the real volume depth V{sub v} by its expected uncertainty {+-}{Delta}V{sub v}. Inspecting the effect of this perturbation on the partial wave cross sections we found that the first minimum (at 0.1 MeV) is exclusively due to the contribution of the s-wave. On the other hand, the same analysis at 1.1 MeV showed that the minimum is the result of the interplay between s-, p-, and d-waves; namely the change in the s-wave happens to be counterbalanced by changes in the p- and d-waves. Similar considerations can be extended for the third minimum, although it can be also explained in terms of the Ramsauer effect as well as the other ones (at 25 and 70 MeV). We discuss the potential importance of these minima for practical applications as well as the implications of this work for the uncertainties in total and absorption cross sections.

  10. EDDIX--a database of ionisation double differential cross sections.

    PubMed

    MacGibbon, J H; Emerson, S; Liamsuwan, T; Nikjoo, H

    2011-02-01

    The use of Monte Carlo track structure is a choice method in biophysical modelling and calculations. To precisely model 3D and 4D tracks, the cross section for the ionisation by an incoming ion, double differential in the outgoing electron energy and angle, is required. However, the double differential cross section cannot be theoretically modelled over the full range of parameters. To address this issue, a database of all available experimental data has been constructed. Currently, the database of Experimental Double Differential Ionisation Cross sections (EDDIX) contains over 1200 digitalised experimentally measured datasets from the 1960s to present date, covering all available ion species (hydrogen to uranium) and all available target species. Double differential cross sections are also presented with the aid of an eight parameter functions fitted to the cross sections. The parameters include projectile species and charge, target nuclear charge and atomic mass, projectile atomic mass and energy, electron energy and deflection angle. It is planned to freely distribute EDDIX and make it available to the radiation research community for use in the analytical and numerical modelling of track structure. PMID:21113060