Science.gov

Sample records for exclusive hard diffraction

  1. Imaging the proton via hard exclusive production in diffractive pp scattering

    SciTech Connect

    Charles Hyde; Leonid Frankfurt; Mark Strikman; Christian Weiss

    2007-05-21

    We discuss the prospects for probing Generalized Parton Distributions (GPDs) via exclusive production of a high-mass system (H = heavy quarkonium, di-photon, di-jet, Higgs boson) in diffractive pp scattering, pp -> p + H + p. In such processes the interplay of hard and soft interactions gives rise to a diffraction pattern in the final-state proton transverse momenta, which is sensitive to the transverse spatial distribution of partons in the colliding protons. We comment on the plans for diffractive pp measurements at RHIC and LHC. Such studies could complement future measurements of GPDs in hard exclusive ep scattering (JLab, COMPASS, EIC).

  2. Diffractive hard scattering

    SciTech Connect

    Berger, E.L.; Collins, J.C.; Soper, D.E.; Sterman, G.

    1986-03-01

    I discuss events in high energy hadron collisions that contain a hard scattering, in the sense that very heavy quarks or high P/sub T/ jets are produced, yet are diffractive, in the sense that one of the incident hadrons is scattered with only a small energy loss. 8 refs.

  3. Hard diffraction in Pythia 8

    NASA Astrophysics Data System (ADS)

    Overgaard Rasmussen, Christine

    2016-07-01

    We present an overview of the options for diffraction implemented in the general-purpose event generator Pythia 8 [1]. We review the existing model for soft diffraction and present a new model for hard diffraction. Both models use the Pomeron approach pioneered by Ingelman and Schlein, factorising the diffractive cross section into a Pomeron flux and a Pomeron PDF, with several choices for both implemented in Pythia 8. The model of hard diffraction is implemented as a part of the multiparton interactions (MPI) framework, thus introducing a dynamical gap survival probability that explicitly breaks factorisation.

  4. Hard diffraction at CDF

    SciTech Connect

    Melese, P.L.; CDF Collaboration

    1996-07-01

    We present new evidence for events with a rapidity gap between jets in {bar p}-p collisions at {radical}s = 1.8 TeV based on data collected by triggering the Collider Detector at Fermilab on two high transverse momentum forward jets and results of a search for diffractive W{+-} and dijet production where diffraction is tagged by the rapidity gap technique. We also present the results of a search for diffractive dijets using data collected by triggering on a very forward particle in the recently installed roman-pot detectors. The dijet events exhibit additional diffractive characteristics such as rapidity gaps and boosted center of mass system, however the recoil antiproton measured in the roman-pots is in a regime in which the non- pomeron contribution is significant.

  5. Hard diffractive results and prospects at the Tevatron

    SciTech Connect

    Peters, Krisztian; /Manchester U.

    2006-01-01

    We review hard diffractive results and prospects at the Tevatron with an emphasis on factorization breaking in diffractive processes. Upper limits on the exclusive di-jet and {chi}{sub c}{sup 0} production cross sections at CDF and the status of the D0 Forward Proton Detectors are discussed.

  6. Diffractive and exclusive measurements at CDF

    SciTech Connect

    Gallinaro, Michele; /Rockefeller U.

    2006-06-01

    Experimental results from the CDF experiment at the Tevatron in p{bar p} collisions at {radical}s = 1.96 TeV are presented on the diffractive structure function at different values of the exchanged momentum transfer squared in the range 0 < Q{sup 2} < 10,000 GeV{sup 2}, on the four-momentum transfer |t| distribution in the region 0 < |t| < 1 GeV{sup 2} for both soft and hard diffractive events up to Q{sup 2} {approx} 4,500 GeV{sup 2}, and on the first experimental evidence of exclusive production in both dijet and diphoton events. A novel technique to align the Roman Pot detectors is also presented.

  7. Theory of hard diffraction and rapidity gaps

    SciTech Connect

    Del Duca, V.

    1996-02-01

    In this talk we review the models describing the hard diffractive production of jets or more generally high-mass states in presence of rapidity gaps in hadron-hadron and lepton-hadron collisions. By rapidity gaps we mean regions on the lego plot in (pseudo)-rapidity and azimuthal angle where no hadrons are produced, between the jet(s) and an elastically scattered hadron (single hard diffraction) or between two jets (double hard diffraction). {copyright} {ital 1996 American Institute of Physics.}

  8. Breakdown of QCD factorization in hard diffraction

    NASA Astrophysics Data System (ADS)

    Kopeliovich, B. Z.

    2016-07-01

    Factorization of short- and long-distance interactions is severely broken in hard diffractive hadronic collisions. Interaction with the spectator partons leads to an interplay between soft and hard scales, which results in a leading twist behavior of the cross section, on the contrary to the higher twist predicted by factorization. This feature is explicitly demonstrated for diffractive radiation of abelian (Drell-Yan, gauge bosons, Higgs) and non-abelian (heavy flavors) particles.

  9. Hard diffraction with dynamic gap survival

    NASA Astrophysics Data System (ADS)

    Rasmussen, Christine O.; Sjöstrand, Torbjörn

    2016-02-01

    We present a new framework for the modelling of hard diffraction in pp and poverline{p} collisions. It starts from the the approach pioneered by Ingelman and Schlein, wherein the single diffractive cross section is factorized into a Pomeron flux and a Pomeron PDF. To this it adds a dynamically calculated rapidity gap survival factor, derived from the modelling of multiparton interactions. This factor is not relevant for diffraction in ep collisions, giving non-universality between HERA and Tevatron diffractive event rates. The model has been implemented in P ythia 8 and provides a complete description of the hadronic state associated with any hard single diffractive process. Comparisons with poverline{p} and pp data reveal improvement in the description of single diffractive events.

  10. CMS results on exclusive and diffractive production

    SciTech Connect

    Alves, Gilvan A.

    2015-04-10

    We present recent CMS measurements of diffractive and exclusive processes, using data collected at 7 TeV at the LHC. Measurements of soft single- and double-diffractive cross sections are presented, as well as measurements of photon-induced processes including studies of exclusive WW production via photon-photon exchange.

  11. Observation of hard diffraction with CMS

    SciTech Connect

    Obertino, M. M.

    2009-03-23

    Diffraction with a hard scale can be observed in the first LHC data. We present studies of single diffractive W-boson production (pp{yields}Xp, with X including a W boson) and of {upsilon} photoproduction (pp{yields}{upsilon}p, with {upsilon}{yields}{mu}{sup +}{mu}{sup -}). The feasibility of observing these processes with the CMS detector using the first 100 pb{sup -1} of collected integrated luminosity for single interactions is discussed.

  12. Hard diffraction and deep inelastic scattering

    SciTech Connect

    Bjorken, J.D.

    1994-04-01

    Since the advent of hard-collision physics, the study of diffractive processes - shadow physics - has been less prominent than before. However, there is now a renewed interest in the subject, especially in that aspect which synthesizes the short-distance, hard-collision phenomena with the classical physics of large rapidity-gaps. This is especially stimulated by the recent data on deep-inelastic scattering from HERA, as well as the theoretical work which relates to it. The word diffraction is sometimes used by high-energy physicists in a loose way. The author defines this term to mean: A diffractive process occurs if and only if there is a large rapidity gap in the produced-particle phase space which is not exponentially suppressed. Here a rapidity gap means essentially no hadrons produced into the rapidity gap (which operates in the {open_quotes}lego{close_quotes} phase-space of pseudo-rapidity and azimuthal angle). And non-exponential suppression implies that the cross-section for creating a gap with width {Delta}{eta} does not have a power-law decrease with increasing subenergy s=e{sup {Delta}{eta}}, but behaves at most like some power of pseudorapidity {Delta}{eta}{approx}log(s). The term hard diffraction shall simply refer to those diffractive process which have jets in the final-state phase-space.

  13. QCD and hard diffraction at the LHC

    SciTech Connect

    Albrow, Michael G.; /Fermilab

    2005-09-01

    As an introduction to QCD at the LHC the author gives an overview of QCD at the Tevatron, emphasizing the high Q{sup 2} frontier which will be taken over by the LHC. After describing briefly the LHC detectors the author discusses high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. The author introduces the FP420 project to measure the scattered protons 420m downstream of ATLAS and CMS.

  14. Hard Exclusive Vector Meson Leptoproduction At HERMES

    SciTech Connect

    Golembiovskaya, M.

    2011-07-15

    The HERMES experiment at DESY, Hamburg collected a set of data on hard exclusive vector meson ({rho}{sup 0}{phi},{omega}) leptoproduction using the 27.6 GeV longitudinally polarized lepton beam of HERA accelerator and longitudinally or transversely polarized or unpolarized gas targets. Measurements of exclusive vector meson production provide access to the structure of the nucleon since the process can be described in terms of Generalized Parton Distributions (GPDs). An overview of the HERMES results on exclusive vector mesons production is presented.

  15. Hard Exclusive Reactions at Jlab

    SciTech Connect

    Kubarovsky, Valery P.

    2011-09-20

    Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS) and Deeply Virtual Meson Production (DVMP) have been carried out at Jefferson Lab. DVCS helicity--dependent and helicity--independent cross sections and beam spin asymmetries have been measured, as well as cross sections and asymmetries for the $\\pi^0$, $\\eta$, $\\rho^0$, $\\rho^+$, $\\omega$ and $\\phi$ for exclusive electroproduction. The data were taken in a wide kinematic range in $Q^2$=1--4.5 GeV$^2$, $x_B$=0.1--0.5, and $|t|$ up to 2 GeV$^2$. The presented results offer a unique opportunity to study the structure of the nucleon at the parton level as one has access to Bjorken $x_B$ and momentum transfer to the nucleon $t$ at the same time.

  16. Hard Exclusive Meson Production at COMPASS

    NASA Astrophysics Data System (ADS)

    Ter Wolbeek, Johannes

    2016-02-01

    The concept of Generalized Parton Distributions (GPDs) combines two-dimensional spatial information given by form factors, with longitudinal momentum information from Parton Distribution Functions. GPDs provide comprehensive description of the nucleon structure involving a wealth of new information. For instance, according to Ji’s sum rule, the GPDs H and E enable access to the total angular momenta of quarks, antiquarks and gluons. While H can be approached using measurements of electroproduction cross sections, asymmetry measurements in hard exclusive meson production off transversely polarized targets can help to constrain the GPD E and chiral-odd GPDs. In 2007 and 2010 the COMPASS experiment at CERN collected data by scattering a 160GeV/c muon beam off a transversely polarized NH3 target. Exclusive vector-meson production μ + p → μ‧ + p + V with a ρ0 or ω meson in the final state is studied and five single-spin and three double-spin azimuthal asymmetries are measured.

  17. Exclusive diffractive photon bremsstrahlung at the LHC

    NASA Astrophysics Data System (ADS)

    Lebiedowicz, Piotr; Szczurek, Antoni

    2013-06-01

    We calculate differential distributions for the pp→ppγ reaction at the LHC energy s=14TeV. We consider diffractive classical bremsstrahlung mechanisms including effects of the non-point-like nature of protons. In addition, we take into account (vector meson)-pomeron, photon-pion, and photon-pomeron exchange processes for the first time in the literature. Predictions for the total cross section and several observables related to these processes, e.g., differential distributions in pseudorapidities and transverse momenta of photons or protons are shown and discussed. The integrated diffractive bremsstrahlung cross section (Eγ>100GeV) is only of the order of μb. We try to identify regions of the phase space where one of the mechanisms dominates. The classical bremsstrahlung dominates at large forward/backward photon pseudorapidities, close to the pseudorapidities of scattered protons. In contrast, the photon-pomeron (pomeron-photon) mechanism dominates at midrapidities but the related cross section is rather small. In comparison the virtual-omega-rescattering mechanism contributes at smaller angles of photons (larger photon rapidities). Photons in the forward/backward region can be measured by the Zero Degree Calorimeters installed in experiments at the LHC while the midrapidity photons are difficult to measure (small cross section, small photon transverse momenta). Protons could be measured by the ALFA detector (ATLAS) or TOTEM detector at CMS. The exclusivity could be checked with the help of main central detectors.

  18. Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering

    SciTech Connect

    Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman; Christian Weiss

    2007-03-01

    We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp-->p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J= production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (''diffraction pattern''). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC.

  19. Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering

    SciTech Connect

    Frankfurt, L.; Hyde, C. E.; Strikman, M.; Weiss, C.

    2007-03-01

    We study rapidity gap survival (RGS) in the production of high-mass systems (H=dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp{yields}p+(gap)+H+(gap)+p. Our approach is based on the idea that hard and soft interactions are approximately independent because they proceed over widely different time and distance scales. We implement this idea in a partonic description of proton structure, which allows for a model-independent treatment of the interplay of hard and soft interactions. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons, whose amplitude is calculable in terms of the gluon generalized parton distribution (GPD), measured in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate neglecting correlations between hard and soft interactions (independent interaction approximation). We obtain an analytic expression for the RGS probability in terms of the phenomenological pp elastic scattering amplitude, without reference to the eikonal approximation. Contributions from inelastic intermediate states are suppressed. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons ('diffraction pattern'). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the

  20. Spin Effects in Hard Exclusive Electroproduction of Mesons

    NASA Astrophysics Data System (ADS)

    Kroll, P.

    In this talk various spin effects in hard exclusive electroproduction of mesons are briefly reviewed. The data are discussed in the light of recent theoretical calculations within the frame work of the handbag approach. This talk has been presented at the Conference in Honor of Prof. Anatoly Efremov's 75th Birthday held at Trento, July, 2009.

  1. New HMI hard X-ray Diffraction Beamlines at BESSY

    SciTech Connect

    Denks, I. A.; Genzel, C.; Dudzik, E.; Feyerherm, R.; Klaus, M.; Wagener, G.

    2007-01-19

    Since April 2005 the Hahn-Meitner-Institute is operating two new beamlines for energy dispersive diffraction experiments (EDDI) and for (resonant) magnetic scattering (MAGS) at BESSY. The source for both beamlines is a superconducting 7 T multipole wiggler which provides hard X-ray photons with energies between 4 and 150 keV. The EDDI beamline uses the white beam and is intended for residual stress measurements on small samples as well as heavy engineering parts. The MAGS beamline delivers a focussed monochromatic beam with photon fluxes in the 1012 (s 100 mA 0.1 % bandwidth)-1 range at energies from 4 to 30 keV. It is equipped for single crystal diffraction and resonant (magnetic) scattering experiments as well as for the study of thin films, micro-, and nanostructures in materials science.

  2. New HMI hard X-ray Diffraction Beamlines at BESSY

    NASA Astrophysics Data System (ADS)

    Denks, I. A.; Genzel, C.; Dudzik, E.; Feyerherm, R.; Klaus, M.; Wagener, G.

    2007-01-01

    Since April 2005 the Hahn-Meitner-Institute is operating two new beamlines for energy dispersive diffraction experiments (EDDI) and for (resonant) magnetic scattering (MAGS) at BESSY. The source for both beamlines is a superconducting 7 T multipole wiggler which provides hard X-ray photons with energies between 4 and 150 keV. The EDDI beamline uses the white beam and is intended for residual stress measurements on small samples as well as heavy engineering parts. The MAGS beamline delivers a focussed monochromatic beam with photon fluxes in the 1012 (s 100 mA 0.1 % bandwidth)-1 range at energies from 4 to 30 keV. It is equipped for single crystal diffraction and resonant (magnetic) scattering experiments as well as for the study of thin films, micro-, and nanostructures in materials science.

  3. Measurement of diffractive and exclusive processes with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Gach, Grzegorz

    2016-07-01

    The ATLAS Collaboration has carried out a study of diffractive dijet production in proton-proton collisions at a centre-of-mass energy of √s = 7 TeV at the LHC. The data distributions are compared with Monte Carlo models and the rapidity gap survival probability has been estimated in the kinematic region with high diffractive contribution. Prospects for exclusive jet production studies with the forward proton tagging capability of the AFP sub-detector of ATLAS are also discussed. First results based on data taken jointly with the ATLAS and the LHCf detectors in a p+Pb run will also be shown. In addition, the measurement of the cross-section for the exclusive production of di-lepton pairs in pp collisions at √s = 7 TeV is discussed.

  4. High-resolution projection image reconstruction of thick objects by hard x-ray diffraction microscopy

    SciTech Connect

    Takahashi, Yukio; Nishino, Yoshinori; Tsutsumi, Ryosuke; Zettsu, Nobuyuki; Matsubara, Eiichiro; Yamauchi, Kazuto; Ishikawa, Tetsuya

    2010-12-01

    Hard x-ray diffraction microscopy enables us to observe thick objects at high spatial resolution. The resolution of this method is limited, in principle, by only the x-ray wavelength and the largest scattering angle recorded. As the resolution approaches the wavelength, the thickness effect of objects plays a significant role in x-ray diffraction microscopy. In this paper, we report high-resolution hard x-ray diffraction microscopy for thick objects. We used highly focused coherent x rays with a wavelength of {approx}0.1 nm as an incident beam and measured the diffraction patterns of a {approx}150-nm-thick silver nanocube at the scattering angle of {approx}3 deg. We observed a characteristic contrast of the coherent diffraction pattern due to only the thickness effect and collected the diffraction patterns at nine incident angles so as to obtain information on a cross section of Fourier space. We reconstructed a pure projection image by the iterative phasing method from the patched diffraction pattern. The edge resolution of the reconstructed image was {approx}2 nm, which was the highest resolution so far achieved by x-ray microscopy. The present study provides us with a method for quantitatively observing thick samples at high resolution by hard x-ray diffraction microscopy.

  5. Coherent diffraction imaging using focused hard X-rays

    NASA Astrophysics Data System (ADS)

    Kim, Sunam; Kim, Sangsoo; Lee, Su Yong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Marathe, Shashidhara; Song, Changyong; Gallagher-Jones, Marcus; Kang, Hyon Chol

    2016-05-01

    A quantitative height profile image of a silicon nano-trench structure was obtained via coherent diffraction imaging (CDI) utilizing focused X-rays at a photon energy of 5.5 keV. The ability to optimize the spatial coherence and the photon flux density of a focused X-ray beam was the key technique for achieving such technical progress at a given X-ray photon flux. This was achieved by investigating the tunability of the focused beam's optical properties and performing a CDI experiment with the focused X-rays. The relationship between the focused X-rays' optical properties ( e.g., photon flux density and spatial coherence length) and the incident beam's size, which can be tuned by adjusting the slits in front of the Fresnel zone plate (FZP) was elucidated. We also obtained a quantitative image of a nano-trench sample produced via the reconstruction process of CDI, which utilizes carefully tuned, focused X-rays.

  6. Hard X-ray imaging of bacterial cells: nano-diffraction and ptychographic reconstruction.

    PubMed

    Wilke, R N; Priebe, M; Bartels, M; Giewekemeyer, K; Diaz, A; Karvinen, P; Salditt, T

    2012-08-13

    Ptychographic coherent X-ray diffractive imaging (PCDI) has been combined with nano-focus X-ray diffraction to study the structure and density distribution of unstained and unsliced bacterial cells, using a hard X-ray beam of 6.2keV photon energy, focused to about 90nm by a Fresnel zone plate lens. While PCDI provides images of the bacteria with quantitative contrast in real space with a resolution well below the beam size at the sample, spatially resolved small angle X-ray scattering using the same Fresnel zone plate (cellular nano-diffraction) provides structural information at highest resolution in reciprocal space up to 2nm(-1). We show how the real and reciprocal space approach can be used synergistically on the same sample and with the same setup. In addition, we present 3D hard X-ray imaging of unstained bacterial cells by a combination of ptychography and tomography. PMID:23038565

  7. Hard X-ray nanoimaging method using local diffraction from metal wire

    SciTech Connect

    Takano, Hidekazu Konishi, Shigeki; Shimomura, Sho; Azuma, Hiroaki; Tsusaka, Yoshiyuki; Kagoshima, Yasushi

    2014-01-13

    A simple hard X-ray imaging method achieving a high spatial resolution is proposed. Images are obtained by scanning a metal wire through the wave field to be measured and rotating the sample to collect data for back projection calculations; the local diffraction occurring at the edges of the metal wire operates as a narrow line probe. In-line holograms of a test sample were obtained with a spatial resolution of better than 100 nm. The potential high spatial resolution of this method is shown by calculations using diffraction theory.

  8. Characterization of a 20-nm hard x-ray focus by ptychographic coherent diffractive imaging

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, Joan; Diaz, Ana; Guizar-Sicairos, Manuel; Gorelick, Sergey; Guzenko, Vitaliy A.; Karvinen, Petri; Kewish, Cameron M.; Färm, Elina; Ritala, Mikko; Mantion, Alexandre; Bunk, Oliver; Menzel, Andreas; David, Christian

    2011-09-01

    Recent advances in the fabrication of diffractive X-ray optics have boosted hard X-ray microscopy into spatial resolutions of 30 nm and below. Here, we demonstrate the fabrication of zone-doubled Fresnel zone plates for multi-keV photon energies (4-12 keV) with outermost zone widths down to 20 nm. However, the characterization of such elements is not straightforward using conventional methods such as knife edge scans on well-characterized test objects. To overcome this limitation, we have used ptychographic coherent diffractive imaging to characterize a 20 nm-wide X-ray focus produced by a zone-doubled Fresnel zone plate at a photon energy of 6.2 keV. An ordinary scanning transmission X-ray microscope was modified to acquire the ptychographic data from a strongly scattering test object. The ptychographic algorithms allowed for the reconstruction of the image of the test object as well as for the reconstruction of the focused hard X-ray beam waist, with high spatial resolution and dynamic range. This method yields a full description of the focusing performance of the Fresnel zone plate and we demonstrate the usefulness ptychographic coherent diffractive imaging for metrology and alignment of nanofocusing diffractive X-ray lenses.

  9. Diffractive imaging at large Fresnel number: Challenge of dynamic mesoscale imaging with hard x rays

    NASA Astrophysics Data System (ADS)

    Barber, John L.; Barnes, Cris W.; Sandberg, Richard L.; Sheffield, Richard L.

    2014-05-01

    Real materials have structure at both the atomic or crystalline scale as well as at interfaces and defects at the larger scale of grains. There is a need for the study of materials at the "mesoscale," the scale at which subgranular physical processes and intergranular organization couple to determine microstructure, crucially impacting constitutive response at the engineering macroscale. Diffractive imaging using photons that can penetrate multiple grains of material would be a transformative technique for the study of the performance of materials in dynamic extremes. Thicker samples imply higher energy photons of shorter wavelength, and imaging of multiple grains implies bigger spot sizes. Such imaging requires the use of future planned and proposed hard x-ray free electron lasers (such as the European XFEL) to provide both the spatial coherence transverse to the large spots and the peak brilliance to provide the short illumination times. The result is that the Fresnel number of the system becomes large and is no longer in the Fraunhofer far-field limit. The interrelated issues of diffractive imaging at large Fresnel number are analyzed, including proof that diffractive imaging is possible in this limit and estimates of the signal-to-noise possible. In addition, derivation of the heating rates for brilliant pulses of x rays are presented. The potential and limitations on multiple dynamic images are derived. This paper will present a study of x-ray interactions with materials in this new regime of spatially coherent but relatively large mesoscale spots at very hard energies. It should provide the theory and design background for the experiments and facilities required to control materials in extreme environments, in particular for the next generation of very-hard-x-ray free electron lasers.

  10. Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction

    SciTech Connect

    Rubio-Zuazo, Juan; Castro, German R.

    2013-05-15

    Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

  11. Measurement of exclusive dijet production in diffractive DIS with the ZEUS detector at HERA

    SciTech Connect

    Gach, Grzegorz

    2015-04-10

    The exclusive production of dijets in diffractive deep inelastic lepton–proton scattering has been measured with the ZEUS detector at HERA with an integrated luminosity of 372 pb{sup −1}. Jets have been reconstructed in the photon–Pomeron rest frame using the exclusive k{sub T} algorithm. The shape of the differential cross-section as a function of the angle between the plane spanned by the incoming and scattered lepton momenta and the plane spanned by the virtual photon and jets momenta is presented. The shape is determined by the jet production mechanism and provides information about the Pomeron structure.

  12. STRAIN CORRELATIONS IN ALLOY 690 MATERIALS USING ELECTRON BACKSCATTER DIFFRACTION AND VICKERS HARDNESS

    SciTech Connect

    Overman, Nicole R.; Toloczko, Mychailo B.; Olszta, Matthew J.; Bruemmer, Stephen M.

    2014-03-09

    High chromium, nickel-base Alloy 690 exhibits an increased resistance to stress corrosion cracking (SCC) in pressurized water reactor (PWR) primary water environments over lower chromium alloy 600. As a result, Alloy 690 has been used to replace Alloy 600 for steam generator tubing, reactor pressure vessel nozzles and other pressure boundary components. However, recent laboratory crack-growth testing has revealed that heavily cold-worked Alloy 690 materials can become susceptible to SCC. To evaluate reasons for this increased SCC susceptibility, detailed characterizations have been performed on as-received and cold-worked Alloy 690 materials using electron backscatter diffraction (EBSD) and Vickers hardness measurements. Examinations were performed on cross sections of compact tension specimens that were used for SCC crack growth rate testing in simulated PWR primary water. Hardness and the EBSD integrated misorientation density could both be related to the degree of cold work for materials of similar grain size. However, a microstructural dependence was observed for strain correlations using EBSD and hardness which should be considered if this technique is to be used for gaining insight on SCC growth rates

  13. Production of exclusive dijets in diffractive deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Abramowicz, H.; Abt, I.; Adamczyk, L.; Adamus, M.; Antonelli, S.; Aushev, V.; Aushev, Y.; Behnke, O.; Behrens, U.; Bertolin, A.; Bloch, I.; Boos, E. G.; Borras, K.; Brock, I.; Brook, N. H.; Brugnera, R.; Bruni, A.; Bussey, P. J.; Caldwell, A.; Capua, M.; Catterall, C. D.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cooper-Sarkar, A. M.; Corradi, M.; Corriveau, F.; Dementiev, R. K.; Devenish, R. C. E.; Dolinska, G.; Dusini, S.; Figiel, J.; Foster, B.; Gach, G.; Gallo, E.; Garfagnini, A.; Geiser, A.; Gizhko, A.; Gladilin, L. K.; Golubkov, Yu. A.; Grebenyuk, J.; Gregor, I.; Grzelak, G.; Gueta, O.; Guzik, M.; Hain, W.; Hochman, D.; Hori, R.; Ibrahim, Z. A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Januschek, F.; Jomhari, N. Z.; Kadenko, I.; Kananov, S.; Karshon, U.; Kaur, M.; Kaur, P.; Kisielewska, D.; Klanner, R.; Klein, U.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I. A.; Kotański, A.; Kötz, U.; Kovalchuk, N.; Kowalski, H.; Krupa, B.; Kuprash, O.; Kuze, M.; Levchenko, B. B.; Levy, A.; Libov, V.; Limentani, S.; Lisovyi, M.; Lobodzinska, E.; Löhr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O. Yu.; Makarenko, I.; Malka, J.; Mergelmeyer, S.; Mohamad Idris, F.; Mohammad Nasir, N.; Myronenko, V.; Nagano, K.; Nobe, T.; Notz, D.; Nowak, R. J.; Onishchuk, Yu.; Paul, E.; Perlański, W.; Pokrovskiy, N. S.; Przybycień, M.; Roloff, P.; Rubinsky, I.; Ruspa, M.; Saxon, D. H.; Schioppa, M.; Schmidke, W. B.; Schneekloth, U.; Schörner-Sadenius, T.; Shcheglova, L. M.; Shevchenko, R.; Shkola, O.; Shyrma, Yu.; Singh, I.; Skillicorn, I. O.; Słomiński, W.; Solano, A.; Stanco, L.; Stefaniuk, N.; Stern, A.; Stopa, P.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Tokushuku, K.; Tomaszewska, J.; Trofymov, A.; Tsurugai, T.; Turcato, M.; Turkot, O.; Tymieniecka, T.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W. A. T.; Wichmann, K.; Wing, M.; Wolf, G.; Yamada, S.; Yamazaki, Y.; Zakharchuk, N.; Żarnecki, A. F.; Zawiejski, L.; Zenaiev, O.; Zhautykov, B. O.; Zhmak, N.; Zotkin, D. S.

    2016-01-01

    Production of exclusive dijets in diffractive deep inelastic e^± p scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 372 pb^{-1}. The measurement was performed for γ ^{*}- p centre-of-mass energies in the range 90< W < {250} {GeV} and for photon virtualities Q^2 > {25} {GeV2}. Energy flows around the jet axis are presented. The cross section is presented as a function of β and φ , where β =x/x_IP, x is the Bjorken variable and x_IP is the proton fractional longitudinal momentum loss. The angle φ is defined by the γ ^{*}-dijet plane and the γ ^{*}-e^± plane in the rest frame of the diffractive final state. The φ cross section is measured in bins of β . The results are compared to predictions from models based on different assumptions about the nature of the diffractive exchange.

  14. High resolution double-sided diffractive optics for hard X-ray microscopy.

    PubMed

    Mohacsi, Istvan; Vartiainen, Ismo; Guizar-Sicairos, Manuel; Karvinen, Petri; Guzenko, Vitaliy A; Müller, Elisabeth; Färm, Elina; Ritala, Mikko; Kewish, Cameron M; Somogyi, Andrea; David, Christian

    2015-01-26

    The fabrication of high aspect ratio metallic nanostructures is crucial for the production of efficient diffractive X-ray optics in the hard X-ray range. We present a novel method to increase their structure height via the double-sided patterning of the support membrane. In transmission, the two Fresnel zone plates on the two sides of the substrate will act as a single zone plate with added structure height. The presented double-sided zone plates with 30 nm smallest zone width offer up to 9.9% focusing efficiency at 9 keV, that results in a factor of two improvement over their previously demonstrated single-sided counterparts. The increase in efficiency paves the way to speed up X-ray microscopy measurements and allows the more efficient utilization of the flux in full-field X-ray microscopy. PMID:25835837

  15. Single crystal x-ray diffraction: optical and micro hardness studies on chalcone derivative single crystal

    NASA Astrophysics Data System (ADS)

    Crasta, Vincent; Ravindrachary, V.; Bhajantri, R. F.; Naveen, S.; Shridar, M. A.; Shashidhara Prasad, J.

    2005-08-01

    1-(4-methylphenyl)-3-(4- N, N dimethyl amino phenyl)-2-propen-1-one, a chalcone derivative nonlinear optical material has been synthesized by standard method. FT-IR and NMR spectral studies have been performed to confirm the molecular structure of the synthesized compound. The single crystals up to a dimension of 13 x 9 x 3 mm3 were grown by slow evaporation method. The grown crystals were transparent in the entire visible region and absorbs in the UV-region. The refractive index has been measured using a He-Ne laser. The grown crystals have been subjected to single crystal X-ray diffraction studies to determine the crystal structure and hence the cell parameters of the crystal. From this study it is found that this compound crystallizes in orthorhombic system with a space group P212121 and corresponding lattice parameters are, a = 7.3610(13) Å, b = 11.651(2) Å, c = 17.6490(17) Å. The Kurtz powder second harmonic generation test shows that the compound is a potential candidate for Photonic application. The micro hardness test on these crystals were carried out and the load dependence hardness was observed

  16. Studies of semi-inclusive and hard exclusive processes at Jlab

    SciTech Connect

    Harutyun Avagyan

    2008-06-19

    The main goal of experiments proposed for the {\\tt CLAS12} detector in conjunction with the 12-GeV CEBAF accelerator is the study of the nucleon through hard exclusive, semi-inclusive, and inclusive processes. This will provide new insights into nucleon dynamics at the elementary quark and gluon level. In this contribution we provide an overview of ongoing studies of the structure of nucleon in terms of quark and gluon degrees of freedom and future physics program planned with CLAS and {\\tt CLAS12}.

  17. Exploring hardness enhancement in superhard tungsten tetraboride-based solid solutions using radial X-ray diffraction

    SciTech Connect

    Xie, Miao; Turner, Christopher L.; Mohammadi, Reza; Kaner, Richard B. E-mail: akavner@ucla.edu Tolbert, Sarah H. E-mail: akavner@ucla.edu; Kavner, Abby E-mail: akavner@ucla.edu

    2015-07-27

    In this work, we explore the hardening mechanisms in WB{sub 4}-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under non-hydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB{sub 4} solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.

  18. ExHuME 1.3: A Monte Carlo event generator for exclusive diffraction

    NASA Astrophysics Data System (ADS)

    Monk, J.; Pilkington, A.

    2006-08-01

    We have written the Exclusive Hadronic Monte Carlo Event (ExHuME) generator. ExHuME is based around the perturbative QCD calculation of Khoze, Martin and Ryskin of the process pp→p+X+p, where X is a centrally produced colour singlet system. Program summaryTitle of program:ExHuME Catalogue identifier:ADYA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYA_v1_0 Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions:None Programming language used:C++, some FORTRAN Computer:Any computer with UNIX capability. Users should refer to the README file distributed with the source code for further details Operating system:Linux, Mac OS X No. of lines in distributed program, including test data, etc.:111 145 No. of bytes in distributed program, including test data, etc.: 791 085 Distribution format:tar.gz RAM:60 MB External routines/libraries:LHAPDF [ http://durpdg.dur.ac.uk/lhapdf/], CLHEP v1.8 or v1.9 [L. Lönnblad, Comput. Phys. Comm. 84 (1994) 307; http://wwwinfo.cern.ch/asd/lhc++/clhep/] Subprograms used:Pythia [T. Sjostrand et al., Comput. Phys. Comm. 135 (2001) 238], HDECAY [A. Djouadi, J. Kalinowski, M. Spira, HDECAY: A program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Comm. 108 (1998) 56, hep-ph/9704448]. Both are distributed with the source code Nature of problem:Central exclusive production offers the opportunity to study particle production in a uniquely clean environment for a hadron collider. This program implements the KMR model [V.A. Khoze, A.D. Martin, M.G. Ryskin, Prospects for New Physics observations in diffractive processes at the LHC and Tevatron, Eur. Phys. J. C 23 (2002) 311, hep-ph/0111078], which is the only fully perturbative model of exclusive production. Solution method:Monte Carlo techniques are used to produce the central exclusive parton level system. Pythia routines are then used to develop a realistic hadronic system

  19. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source.

    PubMed

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N; Daurer, Benedikt J; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F; Higashiura, Akifumi; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Reddy, Hemanth K N; Lan, Ti-Yen; Larsson, Daniel S D; Liu, Haiguang; Loh, N Duane; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M Marvin; Sellberg, Jonas A; Sierra, Raymond G; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A; Westphal, Daniel; Wiedorn, Max O; Williams, Garth J; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984

  20. Coherent diffraction of single Rice Dwarf virus particles using hard X-rays at the Linac Coherent Light Source

    PubMed Central

    Munke, Anna; Andreasson, Jakob; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Bean, Richard J.; Berntsen, Peter; Bielecki, Johan; Boutet, Sébastien; Bucher, Maximilian; Chapman, Henry N.; Daurer, Benedikt J.; DeMirci, Hasan; Elser, Veit; Fromme, Petra; Hajdu, Janos; Hantke, Max F.; Higashiura, Akifumi; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Reddy, Hemanth K.N.; Lan, Ti-Yen; Larsson, Daniel S.D.; Liu, Haiguang; Loh, N. Duane; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Nakagawa, Atsushi; Nam, Daewoong; Nelson, Garrett; Nettelblad, Carl; Okamoto, Kenta; Ourmazd, Abbas; Rose, Max; van der Schot, Gijs; Schwander, Peter; Seibert, M. Marvin; Sellberg, Jonas A.; Sierra, Raymond G.; Song, Changyong; Svenda, Martin; Timneanu, Nicusor; Vartanyants, Ivan A.; Westphal, Daniel; Wiedorn, Max O.; Williams, Garth J.; Xavier, Paulraj Lourdu; Yoon, Chun Hong; Zook, James

    2016-01-01

    Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 μm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here. PMID:27478984

  1. Probing the Small-x Gluon Tomography in Correlated Hard Diffractive Dijet Production in Deep Inelastic Scattering.

    PubMed

    Hatta, Yoshitaka; Xiao, Bo-Wen; Yuan, Feng

    2016-05-20

    We investigate the close connection between the quantum phase space Wigner distribution of small-x gluons and the color dipole scattering amplitude, and we propose studying it experimentally in the hard diffractive dijet production at the planned electron-ion collider. The angular correlation between the nucleon recoiled momentum and the dijet transverse momentum probes the nontrivial correlation in the phase space Wigner distribution. This experimental study not only provides us with three-dimensional tomographic pictures of gluons inside high energy protons-it gives a unique and interesting signal for the small-x dynamics with QCD evolution effects. PMID:27258865

  2. Spectrometer for hard X-ray free-electron laser based on diffraction focusing.

    PubMed

    Kohn, V G; Gorobtsov, O Y; Vartanyants, I A

    2013-03-01

    X-ray free-electron lasers (XFELs) generate sequences of ultra-short spatially coherent pulses of X-ray radiation. A diffraction focusing spectrometer (DFS), which is able to measure the whole energy spectrum of the radiation of a single XFEL pulse with an energy resolution of ΔE/E 2 × 10(-6), is proposed. This is much better than for most modern X-ray spectrometers. Such resolution allows one to resolve the fine spectral structure of the XFEL pulse. The effect of diffraction focusing occurs in a single-crystal plate due to dynamical scattering, and is similar to focusing in a Pendry lens made from a metamaterial with a negative refraction index. Such a spectrometer is easier to operate than those based on bent crystals. It is shown that the DFS can be used in a wide energy range from 5 keV to 20 keV. PMID:23412482

  3. Laue diffraction hard x-ray spectrometer for laser fusion diagnostics

    SciTech Connect

    Priedhorsky, W.C.; Lier, D.W.; Day, R.H.

    1983-12-01

    We show that a crystal spectrometer used in the Laue mode is a useful diagnostic of high-energy x-ray emission from laser fusion plasmas. It has good collection efficiency and adequate energy resolution for continuum measurements. The instrument measures time integrated x-ray spectra with a resolving power E/..delta..Eroughly-equal10 for photon energies between 60 and 300 keV. A strong signal and no detectable background are obtained in laser fusion experiments where approx.15 J of x rays are released in a pulsed (1 ns), hard (kTroughly-equal200 keV) spectrum. A Lanex/Tri-X phosphor/film combination is used as a focal plane detector; we report its relative energy calibration. Because of the imperfection of available crystals, detailed measurements of reflectivity along the crystal are required to achieve absolute calibration.

  4. Laué diffraction hard x-ray spectrometer for laser fusion diagnostics

    NASA Astrophysics Data System (ADS)

    Priedhorsky, W. C.; Lier, D. W.; Day, R. H.

    1983-12-01

    We show that a crystal spectrometer used in the Laué mode is a useful diagnostic of high-energy x-ray emission from laser fusion plasmas. It has good collection efficiency and adequate energy resolution for continuum measurements. The instrument measures time integrated x-ray spectra with a resolving power E/ΔE≊10 for photon energies between 60 and 300 keV. A strong signal and no detectable background are obtained in laser fusion experiments where ˜15 J of x rays are released in a pulsed (1 ns), hard (kT≊200 keV) spectrum. A Lanex/Tri-X phosphor/film combination is used as a focal plane detector; we report its relative energy calibration. Because of the imperfection of available crystals, detailed measurements of reflectivity along the crystal are required to achieve absolute calibration.

  5. Preparation of samples with both hard and soft phases for electron backscatter diffraction: examples from gold mineralization.

    PubMed

    Halfpenny, Angela; Hough, Robert M; Verrall, Michael

    2013-08-01

    Preparation of high-quality polished sample surfaces is an essential step in the collection of microanalytical data on the microstructures of minerals and alloys. Poorly prepared samples can yield insufficient or inconsistent results and, in the case of gold, potentially no data due to the "beilby" layer. Currently, preparation of ore samples is difficult as they commonly contain both hard and soft mineral phases. The aim of our research is to produce suitably polished sample surfaces, on all phases, for electron backscatter diffraction analysis. A combination of chemical-mechanical polishing (CMP) and broad ion-beam polishing (BIBP) was used to tackle the problem. Our results show that it is critical to perform CMP first, as it produces a suitable polish on the hard mineral phases but tends to introduce more damage to the soft mineral surfaces. BIBP is essential to produce a high-quality polish to the soft phases (gold). This is a highly efficient method of sample preparation and is important as it allows the complete quantification of ore textures and all constituent mineral phases, including soft alloys. PMID:23721665

  6. Cross sections for hard exclusive electroproduction of {pi}{sup +} mesons on a hydrogen target.

    SciTech Connect

    Airapetian, A.; Akopov, N.; Akopov, Z.; Aschenauer, E. C.; Augustyniak, W.; Jackson, H. E.; Reimer, P .E.; The HERMES Collaboration; Physics; Univ. of Michigan; Yerevan Physics Inst.; DESY; Andrzej Soltan Inst. for Nuclear Studies

    2008-01-24

    The exclusive electroproduction of {pi}{sup +} mesons was studied with the Hermes spectrometer at the DESY laboratory by scattering 27.6 GeV positron and electron beams off an internal hydrogen gas target. The virtual-photon cross sections were measured as a function of the Mandelstam variable t and the squared four momentum -Q{sup 2} of the exchanged virtual photon. A model calculation based on Generalized Parton Distributions is in fair agreement with the data at low values of |t| if power corrections are included. A model calculation based on the Regge formalism gives a good description of the magnitude and the t and Q{sup 2} dependences of the cross section.

  7. High mass exclusive diffractive dijet production in $\\mathbf{p\\bar{p}}$ collisions at $\\mathbf{\\sqrt{s}}$ = 1.96 TeV

    SciTech Connect

    Abazov, V.

    2010-09-01

    We present evidence for diffractive exclusive dijet production with an invariant dijet mass greater than 100 GeV in data collected with the D0 experiment at the Fermilab Tevatron Collider. A discriminant based on calorimeter information is used to measure a significant number of events with little energy (typically less than 10 GeV) outside the dijet system, consistent with the diffractive exclusive dijet production topology. The probability for these events to be explained by other dijet production processes is 2 x 10{sup -5}, corresponding to a 4.1 standard deviation significance.

  8. Size Exclusion HPLC of Protein Using a Narrow-Bore Column for Evaluation of Bread-Making Quality of Hard Spring Wheat Flours

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to investigate if a narrow-bore column (NBC) (300 x 4.5 mm i.d.) improved analyses of unreduced proteins in flour by size exclusion HPLC (SE-HPLC) and subsequent evaluation of bread-making quality of hard spring wheat flours. Total protein extracts and sodium dodecyl...

  9. The Molecular Architecture for the Intermediate Filaments of Hard [alpha]-Keratin Based on the Superlattice Data Obtained from a Study ofMammals Using Synchrotron Fibre Diffraction

    SciTech Connect

    James, Veronica

    2014-09-24

    High- and low-angle X-ray diffraction studies of hard {alpha}-keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard {alpha}-keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, including multiple-time exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard {alpha}-keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid {alpha}-keratin structure.

  10. The Molecular Architecture for the Intermediate Filaments of Hard α -Keratin Based on the Superlattice Data Obtained from a Study of Mammals Using Synchrotron Fibre Diffraction

    DOE PAGESBeta

    James, Veronica

    2011-01-01

    High- and low-angle X-ray diffraction studies of hard α -keratin have been studied, and various models have been proposed over the last 70 years. Most of these studies have been confined to one or two forms of alpha keratin. This high- and low-angle synchrotron fibre diffraction study extends the study to cover all available data for all known forms of hard α -keratin including hairs, fingernails, hooves, horn, and quills from mammals, marsupials, and a monotreme, and it confirms that the model proposed is universally acceptable for all mammals. A complete Bragg analysis of the meridional diffraction patterns, includingmore » multiple-time exposures to verify any weak reflections, verified the existence of a superlattice consisting of two infinite lattices and three finite lattices. An analysis of the equatorial patterns establishes the radii of the oligomeric levels of dimers, tetramers, and intermediate filaments (IFs) together with the centre to centre distance for the IFs, thus confirming the proposed helices within helices molecular architecture for hard α -keratin. The results verify that the structure proposed by Feughelman and James meets the criteria for a valid α -keratin structure.« less

  11. Preliminary design of a zone plate based hard X-ray monochromatic diffraction nanoprobe for materials studies at APS

    NASA Astrophysics Data System (ADS)

    Cai, Zhonghou; Liu, Wenjun; Tischler, Jonathan Z.; Shu, Deming; Xu, Ruqing; Schmidt, Oliver

    2013-09-01

    Aiming at studies of the micro/nano-structures of a broad range materials and electronic devices, Advance Photon Source (APS) is developing a dedicated diffraction nanoprobe (DNP) beamline for the needs arising from a multidiscipline research community. As a part of the APS Upgrade Project, the planed facility, named Sub-micron 3-D Diffraction (S3DD) beamline1, integrates the K-B mirror based polychromatic Laue diffraction and the Fresnel zone-plate based monochromatic diffraction techniques that currently support 3D/2D microdiffraction programs at the 34-ID-E and 2-ID-D of the APS, respectively. Both diffraction nanoprobes are designed to have a 50-nm or better special resolution. The zone-plate based monochromatic DNP has been preliminarily designed and will be constructed at the sector 34-ID. It uses an APS-3.0-cm period or APS-3.3-cm period undulator, a liquid-nitrogen cooled mirror as its first optics, and a water cooled small gap silicon double-crystal monochromator with an energy range of 5-30 keV. A set of zone plates have been designed to optimize for focusing efficiency and the working distance based on the attainable beamline length and the beam coherence. To ensure the nanoprobe performance, high stiffness and high precision flexure stage systems have been designed or demonstrated for optics mounting and sample scanning, and high precision temperature control of the experimental station will be implemented to reduce thermal instability. Designed nanoprobe beamline has a good management on thermal power loading on optical components and allows high degree of the preservation of beam brilliance for high focal flux and coherence. Integrated with variety of X-ray techniques, planed facility provides nano-XRD capability with the maximum reciprocal space accessibility and allows micro/nano-spectroscopy studies with K-edge electron binding energies of most elements down to Vanadium in the periodic table. We will discuss the preliminary design of the zone

  12. Determination of particle-induced structural disorder depth profile in crystals using the grazing-angle incidence hard x-ray backscattering diffraction technique

    NASA Astrophysics Data System (ADS)

    Bezirganyan, Hakob (Jacob P.; Bezirganyan, Siranush E.; Bezirganyan, Petros H., Jr.; Bezirganyan, Hayk H., Jr.

    2011-12-01

    In this theoretical paper, we propose an x-ray imaging method for determination of particle-induced structural disorder depth profile in the crystalline materials based on the extremely sensitive, high-resolution, and non-destructive grazing-angle incidence hard x-ray backscattering diffraction technique. A peculiar value of the Bragg angle is discovered within the specular beam suppression angular region for which the curve of x-ray reflectivity is very close to the profile of the corresponding structural disorder. The coincidence presents a unique opportunity for the direct registration of the structural disorder depth profile in particle-irradiated crystals. This paper is dedicated to Professor Dr Petros H Bezirganyan on the occasion of his 95th birthday on 15th December 2011.

  13. Reconstruction of an astigmatic hard X-ray beam and alignment of K-B mirrors from ptychographic coherent diffraction data.

    PubMed

    Kewish, Cameron M; Guizar-Sicairos, Manuel; Liu, Chian; Qian, Jun; Shi, Bing; Benson, Christa; Khounsary, Ali M; Vila-Comamala, Joan; Bunk, Oliver; Fienup, James R; Macrander, Albert T; Assoufid, Lahsen

    2010-10-25

    We have used coherent X-ray diffraction experiments to characterize both the 1-D and 2-D foci produced by nanofocusing Kirkpatrick-Baez (K-B) mirrors, and we find agreement. Algorithms related to ptychography were used to obtain a 3-D reconstruction of a focused hard X-ray beam waist, using data measured when the mirrors were not optimally aligned. Considerable astigmatism was evident in the reconstructed complex wavefield. Comparing the reconstructed wavefield for a single mirror with a geometrical projection of the wavefront errors expected from optical metrology data allowed us to diagnose a 40 μrad misalignment in the incident angle of the first mirror, which had occurred during the experiment. Good agreement between the reconstructed wavefront obtained from the X-ray data and off-line metrology data obtained with visible light demonstrates the usefulness of the technique as a metrology and alignment tool for nanofocusing X-ray optics. PMID:21164684

  14. Investigation of the near-surface structures of polar InN films by chemical-state-discriminated hard X-ray photoelectron diffraction

    SciTech Connect

    Yang, A. L.; Yamashita, Y.; Kobata, M.; Yoshikawa, H.; Sakata, O.; Kobayashi, K.; Matsushita, T.; Pis, I.; Imura, M.; Yamaguchi, T.; Nanishi, Y.

    2013-01-21

    Near-surface structures of polar InN films were investigated by laboratory-based hard X-ray photoelectron diffraction (HXPD) with chemical-state-discrimination. HXPD patterns from In 3d{sub 5/2} and N 1s core levels of the In-polar and N-polar InN films were different from each other and compared with the simulation results using a multiple-scattering cluster model. It was found that the near-surface structure of the In-polar InN film was close to the ideal wurtzite structure. On the other hand, on the N-polar InN film, defects-rich surface was formed. In addition, the existence of the In-polar domains was observed in the HXPD patterns.

  15. Diffraction Results from CDF

    SciTech Connect

    Goulianos, Konstantin

    2012-04-01

    We present final results by the CDF II collaboration on diffractive W and Z production, report on the status of ongoing analyses on diffractive dijet production and on rapidity gaps between jets, and briefly summarize results obtained on exclusive production pointing to their relevance to calibrating theoretical models used to predict exclusive Higgs-boson production at the LHC.

  16. Central exclusive diffractive production of the π+π- continuum, scalar, and tensor resonances in p p and p p ¯ scattering within the tensor Pomeron approach

    NASA Astrophysics Data System (ADS)

    Lebiedowicz, Piotr; Nachtmann, Otto; Szczurek, Antoni

    2016-03-01

    We consider central exclusive diffractive dipion production in the reactions p p →p p π+π- and p p ¯ →p p ¯ π+π- at high energies. We include the dipion continuum, the dominant scalar f0(500 ), f0(980 ) , and tensor f2(1270 ) resonances decaying into the π+π- pairs. The calculation is based on a tensor Pomeron model and the amplitudes for the processes are formulated in terms of vertices respecting the standard crossing and charge-conjugation relations of quantum field theory. The formulas for the dipion continuum and tensor meson production are given here for the first time. The theoretical results are compared with existing STAR, CDF, CMS experimental data and predictions for planned or current experiments (ALICE, ATLAS) are presented. We show the influence of the experimental cuts on the integrated cross section and on various differential distributions for outgoing particles. Distributions in rapidities and transverse momenta of outgoing protons and pions as well as correlations in azimuthal angle between them are presented. We find that the relative contribution of the resonant f2(1270 ) and dipion continuum strongly depends on the cut on proton transverse momenta or four-momentum transfer squared t1 ,2 which may explain some controversial observations made by different ISR experiments in the past. The cuts may play then the role of a π π resonance filter. We suggest some experimental analyses to fix model parameters related to the Pomeron-Pomeron-f2 coupling.

  17. New CDF results on diffraction

    SciTech Connect

    Mesropian, Christina; /Rockefeller U.

    2006-12-01

    We report new diffraction results obtained by the CDF collaboration in proton-antiproton collisions at the Fermilab Tevatron collider at {radical}s=1.96 TeV. The first experimental evidence of exclusive dijet and diphoton production is presented. The exclusive results are discussed in context of the exclusive Higgs production at LHC. We also present the measurement of the Q{sup 2} and t dependence of the diffractive structure function.

  18. Recent diffractive results from HERA

    NASA Astrophysics Data System (ADS)

    Valkárová, Alice

    2016-07-01

    The diffractive dijet cross sections for photoproduction and deep inelastic scattering were studied and compared with theoretical NLO QCD predictions. The results of exclusive dijet production were compared to predictions from models which are based on different assumptions about the nature of diffractive exchange. Isolated prompt photons in diffractive photoproduction produced inclusively or together with a jet were studied for the first time.

  19. Implications of stimulated resonant X-ray scattering for spectroscopy, imaging, and diffraction in the regime from soft to hard X-rays

    NASA Astrophysics Data System (ADS)

    Schreck, Simon; Beye, Martin; Föhlisch, Alexander

    2015-12-01

    The ultrahigh peak brilliance available at X-ray free-electron lasers opens the possibility to transfer nonlinear spectroscopic techniques from the optical and infrared into the X-ray regime. Here, we present a conceptual treatment of nonlinear X-ray processes with an emphasis on stimulated resonant X-ray scattering as well as a quantitative estimate for the scaling of stimulated X-ray scattering cross sections. These considerations provide the order of magnitude for the required X-ray intensities to experimentally observe stimulated resonant X-ray scattering for photon energies ranging from the extreme ultraviolet to the soft and hard X-ray regimes. At the same time, the regime where stimulated processes can safely be ignored is identified. With this basis, we discuss prospects and implications for spectroscopy, scattering, and imaging experiments at X-ray free-electron lasers.

  20. Neutron and hard X-ray diffraction studies of the isothermal transformation kinetics in the research reactor fuel candidate U–8 wt%Mo

    PubMed Central

    Säubert, Steffen; Jungwirth, Rainer; Zweifel, Tobias; Hofmann, Michael; Hoelzel, Markus; Petry, Winfried

    2016-01-01

    Exposing uranium–molybdenum alloys (UMo) retained in the γ phase to elevated temperatures leads to transformation reactions during which the γ-UMo phase decomposes into the thermal equilibrium phases, i.e. U2Mo and α-U. Since α-U is not suitable for a nuclear fuel exposed to high burn-up, it is necessary to retain the γ-UMo phase during the production process of the fuel elements for modern high-performance research reactors. The present work deals with the isothermal transformation kinetics in U–8 wt%Mo alloys for temperatures between 673 and 798 K and annealing durations of up to 48 h. Annealed samples were examined at room temperature using either X-ray or neutron diffraction to determine the phase composition after thermal treatment, and in situ annealing studies disclosed the onset of phase decomposition. While for temperatures of 698 and 673 K the start of decomposition is delayed, for higher temperatures the first signs of transformation are already observable within 3 h of annealing. The typical C-shaped curves in a time–temperature–transformation (TTT) diagram for both the start and the end of phase decomposition could be determined in the observed temperature regime. Therefore, a revised TTT diagram for U–8 wt%Mo between 673 and 798 K and annealing durations of up to 48 h is proposed. PMID:27275139

  1. Evidence for high mass exclusive dijet production in the D0 experiment

    SciTech Connect

    Hubacek, Zdenek; /Prague, Tech. U.

    2010-10-01

    Exclusive diffractive Higgs boson production is an interesting process which could be studied at the Large Hadron Collider. While the cross section for the Higgs boson production at the Fermilab Tevatron Collider is too low for this channel, it is important to check if the class of exclusive diffraction events exists. We present the evidence for the high mass exclusive dijet production in the D0 experiment. Hard diffractive processes are usually described by the exchange of a colorless object called Pomeron. In diffractive hadron hadron collisions, the hadrons will exchange the Pomeron and either one or both hadrons will not dissolve. The events are identified by either a presence of a large forward region of the detector devoid of any activity (rapidity gap) or by a tagging of the intact beam hadron(s). A subset of diffractive events is called exclusive when the whole Pomeron energy is used to produce the diffractive state, i.e there are no Pomeron remnants. Exclusive diffractive production (EDP) of the Higgs boson or any other new final state X pp {yields} p + X + p has been recently proposed as a search channel at the LHC. The cross section for the Higgs boson production is too low at the Tevatron (0.2fb is predicted for a Higgs boson mass of 120 GeV), but it is important to check if this class of events exists in this kinematic region. The CDF Collaboration has recently confirmed the existence of EDP in several channels. In this report, we present the evidence for the exclusive production of high dijet invariant mass events, i.e. a dijet event accompanied by large rapidity gaps on both sides of the calorimeter.

  2. New diffractive results from the Tevatron

    SciTech Connect

    Gallinaro, Michele; /Rockefeller U.

    2005-05-01

    Experimental results in diffractive processes are summarized and a few notable characteristics described in terms of Quantum Chromodynamics. Exclusive dijet production is used to establish a benchmark for future experiments in the quest for diffractive Higgs production at the Large Hadron Collider. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Stringent upper limits on the exclusive dijet production cross section are presented. The quark/gluon composition of dijet final states is used to provide additional hints on exclusive dijet production.

  3. Exclusive diffractive production of π+π-π+π- via the intermediate σ σ and ρ ρ states in proton-proton collisions within tensor Pomeron approach

    NASA Astrophysics Data System (ADS)

    Lebiedowicz, Piotr; Nachtmann, Otto; Szczurek, Antoni

    2016-08-01

    We present first predictions of the cross sections and differential distributions for the central exclusive reaction p p →p p π+π-π+π- being studied at RHIC and LHC. The amplitudes for the processes are formulated in terms of the tensor Pomeron and tensor f2 R Reggeon exchanges with the vertices respecting the standard crossing and charge-conjugation relations of quantum field theory. The σ σ and ρ ρ contributions to the π+π-π+π- final state are considered, focusing on their specificities. The correct inclusion of the Pomeron spin structure seems crucial for the considered sequential mechanisms, in particular for the ρ ρ contribution which is treated here for the first time. The mechanism considered gives a significant contribution to the p p →p p π+π-π+π- reaction. We adjust parameters of our model to the CERN-ISR experimental data and present several predictions for the STAR, ALICE, ATLAS, and CMS experiments. A measurable cross section of order of a few μ b is obtained, including the experimental cuts relevant for the LHC experiments. We show the influence of the experimental cuts on the integrated cross section and on various differential distributions.

  4. Exclusive Dijet production from CDF2LHC

    SciTech Connect

    Gallinaro, Michele; /Rockefeller U.

    2005-04-01

    Exclusive dijet production at the Tevatron can be used as a benchmark to establish predictions on exclusive diffractive Higgs production, a process with a much smaller cross section. Exclusive dijet production in Double Pomeron Exchange processes, including diffractive Higgs production with measurements at the Tevatron and predictions for the Large Hadron Collider are presented. Using new data from the Tevatron and dedicated diffractive triggers, no excess over a smooth falling distribution for exclusive dijet events could be found. Upper limits on the exclusive dijet production cross section are presented and compared to current theoretical predictions.

  5. Central diffraction at ALICE

    NASA Astrophysics Data System (ADS)

    Lämsä, J. W.; Orava, R.

    2011-02-01

    The ALICE experiment is shown to be well suited for studies of exclusive final states from central diffractive reactions. The gluon-rich environment of the central system allows detailed QCD studies and searches for exotic meson states, such as glueballs, hybrids and new charmonium-like states. It would also provide a good testing ground for detailed studies of heavy quarkonia. Due to its central barrel performance, ALICE can accurately measure the low-mass central systems with good purity. The efficiency of the Forward Multiplicity Detector (FMD) and the Forward Shower Counter (FSC) system for detecting rapidity gaps is shown to be adequate for the proposed studies. With this detector arrangement, valuable new data can be obtained by tagging central diffractive processes.

  6. Must "Hard Problems" Be Hard?

    ERIC Educational Resources Information Center

    Kolata, Gina

    1985-01-01

    To determine how hard it is for computers to solve problems, researchers have classified groups of problems (polynomial hierarchy) according to how much time they seem to require for their solutions. A difficult and complex proof is offered which shows that a combinatorial approach (using Boolean circuits) may resolve the problem. (JN)

  7. Twenty years of diffraction at the Tevatron

    SciTech Connect

    Goulianos, K.; /Rockefeller U.

    2005-10-01

    Results on diffractive particle interactions from the Fermilab Tevatron {bar p}p collider are placed in perspective through a QCD inspired phenomenological approach, which exploits scaling and factorization properties observed in data. The results discussed are those obtained by the CDF Collaboration from a comprehensive set of single, double, and multigap soft and hard diffraction processes studied during the twenty year period since 1985, when the CDF diffractive program was proposed and the first Blois Workshop was held.

  8. Prospects for the diagnosis of electron-ion temperature equilibration rates of warm dense matter by ultra-short pulse hard X-ray diffraction with an X-ray free electron laser

    NASA Astrophysics Data System (ADS)

    Angulo Gareta, J. J.; Riley, D.

    2006-10-01

    Ultra-short pulse kiloelectronvolt X-ray diffraction with an X-ray free electron laser and its potential for the diagnosis of electron-ion equilibration rates of warm dense matter are evaluated. A simple experimental configuration is suggested for the generation and subsequent probing of warm dense aluminium with the TESLA X-ray free electron laser. Differential scattering cross-sections are computed in an approximate manner with Thomas-Fermi form factors and tabular ion-ion static structure factors of one-component plasmas, inclusive of electron screening and degeneracy. This requires simulation of the sample, for which we use a hydrodynamic code featuring the Sesame equation of state, Thomas-Fermi ionisation and cold solid opacities (for the calculation of energy deposition). The effect of electron-ion equilibration rate on the evolution of the diffraction pattern on a picosecond time-scale is investigated. Finally, the signal level expected from experiment is estimated, indicating that measurements with good angular-resolution are possible.

  9. Diffraction at the Tevatron and the LHC

    NASA Astrophysics Data System (ADS)

    Royon, C.

    2008-09-01

    In this paper, we present and discuss the most recent results on inclusive diffraction at the Tevatron collider and give the prospects at the LHC. We also describe the search for exclusive events at the Tevatron. Of special interest is the exclusive production of Higgs boson and heavy objects (W, top, stop pairs) at the LHC which will require precise measurements and analyses of inclusive and exclusive diffraction to constrain further the gluon density in the pomeron. At the end of the paper, we describe the projects to install forward detectors at the LHC to fulfil these measurements. We also describe the diffractive experiments accepted or in project at the LHC: TOTEM, ALFA in ATLAS, and the AFP/FP420 projects.

  10. Nuclear diffractive structure functions at high energies

    SciTech Connect

    Marquet,C.; Kowalski, H.; Lappi, T.; Venugopalan, R.

    2008-08-08

    A future high-energy electron-ion collider would explore the non-linear weakly-coupled regime of QCD, and test the Color Glass Condensate (CGC) approach to high-energy scattering. Hard diffraction in deep inelastic scattering off nuclei will provide many fundamental measurements. In this work, the nuclear diffractive structure function F{sub 2,A}{sup D} is predicted in the CGC framework, and the features of nuclear enhancement and suppression are discussed.

  11. Overview of HERMES Results on Exclusive Processes

    NASA Astrophysics Data System (ADS)

    Movsisyan, Aram

    2015-01-01

    An overview of HERMES results on measurements of hard exclusive electroproduction of real photons and mesons on hydrogen and deuterium targets is presented. Experimental measurements of hard exclusive processes are commonly described within the formalism of generalized parton distributions (GPDs), which provide a unified description of the structure of hadrons embedding longitudinal-momentum distributions (ordinary PDFs) and transverse-position information (form factors). The HERMES experiment at DESY Hamburg studies hard exclusive processes using polarized electron or positron beams from HERA and internal gas targets. Information about GPDs is gained from the measurements of asymmetries that appear in the azimuthal distributions of produced mesons and photons, together with studies of the azimuthal distribution of the decay products via spin-density matrix elements.

  12. Higher order diffractions from a circular disk

    NASA Technical Reports Server (NTRS)

    Marsland, Diane P.; Balanis, Constantine A.; Brumley, Stephen A.

    1987-01-01

    The backscattering from a circular disk is analyzed using the geometrical theory of diffraction. First-, second-, and third-order diffractions are included in the hard polarization analysis, while first-, second-, and third-order slope diffractions are included for soft polarization. Improvements in the prediction of the monostatic radar cross section over previous works are noted. For hard polarization, an excellent agreement is exhibited between experimental and theoretical results, while a very good agreement is noted for soft polarization. To further improve the soft polarization results for wide angles, a model for the creeping wave or circulating current on the edge of the disk is obtained and used to find an additional component of the backscattered field. The addition of this component significantly improves the results for wide angles, leading to excellent agreement for soft polarization also. An axial-caustic correction method using equivalent currents is also included in the analysis.

  13. Starch granule size distribution of hard red winter and hard red spring wheat: Its effects on mixing and breadmaking quality.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Starch was isolated from 98 hard red winter (HRW) wheat and 99 hard red spring (HRS) wheat. Granule size/volume distributions of the isolated starches were analyzed using a laser diffraction particle size analyzer. There were significant differences in the size distribution between HRW and HRS whe...

  14. Wear of hard materials by hard particles

    SciTech Connect

    Hawk, Jeffrey A.

    2003-10-01

    Hard materials, such as WC-Co, boron carbide, titanium diboride and composite carbide made up of Mo2C and WC, have been tested in abrasion and erosion conditions. These hard materials showed negligible wear in abrasion against SiC particles and erosion using Al2O3 particles. The WC-Co materials have the highest wear rate of these hard materials and a very different material removal mechanism. Wear mechanisms for these materials were different for each material with the overall wear rate controlled by binder composition and content and material grain size.

  15. Submicron X-ray diffraction

    SciTech Connect

    MacDowell, Alastair; Celestre, Richard; Tamura, Nobumichi; Spolenak, Ralph; Valek, Bryan; Brown, Walter; Bravman, John; Padmore, Howard; Batterman, Boris; Patel, Jamshed

    2000-08-17

    At the Advanced Light Source in Berkeley the authors have instrumented a beam line that is devoted exclusively to x-ray micro diffraction problems. By micro diffraction they mean those classes of problems in Physics and Materials Science that require x-ray beam sizes in the sub-micron range. The instrument is for instance, capable of probing a sub-micron size volume inside micron sized aluminum metal grains buried under a silicon dioxide insulating layer. The resulting Laue pattern is collected on a large area CCD detector and automatically indexed to yield the grain orientation and deviatoric (distortional) strain tensor of this sub-micron volume. A four-crystal monochromator is then inserted into the beam, which allows monochromatic light to illuminate the same part of the sample. Measurement of diffracted photon energy allows for the determination of d spacings. The combination of white and monochromatic beam measurements allow for the determination of the total strain/stress tensor (6 components) inside each sub-micron sized illuminated volume of the sample.

  16. Unusual features of Drell-Yan diffraction

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan; Tarasov, A. V.

    2006-12-01

    The cross section of the diffractive Drell-Yan (DY) process, pp{yields}llXp, where the system llX is separated by a large rapidity gap from the recoil proton, is calculated in the light-cone dipole approach. This process reveals unusual features, quite different from what is known for diffractive deeply inelastic scattering (DIS) and non-Abelian radiation: (i) the diffractive radiation of a heavy dilepton by a quark vanishes in the forward direction; (ii) the diffractive production of a dilepton is controlled by the large hadronic radius; (iii) in contrast with DIS where diffraction is predominantly soft, the diffractive DY reaction is semihard-semisoft; (iv) as a result of the saturated shape of the dipole cross section, the fraction of diffractive DY events steeply falls with energy but rises as a function of the hard scale. These features are common for other Abelian bremsstrahlung processes (higgsstrahlung, Z-strahlung, etc.). Measurements of diffractive DY processes at modern colliders would be a sensitive probe for the shape of the dipole cross section at large separations.

  17. Vorticity production in shock diffraction

    NASA Astrophysics Data System (ADS)

    Sun, M.; Takayama, K.

    2003-03-01

    The production of vorticity or circulation production in shock wave diffraction over sharp convex corners has been numerically simulated and quantified. The corner angle is varied from 5° to 180°. Total vorticity is represented by the circulation, which is evaluated by integrating the velocity along a path enclosing the perturbed region behind a diffracting shock wave. The increase of circulation in unit time, or the rate of circulation production, depends on the shock strength and wall angle if the effects of viscosity and heat conductivity are neglected. The rate of vorticity production is determined by using a solution-adaptive code, which solves the Euler equations. It is shown that the rate of vorticity production is independent of the computational mesh and numerical scheme by comparing solutions from two different codes. It is found that larger wall angles always enhance the vorticity production. The vorticity production increases sharply when the corner angle is varied from 15° to 45°. However, for corner angles over 90°, the rate of vorticity production hardly increases and reaches to a constant value. Strong shock waves produce vorticity faster in general, except when the slipstream originating from the shallow corner attaches to the downstream wall. It is found that the vorticity produced by the slipstream represents a large proportion of the total vorticity. The slipstream is therefore a more important source of vorticity than baroclinic effects in shock diffraction.

  18. X-Ray Diffraction.

    ERIC Educational Resources Information Center

    Smith, D. K.; Smith, K. L.

    1980-01-01

    Reviews applications in research and analytical characterization of compounds and materials in the field of X-ray diffraction, emphasizing new developments in applications and instrumentation in both single crystal and powder diffraction. Cites 414 references. (CS)

  19. Tests of quantum chromodynamics in exclusive and inclusive electroproduction

    SciTech Connect

    Brodsky, S.J.

    1989-06-01

    This paper discusses the following topics: overview of electroproduction phenomenology; hadronization of the quark and spectator systems; hadronization in nuclei; shadowing and anti- shadowing; color transparency; exclusive channels in electroproduction; hadronic wavefunction phenomenology; diffractive electroproduction; exclusive nuclear processes in QCD; and relation of electroproduction to QCD wavefunctions. 58 refs., 22 figs. (LSP)

  20. Ordering of hard particles between hard walls

    NASA Astrophysics Data System (ADS)

    Chrzanowska, A.; Teixeira, P. I. C.; Ehrentraut, H.; Cleaver, D. J.

    2001-05-01

    The structure of a fluid of hard Gaussian overlap particles of elongation κ = 5, confined between two hard walls, has been calculated from density-functional theory and Monte Carlo simulations. By using the exact expression for the excluded volume kernel (Velasco E and Mederos L 1998 J. Chem. Phys. 109 2361) and solving the appropriate Euler-Lagrange equation entirely numerically, we have been able to extend our theoretical predictions into the nematic phase, which had up till now remained relatively unexplored due to the high computational cost. Simulation reveals a rich adsorption behaviour with increasing bulk density, which is described semi-quantitatively by the theory without any adjustable parameters.

  1. Hardness Tester for Polyur

    NASA Technical Reports Server (NTRS)

    Hauser, D. L.; Buras, D. F.; Corbin, J. M.

    1987-01-01

    Rubber-hardness tester modified for use on rigid polyurethane foam. Provides objective basis for evaluation of improvements in foam manufacturing and inspection. Typical acceptance criterion requires minimum hardness reading of 80 on modified tester. With adequate correlation tests, modified tester used to measure indirectly tensile and compressive strengths of foam.

  2. Session: Hard Rock Penetration

    SciTech Connect

    Tennyson, George P. Jr.; Dunn, James C.; Drumheller, Douglas S.; Glowka, David A.; Lysne, Peter

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hard Rock Penetration - Summary'' by George P. Tennyson, Jr.; ''Overview - Hard Rock Penetration'' by James C. Dunn; ''An Overview of Acoustic Telemetry'' by Douglas S. Drumheller; ''Lost Circulation Technology Development Status'' by David A. Glowka; ''Downhole Memory-Logging Tools'' by Peter Lysne.

  3. Hard Photodisintegration of Proton Pairs in {sup 3}He

    SciTech Connect

    Piasetzky, Eli; Pomerantz, Ishay; Higinbotham, D.; Strauch, S.; Gilman, R.

    2008-10-13

    Hard deuteron photodisintegration has been investigated for 20 years, as its cross section follows the constituent counting rule and it provides insight into the interplay between hadronic and quark-gluon degrees of freedom in high-momentum transfer exclusive reactions. We have now measured for the first time hard pp-pair disintegration in the reaction {gamma}{sup 3}He{yields}pp+n, using kinematics corresponding to a spectator neutron. Cross sections were measured for 90 deg. c.m. at 8 beam energies, from 0.8 to 4.7 GeV. Preliminary results will be presented and compared to the hard deuteron photodisintegration data.

  4. The hard metal diseases.

    PubMed

    Cugell, D W

    1992-06-01

    Hard metal is a mixture of tungsten carbide and cobalt, to which small amounts of other metals may be added. It is widely used for industrial purposes whenever extreme hardness and high temperature resistance are needed, such as for cutting tools, oil well drilling bits, and jet engine exhaust ports. Cobalt is the component of hard metal that can be a health hazard. Respiratory diseases occur in workers exposed to cobalt--either in the production of hard metal, from machining hard metal parts, or from other sources. Adverse pulmonary reactions include asthma, hypersensitivity pneumonitis, and interstitial fibrosis. A peculiar, almost unique form of lung fibrosis, giant cell interstitial pneumonia, is closely linked with cobalt exposure. PMID:1511554

  5. Diffractive Higgs production from intrinsic heavy flavors in the proton

    SciTech Connect

    Brodsky, Stanley J.; Kopeliovich, Boris; Schmidt, Ivan; Soffer, Jacques

    2006-06-01

    We propose a novel mechanism for exclusive diffractive Higgs production pp{yields}pHp in which the Higgs boson carries a significant fraction of the projectile proton momentum. This mechanism will provide a clear experimental signal for Higgs production due to the small background in this kinematic region. The key assumption underlying our analysis is the presence of intrinsic heavy flavor components of the proton bound state, whose existence at the high light-cone momentum fraction x has growing experimental and theoretical support. We also discuss the implications of this picture for exclusive diffractive quarkonium and other channels.

  6. Diffractive Higgs Production from Intrinsic Heavy Flavors in the Proton

    SciTech Connect

    Brodsky, Stanley J.; Kopeliovich, Boris; Schmidt, Ivan; Soffer, Jacques

    2006-03-31

    We propose a novel mechanism for exclusive diffractive Higgs production pp {yields} pHp in which the Higgs boson carries a significant fraction of the projectile proton momentum. This mechanism will provide a clear experimental signal for Higgs production due to the small background in this kinematic region. The key assumption underlying our analysis is the presence of intrinsic heavy flavor components of the proton bound state, whose existence at high light-cone momentum fraction x has growing experimental and theoretical support. We also discuss the implications of this picture for exclusive diffractive quarkonium and other channels.

  7. Diffractive excitation of heavy flavors: Leading twist mechanisms

    SciTech Connect

    Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan; Tarasov, A. V.

    2007-08-01

    Diffractive production of heavy flavors is calculated within the light-cone dipole approach. Novel leading twist mechanisms are proposed, which involve both short and long transverse distances inside the incoming hadron. Nevertheless, the diffractive cross section turns out to be sensitive to the primordial transverse momenta of projectile gluons, rather than to the hadronic size. Our calculations agree with the available data for diffractive production of charm and beauty, and with the observed weak variation of the diffraction-to-inclusive cross section ratios as function of the hard scale.

  8. Exclusive Reactions at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Radyushkin, Anatoly; Stoler, Paul

    2008-03-01

    Hard exclusive scattering at JLab / P. Kroll -- AdS/CFT and exclusive processes in QCD / S. J. Brodsky and G. F. de Téramond -- Hadron structure matters in collisions at high energy and momentum / A. W. Thomas -- Inclusive perspectives / P. Hoyer -- Fitting DVCS at NLO and beyond / K. Kumericki, D. Müller and K. Passek-Kumericki -- Spin-orbit correlations and single-spin asymmetries / M. Burkardt -- Electroproduction of soft pions at large momentum transfers / V. M. Braun, D. Yu. Ivanov and A. Peters -- Color transparency: 33 years and still running / M. Strikman -- Meson clouds and nucleon electromagnetic form factors / G. A. Miller -- Covariance, dynamics and symmetries, and hadron form factors / M. S. Bhagwat, I. C. Cloët and C. D. Roberts -- N to [symbol] electromagnetic and axial form factors in full QCD / C. Alexandrou -- Real and virtual compton scattering in perturbative QCD / C.-R. Ji and R. Thomson -- Deeply virtual compton scattering at Jefferson Lab / F. Sabatie -- DVCS at HERMES: recent results / F. Ellinghaus -- Deeply virtual compton scattering with CLAS / F. X. Girod -- Deeply virtual compton scattering off the neutron at JLab Hall A / M. Mazouz -- The future DVCS experiments in Hall A at JLab / J. Roche -- Deeply virtual compton scattering with CLAS12 / L. Elouadrhiri -- Quark helicity flip and the transverse spin dependence of inclusive DIS / A. Afanasev, M. Strikman and C. Weiss -- Deeply virtual pseudoscalar meson production / V. Kubarovsky and P. Stoler -- Exclusive p[symbol] electroproduction on the proton: GPDs or not GPDs? / M. Guidal and S. Morrow -- p[symbol] transverse target spin asymmetry at HERMES / A. Airapetian -- Electroproduction of ø(1020) mesons / J. P. Santoro and E. S. Smith -- Generalized parton distributions from hadronic observables / S. Ahmad ... [et al.] -- Imaging the proton via hard exclusive production in diffractive pp scattering / G. E. Hyde ... [et al.] -- Regge contributions to exclusive electro-production / A

  9. Exclusive Reactions at High Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Radyushkin, Anatoly; Stoler, Paul

    2008-03-01

    Hard exclusive scattering at JLab / P. Kroll -- AdS/CFT and exclusive processes in QCD / S. J. Brodsky and G. F. de Téramond -- Hadron structure matters in collisions at high energy and momentum / A. W. Thomas -- Inclusive perspectives / P. Hoyer -- Fitting DVCS at NLO and beyond / K. Kumericki, D. Müller and K. Passek-Kumericki -- Spin-orbit correlations and single-spin asymmetries / M. Burkardt -- Electroproduction of soft pions at large momentum transfers / V. M. Braun, D. Yu. Ivanov and A. Peters -- Color transparency: 33 years and still running / M. Strikman -- Meson clouds and nucleon electromagnetic form factors / G. A. Miller -- Covariance, dynamics and symmetries, and hadron form factors / M. S. Bhagwat, I. C. Cloët and C. D. Roberts -- N to [symbol] electromagnetic and axial form factors in full QCD / C. Alexandrou -- Real and virtual compton scattering in perturbative QCD / C.-R. Ji and R. Thomson -- Deeply virtual compton scattering at Jefferson Lab / F. Sabatie -- DVCS at HERMES: recent results / F. Ellinghaus -- Deeply virtual compton scattering with CLAS / F. X. Girod -- Deeply virtual compton scattering off the neutron at JLab Hall A / M. Mazouz -- The future DVCS experiments in Hall A at JLab / J. Roche -- Deeply virtual compton scattering with CLAS12 / L. Elouadrhiri -- Quark helicity flip and the transverse spin dependence of inclusive DIS / A. Afanasev, M. Strikman and C. Weiss -- Deeply virtual pseudoscalar meson production / V. Kubarovsky and P. Stoler -- Exclusive p[symbol] electroproduction on the proton: GPDs or not GPDs? / M. Guidal and S. Morrow -- p[symbol] transverse target spin asymmetry at HERMES / A. Airapetian -- Electroproduction of ø(1020) mesons / J. P. Santoro and E. S. Smith -- Generalized parton distributions from hadronic observables / S. Ahmad ... [et al.] -- Imaging the proton via hard exclusive production in diffractive pp scattering / G. E. Hyde ... [et al.] -- Regge contributions to exclusive electro-production / A

  10. Hard exclusive neutral pion production at Jefferson Lab Hall A

    SciTech Connect

    Fuchey, E.

    2011-10-24

    We present measurements of the ep{yields}ep{pi}{sup 0} cross section extracted at two values of four-momentum transfer Q{sup 2} = 1.9 GeV{sup 2} and Q{sup 2} = 2.3 GeV{sup 2} at Jefferson Lab Hall A. The kinematic range allows to study the evolution of the cross section as a function of Q{sup 2} and W. Results will be confronted with Regge inspired calculations and GPD predictions. An intepretation of our data within the framework of semi-inclusive deep inelastic scattering has also been attempted.

  11. Harmonic diffractive lenses

    SciTech Connect

    Sweeney, D.W.; Sommargren, G.E.

    1995-05-10

    The harmonic diffractive lens is a diffractive imaging lens for which the optical path-length transition between adjacent facets is an integer multiple {ital m} of the design wavelength {lambda}{sub 0}. The total lens thickness in air is {ital m}{lambda}{sub 0}/({ital n} {minus} 1), which is {ital m} times thicker than the so-called modulo 2{pi} diffractive lens. Lenses constructed in this way have hybrid properties of both refractive and diffractive lenses. Such a lens will have a diffraction-limited, common focus for a number of discrete wavelengths across the visible spectrum. A 34.75-diopter, 6-mm-diameter lens is diamond turned in aluminum and replicated in optical materials. The sag of the lens is 23 {mu}m. Modulation transfer function measurements in both monochromatic and white light verify the performance of the lens. The lens approaches the diffraction limit for 10 discrete wavelengths across the visible spectrum.

  12. Organizing Your Hard Disk.

    ERIC Educational Resources Information Center

    Stocker, H. Robert; Hilton, Thomas S. E.

    1991-01-01

    Suggests strategies that make hard disk organization easy and efficient, such as making, changing, and removing directories; grouping files by subject; naming files effectively; backing up efficiently; and using PATH. (JOW)

  13. Diffraction by cold atoms

    NASA Astrophysics Data System (ADS)

    Strauch, F.; Gomer, V.; Schadwinkel, H.; Ueberholz, B.; Haubrich, D.; Meschede, D.

    1998-01-01

    We have observed diffraction of a laser probe beam by a trapped sample of cold atoms. The effect is only visible in the vicinity of a resonance line. The observed diffraction pattern arises from interference of the incident and scattered light wave, allowing reconstruction of geometric properties of the trapped sample from the holographic record.

  14. Phononic crystal diffraction gratings

    NASA Astrophysics Data System (ADS)

    Moiseyenko, Rayisa P.; Herbison, Sarah; Declercq, Nico F.; Laude, Vincent

    2012-02-01

    When a phononic crystal is interrogated by an external source of acoustic waves, there is necessarily a phenomenon of diffraction occurring on the external enclosing surfaces. Indeed, these external surfaces are periodic and the resulting acoustic diffraction grating has a periodicity that depends on the orientation of the phononic crystal. This work presents a combined experimental and theoretical study on the diffraction of bulk ultrasonic waves on the external surfaces of a 2D phononic crystal that consists of a triangular lattice of steel rods in a water matrix. The results of transmission experiments are compared with theoretical band structures obtained with the finite-element method. Angular spectrograms (showing frequency as a function of angle) determined from diffraction experiments are then compared with finite-element simulations of diffraction occurring on the surfaces of the crystal. The experimental results show that the diffraction that occurs on its external surfaces is highly frequency-dependent and has a definite relation with the Bloch modes of the phononic crystal. In particular, a strong influence of the presence of bandgaps and deaf bands on the diffraction efficiency is found. This observation opens perspectives for the design of efficient phononic crystal diffraction gratings.

  15. How 'hard' are hard-rock deformations?

    NASA Astrophysics Data System (ADS)

    van Loon, A. J.

    2003-04-01

    The study of soft-rock deformations has received increasing attention during the past two decades, and much progress has been made in the understanding of their genesis. It is also recognized now that soft-rock deformations—which show a wide variety in size and shape—occur frequently in sediments deposited in almost all types of environments. In spite of this, deformations occurring in lithified rocks are still relatively rarely attributed to sedimentary or early-diagenetic processes. Particularly faults in hard rocks are still commonly ascribed to tectonics, commonly without a discussion about a possible non-tectonic origin at a stage that the sediments were still unlithified. Misinterpretations of both the sedimentary and the structural history of hard-rock successions may result from the negligence of a possible soft-sediment origin of specific deformations. It is therefore suggested that a re-evaluation of these histories, keeping the present-day knowledge about soft-sediment deformations in mind, may give new insights into the geological history of numerous sedimentary successions in which the deformations have not been studied from both a sedimentological and a structural point of view.

  16. Calculating incoherent diffraction MTF

    NASA Astrophysics Data System (ADS)

    Friedman, Melvin; Vizgaitis, Jay

    2008-04-01

    The incoherent diffraction MTF plays an increasingly important role in the range performance of imaging systems as the wavelength increases and the optical aperture decreases. Accordingly, all NVESD imager models have equations that describe the incoherent diffraction MTF of a circular entrance pupil. NVThermIP, a program which models thermal imager range performance, has built in equations which analytically model the incoherent diffraction MTF of a circular entrance pupil and has a capability to input a table that describes the MTF of other apertures. These can be calculated using CODE V, which can numerically calculate the incoherent diffraction MTF in the vertical or horizontal direction for an arbitrary aperture. However, we are not aware of any program that takes as input a description of the entrance pupil and analytically outputs equations that describe the incoherent diffraction MTF. This work explores the effectiveness of Mathematica to analytically and numerically calculate the incoherent diffraction MTF for an arbitrary aperture. In this work, Mathematica is used to analytically and numerically calculate the incoherent diffraction MTF for a variety of apertures and the results are compared with CODE V calculations.

  17. Model of reversible vesicular transport with exclusion

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Karamched, Bhargav R.

    2016-08-01

    A major question in neurobiology concerns the mechanics behind the motor-driven transport and delivery of vesicles to synaptic targets along the axon of a neuron. Experimental evidence suggests that the distribution of vesicles along the axon is relatively uniform and that vesicular delivery to synapses is reversible. A recent modeling study has made explicit the crucial role that reversibility in vesicular delivery to synapses plays in achieving uniformity in vesicle distribution, so called synaptic democracy (Bressloff et al 2015 Phys. Rev. Lett. 114 168101). In this paper we generalize the previous model by accounting for exclusion effects (hard-core repulsion) that may occur between molecular motor-cargo complexes (particles) moving along the same microtubule track. The resulting model takes the form of an exclusion process with four internal states, which distinguish between motile and stationary particles, and whether or not a particle is carrying vesicles. By applying a mean field approximation and an adiabatic approximation we reduce the system of ODEs describing the evolution of occupation numbers of the sites on a 1D lattice to a system of hydrodynamic equations in the continuum limit. We find that reversibility in vesicular delivery allows for synaptic democracy even in the presence of exclusion effects, although exclusion does exacerbate nonuniform distributions of vesicles in an axon when compared with a model without exclusion. We also uncover the relationship between our model and other models of exclusion processes with internal states.

  18. Exclusive processes and the fundamental structure of hadrons

    SciTech Connect

    Brodsky, Stanley J.

    2015-01-20

    I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD coupling in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.

  19. Exclusive processes and the fundamental structure of hadrons

    DOE PAGESBeta

    Brodsky, Stanley J.

    2015-01-20

    I review the historical development of QCD predictions for exclusive hadronic processes, beginning with constituent counting rules and the quark interchange mechanism, phenomena which gave early validation for the quark structure of hadrons. The subsequent development of pQCD factorization theorems for hard exclusive amplitudes and the development of evolution equations for the hadron distribution amplitudes provided a rigorous framework for calculating hadronic form factors and hard scattering exclusive scattering processes at high momentum transfer. I also give a brief introduction to the field of "light-front holography" and the insights it brings to quark confinement, the behavior of the QCD couplingmore » in the nonperturbative domain, as well as hadron spectroscopy and the dynamics of exclusive processes.« less

  20. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, Michael D.; Britten, Jerald A.; Nguyen, Hoang T.; Boyd, Robert; Shore, Bruce W.

    1999-01-01

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described.

  1. Multilayer dielectric diffraction gratings

    DOEpatents

    Perry, M.D.; Britten, J.A.; Nguyen, H.T.; Boyd, R.; Shore, B.W.

    1999-05-25

    The design and fabrication of dielectric grating structures with high diffraction efficiency used in reflection or transmission is described. By forming a multilayer structure of alternating index dielectric materials and placing a grating structure on top of the multilayer, a diffraction grating of adjustable efficiency, and variable optical bandwidth can be obtained. Diffraction efficiency into the first order in reflection varying between 1 and 98 percent has been achieved by controlling the design of the multilayer and the depth, shape, and material comprising the grooves of the grating structure. Methods for fabricating these gratings without the use of ion etching techniques are described. 7 figs.

  2. Hard tissue laser procedures.

    PubMed

    Gimbel, C B

    2000-10-01

    A more conservative, less invasive treatment of the carious lesion has intrigued researchers and clinicians for decades. With over 170 million restorations placed worldwide each year, many of which could be treated using a laser, there exists an increasing need for understanding hard tissue laser procedures. An historical review of past scientific and clinical hard research, biophysics, and histology are discussed. A complete review of present applications and procedures along with their capabilities and limitations will give the clinician a better understanding. Clinical case studies, along with guidelines for tooth preparation and hard tissue laser applications and technological advances for diagnosis and treatment will give the clinician a look into the future. PMID:11048281

  3. Quark Orbital Angular Momentum and Exclusive Processes at HERMES

    SciTech Connect

    Ellinghaus, F.

    2006-11-17

    A first attempt for a model-dependent extraction of the orbital angular momentum of quarks in the nucleon has been made, based on HERMES data on exclusive processes and their description in terms of generalized parton distributions. An overview of the HERMES data on hard exclusive electroproduction of real photons (Deeply-Virtual Compton Scattering) and mesons is given, focusing on the measurements relevant to the extraction of quark orbital angular momentum.

  4. Reflective diffraction grating

    DOEpatents

    Lamartine, Bruce C.

    2003-06-24

    Reflective diffraction grating. A focused ion beam (FIB) micromilling apparatus is used to store color images in a durable medium by milling away portions of the surface of the medium to produce a reflective diffraction grating with blazed pits. The images are retrieved by exposing the surface of the grating to polychromatic light from a particular incident bearing and observing the light reflected by the surface from specified reception bearing.

  5. Powder Diffraction: By Decades

    NASA Astrophysics Data System (ADS)

    David, William I. F.

    This introductory chapter reviews the first 100 years of powder diffraction, decade by decade, from the earliest X-ray powder diffraction measurements of the crystal structure of graphite through to the diversity and complexity of twenty-first century powder diffraction. Carbon features as an illustrative example throughout the discussion of these ten decades from graphite and the disorder of carbon black through to lonsdaleite, the elusive hexagonal polymorph of diamond, and C60, the most symmetrical of molecules. Electronics and computing have played a leading role in the development of powder diffraction, particularly over the past 60 years, and the Moore's Law decade-by-decade rise in computing power is clear in the increasing complexity of powder diffraction experiments and material systems that can be studied. The chapter concludes with a final discussion of decades - the four decades of length-scale from the ångstrom to the micron that not only represent the domain of powder diffraction but are also the distances that will dominate twenty-first century science and technology.

  6. The dyadic diffraction coefficient for a curved edge

    NASA Technical Reports Server (NTRS)

    Kouyoumjian, R. G.; Pathak, P. H.

    1974-01-01

    A compact dyadic diffraction coefficient for electromagnetic waves obliquely incident on a curved edge formed by perfectly conducting curved or plane surfaces is obtained. This diffraction coefficent remains valid in the transition regions adjacent to shadow and reflection boundaries, where the diffraction coefficients of Keller's original theory fail. The method is on Keller's method of the canonical problem, which in this case is the perfectly conducting wedge illuminated by plane, cylindrical, conical, and spherical waves. When the proper ray fixed coordinate system is introduced, the dyadic diffraction coefficient for the wedge is found to be the sum of only two dyads, and it is shown that this is also true for the dyadic diffraction coefficients of higher order edges. One dyad contains the acoustic soft diffraction coefficient; the other dyad contains the acoustic hard diffraction coefficient. The expressions for the acoustic wedge diffraction coefficients contain Fresnel integrals, which ensure that the total field is continuous at shadow and reflection boundaries. The diffraction coefficients have the same form for the different types of edge illumination; only the arguments of the Fresnel integrals are different. Since diffraction is a local phenomenon, and locally the curved edge structure is wedge shaped, this result is readily extended to the curved edge.

  7. Unitary formalism for scattering from a hard corrugated wall

    NASA Astrophysics Data System (ADS)

    Brown, G. C.; Celli, V.; Coopersmith, M.; Haller, M.

    1982-07-01

    We obtain two coupled integral equations for the diffraction of waves from a hard corrugated surface. This rearrangement is shown to be equivalent to the integral equation for the scattering amplitude obtained by an application of the Rayleigh method. The formalism presented here, analogous to K-matrix theory, makes the unitarity of the theory apparent at each stage of approximation.

  8. Running in Hard Times

    ERIC Educational Resources Information Center

    Berry, John N., III

    2009-01-01

    Roberta Stevens and Kent Oliver are campaigning hard for the presidency of the American Library Association (ALA). Stevens is outreach projects and partnerships officer at the Library of Congress. Oliver is executive director of the Stark County District Library in Canton, Ohio. They have debated, discussed, and posted web sites, Facebook pages,…

  9. CSI: Hard Drive

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2008-01-01

    Acting on information from students who reported seeing a classmate looking at inappropriate material on a school computer, school officials used forensics software to plunge the depths of the PC's hard drive, searching for evidence of improper activity. Images were found in a deleted Internet Explorer cache as well as deleted file space.…

  10. Budgeting in Hard Times.

    ERIC Educational Resources Information Center

    Parrino, Frank M.

    2003-01-01

    Interviews with school board members and administrators produced a list of suggestions for balancing a budget in hard times. Among these are changing calendars and schedules to reduce heating and cooling costs; sharing personnel; rescheduling some extracurricular activities; and forming cooperative agreements with other districts. (MLF)

  11. Electrochemical in-situ reaction cell for X-ray scattering, diffraction and spectroscopy

    SciTech Connect

    Braun, Artur; Granlund, Eric; Cairns, Elton J.

    2003-01-27

    An electrochemical in-situ reaction cell for hard X-ray experiments with battery electrodes is described. Applications include the small angle scattering, diffraction, and near-edge spectroscopy of lithium manganese oxide electrodes.

  12. Multipath analysis diffraction calculations

    NASA Technical Reports Server (NTRS)

    Statham, Richard B.

    1996-01-01

    This report describes extensions of the Kirchhoff diffraction equation to higher edge terms and discusses their suitability to model diffraction multipath effects of a small satellite structure. When receiving signals, at a satellite, from the Global Positioning System (GPS), reflected signals from the satellite structure result in multipath errors in the determination of the satellite position. Multipath error can be caused by diffraction of the reflected signals and a method of calculating this diffraction is required when using a facet model of the satellite. Several aspects of the Kirchhoff equation are discussed and numerical examples, in the near and far fields, are shown. The vector form of the extended Kirchhoff equation, by adding the Larmor-Tedone and Kottler edge terms, is given as a mathematical model in an appendix. The Kirchhoff equation was investigated as being easily implemented and of good accuracy in the basic form, especially in phase determination. The basic Kirchhoff can be extended for higher accuracy if desired. A brief discussion of the method of moments and the geometric theory of diffraction is included, but seems to offer no clear advantage in implementation over the Kirchhoff for facet models.

  13. Diffraction radiation generators

    NASA Astrophysics Data System (ADS)

    Shestopalov, Viktor P.; Vertii, Aleksei A.; Ermak, Gennadii P.; Skrynnik, Boris K.; Khlopov, Grigorii I.; Tsvyk, Aleksei I.

    Research in the field of diffraction radiation generators (DRG) conducted at the Radio Physics and electronics Institute of the Ukranian Academy of Sciences over the past 25 years is reviewed. The effect of diffraction radiation is analyzed in detail, and various operating regimes of DRGs are discussed. The discussion then focuses on the principal requirements for the design of packaged DRGs and their principal parameters. Finally, applications of DRGs in various fields of science and technology are reviewed, including such applications as DRG spectroscopy, diagnostics of plasma, biological specimens, and vibration, and DRG radar systems.

  14. ''Follow that quarkexclamation'' (and other exclusive stories)

    SciTech Connect

    Carroll, A.S.

    1987-06-17

    Quarks are considered to be the basic constituents of matter. In a series of recent experiments, Carroll studied exclusive reactions as a means of determining the interactions between quarks. Quantum Chromo-dynamics (QCD) is the modern theory of the interaction of quarks. This theory explains how quarks are held together via the strong interaction in particles known as hadrons. Hadrons consisting of three quarks are called baryons. Hadrons made up of a quark and an antiquark are called mesons. In his lecture, Carroll describes what happens when two hadrons collide and scatter to large angles. The violence of the collision causes the gluons that bind the quarks in a particular hadron to temporarily lose their grip on particular quarks. Quarks scramble toward renewed unity with other quarks, and they undergo rearrangement, which generally results in additional new particles. A two-body exclusive reaction has occurred when the same number of particles exist before and after the collisions. At large angles these exclusive reactions are very rare. The labels on the quarks known as flavor enable the experimenter to follow the history of individual quarks in detail during these exclusive reactions. Carroll describes the equipment used in the experiment to measure short distance, hard collisions at large angles. The collisions he discusses occur when a known beam of mesons or protons collide with a stationary proton target. Finally, Carroll summarizes what the experiments have shown from the study of exclusive reactions and what light some of their results shed on the theory of QCD.

  15. Work Hard. Be Nice

    ERIC Educational Resources Information Center

    Mathews, Jay

    2009-01-01

    In 1994, fresh from a two-year stint with Teach for America, Mike Feinberg and Dave Levin inaugurated the Knowledge Is Power Program (KIPP) in Houston with an enrollment of 49 5th graders. By this Fall, 75 KIPP schools will be up and running, setting children from poor and minority families on a path to college through a combination of hard work,…

  16. Hard Times Hit Schools

    ERIC Educational Resources Information Center

    McNeil, Michele

    2008-01-01

    Hard-to-grasp dollar amounts are forcing real cuts in K-12 education at a time when the cost of fueling buses and providing school lunches is increasing and the demands of the federal No Child Left Behind Act still loom larger over states and districts. "One of the real challenges is to continue progress in light of the economy," said Gale Gaines,…

  17. Use of heat treatment to modify the structure of a hard-faced layer

    NASA Astrophysics Data System (ADS)

    Borisov, M. D.; Kraev, G. V.; Poletika, I. M.

    1992-02-01

    The methods of metal physics and x-ray diffraction analysis are used to study the effect of heat treatments (quenching, tempering, high-temperature tempering) on the structure and properties (hardness, wear resistance) of a layer composed of an electroslag hard-facing alloyed with boron carbide and chromium. It is shown that the most effective heat treatment for increasing the hardness and wear resistance of the layer is one which includes high-temperature tempering, quenching, and low-temperature tempering.

  18. SUPER HARD SURFACED POLYMERS

    SciTech Connect

    Mansur, Louis K; Bhattacharya, R; Blau, Peter Julian; Clemons, Art; Eberle, Cliff; Evans, H B; Janke, Christopher James; Jolly, Brian C; Lee, E H; Leonard, Keith J; Trejo, Rosa M; Rivard, John D

    2010-01-01

    High energy ion beam surface treatments were applied to a selected group of polymers. Of the six materials in the present study, four were thermoplastics (polycarbonate, polyethylene, polyethylene terephthalate, and polystyrene) and two were thermosets (epoxy and polyimide). The particular epoxy evaluated in this work is one of the resins used in formulating fiber reinforced composites for military helicopter blades. Measures of mechanical properties of the near surface regions were obtained by nanoindentation hardness and pin on disk wear. Attempts were also made to measure erosion resistance by particle impact. All materials were hardness tested. Pristine materials were very soft, having values in the range of approximately 0.1 to 0.5 GPa. Ion beam treatment increased hardness by up to 50 times compared to untreated materials. For reference, all materials were hardened to values higher than those typical of stainless steels. Wear tests were carried out on three of the materials, PET, PI and epoxy. On the ion beam treated epoxy no wear could be detected, whereas the untreated material showed significant wear.

  19. DIFFRACTION FROM MODEL CRYSTALS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although calculating X-ray diffraction patterns from atomic coordinates of a crystal structure is a widely available capability, calculation from non-periodic arrays of atoms has not been widely applied to cellulose. Non-periodic arrays result from modeling studies that, even though started with at...

  20. Calculating cellulose diffraction patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...

  1. Ultrasonic characterization of materials hardness

    PubMed

    Badidi Bouda A; Benchaala; Alem

    2000-03-01

    In this paper, an experimental technique has been developed to measure velocities and attenuation of ultrasonic waves through a steel with a variable hardness. A correlation between ultrasonic measurements and steel hardness was investigated. PMID:10829663

  2. Diffraction-Specific Fringe Computation for Electro -

    NASA Astrophysics Data System (ADS)

    Lucente, Mark

    Diffraction-specific fringe computation is a novel system for the generation of holographic fringe patterns for real-time display. This thesis describes the development, implementation, and analysis of diffraction-specific computation, an approach that considers the reconstruction process rather than the interference process in optical holography. The primary goal is to increase the speed of holographic computation for real-time three-dimensional electro-holographic (holovideo) displays. Diffraction-specific fringe computation is based on the discretization of space and spatial frequency in the fringe pattern. Two holographic fringe encoding techniques are developed from diffraction-specific fringe computation and applied to make most efficient use of hologram channel capacity. A "hogel-vector encoding" technique is based on undersampling the fringe spectra. A "fringelet encoding" technique is designed to increase the speed and simplicity of decoding. The analysis of diffraction-specific computation focuses on the trade-offs between compression ratio, image fidelity, and image depth. The decreased image resolution (increased point spread) that is introduced into holographic images due to encoding is imperceptible to the human visual system under certain conditions. A compression ratio of 16 is achieved (using either encoding method) with an acceptably small loss in image resolution. Total computation time is reduced by a factor of over 100 to less than 7.0 seconds per 36-MB holographic fringe using the fringelet encoding method. Diffraction-specific computation more efficiently matches the information content of holographic fringes to the human visual system. Diffraction-specific holographic encoding allows for "visual-bandwidth holography," i.e., holographic imaging that requires a bandwidth commensurate with the usable visual information contained in an image. Diffraction -specific holographic encoding enables the integration of holographic information with other

  3. Hard-pan soils - Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hard pans, hard layers, or compacted horizons, either surface or subsurface, are universal problems that limit crop production. Hard layers can be caused by traffic or soil genetic properties that result in horizons with high density or cemented soil particles; these horizons have elevated penetrati...

  4. 10 CFR 781.52 - Exclusive and partially exclusive licenses.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Exclusive and partially exclusive licenses. 781.52 Section 781.52 Energy DEPARTMENT OF ENERGY DOE PATENT LICENSING REGULATIONS Types of Licenses and Conditions for Licensing § 781.52 Exclusive and partially exclusive licenses. (a) Availability of licenses. The Department may grant exclusive or...

  5. Higgs central exclusive production

    NASA Astrophysics Data System (ADS)

    Cudell, J. R.; Dechambre, A.; Hernández, O. F.

    2012-01-01

    Using the CHIDe model, we tune the calculation of central exclusive Higgs production to the recent CDF central exclusive dijet data, and predict the cross section for the exclusive production of Higgs boson at the LHC. In this model, due to different choices of the scale in the Sudakov form factor for dijet and Higgs production, it is always below 1 fb, and below 0.3 fb after experimental cuts.

  6. Hard metal composition

    DOEpatents

    Sheinberg, Haskell

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  7. Hard metal composition

    DOEpatents

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  8. Exchange-spring mechanism of soft and hard ferrite nanocomposites

    SciTech Connect

    Manjura Hoque, S.; Srivastava, C.; Kumar, V.; Venkatesh, N.; Das, H.N.; Saha, D.K.; Chattopadhyay, K.

    2013-08-01

    Graphical abstract: - Highlights: • Exchange-spring behaviour of soft and hard ferrites was studied. • XRD patterns indicated soft and hard ferrites as fcc and hcp structure. • Hysteresis loops indicate wide difference in coercivity of soft and hard phases. • Nanocomposites produced convex hysteresis loop characteristic of single-phase. - Abstract: The paper reports exchange-spring soft and hard ferrite nanocomposites synthesized by chemical co-precipitation with or without the application of ultrasonic vibration. The composites contained BaFe{sub 12}O{sub 19} as the hard phase and CoFe{sub 2}O{sub 4}/MgFe{sub 2}O{sub 4} as the soft phase. X-ray diffraction patterns of the samples in the optimum calcined condition indicated the presence of soft ferrites as face-centred cubic (fcc) and hard ferrites as hexagonal close packed (hcp) structure respectively. Temperature dependence of magnetization in the range of 20–700 °C demonstrated distinct presence of soft and hard ferrites as magnetic phases which are characterized by wide difference in magnetic anisotropy and coercivity. Exchange-spring mechanism led these nanocomposite systems to exchange-coupled, which ultimately produced convex hysteresis loops characteristic of a single-phase permanent magnet. Fairly high value of coercivity and maximum energy product were observed for the samples in the optimum calcined conditions with a maximum applied field of 1600 kA/m (2 T)

  9. Colored Diffraction Catastrophes

    NASA Astrophysics Data System (ADS)

    Berry, M. V.; Klein, S.

    1996-03-01

    On fine scales, caustics produced with white light show vividly colored diffraction fringes. For caustics described by the elementary catastrophes of singularity theory, the colors are characteristic of the type of singularity. We study the diffraction colors of the fold and cusp catastrophes. The colors can be simulated computationally as the superposition of monochromatic patterns for different wavelengths. Far from the caustic, where the luminosity contrast is negligible, the fringe colors persist; an asymptotic theory explains why. Experiments with caustics produced by refraction through irregular bathroom-window glass show good agreement with theory. Colored fringes near the cusp reveal fine lines that are not present in any of the monochromatic components; these lines are explained in terms of partial decoherence between rays with widely differing path differences.

  10. Colored diffraction catastrophes.

    PubMed Central

    Berry, M V; Klein, S

    1996-01-01

    On fine scales, caustics produced with white light show vividly colored diffraction fringes. For caustics described by the elementary catastrophes of singularity theory, the colors are characteristic of the type of singularity. We study the diffraction colors of the fold and cusp catastrophes. The colors can be simulated computationally as the superposition of monochromatic patterns for different wavelengths. Far from the caustic, where the luminosity contrast is negligible, the fringe colors persist; an asymptotic theory explains why. Experiments with caustics produced by refraction through irregular bathroom-window glass show good agreement with theory. Colored fringes near the cusp reveal fine lines that are not present in any of the monochromatic components; these lines are explained in terms of partial decoherence between rays with widely differing path differences. Images Fig. 1 Fig. 2 Fig. 3 Fig. 6 Fig. 8 Fig. 9 Fig. 10 PMID:11607642

  11. Hard Metal Disease

    PubMed Central

    Bech, A. O.; Kipling, M. D.; Heather, J. C.

    1962-01-01

    In Great Britain there have been no published reports of respiratory disease occurring amongst workers in the hard metal (tungsten carbide) industry. In this paper the clinical and radiological findings in six cases and the pathological findings in one are described. In two cases physiological studies indicated mild alveolar diffusion defects. Histological examination in a fatal case revealed diffuse pulmonary interstitial fibrosis with marked peribronchial and perivascular fibrosis and bronchial epithelial hyperplasia and metaplasia. Radiological surveys revealed the sporadic occurrence and low incidence of the disease. The alterations in respiratory mechanics which occurred in two workers following a day's exposure to dust are described. Airborne dust concentrations are given. The industrial process is outlined and the literature is reviewed. The toxicity of the metals is discussed, and our findings are compared with those reported from Europe and the United States. We are of the opinion that the changes which we would describe as hard metal disease are caused by the inhalation of dust at work and that the component responsible may be cobalt. Images PMID:13970036

  12. Spins, phonons, and hardness

    SciTech Connect

    Gilman, J.J.

    1996-12-31

    In crystals (and/or glasses) with localized sp{sup 3} or spd-bonding orbitals, dislocations have very low mobilities, making the crystals very hard. Classical Peierls-Nabarro theory does not account for the low mobility. The breaking of spin-pair bonds which creates internal free-radicals must be considered. Therefore, a theory based on quantum mechanics has been proposed (Science, 261, 1436 (1993)). It has been applied successfully to diamond, Si, Ge, SiC, and with a modification to TiC and WC. It has recently been extended to account for the temperature independence of the hardness of silicon at low temperatures together with strong softening at temperatures above the Debye temperature. It is quantitatively consistent with the behaviors of the Group 4 elements (C, Si, Ge, Sn) when their Debye temperatures are used as normalizing factors; and appears to be consistent with data for TiC if an Einstein temperature for carbon is used. Since the Debye temperature marks the approximate point at which phonons of atomic wavelengths become excited (as contrasted with collective acoustic waves), this confirms the idea that the process which limits dislocation mobility is localized to atomic dimensions (sharp kinks).

  13. Diffraction before destruction

    PubMed Central

    Chapman, Henry N.; Caleman, Carl; Timneanu, Nicusor

    2014-01-01

    X-ray free-electron lasers have opened up the possibility of structure determination of protein crystals at room temperature, free of radiation damage. The femtosecond-duration pulses of these sources enable diffraction signals to be collected from samples at doses of 1000 MGy or higher. The sample is vaporized by the intense pulse, but not before the scattering that gives rise to the diffraction pattern takes place. Consequently, only a single flash diffraction pattern can be recorded from a crystal, giving rise to the method of serial crystallography where tens of thousands of patterns are collected from individual crystals that flow across the beam and the patterns are indexed and aggregated into a set of structure factors. The high-dose tolerance and the many-crystal averaging approach allow data to be collected from much smaller crystals than have been examined at synchrotron radiation facilities, even from radiation-sensitive samples. Here, we review the interaction of intense femtosecond X-ray pulses with materials and discuss the implications for structure determination. We identify various dose regimes and conclude that the strongest achievable signals for a given sample are attained at the highest possible dose rates, from highest possible pulse intensities. PMID:24914146

  14. Polychromatic diffraction contrast tomography

    SciTech Connect

    King, A.; Reischig, P.; Adrien, J.; Peetermans, S.; Ludwig, W.

    2014-11-15

    This tutorial review introduces the use of polychromatic radiation for 3D grain mapping using X-ray diffraction contrast tomography. The objective is to produce a 3D map of the grain shapes and orientations within a bulk, millimeter-sized polycrystalline sample. The use of polychromatic radiation enables the standard synchrotron X-ray technique to be applied in a wider range of contexts: 1) Using laboratory X-ray sources allows a much wider application of the diffraction contrast tomography technique. 2) Neutron sources allow large samples, or samples containing high Z elements to be studied. 3) Applied to synchrotron sources, smaller samples may be treated, or faster measurements may be possible. Challenges and particularities in the data acquisition and processing, and the limitations of the different variants, are discussed. - Highlights: • We present a tutorial review of polychromatic diffraction contrast tomography techniques. • The use of polychromatic radiation allows the standard synchrotron DCT technique to be extended to a range of other sources. • The characteristics and limitations of all variants of the techniques are derived, discussed and compared. • Examples using laboratory X-ray and cold neutron radiation are presented. • Suggestions for the future development of these techniques are presented.

  15. Enhanced Information Exclusion Relations

    NASA Astrophysics Data System (ADS)

    Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing

    2016-07-01

    In Hall’s reformulation of the uncertainty principle, the entropic uncertainty relation occupies a core position and provides the first nontrivial bound for the information exclusion principle. Based upon recent developments on the uncertainty relation, we present new bounds for the information exclusion relation using majorization theory and combinatoric techniques, which reveal further characteristic properties of the overlap matrix between the measurements.

  16. Enhanced Information Exclusion Relations.

    PubMed

    Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing

    2016-01-01

    In Hall's reformulation of the uncertainty principle, the entropic uncertainty relation occupies a core position and provides the first nontrivial bound for the information exclusion principle. Based upon recent developments on the uncertainty relation, we present new bounds for the information exclusion relation using majorization theory and combinatoric techniques, which reveal further characteristic properties of the overlap matrix between the measurements. PMID:27460975

  17. Central Exclusive Dijet Production

    SciTech Connect

    Dechambre, A.; Cudell, J. R.; Ivanov, I. P.; Hernandez, O.

    2008-08-29

    The ingredients of central exclusive production cross section include large perturbative corrections and soft quantities that must be parametrized and fitted to data. In this talk, we summarize the results of a study of the uncertainties coming from these ingredients, in the case of exclusive dijet production.

  18. Acoustic diffraction in a trifurcated waveguide with mean flow

    NASA Astrophysics Data System (ADS)

    Ayub, M.; Tiwana, M. H.; Mann, A. B.

    2010-12-01

    Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a 2×2 matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics.

  19. Diffraction of a Laser Beam.

    ERIC Educational Resources Information Center

    Jodoin, Ronald E.

    1979-01-01

    Investigates the effect of the nonuniform irradiance across a laser beam on diffraction of the beam, specifically the Fraunhofer diffraction of a laser beam with a Gaussian irradiance profile as it passes through a circular aperture. (GA)

  20. Aberrations of diffracted wave fields. II. Diffraction gratings.

    PubMed

    Mahajan, V N

    2000-12-01

    The Rayleigh-Sommerfeld theory is applied to diffraction of a spherical wave by a grating. The grating equation is obtained from the aberration-free diffraction pattern, and its aberrations are shown to be the same as the conventional aberrations obtained by using Fermat's principle. These aberrations are shown to be not associated with the diffraction process. Moreover, it is shown that the irradiance distribution of a certain diffraction order is the Fraunhofer diffraction pattern of the grating aperture as a whole aberrated by the aberration of that order. PMID:11140481

  1. Diffraction Gratings for High-Intensity Laser Applications

    SciTech Connect

    Britten, J

    2008-01-23

    The scattering of light into wavelength-dependent discrete directions (orders) by a device exhibiting a periodic modulation of a physical attribute on a spatial scale similar to the wavelength of light has been the subject of study for over 200 years. Such a device is called a diffraction grating. Practical applications of diffraction gratings, mainly for spectroscopy, have been around for over 100 years. The importance of diffraction gratings in spectroscopy for the measurement of myriad properties of matter can hardly be overestimated. Since the advent of coherent light sources (lasers) in the 1960's, applications of diffraction gratings in spectroscopy have further exploded. Lasers have opened a vast application space for gratings, and apace, gratings have enabled entirely new classes of laser systems. Excellent reviews of the history, fundamental properties, applications and manufacturing techniques of diffraction gratings up to the time of their publication can be found in the books by Hutley (1) and more recently Loewen and Popov (2). The limited scope of this chapter can hardly do justice to such a comprehensive subject, so the focus here will be narrowly limited to characteristics required for gratings suitable for high-power laser applications, and methods to fabricate them. A particular area of emphasis will be on maximally-efficient large-aperture gratings for short-pulse laser generation.

  2. Generalized parton distributions and exclusive processes

    SciTech Connect

    Guzey, Vadim

    2013-10-01

    In last fifteen years, GPDs have emerged as a powerful tool to reveal such aspects of the QCD structure of the nucleon as: - 3D parton correlations and distributions; - spin content of the nucleon. Further advances in the field of GPDs and hard exclusive processes rely on: - developments in theory and new methods in phenomenology such as new flexible parameterizations, neural networks, global QCD fits - new high-precision data covering unexplored kinematics: JLab at 6 and 12 GeV, Hermes with recoil detector, Compass, EIC. This slide-show presents: Nucleon structure in QCD, particularly hard processes, factorization and parton distributions; and a brief overview of GPD phenomenology, including basic properties of GPDs, GPDs and QCD structure of the nucleon, and constraining GPDs from experiments.

  3. Spectral diffraction efficiency characterization of broadband diffractive optical elements.

    SciTech Connect

    Choi, Junoh; Cruz-Cabrera, Alvaro Augusto; Tanbakuchi, Anthony

    2013-03-01

    Diffractive optical elements, with their thin profile and unique dispersion properties, have been studied and utilized in a number of optical systems, often yielding smaller and lighter systems. Despite the interest in and study of diffractive elements, the application has been limited to narrow spectral bands. This is due to the etch depths, which are optimized for optical path differences of only a single wavelength, consequently leading to rapid decline in efficiency as the working wavelength shifts away from the design wavelength. Various broadband diffractive design methodologies have recently been developed that improve spectral diffraction efficiency and expand the working bandwidth of diffractive elements. We have developed diffraction efficiency models and utilized the models to design, fabricate, and test two such extended bandwidth diffractive designs.

  4. Tuning hardness in calcite by incorporation of amino acids.

    PubMed

    Kim, Yi-Yeoun; Carloni, Joseph D; Demarchi, Beatrice; Sparks, David; Reid, David G; Kunitake, Miki E; Tang, Chiu C; Duer, Melinda J; Freeman, Colin L; Pokroy, Boaz; Penkman, Kirsty; Harding, John H; Estroff, Lara A; Baker, Shefford P; Meldrum, Fiona C

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit-mineral single crystals containing embedded macromolecules-remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules. PMID:27135858

  5. Tuning hardness in calcite by incorporation of amino acids

    NASA Astrophysics Data System (ADS)

    Kim, Yi-Yeoun; Carloni, Joseph D.; Demarchi, Beatrice; Sparks, David; Reid, David G.; Kunitake, Miki E.; Tang, Chiu C.; Duer, Melinda J.; Freeman, Colin L.; Pokroy, Boaz; Penkman, Kirsty; Harding, John H.; Estroff, Lara A.; Baker, Shefford P.; Meldrum, Fiona C.

    2016-08-01

    Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unit--mineral single crystals containing embedded macromolecules--remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite. We analysed lattice distortions in these model crystals by using X-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.

  6. Structured beam diffraction.

    PubMed

    Castagna, R; Di Donato, A; Nucara, L; Xu, J H; Lucchetta, D E; Simoni, F

    2016-04-01

    We report on the observation of a modulated pattern induced by a single laser beam in a polymeric film. In spite of the simple geometrical configuration, the analysis of the far field diffraction pattern allows a sensitive retrieving of the wavelength of the recording beam and of its incidence angle, pointing out the high information content of the recorded spot. A theoretical model is presented which satisfactorily explains the observed behavior. It takes into account the interaction of structured light with structured matter with the same symmetries and spatial modulation frequencies close to each other. This result shows a feature of the interaction between structured light and structured matter which has not been explored yet. PMID:27192262

  7. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, Gary E.

    1996-01-01

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of .lambda./1000 where .lambda. is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about .lambda./50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms.

  8. Phase shifting diffraction interferometer

    DOEpatents

    Sommargren, G.E.

    1996-08-29

    An interferometer which has the capability of measuring optical elements and systems with an accuracy of {lambda}/1000 where {lambda} is the wavelength of visible light. Whereas current interferometers employ a reference surface, which inherently limits the accuracy of the measurement to about {lambda}/50, this interferometer uses an essentially perfect spherical reference wavefront generated by the fundamental process of diffraction. This interferometer is adjustable to give unity fringe visibility, which maximizes the signal-to-noise, and has the means to introduce a controlled prescribed relative phase shift between the reference wavefront and the wavefront from the optics under test, which permits analysis of the interference fringe pattern using standard phase extraction algorithms. 8 figs.

  9. Multilayer diffraction grating

    DOEpatents

    Barbee, Jr., Troy W.

    1990-01-01

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages.

  10. Multilayer diffraction grating

    DOEpatents

    Barbee, T.W. Jr.

    1990-04-10

    This invention is for a reflection diffraction grating that functions at X-ray to VUV wavelengths and at normal angles of incidence. The novel grating is comprised of a laminar grating of period D with flat-topped grating bars. A multiplicity of layered synthetic microstructures, of period d and comprised of alternating flat layers of two different materials, are disposed on the tops of the grating bars of the laminar grating. In another embodiment of the grating, a second multiplicity of layered synthetic microstructures are also disposed on the flat faces, of the base of the grating, between the bars. D is in the approximate range from 3,000 to 50,000 Angstroms, but d is in the approximate range from 10 to 400 Angstroms. The laminar grating and the layered microstructures cooperatively interact to provide many novel and beneficial instrumentational advantages. 2 figs.

  11. Dichroic Coherent Diffractive Imaging

    NASA Astrophysics Data System (ADS)

    Tripathi, Ashish

    Understanding electronic structure at nanometer resolution is crucial to understanding physics such as phase separation and emergent behavior in correlated electron materials. Nondestructive probes which have the ability to see beyond surfaces on nanometer length and sub-picosecond time scales can greatly enhance our understanding of these systems and will impact development of future technologies, such as magnetic storage. Polarized x-rays are an appealing choice of probe due to their penetrating power, elemental and magnetic specificity, and high spatial resolution. The resolution of traditional x-ray microscopy is limited by the nanometer precision required to fabricate x-ray optics. In this thesis, a novel approach to lensless imaging of an extended magnetic nanostructure is presented. We demonstrate this approach by imaging ferrimagnetic "maze" domains in a Gd/Fe multilayer with perpendicular anisotropy. A series of dichroic coherent diffraction patterns, ptychographically recorded, are numerically inverted using non-convex and non-linear optimization theory, and we follow the magnetic domain configuration evolution through part of its magnetization hysteresis loop by applying an external magnetic field. Unlike holographic methods, it does not require a reference wave or precision optics, and so is a far simpler experiment. In addition, it enables the imaging of samples with arbitrarily large spatial dimensions, at a spatial resolution limited solely by the coherent x-ray flux and wavelength. It can readily be extended to other non-magnetic systems that exhibit circular or linear dichroism. This approach is scalable to imaging with diffraction-limited resolution, a prospect rapidly becoming a reality in view of the new generation of phenomenally brilliant x-ray sources.

  12. Reservoir characterization with sequential Gaussian simulation constrained by diffraction tomography

    SciTech Connect

    Lo, T.W.; Bermawi, A.

    1994-12-31

    A geostatistical approach for reservoir characterization that honors both surface seismic data and wireline data is described. It first computes a velocity profiles with seismic diffraction tomography, then, performs kriging with an external drift and sequential Gaussian simulation using the velocity profiles as soft data and the sonic logs as hard data. The product is a velocity profile with a resolution as high as that of the smoothed sonic logs, showing lateral velocity variations constrained by surface seismic data.

  13. Helium diffraction from the MgO(001) surface

    NASA Astrophysics Data System (ADS)

    Jung, David R.; Mahgerefteh, Massoud; Frankl, Daniel R.

    1989-05-01

    Helium diffraction beam intensity measurements from an in situ cleaved, oxygen-treated, room-temperature surface of MgO(001) are reported. The in-plane spectra obtained at several angles in the main azimuthal planes at beam energies of 17.3 and 63 meV were analyzed using a hard corrugated surface model. A corrugation amplitude of about 0.17 Å gives a fair fit, in agreement with most previous work.

  14. Measuring the Hardness of Minerals

    ERIC Educational Resources Information Center

    Bushby, Jessica

    2005-01-01

    The author discusses Moh's hardness scale, a comparative scale for minerals, whereby the softest mineral (talc) is placed at 1 and the hardest mineral (diamond) is placed at 10, with all other minerals ordered in between, according to their hardness. Development history of the scale is outlined, as well as a description of how the scale is used…

  15. Cyclic strength of hard metals

    SciTech Connect

    Sereda, N.N.; Gerikhanov, A.K.; Koval'chenko, M.S.; Pedanov, L.G.; Tsyban', V.A.

    1986-02-01

    The authors study the strength of hard-metal specimens and structural elements under conditions of cyclic loading since many elements of processing plants, equipment, and machines are made of hard metals. Fatigue tests were conducted on KTS-1N, KTSL-1, and KTNKh-70 materials, which are titanium carbide hard metals cemented with nickel-molybdenum, nickelcobalt-chromium, and nickel-chromium alloys, respectively. As a basis of comparison, the standard VK-15 (WC+15% Co) alloy was used. Some key physicomechanical characteristics of the materials investigated are presented. On time bases not exceeding 10/sup 6/ cycles, titanium carbide hard metals are comparable in fatigue resistance to the standard tungstencontaining hard metals.

  16. Enhanced Information Exclusion Relations

    PubMed Central

    Xiao, Yunlong; Jing, Naihuan; Li-Jost, Xianqing

    2016-01-01

    In Hall’s reformulation of the uncertainty principle, the entropic uncertainty relation occupies a core position and provides the first nontrivial bound for the information exclusion principle. Based upon recent developments on the uncertainty relation, we present new bounds for the information exclusion relation using majorization theory and combinatoric techniques, which reveal further characteristic properties of the overlap matrix between the measurements. PMID:27460975

  17. Quantifying recrystallization by electron backscatter diffraction.

    PubMed

    Jazaeri, H; Humphreys, F J

    2004-03-01

    The use of high-resolution electron backscatter diffraction in the scanning electron microscope to quantify the volume fraction of recrystallization and the recrystallization kinetics is discussed. Monitoring the changes of high-angle grain boundary (HAGB) content during annealing is shown to be a reliable method of determining the volume fraction of recrystallization during discontinuous recrystallization, where a large increase in the percentage of high-angle boundaries occurs during annealing. The results are shown to be consistent with the standard methods of studying recrystallization, such as quantitative metallography and hardness testing. Application of the method to a highly deformed material has shown that it can be used to identify the transition from discontinuous to continuous recrystallization during which there is no significant change in the percentage of HAGB during annealing. PMID:15009691

  18. Diffractive heavy quark production in AA collisions at the LHC at NLO

    SciTech Connect

    Machado, M. M.; Ducati, M. B. Gay; Machado, M. V. T.

    2011-07-15

    The single and double diffractive cross sections for heavy quarks production are evaluated at NLO accuracy for hadronic and heavy ion collisions at the LHC. Diffractive charm and bottom production is the main subject of this work, providing predictions for CaCa, PbPb and pPb collisions. The hard diffraction formalism is considered using the Ingelman-Schlein model where a recent parametrization for the Pomeron structure function (DPDF) is applied. Absorptive corrections are taken into account as well. The diffractive ratios are estimated and theoretical uncertainties are discussed. Comparison with competing production channels is also presented.

  19. MISTIC: Radiation hard ECRIS

    NASA Astrophysics Data System (ADS)

    Labrecque, F.; Lecesne, N.; Bricault, P.

    2008-10-01

    The ISAC RIB facility at TRIUMF utilizes up to 100 μA from the 500 MeV H- cyclotron to produce RIB using the isotopic separation on line (ISOL) method. In the moment, we are mainly using a hot surface ion source and a laser ion source to produce our RIB. A FEBIAD ion source has been recently tested at ISAC, but these ion sources are not suitable for gaseous elements like N, O, F, Ne, … , A new type of ion source is then necessary. By combining a high frequency electromagnetic wave and a magnetic confinement, the ECRIS [R. Geller, Electron Cyclotron Resonance Ion Source and ECR Plasmas, Institute of Physics Publishing, Bristol, 1996], [1] (electron cyclotron resonance ion source) can produce high energy electrons essential for efficient ionization of those elements. To this end, a prototype ECRIS called MISTIC (monocharged ion source for TRIUMF and ISAC complex) has been built at TRIUMF using a design similar to the one developed at GANIL [GANIL (Grand Accélérateur National d'Ions Lourds), www.ganil.fr], [2] The high level radiation caused by the proximity to the target prevented us to use a conventional ECRIS. To achieve a radiation hard ion source, we used coils instead of permanent magnets to produce the magnetic confinement. Each coil is supplied by 1000 A-15 V power supply. The RF generator cover a frequency range from 2 to 8 GHz giving us all the versatility we need to characterize the ionization of the following elements: He, Ne, Ar, Kr, Xe, C, O, N, F. Isotopes of these elements are involved in star thermonuclear cycles and, consequently, very important for researches in nuclear astrophysics. Measures of efficiency, emittance and ionization time will be performed for each of those elements. Preliminary tests show that MISTIC is very stable over a large range of frequency, magnetic field and pressure.

  20. Diffraction-based optical correlator

    NASA Technical Reports Server (NTRS)

    Spremo, Stevan M. (Inventor); Fuhr, Peter L. (Inventor); Schipper, John F. (Inventor)

    2005-01-01

    Method and system for wavelength-based processing of a light beam. A light beam, produced at a chemical or physical reaction site and having at least first and second wavelengths, ?1 and ?2, is received and diffracted at a first diffraction grating to provide first and second diffracted beams, which are received and analyzed in terms of wavelength and/or time at two spaced apart light detectors. In a second embodiment, light from first and second sources is diffracted and compared in terms of wavelength and/or time to determine if the two beams arise from the same source. In a third embodiment, a light beam is split and diffracted and passed through first and second environments to study differential effects. In a fourth embodiment, diffracted light beam components, having first and second wavelengths, are received sequentially at a reaction site to determine whether a specified reaction is promoted, based on order of receipt of the beams. In a fifth embodiment, a cylindrically shaped diffraction grating (uniform or chirped) is rotated and translated to provide a sequence of diffracted beams with different wavelengths. In a sixth embodiment, incident light, representing one or more symbols, is successively diffracted from first and second diffraction gratings and is received at different light detectors, depending upon the wavelengths present in the incident light.

  1. Detonation diffraction in gases

    SciTech Connect

    Pintgen, F.; Shepherd, J.E.

    2009-03-15

    We have experimentally investigated detonation diffraction out of a round tube into an unconfined half-space. The focus of our study is examining how the extent of detonation cellular instability influences the quantitative and qualitative features of diffraction. Detailed quantitative and qualitative measurements were obtained through simultaneous schlieren imaging, multiple-exposure chemiluminescence imaging, and planar laser-induced fluorescence imaging of OH molecules. Two types of stoichiometric mixtures, highly diluted H{sub 2}-O{sub 2}-Ar and H{sub 2}-N{sub 2}O, were studied in the sub-critical, critical and super-critical regime. These mixture types represent extreme cases in the classification of cellular instability with highly diluted H{sub 2}-O{sub 2}-Ar mixtures having very regular instability structures and H{sub 2}-N{sub 2}O having very irregular instability structures. The most striking differences between the mixtures occur in the sub-critical and critical regimes, for which the detonation fails to transition into the unconfined half-space. For the H{sub 2}-O{sub 2}-Ar mixture, the velocity on the center line was found to decay significantly slower than for the H{sub 2}-N{sub 2}O mixture. In case of the H{sub 2}-O{sub 2}-Ar mixture, it was evident from simultaneous schlieren-fluorescence images that the reaction front was coupled to the lead shock front up to 2.3 tube diameters from the exit plane. For the H{sub 2}-N{sub 2}O mixture, the reaction front velocity decreased to 60% of the corresponding Chapman-Jouguet value at 1.1 tube diameters from the tube exit plane. A geometric acoustic model showed that the observed differences in failure patterns are not caused by the differences in thermodynamic properties of the two mixtures but is linked to the larger effective activation energy and critical decay time in the H{sub 2}-N{sub 2}O mixture as compared to the H{sub 2}-O{sub 2}-Ar mixture. The re-initiation events appear similar for the two

  2. Study of optical Laue diffraction

    SciTech Connect

    Chakravarthy, Giridhar E-mail: aloksharan@email.com; Allam, Srinivasa Rao E-mail: aloksharan@email.com; Satyanarayana, S. V. M. E-mail: aloksharan@email.com; Sharan, Alok E-mail: aloksharan@email.com

    2014-10-15

    We present the study of the optical diffraction pattern of one and two-dimensional gratings with defects, designed using desktop pc and printed on OHP sheet using laser printer. Gratings so prepared, using novel low cost technique provides good visual aid in teaching. Diffraction pattern of the monochromatic light (632.8nm) from the grating so designed is similar to that of x-ray diffraction pattern of crystal lattice with point defects in one and two-dimensions. Here both optical and x-ray diffractions are Fraunhofer. The information about the crystalline lattice structure and the defect size can be known.

  3. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, Antonio J.; Butler, Michael A.; Sinclair, Michael B.; Senturia, Stephen D.

    1998-01-01

    An electrically-programmable diffraction grating. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers).

  4. Recent CMS results on diffraction

    NASA Astrophysics Data System (ADS)

    Benoît, Roland

    2015-03-01

    Recent CMS results on diffraction are presented. These include the measurements of the soft diffractive cross sections, of the forward rapidity gap cross section, of the diffractive dijet cross section, the measurement of a large rapidity gap in W and Z boson events and the measurement of the pseudorapidity distribution of charged particles in a single diffractive enhanced sample. This last measurement is the first common result of the CMS and TOTEM collaborations. Some prospects of common CMS-TOTEM data taking are also discussed.

  5. Beta Backscatter Measures the Hardness of Rubber

    NASA Technical Reports Server (NTRS)

    Morrissey, E. T.; Roje, F. N.

    1986-01-01

    Nondestructive testing method determines hardness, on Shore scale, of room-temperature-vulcanizing silicone rubber. Measures backscattered beta particles; backscattered radiation count directly proportional to Shore hardness. Test set calibrated with specimen, Shore hardness known from mechanical durometer test. Specimen of unknown hardness tested, and radiation count recorded. Count compared with known sample to find Shore hardness of unknown.

  6. Advanced X-ray diffractive optics

    NASA Astrophysics Data System (ADS)

    Vila-Comamala, J.; Jefimovs, K.; Pilvi, T.; Ritala, M.; Sarkar, S. S.; Solak, H. H.; Guzenko, V. A.; Stampanoni, M.; Marone, F.; Raabe, J.; Tzvetkov, G.; Fink, R. H.; Grolimund, D.; Borca, C. N.; Kaulich, B.; David, C.

    2009-09-01

    X-ray microscopy greatly benefits from the advances in x-ray optics. At the Paul Scherrer Institut, developments in x-ray diffractive optics include the manufacture and optimization of Fresnel zone plates (FZPs) and diffractive optical elements for both soft and hard x-ray regimes. In particular, we demonstrate here a novel method for the production of ultra-high resolution FZPs. This technique is based on the deposition of a zone plate material (iridium) onto the sidewalls of a prepatterned template structure (silicon) by atomic layer deposition. This approach overcomes the limitations due to electron-beam writing of dense patterns in FZP fabrication and provides a clear route to push the resolution into sub-10 nm regime. A FZP fabricated by this method was used to resolve test structures with 12 nm lines and spaces at the scanning transmission x-ray microscope of the PolLux beamline of the Swiss Light Source at 1.2 keV photon energy.

  7. Structure/property behavior of a segmented poly(ester urethane) containing different hard segment contents

    SciTech Connect

    Orler, E. B.; Wrobleski, Debra A.; Campbell, M. S.

    2001-01-01

    A series of poly(ester urethanes) containing different hard segment contents were synthesized to provide information on the development of hard domain structure. In contrast to previous studies, this work focuses on segmented poly(ester urethanes) containing low hard segment contents. By incrementally increasing the hard segment content, we monitored the development of the hard domain structure using thermal analysis and x-ray diffraction. Rapid quenching of the samples from the melt shows that the hard and soft segments are miscible for all compositions at elevated temperatures. If the Tg of the mixed phase is greater than ambient temperature, the structure is trapped in a metastable mixed phase. Heating the materials above the Tg causes demixing and the Tg of the soft domain decreases. If the mixed phase Tg is below ambient conditions, the hard domains spontaneously phase separate. The alternating copolymer of poly(butylene adipate) (Mn = 1K) soft segment and methylene diisocyanate (MDI) (19% hard segment) shows high poly(butylene adipate) crystallinity. The addition of very small amounts of butanediol chain extender greatly inhibits soft segment crystallization. For hard segment compositions greater than 45%, hard domains crystallize.

  8. Computer Simulation of Diffraction Patterns.

    ERIC Educational Resources Information Center

    Dodd, N. A.

    1983-01-01

    Describes an Apple computer program (listing available from author) which simulates Fraunhofer and Fresnel diffraction using vector addition techniques (vector chaining) and allows user to experiment with different shaped multiple apertures. Graphics output include vector resultants, phase difference, diffraction patterns, and the Cornu spiral…

  9. Results on diffraction at CDF

    SciTech Connect

    Wyatt, A.

    2003-10-27

    In run I CDF made an extensive range of measurements studying diffractive processes. In run II these measurements can be extended using improved triggering, new detectors and larger data samples. In these proceedings run II measurements of single diffractive dijet production and double pomeron exchange production of dijets are presented.

  10. Self-standing quasi-mosaic crystals for focusing hard X-rays.

    PubMed

    Camattari, Riccardo; Guidi, Vincenzo; Bellucci, Valerio; Neri, Ilaria; Frontera, Filippo; Jentschel, Michael

    2013-05-01

    A quasi mosaic bent crystal for high-resolution diffraction of X and γ rays has been realized. A net curvature was imprinted to the crystal thanks to a series of superficial grooves to keep the curvature without external devices. The crystal highlights very high diffraction efficiency due to quasi mosaic curvature. Quasi mosaic crystals of this kind are proposed for the realization of a high-resolution focusing Laue lens for hard X-rays. PMID:23742535

  11. Hard-phase engineering in hard/soft nanocomposite magnets

    NASA Astrophysics Data System (ADS)

    Poudyal, Narayan; Rong, Chuanbing; Vuong Nguyen, Van; Liu, J. Ping

    2014-03-01

    Bulk SmCo/Fe(Co) based hard/soft nanocomposite magnets with different hard phases (1:5, 2:17, 2:7 and 1:3 types) were fabricated by high-energy ball-milling followed by a warm compaction process. Microstructural studies revealed a homogeneous distribution of bcc-Fe(Co) phase in the matrix of hard magnetic Sm-Co phase with grain size ⩽20 nm after severe plastic deformation and compaction. The small grain size leads to effective inter-phase exchange coupling as shown by the single-phase-like demagnetization behavior with enhanced remanence and energy product. Among the different hard phases investigated, it was found that the Sm2Co7-based nanocomposites can incorporate a higher soft phase content, and thus a larger reduction in rare-earth content compared with the 2:17, 1:5 and 1:3 phase-based nanocomposite with similar properties. (BH)max up to 17.6 MGOe was obtained for isotropic Sm2Co7/FeCo nanocomposite magnets with 40 wt% of the soft phase which is about 300% higher than the single-phase counterpart prepared under the same conditions. The results show that hard-phase engineering in nanocomposite magnets is an alternative approach to fabrication of high-strength nanocomposite magnets with reduced rare-earth content.

  12. Strong exchange coupling in conventional and inverse ferrimagnetic hard/soft and soft/hard core/shell heterostructured nanoparticles

    NASA Astrophysics Data System (ADS)

    Nogues, Josep

    2013-03-01

    Bi-magnetic core/shell nanoparticles are becoming increasingly appealing for diverse fields such as for permanent magnets, microawave absortion, biomedical applications, sensing applications, or future magnetic recording media. Ferrromagnetic (FM)/ antiferromagnetic (AFM) core/shell nanoparticles (or inverted AFM/FM) have been extensively studied. However, exchange coupled hard/soft, or inverse soft/hard, core/shell nanoparticles have been far less investigated. Interestingly, most bi-magnetic core/shell systems are derived by simple partial oxidation of the core, e.g., Co/CoO (FM/AFM) or FePt/Fe3O4 (hard/soft) and only few studies of heterostructured (where core and shell are formed by different magnetic ions) can be found in the literature. We have investigated conventional hard/soft and inverted soft/hard core/shell hetroestructured nanoparticles based on magnetically soft iron oxide (Fe3O4) and magnetically hard manganese oxide (Mn3O4) . The core/shell samples were synthesized by seeded growth using either Fe3O4 or Mn3O4 nanoparticles as seeds. Subsequently, thin layers of the complementary material were grown by thermal decomposition of the corresponding metallorganic precursors. The structure characterization (X-ray diffraction and electron diffraction) confirms the presence of cubic (Fe3O4) and tetragonal (Mn3O4) phases both at the bulk and local levels. In addition, high resolution transmission electron microscopy (HR-TEM) with electron energy loss spectroscopy (EELS) mapping confirms the core/shell structure of the nanopartciles. Magnetic characterization and element-selective hysteresis loops obtained by x-ray magnetic circular dichroism (XMCD) reveal a strong exchange coupling between the core and the shell which results in homogeneous loops with moderate coercivity. Moreover, the magnetic properties can be tuned by controlling the core diameter or shell thickness. However, the results depend only weakly on the hard/soft or inverse soft/hard morphology

  13. Probing the perturbative dynamics of exclusive meson pair production

    NASA Astrophysics Data System (ADS)

    Harland-Lang, L. A.; Khoze, V. A.; Ryskin, M. G.; Stirling, W. J.

    2013-10-01

    We present the results of a recent novel application of the 'hard exclusive' perturbative formalism to the process gg → MMbar at large angles, where M (Mbar) is a light meson (anti-meson). As well as discussing the important theoretical features of the relevant leading-order gg → qqbar (gg) qqbar (gg) 6-parton amplitudes, we also comment on their phenomenological implications. In particular, we consider the central exclusive production of meson pairs at comparatively large transverse momentum k⊥, which is expected to proceed via this mechanism. We show that this leads to various non-trivial predictions for a range of exclusive processes, and that the cross sections for the η‧ and η mesons display significant sensitivity to any valence gg component of the meson wavefunctions.

  14. Inference by Exclusion in Goffin Cockatoos (Cacatua goffini)

    PubMed Central

    O’Hara, Mark; Auersperg, Alice M. I.; Bugnyar, Thomas; Huber, Ludwig

    2015-01-01

    Inference by exclusion, the ability to base choices on the systematic exclusion of alternatives, has been studied in many nonhuman species over the past decade. However, the majority of methodologies employed so far are hard to integrate into a comparative framework as they rarely use controls for the effect of neophilia. Here, we present an improved approach that takes neophilia into account, using an abstract two-choice task on a touch screen, which is equally feasible for a large variety of species. To test this approach we chose Goffin cockatoos (Cacatua goffini), a highly explorative Indonesian parrot species, which have recently been reported to have sophisticated cognitive skills in the technical domain. Our results indicate that Goffin cockatoos are able to solve such abstract two-choice tasks employing inference by exclusion but also highlight the importance of other response strategies. PMID:26244692

  15. Monodisperse hard rods in external potentials

    NASA Astrophysics Data System (ADS)

    Bakhti, Benaoumeur; Karbach, Michael; Maass, Philipp; Müller, Gerhard

    2015-10-01

    We consider linear arrays of cells of volume Vc populated by monodisperse rods of size σ Vc,σ =1 ,2 ,... , subject to hardcore exclusion interaction. Each rod experiences a position-dependent external potential. In one application we also examine effects of contact forces between rods. We employ two distinct methods of exact analysis with complementary strengths and different limits of spatial resolution to calculate profiles of pressure and density on mesoscopic and microscopic length scales at thermal equilibrium. One method uses density functionals and the other statistically interacting vacancy particles. The applications worked out include gravity, power-law traps, and hard walls. We identify oscillations in the profiles on a microscopic length scale and show how they are systematically averaged out on a well-defined mesoscopic length scale to establish full consistency between the two approaches. The continuum limit, realized as Vc→0 ,σ →∞ at nonzero and finite σ Vc , connects our highest-resolution results with known exact results for monodisperse rods in a continuum. We also compare the pressure profiles obtained from density functionals with the average microscopic pressure profiles derived from the pair distribution function.

  16. Keyhole electron diffractive imaging (KEDI).

    PubMed

    De Caro, Liberato; Carlino, Elvio; Vittoria, Fabio Alessio; Siliqi, Dritan; Giannini, Cinzia

    2012-11-01

    Electron diffractive imaging (EDI) relies on combining information from the high-resolution transmission electron microscopy image of an isolated kinematically diffracting nano-particle with the corresponding nano-electron diffraction pattern. Phase-retrieval algorithms allow one to derive the phase, lost in the acquisition of the diffraction pattern, to visualize the actual atomic projected potential within the specimen at sub-ångström resolution, overcoming limitations due to the electron lens aberrations. Here the approach is generalized to study extended crystalline specimens. The new technique has been called keyhole electron diffractive imaging (KEDI) because it aims to investigate nano-regions of extended specimens at sub-ångström resolution by properly confining the illuminated area. Some basic issues of retrieving phase information from the EDI/KEDI measured diffracted amplitudes are discussed. By using the generalized Shannon sampling theorem it is shown that whenever suitable oversampling conditions are satisfied, EDI/KEDI diffraction patterns can contain enough information to lead to reliable phase retrieval of the unknown specimen electrostatic potential. Hence, the KEDI method has been demonstrated by simulations and experiments performed on an Si crystal cross section in the [112] zone-axis orientation, achieving a resolution of 71 pm. PMID:23075611

  17. Electromagnetic diffraction efficiencies for plane reflection diffraction gratings

    NASA Technical Reports Server (NTRS)

    Marathay, A. S.; Shrode, T. E.

    1973-01-01

    Results are presented of research activities on holographic grating research. A large portion of this work was performed using rigorous vector diffraction theory, therefore, the necessary theory has been included in this report. The diffraction efficiency studies were continued using programs based on a rigorous theory. The simultaneous occurrence of high diffraction efficiencies and the phenomenon of double Wood's anomalies is demonstrated along with a graphic method for determining the necessary grating parameters. Also, an analytical solution for a grating profile that is perfectly blazed is obtained. The performance of the perfectly blazed grating profile is shown to be significantly better than grating profiles previously studied. Finally, a proposed method is described for the analysis of coarse echelle gratings using rigorous vector diffraction that is currently being developed.

  18. Inclusive and Exclusive |Vub|

    SciTech Connect

    Petrella, Antonio; /Ferrara U. /INFN, Ferrara

    2011-11-17

    The current status of the determinations of CKM matrix element |V{sub ub}| via exclusive and inclusive charmless semileptonic B decays is reviewed. The large datasets collected at the B-Factories, and the increased precision of theoretical calculations have allowed an improvement in the determination of |V{sub ub}|. However, there are still significant uncertainties. In the exclusive approach, the most precise measurement of the pion channel branching ratio is obtained by an untagged analysis. This very good precision can be reached by tagged analyses with more data. The problem with exclusive decays is that the strong hadron dynamics can not be calculated from first principles and the determination of the form factor has to rely on light-cone sum rules or lattice QCD calculations. The current data samples allow a comparison of different FF models with data distributions. With further developments on lattice calculations, the theoretical error should shrink to reach the experimental one. The inclusive approach still provides the most precise |V{sub ub}| determinations. With new theoretical calculations, the mild (2.5{sigma}) discrepancy with respect to the |V{sub ub}| value determined from the global UT fit has been reduced. As in the exclusive approach, theoretical uncertainties represent the limiting factor to the precision of the measurement. Reducing the theoretical uncertainties to a level comparable with the statistical error is challenging. New measurements in semileptonic decays of charm mesons could increase the confidence in theoretical calculations and related uncertainties.

  19. Mutually Exclusive, Complementary, or . . .

    ERIC Educational Resources Information Center

    Schloemer, Cathy G.

    2016-01-01

    Whether students are beginning their study of probability or are well into it, distinctions between complementary sets and mutually exclusive sets can be confusing. Cathy Schloemer writes in this article that for years she used typical classroom examples but was not happy with the student engagement or the level of understanding they produced.…

  20. Leading twist nuclear shadowing phenomena in hard processes with nuclei

    DOE PAGESBeta

    L. Franfurt; Guzey, V.; Strikman, M.

    2012-01-08

    We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We alsomore » analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.« less

  1. Leading twist nuclear shadowing phenomena in hard processes with nuclei

    SciTech Connect

    L. Franfurt; Guzey, V.; Strikman, M.

    2012-01-08

    We present and discuss the theory and phenomenology of the leading twist theory of nuclear shadowing which is based on the combination of the generalization of Gribov-Glauber theory, QCD factorization theorems, and HERA QCD analysis of diffraction in lepton-proton deep inelastic scattering (DIS). We apply this technique for the analysis of a wide range of hard processes with nuclei-inclusive DIS on deuterons, medium-range and heavy nuclei, coherent and incoherent diffractive DIS with nuclei, and hard diffraction in proton-nucleus scattering - and make predictions for the effect of nuclear shadowing in the corresponding sea quark and gluon parton distributions. We also analyze the role of the leading twist nuclear shadowing in generalized parton distributions in nuclei and certain characteristics of final states in nuclear DIS. We discuss the limits of applicability of the leading twist approximation for small x scattering off nuclei and the onset of the black disk regime and methods of detecting it. It will be possible to check many of our predictions in the near future in the studies of the ultraperipheral collisions at the Large Hadron Collider (LHC). Further checks will be possible in pA collisions at the LHC and forward hadron production at Relativistic Heavy Ion Collider (RHIC). As a result, detailed tests will be possible at an Electon-Ion Collider (EIC) in USA and at the Large Hadron-Electron Collider (LHeC) at CERN.

  2. Effect of homogenization process on the hardness of Zn-Al-Cu alloys

    NASA Astrophysics Data System (ADS)

    Villegas-Cardenas, Jose D.; Saucedo-Muñoz, Maribel L.; Lopez-Hirata, Victor M.; De Ita-De la Torre, Antonio; Avila-Davila, Erika O.; Gonzalez-Velazquez, Jorge Luis

    2015-10-01

    The effect of a homogenizing treatment on the hardness of as-cast Zn-Al-Cu alloys was investigated. Eight alloy compositions were prepared and homogenized at 350 °C for 180 h, and their Rockwell "B" hardness was subsequently measured. All the specimens were analyzed by X-ray diffraction and metallographically prepared for observation by optical microscopy and scanning electron microscopy. The results of the present work indicated that the hardness of both alloys (as-cast and homogenized) increased with increasing Al and Cu contents; this increased hardness is likely related to the presence of the θ and τ' phases. A regression equation was obtained to determine the hardness of the homogenized alloys as a function of their chemical composition and processing parameters, such as homogenization time and temperature, used in their preparation.

  3. Diffraction dissociation at the LHC

    SciTech Connect

    Jenkovszky, Laszlo; Orava, Risto; Salii, Andrii

    2013-04-15

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  4. Diffraction dissociation at the LHC

    NASA Astrophysics Data System (ADS)

    Jenkovszky, László; Orava, Risto; Salii, Andrii

    2013-04-01

    We report on recent calculations of low missing mass single (SD) and double (DD) diffractive dissociation at LHC energies. The calculations are based on a dual-Regge model, dominated by a single Pomeron exchange. The diffractively excited states lie on the nucleon trajectory N*, appended by the isolated Roper resonance. Detailed predictions for the squared momentum transfer and missing mass dependence of the differential and integrated single-and double diffraction dissociation in the kinematical range of present and future LHC measurements are given.

  5. Diffraction techniques in engineering applications

    SciTech Connect

    Kozarczek, K.J.; Hubbard, C.R.; Watkins, T.R.; Wang, X.L.; Spooner, S.

    1995-12-31

    Diffraction techniques applied to crystalline materials provide quantitative information about the crystallographic structure and mechanical condition of the material. Those two characteristics influence the chemical, physical, and mechanical properties of a Component. A concerted application of x-ray and neutron diffraction allows one to comprehensively study the bulk and subsurface variations of such material characteristics as crystallographic texture, residual stress, and cold work. The Residual Stress User Center at the Oak Ridge National Laboratory offers academic and industrial researchers both neutron and x-ray diffraction capabilities. Recent examples of the application of work related to thin film, metal, ceramic and composite material technologies are presented.

  6. Hard Facts and Soft Skills

    ERIC Educational Resources Information Center

    Terego, Alex

    2009-01-01

    The argument now raging in academic circles pits those who espouse teaching 21st century skills against those who believe that schools should be teaching explicit and well-sequenced content. This debate has largely been framed as an either-or proposition. In this author's view, portraying this debate as one between two mutually exclusive sides…

  7. Femtosecond single-electron diffraction

    PubMed Central

    Lahme, S.; Kealhofer, C.; Krausz, F.; Baum, P.

    2014-01-01

    Ultrafast electron diffraction allows the tracking of atomic motion in real time, but space charge effects within dense electron packets are a problem for temporal resolution. Here, we report on time-resolved pump-probe diffraction using femtosecond single-electron pulses that are free from intra-pulse Coulomb interactions over the entire trajectory from the source to the detector. Sufficient average electron current is achieved at repetition rates of hundreds of kHz. Thermal load on the sample is avoided by minimizing the pump-probe area and by maximizing heat diffusion. Time-resolved diffraction from fibrous graphite polycrystals reveals coherent acoustic phonons in a nanometer-thick grain ensemble with a signal-to-noise level comparable to conventional multi-electron experiments. These results demonstrate the feasibility of pump-probe diffraction in the single-electron regime, where simulations indicate compressibility of the pulses down to few-femtosecond and attosecond duration. PMID:26798778

  8. X-Ray Diffraction Apparatus

    NASA Technical Reports Server (NTRS)

    Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)

    1996-01-01

    An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.

  9. Diffraction by random Ronchi gratings.

    PubMed

    Torcal-Milla, Francisco Jose; Sanchez-Brea, Luis Miguel

    2016-08-01

    In this work, we obtain analytical expressions for the near-and far-field diffraction of random Ronchi diffraction gratings where the slits of the grating are randomly displaced around their periodical positions. We theoretically show that the effect of randomness in the position of the slits of the grating produces a decrease of the contrast and even disappearance of the self-images for high randomness level at the near field. On the other hand, it cancels high-order harmonics in far field, resulting in only a few central diffraction orders. Numerical simulations by means of the Rayleigh-Sommerfeld diffraction formula are performed in order to corroborate the analytical results. These results are of interest for industrial and technological applications where manufacture errors need to be considered. PMID:27505363

  10. Electrically-programmable diffraction grating

    DOEpatents

    Ricco, A.J.; Butler, M.A.; Sinclair, M.B.; Senturia, S.D.

    1998-05-26

    An electrically-programmable diffraction grating is disclosed. The programmable grating includes a substrate having a plurality of electrodes formed thereon and a moveable grating element above each of the electrodes. The grating elements are electrostatically programmable to form a diffraction grating for diffracting an incident beam of light as it is reflected from the upper surfaces of the grating elements. The programmable diffraction grating, formed by a micromachining process, has applications for optical information processing (e.g. optical correlators and computers), for multiplexing and demultiplexing a plurality of light beams of different wavelengths (e.g. for optical fiber communications), and for forming spectrometers (e.g. correlation and scanning spectrometers). 14 figs.

  11. Hard Work and Hard Data: Getting Our Message Out.

    ERIC Educational Resources Information Center

    Glau, Gregory R.

    Unless questions about student performance and student retention can be answered and unless educators are proactive in finding and publicizing such information, basic writing programs cannot determine if what they are doing is working. Hard data, especially from underrepresented groups, is needed to support these programs. At Arizona State…

  12. Future hard disk drive systems

    NASA Astrophysics Data System (ADS)

    Wood, Roger

    2009-03-01

    This paper briefly reviews the evolution of today's hard disk drive with the additional intention of orienting the reader to the overall mechanical and electrical architecture. The modern hard disk drive is a miracle of storage capacity and function together with remarkable economy of design. This paper presents a personal view of future customer requirements and the anticipated design evolution of the components. There are critical decisions and great challenges ahead for the key technologies of heads, media, head-disk interface, mechanics, and electronics.

  13. Magnetic levitation for hard superconductors

    SciTech Connect

    Kordyuk, A.A.

    1998-01-01

    An approach for calculating the interaction between a hard superconductor and a permanent magnet in the field-cooled case is proposed. The exact solutions were obtained for the point magnetic dipole over a flat ideally hard superconductor. We have shown that such an approach is adaptable to a wide practical range of melt-textured high-temperature superconductors{close_quote} systems with magnetic levitation. In this case, the energy losses can be calculated from the alternating magnetic field distribution on the superconducting sample surface. {copyright} {ital 1998 American Institute of Physics.}

  14. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  15. Diffractive dijet production in CDF

    SciTech Connect

    Albrow, M.G.; CDF Collaboration

    1998-04-17

    We have studied events with a high-x{sub F} antiproton and two central jets in CDF, with p{anti p} collisions at {radical}s = 630 and 1800 GeV. These events are expected to be dominated by diffraction (pomeron exchange). The jet E{sub T} spectra are very similar to those of non-diffractively produced jets but slightly steeper; their azimuthal difference {Delta}{phi} is more peaked at 180{degree}.

  16. An EUV beamsplitter based on conical grazing incidence diffraction.

    PubMed

    Braig, C; Fritzsch, L; Käsebier, T; Kley, E-B; Laubis, C; Liu, Y; Scholze, F; Tünnermann, A

    2012-01-16

    We present an innovative grating design based on conical diffraction which acts as an almost perfect and low-loss beamsplitter for extreme ultraviolet radiation. The scheme is based on a binary profile operated in grazing incidence along the grating bars under total external reflection. It is shown that periods of a few 10(2) nm may permit an exclusive (±1)(st) order diffraction with efficiencies up to ~ 35% in each of them, whereas higher evanescent orders vanish. In contrast, destructive interference eliminates the 0(th) order. For a sample made of SiO(2) on silicon, measured data and simulated results from rigorous coupled wave analysis procedures are given. PMID:22274527

  17. 37 CFR 404.7 - Exclusive, co-exclusive and partially exclusive licenses.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 37 Patents, Trademarks, and Copyrights 1 2013-07-01 2013-07-01 false Exclusive, co-exclusive and partially exclusive licenses. 404.7 Section 404.7 Patents, Trademarks, and Copyrights NATIONAL INSTITUTE OF... applicants, on reasonable terms, when necessary to fulfill health or safety needs. (iii) The license shall...

  18. Hardness of kamacite and shock histories of 119 meteorites.

    NASA Technical Reports Server (NTRS)

    Jain, A. V.; Gordon, R. B.; Lipschutz, M. E.

    1972-01-01

    Use of metallographic and X-ray diffraction techniques to study the shock histories of 119 iron and stony-iron meteorites, and measurement of the hardness of kamacite in these specimens and in artificially shocked-unannealed and annealed meteorite specimens. Shock increases kamacite hardness, but complications introduced by other physical and chemical properties of meteorites limit its utility as a shock indicator. About 50% of the meteorites studied show evidence for preterrestrial shock loading to pressures of greater than or equal to 130 kb, and 40% have not been shocked to such high pressures. The remaining meteorites have been heat-altered in such a way that their shock histories cannot be determined explicitly. These results, together with those obtained previously, indicate that the plurality, if not the majority, of all iron and stony-iron meteorites sampled by the earth were shocked to pressures of greater than or equal to 130 kb during preterrestrial collisions between asteroidal-sized objects.

  19. Probing the evolution and morphology of hard carbon spheres

    SciTech Connect

    Pol, Vilas G.; Wen, Jianguo; Lau, Kah Chun; Callear, Samantha; Bowron, Daniel T.; Lin, Chi-Kai; Deshmukh, Sanket A.; Sankaranarayanan, Subramanian; Curtiss, Larry A.; David, William; Miller, Dean J.; Thackeray, Michael M.

    2014-03-01

    Monodispersed hard carbon spheres can be synthesized quickly and reproducibly by autogenic reactions of hydrocarbon precursors, notably polyethylene (including plastic waste), at high temperature and pressure. The carbon microparticles formed by this reaction have a unique spherical architecture, with a dominant internal nanometer layered motif, and they exhibit diamond-like hardness and electrochemical properties similar to graphite. In the present study, in-situ monitoring by X-ray diffraction along with electron microscopy, Raman spectroscopy, neutron pair-distribution function analysis, and computational modeling has been used to elucidate the morphology and evolution of the carbon spheres that form from the autogenic reaction of polyethylene at high temperature and pressure. A mechanism is proposed on how polyethylene evolves from a linear chain-based material to a layered carbon motif. Heating the spheres to 2400-2800 °C under inert conditions increases their graphitic character, particularly at the surface, which enhances their electrochemical and tribological properties.

  20. A hard X-ray nanoprobe beamline for nanoscale microscopy

    PubMed Central

    Winarski, Robert P.; Holt, Martin V.; Rose, Volker; Fuesz, Peter; Carbaugh, Dean; Benson, Christa; Shu, Deming; Kline, David; Stephenson, G. Brian; McNulty, Ian; Maser, Jörg

    2012-01-01

    The Hard X-ray Nanoprobe Beamline (or Nanoprobe Beamline) is an X-ray microscopy facility incorporating diffraction, fluorescence and full-field imaging capabilities designed and operated by the Center for Nanoscale Materials and the Advanced Photon Source at Sector 26 of the Advanced Photon Source at Argonne National Laboratory. This facility was constructed to probe the nanoscale structure of biological, environmental and material sciences samples. The beamline provides intense focused X-rays to the Hard X-ray Nanoprobe (or Nanoprobe) which incorporates Fresnel zone plate optics and a precision laser sensing and control system. The beamline operates over X-ray energies from 3 to 30 keV, enabling studies of most elements in the periodic table, with a particular emphasis on imaging transition metals. PMID:23093770

  1. Social exclusion in finite populations

    NASA Astrophysics Data System (ADS)

    Li, Kun; Cong, Rui; Wu, Te; Wang, Long

    2015-04-01

    Social exclusion, keeping free riders from benefit sharing, plays an important role in sustaining cooperation in our world. Here we propose two different exclusion regimes, namely, peer exclusion and pool exclusion, to investigate the evolution of social exclusion in finite populations. In the peer exclusion regime, each excluder expels all the defectors independently, and thus bears the total cost on his own, while in the pool exclusion regime, excluders spontaneously form an institution to carry out rejection of the free riders, and each excluder shares the cost equally. In a public goods game containing only excluders and defectors, it is found that peer excluders outperform pool excluders if the exclusion costs are small, and the situation is converse once the exclusion costs exceed some critical points, which holds true for all the selection intensities and different update rules. Moreover, excluders can dominate the whole population under a suitable parameters range in the presence of second-order free riders (cooperators), showing that exclusion has prominent advantages over common costly punishment. More importantly, our finding indicates that the group exclusion mechanism helps the cooperative union to survive under unfavorable conditions. Our results may give some insights into better understanding the prevalence of such a strategy in the real world and its significance in sustaining cooperation.

  2. Social exclusion in finite populations.

    PubMed

    Li, Kun; Cong, Rui; Wu, Te; Wang, Long

    2015-04-01

    Social exclusion, keeping free riders from benefit sharing, plays an important role in sustaining cooperation in our world. Here we propose two different exclusion regimes, namely, peer exclusion and pool exclusion, to investigate the evolution of social exclusion in finite populations. In the peer exclusion regime, each excluder expels all the defectors independently, and thus bears the total cost on his own, while in the pool exclusion regime, excluders spontaneously form an institution to carry out rejection of the free riders, and each excluder shares the cost equally. In a public goods game containing only excluders and defectors, it is found that peer excluders outperform pool excluders if the exclusion costs are small, and the situation is converse once the exclusion costs exceed some critical points, which holds true for all the selection intensities and different update rules. Moreover, excluders can dominate the whole population under a suitable parameters range in the presence of second-order free riders (cooperators), showing that exclusion has prominent advantages over common costly punishment. More importantly, our finding indicates that the group exclusion mechanism helps the cooperative union to survive under unfavorable conditions. Our results may give some insights into better understanding the prevalence of such a strategy in the real world and its significance in sustaining cooperation. PMID:25974550

  3. Diffraction efficiency analysis for multi-level diffractive optical elements

    SciTech Connect

    Erteza, I.A.

    1995-11-01

    Passive optical components can be broken down into two main groups: Refractive elements and diffractive elements. With recent advances in manufacturing technologies, diffractive optical elements are becoming increasingly more prevalent in optical systems. It is therefore important to be able to understand and model the behavior of these elements. In this report, we present a thorough analysis of a completely general diffractive optical element (DOE). The main goal of the analysis is to understand the diffraction efficiency and power distribution of the various modes affected by the DOE. This is critical to understanding cross talk and power issues when these elements are used in actual systems. As mentioned, the model is based on a completely general scenario for a DOE. This allows the user to specify the details to model a wide variety of diffractive elements. The analysis is implemented straightforwardly in Mathematica. This report includes the development of the analysis, the Mathematica implementation of the model and several examples using the Mathematical analysis tool. It is intended that this tool be a building block for more specialized analyses.

  4. Diffractive hadroproduction of W{sup {+-}} and Z{sup 0} bosons at high energies

    SciTech Connect

    Ducati, M. B. Gay; Machado, M. M.; Machado, M. V. T.

    2008-10-13

    An analysis of W{sup {+-}} and Z{sup 0} hard diffractive hadroproduction at high energies is presented obtained using the simple assumption of Regge factorization and considering the recent diffractive parton density functions extracted by the H1 Collaboration at DESY-HERA. The corresponding multiple Pomeron exchange corrections to the single Pomeron one is considered by taking into account by a gap survival probability factor. It is shown that the ratio of diffractive to nondiffractive boson production is in good agreement with the Tevatron data. Estimations which are relevant for the incoming measurements at the LHC are discussed.

  5. Diffractive hadroproduction of W{sup {+-}} and Z{sup 0} bosons at high energies

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2007-06-01

    Results from a phenomenological analysis of W and Z hard diffractive hadroproduction at high energies are reported. Using the Regge factorization approach, we consider the recent diffractive parton density functions extracted by the H1 Collaboration at DESY-HERA. In addition, we take into account multiple Pomeron exchange corrections considering a gap survival probability factor. It is found that the ratio of diffractive to nondiffractive boson production is in good agreement with the CDF and D0 data. We make predictions which could be compared to future measurements at the LHC.

  6. Effect of Heating Temperature on Particle Size Distribution in Hard and Soft Wheat Flour

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The particle sizes of soft and hard wheat (Triticum aestivum L.) flours at isothermal temperatures were determined by laser diffraction analyzer.  Flour sample were suspended in water at temperatures ranging from 30°C to 80°C, for 20 to 60 min.  All flour particles exhibited trimodal size distributi...

  7. Hard sphere packings within cylinders.

    PubMed

    Fu, Lin; Steinhardt, William; Zhao, Hao; Socolar, Joshua E S; Charbonneau, Patrick

    2016-02-23

    Arrangements of identical hard spheres confined to a cylinder with hard walls have been used to model experimental systems, such as fullerenes in nanotubes and colloidal wire assembly. Finding the densest configurations, called close packings, of hard spheres of diameter σ in a cylinder of diameter D is a purely geometric problem that grows increasingly complex as D/σ increases, and little is thus known about the regime for D > 2.873σ. In this work, we extend the identification of close packings up to D = 4.00σ by adapting Torquato-Jiao's adaptive-shrinking-cell formulation and sequential-linear-programming (SLP) technique. We identify 17 new structures, almost all of them chiral. Beyond D ≈ 2.85σ, most of the structures consist of an outer shell and an inner core that compete for being close packed. In some cases, the shell adopts its own maximum density configuration, and the stacking of core spheres within it is quasiperiodic. In other cases, an interplay between the two components is observed, which may result in simple periodic structures. In yet other cases, the very distinction between the core and shell vanishes, resulting in more exotic packing geometries, including some that are three-dimensional extensions of structures obtained from packing hard disks in a circle. PMID:26843132

  8. Metrics for Hard Goods Merchandising.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of students interested in hard goods merchandising, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know the occupational…

  9. FATIGUE OF BIOMATERIALS: HARD TISSUES

    PubMed Central

    Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.

    2009-01-01

    The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239

  10. Mineralization by Inhibitor Exclusion

    PubMed Central

    Price, Paul A.; Toroian, Damon; Lim, Joo Eun

    2009-01-01

    One of our goals is to understand the mechanisms that deposit mineral within collagen fibrils, and as a first step we recently determined the size exclusion characteristics of the fibril. This study revealed that apatite crystals up to 12 unit cells in size can access the water within the fibril, whereas molecules larger than a 40-kDa protein are excluded. Based on these observations, we proposed a novel mechanism for fibril mineralization: that macromolecular inhibitors of apatite growth favor fibril mineralization by selectively inhibiting crystal growth in the solution outside of the fibril. To test this mechanism, we developed a system in which crystal formation is driven by homogeneous nucleation at high calcium phosphate concentration and the only macromolecule in solution is fetuin, a 48-kDa inhibitor of apatite growth. Our experiments with this system demonstrated that fetuin determines the location of mineral growth; in the presence of fetuin mineral grows exclusively within the fibril, whereas in its absence mineral grows in solution outside the fibril. Additional experiments showed that fetuin is also able to localize calcification to the interior of synthetic matrices that have size exclusion characteristics similar to those of collagen and that it does so by selectively inhibiting mineral growth outside of these matrices. We termed this new calcification mechanism “mineralization by inhibitor exclusion,” the selective mineralization of a matrix using a macromolecular inhibitor of mineral growth that is excluded from that matrix. Future studies will be needed to evaluate the possible role of this mechanism in bone mineralization. PMID:19414589

  11. Deeply exclusive processes and generalized parton distributions

    SciTech Connect

    Marc Vanderhaegen

    2005-02-01

    We discuss how generalized parton distributions (GPDs) enter into hard exclusive processes, and focuses on the links between GPDs and elastic nucleon form factors. These links, in the form of sum rules, represent powerful constraints on parameterizations of GPDs. A Regge parameterization for the GPDs at small momentum transfer -t is extended to the large-t region and it is found to catch the basic features of proton and neutron electromagnetic form factor data. This parameterization allows to estimate the quark contribution to the nucleon spin. It is furthermore discussed how these GPDs at large-t enter into two-photon exchange processes and resolve the discrepancy between Rosenbluth and polarization experiments of elastic electron nucleon scattering.

  12. Coherent Bragg nanodiffraction at the hard X-ray Nanoprobe beamline

    PubMed Central

    Hruszkewycz, S. O.; Holt, M. V.; Maser, J.; Murray, C. E.; Highland, M. J.; Folkman, C. M.; Fuoss, P. H.

    2014-01-01

    Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques. PMID:24470418

  13. Diffraction described by virtual particle momentum exchange: the "diffraction force"

    NASA Astrophysics Data System (ADS)

    Mobley, Michael J.

    2011-09-01

    Particle diffraction can be described by an ensemble of particle paths determined through a Fourier analysis of a scattering lattice where the momentum exchange probabilities are defined at the location of scattering, not the point of detection. This description is compatible with optical wave theories and quantum particle models and provides deeper insights to the nature of quantum uncertainty. In this paper the Rayleigh-Sommerfeld and Fresnel-Kirchoff theories are analyzed for diffraction by a narrow slit and a straight edge to demonstrate the dependence of particle scattering on the distance of virtual particle exchange. The quantized momentum exchange is defined by the Heisenberg uncertainty principle and is consistent with the formalism of QED. This exchange of momentum manifests the "diffraction force" that appears to be a universal construct as it applies to neutral and charged particles. This analysis indicates virtual particles might form an exchange channel that bridges the space of momentum exchange.

  14. Hard processes in hadronic interactions

    SciTech Connect

    Satz, H. |; Wang, X.N.

    1995-07-01

    Quantum chromodynamics is today accepted as the fundamental theory of strong interactions, even though most hadronic collisions lead to final states for which quantitative QCD predictions are still lacking. It therefore seems worthwhile to take stock of where we stand today and to what extent the presently available data on hard processes in hadronic collisions can be accounted for in terms of QCD. This is one reason for this work. The second reason - and in fact its original trigger - is the search for the quark-gluon plasma in high energy nuclear collisions. The hard processes to be considered here are the production of prompt photons, Drell-Yan dileptons, open charm, quarkonium states, and hard jets. For each of these, we discuss the present theoretical understanding, compare the resulting predictions to available data, and then show what behaviour it leads to at RHIC and LHC energies. All of these processes have the structure mentioned above: they contain a hard partonic interaction, calculable perturbatively, but also the non-perturbative parton distribution within a hadron. These parton distributions, however, can be studied theoretically in terms of counting rule arguments, and they can be checked independently by measurements of the parton structure functions in deep inelastic lepton-hadron scattering. The present volume is the work of Hard Probe Collaboration, a group of theorists who are interested in the problem and were willing to dedicate a considerable amount of their time and work on it. The necessary preparation, planning and coordination of the project were carried out in two workshops of two weeks` duration each, in February 1994 at CERn in Geneva andin July 1994 at LBL in Berkeley.

  15. Secondary diffraction of diffracted Gaussian beam of laser radiation

    NASA Astrophysics Data System (ADS)

    Vasil'Ev, Yu. V.; Kozar', A. V.; Matyunin, A. V.

    2011-10-01

    The diffraction of a narrow Gaussian beam of laser radiation on mutually perpendicular edges of crossed, superimposed sharp wedge-shaped blades (safety razors) has been studied. The diffraction pattern observed on a flat screen behind the blades comprises a very bright central spot, which exhibits the structure of a "light network" with rectangular cells, and four groups of narrow bright bands that expand from the central spot toward the periphery and form a rectangular cross. The spatial frequency of light-field modulation on the screen can be controlled by varying the distance from the blades to screen.

  16. Electromagnetic diffraction efficiencies for plane reflection diffraction gratings

    NASA Technical Reports Server (NTRS)

    Marathay, A. S.; Shrode, T. E.

    1974-01-01

    The theory and computer programs, based on electromagnetic theory, for the analysis and design of echelle gratings were developed. The gratings are designed for instruments that operate in the ultraviolet portion of the spectrum. The theory was developed so that the resulting computer programs will be able to analyze deep (up to 30 wavelengths) gratings by including as many as 100 real or homogeneous diffraction orders. The program calculates the complex amplitude coefficient for each of the diffracted orders. A check on the numerical method used to solve the integral equations is provided by a conservation of energy calculation.

  17. Enthalpy versus Entropy: the Thermodynamic Origin of Hard Particle Ordering

    NASA Astrophysics Data System (ADS)

    Anthamatten, Mitchell; Chen, Shaw; Ou, Jane; Weinfeld, Jeffrey; Department of Chemical Engineering Team

    The topic of hard particle ordering transitions is important in the development of molecular to mesoscale materials with potential applications in biomedicine, catalysis, optoelectronics, and renewable energy. The first step toward deterministic materials design rests on understanding the thermodynamic nature of ordering transitions involving two phases in equilibrium. We apply classical thermodynamics to show that (i) first-order, hard particle ordering transitions are forbidden at constant volume; and that (ii) hard-particle ordering is driven by a loss in enthalpy through volume reduction that outweighs a concomitant entropy loss upon ordering. The traditional approach considers minimization of Helmholtz energy, at constant volume, whereas the current study exclusively focuses on equilibrium phase transitions and, therefore, targets minimization of Gibbs energy at constant pressure. The Gibbs energy platform offers physically intuitive interpretations consistent with existing computation and experiments. The prevalent idea of entropy-driven ordering at constant V is restricted to transitions from non-equilibrium initial states that have yet to be properly defined for quantification. Laboratory of Laser Energetics, DE-FC52-08NA28302.

  18. Cryogenic X-ray Diffraction Microscopy for Biological Samples

    SciTech Connect

    E Lima; L Wiegart; P Pernot; M Howells; J Timmins; F Zontone; A Madsen

    2011-12-31

    X-ray diffraction microscopy (XDM) is well suited for nondestructive, high-resolution biological imaging, especially for thick samples, with the high penetration power of x rays and without limitations imposed by a lens. We developed nonvacuum, cryogenic (cryo-) XDM with hard x rays at 8 keV and report the first frozen-hydrated imaging by XDM. By preserving samples in amorphous ice, the risk of artifacts associated with dehydration or chemical fixation is avoided, ensuring the imaging condition closest to their natural state. The reconstruction shows internal structures of intact D. radiodurans bacteria in their natural contrast.

  19. Recent forward physics and diffraction results from CMS

    NASA Astrophysics Data System (ADS)

    Veres, Gábor

    2016-07-01

    Recent CMS results on forward physics and diffraction are reviewed. The differential diffractive cross section is measured as a function of ξ = M2X/S in the region dominated by single dissociation (SD) and double dissociation (DD), where MX is the mass of one of the two final-state hadronic systems separated by the largest rapidity gap in the event. The total SD and DD cross sections are extracted. The observation of a hard color-singlet exchange process in events with a large rapidity gap between two leading jets (jet-gap-jet) is reported. The fraction of jet-gap-jet to all dijet events is measured as a function of the second leading jet transverse momentum and the size of the pseudorapidity gap. The measured fractions are compared with predictions as well as Tevatron data.

  20. Electron diffraction by plasmon waves

    NASA Astrophysics Data System (ADS)

    García de Abajo, F. J.; Barwick, B.; Carbone, F.

    2016-07-01

    An electron beam traversing a structured plasmonic field is shown to undergo diffraction with characteristic angular patterns of both elastic and inelastic outgoing electron components. In particular, a plasmonic grating (e.g., a standing wave formed by two counterpropagating plasmons in a thin film) produces diffraction orders of the same parity as the net number of exchanged plasmons. Large diffracted beam fractions are predicted to occur for realistic plasmon intensities in attainable geometries due to a combination of phase and amplitude changes locally imprinted on the passing electron wave. Our study opens vistas in the study of multiphoton exchanges between electron beams and evanescent optical fields with unexplored effects related to the transversal component of the electron wave function.

  1. Lensless reflective point diffraction interferometer.

    PubMed

    Zhu, Wenhua; Chen, Lei; Zheng, Donghui; Yang, Ying; Han, Zhigang; Li, Jinpeng

    2016-07-01

    A lensless reflective point diffraction interferometer (LRPDI) is proposed for dynamic wavefront measurement. The point diffraction interferometer is integrated on a small substrate with properly designed thin film, which is used for generating the interferogram with high carrier frequency at a CCD target. By lensless imaging, the complex amplitude at the CCD target can be propagated to the conjugated plane of the exit pupil of an incident wavefront, which not only avoids the edge diffraction in the interferogram, but also eliminates systematic error. The accuracy of LRPDI is demonstrated by simulation and experiment, and a precision better than 1/150 wavelength is achieved. The new design with lensless imaging processing is suitable for dynamic wavefront measurement. PMID:27409204

  2. Mutual exclusivity and exclusion: Converging evidence from two contrasting traditions

    PubMed Central

    Huntley, Kenneth R.; Ghezzi, Patrick M.

    1993-01-01

    Mutual exclusivity and exclusion are two terms used by cognitive psychologists and behavior analysts, respectively, to identify essentially the same phenomenon. While cognitive psychologists view mutual exclusivity in terms of a hypothesis that individuals use intuitively while acquiring language, behavior analysts regard exclusion as a derived stimulus relation that bears upon the acquisition and elaboration of verbal behavior. Each research tradition, though at odds with respect to accounting for the phenomenon, employs similar procedures to answer comparable questions. Insofar as both cognitive and behavioral psychologists are studying the same phenomenon, the ground work is established for collaboration between them. PMID:22477081

  3. Boundary diffraction wave integrals for diffraction modeling of external occulters.

    PubMed

    Cady, Eric

    2012-07-01

    An occulter is a large diffracting screen which may be flown in conjunction with a telescope to image extrasolar planets. The edge is shaped to minimize the diffracted light in a region beyond the occulter, and a telescope may be placed in this dark shadow to view an extrasolar system with the starlight removed. Errors in position, orientation, and shape of the occulter will diffract additional light into this region, and a challenge of modeling an occulter system is to accurately and quickly model these effects. We present a fast method for the calculation of electric fields following an occulter, based on the concept of the boundary diffraction wave: the 2D structure of the occulter is reduced to a 1D edge integral which directly incorporates the occulter shape, and which can be easily adjusted to include changes in occulter position and shape, as well as the effects of sources-such as exoplanets-which arrive off-axis to the occulter. The structure of a typical implementation of the algorithm is included. PMID:22772218

  4. Distributed etched diffraction grating demultiplexer

    NASA Astrophysics Data System (ADS)

    Jafari, Amir

    This doctoral thesis studies the concept of a distributed etched diffraction grating (DEDG) and presents a methodology to engineer the spectral response of the device. The design which incorporates a distributed Bragg reflector (DBR) at the facets of a conventional etched diffraction grating demultiplexer promises for a superior performance in multiple aspects. Where in a conventional etched diffraction grating, smooth vertical deep etched walls are required in order to realize a low insertion loss device; in the DEDG such requirement is significantly mitigated. Deep etched walls are replaced with shallowly etched diffraction grating facets followed by a DBR structure and as a result devices with significantly lower insertion loss are achievable. The feasibility of the application of DEDG as a wavelength demultiplexer was demonstrated through fabrication and characterization of a prototype device. The proof of concept device was fabricated using the state of the art deep UV optical lithography and reactive ion etching in a nano-photonic silicon-on-insulator (SOI) material platform. The fabricated device was then characterized in the lab. Furthermore, incorporation of the DBR structure at the facets of the conventional etched diffraction grating decouples the reflection and diffraction functionalities, rendering the DEDG suitable for spectral response engineering. According to the application, the output spectral response of the device can be tailored through careful design and optimization of the incorporated DBR. In this thesis, through numerical simulations we have shown that functionalities such as polarization independent performance and at top insertion loss envelop are viable. A methodology to engineer the spectral response of the DEDG is discussed in details.

  5. Detonation diffraction through different geometries

    NASA Astrophysics Data System (ADS)

    Sorin, Rémy; Zitoun, Ratiba; Khasainov, Boris; Desbordes, Daniel

    2009-04-01

    We performed the study of the diffraction of a self-sustained detonation from a cylindrical tube (of inner diameter d) through different geometric configurations in order to characterise the transmission processes and to quantify the transmission criteria to the reception chamber. For the diffraction from a tube to the open space the transmission criteria is expressed by d c = k c · λ (with λ the detonation cell size and k c depending on the mixture and on the operture configuration, classically 13 for alkane mixtures with oxygen). The studied geometries are: (a) a sharp increase of diameter ( D/ d > 1) with and without a central obstacle in the diffracting section, (b) a conical divergent with a central obstacle in the diffracting section and (c) an inversed intermediate one end closed tube insuring a double reflection before a final diffraction between the initiator tube and the reception chamber. The results for case A show that the reinitiation process depends on the ratio d/ λ. For ratios below k c the re-ignition takes place at the receptor tube wall and at a fixed distance from the step, i.e. closely after the diffracted shock reflection shows a Mach stem configuration. For ratios below a limit ratio k lim (which depends on D/ d) the re-ignition distance increases with the decrease of d/λ. For both case A and B the introduction of a central obstacle (of blockage ratio BR = 0.5) at the exit of the initiator tube decreases the critical transmission ratio k c by 50%. The results in configuration C show that the re-ignition process depends both on d/ λ and the geometric conditions. Optimal configuration is found that provides the transmission through the two successive reflections (from d = 26 mm to D ch = 200 mm) at as small d/ λ as 2.2 whatever the intermediate diameter D is. This configuration provides a significant improvement in the detonation transmission conditions.

  6. Edge diffracted caustic fields. [spacecraft antenna radiation patterns

    NASA Technical Reports Server (NTRS)

    Burnside, W. D.; Peters, L., Jr.

    1974-01-01

    The fields near a caustic created by an edge diffraction process are computed using the equivalent current concept. These fields are shown to have the property commonly associated with ray optical analysis or the Geometrical Theory of Diffraction (GTD), e.g., a 90 deg phase shift as the ray passes through the caustic. The present effort is directed toward consideration of the caustic created by an edge diffraction process. Particular attention is focused on electromagnetic excitation. The acoustic excitation for the hard boundary condition is outlined in an appendix. In addition, goal is to establish the extent of the caustic region. This is of particular importance when a ray optical solution involves multiply-diffracted terms in that the minimum size of the body that can be analyzed may be restricted by the extent of the caustic, i.e., the 90 deg phase shift used in ray optical analysis may be introduced only if the caustic is contained on the surface being studied.

  7. High-pressure neutron diffraction

    SciTech Connect

    Xu, Hongwu

    2011-01-10

    This lecture will cover progress and prospect of applications of high-pressure neutron diffraction techniques to Earth and materials sciences. I will first introduce general high-pressure research topics and available in-situ high-pressure techniques. Then I'll talk about high-pressure neutron diffraction techniques using two types of pressure cells: fluid-driven and anvil-type cells. Lastly, I will give several case studies using these techniques, particularly, those on hydrogen-bearing materials and magnetic transitions.

  8. Neutron diffraction on pulsed sources

    NASA Astrophysics Data System (ADS)

    Aksenov, V. L.; Balagurov, A. M.

    2016-03-01

    The current capabilities of and major scientific problems solved by time-of-flight neutron diffraction are reviewed. The reasons for the rapid development of the method over the last two decades have been mainly the emergence of third-generation pulsed sources with a megawatt time-averaged power and advances in neutron optical devices and detector systems. The paper discusses some historical aspects of time-of-flight neutron diffraction and examines the contribution to this method from F L Shapiro, the centennial of whose birth was celebrated in 2015. The state of the art with respect to neutron sources for studies on extracted beams is reviewed in a special section.

  9. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, Richard J.

    1991-01-01

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection.

  10. Diffraction encoded position measuring apparatus

    DOEpatents

    Tansey, R.J.

    1991-09-24

    When a lightwave passes through a transmission grating, diffracted beams appear at the output or opposite side of the grating that are effectively Doppler shifted in frequency (phase) whereby a detector system can compare the phase of the zero order and higher order beams to obtain an indication of position. Multiple passes through the grating increase resolution for a given wavelength of a laser signal. The resolution can be improved further by using a smaller wavelength laser to generate the grating itself. Since the grating must only have a pitch sufficient to produce diffracted orders, inexpensive, ultraviolet wavelength lasers can be utilized and still obtain high resolution detection. 3 figures.

  11. Ellipsometry of diffractive insect reflectors

    NASA Astrophysics Data System (ADS)

    Brink, D. J.; Lee, M. E.

    1996-04-01

    Scales on the wings of certain insects, such as Trichoplusia orichalcea, exhibit a surface microstructure resembling a fine diffraction grating. Diffraction of incident light by this structure is responsible for many of the optical properties of the wings of this moth, such as the metallic yellow color and the almost-specular reflection and polarization properties of the scattered radiation. It is shown that by the use of null ellipsometry the polarization characteristics can be used to obtain the optical constants of the scale material. Theoretical considerations and suitable experimental conditions are discussed and evaluated.

  12. Subwavelength diffractive color beam combiner.

    PubMed

    Petrov, Nikolai I; Nikitin, Vladislav G; Danilov, Viktor A; Popov, Vladimir V; Usievich, Boris A

    2014-09-01

    A high-efficiency subwavelength diffractive beam combiner operating in a visible spectral range is designed, fabricated, and demonstrated. Such a device combines red, green, and blue color beams into one output light beam. Diffraction efficiencies of different types of gratings are calculated for various materials, incidence angles, and polarizations of light. It is shown that the plasmon resonance via a grating coupling occurs at the determined conditions. Subwavelength gratings with a period of 400 nm are fabricated and tested using laser and laser diode sources. PMID:25321371

  13. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  14. Weld cladding of hard surfaces

    NASA Astrophysics Data System (ADS)

    Habrekke, T.

    1993-02-01

    A literature study about clad welding of hard surfaces on steel is performed. The purpose was to see what kind of methods are mainly used, and particular attention is paid to clad welding of rolls. The main impression from this study is that several methods are in use. Some of these must be considered as 'too exotic' for the aim of the program, such as laser build-up welding. However, clad welding of hard surfaces to rolls is widely used around the world, and there is no need for particularly advanced welding methods to perform the work. The welding consumables and the way the welding is carried out is of more important character. The report will give some comments to this, and hopefully will give a short review of the current technology in this field.

  15. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, Morris S.; Schuster, George J.; Skorpik, James R.

    1997-01-01

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

  16. Hard Photodisintegration of 3He

    NASA Astrophysics Data System (ADS)

    Granados, Carlos

    2011-02-01

    Large angle photodisintegration of two nucleons from the 3He nucleus is studied within the framework of the hard rescattering model (HRM). In the HRM the incoming photon is absorbed by one nucleon's valence quark that then undergoes a hard rescattering reaction with a valence quark from the second nucleon producing two nucleons emerging at large transverse momentum . Parameter free cross sections for pp and pn break up channels are calculated through the input of experimental cross sections on pp and pn elastic scattering. The calculated cross section for pp breakup and its predicted energy dependency are in good agreement with recent experimental data. Predictions on spectator momentum distributions and helicity transfer are also presented.

  17. Molecular weight distribution of proteins in hard red spring wheat: Relationship to quality parameters and intra-sample uniformity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molecular weight distribution (MWD) of proteins extracted from hard spring wheat grain was analyzed by size exclusion HPLC to investigate associations with wheat and breadmaking quality characteristics. Certain protein fractions were found to be related to associations between wheat and breadmaking ...

  18. Schwannoma of the hard palate

    PubMed Central

    Sahoo, Pradyumna Kumar; Mandal, Palash Kumar; Ghosh, Saradindu

    2014-01-01

    Schwannomas are benign encapsulated perineural tumors. The head and neck region is the most common site. Intraoral origin is seen in only 1% of cases, tongue being the most common site; its location in the palate is rare. We report a case of hard-palate schwannoma with bony erosion which was immunohistochemically confirmed. The tumor was excised completely intraorally. After two months of follow-up, the defect was found to be completely covered with palatal mucosa. PMID:25298716

  19. Microwave assisted hard rock cutting

    DOEpatents

    Lindroth, David P.; Morrell, Roger J.; Blair, James R.

    1991-01-01

    An apparatus for the sequential fracturing and cutting of subsurface volume of hard rock (102) in the strata (101) of a mining environment (100) by subjecting the volume of rock to a beam (25) of microwave energy to fracture the subsurface volume of rock by differential expansion; and , then bringing the cutting edge (52) of a piece of conventional mining machinery (50) into contact with the fractured rock (102).

  20. Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities

    NASA Astrophysics Data System (ADS)

    Berkowitz, Max; Parr, Robert G.

    1988-02-01

    Hardness and softness kernels η(r,r') and s(r,r') are defined for the ground state of an atomic or molecular electronic system, and the previously defined local hardness and softness η(r) and s(r) and global hardness and softness η and S are obtained from them. The physical meaning of s(r), as a charge capacitance, is discussed (following Huheey and Politzer), and two alternative ``hardness'' indices are identified and briefly discussed.

  1. PLD of hard ceramic coatings

    NASA Astrophysics Data System (ADS)

    Perera, Yibran; Gottmann, Jens; Husmann, Andreas; Klotzbuecher, Thomas; Kreutz, Ernst-Wolfgang; Poprawe, Reinhart

    2001-06-01

    The deposition of different hard ceramics coatings as Al2O3, ZrO2, c-BN and DLC thin films by pulsed laser deposition (PLD) has been of increasing interest as alternative process compared to the latest progress in CVD and PVD deposition. For instance, in pulsed laser deposition, the properties of the resulting thin films are influenced by the composition, ionization state, density, kinetic and excitation energies of the particles of the vapor/plasma. In order to deposit hard ceramics with different properties and applications, various substrates as Pt/Ti/Si multilayer, glass (fused silica), steel, polymethylmethacrylate (PMMA), polycarbonate (PC), Si(100) and Si(111) are used. These thin films are deposited either by excimer laser radiation ((lambda) equals 248 nm) or by CO2 laser radiation ((lambda) equals 10.6 micrometers ). To characterize the structural, optical and mechanical properties of the hard ceramics thin films, different techniques as Raman spectroscopy, ellipsometry, FTIR spectroscopy and nanoindentation are used.

  2. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of Rv2827c from Mycobacterium tuberculosis

    SciTech Connect

    Janowski, Robert

    2006-08-01

    M. tuberculosis hypothetical protein Rv2827c was cloned, expressed, purified and crystallized. Preliminary X-ray diffraction data were collected to a resolution of 1.93 Å. The hypothetical protein Rv2827c from Mycobacterium tuberculosis was cloned and heterologously expressed in Escherichia coli. It was purified using affinity and size-exclusion chromatographic techniques and then crystallized. Preliminary X-ray diffraction data analysis suggests the presence of two translationally related molecules in the asymmetric unit of the orthorhombic crystals.

  3. Fresnel Diffraction for CTR Microbunching

    SciTech Connect

    Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B.; Andonian, G.

    2009-01-22

    Laser beams of high intensities are routinely used for IFEL experiments. Such beams can potentially destroy microbunching diagnostic tools such as coherent transition radiation foils due to their low damage thresholds. Near-field Fresnel diffraction scheme for termination of CO{sub 2} laser beam has been experimentally studied and is presented in this paper. Novel THz camera was utilized for such study.

  4. 10 CFR 781.52 - Exclusive and partially exclusive licenses.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Exclusive and partially exclusive licenses. 781.52 Section 781.52 Energy DEPARTMENT OF ENERGY DOE PATENT LICENSING REGULATIONS Types of Licenses and Conditions... to sublicense the licensed invention to any foreign government pursuant to any existing or...

  5. Digital diffractive optics: Have diffractive optics entered mainstream industry yet?

    NASA Astrophysics Data System (ADS)

    Kress, Bernard; Hejmadi, Vic

    2010-05-01

    When a new technology is integrated into industry commodity products and consumer electronic devices, and sold worldwide in retail stores, it is usually understood that this technology has then entered the realm of mainstream technology and therefore mainstream industry. Such a leap however does not come cheap, as it has a double edge sword effect: first it becomes democratized and thus massively developed by numerous companies for various applications, but also it becomes a commodity, and thus gets under tremendous pressure to cut down its production and integration costs while not sacrificing to performance. We will show, based on numerous examples extracted from recent industry history, that the field of Diffractive Optics is about to undergo such a major transformation. Such a move has many impacts on all facets of digital diffractive optics technology, from the optical design houses to the micro-optics foundries (for both mastering and volume replication), to the final product integrators or contract manufacturers. The main causes of such a transformation are, as they have been for many other technologies in industry, successive technological bubbles which have carried and lifted up diffractive optics technology within the last decades. These various technological bubbles have been triggered either by real industry needs or by virtual investment hype. Both of these causes will be discussed in the paper. The adjective ""digital"" in "digital diffractive optics" does not refer only, as it is done in digital electronics, to the digital functionality of the element (digital signal processing), but rather to the digital way they are designed (by a digital computer) and fabricated (as wafer level optics using digital masking techniques). However, we can still trace a very strong similarity between the emergence of micro-electronics from analog electronics half a century ago, and the emergence of digital optics from conventional optics today.

  6. Nanostructural Evolution of Hard Turning Layers in Carburized Steel

    NASA Astrophysics Data System (ADS)

    Bedekar, Vikram

    The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting

  7. The Hard Problem of Cooperation

    PubMed Central

    Eriksson, Kimmo; Strimling, Pontus

    2012-01-01

    Based on individual variation in cooperative inclinations, we define the “hard problem of cooperation” as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition) change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior. PMID:22792282

  8. The hard problem of cooperation.

    PubMed

    Eriksson, Kimmo; Strimling, Pontus

    2012-01-01

    Based on individual variation in cooperative inclinations, we define the "hard problem of cooperation" as that of achieving high levels of cooperation in a group of non-cooperative types. Can the hard problem be solved by institutions with monitoring and sanctions? In a laboratory experiment we find that the answer is affirmative if the institution is imposed on the group but negative if development of the institution is left to the group to vote on. In the experiment, participants were divided into groups of either cooperative types or non-cooperative types depending on their behavior in a public goods game. In these homogeneous groups they repeatedly played a public goods game regulated by an institution that incorporated several of the key properties identified by Ostrom: operational rules, monitoring, rewards, punishments, and (in one condition) change of rules. When change of rules was not possible and punishments were set to be high, groups of both types generally abided by operational rules demanding high contributions to the common good, and thereby achieved high levels of payoffs. Under less severe rules, both types of groups did worse but non-cooperative types did worst. Thus, non-cooperative groups profited the most from being governed by an institution demanding high contributions and employing high punishments. Nevertheless, in a condition where change of rules through voting was made possible, development of the institution in this direction was more often voted down in groups of non-cooperative types. We discuss the relevance of the hard problem and fit our results into a bigger picture of institutional and individual determinants of cooperative behavior. PMID:22792282

  9. Making Nozzles From Hard Materials

    NASA Technical Reports Server (NTRS)

    Wells, Dennis L.

    1989-01-01

    Proposed method of electrical-discharge machining (EDM) cuts hard materials like silicon carbide into smoothly contoured parts. Concept developed for fabrication of interior and exterior surfaces and internal cooling channels of convergent/divergent nozzles. EDM wire at skew angle theta creates hyperboloidal cavity in tube. Wire offset from axis of tube and from axis of rotation by distance equal to throat radius. Maintaining same skew angle as that used to cut hyperboloidal inner surface but using larger offset, cooling channel cut in material near inner hyperboloidal surface.

  10. Radiation Hardness Assurance (RHA) Guideline

    NASA Technical Reports Server (NTRS)

    Campola, Michael J.

    2016-01-01

    Radiation Hardness Assurance (RHA) consists of all activities undertaken to ensure that the electronics and materials of a space system perform to their design specifications after exposure to the mission space environment. The subset of interests for NEPP and the REAG, are EEE parts. It is important to register that all of these undertakings are in a feedback loop and require constant iteration and updating throughout the mission life. More detail can be found in the reference materials on applicable test data for usage on parts.