Science.gov

Sample records for exciton-wave packet dynamics

  1. Dynamics of Attosecond Electron Wave Packets

    NASA Astrophysics Data System (ADS)

    Mauritsson, Johan

    2005-05-01

    We present results from some of the first experimental studies of attosecond electron wave packets created via the absorption of ultrashort extreme ultraviolet (XUV) light pulses [1]. The pulses, made via high harmonic generation, form an attosecond pulse train (APT) whose properties we can manipulate by a combination of spatial and spectral filtering. For instance, we show that on-target attosecond pulses of 170 as duration, which is close to the single cycle limit, can be produced [2]. The electron wave packets created when such an APT is used to ionize an atom are different from the tunneling wave packets familiar from strong field ionization. We show how to measure the dynamics of these wave packets in a strong infrared (IR) field, where the absorption of energy above the ionization threshold is found to depend strongly on the APT-IR delay [3]. We also demonstrate that altering the properties of the initial electron wave packet by manipulating the APT changes the subsequent continuum electron dynamics. Finally, we show how the phase of a longer, femtosecond electron wave packet can be modulated by a moderately strong IR pulse with duration comparable to or shorter than that of the electron wave packet. This experiment reveals how the normal ponderomotive shift of an XUV ionization event is modified when the IR pulse is shorter than the XUV pulse.[1] The experiments were done at Lund Institute of Technology, Sweden.[2] R. López-Martens, et al., Phys. Rev. Lett. 94, 033001 (2005)[3] P. Johnsson, et al., submitted to Phys. Rev. Lett.

  2. Wave-Packet and Coherent Control Dynamics

    NASA Astrophysics Data System (ADS)

    Ohmori, Kenji

    2009-05-01

    This review summarizes progress in coherent control as well as relevant recent achievements, highlighting, among several different schemes of coherent control, wave-packet interferometry (WPI). WPI is a fundamental and versatile scenario used to control a variety of quantum systems with a sequence of short laser pulses whose relative phase is finely adjusted to control the interference of electronic or nuclear wave packets (WPs). It is also useful in retrieving quantum information such as the amplitudes and phases of eigenfunctions superposed to generate a WP. Experimental and theoretical efforts to retrieve both the amplitude and phase information are recounted. This review also discusses information processing based on the eigenfunctions of atoms and molecules as one of the modern and future applications of coherent control. The ultrafast coherent control of ultracold atoms and molecules and the coherent control of complex systems are briefly discussed as future perspectives.

  3. Symmetry and conservation laws in semiclassical wave packet dynamics

    SciTech Connect

    Ohsawa, Tomoki

    2015-03-15

    We formulate symmetries in semiclassical Gaussian wave packet dynamics and find the corresponding conserved quantities, particularly the semiclassical angular momentum, via Noether’s theorem. We consider two slightly different formulations of Gaussian wave packet dynamics; one is based on earlier works of Heller and Hagedorn and the other based on the symplectic-geometric approach by Lubich and others. In either case, we reveal the symplectic and Hamiltonian nature of the dynamics and formulate natural symmetry group actions in the setting to derive the corresponding conserved quantities (momentum maps). The semiclassical angular momentum inherits the essential properties of the classical angular momentum as well as naturally corresponds to the quantum picture.

  4. Wave packet dynamics under effect of a pulsed electric field

    NASA Astrophysics Data System (ADS)

    da Silva, A. R. C. B.; de Moura, F. A. B. F.; Dias, W. S.

    2016-06-01

    We studied the dynamics of an electron in a crystalline one-dimensional model under effect of a time-dependent Gaussian field. The time evolution of an initially Gaussian wave packet it was obtained through the numerical solution of the time-dependent Schrödinger equation. Our analysis consists of computing the electronic centroid as well as the mean square displacement. We observe that the electrical pulse is able to promote a special kind of displacement along the chain. We demonstrated a direct relation between the group velocity of the wave packet and the applied electrical pulses. We compare those numerical calculations with a semi-classical approach.

  5. Semiclassical Dynamics of Electron Wave Packet States with Phase Vortices

    SciTech Connect

    Bliokh, Konstantin Yu.; Bliokh, Yury P.; Savel'ev, Sergey; Nori, Franco

    2007-11-09

    We consider semiclassical higher-order wave packet solutions of the Schroedinger equation with phase vortices. The vortex line is aligned with the propagation direction, and the wave packet carries a well-defined orbital angular momentum (OAM) ({Dirac_h}/2{pi})l (l is the vortex strength) along its main linear momentum. The probability current coils around the momentum in such OAM states of electrons. In an electric field, these states evolve like massless particles with spin l. The magnetic-monopole Berry curvature appears in momentum space, which results in a spin-orbit-type interaction and a Berry/Magnus transverse force acting on the wave packet. This brings about the OAM Hall effect. In a magnetic field, there is a Zeeman interaction, which, can lead to more complicated dynamics.

  6. A general approach to dynamic packet routing with bounded buffers

    SciTech Connect

    Broder, A.Z.; Frieze, A.M.; Upfal, E. |

    1996-12-31

    We prove a sufficient condition for the stability of dynamic packet routing algorithms. Our approach reduces the problem of steady state analysis to the easier and better understood question of static routing. We show that certain high probability and worst case bounds on the quasistatic (finite past) performance of a routing algorithm imply bounds on the performance of the dynamic version of that algorithm. Our technique is particularly useful in analyzing routing on networks with bounded buffers where complicated dependencies make standard queuing techniques inapplicable. We present several applications of our approach. In all cases we start from a known static algorithm, and modify it to fit our framework. In particular we give the first dynamic algorithm for routing on a butterfly with bounded buffers. Both the injection rate for which the algorithm is stable, and the expected time a packet spends in the system are optimal up to constant factors. Our approach is also applicable to the recently introduced adversarial input model.

  7. Generalized Gaussian wave packet dynamics: Integrable and chaotic systems.

    PubMed

    Pal, Harinder; Vyas, Manan; Tomsovic, Steven

    2016-01-01

    The ultimate semiclassical wave packet propagation technique is a complex, time-dependent Wentzel-Kramers-Brillouin method known as generalized Gaussian wave packet dynamics (GGWPD). It requires overcoming many technical difficulties in order to be carried out fully in practice. In its place roughly twenty years ago, linearized wave packet dynamics was generalized to methods that include sets of off-center, real trajectories for both classically integrable and chaotic dynamical systems that completely capture the dynamical transport. The connections between those methods and GGWPD are developed in a way that enables a far more practical implementation of GGWPD. The generally complex saddle-point trajectories at its foundation are found using a multidimensional Newton-Raphson root search method that begins with the set of off-center, real trajectories. This is possible because there is a one-to-one correspondence. The neighboring trajectories associated with each off-center, real trajectory form a path that crosses a unique saddle; there are exceptions that are straightforward to identify. The method is applied to the kicked rotor to demonstrate the accuracy improvement as a function of ℏ that comes with using the saddle-point trajectories. PMID:26871079

  8. The Interference of the Dynamically Squeezed Vibrational Wave Packets

    NASA Technical Reports Server (NTRS)

    Vinogradov, An. V.; Janszky, J.; Kobayashi, T.

    1996-01-01

    An electronic excitation of a molecule by a sequence of two femtosecond phase-locked laser pulses is considered. In this case the interference between the vibrational wave packets induced by each of the subpulses within a single molecule takes place. It is shown that due to the dynamical squeezing effect of a molecular vibrational state the interference of the vibrational wave packets allows one to measure the duration of a femtosecond laser pulse. This can be achieved experimentally by measuring the dependence of the integral fluorescence of the excited molecule on the delay time between the subpulses. The interference can lead to a sharp peak (or to a down-fall) in that dependence, the width of which is equal to the duration of the laser pulse. It is shown that finite temperature of the medium is favorable for such an experiment.

  9. Wave packet dynamics in the optimal superadiabatic approximation

    NASA Astrophysics Data System (ADS)

    Betz, V.; Goddard, B. D.; Manthe, U.

    2016-06-01

    We explain the concept of superadiabatic representations and show how in the context of electronically non-adiabatic transitions they lead to an explicit formula that can be used to predict transitions at avoided crossings. Based on this formula, we present a simple method for computing wave packet dynamics across avoided crossings. Only knowledge of the adiabatic potential energy surfaces near the avoided crossing is required for the computation. In particular, this means that no diabatization procedure is necessary, the adiabatic electronic energies can be computed on the fly, and they only need to be computed to higher accuracy when an avoided crossing is detected. We test the quality of our method on the paradigmatic example of photo-dissociation of NaI, finding very good agreement with results of exact wave packet calculations.

  10. Wave packet dynamics in doubly excited states of He

    NASA Astrophysics Data System (ADS)

    Feist, Johannes; Nagele, Stefan; Persson, Emil; Burgdörfer, Joachim; Schneider, Barry

    2007-06-01

    We have developed a method for the ab initio simulation of the interaction of ultrashort laser pulses with helium atoms. We expand the two-electron Schr"odinger equation in coupled spherical harmonics and perform direct time integration utilizing either the Arnoldi-Lanczos or the Leapfrog method. The spatial discretization is performed in an FEDVR basis [1]. This allows for a numerically accurate description while possessing desirable computational features, e.g. a block-diagonal form of the kinetic energy matrix. We will present results on electron-electron correlation and wave packet dynamics in He. By using a suitable combination of attosecond XUV/EUV pulses, we prepare a wave packet in the doubly excited states of helium. The motion of this wave packet can be observed by using a probe pulse to induce ionization. We aim for a detailed understanding of the process by a careful study of the ionized electrons, e.g. by investigating doubly differential momentum spectra. [enumi] *B. I. Schneider and L. A. Collins. J. Non-Cryst. Solids 351, 1551.

  11. Ultrafast electron optics: Propagation dynamics of femtosecond electron packets

    NASA Astrophysics Data System (ADS)

    Siwick, Bradley J.; Dwyer, Jason R.; Jordan, Robert E.; Miller, R. J. Dwayne

    2002-08-01

    Time-resolved electron diffraction harbors great promise for resolving the fastest chemical processes with atomic level detail. The main obstacles to achieving this real-time view of a chemical reaction are associated with delivering short electron pulses with sufficient electron density to the sample. In this article, the propagation dynamics of femtosecond electron packets in the drift region of a photoelectron gun are investigated with an N-body numerical simulation and mean-field model. It is found that space-charge effects can broaden the electron pulse to many times its original length and generate many eV of kinetic energy bandwidth in only a few nanoseconds. There is excellent agreement between the N-body simulation and the mean-field model for both space-charge induced temporal and kinetic energy distribution broadening. The numerical simulation also shows that the redistribution of electrons inside the packet results in changes to the pulse envelope and the development of a spatially linear axial velocity distribution. These results are important for (or have the potential to impact on) the interpretation of time-resolved electron diffraction experiments and can be used in the design of photoelectron guns and streak tubes with temporal resolution of several hundred femtoseconds.

  12. The application study of wavelet packet transformation in the de-noising of dynamic EEG data.

    PubMed

    Li, Yifeng; Zhang, Lihui; Li, Baohui; Wei, Xiaoyang; Yan, Guiding; Geng, Xichen; Jin, Zhao; Xu, Yan; Wang, Haixia; Liu, Xiaoyan; Lin, Rong; Wang, Quan

    2015-01-01

    This paper briefly describes the basic principle of wavelet packet analysis, and on this basis introduces the general principle of wavelet packet transformation for signal den-noising. The dynamic EEG data under +Gz acceleration is made a de-noising treatment by using wavelet packet transformation, and the de-noising effects with different thresholds are made a comparison. The study verifies the validity and application value of wavelet packet threshold method for the de-noising of dynamic EEG data under +Gz acceleration. PMID:26405863

  13. Wave-packet dynamics on Chern-band lattices in a trap

    NASA Astrophysics Data System (ADS)

    Roy, Sthitadhi; Grushin, Adolfo G.; Moessner, Roderich; Haque, Masudul

    2015-12-01

    The experimental realization of lattices with Chern bands in ultracold-atom and photonic systems has motivated the study of time-dependent phenomena, such as spatial propagation, in lattices with nontrivial topology. We study the dynamics of Gaussian wave packets on the Haldane honeycomb Chern-band lattice model, in the presence of a harmonic trap. We focus on the transverse response to a force, which is due partly to the Berry curvature and partly to the transverse component of the energy band curvature. We evaluate the accuracy of a semiclassical description, which treats the wave packet as a point particle in both real and momentum space, in reproducing the motion of a realistic wave packet with finite extent. We find that, in order to accurately capture the wave-packet dynamics, the extent of the wave packet in momentum space needs to be taken into account: The dynamics is sensitive to the interplay of band dispersion and Berry curvature over the finite region of momentum (reciprocal) space where the wave packet has support. Moreover, if the wave packet is prepared with a finite initial momentum, the semiclassical analysis reproduces its motion as long as it has a large overlap with the eigenstates of a single band. The semiclassical description generally improves with increasing real-space size of the wave packet, as long as the external conditions (e.g., external force) remain uniform throughout the spatial extent of the wave packet.

  14. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks †

    PubMed Central

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  15. Source Authentication for Code Dissemination Supporting Dynamic Packet Size in Wireless Sensor Networks.

    PubMed

    Kim, Daehee; Kim, Dongwan; An, Sunshin

    2016-01-01

    Code dissemination in wireless sensor networks (WSNs) is a procedure for distributing a new code image over the air in order to update programs. Due to the fact that WSNs are mostly deployed in unattended and hostile environments, secure code dissemination ensuring authenticity and integrity is essential. Recent works on dynamic packet size control in WSNs allow enhancing the energy efficiency of code dissemination by dynamically changing the packet size on the basis of link quality. However, the authentication tokens attached by the base station become useless in the next hop where the packet size can vary according to the link quality of the next hop. In this paper, we propose three source authentication schemes for code dissemination supporting dynamic packet size. Compared to traditional source authentication schemes such as μTESLA and digital signatures, our schemes provide secure source authentication under the environment, where the packet size changes in each hop, with smaller energy consumption. PMID:27409616

  16. Riemann {zeta} function from wave-packet dynamics

    SciTech Connect

    Mack, R.; Schleich, W. P.; Dahl, J. P.; Moya-Cessa, H.; Strunz, W. T.; Walser, R.

    2010-09-15

    We show that the time evolution of a thermal phase state of an anharmonic oscillator with logarithmic energy spectrum is intimately connected to the generalized Riemann {zeta} function {zeta}(s,a). Indeed, the autocorrelation function at a time t is determined by {zeta}({sigma}+i{tau},a), where {sigma} is governed by the temperature of the thermal phase state and {tau} is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials display a universal behavior; they take the shape of a logarithm. However, their form close to the origin depends on the value of the Hurwitz parameter a in {zeta}(s,a). In particular, we establish a connection between the value of the potential energy at its minimum, the Hurwitz parameter and the Maslov index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann {zeta} wave-packet dynamics using cold atoms in appropriately tailored light fields.

  17. Attosecond Electron Wave Packet Dynamics in Strong Laser Fields

    SciTech Connect

    Johnsson, P.; Remetter, T.; Varju, K.; L'Huillier, A.; Lopez-Martens, R.; Valentin, C.; Balcou, Ph.; Kazamias, S.; Mauritsson, J.; Gaarde, M. B.; Schafer, K. J.; Mairesse, Y.; Wabnitz, H.; Salieres, P.

    2005-07-01

    We use a train of sub-200 attosecond extreme ultraviolet (XUV) pulses with energies just above the ionization threshold in argon to create a train of temporally localized electron wave packets. We study the energy transfer from a strong infrared (IR) laser field to the ionized electrons as a function of the delay between the XUV and IR fields. When the wave packets are born at the zero crossings of the IR field, a significant amount of energy ({approx}20 eV) is transferred from the field to the electrons. This results in dramatically enhanced above-threshold ionization in conditions where the IR field alone does not induce any significant ionization. Because both the energy and duration of the wave packets can be varied independently of the IR laser, they are valuable tools for studying and controlling strong-field processes.

  18. Femtosecond wave-packet dynamics in cesium dimers studied through controlled stimulated emission

    SciTech Connect

    Yuan Luqi; Wang Xi; Patnaik, Anil K.; Sokolov, Alexei V.; Ariunbold, Gombojav O.; Murawski, Robert K.; Pestov, Dmitry; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Scully, Marlan O.

    2010-05-15

    We study the dynamics of wave packets in cesium dimers using a femtosecond-controlled pump-probe technique. We implement configurations with one pulse (pump) or two pulses (pump and control) to produce vibrational wave packets on the electronic excited state. The transmission of an additional, variable-delay probe pulse is measured to monitor the time evolution of the wave packets. In the case of the pump-control-probe configuration, a superposition of two independent wave packets is observed. In order to elucidate the observed experimental data, we develop a theory based on the Liouville equation for the density matrix associated with the Franck-Condon factors. Both the numerical and analytical calculations are in good agreement with our experimental results.

  19. Nonlinear dynamics of Airy-vortex 3D wave packets: emission of vortex light waves.

    PubMed

    Driben, Rodislav; Meier, Torsten

    2014-10-01

    The dynamics of 3D Airy-vortex wave packets is studied under the action of strong self-focusing Kerr nonlinearity. Emissions of nonlinear 3D waves out of the main wave packets with the topological charges were demonstrated. Because of the conservation of the total angular momentum, charges of the emitted waves are equal to those carried by the parental light structure. The rapid collapse imposes a severe limitation on the propagation of multidimensional waves in Kerr media. However, the structure of the Airy beam carrier allows the coupling of light from the leading, most intense peak into neighboring peaks and consequently strongly postpones the collapse. The dependence of the critical input amplitude for the appearance of a fast collapse on the beam width is studied for wave packets with zero and nonzero topological charges. Wave packets carrying angular momentum are found to be much more resistant to the rapid collapse. PMID:25360922

  20. Wave packet dynamics in various two-dimensional systems: A unified description

    SciTech Connect

    Singh, Ashutosh; Biswas, Tutul Ghosh, Tarun Kanti; Agarwal, Amit

    2015-03-15

    In this article we present an exact and unified description of wave packet dynamics in various 2D systems in the presence of a transverse magnetic field. We consider an initial minimum-uncertainty Gaussian wave packet and find that its long-term dynamics displays the universal phenomena of spontaneous collapse and quantum revival. We estimate the timescales associated with these phenomena based on very general arguments for various materials, whose carrier dynamics is described either by the Schrödinger equation or by the Dirac equation.

  1. Optical control of molecular dynamics: Molecular cannons, reflectrons, and wave-packet focusers

    NASA Astrophysics Data System (ADS)

    Krause, Jeffrey L.; Whitnell, Robert M.; Wilson, Kent R.; Yan, YiJing; Mukamel, Shaul

    1993-11-01

    We consider the control of molecular dynamics using tailored light fields, based on a phase space theory of control [Y. J. Yan et al., J. Phys. Chem. 97, 2320 (1993)]. This theory enables us to calculate, in the weak field (one-photon) limit, the globally optimal light field that produces the best overlap for a given phase space target. We present as an illustrative example the use of quantum control to overcome the natural tendency of quantum wave packets to delocalize on excited state potential energy curves. Three cases are studied: (i) a ``molecular cannon'' in which we focus an outgoing continuum wave packet of I2 in both position and momentum, (ii) a ``reflectron'' in which we focus an incoming bound wave packet of I2, and (iii) the focusing of a bound wave packet of Na2 at a turning point on the excited state potential using multiple light pulses to create a localized wave packet with zero momentum. For each case, we compute the globally optimal light field and also how well the wave packet produced by this light field achieves the desired target. These globally optimal fields are quite simple and robust. While our theory provides the globally optimal light field in the linear, weak field regime, experiment can in reality only provide a restricted universe of possible light fields. We therefore also consider the control of molecular quantum dynamics using light fields restricted to a parametrized functional form which spans a set of fields that can be experimentally realized. We fit the globally optimal electric field with a functional form consisting of a superposition of subpulses with variable parameters of amplitude, center time, center frequency, temporal width, relative phase, and linear and quadratic chirp. The best fit light fields produce excellent quantum control and are within the range of experimental possibility. We discuss relevant experiments such as ultrafast spectroscopy and ultrafast electron and x-ray diffraction which can in principle

  2. Packet Traffic Dynamics Near Onset of Congestion in Data Communication Network Model

    NASA Astrophysics Data System (ADS)

    Lawniczak, A. T.; Tang, X.

    2006-05-01

    The dominant technology of data communication networks is the Packet Switching Network (PSN). It is a complex technology organized as various hierarchical layers according to the International Standard Organization (ISO) Open Systems Interconnect (OSI) Reference Model. The Network Layer of the ISO OSI Reference Model is responsible for delivering packets from their sources to their destinations and for dealing with congestion if it arises in a network. Thus, we focus on this layer and present an abstraction of the Network Layer of the ISO OSI Reference Model. Using this abstraction we investigate how onset of traffic congestion is affected for various routing algorithms by changes in network connection topology. We study how aggregate measures of network performance depend on network connection topology and routing. We explore packets traffic spatio-temporal dynamics near the phase transition point from free flow to congestion for various network connection topologies and routing algorithms. We consider static and adaptive routings. We present selected simulation results.

  3. Wave modulation: the geometry, kinematics, and dynamics of surface-wave packets

    NASA Astrophysics Data System (ADS)

    Pizzo, Nicholas; Melville, W. Kendall

    2015-11-01

    We derive moment evolution equations of the modified nonlinear Schrodinger equation (MNLSE) with application to interpreting the geometry, kinematics and dynamics of focusing deep-water wave packets. Our theory predicts modifications to the group velocity and associates wave packet convergence with the breakdown of equipartition between kinetic and potential energy. The evolution of the first moment of the energy density yields a natural way to interpret the concept of group velocity for these compact wave groups, predicting a velocity increase as the packet focuses, and is found to be up to 10% larger than that predicted by linear theory, consistent with laboratory observations. The second moment yields a virial theorem, associating energy convergence with deviations from equipartition. The derivation of these moment equations relies crucially on the variational structure of the spatial version of the MNLSE, and the subsequent derivation of three conservations laws. These predictions are then examined numerically for focusing wave packets governed by both the MNLSE as well as the full potential flow equations, and the results are discussed in the context of existing theoretical, numerical and laboratory studies.

  4. Attosecond Dynamics of Electron Wave Packets in Intense Laser Fields

    NASA Astrophysics Data System (ADS)

    Varjú, K.; Johnsson, P.; Mauritsson, J.; López-Martens, R.; Gustafsson, E.; Remetter, T.; L'huillier, A.

    The continuous progress in the performances of light sources as well as detection techniques allows us to investigate and control the states of matter in even finer details. Light sources, ranging from the infrared (IR) to the extreme ultraviolet (XUV), are becoming increasingly coherent, intense, well characterized, and controlled. The shortest available light pulses are now significantly shorter than 1 fs [1]-[4], thus offering unique promise for studies of ultrafast electron dynamics.

  5. Observation of autoionization dynamics and sub-cycle quantum beating in electronic molecular wave packets

    NASA Astrophysics Data System (ADS)

    Reduzzi, M.; Chu, W.-C.; Feng, C.; Dubrouil, A.; Hummert, J.; Calegari, F.; Frassetto, F.; Poletto, L.; Kornilov, O.; Nisoli, M.; Lin, C.-D.; Sansone, G.

    2016-03-01

    The coherent interaction with ultrashort light pulses is a powerful strategy for monitoring and controlling the dynamics of wave packets in all states of matter. As light presents an oscillation period of a few femtoseconds (T = 2.6 fs in the near infrared spectral range), an external optical field can induce changes in a medium on the sub-cycle timescale, i.e. in a few hundred attoseconds. In this work, we resolve the dynamics of autoionizing states on the femtosecond timescale and observe the sub-cycle evolution of a coherent electronic wave packet in a diatomic molecule, exploiting a tunable ultrashort extreme ultraviolet pulse and a synchronized infrared field. The experimental observations are based on measuring the variations of the extreme ultraviolet radiation transmitted through the molecular gas. The different mechanisms contributing to the wave packet dynamics are investigated through theoretical simulations and a simple three level model. The method is general and can be extended to the investigation of more complex systems.

  6. Quantum dynamics of solid Ne upon photo-excitation of a NO impurity: A Gaussian wave packet approach

    SciTech Connect

    Unn-Toc, W.; Meier, C.; Halberstadt, N.; Uranga-Pina, Ll.; Rubayo-Soneira, J.

    2012-08-07

    A high-dimensional quantum wave packet approach based on Gaussian wave packets in Cartesian coordinates is presented. In this method, the high-dimensional wave packet is expressed as a product of time-dependent complex Gaussian functions, which describe the motion of individual atoms. It is applied to the ultrafast geometrical rearrangement dynamics of NO doped cryogenic Ne matrices after femtosecond laser pulse excitation. The static deformation of the solid due to the impurity as well as the dynamical response after femtosecond excitation are analyzed and compared to reduced dimensionality studies. The advantages and limitations of this method are analyzed in the perspective of future applications to other quantum solids.

  7. Initial dynamics of the Norrish Type I reaction in acetone: probing wave packet motion.

    PubMed

    Brogaard, Rasmus Y; Sølling, Theis I; Møller, Klaus B

    2011-02-10

    The Norrish Type I reaction in the S(1) (nπ*) state of acetone is a prototype case of ketone photochemistry. On the basis of results from time-resolved mass spectrometry (TRMS) and photoelectron spectroscopy (TRPES) experiments, it was recently suggested that after excitation the wave packet travels toward the S(1) minimum in less than 30 fs and stays there for more than 100 picoseconds [Chem. Phys. Lett.2008, 461, 193]. In this work we present simulated TRMS and TRPES signals based on ab initio multiple spawning simulations of the dynamics during the first 200 fs after excitation, getting quite good agreement with the experimental signals. We can explain the ultrafast decay of the experimental signals in the following manner: the wave packet simply travels, mainly along the deplanarization coordinate, out of the detection window of the ionizing probe. This window is so narrow that subsequent revival of the signal due to the coherent deplanarization vibration is not observed, meaning that from the point of view of the experiment the wave packets travels directly to the S(1) minimum. This result stresses the importance of pursuing a closer link to the experimental signal when using molecular dynamics simulations in interpreting experimental results. PMID:21229990

  8. Wave packet dynamics of an atomic ion in a Paul trap

    NASA Astrophysics Data System (ADS)

    Hashemloo, A.; Dion, C. M.; Rahali, G.

    2016-07-01

    Using numerical simulations of the time-dependent Schrödinger equation, we study the full quantum dynamics of the motion of an atomic ion in a linear Paul trap. Such a trap is based on a time-varying, periodic electric field and hence corresponds to a time-dependent potential for the ion, which we model exactly. We compare the center-of-mass motion with that obtained from classical equations of motion, as well as to results based on a time-independent effective potential. We also study the oscillations of the width of the ion’s wave packet, including close to the border between stable (bounded) and unstable (unbounded) trajectories. Our results confirm that the center-of-mass motion always follows the classical trajectory, that the width of the wave packet is bounded for trapping within the stability region, and therefore that the classical trapping criterion is fully applicable to quantum motion.

  9. Effects of periodic kicking on dispersion and wave packet dynamics in graphene

    NASA Astrophysics Data System (ADS)

    Agarwala, Adhip; Bhattacharya, Utso; Dutta, Amit; Sen, Diptiman

    2016-05-01

    We study the effects of δ -function periodic kicks on the Floquet energy-momentum dispersion in graphene. We find that a rich variety of dispersions can appear depending on the parameters of the kicking: at certain points in the Brillouin zone, the dispersion can become linear but anisotropic, linear in one direction and quadratic in the perpendicular direction, gapped with a quadratic dispersion, or completely flat (called dynamical localization). We show all these results analytically and demonstrate them numerically through the dynamics of wave packets propagating in graphene. We propose experimental methods for producing these effects.

  10. Tracking Autoionizing-Wave-Packet Dynamics at the 1-fs Temporal Scale

    NASA Astrophysics Data System (ADS)

    Skantzakis, E.; Tzallas, P.; Kruse, J. E.; Kalpouzos, C.; Faucher, O.; Tsakiris, G. D.; Charalambidis, D.

    2010-07-01

    We present time-resolved studies and Fourier transform spectroscopy of inner-shell excited states undergoing Auger decay and doubly excited autoionizing states, utilizing coherent extreme-ultraviolet (XUV) radiation continua. Series of states spanning a range of ˜4eV are excited simultaneously. An XUV probe pulse tracks the oscillatory and decaying evolution of the formed wave packet. The Fourier transform of the measured trace reproduces the spectrum of the series. The present work paves the way for ultrabroadband XUV spectroscopy and studies of ultrafast dynamics in all states of matter.

  11. Wave-packet dynamics for general contact interactions on a circular setup: Revivals, bouncing, and trapping

    SciTech Connect

    Schmidt, Alexandre G.M.; Luz, M.G.E. da

    2004-05-01

    Here we study a one-dimensional finite lattice formed by generalized contact interactions in a circular setup, i.e., under periodic boundary conditions. Considering only four such potentials, we show the emergence of different behaviors as revivals, bouncing, and trapping for the time evolution of wave packets. This is done by properly choosing the parameters that characterize the contact interactions. We also discuss possible physical applications for this type of system, such as using it to split an initially localized state into spatially separated and dynamically independent parts.

  12. Quantum dynamics of electronic transitions with Gauss-Hermite wave packets.

    PubMed

    Borrelli, Raffaele; Peluso, Andrea

    2016-03-21

    A new methodology based on the superposition of time-dependent Gauss-Hermite wave packets is developed to describe the wave function of a system in which several interacting electronic states are coupled to a bath of harmonic oscillators. The equations of motion for the wave function parameters are obtained by employing the Dirac-Frenkel time-dependent variational principle. The methodology is applied to study the quantum dynamical behaviour of model systems with two interacting electronic states characterized by a relatively large reorganization energy and a range of energy biases. The favourable scaling properties make it a promising tool for the study of the dynamics of chemico-physical processes in molecular systems. PMID:27004857

  13. Mechanisms of Auger-induced chemistry derived from wave packet dynamics.

    PubMed

    Su, Julius T; Goddard, William A

    2009-01-27

    To understand how core ionization and subsequent Auger decay lead to bond breaking in large systems, we simulate the wave packet dynamics of electrons in the hydrogenated diamond nanoparticle C(197)H(112). We find that surface core ionizations cause emission of carbon fragments and protons through a direct Auger mechanism, whereas deeper core ionizations cause hydrides to be emitted from the surface via remote heating, consistent with results from photon-stimulated desorption experiments [Hoffman A, Laikhtman A, (2006) J Phys Condens Mater 18:S1517-S1546]. This demonstrates that it is feasible to study the chemistry of highly excited large-scale systems using simulation and analysis tools comparable in simplicity to those used for classical molecular dynamics. PMID:19164568

  14. Mechanisms of Auger-induced chemistry derived from wave packet dynamics

    PubMed Central

    Su, Julius T.; Goddard, William A.

    2009-01-01

    To understand how core ionization and subsequent Auger decay lead to bond breaking in large systems, we simulate the wave packet dynamics of electrons in the hydrogenated diamond nanoparticle C197H112. We find that surface core ionizations cause emission of carbon fragments and protons through a direct Auger mechanism, whereas deeper core ionizations cause hydrides to be emitted from the surface via remote heating, consistent with results from photon-stimulated desorption experiments [Hoffman A, Laikhtman A, (2006) J Phys Condens Mater 18:S1517–S1546]. This demonstrates that it is feasible to study the chemistry of highly excited large-scale systems using simulation and analysis tools comparable in simplicity to those used for classical molecular dynamics. PMID:19164568

  15. Effects of the air pressure on the wave-packet dynamics of gaseous iodine molecules at room temperature

    NASA Astrophysics Data System (ADS)

    Fan, Rongwei; He, Ping; Chen, Deying; Xia, Yuanqin; Yu, Xin; Wang, Jialing; Jiang, Yugang

    2013-02-01

    Based on ultrafast laser pulses, time-resolved resonance enhancement coherent anti-Stokes Raman scattering (RE-CARS) is applied to investigate wave-packet dynamics in gaseous iodine. The effects of air pressure on the wave-packet dynamics of iodine molecules are studied at pressures ranging from 1.5 Torr to 750 Torr. The RE-CARS signals are recorded in a gas cell filled with a mixture of about 0.3 Torr iodine in air buffer gas at room temperature. The revivals and fractional revival structures in the wave-packet signal are found to gradually disappear with rising air pressure up to 750 Torr, and the decay behaviors of the excited B-state and ground X-state become faster with increasing air pressure, which is due to the collision effects of the molecules and the growing complexity of the spectra at high pressures.

  16. Wave packet dynamics for a system with position and time-dependent effective mass in an infinite square well

    SciTech Connect

    Vubangsi, M.; Tchoffo, M.; Fai, L. C.; Pisma’k, Yu. M.

    2015-12-15

    The problem of a particle with position and time-dependent effective mass in a one-dimensional infinite square well is treated by means of a quantum canonical formalism. The dynamics of a launched wave packet of the system reveals a peculiar revival pattern that is discussed. .

  17. Real-time observation of dynamics in rotational molecular wave packets by use of air-laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Bin; Chu, Wei; Li, Guihua; Yao, Jinping; Zhang, Haisu; Ni, Jielei; Jing, Chenrui; Xie, Hongqiang; Cheng, Ya

    2014-04-01

    Molecular rotational spectroscopy based on a strong-field-ionization-induced nitrogen laser is employed to investigate the time evolution of the rotational wave packet composed by a coherent superposition of quantum rotational states created in a field-free molecular alignment. We show that this technique uniquely allows real-time observation of the ultrafast dynamics of the molecular rotational wave packet. Our analysis also shows that there exist two channels of generation of the nitrogen laser, shedding light on the population inversion mechanism behind the air laser generated by intense femtosecond laser pulses.

  18. Dynamics of nuclear wave packets at the F center in alkali halides

    NASA Astrophysics Data System (ADS)

    Koyama, Takeshi; Suemoto, Tohru

    2011-07-01

    The F center in alkali halides is a well-known prototype of a strongly coupled localized electron-phonon system. This colour center is one of the long studied targets in the field of photophysics because it is simple but rich in variety. Steady-state spectroscopy, such as modulation spectroscopy and Raman scattering spectroscopy, has elucidated the strength of the electron-phonon coupling in the (meta-)stable state, i.e. the ground state and the relaxed excited state. Picosecond spectroscopy has improved understanding of the state mixing in the transient state. Owing to recent developments of ultrafast lasers with pulse widths shorter than oscillation periods of phonons, it has been possible to perform real-time observation of lattice vibration, and the understanding of the transient state has been remarkably expanded. In this paper, we review early and present studies on dynamics of electron-phonon coupling at the F center, especially recent real-time observations on the dynamics of nuclear wave packets in the excited state of the F center in KI, KBr, KCl and RbCl. These real-time observations reveal (i) spatial extension of the electronic wave function of a trapped electron, (ii) the difference between the coupled phonons in the ground state and the excited state, (iii) diabatic transition between the adiabatic potential energy surfaces and (iv) anharmonicity of the potential energy surface.

  19. Wave-packet dynamical analysis of ultracold scattering in cylindrical waveguides

    SciTech Connect

    Melezhik, Vladimir S.; Kim, J. I.; Schmelcher, Peter

    2007-11-15

    A wave-packet propagation method is developed and applied to investigate the quantum dynamics of scattering processes of identical and distinguishable atoms in harmonic waveguides. The quantum dynamics of the confinement-induced resonances (CIRs) for ultracold collisions of identical particles, s-wave CIRs for bosons and p-wave CIRs for fermions, is explored in detail. Our multigrid approach allows us to fully take into account the coupling between the center-of-mass (c.m.) and relative motions in the case of distinguishable atoms. The latter includes, in particular, s- and p-partial-wave mixing, caused by the confining trap, which acts differently on the different atomic species. Specifically, we explore in detail the recently discovered [J. I. Kim, V. S. Melezhik, and P. Schmelcher, Phys. Rev. Lett. 97, 193203 (2006)] dual CIR, which is based on a destructive interference mechanism leading to complete transmission in the waveguide, although the corresponding scattering in free space exhibits strong s- and p-wave scattering.

  20. Monitoring attosecond dynamics of coherent electron-nuclear wave packets by molecular high-order-harmonic generation

    SciTech Connect

    Bredtmann, Timm; Chelkowski, Szczepan; Bandrauk, Andre D.

    2011-08-15

    A pump-probe scheme for preparing and monitoring electron-nuclear motion in a dissociative coherent electron-nuclear wave packet is explored from numerical solutions of a non-Born-Oppenheimer time-dependent Schroedinger equation. A mid-ir intense few-cycle probe pulse is used to generate molecular high-order-harmonic generation (MHOHG) from a coherent superposition of two or more dissociative coherent electronic-nuclear wave packets, prepared by a femtosecond uv pump pulse. Varying the time delay between the intense ir probe pulse and the uv pump pulse by a few hundreds of attoseconds, the MHOHG signal intensity is shown to vary by orders of magnitude, thus showing the high sensitivity to electron-nuclear dynamics in coherent electron-nuclear wave packets. We relate this high sensitivity of MHOHG spectra to opposing electron velocities (fluxes) in the electron wave packets of the recombining (recolliding) ionized electron and of the bound electron in the initial coherent superposition of two electronic states.

  1. Effect of the disorder in graphene grain boundaries: A wave packet dynamics study

    NASA Astrophysics Data System (ADS)

    Vancsó, Péter; Márk, Géza I.; Lambin, Philippe; Mayer, Alexandre; Hwang, Chanyong; Biró, László P.

    2014-02-01

    Chemical vapor deposition (CVD) on Cu foil is one of the most promising methods to produce graphene samples despite of introducing numerous grain boundaries into the perfect graphene lattice. A rich variety of GB structures can be realized experimentally by controlling the parameters in the CVD method. Grain boundaries contain non-hexagonal carbon rings (4, 5, 7, 8 membered rings) and vacancies in various ratios and arrangements. Using wave packet dynamic (WPD) simulations and tight-binding electronic structure calculations, we have studied the effect of the structure of GBs on the transport properties. Three model GBs with increasing disorder were created in the computer: a periodic 5-7 GB, a "serpentine" GB, and a disordered GB containing 4, 8 membered rings and vacancies. It was found that for small energies (E = EF ± 1 eV) the transmission decreases with increasing disorder. Four membered rings and vacancies are identified as the principal scattering centers. Revealing the connection between the properties of GBs and the CVD growth method may open new opportunities in the graphene based nanoelectronics.

  2. Fast packet switching algorithms for dynamic resource control over ATM networks

    SciTech Connect

    Tsang, R.P.; Keattihananant, P.; Chang, T.; Heieh, J.; Du, D.

    1996-12-01

    Real-time continuous media traffic, such as digital video and audio, is expected to comprise a large percentage of the network load on future high speed packet switch networks such as ATM. A major feature which distinguishes high speed networks from traditional slower speed networks is the large amount of data the network must process very quickly. For efficient network usage, traffic control mechanisms are essential. Currently, most mechanisms for traffic control (such as flow control) have centered on the support of Available Bit Rate (ABR), i.e., non real-time, traffic. With regard to ATM, for ABR traffic, two major types of schemes which have been proposed are rate- control and credit-control schemes. Neither of these schemes are directly applicable to Real-time Variable Bit Rate (VBR) traffic such as continuous media traffic. Traffic control for continuous media traffic is an inherently difficult problem due to the time- sensitive nature of the traffic and its unpredictable burstiness. In this study, we present a scheme which controls traffic by dynamically allocating/de- allocating resources among competing VCs based upon their real-time requirements. This scheme incorporates a form of rate- control, real-time burst-level scheduling and link-link flow control. We show analytically potential performance improvements of our rate- control scheme and present a scheme for buffer dimensioning. We also present simulation results of our schemes and discuss the tradeoffs inherent in maintaining high network utilization and statistically guaranteeing many users` Quality of Service.

  3. Discrete-event-dynamic-system-based approaches for scheduling transmissions in multihop packet radio networks

    NASA Astrophysics Data System (ADS)

    Cassandras, Christos G.

    In the classic transmission scheduling problem, the nodes of a packed radio network (PRN) broadcast fixed-length packets over a common resource (the channel). Packet transmissions are subject to interference constraints; for example, if a node is transmitting a packet, then all adjacent (neighboring) nodes must refrain from transmission. One then adopts a slotted time model where every slot is allocated to a set of nodes which can simultaneously transmit without conflict. Thus, a node generally belongs to one or more of these sets (called transmission sets). Our approach is based on viewing the transmission scheduling problem as a single server multiclass polling problem with simultaneous resource possession. Here, a class corresponds to a transmission set. The server corresponds to a channel operating with deterministic service times: a service time is equal to one time slot required for transmitting a packet. The scheduling problem is then equivalent to assigning the server (equivalently, each time slot) to a particular transmissions set. The simultaneous resource possession feature arises because the server is assigned to a transmission set, i.e. it can simultaneously provide service to packets from all nodes which belong to that set. The construction of the transmission set is dependent upon the topology and connectivity of the PRN and is equivalent to a graph partitioning problem. For our purposes, we assume M transmission sets have been specified. Finally, we allow for overlapping transmission sets, i.e. a node can belong to two or more difference transmission sets.

  4. Wave-packet dynamics of noninteracting ultracold bosons in an amplitude-modulated parabolic optical lattice

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Tomotake; Watanabe, Shinichi

    2015-06-01

    The recent Aarhus experiment [Phys. Rev. A 88, 023620 (2013), 10.1103/PhysRevA.88.023620] produced wave packets by applying amplitude modulation to a trapped Bose-Einstein condensate (BEC) of 87Rb using an optical lattice. The present paper renders a theoretical account of this experimental production of wave packets and their subsequent time evolution, focusing on a one-dimensional noninteracting bosonic system as a fundamental starting point for accurate quantum analysis. Since experimental manipulation requires efficient wave-packet creation, we introduce the "single-Q Rabi model" to give a simple and reliable description of the interband transition. As a natural extension, we demonstrate enhancement of the wave-packet production by the "two-step Rabi oscillation method" using either one or two frequencies. The subsequent time evolution is affected by the intertwining of Bragg reflection and the Landau-Zener transition at each band gap, which is analyzed with the aid of a semiclassical theory [Phys. Rev. Lett. 110, 085302 (2013), 10.1103/PhysRevLett.110.085302].

  5. Dissipative Bohmian mechanics within the Caldirola–Kanai framework: A trajectory analysis of wave-packet dynamics in viscid media

    SciTech Connect

    Sanz, A.S.; Martínez-Casado, R.; Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G.; Miret-Artés, S.

    2014-08-15

    Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.

  6. Dynamics of coupled plasmon polariton wave packets excited at a subwavelength slit in optically thin metal films

    NASA Astrophysics Data System (ADS)

    Wang, Lei-Ming; Zhang, Lingxiao; Seideman, Tamar; Petek, Hrvoje

    2012-10-01

    We study by numerical simulations the excitation and propagation dynamics of coupled surface plasmon polariton (SPP) wave packets (WPs) in optically thin Ag films and a bulk Ag/vacuum interface under the illumination of a subwavelength slit by 400 nm continuous wave (cw) and femtosecond pulsed light. The generated surface fields include contributions from both SPPs and quasicylindrical waves, which dominate in different regimes. We explore aspects of the coupled SPP modes in Ag thin films, including symmetry, propagation, attenuation, and the variation of coupling with incident angle and film thickness. Simulations of the electromagnetic transients initiated with femtosecond pulses reveal new features of coupled SPP WP generation and propagation in thin Ag films. Our results show that, under pulsed excitation, the SPP modes in an Ag thin film break up into two distinct bound surface wave packets characterized by marked differences in symmetries, group velocities, attenuation lengths, and dispersion properties. The nanometer spatial and femtosecond temporal scale excitation and propagation dynamics of the coupled SPP WPs are revealed in detail by movies recording the evolution of their transient field distributions.

  7. Quantum and semiclassical phase-space dynamics of a wave packet in strong fields using initial-value representations

    NASA Astrophysics Data System (ADS)

    Zagoya, C.; Wu, J.; Ronto, M.; Shalashilin, D. V.; Figueira de Morisson Faria, C.

    2014-10-01

    We assess the suitability of quantum and semiclassical initial-value representations (IVRs), exemplified by the coupled coherent states (CCS) method and the Herman-Kluk (HK) propagator, respectively, for modeling the dynamics of an electronic wave packet in a strong laser field, if this wave packet is initially bound. Using Wigner quasiprobability distributions and ensembles of classical trajectories, we identify signatures of over-the-barrier and tunnel ionization in phase space for static and time-dependent fields and the relevant sets of phase-space trajectories to model such features. Overall, we find good agreement with the full solution of the time-dependent Schrödinger equation (TDSE) for Wigner distributions constructed with both IVRs. Our results indicate that the HK propagator does not fully account for tunneling and over-the-barrier reflections. This leads to a dephasing in the time-dependent wave function, which becomes more pronounced for longer times. However, it is able to partly reproduce features associated with the wave packet crossing classically forbidden regions, although the trajectories employed in its construction always obey classical phase-space constraints. We also show that the CCS method represents a fully quantum initial value representation and accurately reproduces the results of a standard TDSE solver. Finally, we show that the HK propagator may be successfully employed to compute the time-dependent dipole acceleration and high-harmonic spectra. Nevertheless, the outcome of the semiclassical computation exhibits disagreements with the TDSE, as a consequence of the previously mentioned dephasing.

  8. Dynamic Symmetry Breaking Hidden in Fano Resonance of a Molecule: S1 State of Diazirine Using Quantum Wave Packet Propagation.

    PubMed

    Park, Young Choon; An, Heesun; Lee, Yoon Sup; Baeck, Kyung Koo

    2016-02-18

    Fano resonance in the predissociation of the S1 state of diazirine was studied by applying a time-dependent wave packet propagation method, and dynamic symmetry breaking (DSB) around the stationary structure of S1 was disclosed in a detailed analysis of this theoretical result. The DSB was found to originate in coupling between the asymmetric C-N2 stretching and CH2 wagging modes, suggesting that there is a slight time gap between ring opening and the concurrent dragging of two H atoms of the CH2 moiety. Although the depth of the double well due to DSB is just 0.011 eV, its presence noticeably affects the early time dynamics and observed spectrum. PMID:26820379

  9. Steering the Electron in H{sub 2}{sup +} by Nuclear Wave Packet Dynamics

    SciTech Connect

    Fischer, Bettina; Kremer, Manuel; Pfeifer, Thomas; Feuerstein, Bernold; Sharma, Vandana; Schroeter, Claus Dieter; Moshammer, Robert; Ullrich, Joachim; Thumm, Uwe

    2010-11-26

    By combining carrier-envelope phase (CEP) stable light fields and the traditional method of optical pump-probe spectroscopy we study electron localization in dissociating H{sub 2}{sup +} molecular ions. Localization and localizability of electrons is observed to strongly depend on the time delay between the two CEP-stable laser pulses with a characteristic periodicity corresponding to the oscillating molecular wave packet. Variation of the pump-probe delay time allows us to uncover the underlying physical mechanism for electron localization, which are two distinct sets of interfering dissociation channels that exhibit specific temporal signatures in their asymmetry response.

  10. Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements

    NASA Astrophysics Data System (ADS)

    Zander, C.; Plastino, A. R.; Díaz-Alonso, J.

    2015-11-01

    We investigate time-dependent solutions for a non-linear Schrödinger equation recently proposed by Nassar and Miret-Artés (NM) to describe the continuous measurement of the position of a quantum particle (Nassar, 2013; Nassar and Miret-Artés, 2013). Here we extend these previous studies in two different directions. On the one hand, we incorporate a potential energy term in the NM equation and explore the corresponding wave packet dynamics, while in the previous works the analysis was restricted to the free-particle case. On the other hand, we investigate time-dependent solutions while previous studies focused on a stationary one. We obtain exact wave packet solutions for linear and quadratic potentials, and approximate solutions for the Morse potential. The free-particle case is also revisited from a time-dependent point of view. Our analysis of time-dependent solutions allows us to determine the stability properties of the stationary solution considered in Nassar (2013), Nassar and Miret-Artés (2013). On the basis of these results we reconsider the Bohmian approach to the NM equation, taking into account the fact that the evolution equation for the probability density ρ =| ψ | 2 is not a continuity equation. We show that the effect of the source term appearing in the evolution equation for ρ has to be explicitly taken into account when interpreting the NM equation from a Bohmian point of view.

  11. Population and coherence dynamics in light harvesting complex II (LH2)

    NASA Astrophysics Data System (ADS)

    Yeh, Shu-Hao; Zhu, Jing; Kais, Sabre

    2012-08-01

    The electronic excitation population and coherence dynamics in the chromophores of the photosynthetic light harvesting complex 2 (LH2) B850 ring from purple bacteria (Rhodopseudomonas acidophila) have been studied theoretically at both physiological and cryogenic temperatures. Similar to the well-studied Fenna-Matthews-Olson (FMO) protein, oscillations of the excitation population and coherence in the site basis are observed in LH2 by using a scaled hierarchical equation of motion approach. However, this oscillation time (300 fs) is much shorter compared to the FMO protein (650 fs) at cryogenic temperature. Both environment and high temperature are found to enhance the propagation speed of the exciton wave packet yet they shorten the coherence time and suppress the oscillation amplitude of coherence and the population. Our calculations show that a long-lived coherence between chromophore electronic excited states can exist in such a noisy biological environment.

  12. Theory and experiment of coherent wave packet dynamics in rare earth solids: Absorption spectrum vs femtosecond fringe-resolved interferogram

    NASA Astrophysics Data System (ADS)

    Luo, Q.; Dai, D. C.; Wang, G. Q.; Ninulescu, V.; Yu, X. Y.; Luo, L.; Zhou, J. Y.; Yan, YiJing

    2001-01-01

    Coherent dynamic property of neodymium yttrium aluminum garnet (Nd:YAG) crystal at 77 K is studied via the conventional absorption, the femtosecond fringe-resolved wave packet interferometry, and the related difference-phase spectrum. The recorded interferogram exhibits beatings in subpicosecond time scale arising from the interferences among various weakly split 4f-electronic states and the coupled vibronic optical phonon sidebands. The electron-phonon coupling in Nd:YAG can be well described by multiple Brownian oscillators model involving in each individual electronic transition. The parameters for characterizing material coherence and relaxation are determined via the theoretical modelings of both the frequency and the time-domain experimental signals.

  13. Influence of wave-packet dynamics on the medium gain of an atomic system

    SciTech Connect

    Delagnes, J. C.; Bouchene, M. A.

    2007-10-15

    A sequence of two femtosecond pulses--a strong driving {pi}-polarized pulse and a weak propagating {sigma}-polarized pulse--excites resonantly the S{sub 1/2}{yields}P{sub 1/2} transition of an atomic system. Strong interference effects take place in the system between absorption and emission paths leading to a substantial amplification of the {sigma} pulse. We study the influence of the fine structure on the medium gain when the contribution of the off-resonant P{sub 3/2} level is taken into account. A drastic reduction of the medium gain is obtained. This effect is explained within the bright-state-dark-state formalism where the strong driving pulse creates a wave packet that can be trapped in a state--the bright state--leading to a significant reduction of the gain for the {sigma} pulse. Finally, we also show that periodical gain dependence with the driving pulse energy exhibits a significant change in its period value (compared with expected Rabi oscillations)

  14. Dynamics of zero-energy nonspreading non-Gaussian wave packets for a class of central potentials

    SciTech Connect

    Makowski, Adam J. Pepłowski, Piotr

    2013-10-15

    Zero-energy wave packets, coherent states, are constructed in such a way that they retain their shape during the time evolution for a large class of central potentials. The packets are not of the Gaussian type with −r{sup 2} dependence but, instead, their shape is determined by −r{sup 1/(μ+1/2)} with −1/2<μ<1/2. A very close quantum–classical correspondence is also shown, i.e., the well localized states travel along suitable classical trajectories. -- Highlights: •Central potentials are considered. •Nonspreading, non-Gaussian wave packets are constructed. •Time evolution of the zero-energy packets is studied. •Quantum–classical correspondence is discussed.

  15. Energetics and Dynamics of GaAs Epitaxial Growth via Quantum Wave Packet Studies

    NASA Technical Reports Server (NTRS)

    Dzegilenko, Fedor N.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The dynamics of As(sub 2) molecule incorporation into the flat Ga-terminated GaAs(100) surface is studied computationally. The time-dependent Schrodinger equation is solved on a two-dimensional potential energy surface obtained using density functional theory calculations. The probabilities of trapping and subsequent dissociation of the molecular As(sub 2) bond are calculated as a function of beam translational energy and vibrational quantum number of As(sub 2).

  16. Non-Gaussian wave packet dynamics in anharmonic potential: Cumulant expansion treatment

    NASA Astrophysics Data System (ADS)

    Toutounji, Mohamad

    2015-03-01

    This manuscript utilizes cumulant expansion as an alternative algebraic approach to evaluating integrals and solving a system of nonlinear differential equations for probing anharmonic dynamics in condensed phase systems using Morse oscillator. These integrals and differential equations become harder to solve as the anharmonicity of the system goes beyond that of Morse oscillator description. This algebraic approach becomes critically important in case of Morse oscillator as it tends to exhibit divergent dynamics and numerical uncertainties at low temperatures. The autocorrelation function is calculated algebraically and compared to the exact one for they match perfectly. It is also compared to the approximate autocorrelation function using the differential equations technique reported in Toutounji (2014) for weak and strong electron-phonon coupling cases. It is found that the present cumulant method is more efficient, and easier to use, than the exact expression. Deviation between the approximate autocorrelation function and the exact autocorrelation function starts to arise as the electron-phonon coupling strength increases. The autocorrelation function obtained using cumulants identically matches the exact autocorrelation function, thereby surpassing the approach presented in Toutounji (2014). The advantage of the present methodology is its applicability to various types of electron-phonon coupling cases. Additionally, the herein approach only uses algebraic techniques, thereby avoiding both the divergence integral and solving a set of linear first- and second-order partial differential equations as was done in previous work. Model calculations are presented to demonstrate the accuracy of the herein work.

  17. Extensible packet processing architecture

    DOEpatents

    Robertson, Perry J.; Hamlet, Jason R.; Pierson, Lyndon G.; Olsberg, Ronald R.; Chun, Guy D.

    2013-08-20

    A technique for distributed packet processing includes sequentially passing packets associated with packet flows between a plurality of processing engines along a flow through data bus linking the plurality of processing engines in series. At least one packet within a given packet flow is marked by a given processing engine to signify by the given processing engine to the other processing engines that the given processing engine has claimed the given packet flow for processing. A processing function is applied to each of the packet flows within the processing engines and the processed packets are output on a time-shared, arbitered data bus coupled to the plurality of processing engines.

  18. Outer packet sets and feature prediction of computer virus

    NASA Astrophysics Data System (ADS)

    Zhang, Ling

    2014-10-01

    The packet sets model was proposed by Prof. Shi in 2008. A packet sets is a set pair composed of internal and outer packet sets, and it has dynamic characteristic. Using packet sets theory, this paper gives the feature prediction of computer virus based on outer packet sets. The concept of virus screening-filtering is given, furthermore, the virus screening-filtering order theorem, composite virus screening-filtering theorem and virus screening-filtering rule are presented. A prediction method of computer virus feature is given based on the results. The outer packet sets is a new tool in the research of the prediction of dynamic virus feature.

  19. Bohmian trajectories of Airy packets

    NASA Astrophysics Data System (ADS)

    Nassar, Antonio B.; Miret-Artés, Salvador

    2014-09-01

    The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space-time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject's theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.

  20. Bohmian trajectories of Airy packets

    SciTech Connect

    Nassar, Antonio B.; Miret-Artés, Salvador

    2014-09-15

    The discovery of Berry and Balazs in 1979 that the free-particle Schrödinger equation allows a non-dispersive and accelerating Airy-packet solution has taken the folklore of quantum mechanics by surprise. Over the years, this intriguing class of wave packets has sparked enormous theoretical and experimental activities in related areas of optics and atom physics. Within the Bohmian mechanics framework, we present new features of Airy wave packet solutions to Schrödinger equation with time-dependent quadratic potentials. In particular, we provide some insights to the problem by calculating the corresponding Bohmian trajectories. It is shown that by using general space–time transformations, these trajectories can display a unique variety of cases depending upon the initial position of the individual particle in the Airy wave packet. Further, we report here a myriad of nontrivial Bohmian trajectories associated to the Airy wave packet. These new features are worth introducing to the subject’s theoretical folklore in light of the fact that the evolution of a quantum mechanical Airy wave packet governed by the Schrödinger equation is analogous to the propagation of a finite energy Airy beam satisfying the paraxial equation. Numerous experimental configurations of optics and atom physics have shown that the dynamics of Airy beams depends significantly on initial parameters and configurations of the experimental set-up.

  1. Dynamic interference in the photoionization of He by coherent intense high-frequency laser pulses: Direct propagation of the two-electron wave packets on large spatial grids

    NASA Astrophysics Data System (ADS)

    Artemyev, Anton N.; Müller, Anne D.; Hochstuhl, David; Cederbaum, Lorenz S.; Demekhin, Philipp V.

    2016-04-01

    The direct ionization of the helium atom by intense coherent high-frequency short laser pulses is investigated theoretically from first principles. To this end, we solve numerically the time-dependent Schrödinger equation for the two-electron wave packet and its interaction with the linearly polarized pulse by the efficient time-dependent restricted-active-space configuration-interaction method (TD-RASCI). In particular, we consider photon energies which are nearly resonant for the 1 s →2 p excitation in the He+ ion. Thereby, we investigate the dynamic interference of the photoelectrons of the same kinetic energy emitted at different times along the pulse in the two-electron system. In order to enable observation of the dynamic interference in the computed spectrum, the electron wave packets were propagated on large spatial grids over long times. The computed photoionization spectra of He exhibit pronounced interference patterns the complexity of which increases with the decrease of the photon energy detuning and with the increase of the pulse intensity. Our numerical results pave the way for experimental verification of the dynamic interference effect at presently available high-frequency laser pulse sources.

  2. Photochemistry of the water dimer: Time-dependent quantum wave-packet description of the dynamics at the S{sub 1}-S{sub 0} conical intersection

    SciTech Connect

    Chmura, Bartosz; Rode, Michal F.; Sobolewski, Andrzej L.; Lan Zhenggang

    2009-10-07

    The photoinduced electron-driven proton-transfer dynamics of the water-dimer system has been investigated by time-dependent quantum wave-packet calculations. The main nuclear degrees of freedom driving the system from the Frank-Condon region to the S{sub 0}-S{sub 1} conical intersection are the distance between the oxygen atoms and the displacement of the hydrogen atom from the oxygen-oxygen bond center. Two important coupling modes have been investigated: Rotation of the H-donating water dangling proton and asymmetric stretching of the H-accepting water dangling protons'O{sub a}H bonds. Potential energy surfaces of the ground and lowest excited electronic states have been constructed on the basis of ab initio calculations. The time-dependent quantum wave-packet propagation has been employed within the (2 + 1)-dimensional systems for the description of the nonadiabatic dynamics of water dimer. The effects of the initial vibrational state of the system on the electronic population transfer and dissociation dynamics are presented. To approximate the photochemical behavior of water dimer in bulk water, we add a boundary condition into the (2 + 1)-dimensional systems to simulate the existence of water bulk. The results provide insight into the mechanisms of excited state deactivation of the water-dimer system in gas phase and in bulk water through the electron-driven proton-transfer process.

  3. Self-Interfering Wave Packets.

    PubMed

    Colas, David; Laussy, Fabrice P

    2016-01-15

    We study the propagation of noninteracting polariton wave packets. We show how two qualitatively different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike object from noninteracting fields-much like self-accelerating beams-shaped by the Rabi coupling out of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a "mass wall" on which polariton wave packets bounce back. Together with the Rabi dynamics, this yields propagation of ultrafast subpackets and ordering of a spacetime crystal. PMID:26824554

  4. Self-Interfering Wave Packets

    NASA Astrophysics Data System (ADS)

    Colas, David; Laussy, Fabrice P.

    2016-01-01

    We study the propagation of noninteracting polariton wave packets. We show how two qualitatively different concepts of mass that arise from the peculiar polariton dispersion lead to a new type of particlelike object from noninteracting fields—much like self-accelerating beams—shaped by the Rabi coupling out of Gaussian initial states. A divergence and change of sign of the diffusive mass results in a "mass wall" on which polariton wave packets bounce back. Together with the Rabi dynamics, this yields propagation of ultrafast subpackets and ordering of a spacetime crystal.

  5. Controlled Quantum Packets

    NASA Technical Reports Server (NTRS)

    DeMartino, Salvatore; DeSiena, Silvio

    1996-01-01

    We look at time evolution of a physical system from the point of view of dynamical control theory. Normally we solve motion equation with a given external potential and we obtain time evolution. Standard examples are the trajectories in classical mechanics or the wave functions in Quantum Mechanics. In the control theory, we have the configurational variables of a physical system, we choose a velocity field and with a suited strategy we force the physical system to have a well defined evolution. The evolution of the system is the 'premium' that the controller receives if he has adopted the right strategy. The strategy is given by well suited laboratory devices. The control mechanisms are in many cases non linear; it is necessary, namely, a feedback mechanism to retain in time the selected evolution. Our aim is to introduce a scheme to obtain Quantum wave packets by control theory. The program is to choose the characteristics of a packet, that is, the equation of evolution for its centre and a controlled dispersion, and to give a building scheme from some initial state (for example a solution of stationary Schroedinger equation). It seems natural in this view to use stochastic approach to Quantum Mechanics, that is, Stochastic Mechanics [S.M.]. It is a quantization scheme different from ordinary ones only formally. This approach introduces in quantum theory the whole mathematical apparatus of stochastic control theory. Stochastic Mechanics, in our view, is more intuitive when we want to study all the classical-like problems. We apply our scheme to build two classes of quantum packets both derived generalizing some properties of coherent states.

  6. Fusion reaction of halo nuclei: A real-time wave-packet method for three-body tunneling dynamics

    SciTech Connect

    Nakatsukasa, Takashi; Yabana, Kazuhiro; Ito, Makoto; Ueda, Manabu

    2006-08-14

    We investigate fusion cross section of a nucleus with a valence neutron, using the time-dependent wave-packet method. For a stable projectile, in which the valence neutron is tightly bound ({epsilon}n < -3 MeV), the neutron could enhance the fusion probability when the matching condition of orbital energies are satisfied. In contrast, for a halo nucleus, in which the binding energy of the neutron is very small ({epsilon}n > -1 MeV), the fusion probability is hindered by the presence of the weakly bound neutron.

  7. IP-over-WDM dynamic link layer: challenges, open issues, and comparison of files-over-lightpaths versus photonic packet switching

    NASA Astrophysics Data System (ADS)

    Izal, Mikel; Aracil Rico, Javier

    2001-08-01

    This paper addresses the suitability of WDM coarse packet switching solutions for IP traffic. Our findings show that the combination of traffic grooming at the higher layers and coarse packet switching at the optical layer provides at least the same performance as more sophisticated and difficult to realize photonic packet switching solutions. We propose a network architecture named files-over-lightpaths that not only simplifies the network optical and electronic design by making use of coarse packet switching, but also serves to the purpose of decreasing the TCP transaction latency in comparison to a flat or split Internet organization with fine grain photonic packet switching.

  8. New Teachers Packet.

    ERIC Educational Resources Information Center

    Journalism Education Association.

    This packet of information for new scholastic journalism teachers (or advisers) compiles information on professional associations in journalism education, offers curriculum guides and general help, and contains worksheets and handouts. Sections of the packet are: (1) Professional Help (Journalism Education Association Information, and Other…

  9. Stochastic sampled-data control for synchronization of complex dynamical networks with control packet loss and additive time-varying delays.

    PubMed

    Rakkiyappan, R; Sakthivel, N; Cao, Jinde

    2015-06-01

    This study examines the exponential synchronization of complex dynamical networks with control packet loss and additive time-varying delays. Additionally, sampled-data controller with time-varying sampling period is considered and is assumed to switch between m different values in a random way with given probability. Then, a novel Lyapunov-Krasovskii functional (LKF) with triple integral terms is constructed and by using Jensen's inequality and reciprocally convex approach, sufficient conditions under which the dynamical network is exponentially mean-square stable are derived. When applying Jensen's inequality to partition double integral terms in the derivation of linear matrix inequality (LMI) conditions, a new kind of linear combination of positive functions weighted by the inverses of squared convex parameters appears. In order to handle such a combination, an effective method is introduced by extending the lower bound lemma. To design the sampled-data controller, the synchronization error system is represented as a switched system. Based on the derived LMI conditions and average dwell-time method, sufficient conditions for the synchronization of switched error system are derived in terms of LMIs. Finally, numerical example is employed to show the effectiveness of the proposed methods. PMID:25797504

  10. Use of wavelet-packet transforms to develop an engineering model for multifractal characterization of mutation dynamics in pathological and nonpathological gene sequences

    NASA Astrophysics Data System (ADS)

    Walker, David Lee

    1999-12-01

    This study uses dynamical analysis to examine in a quantitative fashion the information coding mechanism in DNA sequences. This exceeds the simple dichotomy of either modeling the mechanism by comparing DNA sequence walks as Fractal Brownian Motion (fbm) processes. The 2-D mappings of the DNA sequences for this research are from Iterated Function System (IFS) (Also known as the ``Chaos Game Representation'' (CGR)) mappings of the DNA sequences. This technique converts a 1-D sequence into a 2-D representation that preserves subsequence structure and provides a visual representation. The second step of this analysis involves the application of Wavelet Packet Transforms, a recently developed technique from the field of signal processing. A multi-fractal model is built by using wavelet transforms to estimate the Hurst exponent, H. The Hurst exponent is a non-parametric measurement of the dynamism of a system. This procedure is used to evaluate gene- coding events in the DNA sequence of cystic fibrosis mutations. The H exponent is calculated for various mutation sites in this gene. The results of this study indicate the presence of anti-persistent, random walks and persistent ``sub-periods'' in the sequence. This indicates the hypothesis of a multi-fractal model of DNA information encoding warrants further consideration. This work examines the model's behavior in both pathological (mutations) and non-pathological (healthy) base pair sequences of the cystic fibrosis gene. These mutations both natural and synthetic were introduced by computer manipulation of the original base pair text files. The results show that disease severity and system ``information dynamics'' correlate. These results have implications for genetic engineering as well as in mathematical biology. They suggest that there is scope for more multi-fractal models to be developed.

  11. Tunneling dynamics with a mixed quantum-classical method: Quantum corrected propagator combined with frozen Gaussian wave packets

    SciTech Connect

    Gelman, David; Schwartz, Steven D.

    2008-07-14

    The recently developed mixed quantum-classical propagation method is extended to treat tunneling effects in multidimensional systems. Formulated for systems consisting of a quantum primary part and a classical bath of heavier particles, the method employs a frozen Gaussian description for the bath degrees of freedom, while the dynamics of the quantum subsystem is governed by a corrected propagator. The corrections are defined in terms of matrix elements of zeroth-order propagators. The method is applied to a model system of a double-well potential bilinearly coupled to a harmonic oscillator. The extension of the method, which includes nondiagonal elements of the correction propagator, enables an accurate treatment of tunneling in an antisymmetric double-well potential.

  12. Development of optical packet and circuit integrated ring network testbed.

    PubMed

    Furukawa, Hideaki; Harai, Hiroaki; Miyazawa, Takaya; Shinada, Satoshi; Kawasaki, Wataru; Wada, Naoya

    2011-12-12

    We developed novel integrated optical packet and circuit switch-node equipment. Compared with our previous equipment, a polarization-independent 4 × 4 semiconductor optical amplifier switch subsystem, gain-controlled optical amplifiers, and one 100 Gbps optical packet transponder and seven 10 Gbps optical path transponders with 10 Gigabit Ethernet (10GbE) client-interfaces were newly installed in the present system. The switch and amplifiers can provide more stable operation without equipment adjustments for the frequent polarization-rotations and dynamic packet-rate changes of optical packets. We constructed an optical packet and circuit integrated ring network testbed consisting of two switch nodes for accelerating network development, and we demonstrated 66 km fiber transmission and switching operation of multiplexed 14-wavelength 10 Gbps optical paths and 100 Gbps optical packets encapsulating 10GbE frames. Error-free (frame error rate < 1×10(-4)) operation was achieved with optical packets of various packet lengths and packet rates, and stable operation of the network testbed was confirmed. In addition, 4K uncompressed video streaming over OPS links was successfully demonstrated. PMID:22274025

  13. FLES PACKET (REVISED 1967).

    ERIC Educational Resources Information Center

    Modern Language Association of America, New York, NY.

    DESIGNED FOR TEACHERS OR SCHOOL OFFICIALS INTERESTED IN THE RATIONALE AND PROBLEMS OF TEACHING FLES, THIS PACKET CONTAINS A DIVERSIFIED SELECTION OF ARTICLES AND REPORTS PUBLISHED FROM 1954 TO THE PRESENT. INCLUDED ARE--(1) "FLES--SOME QUESTIONS AND ANSWERS," (2) "FLES--AN MLA STATEMENT OF POLICY," (3) "THE MEANING OF FLES" (BROOKS), (4) "A FL IN…

  14. Amelia Earhart Learning Packet.

    ERIC Educational Resources Information Center

    Civil Air Patrol, Maxwell AFB, AL.

    The feats of individuals who have made history in the aerospace world are often misunderstood and soon ignored or forgotten after the first notoriety has been achieved. Amelia Earhart was selected as the subject for this learning packet because of her brilliant accomplishments on the world of flight, a persistent desire to determine what really…

  15. Music Workshop Packet.

    ERIC Educational Resources Information Center

    Wilson, Dorothy; And Others

    Designed for administrators promoting music workshops for teachers, the packet presents a general workshop framework used by California Public Schools. Eight recommendations for planning a 30-hour workshop, and 12 hints for working with classroom teachers are listed. Each of the 15 sessions represents a two-hour block of time representing the…

  16. Information Packet on Parents.

    ERIC Educational Resources Information Center

    Moore, Jean J.; And Others

    The packet is designed to aid State Directors of Special Education in the Southwest Region in the development, initiation, implementation, or refinement of procedural safeguards for parents and children, with a specific focus on communication between parents of special needs children and state or local education agencies. A matrix outlines…

  17. Hoover Dam Learning Packet.

    ERIC Educational Resources Information Center

    Bureau of Reclamation (Dept. of Interior), Washington, DC.

    This learning packet provides background information about Hoover Dam (Nevada) and the surrounding area. Since the dam was built at the height of the Depression in 1931, people came from all over the country to work on it. Because of Hoover Dam, the Colorado River was controlled for the first time in history and farmers in Nevada, California, and…

  18. PROGRAMMED LEARNING PACKET.

    ERIC Educational Resources Information Center

    Modern Language Association of America, New York, NY.

    MATERIALS CONCERNING PROGRAMED INSTRUCTION IN FOREIGN LANGUAGES, PUBLISHED FROM 1960 TO 1967, ARE COLLECTED IN THIS PACKET FOR LANGUAGE TEACHERS AND PERSONS INTERESTED IN THE FUTURE USES OF THE LANGUAGE LABORATORY. INCLUDED ARE--(1) "PROGRAMED LEARNING OF A SECOND LANGUAGE" BY HARLAN LANE, (2) "A PRIMER OF PROGRAMED INSTRUCTION IN FOREIGN LANGUAGE…

  19. Kazimir Malevich Teaching Packet.

    ERIC Educational Resources Information Center

    Wisotzki, Paula; Freifeld, Susan

    The resources of this packet provide an overview of the career of Kazimir Malevich, (1878-1935), a Russian painter from Kiev (Ukraine) and a leader in geometric abstraction who developed a style called "Suprematism." Influences on and innovations of Malevich's art are examined, and his art is related to the historical and cultural context in…

  20. Packet Radio for Library Automation.

    ERIC Educational Resources Information Center

    Brownrigg, Edwin B.; And Others

    1984-01-01

    This tutorial on packet radio (communication system using radio and digital packet-switching technology) highlights radio transmission of data, brief history, special considerations in applying packet radio to library online catalogs, technology, defining protocol at physical and network levels, security, geographic coverage, and components. (A…

  1. Packet transport network in metro

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Yi, Xiaobo; Zhang, Hanzheng; Gong, Ping

    2008-11-01

    IP packet based services such as high speed internet, IP voice and IP video will be widely deployed in telecom network, which make transport network evolution to packet transport network. Characteristics of transport network and requirements of packet transport network are analyzed, T-MPLS/MPLS-TP based PTN technology is given and it will be used in metro (access, aggregation and core) network.

  2. Packet speech systems technology

    NASA Astrophysics Data System (ADS)

    Weinstein, C. J.; Blankenship, P. E.

    1982-09-01

    The long-range objectives of the Packet Speech Systems Technology Program are to develop and demonstrate techniques for efficient digital speech communications on networks suitable for both voice and data, and to investigate and develop techniques for integrated voice and data communication in packetized networks, including wideband common-user satellite links. Specific areas of concern are: the concentration of statistically fluctuating volumes of voice traffic, the adaptation of communication strategies to varying conditions of network links and traffic volume, and the interconnection of wideband satellite networks to terrestrial systems. Previous efforts in this area have led to new vocoder structures for improved narrowband voice performance and multiple-rate transmission, and to demonstrations of conversational speech and conferencing on the ARPANET and the Atlantic Packet Satellite Network. The current program has two major thrusts: i.e., the development and refinement of practical low-cost, robust, narrowband, and variable-rate speech algorithms and voice terminal structures; and the establishment of an experimental wideband satellite network to serve as a unique facility for the realistic investigation of voice/data networking strategies.

  3. Optical packet switching

    NASA Astrophysics Data System (ADS)

    Shekel, Eyal; Ruschin, Shlomo; Majer, Daniel; Levy, Jeff; Matmon, Guy; Koenigsberg, Lisa; Vecht, Jacob; Geron, Amir; Harlavan, Rotem; Shfaram, Harel; Arbel, Arnon; McDermott, Tom; Brewer, Tony

    2005-02-01

    We report here a scalable, multichassis, 6.3 terabit core router, which utilizes our proprietary optical switch. The router is commercially available and deployed in several customer sites. Our solution combines optical switching with electronic routing. An internal optical packet switching network interconnects the router"s electronic line cards, where routing and buffering functions take place electronically. The system architecture and performance will be described. The optical switch is based on Optical Phased Array (OPA) technology. It is a 64 x 64, fully non-blocking, optical crossbar switch, capable of switching in a fraction of a nanosecond. The basic principles of operation will be explained. Loss and crosstalk results will be presented, as well as the results of BER measurements of a 160 Gbps transmission through one channel. Basic principles of operation and measured results will be presented for the burst-mode-receivers, arbitration algorithm and synchronization. Finally, we will present some of our current research work on a next-generation optical switch. The technological issues we have solved in our internal optical packet network can have broad applicability to any global optical packet network.

  4. Quantum dynamics with real wave packets, including application to three-dimensional (J=0)D+H{sub 2}{r_arrow}HD+H reactive scattering

    SciTech Connect

    Gray, S.K.; Balint-Kurti, G.G.

    1998-01-01

    We show how to extract {bold S} matrix elements for reactive scattering from just the real part of an evolving wave packet. A three-term recursion scheme allows the real part of a wave packet to be propagated without reference to its imaginary part, so {bold S} matrix elements can be calculated efficiently. Our approach can be applied not only to the usual time-dependent Schr{umlt o}dinger equation, but to a modified form with the Hamiltonian operator {cflx H} replaced by f({cflx H}), where f is chosen for convenience. One particular choice for f, a cos{sup {minus}1} mapping, yields the Chebyshev iteration that has proved to be useful in several other recent studies. We show how reactive scattering can be studied by following time-dependent wave packets generated by this mapping. These ideas are illustrated through calculation of collinear H+H{sub 2}{r_arrow}H{sub 2}+H and three-dimensional (J=0)D+H{sub 2}{r_arrow}HD+D reactive scattering probabilities on the Liu{endash}Siegbahn{endash}Truhlar{endash}Horowitz (LSTH) potential energy surface. {copyright} {ital 1998 American Institute of Physics.}

  5. Packet Daemon Version 12(SOPHIA)

    Energy Science and Technology Software Center (ESTSC)

    2012-08-09

    Packet Daemon Version 12 is the code exclusively used by the ‘packetd’ executable. It provides packet data to the OglNet Version 12 visualization tool. It reads PCAP data and sends an abstraction of the packets to the ‘oglnet’ executable for display. ‘packetd’will run as a service on a Linux host thereby capturing data continuously and make that data available for ‘oglnet’ whenever it connects to the service.

  6. Charles A. Lindbergh Learning Packet.

    ERIC Educational Resources Information Center

    Rodriguez, Charley

    This aerospace education learning packet contains information about the famous pilot, Charles A. Lindbergh. Posters, recommended teaching methods, tests with keys, and task cards are also included. (KHR)

  7. Selection of ionization paths of K2 on superfluid helium droplets by wave packet interference

    NASA Astrophysics Data System (ADS)

    Hild, Marek Bastian; Dufour, Adrien; Achazi, Georg; Patas, Alexander; Scheier, Paul; Lindinger, Albrecht

    2016-08-01

    We report on the control of wave packet dynamics for the ionization of K2 attached to the surface of superfluid helium droplets. The superfluid helium matrix acts as a heat sink and reduces the coherence time of molecular processes by dissipation. We use tailor-shaped pulses in order to activate or inhibit different ionization paths by constructive or destructive wave packet interference. A drastic change of the wave packet dynamics is observed by shifting the phase between the exciting sub pulses.

  8. Time-dependent wave-packet quantum dynamics study of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction: including the coriolis coupling.

    PubMed

    Yao, Cui-Xia; Zhang, Pei-Yu

    2014-07-10

    The dynamics of the Ne + D2(+) (v0 = 0-2, j0 = 0) → NeD(+) + D reaction has been investigated in detail by using an accurate time-dependent wave-packet method on the ground 1(2)A' potential energy surface. Comparisons between the Coriolis coupling results and the centrifugal-sudden ones reveal that Coriolis coupling effect can influence reaction dynamics of the NeD2(+) system. Integral cross sections have been evaluated for the Ne + D2(+) reaction and its isotopic variant Ne + H2(+), and a considerable intermolecular isotopic effect has been found. Also obvious is the great enhancement of the reactivity due to the reagent vibrational excitation. Besides, a comparison with previous theoretical results is also presented and discussed. PMID:24949528

  9. Tropical Animal Tour Packet. Metro.

    ERIC Educational Resources Information Center

    Metro Washington Park Zoo, Portland, OR. Educational Services Div.

    This packet is designed to assist teachers in creating a tropical animals lesson plan that centers around a visit to the zoo. A teacher packet is divided into eight parts: (1) goals and objectives; (2) what to expect at the zoo; (3) student activities (preparatory activities, on-site activities, and follow-up activities); (4) background…

  10. Vocational and Industrial Arts Packets.

    ERIC Educational Resources Information Center

    Maine Audubon Society, Falmouth.

    This book is a teacher's guide to energy alternatives. It is divided into seven informational packets on the following topics: parabolic solar concentrators, solar flat plate collectors, wood as fuel, heat loss, bio-gas, wind, and water. Each packet contains background information for the teachers and learning activities for the students. The…

  11. Dropout Prevention. An Introductory Packet.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Center for Mental Health Schools.

    This packet contains materials and lists resources to help those concerned with preventing students from dropping out of school. The packet begins with excerpts from a report prepared by the American Institutes for Research (Robert J. Rossi and others) on the "Evaluation of Projects Funded by the School Dropout Demonstration Assistance Program."…

  12. Data-Bank Resource Packets.

    ERIC Educational Resources Information Center

    Old Sturbridge Village, Sturbridge, MA. Museum Education Dept.

    Primary sources such as diaries and census data from early nineteenth-century Sturbridge Village, Massachusetts are the basis for this set of resource packets. These supplementary packets, adaptable to various grade levels, help students explore questions about the pace of work in a rural society, the role of individuals in a farm family,…

  13. Experience with the EURECA Packet Telemetry and Packet Telecommand system

    NASA Astrophysics Data System (ADS)

    Sorensen, Erik Mose; Ferri, Paolo

    1994-11-01

    The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.

  14. Experience with the EURECA Packet Telemetry and Packet Telecommand system

    NASA Technical Reports Server (NTRS)

    Sorensen, Erik Mose; Ferri, Paolo

    1994-01-01

    The European Retrieval Carrier (EURECA) was launched on its first flight on the 31st of July 1992 and retrieved on the 29th of June 1993. EURECA is characterized by several new on-board features, most notably Packet telemetry, and a partial implementation of packet telecommanding, the first ESA packetised spacecraft. Today more than one year after the retrieval the data from the EURECA mission has to a large extent been analysed and we can present some of the interesting results. This paper concentrates on the implementation and operational experience with the EURECA Packet Telemetry and Packet Telecommanding. We already discovered during the design of the ground system that the use of packet telemetry has major impact on the overall design and that processing of packet telemetry may have significant effect on the computer loading and sizing. During the mission a number of problems were identified with the on-board implementation resulting in very strange anomalous behaviors. Many of these problems directly violated basic assumptions for the design of the ground segment adding to the strange behavior. The paper shows that the design of a telemetry packet system should be flexible enough to allow a rapid configuration of the telemetry processing in order to adapt it to the new situation in case of an on-board failure. The experience gained with the EURECA mission control should be used to improve ground systems for future missions.

  15. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1995-04-18

    An instrument is disclosed for the measurement of vacuum within sealed packets, the packets having a wall that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head. 4 figs.

  16. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1995-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 that it can be deformed by the application of an external dynamic vacuum to an area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. A change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the dynamic vacuum applied through the head be to achieve this initiation of movement is equal to the vacuum within the packet 12. In a preferred embodiment a vacuum plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A vacuum can be applied to a recess in this vacuum plate, the value of which can be used to calibrate the vacuum transducer in the detector head.

  17. High speed packet switching

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document constitutes the final report prepared by Proteon, Inc. of Westborough, Massachusetts under contract NAS 5-30629 entitled High-Speed Packet Switching (SBIR 87-1, Phase 2) prepared for NASA-Greenbelt, Maryland. The primary goal of this research project is to use the results of the SBIR Phase 1 effort to develop a sound, expandable hardware and software router architecture capable of forwarding 25,000 packets per second through the router and passing 300 megabits per second on the router's internal busses. The work being delivered under this contract received its funding from three different sources: the SNIPE/RIG contract (Contract Number F30602-89-C-0014, CDRL Sequence Number A002), the SBIR contract, and Proteon. The SNIPE/RIG and SBIR contracts had many overlapping requirements, which allowed the research done under SNIPE/RIG to be applied to SBIR. Proteon funded all of the work to develop new router interfaces other than FDDI, in addition to funding the productization of the router itself. The router being delivered under SBIR will be a fully product-quality machine. The work done during this contract produced many significant findings and results, summarized here and explained in detail in later sections of this report. The SNIPE/RIG contract was completed. That contract had many overlapping requirements with the SBIR contract, and resulted in the successful demonstration and delivery of a high speed router. The development that took place during the SNIPE/RIG contract produced findings that included the choice of processor and an understanding of the issues surrounding inter processor communications in a multiprocessor environment. Many significant speed enhancements to the router software were made during that time. Under the SBIR contract (and with help from Proteon-funded work), it was found that a single processor router achieved a throughput significantly higher than originally anticipated. For this reason, a single processor router was

  18. Threatened and Endangered Species: Tour Packet.

    ERIC Educational Resources Information Center

    Coats, Victoria; Samia, Cory

    This resource unit contains a teacher information packet and a middle school student activity packet to be used in creating a threatened and endangered species unit. The packet of student activities is designed to help maximize a field trip to the zoo and build on students' zoo experience in the classroom. The teacher information packet covers the…

  19. Packet flow monitoring tool and method

    DOEpatents

    Thiede, David R [Richland, WA

    2009-07-14

    A system and method for converting packet streams into session summaries. Session summaries are a group of packets each having a common source and destination internet protocol (IP) address, and, if present in the packets, common ports. The system first captures packets from a transport layer of a network of computer systems, then decodes the packets captured to determine the destination IP address and the source IP address. The system then identifies packets having common destination IP addresses and source IP addresses, then writes the decoded packets to an allocated memory structure as session summaries in a queue.

  20. Short-time Chebyshev wave packet method for molecular photoionization

    NASA Astrophysics Data System (ADS)

    Sun, Zhaopeng; Zheng, Yujun

    2016-08-01

    In this letter we present the extended usage of short-time Chebyshev wave packet method in the laser induced molecular photoionization dynamics. In our extension, the polynomial expansion of the exponential in the time evolution operator, the Hamiltonian operator can act on the wave packet directly which neatly avoids the matrix diagonalization. This propagation scheme is of obvious advantages when the dynamical system has large Hamiltonian matrix. Computational simulations are performed for the calculation of photoelectronic distributions from intense short pulse ionization of K2 and NaI which represent the Born-Oppenheimer (BO) model and Non-BO one, respectively.

  1. The throughput of packet broadcasting channels

    NASA Technical Reports Server (NTRS)

    Abramson, N.

    1977-01-01

    A unified presentation of packet broadcasting theory is presented. Section II introduces the theory of packet broadcasting data networks. Section III provides some theoretical results on the performance of a packet broadcasting network when users have a variety of data rates. Section IV deals with packet broadcasting networks distributed in space, and in Section V some properties of power-limited packet broadcasting channels are derived, showing that the throughput of such channels can approach that of equivalent point-to-point channels.

  2. Charge packets modeling in polyethylene

    NASA Astrophysics Data System (ADS)

    Baudoin, F.; Laurent, C.; Teyssedre, G.; Le Roy, S.

    2014-04-01

    Charge packets in insulating polymers have been reported by many groups within the last two decades, especially in polyethylene-based materials. They consist in a pulse of net charge that remains in the form of a pulse as it crosses the insulation. In spite of a variety of characteristics depending on material properties and experimental conditions, one of the puzzling aspects of the packets is their repetitive character until they eventually die away. Several theories have been proposed to explain their formation and propagation. Two of them have the advantage of simplicity and of being physically based, being the existence of an hysteresis loop in the injection mechanism or a negative differential mobility of carriers with the electric field. Based on these descriptions, some progress has been done recently by discussing the shape of the packets during their propagation but none of the concepts has been incorporated into a transport model to describe the full evolution from the packet generation to their vanishing. Here, we used a simplified transport model featuring bipolar charge injection and transport coupled to specific conditions in charge injection or carrier mobility to reproduce experimental results. One of the salient features of the results is that both models are able to reproduce the repetitive character and the dying away of the packets that appear to be linked with the internal field distribution modulated by a bipolar space charge.

  3. Nonlinear wave packet interferometry and molecular state reconstruction

    NASA Astrophysics Data System (ADS)

    Humble, Travis Selby

    Nonlinear wave packet interferometry (WPI) uses two phase-locked pulse-pairs to excite a molecular electronic population and measures those contributions arising from a one-pulse nuclear wave packet overlapping with a three-pulse nuclear wave packet. The interferogram quantifies the wave-packet interference at the probability-amplitude level and, with knowledge of the three-pulse (reference) wave packets, enables reconstruction of the one-pulse (target) wave packet. In one-color nonlinear WPI, both pulse-pairs resonate with the same electronic transition and the interferogram measures a sum of wave-packet overlaps. Experimental conditions often minimize mixing of these overlaps and hence permit molecular state reconstruction, as demonstrated by numerical calculations for model harmonic and photodissociative systems. Yet, a one-color reconstruction technique requires information about the Hamiltonian under which the target and reference states propagate. The latter knowledge obviates the practical need for experimental state determination, since computational methods are then a viable, alternative solution. Two-color nonlinear WPI, in which the pulse-pairs drive different electronic transitions, circumvents the need for information about the target-state Hamiltonian by using an auxiliary electronic level for preparing the reference states. Furthermore, in a two-color experiment, the interferogram measures a single wave-packet overlap, definitely identifying the information necessary for molecular state reconstruction. These features suggest two-color nonlinear WPI could serve as a diagnostic tool for identifying optically-controlled, yet unknown, molecular dynamics. Simulations for model systems and the lithium dimer demonstrate that target states can be reconstructed in the presence of signal noise, thermal mixtures, and rovibrational coupling and in the absence of information about the target-state Hamiltonian. In the presence of electronic-energy transfer, the

  4. Packet switching in 1990's

    NASA Astrophysics Data System (ADS)

    Rybczynski, A.

    The author assesses wide-area networking end-user needs as they evolve into the 1990s. He then turns to the network operator environment, both public and private, by examining service evolution trends. The author concludes with an assessment of how packet switching services and technologies are evolving to continue to match the identified market requirements, with specific emphasis on Northern Telecom's DPN Data Networking System. Key evolving DPN capabilities include the introduction of the high-end DPN100 30-kb/s switch, a variety of access options including ISDN (integrated services digital network) packet mode services, higher throughput virtual circuits, megabit trunking for improved network throughput and end-user transit delay, and SNA session switching, the latter being an example of adding value to packet networking through communication processing.

  5. Packet Controller For Wireless Headset

    NASA Technical Reports Server (NTRS)

    Christensen, Kurt K.; Swanson, Richard J.

    1993-01-01

    Packet-message controller implements communications protocol of network of wireless headsets. Designed for headset application, readily adapted to other uses; slight modification enables controller to implement Integrated Services Digital Network (ISDN) X.25 protocol, giving far-reaching applications in telecommunications. Circuit converts continuous voice signals into digital packets of data and vice versa. Operates in master or slave mode. Controller reduced to single complementary metal oxide/semiconductor integrated-circuit chip. Occupies minimal space in headset and consumes little power, extending life of headset battery.

  6. Sports Medicine. Clinical Rotation. Instructor's Packet and Student Study Packet.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Extension Instruction and Materials Center.

    The materials in this packet are for a course designed to provide individualized classroom study for a specific area of clinical rotation--sports medicine. The instructor's manual describes the learning objectives together with a list of reference materials that should be provided for completion of the student worksheets, and lists suggested…

  7. Entropy Based Detection of DDoS Attacks in Packet Switching Network Models

    NASA Astrophysics Data System (ADS)

    Lawniczak, Anna T.; Wu, Hao; di Stefano, Bruno

    Distributed denial-of-service (DDoS) attacks are network-wide attacks that cannot be detected or stopped easily. They affect “natural” spatio-temporal packet traffic patterns, i.e. “natural distributions” of packets passing through the routers. Thus, they affect “natural” information entropy profiles, a sort of “fingerprints”, of normal packet traffic. We study if by monitoring information entropy of packet traffic through selected routers one may detect DDoS attacks or anomalous packet traffic in packet switching network (PSN) models. Our simulations show that the considered DDoS attacks of “ping” type cause shifts in information entropy profiles of packet traffic monitored even at small sets of routers and that it is easier to detect these shifts if static routing is used instead of dynamic routing. Thus, network-wide monitoring of information entropy of packet traffic at properly selected routers may provide means for detecting DDoS attacks and other anomalous packet traffics.

  8. A robust coding scheme for packet video

    NASA Technical Reports Server (NTRS)

    Chen, Yun-Chung; Sayood, Khalid; Nelson, Don J.

    1992-01-01

    A layered packet video coding algorithm based on a progressive transmission scheme is presented. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.

  9. Environment Resource Packets Get Wide Use

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Announces the availability of the resource packet entitled "Noise Pollution," the third in the series prepared by the University of Maryland, and the main topics which will be covered in the remaining three packets. (CC)

  10. A robust coding scheme for packet video

    NASA Technical Reports Server (NTRS)

    Chen, Y. C.; Sayood, Khalid; Nelson, D. J.

    1991-01-01

    We present a layered packet video coding algorithm based on a progressive transmission scheme. The algorithm provides good compression and can handle significant packet loss with graceful degradation in the reconstruction sequence. Simulation results for various conditions are presented.

  11. New packet scheduling algorithm in wireless CDMA data networks

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Gao, Zhuo; Li, Shaoqian; Li, Lemin

    2002-08-01

    The future 3G/4G wireless communication systems will provide internet access for mobile users. Packet scheduling algorithms are essential for QoS of diversified data traffics and efficient utilization of radio spectrum.This paper firstly presents a new packet scheduling algorithm DSTTF under the assumption of continuous transmission rates and scheduling intervals for CDMA data networks . Then considering the constraints of discrete transmission rates and fixed scheduling intervals imposed by the practical system, P-DSTTF, a modified version of DSTTF, is brought forward. Both scheduling algorithms take into consideration of channel condition, packet size and traffic delay bounds. The extensive simulation results demonstrate that the proposed scheduling algorithms are superior to some typical ones in current research. In addition, both static and dynamic wireless channel model of multi-level link capacity are established. These channel models sketch better the characterizations of wireless channel than two state Markov model widely adopted by the current literature.

  12. Information Packet on Surrogate Parents.

    ERIC Educational Resources Information Center

    Moore, Jean J.; Mason, Doris M.

    The information packet focuses on the role of the surrogate parent with emphasis on the rights of the handicapped child as mandated by P.L. 94-142, the Education for All Handicapped Children Act. Included are the following: a discussion of 10 surrogate parent issues identified through a literature search and survey of five states (Connecticut,…

  13. Recycling Study Guide [Resource Packet].

    ERIC Educational Resources Information Center

    Wisconsin State Dept. of Natural Resources, Madison.

    This resource packet contains six documents developed by the Wisconsin Department of Natural Resources in order to help teachers infuse the environmental education topics of recycling and solid waste into social studies, art, English, health, mathematics, science, and environmental education classes. "Recycling Study Guide" contains 19 activities…

  14. Hunger and Development [Issue Packet].

    ERIC Educational Resources Information Center

    American Freedom from Hunger Foundation, Washington, DC.

    A variety of informational materials is compiled in this issue packet concentrating on hunger and development. They have been assembled to understand the issues associated with the facts of world hunger and to try to invent new forms of action and thought necessary to find the possibilities hidden in the hunger issue. Items include: (1) a fact and…

  15. AIME Copyright Information Packet. Revised.

    ERIC Educational Resources Information Center

    Association for Information Media and Equipment, Elkader, IA.

    Designed to assist educators in developing or revising school/library copyright policy, this packet provides the following materials: (1) a viewer's guide for the film "Copyright Law: What Every School, College, and Public Library Should Know"; (2) a statement of the primary missions of the Association for Information Media and Equipment (AIME);…

  16. Rural Electric Youth Tour Packet.

    ERIC Educational Resources Information Center

    National Rural Electric Cooperative Association, Washington, DC.

    This packet of materials provides information about tours for rural secondary students in Washington, D.C., sponsored jointly by the National Rural Electric Cooperative Association (NRECA), state rural electric cooperatives, and statewide associations of rural electric systems. Since 1958 this program has selected high school students to visit…

  17. Dissection & Science Fairs. [Information Packet.

    ERIC Educational Resources Information Center

    National Anti-Vivisection Society, Chicago, IL.

    This collection of pamphlets and articles reprinted from other National Anti-Vivisection Society (NAVS) publications was compiled to address the issues of classroom laboratory dissection and the use of animals in science fair projects. Three of the pamphlets contained in this packet are student handbooks designed to help students of elementary,…

  18. Laryngeal obstruction by heroin packets.

    PubMed

    Colombage, Senarath M

    2003-06-01

    A 28-year-old healthy man collapsed while being arrested by the police for alleged possession of heroin and was found dead on admission to the hospital. Autopsy revealed complete occlusion of the laryngeal opening by a cellophane bag containing 24 packets of heroin powder. PMID:12773851

  19. Ancient Chinese Bronzes: Teacher's Packet.

    ERIC Educational Resources Information Center

    Smithsonian Institution, Washington, DC. Arthur M. Sackler Gallery.

    The focus of this teacher's packet is the bronze vessels made for the kings and great families of the early Chinese dynasties between 1700 B.C. and 200 A.D. The materials in the guide are intended for use by teachers and students visiting the exhibition, "The Arts of China," at the Arthur M. Sackler Gallery of the Smithsonian Institution in…

  20. Population and Development [Issue Packet].

    ERIC Educational Resources Information Center

    American Freedom from Hunger Foundation, Washington, DC.

    A variety of informational materials is compiled in this issue packet concentrating on population and development. The materials have been assembled to understand the issues associated with the facts of the world's population and to try to invent new forms of action and thought necessary to find the possibilities hidden in the population issue.…

  1. Packet Radio: An Alternative Way to Connect.

    ERIC Educational Resources Information Center

    Lucas, Larry W.

    1995-01-01

    Explains packet radio as a form of telecomputing in which digital data is transported via radio waves instead of telephone lines or other cabling, and describes how it can be used by students to access the Internet. Highlights include packet bulletin board systems and equipment needed for a packet radio station. (LRW)

  2. [KIND Worksheet Packet: Wild Animals (Senior).

    ERIC Educational Resources Information Center

    National Association for Humane and Environmental Education, East Haddam, CT.

    This packet is the senior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense) Teacher."…

  3. Trade Related Reading Packets for Disabled Readers.

    ERIC Educational Resources Information Center

    Davis, Beverly; Woodruff, Nancy S.

    Six trade-related reading packets for disabled readers are provided for these trades: assemblers, baking, building maintenance, data entry, interior landscaping, and warehousing. Each packet stresses from 9 to 14 skills. Those skills common to most packets include context clues, fact or opinion, details, following directions, main idea,…

  4. [KIND Worksheet Packet: Wild Animals (Junior).

    ERIC Educational Resources Information Center

    National Association for Humane and Environmental Education, East Haddam, CT.

    This packet is the junior part of a series of worksheet packets available at both junior (grades 3-4) and senior (grades 5-6) levels that covers a variety of humane and environmental topics. Each packet includes 10 worksheets, all of which originally appeared in past issues of the annual teaching magazine "KIND (Kids in Nature's Defense) Teacher."…

  5. Universal potential-barrier penetration by initially confined wave packets

    SciTech Connect

    Granot, Er'el; Marchewka, Avi

    2007-07-15

    The dynamics of an initially sharp-boundary wave packet in the presence of an arbitrary potential barrier is investigated. It is shown that the penetration through the barrier is universal in the sense that it depends only on the values of the wave function and its derivatives at the boundary. The dependence on the derivatives vanishes at long distances from the barrier, where the dynamics is governed solely by the initial value of the wave function at the boundary.

  6. Exploring multiple degrees of freedom in Rydberg wave packets

    NASA Astrophysics Data System (ADS)

    Wen, Haidan

    2006-12-01

    Recent advances in the study of Rydberg atoms have focused on the control, manipulation and detection of Rydberg wave packets using novel external fields such as half-cycle pulses. The radial degree of freedom has been controlled and used to process information encoded in Rydberg states. However, these previous experiments make use of only a single degree of freedom, restricting the potential of other degrees of freedom for quantum computing in Rydberg atoms. In this dissertation, we explore the control and detection of other degrees of freedom in an electron wave packet, such as the angular momentum quantum number ℓ, the magnetic quantum number m and the electron spin; so that the full range of quantum numbers can participate in information processing. We first propose an interferometric control of the population of angular momentum states using two time-delayed phase-locked ultrafast laser pulses. The population of arbitrary angular momentum states can be greatly enhanced by optimizing the time delay and the relative phases between two laser pulses. We then qualitatively measure the evolution of angular momentum components in Stark wave packets by a weak half-cycle pulse (HCP). This measurement utilizes a time-delayed HCP and is proved to be effective for detecting various aspects of wave packet dynamics, particularly, the evolution of non-stationary states. The technique relies on the fact that the HCP redistributes the eigenstate populations and induced the population variation which reflects the evolution of eigenstate phases. Finally, we find that the dynamics of m-states could be highly correlated with the internal degree of freedom of the electron, the spin. We study the effect of spin-orbit coupling on the wave packet dynamics and observe the angular precession of a Rydberg wave packet. The population redistribution from p to s states is highly sensitive to the polarization of the HCP and changes with the precession of the electron orbit. We obtain the

  7. Wave packet propagation across barriers by semiclassical initial value methods

    NASA Astrophysics Data System (ADS)

    Petersen, Jakob; Kay, Kenneth G.

    2015-07-01

    Semiclassical initial value representation (IVR) formulas for the propagator have difficulty describing tunneling through barriers. A key reason is that these formulas do not automatically reduce, in the classical limit, to the version of the Van Vleck-Gutzwiller (VVG) propagator required to treat barrier tunneling, which involves trajectories that have complex initial conditions and that follow paths in complex time. In this work, a simple IVR expression, that has the correct tunneling form in the classical limit, is derived for the propagator in the case of one-dimensional barrier transmission. Similarly, an IVR formula, that reduces to the Generalized Gaussian Wave Packet Dynamics (GGWPD) expression [D. Huber, E. J. Heller, and R. Littlejohn, J. Chem. Phys. 89, 2003 (1988)] in the classical limit, is derived for the transmitted wave packet. Uniform semiclassical versions of the IVR formulas are presented and simplified expressions in terms of real trajectories and WKB penetration factors are described. Numerical tests show that the uniform IVR treatment gives good results for wave packet transmission through the Eckart and Gaussian barriers in all cases examined. In contrast, even when applied with the proper complex trajectories, the VVG and GGWPD treatments are inaccurate when the mean energy of the wave packet is near the classical transmission threshold. The IVR expressions for the propagator and wave packet are cast as contour integrals in the complex space of initial conditions and these are generalized to potentially allow treatment of a larger variety of systems. A steepest descent analysis of the contour integral formula for the wave packet in the present cases confirms its relationship to the GGWPD method, verifies its semiclassical validity, and explains results of numerical calculations.

  8. Group-normalized wavelet packet signal processing

    NASA Astrophysics Data System (ADS)

    Shi, Zhuoer; Bao, Zheng

    1997-04-01

    Since the traditional wavelet and wavelet packet coefficients do not exactly represent the strength of signal components at the very time(space)-frequency tilling, group- normalized wavelet packet transform (GNWPT), is presented for nonlinear signal filtering and extraction from the clutter or noise, together with the space(time)-frequency masking technique. The extended F-entropy improves the performance of GNWPT. For perception-based image, soft-logic masking is emphasized to remove the aliasing with edge preserved. Lawton's method for complex valued wavelets construction is extended to generate the complex valued compactly supported wavelet packets for radar signal extraction. This kind of wavelet packets are symmetry and unitary orthogonal. Well-defined wavelet packets are chosen by the analysis remarks on their time-frequency characteristics. For real valued signal processing, such as images and ECG signal, the compactly supported spline or bi- orthogonal wavelet packets are preferred for perfect de- noising and filtering qualities.

  9. Ingestion of Laundry Detergent Packets in Children.

    PubMed

    Shah, Lindsey Wilson

    2016-08-01

    Ingestion of laundry detergent packets is an important threat to young children. Because of their developmental stage, toddlers are prone to place these small, colorful packets in their mouths. The packets can easily burst, sending a large volume of viscous, alkaline liquid throughout the oropharynx. Ingestion causes major toxic effects, including depression of the central nervous system, metabolic acidosis, respiratory distress, and dysphagia. Critical care nurses should anticipate these clinical effects and facilitate prompt intervention. Increased understanding of the risks and clinical effects of ingestion of laundry detergent packets will better prepare critical care nurses to provide care for these children. (Critical Care Nurse 2016; 36[4]:70-75). PMID:27481804

  10. Software For Management Of A Packet-Radio Network

    NASA Technical Reports Server (NTRS)

    Smyth, Patrick J.; Chauvin, Todd H.; Oliver, Gordon P.; Statman, Joseph I.

    1994-01-01

    Network-management software assists in planning, monitoring, and controlling resources of Datalink network. Packet-message network featuring time-division multiple access, frequency and spatial diversity, and dynamic tree-structured routing scheme. Developed for communication between central control station on ground and instrumented aircraft flying over test range. Aircraft derives navigational data from satellites of Global Positioning System, and primary function of Datalink network feeding GPS position data from participating aircraft into control center in real time.

  11. Radio-parameter selection algorithm for receiver-directed packet-radio networks (SRNTN-73)

    NASA Astrophysics Data System (ADS)

    Escobar, Julio

    The Parameter Selection Algorithm for the SURAP 4 packet radio network and the basis for its design is described. A Semi-Markov model of the algorithm operation is presented. The algorithm adaptively adjusts three radio parameters: transmitter power, FEC coding rate, and channel bit rate. These parameters can increase the perceived signal-to-noise ratio on the channel and are treated as gain mechanisms. The algorithm must maintain robust radio links between nodes whenever possible, while minimizing interference with other network transmissions. We present one heuristic approach to balancing these two goals. This approach uses barely sufficient gain to maintain the packet error probability below an acceptable threshold value. A threshold probability of 0.1 was chosen. Bit error statistics provided by the sequential decoder and error feedback packets assist the process of determining the appropriate change of gain as noise levels vary. The algorithm can adapt at a fast rate, sometimes on the order of one packet time. It maintains acceptable packet error probability and can recover from estimation and decision errors. A Semi-Markov model can be used to compute the steady state packet error probability and packet transmission overhead due to noise. The model is general enough to include a stationary model of transceiver blocking probability, dynamic CDMA interference, and alternative algorithms based on similar operating principles. Although the model does not incorporate bit error statistic, a way is proposed to model the effect of these statistic without compromising the simplicity of the semi-Markov description.

  12. Oral Hygiene. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This instructor's packet accompanies the learning activity package (LAP) on oral hygiene. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, suggested activities, additional resources (student handouts), student performance checklists for both…

  13. Archaeology: Smithsonian Institution Teacher's Resource Packet.

    ERIC Educational Resources Information Center

    National Museum of Natural History, Washington, DC.

    This archaeology resource packet provides information on frequently asked questions of the National Museum of Natural History (Smithsonian Institution), including the topics of: (1) career information; (2) excavation; (3) fieldwork opportunities; (4) artifact identification; and (5) preservation. The packet is divided into six sections. Section 1…

  14. Energy Conservation Activity Packet, Grade 5.

    ERIC Educational Resources Information Center

    Bakke, Ruth

    This activity packet for grade 5 is one of a series developed in response to concern for energy conservation. It contains activities that stress an energy conservation ethic and includes many values clarification activities for grade five. The packet is divided into two parts and provides the teacher with background information, concepts and…

  15. Extending Learning: Reading Packets for ESL Students

    ERIC Educational Resources Information Center

    Bourret, Chris

    2009-01-01

    The article describes how the author explores the use of out-of-school "reading packets" as a new learning option for adult English for Speakers of Other Languages (ESOL) students. Since their spring 2008 debut, take-home packets have evolved into folders of pleasurable reading materials that high-beginner and intermediate ESOL students explore…

  16. Bad data packet capture device

    DOEpatents

    Chen, Dong; Gara, Alan; Heidelberger, Philip; Vranas, Pavlos

    2010-04-20

    An apparatus and method for capturing data packets for analysis on a network computing system includes a sending node and a receiving node connected by a bi-directional communication link. The sending node sends a data transmission to the receiving node on the bi-directional communication link, and the receiving node receives the data transmission and verifies the data transmission to determine valid data and invalid data and verify retransmissions of invalid data as corresponding valid data. A memory device communicates with the receiving node for storing the invalid data and the corresponding valid data. A computing node communicates with the memory device and receives and performs an analysis of the invalid data and the corresponding valid data received from the memory device.

  17. Future directions in packet radio architectures and protocols

    NASA Astrophysics Data System (ADS)

    Shacham, Nachum; Westcott, Jil

    1987-01-01

    The technology of packet switching over multihop, multiple-access channels has evolved to the point at which its protocols can now support internetwork operation of medium-size networks whose nodes possess some degree of mobility. As regards the needs and challenges of the future operating environment, it is clear that these can be met only by enhancing the packet radio architecture and its protocols. Several enhancements that allow the organization of large, dynamic networks that can operate over multiple channels, adapt to varying conditions, and possess self-monitoring and self-control capabilities are discussed. As these areas are examined, the attendant issues and tradeoffs are discussed; in addition, some protocols and information regarding their performance are presented.

  18. Exciton-polariton localized wave packets in a microcavity

    NASA Astrophysics Data System (ADS)

    Voronych, Oksana; Buraczewski, Adam; Matuszewski, MichałÂ; Stobińska, Magdalena

    2016-06-01

    We investigate the possibility of creating X waves, or localized wave packets, in resonantly excited exciton-polariton superfluids. We demonstrate the existence of X-wave traveling solutions in the coupled exciton-photon system past the inflection point, where the effective mass of lower polaritons is negative in the direction perpendicular to the wave vector of the pumping beam. Contrary to the case of bright solitons, X waves do not require nonlinearity for sustaining their shape. Nevertheless, we show that nonlinearity is important for their dynamics, as it allows for their spontaneous formation from an initial Gaussian wave packet. Unique properties of exciton-polaritons may lead to applications of their X waves in long-distance signal propagation inside novel integrated optoelectronic circuits based on excitons.

  19. Temporal and spatial manipulation of the recolliding wave packet in strong-field photoelectron holography

    NASA Astrophysics Data System (ADS)

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Lu, Peixiang

    2016-03-01

    We theoretically demonstrate temporal and spatial manipulation of electron wave packets involved in strong-field photoelectron holography (SFPH) with the orthogonally polarized two-color laser fields. By varying the relative phase of the two-color fields, the recollision time of the returning wave packet can be accurately controlled, which allows us to switch off and on the holographic interference. Moreover, the recollision angles of the returning electron wave packet can be arbitrarily controlled via changing the relative intensity of the two-color fields, and thus the structure information of the target is encoded in the hologram by the recollision electron wave packet from different angles. This makes the SFPH a powerful technique of imaging the molecular structure as well as ultrafast dynamics on an attosecond time scale.

  20. SDN architecture for optical packet and circuit integrated networks

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Miyazawa, Takaya

    2016-02-01

    We have been developing an optical packet and circuit integrated (OPCI) network, which realizes dynamic optical path, high-density packet multiplexing, and flexible wavelength resource allocation. In the OPCI networks, a best-effort service and a QoS-guaranteed service are provided by employing optical packet switching (OPS) and optical circuit switching (OCS) respectively, and users can select these services. Different wavelength resources are assigned for OPS and OCS links, and the amount of their wavelength resources are dynamically changed in accordance with the service usage conditions. To apply OPCI networks into wide-area (core/metro) networks, we have developed an OPCI node with a distributed control mechanism. Moreover, our OPCI node works with a centralized control mechanism as well as a distributed one. It is therefore possible to realize SDN-based OPCI networks, where resource requests and a centralized configuration are carried out. In this paper, we show our SDN architecture for an OPS system that configures mapping tables between IP addresses and optical packet addresses and switching tables according to the requests from multiple users via a web interface. While OpenFlow-based centralized control protocol is coming into widespread use especially for single-administrative, small-area (LAN/data-center) networks. Here, we also show an interworking mechanism between OpenFlow-based networks (OFNs) and the OPCI network for constructing a wide-area network, and a control method of wavelength resource selection to automatically transfer diversified flows from OFNs to the OPCI network.

  1. Experiments examining drag in linear droplet packets

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. V.; Dunn-Rankin, D.

    1992-01-01

    This paper presents an experimental study of vertically traveling droplet packets, where the droplets in each packet are aligned linearly, one behind another. The paper describes in detail, an experimental apparatus that produces repeatable, linearly aligned, and isolated droplet packets containing 1 6 droplets per packet. The apparatus is suitable for examining aerodynamic interactions between droplets within each packet. This paper demonstrates the performance of the apparatus by examining the drag reduction and collision of droplets traveling in the wake of a lead droplet. Comparison of a calculated single droplet trajectory with the detailed droplet position versus time data for a droplet packet provides the average drag reduction experienced by the trailing droplets due to the aerodynamic wake of the lead droplet. For the conditions of our experiment (4 droplet packet, 145 μm methanol droplets, 10 m/s initial velocity, initial droplet spacing of 5.2 droplet diameters, Reynolds number approx. 80) the average drag on the first trailing droplet was found to be 75% of the drag on the lead droplet.

  2. Interconnecting network for switching data packets and method for switching data packets

    DOEpatents

    Benner, Alan Frederic; Minkenberg, Cyriel Johan Agnes; Stunkel, Craig Brian

    2010-05-25

    The interconnecting network for switching data packets, having data and flow control information, comprises a local packet switch element (S1) with local input buffers (I(1,1) . . . I(1,y)) for buffering the incoming data packets, a remote packet switch element (S2) with remote input buffers (I(2,1) . . . I(2,y)) for buffering the incoming data packets, and data lines (L) for interconnecting the local and the remote packet switch elements (S1, S2). The interconnecting network further comprises a local and a remote arbiter (A1, A2) which are connected via control lines (CL) to the input buffers (I(1,1) . . . I(1,y), I(2,1) . . . I(2,y)), and which are formed such that they can provide that the flow control information is transmitted via the data lines (L) and the control lines (CL).

  3. Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering.

    PubMed

    Kondorskiy, Alexey D; Nanbu, Shinkoh

    2015-09-21

    We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory. PMID:26395683

  4. Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering

    NASA Astrophysics Data System (ADS)

    Kondorskiy, Alexey D.; Nanbu, Shinkoh

    2015-09-01

    We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully's models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio "on-the-fly" simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.

  5. Electronically nonadiabatic wave packet propagation using frozen Gaussian scattering

    SciTech Connect

    Kondorskiy, Alexey D.; Nanbu, Shinkoh

    2015-09-21

    We present an approach, which allows to employ the adiabatic wave packet propagation technique and semiclassical theory to treat the nonadiabatic processes by using trajectory hopping. The approach developed generates a bunch of hopping trajectories and gives all additional information to incorporate the effect of nonadiabatic coupling into the wave packet dynamics. This provides an interface between a general adiabatic frozen Gaussian wave packet propagation method and the trajectory surface hopping technique. The basic idea suggested in [A. D. Kondorskiy and H. Nakamura, J. Chem. Phys. 120, 8937 (2004)] is revisited and complemented in the present work by the elaboration of efficient numerical algorithms. We combine our approach with the adiabatic Herman-Kluk frozen Gaussian approximation. The efficiency and accuracy of the resulting method is demonstrated by applying it to popular benchmark model systems including three Tully’s models and 24D model of pyrazine. It is shown that photoabsorption spectrum is successfully reproduced by using a few hundreds of trajectories. We employ the compact finite difference Hessian update scheme to consider feasibility of the ab initio “on-the-fly” simulations. It is found that this technique allows us to obtain the reliable final results using several Hessian matrix calculations per trajectory.

  6. Comparison of Ring-Buffer-Based Packet Capture Solutions

    SciTech Connect

    Barker, Steven Andrew

    2015-10-01

    Traditional packet-capture solutions using commodity hardware incur a large amount of overhead as packets are copied multiple times by the operating system. This overhead slows sensor systems to a point where they are unable to keep up with high bandwidth traffic, resulting in dropped packets. Incomplete packet capture files hinder network monitoring and incident response efforts. While costly commercial hardware exists to capture high bandwidth traffic, several software-based approaches exist to improve packet capture performance using commodity hardware.

  7. Speech transport for packet telephony and voice over IP

    NASA Astrophysics Data System (ADS)

    Baker, Maurice R.

    1999-11-01

    Recent advances in packet switching, internetworking, and digital signal processing technologies have converged to allow realizable practical implementations of packet telephony systems. This paper provides a tutorial on transmission engineering for packet telephony covering the topics of speech coding/decoding, speech packetization, packet data network transport, and impairments which may negatively impact end-to-end system quality. Particular emphasis is placed upon Voice over Internet Protocol given the current popularity and ubiquity of IP transport.

  8. Wave-packet evolution in non-Hermitian quantum systems

    SciTech Connect

    Graefe, Eva-Maria; Schubert, Roman

    2011-06-15

    The quantum evolution of the Wigner function for Gaussian wave packets generated by a non-Hermitian Hamiltonian is investigated. In the semiclassical limit ({h_bar}/2{pi}){yields}0 this yields the non-Hermitian analog of the Ehrenfest theorem for the dynamics of observable expectation values. The lack of Hermiticity reveals the importance of the complex structure on the classical phase space: The resulting equations of motion are coupled to an equation of motion for the phase-space metric - a phenomenon having no analog in Hermitian theories.

  9. Radiology/Imaging. Clinical Rotation. Instructor's Packet and Student Study Packet.

    ERIC Educational Resources Information Center

    Texas Univ., Austin. Extension Instruction and Materials Center.

    The instructor's packet, the first of two packets, is one of a series of materials designed to help students who are investigating the activities within a radiology department or considering any of the imaging technologies as a career. The material is designed to relate training experience to information studied in the classroom. This packet…

  10. Joint wavelet-based coding and packetization for video transport over packet-switched networks

    NASA Astrophysics Data System (ADS)

    Lee, Hung-ju

    1996-02-01

    In recent years, wavelet theory applied to image, and audio and video compression has been extensively studied. However, only gaining compression ratio without considering the underlying networking systems is unrealistic, especially for multimedia applications over networks. In this paper, we present an integrated approach, which attempts to preserve the advantages of wavelet-based image coding scheme and to provide robustness to a certain extent for lost packets over packet-switched networks. Two different packetization schemes, called the intrablock-oriented (IAB) and interblock-oriented (IRB) schemes, in conjunction with wavelet-based coding, are presented. Our approach is evaluated under two different packet loss models with various packet loss probabilities through simulations which are driven by real video sequences.

  11. Creating Rydberg electron wave packets using terahertz pulses

    NASA Astrophysics Data System (ADS)

    Bromage, Jake

    1999-10-01

    In this thesis I present experiments in which we excited classical-limit states of an atom using terahertz pulses. In a classical-limit state, an atom's outer electron is confined to a wave packet that orbits the core along a classical trajectory. Researchers have excited states with classical traits, but wave packets localized in all three dimensions have proved elusive. Theoretical studies have shown such states can be created using terahertz pulses. Using these techniques, we created a linear-orbit wave packet (LOWP), that is three-dimensionally localized and orbits along a line on one side of the atom's core. Terahertz pulses are sub-picosecond bursts of far- infrared radiation. Unlike ultrashort optical pulses, the electric field of terahertz pulses barely completes a single cycle. Our simulations of the atom-pulse interaction show that this electric field profile is critical in determining the quality of the wave packet. To characterize our terahertz pulses, we invented dithered-edge sampling which time- resolves the electric field using a photoconductive receiver and a triggered attenuator. We also studied how pulses are distorted after propagating through metallic structures, and used our findings to design our atomic experiments. We excited wave packets in atomic sodium using a two-step process. First, we used tunable, nanosecond dye lasers to excite an extreme Stark state. Next, we used a terahertz pump pulse to coherently redistribute population among extreme Stark states in neighboring manifolds. Interference between the final states produces a localized, dynamic LOWP. To analyze the LOWP, we ionized it with a stronger terahertz probe pulse, varying the pump-probe delay to map out its motion. We observed two strong LOWP signatures. Changing the static electric field produced small changes (2%) in the orbital period that agreed with our theoretical predictions. Secondly, because the LOWP scatters off the core, the pump-probe signal depended on the

  12. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy.

    PubMed

    Plemmons, Dayne A; Tae Park, Sang; Zewail, Ahmed H; Flannigan, David J

    2014-11-01

    The development of ultrafast electron microscopy (UEM) and variants thereof (e.g., photon-induced near-field electron microscopy, PINEM) has made it possible to image atomic-scale dynamics on the femtosecond timescale. Accessing the femtosecond regime with UEM currently relies on the generation of photoelectrons with an ultrafast laser pulse and operation in a stroboscopic pump-probe fashion. With this approach, temporal resolution is limited mainly by the durations of the pump laser pulse and probe electron packet. The ability to accurately determine the duration of the electron packets, and thus the instrument response function, is critically important for interpretation of dynamics occurring near the temporal resolution limit, in addition to quantifying the effects of the imaging mode. Here, we describe a technique for in situ characterization of ultrashort electron packets that makes use of coupling with photons in the evanescent near-field of the specimen. We show that within the weakly-interacting (i.e., low laser fluence) regime, the zero-loss peak temporal cross-section is precisely the convolution of electron packet and photon pulse profiles. Beyond this regime, we outline the effects of non-linear processes and show that temporal cross-sections of high-order peaks explicitly reveal the electron packet profile, while use of the zero-loss peak becomes increasingly unreliable. PMID:25151361

  13. Multi-access in packet radio networks

    NASA Astrophysics Data System (ADS)

    Arikan, E.

    1982-09-01

    A PRN (packet radio network) is a collection of geographically distributed, possibly mobile users where each user is capable of transmitting and receiving messages over a shared broadcast medium. In a PRN, messages are divided into packets, which may be fixed or variable in length, and each packet is transmitted through the network individually. Packets are assembled at their destinations to reconstruct the original messages. The data traffic in a PRN is characterized by specifying the average message arrival rates to the network for each o-d (origin-destination) pair. A set of o-d rates is called feasible if there exist network protocols under which the number of packets in the network still not delivered to their destinations remains finite with probability one. The capacity region of a PRN is defined to be the set of all feasible sets of o-d rates. In this thesis, PRNs are studied from the viewpoint of feasibility, i.e., we take an arbitrary set of message input rates as given and try to determine if it is feasible. Our main conclusion is that, unless P = NP, there exists no practical algorithm for characterizing the capacity region of a PRN, in the sense that the decision problem regarding the feasibility of a given set of o-d rates is NP-complete.

  14. Spreading of atomic wave packets and semiclassical chaos

    NASA Astrophysics Data System (ADS)

    Argonov, V. Yu.

    2010-12-01

    The correspondence between the statistical properties of the evolution of a quantum system and Lyapunov instability and the chaos of its semiclassical analog has been demonstrated. The results of the analyses of atomic motion in a laser field in the semiclassical approximation (dynamics is described by several nonlinear equations) and without this approximation (dynamics is described by an infinite system of linear equations) are compared. In the ranges of the parameters for which the semiclassical dynamics of point-like atoms is unstable, the fast "spreading" of quantized wave packets in the momentum space is observed. Thus, deterministic chaos "imitates" the statistics of the quantum nondeterministic effects, although the semiclassical and quantum solutions are fundamentally different.

  15. Spreading of atomic wave packets and semiclassical chaos

    NASA Astrophysics Data System (ADS)

    Argonov, V. Yu.

    2009-12-01

    The correspondence between the statistical properties of the evolution of a quantum system and Lyapunov instability and the chaos of its semiclassical analog has been demonstrated. The results of the analyses of atomic motion in a laser field in the semiclassical approximation (dynamics is described by several nonlinear equations) and without this approximation (dynamics is described by an infinite system of linear equations) are compared. In the ranges of the parameters for which the semiclassical dynamics of point-like atoms is unstable, the fast “spreading” of quantized wave packets in the momentum space is observed. Thus, deterministic chaos “imitates” the statistics of the quantum nondeterministic effects, although the semiclassical and quantum solutions are fundamentally different.

  16. A versatile model for packet loss visibility and its application to packet prioritization.

    PubMed

    Lin, Ting-Lan; Kanumuri, Sandeep; Zhi, Yuan; Poole, David; Cosman, Pamela C; Reibman, Amy R

    2010-03-01

    In this paper, we propose a generalized linear model for video packet loss visibility that is applicable to different group-of-picture structures. We develop the model using three subjective experiment data sets that span various encoding standards (H.264 and MPEG-2), group-of-picture structures, and decoder error concealment choices. We consider factors not only within a packet, but also in its vicinity, to account for possible temporal and spatial masking effects. We discover that the factors of scene cuts, camera motion, and reference distance are highly significant to the packet loss visibility. We apply our visibility model to packet prioritization for a video stream; when the network gets congested at an intermediate router, the router is able to decide which packets to drop such that visual quality of the video is minimally impacted. To show the effectiveness of our visibility model and its corresponding packet prioritization method, experiments are done to compare our perceptual-quality-based packet prioritization approach with existing Drop-Tail and Hint-Track-inspired cumulative-MSE-based prioritization methods. The result shows that our prioritization method produces videos of higher perceptual quality for different network conditions and group-of-picture structures. Our model was developed using data from high encoding-rate videos, and designed for high-quality video transported over a mostly reliable network; however, the experiments show the model is applicable to different encoding rates. PMID:20028623

  17. Application of Wavelet Packet Entropy Flow Manifold Learning in Bearing Factory Inspection Using the Ultrasonic Technique

    PubMed Central

    Chen, Xiaoguang; Liu, Dan; Xu, Guanghua; Jiang, Kuosheng; Liang, Lin

    2015-01-01

    For decades, bearing factory quality evaluation has been a key problem and the methods used are always static tests. This paper investigates the use of piezoelectric ultrasonic transducers (PUT) as dynamic diagnostic tools and a relevant signal classification technique, wavelet packet entropy (WPEntropy) flow manifold learning, for the evaluation of bearing factory quality. The data were analyzed using wavelet packet entropy (WPEntropy) flow manifold learning. The results showed that the ultrasonic technique with WPEntropy flow manifold learning was able to detect different types of defects on the bearing components. The test method and the proposed technique are described and the different signals are analyzed and discussed. PMID:25549173

  18. All-optical packet header and payload separation for un-slotted optical packet switched networks

    NASA Astrophysics Data System (ADS)

    Ji, Wei; Zhang, Min; Ye, Peida

    2005-11-01

    A novel all-optical header and payload separation technique that can be utilized in un-slotted optical packet switched networks is presented. The technique uses a modified TOAD for packet header extraction with differential modulation scheme and two SOAs that perform a simple XOR operation between the packet and its self-derived header to get the separated payload. The main virtue of this system is simple structure and need not any additional continuous pulses. Through numerical simulations, the operating characteristics of the scheme are illustrated. In addition, the parameters of the system are discussed and designed to optimize the operation performance.

  19. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules

    NASA Astrophysics Data System (ADS)

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-01

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N2 reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging.

  20. Phase Structure of Strong-Field Tunneling Wave Packets from Molecules.

    PubMed

    Liu, Ming-Ming; Li, Min; Wu, Chengyin; Gong, Qihuang; Staudte, André; Liu, Yunquan

    2016-04-22

    We study the phase structure of the tunneling wave packets from strong-field ionization of molecules and present a molecular quantum-trajectory Monte Carlo model to describe the laser-driven dynamics of photoelectron momentum distributions of molecules. Using our model, we reproduce and explain the alignment-dependent molecular frame photoelectron spectra of strong-field tunneling ionization of N_{2} reported by M. Meckel et al. [Nat. Phys. 10, 594 (2014)]. In addition to modeling the low-energy photoelectron angular distributions quantitatively, we extract the phase structure of strong-field molecular tunneling wave packets, shedding light on its physical origin. The initial phase of the tunneling wave packets at the tunnel exit depends on both the initial transverse momentum distribution and the molecular internuclear distance. We further show that the ionizing molecular orbital has a critical effect on the initial phase of the tunneling wave packets. The phase structure of the photoelectron wave packet is a key ingredient for modeling strong-field molecular photoelectron holography, high-harmonic generation, and molecular orbital imaging. PMID:27152800

  1. The European Space Agency standard for space packet utilisation

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Parkes, A.; Pidgeon, A.

    1993-01-01

    This paper presents the ESA concept for the use of CCSDS defined Telemetry and Telecommand Packets at the application level. These Packets are used to monitor and control remotely a space born application. This concept is defined in a Packet Utilisation Standard (PUS) which should become applicable for all ESA missions using Packets. The production of this standard is under the responsibility of an ESA standardization group called 'COES'.

  2. Humane Education Teachers' Packet (Preschool & Kindergarten).

    ERIC Educational Resources Information Center

    Sammut-Tovar, Dorothy

    Designed to sensitize preschoolers and kindergartners to the responsibilities involved in caring for living things, this teacher's packet provides a variety of student worksheets and activity suggestions. Teaching plans are provided for a total of nine lessons, which can be easily integrated into other learning areas such as numbers, colors,…

  3. Supporting Mentors. Technical Assistance Packet #6.

    ERIC Educational Resources Information Center

    Jucovy, Linda

    This technical assistance packet is intended as a guide for those who develop programs in support of mentors of youth. It offers guidance to help mentors build trusting relationships with their mentees, and, ultimately, contribute to positive outcomes for the children and youth in the mentoring program. Successful mentoring programs provide…

  4. Cashier/Checker Learning Activity Packets (LAPs).

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    Twenty-four learning activity packets (LAPs) are provided for six areas of instruction in a cashier/checker program. Section A, Orientation, contains an LAP on exploring the job of cashier-checker. Section B, Operations, has nine LAPs, including those on operating the cash register, issuing trading stamps, and completing the cash register balance…

  5. Anthropology: Smithsonian Institution Teacher's Resource Packet.

    ERIC Educational Resources Information Center

    National Museum of Natural History, Washington, DC.

    This teacher's research guide for the National Museum of Natural History (Smithsonian Institution) is designed for junior and senior high school teachers to integrate anthropology into their social studies and science classes. The information in this packet consists of a list of books for teachers and students, classroom activities, and other…

  6. Metro College for Living. Workshop Packet.

    ERIC Educational Resources Information Center

    Kreps, Alice Roelofs

    This packet contains information and materials for conducting a training workshop for working with adults who are developmentally disabled. The materials are specifically designed to train volunteer teachers in the College for Living (CFL) program, which supplements residential programs in and around Denver and aids institutions in orienting…

  7. The Air We Breathe. Activity Packet.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Environmental Protection, Hartford.

    This packet of materials is intended to provide teachers with an interdisciplinary approach to integrating air quality education into the existing curriculum of Connecticut schools. The unit is designed to complement the student booklet "The Air We Breathe," which is included. A major portion of the document is comprised of teaching activities.…

  8. Biological Diversity. Global Issues Education Packet.

    ERIC Educational Resources Information Center

    Holm, Amy E.

    Biological diversity, also commonly called genetic diversity, refers to the variety of organisms on Earth. Scientists are concerned that many species will become extinct because of extensive development in the tropical regions. This packet is designed to increase student's awareness about direct and indirect causes of extinction, endangered…

  9. Controlled Splitting of an Atomic Wave Packet

    SciTech Connect

    Zhang, M.; Zhang, P.; Chapman, M. S.; You, L.

    2006-08-18

    We propose a simple scheme capable of adiabatically splitting an atomic wave packet using two independent translating traps. Implemented with optical dipole traps, our scheme allows a high degree of flexibility for atom interferometry arrangements and highlights its potential as an efficient and high fidelity atom optical beam splitter.

  10. Peninsula Humane Society Teacher's Packet. Secondary Level.

    ERIC Educational Resources Information Center

    Peninsula Humane Society, San Mateo, CA.

    Activities in this teacher's packet are designed to familiarize secondary school students with the responsibilities involved in pet ownership. Teaching plans are provided for a total of 12 lessons grouped under social studies, language arts, math, and health sciences. Activities focus on pet overpopulation, expressions of social responses in…

  11. [Alum Rock Voucher Project. Information Packet.

    ERIC Educational Resources Information Center

    Alum Rock Union Elementary School District, San Jose, CA.

    This packet contains (1) informational booklets for parents in the Alum Rock Union Elementary School District, (2) a booklet on the pros and cons of a voucher system, (3) promotional material, (4) a progress report on the project, (5) the project proposal to OEO, and (6) a sample school and program preferences form. The program, according to the…

  12. Solid Waste Activity Packet for Teachers.

    ERIC Educational Resources Information Center

    Illinois Univ., Urbana. Cooperative Extension Service.

    This solid waste activity packet introduces students to the solid waste problem in Illinois. Topics explore consumer practices in the market place, packaging, individual and community garbage generation, and disposal practices. The activities provide an integrated approach to incorporating solid waste management issues into subject areas. The…

  13. Resource Packet on Disability, Spirituality, and Healing.

    ERIC Educational Resources Information Center

    Lane, Nancy

    This resource packet includes information relating to the inclusion of people with disabilities in the Christian church. The first article, "Changing Attitudes, Creating Awareness," highlights several critical areas where churches can begin to understand the barriers of exclusion to people with disabilities. The following article, "Victim…

  14. Yorktown Victory Center Museum Teacher Resource Packet.

    ERIC Educational Resources Information Center

    Jamestown-Yorktown Foundation, Williamsburg, VA. Education Dept.

    This resource packet provides information and activities for teaching abut the historical significance of Yorktown, Virginia in the American Revolution. Teachers' materials include brief background essays on: (1) "Summary of the American Revolution in Virginia"; (2) "Life in the Army"; (3) "Life in Revolutionary Virginia"; (4) "African-Americans…

  15. The World Around You. Environmental Education Packet.

    ERIC Educational Resources Information Center

    Garden Club of America, New York, NY.

    The Garden Club of America has compiled this environmental education packet of informational materials to help teachers educate their students for survival. The "Study Guide" contains essays by ten authorities on topics of population, soil, air, water, power and energy, solid waste management, open space, public lands, oceans, and wildlife. Each…

  16. The Nutcracker--Theater Activity Packet.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    A part of the New York City Board of Education Early Stages educational program, this activity packet was developed to assist teachers in preparing students for viewing the American Ballet Theatre's production of "The Nutcracker." The guide begins with a section on preparing for the performance, and includes information on the Early Stages…

  17. Flavor entanglement in neutrino oscillations in the wave packet description

    NASA Astrophysics Data System (ADS)

    Blasone, Massimo; Dell'Anno, Fabio; De Siena, Silvio; Illuminati, Fabrizio

    2015-10-01

    The wave packet approach to neutrino oscillations provides an enlightening description of quantum decoherence induced, during propagation, by localization effects. Within this approach, we show that a deeper insight into the dynamical aspects of particle mixing can be obtained if one investigates the behavior of quantum correlations associated to flavor oscillations. By identifying the neutrino three-flavor modes with (suitably defined) three-qubit modes, the exploitation of tools of quantum information theory for mixed states allows a detailed analysis of the dynamical behavior of flavor entanglement during free propagation. This provides further elements leading to a more complete understanding of the phenomenon of neutrino oscillations, and a basis for possible applicative implementations. The analysis is carried out by studying the distribution of the flavor entanglement; to this aim, we perform combined investigations of the behaviors of the two-flavor concurrence and of the logarithmic negativities associated with specific bipartitions of the three flavors.

  18. Simulation of wave packet tunneling of interacting identical particles

    NASA Astrophysics Data System (ADS)

    Lozovik, Yu. E.; Filinov, A. V.; Arkhipov, A. S.

    2003-02-01

    We demonstrate a different method of simulation of nonstationary quantum processes, considering the tunneling of two interacting identical particles, represented by wave packets. The used method of quantum molecular dynamics (WMD) is based on the Wigner representation of quantum mechanics. In the context of this method ensembles of classical trajectories are used to solve quantum Wigner-Liouville equation. These classical trajectories obey Hamiltonian-like equations, where the effective potential consists of the usual classical term and the quantum term, which depends on the Wigner function and its derivatives. The quantum term is calculated using local distribution of trajectories in phase space, therefore, classical trajectories are not independent, contrary to classical molecular dynamics. The developed WMD method takes into account the influence of exchange and interaction between particles. The role of direct and exchange interactions in tunneling is analyzed. The tunneling times for interacting particles are calculated.

  19. Tracking molecular wave packets in cesium dimers by coherent Raman scattering

    NASA Astrophysics Data System (ADS)

    Yuan, Luqi; Pestov, Dmitry; Murawski, Robert K.; Ariunbold, Gombojav O.; Zhi, Miaochan; Wang, Xi; Sautenkov, Vladimir A.; Rostovtsev, Yuri V.; Siebert, Torsten; Sokolov, Alexei V.

    2012-08-01

    We explore wave-packet dynamics in the ground X 1Σg+ and excited B 1Πu states of cesium dimers (Cs2). In particular, we study the dependence of the wave-packet dynamics on the relative timing between femtosecond pump, Stokes, and probe pulses in a nondegenerate BOXCARS beam geometry, which are commonly used for coherent anti-Stokes Raman scattering (CARS) spectroscopy. The experimental results are elucidated by theoretical calculations, which are based on the Liouville equations for the density matrix for the molecular states. We observe oscillations in CARS signals as functions of both Stokes and probe pulse delays with respect to the pump pulse. The oscillation period relates to the wave-packet motion cycle in either the ground or excited state of Cs2 molecules, depending on the sequence of the input laser pulses in time. The performed analysis can be applied to study and/or manipulate wave-packet dynamics in a variety of molecules. It also provides an excellent test platform for theoretical models of molecular systems.

  20. Advanced driver assistance system for AHS over communication links with random packet dropouts

    NASA Astrophysics Data System (ADS)

    Srinivasan, Seshadhri; Ayyagari, Ramakalyan

    2014-12-01

    In this paper, we propose an advanced driver assist system (ADAS) for platoon based automated highway system (AHS) with packet loss in inter-vehicle communication. Using the concept of rigidity, we first show that vehicles in a platoon tend to fall apart in the event of a packet loss among vehicles. To overcome this, we propose an estimation based dynamic platooning algorithm which employs the state estimate to maintain the platoon. Communication among the vehicle is reduced by using minimum spanning tree (MST) in state estimation algorithm. Effectiveness of the proposed ADAS scheme is illustrated by simulation wherein, dynamic platoons of holonomic vehicles with integrator dynamics are considered. Simulation studies indicate that the proposed algorithm maintains the platoon up to a packet loss rate of 48%. State transmission scheme proposed in our algorithm has three significant advantages, they are: (1) it handles packet loss in inter-vehicle communication, (2) reduces the effect of error in measured output, and (3) reduces the inter-vehicle communication. These advantages significantly increase the reliability and safety of the AHS.

  1. PROJECT SUCCESS: Art. (Introductory Packet, Drawing, Claywork, Painting).

    ERIC Educational Resources Information Center

    Petersen, Nancy

    Four packets comprise the art component of an enrichment program for gifted elementary students. The introduction packet reviews identification of children gifted in art through pre and post measures. A drawing packet reviews techniques for such activities as human figure drawing, shading, crayon rubbinqs, experimenting with perspective, and…

  2. Accounting Clerk Guide, Exercise and Worksheet Packet--Part II.

    ERIC Educational Resources Information Center

    Foster, Brian; And Others

    The exercise and worksheet packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The exercise and worksheet packet contains a copy of every worksheet in the learner packet for lessons 12 through 21 so that the instructor can…

  3. Television Compression Algorithms And Transmission On Packet Networks

    NASA Astrophysics Data System (ADS)

    Brainard, R. C.; Othmer, J. H.

    1988-10-01

    Wide-band packet transmission is a subject of strong current interest. The transmission of compressed TV signals over such networks is possible with any quality level. There are some specific advantages in using packet networks for TV transmission. Namely, any fixed data rate can be chosen, or a variable data rate can be utilized. However, on the negative side packet loss must be considered and differential delay in packet arrival must be compensated. The possibility of packet loss has a strong influence on compression algorithm choice. Differential delay of packet arrival is a new problem in codec design. Some issues relevant to mutual design of the transmission networks and compression algorithms will be presented. An assumption is that the packet network will maintain packet sequence integrity. For variable-rate transmission, a reasonable definition of peak data rate is necessary. Rate constraints may be necessary to encourage instituting a variable-rate service on the networks. The charging algorithm for network use will have an effect on selection of compression algorithm. Some values of and procedures for implementing packet priorities are discussed. Packet length has only a second-order effect on packet-TV considerations. Some examples of a range of codecs for differing data rates and picture quality are given. These serve to illustrate sensitivities to the various characteristics of packet networks. Perhaps more important, we talk about what we do not know about the design of such systems.

  4. Accounting Clerk Guide, Exercise and Worksheet Packet--Part I.

    ERIC Educational Resources Information Center

    Foster, Brian; And Others

    The exercise and worksheet packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The exercise and worksheet packet contains a copy of every worksheet in the learner packet for lessons 1 through 11 so that the instructor can…

  5. Numerical approximation of the Schrödinger equation with the electromagnetic field by the Hagedorn wave packets

    SciTech Connect

    Zhou, Zhennan

    2014-09-01

    In this paper, we approximate the semi-classical Schrödinger equation in the presence of electromagnetic field by the Hagedorn wave packets approach. By operator splitting, the Hamiltonian is divided into the modified part and the residual part. The modified Hamiltonian, which is the main new idea of this paper, is chosen by the fact that Hagedorn wave packets are localized both in space and momentum so that a crucial correction term is added to the truncated Hamiltonian, and is treated by evolving the parameters associated with the Hagedorn wave packets. The residual part is treated by a Galerkin approximation. We prove that, with the modified Hamiltonian only, the Hagedorn wave packets dynamics give the asymptotic solution with error O(ε{sup 1/2}), where ε is the scaled Planck constant. We also prove that, the Galerkin approximation for the residual Hamiltonian can reduce the approximation error to O(ε{sup k/2}), where k depends on the number of Hagedorn wave packets added to the dynamics. This approach is easy to implement, and can be naturally extended to the multidimensional cases. Unlike the high order Gaussian beam method, in which the non-constant cut-off function is necessary and some extra error is introduced, the Hagedorn wave packets approach gives a practical way to improve accuracy even when ε is not very small.

  6. Wave packet simulations of phonon boundary scattering at graphene edges

    NASA Astrophysics Data System (ADS)

    Wei, Zhiyong; Chen, Yunfei; Dames, Chris

    2012-07-01

    Wave packet dynamics is used to investigate the scattering of longitudinal (LA), transverse (TA), and bending-mode (ZA) phonons at the zigzag and armchair edges of suspended graphene. The interatomic forces are calculated using a linearized Tersoff potential. The strength of a boundary scattering event at impeding energy flow is described by a forward scattering coefficient, similar in spirit to a specularity parameter. For armchair boundaries, this scattering coefficient is found to depend strongly on the magnitude, direction, and polarization of the incident wavevector, while for zigzag boundaries, the forward scattering coefficient is found to always be unity regardless of wavevector and polarization. Wave packet splitting is observed for ZA phonons incident on armchair boundaries, while both splitting and mode conversion are observed for LA and TA phonons incident on both zigzag and armchair boundaries. These simulation results show that armchair boundaries impede the forward propagation of acoustic phonon energy much more strongly than zigzag boundaries do, suggesting that graphene nanoribbons will have substantially lower thermal conductivity in armchair rather than zigzag orientation.

  7. Packet loss due to encryption in space data systems

    NASA Astrophysics Data System (ADS)

    Kwon, Hyuck M.

    1994-05-01

    This paper analyzes the probabilities of data packet loss for both an encrypted channel in self-synchronous cipher feedback mode and a nonencrypted channel, in the space data systems. Simulation results show reasonable agreement with analytical results. When channel bit error probability is 10(sup - 5) and the total number of packets per frame is 3, the analytical model gives 0.39% packet loss while the simulation gives 0.22% packet loss due to encryption. Although the analysis is performed for the space data systems, the resulting derived equations with minor change will be useful in many packet communication applications.

  8. Control of wave packets in lithium dimers with a state-selected pump-probe scheme

    NASA Astrophysics Data System (ADS)

    Dai, Xingcan

    A state-selected pump-probe scheme is used to control wave packet dynamics in Li2. In this scheme, a cw laser selects one electronic transition from the thermally populated ground state to the launch state A1Sigmau+ of Li2, from which an ultrashort pump pulse creates a superstition state on the electronic states of Li2 followed by another ultrashort pulse to excite the wave packet to the ground state of Li2+. Usually, an unperturbed level at the A1Sigmau+ state of Li2 is selected by the cw laser pulses. However, if the level of A1Sigmau+ is perturbed by b3piu, and then the wave packets that consist of the triplet states as well as the singlet states of Li2 are detected from the mixed levels. Since one of the triplet states is predissociative, the fast decay of the amplitudes of the wave packets that have the components of this predissociative state is observed. In order to study coherent multiphoton processes, Raman wave packets are created and manipulated with a pulse shaping system. The phase difference between the amplitude coefficients induced by resonant and off-resonant Raman transitions is shown directly by comparing the phases of the Raman wave packets excited by the resonant and off-resonant Raman transitions. The ionization processes employed in the probe step of the state-selective pump-probe scheme is fully explored in the second pulse shaping system in the path of the probe beam. It shows that the direct transitions from the electronic states involved in the wave packets are unlikely; while the autoionization and collision induced ionization from highly-excited Rydberg states are the main sources of the final ion signals. Some degree of the control of the wave packet dynamics is realized by shaping the probe pulses. The decoherence rates of quantum beats at the shelf region of the E1Sigma g+ state are measured to test theoretical results about pure dephasing rate in Li2. Finally, some schemes and preliminary results on physical realization of quantum

  9. A packet switched communications system for GRO

    NASA Technical Reports Server (NTRS)

    Husain, Shabu; Yang, Wen-Hsing; Vadlamudi, Rani; Valenti, Joseph

    1993-01-01

    This paper describes the packet switched Instrumenters Communication System (ICS) that was developed for the Command Management Facility at GSFC to support the Gamma Ray Observatory (GRO) spacecraft. The GRO ICS serves as a vital science data acquisition link to the GRO scientists to initiate commands for their spacecraft instruments. The system is ready to send and receive messages at any time, 24 hours a day and seven days a week. The system is based on X.25 and the International Standard Organization's (ISO) 7-layer Open Systems Interconnection (OSI) protocol model and has client and server components. The components of the GRO ICS are discussed along with how the Communications Subsystem for Interconnection (CSFI) and Network Control Program Packet Switching Interface (NPSI) software are used in the system.

  10. Molecular wave packet interferometry and quantum entanglement

    NASA Astrophysics Data System (ADS)

    Martínez-Galicia, Ricardo; Romero-Rochín, Víctor

    2005-03-01

    We study wave packet interferometry (WPI) considering the laser pulse fields both classical and quantum mechanically. WPI occurs in a molecule after subjecting it to the interaction with a sequence of phase-locked ultrashort laser pulses. Typically, the measured quantity is the fluorescence of the molecule from an excited electronic state. This signal has imprinted the interference of the vibrational wave packets prepared by the different laser pulses of the sequence. The consideration of the pulses as quantum entities in the analysis allows us to study the entanglement of the laser pulse states with the molecular states. With a simple model for the molecular system, plus several justified approximations, we solve for the fully quantum mechanical molecule-electromagnetic field state. We then study the reduced density matrices of the molecule and the laser pulses separately. We calculate measurable corrections to the case where the fields are treated classically.

  11. Particlelike wave packets in complex scattering systems

    NASA Astrophysics Data System (ADS)

    Gérardin, Benoît; Laurent, Jérôme; Ambichl, Philipp; Prada, Claire; Rotter, Stefan; Aubry, Alexandre

    2016-07-01

    A wave packet undergoes a strong spatial and temporal dispersion while propagating through a complex medium. This wave scattering is often seen as a nightmare in wave physics whether it be for focusing, imaging, or communication purposes. Controlling wave propagation through complex systems is thus of fundamental interest in many areas, ranging from optics or acoustics to medical imaging or telecommunications. Here, we study the propagation of elastic waves in a cavity and a disordered waveguide by means of laser interferometry. From the direct experimental access to the time-delay matrix of these systems, we demonstrate the existence of particlelike wave packets that remain focused in time and space throughout their complex trajectory. Due to their limited dispersion, their selective excitation will be crucially relevant for all applications involving selective wave focusing and efficient information transfer through complex media.

  12. A packet switched communications system for GRO

    NASA Astrophysics Data System (ADS)

    Husain, Shabu; Yang, Wen-Hsing; Vadlamudi, Rani; Valenti, Joseph

    1993-11-01

    This paper describes the packet switched Instrumenters Communication System (ICS) that was developed for the Command Management Facility at GSFC to support the Gamma Ray Observatory (GRO) spacecraft. The GRO ICS serves as a vital science data acquisition link to the GRO scientists to initiate commands for their spacecraft instruments. The system is ready to send and receive messages at any time, 24 hours a day and seven days a week. The system is based on X.25 and the International Standard Organization's (ISO) 7-layer Open Systems Interconnection (OSI) protocol model and has client and server components. The components of the GRO ICS are discussed along with how the Communications Subsystem for Interconnection (CSFI) and Network Control Program Packet Switching Interface (NPSI) software are used in the system.

  13. Momentum Imaging of Electron Wave Packet Interference

    NASA Astrophysics Data System (ADS)

    Liu, Aihua; He, Feng; Thumm, Uwe

    2010-03-01

    The recent experiment by Gopal, et al.[Phys. Rev. Lett. 103, 053001 (2009) ] detects intriguing interference patterns in the single ionization of helium by few-cycle, phase-stabilized IR laser pulses, which Gopal, et al. interpret in terms of the coherent emission of distinct photoelectron wave packets within one IR cycle. By numerically solving the time-dependent Schrödinger equation for the photoionization of helium within a single active electron model, we find interference fringes in the photoelectron momentum distribution that cannot be explained as above-threshold ionization peaks. We are in the process of analyzing these oscillations in the momentum-differential electron yield in terms of interfering photoelectron wave packets.

  14. Stochastic Motion of Relativistic Particles in the Field of a Wide Wave Packet

    NASA Astrophysics Data System (ADS)

    Nagornykh, E.; Tel'nikhin, A.

    2003-06-01

    Stochastic motion of relativistic particles in the field of a wave packet propagating under an angle to the external magnetic field are investigated. The interplay of the dynamical and statistical aspects of the behavior of the relativistic particle-potential wave packet system is considered. Dynamics of this system are described by nonlinear mapping and corresponding Fokker-Planck-Kolmogorov equation in phase space possesses canonical Hamiltonian structure. The following general problems of stochastic motion are disscussed: local instability and the Lyapunov exponents and the Kolmogorov entropy; a fractal structures and its dimension; bifurcations of a vector fields and the boundaries of the region of dynamical chaos. The results of numerical simulation are presented. A possible astrophysical application of the results obtained is discussed.

  15. Teleportation of nonclassical wave packets of light.

    PubMed

    Lee, Noriyuki; Benichi, Hugo; Takeno, Yuishi; Takeda, Shuntaro; Webb, James; Huntington, Elanor; Furusawa, Akira

    2011-04-15

    We report on the experimental quantum teleportation of strongly nonclassical wave packets of light. To perform this full quantum operation while preserving and retrieving the fragile nonclassicality of the input state, we have developed a broadband, zero-dispersion teleportation apparatus that works in conjunction with time-resolved state preparation equipment. Our approach brings within experimental reach a whole new set of hybrid protocols involving discrete- and continuous-variable techniques in quantum information processing for optical sciences. PMID:21493853

  16. Soft computing techniques in network packet video

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz P.; Kostrzewski, Andrew A.; Ro, Sookwang N.; Forrester, Thomas; Hester, T.

    2004-01-01

    A new approach to low-bandwidth network packet video quality maximization has been proposed, based on software agent and global optimization algorithm, including: environmental factors (noise, multi-path fading); compression ratio; bit-error-correction; maximum available bandwidth; video format; and encryption. This is important for 2G-wireless RF cellular GSM visual communication, and other low-bandwidth homeland security visibility, and civilian RF WLANs.

  17. BAG (Continuous Round Robin Packet Capture)

    Energy Science and Technology Software Center (ESTSC)

    2006-03-10

    Bag is a miniature pcap filter which takes pcap input (or input off the wire) using a bpf filter, if specified, and then writes the output to stdout or a file (in pcap format). It depends for some aspects of its functionality on a libpcap library which uses a shared memory packet capture ring bugger. There are two build in modules: chcksum and session. the build in chcksum modules is used to anonymize the ipmore » addresses and repair any checksums in the stream. % bag -r /tmp/*.pcap -Cchucksum, 128.1 65: 10.10 The session module generates sessions which are defined as a series of packets that have two things in common. the first is a unique five-tuple composed oi an IP protocol, IP source address, IP source port, IP destination address, and IP destination port. The second is that if the originating packet is associated with a bi-directional service such as ftpltcp, characteristics and data will be kept for both flows involved with the service. The only protocols evaluated beyond the IP header are ICMP, TCP and UDP. A session can last for as long as bag is running. However, under normal conditions, sessions are generated every time they appear to have closed down. There is a man page included with the distribution which goes into more detail.« less

  18. Resilient packet ring media access protocol

    NASA Astrophysics Data System (ADS)

    Thepot, Frederic

    2001-07-01

    The discussion will cover the new initiative to create a new MAC layer standard for resilient packet rings: IEEE 802.17 RPR. The key aspects of the presentation will include a preliminary address of the Metro Area Network today and the current networking technologies such as SONET/SDH which are not optimized to carry IP traffic over Metro MAN. The next segment will cover the options which could change the traditional and expensive layered networking model, and address the real benefits of marrying several technologies like Ethernet, SONET/SDH and IP into one technology. The next part of the discussion will detail the technical advantages a new MAC will bring to the services providers. Lastly a summary of the view and strategy about the acceptance and deployment of this new technology in the next 12 months, specifically, now one defines and develops standards for a Resilient Packet Ring Access Protocol for use in Local, Metropolitan, and Wide Area Networks for transfer of data packets at rates scalable to multiple gigabits per second; specifically address the data transmission requirements of carriers that have present and planned fiber optic physical infrastructure in a ring topology; and, defining and developing detailed specifications for using existing and/or new physical layers at appropriate data rates that will support transmission of this access protocol.

  19. BAG (Continuous Round Robin Packet Capture)

    SciTech Connect

    Wood, C. Philip

    2006-03-10

    Bag is a miniature pcap filter which takes pcap input (or input off the wire) using a bpf filter, if specified, and then writes the output to stdout or a file (in pcap format). It depends for some aspects of its functionality on a libpcap library which uses a shared memory packet capture ring bugger. There are two build in modules: chcksum and session. the build in chcksum modules is used to anonymize the ip addresses and repair any checksums in the stream. % bag -r /tmp/*.pcap -Cchucksum, 128.1 65: 10.10 The session module generates sessions which are defined as a series of packets that have two things in common. the first is a unique five-tuple composed oi an IP protocol, IP source address, IP source port, IP destination address, and IP destination port. The second is that if the originating packet is associated with a bi-directional service such as ftpltcp, characteristics and data will be kept for both flows involved with the service. The only protocols evaluated beyond the IP header are ICMP, TCP and UDP. A session can last for as long as bag is running. However, under normal conditions, sessions are generated every time they appear to have closed down. There is a man page included with the distribution which goes into more detail.

  20. Quantum oscillations and wave packet revival in conical graphene structure

    NASA Astrophysics Data System (ADS)

    Sinha, Debabrata; Berche, Bertrand

    2016-03-01

    We present analytical expressions for the eigenstates and eigenvalues of electrons confined in a graphene monolayer in which the crystal symmetry is locally modified by replacing a hexagon by a pentagon, square or heptagon. The calculations are performed in the continuum limit approximation in the vicinity of the Dirac points, solving Dirac equation by freezing out the carrier radial motion. We include the effect of an external magnetic field and show the appearance of Aharonov-Bohm oscillations and find out the conditions of gapped and gapless states in the spectrum. We show that the gauge field due to a disclination lifts the orbital degeneracy originating from the existence of two valleys. The broken valley degeneracy has a clear signature on quantum oscillations and wave packet dynamics.

  1. Packet error probabilities in direct sequence spread spectrum packet radio networks with BCH codes

    NASA Astrophysics Data System (ADS)

    Georgiopoulos, Michael

    The author computes an upper bound on the packet error probability induced in direct-sequence spread-spectrum networks, when BCH codes are used for the encoding of the packets. The bound, which is introduced here, is valid independently of whether signals arrive with equal or unequal powers at the receiver site. Furthermore, it has a simple form and is easy to compute. In addition, it is valid for other classes of forward error correction codes (e.g., convolutional codes). However, numerical results are presented for BCH codes only.

  2. Architectures and Design for Next-Generation Hybrid Circuit/Packet Networks

    NASA Astrophysics Data System (ADS)

    Vadrevu, Sree Krishna Chaitanya

    Internet traffic is increasing rapidly at an annual growth rate of 35% with aggregate traffic exceeding several Exabyte's per month. The traffic is also becoming heterogeneous in bandwidth and quality-of-service (QoS) requirements with growing popularity of cloud computing, video-on-demand (VoD), e-science, etc. Hybrid circuit/packet networks which can jointly support circuit and packet services along with the adoption of high-bit-rate transmission systems form an attractive solution to address the traffic growth. 10 Gbps and 40 Gbps transmission systems are widely deployed in telecom backbone networks such as Comcast, AT&T, etc., and network operators are considering migration to 100 Gbps and beyond. This dissertation proposes robust architectures, capacity migration strategies, and novel service frameworks for next-generation hybrid circuit/packet architectures. In this dissertation, we study two types of hybrid circuit/packet networks: a) IP-over-WDM networks, in which the packet (IP) network is overlaid on top of the circuit (optical WDM) network and b) Hybrid networks in which the circuit and packet networks are deployed side by side such as US DoE's ESnet. We investigate techniques to dynamically migrate capacity between the circuit and packet sections by exploiting traffic variations over a day, and our methods show that significant bandwidth savings can be obtained with improved reliability of services. Specifically, we investigate how idle backup circuit capacity can be used to support packet services in IP-over-WDM networks, and similarly, excess capacity in packet network to support circuit services in ESnet. Control schemes that enable our mechanisms are also discussed. In IP-over-WDM networks, with upcoming 100 Gbps and beyond, dedicated protection will induce significant under-utilization of backup resources. We investigate design strategies to loan idle circuit backup capacity to support IP/packet services. However, failure of backup circuits will

  3. A microprocessor based satellite borne packet switch

    NASA Technical Reports Server (NTRS)

    Crist, S. C.; Burnell, J. F.; Arozullah, M.

    1979-01-01

    Design considerations applicable to a space-borne single microprocessor based packet switch are identified. These include system architecture decisions and microprocessor selection. The division of tasks among different subroutines is discussed. The primary design criterion is to maximize throughput. The extension to a multi-satellite network is discussed. The maximum throughput attainable is derived. A queue theoretic model has been developed and expressions for average response times and average queue sizes are obtained. A number of graphs showing the effect of various design parameters on the average response time and the average queue sizes are presented.

  4. Controlling plasmonic wave packets in silver nanowires.

    SciTech Connect

    Cao, L.; Nome, R.; Montgomery, J. M.; Gray, S. K.; Scherer, N. F.

    2010-09-01

    Three-dimensional finite-difference time-domain simulations were performed to explore the excitation of surface plasmon resonances in long silver (Ag) nanowires. In particular, we show that it is possible to generate plasmonic wave packets that can propagate along the nanowire by exciting superpositions of surface plasmon resonances. By using an appropriately chirped pulse, it is possible to transiently achieve localization of the excitation at the distal end of the nanowire. Such designed coherent superpositions will allow realizing spatiotemporal control of plasmonic excitations for enhancing nonlinear responses in plasmonic 'circuits'.

  5. Quantum mechanical manifestation of cantori: Wave-packet localization in stochastic regions

    NASA Astrophysics Data System (ADS)

    Brown, Robert C.; Wyatt, Robert E.

    1986-07-01

    Numerical calculations for a model anharmonic system interacting with a laser are used to analyze the quantum mechanical implications of classical structure in stochastic regions due to cantori (associated with the breakup of invariant Kolmogorov-Arnol'd-Moser surfaces). The numerical results show that a quantum wave packet may remain localized, even though classical orbits are strongly chaotic. Consequently, the quantum dynamics continues to exhibit ``tunnelinglike'' behavior even when diffusion is not classically forbidden.

  6. Wireless Avionics Packet to Support Fault Tolerance for Flight Applications

    NASA Technical Reports Server (NTRS)

    Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad

    2009-01-01

    In this protocol and packet format, data traffic is monitored by all network interfaces to determine the health of transmitter and subsystems. When failures are detected, the network inter face applies its recover y policies to provide continued service despite the presence of faults. The protocol, packet format, and inter face are independent of the data link technology used. The current demonstration system supports both commercial off-the-shelf wireless connections and wired Ethernet connections. Other technologies such as 1553 or serial data links can be used for the network backbone. The Wireless Avionics packet is divided into three parts: a header, a data payload, and a checksum. The header has the following components: magic number, version, quality of service, time to live, sending transceiver, function code, payload length, source Application Data Interface (ADI) address, destination ADI address, sending node address, target node address, and a sequence number. The magic number is used to identify WAV packets, and allows the packet format to be updated in the future. The quality of service field allows routing decisions to be made based on this value and can be used to route critical management data over a dedicated channel. The time to live value is used to discard misrouted packets while the source transceiver is updated at each hop. This information is used to monitor the health of each transceiver in the network. To identify the packet type, the function code is used. Besides having a regular data packet, the system supports diagnostic packets for fault detection and isolation. The payload length specifies the number of data bytes in the payload, and this supports variable-length packets in the network. The source ADI is the address of the originating interface. This can be used by the destination application to identify the originating source of the packet where the address consists of a subnet, subsystem class within the subnet, a subsystem unit

  7. Packet error probabilities in frequency-hopped spread spectrum packet radio networks. Markov frequency hopping patterns considered

    NASA Astrophysics Data System (ADS)

    Georgiopoulos, M.; Kazakos, P.

    1987-09-01

    We compute the packet error probability induced in a frequency-hopped spread spectrum packet radio network, which utilizes first order Markov frequency hopping patterns. The frequency spectrum is divided into q frequency bins and the packets are divided into M bytes each. Every user in the network sends each of the M bytes of his packet at a frequency bin, which is different from the frequency bin used by the previous byte, but equally likely to be any one of the remaining q-1 frequency bins (Markov frequency hopping patterns). Furthermore, different users in the network utilize statistically independent frequency hopping patterns. Provided that, K users have simultaneously transmitted their packets on the channel, and a receiver has locked on to one of these K packets, we present a method for the computation of P sub e (K) (i.e. the probability that this packet is incorrectly decoded). Furthermore, we present numerical results (i.e. P sub e (K) versus K) for various values of the multiple access interference K, when Reed Solomon (RS) codes are used for the encoding of packets. Finally, some useful comparisons, with the packet error probability induced, if we assume that the byte errors are independent, are made; based on these comparisons, we can easily evaluate the performance of our spread spectrum system.

  8. Energy Around Us. A Fall Activity Packet for Fourth Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on energy uses, energy…

  9. Responding to Crisis at a School. A Resource Aid Packet.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Center for Mental Health Schools.

    Schools are increasingly confronted with crisis events. This resource aid packet provides materials to facilitate planning and implementation of a school-based crisis response and related staff training. The packet is divided into four sections. The first offers a brief overview that can be shared with school staff to raise awareness about the…

  10. Forests and Flowers. A Spring Activity Packet for Third Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on plants and…

  11. Student Activity Packet for the California State Capitol Museum.

    ERIC Educational Resources Information Center

    2001

    This packet contains materials to help fourth and fifth grade teachers provide their students with background information for field trips to the California State Capitol Museum (Sacramento). The working museum focuses on the theme areas of California history, the state government/legislative process, and state symbols. The packet presents teacher…

  12. Dance Theatre of Harlem--Theater Activity Packet.

    ERIC Educational Resources Information Center

    New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.

    Intended to complement the New York City communication arts curriculum, this packet introduces young students, guided by the classroom teacher, to a dress rehearsal performance of the Dance Theatre of Harlem ballet company. The packet is one of a series in the "Early Stages" program, a joint effort of the Mayor's Office of Film, Theater and…

  13. Syncope. What Is It? Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Stark, Pam

    This instructor's packet accompanies the learning activity package (LAP) on syncope (fainting). Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, a student performance checklist, suggested activities, an additional resources list, and student…

  14. Michigan Natural History. A Spring Activity Packet for Fourth Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the natural history of…

  15. Spring Birds. A Spring Activity Packet for First Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…

  16. Sculpture of Indonesia. [Teacher's Packet for a Teacher Workshop.

    ERIC Educational Resources Information Center

    Asian Art Museum of San Francisco, CA.

    This teacher's packet accompanies a slide presentation on the sculpture found in Indonesia. The packet contains: (1) a slide list with descriptions listing time period and dimensions of each piece; (2) an introductory essay describing the setting of Indonesia, the Central Javanese Period and the Eastern Javanese Period; (3) descriptions of how to…

  17. Accounting Clerk Guide, Test Packet--Part II.

    ERIC Educational Resources Information Center

    Foster, Brian; And Others

    The test packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing the student for entry into the occupation of accounting clerk. The test packet contains both pretests and post-tests for lessons 12 through 21. The unit is concerned with the basic accounting theory as it is used in the…

  18. Reading the Rocks. A Fall Activity Packet for Fifth Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on various geological…

  19. Nature's Hitchhikers. A Fall Activity Packet for Second Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics of…

  20. Dolphin "packet" use during long-range echolocation tasks.

    PubMed

    Finneran, James J

    2013-03-01

    When echolocating, dolphins typically emit a single broadband "click," then wait to receive the echo before emitting another click. However, previous studies have shown that during long-range echolocation tasks, they may instead emit a burst, or "packet," of several clicks, then wait for the packet of echoes to return before emitting another packet of clicks. The reasons for the use of packets are unknown. In this study, packet use was examined by having trained bottlenose dolphins perform long-range echolocation tasks. The tasks featured "phantom" echoes produced by capturing the dolphin's outgoing echolocation clicks, convolving the clicks with an impulse response to create an echo waveform, and then broadcasting the delayed, scaled echo to the dolphin. Dolphins were trained to report the presence of phantom echoes or a change in phantom echoes. Target range varied from 25 to 800 m. At ranges below 75 m, the dolphins rarely used packets. As the range increased beyond 75 m, two of the three dolphins increasingly produced packets, while the third dolphin instead utilized very high click repetition rates. The use of click packets appeared to be governed more by echo delay (target range) than echo amplitude. PMID:23464048

  1. Assessing To Address Barriers to Learning. An Introductory Packet.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Center for Mental Health Schools.

    Schools committed to the success of all children must have an array of activities designed to address barriers to learning. This introductory packet contains some aids to help school staff find new ways of thinking about how schools should assess barriers to learning. The following items are included in the packet: (1) a chart of "Barriers to…

  2. Frogs and Toads. A Spring Activity Packet for Second Grade.

    ERIC Educational Resources Information Center

    Jackson Community Coll., MI. Dahlem Environmental Education Center.

    This instructional packet is one of 14 school environmental education programs developed for use in the classroom and at the Dahlem Environmental Education Center (DEEC) of the Jackson Community College (Michigan). Provided in the packet are pre-trip activities, field trip activities, and post-trip activities which focus on the characteristics and…

  3. Practical distributed video coding in packet lossy channels

    NASA Astrophysics Data System (ADS)

    Qing, Linbo; Masala, Enrico; He, Xiaohai

    2013-07-01

    Improving error resilience of video communications over packet lossy channels is an important and tough task. We present a framework to optimize the quality of video communications based on distributed video coding (DVC) in practical packet lossy network scenarios. The peculiar characteristics of DVC indeed require a number of adaptations to take full advantage of its intrinsic robustness when dealing with data losses of typical real packet networks. This work proposes a new packetization scheme, an investigation of the best error-correcting codes to use in a noisy environment, a practical rate-allocation mechanism, which minimizes decoder feedback, and an improved side-information generation and reconstruction function. Performance comparisons are presented with respect to a conventional packet video communication using H.264/advanced video coding (AVC). Although currently the H.264/AVC rate-distortion performance in case of no loss is better than state-of-the-art DVC schemes, under practical packet lossy conditions, the proposed techniques provide better performance with respect to an H.264/AVC-based system, especially at high packet loss rates. Thus the error resilience of the proposed DVC scheme is superior to the one provided by H.264/AVC, especially in the case of transmission over packet lossy networks.

  4. Langston Hughes Curriculum Packet: Dig and Be Dug in Return.

    ERIC Educational Resources Information Center

    Danielson, Susan

    Designed in a flexible format for use by college instructors, high school teachers, and community education workers, this curriculum packet serves as an introduction to the life and works of black poet Langston Hughes. The major component of the packet is a critical essay that explores the thematic highlights of Hughes's career. The remaining…

  5. Hyperspectral trace gas detection using the wavelet packet transform

    NASA Astrophysics Data System (ADS)

    Salvador, Mark Z.; Resmini, Ronald G.; Gomez, Richard B.

    2008-04-01

    A method for trace gas detection in hyperspectral data is demonstrated using the wavelet packet transform. This new method, the Wavelet Packet Subspace (WPS), applies the wavelet packet transform and selects a best basis for pattern matching. The wavelet packet transform is an extension of the wavelet transform, which fully decomposes a signal into a library of wavelet packet bases. Application of the wavelet packet transform to hyperspectral data for the detection of trace gases takes advantage of the ability of the wavelet transform to locate spectral features in both scale and location. By analyzing the wavelet packet tree of specific gas, nodes of the tree are selected which represent an orthogonal best basis. The best basis represents the significant spectral features of that gas. This is then used to identify pixels in the scene using existing matching algorithms such as spectral angle or matched filter. Using data from the Airborne Hyperspectral Imager (AHI), this method is compared to traditional matched filter detection methods. Initial results demonstrate a promising wavelet packet subspace technique for hyperspectral trace gas detection applications.

  6. Learn about Seabirds. Teaching Packet, Grades 4-6.

    ERIC Educational Resources Information Center

    Fish and Wildlife Service (Dept. of Interior), Anchorage, AK.

    This teaching packet is designed to teach Alaskan students in grades 4-6 about Alaska's seabird populations, the worldwide significance of seabirds, and the environmental conditions to which seabirds are sensitive. The packet includes a curriculum guide (containing a teacher's background story and 12 teaching activities), a separately published…

  7. Accounting Clerk Guide, Test Packet--Part I.

    ERIC Educational Resources Information Center

    Foster, Brian; And Others

    The test packet is part of an eight volume unit for grades 10, 11, and 12, designed for individualized progression in preparing students for entry into the occupation of accounting clerk. The test packet contains both pretests and post-tests for lessons 1 through 12. The unit is concerned with the basic accounting theory found in the accounting…

  8. NIE Credit-Granting Courses and Workshops Information Packet.

    ERIC Educational Resources Information Center

    American Newspaper Publishers Association Foundation, Washington, DC.

    This packet offers information about NIE (Newspaper in Education) credit-granting courses and workshops (some of them cooperative press/school ventures) on the use of newspapers in instructional programs. The packet is in four major sections, containing: (1) case studies of two exceptional programs at the University of Wisconsin-Madison and at…

  9. The Surgical Scrub. Instructor's Packet. Learning Activity Package.

    ERIC Educational Resources Information Center

    Runge, Lillian

    This instructor's packet accompanies the learning activity package (LAP) on the surgical scrub. Contents included in the packet are a time sheet, suggested uses for the LAP, an instruction sheet, final LAP reviews, a final LAP review answer key, a student performance checklist, suggested activities, an additional resources list, and student…

  10. Understanding and Minimizing Staff Burnout. An Introductory Packet.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. Center for Mental Health Schools.

    Staff who bring a mental health perspective to the schools can deal with problems of staff burnout. This packet is designed to help in beginning the process of minimizing burnout, a process that requires reducing environmental stressors, increasing personal capabilities, and enhancing job supports. The packet opens with brief discussions of "What…

  11. The ESA standard for telemetry and telecommand packet utilisation: PUS

    NASA Astrophysics Data System (ADS)

    Kaufeler, Jean-Francois

    1994-11-01

    ESA has developed standards for packet telemetry and telecommand, which are derived from the recommendations of the Inter-Agency Consultative Committee for Space Data Systems (CCSDS). These standards are now mandatory for future ESA programs as well as for many programs currently under development. However, while these packet standards address the end-to-end transfer of telemetry and telecommand data between applications on the ground and Application Processes on-board, they leave open the internal structure or content of the packets. This paper presents the ESA Packet Utilization Standard (PUS) which addresses this very subject and, as such, serves to extend and complement the ESA packet standards. The goal of the PUS is to be applicable to future ESA missions in all application areas (Telecommunications, Science, Earth Resources, microgravity, etc.). The production of the PUS falls under the responsibility of the ESA Committee for Operations and EGSE Standards (COES).

  12. Propagation and breathing of matter-wave-packet trains

    SciTech Connect

    Hai Wenhua; Chong Guishu; Lee, Chaohong

    2004-11-01

    We find a set of different orthonormalized states of a nonstationary harmonic oscillator and use them to expand the solution of the Gross-Pitaevskii equation with harmonic potential. The expansion series describes wave-packet trains of a Bose-Einstein condensate, which may be induced initially by the modulational instability. The center of any wave-packet train oscillates like a classical harmonic oscillator of frequency {omega}. The width and height of the wave packet and the distance between two wave packets change simultaneously like an array of breathers with frequency 2{omega}. We demonstrate analytically and numerically that for a set of suitable parameters the wave-packet trains can be more exactly fitted to the matter-wave soliton trains observed by Strecker et al. and reported in Nature (London) 417, 150 (2002)

  13. Formation of two-dimensional nonspreading atomic wave packets in the field of two standing light waves

    SciTech Connect

    Efremov, M A; Fedorov, Mikhail V; Petropavlovsky, S V; Yakovlev, V P; Schleich, Wolfgang P

    2005-08-31

    The formation of two-dimensional nonspreading atomic wave packets produced in the interaction of a beam of two-level atoms with two standing light waves polarised in the same plane is considered. The mechanism providing a dispersionless particle dynamics is the balance of two processes: a rapid decay of the atomic wave function away from the field nodes due to spontaneous transitions to nonresonance states and the quantum broadening of the wave packets formed in the close vicinity of field nodes. Coordinate-dependent amplitudes and phases of the two-dimensional wave packets were found for the j{sub g}=0 {r_reversible} j{sub e}=1 transition. (fourth seminar to the memory of d.n. klyshko)

  14. Nondiffracting accelerating wave packets of Maxwell's equations.

    PubMed

    Kaminer, Ido; Bekenstein, Rivka; Nemirovsky, Jonathan; Segev, Mordechai

    2012-04-20

    We present the nondiffracting spatially accelerating solutions of the Maxwell equations. Such beams accelerate in a circular trajectory, thus generalizing the concept of Airy beams to the full domain of the wave equation. For both TE and TM polarizations, the beams exhibit shape-preserving bending which can have subwavelength features, and the Poynting vector of the main lobe displays a turn of more than 90°. We show that these accelerating beams are self-healing, analyze their properties, and find the new class of accelerating breathers: self-bending beams of periodically oscillating shapes. Finally, we emphasize that in their scalar form, these beams are the exact solutions for nondispersive accelerating wave packets of the most common wave equation describing time-harmonic waves. As such, this work has profound implications to many linear wave systems in nature, ranging from acoustic and elastic waves to surface waves in fluids and membranes. PMID:22680719

  15. Wave packets, transients, and numerical relativity

    NASA Astrophysics Data System (ADS)

    O'Shaughnessy, Richard

    2003-04-01

    Many in the numerical relativity community (e.g. Alcubierre et al (2000), Yoneda and Shinkai) have conjectured that formulations of relativity in which N fields propagate relative to coordinates will generally be more stable than formulations with M≤ N fields propagate. Loosely, errors can propagate away more effectively if more fields propagate. For first-order symmetric hyperbolic linear systems, we demonstrate (by way of explicit wave-packet solutions) that indeed most short-scale errors propagate away before growing to large magnitude. We also demonstrate that, for systems with long-lived characteristics (e.g. with horizons and physical characteristic speeds), the potential exists for unbounded growth of small errors, in a manner that could conceivably plague numerial evolutions. We discuss in particular the growth of transient errors in simulations of a Schwarzchild hole in Penelve-Gullstrand coordinates using the equations of Kidder, Scheel, and Teukolsky.

  16. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Wang, Xiaowei; González-Castrillo, Alberto; Palacios, Alicia; Argenti, Luca; Martín, Fernando; Chang, Zenghu

    2016-08-01

    Attosecond science promises to allow new forms of quantum control in which a broadband isolated attosecond pulse excites a molecular wave packet consisting of a coherent superposition of multiple excited electronic states. This electronic excitation triggers nuclear motion on the molecular manifold of potential energy surfaces and can result in permanent rearrangement of the constituent atoms. Here, we demonstrate attosecond transient absorption spectroscopy (ATAS) as a viable probe of the electronic and nuclear dynamics initiated in excited states of a neutral molecule by a broadband vacuum ultraviolet pulse. Owing to the high spectral and temporal resolution of ATAS, we are able to reconstruct the time evolution of a vibrational wave packet within the excited B'Σ1u+ electronic state of H2 via the laser-perturbed transient absorption spectrum.

  17. Complex time dependent wave packet technique for thermal equilibrium systems - Electronic spectra

    NASA Technical Reports Server (NTRS)

    Reimers, J. R.; Wilson, K. R.; Heller, E. J.

    1983-01-01

    A time dependent wave packet method is presented for the rapid calculation of the properties of systems in thermal equilibrium and is applied, as an illustration, to electronic spectra. The thawed Gaussian approximation to quantum wave packet dynamics combined with evaluation of the density matrix operator by imaginary time propagation is shown to give exact electronic spectra for harmonic potentials and excellent results for both a Morse potential and for the band contours of the three transitions of the visible electronic absorption spectrum of the iodine molecule. The method, in principle, can be extended to many atoms (e.g., condensed phases) and to other properties (e.g., infrared and Raman spectra and thermodynamic variables).

  18. Networked LQG control over lossy channels with computational/packet-transmission delays and coarsely quantised packets

    NASA Astrophysics Data System (ADS)

    Foo, Yung Kuan; Moayedi, Maryam; Chai Soh, Yeng

    2016-04-01

    This article addresses the linear quadratic Gaussian (LQG) control problem of networked multi-input, multi-output systems where computational delay exists and the measurement and control signals are packetised and transmitted through a network within which random delay and packet loss may occur during transmissions. A transmission control protocol (TCP)-like protocol for the communication network is considered in which acknowledgement is sent from the actuator to the controller if and only if the control packet is received, assuming these acknowledgements always reach the estimator in time and without fail. To minimise the data word-length for transmissions over the network and to maximise control system performance, it is proposed that different quantisation resolutions be used for transmission data encapsulation, and control and output signals A/D-D/A conversions at sensor/actuator. To circumvent the problem of disparity between encapsulation and A/D-D/A quantisation resolutions, a pseudo-stochastic approach via subtractive dither is applied to quantise the transmission packets. This also enables us to model the quantisation errors as uncorrelated independent zero-mean additive white noises and apply standard LQG methodology and separation principle to design the estimator and the controller separately. An example is included to demonstrate the effectiveness of the approach.

  19. Modulation instability of wave packets in a Gires-Tournois interferometer

    NASA Astrophysics Data System (ADS)

    Zolotovskii, I. O.; Lapin, V. A.; Sementsov, D. I.

    2016-07-01

    We study the specific features of the perturbation dynamics of a wave packet in a Gires-Tournois interferometer. We obtain a dispersion relationship that relates the perturbation parameters to the parameters of the structure and pump wave, the analytical expressions for the gain increment of a harmonic perturbation and other important characteristics that determine the dynamics of the modulation instability of the reflected wave. Based on numerical simulation, we plot the dependences of the dispersion and nonlinearity parameters and the gain increment on the spacing between the interferometer mirrors, the angle of incidence of the radiation onto the mirrors, and the radiation intensity.

  20. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, Thomas G.; Thacker, Louis H.; Fine, H. Alan

    1993-01-01

    An instrument for the measurement of vacuum within sealed packets 12, the packets 12 having a wall 14 sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head 18 for placement against the deformable wall 14 of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall 14, with this deformation or lift monitored by the application of light as via a bifurcated light pipe 20. Retro-reflected light through the light pipe is monitored with a photo detector 26. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head 18 to achieve this initiation of movement is equal to the vacuum Within the packet 12. In a preferred embodiment a vacuum reference plate 44 is placed beneath the packet 12 to ensure that no deformation occurs on the reverse surface 16 of the packet. A packet production line model is also described.

  1. Reinforcement learning for congestion-avoidance in packet flow

    NASA Astrophysics Data System (ADS)

    Horiguchi, Tsuyoshi; Hayashi, Keisuke; Tretiakov, Alexei

    2005-04-01

    Occurrence of congestion of packet flow in computer networks is one of the unfavorable problems in packet communication and hence its avoidance should be investigated. We use a neural network model for packet routing control in a computer network proposed in a previous paper by Horiguchi and Ishioka (Physica A 297 (2001) 521). If we assume that the packets are not sent to nodes whose buffers are already full of packets, then we find that traffic congestion occurs when the number of packets in the computer network is larger than some critical value. In order to avoid the congestion, we introduce reinforcement learning for a control parameter in the neural network model. We find that the congestion is avoided by the reinforcement learning and at the same time we have good performance for the throughput. We investigate the packet flow on computer networks of various types of topology such as a regular network, a network with fractal structure, a small-world network, a scale-free network and so on.

  2. Instrument for measurement of vacuum in sealed thin wall packets

    DOEpatents

    Kollie, T.G.; Thacker, L.H.; Fine, H.A.

    1993-10-05

    An instrument is described for the measurement of vacuum within sealed packets, the packets having a wall sufficiently thin that it can be deformed by the application of an external vacuum to small area thereof. The instrument has a detector head for placement against the deformable wall of the packet to apply the vacuum in a controlled manner to accomplish a limited deformation or lift of the wall, with this deformation or lift monitored by the application of light as via a bifurcated light pipe. Retro-reflected light through the light pipe is monitored with a photo detector. An abrupt change (e.g., a decrease) of retro-reflected light signals the wall movement such that the value of the vacuum applied through the head to achieve this initiation of movement is equal to the vacuum within the packet. In a preferred embodiment a vacuum reference plate is placed beneath the packet to ensure that no deformation occurs on the reverse surface of the packet. A packet production line model is also described. 3 figures.

  3. Priority-based methods for reducing the impact of packet loss on HEVC encoded video streams

    NASA Astrophysics Data System (ADS)

    Nightingale, James; Wang, Qi; Grecos, Christos

    2013-02-01

    The rapid growth in the use of video streaming over IP networks has outstripped the rate at which new network infrastructure has been deployed. These bandwidth-hungry applications now comprise a significant part of all Internet traffic and present major challenges for network service providers. The situation is more acute in mobile networks where the available bandwidth is often limited. Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently on track for completion in 2013. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC) for the same quality. However, there has been very little published research on HEVC streaming or the challenges of delivering HEVC streams in resource-constrained network environments. In this paper we consider the problem of adapting an HEVC encoded video stream to meet the bandwidth limitation in a mobile networks environment. Video sequences were encoded using the Test Model under Consideration (TMuC HM6) for HEVC. Network abstraction layers (NAL) units were packetized, on a one NAL unit per RTP packet basis, and transmitted over a realistic hybrid wired/wireless testbed configured with dynamically changing network path conditions and multiple independent network paths from the streamer to the client. Two different schemes for the prioritisation of RTP packets, based on the NAL units they contain, have been implemented and empirically compared using a range of video sequences, encoder configurations, bandwidths and network topologies. In the first prioritisation method the importance of an RTP packet was determined by the type of picture and the temporal switching point information carried in the NAL unit header. Packets containing parameter set NAL units and video coding layer (VCL) NAL units of the instantaneous decoder refresh (IDR) and the clean random access (CRA) pictures were given the

  4. Packet message communication system using polar orbiting small satellites

    NASA Astrophysics Data System (ADS)

    Suzuki, Ryutaro; Suzuki, Yoshiaki; Arimoto, Yoshinori; Ohmori, Shingo; Kondo, Kimio

    A packet message communication system using small satellites is studied for the worldwide electronic mail type communications. A store and forward type packet communication equipment is installed in a small satellite which rotates in the polar orbit. By using the inter satellite link among the small satellites and/or the data exchange earth station in the polar region, the delay time of the packet message delivery can be shortened. The multibeam phased array technique is applied for the satellite antenna in order to increase the link quality. Four satellites configuration gives a 4.8 kbps data rate message with less than two hours of delay.

  5. Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets.

    PubMed

    Kienzler, D; Flühmann, C; Negnevitsky, V; Lo, H-Y; Marinelli, M; Nadlinger, D; Home, J P

    2016-04-01

    We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for Δα=15.6, corresponding to a distance of 240 nm between the two superposed wave packets. PMID:27104686

  6. Packet narrowing and quantum entanglement in photoionization and photodissociation

    SciTech Connect

    Fedorov, M.V.; Efremov, M.A.; Kazakov, A.E.; Chan, K.W.; Eberly, J.H.; Law, C.K.

    2004-05-01

    The narrowing of electron and ion wave packets in the process of photoionization is investigated, with the electron-ion recoil taken fully into account. Packet localization of this type is directly related to entanglement in the joint quantum state of the electron and ion, and to Einstein-Podolsky-Rosen localization. Experimental observation of such packet-narrowing effects is suggested via coincidence registration by two detectors, with a fixed position of one and varying position of the other. A similar effect, typically with an enhanced degree of entanglement, is shown to occur in the case of photodissociation of molecules.

  7. Observation of Quantum Interference between Separated Mechanical Oscillator Wave Packets

    NASA Astrophysics Data System (ADS)

    Kienzler, D.; Flühmann, C.; Negnevitsky, V.; Lo, H.-Y.; Marinelli, M.; Nadlinger, D.; Home, J. P.

    2016-04-01

    We directly observe the quantum interference between two well-separated trapped-ion mechanical oscillator wave packets. The superposed state is created from a spin-motion entangled state using a heralded measurement. Wave packet interference is observed through the energy eigenstate populations. We reconstruct the Wigner function of these states by introducing probe Hamiltonians which measure Fock state populations in displaced and squeezed bases. Squeezed-basis measurements with 8 dB squeezing allow the measurement of interference for Δ α =15.6 , corresponding to a distance of 240 nm between the two superposed wave packets.

  8. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes.

    PubMed

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-01-01

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113

  9. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes

    PubMed Central

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-01-01

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials. PMID:26906113

  10. Direct observation of isolated Damon-Eshbach and backward volume spin-wave packets in ferromagnetic microstripes

    NASA Astrophysics Data System (ADS)

    Wessels, Philipp; Vogel, Andreas; Tödt, Jan-Niklas; Wieland, Marek; Meier, Guido; Drescher, Markus

    2016-02-01

    The analysis of isolated spin-wave packets is crucial for the understanding of magnetic transport phenomena and is particularly interesting for applications in spintronic and magnonic devices, where isolated spin-wave packets implement an information processing scheme with negligible residual heat loss. We have captured microscale magnetization dynamics of single spin-wave packets in metallic ferromagnets in space and time. Using an optically driven high-current picosecond pulse source in combination with time-resolved scanning Kerr microscopy probed by femtosecond laser pulses, we demonstrate phase-sensitive real-space observation of spin-wave packets in confined permalloy (Ni80Fe20) microstripes. Impulsive excitation permits extraction of the dynamical parameters, i.e. phase- and group velocities, frequencies and wave vectors. In addition to well-established Damon-Eshbach modes our study reveals waves with counterpropagating group- and phase-velocities. Such unusual spin-wave motion is expected for backward volume modes where the phase fronts approach the excitation volume rather than emerging out of it due to the negative slope of the dispersion relation. These modes are difficult to excite and observe directly but feature analogies to negative refractive index materials, thus enabling model studies of wave propagation inside metamaterials.