Science.gov

Sample records for exchange factor gnom

  1. Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis.

    PubMed

    Naramoto, Satoshi; Otegui, Marisa S; Kutsuna, Natsumaro; de Rycke, Riet; Dainobu, Tomoko; Karampelias, Michael; Fujimoto, Masaru; Feraru, Elena; Miki, Daisuke; Fukuda, Hiroo; Nakano, Akihiko; Friml, Jiří

    2014-07-01

    GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants. PMID:25012191

  2. Insights into the Localization and Function of the Membrane Trafficking Regulator GNOM ARF-GEF at the Golgi Apparatus in Arabidopsis[W

    PubMed Central

    Naramoto, Satoshi; Otegui, Marisa S.; Kutsuna, Natsumaro; de Rycke, Riet; Dainobu, Tomoko; Karampelias, Michael; Fujimoto, Masaru; Feraru, Elena; Miki, Daisuke; Fukuda, Hiroo; Nakano, Akihiko; Friml, Jiří

    2014-01-01

    GNOM is one of the most characterized membrane trafficking regulators in plants, with crucial roles in development. GNOM encodes an ARF-guanine nucleotide exchange factor (ARF-GEF) that activates small GTPases of the ARF (ADP ribosylation factor) class to mediate vesicle budding at endomembranes. The crucial role of GNOM in recycling of PIN auxin transporters and other proteins to the plasma membrane was identified in studies using the ARF-GEF inhibitor brefeldin A (BFA). GNOM, the most prominent regulator of recycling in plants, has been proposed to act and localize at so far elusive recycling endosomes. Here, we report the GNOM localization in context of its cellular function in Arabidopsis thaliana. State-of-the-art imaging, pharmacological interference, and ultrastructure analysis show that GNOM predominantly localizes to Golgi apparatus. Super-resolution confocal live imaging microscopy identified GNOM and its closest homolog GNOM-like 1 at distinct subdomains on Golgi cisternae. Short-term BFA treatment stabilizes GNOM at the Golgi apparatus, whereas prolonged exposures results in GNOM translocation to trans-Golgi network (TGN)/early endosomes (EEs). Malformed TGN/EE in gnom mutants suggests a role for GNOM in maintaining TGN/EE function. Our results redefine the subcellular action of GNOM and reevaluate the identity and function of recycling endosomes in plants. PMID:25012191

  3. An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana

    PubMed Central

    Doyle, Siamsa M.; Haeger, Ash; Vain, Thomas; Rigal, Adeline; Viotti, Corrado; Łangowska, Małgorzata; Ma, Qian; Friml, Jiří; Raikhel, Natasha V.; Hicks, Glenn R.; Robert, Stéphanie

    2015-01-01

    Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF–defective mutants gnom-like 1 (gnl1-1) and gnom (van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER)–Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development. PMID:25646449

  4. FACTORS AFFECTING AIR EXCHANGE IN TWO HOUSES

    EPA Science Inventory

    Air exchange rate is critical to determining the relationship between indoor and outdoor concentrations of hazardous pollutants. Approximately 150 air exchange experiments were completed in two residences: a two-story detached house located in Redwood City, CA and a three-story...

  5. Critical Success Factors in a TRIDEM Exchange

    ERIC Educational Resources Information Center

    Hauck, Mirjam

    2007-01-01

    Computer-mediated-communication (CMC) tools allowing learners to be in contact with native speakers of their target language in other locations are becoming increasingly flexible, often combining different modes of communication in a single web- and internet-based environment. The literature on telecollaborative exchanges reveals, however, that…

  6. Unbiased isotope equilibrium factors from partial isotope exchange experiments in 3-exchange site systems

    NASA Astrophysics Data System (ADS)

    Agrinier, Pierre; Javoy, Marc

    2016-09-01

    Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high

  7. RADGEN: A radiation exchange factor generator for rod bundles

    SciTech Connect

    Rector, D.R.

    1987-10-01

    The RADGEN computer program has been developed at Pacific Northwest Laboratory (PNL) to generate input required for the thermal radiation models used in the COBRA-SFS (Spent Fuel Storage) computer program. The COBRA-SFS program uses radiation exchange factors to describe the net amount of energy transferred from each surface to every other surface in an enclosure. The RADGEN program generates radiation exchange factors for arrays of rods on a square or triangular pitch as well as open channel geometries. This report describes the input requirements for the RADGEN code, which may be executed in a batch or interactive mode, and outlines the solution procedure used to obtain the exchange factors. 4 refs., 25 figs., 13 tabs.

  8. The nucleotide exchange factors of Hsp70 molecular chaperones

    PubMed Central

    Bracher, Andreas; Verghese, Jacob

    2015-01-01

    Molecular chaperones of the Hsp70 family form an important hub in the cellular protein folding networks in bacteria and eukaryotes, connecting translation with the downstream machineries of protein folding and degradation. The Hsp70 folding cycle is driven by two types of cochaperones: J-domain proteins stimulate ATP hydrolysis by Hsp70, while nucleotide exchange factors (NEFs) promote replacement of Hsp70-bound ADP with ATP. Bacteria and organelles of bacterial origin have only one known NEF type for Hsp70, GrpE. In contrast, a large diversity of Hsp70 NEFs has been discovered in the eukaryotic cell. These NEFs belong to the Hsp110/Grp170, HspBP1/Sil1, and BAG domain protein families. In this short review we compare the structures and molecular mechanisms of nucleotide exchange factors for Hsp70 and discuss how these cochaperones contribute to protein folding and quality control in the cell. PMID:26913285

  9. Two-photon exchange corrections to the pion form factor

    DOE PAGESBeta

    Peter G. Blunden; Melnitchouk, Wally; Tjon, John A.

    2010-01-06

    Here, we compute two-photon exchange corrections to the electromagnetic form factor of the pion, taking into account the finite size of the pion. Compared to the soft-photon approximation for the infrared divergent contribution which neglects hadron structure effects, the corrections are found to be ≲ 1% for small Q2 (Q2 < 0.1 GeV2), but increase to several percent for Q2 ≳ 1 GeV2 at extreme backward angles.

  10. Scambio, a novel guanine nucleotide exchange factor for Rho

    PubMed Central

    Curtis, Christina; Hemmeryckx, Bianca; Haataja, Leena; Senadheera, Dinithi; Groffen, John; Heisterkamp, Nora

    2004-01-01

    Background Small GTPases of the Rho family are critical regulators of various cellular functions including actin cytoskeleton organization, activation of kinase cascades and mitogenesis. For this reason, a major objective has been to understand the mechanisms of Rho GTPase regulation. Here, we examine the function of a novel protein, Scambio, which shares homology with the DH-PH domains of several known guanine nucleotide exchange factors for Rho family members. Results Scambio is located on human chromosome 14q11.1, encodes a protein of around 181 kDa, and is highly expressed in both heart and skeletal muscle. In contrast to most DH-PH-domain containing proteins, it binds the activated, GTP-bound forms of Rac and Cdc42. However, it fails to associate with V14RhoA. Immunofluorescence studies indicate that Scambio and activated Rac3 colocalize in membrane ruffles at the cell periphery. In accordance with these findings, Scambio does not activate either Rac or Cdc42 but rather, stimulates guanine nucleotide exchange on RhoA and its close relative, RhoC. Conclusion Scambio associates with Rac in its activated conformation and functions as a guanine nucleotide exchange factor for Rho. PMID:15107133

  11. Factors influencing the stream-aquifer flow exchange coefficient.

    PubMed

    Morel-Seytoux, Hubert J; Mehl, Steffen; Morgado, Kyle

    2014-01-01

    Knowledge of river gain from or loss to a hydraulically connected water table aquifer is crucial in issues of water rights and also when attempting to optimize conjunctive use of surface and ground waters. Typically in groundwater models this exchange flow is related to a difference in head between the river and some point in the aquifer, through a "coefficient." This coefficient has been defined differently as well as the location for the head in the aquifer. This paper proposes a new coefficient, analytically derived, and a specific location for the point where the aquifer head is used in the difference. The dimensionless part of the coefficient is referred to as the SAFE (stream-aquifer flow exchange) dimensionless conductance. The paper investigates the factors that influence the value of this new conductance. Among these factors are (1) the wetted perimeter of the cross-section, (2) the degree of penetration of the cross-section, and (3) the shape of the cross-section. The study shows that these factors just listed are indeed ordered in their respective level of importance. In addition the study verifies that the analytical correct value of the coefficient is matched by finite difference simulation only if the grid system is sufficiently fine. Thus the use of the analytical value of the coefficient is an accurate and efficient alternative to ad hoc estimates for the coefficient typically used in finite difference and finite element methods. PMID:24010703

  12. Rho-guanine nucleotide exchange factors during development

    PubMed Central

    Mulinari, Shai

    2010-01-01

    The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems. PMID:21686118

  13. Two-photon exchange corrections to the pion form factor

    SciTech Connect

    Peter G. Blunden; Melnitchouk, Wally; Tjon, John A.

    2010-01-06

    Here, we compute two-photon exchange corrections to the electromagnetic form factor of the pion, taking into account the finite size of the pion. Compared to the soft-photon approximation for the infrared divergent contribution which neglects hadron structure effects, the corrections are found to be ≲ 1% for small Q2 (Q2 < 0.1 GeV2), but increase to several percent for Q2 ≳ 1 GeV2 at extreme backward angles.

  14. Factors contributing to attitude exchange amongst preservice elementary teachers

    NASA Astrophysics Data System (ADS)

    Palmer, David H.

    2002-01-01

    Previous research has shown that elementary education majors often dislike science and lack confidence in their ability to teach it. This is an important problem because students who hold these attitudes are likely to avoid teaching science, or teach it poorly, when they become teachers. It is therefore necessary to identify preservice elementary teachers who hold negative attitudes towards science, and attempt to convert these attitudes to positive before they become teachers. This study was designed to identify students whose attitudes had changed from negative to positive (i.e., attitude exchange had occurred) after participating in a one-semester elementary science education course, and to identify the course factors that were responsible. Four participants were individually interviewed. The transcripts indicated that attitude exchange had occurred for each of the four students. Each student described several features of the course that had a positive influence. These were of three main types: personal attributes of the tutor, specific teaching strategies, and external validation. It was proposed that many of the individual factors were effective because they represented either performance accomplishments or vicarious experience as defined by Bandura (Psychological Review, 84, 1977, 191-215).

  15. RasGRP Ras guanine nucleotide exchange factors in cancer

    PubMed Central

    Ksionda, Olga; Limnander, Andre

    2014-01-01

    Summary RasGRP proteins are activators of Ras and other related small GTPases by the virtue of functioning as guanine nucleotide exchange factors (GEFs). In vertebrates, four RasGRP family members have been described. RasGRP-1 through −4 share many structural domains but there are also subtle differences between each of the different family members. Whereas SOS RasGEFs are ubiquitously expressed, RasGRP proteins are expressed in distinct patterns, such as in different cells of the hematopoietic system and in the brain. Most studies have concentrated on the role of RasGRP proteins in the development and function of immune cell types because of the predominant RasGRP expression profiles in these cells and the immune phenotypes of mice deficient for Rasgrp genes. However, more recent studies demonstrate that RasGRPs also play an important role in tumorigenesis. Examples are skin- and hematological-cancers but also solid malignancies such as melanoma or prostate cancer. These novel studies bring up many new and unanswered questions related to the molecular mechanism of RasGRP-driven oncogenesis, such as new receptor systems that RasGRP appears to respond to as well as regulatory mechanism for RasGRP expression that appear to be perturbed in these cancers. Here we will review some of the known aspects of RasGRP biology in lymphocytes and will discuss the exciting new notion that RasGRP Ras exchange factors play a role in oncogenesis downstream of various growth factor receptors. PMID:24744772

  16. Vav family exchange factors: an integrated regulatory and functional view.

    PubMed

    Bustelo, Xosé R

    2014-01-01

    The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets. PMID:25483299

  17. Vav family exchange factors: an integrated regulatory and functional view

    PubMed Central

    Bustelo, Xosé R

    2014-01-01

    The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets. PMID:25483299

  18. The Solar Wind Charge-exchange Production Factor for Hydrogen

    NASA Astrophysics Data System (ADS)

    Kuntz, K. D.; Collado-Vega, Y. M.; Collier, M. R.; Connor, H. K.; Cravens, T. E.; Koutroumpa, D.; Porter, F. S.; Robertson, I. P.; Sibeck, D. G.; Snowden, S. L.; Thomas, N. E.; Walsh, B. M.

    2015-08-01

    The mean production factor, or broadband averaged cross-section, for solar wind charge-exchange (SWCX) with hydrogen producing emission in the ROSAT \\frac{1}{4} keV (R12) band is (3.8+/- 0.2)× {10}-20 count degree-2 cm4. The production factor is expected to be temporally variable, and that variation is roughly 15%. These values are derived from a comparison of the long-term (background) enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8-4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of \\frac{1}{4} keV band flux that is due to the Local Hot Bubble, for planning future observations in the \\frac{1}{4} keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the \\frac{3}{4} keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally, that recent efforts to correlate XMM-Newton observing geometry with magnetosheath SWCX emission in the oxygen lines have been, quite literally, misguided. Simulations of the inner heliosphere show that broader efforts to correlate heliospheric SWCX with local solar wind parameters are unlikely to produce useful results.

  19. Design of exchange-correlation functionals through the correlation factor approach

    SciTech Connect

    Pavlíková Přecechtělová, Jana E-mail: Matthias.Ernzerhof@UMontreal.ca

    2015-10-14

    The correlation factor model is developed in which the spherically averaged exchange-correlation hole of Kohn-Sham theory is factorized into an exchange hole model and a correlation factor. The exchange hole model reproduces the exact exchange energy per particle. The correlation factor is constructed in such a manner that the exchange-correlation energy correctly reduces to exact exchange in the high density and rapidly varying limits. Four different correlation factor models are presented which satisfy varying sets of physical constraints. Three models are free from empirical adjustments to experimental data, while one correlation factor model draws on one empirical parameter. The correlation factor models are derived in detail and the resulting exchange-correlation holes are analyzed. Furthermore, the exchange-correlation energies obtained from the correlation factor models are employed to calculate total energies, atomization energies, and barrier heights. It is shown that accurate, non-empirical functionals can be constructed building on exact exchange. Avenues for further improvements are outlined as well.

  20. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  1. One-pion exchange current effects on magnetic form factor in the relativistic formalism

    NASA Astrophysics Data System (ADS)

    Zhang, Cun; Liu, Jian; Ren, Zhongzhou

    2016-08-01

    One-pion exchange current effects on the magnetic form factors of some odd nuclei are studied in the relativistic formalism. The Dirac wave functions of nucleons are calculated from the relativistic mean-field theory. After fitting to experimental data by quenching factors, it is found that taking the one-pion exchange currents into account gives a better description of the magnetic form factor. The root-mean-square radii of the valance nucleon orbits are also calculated in RMF model, which coincide with experimental radii extracted with meson exchange current corrections.

  2. Risk factors for transient dysfunction of gas exchange after cardiac surgery

    PubMed Central

    Rodrigues, Cristiane Delgado Alves; Moreira, Marcos Mello; Lima, Núbia Maria Freire Vieira; de Figueirêdo, Luciana Castilho; Falcão, Antônio Luis Eiras; Petrucci, Orlando; Dragosavac, Desanka

    2015-01-01

    Objective A retrospective cohort study was preformed aiming to verify the presence of transient dysfunction of gas exchange in the postoperative period of cardiac surgery and determine if this disorder is linked to cardiorespiratory events. Methods We included 942 consecutive patients undergoing cardiac surgery and cardiac procedures who were referred to the Intensive Care Unit between June 2007 and November 2011. Results Fifteen patients had acute respiratory distress syndrome (2%), 199 (27.75%) had mild transient dysfunction of gas exchange, 402 (56.1%) had moderate transient dysfunction of gas exchange, and 39 (5.4%) had severe transient dysfunction of gas exchange. Hypertension and cardiogenic shock were associated with the emergence of moderate transient dysfunction of gas exchange postoperatively (P=0.02 and P=0.019, respectively) and were risk factors for this dysfunction (P=0.0023 and P=0.0017, respectively). Diabetes mellitus was also a risk factor for transient dysfunction of gas exchange (P=0.03). Pneumonia was present in 8.9% of cases and correlated with the presence of moderate transient dysfunction of gas exchange (P=0.001). Severe transient dysfunction of gas exchange was associated with patients who had renal replacement therapy (P=0.0005), hemotherapy (P=0.0001), enteral nutrition (P=0.0012), or cardiac arrhythmia (P=0.0451). Conclusion Preoperative hypertension and cardiogenic shock were associated with the occurrence of postoperative transient dysfunction of gas exchange. The preoperative risk factors included hypertension, cardiogenic shock, and diabetes. Postoperatively, pneumonia, ventilator-associated pneumonia, renal replacement therapy, hemotherapy, and cardiac arrhythmia were associated with the appearance of some degree of transient dysfunction of gas exchange, which was a risk factor for reintubation, pneumonia, ventilator-associated pneumonia, and renal replacement therapy in the postoperative period of cardiac surgery and cardiac

  3. Advanced view factor analysis method for radiation exchange

    NASA Astrophysics Data System (ADS)

    Park, Sookuk; Tuller, Stanton E.

    2014-03-01

    A raster-based method for determining complex view factor patterns is presented (HURES model). The model uses Johnson and Watson's view factor analysis method for fisheye lens photographs. The entire sphere is divided into 13 different view factors: open sky; sunny and shaded building walls, vegetation (trees) and ground surfaces above and below 1.2 m from the ground surface. The HURES model gave reasonable view factor results in tests at two urban study sites on summer days: downtown Nanaimo, B.C., Canada and Changwon, Republic of Korea. HURES gave better estimates of open sky view factors determined from fisheye lens photographs than did ENVI-met 3.1 and RayMan Pro. However, all three models underestimated sky view factor. For view factor analysis in outdoor urban areas, the 10° interval of rotation angle at 100 m distance of annuli will be suitable settings for three-dimensional computer simulations. The HURES model can be used for the rapid determination of complex view factor patterns which facilitates the analysis of their effects. Examples of how differing view factor patterns can affect human thermal sensation indices are given. The greater proportion of sunny view factors increased the computed predicted mean vote (PMV) by 1.3 on the sunny side of the street compared with the shady side during mid-morning in downtown Nanaimo. In another example, effects of differing amounts of open sky, sunny ground, sunny buildings and vegetation combined to produce only slight differences in PMV and two other human thermal sensation indices, PET and UTCI.

  4. Factors controlling sulfur gas exchange in Sphagnum-dominated wetlands

    NASA Technical Reports Server (NTRS)

    Demello, William Zamboni; Hines, Mark E.; Bayley, Suzanne E.

    1992-01-01

    Atmosphere-peatland exchange of reduced sulfur gases was determined seasonally in fen in NH, and in an artificially-acidified fen at the Experimental Lakes Area (ELA) in Canada. Dimethyl sulfide (DMS) dominated gas fluxes at rates as high as 400 nmol/m(sup -2)hr(sup -1). DMS fluxes measured using enclosures were much higher than those calculated using a stagnant-film model, suggesting that Sphagnum regulated efflux. Temperature controlled diel and seasonal variability in DMS emissions. Use of differing enclosure techniques indicated that vegetated peatlands consume atmospheric carbonyl sulfide. Sulfate amendments caused DMS and methane thiol concentrations in near-surface pore waters to increase rapidly, but fluxes of these gases to the atmosphere were not affected. However, emission data from sites experiencing large differences in rates of sulfate deposition from the atmosphere suggested that chronic elevated sulfate inputs enhance DMS emissions from northern wetlands.

  5. Development of colburn ` j' factor and fanning friction factor ` f' correlations for compact heat exchanger plain fins by using CFD

    NASA Astrophysics Data System (ADS)

    Bala Sundar Rao, R.; Ranganath, G.; Ranganayakulu, C.

    2013-07-01

    A numerical model has been developed for plain fin of plate fin heat exchanger. Plain fin performance has been analyzed with the help of CFD by changing the various parameters of the fin, Colburn ` j' and fanning friction ` f' factors are calculated. These values compared with the standard values. The correlations have been developed between Reynolds number Re, fin height h, fin thickness t, fin spacing s, Colburn factor ` j' and friction factor ` f'.

  6. Structural Basis for Rab GTPase Activation by VPS9 Domain Exchange Factors

    SciTech Connect

    Delprato,A.; Lambright, D.

    2007-01-01

    RABEX-5 and other exchange factors with VPS9 domains regulate endocytic trafficking through activation of the Rab family GTPases RAB5, RAB21 and RAB22. Here we report the crystal structure of the RABEX-5 catalytic core in complex with nucleotide-free RAB21, a key intermediate in the exchange reaction pathway. The structure reveals how VPS9 domain exchange factors recognize Rab GTPase substrates, accelerate GDP release and stabilize the nucleotide-free conformation. We further identify an autoinhibitory element in a predicted amphipathic helix located near the C terminus of the VPS9 domain. The autoinhibitory element overlaps with the binding site for the multivalent effector RABAPTIN-5 and potently suppresses the exchange activity of RABEX-5. Autoinhibition can be partially reversed by mutation of conserved residues on the nonpolar face of the predicted amphipathic helix or by assembly of the complex with RABAPTIN-5.

  7. The emerging role of guanine nucleotide exchange factors in ALS and other neurodegenerative diseases

    PubMed Central

    Droppelmann, Cristian A.; Campos-Melo, Danae; Volkening, Kathryn; Strong, Michael J.

    2014-01-01

    Small GTPases participate in a broad range of cellular processes such as proliferation, differentiation, and migration. The exchange of GDP for GTP resulting in the activation of these GTPases is catalyzed by a group of enzymes called guanine nucleotide exchange factors (GEFs), of which two classes: Dbl-related exchange factors and the more recently described dedicator of cytokinesis proteins family exchange factors. Increasingly, deregulation of normal GEF activity or function has been associated with a broad range of disease states, including neurodegeneration and neurodevelopmental disorders. In this review, we examine this evidence with special emphasis on the novel role of Rho guanine nucleotide exchange factor (RGNEF/p190RhoGEF) in the pathogenesis of amyotrophic lateral sclerosis. RGNEF is the first neurodegeneration-linked GEF that regulates not only RhoA GTPase activation but also functions as an RNA binding protein that directly acts with low molecular weight neurofilament mRNA 3′ untranslated region to regulate its stability. This dual role for RGNEF, coupled with the increasing understanding of the key role for GEFs in modulating the GTPase function in cell survival suggests a prominent role for GEFs in mediating a critical balance between cytotoxicity and neuroprotection which, when disturbed, contributes to neuronal loss. PMID:25309324

  8. Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor

    PubMed Central

    Krall, Abigail S.; Xu, Shili; Graeber, Thomas G.; Braas, Daniel; Christofk, Heather R.

    2016-01-01

    Cellular amino acid uptake is critical for mTOR complex 1 (mTORC1) activation and cell proliferation. However, the regulation of amino acid uptake is not well-understood. Here we describe a role for asparagine as an amino acid exchange factor: intracellular asparagine exchanges with extracellular amino acids. Through asparagine synthetase knockdown and altering of media asparagine concentrations, we show that intracellular asparagine levels regulate uptake of amino acids, especially serine, arginine and histidine. Through its exchange factor role, asparagine regulates mTORC1 activity and protein synthesis. In addition, we show that asparagine regulation of serine uptake influences serine metabolism and nucleotide synthesis, suggesting that asparagine is involved in coordinating protein and nucleotide synthesis. Finally, we show that maintenance of intracellular asparagine levels is critical for cancer cell growth. Collectively, our results indicate that asparagine is an important regulator of cancer cell amino acid homeostasis, anabolic metabolism and proliferation. PMID:27126896

  9. Factors Influencing Electronic Clinical Information Exchange in Small Medical Group Practices

    ERIC Educational Resources Information Center

    Kralewski, John E.; Zink, Therese; Boyle, Raymond

    2012-01-01

    Purpose: The purpose of this study was to identify the organizational factors that influence electronic health information exchange (HIE) by medical group practices in rural areas. Methods: A purposive sample of 8 small medical group practices in 3 experimental HIE regions were interviewed to determine the extent of clinical information exchange…

  10. Coming to Canada to Study: Factors that Influence Student's Decisions to Participate in International Exchange

    ERIC Educational Resources Information Center

    Massey, Jennifer; Burrow, Jeff

    2012-01-01

    Increasing numbers of students are participating in study abroad programs. Outcomes associated with these programs have been studied extensively, but relatively little is known about what motivates and influences students to participate. This study investigated factors that motivate and influence students to study on exchange and explored how…

  11. Factors influencing intentions to use social recommender systems: a social exchange perspective.

    PubMed

    Chang, Tsung-Sheng; Hsiao, Wei-Hung

    2013-05-01

    This study employs the perspective of social exchange theory and seeks to understand users' intentions to use social recommender systems (SRS) through three psychological factors: trust, shared values, and reputation. We use structural equation modeling to analyze 221 valid questionnaires. The results show that trust has a direct positive influence on the intention to use SRS, followed by shared values, whereas reputation has an indirect influence on SRS use. We further discuss specific recommendations concerning these factors for developing SRS. PMID:23374171

  12. Two-photon exchange contribution to proton form factors in the time-like region

    SciTech Connect

    Chen, D. Y.; Dong, Y. B.; Zhou, H. Q.

    2008-10-15

    We estimate the two-photon exchange contribution to the process e{sup +}+e{sup -}{yields}p+p . The two-photon exchange corrections to double spin polarization observables and form factors in the time-like region are calculated. The corrections are found to be small in magnitude but with a strong angular dependence at fixed momentum transfer. These two features are the same as those in the space-like region. In future experiments, the double spin polarization observable P{sub z} deserves to be considered.

  13. Global analysis of proton elastic form factor data with two-photon exchange corrections

    SciTech Connect

    J. Arrington; W. Melnitchouk; J. A. Tjon

    2007-09-01

    We use the world's data on elastic electron-proton scattering and calculations of two-photon exchange effects to extract corrected values of the proton's electric and magnetic form factors over the full Q^2 range of the existing data. Our analysis combines the corrected Rosenbluth cross section and polarization transfer data, and is the first extraction of G_Ep and G_Mp including explicit two-photon exchange corrections and their associated uncertainties. In addition, we examine the angular dependence of the corrected cross sections, and discuss the possible nonlinearities of the cross section as a function of epsilon.

  14. Human Sos1: A guanine nucleotide exchange factor for ras that binds to GRB2

    SciTech Connect

    Chardin, P. ); Camonis, J.; Gale, N.W.; Aelst, L. Van; Wigler, M.H.; Bar-Sagi, D. ); Schlessinger, J. )

    1993-05-28

    A human complementary DNA was isolated that encodes a widely expressed protein, hSos1, that is closely related to Sos, the product of the Drosophila son of sevenless gene. The hSos1 protein contains a region of significant sequence similarity to CDC25, a guanine nucleotide exchange factor for Ras from yeast. A fragment of hSos1 encoding the CDC25-related domain complemented loss of CDC25 function in yeast. This hSos1 domain specifically stimulated guanine nucleotide exchange on mammalian Ras proteins in vitro. Mammalian cells overexpressing full-length hSos1 had increased guanine nucleotide exchange activity. Thus hSos1 is a guanine nucleotide exchange factor for Ras. The hSos1 interacted with growth factor receptor-bound protein 2 (GRB2) in vivo and in vitro. This interaction was mediated by the carboxyl-terminal domain of hSos1 and the Src homology 3 (SH3) domains of GRB2. These results suggest that the coupling of receptor tyrosine kinases to Ras signaling is mediated by a molecular complex consisting of GRB2 and hSos1. 42 refs., 5 figs.

  15. Analysis of spectral radiative heat transfer using discrete exchange factor method

    NASA Astrophysics Data System (ADS)

    Zhang, Yinqiu; Naraghi, M. H. N.

    1993-09-01

    A solution technique is developed for spectral radiative heat-transfer problems. The formulation is based on the discrete exchange factor (DEF) method and uses Edward's (1976) wide band model to obtain spectral data. The results of the analyses of three cases were found to be in excellent agreement with those of the zonal method and differ by less than 5 percent from those of the discrete-ordinates method.

  16. Exchange enhancement of the electron g factor in strained InGaAs/InP heterostructures

    SciTech Connect

    Krishtopenko, S. S.; Maremyanin, K. V. Kalinin, K. P.; Spirin, K. E.; Gavrilenko, V. I.; Baidus, N. V.; Zvonkov, B. N.

    2015-02-15

    The exchange enhancement of the electron g factor in strained InGaAs/InP heterostructures with a two-dimensional electron gas is studied. Analysis of the temperature dependence of the resistance in the minima of the Shubnikov-de Haas oscillations in perpendicular magnetic fields up to 12 T in the vicinity of the odd filling factors of the Landau levels yields the values of the effective electron Lande factor g* from −8.6 to −10.1. The experimental values are compared with the results of theoretical calculations of the g factor of quasiparticles. The calculations are performed using an eight-band k · p Hamiltonian and take into account exchange interaction in the two-dimensional electron gas. It is shown that, under the conditions of a large overlap between the spin-split Landau levels, the maximum value of the quasiparticle g factor can be attained in the vicinity of even filling factors. This is caused by the nonparabolicity of the electron dispersion relation.

  17. Exploring the Sensitivity of Terrestrial Ecosystems and Atmospheric Exchange of CO2 to Global Environmental Factors

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Meiyappan, P.; Song, Y.; Barman, R.

    2011-12-01

    This presentation explores the sensitivity of terrestrial ecosystems and atmospheric exchange of carbon to global environmental factors to advance our understanding of uncertainty in CO2 projections. We use a land surface model, the Integrated Science Assessment Model (ISAM) recently coupled into the NCAR Community Earth System Model (CESM1) framework to evaluate ecosystem variability due to climatic and anthropogenic factors. The factors considered here include climate change, increasing ambient CO2 concentrations, anthropogenic nitrogen deposition, and land use change (LUC) activities such as clearing of land for agriculture, pasture, and wood harvest. Each factor has a potential to influence the net ecosystem exchange (NEE) of CO2. Using the ISAM-CESM modeling framework, we evaluate the individual and concurrent effects of all these environmental factors on the terrestrial NEE over the 20th century and the 21st century. The ISAM biogeochemical cycles consist of fully prognostic carbon and nitrogen dynamics associated with changes in land cover, litter decomposition, and soil organic matter. The ISAM biophysical model accounts for water and energy processes in the vegetation and soil column, integrated over a time step of 30 minutes. The newly available CRU-NCEP climate forcing data (1850-2010, 0.5ox0.5o spatial resolution) will be used for the historical period simulations. The 21st century simulations will be carried out using the Representative Concentration Pathway (RCP) storylines. This study will help quantify the importance of various environmental factors towards modeling land-atmosphere carbon exchange and better understand model related differences in CO2 estimates.

  18. Activation of G Proteins by Guanine Nucleotide Exchange Factors Relies on GTPase Activity

    PubMed Central

    Stanley, Rob J.; Thomas, Geraint M. H.

    2016-01-01

    G proteins are an important family of signalling molecules controlled by guanine nucleotide exchange and GTPase activity in what is commonly called an ‘activation/inactivation cycle’. The molecular mechanism by which guanine nucleotide exchange factors (GEFs) catalyse the activation of monomeric G proteins is well-established, however the complete reversibility of this mechanism is often overlooked. Here, we use a theoretical approach to prove that GEFs are unable to positively control G protein systems at steady-state in the absence of GTPase activity. Instead, positive regulation of G proteins must be seen as a product of the competition between guanine nucleotide exchange and GTPase activity—emphasising a central role for GTPase activity beyond merely signal termination. We conclude that a more accurate description of the regulation of G proteins via these processes is as a ‘balance/imbalance’ mechanism. This result has implications for the understanding of intracellular signalling processes, and for experimental strategies that rely on modulating G protein systems. PMID:26986850

  19. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s

    PubMed Central

    Dragovic, Zdravko; Broadley, Sarah A; Shomura, Yasuhito; Bracher, Andreas; Hartl, F Ulrich

    2006-01-01

    Hsp70 molecular chaperones function in protein folding in a manner dependent on regulation by co-chaperones. Hsp40s increase the low intrinsic ATPase activity of Hsp70, and nucleotide exchange factors (NEFs) remove ADP after ATP hydrolysis, enabling a new Hsp70 interaction cycle with non-native protein substrate. Here, we show that members of the Hsp70-related Hsp110 family cooperate with Hsp70 in protein folding in the eukaryotic cytosol. Mammalian Hsp110 and the yeast homologues Sse1p/2p catalyze efficient nucleotide exchange on Hsp70 and its orthologue in Saccharomyces cerevisiae, Ssa1p, respectively. Moreover, Sse1p has the same effect on Ssb1p, a ribosome-associated isoform of Hsp70 in yeast. Mutational analysis revealed that the N-terminal ATPase domain and the ultimate C-terminus of Sse1p are required for nucleotide exchange activity. The Hsp110 homologues significantly increase the rate and yield of Hsp70-mediated re-folding of thermally denatured firefly luciferase in vitro. Similarly, deletion of SSE1 causes a firefly luciferase folding defect in yeast cells under heat stress in vivo. Our data indicate that Hsp110 proteins are important components of the eukaryotic Hsp70 machinery of protein folding. PMID:16688212

  20. Interprotein metal exchange between transcription factor IIIa and apo-metallothionein

    PubMed Central

    Huang, Meilin; Shaw, C. Frank; Petering, David H.

    2012-01-01

    Zn2+ and Cd2+ ion exchange between transcription factor IIIA (TFIIIA) and apo-metallothionein (MT) were studied using a combination of methods including chromatography, ultrafiltration and UV spectroscopy. Under near stoichiometric conditions, apoMT was able to remove most if not all of the zinc ions from TFIIIA, whether or not the TFIIIA was bound to the 5S DNA internal control region (ICR), and concomitantly inhibit its DNA-binding activity as indicated by an electrophoretic mobility shift assay. The kinetics of the two processes were similar. The rate of the metal exchange reaction increased with the concentrations of both reactants. A second-order rate constant of 30 ± 10 M−1 s−1 was calculated. Similar observations were made for the reaction between apoMT and Cd-substituted TFIIIA, which proceeded without observable intermediates according to a spectrophotometric analysis. A very slow metal ion exchange occurred between Cd-TFIIIA and Zn-MT, but not between Cd-MT and Zn-TFIIIA. Comparative studies on the reaction of TFIIIA with a small competing ligand, ethylenedinitrilo-tetraacetic acid (EDTA), were also conducted. Although EDTA reacts with free Zn-TFIIIA, under similar conditions it failed to compete for Zn2+ bound as Zn-TFIIIA-ICR. PMID:15041244

  1. Estimation of Hydrogen-Exchange Protection Factors from MD Simulation Based on Amide Hydrogen Bonding Analysis.

    PubMed

    Park, In-Hee; Venable, John D; Steckler, Caitlin; Cellitti, Susan E; Lesley, Scott A; Spraggon, Glen; Brock, Ansgar

    2015-09-28

    Hydrogen exchange (HX) studies have provided critical insight into our understanding of protein folding, structure, and dynamics. More recently, hydrogen exchange mass spectrometry (HX-MS) has become a widely applicable tool for HX studies. The interpretation of the wealth of data generated by HX-MS experiments as well as other HX methods would greatly benefit from the availability of exchange predictions derived from structures or models for comparison with experiment. Most reported computational HX modeling studies have employed solvent-accessible-surface-area based metrics in attempts to interpret HX data on the basis of structures or models. In this study, a computational HX-MS prediction method based on classification of the amide hydrogen bonding modes mimicking the local unfolding model is demonstrated. Analysis of the NH bonding configurations from molecular dynamics (MD) simulation snapshots is used to determine partitioning over bonded and nonbonded NH states and is directly mapped into a protection factor (PF) using a logistics growth function. Predicted PFs are then used for calculating deuteration values of peptides and compared with experimental data. Hydrogen exchange MS data for fatty acid synthase thioesterase (FAS-TE) collected for a range of pHs and temperatures was used for detailed evaluation of the approach. High correlation between prediction and experiment for observable fragment peptides is observed in the FAS-TE and additional benchmarking systems that included various apo/holo proteins for which literature data were available. In addition, it is shown that HX modeling can improve experimental resolution through decomposition of in-exchange curves into rate classes, which correlate with prediction from MD. Successful rate class decompositions provide further evidence that the presented approach captures the underlying physical processes correctly at the single residue level. This assessment is further strengthened in a comparison of

  2. Health Information Exchange Implementation: Lessons Learned and Critical Success Factors From a Case Study

    PubMed Central

    2014-01-01

    implementation of a health system to the statewide HIE were found. The most significant perceived success was accomplishing the implementation, although many interviewees also underscored the value of a project champion with decision-making power. In terms of lessons learned, social reasons were found to be very significant motivators for early implementation, frequently outweighing economic motivations. It was clear that understanding the guides early in the project would have mitigated some of the challenges that emerged, and early communication with the electronic health record vendor so that they have a solid understanding of the undertaking was critical. An HIE implementations evaluation framework was found to be useful for assessing challenges, motivations, value propositions for participating, and success factors to consider for future implementations. Conclusions This case study illuminates five critical success factors for implementation of a health system onto a statewide HIE. This study also reveals that organizations have varied motivations and value proposition perceptions for engaging in the exchange of health information, few of which, at the early stages, are economically driven. PMID:25599991

  3. Improved measurement of labile proton concentration-weighted chemical exchange rate (kws) with experimental factor-compensated and T1-normalized quantitative chemical exchange saturation transfer (CEST) MRI

    PubMed Central

    Wu, Renhua; Liu, Charng-Ming; Liu, Philip K; Sun, Phillip Zhe

    2012-01-01

    Chemical exchange saturation transfer (CEST) MRI enables measurement of dilute CEST agents and microenvironment properties such as pH and temperature, holding great promise for in vivo applications. However, because of confounding concomitant RF irradiation and relaxation effects, the CEST-weighted MRI contrast may not fully characterize the underlying CEST phenomenon. We postulated that the accuracy of quantitative CEST MRI could be improved if the experimental factors (labeling efficiency and RF spillover effect) were estimated and taken into account. Specifically, the experimental factor was evaluated as a function of exchange rate and CEST agent concentration ratio, which remained relatively constant for intermediate RF irradiation power levels. Hence, the experimental factors can be calculated based on the reasonably estimated exchange rate and labile proton concentration ratio, which significantly improved quantification. The simulation was confirmed with Creatine phantoms of serially varied concentration titrated to the same pH, whose reverse exchange rate (kws) was found to be linearly correlated with the concentration. In summary, the proposed solution provides simplified yet reasonably accurate quantification of the underlying CEST system, which may help guide the ongoing development of quantitative CEST MRI. PMID:22649044

  4. Guanine nucleotide exchange factor H1 can be a new biomarker of melanoma

    PubMed Central

    Shi, Jie; Guo, Bingyu; Zhang, Yu; Hui, Qiang; Chang, Peng; Tao, Kai

    2016-01-01

    Guanine nucleotide exchange factor H1 (GEF-H1), which couples microtubule dynamics to RhoA activation, is a microtubule-regulated exchange factor. Studies have shown that GEF-H1 can be involved in various cancer pathways; however, the clinical significance of GEF-H1 expression and functions in melanoma has not been established. In this study, we investigated the relationship between clinical outcomes and GEF-H1 functions in melanoma. A total of 60 cases of different grades of melanoma samples were used to detect the expression of GEF-H1. Results showed that both messenger RNA and protein levels of GEF-H1 were significantly higher in high-grade melanomas. Furthermore, patients with high GEF-H1 expression had a shorter overall survival (22 months) than patients with low level of GEF-H1 expression (33.38 months). We also found that GEF-H1 can promote the proliferation and metastasis of melanoma cells. In summary, these results suggested that GEF-H1 may be a valuable biomarker for assessing the degree and prognosis of melanoma following surgery. PMID:27462139

  5. The Grp170 nucleotide exchange factor executes a key role during ERAD of cellular misfolded clients

    PubMed Central

    Inoue, Takamasa; Tsai, Billy

    2016-01-01

    When a protein misfolds in the endoplasmic reticulum (ER), it retrotranslocates to the cytosol and is degraded by the proteasome via a pathway called ER-associated degradation (ERAD). To initiate ERAD, ADP-BiP is often recruited to the misfolded client, rendering it soluble and translocation competent. How the misfolded client is subsequently released from BiP so that it undergoes retrotranslocation, however, remains enigmatic. Here we demonstrate that the ER-resident nucleotide exchange factor (NEF) Grp170 plays an important role during ERAD of the misfolded glycosylated client null Hong Kong (NHK). As a NEF, Grp170 triggers nucleotide exchange of BiP to generate ATP-BiP. ATP-BiP disengages from NHK, enabling it to retrotranslocate to the cytosol. We demonstrate that Grp170 binds to Sel1L, an adapter of the transmembrane Hrd1 E3 ubiquitin ligase postulated to be the retrotranslocon, and links this interaction to Grp170’s function during ERAD. More broadly, Grp170 also promotes degradation of the nonglycosylated transthyretin (TTR) D18G misfolded client. Our findings thus establish a general function of Grp170 during ERAD and suggest that positioning this client-release factor at the retrotranslocation site may afford a mechanism to couple client release from BiP and retrotranslocation. PMID:27030672

  6. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice

    PubMed Central

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-01-01

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  7. Ultrastructural Localization of Endogenous Exchange Factor for ARF6 in Adrenocortical Cells In Situ of Mice.

    PubMed

    Chomphoo, Surang; Mothong, Wilaiwan; Sawatpanich, Tarinee; Kanla, Pipatphong; Sakagami, Hiroyuki; Kondo, Hisatake; Hipkaeo, Wiphawi

    2016-06-28

    EFA6 (exchange factor for ARF6) activates Arf6 (ADP ribosylation factor 6) by exchanging ADP to ATP, and the resulting activated form of Arf6 is involved in the membrane dynamics and actin re-organization of cells. The present study was attempted to localize EFA6 type D (EFA6D) in mouse adrenocortical cells in situ whose steroid hormone secretion is generally considered not to depend on the vesicle-involved regulatory mechanism. In immunoblotting, an immunoreactive band with the same size as brain EFA6D was detected in homogenates of adrenal cortical tissues almost free of adrenal capsules and medulla. In immuno-light microscopy, EFA6D-immunoreactivity was positive in adrenocortical cells and it was often distinct along the plasmalemma, especially along portions of the cell columns facing the interstitium. In immuno-electron microscopy, the gold-labeling was more dense in the peripheral intracellular domains than the central domain of the immunopositive cells. The labeling was deposited on the plasma membranes in a discontinuous pattern and in cytoplasmic domains rich in filaments. It was also associated with some, but not all, of pleiomorphic vesicles and coated pits/vesicles. No labeling was seen in association with lipid droplets or smooth endoplasmic reticulum. The present finding is in support of the importance of EFA6D for activation of Arf6 in adrenocortical cells. PMID:27462133

  8. A presynaptic role for the ADP ribosylation factor (ARF)-specific GDP/GTP exchange factor msec7-1

    PubMed Central

    Ashery, Uri; Koch, Henriette; Scheuss, Volker; Brose, Nils; Rettig, Jens

    1999-01-01

    ADP ribosylation factors (ARFs) represent a family of small monomeric G proteins that switch from an inactive, GDP-bound state to an active, GTP-bound state. One member of this family, ARF6, translocates on activation from intracellular compartments to the plasma membrane and has been implicated in regulated exocytosis in neuroendocrine cells. Because GDP release in vivo is rather slow, ARF activation is facilitated by specific guanine nucleotide exchange factors like cytohesin-1 or ARNO. Here we show that msec7-1, a rat homologue of cytohesin-1, translocates ARF6 to the plasma membrane in living cells. Overexpression of msec7-1 leads to an increase in basal synaptic transmission at the Xenopus neuromuscular junction. msec7-1-containing synapses have a 5-fold higher frequency of spontaneous synaptic currents than control synapses. On stimulation, the amplitudes of the resulting evoked postsynaptic currents of msec7-1-overexpressing neurons are increased as well. However, further stimulation leads to a decline in amplitudes approaching the values of control synapses. This transient effect on amplitude is strongly reduced on overexpression of msec7-1E157K, a mutant incapable of translocating ARFs. Our results provide evidence that small G proteins of the ARF family and activating factors like msec7-1 play an important role in synaptic transmission, most likely by making more vesicles available for fusion at the plasma membrane. PMID:9927699

  9. A hierarchy of factors influence discontinuous gas exchange in the grasshopper Paracinema tricolor (Orthoptera: Acrididae).

    PubMed

    Groenewald, Berlizé; Chown, Steven L; Terblanche, John S

    2014-10-01

    The evolutionary origin and maintenance of discontinuous gas exchange (DGE) in tracheate arthropods are poorly understood and highly controversial. We investigated prioritization of abiotic factors in the gas exchange control cascade by examining oxygen, water and haemolymph pH regulation in the grasshopper Paracinema tricolor. Using a full-factorial design, grasshoppers were acclimated to hypoxic or hyperoxic (5% O2, 40% O2) gas conditions, or dehydrated or hydrated, whereafter their CO2 release was measured under a range of O2 and relative humidity (RH) conditions (5%, 21%, 40% O2 and 5%, 60%, 90% RH). DGE was significantly less common in grasshoppers acclimated to dehydrating conditions compared with the other acclimations (hypoxia, 98%; hyperoxia, 100%; hydrated, 100%; dehydrated, 67%). Acclimation to dehydrating conditions resulted in a significant decrease in haemolymph pH from 7.0±0.3 to 6.6±0.1 (mean ± s.d., P=0.018) and also significantly increased the open (O)-phase duration under 5% O2 treatment conditions (5% O2, 44.1±29.3 min; 40% O2, 15.8±8.0 min; 5% RH, 17.8±1.3 min; 60% RH, 24.0±9.7 min; 90% RH, 20.6±8.9 min). The observed acidosis could potentially explain the extension of the O-phase under low RH conditions, when it would perhaps seem more useful to reduce the O-phase to lower respiratory water loss. The results confirm that DGE occurrence and modulation are affected by multiple abiotic factors. A hierarchical framework for abiotic factors influencing DGE is proposed in which the following stressors are prioritized in decreasing order of importance: oxygen supply, CO2 excretion and pH modulation, oxidative damage protection and water savings. PMID:25063854

  10. Hydrogen-deuterium exchange studies of the rat thyroid transcription factor 1 homeodomain.

    PubMed

    Esposito, G; Fogolari, F; Damante, G; Formisano, S; Tell, G; Leonardi, A; Di Lauro, R; Viglino, P

    1997-06-01

    The 1H NMR solution structure of the rat thyroid transcription factor 1 homeodomain (TTF-1 HD) showed that the molecule folds like classical homeodomains. The C-terminal extension of helix III (fragment 51-59) appeared to adopt a helical geometry, albeit not as rigid as the preceding portion, but the hydrogen-deuterium exchange of backbone amides and the NOE data provided evidence of a discontinuity between the two moieties of helix III at the highly conserved fragment Asn51-His52-Arg53. Analysis of quantitative measurements of isotope exchange rates allows one to recognize the general occurrence, in that region of HD motifs, of opposite effects to helix III stability. Asparagine, histidine and arginine residues occur most frequently at the beginning and end of protein helices. In TTF-1 HD a local fluctuation is observed in the fragment 51-53 which either kinks or tightens the alpha-helix. A search through the protein structure database reveals that the three most common variants of HD fragments 51-53 are often involved in helices and, frequently, in helix initiation or termination. For homeodomains in general, the nature of the fragment 51-53 may be related to the conformational dynamics of their DNA-recognition helix (helix III). Besides the specific results on fragment 51-53, the complete isotope exchange analysis of TTF-1 HD data shows that the partially solvent-exposed recognition helix is stabilized by hydrophobic interactions, like most of the structured regions of the molecule. Hydrophobic stabilization of the contacting regions meets the requirements of a DNA-interaction mechanism which, as shown with other DNA-protein complexes, should entail negative heat capacity variations due to changes in solvent exposure of the nonpolar protein surface. PMID:9255944

  11. Isotopic exchange during derivatization of platelet activating factor for gas chromatography-mass spectrometry

    SciTech Connect

    Haroldsen, P.E.; Gaskell, S.J.; Weintraub, S.T.; Pinckard, R.N. )

    1991-04-01

    One approach to the quantitative analysis of platelet activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycerol-3-phosphocholine; also referred to as AGEPC, alkyl glyceryl ether phosphocholine) is hydrolytic removal of the phosphocholine group and conversion to an electron-capturing derivative for gas chromatography-negative ion mass spectrometry. (2H3)Acetyl-AGEPC has been commonly employed as an internal standard. When 1-hexadecyl-2-(2H3)acetyl glycerol (obtained by enzymatic hydrolysis of (2H3)-C16:0 AGEPC) is treated with pentafluorobenzoyl chloride at 120 degrees C, the resulting 3-pentafluorobenzoate derivative shows extensive loss of the deuterium label. This exchange is evidently acid-catalyzed since derivatization of 1-hexadecyl-2-acetyl glycerol under the same conditions in the presence of a trace of 2HCl results in the incorporation of up to three deuterium atoms. Isotope exchange can be avoided if the reaction is carried out at low temperature in the presence of base. Direct derivatization of (2H3)-C16:0 AGEPC by treatment with pentafluorobenzoyl chloride or heptafluorobutyric anhydride also results in loss of the deuterium label. The use of (13C2)-C16:0 AGEPC as an internal standard is recommended for rigorous quantitative analysis.

  12. Dehumidification: Prediction of Condensate Flow Rate for Plate-Fin Tube Heat Exchangers Using the Latent j Factor

    SciTech Connect

    Baxter, V.D.; Chen, D.T.; Conklin, J.C.

    1999-03-15

    Condensate flow rate is an important factor in designing dehumidifiers or evaporators. In this paper, the latentj fimtor is used to analyze the dehumidification performance of two plate-fin tube heat exchangers. This latent j factor, analogous to the total j factor, is a flmction of the mass transfa coefllcient, the volumetric air flow rate, and the Schmidt number. This latent j factor did predict condensate flow rate more directly and accurately than any other sensiblej factor method. The Iatentj factor has been used in the present study because the sensible j factor correlations presented in the literature failed to predict the condensate flow rate at high Reynolds numbers. Results show that the latent j i%ctor em be simply correlated as a fhnction of the Reynolds number based on the tube outside diameter and number of rows of the heat exchanger.

  13. Geometric radiation exchange factors for axial radiative transfer in an LWR core filled with absorbing-emitting gases

    SciTech Connect

    Chan, S.H.; Cho, D.H.

    1984-01-01

    A reactor core filled with an emitting-absorbing mixture (like steam, hydrogen gas and fission gases) is considered. Analysis is provided to evaluate axial radiative heat exchange of a rod bundle with a nonuniform axial temperature distribution. The necessary radiation exchange shape factors (geometric mean absorptance, emittance and transmittance) between segments of the complex rod bundle arrangement are presented. They are applicable to arbitrary sizes of segments, well suited for numerical computations.

  14. Zizimin and Dock guanine nucleotide exchange factors in cell function and disease.

    PubMed

    Pakes, Nicholl K; Veltman, Douwe M; Williams, Robin S B

    2013-01-01

    Zizimin proteins belong to the Dock (Dedicator of Cytokinesis) superfamily of Guanine nucleotide Exchange Factor (GEF) proteins. This family of proteins plays a role in the regulation of Rho family small GTPases. Together the Rho family of small GTPases and the Dock/Zizimin proteins play a vital role in a number of cell processes including cell migration, apoptosis, cell division and cell adhesion. Our recent studies of Zizimin proteins, using a simple biomedical model, the eukaryotic social amoeba Dictyostelium discoideum, have helped to elucidate the cellular role of these proteins. In this article, we discuss the domain structure of Zizimin proteins from an evolutionary viewpoint. We also compare what is currently known about the mammalian Zizimin proteins to that of related Dock proteins. Understanding the cellular functions of these proteins will provide a better insight into their role in cell signaling, and may help in treating disease pathology associated with mutations in Dock/Zizimin proteins. PMID:23247359

  15. Social and Political Factors Predicting the Presence of Syringe Exchange Programs in 96 US Metropolitan Areas

    PubMed Central

    Tempalski, Barbara; Flom, Peter L.; Friedman, Samuel R.; Des Jarlais, Don C.; Friedman, Judith J.; McKnight, Courtney; Friedman, Risa

    2007-01-01

    Community activism can be important in shaping public health policies. For example, political pressure and direct action from grassroots activists have been central to the formation of syringe exchange programs (SEPs) in the United States. We explored why SEPs are present in some localities but not others, hypothesizing that programs are unevenly distributed across geographic areas as a result of political, socioeconomic, and organizational characteristics of localities, including needs, resources, and local opposition. We examined the effects of these factors on whether SEPs were present in different US metropolitan statistical areas in 2000. Predictors of the presence of an SEP included percentage of the population with a college education, the existence of local AIDS Coalition to Unleash Power (ACT UP) chapters, and the percentage of men who have sex with men in the population. Need was not a predictor. PMID:17267732

  16. Modulation of the chaperone DnaK allosterism by the nucleotide exchange factor GrpE.

    PubMed

    Melero, Roberto; Moro, Fernando; Pérez-Calvo, María Ángeles; Perales-Calvo, Judit; Quintana-Gallardo, Lucía; Llorca, Oscar; Muga, Arturo; Valpuesta, José María

    2015-04-17

    Hsp70 chaperones comprise two domains, the nucleotide-binding domain (Hsp70NBD), responsible for structural and functional changes in the chaperone, and the substrate-binding domain (Hsp70SBD), involved in substrate interaction. Substrate binding and release in Hsp70 is controlled by the nucleotide state of DnaKNBD, with ATP inducing the open, substrate-receptive DnaKSBD conformation, whereas ADP forces its closure. DnaK cycles between the two conformations through interaction with two cofactors, the Hsp40 co-chaperones (DnaJ in Escherichia coli) induce the ADP state, and the nucleotide exchange factors (GrpE in E. coli) induce the ATP state. X-ray crystallography showed that the GrpE dimer is a nucleotide exchange factor that works by interaction of one of its monomers with DnaKNBD. DnaKSBD location in this complex is debated; there is evidence that it interacts with the GrpE N-terminal disordered region, far from DnaKNBD. Although we confirmed this interaction using biochemical and biophysical techniques, our EM-based three-dimensional reconstruction of the DnaK-GrpE complex located DnaKSBD near DnaKNBD. This apparent discrepancy between the functional and structural results is explained by our finding that the tail region of the GrpE dimer in the DnaK-GrpE complex bends and its tip contacts DnaKSBD, whereas the DnaKNBD-DnaKSBD linker contacts the GrpE helical region. We suggest that these interactions define a more complex role for GrpE in the control of DnaK function. PMID:25739641

  17. Investigation of the structural stability of the human acidic fibroblast growth factor by hydrogen-deuterium exchange.

    PubMed

    Chi, Ya-Hui; Kumar, Thallampuranam Krishnaswamy S; Kathir, Karuppanan Muthusamy; Lin, Dong-Hai; Zhu, Guang; Chiu, Ing-Ming; Yu, Chin

    2002-12-24

    The conformational stability of the human acidic fibroblast growth factor (hFGF-1) is investigated using amide proton exchange and temperature-dependent chemical shifts, monitored by two-dimensional NMR spectroscopy. The change in free energy of unfolding (DeltaG(u)) of hFGF-1 is estimated to be 5.00 +/- 0.09 kcal.mol(-)(1). Amide proton-exchange rates of 74 residues (in hFGF-1) have been unambiguously measured, and the exchange process occurs predominately according to the conditions of the EX2 limit. The exchange rates of the fast-exchanging amide protons exposed to the solvent have been measured using the clean SEA-HSQC technique. The amide proton protection factor and temperature coefficient estimates show reasonably good correlation. Residues in beta-strands II and VI appear to constitute the stability core of the protein. Among the 12 beta-strands constituting the beta-barrel architecture of hFGF-1, beta-strand XI, located in the heparin binding domain, exhibits the lowest average protection factor value. Amide protons involved in the putative folding nucleation site in hFGF-1, identified by quench-flow NMR studies, do not represent the slow-exchanging core. Residues in portions of hFGF-1 experiencing high conformational flexibility mostly correspond to those involved in receptor recognition and binding. PMID:12484774

  18. Brefeldin A-inhibited guanine exchange factor 2 regulates filamin A phosphorylation and neuronal migration.

    PubMed

    Zhang, Jingping; Neal, Jason; Lian, Gewei; Shi, Bingxing; Ferland, Russell J; Sheen, Volney

    2012-09-01

    Periventricular heterotopia (PH) is a human malformation of cortical development associated with gene mutations in ADP-ribosylation factor guanine exchange factor 2 (ARFGEF2 encodes for Big2 protein) and Filamin A (FLNA). PH is thought to derive from neuroependymal disruption, but the extent to which neuronal migration contributes to this phenotype is unknown. Here, we show that Arfgef2 null mice develop PH and exhibit impaired neural migration with increased protein expression for both FlnA and phosphoFlnA at Ser2152. Big2 physically interacts with FlnA and overexpression of phosphomimetic Ser2512 FLNA impairs neuronal migration. FlnA phosphorylation directs FlnA localization toward the cell cytoplasm, diminishes its binding affinity to actin skeleton, and alters the number and size of paxillin focal adhesions. Collectively, our results demonstrate a molecular mechanism whereby Big2 inhibition promotes phosphoFlnA (Ser2152) expression, and increased phosphoFlnA impairs its actin binding affinity and the distribution of focal adhesions, thereby disrupting cell intrinsic neuronal migration. PMID:22956851

  19. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors.

    PubMed

    Marei, Hadir; Carpy, Alejandro; Macek, Boris; Malliri, Angeliki

    2016-08-01

    The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects. PMID:27152953

  20. Arf6 guanine-nucleotide exchange factor cytohesin-2 regulates myelination in nerves.

    PubMed

    Torii, Tomohiro; Ohno, Nobuhiko; Miyamoto, Yuki; Kawahara, Kazuko; Saitoh, Yurika; Nakamura, Kazuaki; Takashima, Shou; Sakagami, Hiroyuki; Tanoue, Akito; Yamauchi, Junji

    2015-05-01

    In postnatal development of the peripheral nervous system (PNS), Schwann cells differentiate to insulate neuronal axons with myelin sheaths, increasing the nerve conduction velocity. To produce the mature myelin sheath with its multiple layers, Schwann cells undergo dynamic morphological changes. While extracellular molecules such as growth factors and cell adhesion ligands are known to regulate the myelination process, the intracellular molecular mechanism underlying myelination remains unclear. In this study, we have produced Schwann cell-specific conditional knockout mice for cytohesin-2, a guanine-nucleotide exchange factor (GEF) specifically activating Arf6. Arf6, a member of the Ras-like protein family, participates in various cellular functions including cell morphological changes. Cytohesin-2 knockout mice exhibit decreased Arf6 activity and reduced myelin thickness in the sciatic nerves, with decreased expression levels of myelin protein zero (MPZ), the major myelin marker protein. These results are consistent with those of experiments in which Schwann cell-neuronal cultures were treated with pan-cytohesin inhibitor SecinH3. On the other hand, the numbers of Ki67-positive cells in knockout mice and controls are comparable, indicating that cytohesin-2 does not have a positive effect on cell numbers. Thus, signaling through cytohesin-2 is required for myelination by Schwann cells, and cytohesin-2 is added to the list of molecules known to underlie PNS myelination. PMID:25824033

  1. Proton form factors and two-photon exchange in elastic electron-proton scattering

    SciTech Connect

    Nikolenko, D. M.; Arrington, J.; Barkov, L. M.; Vries, H. de; Gauzshtein, V. V.; Golovin, R. A.; Gramolin, A. V.; Dmitriev, V. F.; Zhilich, V. N.; Zevakov, S. A.; Kaminsky, V. V.; Lazarenko, B. A.; Mishnev, S. I.; Muchnoi, N. Yu.; Neufeld, V. V.; Rachek, I. A.; Sadykov, R. Sh.; Stibunov, V. N.; Toporkov, D. K.; Holt, R. J.; and others

    2015-05-15

    Proton electromagnetic form factors are among the most important sources of information about the internal structure of the proton. Two different methods for measuring these form factors, the method proposed by Rosenbluth and the polarization-transfer method, yield contradictory results. It is assumed that this contradiction can be removed upon taking into account the hard part of the contribution of two-photon exchange to the cross section for elastic electron-proton scattering. This contribution can measured experimentally via a precision comparison of the cross sections for the elastic scattering of positrons and electrons on protons. Such a measurement, performed at the VEPP-3 storage ring in Novosibirsk at the beam energies of 1.6 and 1.0 GeV for positron (electron) scattering angles in the ranges of θ{sub e} = 15°–25° and 55°–75° in the first case and in the range of θ{sub e} = 65°–105° in the second case is described in the present article. Preliminary results of this experiment and their comparison with theoretical predictions are described.

  2. Proteomic analysis of Rac1 signaling regulation by guanine nucleotide exchange factors

    PubMed Central

    Marei, Hadir; Carpy, Alejandro; Macek, Boris; Malliri, Angeliki

    2016-01-01

    ABSTRACT The small GTPase Rac1 is implicated in various cellular processes that are essential for normal cell function. Deregulation of Rac1 signaling has also been linked to a number of diseases, including cancer. The diversity of Rac1 functioning in cells is mainly attributed to its ability to bind to a multitude of downstream effectors following activation by Guanine nucleotide Exchange Factors (GEFs). Despite the identification of a large number of Rac1 binding partners, factors influencing downstream specificity are poorly defined, thus hindering the detailed understanding of both Rac1's normal and pathological functions. In a recent study, we demonstrated a role for 2 Rac-specific GEFs, Tiam1 and P-Rex1, in mediating Rac1 anti- versus pro-migratory effects, respectively. Importantly, via conducting a quantitative proteomic screen, we identified distinct changes in the Rac1 interactome following activation by either GEF, indicating that these opposing effects are mediated through GEF modulation of the Rac1 interactome. Here, we present the full list of identified Rac1 interactors together with functional annotation of the differentially regulated Rac1 binding partners. In light of this data, we also provide additional insights into known and novel signaling cascades that might account for the GEF-mediated Rac1-driven cellular effects. PMID:27152953

  3. Dyadic Curve-of-Factors Model: An Introduction and Illustration of a Model for Longitudinal Non-Exchangeable Dyadic Data

    PubMed Central

    Whittaker, Tiffany A.; Beretvas, S. Natasha; Falbo, Toni

    2014-01-01

    The analysis of longitudinal data collected from non-exchangeable dyads presents a challenge for applied researchers for various reasons. This paper introduces the Dyadic Curve-of-Factors Model (D-COFM) which extends the Curve-of-Factors Model (COFM) proposed by McArdle (1988) for use with non-exchangeable dyadic data. The D-COFM overcomes problems with modeling composite scores across time and instead permits examination of the growth in latent constructs over time. The D-COFM also appropriately models the interdependency among non-exchangeable dyads. Different parameterizations of the D-COFM are illustrated and discussed using a real dataset to aid applied researchers when analyzing dyadic longitudinal data. PMID:24883011

  4. Form factors and the s-wave component of the two-pion-exchange three-nucleon potential

    SciTech Connect

    Robilotta, M.R.; Isidro Filho, M.P.; Coelho, H.T.; Das, T.K.

    1985-02-01

    We argue that the straightforward introduction of ..pi..N form factors into the s-wave component of the two-pion-exchange three-nucleon potential based on chiral symmetry is not free of problems. These can be avoided by means of a redefinition of the potential which considers its physical content.

  5. Exchange enhancement of the electron g-factor in a two-dimensional semimetal in HgTe quantum wells

    SciTech Connect

    Bovkun, L. S. Krishtopenko, S. S.; Zholudev, M. S.; Ikonnikov, A. V.; Spirin, K. E.; Dvoretsky, S. A.; Mikhailov, N. N.; Teppe, F.; Knap, W.; Gavrilenko, V. I.

    2015-12-15

    The exchange enhancement of the electron g-factor in perpendicular magnetic fields to 12 T in HgTe/CdHgTe quantum wells 20 nm wide with a semimetal band structure is studied. The electron effective mass and g-factor at the Fermi level are determined by analyzing the temperature dependence of the amplitude of Shubnikov–de Haas oscillation in weak fields and near odd Landau-level filling factors ν ≤ 9. The experimental values are compared with theoretical calculations performed in the one-electron approximation using the eight-band kp Hamiltonian. The found dependence of g-factor enhancement on the electron concentration is explained by changes in the contributions of hole- and electron-like states to exchange corrections to the Landau-level energies in the conduction band.

  6. Structural analysis of autoinhibition in the Ras-specific exchange factor RasGRP1

    PubMed Central

    Iwig, Jeffrey S; Vercoulen, Yvonne; Das, Rahul; Barros, Tiago; Limnander, Andre; Che, Yan; Pelton, Jeffrey G; Wemmer, David E; Roose, Jeroen P; Kuriyan, John

    2013-01-01

    RasGRP1 and SOS are Ras-specific nucleotide exchange factors that have distinct roles in lymphocyte development. RasGRP1 is important in some cancers and autoimmune diseases but, in contrast to SOS, its regulatory mechanisms are poorly understood. Activating signals lead to the membrane recruitment of RasGRP1 and Ras engagement, but it is unclear how interactions between RasGRP1 and Ras are suppressed in the absence of such signals. We present a crystal structure of a fragment of RasGRP1 in which the Ras-binding site is blocked by an interdomain linker and the membrane-interaction surface of RasGRP1 is hidden within a dimerization interface that may be stabilized by the C-terminal oligomerization domain. NMR data demonstrate that calcium binding to the regulatory module generates substantial conformational changes that are incompatible with the inactive assembly. These features allow RasGRP1 to be maintained in an inactive state that is poised for activation by calcium and membrane-localization signals. DOI: http://dx.doi.org/10.7554/eLife.00813.001 PMID:23908768

  7. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    PubMed Central

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  8. Structural basis for auto-inhibition of the guanine nucleotide exchange factor FARP2

    PubMed Central

    He, Xiaojing; Kuo, Yi-Chun; Rosche, Tyler J.; Zhang, Xuewu

    2013-01-01

    Summary FARP2 is a Dbl-family guanine nucleotide exchange factor (GEF) that contains a 4.1, ezrin, radixin and moesin (FERM) domain, a Dbl-homology (DH) domain and two pleckstrin homology (PH) domains. FARP2 activates Rac1 or Cdc42 in response to upstream signals, thereby regulating processes such as neuronal axon guidance and bone homeostasis. How the GEF activity of FARP2 is regulated remained poorly understood. We have determined the crystal structures of the catalytic DH domain and the DH-PH-PH domains of FARP2. The structures reveal an auto-inhibited conformation in which the GEF substrate-binding site is blocked collectively by the last helix in the DH domain and the two PH domains. This conformation is stabilized by multiple interactions among the domains and two well-structured inter-domain linkers. Our cell-based activity assays confirm the suppression of the FARP2 GEF activity by these auto-inhibitory elements. PMID:23375260

  9. Rab5-family guanine nucleotide exchange factors bind retromer and promote its recruitment to endosomes

    PubMed Central

    Bean, Bjorn D. M.; Davey, Michael; Snider, Jamie; Jessulat, Matthew; Deineko, Viktor; Tinney, Matthew; Stagljar, Igor; Babu, Mohan; Conibear, Elizabeth

    2015-01-01

    The retromer complex facilitates the sorting of integral membrane proteins from the endosome to the late Golgi. In mammalian cells, the efficient recruitment of retromer to endosomes requires the lipid phosphatidylinositol 3-phosphate (PI3P) as well as Rab5 and Rab7 GTPases. However, in yeast, the role of Rabs in recruiting retromer to endosomes is less clear. We identified novel physical interactions between retromer and the Saccharomyces cerevisiae VPS9-domain Rab5-family guanine nucleotide exchange factors (GEFs) Muk1 and Vps9. Furthermore, we identified a new yeast VPS9 domain-containing protein, VARP-like 1 (Vrl1), which is related to the human VARP protein. All three VPS9 domain–containing proteins show localization to endosomes, and the presence of any one of them is necessary for the endosomal recruitment of retromer. We find that expression of an active VPS9-domain protein is required for correct localization of the phosphatidylinositol 3-kinase Vps34 and the production of endosomal PI3P. These results suggest that VPS9 GEFs promote retromer recruitment by establishing PI3P-enriched domains at the endosomal membrane. The interaction of retromer with distinct VPS9 GEFs could thus link GEF-dependent regulatory inputs to the temporal or spatial coordination of retromer assembly or function. PMID:25609093

  10. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease

    PubMed Central

    Cook, Danielle R.; Rossman, Kent L.; Der, Channing J.

    2016-01-01

    The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly by indirect mechanisms in disease. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflect the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2, Tiam1, Vav and P-Rex1/2. PMID:24037532

  11. RESTRICTED EXPRESSION OF NEW GUANINE NUCLEOTIDE EXCHANGE FACTOR ZIZIMIN2 IN AGED ACQUIRED IMMUNE SYSTEM

    PubMed Central

    JIA, YANJUN; SAKABE, ISAMU; MATSUDA, TAKENORI; HAYAKAWA, TOMOKO; MARUYAMA, MITSUO

    2012-01-01

    ABSTRACT The activity of various biological functions, such as nervous, endocrine and immune systems including acquired immunity, is known to decline along with aging. To elucidate the molecular mechanism of this phenomenon, we here compared the number of thymocytes, splenocytes, and bone marrow lymphocytes in young and aged mice and found the age-related functional fragility of the immune system. However, the molecular mechanisms or even the key molecules remain elusive. Therefore, we further focused on a candidate for immunosenesence-related molecules, Zizimin2, which we have recently isolated and identified as a novel guanine nucleotide exchange factor that is highly expressed in murine splenic germinal center B cells after immunization with a T cell-dependent antigen. Here, we showed that endogenous Zizimin2 protein as well as mRNA expression levels in immune organs are strictly suppressed in aged mice. We further observed that the serum antigen specific antibody response is hampered in aged mice compared to that in young animals. Moreover, the Zizimin2 mRNA expression level was not activated after immunization in aged mice. Taken together, these data suggested that Zizimin2 is associated with the reduction of immune response in acquired immunity along with aging. PMID:23092103

  12. Factors affecting ground-water exchange and catchment size for Florida lakes in mantled karst terrain

    USGS Publications Warehouse

    Lee, Terrie Mackin

    2002-01-01

    In the mantled karst terrain of Florida, the size of the catchment delivering ground-water inflow to lakes is often considerably smaller than the topographically defined drainage basin. The size is determined by a balance of factors that act individually to enhance or diminish the hydraulic connection between the lake and the adjacent surficial aquifer, as well as the hydraulic connection between the surficial aquifer and the deeper limestone aquifer. Factors affecting ground-water exchange and the size of the ground-water catchment for lakes in mantled karst terrain were examined by: (1) reviewing the physical and hydrogeological characteristics of 14 Florida lake basins with available ground-water inflow estimates, and (2) simulating ground-water flow in hypothetical lake basins. Variably-saturated flow modeling was used to simulate a range of physical and hydrogeologic factors observed at the 14 lake basins. These factors included: recharge rate to the surficial aquifer, thickness of the unsaturated zone, size of the topographically defined basin, depth of the lake, thickness of the surficial aquifer, hydraulic conductivity of the geologic units, the location and size of karst subsidence features beneath and onshore of the lake, and the head in the Upper Floridan aquifer. Catchment size and the magnitude of ground-water inflow increased with increases in recharge rate to the surficial aquifer, the size of the topographically defined basin, hydraulic conductivity in the surficial aquifer, the degree of confinement of the deeper Upper Floridan aquifer, and the head in the Upper Floridan aquifer. The catchment size and magnitude of ground-water inflow increased with decreases in the number and size of karst subsidence features in the basin, and the thickness of the unsaturated zone near the lake. Model results, although qualitative, provided insights into: (1) the types of lake basins in mantled karst terrain that have the potential to generate small and large

  13. Proton Form Factor Puzzle and the CEBAF Large Acceptance Spectrometer (CLAS) two-photon exchange experiment

    NASA Astrophysics Data System (ADS)

    Rimal, Dipak

    The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = sigma(e +p)/sigma(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (epsilon). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high epsilon(epsilon > 0.8) and the $epsilon dependence of R at approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely

  14. 75 FR 62137 - Notice of Public Meeting; Proposed Alluvial Valley Floor Coal Exchange Public Interest Factors...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... Rodolph, and the Brown Cattle Company Shareholders Coal Trust, collectively referred to as Nance-Brown... CFR 2200.0-6 (b)) associated with the Nance-Brown exchange. The exchange proponents, Nance-Brown, seek..., owned by Nance-Brown. The Federal coal in the following-described land in Rosebud County, Montana,...

  15. The Rho guanine nucleotide exchange factor ARHGEF5 promotes tumor malignancy via epithelial-mesenchymal transition.

    PubMed

    Komiya, Y; Onodera, Y; Kuroiwa, M; Nomimura, S; Kubo, Y; Nam, J-M; Kajiwara, K; Nada, S; Oneyama, C; Sabe, H; Okada, M

    2016-01-01

    Epithelial tumor cells often acquire malignant properties, such as invasion/metastasis and uncontrolled cell growth, by undergoing epithelial-mesenchymal transition (EMT). However, the mechanisms by which EMT contributes to malignant progression remain elusive. Here we show that the Rho guanine nucleotide exchange factor (GEF) ARHGEF5 promotes tumor malignancy in a manner dependent on EMT status. We previously identified ARHGEF5, a member of the Dbl family of GEFs, as a multifunctional mediator of Src-induced cell invasion and tumor growth. In the present study, ARHGEF5 was upregulated during tumor growth factor-β-induced EMT in human epithelial MCF10A cells, and promoted cell migration by activating the Rho-ROCK pathway. ARHGEF5 was necessary for the invasive and in vivo metastatic activity of human colorectal cancer HCT116 cells. These findings underscore the crucial role of ARHGEF5 in cell migration and invasion/metastasis. An in vivo tumorigenesis assay revealed that ARHGEF5 had the potential to promote tumor growth via the phosphatidylinositol 3-kinase (PI3K) pathway. However, ARHGEF5 was not required for tumor growth in epithelial-like human colorectal cancer HCT116 and HT29 cells, whereas the growth of mesenchymal-like SW480 and SW620 cells depended on ARHGEF5. Induction of EMT by tumor necrosis factor-α or Slug in HCT116 cells resulted in the dependence of tumor growth on ARHGEF5. In these mesenchymal-like cells, Akt was activated via ARHGEF5 and its activity was required for tumor growth. Analysis of a transcriptome data set revealed that the combination of ARHGEF5 upregulation and E-cadherin downregulation or Snail upregulation was significantly correlated with poor prognosis in patients with colorectal cancers. Taken together, our findings suggest that EMT-induced ARHGEF5 activation contributes to the progression of tumor malignancy. ARHGEF5 may serve as a potential therapeutic target in a subset of malignant tumors that have undergone EMT. PMID

  16. The Guanine Nucleotide Exchange Factor SWAP-70 Modulates the Migration and Invasiveness of Human Malignant Glioma Cells12

    PubMed Central

    Seol, Ho Jun; Smith, Christian A; Salhia, Bodour; Rutka, James T

    2009-01-01

    The malignant glioma is the most common primary human brain tumor. Its tendency to invade away from the primary tumor mass is considered a leading cause of tumor recurrence and treatment failure. Accordingly, the molecular pathogenesis of glioma invasion is currently under investigation. Previously, we examined a gene expression array database comparing human gliomas to nonneoplastic controls and identified several Rac guanine nucleotide exchange factors with differential expression. Here, we report that the guanine nucleotide exchange factor SWAP-70 has increased expression in malignant gliomas and strongly correlates with lowered patient survival. SWAP-70 is a multifunctional signaling protein involved in membrane ruffling that works cooperatively with activated Rac. Using a glioma tissue microarray, we validated that SWAP-70 demonstrates higher expression in malignant gliomas compared with low-grade gliomas or nonneoplastic brain tissue. Through immunofluorescence, SWAP-70 localizes to membrane ruffles in response to the growth factor, epidermal growth factor. To assess the role of SWAP-70 in glioma migration and invasion, we inhibited its expression withsmall interfering RNAs and observed decreased glioma cell migration and invasion. SWAP-70 overexpression led to increased levels of active Rac even in low-serum conditions. In addition, when SWAP-70 was overexpressed in glioma cells, we observed enhanced membrane ruffle formation followed by increased cellmigration and invasiveness. Taken together, our findings suggest that the guanine nucleotide exchange factor SWAP-70 plays an important role in the migration and invasion of human gliomas into the surrounding tissue. PMID:19956392

  17. Catching Functional Modes and Structural Communication in Dbl Family Rho Guanine Nucleotide Exchange Factors.

    PubMed

    Raimondi, Francesco; Felline, Angelo; Fanelli, Francesca

    2015-09-28

    Computational approaches such as Principal Component Analysis (PCA) and Elastic Network Model-Normal Mode Analysis (ENM-NMA) are proving to be of great value in investigating relevant biological problems linked to slow motions with no demand in computer power. In this study, these approaches have been coupled to the graph theory-based Protein Structure Network (PSN) analysis to dissect functional dynamics and structural communication in the Dbl family of Rho Guanine Nucleotide Exchange Factors (RhoGEFs). They are multidomain proteins whose common structural feature is a DH-PH tandem domain deputed to the GEF activity that makes them play a central role in cell and cancer biology. While their common GEF action is accomplished by the DH domain, their regulatory mechanisms are highly variegate and depend on the PH and the additional domains as well as on interacting proteins. Major evolutionary-driven deformations as inferred from PCA concern the α6 helix of DH that dictates the orientation of the PH domain. Such deformations seem to depend on the mechanisms adopted by the GEF to prevent Rho binding, i.e. functional specialization linked to autoinhibition. In line with PCA, ENM-NMA indicates α6 and the linked PH domain as the portions of the tandem domain holding almost the totality of intrinsic and functional dynamics, with the α6/β1 junction acting as a hinge point for the collective motions of PH. In contrast, the DH domain holds a static scaffolding and hub behavior, with structural communication playing a central role in the regulatory actions by other domains/proteins. Possible allosteric communication pathways involving essentially DH were indeed found in those RhoGEFs acting as effectors of small or heterotrimeric RasGTPases. The employed methodology is suitable for deciphering structure/dynamics relationships in large sets of homologous or analogous proteins. PMID:26322553

  18. Rho guanine nucleotide exchange factors involved in cyclic-stretch-induced reorientation of vascular endothelial cells.

    PubMed

    Abiko, Hiyori; Fujiwara, Sachiko; Ohashi, Kazumasa; Hiatari, Ryuichi; Mashiko, Toshiya; Sakamoto, Naoya; Sato, Masaaki; Mizuno, Kensaku

    2015-05-01

    Cyclic stretch is an artificial model of mechanical force loading, which induces the reorientation of vascular endothelial cells and their stress fibers in a direction perpendicular to the stretch axis. Rho family GTPases are crucial for cyclic-stretch-induced endothelial cell reorientation; however, the mechanism underlying stretch-induced activation of Rho family GTPases is unknown. A screen of short hairpin RNAs targeting 63 Rho guanine nucleotide exchange factors (Rho-GEFs) revealed that at least 11 Rho-GEFs – Abr, alsin, ARHGEF10, Bcr, GEF-H1 (also known as ARHGEF2), LARG (also known as ARHGEF12), p190RhoGEF (also known as ARHGEF28), PLEKHG1, P-REX2, Solo (also known as ARHGEF40) and α-PIX (also known as ARHGEF6) – which specifically or broadly target RhoA, Rac1 and/or Cdc42, are involved in cyclic-stretch-induced perpendicular reorientation of endothelial cells. Overexpression of Solo induced RhoA activation and F-actin accumulation at cell-cell and cell-substrate adhesion sites. Knockdown of Solo suppressed cyclic-stretch- or tensile-force-induced RhoA activation. Moreover, knockdown of Solo significantly reduced cyclic-stretch-induced perpendicular reorientation of endothelial cells when cells were cultured at high density, but not when they were cultured at low density or pretreated with EGTA or VE-cadherin-targeting small interfering RNAs. These results suggest that Solo is involved in cell-cell-adhesion-mediated mechanical signal transduction during cyclic-stretch-induced endothelial cell reorientation. PMID:25795300

  19. Expression Pattern and Localization Dynamics of Guanine Nucleotide Exchange Factor RIC8 during Mouse Oogenesis

    PubMed Central

    Tõnissoo, Tambet; Meier, Riho; Kask, Keiu; Ruisu, Katrin; Karis, Alar; Salumets, Andres; Pooga, Margus

    2015-01-01

    Targeting of G proteins to the cell cortex and their activation is one of the triggers of both asymmetric and symmetric cell division. Resistance to inhibitors of cholinesterase 8 (RIC8), a guanine nucleotide exchange factor, activates a certain subgroup of G protein α-subunits in a receptor independent manner. RIC8 controls the asymmetric cell division in Caenorhabditis elegans and Drosophila melanogaster, and symmetric cell division in cultured mammalian cells, where it regulates the mitotic spindle orientation. Although intensely studied in mitosis, the function of RIC8 in mammalian meiosis has remained unknown. Here we demonstrate that the expression and subcellular localization of RIC8 changes profoundly during mouse oogenesis. Immunofluorescence studies revealed that RIC8 expression is dependent on oocyte growth and cell cycle phase. During oocyte growth, RIC8 is abundantly present in cytoplasm of oocytes at primordial, primary and secondary preantral follicle stages. Later, upon oocyte maturation RIC8 also populates the germinal vesicle, its localization becomes cell cycle dependent, and it associates with chromatin and the meiotic spindle. After fertilization, RIC8 protein converges to the pronuclei and is also detectable at high levels in the nucleolus precursor bodies of both maternal and paternal pronucleus. During first cleavage of zygote RIC8 localizes in the mitotic spindle and cell cortex of forming blastomeres. In addition, we demonstrate that RIC8 co-localizes with its interaction partners Gαi1/2:GDP and LGN in meiotic/mitotic spindle, cell cortex and polar bodies of maturing oocytes and zygotes. Downregulation of Ric8 by siRNA leads to interferred translocation of Gαi1/2 to cortical region of maturing oocytes and reduction of its levels. RIC8 is also expressed at high level in female reproductive organs e.g. oviduct. Therefore we suggest a regulatory function for RIC8 in mammalian gametogenesis and fertility. PMID:26062014

  20. Identification of a brefeldin A-insensitive guanine nucleotide-exchange protein for ADP-ribosylation factor in bovine brain.

    PubMed Central

    Tsai, S C; Adamik, R; Moss, J; Vaughan, M

    1994-01-01

    ADP-ribosylation factors (ARFs) are approximately 20-kDa guanine nucleotide-binding proteins that participate in vesicular transport in the Golgi and other intracellular compartments and stimulate cholera toxin ADP-ribosyltransferase activity. ARFs are active in the GTP-bound form; hydrolysis of bound GTP to GDP, possibly with the assistance of a GTP hydrolysis (GTPase)-activating protein results in inactivation. Exchange of GDP for GTP and reactivation were shown by other workers to be enhanced by Golgi membranes in a brefeldin A-sensitive reaction, leading to the proposal that the guanine nucleotide-exchange protein (GEP) was a target of brefeldin A. In the studies reported here, a soluble GEP was partially purified from bovine brain. Exchange of nucleotide on ARFs 1 and 3, based on increased ARF activity in a toxin assay and stimulation of binding of guanosine 5'-[gamma-[35S]thio]triphosphate, was dependent on phospholipids, with phosphatidylserine being more effective than cardiolipin. GEP appeared to increase the rate of nucleotide exchange but did not affect the affinity of ARF for GTP. Whereas the crude GEP had a size of approximately 700 kDa, the partially purified GEP behaved on Ultrogel AcA 54 as a protein of 60 kDa. With purification, the GEP activity became insensitive to brefeldin A, consistent with the conclusion that, in contrast to earlier inferences, the exchange protein is not itself the target of brefeldin A. PMID:8159707

  1. Two-Photon Exchange in Elastic Electron-Proton Scattering: A QCD Factorization Approach

    SciTech Connect

    Kivel, Nikolai; Vanderhaeghen, Marc

    2009-08-28

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer Q{sup 2}. It is shown that the leading two-photon exchange amplitude behaves as 1/Q{sup 4}, and can be expressed in a model independent way in terms of the leading twist nucleon distribution amplitudes. Using several models for the nucleon distribution amplitudes, we provide estimates for existing data and for ongoing experiments.

  2. Lpg0393 of Legionella pneumophila Is a Guanine-Nucleotide Exchange Factor for Rab5, Rab21 and Rab22

    PubMed Central

    Sohn, Young-Sik; Shin, Ho-Chul; Park, Wei Sun; Ge, Jianning; Kim, Chan-Hee; Lee, Bok Luel; Do Heo, Won; Jung, Jae U.; Rigden, Daniel John; Oh, Byung-Ha

    2015-01-01

    Legionella pneumophila, a human intracellular pathogen, encodes about 290 effector proteins that are translocated into host cells through a secretion machinery. Some of these proteins have been shown to manipulate or subvert cellular processes during infection, but functional roles of a majority of them remain unknown. Lpg0393 is a newly identified Legionella effector classified as a hypothetical protein. Through X-ray crystallographic analysis, we show that Lpg0393 contains a Vps9-like domain, which is structurally most similar to the catalytic core of human Rabex-5 that activates the endosomal Rab proteins Rab5, Rab21 and Rab22. Consistently, Lpg0393 exhibited a guanine-nucleotide exchange factor activity toward the endosomal Rabs. This work identifies the first example of a bacterial guanine-nucleotide exchange factor that is active towards the Rab5 sub-cluster members, implying that the activation of these Rab proteins might be advantageous for the intracellular survival of Legionella. PMID:25821953

  3. [Indicators of exchange of bile pigments under the action of ecopathogenic factors on the organism and correction with liposomes].

    PubMed

    Mel'nychuk, D O; Hryshchenko, V A; Vesel'skyĭ, S P

    2014-01-01

    High levels of anthropogenic impact on the environment requires a detailed study of the features of the influence of heavy metals and ionizing radiation on living organisms, and provides for the development and use of effective means of protecting the body from its negative influence. The purpose of the work was to study the characteristics of the exchange of bile pigments of rats under the action of ecopathogenic factors (ionizing radiation and cadmium) on the organism and the corrective properties of liposomes on the basis of milk phospholipids. An analysis of the chromatographic studies of bilirubin and derivatives (nonconjugated bilirubin, bilirubin sulfate, billirubin glucuronide, urobilin and stercobilin) in the whole blood, liver, jejunum contents and feces under the action on the animal organism of ecopathogenic factors (ionizing radiation and cadmium) indicate material violation of the exchange bile pigments that may be due to the destabilization of the structural and functional hot hepatocytes. Correction of the liposomal form of biologically active additive (BAA) FLP-MD is recommended; the latter is a mixture of phospholipids isolated from milk, with a mixture of unsaturated fatty acids (oleic, linoleic, linolenic) and antioxidants (alpha-tocopherol and retinol acetate). The additive components exhibit the reparative effect of the action in respect of the damaged membrane structures with simultaneous improving of cholepoietic and billiation liver function, and therefore contribute to the normalization of exchange og bile pigments in terms of action on the body ecopathogenic factors. PMID:25033562

  4. BiP and its nucleotide exchange factors Grp170 and Sil1: mechanisms of action and biological functions.

    PubMed

    Behnke, Julia; Feige, Matthias J; Hendershot, Linda M

    2015-04-10

    BiP (immunoglobulin heavy-chain binding protein) is the endoplasmic reticulum (ER) orthologue of the Hsp70 family of molecular chaperones and is intricately involved in most functions of this organelle through its interactions with a variety of substrates and regulatory proteins. Like all Hsp70 family members, the ability of BiP to bind and release unfolded proteins is tightly regulated by a cycle of ATP binding, hydrolysis, and nucleotide exchange. As a characteristic of the Hsp70 family, multiple DnaJ-like co-factors can target substrates to BiP and stimulate its ATPase activity to stabilize the binding of BiP to substrates. However, only in the past decade have nucleotide exchange factors for BiP been identified, which has shed light not only on the mechanism of BiP-assisted folding in the ER but also on Hsp70 family members that reside throughout the cell. We will review the current understanding of the ATPase cycle of BiP in the unique environment of the ER and how it is regulated by the nucleotide exchange factors, Grp170 (glucose-regulated protein of 170kDa) and Sil1, both of which perform unanticipated roles in various biological functions and disease states. PMID:25698114

  5. Meson exchange effects in elastic ep scattering at loop level and the electromagnetic form factors of the proton

    NASA Astrophysics Data System (ADS)

    Chen, Hong-Yu; Zhou, Hai-Qing

    2014-10-01

    A new form of two-photon exchange (TPE) effect is studied to explain the discrepancy between unpolarized and polarized experimental data in elastic ep scattering. The mechanism is based on a simple idea that apart from the usual TPE effects from box and crossed-box diagrams, the mesons may also be exchanged in elastic ep scattering by two-photon coupling at loop level. The detailed study shows such contributions to reduced unpolarized cross section (σun) and polarized observables (Pt,Pl) at fixed Q2 are only dependent on proton's electromagnetic form factors GE ,M and a new unknown universal parameter g. After combining this contribution with the usual TPE contributions from box and crossed-box diagrams, the ratio μpGE/GM extracted from the recent precise unpolarized and polarized experimental data can be described consistently.

  6. Relative strength of W exchange and factorization contributions in hadronic decays of charmed baryons

    SciTech Connect

    Fayyazuddin; Riazuddin

    1997-01-01

    The nonleptonic decays {Lambda}{sub c}{sup +}{r_arrow}{Delta}{sup ++}K{sup {minus}},{Sigma}{sup {asterisk}0}{pi}{sup +}, and {Xi}{sup {asterisk}0}K{sup +} and {Omega}{sub c}{sup 0}{r_arrow}{Xi}{sup 0}{bar K}{sup 0}, {Omega}{sup {minus}}{pi}{sup +}, and {Xi} {sup {asterisk}0}{bar K}{sup 0} are studied. The dominant contribution for the former decays comes from the W exchange and for the latter decays the W emission gives the dominant contribution. These decays are especially suitable to determine directly the scale of W exchange and W emission from the experimental data. We obtain {alpha}({Omega}{sub c}{sup 0}{r_arrow}{Xi}{sup 0}{bar K}{sup 0}){approx}0.35. {copyright} {ital 1997} {ital The American Physical Society}

  7. Controlling factors of biosphere-atmosphere ammonia exchange at a semi-natural peatland site

    NASA Astrophysics Data System (ADS)

    Brummer, C.; Richter, U.; Smith, J. J.; Delorme, J. P.; Kutsch, W. L.

    2014-12-01

    Recent advancements in laser spectrometry offer new opportunities to investigate net biosphere-atmosphere exchange of ammonia. During a three month field campaign from February to May 2014, we tested the performance of a quantum cascade laser within an eddy-covariance setup. The laser was operated at a semi-natural peatland site that is surrounded by highly fertilized agricultural land and intensive livestock production (~1 km distance). Ammonia concentrations were highly variable between 2 and almost 100 ppb with an average value of 15 ppb. Different concentration patterns could be identified. The variability was closely linked to the timing of management practices and the prevailing local climate, particularly wind direction, temperature and surface wetness with the latter indicating higher non-stomatal uptake under wet conditions leading to decreased concentrations. Average ammonia fluxes were around -15 ng N m-2 s-1 at the beginning of the campaign in February and shifted towards a neutral average exchange regime of -1 to 0 ng N m-2 s-1 in April and May. Intriguingly, during the time of decreasing ammonia uptake, concentrations were considerably rising, which clearly indicated N saturation in the predominant vegetation such as bog heather, purple moor-grass, and cotton grass. The cumulative net uptake for the period of investigation was ~300 g N ha-1. This stresses the importance of a thorough method inter-comparison, e.g. with denuder systems in combination with dry deposition modeling. As previous results from the latter methods showed an annual uptake of ~9 kg N ha-1 for the same site, the implementation of adequate ammonia compensation point parameterizations become crucial in surface-atmosphere exchange schemes for bog vegetation. Through their high temporal resolution, robustness and continuous measurement mode, quantum cascade lasers will help assessing the effects of atmospheric N loads to vulnerable N-limited ecosystems such as peatlands.

  8. Phosphorylation of the exchange factor DENND3 by ULK in response to starvation activates Rab12 and induces autophagy

    PubMed Central

    Xu, Jie; Fotouhi, Maryam; McPherson, Peter S

    2015-01-01

    Unc-51-like kinases (ULKs) are the most upstream kinases in the initiation of autophagy, yet the molecular mechanisms underlying their function are poorly understood. We report a new role for ULK in the induction of autophagy. ULK-mediated phosphorylation of the guanine nucleotide exchange factor DENND3 at serines 554 and 572 upregulates its GEF activity toward the small GTPase Rab12. Through binding to LC3 and associating with LC3-positive autophagosomes, active Rab12 facilitates autophagosome trafficking, thus establishing a crucial role for the ULK/DENND3/Rab12 axis in starvation-induced autophagy. PMID:25925668

  9. The Structure of RalF, an ADP-Ribosylation Factor Guanine Nucleotide Exchange Factor from Legionella pneumophila, Reveals the Presence of a Cap over the Active Site

    SciTech Connect

    Amor,J.; Swails, J.; Zhu, X.; Roy, C.; Nagai, H.; Ingmundson, A.; Cheng, X.; Kahn, R.

    2005-01-01

    The Legionella pneumophila protein RalF is secreted into host cytosol via the Dot/Icm type IV transporter where it acts to recruit ADP-ribosylation factor (Arf) to pathogen-containing phagosomes in the establishment of a replicative organelle. The presence in RalF of the Sec7 domain, present in all Arf guanine nucleotide exchange factors, has suggested that recruitment of Arf is an early step in pathogenesis. We have determined the crystal structure of RalF and of the isolated Sec7 domain and found that RalF is made up of two domains. The Sec7 domain is homologous to mammalian Sec7 domains. The C-terminal domain forms a cap over the active site in the Sec7 domain and contains a conserved folding motif, previously observed in adaptor subunits of vesicle coat complexes. The importance of the capping domain and of the glutamate in the 'glutamic finger,' conserved in all Sec7 domains, to RalF functions was examined using three different assays. These data highlight the functional importance of domains other than Sec7 in Arf guanine nucleotide exchange factors to biological activities and suggest novel mechanisms of regulation of those activities.

  10. BiP and its Nucleotide Exchange Factors Grp170 and Sil1: Mechanisms of Action and Biological Functions

    PubMed Central

    Behnke, Julia; Feige, Matthias J.; Hendershot, Linda M.

    2015-01-01

    BiP is the endoplasmic reticulum (ER) orthologue of the Hsp70 family of molecular chaperones and is intricately involved in most functions of this organelle through its interactions with a variety of substrates and regulatory proteins. Like all Hsp70 family members, the ability of BiP to bind and release unfolded proteins is tightly regulated by a cycle of ATP binding, hydrolysis, and nucleotide exchange. As a characteristic of the Hsp70 family, multiple DnaJ-like co-factors exist that can target substrates to BiP and stimulate its ATPase activity to stabilize the binding of BiP to substrates. However, only in the past decade have nucleotide exchange factors (NEFs) for BiP been identified, which has shed light not only on the mechanism of BiP assisted folding in the ER but also on Hsp70 family members that reside throughout the cell. We will review the current understanding of the ATPase cycle of BiP in the unique environment of the ER and how it is regulated by the NEFs, Grp170 and Sil1, both of which perform unanticipated roles in various biological functions and disease states. PMID:25698114

  11. Differential Rac1 signalling by guanine nucleotide exchange factors implicates FLII in regulating Rac1-driven cell migration

    PubMed Central

    Marei, Hadir; Carpy, Alejandro; Woroniuk, Anna; Vennin, Claire; White, Gavin; Timpson, Paul; Macek, Boris; Malliri, Angeliki

    2016-01-01

    The small GTPase Rac1 has been implicated in the formation and dissemination of tumours. Upon activation by guanine nucleotide exchange factors (GEFs), Rac1 associates with a variety of proteins in the cell thereby regulating various functions, including cell migration. However, activation of Rac1 can lead to opposing migratory phenotypes raising the possibility of exacerbating tumour progression when targeting Rac1 in a clinical setting. This calls for the identification of factors that influence Rac1-driven cell motility. Here we show that Tiam1 and P-Rex1, two Rac GEFs, promote Rac1 anti- and pro-migratory signalling cascades, respectively, through regulating the Rac1 interactome. In particular, we demonstrate that P-Rex1 stimulates migration through enhancing the interaction between Rac1 and the actin-remodelling protein flightless-1 homologue, to modulate cell contraction in a RhoA-ROCK-independent manner. PMID:26887924

  12. Mediated effects of physical risk factors, leader-member exchange and empowerment in predicting perceived injury risk.

    PubMed

    Muldoon, Jeffery; Matthews, Russell A; Foley, Caroline

    2012-04-01

    In the context of conservation of resources theory, we examine the indirect (mediated) effects of physical risk factors, leader-member exchange (LMX) and empowerment on perceived injury risk in a heterogeneous sample (N = 226) of individuals employed in occupations related to production, construction and installation/maintenance. Positioning work role stressors and upward safety communications as two important mediating variables, as predicted, LMX and empowerment demonstrated significant indirect effects on perceived injury risk. Results from our model also provide preliminary evidence that an asymmetrical dualistic process exists in terms of the effect physical risk factors have on perceived injury risk via depletion of both psychological (i.e. role stressors) and physical resources (i.e. physical symptoms). Theoretical and practical implications based on the results of our model are also discussed. PMID:22282314

  13. Social Network-Related Risk Factors for Bloodborne Virus Infections Among Injection Drug Users Receiving Syringes through Secondary Exchange

    PubMed Central

    Cox, Joseph; Boivin, Jean-François; Platt, Robert W.; Jolly, Ann M.

    2007-01-01

    Secondary syringe exchange (SSE) refers to the exchange of sterile syringes between injection drug users (IDUs). To date there has been limited examination of SSE in relation to the social networks of IDUs. This study aimed to identify characteristics of drug injecting networks associated with the receipt of syringes through SSE. Active IDUs were recruited from syringe exchange and methadone treatment programs in Montreal, Canada, between April 2004 and January 2005. Information on each participant and on their drug-injecting networks was elicited using a structured, interviewer-administered questionnaire. Subjects’ network characteristics were examined in relation to SSE using regression models with generalized estimating equations. Of 218 participants, 126 were SSE recipients with 186 IDUs in their injecting networks. The 92 non-recipients reported 188 network IDUs. Networks of SSE recipients and non-recipients were similar with regard to network size and demographics of network members. In multivariate analyses adjusted for age and gender, SSE recipients were more likely than non-recipients to self-report being HIV-positive (OR = 3.56 [1.54–8.23]); require or provide help with injecting (OR = 3.74 [2.01–6.95]); have a social network member who is a sexual partner (OR = 1.90 [1.11–3.24]), who currently attends a syringe exchange or methadone program (OR = 2.33 [1.16–4.70]), injects daily (OR = 1.77 [1.11–2.84]), and shares syringes with the subject (OR = 2.24 [1.13–4.46]). SSE is associated with several injection-related risk factors that could be used to help focus public health interventions for risk reduction. Since SSE offers an opportunity for the dissemination of important prevention messages, SSE-based networks should be used to improve public health interventions. This approach can optimize the benefits of SSE while minimizing the potential risks associated with the practice of secondary exchange. PMID:18038211

  14. Greenhouse gas exchange in grasslands: impacts of climate, intensity of management and other factors

    NASA Astrophysics Data System (ADS)

    Smith, K. A.

    2003-04-01

    Grasslands occupy some 40% of the terrestrial land surface. They are generally categorised as natural (occurring mainly in those regions where the rainfall is too low to support forest ecosystems), semi-natural (where management, mainly by grazing, has changed the vegetation composition), and artificial (where forests have been cleared to create new pasture land). The soils of the natural and semi-natural grasslands constitute a large reservoir of carbon, and make a substantial contribution to the soil sink for atmospheric CH_4. The conversion of much of the natural temperate grassland to arable agriculture, e.g. in North America and Europe, resulted in a considerable decrease in soil organic carbon, and its release to the atmosphere as CO_2 has made a substantial contribution to the total atmospheric concentration of this gas. The associated increase in cycling of soil N (released from the organic matter) will have contributed to N_2O emissions, and land disturbance and fertilisation has resulted in a depletion of the soil CH_4 sink. Conversion of tropical forests to pastures has also been a major source of CO_2, and these pastures show elevated emissions of N_2O for some years after conversion. Seasonally flooded tropical grasslands are a significant source of CH_4 emissions. Consideration of grassland ecosystems in their entirety, in relation to GHG exchange, necessitates the inclusion of CH_4 production by fauna - domesticated livestock and wild herbivores, as well as some species of termites - in the overall assessment. Stocking rates on pasture land have increased, and the total CH_4 emissions likewise. The relationship between animal production and CH_4 emissions is dependent on the nutritional quality of the vegetation, as well as on animal numbers. In both temperate and tropical regions, increased N inputs as synthetic fertilisers and manures (and increased N deposition) are producing possibly a more-than-linear response in terms of emissions of N_2O. In

  15. Filamin A regulates neuronal migration through brefeldin A-inhibited guanine exchange factor 2-dependent Arf1 activation.

    PubMed

    Zhang, Jingping; Neal, Jason; Lian, Gewei; Hu, Jianjun; Lu, Jie; Sheen, Volney

    2013-10-01

    Periventricular heterotopias is a malformation of cortical development, characterized by ectopic neuronal nodules around ventricle lining and caused by an initial migration defect during early brain development. Human mutations in the Filamin A (FLNA) and ADP-ribosylation factor guanine exchange factor 2 [ARFGEF2; encoding brefeldin-A-inhibited guanine exchange factor-2 (BIG2)] genes give rise to this disorder. Previously, we have reported that Big2 inhibition impairs neuronal migration and binds to FlnA, and its loss promotes FlnA phosphorylation. FlnA phosphorylation dictates FlnA-actin binding affinity and consequently alters focal adhesion size and number to effect neuronal migration. Here we show that FlnA loss similarly impairs migration, reciprocally enhances Big2 expression, but also alters Big2 subcellular localization in both null and conditional FlnA mice. FlnA phosphorylation promotes relocalization of Big2 from the Golgi toward the lipid ruffles, thereby activating Big2-dependent Arf1 at the cell membrane. Loss of FlnA phosphorylation or Big2 function impairs Arf1-dependent vesicle trafficking at the periphery, and Arf1 is required for maintenance of cell-cell junction connectivity and focal adhesion assembly. Loss of Arf1 activity disrupts neuronal migration and cell adhesion. Collectively, these studies demonstrate a potential mechanism whereby coordinated interactions between actin (through FlnA) and vesicle trafficking (through Big2-Arf) direct the assembly and disassembly of membrane protein complexes required for neuronal migration and neuroependymal integrity. PMID:24089482

  16. Identification of Intersubunit Domain Interactions within Eukaryotic Initiation Factor (eIF) 2B, the Nucleotide Exchange Factor for Translation Initiation*

    PubMed Central

    Reid, Peter J.; Mohammad-Qureshi, Sarah S.; Pavitt, Graham D.

    2012-01-01

    In eukaryotic translation initiation, eIF2B is the guanine nucleotide exchange factor (GEF) required for reactivation of the G protein eIF2 between rounds of protein synthesis initiation. eIF2B is unusually complex with five subunits (α–ϵ) necessary for GEF activity and its control by phosphorylation of eIF2α. In addition, inherited mutations in eIF2B cause a fatal leukoencephalopathy. Here we describe experiments examining domains of eIF2Bγ and ϵ that both share sequence and predicted tertiary structure similarity with a family of phospho-hexose sugar nucleotide pyrophosphorylases. Firstly, using a genetic approach, we find no evidence to support a significant role for a potential nucleotide-binding region within the pyrophosphorylase-like domain (PLD) of eIF2Bϵ for nucleotide exchange. These findings are at odds with one mechanism for nucleotide exchange proposed previously. By using a series of constructs and a co-expression and precipitation strategy, we find that the eIF2Bϵ and -γ PLDs and a shared second domain predicted to form a left-handed β helix are all critical for interprotein interactions between eIF2B subunits necessary for eIF2B complex formation. We have identified extensive interactions between the PLDs and left-handed β helix domains that form the eIF2Bγϵ subcomplex and propose a model for domain interactions between eIF2B subunits. PMID:22238343

  17. New insights into the dimerization of small GTPase Rac/ROP guanine nucleotide exchange factors in rice

    PubMed Central

    Akamatsu, Akira; Uno, Kazumi; Kato, Midori; Wong, Hann Ling; Shimamoto, Ko; Kawano, Yoji

    2015-01-01

    Molecular links between receptor-kinases and Rac/ROP family small GTPases mediated by activator guanine nucleotide exchange factors (GEFs) govern diverse biological processes. However, it is unclear how the Rac/ROP GTPases orchestrate such a wide variety of activities. Here, we show that rice OsRacGEF1 forms homodimers, and heterodimers with OsRacGEF2, at the plasma membrane (PM) and the endoplasmic reticulum (ER). OsRacGEF2 does not bind directly to the receptor-like kinase (RLK) OsCERK1, but forms a complex with OsCERK1 through OsRacGEF1 at the ER. This complex is transported from ER to the PM and there associates with OsRac1, resulting in the formation of a stable immune complex. Such RLK-GEF heterodimer complexes may explain the diversity of Rac/ROP family GTPase signalings. PMID:26251883

  18. Dynamic C and N stocks - key factors controlling the C gas exchange of maize in a heterogenous peatland

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Hoffmann, M.; Hagemann, U.; Giebels, M.; Albiac Borraz, E.; Sommer, M.; Augustin, J.

    2014-11-01

    Drainage and cultivation of fen peatlands creates complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater-level (GWL). To date, it remains unclear if such sites are sources or sinks for greenhouse gases like CO2 and CH4, especially if used for cropland. As individual control factors like GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of plant- and microbially mediated C gas fluxes of these soils. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP, ecosystem respiration - Reco, net ecosystem exchange - NEE, CH4) of maize using manual chambers for four years. The study sites were located near Paulinenaue, Germany. Here we selected three soils, which represent the full gradient in pedogenesis, GWL and SOC stocks (0-1 m) of the fen peatland: (a) Haplic Arenosol (AR; 8 kg C m-2); (b) Mollic Gleysol (GL; 38 kg C m-2); and (c) Hemic Histosol (HS; 87 kg C m-2). Daily GWL data was used to calculate dynamic SOC (SOCdyn) and N (Ndyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 ± 30 g C m-2 a-1 at AR to -305 ± 123 g C m-2 a-1 at GL and -127 ± 212 g C m-2 a-1 at HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and Ndyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP:Reco ratio. Moreover, based on nonlinear regression analysis, 86% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the effects of GWL-dependent N availability on C formation and

  19. Dynamic C and N stocks - key factors controlling the C gas exchange of maize in heterogenous peatland

    NASA Astrophysics Data System (ADS)

    Pohl, M.; Hoffmann, M.; Hagemann, U.; Giebels, M.; Albiac Borraz, E.; Sommer, M.; Augustin, J.

    2015-05-01

    The drainage and cultivation of fen peatlands create complex small-scale mosaics of soils with extremely variable soil organic carbon (SOC) stocks and groundwater levels (GWLs). To date, the significance of such sites as sources or sinks for greenhouse gases such as CO2 and CH4 is still unclear, especially if the sites are used for cropland. As individual control factors such as GWL fail to account for this complexity, holistic approaches combining gas fluxes with the underlying processes are required to understand the carbon (C) gas exchange of drained fens. It can be assumed that the stocks of SOC and N located above the variable GWL - defined as dynamic C and N stocks - play a key role in the regulation of the plant- and microbially mediated CO2 fluxes in these soils and, inversely, for CH4. To test this assumption, the present study analysed the C gas exchange (gross primary production - GPP; ecosystem respiration - Reco; net ecosystem exchange - NEE; CH4) of maize using manual chambers for 4 years. The study sites were located near Paulinenaue, Germany, where we selected three soil types representing the full gradient of GWL and SOC stocks (0-1 m) of the landscape: (a) Haplic Arenosol (AR; 8 kg C m-2); (b) Mollic Gleysol (GL; 38 kg C m-2); and (c) Hemic Histosol (HS; 87 kg C m-2). Daily GWL data were used to calculate dynamic SOC (SOCdyn) and N (Ndyn) stocks. Average annual NEE differed considerably among sites, ranging from 47 ± 30 g C m-2 yr-1 in AR to -305 ± 123 g C m-2 yr-1 in GL and -127 ± 212 g C m-2 yr-1 in HS. While static SOC and N stocks showed no significant effect on C fluxes, SOCdyn and Ndyn and their interaction with GWL strongly influenced the C gas exchange, particularly NEE and the GPP : Reco ratio. Moreover, based on nonlinear regression analysis, 86% of NEE variability was explained by GWL and SOCdyn. The observed high relevance of dynamic SOC and N stocks in the aerobic zone for plant and soil gas exchange likely originates from the

  20. Role of Epac1, an Exchange Factor for Rap GTPases, in Endothelial Microtubule Dynamics and Barrier Function

    PubMed Central

    Sehrawat, Seema; Cullere, Xavier; Patel, Sunita; Italiano, Joseph

    2008-01-01

    Rap1 GTPase activation by its cAMP responsive nucleotide exchange factor Epac present in endothelial cells increases endothelial cell barrier function with an associated increase in cortical actin. Here, Epac1 was shown to be responsible for these actin changes and to colocalize with microtubules in human umbilical vein endothelial cells. Importantly, Epac activation with a cAMP analogue, 8-pCPT-2′O-Me-cAMP resulted in a net increase in the length of microtubules. This did not require cell–cell interactions or Rap GTPase activation, and it was attributed to microtubule growth as assessed by time-lapse microscopy of human umbilical vein endothelial cell expressing fluorophore-linked microtubule plus-end marker end-binding protein 3. An intact microtubule network was required for Epac-mediated changes in cortical actin and barrier enhancement, but it was not required for Rap activation. Finally, Epac activation reversed microtubule-dependent increases in vascular permeability induced by tumor necrosis factor-α and transforming growth factor-β. Thus, Epac can directly promote microtubule growth in endothelial cells. This, together with Rap activation leads to an increase in cortical actin, which has functional significance for vascular permeability. PMID:18172027

  1. Carbon exchange between ecosystems and atmosphere in the Czech Republic is affected by climate factors.

    PubMed

    Marek, Michal V; Janouš, Dalibor; Taufarová, Klára; Havránková, Kateřina; Pavelka, Marian; Kaplan, Věroslav; Marková, Irena

    2011-05-01

    By comparing five ecosystem types in the Czech Republic over several years, we recorded the highest carbon sequestration potential in an evergreen Norway spruce forest (100%) and an agroecosystem (65%), followed by European beech forest (25%) and a wetland ecosystem (20%). Because of a massive ecosystem respiration, the final carbon gain of the grassland was negative. Climate was shown to be an important factor of carbon uptake by ecosystems: by varying the growing season length (a 22-d longer season in 2005 than in 2007 increased carbon sink by 13%) or by the effect of short- term synoptic situations (e.g. summer hot and dry days reduced net carbon storage by 58% relative to hot and wet days). Carbon uptake is strongly affected by the ontogeny and a production strategy which is demonstrated by the comparison of seasonal course of carbon uptake between coniferous (Norway spruce) and deciduous (European beech) stands. PMID:21345558

  2. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration–proliferation dichotomy

    PubMed Central

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L.; Garcia-Marcos, Mikel; Farquhar, Marilyn G.; Ghosh, Pradipta

    2015-01-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously—a phenomenon called “migration–proliferation dichotomy.” We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration–proliferation dichotomy during cancer invasion, wound healing, and development. PMID:26286990

  3. Cyclin-dependent kinase 5 activates guanine nucleotide exchange factor GIV/Girdin to orchestrate migration-proliferation dichotomy.

    PubMed

    Bhandari, Deepali; Lopez-Sanchez, Inmaculada; To, Andrew; Lo, I-Chung; Aznar, Nicolas; Leyme, Anthony; Gupta, Vijay; Niesman, Ingrid; Maddox, Adam L; Garcia-Marcos, Mikel; Farquhar, Marilyn G; Ghosh, Pradipta

    2015-09-01

    Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development. PMID:26286990

  4. Expanding functions of GIT Arf GTPase-activating proteins, PIX Rho guanine nucleotide exchange factors and GIT-PIX complexes.

    PubMed

    Zhou, Wu; Li, Xiaobo; Premont, Richard T

    2016-05-15

    The GIT proteins, GIT1 and GIT2, are GTPase-activating proteins (inactivators) for the ADP-ribosylation factor (Arf) small GTP-binding proteins, and function to limit the activity of Arf proteins. The PIX proteins, α-PIX and β-PIX (also known as ARHGEF6 and ARHGEF7, respectively), are guanine nucleotide exchange factors (activators) for the Rho family small GTP-binding protein family members Rac1 and Cdc42. Through their multi-domain structures, GIT and PIX proteins can also function as signaling scaffolds by binding to numerous protein partners. Importantly, the constitutive association of GIT and PIX proteins into oligomeric GIT-PIX complexes allows these two proteins to function together as subunits of a larger structure that coordinates two distinct small GTP-binding protein pathways and serves as multivalent scaffold for the partners of both constituent subunits. Studies have revealed the involvement of GIT and PIX proteins, and of the GIT-PIX complex, in numerous fundamental cellular processes through a wide variety of mechanisms, pathways and signaling partners. In this Commentary, we discuss recent findings in key physiological systems that exemplify current understanding of the function of this important regulatory complex. Further, we draw attention to gaps in crucial information that remain to be filled to allow a better understanding of the many roles of the GIT-PIX complex in health and disease. PMID:27182061

  5. Identification of Arabidopsis Cyclase-associated Protein 1 as the First Nucleotide Exchange Factor for Plant Actin

    PubMed Central

    Chaudhry, Faisal; Guérin, Christophe; von Witsch, Matthias

    2007-01-01

    The actin cytoskeleton powers organelle movements, orchestrates responses to abiotic stresses, and generates an amazing array of cell shapes. Underpinning these diverse functions of the actin cytoskeleton are several dozen accessory proteins that coordinate actin filament dynamics and construct higher-order assemblies. Many actin-binding proteins from the plant kingdom have been characterized and their function is often surprisingly distinct from mammalian and fungal counterparts. The adenylyl cyclase-associated protein (CAP) has recently been shown to be an important regulator of actin dynamics in vivo and in vitro. The disruption of actin organization in cap mutant plants indicates defects in actin dynamics or the regulated assembly and disassembly of actin subunits into filaments. Current models for actin dynamics maintain that actin-depolymerizing factor (ADF)/cofilin removes ADP–actin subunits from filament ends and that profilin recharges these monomers with ATP by enhancing nucleotide exchange and delivery of subunits onto filament barbed ends. Plant profilins, however, lack the essential ability to stimulate nucleotide exchange on actin, suggesting that there might be a missing link yet to be discovered from plants. Here, we show that Arabidopsis thaliana CAP1 (AtCAP1) is an abundant cytoplasmic protein; it is present at a 1:3 M ratio with total actin in suspension cells. AtCAP1 has equivalent affinities for ADP– and ATP–monomeric actin (Kd ∼ 1.3 μM). Binding of AtCAP1 to ATP–actin monomers inhibits polymerization, consistent with AtCAP1 being an actin sequestering protein. However, we demonstrate that AtCAP1 is the first plant protein to increase the rate of nucleotide exchange on actin. Even in the presence of ADF/cofilin, AtCAP1 can recharge actin monomers and presumably provide a polymerizable pool of subunits to profilin for addition onto filament ends. In turnover assays, plant profilin, ADF, and CAP act cooperatively to promote flux of

  6. Superoxide Inhibits Guanine Nucleotide Exchange Factor (GEF) Action on Ras, but not on Rho, through Desensitization of Ras to GEF

    PubMed Central

    2015-01-01

    Ras and Rho GTPases are molecular switches for various vital cellular signaling pathways. Overactivation of these GTPases often causes development of cancer. Guanine nucleotide exchange factors (GEFs) and oxidants function to upregulate these GTPases through facilitation of guanine nucleotide exchange (GNE) of these GTPases. However, the effect of oxidants on GEF functions, or vice versa, has not been known. We show that, via targeting Ras Cys51, an oxidant inhibits the catalytic action of Cdc25—the catalytic domain of RasGEFs—on Ras. However, the enhancement of Ras GNE by an oxidant continues regardless of the presence of Cdc25. Limiting RasGEF action by an oxidant may function to prevent the pathophysiological overactivation of Ras in the presence of both RasGEFs and oxidants. The continuous exposure of Ras to nitric oxide and its derivatives can form S-nitrosated Ras (Ras-SNO). This study also shows that an oxidant not only inhibits the catalytic action of Cdc25 on Ras-SNO but also fails to enhance Ras-SNO GNE. This lack of enhancement then populates the biologically inactive Ras-SNO in cells, which may function to prevent the continued redox signaling of the Ras pathophysiological response. Finally, this study also demonstrates that, unlike the case with RasGEFs, an oxidant does not inhibit the catalytic action of RhoGEF—Vav or Dbs—on Rho GTPases such as Rac1, RhoA, RhoC, and Cdc42. This result explains the results of the previous study in which, despite the presence of an oxidant, the catalytic action of Dbs in cells continued to enhance RhoC GNE. PMID:24422478

  7. Insights into the Molecular Activation Mechanism of the RhoA-specific Guanine Nucleotide Exchange Factor, PDZRhoGEF

    SciTech Connect

    Bielnicki, Jakub A.; Shkumatov, Alexander V.; Derewenda, Urszula; Somlyo, Avril V.; Svergun, Dmitri I.; Derewenda, Zygmunt S.

    2012-10-09

    PDZRhoGEF (PRG) belongs to a small family of RhoA-specific nucleotide exchange factors that mediates signaling through select G-protein-coupled receptors via G{alpha}{sub 12/13} and activates RhoA by catalyzing the exchange of GDP to GTP. PRG is a multidomain protein composed of PDZ, regulators of G-protein signaling-like (RGSL), Dbl-homology (DH), and pleckstrin-homology (PH) domains. It is autoinhibited in cytosol and is believed to undergo a conformational rearrangement and translocation to the membrane for full activation, although the molecular details of the regulation mechanism are not clear. It has been shown recently that the main autoregulatory elements of PDZRhoGEF, the autoinhibitory 'activation box' and the 'GEF switch,' which is required for full activation, are located directly upstream of the catalytic DH domain and its RhoA binding surface, emphasizing the functional role of the RGSL-DH linker. Here, using a combination of biophysical and biochemical methods, we show that the mechanism of PRG regulation is yet more complex and may involve an additional autoinhibitory element in the form of a molten globule region within the linker between RGSL and DH domains. We propose a novel, two-tier model of autoinhibition where the activation box and the molten globule region act synergistically to impair the ability of RhoA to bind to the catalytic DH-PH tandem. The molten globule region and the activation box become less ordered in the PRG-RhoA complex and dissociate from the RhoA-binding site, which may constitute a critical step leading to PRG activation.

  8. Fibroblast Growth Factor-23-mediated Inhibition of Renal Phosphate Transport in Mice Requires Sodium-Hydrogen Exchanger Regulatory Factor-1 (NHERF-1) and Synergizes with Parathyroid Hormone*

    PubMed Central

    Weinman, Edward J.; Steplock, Deborah; Shenolikar, Shirish; Biswas, Rajatsubhra

    2011-01-01

    Fibroblast growth factor-23 (FGF-23) inhibits sodium-dependent phosphate transport in brush border membrane vesicles derived from hormone-treated kidney slices of the mouse and in mouse proximal tubule cells by processes involving mitogen-activated protein kinase (MAPK) but not protein kinase A (PKA) or protein kinase C (PKC). By contrast, phosphate transport in brush border membrane vesicles and proximal tubule cells from sodium-hydrogen exchanger regulatory factor-1 (NHERF-1)-null mice were resistant to the inhibitory effect of FGF-23 (10−9 m). Infection of NHERF-1-null proximal tubule cells with wild-type adenovirus-GFP-NHERF-1 increased basal phosphate transport and restored the inhibitory effect of FGF-23. Infection with adenovirus-GFP-NHERF-1 containing a S77A or T95D mutation also increased basal phosphate transport, but the cells remained resistant to FGF-23 (10−9 m). Low concentrations of FGF-23 (10−13 m) and PTH (10−11 m) individually did not inhibit phosphate transport or activate PKA, PKC, or MAPK. When combined, however, these hormones markedly inhibited phosphate transport associated with activation of PKC and PKA but not MAPK. These studies indicate that FGF-23 inhibits phosphate transport in the mouse kidney by processes that involve the scaffold protein NHERF-1. In addition, FGF-23 synergizes with PTH to inhibit phosphate transport by facilitating the activation of the PTH signal transduction pathway. PMID:21908609

  9. Crack cocaine and the exchange of sex for money or drugs. Risk factors for gonorrhea among black adolescents in San Francisco.

    PubMed

    Schwarcz, S K; Bolan, G A; Fullilove, M; McCright, J; Fullilove, R; Kohn, R; Rolfs, R T

    1992-01-01

    In contrast to rates for the United States as a whole, the incidence rate of gonorrhea increased 11% in San Francisco between 1986 and 1988, with substantial increases observed among black adolescents. Reports by health department personnel and police suggested that crack cocaine use, specifically the exchange of sex for drugs, contributed to this increase. To test this hypothesis, the authors conducted a case-control study from August 1988 to October 1988 that compared 68 prospectively identified adolescent gonorrhea patients with 136 neighborhood control patients. Thirty-two percent of the female gonorrhea patients had received money or drugs in exchange for sex, while none of the control patients reported having done so (P = 0.0001). Most of the female patients (89%) who had received money or drugs in exchange for sex had used crack. Crack use was less common among female patients who denied receiving money or drugs in exchange for sex (11%) and among control patients (6%). Crack use and providing money or drugs in exchange for sex were not risk factors for gonorrhea among the male patients, but were reported frequently by both gonorrhea patients and control patients. Not living with parents was a risk factor for male patients (odds ratio 4.9, 95% confidence limit 1.4 to 19.5). For all patients, a history of a sexually transmitted disease appeared to be an independent risk factor for gonorrhea. The conclusion is made that crack-related exchange of sex for money or drugs is a risk factor for gonorrhea among black adolescent girls in San Francisco.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1561589

  10. A General Econometric Model of the Determinants of Library Subscription Prices of Scholarly Journals: The Role of Exchange Rate Risk and Other Factors.

    ERIC Educational Resources Information Center

    Chressanthis, George A.; Chressanthis, June D.

    1994-01-01

    Provides regression-based empirical evidence of the effects of variations in exchange rate risk on 1985 library prices of the top-ranked 99 journals in economics. The relationship between individual journal prices and library prices is shown, and other factors associated with increases and decreases in library journal prices are given. (Contains…

  11. Rab14 and Its Exchange Factor FAM116 Link Endocytic Recycling and Adherens Junction Stability in Migrating Cells

    PubMed Central

    Linford, Andrea; Yoshimura, Shin-ichiro; Bastos, Ricardo Nunes; Langemeyer, Lars; Gerondopoulos, Andreas; Rigden, Daniel J.; Barr, Francis A.

    2012-01-01

    Summary Rab GTPases define the vesicle trafficking pathways underpinning cell polarization and migration. Here, we find that Rab4, Rab11, and Rab14 and the candidate Rab GDP-GTP exchange factors (GEFs) FAM116A and AVL9 are required for cell migration. Rab14 and its GEF FAM116A localize to and act on an intermediate compartment of the transferrin-recycling pathway prior to Rab11 and after Rab5 and Rab4. This Rab14 intermediate recycling compartment has specific functions in migrating cells discrete from early and recycling endosomes. Rab14-depleted cells show increased N-cadherin levels at junctional complexes and cannot resolve cell-cell junctions. This is due to decreased shedding of cell-surface N-cadherin by the ADAM family protease ADAM10/Kuzbanian. In FAM116A- and Rab14-depleted cells, ADAM10 accumulates in a transferrin-positive endocytic compartment, and the cell-surface level of ADAM10 is correspondingly reduced. FAM116 and Rab14 therefore define an endocytic recycling pathway needed for ADAM protease trafficking and regulation of cell-cell junctions. PMID:22595670

  12. Activation of the Small G Protein Arf6 by Dynamin2 through Guanine Nucleotide Exchange Factors in Endocytosis

    PubMed Central

    Okada, Risa; Yamauchi, Yohei; Hongu, Tsunaki; Funakoshi, Yuji; Ohbayashi, Norihiko; Hasegawa, Hiroshi; Kanaho, Yasunori

    2015-01-01

    The small G protein Arf6 and the GTPase dynamin2 (Dyn2) play key roles in clathrin-mediated endocytosis (CME). However, their functional relationship remains obscure. Here, we show that Arf6 functions as a downstream molecule of Dyn2 in CME. Wild type of Dyn2 overexpressed in HeLa cells markedly activates Arf6, while a GTPase-lacking Dyn2 mutant does not. Of the Arf6-specific guanine nucleotide exchange factors, EFA6A, EFA6B, and EFA6D specifically interact with Dyn2. Furthermore, overexpression of dominant negative mutants or knockdown of EFA6B and EFA6D significantly inhibit Dyn2-induced Arf6 activation. Finally, overexpression of the binding region peptide of EFA6B for Dyn2 or knockdown of EFA6B and EFA6D significantly suppresses clathrin-mediated transferrin uptake. These results provide evidence for a novel Arf6 activation mechanism by Dyn2 through EFA6B and EFA6D in CME in a manner dependent upon the GTPase activity of Dyn2. PMID:26503427

  13. The nucleotide exchange factors Grp170 and Sil1 induce cholera toxin release from BiP to enable retrotranslocation.

    PubMed

    Williams, Jeffrey M; Inoue, Takamasa; Chen, Grace; Tsai, Billy

    2015-06-15

    Cholera toxin (CT) intoxicates cells by trafficking from the cell surface to the endoplasmic reticulum (ER), where the catalytic CTA1 subunit hijacks components of the ER-associated degradation (ERAD) machinery to retrotranslocate to the cytosol and induce toxicity. In the ER, CT targets to the ERAD machinery composed of the E3 ubiquitin ligase Hrd1-Sel1L complex, in part via the activity of the Sel1L-binding partner ERdj5. This J protein stimulates BiP's ATPase activity, allowing BiP to capture the toxin. Presumably, toxin release from BiP must occur before retrotranslocation. Here, using loss-and gain-of-function approaches coupled with binding studies, we demonstrate that the ER-resident nucleotide exchange factors (NEFs) Grp170 and Sil1 induce CT release from BiP in order to promote toxin retrotranslocation. In addition, we find that after NEF-dependent release from BiP, the toxin is transferred to protein disulfide isomerase; this ER redox chaperone is known to unfold CTA1, which allows the toxin to cross the Hrd1-Sel1L complex. Our data thus identify two NEFs that trigger toxin release from BiP to enable successful retrotranslocation and clarify the fate of the toxin after it disengages from BiP. PMID:25877869

  14. Impact factors on the long-term sustainability of Borehole Heat Exchanger coupled Ground Source Heat Pump System

    NASA Astrophysics Data System (ADS)

    Shao, Haibing; Hein, Philipp; Görke, Uwe-Jens; Bucher, Anke; Kolditz, Olaf

    2016-04-01

    In recent years, Ground Source Heat Pump System (GSHPS) has been recognized as an efficient technology to utilize shallow geothermal energy. Along with its wide application, some GSHPS are experiencing a gradual decrease in Borehole Heat Exchanger (BHE) outflow temperatures and thus have to be turned off after couple of years' operation. A comprehensive numerical investigation was then performed to model the flow and heat transport processes in and around the BHE, together with the dynamic change of heat pump efficiency. The model parameters were based on the soil temperature and surface weather condition in the Leipzig area. Different scenarios were modelled for a service life of 30 years, to reveal the evolution of BHE outflow and surrounding soil temperatures. It is found that lateral groundwater flow and using BHE for cooling will be beneficial to the energy recovery, along with the efficiency improvement of the heat pump. In comparison to other factors, the soil heat capacity and thermal conductivity are considered to have minor impact on the long-term sustainability of the system. Furthermore, the application of thermally enhanced grout material will improve the sustainability and efficiency. In contrast, it is very likely that undersized systems and improper grouting are the causes of strong system degradation.

  15. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response.

    PubMed

    Sidrauski, Carmela; Tsai, Jordan C; Kampmann, Martin; Hearn, Brian R; Vedantham, Punitha; Jaishankar, Priyadarshini; Sokabe, Masaaki; Mendez, Aaron S; Newton, Billy W; Tang, Edward L; Verschueren, Erik; Johnson, Jeffrey R; Krogan, Nevan J; Fraser, Christopher S; Weissman, Jonathan S; Renslo, Adam R; Walter, Peter

    2015-01-01

    The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases. PMID:25875391

  16. RINL, Guanine Nucleotide Exchange Factor Rab5-Subfamily, Is Involved in the EphA8-Degradation Pathway with Odin

    PubMed Central

    Kontani, Kenji; Katada, Toshiaki

    2012-01-01

    The Rab family of small guanosine triphosphatases (GTPases) plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs). Ras and Rab interactor (or Ras interaction/interference)-like (RINL), which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM) domain-containing (Anks) protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin. PMID:22291991

  17. RINL, guanine nucleotide exchange factor Rab5-subfamily, is involved in the EphA8-degradation pathway with odin.

    PubMed

    Kajiho, Hiroaki; Fukushima, Shinichi; Kontani, Kenji; Katada, Toshiaki

    2012-01-01

    The Rab family of small guanosine triphosphatases (GTPases) plays a vital role in membrane trafficking. Its active GTP-bound state is driven by guanine nucleotide-exchange factors (GEFs). Ras and Rab interactor (or Ras interaction/interference)-like (RINL), which contains a conserved VPS9 domain critical for GEF action, was recently identified as a new Rab5 subfamily GEF in vitro. However, its detailed function and interacting molecules have not yet been fully elucidated. Here we found that RINL has GEF activity for the Rab5 subfamily proteins by measuring their GTP-bound forms in cultured cells. We also found that RINL interacts with odin, a member of the ankyrin-repeat and sterile-alpha motif (SAM) domain-containing (Anks) protein family. In addition, the Eph tyrosine kinase receptor EphA8 formed a ternary complex with both RINL and odin. Interestingly, RINL expression in cultured cells reduced EphA8 levels in a manner dependent on both its GEF activity and interaction with odin. In addition, knockdown of RINL increased EphA8 level in HeLa cells. Our findings suggest that RINL, as a GEF for Rab5 subfamily, is implicated in the EphA8-degradation pathway via its interaction with odin. PMID:22291991

  18. The PDZ Protein Na+/H+ Exchanger Regulatory Factor-1 (NHERF1) Regulates Planar Cell Polarity and Motile Cilia Organization

    PubMed Central

    Stolz, Donna B.; Tsang, Michael; Friedman, Peter A.; Romero, Guillermo

    2016-01-01

    Directional flow of the cerebrospinal fluid requires coordinated movement of the motile cilia of the ependymal epithelium that lines the cerebral ventricles. Here we report that mice lacking the Na+/H+ Exchanger Regulatory Factor 1 (NHERF1/Slc9a3r1, also known as EBP50) develop profound communicating hydrocephalus associated with fewer and disorganized ependymal cilia. Knockdown of NHERF1/slc9a3r1 in zebrafish embryos also causes severe hydrocephalus of the hindbrain and impaired ciliogenesis in the otic vesicle. Ultrastructural analysis did not reveal defects in the shape or organization of individual cilia. Similar phenotypes have been described in animals with deficiencies in Wnt signaling and the Planar Cell Polarity (PCP) pathway. We show that NHERF1 binds the PCP core genes Frizzled (Fzd) and Vangl. We further show that NHERF1 assembles a ternary complex with Fzd4 and Vangl2 and promotes translocation of Vangl2 to the plasma membrane, in particular to the apical surface of ependymal cells. Taken together, these results strongly support an important role for NHERF1 in the regulation of PCP signaling and the development of functional motile cilia. PMID:27055101

  19. Degenerate specificity of PDZ domains from RhoA-specific nucleotide exchange factors PDZRhoGEF and LARG.

    PubMed

    Smietana, Katarzyna; Kasztura, Monika; Paduch, Marcin; Derewenda, Urszula; Derewenda, Zygmunt S; Otlewski, Jacek

    2008-01-01

    PDZ domains are ubiquitous protein-protein interaction modules which bind short, usually carboxyterminal fragments of receptors, other integral or membrane-associated proteins, and occasionally cytosolic proteins. Their role in organizing multiprotein complexes at the cellular membrane is crucial for many signaling pathways, but the rules defining their binding specificity are still poorly understood and do not readily explain the observed diversity of their known binding partners. Two homologous RhoA-specific, multidomain nucleotide exchange factors PDZRhoGEF and LARG contain PDZ domains which show a particularly broad recognition profile, as suggested by the identification of five diverse biological targets. To investigate the molecular roots of this phenomenon, we constructed a phage display library of random carboxyterminal hexapeptides. Peptide variants corresponding to the sequences identified in library selection were synthesized and their affinities for both PDZ domains were measured and compared with those of peptides derived from sequences of natural partners. Based on the analysis of the binding sequences identified for PDZRhoGEF, we propose a sequence for an 'optimal' binding partner. Our results support the hypothesis that PDZ-peptide interactions may be best understood when one considers the sum of entropic and dynamic effects for each peptide as a whole entity, rather than preferences for specific residues at a given position. PMID:18542831

  20. Characterization of Stress-Exposed Granulocyte Colony Stimulating Factor Using ELISA and Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tsuchida, Daisuke; Yamazaki, Katsuyoshi; Akashi, Satoko

    2014-10-01

    Information on the higher-order structure is important in the development of biopharmaceutical drugs. Recently, hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) has been widely used as a tool to evaluate protein conformation, and unique automated systems for HDX-MS are now commercially available. To investigate the potential of this technique for the prediction of the activity of biopharmaceuticals, granulocyte colony stimulating factor (G-CSF), which had been subjected to three different stress types, was analyzed using HDX-MS and through comparison with receptor-binding activity. It was found that HDX-MS, in combination with ion mobility separation, was able to identify conformational changes in G-CSF induced by stress, and a good correlation with the receptor-binding activity was demonstrated, which cannot be completely determined by conventional peptide mapping alone. The direct evaluation of biological activity using bioassay is absolutely imperative in biopharmaceutical development, but HDX-MS can provide the alternative information in a short time on the extent and location of the structural damage caused by stresses. Furthermore, the present study suggests the possibility of this system being a versatile evaluation method for the preservation stability of biopharmaceuticals.

  1. Using Hydrogen/Deuterium Exchange Mass Spectrometry to Study Conformational Changes in Granulocyte Colony Stimulating Factor upon PEGylation

    PubMed Central

    Wei, Hui; Ahn, Joomi; Yu, Ying Qing; Tymiak, Adrienne; Engen, John R.; Chen, Guodong

    2012-01-01

    PEGylation is the covalent attachment of polyethylene glycol to proteins, and it can be used to alter immunogenicity, circulating half life and other properties of therapeutic proteins. To determine the impact of PEGylation on protein conformation, we applied hydrogen/deuterium exchange mass spectrometry (HDX MS) to analyze Granulocyte Colony Stimulating Factor (G-CSF) upon PEGylation as a model system. The combined use of HDX automation technology and data analysis software allowed reproducible and robust measurements of the deuterium incorporation levels for peptic peptides of both PEGylated and non-PEGylated G-CSF. The results indicated that significant differences in deuterium incorporation were induced by PEGylation of G-CSF, although the overall changes observed were quite small. PEGylation did not result in gross conformational rearrangement of G-CSF. The data complexity often encountered in HDX MS measurements was greatly reduced though a data processing and presentation format designed to facilitate the comparison process. This study demonstrates the practical utility of HDX MS for comparability studies, process monitoring and protein therapeutic characterization in the biopharmaceutical industry. PMID:22227798

  2. Guanine Nucleotide Exchange Factor OSG-1 Confers Functional Aging via Dysregulated Rho Signaling in Caenorhabditis elegans Neurons

    PubMed Central

    Duan, Zhibing; Sesti, Federico

    2015-01-01

    Rho signaling regulates a variety of biological processes, but whether it is implicated in aging remains an open question. Here we show that a guanine nucleotide exchange factor of the Dbl family, OSG-1, confers functional aging by dysregulating Rho GTPases activities in C. elegans. Thus, gene reporter analysis revealed widespread OSG-1 expression in muscle and neurons. Loss of OSG-1 gene function was not associated with developmental defects. In contrast, suppression of OSG-1 lessened loss of function (chemotaxis) in ASE sensory neurons subjected to conditions of oxidative stress generated during natural aging, by oxidative challenges, or by genetic mutations. RNAi analysis showed that OSG-1 was specific toward activation of RHO-1 GTPase signaling. RNAi further implicated actin-binding proteins ARX-3 and ARX-5, thus the actin cytoskeleton, as one of the targets of OSG-1/RHO-1 signaling. Taken together these data suggest that OSG-1 is recruited under conditions of oxidative stress, a hallmark of aging, and contributes to promote loss of neuronal function by affecting the actin cytoskeleton via altered RHO-1 activity. PMID:25527286

  3. Critical function of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in mouse spermatogenesis.

    PubMed

    Okada, Keisuke; Miyake, Hideaki; Yamaguchi, Kohei; Chiba, Koji; Maeta, Kazuhiro; Bilasy, Shymaa E; Edamatsu, Hironori; Kataoka, Tohru; Fujisawa, Masato

    2014-02-28

    Small GTPase Rap1 has been implicated in the proper differentiation of testicular germ cells. In the present study, we investigated the functional significance of RA-GEF-2/Rapgef6, a guanine nucleotide exchange factor for Rap1, in testicular differentiation using mice lacking RA-GEF-2. RA-GEF-2 was expressed predominantly on the luminal side of the seminiferous tubules in wild-type mice. No significant differences were observed in the body weights or hormonal parameters of RA-GEF-2(-)(/)(-) and wild-type mice. However, the testes of RA-GEF-2(-)(/)(-) male mice were significantly smaller than those of wild-type mice and were markedly atrophied as well as hypospermatogenic. The concentration and motility of epididymal sperm were also markedly reduced and frequently had an abnormal shape. The pregnancy rate and number of fetuses were markedly lower in wild-type females after they mated with RA-GEF-2(-)(/)(-) males than with wild-type males, which demonstrated the male infertility phenotype of RA-GEF-2(-)(/)(-) mice. Furthermore, a significant reduction and alteration were observed in the expression level and cell junctional localization of N-cadherin, respectively, in RA-GEF-2(-)(/)(-) testes, which may, at least in part, account for the defects in testicular differentiation and spermatogenesis in these mice. PMID:24491570

  4. The Rho Exchange Factors Vav2 and Vav3 Favor Skin Tumor Initiation and Promotion by Engaging Extracellular Signaling Loops

    PubMed Central

    Menacho-Márquez, Mauricio; García-Escudero, Ramón; Ojeda, Virginia; Abad, Antonio; Delgado, Pilar; Costa, Clotilde; Ruiz, Sergio; Alarcón, Balbino; Paramio, Jesús M.; Bustelo, Xosé R.

    2013-01-01

    The catalytic activity of GDP/GTP exchange factors (GEFs) is considered critical to maintain the typically high activity of Rho GTPases found in cancer cells. However, the large number of them has made it difficult to pinpoint those playing proactive, nonredundant roles in tumors. In this work, we have investigated whether GEFs of the Vav subfamily exert such specific roles in skin cancer. Using genetically engineered mice, we show here that Vav2 and Vav3 favor cooperatively the initiation and promotion phases of skin tumors. Transcriptomal profiling and signaling experiments indicate such function is linked to the engagement of, and subsequent participation in, keratinocyte-based autocrine/paracrine programs that promote epidermal proliferation and recruitment of pro-inflammatory cells. This is a pathology-restricted mechanism because the loss of Vav proteins does not cause alterations in epidermal homeostasis. These results reveal a previously unknown Rho GEF-dependent pro-tumorigenic mechanism that influences the biology of cancer cells and their microenvironment. They also suggest that anti-Vav therapies may be of potential interest in skin tumor prevention and/or treatment. PMID:23935450

  5. Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response

    PubMed Central

    Sidrauski, Carmela; Tsai, Jordan C; Kampmann, Martin; Hearn, Brian R; Vedantham, Punitha; Jaishankar, Priyadarshini; Sokabe, Masaaki; Mendez, Aaron S; Newton, Billy W; Tang, Edward L; Verschueren, Erik; Johnson, Jeffrey R; Krogan, Nevan J; Fraser, Christopher S; Weissman, Jonathan S; Renslo, Adam R; Walter, Peter

    2015-01-01

    The general translation initiation factor eIF2 is a major translational control point. Multiple signaling pathways in the integrated stress response phosphorylate eIF2 serine-51, inhibiting nucleotide exchange by eIF2B. ISRIB, a potent drug-like small molecule, renders cells insensitive to eIF2α phosphorylation and enhances cognitive function in rodents by blocking long-term depression. ISRIB was identified in a phenotypic cell-based screen, and its mechanism of action remained unknown. We now report that ISRIB is an activator of eIF2B. Our reporter-based shRNA screen revealed an eIF2B requirement for ISRIB activity. Our results define ISRIB as a symmetric molecule, show ISRIB-mediated stabilization of activated eIF2B dimers, and suggest that eIF2B4 (δ-subunit) contributes to the ISRIB binding site. We also developed new ISRIB analogs, improving its EC50 to 600 pM in cell culture. By modulating eIF2B function, ISRIB promises to be an invaluable tool in proof-of-principle studies aiming to ameliorate cognitive defects resulting from neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.07314.001 PMID:25875391

  6. Sil1, a nucleotide exchange factor for BiP, is not required for antibody assembly or secretion.

    PubMed

    Ichhaporia, Viraj P; Sanford, Tyler; Howes, Jenny; Marion, Tony N; Hendershot, Linda M

    2015-02-01

    Sil1 is a nucleotide exchange factor for the endoplasmic reticulum chaperone BiP, and mutations in this gene lead to Marinesco-Sjögren syndrome (MSS), a debilitating autosomal recessive disease characterized by multisystem defects. A mouse model for MSS was previously produced by disrupting Sil1 using gene-trap methodology. The resulting Sil1Gt mouse phenocopies several pathologies associated with MSS, although its ability to assemble and secrete antibodies, the best-characterized substrate of BiP, has not been investigated. In vivo antigen-specific immunizations and ex vivo LPS stimulation of splenic B cells revealed that the Sil1Gt mouse was indistinguishable from wild-type age-matched controls in terms of both the kinetics and magnitude of antigen-specific antibody responses. There was no significant accumulation of BiP-associated Ig assembly intermediates or evidence that another molecular chaperone system was used for antibody production in the LPS-stimulated splenic B cells from Sil1Gt mice. ER chaperones were expressed at the same level in Sil1WT and Sil1Gt mice, indicating that there was no evident compensation for the disruption of Sil1. Finally, these results were confirmed and extended in three human EBV-transformed lymphoblastoid cell lines from individuals with MSS, leading us to conclude that the BiP cofactor Sil1 is dispensable for antibody production. PMID:25473114

  7. Experimental design approach for identification of the factors influencing the γ-radiolysis of ion exchange resins

    NASA Astrophysics Data System (ADS)

    Rébufa, C.; Traboulsi, A.; Labed, V.; Dupuy, N.; Sergent, M.

    2015-01-01

    Gamma radiolysis was investigated on a nuclear grade mixed bed ion exchange resin and its pure components under different irradiation conditions. Screening designs were performed to identify the factors influencing gas production after their γ-radiolysis and to compare their γ-degradation stability. Only hydrogen and trimethylamine quantities were considered as the response in the experimental designs. The other detected gases and water-soluble products were used to improve the resins degradation. Aerobic irradiation atmosphere decreased the H2g production of AmbOH, MB400, and amines. The water presence increased the H2g quantities for AmbH and decreased those for MB400 resin. Liquid water had no effect on H2g production from AmbOH but was favorable to increased amine production. The H2g production of AmbH increased with the absorbed dose that had little effect on the AmbOH resin. No impact of dose on the H2g production was detected for MB400 that appeared to be less degraded.

  8. Activation of Rab8 guanine nucleotide exchange factor Rabin8 by ERK1/2 in response to EGF signaling

    PubMed Central

    Wang, Juanfei; Ren, Jinqi; Wu, Bin; Feng, Shanshan; Cai, Guoping; Tuluc, Florin; Peränen, Johan; Guo, Wei

    2015-01-01

    Exocytosis is tightly regulated in many cellular processes, from neurite expansion to tumor proliferation. Rab8, a member of the Rab family of small GTPases, plays an important role in membrane trafficking from the trans-Golgi network and recycling endosomes to the plasma membrane. Rabin8 is a guanine nucleotide exchange factor (GEF) and major activator of Rab8. Investigating how Rabin8 is activated in cells is thus pivotal to the understanding of the regulation of exocytosis. Here we show that phosphorylation serves as an important mechanism for Rabin8 activation. We identified Rabin8 as a direct phospho-substrate of ERK1/2 in response to EGF signaling. At the molecular level, ERK phosphorylation relieves the autoinhibition of Rabin8, thus promoting its GEF activity. We further demonstrate that blocking ERK1/2-mediated phosphorylation of Rabin8 inhibits transferrin recycling to the plasma membrane. Together, our results suggest that ERK1/2 activate Rabin8 to regulate vesicular trafficking to the plasma membrane in response to extracellular signaling. PMID:25535387

  9. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion.

    PubMed

    Jarzynka, Michael J; Hu, Bo; Hui, Kwok-Min; Bar-Joseph, Ifat; Gu, Weisong; Hirose, Takanori; Haney, Lisa B; Ravichandran, Kodi S; Nishikawa, Ryo; Cheng, Shi-Yuan

    2007-08-01

    A distinct feature of malignant gliomas is the intrinsic ability of single tumor cells to disperse throughout the brain, contributing to the failure of existing therapies to alter the progression and recurrence of these deadly brain tumors. Regrettably, the mechanisms underlying the inherent invasiveness of glioma cells are poorly understood. Here, we report for the first time that engulfment and cell motility 1 (ELMO1) and dedicator of cytokinesis 1 (Dock180), a bipartite Rac1 guanine nucleotide exchange factor (GEF), are evidently linked to the invasive phenotype of glioma cells. Immunohistochemical analysis of primary human glioma specimens showed high expression levels of ELMO1 and Dock180 in actively invading tumor cells in the invasive areas, but not in the central regions of these tumors. Elevated expression of ELMO1 and Dock180 was also found in various human glioma cell lines compared with normal human astrocytes. Inhibition of endogenous ELMO1 and Dock180 expression significantly impeded glioma cell invasion in vitro and in brain tissue slices with a concomitant reduction in Rac1 activation. Conversely, exogenous expression of ELMO1 and Dock180 in glioma cells with low level endogenous expression increased their migratory and invasive capacity in vitro and in brain tissue. These data suggest that the bipartite GEF, ELMO1 and Dock180, play an important role in promoting cancer cell invasion and could be potential therapeutic targets for the treatment of diffuse malignant gliomas. PMID:17671188

  10. A Rac/Cdc42 exchange factor complex promotes formation of lateral filopodia and blood vessel lumen morphogenesis

    PubMed Central

    Abraham, Sabu; Scarcia, Margherita; Bagshaw, Richard D.; McMahon, Kathryn; Grant, Gary; Harvey, Tracey; Yeo, Maggie; Esteves, Filomena O.G.; Thygesen, Helene H.; Jones, Pamela F.; Speirs, Valerie; Hanby, Andrew M.; Selby, Peter J.; Lorger, Mihaela; Dear, T. Neil; Pawson, Tony; Marshall, Christopher J.; Mavria, Georgia

    2015-01-01

    During angiogenesis, Rho-GTPases influence endothelial cell migration and cell–cell adhesion; however it is not known whether they control formation of vessel lumens, which are essential for blood flow. Here, using an organotypic system that recapitulates distinct stages of VEGF-dependent angiogenesis, we show that lumen formation requires early cytoskeletal remodelling and lateral cell–cell contacts, mediated through the RAC1 guanine nucleotide exchange factor (GEF) DOCK4 (dedicator of cytokinesis 4). DOCK4 signalling is necessary for lateral filopodial protrusions and tubule remodelling prior to lumen formation, whereas proximal, tip filopodia persist in the absence of DOCK4. VEGF-dependent Rac activation via DOCK4 is necessary for CDC42 activation to signal filopodia formation and depends on the activation of RHOG through the RHOG GEF, SGEF. VEGF promotes interaction of DOCK4 with the CDC42 GEF DOCK9. These studies identify a novel Rho-family GTPase activation cascade for the formation of endothelial cell filopodial protrusions necessary for tubule remodelling, thereby influencing subsequent stages of lumen morphogenesis. PMID:26129894

  11. The leukemia-associated Rho guanine nucleotide exchange factor LARG is required for efficient replication stress signaling

    PubMed Central

    Beveridge, Ryan D; Staples, Christopher J; Patil, Abhijit A; Myers, Katie N; Maslen, Sarah; Skehel, J Mark; Boulton, Simon J; Collis, Spencer J

    2014-01-01

    We previously identified and characterized TELO2 as a human protein that facilitates efficient DNA damage response (DDR) signaling. A subsequent yeast 2-hybrid screen identified LARG; Leukemia-Associated Rho Guanine Nucleotide Exchange Factor (also known as Arhgef12), as a potential novel TELO2 interactor. LARG was previously shown to interact with Pericentrin (PCNT), which, like TELO2, is required for efficient replication stress signaling. Here we confirm interactions between LARG, TELO2 and PCNT and show that a sub-set of LARG co-localizes with PCNT at the centrosome. LARG-deficient cells exhibit replication stress signaling defects as evidenced by; supernumerary centrosomes, reduced replication stress-induced γH2AX and RPA nuclear foci formation, and reduced activation of the replication stress signaling effector kinase Chk1 in response to hydroxyurea. As such, LARG-deficient cells are sensitive to replication stress-inducing agents such as hydroxyurea and mitomycin C. Conversely we also show that depletion of TELO2 and the replication stress signaling kinase ATR leads to RhoA signaling defects. These data therefore reveal a level of crosstalk between the RhoA and DDR signaling pathways. Given that mutations in both ATR and PCNT can give rise to the related primordial dwarfism disorders of Seckel Syndrome and Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) respectively, which both exhibit defects in ATR-dependent checkpoint signaling, these data also raise the possibility that mutations in LARG or disruption to RhoA signaling may be contributory factors to the etiology of a sub-set of primordial dwarfism disorders. PMID:25485589

  12. ARNO3, a Sec7-domain guanine nucleotide exchange factor for ADP ribosylation factor 1, is involved in the control of Golgi structure and function

    PubMed Central

    Franco, Michel; Boretto, Joëlle; Robineau, Sylviane; Monier, Solange; Goud, Bruno; Chardin, Pierre; Chavrier, Philippe

    1998-01-01

    Budding of transport vesicles in the Golgi apparatus requires the recruitment of coat proteins and is regulated by ADP ribosylation factor (ARF) 1. ARF1 activation is promoted by guanine nucleotide exchange factors (GEFs), which catalyze the transition to GTP-bound ARF1. We recently have identified a human protein, ARNO (ARF nucleotide-binding-site opener), as an ARF1-GEF that shares a conserved domain with the yeast Sec7 protein. We now describe a human Sec7 domain-containing GEF referred to as ARNO3. ARNO and ARNO3, as well as a third GEF called cytohesin-1, form a family of highly related proteins with identical structural organization that consists of a central Sec7 domain and a carboxy-terminal pleckstrin homology domain. We show that all three proteins act as ARF1 GEF in vitro, whereas they have no effect on ARF6, an ARF protein implicated in the early endocytic pathway. Substrate specificity of ARNO-like GEFs for ARF1 depends solely on the Sec7 domain. Overexpression of ARNO3 in mammalian cells results in (i) fragmentation of the Golgi apparatus, (ii) redistribution of Golgi resident proteins as well as the coat component β-COP, and (iii) inhibition of SEAP transport (secreted form of alkaline phosphatase). In contrast, the distribution of endocytic markers is not affected. This study indicates that Sec7 domain-containing GEFs control intracellular membrane compartment structure and function through the regulation of specific ARF proteins in mammalian cells. PMID:9707577

  13. Variation in Factors Regulating Net Greenhouse Gas Exchange Across Different Vegetation Types at Cape Bounty, Melville Island, Nunavut

    NASA Astrophysics Data System (ADS)

    Scott, N. A.; Blaser, A.; Buckley, E.; Humphreys, E.; Treitz, P.

    2015-12-01

    Global-scale climate simulations predict significant changes both in temperature and moisture regimes in the high Arctic. This could lead to changes in vegetation community distribution, as vegetation communities are distributed along moisture gradients often determined by snowfall patterns across the landscape. Furthermore, changes in soil moisture and temperature could alter fluxes of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), and the impacts of changes in these controlling factors could vary by vegetation type.We measured both spatial and temporal variation in CO2 fluxes using combinations of eddy covariance, auto-chamber, and static chamber techniques at the Cape Bounty Arctic Watershed Observatory (CBAWO). Measurements were performed in three major plant community types: polar semi-desert (PSD), mid-moisture tundra (MM) and wet sedge meadow (WS). Based on our auto-chamber data collected in all vegetation types, ecosystem respiration (ER) related positively to air temperature, and correlated more strongly with air temperature than soil temperature. Modeled ER based on eddy covariance data and air temperature over MM agreed well with measured ER in the same vegetation type. In the WS community, average net ecosystem exchange (NEE) in 2014 measured by static chambers differed in spectrally separable 'wet' and 'dry' sedge areas (-0.33 and 0.01 µmol m-2 s-1, respectively; p<0.001). Rates of ER also varied across this moisture gradient (p<0.05). Over the entire growing season and multiple years, NEE correlated poorly with air and soil temperature, suggesting that ER is not the dominant processes driving NEE. This can vary, however, over the growing season. In PSD communities measured in 2013, air temperature related positively to NEE early in the growing season, but not during the latter part of the season, when PAR (photosynthesis) became the key factor controlling NEE. Not surprisingly, NEE related strongly (0.93) to

  14. Modulation of B-cell receptor and microenvironment signaling by a guanine exchange factor in B-cell malignancies

    PubMed Central

    Liao, Wei; Sharma, Sanjai

    2016-01-01

    Objective: Chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL) cells over-express a guanine exchange factor (GEF), Rasgrf-1. This GEF increases active Ras as it catalyzes the removal of GDP from Ras so that GTP can bind and activate Ras. This study aims to study the mechanism of action of Rasgrf-1 in B-cell malignancies. Methods: N-terminus truncated Rasgrf-1 variants have a higher GEF activity as compared to the full-length transcript therefore a MCL cell line with stable over-expression of truncated Rasgrf-1 was established. The B-cell receptor (BCR) and chemokine signaling pathways were compared in the Rasgrf-1 over-expressing and a control transfected cell line. Results: Cells over-expressing truncated form of Rasgrf-1 have a higher proliferative rate as compared to control transfected cells. BCR was activated by lower concentrations of anti-IgM antibody in Rasgrf-1 over-expressing cells as compared to control cells indicating that these cells are more sensitive to BCR signaling. BCR signaling also phosphorylates Rasgrf-1 that further increases its GEF function and amplifies BCR signaling. This activation of Rasgrf-1 in over-expressing cells resulted in a higher expression of phospho-ERK, AKT, BTK and PKC-alpha as compared to control cells. Besides BCR, Rasgrf-1 over-expressing cells were also more sensitive to microenvironment stimuli as determined by resistance to apoptosis, chemotaxis and ERK pathway activation. Conclusions: This GEF protein sensitizes B-cells to BCR and chemokine mediated signaling and also upregulates a number of other signaling pathways which promotes growth and survival of these cells. PMID:27458535

  15. The Guanine Nucleotide Exchange Factor (GEF) Asef2 Promotes Dendritic Spine Formation via Rac Activation and Spinophilin-dependent Targeting*

    PubMed Central

    Evans, J. Corey; Robinson, Cristina M.; Shi, Mingjian; Webb, Donna J.

    2015-01-01

    Dendritic spines are actin-rich protrusions that establish excitatory synaptic contacts with surrounding neurons. Reorganization of the actin cytoskeleton is critical for the development and plasticity of dendritic spines, which is the basis for learning and memory. Rho family GTPases are emerging as important modulators of spines and synapses, predominantly through their ability to regulate actin dynamics. Much less is known, however, about the function of guanine nucleotide exchange factors (GEFs), which activate these GTPases, in spine and synapse development. In this study we show that the Rho family GEF Asef2 is found at synaptic sites, where it promotes dendritic spine and synapse formation. Knockdown of endogenous Asef2 with shRNAs impairs spine and synapse formation, whereas exogenous expression of Asef2 causes an increase in spine and synapse density. This effect of Asef2 on spines and synapses is abrogated by expression of GEF activity-deficient Asef2 mutants or by knockdown of Rac, suggesting that Asef2-Rac signaling mediates spine development. Because Asef2 interacts with the F-actin-binding protein spinophilin, which localizes to spines, we investigated the role of spinophilin in Asef2-promoted spine formation. Spinophilin recruits Asef2 to spines, and knockdown of spinophilin hinders spine and synapse formation in Asef2-expressing neurons. Furthermore, inhibition of N-methyl-d-aspartate receptor (NMDA) activity blocks spinophilin-mediated localization of Asef2 to spines. These results collectively point to spinophilin-Asef2-Rac signaling as a novel mechanism for the development of dendritic spines and synapses. PMID:25750125

  16. Regulating the large Sec7 ARF guanine nucleotide exchange factors: the when, where and how of activation

    PubMed Central

    Wright, John; Kahn, Richard A.; Sztul, Elizabeth

    2016-01-01

    Eukaryotic cells require selective sorting and transport of cargo between intracellular compartments. This is accomplished at least in part by vesicles that bud from a donor compartment, sequestering a subset of resident protein “cargos” destined for transport to an acceptor compartment. A key step in vesicle formation and targeting is the recruitment of specific proteins that form a coat on the outside of the vesicle in a process requiring the activation of regulatory GTPases of the ARF family. Like all such GTPases, ARFs cycle between inactive, GDP-bound, and membrane-associated active, GTP-bound, conformations. And like most regulatory GTPases the activating step is slow and thought to be rate limiting in cells, requiring the use of ARF guanine nucleotide exchange factor (GEFs). ARF GEFs are characterized by the presence of a conserved, catalytic Sec7 domain, though they also contain motifs or additional domains that confer specificity to localization and regulation of activity. These domains have been used to define and classify five different sub-families of ARF GEFs. One of these, the BIG/GBF1 family, includes three proteins that are each key regulators of the secretory pathway. GEF activity initiates the coating of nascent vesicles via the localized generation of activated ARFs and thus these GEFs are the upstream regulators that define the site and timing of vesicle production. Paradoxically, while we have detailed molecular knowledge of how GEFs activate ARFs, we know very little about how GEFs are recruited and/or activated at the right time and place to initiate transport. This review summarizes the current knowledge of GEF regulation and explores the still uncertain mechanisms that position GEFs at “budding ready” membrane sites to generate highly localized activated ARFs. PMID:24728583

  17. The Ect2 Rho Guanine Nucleotide Exchange Factor Is Essential for Early Mouse Development and Normal Cell Cytokinesis and Migration

    PubMed Central

    Cook, Danielle R.; Solski, Patricia A.; Bultman, Scott J.; Kauselmann, Gunther; Schoor, Michael; Kuehn, Ralf; Friedman, Lori S.; Cowley, Dale O.; Van Dyke, Terry; Yeh, Jen Jen; Johnson, Leisa

    2011-01-01

    Ect2 is a member of the human Dbl family of guanine nucleotide exchange factors (RhoGEFs) that serve as activators of Rho family small GTPases. Although Ect2 is one of at least 25 RhoGEFs that can activate the RhoA small GTPase, cell culture studies using established cell lines determined that Ect2 is essential for mammalian cell cytokinesis and proliferation. To address the function of Ect2 in normal mammalian development, we performed gene targeting to generate Ect2 knockout mice. The heterozygous Ect2 +/– mice showed normal development and life span, indicating that Ect2 haplodeficiency was not deleterious for development or growth. In contrast, Ect2 –/– embryos were not found at birth or postimplantation stages. Ect2 –/– blastocysts were recovered at embryonic day 3.5 but did not give rise to viable outgrowths in culture, indicating that Ect2 is required for peri-implantation development. To further assess the importance of Ect2 in normal cell physiology, we isolated primary fibroblasts from Ect2 fl/fl embryos (MEFs) and ablated Ect2 using adenoviral delivery of Cre recombinase. We observed a significant increase in multinucleated cells and accumulation of cells in G2/M phase, consistent with a role for Ect2 in cytokinesis. Ect2 deficiency also caused enlargement of the cytoplasm and impaired cell migration. Finally, although Ect2-dependent activation of RhoA has been implicated in cytokinesis, Ect2 can also activate Rac1 and Cdc42 to cause growth transformation. Surprisingly, ectopic expression of constitutively activated RhoA, Rac1, or Cdc42, known substrates of Ect2, failed to phenocopy Ect2 and did not rescue the defect in cytokinesis caused by loss of Ect2. In summary, our results establish the unique role of Ect2 in development and normal cell proliferation. PMID:22701760

  18. GBF1, a Guanine Nucleotide Exchange Factor for Arf, Is Crucial for Coxsackievirus B3 RNA Replication▿

    PubMed Central

    Lanke, Kjerstin H. W.; van der Schaar, Hilde M.; Belov, George A.; Feng, Qian; Duijsings, Daniël; Jackson, Catherine L.; Ehrenfeld, Ellie; van Kuppeveld, Frank J. M.

    2009-01-01

    The replication of enteroviruses is sensitive to brefeldin A (BFA), an inhibitor of endoplasmic reticulum-to-Golgi network transport that blocks activation of guanine exchange factors (GEFs) of the Arf GTPases. Mammalian cells contain three BFA-sensitive Arf GEFs: GBF1, BIG1, and BIG2. Here, we show that coxsackievirus B3 (CVB3) RNA replication is insensitive to BFA in MDCK cells, which contain a BFA-resistant GBF1 due to mutation M832L. Further evidence for a critical role of GBF1 stems from the observations that viral RNA replication is inhibited upon knockdown of GBF1 by RNA interference and that replication in the presence of BFA is rescued upon overexpression of active, but not inactive, GBF1. Overexpression of Arf proteins or Rab1B, a GTPase that induces GBF1 recruitment to membranes, failed to rescue RNA replication in the presence of BFA. Additionally, the importance of the interaction between enterovirus protein 3A and GBF1 for viral RNA replication was investigated. For this, the rescue from BFA inhibition of wild-type (wt) replicons and that of mutant replicons of both CVB3 and poliovirus (PV) carrying a 3A protein that is impaired in binding GBF1 were compared. The BFA-resistant GBF1-M832L protein efficiently rescued RNA replication of both wt and mutant CVB3 and PV replicons in the presence of BFA. However, another BFA-resistant GBF1 protein, GBF1-A795E, also efficiently rescued RNA replication of the wt replicons, but not that of mutant replicons, in the presence of BFA. In conclusion, this study identifies a critical role for GBF1 in CVB3 RNA replication, but the importance of the 3A-GBF1 interaction requires further study. PMID:19740986

  19. Regulation of Ras Exchange Factors and Cellular Localization of Ras Activation by Lipid Messengers in T Cells

    PubMed Central

    Jun, Jesse E.; Rubio, Ignacio; Roose, Jeroen P.

    2013-01-01

    The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells. PMID:24027568

  20. Norbin Stimulates the Catalytic Activity and Plasma Membrane Localization of the Guanine-Nucleotide Exchange Factor P-Rex1*

    PubMed Central

    Pan, Dingxin; Barber, Mark A.; Hornigold, Kirsti; Baker, Martin J.; Toth, Judit M.; Oxley, David; Welch, Heidi C. E.

    2016-01-01

    P-Rex1 is a guanine-nucleotide exchange factor (GEF) that activates the small G protein (GTPase) Rac1 to control Rac1-dependent cytoskeletal dynamics, and thus cell morphology. Three mechanisms of P-Rex1 regulation are currently known: (i) binding of the phosphoinositide second messenger PIP3, (ii) binding of the Gβγ subunits of heterotrimeric G proteins, and (iii) phosphorylation of various serine residues. Using recombinant P-Rex1 protein to search for new binding partners, we isolated the G-protein-coupled receptor (GPCR)-adaptor protein Norbin (Neurochondrin, NCDN) from mouse brain fractions. Coimmunoprecipitation confirmed the interaction between overexpressed P-Rex1 and Norbin in COS-7 cells, as well as between endogenous P-Rex1 and Norbin in HEK-293 cells. Binding assays with purified recombinant proteins showed that their interaction is direct, and mutational analysis revealed that the pleckstrin homology domain of P-Rex1 is required. Rac-GEF activity assays with purified recombinant proteins showed that direct interaction with Norbin increases the basal, PIP3- and Gβγ-stimulated Rac-GEF activity of P-Rex1. Pak-CRIB pulldown assays demonstrated that Norbin promotes the P-Rex1-mediated activation of endogenous Rac1 upon stimulation of HEK-293 cells with lysophosphatidic acid. Finally, immunofluorescence microscopy and subcellular fractionation showed that coexpression of P-Rex1 and Norbin induces a robust translocation of both proteins from the cytosol to the plasma membrane, as well as promoting cell spreading, lamellipodia formation, and membrane ruffling, cell morphologies generated by active Rac1. In summary, we have identified a novel mechanism of P-Rex1 regulation through the GPCR-adaptor protein Norbin, a direct P-Rex1 interacting protein that promotes the Rac-GEF activity and membrane localization of P-Rex1. PMID:26792863

  1. Rho Guanine Nucleotide Exchange Factor 5 Increases Lung Cancer Cell Tumorigenesis via MMP-2 and Cyclin D1 Upregulation.

    PubMed

    He, Ping; Wu, Wei; Yang, Kang; Tan, Deli; Tang, Meng; Liu, Hongxiang; Wu, Tao; Zhang, Shixin; Wang, Haidong

    2015-07-01

    We sought to elucidate the role of Rho guanine nucleotide exchange factor 5 (ARHGEF5) in tumorigenesis of lung adenocarcinoma cells. ARHGEF5 protein levels were assessed in 91 human lung adenocarcinoma specimens, and A549 and NCI-H1650 cells, by IHC and Western blotting. In addition, ARHGEF5 mRNA expression was evaluated by quantitative reverse transcriptase-PCR. Furthermore, ARHGEF5 long and short isoform coexpression was detected by immunofluorescence. Finally, flow cytometry; CCK8 and wound-healing assays; cell invasion, migration and adhesion; and xenografts were used to evaluate the biologic significance of ARHGEF5. ARHGEF5 was significantly increased in lung adenocarcinoma tissues and cell lines. Interestingly, ARHGEF5 levels were significantly associated with tumor grade and pathologic stage, but not age, gender, T stage, or lymph node metastasis status. ARHGEF5 knockdown by RNAi resulted in dramatically reduced proliferation, adhesion, invasion, and migratory capability of A549 and NCI-H1650 cells. Likewise, protein levels of p-Src, p-Akt, and NF-κB were significantly decreased after ARHGEF5 knockdown. In parallel, increased S-phase population and MMP-2/cyclin D1 expression were observed in the cancer cells, which were not apoptotic. In addition, ARHGEF5 knockdown A549 and NCI-H1650 cells injected s.c. and i.v. into nude mice exhibited decreased xenograft volume and overtly reduced metastasis. Conversely, ARHGEF5 overexpression in A549 and NCI-H1650 cells increased their tumorigenicity in vitro. ARHGEF5 acts as a proto-oncogene in human lung adenocarcinoma cell tumorigenesis. PMID:25777963

  2. Drug Transporters and Na+/H+ Exchange Regulatory Factor PSD-95/Drosophila Discs Large/ZO-1 Proteins

    PubMed Central

    Walsh, Dustin R.; Nolin, Thomas D.

    2015-01-01

    Drug transporters govern the absorption, distribution, and elimination of pharmacologically active compounds. Members of the solute carrier and ATP binding-cassette drug transporter family mediate cellular drug uptake and efflux processes, thereby coordinating the vectorial movement of drugs across epithelial barriers. To exert their physiologic and pharmacological function in polarized epithelia, drug transporters must be targeted and stabilized to appropriate regions of the cell membrane (i.e., apical versus basolateral). Despite the critical importance of drug transporter membrane targeting, the mechanisms that underlie these processes are largely unknown. Several clinically significant drug transporters possess a recognition sequence that binds to PSD-95/Drosophila discs large/ZO-1 (PDZ) proteins. PDZ proteins, such as the Na+/H+ exchanger regulatory factor (NHERF) family, act to stabilize and organize membrane targeting of multiple transmembrane proteins, including many clinically relevant drug transporters. These PDZ proteins are normally abundant at apical membranes, where they tether membrane-delimited transporters. NHERF expression is particularly high at the apical membrane in polarized tissue such as intestinal, hepatic, and renal epithelia, tissues important to drug disposition. Several recent studies have highlighted NHERF proteins as determinants of drug transporter function secondary to their role in controlling membrane abundance and localization. Mounting evidence strongly suggests that NHERF proteins may have clinically significant roles in pharmacokinetics and pharmacodynamics of several pharmacologically active compounds and may affect drug action in cancer and chronic kidney disease. For these reasons, NHERF proteins represent a novel class of post-translational mediators of drug transport and novel targets for new drug development. PMID:26092975

  3. Role of Na+/H+ exchanger regulatory factor 1 in forward trafficking of the type IIa Na+-Pi cotransporter.

    PubMed

    Ketchem, Corey J; Khundmiri, Syed J; Gaweda, Adam E; Murray, Rebecca; Clark, Barbara J; Weinman, Edward J; Lederer, Eleanor D

    2015-07-15

    Na+/H+ exchanger regulatory factor (NHERF1) plays a critical role in the renal transport of phosphate by binding to Na+-Pi cotransporter (NpT2a) in the proximal tubule. While the association between NpT2a and NHERF1 in the apical membrane is known, the role of NHERF1 to regulate the trafficking of NpT2a has not been studied. To address this question, we performed cell fractionation by sucrose gradient centrifugation in opossum kidney (OK) cells placed in low-Pi medium to stimulate forward trafficking of NpT2a. Immunoblot analysis demonstrated expression of NpT2a and NHERF1 in the endoplasmic reticulum (ER)/Golgi. Coimmunoprecipitation demonstrated a NpT2a-NHERF1 interaction in the ER/Golgi. Low-Pi medium for 4 and 8 h triggered a decrease in NHERF1 in the plasma membrane with a corresponding increase in the ER/Golgi. Time-lapse total internal reflection fluorescence imaging of OK cells placed in low-Pi medium, paired with particle tracking and mean square displacement analysis, indicated active directed movement of NHERF1 at early and late time points, whereas NpT2a showed active movement only at later times. Silence of NHERF1 in OK cells expressing green fluorescent protein (GFP)-NpT2a resulted in an intracellular accumulation of GFP-NpT2a. Transfection with GFP-labeled COOH-terminal (TRL) PDZ-binding motif deleted or wild-type NpT2a in OK cells followed by cell fractionation and immunoprecipitation confirmed that the interaction between NpT2a and NHERF1 was dependent on the TRL motif of NpT2a. We conclude that appropriate trafficking of NpT2a to the plasma membrane is dependent on the initial association between NpT2a and NHERF1 through the COOH-terminal TRL motif of NpT2a in the ER/Golgi and requires redistribution of NHERF1 to the ER/Golgi. PMID:25995109

  4. Role of Na+/H+ exchanger regulatory factor 1 in forward trafficking of the type IIa Na+-Pi cotransporter

    PubMed Central

    Ketchem, Corey J.; Khundmiri, Syed J.; Gaweda, Adam E.; Murray, Rebecca; Clark, Barbara J.; Weinman, Edward J.

    2015-01-01

    Na+/H+ exchanger regulatory factor (NHERF1) plays a critical role in the renal transport of phosphate by binding to Na+-Pi cotransporter (NpT2a) in the proximal tubule. While the association between NpT2a and NHERF1 in the apical membrane is known, the role of NHERF1 to regulate the trafficking of NpT2a has not been studied. To address this question, we performed cell fractionation by sucrose gradient centrifugation in opossum kidney (OK) cells placed in low-Pi medium to stimulate forward trafficking of NpT2a. Immunoblot analysis demonstrated expression of NpT2a and NHERF1 in the endoplasmic reticulum (ER)/Golgi. Coimmunoprecipitation demonstrated a NpT2a-NHERF1 interaction in the ER/Golgi. Low-Pi medium for 4 and 8 h triggered a decrease in NHERF1 in the plasma membrane with a corresponding increase in the ER/Golgi. Time-lapse total internal reflection fluorescence imaging of OK cells placed in low-Pi medium, paired with particle tracking and mean square displacement analysis, indicated active directed movement of NHERF1 at early and late time points, whereas NpT2a showed active movement only at later times. Silence of NHERF1 in OK cells expressing green fluorescent protein (GFP)-NpT2a resulted in an intracellular accumulation of GFP-NpT2a. Transfection with GFP-labeled COOH-terminal (TRL) PDZ-binding motif deleted or wild-type NpT2a in OK cells followed by cell fractionation and immunoprecipitation confirmed that the interaction between NpT2a and NHERF1 was dependent on the TRL motif of NpT2a. We conclude that appropriate trafficking of NpT2a to the plasma membrane is dependent on the initial association between NpT2a and NHERF1 through the COOH-terminal TRL motif of NpT2a in the ER/Golgi and requires redistribution of NHERF1 to the ER/Golgi. PMID:25995109

  5. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence*

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L.; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly 15N-labeled Ras as well as [13C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  6. Monitoring Ras Interactions with the Nucleotide Exchange Factor Son of Sevenless (Sos) Using Site-specific NMR Reporter Signals and Intrinsic Fluorescence.

    PubMed

    Vo, Uybach; Vajpai, Navratna; Flavell, Liz; Bobby, Romel; Breeze, Alexander L; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-22

    The activity of Ras is controlled by the interconversion between GTP- and GDP-bound forms partly regulated by the binding of the guanine nucleotide exchange factor Son of Sevenless (Sos). The details of Sos binding, leading to nucleotide exchange and subsequent dissociation of the complex, are not completely understood. Here, we used uniformly (15)N-labeled Ras as well as [(13)C]methyl-Met,Ile-labeled Sos for observing site-specific details of Ras-Sos interactions in solution. Binding of various forms of Ras (loaded with GDP and mimics of GTP or nucleotide-free) at the allosteric and catalytic sites of Sos was comprehensively characterized by monitoring signal perturbations in the NMR spectra. The overall affinity of binding between these protein variants as well as their selected functional mutants was also investigated using intrinsic fluorescence. The data support a positive feedback activation of Sos by Ras·GTP with Ras·GTP binding as a substrate for the catalytic site of activated Sos more weakly than Ras·GDP, suggesting that Sos should actively promote unidirectional GDP → GTP exchange on Ras in preference of passive homonucleotide exchange. Ras·GDP weakly binds to the catalytic but not to the allosteric site of Sos. This confirms that Ras·GDP cannot properly activate Sos at the allosteric site. The novel site-specific assay described may be useful for design of drugs aimed at perturbing Ras-Sos interactions. PMID:26565026

  7. Canopy gas exchange and water use efficiency of 'Empire' apple in response to particle film, irrigation, and microclimatic factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study examined the interaction between a reflective particle film and water use efficiency (WUE) response of irrigated and non-irrigated apple trees over a wide range of environmental conditions. The objectives were to measure the specific gas exchange and WUE response of 'Empire' apple treate...

  8. Determination of {sup 16}O and {sup 18}O sensitivity factors and charge-exchange processes in low-energy ion scattering

    SciTech Connect

    Tellez, H.; Chater, R. J.; Fearn, S.; Symianakis, E.; Kilner, J. A.; Brongersma, H. H.

    2012-10-08

    Quantitative analysis in low-energy ion scattering (LEIS) requires an understanding of the charge-exchange processes to estimate the elemental sensitivity factors. In this work, the neutralization of He{sup +} scattered by {sup 18}O-exchanged silica at energies between 0.6 and 7 keV was studied. The process is dominated by Auger neutralization for E{sub i} < 0.8 keV. An additional mechanism starts above the reionization threshold. This collision-induced neutralization becomes the dominant mechanism for E{sub i} > 2 keV. The ion fractions P{sup +} were determined for Si and O using the characteristic velocity method to quantify the surface density. The {sup 18}O/{sup 16}O sensitivity ratio indicates an 18% higher sensitivity for the heavier O isotope.

  9. Arf guanine nucleotide-exchange factors BIG1 and BIG2 regulate nonmuscle myosin IIA activity by anchoring myosin phosphatase complex

    PubMed Central

    Le, Kang; Li, Chun-Chun; Ye, Guan; Moss, Joel; Vaughan, Martha

    2013-01-01

    Brefeldin A-inhibited guanine nucleotide-exchange factors BIG1 and BIG2 activate, through their Sec7 domains, ADP ribosylation factors (Arfs) by accelerating the replacement of Arf-bound GDP with GTP for initiation of vesicular transport or activation of specific enzymes that modify important phospholipids. They are also implicated in regulation of cell polarization and actin dynamics for directed migration. Reciprocal coimmunoprecipitation of endogenous HeLa cell BIG1 and BIG2 with myosin IIA was demonstrably independent of Arf guanine nucleotide-exchange factor activity, because effects of BIG1 and BIG2 depletion were reversed by overexpression of the cognate BIG molecule C-terminal sequence that follows the Arf activation site. Selective depletion of BIG1 or BIG2 enhanced specific phosphorylation of myosin regulatory light chain (T18/S19) and F-actin content, which impaired cell migration in Transwell assays. Our data are clear evidence of these newly recognized functions for BIG1 and BIG2 in transduction or integration of mechanical signals from integrin adhesions and myosin IIA-dependent actin dynamics. Thus, by anchoring or scaffolding the assembly, organization, and efficient operation of multimolecular myosin phosphatase complexes that include myosin IIA, protein phosphatase 1δ, and myosin phosphatase-targeting subunit 1, BIG1 and BIG2 serve to integrate diverse biophysical and biochemical events in cells. PMID:23918382

  10. Analysis of Radiation-natural Convection Interactions in 1-g and low-g Environments using the Discrete Exchange Factor Method

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Naraghi, M. H. N.

    1993-01-01

    A new numerical method is presented for the analysis of combined natural convection and radiation heat transfer with applications in many engineering situations such as materials processing, combustion and fire research. Because of the recent interest in the low gravity environment of space, attention is devoted to both 1-g and low-g applications. The two-dimensional mathematical model is represented by a set of coupled nonlinear integro-partial differential equations. Radiative exchange is formulated using the Discrete Exchange Factor method (DEF). This method considers point to point exchange and provides accurate results over a wide range of radiation parameters. Numerical results show that radiation significantly influences the flow and heat transfer in both low-g and 1-g applications. In the low-g environment, convection is weak, and radiation can easily become the dominant heat transfer mode. It is also shown that volumetric heating by radiation gives rise to an intricate cell pattern in the top heated enclosure.

  11. Effective Landé factor in a GaMnAs quantum dot; with the effects of sp-d exchange on a bound polaron

    SciTech Connect

    Lalitha, D. Peter, A. John

    2014-04-24

    The effective g-factor of conduction (valence) band electron (hole) is obtained in the GaMnAs quantum dot. Magneto bound polaron in a GaMnAs/Ga{sub 0.6}Al{sub 0.4}As quantum dot is investigated with the inclusion of exchange interaction effects due to Mn alloy content and the geometrical confinement. The spin polaronic energy of the heavy hole exciton is studied with the spatial confinement using a mean field theory in the presence of magnetic field strength.

  12. Effective Landé factor in a GaMnAs quantum dot; with the effects of sp-d exchange on a bound polaron

    NASA Astrophysics Data System (ADS)

    Lalitha, D.; Peter, A. John

    2014-04-01

    The effective g-factor of conduction (valence) band electron (hole) is obtained in the GaMnAs quantum dot. Magneto bound polaron in a GaMnAs/Ga0.6Al0.4As quantum dot is investigated with the inclusion of exchange interaction effects due to Mn alloy content and the geometrical confinement. The spin polaronic energy of the heavy hole exciton is studied with the spatial confinement using a mean field theory in the presence of magnetic field strength.

  13. Neighborhood History as a Factor Shaping Syringe Distribution Networks Among Drug Users at a U.S. Syringe Exchange1

    PubMed Central

    Braine, Naomi; Acker, Caroline; Goldblatt, Cullen; Yi, Huso; Friedman, Samuel; DesJarlais, Don C.

    2008-01-01

    Throughout the US, high-visibility drug markets are concentrated in neighborhoods with few economic opportunities, while drug buyers/users are widely dispersed. A study of Pittsburgh Syringe Exchange participants provides data on travel between and network linkages across neighborhoods with different levels of drug activity. There are distinct racial patterns to syringe distribution activity within networks and across neighborhoods. Pittsburgh’s history suggests these patterns emerge from historical patterns of social and economic development. Study data demonstrate the ability of IDUs to form long term social ties across racial and geographic boundaries and use them to reduce the risk of HIV transmission. PMID:19578475

  14. The checkpoint-dependent nuclear accumulation of Rho1p exchange factor Rgf1p is important for tolerance to chronic replication stress

    PubMed Central

    Muñoz, Sofía; Manjón, Elvira; García, Patricia; Sunnerhagen, Per; Sánchez, Yolanda

    2014-01-01

    Guanine nucleotide exchange factors control many aspects of cell morphogenesis by turning on Rho-GTPases. The fission yeast exchange factor Rgf1p (Rho gef1) specifically regulates Rho1p during polarized growth and localizes to cortical sites. Here we report that Rgf1p is relocalized to the cell nucleus during the stalled replication caused by hydroxyurea (HU). Import to the nucleus is mediated by a nuclear localization sequence at the N-terminus of Rgf1p, whereas release into the cytoplasm requires two leucine-rich nuclear export sequences at the C-terminus. Moreover, Rgf1p nuclear accumulation during replication arrest depends on the 14-3-3 chaperone Rad24p and the DNA replication checkpoint kinase Cds1p. Both proteins control the nuclear accumulation of Rgf1p by inhibition of its nuclear export. A mutant, Rgf1p-9A, that substitutes nine serine potential phosphorylation Cds1p sites for alanine fails to accumulate in the nucleus in response to replication stress, and this correlates with a severe defect in survival in the presence of HU. In conclusion, we propose that the regulation of Rgf1p could be part of the mechanism by which Cds1p and Rad24p promote survival in the presence of chronic replication stress. It will be of general interest to understand whether the same is true for homologues of Rgf1p in budding yeast and higher eukaryotes. PMID:24478458

  15. Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast.

    PubMed

    Gowda, Naveen Kumar Chandappa; Kaimal, Jayasankar Mohanakrishnan; Masser, Anna E; Kang, Wenjing; Friedländer, Marc R; Andréasson, Claes

    2016-04-15

    Cells maintain proteostasis by selectively recognizing and targeting misfolded proteins for degradation. InSaccharomyces cerevisiae, the Hsp70 nucleotide exchange factor Fes1 is essential for the degradation of chaperone-associated misfolded proteins by the ubiquitin-proteasome system. Here we show that theFES1transcript undergoes unique 3' alternative splicing that results in two equally active isoforms with alternative C-termini, Fes1L and Fes1S. Fes1L is actively targeted to the nucleus and represents the first identified nuclear Hsp70 nucleotide exchange factor. In contrast, Fes1S localizes to the cytosol and is essential to maintain proteostasis. In the absence of Fes1S, the heat-shock response is constitutively induced at normally nonstressful conditions. Moreover, cells display severe growth defects when elevated temperatures, amino acid analogues, or the ectopic expression of misfolded proteins, induce protein misfolding. Importantly, misfolded proteins are not targeted for degradation by the ubiquitin-proteasome system. These observations support the notion that cytosolic Fes1S maintains proteostasis by supporting the removal of toxic misfolded proteins by proteasomal degradation. This study provides key findings for the understanding of the organization of protein quality control mechanisms in the cytosol and nucleus. PMID:26912797

  16. Cytosolic splice isoform of Hsp70 nucleotide exchange factor Fes1 is required for the degradation of misfolded proteins in yeast

    PubMed Central

    Gowda, Naveen Kumar Chandappa; Kaimal, Jayasankar Mohanakrishnan; Masser, Anna E.; Kang, Wenjing; Friedländer, Marc R.; Andréasson, Claes

    2016-01-01

    Cells maintain proteostasis by selectively recognizing and targeting misfolded proteins for degradation. In Saccharomyces cerevisiae, the Hsp70 nucleotide exchange factor Fes1 is essential for the degradation of chaperone-associated misfolded proteins by the ubiquitin-proteasome system. Here we show that the FES1 transcript undergoes unique 3′ alternative splicing that results in two equally active isoforms with alternative C-termini, Fes1L and Fes1S. Fes1L is actively targeted to the nucleus and represents the first identified nuclear Hsp70 nucleotide exchange factor. In contrast, Fes1S localizes to the cytosol and is essential to maintain proteostasis. In the absence of Fes1S, the heat-shock response is constitutively induced at normally nonstressful conditions. Moreover, cells display severe growth defects when elevated temperatures, amino acid analogues, or the ectopic expression of misfolded proteins, induce protein misfolding. Importantly, misfolded proteins are not targeted for degradation by the ubiquitin-proteasome system. These observations support the notion that cytosolic Fes1S maintains proteostasis by supporting the removal of toxic misfolded proteins by proteasomal degradation. This study provides key findings for the understanding of the organization of protein quality control mechanisms in the cytosol and nucleus. PMID:26912797

  17. Measurements of VOC/SVOC emission factors from burning incenses in an environmental test chamber: influence of temperature, relative humidity, and air exchange rate.

    PubMed

    Manoukian, A; Buiron, D; Temime-Roussel, B; Wortham, H; Quivet, E

    2016-04-01

    This study investigates the influence of three environmental indoor parameters (i.e., temperature, relative humidity, and air exchange rate) on the emission of 13 volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) during incense burning. Experiments have been carried out using an environmental test chamber. Statistical results from a classical two-level full factorial design highlight the predominant effect of ventilation on emission factors. The higher the ventilation, the higher the emission factor. Moreover, thanks to these results, an estimation of the concentration range for the compounds under study can be calculated and allows a quick look of indoor pollution induced by incense combustion. Carcinogenic substances (i.e., benzene, benzo(a)pyrene, and formaldehyde) produced from the incense combustion would be predicted in typical living indoors conditions to reach instantaneous concentration levels close to or higher than air quality exposure threshold values. PMID:26614451

  18. Defective Guanine Nucleotide Exchange in the Elongation Factor-like 1 (EFL1) GTPase by Mutations in the Shwachman-Diamond Syndrome Protein*

    PubMed Central

    García-Márquez, Adrián; Gijsbers, Abril; de la Mora, Eugenio; Sánchez-Puig, Nuria

    2015-01-01

    Ribosome biogenesis is orchestrated by the action of several accessory factors that provide time and directionality to the process. One such accessory factor is the GTPase EFL1 involved in the cytoplasmic maturation of the ribosomal 60S subunit. EFL1 and SBDS, the protein mutated in the Shwachman-Diamond syndrome (SBDS), release the anti-association factor eIF6 from the surface of the ribosomal subunit 60S. Here we report a kinetic analysis of fluorescent guanine nucleotides binding to EFL1 alone and in the presence of SBDS using fluorescence stopped-flow spectroscopy. Binding kinetics of EFL1 to both GDP and GTP suggests a two-step mechanism with an initial binding event followed by a conformational change of the complex. Furthermore, the same behavior was observed in the presence of the SBDS protein irrespective of the guanine nucleotide evaluated. The affinity of EFL1 for GTP is 10-fold lower than that calculated for GDP. Association of EFL1 to SBDS did not modify the affinity for GTP but dramatically decreased that for GDP by increasing the dissociation rate of the nucleotide. Thus, SBDS acts as a guanine nucleotide exchange factor (GEF) for EFL1 promoting its activation by the release of GDP. Finally, fluorescence anisotropy measurements showed that the S143L mutation present in the Shwachman-Diamond syndrome altered a surface epitope for EFL1 and largely decreased the affinity for it. These results suggest that loss of interaction between these proteins due to mutations in the disease consequently prevents the nucleotide exchange regulation the SBDS exerts on EFL1. PMID:25991726

  19. Factors affecting the chemical exchange saturation transfer of Creatine as assessed by 11.7 T MRI.

    PubMed

    Saito, Shigeyoshi; Mori, Yuki; Tanki, Nobuyoshi; Yoshioka, Yoshichika; Murase, Kenya

    2015-01-01

    Chemical exchange saturation transfer (CEST) is a new contrast enhancement approach for imaging exogenous or endogenous substances such as creatine (Cr), amide protons, and glutamate in the human body. An increase in field strength is beneficial for CEST imaging because of the increased chemical shift and longer longitudinal relaxation time (T1). In high-field magnetic resonance imaging (MRI), establishing and evaluating the CEST effect is important for optimizing the magnetization transfer (MT) saturation radio frequency (RF) pulses. In this study, the CEST effect on Cr was evaluated at different concentrations in pH phantoms by appropriately selecting MT saturation RF pulses using 11.7 T MRI. The results showed that the CEST efficiency increased gradually with increasing applied saturation RF pulse power and that it was affected by the number of saturation RF pulses and their bandwidths. However, spillover effects were observed with higher saturation RF pulse powers. In conclusion, we successfully performed in vitro Cr CEST imaging under optimized conditions of MT saturation RF pulses. PMID:25477238

  20. Standardized elemental basis for gas-turbine engine heat exchangers is the key factor for their cost reduction

    NASA Astrophysics Data System (ADS)

    Soudarev, A. V.; Soudarev, B. V.; Kondratiev, V. V.; Lazarev, M. V.

    2001-07-01

    The competitiveness of the small gas turbine units (GTUs) (Ne<300 kW) in the world power market is dependent on both the maintenance expenses and the capital costs of production. Reduction in the maintenance expenditures could be achieved by increasing the plant efficiency. This task could be solved by some methods: increasing the cycle inlet temperature TIT, getting the cycle more complex (use of heat regeneration and compressed air intermediate cooling), cutting the power consumption on heat-stressed parts cooling. Putting the above into effect is linked with introduction of novel structural materials, a sharp increase in the mass-size values and the plant manufacture expenditures, in particular, at provision of its self-regulation. In connection with the above, the development of the combined metal-ceramic airheaters and standardization of the elemental basis of the metal gas-gas heat exchangers will promote reduction in the expenditures of the maintenance and the manufacture of the small-size independent power GTEs.

  1. Steric and Electronic Factors Associated with the Photoinduced Ligand Exchange of Bidentate Ligands Coordinated to Ru(II).

    PubMed

    Albani, Bryan A; Whittemore, Tyler; Durr, Christopher B; Turro, Claudia

    2015-01-01

    In an effort to create a molecule that can absorb low energy visible or near-infrared light for photochemotherapy (PCT), the new complexes [Ru(biq)2 (dpb)](PF6 )2 (1, biq = 2,2'-biquinoline, dpb = 2,3-bis(2-pyridyl)benzoquinoxaline) and [(biq)2 Ru(dpb)Re(CO)3 Cl](PF6 )2 (2) were synthesized and characterized. Complexes 1 and 2 were compared to [Ru(bpy)2 (dpb)](PF6 )2 (3, bpy = 2,2'-bipyridine) and [Ru(biq)2 (phen)](PF6 )2 (4, phen = 1,10-phenanthroline). Distortions around the metal and biq ligands were used to explain the exchange of one biq ligand in 4 upon irradiation. Complex 1, however, undergoes photoinduced dissociation of the dpb ligand rather than biq under analogous experimental conditions. Complex 3 is not photoactive, providing evidence that the biq ligands are crucial for ligand photodissociation in 1. The crystal structures of 1 and 4 are compared to explain the difference in photochemistry between the complexes. Complex 2 absorbs lower energy light than 1, but is photochemically inert although its crystal structure displays significant distortions. These results indicate that both the excited state electronic structure and steric bulk play key roles in bidentate photoinduced ligand dissociation. The present work also shows that it is possible to stabilize sterically hindered Ru(II) complexes by the addition of another metal, a property that may be useful for other applications. PMID:25403564

  2. Factors Associated With Microalbuminuria in 7,549 Children and Adolescents With Type 1 Diabetes in the T1D Exchange Clinic Registry

    PubMed Central

    Daniels, Mark; DuBose, Stephanie N.; Maahs, David M.; Beck, Roy W.; Fox, Larry A.; Gubitosi-Klug, Rose; Laffel, Lori M.; Miller, Kellee M.; Speer, Heather; Tamborlane, William V.; Tansey, Michael J.

    2013-01-01

    OBJECTIVE To examine factors associated with clinical microalbuminuria (MA) diagnosis in children and adolescents in the T1D Exchange clinic registry. RESEARCH DESIGN AND METHODS T1D Exchange participants <20 years of age with type 1 diabetes ≥1 year and urinary albumin-to-creatinine ratio (ACR) measured within the prior 2 years were included in the analysis. MA diagnosis required all of the following: 1) a clinical diagnosis of sustained MA or macroalbuminuria, 2) confirmation of MA diagnosis by either the most recent ACR being ≥30 mg/g or current treatment with an ACE inhibitor (ACEI) or angiotensin receptor blocker (ARB), and 3) no known cause for nephropathy other than diabetes. Logistic regression was used to assess factors associated with MA. RESULTS MA was present in 329 of 7,549 (4.4%) participants, with a higher frequency associated with longer diabetes duration, higher mean glycosylated hemoglobin (HbA1c) level, older age, female sex, higher diastolic blood pressure (BP), and lower BMI (P ≤ 0.01 for each in multivariate analysis). Older age was most strongly associated with MA among participants with HbA1c ≥9.5% (≥80 mmol/mol). MA was uncommon (<2%) among participants with HbA1c <7.5% (<58 mmol/mol). Of those with MA, only 36% were receiving ACEI/ARB treatment. CONCLUSIONS Our results emphasize the importance of good glycemic and BP control, particularly as diabetes duration increases, in order to reduce the risk of nephropathy. Since age and diabetes duration are important nonmodifiable factors associated with MA, the importance of routine screening is underscored to ensure early diagnosis and timely treatment of MA. PMID:23610082

  3. Protein Kinase A (PKA) Type I Interacts with P-Rex1, a Rac Guanine Nucleotide Exchange Factor: EFFECT ON PKA LOCALIZATION AND P-Rex1 SIGNALING.

    PubMed

    Chávez-Vargas, Lydia; Adame-García, Sendi Rafael; Cervantes-Villagrana, Rodolfo Daniel; Castillo-Kauil, Alejandro; Bruystens, Jessica G H; Fukuhara, Shigetomo; Taylor, Susan S; Mochizuki, Naoki; Reyes-Cruz, Guadalupe; Vázquez-Prado, José

    2016-03-18

    Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA. PMID:26797121

  4. Parathyroid hormone inhibition of Na(+)/H(+) exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression.

    PubMed

    Neri, Elida Adalgisa; Bezerra, Camila Nogueira Alves; Queiroz-Leite, Gabriella Duarte; Polidoro, Juliano Zequini; Rebouças, Nancy Amaral

    2015-06-12

    The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na(+)/H(+) exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the -61 to -42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels. PMID:25888790

  5. Nuclear localization and molecular partners of BIG1, a brefeldin A-inhibited guanine nucleotide-exchange protein for ADP-ribosylation factors.

    PubMed

    Padilla, Philip Ian; Pacheco-Rodriguez, Gustavo; Moss, Joel; Vaughan, Martha

    2004-03-01

    Brefeldin A-inhibited guanine nucleotide-exchange protein 1 (BIG1) is an approximately 200-kDa brefeldin A-inhibited guanine nucleotide-exchange protein that preferentially activates ADP-ribosylation factor 1 (ARF1) and ARF3. BIG1 was found in cytosol in a multiprotein complex with a similar ARF-activating protein, BIG2, which is also an A kinase-anchoring protein. In HepG2 cells growing with serum, BIG1 was primarily cytosolic and Golgi-associated. After incubation overnight without serum, a large fraction of endogenous BIG1 was in the nuclei. By confocal immunofluorescence microscopy, BIG1 was localized with nucleoporin p62 at the nuclear envelope (probably during nucleocytoplasmic transport) and also in nucleoli, clearly visible against the less concentrated overall matrix staining. BIG1 was also identified by Western blot analyses in purified subnuclear fractions (e.g., nucleoli and nuclear matrix). Antibodies against BIG1, nucleoporin, or nucleolin coimmunoprecipitated the other two proteins from purified nuclei. In contrast, BIG2 was not associated with nuclear BIG1. Also of note, ARF was never detected among proteins precipitated from purified nuclei by anti-BIG1 antibodies, although microscopically the two proteins do appear sometimes to be colocalized in the nucleus. These data are consistent with independent intracellular movements and actions of BIG1 and BIG2, and they are also evidence of the participation of BIG1 in both Golgi and nuclear functions. PMID:14973189

  6. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases.

    PubMed

    Ren, Y; Li, R; Zheng, Y; Busch, H

    1998-12-25

    The Rho-related small GTPases are critical elements involved in regulation of signal transduction cascades from extracellular stimuli to cell nucleus and cytoskeleton. The Dbl-like guanine nucleotide exchange factors (GEF) have been implicated in direct activation of these GTPases. Here we have identified a new member of the Dbl family, GEF-H1, by screening a human HeLa cell cDNA library. GEF-H1 encodes a 100-kDa protein containing the conserved structural array of a Dbl homology domain in tandem with a pleckstrin homology domain and is most closely related to the lfc oncogene, but additionally it contains a unique coiled-coil domain at the carboxyl terminus. Biochemical analysis reveals that GEF-H1 is capable of stimulating guanine nucleotide exchange of Rac and Rho but is inactive toward Cdc42, TC10, or Ras. Moreover, GEF-H1 binds to Rac and Rho proteins in both the GDP- and guanosine 5'-3-O-(thio)triphosphate-bound states without detectable affinity for Cdc42 or Ras. Immunofluorescence reveals that GEF-H1 colocalizes with microtubules through the carboxyl-terminal coiled-coil domain. Overexpression of GEF-H1 in COS-7 cells results in induction of membrane ruffles. These results suggest that GEF-H1 may have a direct role in activation of Rac and/or Rho and in bringing the activated GTPase to specific target sites such as microtubules. PMID:9857026

  7. Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater. Parameters and implications for emission factors

    NASA Astrophysics Data System (ADS)

    Johansson, A. E.; Kasimir Klemedtsson, Å.; Klemedtsson, L.; Svensson, B. H.

    2003-07-01

    Static chamber measurements of N2O fluxes were taken during the 1998 and 1999 growth seasons in a Swedish constructed wetland receiving wastewater. The dominating plant species in different parts of the wetland were Lemna minor L., Typha latifolia L., Spirogyra sp. and Glyceria maxima (Hartm.) and Phalaris arundinacea (L.), respectively. There were large temporal and spatial variations in N2O fluxes, which ranged from consumption at -350 to emissions at 1791 μg N2O m-2 h-1. The largest positive flux occurred in October 1999 and the lowest in the middle of July 1999. The average N2O flux for the two years was 130 μg N2O m-2 h-1 (SD = 220). No significant differences in N2O fluxes were found between the years, even though the two growing seasons differed considerably with respect to both air temperature and precipitation. 15% of the fluxes were negative, showing a consumption of N2O. Consumption occurred on a few occasions at most measurement sites and ranged from 1-350 μg N2O m-2 h-1. 13-43% of the variation in N2O fluxes was explained by multiple linear regression analysis including principal components. Emission factors were calculated according to IPCC methods from the N2O fluxes in the constructed wetland. The calculated emission factors were always lower (0.02-0.27%) compared to the default factor provided by the IPCC (0.75%). Thus, direct application of the IPCC default factor may lead to overestimation of N2O fluxes from constructed wastewater-treating wetlands.

  8. Parathyroid hormone inhibition of Na{sup +}/H{sup +} exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression

    SciTech Connect

    Neri, Elida Adalgisa; Bezerra, Camila Nogueira Alves Queiroz-Leite, Gabriella Duarte; Polidoro, Juliano Zequini; Rebouças, Nancy Amaral

    2015-06-12

    The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na{sup +}/H{sup +} exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the −61 to −42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels. - Highlights: • PTH regulation of Nhe3 promoter depends on EGR1 binding. • EGR1, PKA and JAK/STAT are involved in PTH inhibition of the Nhe3 promoter. • PTH alters expression of EGR1 and Sp3. • PTH inhibits the Nhe3 promoter by regulating PKA and JAK/STAT signaling.

  9. Structural basis for mutual relief of the Rac guanine nucleotide exchange factor DOCK2 and its partner ELMO1 from their autoinhibited forms.

    PubMed

    Hanawa-Suetsugu, Kyoko; Kukimoto-Niino, Mutsuko; Mishima-Tsumagari, Chiemi; Akasaka, Ryogo; Ohsawa, Noboru; Sekine, Shun-ichi; Ito, Takuhiro; Tochio, Naoya; Koshiba, Seizo; Kigawa, Takanori; Terada, Takaho; Shirouzu, Mikako; Nishikimi, Akihiko; Uruno, Takehito; Katakai, Tomoya; Kinashi, Tatsuo; Kohda, Daisuke; Fukui, Yoshinori; Yokoyama, Shigeyuki

    2012-02-28

    DOCK2, a hematopoietic cell-specific, atypical guanine nucleotide exchange factor, controls lymphocyte migration through ras-related C3 botulinum toxin substrate (Rac) activation. Dedicator of cytokinesis 2-engulfment and cell motility protein 1 (DOCK2•ELMO1) complex formation is required for DOCK2-mediated Rac signaling. In this study, we identified the N-terminal 177-residue fragment and the C-terminal 196-residue fragment of human DOCK2 and ELMO1, respectively, as the mutual binding regions, and solved the crystal structure of their complex at 2.1-Å resolution. The C-terminal Pro-rich tail of ELMO1 winds around the Src-homology 3 domain of DOCK2, and an intermolecular five-helix bundle is formed. Overall, the entire regions of both DOCK2 and ELMO1 assemble to create a rigid structure, which is required for the DOCK2•ELMO1 binding, as revealed by mutagenesis. Intriguingly, the DOCK2•ELMO1 interface hydrophobically buries a residue which, when mutated, reportedly relieves DOCK180 from autoinhibition. We demonstrated that the ELMO-interacting region and the DOCK-homology region 2 guanine nucleotide exchange factor domain of DOCK2 associate with each other for the autoinhibition, and that the assembly with ELMO1 weakens the interaction, relieving DOCK2 from the autoinhibition. The interactions between the N- and C-terminal regions of ELMO1 reportedly cause its autoinhibition, and binding with a DOCK protein relieves the autoinhibition for ras homolog gene family, member G binding and membrane localization. In fact, the DOCK2•ELMO1 interface also buries the ELMO1 residues required for the autoinhibition within the hydrophobic core of the helix bundle. Therefore, the present complex structure reveals the structural basis by which DOCK2 and ELMO1 mutually relieve their autoinhibition for the activation of Rac1 for lymphocyte chemotaxis. PMID:22331897

  10. Thrombotic thrombocytopenic purpura treated with plasma exchange or exchange transfusions.

    PubMed Central

    Shepard, K. V.; Fishleder, A.; Lucas, F. V.; Goormastic, M.; Bukowski, R. M.

    1991-01-01

    Of 40 patients with thrombotic thrombocytopenic purpura, 17 were treated with plasma exchange, 15 with exchange transfusions, and 6 with both types of therapy. One patient died before being treated and another patient was seen but not treated. Plasma exchange was performed daily for a mean of seven exchanges per patient. The replacement fluid during plasma exchange was fresh frozen plasma in all cases. The complete response rates for each type of treatment were as follows: 88% for plasma exchange (15 patients), 47% for exchange transfusions (7 patients), and 67% for exchange transfusions and plasma exchange (4 patients). Clinical and laboratory factors were examined for any statistically significant association with therapy response. Treatment with plasma exchange was statistically the initial factor most strongly associated with prognosis. Paresis, paresthesias, seizures, mental status change, and coma showed no association with response to treatment. Some of the laboratory factors that did not show significant association with treatment response were the initial creatinine, hemoglobin, platelet count, lactate dehydrogenase, and total bilirubin. This study supports the hypothesis that plasma exchange has significantly improved the prognosis of patients with thrombotic thrombocytopenic purpura. These patients should be treated aggressively regardless of the severity of their symptoms. PMID:1877181

  11. Variational versus Perturbational Treatment of Spin-Orbit Coupling in Relativistic Density Functional Calculations of Electronic g Factors: Effects from Spin-Polarization and Exact Exchange.

    PubMed

    Verma, Prakash; Autschbach, Jochen

    2013-02-12

    Different approaches are compared for relativistic calculations of electronic g factors of molecules with light atoms, transition metal complexes, and selected complexes with actinides, using density functional theory (DFT) and Hartree-Fock (HF) theory. The comparison includes functionals with range-separated exchange. Within the variationally stable zeroth-order regular approximation (ZORA) relativistic framework, g factors are obtained with a linear response (LR) method where spin-orbit (SO) coupling is treated as a linear perturbation, a spin-polarized approach based on magnetic anisotropy (MA) that includes SO coupling variationally, and a quasi-restricted variational SO method previously devised by van Lenthe, van der Avoird, and Wormer (LWA). The MA and LWA approaches were implemented in the open-source NWChem quantum chemistry package. We address the importance of electron correlation (DFT vs HF), the importance of including spin polarization in the g tensor methodology, the question of whether the use of nonrelativistic spin density functionals is adequate for such calculations, and the importance of treating spin-orbit coupling beyond first-order. For selected systems, the extent of the DFT delocalization error is explicitly investigated via calculations of the energy as a function of fractional electron numbers. For a test set of small molecules with light main group atoms, all levels of calculation perform adequately as long as there is no energetic near-degeneracy among occupied and unoccupied orbitals. The interplay between different factors determining the accuracy of calculated g factors becomes more complex for systems with heavy elements such as third row transition metals and actinides. The MA approach is shown to perform acceptably well for a wide range of scenarios. PMID:26588748

  12. Microtube strip heat exchanger

    SciTech Connect

    Doty, F.D.

    1991-10-16

    This progress report is for the September--October 1991 quarter. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.

  13. Direct Ubiquitination of β-Catenin by Siah-1 and Regulation by the Exchange Factor TBL1*

    PubMed Central

    Dimitrova, Yoana N.; Li, Jiong; Lee, Young-Tae; Rios-Esteves, Jessica; Friedman, David B.; Choi, Hee-Jung; Weis, William I.; Wang, Cun-Yu; Chazin, Walter J.

    2010-01-01

    β-Catenin is a key component of the Wnt signaling pathway that functions as a transcriptional co-activator of Wnt target genes. Upon UV-induced DNA damage, β-catenin is recruited for polyubiquitination and subsequent proteasomal degradation by a unique, p53-induced SCF-like complex (SCF(TBL1)), comprised of Siah-1, Siah-1-interacting protein (SIP), Skp1, transducin β-like 1 (TBL1), and adenomatous polyposis coli (APC). Given the complexity of the various factors involved and the novelty of ubiquitination of the non-phosphorylated β-catenin substrate, we have investigated Siah-1-mediated ubiquitination of β-catenin in vitro and in cells. Overexpression and purification protocols were developed for each of the SCF(TBL1) proteins, enabling a systematic analysis of β-catenin ubiquitination using an in vitro ubiquitination assay. This study revealed that Siah-1 alone was able to polyubiquitinate β-catenin. In addition, TBL1 was shown to play a role in protecting β-catenin from Siah-1 ubiquitination in vitro and from Siah-1-targeted proteasomal degradation in cells. Siah-1 and TBL1 were found to bind to the same armadillo repeat domain of β-catenin, suggesting that polyubiquitination of β-catenin is regulated by competition between Siah-1 and TBL1 during Wnt signaling. PMID:20181957

  14. Sites Involved in Intra- and Interdomain Allostery Associated with the Activation of Factor VIIa Pinpointed by Hydrogen-Deuterium Exchange and Electron Transfer Dissociation Mass Spectrometry*

    PubMed Central

    Song, Hongjian; Olsen, Ole H.; Persson, Egon; Rand, Kasper D.

    2014-01-01

    Factor VIIa (FVIIa) is a trypsin-like protease that plays an important role in initiating blood coagulation. Very limited structural information is available for the free, inactive form of FVIIa that circulates in the blood prior to vascular injury and the molecular details of its activity enhancement remain elusive. Here we have applied hydrogen/deuterium exchange mass spectrometry coupled to electron transfer dissociation to pinpoint individual residues in the heavy chain of FVIIa whose conformation and/or local interaction pattern changes when the enzyme transitions to the active form, as induced either by its cofactor tissue factor or a covalent active site inhibitor. Identified regulatory residues are situated at key sites across one continuous surface of the protease domain spanning the TF-binding helix across the activation pocket to the calcium binding site and are embedded in elements of secondary structure and at the base of flexible loops. Thus these residues are optimally positioned to mediate crosstalk between functional sites in FVIIa, particularly the cofactor binding site and the active site. Our results unambiguously show that the conformational allosteric activation signal extends to the EGF1 domain in the light chain of FVIIa, underscoring a remarkable intra- and interdomain allosteric regulation of this trypsin-like protease. PMID:25344622

  15. Wsc1 and Mid2 Are Cell Surface Sensors for Cell Wall Integrity Signaling That Act through Rom2, a Guanine Nucleotide Exchange Factor for Rho1

    PubMed Central

    Philip, Bevin; Levin, David E.

    2001-01-01

    Wsc1 and Mid2 are highly O-glycosylated cell surface proteins that reside in the plasma membrane of Saccharomyces cerevisiae. They have been proposed to function as mechanosensors of cell wall stress induced by wall remodeling during vegetative growth and pheromone-induced morphogenesis. These proteins are required for activation of the cell wall integrity signaling pathway that consists of the small G-protein Rho1, protein kinase C (Pkc1), and a mitogen-activated protein kinase cascade. We show here by two-hybrid experiments that the C-terminal cytoplasmic domains of Wsc1 and Mid2 interact with Rom2, a guanine nucleotide exchange factor (GEF) for Rho1. At least with regard to Wsc1, this interaction is mediated by the Rom2 N-terminal domain. This domain is distinct from the Rho1-interacting domain, suggesting that the GEF can interact simultaneously with a sensor and with Rho1. We also demonstrate that extracts from wsc1 and mid2 mutants are deficient in the ability to catalyze GTP loading of Rho1 in vitro, providing evidence that the function of the sensor-Rom2 interaction is to stimulate nucleotide exchange toward this G-protein. In a related line of investigation, we identified the PMT2 gene in a genetic screen for mutations that confer an additive cell lysis defect with a wsc1 null allele. Pmt2 is a member of a six-protein family in yeast that catalyzes the first step in O mannosylation of target proteins. We demonstrate that Mid2 is not mannosylated in a pmt2 mutant and that this modification is important for signaling by Mid2. PMID:11113201

  16. Oligomerization of the Sec7 domain Arf guanine nucleotide exchange factor GBF1 is dispensable for Golgi localization and function but regulates degradation.

    PubMed

    Bhatt, Jay M; Viktorova, Ekaterina G; Busby, Theodore; Wyrozumska, Paulina; Newman, Laura E; Lin, Helen; Lee, Eunjoo; Wright, John; Belov, George A; Kahn, Richard A; Sztul, Elizabeth

    2016-03-15

    Members of the large Sec7 domain-containing Arf guanine nucleotide exchange factor (GEF) family have been shown to dimerize through their NH2-terminal dimerization and cyclophilin binding (DCB) and homology upstream of Sec7 (HUS) domains. However, the importance of dimerization in GEF localization and function has not been assessed. We generated a GBF1 mutant (91/130) in which two residues required for oligomerization (K91 and E130 within the DCB domain) were replaced with A and assessed the effects of these mutations on GBF1 localization and cellular functions. We show that 91/130 is compromised in oligomerization but that it targets to the Golgi in a manner indistinguishable from wild-type GBF1 and that it rapidly exchanges between the cytosolic and membrane-bound pools. The 91/130 mutant appears active as it integrates within the functional network at the Golgi, supports Arf activation and COPI recruitment, and sustains Golgi homeostasis and cargo secretion when provided as a sole copy of functional GBF1 in cells. In addition, like wild-type GBF1, the 91/130 mutant supports poliovirus RNA replication, a process requiring GBF1 but believed to be independent of GBF1 catalytic activity. However, oligomerization appears to stabilize GBF1 in cells, and the 91/130 mutant is degraded faster than the wild-type GBF1. Our data support a model in which oligomerization is not a key regulator of GBF1 activity but impacts its function by regulating the cellular levels of GBF1. PMID:26718629

  17. Assessment of gene expression of intracellular calcium channels, pumps and exchangers with epidermal growth factor-induced epithelial-mesenchymal transition in a breast cancer cell line

    PubMed Central

    2013-01-01

    Background Epithelial-mesenchymal transition (EMT) is a process implicated in cancer metastasis that involves the conversion of epithelial cells to a more mesenchymal and invasive cell phenotype. In breast cancer cells EMT is associated with altered store-operated calcium influx and changes in calcium signalling mediated by activation of cell surface purinergic receptors. In this study, we investigated whether MDA-MB-468 breast cancer cells induced to undergo EMT exhibit changes in mRNA levels of calcium channels, pumps and exchangers located on intracellular calcium storing organelles, including the Golgi, mitochondria and endoplasmic reticulum (ER). Methods Epidermal growth factor (EGF) was used to induce EMT in MDA-MB-468 breast cancer cells. Serum-deprived cells were treated with EGF (50 ng/mL) for 12 h and gene expression was assessed using quantitative RT-PCR. Results and conclusions These data reveal no significant alterations in mRNA levels of the Golgi calcium pump secretory pathway calcium ATPases (SPCA1 and SPCA2), or the mitochondrial calcium uniporter (MCU) or Na+/Ca2+ exchanger (NCLX). However, EGF-induced EMT was associated with significant alterations in mRNA levels of specific ER calcium channels and pumps, including (sarco)-endoplasmic reticulum calcium ATPases (SERCAs), and inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RYR) calcium channel isoforms. The most prominent change in gene expression between the epithelial and mesenchymal-like states was RYR2, which was enriched 45-fold in EGF-treated MDA-MB-468 cells. These findings indicate that EGF-induced EMT in breast cancer cells may be associated with major alterations in ER calcium homeostasis. PMID:23890218

  18. A European epidemiological survey of Vibrio splendidus clade shows unexplored diversity and massive exchange of virulence factors.

    PubMed

    Nasfi, H; Travers, M A; de Lorgeril, J; Habib, C; Sannie, T; Sorieul, L; Gerard, J; Avarre, J C; Haffner, P; Tourbiez, D; Renault, T; Furones, D; Roque, A; Pruzzo, C; Cheslett, D; Gdoura, R; Vallaeys, T

    2015-03-01

    virulence factors vsm and ompU that were detected among strains isolated during as well as outside mortality events. These results, combined with incongruence observed between the ompU and vsm phylogenetic trees, suggested both large diffusion of strains and massive lateral gene transfer within the V. splendidus clade. PMID:25586509

  19. The cytohesin guanosine exchange factors (GEFs) are required to promote HGF-mediated renal recovery after acute kidney injury (AKI) in mice

    PubMed Central

    Reviriego-Mendoza, Marta M; Santy, Lorraine C

    2015-01-01

    The lack of current treatment and preventable measures for acute kidney injury (AKI) in hospitalized patients results in an increased mortality rate of up to 80% and elevated health costs. Additionally, if not properly repaired, those who survive AKI may develop fibrosis and long-term kidney damage. The molecular aspects of kidney injury and repair are still uncertain. Hepatocyte growth factor (HGF) promotes recovery of the injured kidney by inducing survival and migration of tubular epithelial cells to repopulate bare tubule areas. HGF-stimulated kidney epithelial cell migration requires the activation of ADP-ribosylation factor 6 (Arf6) and Rac1 via the cytohesin family of Arf-guanine-nucleotide exchange factors (GEFs), in vitro. We used an ischemia and reperfusion injury (IRI) mouse model to analyze the effects of modulating this signaling pathway on kidney recovery. We treated IRI mice with either HGF, the cytohesin inhibitor SecinH3, or a combination of both. As previously reported, HGF treatment promoted rapid improvement of kidney function as evidenced by creatinine (Cre) and blood urea nitrogen (BUN) levels. In contrast, simultaneous treatment with SecinH3 and HGF blocks the ability of HGF to promote kidney recovery. Immunohistochemistry showed that HGF treatment promoted recovery of tubule structure, and had enhanced levels of active, GTP-bound Arf6 and GTP-Rac1. SecinH3 treatment, however, caused a dramatic decrease in GTP-Arf6 and GTP-Rac1 levels when compared to kidney sections from HGF-treated IRI mice. Additionally, SecinH3 counteracted the renal reparative effects of HGF. Our results support the conclusion that cytohesin function is required for HGF-stimulated renal IRI repair. PMID:26116550

  20. Distinct subcellular localization of alternative splicing variants of EFA6D, a guanine nucleotide exchange factor for Arf6, in the mouse brain.

    PubMed

    Fukaya, Masahiro; Ohta, Shingo; Hara, Yoshinobu; Tamaki, Hideaki; Sakagami, Hiroyuki

    2016-09-01

    EFA6D (guanine nucleotide exchange factor for ADP-ribosylation factor 6 [Arf6]D) is also known as EFA6R, Psd3, and HCA67. It is the fourth member of the EFA6 family with guanine nucleotide exchange activity for Arf6, a small guanosine triphosphatase (GTPase) that regulates endosomal trafficking and actin cytoskeleton remodeling. We propose a classification and nomenclature of 10 EFA6D variants deposited in the GenBank database as EFA6D1a, 1b, 1c, 1d, 1s, 2a, 2b, 2c, 2d, and 2s based on the combination of N-terminal and C-terminal insertions. Polymerase chain reaction analysis showed the expression of all EFA6D variants except for variants a and d in the adult mouse brain. Immunoblotting analysis with novel variant-specific antibodies showed the endogenous expression of EFA6D1b, EFA6D1c, and EFA6D1s at the protein level, with the highest expression being EFA6D1s, in the brain. Immunoblotting analysis of forebrain subcellular fractions showed the distinct subcellular distribution of EFA6D1b/c and EFA6D1s. The immunohistochemical analysis revealed distinct but overlapping immunoreactive patterns between EFA6D1b/c and EFA6D1s in the mouse brain. In immunoelectron microscopic analyses of the hippocampal CA3 region, EFA6D1b/c was present predominantly in the mossy fiber axons of dentate granule cells, whereas EFA6D1s was present abundantly in the cell bodies, dendritic shafts, and spines of hippocampal pyramidal cells. These results provide the first anatomical evidence suggesting the functional diversity of EFA6D variants, particularly EFA6D1b/c and EFA6D1s, in neurons. J. Comp. Neurol. 524:2531-2552, 2016. © 2016 Wiley Periodicals, Inc. PMID:27241101

  1. The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila.

    PubMed

    Chang, Ying-Ju; Zhou, Lily; Binari, Richard; Manoukian, Armen; Mak, Tak; McNeill, Helen; Stambolic, Vuk

    2016-01-01

    The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it's functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila. PMID:27015411

  2. Crystal structure of the N-terminal SH3 domain of mouse {beta}PIX, p21-activated kinase-interacting exchange factor

    SciTech Connect

    Li Xiaofeng; Liu Xueqi; Sun Fei; Gao Jia; Zhou Hongwei; Gao, George F.; Bartlam, Mark; Rao Zihe . E-mail: raozh@xtal.tsinghua.edu.cn

    2006-01-06

    The mouse {beta}PIX-SH3 domain, residues 8-63 of P21-activated kinase interacting exchange factor, has been characterized by X-ray diffraction. Crystals belonging to space group P3{sub 2}21 diffracted to 2.0 A and the structure was phased by the single-wavelength anomalous diffraction method. The domain is a compact {beta}-barrel with an overall conformation similar to the general SH3 structure. The X-ray structure shows mouse {beta}PIX-SH3 domain binding the way in which the {beta}PIX characteristic amino acids do so for an unconventional ligand binding surface. This arrangement provides a rationale for the unusual ligand recognition motif exhibited by mouse {beta}PIX-SH3 domain. Comparison with another SH3/peptide complex shows that the recognition mode of the mouse {beta}PIX-SH3 domain should be very similar to the RXXK ligand binding mode. The unique large and planar hydrophobic pocket may contribute to the promiscuity of {beta}PIX-SH3 domain resulting in its multiple biological functions.

  3. Fine-Tuning of the Actin Cytoskeleton and Cell Adhesion During Drosophila Development by the Unconventional Guanine Nucleotide Exchange Factors Myoblast City and Sponge

    PubMed Central

    Biersmith, Bridget; Wang, Zong-Heng; Geisbrecht, Erika R.

    2015-01-01

    The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to engulfment and cell motility (ELMO) proteins, Dock–ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the 11 vertebrate Dock family members, which are subdivided into four families (Dock A, B, C, and D), complicate genetic analysis. In both vertebrate and invertebrate systems, the actin dynamics regulator, Rac, is the target GTPase of the Dock-A subfamily. However, it remains unclear whether Rac or Rap1 are the in vivo downstream GTPases of the Dock-B subfamily. Drosophila melanogaster is an excellent genetic model organism for understanding Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock A) and Sponge (Spg; Dock B). Here we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle or the dorsal vessel. Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1, possibly to regulate aspects of cell adhesion. Together these data show that Mbc and Spg can have different downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis. PMID:25908317

  4. Exchange Factor TBL1 and Arginine Methyltransferase PRMT6 Cooperate in Protecting G Protein Pathway Suppressor 2 (GPS2) from Proteasomal Degradation*

    PubMed Central

    Huang, Jiawen; Cardamone, M. Dafne; Johnson, Holly E.; Neault, Mathieu; Chan, Michelle; Floyd, Z. Elizabeth; Mallette, Frédérick A.; Perissi, Valentina

    2015-01-01

    G protein pathway suppressor 2 (GPS2) is a multifunctional protein involved in the regulation of a number of metabolic organs. First identified as part of the NCoR-SMRT corepressor complex, GPS2 is known to play an important role in the nucleus in the regulation of gene transcription and meiotic recombination. In addition, we recently reported a non-transcriptional role of GPS2 as an inhibitor of the proinflammatory TNFα pathway in the cytosol. Although this suggests that the control of GPS2 localization may be an important determinant of its molecular functions, a clear understanding of GPS2 differential targeting to specific cellular locations is still lacking. Here we show that a fine balance between protein stabilization and degradation tightly regulates GPS2 nuclear function. Our findings indicate that GPS2 is degraded upon polyubiquitination by the E3 ubiquitin ligase Siah2. Unexpectedly, interaction with the exchange factor TBL1 is required to protect GPS2 from degradation, with methylation of GPS2 by arginine methyltransferase PRMT6 regulating the interaction with TBL1 and inhibiting proteasome-dependent degradation. Overall, our findings indicate that regulation of GPS2 by posttranslational modifications provides an effective strategy for modulating its molecular function within the nuclear compartment. PMID:26070566

  5. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes

    PubMed Central

    Chang, Ying-Ju; Pownall, Scott; Jensen, Thomas E; Mouaaz, Samar; Foltz, Warren; Zhou, Lily; Liadis, Nicole; Woo, Minna; Hao, Zhenyue; Dutt, Previn; Bilan, Philip J; Klip, Amira; Mak, Tak; Stambolic, Vuk

    2015-01-01

    Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. DOI: http://dx.doi.org/10.7554/eLife.06011.001 PMID:26512886

  6. The Rho-guanine nucleotide exchange factor PDZ-RhoGEF governs susceptibility to diet-induced obesity and type 2 diabetes.

    PubMed

    Chang, Ying-Ju; Pownall, Scott; Jensen, Thomas E; Mouaaz, Samar; Foltz, Warren; Zhou, Lily; Liadis, Nicole; Woo, Minna; Hao, Zhenyue; Dutt, Previn; Bilan, Philip J; Klip, Amira; Mak, Tak; Stambolic, Vuk

    2015-01-01

    Adipose tissue is crucial for the maintenance of energy and metabolic homeostasis and its deregulation can lead to obesity and type II diabetes (T2D). Using gene disruption in the mouse, we discovered a function for a RhoA-specific guanine nucleotide exchange factor PDZ-RhoGEF (Arhgef11) in white adipose tissue biology. While PDZ-RhoGEF was dispensable for a number of RhoA signaling-mediated processes in mouse embryonic fibroblasts, including stress fiber formation and cell migration, it's deletion led to a reduction in their proliferative potential. On a whole organism level, PDZ-RhoGEF deletion resulted in an acute increase in energy expenditure, selectively impaired early adipose tissue development and decreased adiposity in adults. PDZ-RhoGEF-deficient mice were protected from diet-induced obesity and T2D. Mechanistically, PDZ-RhoGEF enhanced insulin/IGF-1 signaling in adipose tissue by controlling ROCK-dependent phosphorylation of the insulin receptor substrate-1 (IRS-1). Our results demonstrate that PDZ-RhoGEF acts as a key determinant of mammalian metabolism and obesity-associated pathologies. PMID:26512886

  7. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum.

    PubMed

    Li, Ying; Li, Bing; Liu, Luping; Chen, Huaigu; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2015-01-01

    The Ccz1-Mon1 protein complex, the guanine nucleotide exchange factor (GEF) of the late endosomal Rab7 homolog Ypt7, is required for the late step of multiple vacuole delivery pathways, such as cytoplasm-to-vacuole targeting (Cvt) pathway and autophagy processes. Here, we identified and characterized the yeast Mon1 homolog in Fusarium graminearum, named FgMon1. FgMON1 encodes a trafficking protein and is well conserved in filamentous fungi. Targeted gene deletion showed that the ∆Fgmon1 mutant was defective in vegetative growth, asexual/sexual development, conidial germination and morphology, plant infection and deoxynivalenol production. Cytological examination revealed that the ∆Fgmon1 mutant was also defective in vacuole fusion and autophagy, and delayed in endocytosis. Yeast two hybrid and in vitro GST-pull down assays approved that FgMon1 physically interacts with a Rab GTPase FgRab7 which is also important for the development, infection, membrane fusion and autophagy in F. graminearum. FgMon1 likely acts as a GEF of FgRab7 and constitutively activated FgRab7 was able to rescue the defects of the ∆Fgmon1 mutant. In summary, our study provides evidences that FgMon1 and FgRab7 are critical components that modulate vesicle trafficking, endocytosis and autophagy, and thereby affect the development, plant infection and DON production of F. graminearum. PMID:26657788

  8. Structural analysis of the Sil1-Bip complex reveals the mechanism for Sil1 to function as a nucleotide-exchange factor

    SciTech Connect

    Yan, Ming; Li, Jingzhi; Sha, Bingdong

    2013-01-16

    Sil1 functions as a NEF (nucleotide-exchange factor) for the ER (endoplasmic reticulum) Hsp70 (heat-shock protein of 70 kDa) Bip in eukaryotic cells. Sil1 may catalyse the ADP release from Bip by interacting directly with the ATPase domain of Bip. In the present study we show the complex crystal structure of the yeast Bip and the NEF Sil1 at the resolution of 2.3 {angstrom} (1 {angstrom} = 0.1 nm). In the Sil1-Bip complex structure, the Sil1 molecule acts as a 'clamp' which binds lobe IIb of the Bip ATPase domain. The binding of Sil1 causes the rotation of lobe IIb {approx} 13.5{sup o} away from the ADP-binding pocket. The complex formation also induces lobe Ib to swing in the opposite direction by {approx} 3.7{sup o}. These conformational changes open up the nucleotide-binding pocket in the Bip ATPase domain and disrupt the hydrogen bonds between Bip and bound ADP, which may catalyse ADP release. Mutation of the Sil1 residues involved in binding the Bip ATPase domain compromise the binding affinity of Sil1 to Bip, and these Sil1 mutants also abolish the ability to stimulate the ATPase activity of Bip.

  9. Stabilizing rescued surface-localized δf508 CFTR by potentiation of its interaction with Na(+)/H(+) exchanger regulatory factor 1.

    PubMed

    Arora, Kavisha; Moon, Changsuk; Zhang, Weiqiang; Yarlagadda, Sunitha; Penmatsa, Himabindu; Ren, Aixia; Sinha, Chandrima; Naren, Anjaparavanda P

    2014-07-01

    Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in CFTR, a plasma-membrane-localized anion channel. The most common mutation in CFTR, deletion of phenylalanine at residue 508 (ΔF508), causes misfolding of CFTR resulting in little or no protein at the plasma membrane. The CFTR corrector VX-809 shows promise for treating CF patients homozygous for ΔF508. Here, we demonstrate the significance of protein-protein interactions in enhancing the stability of the ΔF508 CFTR mutant channel protein at the plasma membrane. We determined that VX-809 prolongs the stability of ΔF508 CFTR at the plasma membrane. Using competition-based assays, we demonstrated that ΔF508 CFTR interacts poorly with Na(+)/H(+) exchanger regulatory factor 1 (NHERF1) compared to wild-type CFTR, and VX-809 significantly increased this binding affinity. We conclude that stabilized CFTR-NHERF1 interaction is a determinant of the functional efficiency of rescued ΔF508 CFTR. Our results demonstrate the importance of macromolecular-complex formation in stabilizing rescued mutant CFTR at the plasma membrane and suggest this to be foundational for the development of a new generation of effective CFTR-corrector-based therapeutics. PMID:24945463

  10. Stabilizing Rescued Surface-Localized ΔF508 CFTR by Potentiation of Its Interaction with Na+/H+ Exchanger Regulatory Factor 1

    PubMed Central

    2015-01-01

    Cystic fibrosis (CF) is a recessive genetic disease caused by mutations in CFTR, a plasma-membrane-localized anion channel. The most common mutation in CFTR, deletion of phenylalanine at residue 508 (ΔF508), causes misfolding of CFTR resulting in little or no protein at the plasma membrane. The CFTR corrector VX-809 shows promise for treating CF patients homozygous for ΔF508. Here, we demonstrate the significance of protein–protein interactions in enhancing the stability of the ΔF508 CFTR mutant channel protein at the plasma membrane. We determined that VX-809 prolongs the stability of ΔF508 CFTR at the plasma membrane. Using competition-based assays, we demonstrated that ΔF508 CFTR interacts poorly with Na+/H+ exchanger regulatory factor 1 (NHERF1) compared to wild-type CFTR, and VX-809 significantly increased this binding affinity. We conclude that stabilized CFTR–NHERF1 interaction is a determinant of the functional efficiency of rescued ΔF508 CFTR. Our results demonstrate the importance of macromolecular-complex formation in stabilizing rescued mutant CFTR at the plasma membrane and suggest this to be foundational for the development of a new generation of effective CFTR-corrector-based therapeutics. PMID:24945463

  11. Na/H Exchange Regulatory Factor 1, a Novel AKT-associating Protein, Regulates Extracellular Signal-regulated Kinase Signaling through a B-Raf–Mediated Pathway

    PubMed Central

    Wang, Bin; Yang, Yanmei

    2008-01-01

    Na/H exchange regulatory factor 1 (NHERF1) is a scaffolding protein that regulates signaling and trafficking of several G protein-coupled receptors (GPCRs), including the parathyroid hormone receptor (PTH1R). GPCRs activate extracellular signal-regulated kinase (ERK)1/2 through different mechanisms. Here, we characterized NHERF1 regulation of PTH1R-stimulated ERK1/2. Parathyroid hormone (PTH) stimulated ERK1/2 phosphorylation by a protein kinase A (PKA)-dependent, but protein kinase C-, cyclic adenosine 5′-monophosphate-, and Rap1-independent pathway in Chinese hamster ovary cells stably transfected with the PTH1R and engineered to express NHERF1 under the control of tetracycline. NHERF1 blocked PTH-induced ERK1/2 phosphorylation downstream of PKA. This suggested that NHERF1 inhibitory effects on ERK1/2 occur at a postreceptor locus. Forskolin activated ERK1/2, and this effect was blocked by NHERF1. NHERF1 interacted with AKT and inhibited ERK1/2 activation by decreasing the stimulatory effect of 14-3-3 binding to B-Raf, while increasing the inhibitory influence of AKT negative regulation on ERK1/2 activation. This novel regulatory mechanism provides a new model by which cytoplasmic adapter proteins modulate ERK1/2 activation through a receptor-independent mechanism involving B-Raf. PMID:18272783

  12. Drosophila RhoGEF4 encodes a novel RhoA-specific guanine exchange factor that is highly expressed in the embryonic central nervous system.

    PubMed

    Nahm, Minyeop; Lee, Mihye; Baek, Seung-Hak; Yoon, Jin-Ho; Kim, Hong-Hee; Lee, Zang Hee; Lee, Seungbok

    2006-12-15

    Rho family small GTPases act as molecular switches that regulate neuronal morphogenesis, including axon growth and guidance, dendritic spine formation, and synapse formation. These proteins are positively regulated by guanine nucleotide exchange factors (GEFs) of the Dbl family. This study describes the identification and characterization of Drosophila RhoGEF4 (DRhoGEF4), a novel Dbl family protein that is specifically expressed in the central nervous system during Drosophila embryogenesis. The predicted amino acid sequence of DRhoGEF4 contains a Dbl homology (DH) domain and an adjacent C-terminal pleckstrin homology (PH) domain, which are most closely related to those of mammalian frabins. In this study, the DH-PH motif is shown to enhance the dissociation of GDP from either RhoA or Rac1 but not from Cdc42 in vitro. In addition, p21-binding domain pull-down assays demonstrate that DRhoGEF4 activates RhoA, but neither Rac1 nor Cdc42 in HEK293 cells. Finally, overexpression of DRhoGEF4 is able to induce assembly of stress fibers in cultured NIH3T3 cells. Taken together, these findings suggest that DRhoGEF4 may participate in cytoskeleton-related cellular events by specifically activating RhoA in neuronal morphogenesis. PMID:17011730

  13. The Putative Exchange Factor Gef3p Interacts with Rho3p GTPase and the Septin Ring during Cytokinesis in Fission Yeast*

    PubMed Central

    Muñoz, Sofía; Manjón, Elvira; Sánchez, Yolanda

    2014-01-01

    The small GTP-binding proteins of the Rho family and its regulatory proteins play a central role in cytokinetic actomyosin ring assembly and cytokinesis. Here we show that the fission yeast guanine nucleotide exchange factor Gef3p interacts with Rho3p at the division site. Gef3p contains a putative DH homology domain and a BAR/IMD-like domain. The protein localized to the division site late in mitosis, where it formed a ring that did not constrict with actomyosin ring (cytokinetic actomyosin ring) invagination; instead, it split into a double ring that resembled the septin ring. Gef3p co-localized with septins and Mid2p and required septins and Mid2p for its localization. Gef3p interacts physically with the GTP-bound form of Rho3p. Although Gef3p is not essential for cell separation, the simultaneous disruption of gef3+ and Rho3p-interacting proteins, such as Sec8p, an exocyst component, Apm1p, a subunit of the clathrin adaptor complex or For3p, an actin-polymerizing protein, yielded cells with strong defects in septation and polarity respectively. Our results suggest that interactions between septins and Rho-GEFs provide a new targeting mechanism for GTPases in cytokinesis, in this case probably contributing to Rho3p function in vesicle tethering and vesicle trafficking in the later steps of cell separation. PMID:24947517

  14. The Rho Guanine Nucleotide Exchange Factor DRhoGEF2 Is a Genetic Modifier of the PI3K Pathway in Drosophila

    PubMed Central

    Chang, Ying-Ju; Zhou, Lily; Binari, Richard; Manoukian, Armen; Mak, Tak; McNeill, Helen; Stambolic, Vuk

    2016-01-01

    The insulin/IGF-1 signaling pathway mediates various physiological processes associated with human health. Components of this pathway are highly conserved throughout eukaryotic evolution. In Drosophila, the PTEN ortholog and its mammalian counterpart downregulate insulin/IGF signaling by antagonizing the PI3-kinase function. From a dominant loss-of-function genetic screen, we discovered that mutations of a Dbl-family member, the guanine nucleotide exchange factor DRhoGEF2 (DRhoGEF22(l)04291), suppressed the PTEN-overexpression eye phenotype. dAkt/dPKB phosphorylation, a measure of PI3K signaling pathway activation, increased in the eye discs from the heterozygous DRhoGEF2 wandering third instar larvae. Overexpression of DRhoGEF2, and it’s functional mammalian ortholog PDZ-RhoGEF (ArhGEF11), at various stages of eye development, resulted in both dPKB/Akt-dependent and -independent phenotypes, reflecting the complexity in the crosstalk between PI3K and Rho signaling in Drosophila. PMID:27015411

  15. FgMon1, a guanine nucleotide exchange factor of FgRab7, is important for vacuole fusion, autophagy and plant infection in Fusarium graminearum

    PubMed Central

    Li, Ying; Li, Bing; Liu, Luping; Chen, Huaigu; Zhang, Haifeng; Zheng, Xiaobo; Zhang, Zhengguang

    2015-01-01

    The Ccz1-Mon1 protein complex, the guanine nucleotide exchange factor (GEF) of the late endosomal Rab7 homolog Ypt7, is required for the late step of multiple vacuole delivery pathways, such as cytoplasm-to-vacuole targeting (Cvt) pathway and autophagy processes. Here, we identified and characterized the yeast Mon1 homolog in Fusarium graminearum, named FgMon1. FgMON1 encodes a trafficking protein and is well conserved in filamentous fungi. Targeted gene deletion showed that the ∆Fgmon1 mutant was defective in vegetative growth, asexual/sexual development, conidial germination and morphology, plant infection and deoxynivalenol production. Cytological examination revealed that the ∆Fgmon1 mutant was also defective in vacuole fusion and autophagy, and delayed in endocytosis. Yeast two hybrid and in vitro GST-pull down assays approved that FgMon1 physically interacts with a Rab GTPase FgRab7 which is also important for the development, infection, membrane fusion and autophagy in F. graminearum. FgMon1 likely acts as a GEF of FgRab7 and constitutively activated FgRab7 was able to rescue the defects of the ∆Fgmon1 mutant. In summary, our study provides evidences that FgMon1 and FgRab7 are critical components that modulate vesicle trafficking, endocytosis and autophagy, and thereby affect the development, plant infection and DON production of F. graminearum. PMID:26657788

  16. In vivo expression of the Arf6 Guanine-nucleotide exchange factor cytohesin-1 in mice exhibits enhanced myelin thickness in nerves.

    PubMed

    Torii, Tomohiro; Miyamoto, Yuki; Onami, Naoko; Tsumura, Hideki; Nemoto, Noriko; Kawahara, Katsumasa; Kato, Minoru; Kotera, Jun; Nakamura, Kazuaki; Tanoue, Akito; Yamauchi, Junji

    2013-10-01

    The myelin sheath consists of a unique multiple layer structure that acts as an insulator between neuronal axons to enhance the propagation of the action potential. In neuropathies such as demyelinating or dismyelinating diseases, chronic demyelination and defective remyelination occur repeatedly, leading to more severe neuropathy. As yet, little is known about the possibility of drug target-specific medicine for such diseases. In the developing peripheral nervous system (PNS), myelin sheaths form as Schwann cells wrap individual axons. It is thought that the development of a drug promoting myelination by Schwann cells would provide effective therapy against peripheral nerve disorders: to test such treatment, genetically modified mice overexpressing the drug target molecules are needed. We previously identified an Arf6 activator, the guanine-nucleotide exchange factor cytohesin-1, as the signaling molecule controlling myelination of peripheral axons by Schwann cells; yet, the important issue of whether cytohesin-1 itself promotes myelin thickness in vivo has remained unclear. Herein, we show that, in mouse PNS nerves, Schwann cell-specific expression of wild-type cytohesin-1 exhibits enhanced myelin thickness. Downstream activation of Arf6 is also seen in these transgenic mice, revealing the involvement of the cytohesin-1 and Arf6 signaling unit in promoting myelination. These results suggest that cytohesin-1 may be a candidate for the basis of a therapy for peripheral neuropathies through its enhancement of myelin thickness. PMID:23636892

  17. Odontogenic Ameloblast-associated Protein (ODAM) Mediates Junctional Epithelium Attachment to Teeth via Integrin-ODAM-Rho Guanine Nucleotide Exchange Factor 5 (ARHGEF5)-RhoA Signaling.

    PubMed

    Lee, Hye-Kyung; Ji, Suk; Park, Su-Jin; Choung, Han-Wool; Choi, Youngnim; Lee, Hyo-Jung; Park, Shin-Young; Park, Joo-Cheol

    2015-06-01

    Adhesion of the junctional epithelium (JE) to the tooth surface is crucial for maintaining periodontal health. Although odontogenic ameloblast-associated protein (ODAM) is expressed in the JE, its molecular functions remain unknown. We investigated ODAM function during JE development and regeneration and its functional significance in the initiation and progression of periodontitis and peri-implantitis. ODAM was expressed in the normal JE of healthy teeth but absent in the pathologic pocket epithelium of diseased periodontium. In periodontitis and peri-implantitis, ODAM was extruded from the JE following onset with JE attachment loss and detected in gingival crevicular fluid. ODAM induced RhoA activity and the expression of downstream factors, including ROCK (Rho-associated kinase), by interacting with Rho guanine nucleotide exchange factor 5 (ARHGEF5). ODAM-mediated RhoA signaling resulted in actin filament rearrangement. Reduced ODAM and RhoA expression in integrin β3- and β6-knockout mice revealed that cytoskeleton reorganization in the JE occurred via integrin-ODAM-ARHGEF5-RhoA signaling. Fibronectin and laminin activated RhoA signaling via the integrin-ODAM pathway. Finally, ODAM was re-expressed with RhoA in regenerating JE after gingivectomy in vivo. These results suggest that ODAM expression in the JE reflects a healthy periodontium and that JE adhesion to the tooth surface is regulated via fibronectin/laminin-integrin-ODAM-ARHGEF5-RhoA signaling. We also propose that ODAM could be used as a biomarker of periodontitis and peri-implantitis. PMID:25911094

  18. Odontogenic Ameloblast-associated Protein (ODAM) Mediates Junctional Epithelium Attachment to Teeth via Integrin-ODAM-Rho Guanine Nucleotide Exchange Factor 5 (ARHGEF5)-RhoA Signaling*

    PubMed Central

    Lee, Hye-Kyung; Ji, Suk; Park, Su-Jin; Choung, Han-Wool; Choi, Youngnim; Lee, Hyo-Jung; Park, Shin-Young; Park, Joo-Cheol

    2015-01-01

    Adhesion of the junctional epithelium (JE) to the tooth surface is crucial for maintaining periodontal health. Although odontogenic ameloblast-associated protein (ODAM) is expressed in the JE, its molecular functions remain unknown. We investigated ODAM function during JE development and regeneration and its functional significance in the initiation and progression of periodontitis and peri-implantitis. ODAM was expressed in the normal JE of healthy teeth but absent in the pathologic pocket epithelium of diseased periodontium. In periodontitis and peri-implantitis, ODAM was extruded from the JE following onset with JE attachment loss and detected in gingival crevicular fluid. ODAM induced RhoA activity and the expression of downstream factors, including ROCK (Rho-associated kinase), by interacting with Rho guanine nucleotide exchange factor 5 (ARHGEF5). ODAM-mediated RhoA signaling resulted in actin filament rearrangement. Reduced ODAM and RhoA expression in integrin β3- and β6-knockout mice revealed that cytoskeleton reorganization in the JE occurred via integrin-ODAM-ARHGEF5-RhoA signaling. Fibronectin and laminin activated RhoA signaling via the integrin-ODAM pathway. Finally, ODAM was re-expressed with RhoA in regenerating JE after gingivectomy in vivo. These results suggest that ODAM expression in the JE reflects a healthy periodontium and that JE adhesion to the tooth surface is regulated via fibronectin/laminin-integrin-ODAM-ARHGEF5-RhoA signaling. We also propose that ODAM could be used as a biomarker of periodontitis and peri-implantitis. PMID:25911094

  19. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  20. Guanine Nucleotide Exchange Factor αPIX Leads to Activation of the Rac 1 GTPase/Glycogen Phosphorylase Pathway in Interleukin (IL)-2-stimulated T Cells

    PubMed Central

    Llavero, Francisco; Urzelai, Bakarne; Osinalde, Nerea; Gálvez, Patricia; Lacerda, Hadriano M.; Parada, Luis A.; Zugaza, José L.

    2015-01-01

    Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation. PMID:25694429

  1. Release of GTP Exchange Factor Mediated Down-Regulation of Abscisic Acid Signal Transduction through ABA-Induced Rapid Degradation of RopGEFs

    PubMed Central

    Waadt, Rainer; Schroeder, Julian I.

    2016-01-01

    The phytohormone abscisic acid (ABA) is critical to plant development and stress responses. Abiotic stress triggers an ABA signal transduction cascade, which is comprised of the core components PYL/RCAR ABA receptors, PP2C-type protein phosphatases, and protein kinases. Small GTPases of the ROP/RAC family act as negative regulators of ABA signal transduction. However, the mechanisms by which ABA controls the behavior of ROP/RACs have remained unclear. Here, we show that an Arabidopsis guanine nucleotide exchange factor protein RopGEF1 is rapidly sequestered to intracellular particles in response to ABA. GFP-RopGEF1 is sequestered via the endosome-prevacuolar compartment pathway and is degraded. RopGEF1 directly interacts with several clade A PP2C protein phosphatases, including ABI1. Interestingly, RopGEF1 undergoes constitutive degradation in pp2c quadruple abi1/abi2/hab1/pp2ca mutant plants, revealing that active PP2C protein phosphatases protect and stabilize RopGEF1 from ABA-mediated degradation. Interestingly, ABA-mediated degradation of RopGEF1 also plays an important role in ABA-mediated inhibition of lateral root growth. The presented findings point to a PP2C-RopGEF-ROP/RAC control loop model that is proposed to aid in shutting off ABA signal transduction, to counteract leaky ABA signal transduction caused by “monomeric” PYL/RCAR ABA receptors in the absence of stress, and facilitate signaling in response to ABA. PMID:27192441

  2. Cdc42 and the Guanine Nucleotide Exchange Factors Ect2 and Trio Mediate Fn14-Induced Migration and Invasion of Glioblastoma Cells

    PubMed Central

    Fortin, Shannon P.; Ennis, Matthew J.; Schumacher, Cassie A.; Zylstra-Diegel, Cassandra R.; Williams, Bart O.; Ross, Julianna T.D.; Winkles, Jeffrey A.; Loftus, Joseph C.; Symons, Marc H.; Tran, Nhan L.

    2012-01-01

    Malignant glioblastomas are characterized by their ability to infiltrate into normal brain. We previously reported that binding of the multifunctional cytokine TNF-like weak inducer of apoptosis (TWEAK) to its receptor fibroblast growth factor–inducible 14 (Fn14) induces glioblastoma cell invasion via Rac1 activation. Here, we show that Cdc42 plays an essential role in Fn14-mediated activation of Rac1. TWEAK-treated glioma cells display an increased activation of Cdc42, and depletion of Cdc42 using siRNA abolishes TWEAK-induced Rac1 activation and abrogates glioma cell migration and invasion. In contrast, Rac1 depletion does not affect Cdc42 activation by Fn14, showing that Cdc42 mediates TWEAK-stimulated Rac1 activation. Furthermore, we identified two guanine nucleotide exchange factors (GEF), Ect2 and Trio, involved in TWEAK-induced activation of Cdc42 and Rac1, respectively. Depletion of Ect2 abrogates both TWEAK-induced Cdc42 and Rac1 activation, as well as subsequent TWEAK-Fn14–directed glioma cell migration and invasion. In contrast, Trio depletion inhibits TWEAK-induced Rac1 activation but not TWEAK-induced Cdc42 activation. Finally, inappropriate expression of Fn14 or Ect2 in mouse astrocytes in vivo using an RCAS vector system for glial-specific gene transfer in G-tva transgenic mice induces astrocyte migration within the brain, corroborating the in vitro importance of the TWEAK-Fn14 signaling cascade in glioblastoma invasion. Our results suggest that the TWEAK-Fn14 signaling axis stimulates glioma cell migration and invasion through two GEF-GTPase signaling units, Ect2-Cdc42 and Trio-Rac1. Components of the Fn14-Rho GEF-Rho GTPase signaling pathway present innovative drug targets for glioma therapy. PMID:22571869

  3. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle

    PubMed Central

    Takenaka, Nobuyuki; Nihata, Yuma; Satoh, Takaya

    2016-01-01

    Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling. PMID:27163697

  4. The Rho guanine exchange factor RHGF-2 acts through the Rho-binding kinase LET-502 to mediate embryonic elongation in C. elegans.

    PubMed

    Chan, Benjamin G; Rocheleau, Simon K; Smit, Ryan B; Mains, Paul E

    2015-09-15

    Morphogenesis allows an organism to develop its final body shape. In Caenorhabditis elegans, a smooth muscle-like contraction of an actin/myosin network in the epidermis mediates the elongation of the worm embryo from a ball of cells into a long, thin worm. This process is controlled by two redundant pathways, one involving the small GTPase RHO-1 and its downstream effectors LET-502/Rho-binding kinase and MEL-11/myosin phosphatase, and another involving PAK-1/p21 activated kinase and FEM-2/PP2c phosphatase. Contraction occurs primarily in the lateral epidermal cells during elongation while the dorsal and ventral epidermal cells have a more passive role, and localized activity of a Rho GEF (guanine exchange factor) could contribute to this asymmetry. We found that loss of the C. elegans Rho GEF encoded by rhgf-2 results in arrest during early elongation. Genetically, rhgf-2 acts as an activator of let-502/Rho-binding kinase, in parallel to fem-2/PP2c phosphatase. Although expressed throughout the embryo, lateral cell-specific RHGF-2 expression can mediate elongation. The Rho GTPase activating protein (GAP) RGA-2 is known to inhibit contraction in the dorsal and ventral epidermis. Although rhgf-2 and rga-2 are individually lethal, the double mutant is viable with elongation still occurring in a let-502 dependent fashion. This indicates that LET-502/Rho-binding kinase has activity independent of the GEF and GAP. Finally, maternal LET-502 and MEL-11 are known to regulate the rate of cleavage furrow ingression in the early embryo and we show that maternal RHGF-2 also influences cleavage but RGA-2 does not. Thus while the LET-502/MEL-11 pathway is employed multiple times during embryogenesis, regulation by GEFs and GAPs differs at different points of the life cycle and fine tunes contractile function. PMID:26188247

  5. Specific residues of the GDP/GTP exchange factor Bud5p are involved in establishment of the cell type-specific budding pattern in yeast.

    PubMed

    Kang, Pil Jung; Lee, Bongyong; Park, Hay-Oak

    2004-07-01

    Cells of the budding yeast undergo oriented cell division by choosing a specific site for growth depending on their cell type. Haploid a and alpha cells bud in an axial pattern whereas diploid a/alpha cells bud in a bipolar pattern. The Ras-like GTPase Rsr1p/Bud1p, its GDP-GTP exchange factor Bud5p, and its GTPase-activating protein Bud2p are essential for selecting the proper site for polarized growth in all cell types. Here we showed that specific residues at the N terminus and the C terminus of Bud5p were important for bipolar budding, while some residues were involved in both axial and bipolar budding. These bipolar-specific mutations of BUD5 disrupted proper localization of Bud5p in diploid a/alpha cells without affecting Bud5p localization in haploid alpha cells. In contrast, Bud5p expressed in the bud5 mutants defective in both budding patterns failed to localize in all cell types. Thus, these results identify specific residues of Bud5p that are likely to be involved in direct interaction with spatial landmarks, which recruit Bud5p to the proper bud site. Finally, we found a new start codon of BUD5, which extends the open reading frame to 210 bp upstream of the previously estimated start site, thus encoding a polypeptide of 608 amino acid residues. Bud5p with these additional N-terminal residues interacted with Bud8p, a potential bipolar landmark, suggesting that the N-terminal region is necessary for recognition of the spatial cues. PMID:15136576

  6. The casein kinases Yck1p and Yck2p act in the secretory pathway, in part, by regulating the Rab exchange factor Sec2p

    PubMed Central

    Stalder, Danièle; Novick, Peter J.

    2016-01-01

    Sec2p is a guanine nucleotide exchange factor that activates Sec4p, the final Rab GTPase of the yeast secretory pathway. Sec2p is recruited to secretory vesicles by the upstream Rab Ypt32p acting in concert with phosphatidylinositol-4-phosphate (PI(4)P). Sec2p also binds to the Sec4p effector Sec15p, yet Ypt32p and Sec15p compete against each other for binding to Sec2p. We report here that the redundant casein kinases Yck1p and Yck2p phosphorylate sites within the Ypt32p/Sec15p binding region and in doing so promote binding to Sec15p and inhibit binding to Ypt32p. We show that Yck2p binds to the autoinhibitory domain of Sec2p, adjacent to the PI(4)P binding site, and that addition of PI(4)P inhibits Sec2p phosphorylation by Yck2p. Loss of Yck1p and Yck2p function leads to accumulation of an intracellular pool of the secreted glucanase Bgl2p, as well as to accumulation of Golgi-related structures in the cytoplasm. We propose that Sec2p is phosphorylated after it has been recruited to secretory vesicles and the level of PI(4)P has been reduced. This promotes Sec2p function by stimulating its interaction with Sec15p. Finally, Sec2p is dephosphorylated very late in the exocytic reaction to facilitate recycling. PMID:26700316

  7. Tight Binding of the Phosphorylated α Subunit of Initiation Factor 2 (eIF2α) to the Regulatory Subunits of Guanine Nucleotide Exchange Factor eIF2B Is Required for Inhibition of Translation Initiation

    PubMed Central

    Krishnamoorthy, Thanuja; Pavitt, Graham D.; Zhang, Fan; Dever, Thomas E.; Hinnebusch, Alan G.

    2001-01-01

    Translation initiation factor 2 (eIF2) is a heterotrimeric protein that transfers methionyl-initiator tRNAMet to the small ribosomal subunit in a ternary complex with GTP. The eIF2 phosphorylated on serine 51 of its α subunit [eIF2(αP)] acts as competitive inhibitor of its guanine nucleotide exchange factor, eIF2B, impairing formation of the ternary complex and thereby inhibiting translation initiation. eIF2B is comprised of catalytic and regulatory subcomplexes harboring independent eIF2 binding sites; however, it was unknown whether the α subunit of eIF2 directly contacts any eIF2B subunits or whether this interaction is modulated by phosphorylation. We found that recombinant eIF2α (glutathione S-transferase [GST]–SUI2) bound to the eIF2B regulatory subcomplex in vitro, in a manner stimulated by Ser-51 phosphorylation. Genetic data suggest that this direct interaction also occurred in vivo, allowing overexpressed SUI2 to compete with eIF2(αP) holoprotein for binding to the eIF2B regulatory subcomplex. Mutations in SUI2 and in the eIF2B regulatory subunit GCD7 that eliminated inhibition of eIF2B by eIF2(αP) also impaired binding of phosphorylated GST-SUI2 to the eIF2B regulatory subunits. These findings provide strong evidence that tight binding of phosphorylated SUI2 to the eIF2B regulatory subcomplex is crucial for the inhibition of eIF2B and attendant downregulation of protein synthesis exerted by eIF2(αP). We propose that this regulatory interaction prevents association of the eIF2B catalytic subcomplex with the β and γ subunits of eIF2 in the manner required for GDP-GTP exchange. PMID:11438658

  8. Science exchanges

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    Dwindling scientific and technical exchange between the United States and the Soviet Union and prospects for enhancing such exchanges were discussed at an August 2 hearing by the Foreign Affairs Committee of the U.S. House of Representatives. The committee also heard overviews on the United States' approach to international exchange of science and technology. The hearing was the first in a series on current and future international science and technology programs.Four of eight science and technology agreements with the USSR that have expired in the last 15 months, including one on space, have not been renewed. The remaining four agreements have been extended into 1987 and 1988. Two others, including one on oceanography, are scheduled to run out in 1984.

  9. Dual drug load and release behavior on ion-exchange fiber: influencing factors and prediction method for precise control of the loading amount.

    PubMed

    Yuan, Jing; Gao, Yanan; Liu, Tiaotiao; Wang, Xinyu; Liu, Hongzhuo; Li, Sanming

    2015-01-01

    Ion-exchange fiber undergoes a stoichiometric exchange reaction and has large exchange capability, which makes it a promising candidate as a multiple drug carrier. Because combinatorial effects can act synergistically, additively or antagonistically depending on the ratio of the agents being combined, the objective of this study was to learn the dual drug loading of ion-exchange fiber and develop a mathematical method for precisely control of the loading amount. Atenolol and Gatifloxacin, with different loading behaviors into strong cationic ion-exchange fiber ZB-1, were used to build a representative of dual loading. Not suitable pH value of drug solutions could make simultaneous loading fail, while the change of drug solution volume hardly affected the equilibrium. Ion-exchange groups occupied by the drug which owned lower affinity to fiber could be grabbed by the higher affinity drug, indicating the existence of competition between drugs. Thermodynamic model was introduced to guide the loading prediction and a favorable relevance had been shown between determined and predicted data. The release behaviors of each drug from dual drug-fiber complex were similar to those from single drug-fiber complexes. PMID:24841046

  10. Heat exchanger

    SciTech Connect

    Drury, C.R.

    1988-02-02

    A heat exchanger having primary and secondary conduits in heat-exchanging relationship is described comprising: at least one serpentine tube having parallel sections connected by reverse bends, the serpentine tube constituting one of the conduits; a group of open-ended tubes disposed adjacent to the parallel sections, the open-ended tubes constituting the other of the conduits, and forming a continuous mass of contacting tubes extending between and surrounding the serpentine tube sections; and means securing the mass of tubes together to form a predetermined cross-section of the entirety of the mass of open-ended tubes and tube sections.

  11. The amino acid exchange R28E in ciliary neurotrophic factor (CNTF) abrogates interleukin-6 receptor-dependent but retains CNTF receptor-dependent signaling via glycoprotein 130 (gp130)/leukemia inhibitory factor receptor (LIFR).

    PubMed

    Wagener, Eva-Maria; Aurich, Matthias; Aparicio-Siegmund, Samadhi; Floss, Doreen M; Garbers, Christoph; Breusing, Kati; Rabe, Björn; Schwanbeck, Ralf; Grötzinger, Joachim; Rose-John, Stefan; Scheller, Jürgen

    2014-06-27

    Ciliary neurotrophic factor (CNTF) is a neurotrophic factor with therapeutic potential for neurodegenerative diseases. Moreover, therapeutic application of CNTF reduced body weight in mice and humans. CNTF binds to high or low affinity receptor complexes consisting of CNTFR·gp130·LIFR or IL-6R·gp130·LIFR, respectively. Clinical studies of the CNTF derivative Axokine revealed intolerance at higher concentrations, which may rely on the low-affinity binding of CNTF to the IL-6R. Here, we aimed to generate a CNTFR-selective CNTF variant (CV). CV-1 contained the single amino acid exchange R28E. Arg(28) is in close proximity to the CNTFR binding site. Using molecular modeling, we hypothesized that Arg(28) might contribute to IL-6R/CNTFR plasticity of CNTF. CV-2 to CV-5 were generated by transferring parts of the CNTFR-binding site from cardiotrophin-like cytokine to CNTF. Cardiotrophin-like cytokine selectively signals via the CNTFR·gp130·LIFR complex, albeit with a much lower affinity compared with CNTF. As shown by immunoprecipitation, all CNTF variants retained the ability to bind to CNTFR. CV-1, CV-2, and CV-5, however, lost the ability to bind to IL-6R. Although all variants induced cytokine-dependent cellular proliferation and STAT3 phosphorylation via CNTFR·gp130·LIFR, only CV-3 induced STAT3 phosphorylation via IL-6R·gp130·LIFR. Quantification of CNTF-dependent proliferation of CNTFR·gp130·LIFR expressing cells indicated that only CV-1 was as biologically active as CNTF. Thus, the CNTFR-selective CV-1 will allow discriminating between CNTFR- and IL-6R-mediated effects in vivo. PMID:24802752

  12. The Amino Acid Exchange R28E in Ciliary Neurotrophic Factor (CNTF) Abrogates Interleukin-6 Receptor-dependent but Retains CNTF Receptor-dependent Signaling via Glycoprotein 130 (gp130)/Leukemia Inhibitory Factor Receptor (LIFR)*

    PubMed Central

    Wagener, Eva-Maria; Aurich, Matthias; Aparicio-Siegmund, Samadhi; Floss, Doreen M.; Garbers, Christoph; Breusing, Kati; Rabe, Björn; Schwanbeck, Ralf; Grötzinger, Joachim; Rose-John, Stefan; Scheller, Jürgen

    2014-01-01

    Ciliary neurotrophic factor (CNTF) is a neurotrophic factor with therapeutic potential for neurodegenerative diseases. Moreover, therapeutic application of CNTF reduced body weight in mice and humans. CNTF binds to high or low affinity receptor complexes consisting of CNTFR·gp130·LIFR or IL-6R·gp130·LIFR, respectively. Clinical studies of the CNTF derivative Axokine revealed intolerance at higher concentrations, which may rely on the low-affinity binding of CNTF to the IL-6R. Here, we aimed to generate a CNTFR-selective CNTF variant (CV). CV-1 contained the single amino acid exchange R28E. Arg28 is in close proximity to the CNTFR binding site. Using molecular modeling, we hypothesized that Arg28 might contribute to IL-6R/CNTFR plasticity of CNTF. CV-2 to CV-5 were generated by transferring parts of the CNTFR-binding site from cardiotrophin-like cytokine to CNTF. Cardiotrophin-like cytokine selectively signals via the CNTFR·gp130·LIFR complex, albeit with a much lower affinity compared with CNTF. As shown by immunoprecipitation, all CNTF variants retained the ability to bind to CNTFR. CV-1, CV-2, and CV-5, however, lost the ability to bind to IL-6R. Although all variants induced cytokine-dependent cellular proliferation and STAT3 phosphorylation via CNTFR·gp130·LIFR, only CV-3 induced STAT3 phosphorylation via IL-6R·gp130·LIFR. Quantification of CNTF-dependent proliferation of CNTFR·gp130·LIFR expressing cells indicated that only CV-1 was as biologically active as CNTF. Thus, the CNTFR-selective CV-1 will allow discriminating between CNTFR- and IL-6R-mediated effects in vivo. PMID:24802752

  13. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  14. The Interplay between the Escherichia coli Rho Guanine Nucleotide Exchange Factor Effectors and the Mammalian RhoGEF Inhibitor EspH

    PubMed Central

    Wong, Alexander R. C.; Clements, Abigail; Raymond, Benoit; Crepin, Valerie F.; Frankel, Gad

    2012-01-01

    ABSTRACT Rho GTPases are important regulators of many cellular processes. Subversion of Rho GTPases is a common infection strategy employed by many important human pathogens. Enteropathogenic Escherichia coli and enterohemorrhagic Escherichia coli (EPEC and EHEC) translocate the effector EspH, which inactivates mammalian Rho guanine exchange factors (GEFs), as well as Map, EspT, and EspM2, which, by mimicking mammalian RhoGEFs, activate Rho GTPases. In this study we found that EspH induces focal adhesion disassembly, triggers cell detachment, activates caspase-3, and induces cytotoxicity. EspH-induced cell detachment and caspase-3 activation can be offset by EspT, EspM2, and the Salmonella Cdc42/Rac1 GEF effector SopE, which remain active in the presence of EspH. EPEC and EHEC therefore use a novel strategy of controlling Rho GTPase activity by translocating one effector to inactivate mammalian RhoGEFs, replacing them with bacterial RhoGEFs. This study also expands the functional range of bacterial RhoGEFs to include cell adhesion and survival. IMPORTANCE Many human pathogens use a type III secretion system to translocate effectors that can functionally be divided into signaling, disabling, and countervirulence effectors. Among the signaling effectors are those that activate Rho GTPases, which play a central role in coordinating actin dynamics. However, many pathogens also translocate effectors with antagonistic or counteractive functions. For example, Salmonella translocates SopE and SptP, which sequentially turn Rac1 and Cdc42 on and off. In this paper, we show that enteropathogenic E. coli translocates EspH, which inactivates mammalian RhoGEFs and triggers cytotoxicity and at the same time translocates the bacterial RhoGEFs EspM2 and EspT, which are insensitive to EspH, and so neutralizes EspH-induced focal adhesion disassembly, cell detachment, and caspase-3 activation. Our data point to an intriguing infection strategy in which EPEC and EHEC override cellular

  15. Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution

    PubMed Central

    Vo, Uybach; Vajpai, Navratna; Embrey, Kevin J.; Golovanov, Alexander P.

    2016-01-01

    The cycling between GDP- and GTP- bound forms of the Ras protein is partly regulated by the binding of Sos. The structural/dynamic behavior of the complex formed between activated Sos and Ras at the point of the functional cycle where the nucleotide exchange is completed has not been described to date. Here we show that solution NMR spectra of H-Ras∙GTPγS mixed with a functional fragment of Sos (SosCat) at a 2:1 ratio are consistent with the formation of a rather dynamic assembly. H-Ras∙GTPγS binding was in fast exchange on the NMR timescale and retained a significant degree of molecular tumbling independent of SosCat, while SosCat also tumbled largely independently of H-Ras. Estimates of apparent molecular weight from both NMR data and SEC-MALS revealed that, at most, only one H-Ras∙GTPγS molecule appears stably bound to Sos. The weak transient interaction between Sos and the second H-Ras∙GTPγS may provide a necessary mechanism for complex dissociation upon the completion of the native GDP → GTP exchange reaction, but also explains measurable GTP → GTP exchange activity of Sos routinely observed in in vitro assays that use fluorescently-labelled analogs of GTP. Overall, the data presents the first dynamic snapshot of Ras functional cycle as controlled by Sos. PMID:27412770

  16. Dynamic studies of H-Ras•GTPγS interactions with nucleotide exchange factor Sos reveal a transient ternary complex formation in solution.

    PubMed

    Vo, Uybach; Vajpai, Navratna; Embrey, Kevin J; Golovanov, Alexander P

    2016-01-01

    The cycling between GDP- and GTP- bound forms of the Ras protein is partly regulated by the binding of Sos. The structural/dynamic behavior of the complex formed between activated Sos and Ras at the point of the functional cycle where the nucleotide exchange is completed has not been described to date. Here we show that solution NMR spectra of H-Ras∙GTPγS mixed with a functional fragment of Sos (Sos(Cat)) at a 2:1 ratio are consistent with the formation of a rather dynamic assembly. H-Ras∙GTPγS binding was in fast exchange on the NMR timescale and retained a significant degree of molecular tumbling independent of Sos(Cat), while Sos(Cat) also tumbled largely independently of H-Ras. Estimates of apparent molecular weight from both NMR data and SEC-MALS revealed that, at most, only one H-Ras∙GTPγS molecule appears stably bound to Sos. The weak transient interaction between Sos and the second H-Ras∙GTPγS may provide a necessary mechanism for complex dissociation upon the completion of the native GDP → GTP exchange reaction, but also explains measurable GTP → GTP exchange activity of Sos routinely observed in in vitro assays that use fluorescently-labelled analogs of GTP. Overall, the data presents the first dynamic snapshot of Ras functional cycle as controlled by Sos. PMID:27412770

  17. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  18. ERYTHROPOIETIC FACTOR PURIFICATION

    DOEpatents

    White, W.F.; Schlueter, R.J.

    1962-05-01

    A method is given for purifying and concentrating the blood plasma erythropoietic factor. Anemic sheep plasma is contacted three times successively with ion exchange resins: an anion exchange resin, a cation exchange resin at a pH of about 5, and a cation exchange resin at a pH of about 6. (AEC)

  19. Counterflow Regolith Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Jonscher, Peter

    2013-01-01

    A problem exists in reducing the total heating power required to extract oxygen from lunar regolith. All such processes require heating a great deal of soil, and the heat energy is wasted if it cannot be recycled from processed material back into new material. The counterflow regolith heat exchanger (CoRHE) is a device that transfers heat from hot regolith to cold regolith. The CoRHE is essentially a tube-in-tube heat exchanger with internal and external augers attached to the inner rotating tube to move the regolith. Hot regolith in the outer tube is moved in one direction by a right-hand - ed auger, and the cool regolith in the inner tube is moved in the opposite direction by a left-handed auger attached to the inside of the rotating tube. In this counterflow arrangement, a large fraction of the heat from the expended regolith is transferred to the new regolith. The spent regolith leaves the heat exchanger close to the temperature of the cold new regolith, and the new regolith is pre-heated close to the initial temperature of the spent regolith. Using the CoRHE can reduce the heating requirement of a lunar ISRU system by 80%, reducing the total power consumption by a factor of two. The unique feature of this system is that it allows for counterflow heat exchange to occur between solids, instead of liquids or gases, as is commonly done. In addition, in variants of this concept, the hydrogen reduction can be made to occur within the counterflow heat exchanger itself, enabling a simplified lunar ISRU (in situ resource utilization) system with excellent energy economy and continuous nonbatch mode operation.

  20. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  1. Australian Universities' Strategic Goals of Student Exchange and Participation Rates in Outbound Exchange Programmes

    ERIC Educational Resources Information Center

    Daly, Amanda; Barker, Michelle

    2010-01-01

    International student exchange programmes are acknowledged as one aspect of a broader suite of internationalisation strategies aimed at enhancing students' intercultural understanding and competence. The decision to participate in an exchange programme is dependent on both individual and contextual factors such as student exchange policies and…

  2. Myrosin Idioblast Cell Fate and Development Are Regulated by the Arabidopsis Transcription Factor FAMA, the Auxin Pathway, and Vesicular Trafficking[W

    PubMed Central

    Li, Meng; Sack, Fred D.

    2014-01-01

    Crucifer shoots harbor a glucosinolate-myrosinase system that defends against insect predation. Arabidopsis thaliana myrosinase (thioglucoside glucohydrolase [TGG]) accumulates in stomata and in myrosin idioblasts (MIs). This work reports that the basic helix-loop-helix transcription factor FAMA that is key to stomatal development is also expressed in MIs. The loss of FAMA function abolishes MI fate as well as the expression of the myrosinase genes TGG1 and TGG2. MI cells have previously been reported to be located in the phloem. Instead, we found that MIs arise from the ground meristem rather than provascular tissues and thus are not homologous with phloem. Moreover, MI patterning and morphogenesis are abnormal when the function of the ARF-GEF gene GNOM is lost as well as when auxin efflux and vesicular trafficking are chemically disrupted. Stomata and MI cells constitute part of a wider system that reduces plant predation, the so-called “mustard oil bomb,” in which vacuole breakage in cells harboring myrosinase and glucosinolate yields a brew toxic to many animals, especially insects. This identification of the gene that confers the fate of MIs, as well as stomata, might facilitate the development of strategies for engineering crops to mitigate predation. PMID:25304201

  3. Expressions for Form Factors for Inelastic Scattering and Charge Exchange in Plane-Wave, Distorted-Wave, and Coupled-Channels Reaction Formalisms

    SciTech Connect

    Dietrich, F S

    2006-09-25

    This document is intended to facilitate calculation of inelastic scattering and charge-exchange cross sections in a variety of reaction models, including the plane-wave and distorted-wave approximations and the full coupled-channels treatments. Expressions are given for the coupling potentials between the relevant channels in both coordinate and momentum space. In particular, it is expected that the plane-wave calculations should be useful as a check on the correctness of coupled-channels calculations. The Fourier transform methods used to calculate the plane-wave approximation cross sections are also intended to be used to generate the transition potentials for coupled-channels codes, using a folding model with local effective interactions. Specific expressions are given for calculating transition densities for the folding model in the random phase approximation (RPA).

  4. Educator Exchange Resource Guide.

    ERIC Educational Resources Information Center

    Garza, Cris; Rodriguez, Victor

    This resource guide was developed for teachers and administrators interested in participating in intercultural and international exchange programs or starting an exchange program. An analysis of an exchange program's critical elements discusses exchange activities; orientation sessions; duration of exchange; criteria for participation; travel,…

  5. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  6. Coordinated regulation by two VPS9 domain-containing guanine nucleotide exchange factors in small GTPase Rab5 signaling pathways in fission yeast

    SciTech Connect

    Tsukamoto, Yuta; Kagiwada, Satoshi; Shimazu, Sayuri; Takegawa, Kaoru; Noguchi, Tetsuko; Miyamoto, Masaaki

    2015-03-20

    The small GTPase Rab5 is reported to regulate various cellular functions, such as vesicular transport and endocytosis. VPS9 domain-containing proteins are thought to activate Rab5(s) by their guanine-nucleotide exchange activities. Numerous VPS9 proteins have been identified and are structurally conserved from yeast to mammalian cells. However, the functional relationships among VPS9 proteins in cells remain unclear. Only one Rab5 and two VPS9 proteins were identified in the Schizosaccharomyces pombe genome. Here, we examined the cellular function of two VPS9 proteins and the relationship between these proteins in cellular functions. Vps901-GFP and Vps902-GFP exhibited dotted signals in vegetative and differentiated cells. vps901 deletion mutant (Δvps901) cells exhibited a phenotype deficient in the mating process and responses to high concentrations of ions, such as calcium and metals, and Δvps901Δvps902 double mutant cells exhibited round cell shapes similar to ypt5-909 (Rab5 mutant allele) cells. Deletion of both vps901 and vps902 genes completely abolished the mating process and responses to various stresses. A lack of vacuole formation and aberrant inner cell membrane structures were also observed in Δvps901Δvps902 cells by electron microscopy. These data strongly suggest that Vps901 and Vps902 are cooperatively involved in the regulation of cellular functions, such as cell morphology, sexual development, response to ion stresses, and vacuole formation, via Rab5 signaling pathways in fission yeast cells. - Highlights: • Roles of Rab5 activator VPS9 proteins in cellular functions. • Cooperation between VPS9 proteins in Rab5 signaling pathway. • Roles of each VPS9 protein in Rab5 signaling pathway are discussed.

  7. Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p.

    PubMed

    Bose, I; Irazoqui, J E; Moskow, J J; Bardes, E S; Zyla, T R; Lew, D J

    2001-03-01

    In budding yeast cells, the cytoskeletal polarization and depolarization events that shape the bud are triggered at specific times during the cell cycle by the cyclin-dependent kinase Cdc28p. Polarity establishment also requires the small GTPase Cdc42p and its exchange factor, Cdc24p, but the mechanism whereby Cdc28p induces Cdc42p-dependent polarization is unknown. Here we show that Cdc24p becomes phosphorylated in a cell cycle-dependent manner, triggered by Cdc28p. However, the role of Cdc28p is indirect, and the phosphorylation appears to be catalyzed by the p21-activated kinase family member Cla4p and also depends on Cdc42p and the scaffold protein Bem1p. Expression of GTP-Cdc42p, the product of Cdc24p-mediated GDP/GTP exchange, stimulated Cdc24p phosphorylation independent of cell cycle cues, raising the possibility that the phosphorylation is part of a feedback regulatory pathway. Bem1p binds directly to Cdc24p, to Cla4p, and to GTP-bound Cdc42p and can mediate complex formation between these proteins in vitro. We suggest that Bem1p acts to concentrate polarity establishment proteins at a discrete site, facilitating polarization and promoting Cdc24p phosphorylation at specific times during the cell cycle. PMID:11113154

  8. Hartree potential dependent exchange functional.

    PubMed

    Constantin, Lucian A; Fabiano, Eduardo; Della Sala, Fabio

    2016-08-28

    We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e., the electron density, its gradient, and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for the exchange of any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, and recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredient in exchange-correlation functional development, opening the way to an additional rung in the Jacob's ladder classification of non-empirical density functionals. PMID:27586907

  9. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  10. Involvement of the Na+/Ca2+ exchanger isoform 1 (NCX1) in Neuronal Growth Factor (NGF)-induced Neuronal Differentiation through Ca2+-dependent Akt Phosphorylation*

    PubMed Central

    Secondo, Agnese; Esposito, Alba; Sirabella, Rossana; Boscia, Francesca; Pannaccione, Anna; Molinaro, Pasquale; Cantile, Maria; Ciccone, Roselia; Sisalli, Maria Josè; Scorziello, Antonella; Di Renzo, Gianfranco; Annunziato, Lucio

    2015-01-01

    NGF induces neuronal differentiation by modulating [Ca2+]i. However, the role of the three isoforms of the main Ca2+-extruding system, the Na+/Ca2+ exchanger (NCX), in NGF-induced differentiation remains unexplored. We investigated whether NCX1, NCX2, and NCX3 isoforms could play a relevant role in neuronal differentiation through the modulation of [Ca2+]i and the Akt pathway. NGF caused progressive neurite elongation; a significant increase of the well known marker of growth cones, GAP-43; and an enhancement of endoplasmic reticulum (ER) Ca2+ content and of Akt phosphorylation through an early activation of ERK1/2. Interestingly, during NGF-induced differentiation, the NCX1 protein level increased, NCX3 decreased, and NCX2 remained unaffected. At the same time, NCX total activity increased. Moreover, NCX1 colocalized and coimmunoprecipitated with GAP-43, and NCX1 silencing prevented NGF-induced effects on GAP-43 expression, Akt phosphorylation, and neurite outgrowth. On the other hand, the overexpression of its neuronal splicing isoform, NCX1.4, even in the absence of NGF, induced an increase in Akt phosphorylation and GAP-43 protein expression. Interestingly, tetrodotoxin-sensitive Na+ currents and 1,3-benzenedicarboxylic acid, 4,4′-[1,4,10-trioxa-7,13-diazacyclopentadecane-7,13-diylbis(5-methoxy-6,12-benzofurandiyl)]bis-, tetrakis[(acetyloxy)methyl] ester-detected [Na+]i significantly increased in cells overexpressing NCX1.4 as well as ER Ca2+ content. This latter effect was prevented by tetrodotoxin. Furthermore, either the [Ca2+]i chelator(1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid) (BAPTA-AM) or the PI3K inhibitor LY 294002 prevented Akt phosphorylation and GAP-43 protein expression rise in NCX1.4 overexpressing cells. Moreover, in primary cortical neurons, NCX1 silencing prevented Akt phosphorylation, GAP-43 and MAP2 overexpression, and neurite elongation. Collectively, these data show that NCX1 participates in neuronal differentiation

  11. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  12. PtdIns(3,4,5)P3-dependent Rac Exchanger 1 (PREX1) Rac-Guanine Nucleotide Exchange Factor (GEF) Activity Promotes Breast Cancer Cell Proliferation and Tumor Growth via Activation of Extracellular Signal-regulated Kinase 1/2 (ERK1/2) Signaling.

    PubMed

    Liu, Heng-Jia; Ooms, Lisa M; Srijakotre, Nuthasuda; Man, Joey; Vieusseux, Jessica; Waters, JoAnne E; Feng, Yue; Bailey, Charles G; Rasko, John E J; Price, John T; Mitchell, Christina A

    2016-08-12

    PtdIns(3,4,5)P3-dependent Rac exchanger 1 (PREX1) is a Rac-guanine nucleotide exchange factor (GEF) overexpressed in a significant proportion of human breast cancers that integrates signals from upstream ErbB2/3 and CXCR4 membrane surface receptors. However, the PREX1 domains that facilitate its oncogenic activity and downstream signaling are not completely understood. We identify that ERK1/2 MAPK acts downstream of PREX1 and contributes to PREX1-mediated anchorage-independent cell growth. PREX1 overexpression increased but its shRNA knockdown decreased ERK1/2 phosphorylation in response to EGF/IGF-1 stimulation, resulting in induction of the cell cycle regulators cyclin D1 and p21(WAF1/CIP1) PREX1-mediated ERK1/2 phosphorylation, anchorage-independent cell growth, and cell migration were suppressed by inhibition of MEK1/2/ERK1/2 signaling. PREX1 overexpression reduced staurosporine-induced apoptosis whereas its shRNA knockdown promoted apoptosis in response to staurosporine or the anti-estrogen drug tamoxifen. Expression of wild-type but not GEF-inactive PREX1 increased anchorage-independent cell growth. In addition, mouse xenograft studies revealed that expression of wild-type but not GEF-dead PREX1 resulted in the formation of larger tumors that displayed increased phosphorylation of ERK1/2 but not AKT. The impaired anchorage-independent cell growth, apoptosis, and ERK1/2 signaling observed in stable PREX1 knockdown cells was restored by expression of wild-type but not GEF-dead-PREX1. Therefore, PREX1-Rac-GEF activity is critical for PREX1-dependent anchorage-independent cell growth and xenograft tumor growth and may represent a possible therapeutic target for breast cancers that exhibit PREX1 overexpression. PMID:27358402

  13. Differential Association of the Na+/H+ Exchanger Regulatory Factor (NHERF) Family of Adaptor Proteins with the Raft-and the Non-Raft Brush Border Membrane Fractions of NHE3

    PubMed Central

    Sultan, Ayesha; Luo, Min; Yu, Qin; Riederer, Brigitte; Xia, Weiliang; Chen, Mingmin; Lissner, Simone; Gessner, Johannes E.; Donowitz, Mark; Yun, C. Chris; deJonge, Hugo; Lamprecht, Georg; Seidler, Ursula

    2014-01-01

    Background/Aims Trafficking, brush border membrane (BBM) retention, and signal-specific regulation of the Na+/H+ exchanger NHE3 is regulated by the Na+/H+ Exchanger Regulatory Factor (NHERF) family of PDZ-adaptor proteins, which enable the formation of multiprotein complexes. It is unclear, however, what determines signal specificity of these NHERFs. Thus, we studied the association of NHE3, NHERF1 (EBP50), NHERF2 (E3KARP), and NHERF3 (PDZK1) with lipid rafts in murine small intestinal BBM. Methods Detergent resistant membranes (“lipid rafts”) were isolated by floatation of Triton X-incubated small intestinal BBM from a variety of knockout mouse strains in an Optiprep step gradient. Acid-activated NHE3 activity was measured fluorometrically in BCECF-loaded microdissected villi, or by assessment of CO2/HCO3− mediated increase in fluid absorption in perfused jejunal loops of anethetized mice. Results NHE3 was found to partially associate with lipid rafts in the native BBM, and NHE3 raft association had an impact on NHE3 transport activity and regulation in vivo. NHERF1, 2 and 3 were differentially distributed to rafts and non-rafts, with NHERF2 being most raft-associated and NHERF3 entirely non-raft associated. NHERF2 expression enhanced the localization of NHE3 to membrane rafts. The use of acid sphingomyelinase-deficient mice, which have altered membrane lipid as well as lipid raft composition, allowed us to test the validity of the lipid raft concept in vivo. Conclusions The differential association of the NHERFs with the raft-associated and the non-raft fraction of NHE3 in the brush border membrane is one component of the differential and signal-specific NHE3 regulation by the different NHERFs. PMID:24297041

  14. A C-terminal motif found in the β2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins

    PubMed Central

    Hall, Randy A.; Ostedgaard, Lynda S.; Premont, Richard T.; Blitzer, Jeremy T.; Rahman, Nadeem; Welsh, Michael J.; Lefkowitz, Robert J.

    1998-01-01

    The Na+/H+ exchanger regulatory factor (NHERF) binds to the tail of the β2-adrenergic receptor and plays a role in adrenergic regulation of Na+/H+ exchange. NHERF contains two PDZ domains, the first of which is required for its interaction with the β2 receptor. Mutagenesis studies of the β2 receptor tail revealed that the optimal C-terminal motif for binding to the first PDZ domain of NHERF is D-S/T-x-L, a motif distinct from those recognized by other PDZ domains. The first PDZ domain of NHERF-2, a protein that is 52% identical to NHERF and also known as E3KARP, SIP-1, and TKA-1, exhibits binding preferences very similar to those of the first PDZ domain of NHERF. The delineation of the preferred binding motif for the first PDZ domain of the NHERF family of proteins allows for predictions for other proteins that may interact with NHERF or NHERF-2. For example, as would be predicted from the β2 receptor tail mutagenesis studies, NHERF binds to the tail of the purinergic P2Y1 receptor, a seven-transmembrane receptor with an intracellular C-terminal tail ending in D-T-S-L. NHERF also binds to the tail of the cystic fibrosis transmembrane conductance regulator, which ends in D-T-R-L. Because the preferred binding motif of the first PDZ domain of the NHERF family of proteins is found at the C termini of a variety of intracellular proteins, NHERF and NHERF-2 may be multifunctional adaptor proteins involved in many previously unsuspected aspects of intracellular signaling. PMID:9671706

  15. Indiana Health Information Exchange

    Cancer.gov

    The Indiana Health Information Exchange is comprised of various Indiana health care institutions, established to help improve patient safety and is recognized as a best practice for health information exchange.

  16. Central role of the exchange factor GEF-H1 in TNF-α–induced sequential activation of Rac, ADAM17/TACE, and RhoA in tubular epithelial cells

    PubMed Central

    Waheed, Faiza; Dan, Qinghong; Amoozadeh, Yasaman; Zhang, Yuqian; Tanimura, Susumu; Speight, Pam; Kapus, András; Szászi, Katalin

    2013-01-01

    Transactivation of the epidermal growth factor receptor (EGFR) by tumor necrosis factor-α (TNF-α) is a key step in mediating RhoA activation and cytoskeleton and junction remodeling in the tubular epithelium. In this study we explore the mechanisms underlying TNF-α–induced EGFR activation. We show that TNF-α stimulates the TNF-α convertase enzyme (TACE/a disintegrin and metalloproteinase-17), leading to activation of the EGFR/ERK pathway. TACE activation requires the mitogen-activated protein kinase p38, which is activated through the small GTPase Rac. TNF-α stimulates both Rac and RhoA through the guanine nucleotide exchange factor (GEF)-H1 but by different mechanisms. EGFR- and ERK-dependent phosphorylation at the T678 site of GEF-H1 is a prerequisite for RhoA activation only, whereas both Rac and RhoA activation require GEF-H1 phosphorylation on S885. Of interest, GEF-H1-mediated Rac activation is upstream from the TACE/EGFR/ERK pathway and regulates T678 phosphorylation. We also show that TNF-α enhances epithelial wound healing through TACE, ERK, and GEF-H1. Taken together, our findings can explain the mechanisms leading to hierarchical activation of Rac and RhoA by TNF-α through a single GEF. This mechanism could coordinate GEF functions and fine-tune Rac and RhoA activation in epithelial cells, thereby promoting complex functions such as sheet migration. PMID:23389627

  17. Charge exchange system

    DOEpatents

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  18. Lipid exchange between membranes.

    PubMed Central

    Jähnig, F

    1984-01-01

    The exchange of lipid molecules between vesicle bilayers in water and a monolayer forming at the water surface was investigated theoretically within the framework of thermodynamics. The total number of exchanged molecules was found to depend on the bilayer curvature as expressed by the vesicle radius and on the boundary condition for exchange, i.e., whether during exchange the radius or the packing density of the vesicles remains constant. The boundary condition is determined by the rate of flip-flop within the bilayer relative to the rate of exchange between bi- and monolayer. If flip-flop is fast, exchange is independent of the vesicle radius; if flip-flop is slow, exchange increases with the vesicle radius. Available experimental results agree with the detailed form of this dependence. When the theory was extended to exchange between two bilayers of different curvature, the direction of exchange was also determined by the curvatures and the boundary conditions for exchange. Due to the dependence of the boundary conditions on flip-flop and, consequently, on membrane fluidity, exchange between membranes may partially be regulated by membrane fluidity. PMID:6518251

  19. The bipartite rac1 Guanine nucleotide exchange factor engulfment and cell motility 1/dedicator of cytokinesis 180 (elmo1/dock180) protects endothelial cells from apoptosis in blood vessel development.

    PubMed

    Schäker, Kathrin; Bartsch, Susanne; Patry, Christian; Stoll, Sandra J; Hillebrands, Jan-Luuk; Wieland, Thomas; Kroll, Jens

    2015-03-01

    Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis. PMID:25586182

  20. The Bipartite Rac1 Guanine Nucleotide Exchange Factor Engulfment and Cell Motility 1/Dedicator of Cytokinesis 180 (Elmo1/Dock180) Protects Endothelial Cells from Apoptosis in Blood Vessel Development*

    PubMed Central

    Schäker, Kathrin; Bartsch, Susanne; Patry, Christian; Stoll, Sandra J.; Hillebrands, Jan-Luuk; Wieland, Thomas; Kroll, Jens

    2015-01-01

    Engulfment and cell motility 1/dedicator of cytokinesis 180 (Elmo1/Dock180) is a bipartite guanine nucleotide exchange factor for the monomeric GTPase Ras-related C3 botulinum toxin substrate 1 (Rac1). Elmo1/Dock180 regulates Rac1 activity in a specific spatiotemporal manner in endothelial cells (ECs) during zebrafish development and acts downstream of the Netrin-1/Unc5-homolog B (Unc5B) signaling cascade. However, mechanistic details on the pathways by which Elmo1/Dock180 regulates endothelial function and vascular development remained elusive. In this study, we aimed to analyze the vascular function of Elmo1 and Dock180 in human ECs and during vascular development in zebrafish embryos. In vitro overexpression of Elmo1 and Dock180 in ECs reduced caspase-3/7 activity and annexin V-positive cell number upon induction of apoptosis. This protective effect of Elmo1 and Dock180 is mediated by activation of Rac1, p21-activated kinase (PAK) and AKT/protein kinase B (AKT) signaling. In zebrafish, Elmo1 and Dock180 overexpression reduced the total apoptotic cell and apoptotic EC number and promoted the formation of blood vessels during embryogenesis. In conclusion, Elmo1 and Dock180 protect ECs from apoptosis by the activation of the Rac1/PAK/AKT signaling cascade in vitro and in vivo. Thus, Elmo1 and Dock180 facilitate blood vessel formation by stabilization of the endothelium during angiogenesis. PMID:25586182

  1. Subunit-selective N-Methyl-d-aspartate (NMDA) Receptor Signaling through Brefeldin A-resistant Arf Guanine Nucleotide Exchange Factors BRAG1 and BRAG2 during Synapse Maturation.

    PubMed

    Elagabani, Mohammad Nael; Briševac, Dušica; Kintscher, Michael; Pohle, Jörg; Köhr, Georg; Schmitz, Dietmar; Kornau, Hans-Christian

    2016-04-22

    The maturation of glutamatergic synapses in the CNS is regulated by NMDA receptors (NMDARs) that gradually change from a GluN2B- to a GluN2A-dominated subunit composition during postnatal development. Here we show that NMDARs control the activity of the small GTPase ADP-ribosylation factor 6 (Arf6) by consecutively recruiting two related brefeldin A-resistant Arf guanine nucleotide exchange factors, BRAG1 and BRAG2, in a GluN2 subunit-dependent manner. In young cortical cultures, GluN2B and BRAG1 tonically activated Arf6. In mature cultures, Arf6 was activated through GluN2A and BRAG2 upon NMDA treatment, whereas the tonic Arf6 activation was not detectable any longer. This shift in Arf6 regulation and the associated drop in Arf6 activity were reversed by a knockdown of BRAG2. Given their sequential recruitment during development, we examined whether BRAG1 and BRAG2 influence synaptic currents in hippocampal CA1 pyramidal neurons using patch clamp recordings in acute slices from mice at different ages. The number of AMPA receptor (AMPAR) miniature events was reduced by depletion of BRAG1 but not by depletion of BRAG2 during the first 2 weeks after birth. In contrast, depletion of BRAG2 during postnatal weeks 4 and 5 reduced the number of AMPAR miniature events and compromised the quantal sizes of both AMPAR and NMDAR currents evoked at Schaffer collateral synapses. We conclude that both Arf6 activation through GluN2B-BRAG1 during early development and the transition from BRAG1- to BRAG2-dependent Arf6 signaling induced by the GluN2 subunit switch are critical for the development of mature glutamatergic synapses. PMID:26884337

  2. Human immunodeficiency virus type 1 Nef recruits the guanine exchange factor Vav1 via an unexpected interface into plasma membrane microdomains for association with p21-activated kinase 2 activity.

    PubMed

    Rauch, Susanne; Pulkkinen, Kati; Saksela, Kalle; Fackler, Oliver T

    2008-03-01

    Alterations of T-cell receptor signaling by human immunodeficiency virus type 1 (HIV-1) Nef involve its association with a highly active subpopulation of p21-activated kinase 2 (PAK2) within a dynamic signalosome assembled in detergent-insoluble membrane microdomains. Nef-PAK2 complexes contain the GTPases Rac and Cdc42 as well as a factor providing guanine nucleotide exchange factor (GEF) activity for Rac/Cdc42. However, the identity of this GEF has remained controversial. Previous studies suggested the association of Nef with at least three independent GEFs, Vav, DOCK2/ELMO1, and betaPix. Here we used a broad panel of approaches to address which of these GEFs is involved in the functional interaction of Nef with PAK2 activity. Biochemical fractionation and confocal microscopy revealed that Nef recruits Vav1, but not DOCK2/ELMO1 or betaPix, to membrane microdomains. Transient RNAi knockdown, analysis of cell lines defective for expression of Vav1 or DOCK2 as well as use of a betaPix binding-deficient PAK2 variant confirmed a role for Vav1 but not DOCK2 or betaPix in Nef's association with PAK2 activity. Nef-mediated microdomain recruitment of Vav1 occurred independently of the Src homology 3 domain binding PxxP motif, which is known to connect Nef to many cellular signaling processes. Instead, a recently described protein interaction surface surrounding Nef residue F195 was identified as critical for Nef-mediated raft recruitment of Vav1. These results identify Vav1 as a relevant component of the Nef-PAK2 signalosome and provide a molecular basis for the role of F195 in formation of a catalytically active Nef-PAK2 complex. PMID:18094167

  3. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  4. Moderating Effect of Intimate Exchange on Delinquent Socialization Processes

    ERIC Educational Resources Information Center

    Gaertner, Alden E.; Fite, Paula J.; Colder, Craig R.

    2011-01-01

    Research indicates peer socialization processes affect the development of problem behavior in childhood and adolescence; however moderating peer factors have not been readily examined. Friendship intimate exchange may be an important factor to consider, as literature suggests that intimate exchange becomes an increasingly important aspect of…

  5. Text Exchange System

    NASA Technical Reports Server (NTRS)

    Snyder, W. V.; Hanson, R. J.

    1986-01-01

    Text Exchange System (TES) exchanges and maintains organized textual information including source code, documentation, data, and listings. System consists of two computer programs and definition of format for information storage. Comprehensive program used to create, read, and maintain TES files. TES developed to meet three goals: First, easy and efficient exchange of programs and other textual data between similar and dissimilar computer systems via magnetic tape. Second, provide transportable management system for textual information. Third, provide common user interface, over wide variety of computing systems, for all activities associated with text exchange.

  6. Na+/H+ Exchanger Regulatory Factor 1 Overexpression-dependent Increase of Cytoskeleton Organization Is Fundamental in the Rescue of F508del Cystic Fibrosis Transmembrane Conductance Regulator in Human Airway CFBE41o- Cells

    PubMed Central

    Favia, Maria; Guerra, Lorenzo; Fanelli, Teresa; Cardone, Rosa Angela; Monterisi, Stefania; Di Sole, Francesca; Castellani, Stefano; Chen, Mingmin; Seidler, Ursula; Reshkin, Stephan Joel; Conese, Massimo

    2010-01-01

    We have demonstrated that Na+/H+ exchanger regulatory factor 1 (NHERF1) overexpression in CFBE41o- cells induces a significant redistribution of F508del cystic fibrosis transmembrane conductance regulator (CFTR) from the cytoplasm to the apical membrane and rescues CFTR-dependent chloride secretion. Here, we observe that CFBE41o- monolayers displayed substantial disassembly of actin filaments and that overexpression of wild-type (wt) NHERF1 but not NHERF1-Δ Ezrin-Radixin-Moesin (ERM) increased F-actin assembly and organization. Furthermore, the dominant-negative band Four-point one, Ezrin, Radixin, Moesin homology (FERM) domain of ezrin reversed the wt NHERF1 overexpression-induced increase in both F-actin and CFTR-dependent chloride secretion. wt NHERF1 overexpression enhanced the interaction between NHERF1 and both CFTR and ezrin and between ezrin and actin and the overexpression of wt NHERF1, but not NHERF1-ΔERM, also increased the phosphorylation of ezrin in the apical region of the cell monolayers. Furthermore, wt NHERF1 increased RhoA activity and transfection of constitutively active RhoA in CFBE41o- cells was sufficient to redistribute phospho-ezrin to the membrane fraction and rescue both the F-actin content and the CFTR-dependent chloride efflux. Rho kinase (ROCK) inhibition, in contrast, reversed the wt NHERF1 overexpression-induced increase of membrane phospho-ezrin, F-actin content, and CFTR-dependent secretion. We conclude that NHERF1 overexpression in CFBE41o- rescues CFTR-dependent chloride secretion by forming the multiprotein complex RhoA-ROCK-ezrin-actin that, via actin cytoskeleton reorganization, tethers F508del CFTR to the cytoskeleton stabilizing it on the apical membrane. PMID:19889841

  7. Crucial Role of Rapgef2 and Rapgef6, a Family of Guanine Nucleotide Exchange Factors for Rap1 Small GTPase, in Formation of Apical Surface Adherens Junctions and Neural Progenitor Development in the Mouse Cerebral Cortex123

    PubMed Central

    Maeta, Kazuhiro; Edamatsu, Hironori; Nishihara, Kaori; Ikutomo, Junji; Bilasy, Shymaa E.

    2016-01-01

    Abstract Cerebral neocortex development in mammals requires highly orchestrated events involving proliferation, differentiation, and migration of neural progenitors and neurons. Rapgef2 and Rapgef6 constitute a unique family of guanine nucleotide exchange factors for Rap1 small GTPase, which is known to play crucial roles in migration of postmitotic neurons. We previously reported that conditional knockout of Rapgef2 in dorsal telencephalon (Rapgef2-cKO) resulted in the formation of an ectopic cortical mass (ECM) resembling that of subcortical band heterotopia. Here we show that double knockout of Rapgef6 in Rapgef2-cKO mice (Rapgef2/6-dKO) results in marked enlargement of the ECM. While Rapgef2-cKO affects late-born neurons only, Rapgef2/6-dKO affects both early-born and late-born neurons. The Rapgef2-cKO cortex at embryonic day (E) 15.5, and the Rapgef2/6-dKO cortex at E13.5 and E15.5 show disruption of the adherens junctions (AJs) on the apical surface, detachment of radial glial cells (RGCs) from the apical surface and disorganization of the radial glial fiber system, which are accompanied by aberrant distribution of RGCs and intermediate progenitors, normally located in the ventricular zone and the subventricular zone, respectively, over the entire cerebral cortex. Moreover, intrauterine transduction of Cre recombinase into the Rapgef2flox/flox brains also results in the apical surface AJ disruption and the RGC detachment from the apical surface, both of which are effectively suppressed by cotransduction of the constitutively active Rap1 mutant Rap1G12V. These results demonstrate a cell-autonomous role of the Rapgef2/6-Rap1 pathway in maintaining the apical surface AJ structures, which is necessary for the proper development of neural progenitor cells. PMID:27390776

  8. Participation of the Cl−/HCO3− Exchangers SLC26A3 and SLC26A6, the Cl− Channel CFTR, and the Regulatory Factor SLC9A3R1 in Mouse Sperm Capacitation1

    PubMed Central

    Chávez, Julio C.; Hernández-González, Enrique O.; Wertheimer, Eva; Visconti, Pablo E.; Darszon, Alberto; Treviño, Claudia L.

    2011-01-01

    ABSTRACT Sperm capacitation is required for fertilization and involves several ion permeability changes. Although Cl− and HCO3− are essential for capacitation, the molecular entities responsible for their transport are not fully known. During mouse sperm capacitation, the intracellular concentration of Cl− ([Cl−]i) increases and membrane potential (Em) hyperpolarizes. As in noncapacitated sperm, the Cl− equilibrium potential appears to be close to the cell resting Em, opening of Cl− channels could not support the [Cl−]i increase observed during capacitation. Alternatively, the [Cl−]i increase might be mediated by anion exchangers. Among them, SLC26A3 and SLC26A6 are good candidates, since, in several cell types, they increase [Cl−]i and interact with cystic fibrosis transmembrane conductance regulator (CFTR), a Cl− channel present in mouse and human sperm. This interaction is known to be mediated and probably regulated by the Na+/H+ regulatory factor-1 (official symbol, SLC9A3R1). Our RT-PCR, immunocytochemistry, Western blot, and immunoprecipitation data indicate that SLC26A3, SLC26A6, and SLC9A3R1 are expressed in mouse sperm, localize to the midpiece, and interact between each other and with CFTR. Moreover, we present evidence indicating that CFTR and SLC26A3 are involved in the [Cl−]i increase induced by db-cAMP in noncapacitated sperm. Furthermore, we found that inhibitors of SLC26A3 (Tenidap and 5099) interfere with the Em changes that accompany capacitation. Together, these findings indicate that a CFTR/SLC26A3 functional interaction is important for mouse sperm capacitation. PMID:21976599

  9. Higher Education Exchange, 2011

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2011-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…

  10. Higher Education Exchange, 2012

    ERIC Educational Resources Information Center

    Brown, David W., Ed.; Witte, Deborah, Ed.

    2012-01-01

    "Higher Education Exchange" publishes case studies, analyses, news, and ideas about efforts within higher education to develop more democratic societies. Contributors to this issue of the "Higher Education Exchange" examine whether institutions of higher learning are doing anything to increase the capacity of citizens to shape their future.…