Science.gov

Sample records for exercise-induced fat loss

  1. Green Tea Catechin Consumption Enhances Exercise-Induced Abdominal Fat Loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: This study evaluated the influence of a green tea catechin beverage on body composition and fat distribution in overweight and obese adults during exercised-induced weight loss. Methods: Participants (N=132) were randomly assigned to receive a 500 mL beverage containing approximately 625 mg of...

  2. Increased Consumption of Dairy Foods and Protein during Diet- and Exercise-Induced Weight Loss Promotes Fat Mass Loss and Lean Mass Gain in Overweight and Obese Premenopausal Women1234

    PubMed Central

    Josse, Andrea R.; Atkinson, Stephanie A.; Tarnopolsky, Mark A.; Phillips, Stuart M.

    2011-01-01

    Weight loss can have substantial health benefits for overweight or obese persons; however, the ratio of fat:lean tissue loss may be more important. We aimed to determine how daily exercise (resistance and/or aerobic) and a hypoenergetic diet varying in protein and calcium content from dairy foods would affect the composition of weight lost in otherwise healthy, premenopausal, overweight, and obese women. Ninety participants were randomized to 3 groups (n = 30/group): high protein, high dairy (HPHD), adequate protein, medium dairy (APMD), and adequate protein, low dairy (APLD) differing in the quantity of total dietary protein and dairy food-source protein consumed: 30 and 15%, 15 and 7.5%, or 15 and <2% of energy, respectively. Body composition was measured by DXA at 0, 8, and 16 wk and MRI (n = 39) to assess visceral adipose tissue (VAT) volume at 0 and 16 wk. All groups lost body weight (P < 0.05) and fat (P < 0.01); however, fat loss during wk 8–16 was greater in the HPHD group than in the APMD and APLD groups (P < 0.05). The HPHD group gained lean tissue with a greater increase during 8–16 wk than the APMD group, which maintained lean mass and the APLD group, which lost lean mass (P < 0.05). The HPHD group also lost more VAT as assessed by MRI (P < 0.05) and trunk fat as assessed by DXA (P < 0.005) than the APLD group. The reduction in VAT in all groups was correlated with intakes of calcium (r = 0.40; P < 0.05) and protein (r = 0.32; P < 0.05). Therefore, diet- and exercise-induced weight loss with higher protein and increased dairy product intakes promotes more favorable body composition changes in women characterized by greater total and visceral fat loss and lean mass gain. PMID:21775530

  3. Resistance to exercise-induced weight loss: compensatory behavioral adaptations.

    PubMed

    Melanson, Edward L; Keadle, Sarah Kozey; Donnelly, Joseph E; Braun, Barry; King, Neil A

    2013-08-01

    In many interventions that are based on an exercise program intended to induce weight loss, the mean weight loss observed is modest and sometimes far less than what the individual expected. The individual responses are also widely variable, with some individuals losing a substantial amount of weight, others maintaining weight, and a few actually gaining weight. The media have focused on the subpopulation that loses little weight, contributing to a public perception that exercise has limited utility to cause weight loss. The purpose of the symposium was to present recent, novel data that help explain how compensatory behaviors contribute to a wide discrepancy in exercise-induced weight loss. The presentations provide evidence that some individuals adopt compensatory behaviors, that is, increased energy intake and/or reduced activity, that offset the exercise energy expenditure and limit weight loss. The challenge for both scientists and clinicians is to develop effective tools to identify which individuals are susceptible to such behaviors and to develop strategies to minimize their effect. PMID:23470300

  4. Resistance to exercise-induced weight loss: compensatory behavioral adaptations

    PubMed Central

    Melanson, Edward L.; Keadle, Sarah Kozey; Donnelly, Joseph E.; Braun, Barry; King, Neil A.

    2013-01-01

    In many interventions that are based on an exercise program intended to induce weight loss, the mean weight loss observed is modest and sometimes far less than the individual expected. The individual responses are also widely variable, with some individuals losing a substantial amount of weight, others maintaining weight, and a few actually gaining weight. The media have focused on the sub-population that loses little weight, contributing to a public perception that exercise has limited utility to cause weight loss. The purpose of the symposium was to present recent, novel data that help explain how compensatory behaviors contribute to a wide discrepancy in exercise-induced weight loss. The presentations provide evidence that some individuals adopt compensatory behaviors, i.e. increased energy intake and/or reduced activity, that offset the exercise energy expenditure and limit weight loss. The challenge for both scientists and clinicians is to develop effective tools to identify which individuals are susceptible to such behaviors, and to develop strategies to minimize their impact. PMID:23470300

  5. Impact-driven, pulmonary emboli of osseous fat in exercise-induced bronchospasm.

    PubMed

    Simkin, Peter A; Snitily, Brian K

    2015-11-01

    Exercise induced bronchospasm (EIB) affects approximately 10% of normal individuals with higher prevalence rates among children, obese adults, and competitive athletes. Although hyperpnea with dry air is the best known cause, the problem is multifactorial with atopy, asthma and chlorine all playing established roles. To date, no clear mechanism has connected musculoskeletal loading with the ensuing pulmonary compromise. This paper reviews evidence that impact-driven pulses in subchondral bone pressure may push osseous fat cells into the local venous sinusoids. The resultant showers of microemboli must then travel to the lung where lysis of membrane phospholipids leads to leukotriene formation with resultant inflammation and bronchial hypersensitivity. Concurrently, the same emboli deliver triglyceride fuels for further physical activity. Thus, pulmonary microemboli derived from osseous fat may resolve the seeming paradox of athletic excellence in persons afflicted with exercise-induced bronchospasm. PMID:26328480

  6. Effect of dry warm air on respiratory water loss in children with exercise-induced asthma.

    PubMed

    Tabka, Z; Ben Jebria, A; Vergeret, J; Guenard, H

    1988-07-01

    The variation in respiratory water loss (RWL) over time, expressed as the mass of water vapor lost per liter (body temperature and pressure, saturated) of ventilation (MH2O), was investigated in two groups: (1) children with exercise-induced asthma; and (2) healthy children. Children were matched for age and sex and went without medication for at least 12 hours before each experiment. The children breathed dry warm air (TI = 28.4 degrees C +/- 0.3 degree C) for 15 minutes while bicycling at constant and moderate work load (50 W). The MH2O was measured by collecting and weighing the expired water vapor (1) at rest breathing in warm conditions of inspired gas (control values), (2) every five minutes during exercise while breathing dry warm air, and (3) four minutes after the end of exercise. Pulmonary function tests were performed before and six minutes after exercise. The results were abnormal only in children with exercise-induced asthma. During exercise, RWL significantly fell (compared to control value) at the tenth and 15th minute in both groups. Whereas normal subjects recovered their initial values for MH2O four minutes after stopping exercise, asthmatic children still had a reduction in respiratory water loss. During exercise, MH2O decreased a little more in healthy than in asthmatic children. The decrease in MH2O in both groups suggests that the means to fully humidify expired gas are overwhelmed by thermal stress. The lack of increase in MH2O in asthmatic children on stopping exercise suggests that the airway mucosa is unable to produce enough water vapor and is thus dehydrated and probably hyperosmotic. PMID:3383660

  7. Exercise-Induced Weight Loss is More Effective than Dieting for Improving Adipokine Profile, Insulin Resistance, and Inflammation in Obese Men.

    PubMed

    Khoo, Joan; Dhamodaran, Subbiah; Chen, Dan-Dan; Yap, Siew-Yoon; Chen, Richard Yuan-Tud; Tian, Roger Ho-Heng

    2015-12-01

    The adipokines chemerin and adiponectin are reciprocally related in the pathogenesis of insulin resistance and inflammation in obesity. Weight loss increases adiponectin and reduces chemerin, insulin resistance, and inflammation, but the effects of caloric restriction and physical activity are difficult to separate in combined lifestyle modification. We compared effects of diet- or exercise-induced weight loss on chemerin, adiponectin, insulin resistance, and inflammation in obese men. Eighty abdominally obese Asian men (body mass index [BMI] ≥ 30 kg/m(2), waist circumference [WC] ≥ 90 cm, mean age 42.6 years) were randomized to reduce daily intake by ~500 kilocalories (n = 40) or perform moderate-intensity aerobic and resistance exercise (200-300 min/week) (n = 40) to increase energy expenditure by a similar amount for 24 weeks. The diet and exercise groups had similar decreases in energy deficit (-456 ± 338 vs. -455 ± 315 kcal/day), weight (-3.6 ± 3.4 vs. -3.3 ± 4.6 kg), and WC (-3.4 ± 4.4 vs. -3.6 ± 3.2 cm). The exercise group demonstrated greater reductions in fat mass (-3.9 ± 3.5 vs. -2.7 ± 5.3 kg), serum chemerin (-9.7 ± 11.1 vs. -4.3 ± 12.4 ng/ml), the inflammatory marker high-sensitivity C-reactive protein (-2.11 ± 3.13 vs. -1.49 ± 3.08 mg/L), and insulin resistance as measured by homeostatic model assessment (-2.45 ± 1.88 vs. -1.38 ± 3.77). Serum adiponectin increased only in the exercise group. Exercise-induced fat mass loss was more effective than dieting for improving adipokine profile, insulin resistance, and systemic inflammation in obese men, underscoring metabolic benefits of increased physical activity. PMID:26011919

  8. Loss of functional endothelial connexin40 results in exercise-induced hypertension in mice.

    PubMed

    Morton, Susan K; Chaston, Daniel J; Howitt, Lauren; Heisler, Jillian; Nicholson, Bruce J; Fairweather, Stephen; Bröer, Stefan; Ashton, Anthony W; Matthaei, Klaus I; Hill, Caryl E

    2015-03-01

    During activity, coordinated vasodilation of microcirculatory networks with upstream supply vessels increases blood flow to skeletal and cardiac muscles and reduces peripheral resistance. Endothelial dysfunction in humans attenuates activity-dependent vasodilation, resulting in exercise-induced hypertension in otherwise normotensive individuals. Underpinning activity-dependent hyperemia is an ascending vasodilation in which the endothelial gap junction protein, connexin (Cx)40, plays an essential role. Because exercise-induced hypertension is proposed as a forerunner to clinical hypertension, we hypothesized that endothelial disruption of Cx40 function in mice may create an animal model of this condition. To this end, we created mice in which a mutant Cx40T152A was expressed alongside wildtype Cx40 selectively in the endothelium. Expression of the Cx40T152A transgene in Xenopus oocytes and mouse coronary endothelial cells in vitro impaired both electric and chemical conductance and acted as a dominant-negative against wildtype Cx40, Cx43, and Cx45, but not Cx37. Endothelial expression of Cx40T152A in Cx40T152ATg mice attenuated ascending vasodilation, without effect on radial coupling through myoendothelial gap junctions. Using radiotelemetry, Cx40T152ATg mice showed an activity-dependent increase in blood pressure, which was significantly greater than in wildtype mice, but significantly less than in chronically hypertensive, Cx40knockout mice. The increase in heart rate with activity was also greater than in wildtype or Cx40knockout mice. We conclude that the endothelial Cx40T152A mutation attenuates activity-dependent vasodilation, producing a model of exercise-induced hypertension. These data highlight the importance of endothelial coupling through Cx40 in regulating blood pressure during activity. PMID:25547341

  9. Exercise-Induced Bronchoconstriction

    MedlinePlus

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  10. Post-exercise alcohol ingestion exacerbates eccentric-exercise induced losses in performance.

    PubMed

    Barnes, Matthew J; Mündel, Toby; Stannard, Stephen R

    2010-03-01

    The effect of acute alcohol intake on muscular performance in both the exercising and non-exercising legs in the days following strenuous eccentric exercise was investigated to ascertain whether an interaction between post-exercise alcohol use and muscle damage causes an increase in damage-related weakness. Ten healthy males performed 300 maximal eccentric contractions of the quadriceps muscles of one leg on an isokinetic dynamometer. They then consumed either a beverage containing 1 g of ethanol per kg bodyweight ethanol (as vodka and orange juice; ALC) or a non-alcoholic beverage (OJ). At least 2 weeks later they performed an equivalent bout of eccentric exercise on the contralateral leg after which they consumed the other beverage. Measurement of peak and average peak isokinetic (concentric and eccentric) and isometric torque produced by the quadriceps of both exercising and non-exercising legs was made before and 36 and 60 h post-exercise. Greatest decreases in exercising leg performance were observed at 36 h with losses of 28.7, 31.9 and 25.9% occurring for OJ average peak isometric, concentric, and eccentric torques, respectively. However, average peak torque loss was significantly greater in ALC with the same performance measures decreasing by 40.9, 42.8 and 44.8% (all p < 0.05). Performance of the non-exercising leg did not change significantly under either treatment. Therefore, consumption of moderate amounts of alcohol after damaging exercise magnifies the loss of force associated with strenuous eccentric exercise. This weakness appears to be due to an interaction between muscle damage and alcohol rather than the systemic effects of acute alcohol consumption. PMID:20012446

  11. Gene expression changes in adipose tissue with diet- and/or exercise-induced weight loss

    PubMed Central

    Campbell, Kristin L.; Foster-Schubert, Karen E.; Makar, Karen W.; Kratz, Mario; Hagman, Derek; Schur, Ellen A.; Habermann, Nina; Horton, Marc; Abbenhardt, Clare; Kuan, Ling-Yu; Xiao, Liren; Davison, Jerry; Morgan, Martin; Wang, Ching-Yun; Duggan, Catherine; McTiernan, Anne; Ulrich, Cornelia M.

    2013-01-01

    Adipose tissue plays a role in obesity-related cancers via increased production of inflammatory factors, steroid hormones, and altered adipokines. The impact of weight loss on adipose-tissue gene expression may provide insights into pathways linking obesity with cancer risk. We conducted an ancillary study within a randomized trial of diet, exercise, or combined diet+exercise vs. control among overweight/obese postmenopausal women. In 45 women, subcutaneous adipose-tissue biopsies were performed at baseline and after 6 months and changes in adipose-tissue gene expression were determined by microarray with an emphasis on pre-specified candidate pathways, as well as by unsupervised clustering of >37,000 transcripts (Illumina). Analyses were conducted first by randomization group, and then by degree of weight change at 6-months in all women combined. At 6 months, diet, exercise and diet+exercise participants lost a mean of 8.8 kg, 2.5 kg, and 7.9 kg (all p<0.05 vs. no change in controls). There was no significant change in candidate-gene expression by intervention group. In analysis by weight-change category, greater weight loss was associated a decrease in 17β-hydroxysteroid dehydrogenase-1 (HSD17B1, p-trend<0.01) and leptin (LEP, p-trend<0.01) expression, and marginally significant increased expression of estrogen receptor-1 (ESR1, p-trend=0.08) and insulin-like growth factor binding protein-3 (IGFBP3, p-trend=0.08). Unsupervised clustering revealed 83 transcripts with statistically significant changes. Multiple gene-expression changes correlated with changes in associated serum biomarkers. Weight-loss was associated with changes in adipose-tissue gene expression after 6 months, particularly in two pathways postulated to link obesity and cancer, i.e., steroid-hormone metabolism and IGF signaling. PMID:23341572

  12. Respiratory heat/water loss alone does not determine the severity of exercise-induced asthma.

    PubMed

    Noviski, N; Bar-Yishay, E; Gur, I; Godfrey, S

    1988-03-01

    Respiratory heat loss (RHL) or water loss (RWL) have been proposed as possible triggering factors in exercise and hyperventilation-induced asthma (EIA and HIA). It has recently been demonstrated that exercise intensity and climatic factors are both important in determining the severity of EIA. Eight young asthmatics performed both exercise and isocapnic hyperventilation (IHV) manoeuvres under identical climatic conditions, as part of our investigation of these interactive factors which determine the severity of the asthmatic response. It was found that, when challenged at low ventilatory levels, exercise produced a significantly attenuated asthmatic response compared to IHV. The fall in forced expired volume in 1 sec (delta FEV1) following exercise was 15 +/- 4% as compared with 27 +/- 3% after IHV (p less than 0.002). It is concluded that while the hypernoea in exercise may serve as a trigger, exercise per se introduces an additional factor which serves to limit the full response seen with IHV. This attenuated response is revealed at low ventilatory levels but is masked at high levels. PMID:3384078

  13. Dietary fat intake, supplements, and weight loss

    NASA Technical Reports Server (NTRS)

    Dyck, D. J.

    2000-01-01

    Although there remains controversy regarding the role of macronutrient balance in the etiology of obesity, the consumption of high-fat diets appears to be strongly implicated in its development. Evidence that fat oxidation does not adjust rapidly to acute increases in dietary fat, as well as a decreased capacity to oxidize fat in the postprandial state in the obese, suggest that diets high in fat may lead to the accumulation of fat stores. Novel data is also presented suggesting that in rodents, high-fat diets may lead to the development of leptin resistance in skeletal muscle and subsequent accumulations of muscle triacylglycerol. Nevertheless, several current fad diets recommend drastically reduced carbohydrate intake, with a concurrent increase in fat content. Such recommendations are based on the underlying assumption that by reducing circulating insulin levels, lipolysis and lipid oxidation will be enhanced and fat storage reduced. Numerous supplements are purported to increase fat oxidation (carnitine, conjugated linoleic acid), increase metabolic rate (ephedrine, pyruvate), or inhibit hepatic lipogenesis (hydroxycitrate). All of these compounds are currently marketed in supplemental form to increase weight loss, but few have actually been shown to be effective in scientific studies. To date, there is little or no evidence supporting that carnitine or hydroxycitrate supplementation are of any value for weight loss in humans. Supplements such as pyruvate have been shown to be effective at high dosages, but there is little mechanistic information to explain its purported effect or data to indicate its effectiveness at lower dosages. Conjugated linoleic acid has been shown to stimulate fat utilization and decrease body fat content in mice but has not been tested in humans. The effects of ephedrine, in conjunction with methylxanthines and aspirin, in humans appears unequivocal but includes various cardiovascular side effects. None of these compounds have been

  14. Ergogenic effect of dietary L-carnitine and fat supplementation against exercise induced physical fatigue in Wistar rats.

    PubMed

    Pandareesh, M D; Anand, T

    2013-12-01

    L-carnitine (LC) plays a central role in fatty acid metabolism and in skeletal muscle bioenergetics. LC supplementation is known to improve physical performance and has become widespread in recent years without any unequivocal support to this practice. A scientific-based knowledge is needed, to understand the implications of LC supplementation on physical fatigue. In current study, we have explored synergistic effects of dietary LC and fat content against physical fatigue in rats. Ninety male Wistar rats were supplemented with different concentrations of LC (0.15, 0.3, and 0.5 %) and fat content (5, 10, and 15 %) through diet in different combinations. Our results elucidated that LC (0.5 %) along with 10 and 15 % fat diet supplemented rats showed significant ergogenic effect. The swimming time until exhaustion was increased by ~2- and ~1.5-fold in rats fed with 10 and 15 % fat diet containing LC (0.5 %). LC supplementation improved the energy charge by increasing the levels of ATP, tissue glycogen, reduced GSH, plasma triglyceride, plasma glucose levels, and enzymatic antioxidant status, i.e., superoxide dismutase, catalase, and glutathione peroxidase. LC supplementation also significantly reduced lipid peroxidation, lactic acid, plasma urea nitrogen, creatinine, creatinekinase, and lactate dehydrogenase levels in various tissues compared to its respective control group. Thus the present study indicates that LC ameliorates the various impairments associated with physical endurance in rats. PMID:23661316

  15. Exercise-induced rhabdomyolysis and transient loss of deambulation as outset of partial carnitine palmityl transferase II deficiency.

    PubMed

    Rigante, Donato; Bersani, Giulia; Compagnone, Adele; Zampetti, Anna; De Nisco, Alessia; Sacco, Emanuela; Marrocco, Raffaella

    2011-06-01

    We report the case of a 13-year-old boy with an abrupt onset of leg pain and muscle weakness, incapability of deambulation and a laboratory picture of exercise-induced acute rhabdomyolysis. Intravenous hyperhydration and forced diuresis were adopted to avoid renal complications. No evidence of articular or residual muscular damage was appreciated in the short-term. The recurrence of rhabdomyolysis required a muscular biopsy showing a disturbance of fatty acid β-oxidation pathway. PMID:19855973

  16. Exercise-induced asthma

    MedlinePlus

    Wheezing - exercise-induced; Reactive airway disease - exercise ... Having asthma symptoms when you exercise does not mean you cannot or should not exercise. But be aware of your EIA triggers. Cold or dry air may ...

  17. Peripheral Fat Loss and Decline in Adipogenesis in Older Humans

    PubMed Central

    CASO, Giuseppe; MCNURLAN, Margaret A; MILEVA, Izolda; ZEMLYAK, Alla; MYNARCIK, Dennis C; GELATO, Marie C

    2012-01-01

    Objective Aging is associated with a redistribution of body fat including a relative loss of subcutaneous peripheral fat. These changes in body fat can have important clinical consequences since they are linked to increased risk of metabolic complications. The causes and mechanisms of loss of peripheral fat associated with aging are not clear. The aim of this study was to assess whether defects in adipogenesis contribute to fat loss in aging humans, as suggested from animal studies, and to evaluate the role of inflammation on pathogenesis of fat loss. Materials/Methods Preadipocytes isolated from subcutaneous peripheral fat of healthy young and elderly subjects were compared in their ability to replicate and differentiate. Results The results show that both the rate of replication and differentiation of preadipocytes are reduced in older subjects. The reduction in adipogenesis is accompanied by a higher plasma level of the inflammatory marker, soluble tumor necrosis factor receptor 2, and greater release of tumor necrosis factor α from fat tissue. Conclusions Thus, the gradual relative loss of peripheral fat in aging humans may in part result from a defect in adipogenesis, which may be linked to inflammation and increased release of proinflammatory cytokines from fat tissue. PMID:22999012

  18. Weight loss is not mandatory for exercise-induced effects on health indices in females with metabolic syndrome

    PubMed Central

    Farinha, JB; Dos Santos, DL; Bresciani, G; Bard, LF; de Mello, F; Stefanello, ST; Courtes, AA

    2015-01-01

    The aim of this study was to investigate the impact of moderate aerobic training on functional, anthropometric, biochemical, and health-related quality of life (HRQOL) parameters on women with metabolic syndrome (MS). Fifteen untrained women with MS performed moderate aerobic training for 15 weeks, without modifications of dietary behaviours. Functional, anthropometric, biochemical, control diet record and HRQOL parameters were assessed before and after the training. Despite body weight maintenance, the patients presented decreases in waist circumference (P = 0.001), number of MS components (P = 0.014), total cholesterol (P = 0.049), HDL cholesterol (P = 0.004), LDL cholesterol (P = 0.027), myeloperoxidase activity (P = 0.002) and thiobarbituric acid-reactive substances levels (P = 0.006). There were no differences in total energy, carbohydrate, protein and lipid intake pre- and post-training. Furthermore, improvements in the HRQOL subscales of physical functioning (P = 0.03), role-physical (P = 0.039), bodily pain (P = 0.048), general health (P = 0.046) and social functioning scoring (P = 0.011) were reported. Despite the absence of weight loss, aerobic training induced beneficial effects on functional, anthropometric, biochemical and HRQOL parameters in women with MS. PMID:26028810

  19. Weight loss is not mandatory for exercise-induced effects on health indices in females with metabolic syndrome.

    PubMed

    Farinha, J B; Dos Santos, D L; Bresciani, G; Bard, L F; de Mello, F; Stefanello, S T; Courtes, A A; Soares, Faa

    2015-06-01

    The aim of this study was to investigate the impact of moderate aerobic training on functional, anthropometric, biochemical, and health-related quality of life (HRQOL) parameters on women with metabolic syndrome (MS). Fifteen untrained women with MS performed moderate aerobic training for 15 weeks, without modifications of dietary behaviours. Functional, anthropometric, biochemical, control diet record and HRQOL parameters were assessed before and after the training. Despite body weight maintenance, the patients presented decreases in waist circumference (P = 0.001), number of MS components (P = 0.014), total cholesterol (P = 0.049), HDL cholesterol (P = 0.004), LDL cholesterol (P = 0.027), myeloperoxidase activity (P = 0.002) and thiobarbituric acid-reactive substances levels (P = 0.006). There were no differences in total energy, carbohydrate, protein and lipid intake pre- and post-training. Furthermore, improvements in the HRQOL subscales of physical functioning (P = 0.03), role-physical (P = 0.039), bodily pain (P = 0.048), general health (P = 0.046) and social functioning scoring (P = 0.011) were reported. Despite the absence of weight loss, aerobic training induced beneficial effects on functional, anthropometric, biochemical and HRQOL parameters in women with MS. PMID:26028810

  20. Dissociation between exercise-induced reduction in liver fat and changes in hepatic and peripheral glucose homoeostasis in obese patients with non-alcoholic fatty liver disease.

    PubMed

    Cuthbertson, Daniel J; Shojaee-Moradie, Fariba; Sprung, Victoria S; Jones, Helen; Pugh, Christopher J A; Richardson, Paul; Kemp, Graham J; Barrett, Mark; Jackson, Nicola C; Thomas, E Louise; Bell, Jimmy D; Umpleby, A Margot

    2016-01-01

    Non-alcoholic fatty liver disease (NAFLD) is associated with multi-organ (hepatic, skeletal muscle, adipose tissue) insulin resistance (IR). Exercise is an effective treatment for lowering liver fat but its effect on IR in NAFLD is unknown. We aimed to determine whether supervised exercise in NAFLD would reduce liver fat and improve hepatic and peripheral (skeletal muscle and adipose tissue) insulin sensitivity. Sixty nine NAFLD patients were randomized to 16 weeks exercise supervision (n=38) or counselling (n=31) without dietary modification. All participants underwent MRI/spectroscopy to assess changes in body fat and in liver and skeletal muscle triglyceride, before and following exercise/counselling. To quantify changes in hepatic and peripheral insulin sensitivity, a pre-determined subset (n=12 per group) underwent a two-stage hyperinsulinaemic euglycaemic clamp pre- and post-intervention. Results are shown as mean [95% confidence interval (CI)]. Fifty participants (30 exercise, 20 counselling), 51 years (IQR 40, 56), body mass index (BMI) 31 kg/m(2) (IQR 29, 35) with baseline liver fat/water % of 18.8% (IQR 10.7, 34.6) completed the study (12/12 exercise and 7/12 counselling completed the clamp studies). Supervised exercise mediated a greater reduction in liver fat/water percentage than counselling [Δ mean change 4.7% (0.01, 9.4); P<0.05], which correlated with the change in cardiorespiratory fitness (r=-0.34, P=0.0173). With exercise, peripheral insulin sensitivity significantly increased (following high-dose insulin) despite no significant change in hepatic glucose production (HGP; following low-dose insulin); no changes were observed in the control group. Although supervised exercise effectively reduced liver fat, improving peripheral IR in NAFLD, the reduction in liver fat was insufficient to improve hepatic IR. PMID:26424731

  1. [Exercise-induced bronchoconstriction].

    PubMed

    Hildebrand, Katarzyna

    2011-01-01

    Terms exercise-induced asthma (EIA) or exercise-induced bronchoconstriction (EIB) are used to describe transient bronchoconstriction occurring during or immediately after vigorous exercise in some subjects. For the diagnosis of EIB it is necessary to show at least 10% decrease in FEV1 from baseline following physical exercise. The prevalence of EIB has been reported to be 12-15% in general population, 10-20% in summer olympic athletes, affecting up to 50-70% of winter athletes (particularly ski runners and skaters). There are two key theories explaining EIB: thermal and osmotic. Differential diagnosis of EIB should include chronic cardio-pulmonary diseases, vocal cord dysfunction, hyperventilation syndrome and poor physical fitness or overtraining. According to the ATS guidelines from 1999 for the diagnosis of EIB a standardized exercise on a treadmill or cycle ergometer test with stable environmental conditions regarding temperature and humidity of inhaled air, should be employed. Other laboratory tests assessing bronchial hyperresponsiveness to indirect stimuli including eucapnic voluntary hyperpnea (EVH), mannitol, hypertonic saline, AMP or measurement of exhaled nitric oxide (FENO) are also successfully used. In the prevention of EIB include both pharmacologic and non-pharmacologic treatment. In patients with poorly controlled asthma intensification of anti-inflammatory treatment can decrease the frequency and severity of EIB. Short and long acting beta2-agonists, antileukotriene drugs can be used prior to exercise to prevent EIB. PMID:21190152

  2. Measuring breath acetone for monitoring fat loss: Review

    PubMed Central

    2015-01-01

    Objective Endogenous acetone production is a by‐product of the fat metabolism process. Because of its small size, acetone appears in exhaled breath. Historically, endogenous acetone has been measured in exhaled breath to monitor ketosis in healthy and diabetic subjects. Recently, breath acetone concentration (BrAce) has been shown to correlate with the rate of fat loss in healthy individuals. In this review, the measurement of breath acetone in healthy subjects is evaluated for its utility in predicting fat loss and its sensitivity to changes in physiologic parameters. Results BrAce can range from 1 ppm in healthy non‐dieting subjects to 1,250 ppm in diabetic ketoacidosis. A strong correlation exists between increased BrAce and the rate of fat loss. Multiple metabolic and respiratory factors affect the measurement of BrAce. BrAce is most affected by changes in the following factors (in descending order): dietary macronutrient composition, caloric restriction, exercise, pulmonary factors, and other assorted factors that increase fat metabolism or inhibit acetone metabolism. Pulmonary factors affecting acetone exchange in the lung should be controlled to optimize the breath sample for measurement. Conclusions When biologic factors are controlled, BrAce measurement provides a non‐invasive tool for monitoring the rate of fat loss in healthy subjects. PMID:26524104

  3. Injectable therapies for localized fat loss: state of the art.

    PubMed

    Duncan, Diane; Rotunda, Adam M

    2011-07-01

    This review presents mechanisms of action and a review of the clinical applications of injections currently in development for localized fat reduction. After being received with initial enthusiasm earlier in the decade, mesotherapy and other injectable methods for fat loss (Lipodissolve, PC/DC, DC, injection lipolysis, adipolysis) have been subjects of critical scrutiny by the media and the US Food and Drug Administration. Several medications with novel detergent and lipolytic activity are in development and have demonstrated potential as minimally invasive fat reducing treatments. PMID:21824545

  4. Exercise-induced purpura.

    PubMed

    Ramelet, Albert-Adrien

    2004-01-01

    Exercise-induced purpura (EIP) occurs on the lower legs after unusual or major muscular activity, as in marathon runners or as after long walks, especially in the mountains in hot weather. In leisure walkers, patients are otherwise healthy females. There is no relation with chronic venous disorder. Erythematous, urticarial or purpuric plaques arise on the lower leg, usually sparing the skin compressed by socks. Symptoms include itch, pain and a burning sensation. Histopathology demonstrates leukocytoclastic vasculitis. The lesions fade after some days, with frequent relapses at further muscular exercises and may be prevented in some cases by compression, intake of venoactive drugs and local application of steroids. EIP is not uncommon, even if very few descriptions have yet been published. It appears to be consecutive to venous stasis induced by an acute failure of the muscle pump of the calf and thermoregulation decompensation, after a prolonged and unusual exercise, such as running or walking in hot weather. PMID:15178910

  5. Decaffeinated Green Tea and Voluntary Exercise Induce Gene Changes Related to Beige Adipocyte Formation in High Fat-Fed Obese Mice*

    PubMed Central

    Sae-tan, Sudathip; Rogers, Connie J.; Lambert, Joshua D.

    2015-01-01

    We have previously reported that decaffeinated green tea extract (GTE) in combination with voluntary exercise (Ex) reduces metabolic syndrome in high fat-fed C57BL/6J mice. Here, we examined for the first time the effect of treatment with 77 mg/g GTE, Ex, or both (GTE + Ex) on genes related to the conversion of white adipose tissue (WAT) to brown fat-like adipose tissue (BLAT) in this model. GTE+Ex induced genes related to lipolysis (hormone sensitive lipase [3.0-fold] and patatin-like phospholipase domain-containing protein 2 [2-fold]), mitochondrial β-oxidation (NADH dehydrogenase 5 [2.3-fold], cytochrome B [2.0-fold], and cytochrome C oxidase III [1.9-fold increase]), and adipose tissue browning (peroxisome proliferator-activated receptor-γ coactivator-1α [1.8-fold], bone morphogenetic protein 4 [2.6-fold], and phosphatase and tensin homolog [2.6-fold]) in visceral WAT compared to HF-fed mice. These results suggest that GTE+Ex function in part by inducing the conversion of WAT to BLAT and provides novel mechanistic insight into this combination. PMID:25844091

  6. Calorie for Calorie, Dietary Fat Restriction Results in More Body Fat Loss than Carbohydrate Restriction in People with Obesity.

    PubMed

    Hall, Kevin D; Bemis, Thomas; Brychta, Robert; Chen, Kong Y; Courville, Amber; Crayner, Emma J; Goodwin, Stephanie; Guo, Juen; Howard, Lilian; Knuth, Nicolas D; Miller, Bernard V; Prado, Carla M; Siervo, Mario; Skarulis, Monica C; Walter, Mary; Walter, Peter J; Yannai, Laura

    2015-09-01

    Dietary carbohydrate restriction has been purported to cause endocrine adaptations that promote body fat loss more than dietary fat restriction. We selectively restricted dietary carbohydrate versus fat for 6 days following a 5-day baseline diet in 19 adults with obesity confined to a metabolic ward where they exercised daily. Subjects received both isocaloric diets in random order during each of two inpatient stays. Body fat loss was calculated as the difference between daily fat intake and net fat oxidation measured while residing in a metabolic chamber. Whereas carbohydrate restriction led to sustained increases in fat oxidation and loss of 53 ± 6 g/day of body fat, fat oxidation was unchanged by fat restriction, leading to 89 ± 6 g/day of fat loss, and was significantly greater than carbohydrate restriction (p = 0.002). Mathematical model simulations agreed with these data, but predicted that the body acts to minimize body fat differences with prolonged isocaloric diets varying in carbohydrate and fat. PMID:26278052

  7. Gender Differences in Body Fat Utilization During Weight Gain, Loss, or Maintenance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter outlines the known gender differences in fat gain, loss, and maintenance, and perhaps more importantly, highlights how little is known about the subject. The effects of gender differences on body fat distribution, fat use as an energy source, and exercise-related fat loss are discussed...

  8. Three-dimensional volumetric quantification of fat loss following cryolipolysis

    PubMed Central

    Garibyan, Lilit; Sipprell, William H; Jalian, H. Ray; Sakamoto, Fernanda H.; Avram, Mathew; Anderson, R. Rox

    2014-01-01

    Background and Objectives Cryolipolysis is a noninvasive and well-tolerated treatment for reduction of localized subcutaneous fat. Although several studies demonstrate the safety and efficacy of this procedure, volumetric fat reduction from this treatment has not been quantified. This prospective study investigated the change in volume of fat after cryolipolysis treatment using three-dimensional (3D) photography. Materials and Methods A prospective study of subjects treated with cryolipolysis on the flank (love handle) was performed at Massachusetts General Hospital. Volume measurements were performed with a Canfield Scientific Vectra three-dimensional camera and software to evaluate the amount of post procedure volume change. Clinical outcomes were assessed with caliper measurements, subject surveys, and blinded physician assessment of photographs. Results Eleven subjects were enrolled in this study. Each subject underwent a single cycle of cryolipolysis to one flank. The untreated flank served as an internal control. The follow up time after treatment was two months. The mean amount of calculated absolute fat volume loss using 3D photography from baseline to 2 months follow up visit was 56.2 ± 25.6 from the treatment site and 16.6 ± 17.6 cc from the control (p < 0.0001). A mean absolute difference of 39.6 cc between the treated and untreated sides was calculated at 2 months post-treatment. Comparison of caliper measurements from baseline to 2 months post-treatment demonstrated significant reduction of the treated flank from 45.6 ± 5.8 mm at baseline to 38.6 ±4.6 mm at 2 months post-treatment (p<0.001). The untreated flank did not show significant reduction with caliper measurements demonstrating 45.3 ± 5.0 mm at baseline and 44.6 ± 5.1 mm at 2 months post-treatment (p=0.360). No unexpected side effects or adverse events were reported. Post-treatment satisfaction surveys demonstrated 82% of subjects were satisfied with the results. Conclusions Cryolipolysis

  9. Adolescents and Exercise Induced Asthma

    ERIC Educational Resources Information Center

    Hansen, Pamela; Bickanse, Shanna; Bogenreif, Mike; VanSickle, Kyle

    2008-01-01

    This article defines asthma and exercise induced asthma, and provides information on the triggers, signs, and symptoms of an attack. It also gives treatments for these conditions, along with prevention guidelines on how to handle an attack in the classroom or on the practice field. (Contains 2 tables and 1 figure.)

  10. Update on exercise-induced asthma.

    PubMed

    Spector, S L

    1993-12-01

    Exercise-induced asthma (EIA) is a temporary increase in airway resistance that occurs after several minutes of strenuous exercise, generally eight to 15 minutes after the patient has stopped exercising. Some individuals experience a secondary reduction in pulmonary function several hours later, the so-called late-phase response. Many physicians believe that EIA is caused by respiratory water loss or airway cooling. Others incriminate tissue mast cells of the lung. The role of histamine is uncertain because it is detected inconsistently in the serum after an attack. Recent studies suggest that the release of sulfidopeptide leukotrienes may play a major role in EIA. Although the exact pathophysiology has yet to be determined, several highly successful treatment regimens have been developed. Preventive pharmacologic treatment with aerosolized beta-agonists is more successful than treatment with cromolyn sodium; however, coadministration of these agents produces significant symptomatic improvement in more than 90% of patients. Other useful medications include antihistamines, anticholinergic agents, theophylline, oral beta-agonists, calcium channel blockers, alpha-adrenergic antagonists, nedocromil, and leukotriene antagonists. Exercise-induced asthma may be suppressed with warm humidified air. This environment can be simulated by swimming in a heated pool or wearing a scarf over the nose and mouth in cold weather. PMID:8267254

  11. Do changes in energy intake and non-exercise physical activity affect exercise-induced weight loss? Midwest Exercise Trial-2

    PubMed Central

    Herrmann, Stephen D.; Willis, Erik A.; Honas, Jeffery J.; Lee, Jaehoon; Washburn, Richard A.; Donnelly, Joseph E.

    2015-01-01

    Objective To compare energy intake, total daily energy expenditure (TDEE), non-exercise energy expenditure (NEEx), resting metabolic rate (RMR), non-exercise physical activity (NEPA), and sedentary time between participants with weight loss <5% (non-responders) vs. ≥5% (responders) in response to exercise. Methods Overweight/obese (BMI 25–40 kg/m2), adults (18–30 yrs.) were randomized to exercise: 5 day/week, 400 or 600 kcal/session, 10 months. Results Forty participants responded and 34 did not respond to the exercise protocol. Non-responder energy intake was higher vs. responders, significant only in men (p=0.034). TDEE increased only in responders (p=0.001). NEEx increased in responders and decreased in non-responders, significant only in men (p=0.045). There were no within or between-group differences for change in RMR. NEPA increased in responders and decreased in non-responders (group-by-time interactions: total sample, p=0.049; men, p=0.016). Sedentary time decreased in both groups, significant only in men. Conclusion Men who did not lose weight in response to exercise (<5%) had higher energy intake and lower NEEx compared to men losing ≥5%. No significant differences in any parameters assessed were observed between women who lost <5% vs. those losing ≥5. Factors associated with the weight loss response to exercise in women warrant additional investigation. PMID:26193059

  12. Fat Christians and fit elites: negotiating class and status in Evangelical Christian weight-loss culture.

    PubMed

    Gerber, Lynne

    2012-01-01

    As American culture has become increasingly concerned about fatness, the fat body and weight loss have become salient symbols for other social tensions. This article uses the case of evangelical Christian weight-loss culture to argue that class is one of those tensions. Drawing on ethnographic work in a Christian weight-loss program as well as on recent theories of class, I argue that certain recurring concerns in Christians’ weight-loss discourse, notably concerns about fat Christian leaders and appearing healthy, reflect tensions about class-based aspirations and class-based denigrations evangelicals face in negotiating their position in American society. PMID:22826895

  13. Sexually dimorphic responses to fat loss after caloric restriction or surgical lipectomy.

    PubMed

    Shi, Haifei; Strader, April D; Woods, Stephen C; Seeley, Randy J

    2007-07-01

    White adipose tissue is the principal site for lipid accumulation. Males and females maintain distinctive white adipose tissue distribution patterns. Specifically, males tend to accumulate relatively more visceral fat, whereas females accumulate relatively more subcutaneous fat. The phenomenon of maintaining typical sex-specific fat distributions suggests sex-specific mechanisms that regulate energy balance and adiposity. We used two distinct approaches to reduce fat mass, caloric restriction (CR), and surgical fat removal (termed lipectomy) and assessed parameters involved in the regulation of energy balance. We found that male and female mice responded differentially to CR- and to lipectomy-induced fat loss. Females decreased energy expenditure during CR or after lipectomy. In contrast, males responded by eating more food during food return after CR or after lipectomy. Female CR mice conserved subcutaneous fat, whereas male CR mice lost adiposity equally in the subcutaneous and visceral depots. In addition, female mice had a reduced capability to restore visceral fat after fat loss. After CR, plasma leptin levels decreased in male but not in female mice. The failure to increase food intake after returning to ad libitum intake in females could be due to the relatively stable levels of leptin. In summary, we have found sexual dimorphisms in the response to fat loss that point to important underlying differences in the strategies by which male and female mice regulate body weight. PMID:17426110

  14. Effects of weight loss via high fat vs. low fat alternate day fasting diets on free fatty acid profiles.

    PubMed

    Varady, Krista A; Dam, Vi T; Klempel, Monica C; Horne, Matthew; Cruz, Rani; Kroeger, Cynthia M; Santosa, Sylvia

    2015-01-01

    Cardiovascular disease risk is associated with excess body weight and elevated plasma free fatty acid (FFA) concentrations. This study examines how an alternate-day fasting (ADF) diet high (HF) or low (LF) in fat affects plasma FFA profiles in the context of weight loss, and changes in body composition and lipid profiles. After a 2-week weight maintenance period, 29 women (BMI 30-39.9 kg/m(2)) 25-65 years old were randomized to an 8-week ADF-HF (45% fat) diet or an ADF-LF (25% fat) diet with 25% energy intake on fast days and ad libitum intake on feed days. Body weight, BMI and waist circumference were assessed weekly and body composition was measured using dual x-ray absorptiometry (DXA). Total and individual FFA and plasma lipid concentrations were measured before and after weight loss. Body weight, BMI, fat mass, total cholesterol, LDL-C and triglyceride concentrations decreased (P < 0.05) in both groups. Total FFA concentrations also decreased (P < 0.001). In the ADF-LF group, decreases were found in several more FFAs than in the ADF-HF group. In the ADF-HF group, FFA concentrations were positively correlated with waist circumference. Depending on the macronutrient composition of a diet, weight loss with an ADF diet decreases FFA concentrations through potentially different mechanisms. PMID:25557754

  15. The effects of weight loss treatments on upper and lower body fat.

    PubMed

    Kopelman, P G

    1997-08-01

    The intra-abdominal visceral deposition of adipose tissue, which characterises upper body obesity, is a major contributor to the development of hypertension, glucose intolerance and hyperlipidaemia. Conversely, individuals with lower body obesity may have comparable amounts of adipose tissue but remain relatively free from the metabolic consequences of obesity. This raises an obvious question-are there particular weight reducing treatments which specifically target intra-abdominal fat? In theory, surgical removal of upper body fat should be effective. In reality, neither liposuction nor apronectomy ('tummy tuck') have any beneficial metabolic effects, they simply remove subcutaneous adipose tissue which is often rapidly replaced. Vertical banded gastroplasty and gastric bypass operations may be dramatically effective in improving blood pressure, insulin sensitivity and glucose tolerance. However, these benefits result from a parallel reduction in visceral and total body fat. Studies of body fat distribution in postmenopausal women confirm that the marked decrease in adiposity, following a programme of very low calorie diet and exercise, reflects a comparable reduction in visceral and thigh fat. The reduction in waist circumference after a low fat/exercise programme suggests a similar situation in men. Exercise has an important role in treatment but, once again, the fat loss is generalised. Nevertheless, the improved metabolic parameters seen in exercising obese subjects, independent of weight loss, suggest other beneficial actions. Growth hormone (GH) has a marked lipolytic action. GH replacement treatment for GH deficient adults with pronounced abdominal fat deposition, has been shown to reduce intra-abdominal fat by 47% compared to 27% decrease in abdominal subcutaneous fat. Similar beneficial actions on abdominal fat have been reported following treatment with testosterone in obese men. The potential hazards of such treatments make them unsuitable therapy for

  16. Pericardial Fat Loss in Postmenopausal Women under Conditions of Equal Energy Deficit

    PubMed Central

    BRINKLEY, TINA E.; DING, JINGZHONG; CARR, J. JEFFREY; NICKLAS, BARBARA J.

    2013-01-01

    Weight loss induced by caloric restriction (CR) or aerobic exercise can reduce pericardial fat, and these reductions may help improve cardiovascular health. Purpose We examined whether combining CR with aerobic exercise enhances pericardial fat loss compared with a CR-only intervention designed to elicit equivalent reductions in body weight. We also examined the relationship between changes in pericardial fat and changes in maximal oxygen consumption (V̇O2max), a measure of cardiorespiratory fitness. Methods Thirty-two abdominally obese postmenopausal women (mean age = 58 yr; 78% Caucasian) were randomly assigned to one of three interventions of equal energy deficit (~2800 kcal·wk−1) for 20 wk: CR only (n = 8), CR + moderate-intensity exercise (n = 15), or CR + vigorous-intensity exercise (n = 9). The volume of pericardial fat around the coronary arteries was measured by computed tomography. Results Women in the CR, CR + moderate-intensity, and CR + vigorous-intensity groups had similar baseline characteristics. The mean ± SD value for pericardial fat before weight loss was 79.07 ± 32.90 cm3 (range = 34.04–152.74 cm3), with no difference among groups (P = 0.89). All three interventions significantly reduced body weight (15%), waist circumference (10%), and abdominal visceral fat (28%) to a similar degree. There was also a 17% reduction in pericardial fat (−12.75 ± 6.29 cm3, P < 0.0001), which did not differ among groups (P = 0.84). Changes in pericardial fat were inversely correlated with changes in V̇O2max (r = −0.37, P = 0.05), but not after adjusting for intervention group and change in body weight. Conclusions Weight loss interventions of equal energy deficit have similar effects on pericardial fat in postmenopausal women, regardless of whether the energy deficit is due to CR alone or CR plus aerobic exercise. PMID:20881884

  17. [Low-carbohydrate or low-fat diet for weight loss--which is better?].

    PubMed

    Hauner, H

    2004-10-01

    Several recent clinical studies show that a low-carbohydrate diet produces a greater initial weight loss than conventional low-fat diets, and is associated with a greater reduction of elevated serum triglycerides. After one year, however, weight loss is similar with both diets. Since the intake of saturated fat is higher on a low-carbohydrate diet, there may be an increased risk of elevated levels of LDL cholesterol, thus furthering atherosclerosis, over the long term. Before low-carbohydrate diets can be considered an equivalent alternative to low-fat diets for the treatment of obesity, long-term clinical trials are urgently required. The greater weight loss under low-carbohydrate diets would appear to be due to a lower caloric intake. Successful weight loss largely depends on restricting the intake of calories, but the supply of essential nutrients should be guaranteed. PMID:15532735

  18. An Evidence-Based Review of Fat Modifying Supplemental Weight Loss Products

    PubMed Central

    Egras, Amy M.; Hamilton, William R.; Lenz, Thomas L.; Monaghan, Michael S.

    2011-01-01

    Objective. To review the literature on fat modifying dietary supplements commonly used for weight loss. Methods. Recently published randomized, placebo-controlled trials were identified in PubMed, MEDLINE, International Pharmaceutical Abstracts, Cochrane Database, and Google Scholar using the search terms dietary supplement, herbal, weight loss, obesity, and individual supplement names. Discussion. Data for conjugated linoleic acid (CLA), Garcinia cambogia, chitosan, pyruvate, Irvingia gabonensis, and chia seed for weight loss were identified. CLA, chitosan, pyruvate, and Irvingia gabonensis appeared to be effective in weight loss via fat modifying mechanisms. However, the data on the use of these products is limited. Conclusion. Many obese people use dietary supplements for weight loss. To date, there is little clinical evidence to support their use. More data is necessary to determine the efficacy and safety of these supplements. Healthcare providers should assist patients in weighing the risks and benefits of dietary supplement use for weight loss. PMID:20847896

  19. An evidence-based review of fat modifying supplemental weight loss products.

    PubMed

    Egras, Amy M; Hamilton, William R; Lenz, Thomas L; Monaghan, Michael S

    2011-01-01

    Objective. To review the literature on fat modifying dietary supplements commonly used for weight loss. Methods. Recently published randomized, placebo-controlled trials were identified in PubMed, MEDLINE, International Pharmaceutical Abstracts, Cochrane Database, and Google Scholar using the search terms dietary supplement, herbal, weight loss, obesity, and individual supplement names. Discussion. Data for conjugated linoleic acid (CLA), Garcinia cambogia, chitosan, pyruvate, Irvingia gabonensis, and chia seed for weight loss were identified. CLA, chitosan, pyruvate, and Irvingia gabonensis appeared to be effective in weight loss via fat modifying mechanisms. However, the data on the use of these products is limited. Conclusion. Many obese people use dietary supplements for weight loss. To date, there is little clinical evidence to support their use. More data is necessary to determine the efficacy and safety of these supplements. Healthcare providers should assist patients in weighing the risks and benefits of dietary supplement use for weight loss. PMID:20847896

  20. Exercise-induced asthma: an overview.

    PubMed

    Cummiskey, J

    2001-10-01

    Asthmatic attack in exercise-induced asthma is brought about by hyperventilation (not necessarily to exercise), cold air, and low humidity of the air breathed. The effects are an increase in airway resistance, damage to bronchial mucosa, and an increase in bronchovascular permeability. The mechanism of these changes is the release of mediators such as histamine, leukotrienes, nitric oxide, sensory neuropeptides, the inhibition of neuronal activity, and bronchovascular permeability. The cause of asthma and exercise-induced asthma is unknown. It is probably an abnormality of vascular control in the peribronchium and/or an alteration in local adrenergic function. The importance of exercise-induced asthma definition and the use of stimulants in sport and antidoping in sport are discussed. PMID:11678516

  1. Health effects from exercise versus those from body fat loss

    SciTech Connect

    Williams, Paul T.

    2001-12-01

    The objective of this paper is to assess whether body weight confounds the relationships between physical activity and its health benefits. Data sources: Eighty reports from population based studies (Category C) of physical activity or fitness and cardiovascular disease (CVD) or coronary heart disease (CHD).Data synthesis: Eleven of 64 reports found no relationship between physical activity and disease. Of the remaining 53 reports, 11 did not address the possible confounding effects of body weight, 9 cited reasons that weight differences should not explain their observed associations, and 32 statistically adjusted for weight (as required). Only 3 of these changed their associations from significant to nonsignificant when adjusted. Ten of 15 reports on cardiorespiratory fitness and CHD or CVD used statistical adjustment, and none of these changed their findings to nonsignificant. Population studies show that vigorously active individuals also have higher high-density lipoprotein (HDL) cholesterol concentration, a major risk factor for CHD and CVD, than sedentary individuals when statistically adjusted for weight. In contrast intervention studies, which relate dynamic changes in weight and HDL, suggest that adjustment for weight loss largely eliminates the increase in HDL-cholesterol in sedentary men who begin exercising vigorously. Adjusting the cross-sectional HDL-cholesterol differences for the dynamic effects of weight loss eliminates most of the HDL-cholesterol difference between active and sedentary men. Conclusion: Thus population studies show that the lower incidence of CHD and CVD and higher HDL of fit, active individuals are not due to lean, healthy individuals choosing to be active (i.e., self-selection bias). Nevertheless, metabolic processed associated weight loss may be primarily responsible for the HDL differences between active and sedentary men, and possibly their differences in CHD and CVD.

  2. Reduction of weight loss and tumour size in a cachexia model by a high fat diet.

    PubMed Central

    Tisdale, M. J.; Brennan, R. A.; Fearon, K. C.

    1987-01-01

    An attempt has been made to reverse cachexia and to selectively deprive the tumour of metabolic substrates for energy production by feeding a ketogenic regime, since ketone bodies are considered important in maintaining homeostasis during starvation. As a model we have used a transplantable mouse adenocarcinoma of the colon (MAC 16) which produces extensive weight loss without a reduction in food intake. When mice bearing the MAC16 tumour were fed on diets in which up to 80% of the energy was supplied as medium chain triglycerides (MCT) with or without arginine 3-hydroxybutyrate host weight loss was reduced in proportion to the fat content of the diet, and there was also a reduction in the percentage contribution of the tumour to the final body weight. The increase in carcass weight in tumour-bearing mice fed high levels of MCT was attributable to an increase in both the fat and the non-fat carcass mass. Blood levels of free fatty acids (FFA) were significantly reduced by MCT addition. The levels of both acetoacetate and 3-hydroxybutyrate were elevated in mice fed the high fat diets, and tumour-bearing mice fed the normal diet did not show increased plasma levels of ketone bodies over the non-tumour-bearing group despite the loss of carcass lipids. Both blood glucose and plasma insulin levels were reduced in mice bearing the MAC16 tumour and this was not significantly altered by feeding the high fat diets. The elevation in ketone bodies may account for the retention of both the fat and the non-fat carcass mass. This is the first example of an attempt to reverse cachexia by a diet based on metabolic differences between tumour and host tissues, which aims to selectively feed the host at the expense of the tumour. PMID:3620317

  3. The Fate of Fat: Pre-Exposure Fat Losses during Nasogastric Tube Feeding in Preterm Newborns.

    PubMed

    Rayyan, Maissa; Rommel, Nathalie; Allegaert, Karel

    2015-08-01

    Deficient nutritional support and subsequent postnatal growth failure are major covariates of short- and long-term outcome in preterm neonates. Despite its relevance, extrauterine growth restriction (EUGR) is still prevalent, occurring in an important portion of extremely preterm infants. Lipids provide infants with most of their energy needs, but also cover specific supplies critical to growth, development and health. The use of human milk in preterm neonates results in practices, such as milk storage, pasteurization and administration by an infusion system. All of these pre-exposure manipulations significantly affect the final extent of lipid deposition in the intestinal track available for absorption, but the impact of tube feeding is the most significant. Strategies to shift earlier to oral feeding are available, while adaptations of the infusion systems (inversion, variable flow) have only more recently been shown to be effective in "in vitro", but not yet in "in vivo" settings. Pre-exposure-related issues for drugs and nutritional compounds show similarities. Therefore, we suggest that the available practices for "in vitro" drug evaluations should also be considered in feeding strategies to further reduce pre-exposure losses as a strategy to improve the nutritional status and outcome of preterm neonates. PMID:26230707

  4. [Exercise-induced bronchospasm. Diagnosis and management].

    PubMed

    Rosas Miguel, A; Pérez, Jaime; Blandón, Virginia; del Rio, Blanca; Sienra Monge, Juan José Luis

    2004-01-01

    Exercise-induced bronchospam is a common entity in asthmatic children. Physiopathology involves airway cooling, airway dehydration and influx of inflammatory cells such as histamine or eicosanoids. Diagnosis is done by a suggestive clinical history, besides a VEF1 reversibility of 15% after the use of a beta agonist. Differential diagnosis should be done with similar presentation pathologies. Warming up routines and beta agonist should be used in regular bases as previous treatment in this kind of disease. PMID:15237914

  5. Exercise associated hormonal signals as powerful determinants of an effective fat mass loss.

    PubMed

    Bajer, B; Vlcek, M; Galusova, A; Imrich, R; Penesova, A

    2015-07-01

    Obesity management for achieving an effective weight loss includes dietary modification and exercise [resistance (strength), endurance (cardiovascular) or intervals training (high-intensity intermittent exercise)]. Regular exercise acutely increases fat oxidation, which induces loss of fat mass and increases energy expenditure. Moreover, it has a positive effect on the physical (improved insulin sensitivity, lipid profile, etc.) and mental health (mood, cognition, memory, sleep, etc.). Endocrine responses to muscle actions are affected by many factors, including the exercise muscle groups (lower and upper body), load/volume, time-under tension, and rest-period intervals between sets, training status, gender, and age. The aim of this review is to summarize, evaluate, and clarify the literature data focusing on the endocrine responses to different types of exercise, including the frequency, intensity, and type of movement with regard to the fat loss strategies. Many studies have investigated anabolic [growth hormone, insulin-like growth factor-1 (IGF-1), testosterone] and gluco- and appetite- regulatory (insulin, cortisol, ghrelin) hormone responses and adaptations of skeletal muscles to exercise. Muscle tissue is a critical endocrine organ, playing important role in the regulation of several physiological and metabolic events. Moreover, we are also describing the response of some other substances to exercise, such as myokines [irisin, apelin, brain-derived neurotrophic factor (BDNF), myostatin, and fibroblast growth factor 21 (FGF21)]. It is proposed that reducing intra-abdominal fat mass and increasing cardiorespiratory fitness through improving nutritional quality, reducing sedentary behavior, and increase the participation in physical activity/exercise, might be associated with clinical benefits, sometimes even in the absence of weight loss. PMID:26238498

  6. Strategies to increase vegetable or reduce energy and fat intake induce weight loss in adults.

    PubMed

    Tanumihardjo, Sherry A; Valentine, Ashley R; Zhang, Zhumin; Whigham, Leah D; Lai, HuiChuan J; Atkinson, Richard L

    2009-05-01

    For obese individuals seeking to optimize health and well-being, healthy dietary strategies are important. Vegetables and fruits contribute to a healthy diet, and increased consumption may cause weight reduction by displacing foods high in energy and fat. The objective of this study was to determine if advising high vegetable (8 servings) and moderate fruit (2-3 servings) consumption would result in weight reduction in obese individuals. We compared this to advising a more traditional strategy of reducing daily energy intake by 500 kcal (2.1 MJ)/d and limiting energy from fat to fat reduction diet resulted in lower weight over time (P<0.0001, treatment effect). Total cholesterol and cholesterol:HDL decreased after 3 mo in both groups (Ploss at 3 mo, but only the group following the caloric and fat reduction advice maintained weight loss at the 12- and 18-mo follow-up assessments. Nonetheless, the group following the high vegetable advice did not regain weight above baseline. In conclusion, traditional messages to reduce calories and fat are important, and increasing vegetable intake can assist individuals to maintain weight. PMID:19234056

  7. Increased vegetable and fruit consumption during weight loss effort correlates with increased weight and fat loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recommendations to increase vegetable and fruit consumption often accompany guidelines for weight loss. A previous study indicated that people who were instructed to count calories lost more weight than those simply instructed to increase vegetable and fruit intake. The objective was to determine if...

  8. Vegetable and fruit consumption during weight loss is positively correlated with weight and fat loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Recommendations to increase vegetable and fruit consumption often accompany guidelines for weight loss. A previous study indicated that people who were instructed to count calories lost more weight than those simply instructed to increase vegetable and fruit intake. Objective: The object...

  9. Imitators of exercise-induced bronchoconstriction

    PubMed Central

    2009-01-01

    Exercise-induced bronchoconstriction (EIB) is described by transient narrowing of the airways after exercise. It occurs in approximately 10% of the general population, while athletes may show a higher prevalence, especially in cold weather and ice rink athletes. Diagnosis of EIB is often made on the basis of self-reported symptoms without objective lung function tests, however, the presence of EIB can not be accurately determined on the basis of symptoms and may be under-, over-, or misdiagnosed. The goal of this review is to describe other clinical entities that mimic asthma or EIB symptoms and can be confused with EIB. PMID:20016690

  10. Update on exercise-induced pulmonary hemorrhage.

    PubMed

    Sullivan, Stacey; Hinchcliff, Kenneth

    2015-04-01

    Exercise-induced pulmonary hemorrhage (EIPH) is an important disease of horses that perform high-intensity athletic activity. EIPH is an ongoing concern for the racing industry because of its high prevalence; potential impact on performance; welfare concerns; and use of prophylactic medications, such as furosemide, on race day. During the last 10 years, significant progress has been made in understanding the pathogenesis and risk factors for EIPH and the impact of the disease on performance and career. This article summarizes the most recent advances in EIPH. PMID:25770069

  11. Exercise-induced airways constriction 1

    PubMed Central

    Simonsson, Bo G.; Skoogh, B-E.; Ekström-Jodal, B.

    1972-01-01

    Airway conductance was measured in a body plethysmograph at different lung volumes before and after graded exercise. In 14 out of 19 patients, mostly asthmatics, airway conductance fell significantly after exercise. These subjects also showed other signs of an increased bronchial reactivity to different stimuli, including forced breathing, hyperventilation, and cold air, but they had no exogenous allergy. The exercise-induced bronchoconstriction could be blocked by atropine in six of the nine patients tested. Exercise-induced bronchoconstriction in patients with clinical and physiological evidence of increased airway reactivity thus seems to be primarily mediated via a vagal reflex, probably from hyperresponsive airway mechanoreceptors reacting to increased ventilatory flow or lung distension. No relation was found between PaCO2 or pH and the severity of airways constriction. Cromoglycic acid failed to block the exercise reaction in five of the six hyperreactive patients tested. In addition to or following the vagal reflex a disturbed relation between beta and alpha receptors in bronchial muscles or a release of humoral spasmogens may contribute to the progression of post-exercise airways constriction. PMID:4624586

  12. Exercise-induced anaphylaxis: A clinical view

    PubMed Central

    2012-01-01

    Exercise-induced anaphylaxis (EIA) is a distinct form of physical allergy. The development of anaphylaxis during exertion often requires the concomitant exposure to triggering factors such as intake of foods (food dependent exercise-induced anaphylaxis) or drugs prior to exercise, extreme environmental conditions. EIA is a rare, but serious disorder, which is often undetected or inadequately treated. This article summarizes current evidences on pathophysiology, diagnosis and management. We reviewed recent advances in factors triggering the release of mediators from mast cells which seems to play a pathogenetic role. A correct diagnosis is essential to avoid unnecessary restricted diet, to allow physical activity in subjects with EIA dependent from triggering factors such as food, and to manage attacks. An algorithm for diagnosing EIA based on medical history, IgE tests and exercise challenge test has been provided. In the long-term management of EIA, there is a need for educating patients and care-givers to avoid exposure to precipitating factors and to recognize and treat episodes. Future researches on existing questions are discussed. PMID:22980517

  13. Switch from Stress Response to Homeobox Transcription Factors in Adipose Tissue After Profound Fat Loss

    PubMed Central

    Stavrum, Anne-Kristin; Stansberg, Christine; Holdhus, Rita; Hoang, Tuyen; Veum, Vivian L.; Christensen, Bjørn Jostein; Våge, Villy; Sagen, Jørn V.; Steen, Vidar M.; Mellgren, Gunnar

    2010-01-01

    Background In obesity, impaired adipose tissue function may promote secondary disease through ectopic lipid accumulation and excess release of adipokines, resulting in systemic low-grade inflammation, insulin resistance and organ dysfunction. However, several of the genes regulating adipose tissue function in obesity are yet to be identified. Methodology/Principal Findings In order to identify novel candidate genes that may regulate adipose tissue function, we analyzed global gene expression in abdominal subcutaneous adipose tissue before and one year after bariatric surgery (biliopancreatic diversion with duodenal switch, BPD/DS) (n = 16). Adipose tissue from lean healthy individuals was also analyzed (n = 13). Two different microarray platforms (AB 1700 and Illumina) were used to measure the differential gene expression, and the results were further validated by qPCR. Surgery reduced BMI from 53.3 to 33.1 kg/m2. The majority of differentially expressed genes were down-regulated after profound fat loss, including transcription factors involved in stress response, inflammation, and immune cell function (e.g., FOS, JUN, ETS, C/EBPB, C/EBPD). Interestingly, a distinct set of genes was up-regulated after fat loss, including homeobox transcription factors (IRX3, IRX5, HOXA5, HOXA9, HOXB5, HOXC6, EMX2, PRRX1) and extracellular matrix structural proteins (COL1A1, COL1A2, COL3A1, COL5A1, COL6A3). Conclusions/Significance The data demonstrate a marked switch of transcription factors in adipose tissue after profound fat loss, providing new molecular insight into a dichotomy between stress response and metabolically favorable tissue development. Our findings implicate homeobox transcription factors as important regulators of adipose tissue function. PMID:20543949

  14. Changes in Skeletal Integrity and Marrow Adiposity during High-Fat Diet and after Weight Loss.

    PubMed

    Scheller, Erica L; Khoury, Basma; Moller, Kayla L; Wee, Natalie K Y; Khandaker, Shaima; Kozloff, Kenneth M; Abrishami, Simin H; Zamarron, Brian F; Singer, Kanakadurga

    2016-01-01

    The prevalence of obesity has continued to rise over the past three decades leading to significant increases in obesity-related medical care costs from metabolic and non-metabolic sequelae. It is now clear that expansion of body fat leads to an increase in inflammation with systemic effects on metabolism. In mouse models of diet-induced obesity, there is also an expansion of bone marrow adipocytes. However, the persistence of these changes after weight loss has not been well described. The objective of this study was to investigate the impact of high-fat diet (HFD) and subsequent weight loss on skeletal parameters in C57Bl6/J mice. Male mice were given a normal chow diet (ND) or 60% HFD at 6 weeks of age for 12, 16, or 20 weeks. A third group of mice was put on HFD for 12 weeks and then on ND for 8 weeks to mimic weight loss. After these dietary challenges, the tibia and femur were removed and analyzed by micro computed-tomography for bone morphology. Decalcification followed by osmium staining was used to assess bone marrow adiposity, and mechanical testing was performed to assess bone strength. After 12, 16, or 20 weeks of HFD, mice had significant weight gain relative to controls. Body mass returned to normal after weight loss. Marrow adipose tissue (MAT) volume in the tibia increased after 16 weeks of HFD and persisted in the 20-week HFD group. Weight loss prevented HFD-induced MAT expansion. Trabecular bone volume fraction, mineral content, and number were decreased after 12, 16, or 20 weeks of HFD, relative to ND controls, with only partial recovery after weight loss. Mechanical testing demonstrated decreased fracture resistance after 20 weeks of HFD. Loss of mechanical integrity did not recover after weight loss. Our study demonstrates that HFD causes long-term, persistent changes in bone quality, despite prevention of marrow adipose tissue accumulation, as demonstrated through changes in bone morphology and mechanical strength in a mouse

  15. Changes in Skeletal Integrity and Marrow Adiposity during High-Fat Diet and after Weight Loss

    PubMed Central

    Scheller, Erica L.; Khoury, Basma; Moller, Kayla L.; Wee, Natalie K. Y.; Khandaker, Shaima; Kozloff, Kenneth M.; Abrishami, Simin H.; Zamarron, Brian F.; Singer, Kanakadurga

    2016-01-01

    The prevalence of obesity has continued to rise over the past three decades leading to significant increases in obesity-related medical care costs from metabolic and non-metabolic sequelae. It is now clear that expansion of body fat leads to an increase in inflammation with systemic effects on metabolism. In mouse models of diet-induced obesity, there is also an expansion of bone marrow adipocytes. However, the persistence of these changes after weight loss has not been well described. The objective of this study was to investigate the impact of high-fat diet (HFD) and subsequent weight loss on skeletal parameters in C57Bl6/J mice. Male mice were given a normal chow diet (ND) or 60% HFD at 6 weeks of age for 12, 16, or 20 weeks. A third group of mice was put on HFD for 12 weeks and then on ND for 8 weeks to mimic weight loss. After these dietary challenges, the tibia and femur were removed and analyzed by micro computed-tomography for bone morphology. Decalcification followed by osmium staining was used to assess bone marrow adiposity, and mechanical testing was performed to assess bone strength. After 12, 16, or 20 weeks of HFD, mice had significant weight gain relative to controls. Body mass returned to normal after weight loss. Marrow adipose tissue (MAT) volume in the tibia increased after 16 weeks of HFD and persisted in the 20-week HFD group. Weight loss prevented HFD-induced MAT expansion. Trabecular bone volume fraction, mineral content, and number were decreased after 12, 16, or 20 weeks of HFD, relative to ND controls, with only partial recovery after weight loss. Mechanical testing demonstrated decreased fracture resistance after 20 weeks of HFD. Loss of mechanical integrity did not recover after weight loss. Our study demonstrates that HFD causes long-term, persistent changes in bone quality, despite prevention of marrow adipose tissue accumulation, as demonstrated through changes in bone morphology and mechanical strength in a mouse

  16. Quantification of Abdominal Fat Depots in Rats and Mice during Obesity and Weight Loss Interventions

    PubMed Central

    KN, Bhanu Prakash; Gopalan, Venkatesh; Lee, Swee Shean; Velan, S. Sendhil

    2014-01-01

    Background & Aims Obesity is a leading healthcare issue contributing to metabolic diseases. There is a great interest in non-invasive approaches for quantitating abdominal fat in obese animals and humans. In this work, we propose an automated method to distinguish and quantify subcutaneous and visceral adipose tissues (SAT and VAT) in rodents during obesity and weight loss interventions. We have also investigated the influence of different magnetic resonance sequences and sources of variability in quantification of fat depots. Materials and Methods High-fat diet fed rodents were utilized for investigating the changes during obesity, exercise, and calorie restriction interventions (N = 7/cohort). Imaging was performed on a 7T Bruker ClinScan scanner using fast spin echo (FSE) and Dixon imaging methods to estimate the fat depots. Finally, we quantified the SAT and VAT volumes between the L1–L5 lumbar vertebrae using the proposed automatic hybrid geodesic region-based curve evolution algorithm. Results Significant changes in SAT and VAT volumes (p<0.01) were observed between the pre- and post-intervention measurements. The SAT and VAT were 44.22±9%, 21.06±1.35% for control, −17.33±3.07%, −15.09±1.11% for exercise, and 18.56±2.05%, −3.9±0.96% for calorie restriction cohorts, respectively. The fat quantification correlation between FSE (with and without water suppression) sequences and Dixon for SAT and VAT were 0.9709, 0.9803 and 0.9955, 0.9840 respectively. The algorithm significantly reduced the computation time from 100 sec/slice to 25 sec/slice. The pre-processing, data-derived contour placement and avoidance of strong background–image boundary improved the convergence accuracy of the proposed algorithm. Conclusions We developed a fully automatic segmentation algorithm to quantitate SAT and VAT from abdominal images of rodents, which can support large cohort studies. We additionally identified the influence of non-algorithmic variables including

  17. Influence of artistic gymnastics on iron nutritional status and exercise-induced hemolysis in female athletes.

    PubMed

    Sureira, Thaiz Mattos; Amancio, Olga Silverio; Pellegrini Braga, Josefina Aparecida

    2012-08-01

    This study evaluates the relationship between body iron losses and gains in artistic gymnastics female athletes. It shows that despite the low iron intake and exercise-induced hemolysis, iron deficiency or iron-deficiency anemia does not occur, but partial changes in the hematological profile do. The hypothesis that gymnasts' nutritional behavior contributes to anemia, which may be aggravated by exercise-induced hemolysis, led to this cross-sectional study, conducted with 43 female artistic gymnasts 6-16 yr old. The control group was formed by 40 nontraining girls, paired by age. Hemogram, serum iron, ferritin, soluble transferrin receptor, haptoglobin, total and fractional bilirubin, Type I urine, and parasitologic and occult fecal blood tests were evaluated. The athletes presented mean hematimetric and serum iron values (p = .020) higher than those of the control group. The bilirubin result discarded any hemolytic alteration in both groups. The haptoglobin results were lower in the athlete group (p = .002), confirming the incidence of exercise-induced hemolysis. Both groups presented low iron intake. The results suggest that artistic gymnastics practice leads to exercise-induced hemolysis and partially changes the hematological profile, although not causing iron deficiency or iron-deficiency anemia, even in the presence of low iron intake. PMID:22645172

  18. Ghrelin Suppression and Fat Loss after Left Gastric Artery Embolization in Canine Model

    SciTech Connect

    Bawudun, Dilmurat; Xing Yan; Liu Wenya Huang Yujie; Ren Weixin; Ma Mei; Xu Xiaodong; Teng Gaojun

    2012-12-15

    Purpose: To evaluate the effects of left gastric artery embolization (LGAE) on plasma ghrelin levels, abdominal fat, and body weight in beagles. Methods: The institutional animal care and use committee approved this study. Fifteen healthy adult beagles (12 male and three female animals) were randomly divided into three experimental groups: LGAE was proceeded with mixed emulsion of bleomycin A{sub 5} hydrochloride and lipiodol (group A), and polyvinyl alcohol particles (group B). Transcatheter saline injections in the left gastric artery were performed as a control. Weight and fasting plasma ghrelin levels were obtained at baseline and at weekly intervals for 8 weeks after the procedure in all animals. All animals were scanned and measured by multidetector computed tomography at baseline and at week 8 for evaluation of abdominal fat. Results: In LGAE-treated animals, plasma ghrelin and body weight significantly decreased compared to control animals (group A: P = 0.007 and P = 0.000; group B: P = 0.004 and P = 0.000, respectively). Subcutaneous fat size was also significantly reduced (P = 0.011 and P = 0.027 for groups A and B, respectively). The decreasing percentage in ghrelin levels at week 6 (peak of recovery) of LGAE-treated animals were negatively correlated with the size of area supplied by left gastric artery (r = -0.693, P = 0.026). Conclusion: LGAE could suppress the plasma concentration of ghrelin, which results in subcutaneous fat size reduction and weight loss. Compensatory ghrelin production might occur in the remnant gastric fundus after LGAE.

  19. Exercise-induced anaphylaxis and antileukotriene montelukast.

    PubMed

    Gajbhiye, Sapna; Agrawal, Rajendra Prasad; Atal, Shubham; Tiwari, Vikalp; Phadnis, Pradeep

    2015-01-01

    We report a rare case of exercise-induced anaphylaxis (EIA), occurring exclusively with exercise, without any other associated trigger, detected in the prodromal phase, and prevented from additional anaphylaxis episodes by treatment with cetirizine and 10 mg daily of antileukotriene montelukast to date. EIA is a syndrome in which patients experience a spectrum of the symptoms of anaphylaxis ranging from mild cutaneous signs to severe systemic manifestations such as hypotension, syncope, and even death after increased physical activity. Many people have triggers, such as, a variety of foods, various medications, alcohol, cold weather, humidity, and seasonal and hormonal changes along with exercise that cause the symptoms. Typically, either exercise or the specific trigger alone will rarely cause symptoms. It is differentiated from cholinergic urticaria by the absence of response to passive body warming and emotional stress. PMID:26312002

  20. Interleukin-6 gene knockout antagonizes high-fat-induced trabecular bone loss.

    PubMed

    Wang, Chunyu; Tian, Li; Zhang, Kun; Chen, Yaxi; Chen, Xiang; Xie, Ying; Zhao, Qian; Yu, Xijie

    2016-10-01

    The purpose of the study was to determine the roles of interleukin-6 (IL6) in fat and bone communication. Male wild-type (WT) mice and IL6 knockout (IL6(-/-)) mice were fed with either regular diet (RD) or high-fat diet (HFD) for 12 weeks. Bone mass and bone microstructure were evaluated by micro-computed tomography. Gene expression related to lipid and bone metabolisms was assayed with real-time quantitative polymerase chain reaction. Bone marrow cells from both genotypes were induced to differentiate into osteoblasts or osteoclasts, and treated with palmitic acid (PA). HFD increased the body weight and fat pad weight, and impaired lipid metabolism in both WT and IL6(-/-) mice. The dysregulation of lipid metabolism was more serious in IL6(-/-) mice. Trabecular bone volume fraction, trabecular bone number and trabecular bone thickness were significantly downregulated in WT mice after HFD than those in the RD (P < 0.05). However, these bone microstructural parameters were increased by 53%, 34% and 40%, respectively, in IL6(-/-) mice than those in WT mice on the HFD (P < 0.05). IL6(-/-) osteoblasts displayed higher alkaline phosphatase (ALP) activity and higher mRNA levels of Runx2 and Colla1 than those in WT osteoblasts both in the control and PA treatment group (P < 0.05). IL6(-/-) mice showed significantly lower mRNA levels of PPARγ and leptin and higher mRNA levels of adiponectin in comparison with WT mice on HFD. In conclusion, these findings suggested that IL6 gene deficiency antagonized HFD-induced bone loss. IL6 might bridge lipid and bone metabolisms and could be a new potential therapeutic target for lipid metabolism disturbance-related bone loss. PMID:27493246

  1. FGF21, energy expenditure and weight loss – How much brown fat do you need?

    PubMed Central

    Straub, Leon; Wolfrum, Christian

    2015-01-01

    Background Fibroblast growth factor 21 (FGF21) belongs to the large family of fibroblast growth factors (FGFs). Even though FGF signaling has been mainly implicated in developmental processes, recent studies have demonstrated that FGF21 is an important regulator of whole body energy expenditure and metabolism, in obesity. Scope of review Given the fact that obesity has developed epidemic proportions, not just in industrialized countries, FGF21 has emerged as a novel therapeutic avenue to treat obesity as well as associated metabolic disorders. While the metabolic effects of FGF21 are undisputed, the mechanisms by which FGF21 regulate weight loss have not yet been fully resolved. Until recently it was believed that FGF21 induces brown fat activity, thereby enhancing energy expenditure, which concomitantly leads to weight loss. Novel studies have challenged this concept as they could demonstrate that a part of the FGF21 mediated effects are retained in a mouse model of impaired brown adipose tissue function. Major conclusions The review illustrates the recent advances in FGF21 research and discusses the role of FGF21 in the regulation of energy expenditure linked to brown fat activity. PMID:26413466

  2. Associations between Obesity, Body Fat Distribution, Weight Loss and Weight Cycling on Serum Pesticide Concentrations

    PubMed Central

    Frugé, Andrew Dandridge; Cases, Mallory Gamel; Schildkraut, Joellen Martha; Demark-Wahnefried, Wendy

    2016-01-01

    Objective Preliminary studies suggest pesticides may be linked to increased cancer risk. Since most pesticides are lipophilic and stored within adipose tissue, serum levels of organochlorines are affected not only by environmental exposures, but also by factors related to lipid turnover and storage. Our objective was to investigate whether serum organochlorines are influenced by weight loss, body fat distribution, and weight cycling. Methods Ten overweight women were recruited upon entry into a weight loss program and surveyed regarding weight history, childbearing/lactation, and exposure to environmental contaminants. Anthropometric measures and phlebotomy were conducted at baseline and at four weeks (mean weight loss=5.1 kg). Serum was analyzed for 19 common polychlorinated pesticides and metabolites and 10 PCB congeners. Results Organochlorine levels were not significantly affected by weight loss nor associated with body mass index (BMI). Strong positive correlations were noted between levels of DDE/DDT and age (DDE β=0.6986/p=0.0246/DDT β=0.6536/p=0.0404) and between DDE/DDT and waist-to-hip ratio (WHR) (DDE β=0.4356/p=0.0447/DDT β=0.8108/p=0.0044). Trends were noted for decreased levels of DDT in women who reported more episodes of weight cycling. Conclusion Serum organochlorine levels may be affected not only by age, but also factors related to lipid turnover (i.e., episodes of weight cycling and WHR), and warrants further study. PMID:27478857

  3. [Cereal-dependent exercise-induced anaphylaxis].

    PubMed

    Seoane-Rodríguez, Marta; Caralli, María Elisa; Morales-Cabeza, Cristina; Micozzi, Sarah; De Barrio-Fernández, Manuel; Rojas Pérez-Ezquerra, Patricia

    2016-01-01

    Wheat-dependent exercise-induced anaphylaxis (WDEIA) is increasing. In vitro test such as omega-5-gliadin levels are useful in the diagnosis, while oral single blind challenge tests (OCT) with wheat plus exercise continuous being the gold standard diagnostic method. This paper reports the case of a 38-year-old woman, with several episodes of anaphylaxis after eating different foods and doing exercise after ingestion. An allergy study was performed with positive skin prick tests for wheat, barley and rye. Total IgE 238.0KU/L, positive specific IgE (>100KU/L) to wheat, barley and rye, and negative to rTri-a-19 omega-5 gliadin. OCT with bread and exercise was positive. In this case of wheat-dependent exerciseinduced anaphylaxis (WDEIA) with negative serum specific IgE to omega-5-gliadin, negative results with gamma, alpha, bheta y omega-gliadin doesn't exclude the diagnosis of WDEIA. PMID:26943835

  4. Mechanisms of Exercise-Induced Hypoalgesia

    PubMed Central

    Koltyn, Kelli F.; Brellenthin, Angelique G.; Cook, Dane B.; Sehgal, Nalini; Hillard, Cecilia

    2014-01-01

    The purpose of this study was to examine opioid and endocannabinoid mechanisms of exercise-induced hypoalgesia (EIH). Fifty-eight men and women (mean age = 21 yrs) completed three sessions. During the first session, participants were familiarized with the temporal summation of heat pain and pressure pain protocols. In the exercise sessions, following double-blind administration of either an opioid antagonist (50 mg naltrexone) or placebo, participants rated the intensity of heat pulses and indicated their pressure pain thresholds (PPT) and ratings (PPR) before and after 3 minutes of submaximal isometric exercise. Blood was drawn before and after exercise. Results indicated circulating concentrations of two endocannabinoids, N-arachidonylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) as well as related lipids oleoylethanolamide (OEA), palmitoylethanolamide (PEA), N-docsahexaenoylethanolamine (DHEA), and 2-oleoylglycerol (2-OG) increased significantly (p < 0.05) following exercise. PPT increased significantly (p < 0.05) while PPR decreased significantly (p < 0.05) following exercise. Also, temporal summation ratings were significantly lower (p < 0.05) following exercise. These changes in pain responses did not differ between placebo or naltrexone conditions (p > 0.05). A significant association was found between EIH and DHEA. These results suggest involvement of a non-opioid mechanism in EIH following isometric exercise. PMID:25261342

  5. Exercise-induced bronchospasm - pathophysiology and treatment.

    PubMed

    Shephard, R J

    1981-09-01

    The practical importance, prevalence, typical features, physiopathology and therapy of exercise-induced bronchospasm (E.I.B.) are briefly reviewed. The condition is common, especially in children. Prevalence is influenced by the mode, intensity and duration of exercise, the age and possibly the sex of the subjects, the number of test repetitions, and the criterion for presence of spasm. The main site of obstruction is in the large airways. Symptoms appear a few minutes post-effort, peaking 10-15 minutes after exercise. At different times, spasm may arise in the vagal reflex arc, from alterations of sympathetic balance, prostaglandin release, and sensitization of the mast cell. Until recently, the main basis of prophylaxis has been inhalation of sodium cromoglycate (20 mg, 60 minutes prior to competition). Beta agonists have until recently been prohibited in international competitions. However, the use of selective beta agonists such as salbutamol and terbutaline was allowed in the 1978 World Swimming Championship and the 1980 World Cross-Country Championship with a supporting medical letter. The Medical Commission of the International Olympic Committee has also moved recently to sanction the use of salbutamol and terbutaline. Future prophylaxis will thus be based on combinations of selective beta agonists and sodium cromoglycate. PMID:6794921

  6. Telocytes in exercise-induced cardiac growth.

    PubMed

    Xiao, Junjie; Chen, Ping; Qu, Yi; Yu, Pujiao; Yao, Jianhua; Wang, Hongbao; Fu, Siyi; Bei, Yihua; Chen, Yan; Che, Lin; Xu, Jiahong

    2016-05-01

    Exercise can induce physiological cardiac growth, which is featured by enlarged cardiomyocyte cell size and formation of new cardiomyocytes. Telocytes (TCs) are a recently identified distinct interstitial cell type, existing in many tissues and organs including heart. TCs have been shown to form a tandem with cardiac stem/progenitor cells in cardiac stem cell niches, participating in cardiac regeneration and repair. Although exercise-induced cardiac growth has been confirmed as an important way to promote cardiac regeneration and repair, the response of cardiac TCs to exercise is still unclear. In this study, 4 weeks of swimming training was used to induce robust healthy cardiac growth. Exercise can induce an increase in cardiomyocyte cell size and formation of new cardiomyocytes as determined by Wheat Germ Lectin and EdU staining respectively. TCs were identified by three immunofluorescence stainings including double labelling for CD34/vimentin, CD34/platelet-derived growth factor (PDGF) receptor-α and CD34/PDGF receptor-β. We found that cardiac TCs were significantly increased in exercised heart, suggesting that TCs might help control the activity of cardiac stem/progenitor cells, cardiomyocytes or endothelial cells. Adding cardiac TCs might help promote cardiac regeneration and renewal. PMID:26987685

  7. Level of dietary protein does not impact whole body protein turnover during an exercise induced energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: This study examined the effect of a high protein diet on whole body protein turnover during an exercise-induced energy deficit. A sustained energy deficit induced by energy intake restriction increases protein catabolism which can cause lean-body mass loss. A high-protein diet has be...

  8. Keeping children with exercise-induced asthma active.

    PubMed

    Milgrom, H; Taussig, L M

    1999-09-01

    Exercise-induced bronchospasm, exercise-induced bronchoconstriction, and exercise-induced asthma (EIA) are all terms used to describe the phenomenon of transient airflow obstruction associated with physical exertion. It is a prominent finding in children and young adults because of their greater participation in vigorous activities. The symptoms shortness of breath, cough, chest tightness, and wheezing normally follow the brief period of bronchodilation present early in the course of exercise. Bronchospasm typically arises within 10 to 15 minutes of beginning exercise, peaks 8 to 15 minutes after the exertion is concluded, and resolves about 60 minutes later, but it also may appear during sustained exertion. EIA occurs in up to 90% of asthmatics and 40% of patients with allergic rhinitis; among athletes and in the general population its prevalence is between 6% and 13%. EIA frequently goes undiagnosed. Approximately 9% of individuals with EIA have no history of asthma or allergy. Fifty percent of children with asthma who gave a negative history for EIA had a positive response to exercise challenge.6 Among high school athletes, 12% of subjects not considered to be at risk by history or baseline spirometry tested positive. Before the 1984 Olympic games, of 597 members of the US team, 67 (11%) were found to have EIA. Remarkably, only 26 had been previously identified, emphasizing the importance of screening for EIA even in well-conditioned individuals who appear to be in excellent health. The severity of bronchospasm in EIA is related to the level of ventilation, to heat and water loss from the respiratory tree, and also to the rate of airway rewarming and rehydration after the challenge. Postexercise decrease in the peak expiratory flow rate of normal children may be as much as 15%; therefore, only a decrease in excess of 15% should be viewed as diagnostic. EIA is usually provoked by a workload sufficient to produce 80% of maximum oxygen consumption; however, in

  9. Fat-soluble vitamin status in response to non-surgical weight loss in overweight post-menopausal women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is associated with an increased risk of fat soluble vitamin (FSV) deficiencies. The effect of dietary weight loss on FSV status is uncertain. We measured plasma concentrations of carotenoids, alpha-tocopherol, retinol, phylloquinone, and 25-hydroxyvitamin D (25(OH)D) in 112 overweight post-...

  10. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects.

    PubMed

    Kondo, M; Nakamura, Y; Ishida, Y; Shimada, S

    2015-11-01

    Exercise has a variety of beneficial effects on brain structure and function, such as hippocampal neurogenesis, mood and memory. Previous studies have shown that exercise enhances hippocampal neurogenesis, induces antidepressant effects and improves learning behavior. Brain serotonin (5-hydroxytryptamine, 5-HT) levels increase following exercise, and the 5-HT system has been suggested to have an important role in these exercise-induced neuronal effects. However, the precise mechanism remains unclear. In this study, analysis of the 5-HT type 3A receptor subunit-deficient (htr3a(-/-)) mice revealed that lack of the 5-HT type 3 (5-HT3) receptor resulted in loss of exercise-induced hippocampal neurogenesis and antidepressant effects, but not of learning enhancement. Furthermore, stimulation of the 5-HT3 receptor promoted neurogenesis. These findings demonstrate that the 5-HT3 receptor is the critical target of 5-HT action in the brain following exercise, and is indispensable for hippocampal neurogenesis and antidepressant effects induced by exercise. This is the first report of a pivotal 5-HT receptor subtype that has a fundamental role in exercise-induced morphological changes and psychological effects. PMID:25403840

  11. Exercise-induced bronchoconstriction in Tunisian elite athletes is underdiagnosed

    PubMed Central

    Sallaoui, Ridha; Zendah², Ines; Ghedira², Habib; Belhaouz³, Mohcine; Ghrairi³, Mourad; Amri³, Mohamed

    2011-01-01

    Many studies have shown an increased risk of developing exercise-induced bronchoconstriction among the athletic population, particularly at the elite level. Subjective methods for assessing exercise-induced bronchoconstriction such as surveys and questionnaires have been used but have resulted in an underestimation of the prevalence of airway dysfunction when compared with objective measurements. The aim of the present study was to compare the prevalence of exercise-induced bronchoconstriction among Tunisian elite athletes obtained using an objective method with that using a subjective method, and to discuss the possible causes and implications of the observed discrepancy. As the objective method we used spirometry before and after exercise and for the subjective approach we used a medical history questionnaire. All of the recruited 107 elite athletes responded to the questionnaire about respiratory symptoms and medical history and underwent a resting spirometry testing before and after exercise. Post-exercise spirometry revealed the presence of exercise-induced bronchoconstriction in 14 (13%) of the elite athletes, while only 1.8% reported having previously been diagnosed with asthma. In conclusion, our findings indicate that medical history-based diagnoses of exercise-induced bronchoconstriction lead to underestimations of true sufferers. PMID:24198569

  12. Circulating androgens in women: exercise-induced changes.

    PubMed

    Enea, Carina; Boisseau, Nathalie; Fargeas-Gluck, Marie Agnès; Diaz, Véronique; Dugué, Benoit

    2011-01-01

    Physical exercise is known to strongly stimulate the endocrine system in both sexes. Among these hormones, androgens (e.g. testosterone, androstenedione, dehydroepiandrosterone) play key roles in the reproductive system, muscle growth and the prevention of bone loss. In female athletes, excessive physical exercise may lead to disorders, including delay in the onset of puberty, amenorrhoea and premature osteoporosis. The free and total fractions of circulating androgens vary in response to acute and chronic exercise/training (depending on the type), but the physiological role of these changes is not completely understood. Although it is commonly accepted that only the free fraction of steroids has a biological action, this hypothesis has recently been challenged. Indeed, a change in the total fraction of androgen concentration may have a significant impact on cells (inducing genomic or non-genomic signalling). The purpose of this review, therefore, is to visit the exercise-induced changes in androgen concentrations and emphasize their potential effects on female physiology. Despite some discrepancies in the published studies (generally due to differences in the types and intensities of the exercises studied, in the hormonal status of the group of women investigated and in the methods for androgen determination), exercise is globally able to induce an increase in circulating androgens. This can be observed after both resistance and endurance acute exercises. For chronic exercise/training, the picture is definitely less clear and there are even circumstances where exercise leads to a decrease of circulating androgens. We suggest that those changes have significant impact on female physiology and physical performance. PMID:21142281

  13. A whey-protein supplement increases fat loss and spares lean muscle in obese subjects: a randomized human clinical study

    PubMed Central

    Frestedt, Joy L; Zenk, John L; Kuskowski, Michael A; Ward, Loren S; Bastian, Eric D

    2008-01-01

    Background This study evaluated a specialized whey fraction (Prolibra™, high in leucine, bioactive peptides and milk calcium) for use as a dietary supplement to enhance weight loss. Methods This was a randomized, double-blind, parallel-arm, 12-week study. Caloric intake was reduced 500 calories per day. Subjects consumed Prolibra or an isocaloric ready-to-mix beverage 20 minutes before breakfast and 20 minutes before dinner. Body fat and lean muscle tissue were measured by dual-energy x-ray absorptiometry (DEXA). Body weight and anthropometric measurements were recorded every 4 weeks. Blood samples were taken at the beginning and end of the study. Statistical analyses were performed on all subjects that completed (completer analysis) and all subjects that lost at least 2.25 kg of body weight (responder analysis). Within group significance was determined at P < 0.05 using a two-tailed paired t-test and between group significance was determined using one way analysis of covariance with baseline data as a covariate. Results Both groups lost a significant amount of weight and the Prolibra group tended to lose more weight than the control group; however the amount of weight loss was not significantly different between groups after 12 weeks. Prolibra subjects lost significantly more body fat compared to control subjects for both the completer (2.81 vs. 1.62 kg P = 0.03) and responder (3.63 vs. 2.11 kg, P = 0.01) groups. Prolibra subjects lost significantly less lean muscle mass in the responder group (1.07 vs. 2.41 kg, P = 0.02). The ratio of fat to lean loss (kg fat lost/kg lean lost) was much larger for Prolibra subjects for both completer (3.75 vs. 1.05) and responder (3.39 vs. 0.88) groups. Conclusion Subjects in both the control and treatment group lost a significant amount of weight with a 500 calorie reduced diet. Subjects taking Prolibra lost significantly more body fat and showed a greater preservation of lean muscle compared to subjects consuming the control

  14. Coping with Exercise-Induced Asthma in Sports.

    ERIC Educational Resources Information Center

    Katz, Roger M.

    1987-01-01

    This article reviews the history of research on exercise-induced asthma (EIA) and the pathophysiology of the condition, including its development and influencing factors. Four groups of drugs that are effective against EIA--theopyhlline, beta-adrenergic agents, cromolyn sodium, and anticholinergics--are discussed. (Author/CB)

  15. Exercise-induced asthma. What family physicians should do.

    PubMed Central

    D'Urzo, A.

    1995-01-01

    Exercise-induced asthma is described as a transitory increase in airway resistance during or after vigorous exercise. Nearly 90% of patients with chronic asthma and 40% of allergic nonasthmatic patients have the condition. Family physicians should try to educate patients about their asthma and, barring contraindications, encourage them to participate in regular physical activity. PMID:8563507

  16. EXERCISE-INDUCED PULMONARY HEMORRHAGE AFTER RUNNING A MARATHON

    EPA Science Inventory

    We report on a healthy 26-year-old male who had an exercise-induced pulmonary hemorrhage (EIPH) within 24 hours of running a marathon. There were no symptoms, abnormalities on exam, or radiographic infiltrates. He routinely participated in bronchoscopy research and the EIPH was e...

  17. Sleeve Gastrectomy Induces Loss of Weight and Fat Mass in Obese Rats, but Does Not Affect Leptin Sensitivity

    PubMed Central

    Stefater, Margaret A; Pérez-Tilve, Diego; Chambers, Adam P; Wilson-Pérez, Hilary E; Sandoval, Darleen A; Berger, José; Toure, Mouhamadoul; Tschöep, Matthias; Woods, Stephen C; Seeley, Randy J

    2010-01-01

    Background & Aims Surgical intervention produces sustainable weight loss and metabolic improvement in obese individuals. Vertical sleeve gastrectomy (VSG) produces dramatic, sustained weight loss; we investigated whether these changes result from improved sensitivity to leptin. Methods VSG was performed in Long-Evans rats with diet-induced obesity. Naïve or sham-operated rats, fed either ad libitum or pair-fed with the VSG group, were used as controls. Following surgery, body weights and food intake were monitored. We investigated energy expenditure, meal patterns, leptin sensitivity, and expression of pro-opiomelanocortin (POMC)/agouti-related peptide (AgRP)/neuropeptide Y (NPY) in the hypothalamus of the rats. Results We observed sustained losses in weight and body fat in male and female rats after VSG. Weight loss persisted after the disappearance of a transient, post-surgical food intake reduction. Resting energy expenditure was similar between control and VSG rats. VSG rats maintained their reduced body weights. However, they responded to a chronic food restriction challenge by overeating, which resulted in pre-restriction, rather than pre-VSG, body weights. Consistent with lower adiposity, VSG decreased plasma leptin levels. Although VSG slightly improved leptin’s anorectic action, the response was comparable to that observed in controls matched for adiposity by caloric restriction. Changes in hypothalamic neuropeptide expression were consistent with the lower body weight and lower leptin levels but cannot account for the sustained weight loss. Conclusions VSG causes sustained reduction in body weight, which results from loss of fat mass. The maintenance of weight loss observed did not result from changes in sensitivity to leptin. PMID:20226189

  18. DXA, bioelectrical impedance, ultrasonography and biometry for the estimation of fat and lean mass in cats during weight loss

    PubMed Central

    2012-01-01

    Background Few equations have been developed in veterinary medicine compared to human medicine to predict body composition. The present study was done to evaluate the influence of weight loss on biometry (BIO), bioimpedance analysis (BIA) and ultrasonography (US) in cats, proposing equations to estimate fat (FM) and lean (LM) body mass, as compared to dual energy x-ray absorptiometry (DXA) as the referenced method. For this were used 16 gonadectomized obese cats (8 males and 8 females) in a weight loss program. DXA, BIO, BIA and US were performed in the obese state (T0; obese animals), after 10% of weight loss (T1) and after 20% of weight loss (T2). Stepwise regression was used to analyze the relationship between the dependent variables (FM, LM) determined by DXA and the independent variables obtained by BIO, BIA and US. The better models chosen were evaluated by a simple regression analysis and means predicted vs. determined by DXA were compared to verify the accuracy of the equations. Results The independent variables determined by BIO, BIA and US that best correlated (p < 0.005) with the dependent variables (FM and LM) were BW (body weight), TC (thoracic circumference), PC (pelvic circumference), R (resistance) and SFLT (subcutaneous fat layer thickness). Using Mallows’Cp statistics, p value and r2, 19 equations were selected (12 for FM, 7 for LM); however, only 7 equations accurately predicted FM and one LM of cats. Conclusions The equations with two variables are better to use because they are effective and will be an alternative method to estimate body composition in the clinical routine. For estimated lean mass the equations using body weight associated with biometrics measures can be proposed. For estimated fat mass the equations using body weight associated with bioimpedance analysis can be proposed. PMID:22781317

  19. Acute Calcium Ingestion Attenuates Exercise-induced Disruption of Calcium Homeostasis

    PubMed Central

    Barry, Daniel W; Hansen, Kent C; Van Pelt, Rachael E; Witten, Michael; Wolfe, Pamela; Kohrt, Wendy M

    2011-01-01

    Purpose Exercise is associated with a decrease in bone mineral density under certain conditions. One potential mechanism is increased bone resorption due to an exercise-induced increase in parathyroid hormone (PTH), possibly triggered by dermal calcium loss. The purpose of this investigation was to determine whether calcium supplementation either before or during exercise attenuates exercise-induced increases in PTH and C-terminal telopeptide of type I collagen (CTX; a marker of bone resorption). Methods Male endurance athletes (n=20) completed three 35-km cycling time trials under differing calcium supplementation conditions: 1) 1000 mg calcium 20 minutes before exercise and placebo during, 2) placebo before and 250 mg calcium every 15 minutes during exercise (1000 mg total), or 3) placebo before and during exercise. Calcium was delivered in a 1000 mg/L solution. Supplementation was double-blinded and trials were performed in random order. PTH, CTX, bone-specific alkaline phosphatase (BAP; a marker of bone formation), and ionized calcium (iCa) were measured before and immediately after exercise. Results CTX increased and iCa decreased similarly in response to exercise under all test conditions. When compared to placebo, calcium supplementation before exercise attenuated the increase in PTH (55.8 ± 15.0 vs. 74.0 ± 14.2; mean ± SE; p=0.04); there was a similar trend (58.0 ± 17.4; p=0.07) for calcium supplementation during exercise. There were no effects of calcium on changes in CTX, BAP, and iCa. Conclusions Calcium supplementation before exercise attenuated the disruption of PTH. Further research is needed to determine the effects of repeated increases in PTH and CTX on bone (i.e., exercise training), and whether calcium supplementation can diminish any exercise-induced demineralization. PMID:20798655

  20. The role of exercise-induced myokines in muscle homeostasis and the defense against chronic diseases.

    PubMed

    Brandt, Claus; Pedersen, Bente K

    2010-01-01

    Chronic inflammation is involved in the pathogenesis of insulin resistance, atherosclerosis, neurodegeneration, and tumour growth. Regular exercise offers protection against type 2 diabetes, cardiovascular diseases, colon cancer, breast cancer, and dementia. Evidence suggests that the protective effect of exercise may to some extent be ascribed to the antiinflammatory effect of regular exercise. Here we suggest that exercise may exert its anti-inflammatory effect via a reduction in visceral fat mass and/or by induction of an anti-inflammatory environment with each bout of exercise. According to our theory, such effects may in part be mediated via muscle-derived peptides, so-called "myokines". Contracting skeletal muscles release myokines with endocrine effects, mediating direct anti-inflammatory effects, and/or specific effects on visceral fat. Other myokines work locally within the muscle and exert their effects on signalling pathways involved in fat oxidation and glucose uptake. By mediating anti-inflammatory effects in the muscle itself, myokines may also counteract TNF-driven insulin resistance. In conclusion, exercise-induced myokines appear to be involved in mediating both systemic as well as local anti-inflammatory effects. PMID:20224659

  1. The "love hormone" oxytocin regulates the loss and gain of the fat-bone relationship.

    PubMed

    Colaianni, Graziana; Sun, Li; Zaidi, Mone; Zallone, Alberta

    2015-01-01

    The involvement of oxytocin (OT) in bone metabolism is an interesting area of research that recently achieved remarkable results. Moreover, several lines of evidence have largely demonstrated that OT also participates in the regulation of energy metabolism. Hence, it has recently been determined that the posterior pituitary hormone OT directly regulates bone mass: mice lacking OT or OT receptor display severe osteopenia, caused by impaired bone formation. OT administration normalizes ovariectomy-induced osteopenia, bone marrow adiposity, body weight, and intra-abdominal fat depots in mice. This effect is mediated through inhibition of adipocyte precursor differentiation and reduction of adipocyte size. The exquisite role of OT in regulating the bone-fat connection adds another milestone to the biological evidence supporting the existence of a tight relationship between the adipose tissue and the skeleton. PMID:26042088

  2. Effect of cutting time, temperature, and calcium on curd moisture, whey fat losses, and curd yield by response surface methodology.

    PubMed

    Fagan, C C; Castillo, M; Payne, F A; O'Donnell, C P; O'Callaghan, D J

    2007-10-01

    Response surface methodology was used to study the effect of temperature, cutting time, and calcium chloride addition level on curd moisture content, whey fat losses, and curd yield. Coagulation and syneresis were continuously monitored using 2 optical sensors detecting light backscatter. The effect of the factors on the sensors' response was also examined. Retention of fat during cheese making was found to be a function of cutting time and temperature, whereas curd yield was found to be a function of those 2 factors and the level of calcium chloride addition. The main effect of temperature on curd moisture was to increase the rate at which whey was expelled. Temperature and calcium chloride addition level were also found to affect the light backscatter profile during coagulation whereas the light backscatter profile during syneresis was a function of temperature and cutting time. The results of this study suggest that there is an optimum firmness at which the gel should be cut to achieve maximum retention of fat and an optimum curd moisture content to maximize product yield and quality. It was determined that to maximize curd yield and quality, it is necessary to maximize firmness while avoiding rapid coarsening of the gel network and microsyneresis. These results could contribute to the optimization of the cheese-making process. PMID:17881671

  3. Loss of Body Weight and Fat and Improved Lipid Profiles in Obese Rats Fed Apple Pomace or Apple Juice Concentrate

    PubMed Central

    Cho, Kyung-Dong; Han, Chan-Kyu

    2013-01-01

    Abstract The purpose of this study was to investigate the influence of apple pomace (AP) and apple juice concentrate (AC) supplementation on body weight and fat loss as well as lipid metabolism in obese rats fed a high-fat diet. Diet-induced obese rats were assigned to three groups (n=8 for each group): high fat diet (HFD) control, HFD containing 10% (w/w) AP, and HFD containing 10% (w/w) AC. There was also a normal diet group (n=8). After 5 weeks, body weight gain, adipose tissue weight, serum and hepatic lipid profiles, liver morphology, and adipocyte size were measured. Body weight gain, white adipose tissue (WAT) weight, serum total cholesterol, low-density lipoprotein cholesterol and triglyceride concentrations, epididymal adipocyte size, and lesion scores were significantly lower and serum high-density lipoprotein cholesterol concentration and brown adipose tissue weights were significantly higher in the AP and AC groups compared with the HFD group. In addition, atherogenic indices in the AP and AC groups were significantly lower than in the HFD group. These results indicate that supplementing apple products such as AP and AC may help suppress body weight and WAT gain, as well as improve lipid profiles in diet-induced obese rats. PMID:23909905

  4. Exercise induces mitochondrial biogenesis after brain ischemia in rats.

    PubMed

    Zhang, Q; Wu, Y; Zhang, P; Sha, H; Jia, J; Hu, Y; Zhu, J

    2012-03-15

    Stroke is a major cause of death worldwide. Previous studies have suggested both exercise and mitochondrial biogenesis contribute to improved post-ischemic recovery of brain function. However, the exact mechanism underlying this effect is unclear. On the other hand, the benefit of exercise-induced mitochondrial biogenesis in brain has been confirmed. In this study, we attempted to determine whether treadmill exercise induces functional improvement through regulation of mitochondrial biogenesis after brain ischemia. We subjected adult male rats to ischemia, followed by either treadmill exercise or non-exercise and analyzed the effect of exercise on the amount of mitochondrial DNA (mtDNA), expression of mitochondrial biogenesis factors, and mitochondrial protein. In the ischemia-exercise group, only peroxisome proliferator activated receptor coactivator-1 (PGC-1) expression was increased significantly after 3 days of treadmill training. However, after 7 days of training, the levels of mtDNA, nuclear respiratory factor 1, NRF-1, mitochondrial transcription factor A, TFAM, and the mitochondrial protein cytochrome C oxidase subunit IV (COXIV) and heat shock protein-60 (HSP60) also increased above levels observed in non-exercised ischemic animals. These changes followed with significant changes in behavioral scores and cerebral infarct volume. The results indicate that exercise can promote mitochondrial biogenesis after ischemic injury, which may serve as a novel component of exercise-induced repair mechanisms of the brain. Understanding the molecular basis for exercise-induced neuroprotection may be beneficial in the development of therapeutic approaches for brain recovery from the ischemic injury. Based upon our findings, stimulation or enhancement of mitochondrial biogenesis may prove a novel neuroprotective strategy in the future. PMID:22266265

  5. Exercise-induced oxidative stress: glutathione supplementation and deficiency.

    PubMed

    Sen, C K; Atalay, M; Hänninen, O

    1994-11-01

    Glutathione (GSH) plays a central role in coordinating the synergism between different lipid- and aqueous-phase antioxidants. We documented 1) how exogenous GSH and N-acetylcysteine (NAC) may affect exhaustive exercise-induced changes in tissue GSH status, lipid peroxides [thiobarbituric acid-reactive substances (TBARS)], and endurance and 2) the relative role of endogenous GSH in the circumvention of exercise-induced oxidative stress by using GSH-deficient [L-buthionine-(S,R)-sulfoximine (BSO)-treated] rats. Intraperitoneal injection of GSH remarkably increased plasma GSH; exogenous GSH per se was an ineffective delivery agent of GSH to tissues. Repeated administration of GSH (1 time/day for 3 days) increased blood and kidney total GSH [TGSH; GSH+oxidized GSH (GSSG)]. Neither GSH nor NAC influenced endurance to exhaustion. NAC decreased exercise-induced GSH oxidation in the lung and blood. BSO decreased TGSH pools in the liver, lung, blood, and plasma by approximately 50% and in skeletal muscle and heart by 80-90%. Compared with control, resting GSH-deficient rats had lower GSSG in the liver, red gastrocnemius muscle, heart, and blood; similar GSSG/TGSH ratios in the liver, heart, lung, blood, and plasma; higher GSSG/TGSH ratios in the skeletal muscle; and more TBARS in skeletal muscle, heart, and plasma. In contrast to control, exhaustive exercise of GSH-deficient rats did not decrease TGSH in the liver, muscle, or heart or increase TGSH of plasma; GSSG of muscle, blood, or plasma; or TBARS of plasma or muscle. GSH-deficient rats had approximately 50% reduced endurance, which suggests a critical role of endogenous GSH in the circumvention of exercise-induced oxidative stress and as a determinant of exercise performance. PMID:7868431

  6. Exercise-induced anaphylaxis related to specific foods.

    PubMed

    Tilles, S; Schocket, A; Milgrom, H

    1995-10-01

    We describe the case, documented by challenge results, of a 16-year-old girl with exercise-induced anaphylaxis associated with eating pizza and a cheese sandwich. Patients in whom a specific coprecipitating food has been identified should avoid it for at least 12 hours before exercise. All patients should be instructed to avoid eating 6 to 8 hours before exercise, discontinue exercise at the first sign of symptoms, and exercise only with a companion prepared to administer epinephrine. PMID:7562280

  7. Frequent loss of heterozygosity and altered expression of the candidate tumor suppressor gene 'FAT' in human astrocytic tumors

    PubMed Central

    2009-01-01

    Background We had earlier used the comparison of RAPD (Random Amplification of Polymorphic DNA) DNA fingerprinting profiles of tumor and corresponding normal DNA to identify genetic alterations in primary human glial tumors. This has the advantage that DNA fingerprinting identifies the genetic alterations in a manner not biased for locus. Methods In this study we used RAPD-PCR to identify novel genomic alterations in the astrocytic tumors of WHO grade II (Low Grade Diffuse Astrocytoma) and WHO Grade IV (Glioblastoma Multiforme). Loss of heterozygosity (LOH) of the altered region was studied by microsatellite and Single Nucleotide Polymorphism (SNP) markers. Expression study of the gene identified at the altered locus was done by semi-quantitative reverse-transcriptase-PCR (RT-PCR). Results Bands consistently altered in the RAPD profile of tumor DNA in a significant proportion of tumors were identified. One such 500 bp band, that was absent in the RAPD profile of 33% (4/12) of the grade II astrocytic tumors, was selected for further study. Its sequence corresponded with a region of FAT, a putative tumor suppressor gene initially identified in Drosophila. Fifty percent of a set of 40 tumors, both grade II and IV, were shown to have Loss of Heterozygosity (LOH) at this locus by microsatellite (intragenic) and by SNP markers. Semi-quantitative RT-PCR showed low FAT mRNA levels in a major subset of tumors. Conclusion These results point to a role of the FAT in astrocytic tumorigenesis and demonstrate the use of RAPD analysis in identifying specific alterations in astrocytic tumors. PMID:19126244

  8. Continuous feedings of fortified human milk lead to nutrient losses of fat, calcium, and phosphorous

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Substantial losses of nutrients may occur during tube (gavage) feeding of fortified human milk. Our objective was to compare the losses of key macronutrients and minerals based on method of fortification, and gavage feeding method. We used clinically available gavage feeding systems and measured pre...

  9. Initial Metabolic State and Exercise-Induced Endotoxaemia Are Unrelated to Gastrointestinal Symptoms During Exercise

    PubMed Central

    Moncada-Jimènez, José; Plaisance, Eric P.; Mestek, Michael L.; Araya-Ramirez, Felipe; Ratcliff, Lance; Taylor, James K.; Grandjean, Peter W.; Aragonvargas, Luis F.

    2009-01-01

    The aim of the study was to investigate the association between the initial metabolic state and exercise-induced endotoxaemia on the appearance of gastrointestinal symptoms (GIS) during exercise. Eleven males (36.6 ± 4.9 yrs, 1.7 ± 0.1 m, 74.5 ± 7.7 kg, DEXA body fat % 17.2 ± 6.6, VO2max 57.4 ± 7.4 ml·kg-1·min-1) underwent two isoenergetic diets designed to change their initial metabolic status by either depleting or maintaining their hepatic and muscular glycogen content. These diets and accompanying exercise sessions were performed by each participant in the days before completing a laboratory-based duathlon (5-km run, 30-km cycling, 10-km run). Blood samples were obtained before, immediately and 1- and 2-h following the duathlon for determination of insulin (IN), glucagon (GL), endotoxin, aspartic aminotransferase (AST), and alanine aminotransferase (ALT) markers. GIS were assessed by survey before and after exercise. Diet content produced a different energy status as determined by macronutrient content and the IN/GL ratio (p < 0.05), and mild exercise-induced endotoxaemia was observed in both experimental duathlons. Regardless of the diet, the AST/ALT ratio following exercise and in the recovery phase indicated hepatocyte and liver parenchyma structural damage. In spite of GIS, no significant correlations between endotoxin levels and GIS were found. In conclusion, increased markers of endotoxaemia observed with the high-intensity exercise were unrelated to hepatic function and/or GIS before and after exercise. Key points Gastrointestinal symptoms before, during, and after a competition are reported by approximately 20%-50% of the athletes participating in endurance events such as marathon, cycling and triathlon. Energy status, exercise-induced endotoxaemia and liver structural damage might be related to gastrointestinal symptoms. In this study, gastrointestinal symptoms observed before and after endurance exercise were unrelated to endotoxin levels or

  10. Comparison of energy-restricted very low-carbohydrate and low-fat diets on weight loss and body composition in overweight men and women

    PubMed Central

    Volek, JS; Sharman, MJ; Gómez, AL; Judelson, DA; Rubin, MR; Watson, G; Sokmen, B; Silvestre, R; French, DN; Kraemer, WJ

    2004-01-01

    Objective To compare the effects of isocaloric, energy-restricted very low-carbohydrate ketogenic (VLCK) and low-fat (LF) diets on weight loss, body composition, trunk fat mass, and resting energy expenditure (REE) in overweight/obese men and women. Design Randomized, balanced, two diet period clinical intervention study. Subjects were prescribed two energy-restricted (-500 kcal/day) diets: a VLCK diet with a goal to decrease carbohydrate levels below 10% of energy and induce ketosis and a LF diet with a goal similar to national recommendations (%carbohydrate:fat:protein = ~60:25:15%). Subjects 15 healthy, overweight/obese men (mean ± s.e.m.: age 33.2 ± 2.9 y, body mass 109.1 ± 4.6 kg, body mass index 34.1 ± 1.1 kg/m2) and 13 premenopausal women (age 34.0 ± 2.4 y, body mass 76.3 ± 3.6 kg, body mass index 29.6 ± 1.1 kg/m2). Measurements Weight loss, body composition, trunk fat (by dual-energy X-ray absorptiometry), and resting energy expenditure (REE) were determined at baseline and after each diet intervention. Data were analyzed for between group differences considering the first diet phase only and within group differences considering the response to both diets within each person. Results Actual nutrient intakes from food records during the VLCK (%carbohydrate:fat:protein = ~9:63:28%) and the LF (~58:22:20%) were significantly different. Dietary energy was restricted, but was slightly higher during the VLCK (1855 kcal/day) compared to the LF (1562 kcal/day) diet for men. Both between and within group comparisons revealed a distinct advantage of a VLCK over a LF diet for weight loss, total fat loss, and trunk fat loss for men (despite significantly greater energy intake). The majority of women also responded more favorably to the VLCK diet, especially in terms of trunk fat loss. The greater reduction in trunk fat was not merely due to the greater total fat loss, because the ratio of trunk fat/total fat was also significantly reduced during the VLCK diet in

  11. Weight loss on an energy-restricted, low-fat, sugar-containing diet in overweight sedentary men.

    PubMed

    Drummond, Sandra; Dixon, Kathryn; Griffin, Jane; De Looy, Anne

    2004-06-01

    With the increasing prevalence of obesity in the United Kingdom, the search for an effective weight reducing diet is a priority in helping to reverse this trend. A 12-week dietary intervention study was carried out to test the effectiveness of an energy-restricted, low-fat, sugar-containing diet on weight loss in sedentary overweight men. The study also aimed to assess eating behaviour, to measure change in attitude towards sugar-containing foods and to measure the impact of the study on perceived quality of life. Subjects were recruited from three UK cities; Edinburgh, Birmingham and London. Seventy-six men, aged between 25 and 60 years, completed the study. Baseline diets were assessed by a 7-day diet diary. Compliance to the subsequent dietary advice was measured on four occasions post intervention, by 4-day diaries. Measures of body weight status were also monitored. Eating behaviour, attitudes towards sugar-containing foods and quality of life were assessed by questionnaire. Significant reductions in body weight (5.2%), body fat (11.2%) and waist:hip ratio (3%) were observed following reported dietary changes that included a reduction in reported energy intake of 3.2 MJ/day (770 kcal/day), a reduction in the percent energy from fat (from 38.1% to 26.2%), an increase in the percent energy from total carbohydrate (from 44.4% to 54%) and from protein (from 17.3% to 20.6%). Subjects scored relatively highly for dietary restraint and emotional eating, and were strongly influenced by external eating cues. On completion of the 12-week study, subjects had a more positive attitude towards sugar-containing foods and perceived an improved quality of life. It is concluded, therefore, that including sugar-containing foods in a weight-reducing diet may be an effective strategy to achieve a palatable, low-fat, high-carbohydrate diet, which promotes weight loss in overweight individuals. PMID:15369982

  12. The Curious Question of Exercise-Induced Pulmonary Edema

    PubMed Central

    Bates, Melissa L.; Farrell, Emily T.; Eldridge, Marlowe W.

    2011-01-01

    The question of whether pulmonary edema develops during exercise on land is controversial. Yet, the development of pulmonary edema during swimming and diving is well established. This paper addresses the current controversies that exist in the field of exercise-induced pulmonary edema on land and with water immersion. It also discusses the mechanisms by which pulmonary edema can develop during land exercise, swimming, and diving and the current gaps in knowledge that exist. Finally, this paper discusses how these fields can continue to advance and the areas where clinical knowledge is lacking. PMID:21660232

  13. Weight loss composition is one-fourth fat-free mass: a critical review and critique of this widely cited rule.

    PubMed

    Heymsfield, S B; Gonzalez, M C C; Shen, W; Redman, L; Thomas, D

    2014-04-01

    Maximizing fat loss while preserving lean tissue mass and function is a central goal of modern obesity treatments. A widely cited rule guiding expected loss of lean tissue as fat-free mass (FFM) states that approximately one-fourth of weight loss will be FFM (i.e. ΔFFM/ΔWeight = ∼0.25), with the remaining three-fourths being fat mass. This review examines the dynamic relationships between FFM, fat mass and weight changes that follow induction of negative energy balance with hypocaloric dieting and/or exercise. Historical developments in the field are traced with the 'Quarter FFM Rule' used as a framework to examine evolving concepts on obesity tissue, excess weight and what is often cited as 'Forbes' Rule'. Temporal effects in the fractional contribution of FFM to changes in body weight are examined as are lean tissue moderating effects such as ageing, inactivity and exercise that frequently accompany structured low-calorie diet weight loss protocols. Losses of lean tissue with dieting typically tend to be small, raising questions about study design, power and applied measurement method reliability. Our review elicits important questions related to the fractional loss of lean tissues with dieting and provides a foundation for future research on this topic. PMID:24447775

  14. Dairy foods in a moderate energy restricted diet do not enhance central fat, weight & intra-abdominal adipose tissue loss or reduce adipocyte size & inflammatory markers in overweight & obese adults; Controlled feeding study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Research on the role of dairy foods to enhance weight and fat loss when incorporated into a modest weight loss diet has had mixed results. Objective: A 15 week controlled feeding study to answer the question: do dairy foods enhance central fat and weight loss when incorporated in a mode...

  15. Food-dependent exercise-induced anaphylaxis: is wheat unique?

    PubMed

    Wong, Gabriel K; Krishna, Mamidipudi T

    2013-12-01

    This review draws comparisons between wheat-dependent exercise-induced anaphylaxis (WDEIA) and other food-dependent exercise-induced anaphylaxis (FDEIAs) and discusses the importance of co-factors in its pathophysiology. FDEIA remains an enigmatic condition since it was first described 30 years ago. The sporadic and unpredictable nature of its reactions has puzzled clinicians and scientists for decades, but recent studies on WDEIA have enlightened us about the pathophysiology of this condition. The identification of defined allergic epitopes such as Tri a 19, α-gliadin, β-gliadin and γ-gliadin in WDEIA enables it to become the perfect model for studying FDEIA, but WDEIA is by no means a unique condition. On a larger scale, FDEIA represents a crucial link between IgE-mediated and anaphylactoid reactions and provides supportive evidence for the concept of 'summation anaphylaxis' and the need to overcome the 'allergen threshold'. Future work should focus on identifying more of the FDEIA epitopes and understanding their distinct molecular properties. The development of a biomarker in order to identify patients susceptible to co-factor influences would be invaluable. PMID:24127054

  16. Exercise-Induced Oxidative Stress and Dietary Antioxidants

    PubMed Central

    Yavari, Abbas; Javadi, Maryam; Mirmiran, Parvin; Bahadoran, Zahra

    2015-01-01

    Context: Overproduction of reactive oxygen and nitrogen species during physical exercise, exercise induced oxidative stress and antioxidant supplementation is interesting and controversial concepts that have been considered during the past decades. Evidence Acquisition: In this review, we aimed to summarize current evidence in relation to antioxidant supplementation outcomes during exercise and physical activity. For this aim, we obtained relevant articles through searches of the Medline and PubMed databases between 1980 to 2013. Although major studies have indicated that antioxidants could attenuate biomarkers of exercise-induced oxidative stress and the use of antioxidant supplement is a common phenomenon among athletes and physically active people, there are some doubts regarding the benefits of these. Results: It seems that the best recommendations regarding antioxidants and exercise are having a balanced diet rich in natural antioxidants and phytochemicals. Conclusions: Regular consumption of various fresh fruits and vegetables, whole grains, legumes and beans, sprouts and seeds is an effective and safe way to meet all antioxidant requirements in physically active persons and athletes. PMID:25883776

  17. Effect of simulated weightlessness on exercise-induced anaerobic threshold

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Karst, G. M.; Kirby, C. R.; Goldwater, D. J.

    1986-01-01

    The effect of simulated weightlessness, induced by ten days of continuous bedrest (BR) in the -6 deg head-down position, on the exercise-induced anaerobic threshold (AT) was determined by comparing specific ventilatory and gas-exchange measurements during an incremental ergometer test performed before and after BR. The primary index for determining the exercise-induced AT values of each subject was visual identification of the workrate or oxygen uptake (VO2) at which the ratio of the expired minute ventilation volume (VE) to VO2 exhibited a systematic increase without a concomitant increase in the VE/VCO2 value. Following BR, the mean VO2max of the subjects decreased by 7.0 percent, and the AT decreased from a mean of 1.26 L/min VO2 before BR to 0.95 L/min VO2 after BR. The decrease in AT was manifested by a decrease in both absolute and relative workrates. The change in AT correlated significantly with the change in plasma volume but not with the change in VO2max. The results suggest that the reduction in AT cannot be completely explained by the reduction in VO2, and that the AT decrease is associated with the reduction in intravascular fluid volume.

  18. Acute versus chronic exercise-induced left-ventricular remodeling.

    PubMed

    Weiner, Rory B; Baggish, Aaron L

    2014-11-01

    Exercise-induced cardiac remodeling (EICR) is the process by which the heart adapts to the physiologic stress of exercise. Non-invasive cardiovascular imaging has led to advances in the understanding of EICR, with sport-specific changes in left-ventricular (LV) structure and function being described; however, the majority of data stem from cross-sectional and short-duration longitudinal studies. Due to the paucity of long-term longitudinal EICR studies, the time course of this process and any distinct differentiation between acute and chronic adaptations remain largely unexplored. In order to clarify the natural history of EICR, longer duration longitudinal study is required. Such work will determine whether exercise-induced changes in myocardial structure and function occur in discrete stages. Examination of prolonged exposures to exercise training will also be necessary to determine normative values across the age and training spectrums of athletic patients. This information will help to distinguish the boundary between physiology and pathology in athletic patients. PMID:25300444

  19. Identification of exercise-induced ischemia using QRS slopes.

    PubMed

    Firoozabadi, Reza; Gregg, Richard E; Babaeizadeh, Saeed

    2016-01-01

    In this work we studied a computer-aided approach using QRS slopes as unconventional ECG features to identify the exercise-induced ischemia during exercise stress testing and demonstrated that the performance is comparable to the experts' manual analysis using standard criteria involving ST-segment depression. We evaluated the performance of our algorithm using a database including 927 patients undergoing exercise stress tests and simultaneously collecting the ECG recordings and SPECT results. High resolution 12-lead ECG recordings were collected continuously throughout the rest, exercise, and recovery phases. Patients in the database were classified into three categories of moderate/severe ischemia, mild ischemia, and normal according to the differences in sum of the individual segment scores for the rest and stress SPECT images. Philips DXL 16-lead diagnostic algorithm was run on all 10-s segments of 12-lead ECG recordings for each patient to acquire the representative beats, ECG fiducial points from the representative beats, and other ECG parameters. The QRS slopes were extracted for each lead from the averaged representative beats and the leads with highest classification power were selected. We employed linear discriminant analysis and measured the performance using 10-fold cross-validation. Comparable performance of this method to the conventional ST-segment analysis exhibits the classification power of QRS slopes as unconventional ECG parameters contributing to improved identification of exercise-induced ischemia. PMID:26607407

  20. The protective effect of ketotifen in exercise-induced bronchospasm.

    PubMed

    Moreno, M V; Fernández, M; de la Cuesta, C G; Oehling, A

    1988-01-01

    The present study evaluates the protective action of ketotifen on exercise-induced bronchospasm in patients diagnosed with bronchial asthma of different aetiologies. The patients were classified in 2 groups. The first group with seasonal asthma was made up of patients with pollen hypersensitivity, while the second group with perennial asthma was made up of patients with bacterial aetiology or sensitivity to the Dermatophagoides mite. Spirometry and airway resistance measurements (in basal conditions, 5 to 10 minutes after a resistance test which consisted of 6 minutes' free running on a treadmill) was performed on each patient. Those patients in which significant spirometry or Raw alterations were detected received a 15-day treatment of ketotifen (a dose of 1 mg every 12 hours); after this time, the tests mentioned before were repeated. We found that in the seasonal asthma group, ketotifen was effective in protecting against exercise. However, we did not observe the same effect in the perennial asthma group. In the light of these results, we propose the possible existence of different mechanisms in triggering off exercise-induced bronchospasm, according to their aetiologies. PMID:3394595

  1. 'Fat girls' and 'big guys': gendered meanings of weight loss surgery.

    PubMed

    Newhook, Julia Temple; Gregory, Deborah; Twells, Laurie

    2015-06-01

    Over 80% of weight loss surgery (WLS) patients are women, yet gender is overwhelmingly absent in WLS research. This article discusses the findings of 54 interviews with twenty-one women and six men waiting for WLS in Newfoundland and Labrador, Canada. We critically examine the ways that gender shapes the meaning of WLS in these narratives. We explore gendered meanings in participants' perspectives on their embodied experiences before surgery, social support as they decided to undergo the procedure, and their expectations for their lives after WLS. We draw on feminist theory to explain how these findings counter the dominant gender-neutral medical model of obesity. PMID:25677753

  2. Effects of lorcaserin on fat and lean mass loss in obese and overweight patients without and with type 2 diabetes mellitus: the BLOSSOM and BLOOM-DM studies.

    PubMed

    Apovian, C; Palmer, K; Fain, R; Perdomo, C; Rubino, D

    2016-09-01

    Body composition was determined using dual-energy X-ray absorptiometry (DXA) in a subset of patients without (BLOSSOM) and with (BLOOM-DM) type 2 diabetes who received diet and exercise counselling along with either lorcaserin 10 mg twice daily or placebo. DXA scans were performed on study day 1 (baseline), week 24 and week 52. Baseline demographics of the subpopulations (without diabetes, n = 189; with diabetes, n = 63) were similar between studies and representative of their study populations. At week 52, patients without diabetes on lorcaserin lost significantly more fat mass relative to those on placebo (-12.06% vs -5.93%; p = 0.008). In patients with diabetes, fat mass was also decreased with lorcaserin relative to placebo (-9.87% vs -1.65%; p < 0.05). More fat mass was lost in the trunk region with lorcaserin compared with placebo (without diabetes: -3.31% vs -2.05%; with diabetes: -3.65% vs -0.36%). Weight loss with lorcaserin was associated with a greater degree of fat mass loss than lean mass loss, and most of the fat mass lost for patients without and with diabetes was from the central region of the body. PMID:27173586

  3. Resistance Training Preserves Fat-free Mass Without Impacting Changes in Protein Metabolism After Weight Loss in Older Women

    PubMed Central

    Campbell, Wayne W.; Haub, Mark D.; Wolfe, Robert R.; Ferrando, Arny A.; Sullivan, Dennis H.; Apolzan, John W.; Iglay, Heidi B.

    2015-01-01

    This study assessed the effects of resistance training (RT) on energy restriction–induced changes in body composition, protein metabolism, and the fractional synthesis rate of mixed muscle proteins (FSRm) in postmenopausal, overweight women. Sixteen women (age 68 ± 1 years, BMI 29 ± 1 kg/m2, mean ± s.e.m.) completed a 16-week controlled diet study. Each woman consumed 1.0 g protein/kg/day. At baseline (weeks B1–B3) and poststudy (weeks RT12–RT13), energy intake matched each subject’s need and during weeks RT1–RT11 was hypoenergetic by 2,092 kJ/day (500 kcal/day). From weeks RT1 to RT13, eight women performed RT 3 day/week (RT group) and eight women remained sedentary (SED group). RT did not influence the energy restriction–induced decrease in body mass (SED −5.8 ± 0.6 kg; RT −5.0 ± 0.2 kg) and fat mass (SED −4.1 ± 0.9 kg; RT −4.7 ± 0.5 kg). Fat-free mass (FFM) and total body water decreased in SED (−1.6 ± 0.4 and −2.1 ± 0.5 kg) and were unchanged in RT (−0.3 ± 0.4 and −0.4 ± 0.7 kg) (group-by-time, P ≤ 0.05 and P = 0.07, respectively). Protein–mineral mass did not change in either group (SED 0.4 ± 0.2 kg; RT 0.1 ± 0.4 kg). Nitrogen balance, positive at baseline (2.2 ± 0.3 g N/day), was unchanged poststudy. After body mass loss, postabsorptive (PA) and postprandial (PP) leucine turnover, synthesis, and breakdown decreased. Leucine oxidation and balance were not changed. PA and total (PA + PP) FSRm in the vastus lateralis were higher after weight loss. RT did not influence these protein metabolism responses. In summary, RT helps older women preserve FFM during body mass loss. The comparable whole-body nitrogen retentions, leucine kinetics, and FSRm between groups are consistent with the lack of differential protein–mineral mass change. PMID:19247271

  4. Gut microbiota composition correlates with changes in body fat content due to weight loss.

    PubMed

    Remely, M; Tesar, I; Hippe, B; Gnauer, S; Rust, P; Haslberger, A G

    2015-01-01

    Genetics, lifestyle, and dietary habits contribute to metabolic syndrome, but also an altered gut microbiota has been identified. Based on this knowledge it is suggested that host bacterial composition tends to change in response to dietary factors and weight loss. The aim of this study was to identify bacteria affecting host metabolism in obesity during weight loss and to correlate them with changes of the body composition obtained from bioelectrical impedance analysis (BIA). We recruited obese individuals receiving a dietary intervention according DACH (German, Austrian, and Swiss Society of Nutrition) reference values and guidelines for 'prevention and therapy of obesity' of DAG e.V., DDG, DGE e.V., and DGEM e.V. over three months. Faecal microbiota and BIA measurements were conducted at three time points, before, during, and after the intervention. Gut microbiota was analysed on the basis of 16S rDNA with quantitative real time PCR. Additionally, a food frequency questionnaire with questions to nutritional behaviour, lifestyle, and physical activity was administered before intervention. After weight reduction, obese individuals showed a significant increase of total bacterial abundance. The ratio of Firmicutes/Bacteroidetes significantly decreased during intervention. Lactobacilli significantly increased between the first and the second time point. These differences also correlated with differences in weight percentage. During the intervention period Clostridium cluster IV increased significantly between the second and the third time point. In contrast Clostridium cluster XIVa showed a decreased abundance. The dominant butyrate producer, Faecalibacterium prausnitzii, significantly increased as did the abundance of the butyryl-CoA: acetate CoA-transferase gene. Archaea and Akkermansia were significantly more prevalent after weight reduction. Our results show a clear difference in the gut bacterial composition before and after dietary intervention with a rapid

  5. Effect of dietary fat/carbohydrate ratio on progression of alcoholic liver injury and bone loss in rats fed via total enteral nutrition (TEN)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few studies have examined the effects of diet on the dynamics of injury progression or on alcohol-induced bone loss. In the current study, 300 g male Sprague-Dawley rats (N = 10/group) were treated with alcohol containing liquid diets via a stomach tube. Dietary fat content was either 5% (high carbo...

  6. Effects of total and regional fat loss on plasma CRP and IL-6 in overweight and obese, older adults with knee osteoarthritis

    PubMed Central

    Beavers, Kristen M.; Beavers, Daniel P.; Newman, Jovita J.; Anderson, Andrea M.; Loeser, Richard F.; Nicklas, Barbara J.; Lyles, Mary F.; Miller, Gary D.; Mihalko, Shannon L.; Messier, Stephen P.

    2014-01-01

    Objective To describe associations between total and regional body fat mass loss and reduction of systemic levels of inflammation (C-reactive protein (CRP) and interleukin-6 (IL-6)) in obese, older adults with osteoarthritis, undergoing intentional weight loss. Design Data come from a single-blind, 18-month, randomized controlled trial in adults (age: 65.6±6.2; BMI: 33.6±3.7) with knee osteoarthritis. Participants were randomized to diet-induced weight loss plus exercise (D+E; n=150), diet-induced weight loss-only (D; n=149), or exercise-only (E; n=151). Total body and region-specific (abdomen and thigh) fat mass were measured at baseline and 18 months. High-sensitivity CRP and IL-6 were measured at baseline, six and 18 months. Intervention effects were assessed using mixed models and associations between inflammation and adiposity were compared using logistic and mixed linear regression models. Results Intentional total body fat mass reduction was associated with significant reductions in log-adjusted CRP (β=0.06 (95% CI=0.04,0.08) mg/L) and IL-6 (β=0.02 (95% CI=0.01,0.04) pg/mL). Loss of abdominal fat volume was also associated with reduced inflammation, independent of total body fat mass; although models containing measures of total adiposity yielded the best fit. The odds of achieving clinically desirable levels of CRP (<3.0 mg/L) and IL-6 (<2.5 pg/mL) were 3.8 (95% CI=1.6,8.9) and 2.2 (95% CI=1.1,4.6), respectively, with 5% total weight and fat mass loss. Conclusions Achievement of clinically desirable levels of CRP and IL-6 more than double with intentional 5% loss of total body weight and fat mass. Global, rather than regional, measures of adiposity are better predictors of change in inflammatory burden. Clinical Trial Registration Number NCT00381290 PMID:25450847

  7. Evidence for a novel serum factor distinct from zinc alpha-2 glycoprotein that promotes body fat loss early in the development of cachexia.

    PubMed

    Byerley, Lauri O; Lee, Sang Ho; Redmann, Steve; Culberson, Cathy; Clemens, Mark; Lively, Mark O

    2010-01-01

    We provide evidence that a factor other than the previously identified lipid mobilizing factor, zinc alpha-2 glycoprotein, promotes lipolysis in the MCA-induced sarcoma-bearing cachexia model. Cachexia is characterized by progressive loss of adipose tissue and skeletal muscle without a concurrent increase in food intake to restore lost tissue stores. We compared tumor-bearing ad lib fed (TB) animals to nontumor bearing ad lib fed (NTB) animals or nontumor-bearing pair-fed (PF) animals at various time points throughout development of tumor derived cachexia. Prior to cachexia, the TB animals lost more than 10 +/- 0.7% of their body fat before losing protein mass and decreasing their food intake. Fat loss occurred because adipocyte size, not number, was reduced. Increased turnover of palmitate and significantly higher serum triglyceride levels prior to cachexia were further indicators of an early loss of lipid from the adipocytes. Yet, circulating levels of norepinephrine, epinephrine, TNF-alpha, and zinc alpha-2 glycoprotein were not increased prior to the loss of fat mass. We provide evidence for a serum factor(s), other than zinc alpha-2 glycoprotein, that stimulates release of glycerol from 3T3-L1 adipocytes and promotes the loss of stored adipose lipid prior to the loss of lean body mass in this model. PMID:20432169

  8. Exercise-Induced Syncope in a Sedentary Woman

    PubMed Central

    Rickard, John W.; Zakaria, Sammy

    2014-01-01

    Vasovagal (neurocardiogenic) syncope, a subtype of reflex syncope, has many well-known triggers. However, we found no previous report of vasovagal exercise-induced syncope in a sedentary person. We present the case of a 35-year-old sedentary woman who experienced vasovagal syncope as she underwent an exercise stress test. Results of evaluations, including resting and stress electrocardiography and echocardiography, were normal. Her presentation is highly unusual: syncope has typically not been associated with exercise except in young athletes, people with structural heart abnormalities, or people with a prolonged QT syndrome. To our knowledge, this is the first report of vasovagal syncope associated with exercise in a sedentary patient who had normal cardiac and electrophysiologic function. We suggest possible physiologic mechanisms and diagnostic strategies. PMID:25593529

  9. Moyamoya disease presenting with paroxysmal exercise-induced dyskinesia.

    PubMed

    Lyoo, Chul Hyoung; Kim, Dong Joon; Chang, Hyuk; Lee, Myung Sik

    2007-10-01

    We report a patient with moyamoya disease presenting with paroxysmal exercise-induced dyskinesia (PED). A 31-year-old lathe man developed recurrent attacks of paroxysmal hemichorea. The attacks always affected his left limbs and occurred either after several hours of working or while playing football. The duration of attacks ranged from 30 min to 4h. Attacks were not provoked by sudden movements, consumption of coffee or alcohol, hyperventilation, emotional stress, exposure to cold or passive movement. An MRI of the brain showed no parenchymal lesions. However, (99m)Tc-ethylcysteine dimer SPECT study showed hypoperfusion in the right striatum. Digital subtraction angiography showed stenosis of the right internal carotid and middle cerebral artery with prominent basal collaterals, which was compatible with moyamoya disease. Imaging studies of the cerebral arteries should be done in patients with clinical features of PED in order to detect possible cases of moyamoya disease. PMID:16952479

  10. Exercise-induced endobronchial hemorrhage: a rare clinical presentation.

    PubMed

    Kruavit, Anuk; Jain, Mukesh; Fielding, David; Heraganahally, Subash

    2016-07-01

    The phenomenon of exercise-induced hemoptysis is still relatively underrecognised in humans. We report a case of recurrent hemoptysis brought on by vigorous exercise. A 33-year-old male presented with several episodes of intermittent fresh small-volume hemoptysis reproducible on vigorous exercise. There was no other significant medical history other than a past history of testicular tumor, treated with orchidectomy and adjuvant Bleomycin-based chemotherapy 1 year prior to onset of symptoms. Computed tomography scan showed no major abnormalities other than few small bilateral non-specific nodules. Computed tomography aortogram and pulmonary angiogram, ventilation/perfusion scan, and echocardiography yielded no significant abnormalities. Infectious, autoimmune disease, coagulopathy, vasculitis, and malignant causes were excluded. Bronchoscopy showed possible endobronchial bleeding. This phenomenon is thought to be due to vulnerability of pulmonary capillaries to stress or mechanical failure during strenuous exercise at high cardiorespiratory workload. PMID:27512564

  11. Exercise-induced mitochondrial dysfunction: a myth or reality?

    PubMed

    Ostojic, Sergej M

    2016-08-01

    Beneficial effects of physical activity on mitochondrial health are well substantiated in the scientific literature, with regular exercise improving mitochondrial quality and quantity in normal healthy population, and in cardiometabolic and neurodegenerative disorders and aging. However, several recent studies questioned this paradigm, suggesting that extremely heavy or exhaustive exercise fosters mitochondrial disturbances that could permanently damage its function in health and disease. Exercise-induced mitochondrial dysfunction (EIMD) might be a key proxy for negative outcomes of exhaustive exercise, being a pathophysiological substrate of heart abnormalities, chronic fatigue syndrome (CFS) or muscle degeneration. Here, we overview possible factors that mediate negative effects of exhaustive exercise on mitochondrial function and structure, and put forward alternative solutions for the management of EIMD. PMID:27389587

  12. Familial Paroxysmal Exercise-Induced Dystonia: Atypical Presentation of Autosomal Dominant GTP-Cyclohydrolase 1 Deficiency

    ERIC Educational Resources Information Center

    Dale, Russell C.; Melchers, Anna; Fung, Victor S. C.; Grattan-Smith, Padraic; Houlden, Henry; Earl, John

    2010-01-01

    Paroxysmal exercise-induced dystonia (PED) is one of the rarer forms of paroxysmal dyskinesia, and can occur in sporadic or familial forms. We report a family (male index case, mother and maternal grandfather) with autosomal dominant inheritance of paroxysmal exercise-induced dystonia. The dystonia began in childhood and was only ever induced…

  13. Exploring the Relationship between Exercise-Induced Arousal and Cognition Using Fractionated Response Time

    ERIC Educational Resources Information Center

    Chang, Yu-Kai; Etnier, Jennifer L.; Barella, Lisa A.

    2009-01-01

    Although a generally positive effect of acute exercise on cognitive performance has been demonstrated, the specific nature of the relationship between exercise-induced arousal and cognitive performance remains unclear. This study was designed to identify the relationship between exercise-induced arousal and cognitive performance for the central…

  14. Early loss of bone mineral density is correlated with a gain of fat mass in patients starting a protease inhibitor containing regimen: the prospective Lipotrip study

    PubMed Central

    2013-01-01

    Background HIV-infected patients starting antiretroviral treatment (ART) experience deep and early disorders in fat and bone metabolism, leading to concomitant changes in fat mass and bone mineral density. Methods We conducted a prospective study in treatment-naive HIV-infected patients randomized to receive two nucleoside reverse transcriptase inhibitors in combination with either a protease inhibitor (PI) or a non-nucleosidic reverse transcriptase inhibitor (NNRTI), to evaluate early changes in body composition, bone mineral density and metabolic markers as differentially induced by antiretroviral therapies. We measured changes in markers of carbohydrate, of fat and bone metabolism, and, using dual-emission X-ray absorptiometry (DXA), body composition and bone mineral density (BMD). Complete data on changes between baseline and after 21 months treatment were available for 35 patients (16 in the PI group and 19 in the NNRTI group). Results A significant gain in BMI and in total and lower limb fat mass was recorded only in patients receiving PI. A loss of lumbar BMD was observed in both groups, being higher with PI. Plasma markers of bone metabolism (alkaline phosphatase, osteocalcin, collagen crosslaps) and levels of parathormone and of 1,25diOH-vitamin D3 significantly increased in both groups, concomitant with a decline in 25OH-vitamin D3. Lipids and glucose levels increased in both groups but rise in triglyceride was more pronounced with PI. A correlation between loss of BMD and gain of fat mass is observed in patients starting PI. Conclusions We evidenced an early effect of ART on lipid and bone metabolisms. PI lead to a significant gain in fat mass correlated with a sharp drop in BMD but active bone remodelling is evident with all antiretroviral treatments, associated with low vitamin D levels and hyperparathyroidism. In parallel, signs of metabolic restoration are evident. However, early increases in lean and fat mass, triglycerides, waist circumference and

  15. High-fat diet causes bone loss in young mice by promoting osteoclastogenesis through alteration of the bone marrow environment.

    PubMed

    Shu, Lei; Beier, Eric; Sheu, Tzong; Zhang, Hengwei; Zuscik, Michael J; Puzas, Edward J; Boyce, Brendan F; Mooney, Robert A; Xing, Lianping

    2015-04-01

    Obesity is a severe health problem in children, afflicting several organ systems including bone. However, the role of obesity on bone homeostasis and bone cell function in children has not been studied in detail. Here we used young mice fed a high-fat diet (HFD) to model childhood obesity and investigate the effect of HFD on the phenotype of cells within the bone marrow environment. Five-week-old male mice were fed a HFD for 3, 6, and 12 weeks. Decreased bone volume was detected after 3 weeks of HFD treatment. After 6 and 12 weeks, HFD-exposed mice had less bone mass and increased osteoclast numbers. Bone marrow cells, but not spleen cells, from HFD-fed mice had increased osteoclast precursor frequency, elevated osteoclast formation, and bone resorption activity, as well as increased expression of osteoclastogenic regulators including RANKL, TNF, and PPAR-gamma. Bone formation rate and osteoblast and adipocyte numbers were also increased in HFD-fed mice. Isolated bone marrow cells also had a corresponding elevation in the expression of positive regulators of osteoblast and adipocyte differentiation. Our findings indicate that in juvenile mice, HFD-induced bone loss is mainly due to increased osteoclast bone resorption by affecting the bone marrow microenvironment. Thus, targeting osteoclast formation may present a new therapeutic approach for bone complications in obese children. PMID:25673503

  16. Effect of dietary fat and residues on fecal loss of sterols and on their microbial degradation in cystic fibrosis.

    PubMed

    Leroy, C; Lepage, G; Morin, C L; Bertrand, J M; Dufour-Larue, O; Roy, C C

    1986-09-01

    Although various etiologic factors have been implicated, the mechanism responsible for bile acid malabsorption in CF remains unknown. Eight CF children studied twice on a normal diet supplemented with pancreatic enzymes and once during a one-month period of Vivonex administered by continuous nasogastric infusion were compared to age-matched controls. On the fat and residue-free elemental diet, there was a modest decrease in steatorrhea and no change in the daily excretion of nitrogen and neutral sterols. However, normalization of bile acid output (485.6 +/- 65.0 to 160.6 +/- 29.2 mg/24 hr) to control levels (150.2 +/- 60.7) was noted. Diminished microbial degradation of both neutral and acidic sterols and a smaller amount of bile acids adsorbed to decreased residues were also found. The data do not support the possibility of a bile acid ileal transport defect and suggest that the most important single factor responsible for the intraluminal sequestration of bile acids in CF is dietary residues. Because of significant ongoing losses of nitrogen and lipids, pancreatic enzymes should be given to CF patients on elemental diets. PMID:3089744

  17. Association of severe insulin resistance with both loss of limb fat and elevated serum tumor necrosis factor receptor levels in HIV lipodystrophy.

    PubMed

    Mynarcik, D C; McNurlan, M A; Steigbigel, R T; Fuhrer, J; Gelato, M C

    2000-12-01

    HIV-lipodystrophy (HIV-LD) is characterized by the loss of body fat from the limbs and face, an increase in truncal fat, insulin resistance, and hyperlipidemia, factors placing affected patients at increased risk for vascular disease. This study evaluated insulin sensitivity and inflammatory status associated with HIV-LD and provides suggestions about its etiology. Insulin sensitivity and immune activation markers were assessed in 12 control subjects and 2 HIV-positive groups, 14 without and 15 with LD syndrome. Peripheral insulin sensitivity (mostly skeletal muscle) was determined with the hyperinsulinemic-euglycemic clamp. Circulating insulin-like growth factor (IGF) binding protein-1 (IGFBP-1) and free fatty acid (FFA) levels, and their response to insulin infusion were indicative of insulin responsiveness of liver and adipose tissue, respectively. Serum levels of soluble type 2 tumor necrosis factor-alpha (TNF-alpha) receptor (sTNFR2) were used as an indicator of immune activation. HIV-LD study subjects had significantly reduced (twofold) peripheral insulin sensitivity, but normal levels of FFA and reduced levels of IGFBP-1, relative to the nonlipodystrophy groups, indicating that the loss of insulin sensitivity was more pronounced in skeletal muscle than in liver or fat. The significant loss of peripheral fat in the HIV-LD group (34%; p <.05) closely correlated with the reduced peripheral insulin sensitivity (p =. 0001). Levels of sTNFR2 were elevated in all HIV-infected study subjects, but they were significantly higher in those with lipodystrophy than without, and sTNFR2 levels strongly correlated with the reduction in insulin sensitivity (p =.0001). Loss of peripheral fat, normal levels of FFA, and reduced levels of IGFBP-1 indicate that insulin resistance in HIV-LD is distinct from type 2 diabetes and obesity. The relationship between the degree of insulin resistance and sTNFR2 levels suggests an inflammatory stimulus is contributing to the development of

  18. Association between exercise-induced change in body composition and change in cardiometabolic risk factors in postmenopausal South Asian women.

    PubMed

    Lesser, Iris A; Guenette, Jordan A; Hoogbruin, Amandah; Mackey, Dawn C; Singer, Joel; Gasevic, Danijela; Lear, Scott A

    2016-09-01

    The South Asian population suffers from a high prevalence of type 2 diabetes and cardiovascular disease (CVD). A unique obesity phenotype of elevated visceral adipose tissue (VAT) is associated with CVD risk among South Asians. Exercise-induced reduction in VAT and body fat is an effective mechanism to improve cardiometabolic risk factors but this has not been shown in South Asians. Whether exercise-induced changes in measurements such as waist circumference (WC) are independently related to changes in cardiometabolic risk factors in South Asians is unknown. Multi-slice computed tomography scanning was used to assess VAT, cardiometabolic risk factors through a fasting blood sample, and body fat using dual-energy X-ray absorptiometry. Forty- nine postmenopausal South Asian women who participated in two 12-week aerobic exercise programs were included. Bivariate correlations were used to assess associations between change in cardiometabolic risk factors and change in body composition. Regression analyses were conducted with change in glucose, insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) as dependent variables and change in body composition as independent variables of interest. There were significant associations between changes in fasting insulin, glucose, and HOMA-IR with change in VAT. The association between change in VAT and these cardiometabolic risk factors was independent of change in other body composition variables of interest. South Asian women should be encouraged to engage in aerobic activity to reduce their risk of type 2 diabetes and CVD, and physicians should be aware of improvements in glucose regulation with exercise training not observed through reductions in WC. PMID:27507007

  19. Subcutaneous and Segmental Fat Loss with and without Supportive Supplements in Conjunction with a Low-Calorie High Protein Diet in Healthy Women

    PubMed Central

    Falcone, Paul H.; Tai, Chih Yin; Carson, Laura R.; Joy, Jordan M.; Mosman, Matt M.; Vogel, Roxanne M.; McCann, Tyler R.; Crona, Kevin P.; Griffin, J. Daniel; Kim, Michael P.; Moon, Jordan R.

    2015-01-01

    Background Weight loss benefits of multi-ingredient supplements in conjunction with a low-calorie, high-protein diet in young women are unknown. Therefore, the purpose of this study was to investigate the effects of a three-week low-calorie diet with and without supplementation on body composition. Methods Thirty-seven recreationally-trained women (n = 37; age = 27.1 ± 4.2; height = 165.1 ± 6.4; weight = 68.5 ± 10.1; BMI = 25.1 ± 3.4) completed one of the following three-week interventions: no change in diet (CON); a high-protein, low-calorie diet supplemented with a thermogenic, conjugated linoleic acid (CLA), a protein gel, and a multi-vitamin (SUP); or the high-protein diet with isocaloric placebo supplements (PLA). Before and after the three-week intervention, body weight, %Fat via dual X-ray absorptiometry (DXA), segmental fat mass via DXA, %Fat via skinfolds, and skinfold thicknesses at seven sites were measured. Results SUP and PLA significantly decreased body weight (SUP: PRE, 70.47 ± 8.01 kg to POST, 67.51 ± 8.10 kg; PLA: PRE, 67.88 ± 12.28 kg vs. POST, 66.38 ± 11.94 kg; p ≤ 0.05) with a greater (p ≤ 0.05) decrease in SUP than PLA or CON. SUP and PLA significantly decreased %Fat according to DXA (SUP: PRE, 34.98 ± 7.05% to POST, 32.99 ± 6.89%; PLA: PRE, 34.22 ± 6.36% vs. POST, 32.69 ± 5.84%; p ≤ 0.05), whereas only SUP significantly decreased %Fat according to skinfolds (SUP: PRE, 27.40 ± 4.09% to POST, 24.08 ± 4.31%; p ≤ 0.05). SUP significantly (p ≤ 0.05) decreased thicknesses at five skinfolds (chest, waist, hip, subscapular, and tricep) compared to PLA, but not at two skinfolds (axilla and thigh). Conclusions The addition of a thermogenic, CLA, protein, and a multi-vitamin to a three-week low-calorie diet improved weight loss, total fat loss and subcutaneous fat loss, compared to diet alone. PMID:25875200

  20. Intermittent Fasting Promotes Fat Loss With Lean Mass Retention, Increased Hypothalamic Norepinephrine Content, and Increased Neuropeptide Y Gene Expression in Diet-Induced Obese Male Mice.

    PubMed

    Gotthardt, Juliet D; Verpeut, Jessica L; Yeomans, Bryn L; Yang, Jennifer A; Yasrebi, Ali; Roepke, Troy A; Bello, Nicholas T

    2016-02-01

    Clinical studies indicate alternate-day, intermittent fasting (IMF) protocols result in meaningful weight loss in obese individuals. To further understand the mechanisms sustaining weight loss by IMF, we investigated the metabolic and neural alterations of IMF in obese mice. Male C57/BL6 mice were fed a high-fat diet (HFD; 45% fat) ad libitum for 8 weeks to promote an obese phenotype. Mice were divided into four groups and either maintained on ad libitum HFD, received alternate-day access to HFD (IMF-HFD), and switched to ad libitum low-fat diet (LFD; 10% fat) or received IMF of LFD (IMF-LFD). After 4 weeks, IMF-HFD (∼13%) and IMF-LFD (∼18%) had significantly lower body weights than the HFD. Body fat was also lower (∼40%-52%) in all diet interventions. Lean mass was increased in the IMF-LFD (∼12%-13%) compared with the HFD and IMF-HFD groups. Oral glucose tolerance area under the curve was lower in the IMF-HFD (∼50%), whereas the insulin tolerance area under the curve was reduced in all diet interventions (∼22%-42%). HPLC measurements of hypothalamic tissue homogenates indicated higher (∼55%-60%) norepinephrine (NE) content in the anterior regions of the medial hypothalamus of IMF compared with the ad libitum-fed groups, whereas NE content was higher (∼19%-32%) in posterior regions in the IMF-LFD group only. Relative gene expression of Npy in the arcuate nucleus was increased (∼65%-75%) in IMF groups. Our novel findings indicate that intermittent fasting produces alterations in hypothalamic NE and neuropeptide Y, suggesting the counterregulatory processes of short-term weight loss are associated with an IMF dietary strategy. PMID:26653760

  1. The Effect of Passive Heat Stress and Exercise-Induced Dehydration on the Compensatory Reserve During Simulated Hemorrhage.

    PubMed

    Gagnon, Daniel; Schlader, Zachary J; Adams, Amy; Rivas, Eric; Mulligan, Jane; Grudic, Gregory Z; Convertino, Victor A; Howard, Jeffrey T; Crandall, Craig G

    2016-09-01

    Compensatory reserve represents the proportion of physiological responses engaged to compensate for reductions in central blood volume before the onset of decompensation. We hypothesized that compensatory reserve would be reduced by hyperthermia and exercise-induced dehydration, conditions often encountered on the battlefield. Twenty healthy males volunteered for two separate protocols during which they underwent lower-body negative pressure (LBNP) to hemodynamic decompensation (systolic blood pressure <80 mm Hg). During protocol #1, LBNP was performed following a passive increase in core temperature of ∼1.2°C (HT) or a normothermic time-control period (NT). During protocol #2, LBNP was performed following exercise during which: fluid losses were replaced (hydrated), fluid intake was restricted and exercise ended at the same increase in core temperature as hydrated (isothermic dehydrated), or fluid intake was restricted and exercise duration was the same as hydrated (time-match dehydrated). Compensatory reserve was estimated with the compensatory reserve index (CRI), a machine-learning algorithm that extracts features from continuous photoplethysmograph signals. Prior to LBNP, CRI was reduced by passive heating [NT: 0.87 (SD 0.09) vs. HT: 0.42 (SD 0.19) units, P <0.01] and exercise-induced dehydration [hydrated: 0.67 (SD 0.19) vs. isothermic dehydrated: 0.52 (SD 0.21) vs. time-match dehydrated: 0.47 (SD 0.25) units; P <0.01 vs. hydrated]. During subsequent LBNP, CRI decreased further and its rate of change was similar between conditions. CRI values at decompensation did not differ between conditions. These results suggest that passive heating and exercise-induced dehydration limit the body's physiological reserve to compensate for further reductions in central blood volume. PMID:27183303

  2. Diaphragmatic breathing reduces exercise-induced oxidative stress.

    PubMed

    Martarelli, Daniele; Cocchioni, Mario; Scuri, Stefania; Pompei, Pierluigi

    2011-01-01

    Diaphragmatic breathing is relaxing and therapeutic, reduces stress, and is a fundamental procedure of Pranayama Yoga, Zen, transcendental meditation and other meditation practices. Analysis of oxidative stress levels in people who meditate indicated that meditation correlates with lower oxidative stress levels, lower cortisol levels and higher melatonin levels. It is known that cortisol inhibits enzymes responsible for the antioxidant activity of cells and that melatonin is a strong antioxidant; therefore, in this study, we investigated the effects of diaphragmatic breathing on exercise-induced oxidative stress and the putative role of cortisol and melatonin hormones in this stress pathway. We monitored 16 athletes during an exhaustive training session. After the exercise, athletes were divided in two equivalent groups of eight subjects. Subjects of the studied group spent 1 h relaxing performing diaphragmatic breathing and concentrating on their breath in a quiet place. The other eight subjects, representing the control group, spent the same time sitting in an equivalent quite place. Results demonstrate that relaxation induced by diaphragmatic breathing increases the antioxidant defense status in athletes after exhaustive exercise. These effects correlate with the concomitant decrease in cortisol and the increase in melatonin. The consequence is a lower level of oxidative stress, which suggests that an appropriate diaphragmatic breathing could protect athletes from long-term adverse effects of free radicals. PMID:19875429

  3. In vivo indomethacin reverse exercise-induced immunosuppression in rats.

    PubMed

    Asselin, P; Benquet, C; Krzystyniak, K; Brousseau, P; Savard, R; Fournier, M

    1996-01-01

    The effect of oral indomethacin on the immunosuppressive effect of exercise was examined in exercised untrained female Wistar rats immunized with sheep red blood cell (SRBC) antigens. Intensity of the 1 h exercise was controlled by 0-50 kPa air pressure, generated by a compressor located at the bottom of a water tank, during continuous swimming of the rats, previously immunized with SRBC. After 48-72 h, depending on the ip (intraperitoneal) or iv (intravenous) route of SRBC immunization, the exercise suppressed humoral PFC response and augmented phagocytosis of peritoneum macrophages. These effects occurred only when exercise was performed at 48 h after antigen injection. Animals receiving indomethacin, however, did not show any exercise-related suppression of the PFC response. The data suggest a relationship between exercise-induced immunosuppression and possible increased in vivo prostaglandin synthesis during the intense exercise. Overall, exercise-related suppression of humoral PFC response was dependent on the intensity of the exercise, was time specific, and was reversible by pharmacological blockade of the cyclooxygenase pathway of prostaglandin synthesis. PMID:9023588

  4. Lycium barbarum polysaccharides reduce exercise-induced oxidative stress.

    PubMed

    Shan, Xiaozhong; Zhou, Junlai; Ma, Tao; Chai, Qiongxia

    2011-01-01

    The purpose of the present study was to investigate the effects of Lycium barbarum polysaccharides (LBP) on exercise-induced oxidative stress in rats. Rats were divided into four groups, i.e., one control group and three LBP treated groups. The animals received an oral administration of physiological saline or LBP (100, 200 and 400 mg/kg body weight) for 28 days. On the day of the exercise test, rats were required to run to exhaustion on the treadmill. Body weight, endurance time, malondialdehyde (MDA), super oxide dismutase (SOD) and glutathione peroxidase (GPX) level of rats were measured. The results showed that the body weight of rats in LBP treated groups were not significantly different from that in the normal control group before and after the experiment (P > 0.05). After exhaustive exercise, the mean endurance time of treadmill running to exhaustion of rats in LBP treated groups were significantly prolonged compared with that in the normal control group. MDA levels of rats in LBP treated groups were significantly decreased compared with that in the normal control group (P < 0.05). SOD and GPX levels of rats in LBP treated groups were significantly increased compared with that in the normal control group (P < 0.05). Together, these results indicate that LBP was effective in preventing oxidative stress after exhaustive exercise. PMID:21541044

  5. Exercise-induced effects on a gym atmosphere.

    PubMed

    Žitnik, M; Bučar, K; Hiti, B; Barba, Ž; Rupnik, Z; Založnik, A; Žitnik, E; Rodrìguez, L; Mihevc, I; Žibert, J

    2016-06-01

    We report results of analysis of a month-long measurement of indoor air and environment quality parameters in one gym during sporting activities such as football, basketball, volleyball, badminton, boxing, and fitness. We have determined an average single person's contribution to the increase of temperature, humidity, and dust concentration in the gym air volume of 12500 m(3) : during 90-min exercise performed at an average heart rate of 143 ± 10 bpm, a single person evaporated 0.94 kg of water into the air by sweating, contributed 0.03 K to the air temperature rise and added 1.5 μg/m(3) and 5 ng/m(3) to the indoor concentration of inhalable particles (PM10 ) and Ca concentration, respectively. As the breathing at the observed exercise intensity was about three times faster with respect to the resting condition and as the exercise-induced PM10 concentration was about two times larger than outdoors, a sportsman in the gym would receive about a sixfold higher dose of PM10 inside than he/she would have received at rest outside. PMID:26095910

  6. Exercise-Induced Systemic Venous Hypertension in the Fontan Circulation.

    PubMed

    Navaratnam, Devaraj; Fitzsimmons, Samantha; Grocott, Michael; Rossiter, Harry B; Emmanuel, Yaso; Diller, Gerard-Paul; Gordon-Walker, Timothy; Jack, Sandy; Sheron, Nick; Pappachan, John; Pratap, Jayant Nick; Vettukattil, Joseph J; Veldtman, Gruschen

    2016-05-15

    Increasingly end-organ injury is being demonstrated late after institution of the Fontan circulation, particularly liver fibrosis and cirrhosis. The exact mechanisms for these late phenomena remain largely elusive. Hypothesizing that exercise induces precipitous systemic venous hypertension and insufficient cardiac output for the exercise demand, that is, a possible mechanism for end-organ injury, we sought to demonstrate the dynamic exercise responses in systemic venous perfusion (SVP) and concurrent end-organ perfusion. Ten stable Fontan patients and 9 control subjects underwent incremental cycle ergometry-based cardiopulmonary exercise testing. SVP was monitored in the right upper limb, and regional tissue oxygen saturation was monitored in the brain and kidney using near-infrared spectroscopy. SVP rose profoundly in concert with workload in the Fontan group, described by the regression equation 15.97 + 0.073 watts per mm Hg. In contrast, SVP did not change in healthy controls. Regional renal (p <0.01) and cerebral tissue saturations (p <0.001) were significantly lower and decrease more rapidly in Fontan patients. We conclude that in a stable group of adult patients with Fontan circulation, high-intensity exercise was associated with systemic venous hypertension and reduced systemic oxygen delivery. This physiological substrate has the potential to contribute to end-organ injury. PMID:27032711

  7. Exercise-induced asthma--clinical, physiological, and therapeutic implications.

    PubMed

    Godfrey, S

    1975-07-01

    Exercise provokes acute airways obstruction, maximum shortly after stopping, in virtually all asthmatic patients. The severity of this exercise-induced asthma (EIA) depends upon the type of exercise, with running being the most asthmogenic, swimming and walking the least, and cycling intermediate even with the same metabolic stress. The duration and severity of the exercise also affect the amount of EIA, the maximum amount of being obtained after 6 to 8 min of running hard enough to raise the heart rate to 180 beats per minute (bpm) in children or 140 bpm in adults. EIA is not the result of hyperventilation or blood gas changes and appears to depend on the release of relatively short-lived transmitter agents during the exercise period. EIA can be prevented by premedication with bronchodilators, especially with sympathomimetics. Cromolyn sodium is not a bronchodilator but inhibits EIA in most subjects if given before the exercise. EIA can also be inhibited by atropine and alpha adrenergic blockers in some patients, but by steroids in only a minority of cases. Exercise testing provides a good model for study of the physiology and pharmacology of clinical asthma, and is some guide to prognosis, but it must be properly standardized and the important differences must be appreciated. PMID:805807

  8. Improvement after training of children with exercise-induced asthma.

    PubMed

    Svenonius, E; Kautto, R; Arborelius, M

    1983-01-01

    Fifty children with exercise-induced asthma (EIA) volunteered to take part in a study of the influence of training on EIA. 1) Ten children did not change physical activity. 2) Twelve children trained after premedication with salbutamol inhalations. 3) Thirteen children trained after premedication with disodium chromoglicate (DSCG) and used that drug for treatment. 4) Fifteen children trained in their own regimen, commonly after premedication with salbutamol. Their training programme (groups 2-3) consisted of high load exercise periods of two minutes interrupted by intervals of rest for two minutes during 30 minutes followed by interval swimming for another 30 minutes, twice a week for 3-4 months. Before the training period the degree of EIA was tested with a battery of lung function tests before and after running for 6 minutes on a treadmill at heart rate 170. EIA after training was measured applying the same procedure. Cardiocirculatory performance was evaluated before and after training with work on a cycle ergometer and expressed as W/kg body weight at heart rate 170. The children in groups 2, 3 and 4 improved their physical working capacity by 11% (p less than 0.01), 21% and 11%, respectively, but no improvement was found in group 1. Significant improvements in EIA after the training periods were found in all training groups, but basal asthma improved most in group 3, probably due to the basal treatment with DSCG. PMID:6407276

  9. Exercise-induced hormesis and skeletal muscle health.

    PubMed

    Ji, Li Li; Kang, Chounghun; Zhang, Yong

    2016-09-01

    Hormesis refers to the phenomenon that an exposure or repeated exposures of a toxin can elicit adaptive changes within the organism to resist to higher doses of toxin with reduced harm. Skeletal muscle shows considerable plasticity and adaptions in response to a single bout of acute exercise or chronic training, especially in antioxidant defense capacity and metabolic functions mainly due to remodeling of mitochondria. It has thus been hypothesized that contraction-induced production of reactive oxygen species (ROS) may stimulate the hormesis-like adaptations. Furthermore, there has been considerable evidence that select ROS such as hydrogen peroxide and nitric oxide, or even oxidatively degraded macromolecules, may serve as signaling molecules to stimulate such hermetic adaptations due to the activation of redox-sensitive signaling pathways. Recent research has highlighted the important role of nuclear factor (NF) κB, mitogen-activated protein kinase (MAPK), and peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), along with other newly discovered signaling pathways, in some of the most vital biological functions such as mitochondrial biogenesis, antioxidant defense, inflammation, protein turnover, apoptosis, and autophagy. The inability of the cell to maintain proper redox signaling underlies mechanisms of biological aging, during which inflammatory and catabolic pathways prevail. Research evidence and mechanisms connecting exercise-induced hormesis and redox signaling are reviewed. PMID:26916558

  10. Metabolic consequences of exercise-induced muscle damage.

    PubMed

    Tee, Jason C; Bosch, Andrew N; Lambert, Mike I

    2007-01-01

    Exercise-induced muscle damage (EIMD) is commonly experienced following either a bout of unaccustomed physical activity or following physical activity of greater than normal duration or intensity. The mechanistic factor responsible for the initiation of EIMD is not known; however, it is hypothesised to be either mechanical or metabolic in nature. The mechanical stress hypothesis states that EIMD is the result of physical stress upon the muscle fibre. In contrast, the metabolic stress model predicts that EIMD is the result of metabolic deficiencies, possibly through the decreased action of Ca(2+)-adenosine triphosphatase. Irrespective of the cause of the damage, EIMD has a number of profound metabolic effects. The most notable metabolic effects of EIMD are decreased insulin sensitivity, prolonged glycogen depletion and an increase in metabolic rate both at rest and during exercise. Based on current knowledge regarding the effects that various types of damaging exercise have on muscle metabolism, a new model for the initiation of EIMD is proposed. This model states that damage initiation may be either metabolic or mechanical, or a combination of both, depending on the mode, intensity and duration of exercise and the training status of the individual. PMID:17887809

  11. Differential Effects of Bariatric Surgery Versus Exercise on Excessive Visceral Fat Deposits.

    PubMed

    Wu, Fu-Zong; Huang, Yi-Luan; Wu, Carol C; Wang, Yen-Chi; Pan, Hsiang-Ju; Huang, Chin-Kun; Yeh, Lee-Ren; Wu, Ming-Ting

    2016-02-01

    The aim of the present study was to compare differential impacts of bariatric surgery and exercise-induced weight loss on excessive abdominal and cardiac fat deposition.Excessive fat accumulation around the heart may play an important role in the pathogenesis of cardiovascular disease. Recent evidences have suggested that bariatric surgery results in relatively less decrease in epicardial fat compared with abdominal visceral fat and paracardial fat.Sixty-four consecutive overweight or obese subjects were enrolled in the study. Clinical characteristics and metabolic profiles were recorded. The volumes of abdominal visceral adipose tissue (AVAT), abdominal subcutaneous adipose tissue (ASAT), epicardial (EAT), and paracardial adipose tissue (PAT) were measured by computed tomography in the bariatric surgery group (N = 25) and the exercise group (N = 39) at baseline and 3 months after intervention. Subjects in both the surgery and exercise groups showed significant reduction in body mass index (15.97%, 7.47%), AVAT (40.52%, 15.24%), ASAT (31.40, 17.34%), PAT (34.40%, 12.05%), and PAT + EAT (22.31%, 17.72%) (all P < 0.001) after intervention compared with baseline. In both the groups, the decrease in EAT was small compared with the other compartments (P < 0.01 in both groups). Compared with the exercise group, the surgery group had greater loss in abdominal and cardiac visceral adipose tissue (AVAT, ASAT, PAT, EAT+PAT) (P < 0.001), but lesser loss in EAT (P = 0.037).Compared with the exercise group, bariatric surgery results in significantly greater percentage loss of excessive fat deposits except for EAT. EAT, but not PAT, was relatively preserved despite weight reduction in both the groups. The physiological impact of persistent EAT deserves further investigation. PMID:26844473

  12. Calcium plus vitamin D3 supplementation facilitated Fat loss in overweight and obese college students with very-low calcium consumption: a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Recent evidence suggests that higher calcium and/or vitamin D intake may be associated with lower body weight and better metabolic health. Due to contradictory findings from intervention trials, we investigated the effect of calcium plus vitamin D3 (calcium+D) supplementation on anthropometric and metabolic profiles during energy restriction in healthy, overweight and obese adults with very-low calcium consumption. Methods Fifty-three subjects were randomly assigned in an open-label, randomized controlled trial to receive either an energy-restricted diet (−500 kcal/d) supplemented with 600 mg elemental calcium and 125 IU vitamin D3 or energy restriction alone for 12 weeks. Repeated measurements of variance were performed to evaluate the differences between groups for changes in body weight, BMI, body composition, waist circumference, and blood pressures, as well as in plasma TG, TC, HDL, LDL, glucose and insulin concentrations. Results Eighty-one percent of participants completed the trial (85% from the calcium + D group; 78% from the control group). A significantly greater decrease in fat mass loss was observed in the calcium + D group (−2.8±1.3 vs.-1.8±1.3 kg; P=0.02) than in the control group, although there was no significant difference in body weight change (P>0.05) between groups. The calcium + D group also exhibited greater decrease in visceral fat mass and visceral fat area (P<0.05 for both). No significant difference was detected for changes in metabolic variables (P>0.05). Conclusion Calcium plus vitamin D3 supplementation for 12 weeks augmented body fat and visceral fat loss in very-low calcium consumers during energy restriction. Trial registration ClinicalTrials.gov (NCT01447433, http://clinicaltrials.gov/). PMID:23297844

  13. Exercise-induced neuroprotection in the spastic Han Wistar rat: the possible role of brain-derived neurotrophic factor.

    PubMed

    Van Kummer, Brooke H; Cohen, Randy W

    2015-01-01

    Moderate aerobic exercise has been shown to enhance motor skills and protect the nervous system from neurodegenerative diseases, like ataxia. Our lab uses the spastic Han Wistar rat as a model of ataxia. Mutant rats develop forelimb tremor and hind limb rigidity and have a decreased lifespan. Our lab has shown that exercise reduced Purkinje cell degeneration and delayed motor dysfunction, significantly increasing lifespan. Our study investigated how moderate exercise may mediate neuroprotection by analyzing brain-derived neurotrophic factor (BDNF) and its receptor TrkB. To link BDNF to exercise-induced neuroprotection, mutant and normal rats were infused with the TrkB antagonist K252a or vehicle into the third ventricle. During infusion, rats were subjected to moderate exercise regimens on a treadmill. Exercised mutants receiving K252a exhibited a 21.4% loss in Purkinje cells compared to their controls. Cerebellar TrkB expression was evaluated using non-drug-treated mutants subjected to various treadmill running regimens. Running animals expressed three times more TrkB than sedentary animals. BDNF was quantified via Sandwich ELISA, and cerebellar expression was found to be 26.6% greater in mutant rats on 7-day treadmill exercise regimen compared to 30 days of treadmill exercise. These results suggest that BDNF is involved in mediating exercise-induced neuroprotection. PMID:25710032

  14. Exercise-induced hypoalgesia - interval versus continuous mode.

    PubMed

    Kodesh, Einat; Weissman-Fogel, Irit

    2014-07-01

    Aerobic exercise at approximately 70% of maximal aerobic capacity moderately reduces pain sensitivity and attenuates pain, even after a single session. If the analgesic effects depend on exercise intensity, then high-intensity interval exercise at 85% of maximal aerobic capacity should further reduce pain. The aim of this study was to explore the exercise-induced analgesic effects of high-intensity interval aerobic exercise and to compare them with the analgesic effects of moderate continuous aerobic exercise. Twenty-nine young untrained healthy males were randomly assigned to aerobic-continuous (70% heart rate reserve (HRR)) and interval (4 × 4 min at 85% HRR and 2 min at 60% HRR between cycles) exercise modes, each lasting 30 min. Psychophysical pain tests, pressure and heat pain thresholds (HPT), and tonic heat pain (THP) were conducted before and after exercise sessions. Repeated measures ANOVA was used for data analysis. HPT increased (p = 0.056) and THP decreased (p = 0.013) following exercise unrelated to exercise type. However, the main time effect (pre-/postexercise) was a trend of increased HPT (45.6 ± 1.9 °C to 46.2 ± 1.8 °C; p = 0.082) and a significant reduction in THP (from 50.7 ± 25 to 45.9 ± 25.4 numeric pain scale; p = 0.043) following interval exercise. No significant change was found for the pressure pain threshold following either exercise type. In conclusion, interval exercise (85% HRR) has analgesic effects on experimental pain perception. This, in addition to its cardiovascular, muscular, and metabolic advantages may promote its inclusion in pain management programs. PMID:24773287

  15. Modulating exercise-induced hormesis: Does less equal more?

    PubMed

    Peake, Jonathan M; Markworth, James F; Nosaka, Kazunori; Raastad, Truls; Wadley, Glenn D; Coffey, Vernon G

    2015-08-01

    Hormesis encompasses the notion that low levels of stress stimulate or upregulate existing cellular and molecular pathways that improve the capacity of cells and organisms to withstand greater stress. This notion underlies much of what we know about how exercise conditions the body and induces long-term adaptations. During exercise, the body is exposed to various forms of stress, including thermal, metabolic, hypoxic, oxidative, and mechanical stress. These stressors activate biochemical messengers, which in turn activate various signaling pathways that regulate gene expression and adaptive responses. Historically, antioxidant supplements, nonsteroidal anti-inflammatory drugs, and cryotherapy have been favored to attenuate or counteract exercise-induced oxidative stress and inflammation. However, reactive oxygen species and inflammatory mediators are key signaling molecules in muscle, and such strategies may mitigate adaptations to exercise. Conversely, withholding dietary carbohydrate and restricting muscle blood flow during exercise may augment adaptations to exercise. In this review article, we combine, integrate, and apply knowledge about the fundamental mechanisms of exercise adaptation. We also critically evaluate the rationale for using interventions that target these mechanisms under the overarching concept of hormesis. There is currently insufficient evidence to establish whether these treatments exert dose-dependent effects on muscle adaptation. However, there appears to be some dissociation between the biochemical/molecular effects and functional/performance outcomes of some of these treatments. Although several of these treatments influence common kinases, transcription factors, and proteins, it remains to be determined if these interventions complement or negate each other, and whether such effects are strong enough to influence adaptations to exercise. PMID:25977451

  16. Exercise-induced oxidative stress and hypoxic exercise recovery.

    PubMed

    Ballmann, Christopher; McGinnis, Graham; Peters, Bridget; Slivka, Dustin; Cuddy, John; Hailes, Walter; Dumke, Charles; Ruby, Brent; Quindry, John

    2014-04-01

    Hypoxia due to altitude diminishes performance and alters exercise oxidative stress responses. While oxidative stress and exercise are well studied, the independent impact of hypoxia on exercise recovery remains unknown. Accordingly, we investigated hypoxic recovery effects on post-exercise oxidative stress. Physically active males (n = 12) performed normoxic cycle ergometer exercise consisting of ten high:low intensity intervals, 20 min at moderate intensity, and 6 h recovery at 975 m (normoxic) or simulated 5,000 m (hypoxic chamber) in a randomized counter-balanced cross-over design. Oxygen saturation was monitored via finger pulse oximetry. Blood plasma obtained pre- (Pre), post- (Post), 2 h post- (2Hr), 4 h post- (4Hr), and 6 h (6Hr) post-exercise was assayed for Ferric Reducing Ability of Plasma (FRAP), Trolox Equivalent Antioxidant Capacity (TEAC), Lipid Hydroperoxides (LOOH), and Protein Carbonyls (PC). Biopsies from the vastus lateralis obtained Pre and 6Hr were analyzed by real-time PCR quantify expression of Heme oxygenase 1 (HMOX1), Superoxide Dismutase 2 (SOD2), and Nuclear factor (euthyroid-derived2)-like factor (NFE2L2). PCs were not altered between trials, but a time effect (13 % Post-2Hr increase, p = 0.044) indicated exercise-induced blood oxidative stress. Plasma LOOH revealed only a time effect (p = 0.041), including a 120 % Post-4Hr increase. TEAC values were elevated in normoxic recovery versus hypoxic recovery. FRAP values were higher 6Hr (p = 0.045) in normoxic versus hypoxic recovery. Exercise elevated gene expression of NFE2L2 (20 % increase, p = 0.001) and SOD2 (42 % increase, p = 0.003), but hypoxic recovery abolished this response. Data indicate that recovery in a hypoxic environment, independent of exercise, may alter exercise adaptations to oxidative stress and metabolism. PMID:24384982

  17. Exercise-induced albuminuria is related to metabolic syndrome.

    PubMed

    Greenberg, Sharon; Shenhar-Tsarfaty, Shani; Rogowski, Ori; Shapira, Itzhak; Zeltser, David; Weinstein, Talia; Lahav, Dror; Vered, Jaffa; Tovia-Brodie, Oholi; Arbel, Yaron; Berliner, Shlomo; Milwidsky, Assi

    2016-06-01

    Microalbuminuria (MA) is a known marker for endothelial dysfunction and future cardiovascular events. Exercise-induced albuminuria (EiA) may precede the appearance of MA. Associations between EiA and metabolic syndrome (MS) have not been assessed so far. Our aim was to investigate this association in a large sample of apparently healthy individuals with no baseline albuminuria. This was a cross-sectional study of 2,027 adults with no overt cardiovascular diseases who took part in a health survey program and had no baseline MA. Diagnosis of MS was based on harmonized criteria. All patients underwent an exercise test (Bruce protocol), and urinary albumin was measured before and after the examination. Urinary albumin-to-creatinine ratio (ACR) values before and after exercise were 0.40 (0.21-0.89) and 1.06 (0.43-2.69) mg/g for median (interquartile range) respectively. A total of 394 (20%) subjects had EiA; ACR rose from normal rest values (0.79 mg/g) to 52.28 mg/g after exercise (P < 0.001); this effect was not shown for the rest of the study population. EiA was related to higher prevalence of MS (13.8% vs. 27.1%, P < 0.001), higher metabolic equivalents (P < 0.001), higher baseline blood pressure (P < 0.001), and higher levels of fasting plasma glucose, triglycerides, and body mass index (P < 0.001). Multivariate binary logistic regression model showed that subjects with MS were 98% more likely to have EiA (95% confidence interval: 1.13-3.46, P = 0.016). In conclusion, EiA in the absence of baseline MA is independently related to MS. PMID:27076648

  18. Air quality and temperature effects on exercise-induced bronchoconstriction.

    PubMed

    Rundell, Kenneth W; Anderson, Sandra D; Sue-Chu, Malcolm; Bougault, Valerie; Boulet, Louis-Philippe

    2015-04-01

    Exercise-induced bronchoconstriction (EIB) is exaggerated constriction of the airways usually soon after cessation of exercise. This is most often a response to airway dehydration in the presence of airway inflammation in a person with a responsive bronchial smooth muscle. Severity is related to water content of inspired air and level of ventilation achieved and sustained. Repetitive hyperpnea of dry air during training is associated with airway inflammatory changes and remodeling. A response during exercise that is related to pollution or allergen is considered EIB. Ozone and particulate matter are the most widespread pollutants of concern for the exercising population; chronic exposure can lead to new-onset asthma and EIB. Freshly generated emissions particulate matter less than 100 nm is most harmful. Evidence for acute and long-term effects from exercise while inhaling high levels of ozone and/or particulate matter exists. Much evidence supports a relationship between development of airway disorders and exercise in the chlorinated pool. Swimmers typically do not respond in the pool; however, a large percentage responds to a dry air exercise challenge. Studies support oxidative stress mediated pathology for pollutants and a more severe acute response occurs in the asthmatic. Winter sport athletes and swimmers have a higher prevalence of EIB, asthma and airway remodeling than other athletes and the general population. Because of fossil fuel powered ice resurfacers in ice rinks, ice rink athletes have shown high rates of EIB and asthma. For the athlete training in the urban environment, training during low traffic hours and in low traffic areas is suggested. PMID:25880506

  19. [Exercise-induced airway obstruction in asthmatic children and adolescents].

    PubMed

    Zapletal, A; Zbojan, J; Pohanka, V

    1992-03-01

    In 115 asymptomatic asthmatic children and adolescents (age 6-18 years) there was studied the magnitude of airway obstruction, induced by various physical efforts and assessed from the recording of maximum expiratory flow-volume curves and in some patients by "specific" airway conductance measurement in a body plethysmograph. The effects of 5 minutes free running outdoors, 5 minutes of exercise on a bicycle ergometer (2 watts/kg of body weight), routine swimming training in swimming pool and of forced expiration maneuver on the magnitude of airway obstruction were assessed. The most frequent and largest degree of airway obstruction was observed after 5 min. free running outdoors (heart rate after running 160-200/min). The obstruction was revealed in 80-100% asthmatics in various groups. The chosen lung function parameters showed exercise-induced airway obstruction in the same patients in various proportions as well as the magnitude of the obstruction. Following free running outdoors the values of maximum expiratory flow at 25% of vital capacity and "specific" airway conductance were most reduced. Spontaneous retreat of obstruction was observed in the course of 2 hours. The physical exercise on a bicycle ergometer was a small stimulus in inducing of airway obstruction. The swimming in a pool did not provoke any obstruction. In 10% of our asthmatics airway obstruction was observed following forced expiration maneuver. Airway obstruction induced by 5 minutes free running outdoors and assessed best by flow-volume curves appeared as a suitable test in the assessment of airway hyperresponsiveness. PMID:1591810

  20. Noninvasive profiling of exercise-induced hypoxemia in competitive cyclists.

    PubMed

    Siegler, Jason C; Robergs, Robert A; Faria, Eric W; Wyatt, Frank B; McCarthy, Jason

    2007-01-01

    The purpose of this case study was to profile maximal exercise and the incidence of exercise-induced arterial hypoxemia (EIAH) at three different altitudes within a group of competitive cyclists residing and training at 1,500 m. Ten male cyclists (category I or II professional road cyclists: ages, 27.7 +/- 6.1; weight, 69.9 +/- 6.9 kg) participated in three randomly assigned VO2max tests at sea level (SL), 1,500 m and 3000 m. Arterial saturation (pulse oximetry), ventilation, and power output (PO) were recorded continuously throughout the test. The SaO2 percentages at VO2max were significantly higher at SL when compared with 1500 m (p < 0.001); however, no difference was observed between VO2max values at either altitude (SL: 72.3 +/- 2.5 mL.kg-1.min-1, 1,500 m: 70.6 +/- 2.3 mL.kg-1.min-1), only when compared with 3,000 m: 63.9 +/- 2.1 mL.kg-1.min-1, p < 0.021. Percent SaO2 did correspond with maximal PO, and there was an overall main effect observed between POs as they continually declined from SL to 3,000 m (SL: 403.3 +/- 10.6 W; 1,500 m: 376.1 +/- 9.8 W; 3,000 m: 353.9 +/- 7.8 W; p < 0.0001). The results of this case study revealed that training and residing at 1,500 m did not reduce the incidence of EIAH during maximal exercise at 1,500 m for this selected group of cyclists. PMID:17365952

  1. Hyperthermia, dehydration, and osmotic stress: unconventional sources of exercise-induced reactive oxygen species.

    PubMed

    King, Michelle A; Clanton, Thomas L; Laitano, Orlando

    2016-01-15

    Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume. PMID:26561649

  2. Restoration of fluid balance after exercise-induced dehydration: effects of alcohol consumption.

    PubMed

    Shirreffs, S M; Maughan, R J

    1997-10-01

    The effect of alcohol consumption on the restoration of fluid and electrolyte balance after exercise-induced dehydration [2.01 +/- 0.10% (SD) of body mass] was investigated. Drinks containing 0, 1, 2, and 4% alcohol were consumed over 60 min beginning 30 min after the end of exercise; a different beverage was consumed in each of four trials. The volume consumed (2,212 +/- 153 ml) was equivalent to 150% of body mass loss. Peak urine flow rate occurred later (P = 0.024) with the 4% beverage. The total volume of urine produced over the 6 h after rehydration, although not different between trials (P = 0.307), tended to increase as the quantity of alcohol ingested increased. The increase in blood (P = 0.013) and plasma (P = 0.050) volume with rehydration was slower when the 4% beverage was consumed and did not increase to values significantly greater than the dehydrated level (P = 0.013 and P = 0.050 for blood volume and plasma volume, respectively); generally, the increase was an inverse function of the quantity of alcohol consumed. These results suggest that alcohol has a negligible diuretic effect when consumed in dilute solution after a moderate level of hypohydration induced by exercise in the heat. There appears to be no difference in recovery from dehydration whether the rehydration beverage is alcohol free or contains up to 2% alcohol, but drinks containing 4% alcohol tend to delay the recovery process. PMID:9338423

  3. fat-1 transgene expression prevents cell culture-induced loss of membrane n-3 fatty acids in activated CD4+ T-cells.

    PubMed

    Fan, Yang-Yi; Kim, Wooki; Callaway, Evelyn; Smith, Roger; Jia, Qian; Zhou, Lan; McMurray, David N; Chapkin, Robert S

    2008-12-01

    In order to evaluate the effects of fatty acids on immune cell membrane structure and function, it is often necessary to maintain cells in culture. However, cell culture conditions typically reverse alterations in polyunsaturated fatty acid (PUFA) composition achieved by dietary lipid manipulation. Therefore, we hypothesized that T-cells from transgenic mice expressing the Caenorhabditis elegans n-3 desaturase (fat-1) gene would be resistant to the culture-induced loss of n-3 PUFA and, therefore, obviate the need to incorporate fatty acids or homologous serum into the medium. CD4+ T-cells were isolated from (i) control wild type (WT) mice fed a safflower oil-n-6 PUFA enriched diet (SAF) devoid of n-3 PUFA, (ii) fat-1 transgenic mice (enriched with endogenous n-3 PUFA) fed a SAF diet, or (iii) WT mice fed a fish oil (FO) based diet enriched in n-3 PUFA. T-cell phospholipids isolated from WT mice fed FO diet (enriched in n-3 PUFA) and fat-1 transgenic mice fed a SAF diet (enriched in n-6 PUFA) were both enriched in n-3 PUFA. As expected, the mol% levels of both n-3 and n-6 PUFA were decreased in cultures of CD4+ T-cells from FO-fed WT mice after 3d in culture. In contrast, the expression of n-3 desaturase prevented the culture-induced decrease of n-3 PUFA in CD4+ T-cells from the transgenic mice. Carboxyfluorescein succinidyl ester (CFSE) -labeled CD4+ T-cells from fat-1/SAF vs. WT/SAF mice stimulated with anti-CD3 and anti-CD28 for 3d, exhibited a reduced (P<0.05) number of cell divisions. We conclude that fat-1-containing CD4+ T-cells express a physiologically relevant, n-3 PUFA enriched, membrane fatty acid composition which is resistant to conventional cell culture-induced depletion. PMID:18977126

  4. Exercise-induced ROS in heat shock proteins response.

    PubMed

    Dimauro, Ivan; Mercatelli, Neri; Caporossi, Daniela

    2016-09-01

    Cells have evolved multiple and sophisticated stress response mechanisms aiming to prevent macromolecular (including proteins, lipids, and nucleic acids) damage and to maintain or re-establish cellular homeostasis. Heat shock proteins (HSPs) are among the most highly conserved, ubiquitous, and abundant proteins in all organisms. Originally discovered more than 50 years ago through heat shock stress, they display multiple, remarkable roles inside and outside cells under a variety of stresses, including also oxidative stress and radiation, recognizing unfolded or misfolded proteins and facilitating their restructuring. Exercise consists in a combination of physiological stresses, such as metabolic disturbances, changes in circulating levels of hormones, increased temperature, induction of mild to severe inflammatory state, increased production of reactive oxygen and nitrogen species (ROS and RNS). As a consequence, exercise is one of the main stimuli associated with a robust increase in different HSPs in several tissues, which appears to be also fundamental in facilitating the cellular remodeling processes related to the training regime. Among all factors involved in the exercise-related modulation of HSPs level, the ROS production in the contracting muscle or in other tissues represents one of the most attracting, but still under discussion, mechanism. Following exhaustive or damaging muscle exercise, major oxidative damage to proteins and lipids is likely involved in HSP expression, together with mechanically induced damage to muscle proteins and the inflammatory response occurring several days into the recovery period. Instead, the transient and reversible oxidation of proteins by physiological concentrations of ROS seems to be involved in the activation of stress response following non-damaging muscle exercise. This review aims to provide a critical update on the role of HSPs response in exercise-induced adaptation or damage in humans, focusing on experimental

  5. High-fat diet enhances and plasminogen activator inhibitor-1 deficiency attenuates bone loss in mice with Lewis Lung carcinoma

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study determined the effects of a high-fat diet and plasminogen activator inhibitor-1 deficiency (PAI-1-/-) on bone structure in mice bearing Lewis lung carcinoma (LLC) in lungs. Reduction in bone volume fraction (BV/TV) by 22% and 21%, trabecular number (Tb.N) by 8% and 4% and bone mineral de...

  6. Effects of genetic strain on stress-induced weight and body fat loss in rats: Application to air pollution research

    EPA Science Inventory

    Exposure to some air pollutants is suspected of contributing to obesity. Hazelton chambers are commonly used in air pollution studies but we found unexpected reductions in body weight and body fat of rats housed in Hazelton chambers under control conditions. We suspect that stres...

  7. Resistance exercise-induced fluid shifts: change in active muscle size and plasma volume

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Convertino, V. A.; Dudley, G. A.

    1995-01-01

    The purpose of this study was to test the hypothesis that the reduction in plasma volume (PV) induced by resistance exercise reflects fluid loss to the extravascular space and subsequently selective increase in cross-sectional area (CSA) of active but not inactive skeletal muscle. We compared changes in active and inactive muscle CSA and PV after barbell squat exercise. Magnetic resonance imaging (MRI) was used to quantify muscle involvement in exercise and to determine CSA of muscle groups or individual muscles [vasti (VS), adductor (Add), hamstring (Ham), and rectus femoris (RF)]. Muscle involvement in exercise was determined using exercise-induced contrast shift in spin-spin relaxation time (T2)-weighted MR images immediately postexercise. Alterations in muscle size were based on the mean CSA of individual slices. Hematocrit, hemoglobin, and Evans blue dye were used to estimate changes in PV. Muscle CSA and PV data were obtained preexercise and immediately postexercise and 15 and 45 min thereafter. A hierarchy of muscle involvement in exercise was found such that VS > Add > Ham > RF, with the Ham and RF showing essentially no involvement. CSA of the VS and Add muscle groups were increased 10 and 5%, respectively, immediately after exercise in each thigh with no changes in Ham and RF CSA. PV was decreased 22% immediately following exercise. The absolute loss of PV was correlated (r2 = 0.75) with absolute increase in muscle CSA immediately postexercise, supporting the notion that increased muscle size after resistance exercise reflects primarily fluid movement from the vascular space into active but not inactive muscle.

  8. Examination of mechanisms (E-MECHANIC) of exercise-induced weight compensation: study protocol for a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Weight loss induced only by exercise is frequently less than expected, possibly because of compensatory changes in energy intake and/or energy expenditure. The purpose of the Examination of Mechanisms (E-MECHANIC) of Exercise-Induced Weight Compensation trial is to examine whether increased energy intake and/or reduced spontaneous activity or energy expenditure (outside of structured exercise) account for the less than expected, exercise-associated weight loss. Methods/Design E-MECHANIC is a three-arm, 6-month randomized (1:1:1) controlled trial. The two intervention arms are exercise doses that reflect current recommendations for (1) general health (8 kcal/kg body weight per week (8 KKW), about 900 kcal/wk) and (2) weight loss (20 KKW, about 2,250 kcal/wk). The third arm, a nonexercise control group, will receive health information only. The sample will include a combined total of 198sedentary, overweight or obese (body mass index: ≥25 kg/m2 to ≤45 kg/m2) men and women ages 18 to 65 years. The exercise dose will be supervised and tightly controlled in an exercise training laboratory. The primary outcome variables are energy intake, which will be measured using doubly labeled water (adjusted for change in energy stores) and laboratory-based food intake tests, and the discrepancy between expected weight loss and observed weight loss. Secondary outcomes include changes in resting metabolic rate (adjusted for change in body mass), activity levels (excluding structured exercise) and body composition. In an effort to guide the development of future interventions, the participants will be behaviorally phenotyped and defined as those who do compensate (that is, fail to lose the amount of weight expected) or do not compensate (that is, lose the amount of weight expected or more). Discussion In this study, we will attempt to identify underlying mechanisms to explain why exercise elicits less weight loss than expected. This information will guide the

  9. Myoglobin A79G polymorphism association with exercise-induced skeletal muscle damage.

    PubMed

    Cui, T; Jiang, M S

    2016-01-01

    We assessed the role of A79G, a polymorphism of the myoglobin gene (MB), in susceptibility to exercise-induced skeletal muscle damage. Between January 2012 and December 2014, a total of 166 cases with exercise-induced skeletal muscle damage and 166 controls were recruited into our study. Genotyping of MB A79G was carried out using polymerase chain reaction coupled with restriction fragment length polymorphism. Using unconditional logistic regression analysis, we found that the GG genotype of MB A79G was associated with higher risk of exercise-induced muscle damage compared with the wild-type genotype, and the OR (95%CI) was 2.91 (1.20-7.59). Compared with the AA genotype, the AG+GG genotype was associated with a significantly increased risk of exercise-induced muscle damage for those with blood lactic acid ≥1.80 mM (OR = 2.05; 95%CI = 1.09-3.88). In conclusion, we found that the A79G polymorphism of the MB gene plays an important role in influencing the development of exercise-induced skeletal muscle damage. PMID:27323063

  10. Adipose Triglyceride Lipase and Hormone-Sensitive Lipase Are Involved in Fat Loss in JunB-Deficient Mice

    PubMed Central

    Pinent, Montserrat; Prokesch, Andreas; Hackl, Hubert; Voshol, Peter J.; Klatzer, Ariane; Walenta, Evelyn; Panzenboeck, Ute; Kenner, Lukas; Trajanoski, Zlatko; Hoefler, Gerald

    2011-01-01

    Proteins of the activator protein-1 family are known to have roles in many physiological processes such as proliferation, apoptosis, and inflammation. However, their role in fat metabolism has yet to be defined in more detail. Here we study the impact of JunB deficiency on the metabolic state of mice. JunB knockout (JunB-KO) mice show markedly decreased weight gain, reduced fat mass, and a low survival rate compared with control mice. If fed a high-fat diet, the weight gain of JunB-KO mice is comparable to control mice and the survival rate improves dramatically. Along with normal expression of adipogenic marker genes in white adipose tissue (WAT) of JunB-KO mice, this suggests that adipogenesis per se is not affected by JunB deficiency. This is supported by in vitro data, because neither JunB-silenced 3T3-L1 cells nor mouse embryonic fibroblasts from JunB-KO mice show a change in adipogenic potential. Interestingly, the key enzymes of lipolysis, adipose triglyceride lipase and hormone-sensitive lipase, were significantly increased in WAT of fasted JunB-KO mice. Concomitantly, the ratio of plasma free fatty acids per gram fat mass was increased, suggesting an elevated lipolytic rate under fasting conditions. Furthermore, up-regulation of TNFα and reduced expression of perilipin indicate that this pathway is also involved in increased lipolytic rate in these mice. Additionally, JunB-KO mice are more insulin sensitive than controls and show up-regulation of lipogenic genes in skeletal muscle, indicating a shuttling of energy substrates from WAT to skeletal muscle. In summary, this study provides valuable insights into the impact of JunB deficiency on the metabolic state of mice. PMID:21540289

  11. High intensity interval training in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation in physically active men

    PubMed Central

    Souza-Silva, Ana Angélica; Moreira, Eduardo; de Melo-Marins, Denise; Schöler, Cinthia M.; de Bittencourt, Paulo Ivo Homem; Laitano, Orlando

    2016-01-01

    ABSTRACT Aim. The purpose of this study was to determine the response of circulating markers of lipid and protein oxidation following an incremental test to exhaustion before and after 4 weeks of high-intensity interval training performed in the heat. Methods. To address this question, 16 physically active men (age = 23 ± 2 years; body mass = 73 ± 12 kg; height = 173 ± 6 cm; % body fat = 12.5 ± 6 %; body mass index = 24 ± 4 kg/m2) were allocated into 2 groups: control group (n = 8) performing high-intensity interval training at 22°C, 55% relative humidity and heat group (n = 8) training under 35°C, 55% relative humidity. Both groups performed high-intensity interval training 3 times per week for 4 consecutive weeks, accumulating a total of 12 training sessions. Before and after the completion of 4 weeks of high-intensity interval training, participants performed an incremental cycling test until exhaustion under temperate environment (22°C, 55% relative humidity) where blood samples were collected after the test for determination of exercise-induced changes in oxidative damage biomarkers (thiobarbituric acid reactive species and protein carbonyls). Results. When high-intensity interval training was performed under control conditions, there was an increase in protein carbonyls (p < 0.05) following the incremental test to exhaustion with no changes in thiobarbituric acid reactive species. Conversely, high-intensity interval training performed in high environmental temperature enhanced the incremental exercise-induced increases in thiobarbituric acid reactive species (p < 0.05) with no changes in protein carbonyls. Conclusion. In conclusion, 4 weeks of high-intensity interval training performed in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation following a maximal incremental exercise in healthy active men. PMID:27227083

  12. High intensity interval training in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation in physically active men.

    PubMed

    Souza-Silva, Ana Angélica; Moreira, Eduardo; de Melo-Marins, Denise; Schöler, Cinthia M; de Bittencourt, Paulo Ivo Homem; Laitano, Orlando

    2016-01-01

    Aim. The purpose of this study was to determine the response of circulating markers of lipid and protein oxidation following an incremental test to exhaustion before and after 4 weeks of high-intensity interval training performed in the heat. Methods. To address this question, 16 physically active men (age = 23 ± 2 years; body mass = 73 ± 12 kg; height = 173 ± 6 cm; % body fat = 12.5 ± 6 %; body mass index = 24 ± 4 kg/m(2)) were allocated into 2 groups: control group (n = 8) performing high-intensity interval training at 22°C, 55% relative humidity and heat group (n = 8) training under 35°C, 55% relative humidity. Both groups performed high-intensity interval training 3 times per week for 4 consecutive weeks, accumulating a total of 12 training sessions. Before and after the completion of 4 weeks of high-intensity interval training, participants performed an incremental cycling test until exhaustion under temperate environment (22°C, 55% relative humidity) where blood samples were collected after the test for determination of exercise-induced changes in oxidative damage biomarkers (thiobarbituric acid reactive species and protein carbonyls). Results. When high-intensity interval training was performed under control conditions, there was an increase in protein carbonyls (p < 0.05) following the incremental test to exhaustion with no changes in thiobarbituric acid reactive species. Conversely, high-intensity interval training performed in high environmental temperature enhanced the incremental exercise-induced increases in thiobarbituric acid reactive species (p < 0.05) with no changes in protein carbonyls. Conclusion. In conclusion, 4 weeks of high-intensity interval training performed in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation following a maximal incremental exercise in healthy active men. PMID:27227083

  13. Carbenoxolone Treatment Ameliorated Metabolic Syndrome in WNIN/Ob Obese Rats, but Induced Severe Fat Loss and Glucose Intolerance in Lean Rats

    PubMed Central

    Prasad Sakamuri, Siva Sankara Vara; Sukapaka, Mahesh; Prathipati, Vijay Kumar; Nemani, Harishankar; Putcha, Uday Kumar; Pothana, Shailaja; Koppala, Swarupa Rani; Ponday, Lakshmi Raj Kumar; Acharya, Vani; Veetill, Giridharan Nappan; Ayyalasomayajula, Vajreswari

    2012-01-01

    Background 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX) on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. Methodology/Principal Findings Subcutaneous injection of CBX (50 mg/kg body weight) or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment). Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. Conclusions/Significance We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions. PMID:23284633

  14. Genetic variation and exercise-induced muscle damage: implications for athletic performance, injury and ageing.

    PubMed

    Baumert, Philipp; Lake, Mark J; Stewart, Claire E; Drust, Barry; Erskine, Robert M

    2016-09-01

    Prolonged unaccustomed exercise involving muscle lengthening (eccentric) actions can result in ultrastructural muscle disruption, impaired excitation-contraction coupling, inflammation and muscle protein degradation. This process is associated with delayed onset muscle soreness and is referred to as exercise-induced muscle damage. Although a certain amount of muscle damage may be necessary for adaptation to occur, excessive damage or inadequate recovery from exercise-induced muscle damage can increase injury risk, particularly in older individuals, who experience more damage and require longer to recover from muscle damaging exercise than younger adults. Furthermore, it is apparent that inter-individual variation exists in the response to exercise-induced muscle damage, and there is evidence that genetic variability may play a key role. Although this area of research is in its infancy, certain gene variations, or polymorphisms have been associated with exercise-induced muscle damage (i.e. individuals with certain genotypes experience greater muscle damage, and require longer recovery, following strenuous exercise). These polymorphisms include ACTN3 (R577X, rs1815739), TNF (-308 G>A, rs1800629), IL6 (-174 G>C, rs1800795), and IGF2 (ApaI, 17200 G>A, rs680). Knowing how someone is likely to respond to a particular type of exercise could help coaches/practitioners individualise the exercise training of their athletes/patients, thus maximising recovery and adaptation, while reducing overload-associated injury risk. The purpose of this review is to provide a critical analysis of the literature concerning gene polymorphisms associated with exercise-induced muscle damage, both in young and older individuals, and to highlight the potential mechanisms underpinning these associations, thus providing a better understanding of exercise-induced muscle damage. PMID:27294501

  15. Exercise induces cortical plasticity after neonatal spinal cord injury in the rat.

    PubMed

    Kao, Tina; Shumsky, Jed S; Murray, Marion; Moxon, Karen A

    2009-06-10

    Exercise-induced cortical plasticity is associated with improved functional outcome after brain or nerve injury. Exercise also improves functional outcomes after spinal cord injury, but its effects on cortical plasticity are not known. The goal of this investigation was to study the effect of moderate exercise (treadmill locomotion, 3 min/d, 5 d/week) on the somatotopic organization of forelimb and hindlimb somatosensory cortex (SI) after neonatal thoracic transection. We used adult rats spinalized as neonates because some of these animals develop weight-supported stepping, and, therefore, the relationship between cortical plasticity and stepping could also be examined. Acute, single-neuron mapping was used to determine the percentage of cortical cells responding to cutaneous forelimb stimulation in normal, spinalized, and exercised spinalized rats. Multiple single-neuron recording from arrays of chronically implanted microwires examined the magnitude of response of these cells in normal and exercised spinalized rats. Our results show that exercise not only increased the percentage of responding cells in the hindlimb SI but also increased the magnitude of the response of these cells. This increase in response magnitude was correlated with behavioral outcome measures. In the forelimb SI, neonatal transection reduced the percentage of responding cells to forelimb stimulation, but exercise reversed this loss. This restoration in the percentage of responding cells after exercise was accompanied by an increase in their response magnitude. Therefore, the increase in responsiveness of hindlimb SI to forelimb stimulation after neonatal transection and exercise may be due, in part, to the effect of exercise on the forelimb SI. PMID:19515923

  16. Lipolytic Markers, Insulin and Resting Fat Oxidation are Associated with Maximal Fat Oxidation.

    PubMed

    Robinson, S L; Chambers, E S; Fletcher, G; Wallis, G A

    2016-07-01

    The maximal capacity to oxidize fat during exercise (MFO) is associated with 24-h fat balance and insulin sensitivity. Understanding factors that influence MFO could have implications for metabolic health. We investigated relationships between selected plasma metabolites, hormones and overnight-fasted resting fat oxidation rates (Resting), with MFO. Resting fat oxidation and MFO was measured in 57 men with blood collected at rest and during exercise. Plasma glycerol (R=0.39, P=0.033), non-esterified fatty acids (NEFA: R=0.27, P=0.030) and insulin (R=- 0.36, P=0.007) measured at MFO correlated with MFO; only glycerol remained correlated when controlled for resting concentrations (R=0.36, P=0.008). The change in glycerol from rest to MFO correlated with exercise-induced fat oxidation (R=0.32, P=0.012). V˙O 2max correlated with resting fat oxidation (R=0.44, P=0.001) and MFO (R=0.52, P<0.001). Resting fat oxidation correlated with MFO (R=0.55, P<0.001); this remained when controlled for V˙O 2max (R=0.41, P=0.001). This study reports weak-to-moderate, albeit significant, relationships between plasma lipolytic markers, insulin and resting overnight-fasted fat oxidation with MFO and shows the plasma glycerol response to uniquely reflect exercise-induced fat oxidation. V˙O 2max correlates with fat oxidation but the relationship can be dissociated. Interventions to increase fat oxidation for optimal metabolic health would benefit from, but are not reliant on, increases in V˙O 2max. PMID:27116342

  17. [A case of food-dependent exercise-induced anaphylaxis caused by various foods which contained flour for thirty years].

    PubMed

    Terao, Hiroshi; Kishikawa, Reiko; Kato, Mariko; Noda, Keishi; Iwanaga, Tomoaki; Shouji, Shunsuke; Nishima, Sankei

    2004-11-01

    The patient was a 65-year-old man with chief complaints of flare, swelling, itching and loss of consciousness. He had a history of diabetes diagnosed at the age of 34 years and was receiving medication from a local doctor. He had experienced systemic flare, swelling and loss of consciousness 20 minutes after drinking beer at a party at the age of 34 years. Since that time, he had frequently experienced urticaria and loss of consciousness while taking a walk after eating various foods (all of which contained flour). In February 2001, he experienced systemic flare, swelling and loss of consciousness when he returned home from a walk after eating a meal that included meat dumplings. Laboratory tests on admission showed a serum IgE level of 253 IU/ml, and the IgE level for flour in a RAST was 2.13 UA/ml (class 2). The results of exercise tolerance tests were normal during fasting, after ingestion of food that did not include allergens (wheat, shrimps and crab) and after ingestion of half of a thick slice of white bread, but systemic wheal and flare reactions appeared during an exercise tolerance test after ingestion of one thick slice of white bread. A diagnosis of food-dependent exercise-induced anaphylaxis caused by flour was made on the basis of the results. PMID:15719649

  18. The effect of exercise-induced muscle damage on isometric and dynamic knee extensor strength and vertical jump performance.

    PubMed

    Byrne, Christopher; Eston, Roger

    2002-05-01

    In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad x s(-1) and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5+/-7.1 years (mean +/- s). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets x 10 repetitions at 70% body mass load). Strength was reduced for 4 days (P< 0.05) but no significant differences (P> 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6+/-1.1% vs 95.2+/-1.3% of pre-exercise values, P< 0.05) and drop jump (95.2+/-1.4%, P< 0.05) performance. Creatine kinase was elevated (P < 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance. PMID:12043831

  19. Randomised comparison of diets for maintaining obese subjects' weight after major weight loss: ad lib, low fat, high carbohydrate diet v fixed energy intake.

    PubMed Central

    Toubro, S.; Astrup, A.

    1997-01-01

    OBJECTIVES: To compare importance of rate of initial weight loss for long term outcome in obese patients and to compare efficacy of two different weight maintenance programmes. DESIGN: Subjects were randomised to either rapid or slow initial weight loss. Completing patients were re-randomised to one year weight maintenance programme of ad lib diet or fixed energy intake diet. Patients were followed up one year later. SETTING: University research department in Copenhagen, Denmark. SUBJECTS: 43 (41 women) obese adults (body mass index 27-40) who were otherwise healthy living in or around Copenhagen. INTERVENTIONS: 8 weeks of low energy diet (2 MJ/day) or 17 weeks of conventional diet (5 MJ/day), both supported by an anorectic compound (ephedrine 20 mg and caffeine 200 mg thrice daily); one year weight maintenance programme of ad lib, low fat, high carbohydrate diet or fixed energy intake diet (< or = 7.8 MJ/day), both with reinforcement sessions 2-3 times monthly. MAIN OUTCOME MEASURES: Mean initial weight loss and proportion of patients maintaining a weight loss of > 5 kg at follow up. RESULTS: Mean initial weight loss was 12.6 kg (95% confidence interval 10.9 to 14.3 kg) in rapid weight loss group and 12.6 (9.9 to 15.3) kg in conventional diet group. Rate of initial weight loss had no effect on weight maintenance after 6 or 12 months of weight maintenance or at follow up. After weight maintenance programme, the ad lib group had maintained 13.2 (8.1 to 18.3) kg of the initial weight loss of 13.5 (11.4 to 15.5) kg, and the fixed energy intake group had maintained 9.7 (6.1 to 13.3) kg of the initial 13.8 (11.8 to 15.7) kg weight loss (group difference 3.5 (-2.4 to 9.3) kg). Regained weight at follow up was greater in fixed energy intake group than in ad lib group (11.3 (7.1 to 15.5) kg v 5.4 (2.3 to 8.6) kg, group difference 5.9 (0.7 to 11.1) kg, P < 0.03). At follow up, 65% of ad lib group and 40% of fixed energy intake group had maintained a weight loss of > 5 kg (P

  20. Coronary arteriography and left ventriculography during spontaneous and exercise-induced ST segment elevation in patients with variant angina

    SciTech Connect

    Matsuda, Y.; Ozaki, M.; Ogawa, H.; Naito, H.; Yoshino, F.; Katayama, K.; Fujii, T.; Matsuzaki, M.; Kusukawa, R.

    1983-09-01

    The present study is an angiographic demonstration of coronary artery spasm during both spontaneous and exercise-induced angina in three patients with variant angina. In each case, clinical, ECG, coronary angiographic, and left ventriculographic observations were made at rest, during spontaneous angina, and during exercise-induced angina. The character of chest pain was similar during spontaneous and exercise-induced episodes. ST segment elevation was present in the anterior ECG leads during both episodes. The left anterior descending coronary artery became partially or totally obstructed during both types of attacks. When coronary spasm was demonstrated during both types of attacks, left ventriculography disclosed akinetic or dyskinetic wall motion in the area supplied by the involved artery. In those patients with reproducible exercise-induced ST segment elevation and chest pain, thallium-201 scintigraphy showed areas of reversible anteroseptal hypoperfusion. Thus in selected patients exercise-induced attacks of angina were similar to spontaneous episodes.

  1. Exercise-induced haemoptysis as a rare presentation of a rare lung disease.

    PubMed

    Mihalek, Andrew D; Haney, Carissa; Merino, Maria; Roy-Chowdhuri, Sinchita; Moss, Joel; Olivier, Kenneth N

    2016-09-01

    Amyloid primarily affecting the lungs is a seldom seen clinical entity. This case discusses the work-up of a patient presenting with exercise-induced haemoptysis and diffuse cystic lung disease on radiographic imaging. The common clinical and radiographic findings of diffuse cystic lung diseases as well as a brief overview of pulmonary amyloid are presented. PMID:27272655

  2. Unusual Case of Exercise-Induced ST Segment Elevation Alternans: Successful Treatment with Transluminal Angioplasty

    PubMed Central

    Mammen, George; Krajcer, Zvonimir; Leachman, Robert D.

    1983-01-01

    Alternans of the ST segment is sometimes observed in experimental studies but is rarely seen in the clinical setting. Described is a case of exercise-induced ST segment elevation alternans that was successfully treated with transluminal coronary artery angioplasty. Theories regarding the cause and mechanism of this phenomenon are discussed. Images PMID:15227140

  3. Increased Protein Maintains Nitrogen Balance during Exercise-Induced Energy Deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE: This study examined how a high-protein diet affected nitrogen balance and protein turnover during an exercise-induced energy deficit. METHODS: Twenty-two men completed a 4-d (D1-4) baseline period (BL) of an energy balance diet while maintaining usual physical activity level, followed by 7 ...

  4. High protein diet maintains glucose production during exercise-induced energy deficit: a controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inadequate energy intake induces changes in endogenous glucose production (GP) to preserve muscle mass. Whether addition provision of dietary protein modulates GP response to energy deficit is unclear. The objective was to determine whether exercise-induced energy deficit effects on glucose metaboli...

  5. Exercise Challenge for Exercise-Induced Bronchospasm. Confirming Presence, Evaluating Control.

    ERIC Educational Resources Information Center

    Kaplan, Ted A.

    1995-01-01

    Exercise-induced bronchospasm commonly strikes young people, keeping many away from activity. The exercise challenge test (a powerful tool in diagnosing the condition, fine-tuning treatment, and improving patient compliance) can help get patients back in action. Knowing how to interpret and use test results helps physicians expedite effective…

  6. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    PubMed Central

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  7. Thyroid hormone and estrogen regulate exercise-induced growth hormone release.

    PubMed

    Ignacio, Daniele Leão; da S Silvestre, Diego H; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade; Carvalho, Denise P; Werneck-de-Castro, João Pedro

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  8. The Effects of Creatine Supplementation on Exercise-Induced Muscle Damage.

    ERIC Educational Resources Information Center

    Rawson, Eric S.; Gunn, Bridget; Clarkson, Priscilla M.

    2001-01-01

    Investigated the effects of oral creatine (Cr) supplementation on markers of exercise-induced muscle damage following high-force eccentric exercise in men randomly administered Cr or placebo. Results indicated that 5 days of Cr supplementation did not reduce indirect makers of muscle damage or enhance recovery from high-force eccentric exercise.…

  9. Effect of a hypocaloric diet, increased protein intake and resistance training on lean mass gains and fat mass loss in overweight police officers.

    PubMed

    Demling, R H; DeSanti, L

    2000-01-01

    We compare the effects of a moderate hypocaloric, high-protein diet and resistance training, using two different protein supplements, versus hypocaloric diet alone on body compositional changes in overweight police officers. A randomized, prospective 12-week study was performed comparing the changes in body composition produced by three different treatment modalities in three study groups. One group (n = 10) was placed on a nonlipogenic, hypocaloric diet alone (80% of predicted needs). A second group (n = 14) was placed on the hypocaloric diet plus resistance exercise plus a high-protein intake (1.5 g/kg/day) using a casein protein hydrolysate. In the third group (n = 14) treatment was identical to the second, except for the use of a whey protein hydrolysate. We found that weight loss was approximately 2.5 kg in all three groups. Mean percent body fat with diet alone decreased from a baseline of 27 +/- 1.8 to 25 +/- 1.3% at 12 weeks. With diet, exercise and casein the decrease was from 26 +/- 1.7 to 18 +/- 1.1% and with diet, exercise and whey protein the decrease was from 27 +/- 1.6 to 23 +/- 1.3%. The mean fat loss was 2. 5 +/- 0.6, 7.0 +/- 2.1 and 4.2 +/- 0.9 kg in the three groups, respectively. Lean mass gains in the three groups did not change for diet alone, versus gains of 4 +/- 1.4 and 2 +/- 0.7 kg in the casein and whey groups, respectively. Mean increase in strength for chest, shoulder and legs was 59 +/- 9% for casein and 29 +/- 9% for whey, a significant group difference. This significant difference in body composition and strength is likely due to improved nitrogen retention and overall anticatabolic effects caused by the peptide components of the casein hydrolysate. PMID:10838463

  10. Loss of Toll-Like Receptor 4 Function Partially Protects against Peripheral and Cardiac Glucose Metabolic Derangements During a Long-Term High-Fat Diet

    PubMed Central

    Jackson, Ellen E.; Rendina-Ruedy, Elisabeth; Smith, Brenda J.; Lacombe, Veronique A.

    2015-01-01

    Diabetes is a chronic inflammatory disease that carries a high risk of cardiovascular disease. However, the pathophysiological link between these disorders is not well known. We hypothesize that TLR4 signaling mediates high fat diet (HFD)-induced peripheral and cardiac glucose metabolic derangements. Mice with a loss-of-function mutation in TLR4 (C3H/HeJ) and age-matched control (C57BL/6) mice were fed either a high-fat diet or normal diet for 16 weeks. Glucose tolerance and plasma insulin were measured. Protein expression of glucose transporters (GLUT), AKT (phosphorylated and total), and proinflammatory cytokines (IL-6, TNF-α and SOCS-3) were quantified in the heart using Western Blotting. Both groups fed a long-term HFD had increased body weight, blood glucose and insulin levels, as well as impaired glucose tolerance compared to mice fed a normal diet. TLR4-mutant mice were partially protected against long-term HFD-induced insulin resistance. In control mice, feeding a HFD decreased cardiac crude membrane GLUT4 protein content, which was partially rescued in TLR4-mutant mice. TLR4-mutant mice fed a HFD also had increased expression of GLUT8, a novel isoform, compared to mice fed a normal diet. GLUT8 content was positively correlated with SOCS-3 and IL-6 expression in the heart. No significant differences in cytokine expression were observed between groups, suggesting a lack of inflammation in the heart following a HFD. Loss of TLR4 function partially restored a healthy metabolic phenotype, suggesting that TLR4 signaling is a key mechanism in HFD-induced peripheral and cardiac insulin resistance. Our data further suggest that TLR4 exerts its detrimental metabolic effects in the myocardium through a cytokine-independent pathway. PMID:26539824

  11. Exercise-induced bronchoconstriction: The effects of montelukast, a leukotriene receptor antagonist

    PubMed Central

    Kemp, James P

    2009-01-01

    Exercise-induced bronchoconstriction (EIB) is very common in both patients with asthma and those who are otherwise thought to be normal. The intensity of exercise as well as the type of exercise is important in producing symptoms. This may make some types of exercise such as swimming more suitable and extended running more difficult for patients with this condition. A better understanding of EIB will allow the physician to direct the patient towards a type of exercise and medications that can result in a more active lifestyle without the same concern for resulting symptoms. This is especially important for schoolchildren who are usually enrolled in physical education classes and elite athletes who may desire to participate in competitive sports. Fortunately several medications (short- and long-acting β2-agonists, cromolyn, nedocromil, inhaled corticosteroids, and more recently leukotriene modifiers) have been shown to be effective in preventing or attenuating the effects of exercise in many patients. In addition, inhaled β2-agonists have been shown to quickly reverse the airway obstruction that develops in patients and continue to be the reliever medications of choice. Inhaled corticosteroids are increasingly being recommended as regular therapy now that the role of inflammation and airway injury has been identified in EIB. With the discovery that there is a release of mediators such as histamine and leukotrienes from cells in the airway following exercise with resulting airway obstruction in susceptible individuals, interest has turned to attenuating their effects with mediator antagonists especially those that block the effects of leukotrienes. Studies with an oral leukotriene antagonist, montelukast, have shown beneficial effects in adults and children aged as young as 6 years with EIB. These effects can be demonstrated as soon as two hours and as long as 24 hours after administration without a demonstrated loss of a protective effect after months of treatment

  12. Polyphenols in Exercise Performance and Prevention of Exercise-Induced Muscle Damage

    PubMed Central

    Hrelia, Silvana

    2013-01-01

    Although moderate physical exercise is considered an essential component of a healthy lifestyle that leads the organism to adapt itself to different stresses, exercise, especially when exhaustive, is also known to induce oxidative stress, inflammation, and muscle damage. Many efforts have been carried out to identify dietary strategies or micronutrients able to prevent or at least attenuate the exercise-induced muscle damage and stress. Unfortunately most studies have failed to show protection, and at the present time data supporting the protective effect of micronutrients, as antioxidant vitamins, are weak and trivial. This review focuses on those polyphenols, present in the plant kingdom, that have been recently suggested to exert some positive effects on exercise-induced muscle damage and oxidative stress. In the last decade flavonoids as quercetin, catechins, and other polyphenols as resveratrol have caught the scientists attention. However, at the present time drawing a clear and definitive conclusion seems to be untimely. PMID:23983900

  13. Pathophysiological mechanisms of exercise-induced anaphylaxis: an EAACI position statement.

    PubMed

    Ansley, L; Bonini, M; Delgado, L; Del Giacco, S; Du Toit, G; Khaitov, M; Kurowski, M; Hull, J H; Moreira, A; Robson-Ansley, P J

    2015-10-01

    This document is the result of a consensus on the mechanisms of exercise-induced anaphylaxis (EIAn), an unpredictable and potentially fatal syndrome. A multidisciplinary panel of experts including exercise physiologists, allergists, lung physicians, paediatricians and a biostatistician reached the given consensus. Exercise-induced anaphylaxis (EIAn) describes a rare and potentially fatal syndrome in which anaphylaxis occurs in conjunction with exercise. The pathophysiological mechanisms underlying EIAn have not yet been elucidated although a number of hypotheses have been proposed. This review evaluates the validity of each of the popular theories in relation to exercise physiology and immunology. On the basis of this evidence, it is concluded that proposed mechanisms lack validity, and it is recommended that a global research network is developed with a common approach to the diagnosis and treatment of EIAn in order to gain sufficient power for scientific evaluation. PMID:26100553

  14. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors.

    PubMed

    Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio

    2016-06-01

    Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials. PMID:27086703

  15. Xanthine-based KMUP-1 improves HDL via PPARγ/SR-B1, LDL via LDLRs, and HSL via PKA/PKG for hepatic fat loss[S

    PubMed Central

    Kuo, Kung-Kai; Wu, Bin-Nan; Liu, Chung-Pin; Yang, Tzu-Yang; Kao, Li-Pin; Wu, Jiunn-Ren; Lai, Wen-Ter; Chen, Ing-Jun

    2015-01-01

    The phosphodiesterase inhibitor (PDEI)/eNOS enhancer KMUP-1, targeting G-protein coupled receptors (GPCRs), improves dyslipidemia. We compared its lipid-lowering effects with simvastatin and explored hormone-sensitive lipase (HSL) translocation in hepatic fat loss. KMUP-1 HCl (1, 2.5, and 5 mg/kg/day) and simvastatin (5 mg/kg/day) were administered in C57BL/6J male mice fed a high-fat diet (HFD) by gavage for 8 weeks. KMUP-1 inhibited HFD-induced plasma/liver TG, total cholesterol, and LDL; increased HDL/3-hydroxy-3-methylglutaryl-CoA reductase (HMGR)/Rho kinase II (ROCK II)/PPARγ/ABCA1; and decreased liver and body weight. KMUP-1 HCl in drinking water (2.5 mg/200 ml tap water) for 1–14 or 8–14 weeks decreased HFD-induced liver and body weight and scavenger receptor class B type I expression and increased protein kinase A (PKA)/PKG/LDLRs/HSL expression and immunoreactivity. In HepG2 cells incubated with serum or exogenous mevalonate, KMUP-1 (10−7∼10−5 M) reversed HMGR expression by feedback regulation, colocalized expression of ABCA1/apolipoprotein A-I/LXRα/PPARγ, and reduced exogenous geranylgeranyl pyrophosphate/farnesyl pyrophosphate (FPP)-induced RhoA/ROCK II expression. A guanosine 3′,5′-cyclic monophosphate (cGMP) antagonist reversed KMUP-1-induced ROCK II reduction, indicating cGMP/eNOS involvement. KMUP-1 inceased PKG and LDLRs surrounded by LDL and restored oxidized LDL-induced PKA expresion. Unlike simvastatin, KMUP-1 could not inhibit 14C mevalonate formation. KMUP-1 could, but simvastatin could not, decrease ROCK II expression by exogenous FPP/CGPP. KMUP-1 improves HDL via PPARγ/LXRα/ABCA1/Apo-I expression and increases LDLRs/PKA/PKG/HSL expression and immunoreactivity, leading to TG hydrolysis to lower hepatic fat and body weight. PMID:26351364

  16. PGC-1α promotes exercise-induced autophagy in mouse skeletal muscle.

    PubMed

    Halling, Jens F; Ringholm, Stine; Nielsen, Maja M; Overby, Peter; Pilegaard, Henriette

    2016-02-01

    Recent evidence suggests that exercise stimulates the degradation of cellular components in skeletal muscle through activation of autophagy, but the time course of the autophagy response during recovery from exercise has not been determined. Furthermore, the regulatory mechanisms behind exercise-induced autophagy remain unclear, although the muscle oxidative phenotype has been linked with basal autophagy levels. Therefore, the aim of this study was to investigate the role of the key regulator of muscle oxidative capacity, PGC-1α, in exercise-induced autophagy at several time points during recovery. Mice with transgenic muscle-specific overexpression (TG) or knockout (MKO) of PGC-1α and their respective littermate controls were subjected to a single 1 h bout of treadmill running and euthanized immediately (0 h), 2, 6, and 10 h after exercise. In the PGC-1α MKO strain, quadriceps protein content of the autophagy marker LC3II was increased from 2 h into recovery in lox/lox control, but not in MKO mice. In the PGC-1α TG strain, quadriceps protein content of LC3II was increased from 2 h after exercise in TG, but not in WT. Although AMPK and ACC phosphorylation was increased immediately following exercise, the observed exercise-induced autophagy response was not associated with phosphorylation of the AMPK-target ULK1. However, lower protein carbonyl content was observed in lox/lox and TG mice after exercise coinciding with the increased LC3 lipidation. In conclusion, the present results suggest a role of skeletal muscle PGC-1α in coordinating several exercise-induced adaptive responses including autophagic removal of damaged cellular components. PMID:26869683

  17. Exercise excess pressure and exercise-induced albuminuria in patients with type 2 diabetes mellitus.

    PubMed

    Climie, Rachel E D; Srikanth, Velandai; Keith, Laura J; Davies, Justin E; Sharman, James E

    2015-05-01

    Exercise-induced albuminuria is common in patients with type 2 diabetes mellitus (T2DM) in response to maximal exercise, but the response to light-moderate exercise is unclear. Patients with T2DM have abnormal central hemodynamics and greater propensity for exercise hypertension. This study sought to determine the relationship between light-moderate exercise central hemodynamics (including aortic reservoir and excess pressure) and exercise-induced albuminuria. Thirty-nine T2DM (62 ± 9 yr; 49% male) and 39 nondiabetic controls (53 ± 9 yr; 51% male) were examined at rest and during 20 min of light-moderate cycle exercise (30 W; 50 revolutions/min). Albuminuria was assessed by the albumin-creatinine ratio (ACR) at rest and 30 min postexercise. Hemodynamics recorded included brachial and central blood pressure (BP), aortic stiffness, augmented pressure (AP), aortic reservoir pressure, and excess pressure integral (Pexcess). There was no difference in ACR between groups before exercise (P > 0.05). Exercise induced a significant rise in ACR in T2DM but not controls (1.73 ± 1.43 vs. 0.53 ± 1.0 mg/mol, P = 0.002). All central hemodynamic variables were significantly higher during exercise in T2DM (i.e., Pexcess, systolic BP and AP; P < 0.01 all). In T2DM (but not controls), exercise Pexcess was associated with postexercise ACR (r = 0.51, P = 0.002), and this relationship was independent of age, sex, body mass index, heart rate, aortic stiffness, antihypertensive medication, and ambulatory daytime systolic BP (β = 0.003, P = 0.003). Light-moderate exercise induced a significant rise in ACR in T2DM, and this was independently associated with Pexcess, a potential marker of vascular dysfunction. These novel findings suggest that Pexcess could be important for appropriate renal function in T2DM. PMID:25724495

  18. Suppression of exercise-induced angina by magnesium sulfate in patients with variant angina

    SciTech Connect

    Kugiyama, K.; Yasue, H.; Okumura, K.; Goto, K.; Minoda, K.; Miyagi, H.; Matsuyama, K.; Kojima, A.; Koga, Y.; Takahashi, M.

    1988-11-01

    The effects of intravenous magnesium on exercise-induced angina were examined in 15 patients with variant angina and in 13 patients with stable effort angina and were compared with those of placebo. Symptom-limited bicycle exercise and thallium-201 myocardial scintigraphy were performed after intravenous administration of 0.27 mmol/kg body weight of magnesium sulfate and after placebo on different days. In all patients, serum magnesium levels after administration of magnesium sulfate were about twofold higher than levels after placebo. Exercise-induced angina associated with transient ST segment elevation occurred in 11 patients with variant angina receiving placebo and in only 2 of these patients receiving magnesium (p less than 0.005). On the other hand, exercise-induced angina was not suppressed by magnesium in any patient with stable effort angina. In these patients there was no significant difference in exercise duration after administration of placebo versus after administration of magnesium. The size of the perfusion defect as measured by thallium-201 scintigraphy was significantly less in patients with variant angina receiving magnesium than that in those receiving placebo (p less than 0.001), whereas it was not significantly different in patients with stable effort angina receiving placebo versus magnesium. In conclusion, exercise-induced angina is suppressed by intravenous magnesium in patients with variant angina but not in patients with stable effort angina. This beneficial effect of magnesium in patients with variant angina is most likely due to improvement of regional myocardial blood flow by suppression of coronary artery spasm.

  19. Exercise-induced metacarpophalangeal joint adaptation in the Thoroughbred racehorse.

    PubMed

    Muir, P; Peterson, A L; Sample, S J; Scollay, M C; Markel, M D; Kalscheur, V L

    2008-12-01

    between groups. We conclude that differences in site-specific microdamage accumulation and associated targeted remodeling between athletic and non-athletic horses are much greater than differences in subchondral osteocyte morphology. However, the presence of atypical subchondral bone matrix in athletic horses was associated with extensive osteocyte loss. Although osteocyte mechanotransduction is considered important for functional adaptation, in this model, adaptation is likely regulated by multiple mechanotransduction pathways. PMID:19094186

  20. Food-dependent exercise-induced anaphylaxis due to wheat in a young woman.

    PubMed

    Ahanchian, Hamid; Farid, Reza; Ansari, Elham; Kianifar, Hamid Reza; Jabbari Azad, Farahzad; Jafari, Seyed Ali; Purreza, Reza; Noorizadeh, Shadi

    2013-03-01

    Food Dependent Exercise-Induced Allergy is a rare condition. However, the occurrence of anaphylaxis is increasing especially in young people. The diagnosis of anaphylaxis is based on clinical criteria and can be supported by laboratory tests such as serum tryptase and positive skin test results for specific IgE to potential triggering allergens. Anaphylaxis prevention needs strict avoidance of confirmed relevant allergen. Food-exercise challenge test may be an acceptable method for diagnosis of Food Dependent Exercise-Induced Allergy and dietary elimination of food is recommended to manage it. In this study, a 32 year-old woman visited the allergy clinic with a history of several episodes of hives since 11 years ago and 3 life-threatening attacks of anaphylaxis during the previous 6 months. The onsets of majority of these attacks were due to physical activity after breakfast. On Blood RAST test, the panel of common food Allergens was used and she had positive test only to wheat flour. On skin prick tests for common food allergens she showed a 6 millimeter wheal with 14 mm flare to Wheat Extract. The rest of allergens were negative.The patient was diagnosed as wheat-dependent exercise-induced, and all foods containing wheat were omitted from her diet. In this report we emphasized on the importance of careful history taking in anaphylaxis diagnosis. PMID:23454785

  1. [Exercise-induced asthma in children and oral terbutaline. A dose-response relationship study].

    PubMed

    Hertz, B; Fuglsang, G; Holm, E B

    1994-09-26

    We wanted to assess the protective effects on exercise-induced asthma as well as the clinical efficacy and safety of increasing doses of a new sustained-release formulation of terbutaline sulphate in 17 asthmatic children aged 6-12 years (mean 9 years). Placebo, 2, 4, and 6 mg terbutaline were given b.i.d. for 14 days in a randomized, double-blind, cross-over design. At the end of each two week period, an exercise test was performed and plasma terbutaline was measured. Compared with placebo, no significant effect was seen on asthma symptoms monitored at home, or on exercise-induced asthma. The percentage falls in FEV1 after the exercise test were 36, 35, 27 and 28%, after placebo, 4, 8 and 12 mg terbutaline/day, respectively. A small but statistically significant dose-related increase was seen in morning and evening peak expiratory flow (PEF) recordings. It is concluded that continuous treatment, even with high doses or oral terbutaline, does not offer clinically useful protection against exercise-induced asthma. PMID:7985255

  2. Effects of inhaled thiazinamium chloride on histamine-induced and exercise-induced bronchoconstriction.

    PubMed

    Gong, H; Brik, A; Tashkin, D P; Dauphinee, B

    1989-03-01

    The protective efficacy of aerosolized thiazinamium chloride (TC) against histamine-induced and exercise-induced bronchoconstriction was evaluated in 15 subjects with stable, mild asthma. Following reproducible bronchoprovocation with these stimuli, each subject underwent randomized, double-blind, crossover pretreatment with single doses of nebulized TC (300, 600, and 900 micrograms), placebo, and an active control drug (metaproterenol or cromolyn), followed by histamine or exercise challenge (two separate protocols). The results indicated that all doses of TC significantly blocked histamine-induced bronchoconstriction as compared with placebo. Overall, aerosolized TC was ineffective in blocking exercise-induced bronchoconstriction, although 900 micrograms TC tended to be more effective than placebo. Thiazinamium (900 micrograms) produced a modest bronchodilator effect. No clinically significant adverse effects related to TC occurred. We conclude that aerosolized TC is effective in attenuating histamine-induced but not exercise-induced bronchoconstriction in the doses studied. Further studies are warranted to evaluate the role of TC in asthma therapy. PMID:2564267

  3. Hemodynamic effects of high intensity interval training in COPD patients exhibiting exercise-induced dynamic hyperinflation.

    PubMed

    Nasis, I; Kortianou, E; Vasilopoulou, Μ; Spetsioti, S; Louvaris, Z; Kaltsakas, G; Davos, C H; Zakynthinos, S; Koulouris, N G; Vogiatzis, I

    2015-10-01

    Dynamic hyperinflation (DH) has a significant adverse effect on cardiovascular function during exercise in COPD patients. COPD patients with (n = 25) and without (n = 11) exercise-induced DH undertook an incremental (IET) and a constant-load exercise test (CLET) sustained at 75% peak work (WRpeak) prior to and following an interval cycling exercise training regime (set at 100% WRpeak with 30-s work/30-s rest intervals) lasting for 12 weeks. Cardiac output (Q) was assessed by cardio-bio-impedance (PhysioFlow, enduro, PF-O7) to determine Q mean response time (QMRT) at onset (QMRT(ON)) and offset (QMRT(OFF)) of CLET. Post-rehabilitation only those patients exhibiting exercise-induced DH demonstrated significant reductions in QMRT(ON) (from 82.2 ± 4.3 to 61.7 ± 4.2 s) and QMRT(OFF) (from 80.5 ± 3.8 to 57.2 ± 4.9 s ). These post-rehabilitation adaptations were associated with improvements in inspiratory capacity, thereby suggesting that mitigation of the degree of exercise-induced DH improves central hemodynamic responses in COPD patients. PMID:26112284

  4. Ultra-endurance exercise induces stress and inflammation and affects circulating hematopoietic progenitor cell function.

    PubMed

    Stelzer, I; Kröpfl, J M; Fuchs, R; Pekovits, K; Mangge, H; Raggam, R B; Gruber, H-J; Prüller, F; Hofmann, P; Truschnig-Wilders, M; Obermayer-Pietsch, B; Haushofer, A C; Kessler, H H; Mächler, P

    2015-10-01

    Although amateur sports have become increasingly competitive within recent decades, there are as yet few studies on the possible health risks for athletes. This study aims to determine the impact of ultra-endurance exercise-induced stress on the number and function of circulating hematopoietic progenitor cells (CPCs) and hematological, inflammatory, clinical, metabolic, and stress parameters in moderately trained amateur athletes. Following ultra-endurance exercise, there were significant increases in leukocytes, platelets, interleukin-6, fibrinogen, tissue enzymes, blood lactate, serum cortisol, and matrix metalloproteinase-9. Ultra-endurance exercise did not influence the number of CPCs but resulted in a highly significant decline of CPC functionality after the competition. Furthermore, Epstein-Barr virus was seen to be reactivated in one of seven athletes. The link between exercise-induced stress and decline of CPC functionality is supported by a negative correlation between cortisol and CPC function. We conclude that ultra-endurance exercise induces metabolic stress and an inflammatory response that affects not only mature hematopoietic cells but also the function of the immature hematopoietic stem and progenitor cell fraction, which make up the immune system and provide for regeneration. PMID:25438993

  5. Exercise-induced asthma: critical analysis of the protective role of montelukast

    PubMed Central

    Carver, Terrence W

    2009-01-01

    Exercise-induced asthma/exercise-induced bronchospasm (EIA/EIB) is a prevalent and clinically important disease affecting young children through older adulthood. These terms are often used interchangeably and the differences are not clearly defined in the literature. The pathogenesis of EIA/EIB may be different in those with persistent asthma compared to those with exercise-induced symptoms only. The natural history of EIA is unclear and may be different for elite athletes. Leukotriene biology has helped the understanding of EIB. The type and intensity of exercise are important factors for EIB. Exercise participation is necessary for proper development and control of EIA is recommended. Symptoms of EIB should be confirmed by proper testing. Biologic markers may also be helpful in diagnosis. Not all exercise symptoms are from EIB. Many medication and nonpharmacologic treatments are available. Asthma education is an important component of managing EIA. Many medications have been tested and the comparisons are complicated. Montelukast is a US Food and Drug Administration-approved asthma and EIB controller and has a number of potential advantages to other asthma medications including short onset of action, ease of use, and lack of tolerance. Not all patients improve with montelukast and rescue medication should be available. PMID:21437147

  6. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    SciTech Connect

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh; Ohno, Hideki; Takemasa, Tohru

    2008-04-04

    Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.

  7. Primary renal magnesium wasting: an unusual clinical picture of exercise-induced symptoms.

    PubMed

    Stark, Christopher M; Nylund, Cade M; Gorman, Gregory H; Lechner, Brent L

    2016-04-01

    Magnesium is one of the most abundant cations in the human body and plays a key role as a metabolic enzyme cofactor and regulatory ion for neurons and cardiomyocytes. Hypomagnesemia due to isolated primary renal magnesium wasting is a rare clinical condition typically associated with neurological hyperexcitability. Exercise-related gastrointestinal symptoms are caused by ischemic, mechanical, or neurohormonal changes. The role of hypomagnesemia in gastrointestinal symptoms is not well understood. We present a case of a 15-year-old male who presented with exercise-induced abdominal pain, nausea, and vomiting, who was found to have profound hypomagnesemia and inappropriately elevated fractional excretion of magnesium (FEMg). Testing for multiple intrinsic and extrinsic etiologies of renal magnesium wasting was inconclusive. He was diagnosed with primary renal magnesium wasting and his symptoms resolved acutely with intravenous magnesium sulfate and with long-term oral magnesium chloride. Primary renal magnesium wasting is a rare clinical entity that can cause extreme hypomagnesemia. It has not been associated previously with exercise-induced gastrointestinal symptoms. The effects of hypomagnesemia on the human gastrointestinal tract are not well established. This case offers unique insights into the importance of magnesium homeostasis in the gastrointestinal tract. Exercise-induced splanchnic hypoperfusion may contribute to gastrointestinal symptoms observed in this chronically hypomagnesemic patient. PMID:27117800

  8. Exercise-induced ventricular arrhythmias in congestive heart failure and role of ACE inhibitors.

    PubMed

    Hasija, P K; Karloopia, S D; Shahi, B N; Chauhan, S S

    1998-02-01

    Ventricular arrhythmias are considered to be related to left ventricular (LV) dysfunction. ACE inhibitors though improve LV function their beneficial role on exercise-induced ventricular arrhythmias is not established. To study the effects of ACE inhibitors on exercise capacity vis-a-vis their role on exercise-induced ventricular arrhythmias, 25 patients of congestive heart failure (CHF) of various etiologies in NYHA Class II and III were subjected to a prospective randomised controlled trial. The control group comprising of 12 patients received conventional treatment (digitalis and diuretics) and the test group was given enalapril/captopril in addition as tolerated. They were followed up for 3 months. Exercise testing on treadmill and monitoring of clinical and biochemical parameters were done at the beginning and end of study in all cases. Ventricular arrhythmias observed during exercise and post-exercise for 10 minutes was analysed using Lown's grading for frequency and severity of ventricular arrhythmia. The mean exercise duration showed significant improvement on ACE inhibitor as compared to the control group (p < 0.05) however there was no significant change in the grades of arrhythmia. Serum electrolytes and other bio-chemical parameter were within normal range. It is concluded that effect of ACE inhibitor on improving functional capacity in CHF is independent of it's any effect on exercise-induced ventricular arrhythmias. PMID:11273109

  9. Effects of Visceral Fat Accumulation Awareness on a Web-Based Weight-Loss Program: Japanese Study of Visceral Adiposity and Lifestyle Information—Utilization and Evaluation (J-VALUE)

    PubMed Central

    Sakane, Naoki; Dohi, Seitaro; Sakata, Koichi; Hagiwara, Shin-ichi; Uchida, Takanobu; Katashima, Mitsuhiro; Yasumasu, Takeshi; Study Group, J-VALUE

    2013-01-01

    A reduction of visceral fat is important for improvement of metabolic risk. This study was designed to compare the effects of a web-based program alone or together with measurement and self-awareness of accumulated visceral fat in Japanese workers. A new noninvasive device to measure visceral fat accumulation was introduced, and efficacy on weight-loss and improvement of healthy behaviors were examined. This study was conducted according to Helsinki declaration and approved by the ethical committee of Japan Hospital Organization, National Kyoto Hospital. Two-hundred and sixteen overweight and obese males with BMI of more than 23 participated from 8 healthcare offices of 3 Japanese private companies. Subjects were randomly allocated into control group, Web-based weight-loss program (Web), or Web + Visceral fat measurement group (Web + VFA). Eighty-one percent of participants completed the study. Reductions of body weight, waist circumference, and BMI were the largest in Web + VFA group, and the differences between groups were significant by ANOVA. Improvements of healthy behaviors were the largest in Web + VFA group, and the differences of healthy eating improvement scores between Web + VFA and control groups were significant. Our findings suggest that measurement and awareness of visceral fat are effective in weight reduction in overweight and obese males in the workplace. PMID:24555144

  10. Abnormal expression of key genes and proteins in the canonical Wnt/β-catenin pathway of articular cartilage in a rat model of exercise-induced osteoarthritis

    PubMed Central

    LIU, SHEN-SHEN; ZHOU, PU; ZHANG, YANQIU

    2016-01-01

    To investigate the molecular pathogenesis of the canonical Wnt/β-catenin pathway in exercise-induced osteoarthritis (OA), 30 male healthy Sprague Dawley rats were divided into three groups (control, normal exercise-induced OA and injured exercise-induced OA groups) in order to establish the exercise-induced OA rat model. The mRNA and protein expression levels of Runx-2, BMP-2, Ctnnb1, Sox-9, collagen II, Mmp-13, Wnt-3a and β-catenin in chon-drocytes were detected by reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemical staining. The mRNA levels of Runx-2, BMP-2 and Ctnnb1 were upregulated in the normal exercise-induced OA and injured exercise-induced OA groups; while Runx-2 and BMP-2 were upregulated in the injured exercise-induced OA group when compared with the normal exercise-induced OA group. The protein levels of Mmp-13, Wnt-3a and β-catenin were increased and collagen II was reduced in the normal exercise-induced OA and injured exercise-induced OA groups. Ctnnb1, Wnt-3a and β-catenin, which are key genes and proteins in the canonical Wnt/β-catenin pathway, were abnormally expressed in chondrocytes of the exercise-induced OA rat model. Ctnnb1, β-catenin and Wnt-3a were suggested to participate in the pathogenesis of exercise-induced OA by abnormally activating the Wnt/β-catenin pathway during physical exercise due to excessive pressure. The results of the present study may provide an improved understanding of the pathogenesis of exercise-induced OA. PMID:26794964

  11. Very-low-carbohydrate ketogenic diet v. low-fat diet for long-term weight loss: a meta-analysis of randomised controlled trials.

    PubMed

    Bueno, Nassib Bezerra; de Melo, Ingrid Sofia Vieira; de Oliveira, Suzana Lima; da Rocha Ataide, Terezinha

    2013-10-01

    The role of very-low-carbohydrate ketogenic diets (VLCKD) in the long-term management of obesity is not well established. The present meta-analysis aimed to investigate whether individuals assigned to a VLCKD (i.e. a diet with no more than 50 g carbohydrates/d) achieve better long-term body weight and cardiovascular risk factor management when compared with individuals assigned to a conventional low-fat diet (LFD; i.e. a restricted-energy diet with less than 30% of energy from fat). Through August 2012, MEDLINE, CENTRAL, ScienceDirect,Scopus, LILACS, SciELO, ClinicalTrials.gov and grey literature databases were searched, using no date or language restrictions, for randomised controlled trials that assigned adults to a VLCKD or a LFD, with 12 months or more of follow-up. The primary outcome was bodyweight. The secondary outcomes were TAG, HDL-cholesterol (HDL-C), LDL-cholesterol (LDL-C), systolic and diastolic blood pressure,glucose, insulin, HbA1c and C-reactive protein levels. A total of thirteen studies met the inclusion/exclusion criteria. In the overall analysis,five outcomes revealed significant results. Individuals assigned to a VLCKD showed decreased body weight (weighted mean difference 20·91 (95% CI 21·65, 20·17) kg, 1415 patients), TAG (weighted mean difference 20·18 (95% CI 20·27, 20·08) mmol/l, 1258 patients)and diastolic blood pressure (weighted mean difference 21·43 (95% CI 22·49, 20·37) mmHg, 1298 patients) while increased HDL-C(weighted mean difference 0·09 (95% CI 0·06, 0·12) mmol/l, 1257 patients) and LDL-C (weighted mean difference 0·12 (95% CI 0·04,0·2) mmol/l, 1255 patients). Individuals assigned to a VLCKD achieve a greater weight loss than those assigned to a LFD in the longterm; hence, a VLCKD may be an alternative tool against obesity. PMID:23651522

  12. HIF1α is Necessary for Exercise-Induced Neuroprotection while HIF2α is Needed for Dopaminergic Neuron Survival in the Substantia Nigra pars compacta

    PubMed Central

    Smeyne, Michelle; Sladen, Paul; Jiao, Yun; Dragatsis, Ioannis; Smeyne, Richard Jay

    2015-01-01

    Exercise reduces the risk of developing a number of neurological disorders and increases the efficiency of cellular energy production. However, overly strenuous exercise produces oxidative stress. Proper oxygenation is crucial for the health of all tissues, and tight regulation of cellular oxygen is critical to balance O2 levels and redox homeostasis in the brain. Hypoxia Inducible Factor (HIF)1α and HIF2α are transcription factors regulated by cellular oxygen concentration that initiate gene regulation of vascular development, redox homeostasis, and cell cycle control. HIF1α and HIF2α contribute to important adaptive mechanisms that occur when oxygen and ROS homeostasis become unbalanced. It has been shown that preconditioning by exposure to a stressor prior to a hypoxic event reduces damage that would otherwise occur. Previously we reported that three months of exercise protects SNpc DA neurons from toxicity caused by Complex I inhibition. Here, we identify the cells in the SNpc that express HIF1α and HIF2α and show that running exercise produces hypoxia in SNpc DA neurons, and alters the expression of HIF1α and HIF2α. In mice carrying a conditional knockout of Hif1α in postnatal neurons we observe that exercise alone produces SNpc TH+ DA neuron loss. Loss of HIF1α also abolishes exercise-induced neuroprotection. In mice lacking Hif2α in postnatal neurons, the number of TH+ DA neurons in the adult SNpc is diminished, but three months of exercise rescues this loss. We conclude that HIF1α is necessary for exercise-induced neuroprotection and both HIF1α and HIF2α are necessary for the survival and function of adult SNpc DA neurons. PMID:25796140

  13. Personality Does not Influence Exercise-Induced Mood Enhancement Among Female Exercisers.

    PubMed

    Lane, Andrew M; Milton, Karen E; Terry, Peter C

    2005-09-01

    The present study investigated the influence of personality on exercise-induced mood changes. It was hypothesised that (a) exercise would be associated with significant mood enhancement across all personality types, (b) extroversion would be associated with positive mood and neuroticism with negative mood both pre- and post-exercise, and (c) personality measures would interact with exercise-induced mood changes. Participants were 90 female exercisers (M = 25.8 yr, SD = 9.0 yr) who completed the Eysenck Personality Inventory (EPI) once and the Brunel Mood Scale (BRUMS) before and after a 60-minute exercise session. Median splits were used to group participants into four personality types: stable introverts (n = 25), stable extroverts (n = 20), neurotic introverts (n = 26), and neurotic extroverts (n = 19). Repeated measures MANOVA showed significant mood enhancement following exercise across all personality types. Neuroticism was associated with negative mood scores pre- and post-exercise but the effect of extroversion on reported mood was relatively weak. There was no significant interaction effect between exercise-induced mood enhancement and personality. In conclusion, findings lend support to the notion that exercise is associated with improved mood. However, findings show that personality did not influence this effect, although neuroticism was associated with negative mood. Key PointsResearch in general psychology has found that stable personality trait are associated changes in mood states. Ninety females exercisers completed a personality test and mood scales before and after exercise. Results indicated mood changes were not associated with personality, although neuroticism was associated with negative mood. PMID:24453525

  14. Vitamin D deficiency and exercise-induced laryngospasm in young competitive rowers.

    PubMed

    Heffler, Enrico; Bonini, Matteo; Brussino, Luisa; Solidoro, Paolo; Guida, Giuseppe; Boita, Monica; Nicolosi, Giuliana; Bucca, Caterina

    2016-07-01

    Exercise-induced dyspnea is common among adolescents and young adults and often originates from exercise-induced bronchoconstriction (EIB). Sometimes, dyspnea corresponds to exercise-induced laryngospasm (EILO), which is a paradoxical decrease in supraglottic/glottic area. Vitamin D deficiency, which occurs frequently at northern latitudes, might favor laryngospasm by impairing calcium transport and slowing striate muscle relaxation. The aim of this study was to evaluate whether vitamin D status has an influence on bronchial and laryngeal responses to exercise in young, healthy athletes. EIB and EILO were investigated during winter in 37 healthy competitive rowers (24 males; age range 13-25 years), using the eucapnic voluntary hyperventilation test (EVH). EIB was diagnosed when forced expiratory volume in the first second decreased by 10%, EILO when maximum mid-inspiratory flow (MIF50) decreased by 20%. Most athletes (86.5%) had vitamin D deficiency (below 30 ng/mL), 29 mild-moderate (78.4%) and 3 severe (8.1%). EVH showed EIB in 10 subjects (27%), EILO in 16 (43.2%), and combined EIB and EILO in 6 (16.2%). Athletes with EILO had lower vitamin D (19.1 ng/mL vs. 27.0 ng/mL, p < 0.001) and higher parathyroid hormone (30.5 pg/mL vs. 19.2 pg/mL, p = 0.006) levels. The degree of laryngoconstriction (post-EVH MIF50 as a percentage of pre-EVH MIF50) was related directly with vitamin D levels (r = 0.51; p = 0.001) and inversely with parathyroid hormone levels (r = -0.53; p = 0.001). We conclude that vitamin D deficiency is common during winter in young athletes living above the 40th parallel north and favors laryngospasm during exercise, probably by disturbing calcium homeostasis. This effect may negatively influence athletic performance. PMID:27218140

  15. Role of creatine supplementation in exercise-induced muscle damage: A mini review.

    PubMed

    Kim, Jooyoung; Lee, Joohyung; Kim, Seungho; Yoon, Daeyoung; Kim, Jieun; Sung, Dong Jun

    2015-10-01

    Muscle damage is induced by both high-intensity resistance and endurance exercise. Creatine is a widely used dietary supplement to improve exercise performance by reducing exercise-induced muscle damage. Many researchers have suggested that taking creatine reduces muscle damage by decreasing the inflammatory response and oxidative stress, regulating calcium homeostasis, and activating satellite cells. However, the underlying mechanisms of creatine and muscle damage have not been clarified. Therefore, this review discusses the regulatory effects of creatine on muscle damage by compiling the information collected from basic science and sports science research. PMID:26535213

  16. Exercise-induced acute compartment syndrome in a young man, occurring after a short race.

    PubMed

    Basnet, Bibhusan; Matar, Mousa; Vaitilingham, Siddharthan; Chalise, Shyam; Irooegbu, Nkem; Bang, Jane

    2016-04-01

    We describe a case of exercise-induced acute compartment syndrome (ACS) in a 23-year-old man who presented to his primary care physician 48 hours after he attempted to run a 5K race. He noticed searing pain in his left leg after the first half mile but had no other symptoms. He was referred to the emergency department and diagnosed with ACS, and a fasciotomy was done. A presentation of limb pain that is out of proportion to a known or suspected injury should prompt consideration of ACS. Early recognition and surgical management are essential to achieving the best possible outcome. PMID:27034546

  17. Where to from here for exercise-induced bronchoconstriction: the unanswered questions.

    PubMed

    Hallstrand, Teal S; Kippelen, Pascale; Larsson, Johan; Bougault, Valérie; van Leeuwen, Janneke C; Driessen, Jean M M; Brannan, John D

    2013-08-01

    The role of epithelial injury is an unanswered question in those with established asthma and in elite athletes who develop features of asthma and exercise-induced bronchorestriction (EIB) after years of training. The movement of water in response to changes in osmolarity is likely to be an important signal to the epithelium that may be central to the onset of EIB. It is generally accepted that the mast cell and its mediators play a major role in EIB and the presence of eosinophils is likely to enhance EIB severity. PMID:23830134

  18. Two cases of food-dependent exercise-induced anaphylaxis with different culprit foods

    PubMed Central

    Mobayed, Hassan M.S.; Ali Al-Nesf, Maryam

    2014-01-01

    Food-dependent exercise-induced anaphylaxis (FDEIA) is one of the severe allergic reactions in which symptoms develop only if exercise takes place within a few hours of eating a specific food. It is important to consider FDEIA in cases of unexplained anaphylaxis as reactions can occur several hours after ingesting the culprit food(s). We herein report the first two cases of FDEIA in the Middle East. The first one is induced by wheat, while the other by peanut. The pathophysiology, predisposing factors, diagnosis, and treatment of FDEIA are also summarized here. PMID:24551018

  19. Exercise-induced acute compartment syndrome in a young man, occurring after a short race

    PubMed Central

    Matar, Mousa; Vaitilingham, Siddharthan; Chalise, Shyam; Irooegbu, Nkem; Bang, Jane

    2016-01-01

    We describe a case of exercise-induced acute compartment syndrome (ACS) in a 23-year-old man who presented to his primary care physician 48 hours after he attempted to run a 5K race. He noticed searing pain in his left leg after the first half mile but had no other symptoms. He was referred to the emergency department and diagnosed with ACS, and a fasciotomy was done. A presentation of limb pain that is out of proportion to a known or suspected injury should prompt consideration of ACS. Early recognition and surgical management are essential to achieving the best possible outcome. PMID:27034546

  20. Acute Exercise-Induced Compartment Syndrome of the Leg- Don’t Miss It

    PubMed Central

    Khare, Manish Kumar; Mishra, Sumanta; Marhual, Jogesh Chandra

    2016-01-01

    Acute exercise induced compartment syndrome of leg is a very rare and very oftenly missed entity which leads to delay in its management. We are presenting such case in which diagnosis was established two days after the onset of symptoms. Urgent decompressive fasciotomy was done. After 3 months of follow up, patient has got full functional recovery of his affected limb. This case highlights the importance of keeping high index of clinical suspicion to diagnose the problem and manage promptly. We have reviewed the English literature and found only about 40 cases since 1945. PMID:27042521

  1. Endogenous N-losses in broilers estimated by a [15N]-isotope dilution technique: effect of dietary fat type and xylanase addition.

    PubMed

    Dänicke, S; Jeroch, H; Simon, O

    2000-01-01

    Male broilers were given a low protein diet (15.5% CP) spiked with [15N]H4HCO3 from day 12 to day 18 of age to label the endogenous N-constituents. Experimental diets were subsequently fed from day 19 to day 24 of age and consisted of a rye based diet (56% dietary inclusion) which contained either 10% soya oil (S) or 10% beef tallow (T), each of which was either unsupplemented (-) or supplemented (+) with a xylanase containing enzyme preparation (2700 IU/kg at pH 5.3). [15N]-atom percent excess (APE) of excreta, faeces and urine were monitored on a daily basis during both experimental periods. Furthermore, APE was measured in various tissues at the end of the experiment. The APE of urine on the last day of the experiment was between the APE of the pancreas and that of the jejunal tissue, an observation which supported the usefulness of using urinary APE as an indicator for the endogenous N-pool. Endogenous N-proportions were estimated by an isotope dilution technique at the end of the experiment by examination of the ratio of APE in faeces and urine. The endogenous N-proportion in the faeces was greatest in birds receiving the T(-) diet. The proportions were 0.321, 0.319, 0.451 and 0.289 in S(-), S(+), T(-) and T(+) fed groups, respectively. Xylanase addition reduced endogenous N-proportion, a factor which was used to correct apparent crude protein digestibility (85.6, 86.2, 84.3 and 88.5% in S(-), S(+), T(-) and T(+) fed birds, respectively) for endogenous losses resulting in almost equal true digestibilities of crude protein for all treatments (90.3, 90.6, 90.4 and 91.5%). The amounts of endogenous N in faces were estimated to be 87, 69, 244 and 81 mg per day per kg0.67 body weight in S(-), S(+), T(-) and T(+) fed birds, respectively. It was concluded that xylanase supplementation of a rye based broiler diet does not change endogenous N-secretions when the supplemental fat is soya oil. However, addition of tallow rather than soya oil increased these N-losses

  2. Exercise-induced norepinephrine decreases circulating hematopoietic stem and progenitor cell colony-forming capacity.

    PubMed

    Kröpfl, Julia M; Stelzer, Ingeborg; Mangge, Harald; Pekovits, Karin; Fuchs, Robert; Allard, Nathalie; Schinagl, Lukas; Hofmann, Peter; Dohr, Gottfried; Wallner-Liebmann, Sandra; Domej, Wolfgang; Müller, Wolfram

    2014-01-01

    A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/-4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15). The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI), cortisol (Co) and interleukin-6 (IL-6). Additionally, the influence of exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality. PMID:25180783

  3. Effects of ginsenosides-Rb1 on exercise-induced oxidative stress in forced swimming mice

    PubMed Central

    Qi, Bo; Zhang, Lan; Zhang, Zhiqun; Ouyang, Jiangqiong; Huang, Hui

    2014-01-01

    Background: The fleshy root of Panax ginseng C.A. Meyer (ginseng) is one of the most well-known and valued herbs in traditional Chinese medicine. Ginsenosides are considered mainly responsible for the pharmacological activities of ginseng. The purpose of this study was to investigate the effects of ginsenoside-Rb1 (G-Rb1) on swimming exercise-induced oxidative stress in male mice. Materials and Methods: A total of 48 animals were randomly divided into four groups, with twelve mice in each group. The first, second and third groups were designed as G-Rb1 treatment groups, got 25, 50 and 100 mg/kg bodyweight of G-Rb1, respectively. The fourth group was designed as the control group, got physiologic saline. The mice were intragastrically administered once daily for 4 weeks. The weight-loaded forced swimming test was conducted on the final day of experimentation. Then the exhaustive swimming time, blood lactate, serum creatine kinase (CK), malondialdehyde (MDA) and antioxidant enzymes in liver of mice were measured. Results: The results showed that G-Rb1 could prolong the exhaustive swimming time and improve exercise endurance capacity of mice, as well as accelerate the clearance of blood lactate and decrease serum CK activities. Meanwhile, G-Rb1 could decrease MDA contents and increase superoxide dismutase, catalase, glutathione peroxidase activities in liver of mice. Conclusions: The study suggested that G-Rb1 possessed protective effects on swimming exercise-induced oxidative stress in mice. PMID:25422546

  4. PGC-1α is Dispensable for Exercise-Induced Mitochondrial Biogenesis in Skeletal Muscle

    PubMed Central

    Rowe, Glenn C.; El-Khoury, Riyad; Patten, Ian S.; Rustin, Pierre; Arany, Zolt

    2012-01-01

    Exercise confers numerous health benefits, many of which are thought to stem from exercise-induced mitochondrial biogenesis (EIMB) in skeletal muscle. The transcriptional coactivator PGC-1α, a potent regulator of metabolism in numerous tissues, is widely believed to be required for EIMB. We show here that this is not the case. Mice engineered to lack PGC-1α specifically in skeletal muscle (Myo-PGC-1αKO mice) retained intact EIMB. The exercise capacity of these mice was comparable to littermate controls. Induction of metabolic genes after 2 weeks of in-cage voluntary wheel running was intact. Electron microscopy revealed no gross abnormalities in mitochondria, and the mitochondrial biogenic response to endurance exercise was as robust in Myo-PGC-1αKO mice as in wildtype mice. The induction of enzymatic activity of the electron transport chain by exercise was likewise unperturbed in Myo-PGC-1αKO mice. These data demonstrate that PGC-1α is dispensable for exercise-induced mitochondrial biogenesis in skeletal muscle, in sharp contrast to the prevalent assumption in the field. PMID:22848618

  5. Bricanyl Turbuhaler and Ventolin Rotahaler in exercise-induced asthma in children.

    PubMed

    dos Santos, J M; Costa, H; Ståhl, E; Wirén, J E

    1991-04-01

    Bricanyl Turbuhaler (0.5 mg terbutaline sulphate) and Ventolin Rotahaler (0.4 mg salbutamol) were compared in a randomized double-blind placebo controlled study on exercise-induced asthma in 19 children (14 boys) aged 7-14 years. The study was carried out on 3 separate days. Asthmatic attacks were provoked by free range running. Peak expiratory flow (PEF) was measured before and after exercise. If PEF decreased by greater than 20%, one inhalation from each of the inhalers was given under supervision of the investigator. Only one of the inhalers (none on the placebo day) delivered active drug. PEF was measured again 5 and 10 min after treatment. Already 5 min after treatment PEF had returned to baseline after active treatment. There was no statistically significant difference between the two active treatments. After placebo treatment, PEF did not return to baseline even at the 10 min post-exercise measurement. Ten children needed extra medication after the last PEF measurement on the placebo day, whereas no child needed extra medication after any of the active treatments. No adverse events were reported in this study. In conclusion, Bricanyl Turbuhaler (0.5 mg) and Ventolin Rotahaler (0.4 mg) were equally efficacious in the treatment of exercise-induced asthma in children. PMID:2058816

  6. Skin testing with food, codeine, and histamine in exercise-induced anaphylaxis.

    PubMed

    Lin, R Y; Barnard, M

    1993-06-01

    A 33-year-old Chinese woman with exercise-induced anaphylaxis after ingesting Chinese seafood noodle soup, was studied for skin test reactivity to food, histamine, and codeine. Prick skin tests were negative for shrimp, wheat, and chicken soup base, but were positive at 5 to 6 mm (wheal diameter) to the whole broth after it had been combined with the other ingredients. No significant (> 3 mm) wheals were observed in eight controls who were simultaneously tested with the broth. To assess the role of exercise, three series of skin tests were performed with histamine, codeine, and whole broth before and after aerobic exercise on two occasions. Codeine elicited consistent increases in wheal size after exercise compared with pre-exercise skin tests. Histamine and whole broth wheal sizes did not increase significantly. Three control subjects also had codeine and histamine skin tests before and after exercise, No exercise-associated increases were noted for codeine. Potential insights into mast cell abnormalities in exercise-induced anaphylaxis may be gained by skin testing patterns with codeine and other mast cell degranulating agents. PMID:8507042

  7. Spontaneous Pneumomediastinum in Non-Asthmatic Children with Exercise-Induced Bronchoconstriction

    PubMed Central

    Anantasit, Nattachai; Manuyakorn, Wiparat; Anantasit, Nualnapa; Choong, Karen; Preuthipan, Aroonwan

    2015-01-01

    Case series Patient: Male, 11 • Male, 15 Final Diagnosis: Spontaneous pneumomediastinum Symptoms: — Medication: — Clinical Procedure: None Specialty: Pediatrics and Neonatology Objective: Unusual clinical course Background: Subcutaneous emphysema can result from rupture of the respiratory or gastrointestinal systems, commonly occurring after trauma or surgery, as well as from rupture of alveoli as pneumothorax or pneumomediastinum. Spontaneous pneumomediastinum with subcutaneous emphysema is rare in children without chest or neck trauma. Here, we report 2 cases of spontaneous pneumomediastinum with exercise-induced bronchoconstriction. Case Report: The first case is an 11-year-old boy who presented with neck pain after vigorous exercise. Radiography showed pneumomediastinum. The second case is a 15-year-old boy who presented with pleuritic chest pain and respiratory failure requiring intubation. We extensively investigated the possible causes of pneumomediastinum. Both patients had no history of trauma or asthma, and were diagnosed with exercise-induced bronchoconstriction. They were discharged after conservative treatment, without complication. Conclusions: Early recognition and investigation of serious conditions should be promptly done in spontaneous pneumomediastinum patients. Conservative treatment, extensive investigations of predisposing factors, and treatment are important. PMID:26394070

  8. Kinetics of exercise-induced neural activation; interpretive dilemma of altered cerebral perfusion.

    PubMed

    Miyazawa, Taiki; Horiuchi, Masahiro; Ichikawa, Daisuke; Sato, Kohei; Tanaka, Naoki; Bailey, Damian M; Ogoh, Shigehiko

    2012-02-01

    Neural activation decreases cerebral deoxyhaemoglobin (HHb(C)) and increases oxyhaemoglobin concentration (O(2)Hb(C)). In contrast, patients who present with restricted cerebral blood flow, such as those suffering from cerebral ischaemia or Alzheimer's disease, and during the course of ageing the converse occurs, in that HHb(C) increases and O(2)Hb(C) decreases during neural activation. In the present study, we examined the interpretive implications of altered exercise-induced cerebral blood flow for cortical oxygenation in healthy subjects. Both O(2)Hb(C) and HHb(C) (prefrontal cortex) were determined in 11 healthy men using near-infrared spectroscopy (NIRS). Middle cerebral artery mean blood velocity (MCA V(mean)) was determined via transcranial Doppler ultrasonography. Measurements were performed during contralateral hand-grip exercise during suprasystolic bilateral thigh-cuff occlusion (Cuff+) and within 2 s of cuff release (Cuff-) for the acute manipulation of cerebral perfusion. During Cuff+, both MCA V(mean) and O(2)Hb(C) increased during exercise, whereas HHb(C) decreased. In contrast, the opposite occurred during the Cuff- manipulation. These findings highlight the inverse relationship between cerebral blood flow and cerebral oxygenation as determined by NIRS, which has interpretive implications for the kinetics underlying exercise-induced neural activation. PMID:22041980

  9. Exercise-Induced Norepinephrine Decreases Circulating Hematopoietic Stem and Progenitor Cell Colony-Forming Capacity

    PubMed Central

    Mangge, Harald; Pekovits, Karin; Fuchs, Robert; Allard, Nathalie; Schinagl, Lukas; Hofmann, Peter; Dohr, Gottfried; Wallner-Liebmann, Sandra; Domej, Wolfgang; Müller, Wolfram

    2014-01-01

    A recent study showed that ergometry increased circulating hematopoietic stem and progenitor cell (CPC) numbers, but reduced hematopoietic colony forming capacity/functionality under normoxia and normobaric hypoxia. Herein we investigated whether an exercise-induced elevated plasma free/bound norepinephrine (NE) concentration could be responsible for directly influencing CPC functionality. Venous blood was taken from ten healthy male subjects (25.3+/−4.4 yrs) before and 4 times after ergometry under normoxia and normobaric hypoxia (FiO2<0.15). The circulating hematopoietic stem and progenitor cell numbers were correlated with free/bound NE, free/bound epinephrine (EPI), cortisol (Co) and interleukin-6 (IL-6). Additionally, the influence of exercise-induced NE and blood lactate (La) on CPC functionality was analyzed in a randomly selected group of subjects (n = 6) in vitro under normoxia by secondary colony-forming unit granulocyte macrophage assays. Concentrations of free NE, EPI, Co and IL-6 were significantly increased post-exercise under normoxia/hypoxia. Ergometry-induced free NE concentrations found in vivo showed a significant impairment of CPC functionality in vitro under normoxia. Thus, ergometry-induced free NE was thought to trigger CPC mobilization 10 minutes post-exercise, but as previously shown impairs CPC proliferative capacity/functionality at the same time. The obtained results suggest that an ergometry-induced free NE concentration has a direct negative effect on CPC functionality. Cortisol may further influence CPC dynamics and functionality. PMID:25180783

  10. Food-Dependent Exercise-Induced Anaphylaxis: A Case Related to Chickpea Ingestion and Review

    PubMed Central

    2007-01-01

    Food-dependent exercise-induced anaphylaxis (FDEIA) is recognized as a distinct category of exercise-induced anaphylaxis (EIA) but is very likely underdiagnosed. This report describes a 41-year-old Indian woman who experienced two separate episodes of anaphylaxis while dancing after she had eaten chickpea-containing foods. The chickpea, a small legume, is a staple ingredient in culinary traditions from around the world, especially in India, the Middle East, and North Africa. Chickpea-containing dishes are also becoming more widespread in the Western world with the growing popularity of South Asian, Middle Eastern, and African cuisines. It is important to consider FDEIA in cases of unexplained anaphylaxis as reactions can occur several hours after ingesting the culprit food(s). Furthermore, no reaction occurs if a sensitized individual eats the culprit food(s) without exercising afterward; therefore, triggering foods can easily be overlooked. Current ideas on the pathophysiology, predisposing factors, workup, and treatment of FDEIA are also summarized here. PMID:20525119

  11. Sex Differences in Exercise-Induced Muscle Pain and Muscle Damage

    PubMed Central

    Dannecker, Erin A.; Liu, Ying; Rector, R. Scott; Thomas, Tom R.; Fillingim, Roger B.; Robinson, Michael E.

    2012-01-01

    There is uncertainty about sex differences in exercise-induced muscle pain and muscle damage due to several methodological weaknesses in the literature. This investigation tested the hypothesis that higher levels of exercise-induced muscle pain and muscle damage indicators would be found in women than men when several methodological improvements were executed in the same study. Participants (N = 33; 42% women) with an average age of 23 years (SD = 2.82) consented to participate. After a familiarization session, participants visited the laboratory before and across four days after eccentric exercise was completed to induce arm muscle pain and muscle damage. Our primary outcomes were arm pain ratings and pressure pain thresholds. However, we also measured the following indicators of muscle damage: arm girth; resting elbow extension; isometric elbow flexor strength; myoglobin (Mb); tumor necrosis factor (TNFa); interleukin 1beta (IL1b); and total nitric oxide (NO). Temporary induction of muscle damage was indicated by changes in all outcome measures except TNFa, and IL1b. In contrast to our hypotheses, women reported moderately lower and less frequent muscle pain than men. Also, women’s arm girth and Mb levels increased moderately less than men’s, but the differences were not significant. Few large sex differences were detected. PMID:23182229

  12. Exercise-induced interstitial pulmonary edema at sea-level in young and old healthy humans

    PubMed Central

    Taylor, Bryan J.; Carlson, Alex R.; Miller, Andrew D.; Johnson, Bruce D.

    2014-01-01

    We asked whether aged adults are more susceptible to exercise-induced pulmonary edema relative to younger individuals. Lung diffusing capacity for carbon monoxide (DLCO), alveolar-capillary membrane conductance (Dm) and pulmonary-capillary blood volume (Vc) were measured before and after exhaustive discontinuous incremental exercise in 10 young (YNG; 27±3 yr) and 10 old (OLD; 69±5 yr) males. In YNG subjects, Dm increased (11±7%, P=0.031), Vc decreased (−10±9%, P=0.01) and DLCO was unchanged (30.5±4.1 vs. 29.7±2.9 ml/min/mmHg, P=0.44) pre- to post-exercise. In OLD subjects, DLCO and Dm increased (11±14%, P=0.042; 16±14%, P=0.025) but Vc was unchanged (58±23 vs. 56±23 ml, P=0.570) pre- to post-exercise. Group-mean Dm/Vc was greater after vs. before exercise in the YNG and OLD subjects. However, Dm/Vc was lower post-exercise in 2 of the 10 YNG (−7±4%) and 2 of the 10 OLD subjects (−10±5%). These data suggest that exercise decreases interstitial lung fluid in most YNG and OLD subjects, with a small number exhibiting evidence for exercise-induced pulmonary edema. PMID:24200644

  13. The endocannabinoid system mediates aerobic exercise-induced antinociception in rats.

    PubMed

    Galdino, Giovane; Romero, Thiago R L; Silva, José Felipe P; Aguiar, Daniele C; de Paula, Ana Maria; Cruz, Jader S; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor D; Di Marzo, Vincenzo; Perez, Andrea C

    2014-02-01

    Exercise-induced antinociception is widely described in the literature, but the mechanisms involved in this phenomenon are poorly understood. Systemic (s.c.) and central (i.t., i.c.v.) pretreatment with CB₁ and CB₂ cannabinoid receptor antagonists (AM251 and AM630) blocked the antinociception induced by an aerobic exercise (AE) protocol in both mechanical and thermal nociceptive tests. Western blot analysis revealed an increase and activation of CB₁ receptors in the rat brain, and immunofluorescence analysis demonstrated an increase of activation and expression of CB₁ receptors in neurons of the periaqueductal gray matter (PAG) after exercise. Additionally, pretreatment (s.c., i.t. and i.c.v.) with endocannabinoid metabolizing enzyme inhibitors (MAFP and JZL184) and an anandamide reuptake inhibitor (VDM11) prolonged and intensified this antinociceptive effect. These results indicate that exercise could activate the endocannabinoid system, producing antinociception. Supporting this hypothesis, liquid-chromatography/mass-spectrometry measurements demonstrated that plasma levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and of anandamide-related mediators (palmitoylethanolamide and oleoylethanolamide) were increased after AE. Therefore, these results suggest that the endocannabinoid system mediates aerobic exercise-induced antinociception at peripheral and central levels. PMID:24148812

  14. Enhanced exercise-induced plasma cytokine response and oxidative stress in COPD patients depend on blood oxygenation.

    PubMed

    Jammes, Yves; Steinberg, Jean Guillaume; Ba, Abdoulaye; Delliaux, Stéphane; Brégeon, Fabienne

    2008-05-01

    In healthy subjects, hypoxemia and exercise represent independent stressors promoting the exercise-induced cytokine response and oxidative stress. We hypothesized that hypoxemia in patients with chronic obstructive pulmonary disease (COPD) may affect the cytokine production and/or the changes in oxidant-antioxidant status in response to maximal exercise. Exercise-induced changes in PaO2 allowed to transiently increase or decrease baseline hypoxemia and to point out its specific action on muscle metabolism. COPD patients with severe to moderate hypoxemia (56 < PaO2 < 72 mmHg) performed an incremental cycling exercise until volitional exhaustion. Two cytokines [interleukin (IL)-6 and tumour necrosis factor (TNF)-alpha] and three blood indices of oxidative stress [plasma thiobarbituric acid reactive substances (TBARS) and two antioxidants, reduced erythrocyte glutathione (GSH), and reduced plasma ascorbic acid, RAA] were measured at rest, then during and after exercise. The changes in the cytokine levels and oxidant-antioxidant status were analysed in relation with the baseline PaO2 and its exercise-induced variations. Data were compared with those obtained in an age- and body mass index-matched group of healthy subjects. Compared with healthy subjects, COPD patients presented a marked accentuation of exercise-induced increase in IL-6 level and earlier changes in their oxidant-antioxidant status. Resting levels of IL-6 and TNF-alpha and exercise-induced peak variations of TBARS, IL-6 and TNF-alpha were negatively correlated with the baseline PaO2. In COPD patients, the peak increases in IL-6 and TBARS were attenuated when exercise hyperventilation reduced the baseline hypoxemia. Our study indicates that the PaO2 level affects both the exercise-induced oxidative stress and cytokine response in hypoxemic COPD patients. PMID:18312445

  15. Prevalence and Associated Clinical Characteristics of Exercise-Induced ST-Segment Elevation in Lead aVR

    PubMed Central

    Pitcher, Ian; Fordyce, Christopher B.; Yousefi, Masoud; Yeo, Tee Joo; Ignaszewski, Andrew; Isserow, Saul; Chan, Sammy; Ramanathan, Krishnan; Taylor, Carolyn M.

    2016-01-01

    Background Exercise-induced ST-segment elevation (STE) in lead aVR may be an important indicator of prognostically important coronary artery disease (CAD). However, the prevalence and associated clinical features of exercise-induced STE in lead aVR among consecutive patients referred for exercise stress electrocardiography (ExECG) is unknown. Methods All consecutive patients receiving a Bruce protocol ExECG for the diagnosis of CAD at a tertiary care academic center were included over a two-year period. Clinical characteristics, including results of coronary angiography, were compared between patients with and without exercise-induced STE in lead aVR. Results Among 2227 patients undergoing ExECG, exercise-induced STE ≥1.0mm in lead aVR occurred in 3.4% of patients. Patients with STE in lead aVR had significantly lower Duke Treadmill Scores (DTS) (-0.5 vs. 7.0, p<0.01) and a higher frequency of positive test results (60.2% vs. 7.3%, p<0.01). Furthermore, patients with STE in lead aVR were more likely to undergo subsequent cardiac catheterization than those without STE in lead aVR (p<0.01, odds ratio = 4.2). Conclusions Among patients referred for ExECG for suspected CAD, exercise-induced STE in lead aVR was associated with a higher risk DTS, an increased likelihood of a positive ExECG, and referral for subsequent coronary angiography. These results suggest that exercise-induced STE in lead aVR may represent a useful ECG feature among patients undergoing ExECG in the risk stratification of patients. PMID:27467388

  16. Loss of milk fat globule-epidermal growth factor 8 (MFG-E8) in mice leads to low bone mass and accelerates ovariectomy-associated bone loss by increasing osteoclastogenesis.

    PubMed

    Sinningen, Kathrin; Albus, Elise; Thiele, Sylvia; Grossklaus, Sylvia; Kurth, Thomas; Udey, Mark C; Chavakis, Triantafyllos; Hofbauer, Lorenz C; Rauner, Martina

    2015-07-01

    Milk fat globule-epidermal growth factor 8 (MFG-E8) is a glycoprotein that controls the engulfment of apoptotic cells and exerts inflammation-modulatory effects. Recently, it has been implicated in osteoclastogenesis and the pathogenesis of inflammatory periodontal bone loss, but its role in physiological bone homeostasis is still not well defined. Here, we evaluated the influence of MFG-E8 on osteoblasts and osteoclasts and its impact on bone remodeling in healthy and ovariectomized mice as a model for post-menopausal osteoporosis. Total and trabecular bone mineral densities at the lumbar spine in 6-week-old MFG-E8 KO mice were reduced by 11% (p < 0.05) and 17% (p < 0.01), respectively, as compared to wild-type (WT) mice. Accordingly, serum levels of the bone formation marker P1NP were decreased by 37% (p < 0.01) in MFG-E8 KO mice as were the ex vivo mineralization capacity and expression of osteoblast genes (Runx2, alkaline phosphatase, osteocalcin) in MFG-E8 KO osteoblasts. In contrast, serum bone resorption markers CTX1 and TRAP5b were increased by 30% and 60% (p < 0.05), respectively, in MFG-E8 KO mice. Furthermore, bone marrow macrophages from MFG-E8-KO mice differentiated more effectively into osteoclasts, as compared to WT cells. MFG-E8-deficient osteoclasts displayed increased bone resorption ex vivo, which could be reversed by the presence of recombinant MFG-E8. To determine the significance of the enhanced osteoclastogenesis in MFG-E8 KO mice, we performed an ovariectomy, which is associated with bone loss due to increased osteoclast activity. Indeed, MFG-E8 KO mice lost 12% more trabecular bone density than WT mice after ovariectomy. Together, these data indicate that MFG-E8 controls steady-state and pathological bone turnover and may therefore represent a new target gene in the treatment of bone diseases. PMID:25868798

  17. The use of nonsteroidal anti-inflammatory drugs for exercise-induced muscle damage: implications for skeletal muscle development.

    PubMed

    Schoenfeld, Brad J

    2012-12-01

    Exercise-induced muscle damage (EIMD) is a common condition resulting from a bout of vigorous exercise, particularly if the individual is unaccustomed to performance of the given movement. Symptoms of EIMD include delayed-onset muscle soreness (DOMS) and a loss of physical function. Nonsteroidal anti-inflammatory drugs (NSAIDs) are routinely prescribed post-exercise to alleviate these symptoms and restore normal physical function. Of potential concern for those who use NSAIDs to treat EIMD is the possibility that they may impair the adaptive response to exercise. Specifically, there is emerging evidence that the action of cyclo-oxygenase (COX) enzymes, and COX-2 in particular, are important and even necessary to achieve maximal skeletal muscle hypertrophy in response to functional overload. Given that NSAIDs exert their actions by blocking COX and thus suppressing prostaglandin production, a theoretical rationale exists whereby these drugs may have detrimental effects on muscle regeneration and supercompensation. Therefore, the purpose of this article is to extensively review the literature and evaluate the effects of NSAIDs on muscle growth and development. Based on current evidence, there is little reason to believe that the occasional use of NSAIDs will negatively affect muscle growth, although the efficacy for their use in alleviating inflammatory symptoms remains questionable. Evidence on the hypertrophic effects of the chronic use of NSAIDs is less clear. In those who are untrained, it does not appear that regular NSAID use will impede growth in the short term, and at least one study indicates that it may in fact have a positive impact. Given their reported impairment of satellite cell activity, however, longer-term NSAID use may well be detrimental, particularly in those who possess greater growth potential. PMID:23013520

  18. Indirubin-3'-oxime, an activator of Wnt/β-catenin signaling, enhances osteogenic commitment of ST2 cells and restores bone loss in high-fat diet-induced obese male mice.

    PubMed

    Zahoor, Muhammad; Cha, Pu-Hyeon; Choi, Kang-Yell

    2014-08-01

    Obesity is a growing issue of the modern world, and its negative impact on bones in obese male patients has been recently reported. The Wnt/β-catenin pathway has an established role in the regulation of body fat content and bone density. We investigated the effects of indirubin-3'-oxime (I3O), the GSK3β inhibitor that activates Wnt/β-catenin signaling, on trabecular bone in high-fat diet (HFD)-induced obese male mice. I3O reverses the downregulating effect of fatty acid (FA) on Wnt/β-catenin signaling and enhances the osteogenic commitment of the bone marrow-derived stromal cell line ST2. FA induces the adipogenic differentiation of bone marrow stromal cells in vitro. In a male mouse model of HFD-induced obesity, trabecular bone loss was observed in the femora, with a gross increase in abdominal fat; however, the HFD effects were rescued with the activation of Wnt/β-catenin signaling by I3O treatment. I3O administration also reversed the increase in the number of HFD-induced adipocytes in the femur bone marrow in trabecular bone. Overall, our results indicate that I3O could be a potential therapeutic agent for obese male patients through downregulation of abdominal fat and net increment in trabecular bone density. PMID:24815917

  19. The influence of ice slushy on voluntary contraction force following exercise-induced hyperthermia.

    PubMed

    Burdon, Catriona A; Easthope, Christopher S; Johnson, Nathan A; Chapman, Phillip G; O'Connor, Helen

    2014-07-01

    This study aimed to investigate the effect of exercise-induced hyperthermia on central fatigue and force decline in exercised and nonexercised muscles and whether ingestion of ice slushy (ICE) ameliorates fatigue. Eight participants (5 males, 3 females) completed 45 s maximal voluntary isometric contractions (MVIC) with elbow flexors and knee extensors at baseline and following an exercise-induced rectal temperature (Trec) of 39.3 ± 0.2 °C. Percutaneous electrical muscle stimulation was superimposed at 15, 30 and 44 s during MVICs to assess muscle activation. To increase Trec to 39.3 °C, participants cycled at 60% maximum power output for 42 ± 11 min in 40 °C and 50% relative humidity. Immediately prior to each MVIC, participants consumed 50 g of ICE (-1 °C) or thermoneutral drink (38 °C, CON) made from 7.4% carbohydrate beverage. Participants consumed water (19 °C) during exercise to prevent hypohydration. Voluntary muscle force production and activation in both muscle groups were unchanged at Trec 39.3 °C with ICE (knee extensors: 209 ± 152 N) versus CON (knee extensors: 255 ± 157 N, p = 0.19). At Trec 39.3 °C, quadriceps mean force (232 ± 151 N) decreased versus baseline (302 ± 180 N, p < 0.001) and mean voluntary activation was also decreased (by 15% ± 11%, p < 0.001). Elbow flexor mean force decreased from 179 ± 67 N to 148 ± 65 N when Trec was increased to 39.3 °C (p < 0.001) but mean voluntary activation was not reduced at 39.3 °C (5% ± 25%, p = 0.79). After exercise-induced hyperthermia, ICE had no effect on voluntary activation or force production; however, both were reduced from baseline in the exercised muscle group. Peripheral fatigue was greater than the central component and limited the ability of an intervention designed to alter central fatigue. PMID:24971678

  20. Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice.

    PubMed

    Betts, Corinne A; Saleh, Amer F; Carr, Carolyn A; Hammond, Suzan M; Coenen-Stass, Anna M L; Godfrey, Caroline; McClorey, Graham; Varela, Miguel A; Roberts, Thomas C; Clarke, Kieran; Gait, Michael J; Wood, Matthew J A

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder caused by mutations in the Dmd gene. In addition to skeletal muscle wasting, DMD patients develop cardiomyopathy, which significantly contributes to mortality. Antisense oligonucleotides (AOs) are a promising DMD therapy, restoring functional dystrophin protein by exon skipping. However, a major limitation with current AOs is the absence of dystrophin correction in heart. Pip peptide-AOs demonstrate high activity in cardiac muscle. To determine their therapeutic value, dystrophic mdx mice were subject to forced exercise to model the DMD cardiac phenotype. Repeated peptide-AO treatments resulted in high levels of cardiac dystrophin protein, which prevented the exercised induced progression of cardiomyopathy, normalising heart size as well as stabilising other cardiac parameters. Treated mice also exhibited significantly reduced cardiac fibrosis and improved sarcolemmal integrity. This work demonstrates that high levels of cardiac dystrophin restored by Pip peptide-AOs prevents further deterioration of cardiomyopathy and pathology following exercise in dystrophic DMD mice. PMID:25758104

  1. Titin, a Central Mediator for Hypertrophic Signaling, Exercise-Induced Mechanosignaling and Skeletal Muscle Remodeling

    PubMed Central

    Krüger, Martina; Kötter, Sebastian

    2016-01-01

    Titin is a giant scaffold protein with multiple functions in striated muscle physiology. Due to the elastic I-band domains and the filament-like integration in the half-sarcomere titin is an important factor for sarcomere assembly and serves as an adaptable molecular spring that determines myofilament distensibility. Protein-interactions e.g., with muscle ankyrin repeat proteins or muscle LIM-protein link titin to hypertrophic signaling and via p62 and Muscle Ring Finger proteins to mechanisms that control protein quality control. This review summarizes our current knowledge on titin as a central node for exercise-induced mechanosignaling and remodeling and further highlights the pathophysiological implications. PMID:26973541

  2. Exercise-Induced Cognitive Plasticity, Implications for Mild Cognitive Impairment and Alzheimer’s Disease

    PubMed Central

    Foster, Philip P.; Rosenblatt, Kevin P.; Kuljiš, Rodrigo O.

    2011-01-01

    Lifestyle factors such as intellectual stimulation, cognitive and social engagement, nutrition, and various types of exercise appear to reduce the risk for common age-associated disorders such as Alzheimer’s disease (AD) and vascular dementia. In fact, many studies have suggested that promoting physical activity can have a protective effect against cognitive deterioration later in life. Slowing or a deterioration of walking speed is associated with a poor performance in tests assessing psychomotor speed and verbal fluency in elderly individuals. Fitness training influences a wide range of cognitive processes, and the largest positive impact observed is for executive (a.k.a. frontal lobe) functions. Studies show that exercise improves additional cognitive functions such as tasks mediated by the hippocampus, and result in major changes in plasticity in the hippocampus. Interestingly, this exercise-induced plasticity is also pronounced in APOE ε4 carriers who express a risk factor for late-onset AD that may modulate the effect of treatments. Based on AD staging by Braak and Braak (1991) and Braak et al. (1993) we propose that the effects of exercise occur in two temporo-spatial continua of events. The “inward” continuum from isocortex (neocortex) to entorhinal cortex/hippocampus for amyloidosis and a reciprocal “outward” continuum for neurofibrillary alterations. The exercise-induced hypertrophy of the hippocampus at the core of these continua is evaluated in terms of potential for prevention to stave off neuronal degeneration. Exercise-induced production of growth factors such as the brain-derived neurotrophic factor (BDNF) has been shown to enhance neurogenesis and to play a key role in positive cognitive effects. Insulin-like growth factor (IGF-1) may mediate the exercise-induced response to exercise on BDNF, neurogenesis, and cognitive performance. It is also postulated to regulate brain amyloid β (Aβ) levels by increased clearance via the choroid

  3. Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice

    PubMed Central

    Betts, Corinne A.; Saleh, Amer F.; Carr, Carolyn A.; Hammond, Suzan M.; Coenen-Stass, Anna M. L.; Godfrey, Caroline; McClorey, Graham; Varela, Miguel A.; Roberts, Thomas C.; Clarke, Kieran; Gait, Michael J.; Wood, Matthew J. A.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder caused by mutations in the Dmd gene. In addition to skeletal muscle wasting, DMD patients develop cardiomyopathy, which significantly contributes to mortality. Antisense oligonucleotides (AOs) are a promising DMD therapy, restoring functional dystrophin protein by exon skipping. However, a major limitation with current AOs is the absence of dystrophin correction in heart. Pip peptide-AOs demonstrate high activity in cardiac muscle. To determine their therapeutic value, dystrophic mdx mice were subject to forced exercise to model the DMD cardiac phenotype. Repeated peptide-AO treatments resulted in high levels of cardiac dystrophin protein, which prevented the exercised induced progression of cardiomyopathy, normalising heart size as well as stabilising other cardiac parameters. Treated mice also exhibited significantly reduced cardiac fibrosis and improved sarcolemmal integrity. This work demonstrates that high levels of cardiac dystrophin restored by Pip peptide-AOs prevents further deterioration of cardiomyopathy and pathology following exercise in dystrophic DMD mice. PMID:25758104

  4. Effects of nicardipine on cardiac volume at rest and during exercise-induced angina

    PubMed Central

    Silke, B.; Verma, S. P.; Frais, M. A.; Hafizullah, M.; Taylor, S. H.

    1985-01-01

    1 The action of nicardipine on cardiac volume, both at rest and during exercise-induced angina, was evaluated in 12 patients with angiographically-proven coronary artery disease. 2 Nicardipine given to patients at rest reduced systemic vascular resistance and mean arterial pressure and increased heart rate and cardiac index. The left ventricular filling pressure, ejection fraction (EF), end-diastolic and end-systolic volumes were unchanged. 3 During supine bicycle exercise, the reduction in systemic arterial blood pressure following nicardipine increased cardiac and stroke index and attenuated the rise in left ventricular filling pressure observed in the control exercise. 4 The effects of nicardipine on EF, end-diastolic and end-systolic cardiac volumes were dependent on the baseline cardiac reserve. In patients with EF < 50%, nicardipine improved EF and left ventricular exercise volumes. PMID:2862901

  5. Titin, a Central Mediator for Hypertrophic Signaling, Exercise-Induced Mechanosignaling and Skeletal Muscle Remodeling.

    PubMed

    Krüger, Martina; Kötter, Sebastian

    2016-01-01

    Titin is a giant scaffold protein with multiple functions in striated muscle physiology. Due to the elastic I-band domains and the filament-like integration in the half-sarcomere titin is an important factor for sarcomere assembly and serves as an adaptable molecular spring that determines myofilament distensibility. Protein-interactions e.g., with muscle ankyrin repeat proteins or muscle LIM-protein link titin to hypertrophic signaling and via p62 and Muscle Ring Finger proteins to mechanisms that control protein quality control. This review summarizes our current knowledge on titin as a central node for exercise-induced mechanosignaling and remodeling and further highlights the pathophysiological implications. PMID:26973541

  6. Exercise-induced cramp, myoglobinuria, and tubular aggregates in phosphoglycerate mutase deficiency.

    PubMed

    Oh, Shin J; Park, Kyung-Seok; Ryan, Hewitt F; Danon, Moris J; Lu, Jiesheng; Naini, Ali B; DiMauro, Salvatore

    2006-11-01

    We report two patients in whom phosphoglycerate mutase (PGAM) deficiency was associated with the triad of exercise-induced cramps, recurrent myoglobinuria, and tubular aggregates in the muscle biopsy. Serum creatine kinase (CK) levels were elevated between attacks of myoglobinuria. Forearm ischemic exercise tests produced subnormal increases of venous lactate. Muscle biopsies showed subsarcolemmal tubular aggregates in type 2 fibers. Muscle PGAM activities were markedly decreased (3% of the normal mean) and molecular genetic studies showed that both patients were homozygous for a described missense mutation (W78X). A review of 15 cases with tubular aggregates in the muscle biopsies from our laboratory and 15 cases with PGAM deficiency described in the literature showed that this clinicopathological triad is highly suggestive of PGAM deficiency. PMID:16881065

  7. Exercise-induced pulmonary hemorrhage in a nonathlete: case report and review of physiology.

    PubMed

    Diwakar, Amit; Schmidt, Gregory A

    2014-04-01

    The integrity of the pulmonary blood-gas barrier is vulnerable to intense exercise in elite athletes, similar to the phenomenon of exercise-induced pulmonary hemorrhage in thoroughbred racehorses. A 50-year-old previously healthy man presented with acute onset shortness of breath, dry cough, and hypoxemia after engaging in an extremely vigorous game of handball. CT scan of the chest showed diffuse patchy air-space disease. Bronchoalveolar lavage revealed diffuse alveolar hemorrhage. Infectious etiologies and bleeding diatheses were excluded by laboratory testing. Serological tests for ANCA-associated vasculitis, lupus, and Goodpasture's disease also were negative. A transthoracic echocardiogram was normal. The patient recovered completely on supportive therapy in less than 72 h. This case demonstrates strenuous exercise as a cause of diffuse alveolar hemorrhage in a previously healthy male with no apparent underlying cardiopulmonary disease. PMID:24532148

  8. Exercise-induced oxidatively damaged DNA in humans: evaluation in plasma or urine?

    PubMed

    Karpouzi, Christina; Nikolaidis, Stefanos; Kabasakalis, Athanasios; Tsalis, George; Mougios, Vassilis

    2016-01-01

    Physical exercise can induce oxidative damage in humans. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is a widely known biomarker of DNA oxidation, which can be determined in blood and urine. The aim of the present study was to compare these two biological fluids in terms of which is more suitable for the estimation of the oxidative damage of DNA by measuring the concentration of 8-OHdG one hour after maximal exercise by enzyme immunoassay. The concentration of 8-OHdG increased with exercise only in plasma (p < 0.001), and values differed between exercise tests in both plasma and urine (p < 0.05). In conclusion, plasma appears to be more sensitive to exercise-induced 8-OHdG changes than urine and, hence, a more appropriate medium for assessing oxidative damage of DNA, although the poor repeatability of the measurement needs to be addressed in future studies. PMID:26849281

  9. Effects of Massage on Muscular Strength and Proprioception After Exercise-Induced Muscle Damage.

    PubMed

    Shin, Mal-Soon; Sung, Yun-Hee

    2015-08-01

    Exercise-induced muscle damage (EIMD), which is commonly associated with eccentric exercise, unaccustomed exercise, and resistance training, may lead to delayed onset muscle soreness, swelling, decreased muscle strength, and range of motion. Many researchers have evaluated various interventions to treat the signs and symptoms of EIMD. However, the effects of massage after EIMD are unclear. Here, we investigated the effect of massage on muscle strength and proprioception after EIMD. All subjects randomly were divided into an EIMD-treated control group (n = 10) and a massage-treated after EIMD experimental group (n = 11). Exercise-induced muscle damage was induced by repeated exercise. Massage treatment was provided by physiotherapist for 15 minutes. It consists of light stroking, milking, friction, and skin rolling. Lactate was evaluated by Lactate Pro analyzer in pre- and postexercise. Surface electromyography (muscle activity) and sonography (muscle thickness) were used to confirm the muscular characteristics. Proprioception was investigated by dual inclinometer. As a result, massage treatment on the gastrocnemius after EIMD increased activation of the medial gastrocnemius during contraction (p ≤ 0.05). In the lateral and medial gastrocnemius, the θs, which is the angle between muscle fibers and superficial aponeurosis, showed a significant change (p ≤ 0.05). However, there are no differences in the θd, which is the angle between muscle fibers and deep aponeurosis. We also found that proprioceptive acuity in the ankle joint was significantly greater in the massage-treated experimental group compared with that in the control group (p ≤ 0.05). These findings suggest that massage of the gastrocnemius after EIMD can improve muscle strength and proprioception by influencing the superficial layer of the gastrocnemius. PMID:25226328

  10. Attenuated exercise induced hyperaemia with age: mechanistic insight from passive limb movement

    PubMed Central

    McDaniel, John; Hayman, Melissa A; Ives, Steve; Fjeldstad, Anette S; Trinity, Joel D; Wray, D Walter; Richardson, Russell S

    2010-01-01

    The influence of age on the central and peripheral contributors to exercise-induced hyperaemia is unclear. Utilizing a reductionist approach, we compared the peripheral and central haemodynamic responses to passive limb movement (exercise without an increase in metabolism) in 11 old (71 ± 9 years of age s.d.) and 11 young (24 ± 2 years of age) healthy subjects. Cardiac output (CO), heart rate (HR), stroke volume (SV), mean arterial pressure (MAP), and femoral blood flow of the passively moved and control legs were evaluated second-by-second during 2 min of passive knee extension at a rate of 1 Hz. Compared to the young, the old group exhibited a significantly attenuated increase in HR (7 ± 4%vs. 13 ± 7%s.d.), CO (10 ± 6%vs. 18 ± 8%) and femoral blood flow in the passively moved (123 ± 55%vs. 194 ± 57%) and control legs (47 ± 43%vs. 77 ± 96%). In addition, the change in vascular conductance in the passively moving limb was also significantly attenuated in the old (2.4 ± 1.2 ml min−1 mmHg−1) compared to the young (4.3 ± 1.7 ml min−1 mmHg−1). In both groups all main central and peripheral changes that occurred at the onset of passive knee extension were transient, lasting only 45 s. In a paradigm where metabolism does not play a role, these data reveal that both central and peripheral haemodynamic mechanisms are likely to be responsible for the 30% reduction in exercise-induced hyperaemia with age. PMID:20876201

  11. Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle

    PubMed Central

    Vainshtein, Anna; Tryon, Liam D.; Pauly, Marion

    2015-01-01

    Regular exercise leads to systemic metabolic benefits, which require remodeling of energy resources in skeletal muscle. During acute exercise, the increase in energy demands initiate mitochondrial biogenesis, orchestrated by the transcriptional coactivator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Much less is known about the degradation of mitochondria following exercise, although new evidence implicates a cellular recycling mechanism, autophagy/mitophagy, in exercise-induced adaptations. How mitophagy is activated and what role PGC-1α plays in this process during exercise have yet to be evaluated. Thus we investigated autophagy/mitophagy in muscle immediately following an acute bout of exercise or 90 min following exercise in wild-type (WT) and PGC-1α knockout (KO) animals. Deletion of PGC-1α resulted in a 40% decrease in mitochondrial content, as well as a 25% decline in running performance, which was accompanied by severe acidosis in KO animals, indicating metabolic distress. Exercise induced significant increases in gene transcripts of various mitochondrial (e.g., cytochrome oxidase subunit IV and mitochondrial transcription factor A) and autophagy-related (e.g., p62 and light chain 3) genes in WT, but not KO, animals. Exercise also resulted in enhanced targeting of mitochondria for mitophagy, as well as increased autophagy and mitophagy flux, in WT animals. This effect was attenuated in the absence of PGC-1α. We also identified Niemann-Pick C1, a transmembrane protein involved in lysosomal lipid trafficking, as a target of PGC-1α that is induced with exercise. These results suggest that mitochondrial turnover is increased following exercise and that this effect is at least in part coordinated by PGC-1α. Anna Vainshtein received the AJP-Cell 2015 Paper of the Year award. Listen to a podcast with Anna Vainshtein and coauthor David A. Hood at http://ajpcell.podbean.com/e/ajp-cell-paper-of-the-year-2015-award-podcast/. PMID

  12. Fibroblast growth factor 21 and exercise-induced hepatic mitochondrial adaptations.

    PubMed

    Fletcher, Justin A; Linden, Melissa A; Sheldon, Ryan D; Meers, Grace M; Morris, E Matthew; Butterfield, Anthony; Perfield, James W; Thyfault, John P; Rector, R Scott

    2016-05-15

    Exercise stimulates hepatic mitochondrial adaptations; however, the mechanisms remain largely unknown. Here we tested whether FGF21 plays an obligatory role in exercise induced hepatic mitochondrial adaptations by testing exercise responses in FGF21 knockout mice. FGF21 knockout (FGF21-KO) and wild-type (WT) mice (11-12 wk of age) had access to voluntary running wheels for exercise (EX) or remained sedentary for 8 wk. FGF21 deficiency resulted in greater body weight, adiposity, serum cholesterol, insulin, and glucose concentrations compared with WT mice (P < 0.05). In addition, hepatic mitochondrial complete palmitate oxidation, β-hydroxyacyl-CoA dehydrogenase (β-HAD) activity, and nuclear content of PGC-1α were 30-50% lower in FGF21-KO mice compared with WT mice (P < 0.01). EX effectively lowered body weight, adiposity, serum triglycerides, free fatty acids, and insulin and normalized mitochondrial complete palmitate oxidation in the FGF21-KO mice, whereas the reduced hepatic β-HAD activity and lowered nuclear content of PGC-1α in FGF21-KO mice were not restored by EX. In addition, EX increased hepatic CPT-1α mRNA expression and ACC phosphorylation (a marker of increased AMPK activity) and reduced hepatic triacylglycerol content in both genotypes. However, FGF21-KO mice displayed a lower EX-induced increase in the mRNA expression of the hepatic gluconeogenic gene, PEPCK, compared with WT. In conclusion, FGF21 does not appear necessary for exercise-induced systemic and hepatic mitochondrial adaptations, but the increased adiposity, hyperinsulinemia, and impairments in hepatic mitochondrial function induced by FGF21 deficiency can be partially rescued by daily wheel running exercise. PMID:27012775

  13. Evidence of local exercise-induced systemic oxidative stress in chronic obstructive pulmonary disease patients.

    PubMed

    Couillard, A; Koechlin, C; Cristol, J P; Varray, A; Prefaut, C

    2002-11-01

    Chronic inactivity may not be the sole factor involved in the myopathy of chronic obstructive pulmonary disease (COPD) patients. One hypothesis is that exercise-induced oxidative stress that leads to muscle alterations may also be involved. This study investigated whether exercise localised to a peripheral muscle group would induce oxidative stress in COPD patients. Eleven COPD patients (FEV1 1.15+/-0.4 L (mean+/-SD)) and 12 healthy age-matched subjects with a similar low quantity of physical activity performed endurance exercise localised to a peripheral muscle group, the quadriceps of the dominant leg. The authors measured plasma levels of thiobarbituric reactive substances (TBARs) as an index of oxidative stress, the release in superoxide anion (O2*-) by stimulated phagocytes as an oxidant, and blood vitamin E as one antioxidant. Quadriceps endurance was significantly lower in the COPD patients compared with healthy subjects (136+/-16 s versus 385+/-69 s (mean+/-SEM), respectively). A significant increase in TBARs 6 h after quadriceps exercise was only found in the COPD patients. In addition, significantly higher O2*- release and lower blood vitamin E levels were found in COPD patients than in controls at rest. This blood vitamin E level was significantly correlated with the resting level of plasma TBARs in the COPD patients. This study mainly showed that quadriceps exercise induced systemic oxidative stress in chronic obstructive pulmonary disease patients and that vitamin E levels were decreased in these patients at rest. The exact relevance of these findings to chronic obstructive pulmonary disease myopathy needs to be elucidated. PMID:12449164

  14. Enhanced vagal modulation and exercise induced ischaemia of the inferoposterior myocardium

    PubMed Central

    Kawasaki, T; Azuma, A; Kuribayashi, T; Taniguchi, T; Asada, S; Kamitani, T; Kawasaki, S; Matsubara, H; Sugihara, H

    2006-01-01

    Objective To determine whether the Bezold‐Jarisch reflex or enhancement of vagal nerves, which are preferentially distributed in the inferoposterior myocardium, results from exercise induced ischaemia in this region. Methods On the basis of exercise myocardial scintigraphy and coronary angiography, 145 patients were classified as follows: group I, 34 patients with inferoposterior ischaemia; group A, 32 with anterior ischaemia; and control, 79 without ischaemia. The relation between ischaemic areas and ECG leads with ST segment changes and vagal modulation assessed by heart rate variability (HRV) (high frequency (HF) component (0.15–0.40 Hz) and coefficient of HF component variance (CCVHF), which is the square root of HF divided by mean RR interval) were assessed. Results The rate of ST segment depression in any lead did not differ between group I and group A. HF and CCVHF were similar before exercise but higher in group I than in group A and the control group after exercise (mean (SEM) HF: 94 (17) ms2, 41 (7) ms2, and 45 (6) ms2, respectively, p  =  0.021; CCVHF: 1.18 (0.09)%, 0.81 (0.07)%, and 0.89 (0.05)%, p  = 0.0053). Furthermore, the percentage change in CCVHF before and after exercise was higher in group I than in group A or controls (mean (SEM) 22 (10)%, −24 (4)%, and −21 (3)%, p < 0.0001). The optimal cut off for diagnosis of inferoposterior ischaemia was −5% with a sensitivity of 74%, specificity 75%, and accuracy 75%. Conclusions Vagal modulation as assessed by HRV analysis was enhanced in association with exercise induced inferoposterior ischaemia. Exercise ECG testing combined with HRV analysis would increase accuracy in the diagnosis of ischaemic areas in selected patients with angina pectoris. PMID:15939725

  15. Epigenetic Modifications of the PGC-1α Promoter during Exercise Induced Expression in Mice

    PubMed Central

    Lochmann, Timothy L.; Thomas, Ravindar R.; Bennett, James P.; Taylor, Shirley M.

    2015-01-01

    The transcriptional coactivator, PGC-1α, is known for its role in mitochondrial biogenesis. Although originally thought to exist as a single protein isoform, recent studies have identified additional promoters which produce multiple mRNA transcripts. One of these promoters (promoter B), approximately 13.7kb upstream of the canonical PGC-1α promoter (promoter A), yields alternative transcripts present at levels much lower than the canonical PGC-1α mRNA transcript. In skeletal muscle, exercise resulted in a substantial, rapid increase of mRNA of these alternative PGC-1α transcripts. Although the β2-adrenergic receptor was identified as a signaling pathway that activates transcription from PGC-1α promoter B, it is not yet known what molecular changes occur to facilitate PGC-1α promoter B activation following exercise. We sought to determine whether epigenetic modifications were involved in this exercise response in mouse skeletal muscle. We found that DNA hydroxymethylation correlated to increased basal mRNA levels from PGC-1α promoter A, but that DNA methylation appeared to play no role in the exercise-induced activation of PGC-1α promoter B. The level of the activating histone mark H3K4me3 increased with exercise 2–4 fold across PGC-1α promoter B, but remained unaltered past the canonical PGC-1α transcriptional start site. Together, these data show that epigenetic modifications partially explain exercise-induced changes in the skeletal muscle mRNA levels of PGC-1α isoforms. PMID:26053857

  16. Interaction of myocardial insulin receptor and IGF receptor signaling in exercise-induced cardiac hypertrophy

    PubMed Central

    Ikeda, Hiroyuki; Shiojima, Ichiro; Ozasa, Yukako; Yoshida, Masashi; Holzenberger, Martin; Kahn, C Ronald; Walsh, Kenneth; Igarashi, Takashi; Abel, E Dale; Komuro, Issei

    2016-01-01

    Insulin-like growth factor-1 (IGF-1) signaling has recently been implicated in the development of cardiac hypertrophy after long-term endurance training, via mechanisms that may involve energetic stress. Given the potential overlap of insulin and IGF-1 signaling we sought to determine if both signaling pathways could contribute to exercise-induced cardiac hypertrophy following shorter-term exercise training. Studies were performed in mice with cardiac-specific IGF-1 receptor (IGF1R) knockout (CIGFRKO), mice with cardiac-specific insulin receptor (IR) knockout (CIRKO), CIGFRKO mice that lacked one IR allele in cardiomyocytes (IGFR−/−IR+/−), and CIRKO mice that lacked one IGF1R allele in cardiomyocytes (IGFR+/−IR−/−). Intravenous administration of IGF-1 or 75 hours of swimming over 4 weeks increased IGF1R tyrosine phosphorylation in the heart in control and CIRKO mice but not in CIGFRKO mice. Intriguingly, IR tyrosine phosphorylation in the heart was also increased following IGF-1 administration or exercise training in control and CIGFRKO mice but not in CIRKO mice. The extent of cardiac hypertrophy following exercise training in CIGFRKO and CIRKO mice was comparable to that in control mice. In contrast, exercise-induced cardiac hypertrophy was significantly attenuated in IGFR−/−IR+/− and IGFR+/−IR−/− mice. Thus, IGF-1 and exercise activates both IGF1R and IR in the heart, and IGF1R- and IR-mediated signals may serve redundant roles in the hypertrophic responses of the heart to exercise training. PMID:19744489

  17. Increased renal tubular sodium reabsorption during exercise-induced hypervolemia in humans

    NASA Technical Reports Server (NTRS)

    Nagashima, K.; Wu, J.; Kavouras, S. A.; Mack, G. W.

    2001-01-01

    We tested the hypothesis that renal tubular Na(+) reabsorption increased during the first 24 h of exercise-induced plasma volume expansion. Renal function was assessed 1 day after no-exercise control (C) or intermittent cycle ergometer exercise (Ex, 85% of peak O(2) uptake) for 2 h before and 3 h after saline loading (12.5 ml/kg over 30 min) in seven subjects. Ex reduced renal blood flow (p-aminohippurate clearance) compared with C (0.83 +/- 0.12 vs. 1.49 +/- 0.24 l/min, P < 0.05) but did not influence glomerular filtration rates (97 +/- 10 ml/min, inulin clearance). Fractional tubular reabsorption of Na(+) in the proximal tubules was higher in Ex than in C (P < 0.05). Saline loading decreased fractional tubular reabsorption of Na(+) from 99.1 +/- 0.1 to 98.7 +/- 0.1% (P < 0.05) in C but not in Ex (99.3 +/- 0.1 to 99.4 +/- 0.1%). Saline loading reduced plasma renin activity and plasma arginine vasopressin levels in C and Ex, although the magnitude of decrease was greater in C (P < 0.05). These results indicate that, during the acute phase of exercise-induced plasma volume expansion, increased tubular Na(+) reabsorption is directed primarily to the proximal tubules and is associated with a decrease in renal blood flow. In addition, saline infusion caused a smaller reduction in fluid-regulating hormones in Ex. The attenuated volume-regulatory response acts to preserve distal tubular Na(+) reabsorption during saline infusion 24 h after exercise.

  18. Glycopyrrolate abolishes the exercise-induced increase in cerebral perfusion in humans.

    PubMed

    Seifert, Thomas; Fisher, James P; Young, Colin N; Hartwich, Doreen; Ogoh, Shigehiko; Raven, Peter B; Fadel, Paul J; Secher, Niels H

    2010-10-01

    Brain blood vessels contain muscarinic receptors that are important for cerebral blood flow (CBF) regulation, but whether a cholinergic receptor mechanism is involved in the exercise-induced increase in cerebral perfusion or affects cerebral metabolism remains unknown. We evaluated CBF and cerebral metabolism (from arterial and internal jugular venous O(2), glucose and lactate differences), as well as the middle cerebral artery mean blood velocity (MCA V(mean); transcranial Doppler ultrasound) during a sustained static handgrip contraction at 40% of maximal voluntary contraction (n = 9) and the MCA V(mean) during ergometer cycling (n = 8). Separate, randomized and counterbalanced trials were performed in control (no drug) conditions and following muscarinic cholinergic receptor blockade by glycopyrrolate. Glycopyrrolate increased resting heart rate from approximately 60 to approximately 110 beats min(-1) (P < 0.01) and cardiac output by approximately 40% (P < 0.05), but did not affect mean arterial pressure. The central cardiovascular responses to exercise with glycopyrrolate were similar to the control responses, except that cardiac output did not increase during static handgrip with glycopyrrolate. Glycopyrrolate did not significantly affect cerebral metabolism during static handgrip, but a parallel increase in MCA V(mean) (approximately 16%; P < 0.01) and CBF (approximately 12%; P < 0.01) during static handgrip, as well as the increase in MCA V(mean) during cycling (approximately 15%; P < 0.01), were abolished by glycopyrrolate (P < 0.05). Thus, during both cycling and static handgrip, a cholinergic receptor mechanism is important for the exercise-induced increase in cerebral perfusion without affecting the cerebral metabolic rate for oxygen. PMID:20660020

  19. An open-label study examining the effect of pharmacological treatment on mannitol- and exercise-induced airway hyperresponsiveness in asthmatic children and adolescents with exercise-induced bronchoconstriction

    PubMed Central

    2014-01-01

    Background Mannitol- and exercise bronchial provocation tests are both used to diagnose exercise-induced bronchoconstriction. The study aim was to compare the short-term treatment response to budesonide and montelukast on airway hyperresponsiveness to mannitol challenge test and to exercise challenge test in children and adolescents with exercise-induced bronchoconstriction. Methods Patients were recruited from a paediatric asthma rehabilitation clinic located in the Swiss Alps. Individuals with exercise-induced bronchoconstriction and a positive result in the exercise challenge test underwent mannitol challenge test on day 0. All subjects then received a treatment with 400 μg budesonide and bronchodilators as needed for 7 days, after which exercise- and mannitol-challenge tests were repeated (day 7). Montelukast was then added to the previous treatment and both tests were repeated again after 7 days (day 14). Results Of 26 children and adolescents with exercise-induced bronchoconstriction, 14 had a positive exercise challenge test at baseline and were included in the intervention study. Seven of 14 (50%) also had a positive mannitol challenge test. There was a strong correlation between airway responsiveness to exercise and to mannitol at baseline (r = 0.560, p = 0.037). Treatment with budesonide and montelukast decreased airway hyperresponsiveness to exercise challenge test and to a lesser degree to mannitol challenge test. The fall in forced expiratory volume in one second during exercise challenge test was 21.7% on day 0 compared to 6.7% on day 14 (p = 0.001) and the mannitol challenge test dose response ratio was 0.036%/mg on day 0 compared to 0.013%/mg on day 14 (p = 0.067). Conclusion Short-term treatment with an inhaled corticosteroid and an additional leukotriene receptor antagonist in children and adolescents with exercise-induced bronchoconstriction decreases airway hyperresponsiveness to exercise and to mannitol. PMID:25084607

  20. Fat Characterization

    NASA Astrophysics Data System (ADS)

    O'Keefe, Sean F.; Pike, Oscar A.

    Methods for characterizing edible lipids, fats, and oils can be separated into two categories: those developed to analyze bulk oils and fats, and those focusing on analysis of foodstuffs and their lipid extracts. In evaluating foodstuffs, it is usually necessary to extract the lipids prior to analysis. In these cases, if sufficient quantities of lipids are available, methods developed for bulk fats and oils can be utilized.

  1. Increased dietary protein attenuates C-reactive protein and creatine kinase responses to exercise-induced energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined if dietary protein (P) modulates responses of C-reactive protein (CRP) and creatine kinase (CK), biomarkers of inflammation and muscle damage, during exercise-induced energy deficit (DEF). Thirteen healthy men (22 +/- 1 y, VO2peak 60 +/- 2 ml.kg-1.min-1) balanced energy expenditure (EE...

  2. A Systematic Review of the Literature on Screening for Exercise-Induced Asthma: Considerations for School Nurses

    ERIC Educational Resources Information Center

    Worrell, Kelly; Shaw, Michele R.; Postma, Julie; Katz, Janet R.

    2015-01-01

    Asthma is a major cause of illness, missed school days, and hospitalization in children. One type of asthma common in children is exercise-induced asthma (EIA). EIA causes airway narrowing with symptoms of cough and shortness of breath during exercise. The purpose of this article is to review the literature relevant to screening children and…

  3. The Free-Running Asthma Screening Test: An Approach to Screening for Exercise-Induced Asthma in Rural Alabama.

    ERIC Educational Resources Information Center

    Heaman, Doris J.; Estes, Jenny

    1997-01-01

    This study documented the prevalence of exercise-induced asthma (EIA) in rural elementary schools, examining the use of a free-running asthma screening test and peak expiratory flow-rate measurement for school screening. Results indicated that 5.7% of the students had EIA. Absenteeism and poverty were related to EIA. (SM)

  4. Exercise and Fat Reduction.

    ERIC Educational Resources Information Center

    Clarke, H. Harrison, Ed.

    1975-01-01

    This document analyzes the problems encountered by the obese individual and the effects of regular exercise on weight loss and fat reduction. Part one compares the psychological traits of obese children with age groups of normal weight and discusses the organic disorders and social attitudes which plague the overweight individual. Part two states…

  5. Acute and chronic watercress supplementation attenuates exercise-induced peripheral mononuclear cell DNA damage and lipid peroxidation.

    PubMed

    Fogarty, Mark C; Hughes, Ciara M; Burke, George; Brown, John C; Davison, Gareth W

    2013-01-28

    Pharmacological antioxidant vitamins have previously been investigated for a prophylactic effect against exercise-induced oxidative stress. However, large doses are often required and may lead to a state of pro-oxidation and oxidative damage. Watercress contains an array of nutritional compounds such as β-carotene and α-tocopherol which may increase protection against exercise-induced oxidative stress. The present randomised controlled investigation was designed to test the hypothesis that acute (consumption 2 h before exercise) and chronic (8 weeks consumption) watercress supplementation can attenuate exercise-induced oxidative stress. A total of ten apparently healthy male subjects (age 23 (SD 4) years, stature 179 (SD 10) cm and body mass 74 (SD 15) kg) were recruited to complete the 8-week chronic watercress intervention period (and then 8 weeks of control, with no ingestion) of the experiment before crossing over in order to compete the single-dose acute phase (with control, no ingestion). Blood samples were taken at baseline (pre-supplementation), at rest (pre-exercise) and following exercise. Each subject completed an incremental exercise test to volitional exhaustion following chronic and acute watercress supplementation or control. The main findings show an exercise-induced increase in DNA damage and lipid peroxidation over both acute and chronic control supplementation phases (P< 0.05 v. supplementation), while acute and chronic watercress attenuated DNA damage and lipid peroxidation and decreased H₂O₂ accumulation following exhaustive exercise (P< 0.05 v. control). A marked increase in the main lipid-soluble antioxidants (α-tocopherol, γ-tocopherol and xanthophyll) was observed following watercress supplementation (P< 0.05 v. control) in both experimental phases. These findings suggest that short- and long-term watercress ingestion has potential antioxidant effects against exercise-induced DNA damage and lipid peroxidation. PMID:22475430

  6. Meta-Analysis of Prognostic Implications of Exercise-Induced Ventricular Premature Complexes in the General Population.

    PubMed

    Kim, Joonseok; Kwon, Minkyung; Chang, Jinsoo; Harris, David; Gerson, Myron C; Hwang, Seung-Sik; Oh, Seung-Won

    2016-09-01

    Ventricular premature complexes (VPCs) during stress testing in the general population are commonly seen in clinical practice, but their prognostic value is not well understood. A comprehensive literature search of MEDLINE, Embase, and the Cochrane Library from January 1970 to May 2015 was conducted. Observational cohort studies on general populations evaluating the association between exercise-induced VPCs and all-cause or cardiovascular mortality were included in the analysis. Nine studies comprising 62,488 participants comparing clinical outcomes of patients with and without exercise-induced VPCs were included. The overall combined relative risks (RRs) for all-cause mortality and cardiovascular mortality in patients with exercise-induced VPCs were 1.41 (95% CI 1.23 to 1.61) and 1.86 (95% CI 1.51 to 2.30), respectively. In subgroup analysis, both frequent VPCs (RR 1.35, 95% CI 1.14 to 1.60) and infrequent VPCs (RR 1.57, 95% CI 1.13 to 2.18) were associated with an adverse outcome. VPCs during recovery were associated with an increased risk of death (RR 1.55, 95% CI 1.22 to 1.96). VPCs during exercise did not achieve statistical significance (RR 1.14, 95% CI 0.96 to 1.34), but only a few studies were included in the analysis. In conclusion, our meta-analysis suggests that exercise-induced VPCs in the general population significantly increase the risk of total mortality and cardiovascular mortality. Our study calls for further studies to assess the prognostic significance of exercise-induced VPCs and the utility of efforts to reduce the VPC burden to improve the clinical outcome. PMID:27394411

  7. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress

    PubMed Central

    Prasad, Vikram; Lorenz, John N.; Miller, Marian L.; Vairamani, Kanimozhi; Nieman, Michelle L.; Wang, Yigang; Shull, Gary E.

    2013-01-01

    Acute inhibition of the NHE1 Na+/H+ exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1−/− mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1−/− hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1−/− hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1−/− hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat dietinduced stress was attenuated in Nhe1−/− hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1−/− mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice. PMID:24080184

  8. Loss of NHE1 activity leads to reduced oxidative stress in heart and mitigates high-fat diet-induced myocardial stress.

    PubMed

    Prasad, Vikram; Lorenz, John N; Miller, Marian L; Vairamani, Kanimozhi; Nieman, Michelle L; Wang, Yigang; Shull, Gary E

    2013-12-01

    Acute inhibition of the NHE1 Na(+)/H(+) exchanger protects against ischemia-reperfusion injury and chronic inhibition attenuates development of cardiac hypertrophy and failure. To determine the cardiac effects of chronic inhibition of NHE1 under non-pathological conditions we used NHE1-null mice as a model of long-term NHE1 inhibition. Cardiovascular performance was relatively normal in Nhe1(-/-) mice although cardiac contractility and relaxation were slightly improved in mutant mice of the FVB/N background. GSH levels and GSH:GSSG ratios were elevated in Nhe1(-/-) hearts indicating an enhanced redox potential. Consistent with a reduced need for antioxidant protection, expression of heat shock proteins Hsp60 and Hsp25 was lower in Nhe1(-/-) hearts. Similarly, expression of mitochondrial superoxide dismutase 2 was reduced, with no increase in expression of other ROS scavenging enzymes. GLUT1 levels were increased in Nhe1(-/-) hearts, the number of lipid droplets in myocytes was reduced, and PDK4 expression was refractory to high-fat diet-induced upregulation observed in wild-type hearts. High-fat diet-induced stress was attenuated in Nhe1(-/-) hearts, as indicated by smaller increases in phosphorylation of Hsp25 and α-B crystallin, and there was better preservation of insulin sensitivity, as evidenced by PKB/Akt phosphorylation. Plasma glucose and insulin levels were lower and high-fat diet-induced hepatic lipid accumulation was reduced in Nhe1(-/-) mice, demonstrating extracardiac effects of NHE1 ablation. These data indicate that long-term ablation of NHE1 activity increases the redox potential, mitigates high-fat diet-induced myocardial stress and fatty liver disease, leads to better preservation of insulin sensitivity, and may alter both cardiac and systemic metabolic substrate handling in mice. PMID:24080184

  9. A high-fat jelly diet restores bioenergetic balance and extends lifespan in the presence of motor dysfunction and lumbar spinal cord motor neuron loss in TDP-43A315T mutant C57BL6/J mice.

    PubMed

    Coughlan, Karen S; Halang, Luise; Woods, Ina; Prehn, Jochen H M

    2016-09-01

    Transgenic transactivation response DNA-binding protein 43 (TDP-43) mice expressing the A315T mutation under control of the murine prion promoter progressively develop motor function deficits and are considered a new model for the study of amyotrophic lateral sclerosis (ALS); however, premature sudden death resulting from intestinal obstruction halts disease phenotype progression in 100% of C57BL6/J congenic TDP-43(A315T) mice. Similar to our recent results in SOD1(G93A) mice, TDP-43(A315T) mice fed a standard pellet diet showed increased 5' adenosine monophosphate-activated protein kinase (AMPK) activation at postnatal day (P)80, indicating elevated energetic stress during disease progression. We therefore investigated the effects of a high-fat jelly diet on bioenergetic status and lifespan in TDP-43(A315T) mice. In contrast to standard pellet-fed mice, mice fed high-fat jelly showed no difference in AMPK activation up to P120 and decreased phosphorylation of acetly-CoA carboxylase (ACC) at early-stage time points. Exposure to a high-fat jelly diet prevented sudden death and extended survival, allowing development of a motor neuron disease phenotype with significantly decreased body weight from P80 onward that was characterised by deficits in Rotarod abilities and stride length measurements. Development of this phenotype was associated with a significant motor neuron loss as assessed by Nissl staining in the lumbar spinal cord. Our work suggests that a high-fat jelly diet improves the pre-clinical utility of the TDP-43(A315T) model by extending lifespan and allowing the motor neuron disease phenotype to progress, and indicates the potential benefit of this diet in TDP-43-associated ALS. PMID:27491077

  10. Effects of oral glutamine supplementation on exercise-induced gastrointestinal permeability and tight junction protein expression.

    PubMed

    Zuhl, Micah N; Lanphere, Kathryn R; Kravitz, Len; Mermier, Christine M; Schneider, Suzanne; Dokladny, Karol; Moseley, Pope L

    2014-01-15

    The objectives of this study are threefold: 1) to assess whether 7 days of oral glutamine (GLN) supplementation reduces exercise-induced intestinal permeability; 2) whether supplementation prevents the proinflammatory response; and 3) whether these changes are associated with upregulation of the heat shock response. On separate occasions, eight human subjects participated in baseline testing and in GLN and placebo (PLA) supplementation trials, followed by a 60-min treadmill run. Intestinal permeability was higher in the PLA trial compared with baseline and GLN trials (0.0604 ± 0.047 vs. 0.0218 ± 0.008 and 0.0272 ± 0.007, respectively; P < 0.05). IκBα expression in peripheral blood mononuclear cells was higher 240 min after exercise in the GLN trial compared with the PLA trial (1.411 ± 0.523 vs. 0.9839 ± 0.343, respectively; P < 0.05). In vitro using the intestinal epithelial cell line Caco-2, we measured effects of GLN supplementation (0, 4, and 6 mM) on heat-induced (37° or 41.8°C) heat shock protein 70 (HSP70), heat shock factor-1 (HSF-1), and occludin expression. HSF-1 and HSP70 levels increased in 6 mM supplementation at 41°C compared with 0 mM at 41°C (1.785 ± 0.495 vs. 0.6681 ± 0.290, and 1.973 ± 0.325 vs. 1.133 ± 0.129, respectively; P < 0.05). Occludin levels increased after 4 mM supplementation at 41°C and 6 mM at 41°C compared with 0 mM at 41°C (1.236 ± 0.219 and 1.849 ± 0.564 vs. 0.7434 ± 0.027, respectively; P < 0.001). GLN supplementation prevented exercise-induced permeability, possibly through HSF-1 activation. PMID:24285149

  11. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon.

    PubMed

    Del Coso, Juan; Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  12. Acute Exercise-Induced Response of Monocyte Subtypes in Chronic Heart and Renal Failure

    PubMed Central

    Van Craenenbroeck, Amaryllis H.; Hoymans, Vicky Y.; Verpooten, Gert A.; Vrints, Christiaan J.; Couttenye, Marie M.; Van Craenenbroeck, Emeline M.

    2014-01-01

    Purpose. Monocytes (Mon1-2-3) play a substantial role in low-grade inflammation associated with high cardiovascular morbidity and mortality of patients with chronic kidney disease (CKD) and chronic heart failure (CHF). The effect of an acute exercise bout on monocyte subsets in the setting of systemic inflammation is currently unknown. This study aims (1) to evaluate baseline distribution of monocyte subsets in CHF and CKD versus healthy subjects (HS) and (2) to evaluate the effect of an acute exercise bout. Exercise-induced IL-6 and MCP-1 release are related to the Mon1-2-3 response. Methods. Twenty CHF patients, 20 CKD patients, and 15 HS were included. Before and after a maximal cardiopulmonary exercise test, monocyte subsets were quantified by flow cytometry: CD14++CD16−CCR2+ (Mon1), CD14++CD16+CCR2+ (Mon2), and CD14+CD16++CCR2− (Mon3). Serum levels of IL-6 and MCP-1 were determined by ELISA. Results. Baseline distribution of Mon1-2-3 was comparable between the 3 groups. Following acute exercise, %Mon2 and %Mon3 increased significantly at the expense of a decrease in %Mon1 in HS and in CKD. This response was significantly attenuated in CHF (P < 0.05). In HS only, MCP-1 levels increased following exercise; IL-6 levels were unchanged. Circulatory power was a strong and independent predictor of the changes in Mon1 (β = −0.461, P < 0.001) and Mon3 (β = 0.449, P < 0.001); and baseline LVEF of the change in Mon2 (β = 0.441, P < 0.001). Conclusion. The response of monocytes to acute exercise is characterized by an increase in proangiogenic and proinflammatory Mon2 and Mon3 at the expense of phagocytic Mon1. This exercise-induced monocyte subset response is mainly driven by hemodynamic changes and not by preexistent low-grade inflammation. PMID:25587208

  13. Dysfunctional breathing and reaching one’s physiological limit as causes of exercise-induced dyspnoea

    PubMed Central

    Everard, Mark L.

    2016-01-01

    Key points Excessive exercise-induced shortness of breath is a common complaint. For some, exercise-induced bronchoconstriction is the primary cause and for a small minority there may be an alternative organic pathology. However for many, the cause will be simply reaching their physiological limit or be due to a functional form of dysfunctional breathing, neither of which require drug therapy. The physiological limit category includes deconditioned individuals, such as those who have been through intensive care and require rehabilitation, as well as the unfit and the fit competitive athlete who has reached their limit with both of these latter groups requiring explanation and advice. Dysfunctional breathing is an umbrella term for an alteration in the normal biomechanical patterns of breathing that result in intermittent or chronic symptoms, which may be respiratory and/or nonrespiratory. This alteration may be due to structural causes or, much more commonly, be functional as exemplified by thoracic pattern disordered breathing (PDB) and extrathoracic paradoxical vocal fold motion disorder (pVFMD). Careful history and examination together with spirometry may identify those likely to have PDB and/or pVFMD. Where there is doubt about aetiology, cardiopulmonary exercise testing may be required to identify the deconditioned, unfit or fit individual reaching their physiological limit and PDB, while continuous laryngoscopy during exercise is increasingly becoming the benchmark for assessing extrathoracic causes. Accurate assessment and diagnosis can prevent excessive use of drug therapy and result in effective management of the cause of the individual’s complaint through cost-effective approaches such as reassurance, advice, breathing retraining and vocal exercises. This review provides an overview of the spectrum of conditions that can present as exercise-­induced breathlessness experienced by young subjects participating in sport and aims to promote understanding of

  14. Exercise-induced increase in serum interleukin-6 in humans is related to muscle damage.

    PubMed Central

    Bruunsgaard, H; Galbo, H; Halkjaer-Kristensen, J; Johansen, T L; MacLean, D A; Pedersen, B K

    1997-01-01

    1. This study was performed to test the hypothesis that the exercise-induced increase in circulating cytokine levels is associated with muscle damage. Nine healthy young male subjects performed two high-intensity bicycle exercise trials separated by two weeks. The first trial consisted of 30 min of normal bicycle exercise (concentric exercise), whereas the second consisted of 30 min of braking with reversed revolution (eccentric exercise). The work loads were chosen to give the same increases in heart rate and catecholamine levels in the blood during each trial. 2. Significant increases (P < 0.05) in plasma concentration of creatine kinase (CK), aspartate aminotransferase and alanine aminotransferase were observed only after the eccentric exercise. Furthermore, the level of interleukin-6 (IL-6) in serum increased significantly after the eccentric exercise and was significantly correlated to CK concentration in the following days, whereas no significant changes were found after the concentric exercise. 3. The total concentration of lymphocytes increased significantly (P < 0.05) as a result of eccentric compared with concentric exercise. This was mainly due to a significantly more pronounced recruitment of natural killer (NK) cells and CD8 positive cells (CD8+ cells) during the eccentric trial. However, no significant differences between the two types of work were found in regard to the circulating concentration of monocytes. The concentration of neutrophils was only significantly increased 2 h after the concentric exercise. 4. The finding that high-intensity eccentric exercise caused a more pronounced increase in the plasma level of IL-6, compared with concentric exercise, supports the hypothesis that the post-exercise cytokine production is related to skeletal muscle damage. The fact that no differences between eccentric and concentric exercise were found in the recruitment of most blood mononuclear cell subsets to the blood supports the hypothesis that the

  15. Myosin Light Chain Kinase (MLCK) Gene Influences Exercise Induced Muscle Damage during a Competitive Marathon

    PubMed Central

    Valero, Marjorie; Lara, Beatriz; Salinero, Juan José; Gallo-Salazar, César; Areces, Francisco

    2016-01-01

    Myosin light chain kinase (MLCK) phosphorylates the regulatory light chain (RLC) of myosin producing increases in force development during skeletal muscle contraction. It has been suggested that MLCK gene polymorphisms might alter RLC phosphorylation thereby decreasing the ability to produce force and to resist strain during voluntary muscle contractions. Thus, the genetic variations in the MLCK gene might predispose some individuals to higher values of muscle damage during exercise, especially during endurance competitions. The aim of this investigation was to determine the influence of MLCK genetic variants on exercise-induced muscle damage produced during a marathon. Sixty-seven experienced runners competed in a marathon race. The MLCK genotype (C37885A) of these marathoners was determined. Before and after the race, a sample of venous blood was obtained to assess changes in serum myoglobin concentrations and leg muscle power changes were measured during a countermovement jump. Self-reported leg muscle pain and fatigue were determined by questionnaires. A total of 59 marathoners (88.1%) were CC homozygotes and 8 marathoners (11.9%) were CA heterozygotes. The two groups of participants completed the race with a similar time (228 ± 33 vs 234 ± 39 min; P = 0.30) and similar self-reported values for fatigue (15 ± 2 vs 16 ± 2 A.U.; P = 0.21) and lower-limb muscle pain (6.2 ± 1.7 vs 6.6 ± 1.8 cm; P = 0.29). However, CC marathoners presented higher serum myoglobin concentrations (739 ± 792 vs 348 ± 144 μg·mL-1; P = 0.03) and greater pre-to-post- race leg muscle power reduction (-32.7 ± 15.7 vs -21.2 ± 21.6%; P = 0.05) than CA marathoners. CA heterozygotes for MLCK C37885A might present higher exercise-induced muscle damage after a marathon competition than CC counterparts. PMID:27483374

  16. Effect of age on exercise-induced alterations in cognitive executive function: relationship to cerebral perfusion.

    PubMed

    Lucas, Samuel J E; Ainslie, Philip N; Murrell, Carissa J; Thomas, Kate N; Franz, Elizabeth A; Cotter, James D

    2012-08-01

    Regular exercise improves the age-related decline in cerebral blood flow (CBF) and is associated with improved cognitive function; however, less is known about the direct relationship between CBF and cognitive function. We examined the influence of healthy aging on the capability of acute exercise to improve cognition, and whether exercise-induced improvements in cognition are related to CBF and cortical hemodynamics. Middle cerebral artery blood flow velocity (MCAv; Doppler) and cortical hemodynamics (NIRS) were measured in 13 young (24±5 y) and 9 older (62±3 y) participants at rest and during cycling at 30% and 70% of heart rate range (HRR). Cognitive performance was assessed using a computer-adapted Stroop task (i.e., test of executive function cognition) at rest and during exercise. Average response times on the Stroop task were slower for the older compared to younger group for both simple and difficult tasks (P<0.01). Independent of age, difficult-task response times improved during exercise (P<0.01), with the improvement greater at 70% HRR exercise (P=0.04 vs. 30% HRR). Higher MCAv was correlated with faster response times for simple and difficult tasks at rest (R(2)=0.47 and R(2)=0.47, respectively), but this relation uncoupled progressively during exercise. Exercise-induced increases in MCAv were similar and unaltered during cognitive tasks for both age groups. In contrast, prefrontal cortical hemodynamic NIRS measures [oxyhemoglobin (O(2)Hb) and total hemoglobin (tHb)] were differentially affected by exercise intensity, age and cognitive task; e.g., there were smaller increases in [O(2)Hb] and [tHb] in the older group between exercise intensities (P<0.05). These data indicate that: 1) Regardless of age, cognitive (executive) function is improved while exercising; 2) while MCAv is strongly related to cognition at rest, this relation becomes uncoupled during exercise, and 3) there is dissociation between global CBF and regional cortical oxygenation and

  17. The Eat Smart Study: A randomised controlled trial of a reduced carbohydrate versus a low fat diet for weight loss in obese adolescents

    PubMed Central

    2010-01-01

    Background Despite the recognition of obesity in young people as a key health issue, there is limited evidence to inform health professionals regarding the most appropriate treatment options. The Eat Smart study aims to contribute to the knowledge base of effective dietary strategies for the clinical management of the obese adolescent and examine the cardiometablic effects of a reduced carbohydrate diet versus a low fat diet. Methods and design Eat Smart is a randomised controlled trial and aims to recruit 100 adolescents over a 2 1/2 year period. Families will be invited to participate following referral by their health professional who has recommended weight management. Participants will be overweight as defined by a body mass index (BMI) greater than the 90th percentile, using CDC 2000 growth charts. An accredited 6-week psychological life skills program 'FRIENDS for Life', which is designed to provide behaviour change and coping skills will be undertaken prior to volunteers being randomised to group. The intervention arms include a structured reduced carbohydrate or a structured low fat dietary program based on an individualised energy prescription. The intervention will involve a series of dietetic appointments over 24 weeks. The control group will commence the dietary program of their choice after a 12 week period. Outcome measures will be assessed at baseline, week 12 and week 24. The primary outcome measure will be change in BMI z-score. A range of secondary outcome measures including body composition, lipid fractions, inflammatory markers, social and psychological measures will be measured. Discussion The chronic and difficult nature of treating the obese adolescent is increasingly recognised by clinicians and has highlighted the need for research aimed at providing effective intervention strategies, particularly for use in the tertiary setting. A structured reduced carbohydrate approach may provide a dietary pattern that some families will find more

  18. Exercise effects on erythrocyte deformability in exercise-induced arterial hypoxemia.

    PubMed

    Alis, R; Sanchis-Gomar, F; Ferioli, D; La Torre, A; Blesa, J R; Romagnoli, M

    2015-04-01

    Exercise-induced arterial hypoxemia (EIAH) is often found in endurance-trained subjects at high exercise intensity. The role of erythrocyte deformability (ED) in EIAH has been scarcely explored. We aimed to explore the role of erythrocyte properties and lactate accumulation in the response of ED in EIAH. ED was determined in 10 sedentary and in 16 trained subjects, both before and after a maximal incremental test, and after recovery, along with mean corpuscular volume (MCV) and red blood cell lactate concentrations. EIAH was found in 6 trained subjects (∆SaO2=-8.25±4.03%). Sedentary and non-EIAH trained subjects showed reduced ED after exercise, while no effect on ED was found in EIAH trained subjects. After exercise, lactate concentrations rose and MCV increased equally in all groups. ED is strongly driven by cell volume, but the different ED response to exercise in EIAH shows that other cellular mechanisms may be implicated. Interactions between membrane and cytoskeleton, which have been found to be O2-regulated, play a role in ED. The drop in SaO2 in EIAH subjects can improve ED response to exercise. This can be an adaptive mechanism that enhances muscular and pulmonary perfusion, and allows the achievement of high exercise intensity in EIAH despite lower O2 arterial transport. PMID:25429547

  19. Fish oil supplementation reduces severity of exercise-induced bronchoconstriction in elite athletes.

    PubMed

    Mickleborough, Timothy D; Murray, Rachael L; Ionescu, Alina A; Lindley, Martin R

    2003-11-15

    In elite athletes, exercise-induced bronchoconstriction (EIB) may respond to dietary modification, thereby reducing the need for pharmacologic treatment. Ten elite athletes with EIB and 10 elite athletes without EIB (control subjects) participated in a randomized, double-blind crossover study. Subjects entered the study on their normal diet, and then received either fish oil capsules containing 3.2 g eicosapentaenoic acid and 2.2 g docohexaenoic acid (n-3 polyunsaturated fatty acid [PUFA] diet; n = 5) or placebo capsules containing olive oil (placebo diet; n = 5) taken daily for 3 weeks. Diet had no effect on preexercise pulmonary function in either group or on postexercise pulmonary function in control subjects. However, in subjects with EIB, the n-3 PUFA diet improved postexercise pulmonary function compared with the normal and placebo diets. FEV1 decreased by 3 +/- 2% on n-3 PUFA diet, 14.5 +/- 5% on placebo diet, and 17.3 +/- 6% on normal diet at 15 minutes postexercise. Leukotriene (LT)E4, 9alpha, 11beta-prostaglandin F2, LTB4, tumor necrosis factor-alpha, and interleukin-1beta, all significantly decreased on the n-3 PUFA diet compared with normal and placebo diets and after the exercise challenge. These data suggest that dietary fish oil supplementation has a markedly protective effect in suppressing EIB in elite athletes, and this may be attributed to their antiinflammatory properties. PMID:12904324

  20. Treadmill exercise induces age and protocol-dependent epigenetic changes in prefrontal cortex of Wistar rats.

    PubMed

    Cechinel, Laura Reck; Basso, Carla Giovana; Bertoldi, Karine; Schallenberger, Bruna; de Meireles, Louisiana Carolina Ferreira; Siqueira, Ionara Rodrigues

    2016-10-15

    Some studies have linked age-related beneficial effects of exercise and epigenetic mechanisms. Although, the impact of treadmill exercise on histone acetylation, histone and DNA methylation marks in aged cortices yet remains poorly understood. Considering the role of frontal cortex on brain functions, we investigated the potential of different exercise protocols, single session and daily exercise, to modulate epigenetic marks, namely global H4 acetylation, histone methyltransferase activity (HMT H3K27) and levels of DNA methytransferase (DNMT1 and DNMT3b) in prefrontal cortices from 3 and 21-months aged Wistar rats. The animals were submitted to two treadmill exercise protocols, single session (20min) or daily moderate (20min/day during 14days). The daily exercise protocol induced an increased in histone H4 acetylation levels in prefrontal cortices of 21-months-old rats, without any effects in young adult group. DNMT3b levels were increased in aged cortices of animals submitted to single session of exercise. These results indicate that prefrontal cortex is susceptible to epigenetic changes in a protocol dependent-manner and that H4 acetylation levels and DNMT3b content changes might be linked at least in part to exercise-induced effects on brain functions. PMID:27418438

  1. Exercise induced sympathetic influences do not change interatrial conduction times in VDD and DDD pacing.

    PubMed

    Ismer, B; Von Knorre, G H; Voss, W; Grille, W; Klenke, G; Pulya, K; Koglek, W; Suntinger, A; Luessow, H

    1996-11-01

    Using telemetry, right atrial electrogram (RA), and marker channel of atrial sense events (MA) in combination with the left atrial electrogram (LA), recorded by a filtered bipolar esophageal lead, interatrial conduction during submaximal exercise and at rest was examined in 46 DDD pacemaker patients. The RA-LA and MA-LA conduction times measured in the presence of atrial sensing (VDD) as well as the conduction time SA-LA from atrial stimulus (SA) to LA, determined during atrial pacing (DDD) were found to be individual constants independent of exercise induced sympathetic influences. Thus, having determined an optimal mechanical interval (LA-LV)mech/opt from left atrium to ventricle by other methods, the optimal AV delay for DDD as well as for VDD operation can be calculated by the sum of the appropriate interatrial conduction time (SA-LA, respectively MA-LA) and the (LA-LV)mech/opt interval. Due to the constant SA-LA and MA-LA, the difference between these two values (AV delay correction interval) is a constant as well, which remains unchanged during exercise. Therefore, in selecting the rate responsive AV delay, only hemodynamic and not electrophysiological measurements need to be considered. PMID:8945041

  2. Could a vegetarian diet reduce exercise-induced oxidative stress? A review of the literature.

    PubMed

    Trapp, Denise; Knez, Wade; Sinclair, Wade

    2010-10-01

    Oxidative stress is a natural physiological process that describes an imbalance between free radical production and the ability of the antioxidant defence system of the body to neutralize free radicals. Free radicals can be beneficial as they may promote wound healing and contribute to a healthy immune response. However, free radicals can have a detrimental impact when they interfere with the regulation of apoptosis and thus play a role in the promotion of some cancers and conditions such as cardiovascular disease. Antioxidants are molecules that reduce the damage associated with oxidative stress by counteracting free radicals. Regular exercise is a vital component of a healthy lifestyle, although it can increase oxidative stress. As a typical vegetarian diet comprises a wide range of antioxidant-rich foods, it is plausible that the consumption of these foods will result in an enhanced antioxidant system capable of reducing exercise-induced oxidative stress. In addition, a relationship between a vegetarian diet and lower risks of cardiovascular disease and some cancers has been established. This review explores the current available evidence linking exercise, vegetarians, antioxidants, and oxidative stress. PMID:20845212

  3. Effects of vitamin E supplementation on exercise-induced oxidative stress: a meta-analysis.

    PubMed

    Stepanyan, Vahan; Crowe, Melissa; Haleagrahara, Nagaraja; Bowden, Bruce

    2014-09-01

    Tocopherols (commonly referred to as "vitamin E") are frequently studied antioxidants in exercise research. However, the studies are highly heterogeneous, which has resulted in contradicting opinions. The aim of this review is to identify similar studies investigating the effects of tocopherol supplementation on exercise performance and oxidative stress and to perform minimally biased qualitative comparisons and meta-analysis. The literature search and study selection were performed according to Cochrane guidelines. A 2-dimensional study execution process was developed to enable selection of similar and comparable studies. Twenty relevant studies were identified. The high variability of study designs resulted in final selection of 6 maximally relevant studies. Markers of lipid peroxidation (malondialdehyde) and muscle damage (creatine kinase) were the 2 most frequently and similarly measured variables. Meta comparison showed that tocopherol supplementation did not result in significant protection against either exercise-induced lipid peroxidation or muscle damage. The complex antioxidant nature of tocopherols and low accumulation rates in muscle tissues could underlie an absence of protective effects. PMID:25068790

  4. The effect of exercise-induced arousal on cognitive task performance: a meta-regression analysis.

    PubMed

    Lambourne, Kate; Tomporowski, Phillip

    2010-06-23

    The effects of acute exercise on cognitive performance were examined using meta-analytic techniques. The overall mean effect size was dependent on the timing of cognitive assessment. During exercise, cognitive task performance was impaired by a mean effect of -0.14. However, impairments were only observed during the first 20min of exercise. Otherwise, exercise-induced arousal enhanced performance on tasks that involved rapid decisions and automatized behaviors. Following exercise, cognitive task performance improved by a mean effect of 0.20. Arousal continued to facilitate speeded mental processes and also enhanced memory storage and retrieval. Positive effects were observed following exercise regardless of whether the study protocol was designed to measure the effects of steady-state exercise, fatiguing exercise, or the inverted-U hypothesis. Finally, cognitive performance was affected differentially by exercise mode. Cycling was associated with enhanced performance during and after exercise, whereas treadmill running led to impaired performance during exercise and a small improvement in performance following exercise. These results are indicative of the complex relation between exercise and cognition. Cognitive performance may be enhanced or impaired depending on when it is measured, the type of cognitive task selected, and the type of exercise performed. PMID:20381468

  5. Eucapnic Voluntary Hyperpnea: Gold Standard for Diagnosing Exercise-Induced Bronchoconstriction in Athletes?

    PubMed

    Hull, James H; Ansley, Les; Price, Oliver J; Dickinson, John W; Bonini, Matteo

    2016-08-01

    In athletes, a secure diagnos is of exercise-induced bronchoconstriction (EIB) is dependent on objective testing. Evaluating spirometric indices of airflow before and following an exercise bout is intuitively the optimal means for the diagnosis; however, this approach is recognized as having several key limitations. Accordingly, alternative indirect bronchoprovocation tests have been recommended as surrogate means for obtaining a diagnosis of EIB. Of these tests, it is often argued that the eucapnic voluntary hyperpnea (EVH) challenge represents the 'gold standard'. This article provides a state-of-the-art review of EVH, including an overview of the test methodology and its interpretation. We also address the performance of EVH against the other functional and clinical approaches commonly adopted for the diagnosis of EIB. The published evidence supports a key role for EVH in the diagnostic algorithm for EIB testing in athletes. However, its wide sensitivity and specificity and poor repeatability preclude EVH from being termed a 'gold standard' test for EIB. PMID:27007599

  6. Contribution of β-adrenergic receptors to exercise-induced bronchodilatation in healthy humans.

    PubMed

    Antonelli, Andrea; Torchio, Roberto; Bertolaccini, Luca; Terzi, Alberto; Rolfo, Fabrizio; Agostoni, Piergiuseppe; Gulotta, Carlo; Brusasco, Vito; Pellegrino, Riccardo

    2012-10-15

    Exercise in healthy subjects is usually associated with progressive bronchodilatation. Though the decrease in vagal tone is deemed to be the main underlying mechanism, activation of bronchial β(2)-receptors may constitute an additional cause. To examine the contribution of β(2)-adrenergic receptors to bronchodilatation during exercise in healthy humans, we studied 15 healthy male volunteers during maximum exercise test at control conditions and after a non-selective β-adrenergic blocker (carvedilol 12.5mg twice a day until heart rate decreased at least by 10beats/min) and inhaled β(2)-agonist (albuterol 400μg). Airway caliber was estimated from the partial flow at 40% of control forced vital capacity (V˙(part40)) and its changes during exercise from the slope of linear regression analysis of V˙(part40) values against the corresponding minute ventilation during maximal exercise until exhaustion. At control, V˙(part40) increased progressively and significantly with exercise. After albuterol, resting V˙(part40) was significantly larger than at control increased but did not further increase during exercise. After carvedilol, V˙(part40) was similar to control but its increase with exercise was significantly attenuated. These findings suggest that β(2)-adrenergic system plays a major role in exercise-induced bronchodilation in healthy subjects. PMID:22842007

  7. Improving screening and diagnosis of exercise-induced bronchoconstriction: a call to action.

    PubMed

    Weiler, John M; Hallstrand, Teal S; Parsons, Jonathan P; Randolph, Christopher; Silvers, William S; Storms, William W; Bronstone, Amy

    2014-01-01

    This article summarizes the findings of an expert panel of nationally recognized allergists and pulmonologists who met to discuss how to improve detection and diagnosis of exercise-induced bronchoconstriction (EIB), a transient airway narrowing that occurs during and most often after exercise in people with and without underlying asthma. EIB is both commonly underdiagnosed and overdiagnosed. EIB underdiagnosis may result in habitual avoidance of sports and physical activity, chronic deconditioning, weight gain, poor asthma control, low self-esteem, and reduced quality of life. Routine use of a reliable and valid self-administered EIB screening questionnaire by professionals best positioned to screen large numbers of people could substantially improve the detection of EIB. The authors conducted a systematic review of the literature that evaluated the accuracy of EIB screening questionnaires that might be adopted for widespread EIB screening in the general population. Results of this review indicated that no existing EIB screening questionnaire had adequate sensitivity and specificity for this purpose. The authors present a call to action to develop a new EIB screening questionnaire, and discuss the rigorous qualitative and quantitative research necessary to develop and validate such an instrument, including key methodological pitfalls that must be avoided. PMID:24811017

  8. Exercise-induced promotion of hippocampal cell proliferation requires beta-endorphin.

    PubMed

    Koehl, M; Meerlo, P; Gonzales, D; Rontal, A; Turek, F W; Abrous, D N

    2008-07-01

    Adult hippocampal neurogenesis is influenced by a variety of stimuli, including exercise, but the mechanisms by which running affects neurogenesis are not yet fully understood. Because beta-endorphin, which is released in response to exercise, increases cell proliferation in vitro, we hypothesized that it could exert a similar effect in vivo and mediate the stimulatory effects of running on neurogenesis. We thus analyzed the effects of voluntary wheel-running on adult neurogenesis (proliferation, differentiation, survival/death) in wild-type and beta-endorphin-deficient mice. In wild-type mice, exercise promoted cell proliferation evaluated by sacrificing animals 24 h after the last 5-bromo-2'-deoxyuridine (BrdU) pulse and by using endogenous cell cycle markers (Ki67 and pH(3)). This was accompanied by an increased survival of 4-wk-old BrdU-labeled cells, leading to a net increase of neurogenesis. Beta-endorphin deficiency had no effect in sedentary mice, but it completely blocked the running-induced increase in cell proliferation; this blockade was accompanied by an increased survival of 4-wk-old cells and a decreased cell death. Altogether, adult neurogenesis was increased in response to exercise in knockout mice. We conclude that beta-endorphin released during running is a key factor for exercise-induced cell proliferation and that a homeostatic balance may regulate the final number of new neurons. PMID:18263701

  9. Exercise-induced seizures and lateral asymmetry in patients with temporal lobe epilepsy☆☆☆

    PubMed Central

    Kamel, Jordan T.; Badawy, Radwa A.B.; Cook, Mark J.

    2014-01-01

    Objective The objective of this case report is to better characterize the clinical features and potential pathophysiological mechanisms of exercise-induced seizures. Methods We report a case series of ten patients from a tertiary epilepsy center, where a clear history was obtained of physical exercise as a reproducible trigger for seizures. Results The precipitating type of exercise was quite specific for each patient, and various forms of exercise are described including running, swimming, playing netball, dancing, cycling, weight lifting, and martial arts. The level of physical exertion also correlated with the likelihood of seizure occurrence. All ten patients had temporal lobe abnormalities, with nine of the ten patients having isolated temporal lobe epilepsies, as supported by seizure semiology, EEG recordings, and both structural and functional imaging. Nine of the ten patients had seizures that were lateralized to the left (dominant) hemisphere. Five patients underwent surgical resection, with no successful long-term postoperative outcomes. Conclusions Exercise may be an underrecognized form of reflex epilepsy, which tended to be refractory to both medical and surgical interventions in our patients. Almost all patients in our cohort had seizures localizing to the left temporal lobe. We discuss potential mechanisms by which exercise may precipitate seizures, and its relevance regarding our understanding of temporal lobe epilepsy and lateralization of seizures. Recognition of, as well as advice regarding avoidance of, known triggers forms an important part of management of these patients. PMID:25667863

  10. Gender differences in exercise--induced intravascular haemolysis during race training in thoroughbred horses.

    PubMed

    Cywinska, Anna; Szarska, Ewa; Kowalska, Agnieszka; Ostaszewski, Piotr; Schollenberger, Antoni

    2011-02-01

    Exercise-induced intravascular haemolysis and "sport anemia" are widely reported in human sports medicine. It has been recognized also in horses, however, the clinical importance and the onset of this condition seem different than in human. In this study we investigated the episodes of intravascular haemolysis, indicated by the increase in plasma haemoglobin and the decrease in serum haptoglobin levels, after routine training sessions in race horses. Heart rate and changes in haematological parameters confirmed, that the exertion was relatively high. Intravascular haemolysis did not appear in stallions but was detected in mares after two training sessions. It has been determined that serum haptoglobin levels were higher in mares than in stallions before and after all training sessions. It is postulated that intravascular haemolysis induced by training is of limited clinical importance because it occurred only in mares which are better adapted due to higher haptoglobin level at rest, and it had no cumulative effect. Therefore gender differences should be taken into consideration in experiments with athletic horses. PMID:20553886

  11. [A case of food-dependent exercise-induced anaphylaxis caused by ingestion of orange].

    PubMed

    Ono, Rintaro; Motomura, Chikako; Takamatsu, Nobue; Kondo, Yasuto; Akamine, Yuko; Matsuzaki, Hiroshi; Murakami, Yoko; Amimoto, Yuko; Taba, Naohiko; Honjyo, Satoshi; Shibata, Rumiko; Odajima, Hiroshi

    2015-02-01

    The patient was a 10-year-old girl who presented with a history of anaphylactic episodes on three occasions, that developed in association with exercise after she ate citrus fruit. She underwent tolerance tests, as food-dependent exercise-induced anaphylaxis (FDEIA) induced by citrus fruit was suspected. The result of the test for the combination of intake of oranges and exercise was negative. The patient presented with swollen eyelid and wheezing following combined intake of orange and aspirin, based on which she was diagnosed as having FDEIA. Many patients developing an allergic reaction to fruit are diagnosed as having oral allergy syndrome (OAS), and only few cases of FDEIA are reported. Immunoblot tests revealed antigens of 9 kDa, 39 kDa and 53 kDa in this patient, and an inhibition study with oranges revealed that the 39 kDa and 53 kDa antigens were probably antigen-specific allergens. Although the studied patient showed a strongly positive result for IgE antibodies specifically directed at cedar pollen, no common antigenicity with cedar pollen could be recognized. The final diagnosis was a type of FDEIA caused by 39 kDa and 53 kDa proteins, which are different from antigens previously identified in patients with citrus fruits allergy. It should be the first report of such a case. PMID:25924908

  12. Exercise-induced galanin release facilitated GLUT4 translocation in adipocytes of type 2 diabetic rats.

    PubMed

    Liang, Yan; Sheng, Shudong; Fang, Penghua; Ma, Yinping; Li, Jian; Shi, Qiaojia; Sui, Yumei; Shi, Mingyi

    2012-01-01

    Although galanin has been shown to increase insulin sensitivity in skeletal muscle of rats, there is no literature available about the effect of galanin on Glucose Transporter 4 (GLUT4) translocation from intracellular membrane pools to plasma membranes in adipocytes of type 2 diabetic rats. In the present study M35, a galanin antagonist was used to elucidate whether exercise-induced galanin release increased GLUT4 translocation in adipocytes of streptozotocin-induced diabetic rats. The present findings showed that plasma galanin levels after swimming training in all four trained groups were higher compared with each sedentary control. M35 treatment had an inhibitory effect on glucose infusion rates in the euglycemic-hyperinsulinemic clamp test and GLUT4 mRNA expression levels in adipocytes. Moreover, M35 treatment reduced GLUT4 concentration in both plasma membranes and total cell membranes. The ratios of GLUT4 contents in plasma membranes to total cell membranes in four drug groups were lower compared with each control. These data demonstrate a beneficial role of endogenous galanin to transfer GLUT4 from internal stores to plasma membranes in adipocytes of type 2 diabetic rats. Galanin plays a significant role in regulation of glucose metabolic homeostasis and is an important hormone relative to diabetes. PMID:22079346

  13. Susceptibility to Exercise-Induced Muscle Damage: a Cluster Analysis with a Large Sample.

    PubMed

    Damas, F; Nosaka, K; Libardi, C A; Chen, T C; Ugrinowitsch, C

    2016-07-01

    We investigated the responses of indirect markers of exercise-induced muscle damage (EIMD) among a large number of young men (N=286) stratified in clusters based on the largest decrease in maximal voluntary contraction torque (MVC) after an unaccustomed maximal eccentric exercise bout of the elbow flexors. Changes in MVC, muscle soreness (SOR), creatine kinase (CK) activity, range of motion (ROM) and upper-arm circumference (CIR) before and for several days after exercise were compared between 3 clusters established based on MVC decrease (low, moderate, and high responders; LR, MR and HR). Participants were allocated to LR (n=61), MR (n=152) and HR (n=73) clusters, which depicted significantly different cluster centers of 82%, 61% and 42% of baseline MVC, respectively. Once stratified by MVC decrease, all muscle damage markers were significantly different between clusters following the same pattern: small changes for LR, larger changes for MR, and the largest changes for HR. Stratification of individuals based on the magnitude of MVC decrease post-exercise greatly increases the precision in estimating changes in EIMD by proxy markers such as SOR, CK activity, ROM and CIR. This indicates that the most commonly used markers are valid and MVC orchestrates their responses, consolidating the role of MVC as the best EIMD indirect marker. PMID:27116346

  14. Astragalus membranaceus improves exercise performance and ameliorates exercise-induced fatigue in trained mice.

    PubMed

    Yeh, Tzu-Shao; Chuang, Hsiao-Li; Huang, Wen-Ching; Chen, Yi-Ming; Huang, Chi-Chang; Hsu, Mei-Chich

    2014-01-01

    Astragalus membranaceus (AM) is a popular "Qi-tonifying" herb with a long history of use as a Traditional Chinese Medicine with multiple biological functions. However, evidence for the effects of AM on exercise performance and physical fatigue is limited. We evaluated the potential beneficial effects of AM on ergogenic and anti-fatigue functions following physiological challenge. Male ICR strain mice were randomly assigned to four groups (n = 10 per group) for treatment: (1) sedentary control and vehicle treatment (vehicle control); (2) exercise training with vehicle treatment (exercise control); and (3) exercise training with AM treatment at 0.615 g/kg/day (Ex-AM1) or (4) 3.075 g/kg/day (Ex-AM5). Both the vehicle and AM were orally administered for 6 weeks. Exercise performance and anti-fatigue function were evaluated by forelimb grip strength, exhaustive swimming time, and levels of serum lactate, ammonia, glucose, and creatine kinase after 15-min swimming exercise. Exercise training combined with AM supplementation increased endurance exercise capacity and increased hepatic and muscle glycogen content. AM reduced exercise-induced accumulation of the byproducts blood lactate and ammonia with acute exercise challenge. Moreover, we found no deleterious effects from AM treatment. Therefore, AM supplementation improved exercise performance and had anti-fatigue effects in mice. It may be an effective ergogenic aid in exercise training. PMID:24595275

  15. Wheat-dependent exercise-induced anaphylaxis sensitized with hydrolyzed wheat protein in soap.

    PubMed

    Chinuki, Yuko; Morita, Eishin

    2012-12-01

    Wheat-dependent exercise-induced anaphylaxis (WDEIA) is a specific form of wheat allergy typically induced by exercise after ingestion of wheat products. Wheat ω-5 gliadin is a major allergen associated with conventional WDEIA, and detection of serum immunoglobulin E (IgE) specific to recombinant ω-5 gliadin is a reliable method for its diagnosis. Recently, an increased incidence of a new subtype of WDEIA, which is likely to be sensitized via a percutaneous and/or rhinoconjunctival route to hydrolyzed wheat protein (HWP), has been observed. All of the patients with this new subtype had used the same brand of soap, which contained HWP. Approximately half of these patients developed contact allergy several months later and subsequently developed WDEIA. In each of these patients, contact allergy with soap exposure preceded food ingestion-induced reactions. Other patients directly developed generalized symptoms upon ingestion of wheat products. The predominant observed symptom of the new WDEIA subtype was angioedema of the eyelids; a number of patients developed anaphylaxis. This new subtype of WDEIA has little serum ω-5 gliadin-specific serum IgE. PMID:23093796

  16. Strenuous exercise induces a hyperreactive rebalanced haemostatic state that is more pronounced in men.

    PubMed

    Huskens, Dana; Roest, Mark; Remijn, Jasper A; Konings, Joke; Kremers, Romy M W; Bloemen, Saartje; Schurgers, Evelien; Selmeczi, Anna; Kelchtermans, Hilde; van Meel, Rinaldo; Meex, Steven J; Kleinegris, Marie-Claire; de Groot, Philip G; Urbanus, Rolf T; Ninivaggi, Marisa; de Laat, Bas

    2016-06-01

    Physical exercise is recommended for a healthy lifestyle. Strenuous exercise, however, may trigger the haemostatic system, increasing the risk of vascular thrombotic events and the incidence of primary cardiac arrest. Our goal was to study the effects of strenuous exercise on risk factors of cardiovascular disease. Blood was collected from 92 healthy volunteers who participated in the amateur version of the pro-tour Amstel Gold cycling race, before and directly after the race. Thrombin generation showed a shortening of the lag time and time to peak and an increase of the velocity index. Interestingly, the endogenous thrombin potential measured in plasma decreased due to reduced prothrombin conversion. Platelet reactivity increased and this effect was stronger in men than in women. Lower fibrinogen and higher D-dimer levels after exercise indicated higher fibrin formation. On the other hand, fibrinolysis was also elevated as indicated by a shortening of the clot lysis time. Exercise activated the endothelium (von Willebrand factor (VWF) and active VWF levels were elevated) and the immune system (concentrations IL-6, IL-8, MCP-1, RANTES and PDGF increased). Additionally, an increased cardiac troponin T level was measured post-exercise. Strenuous exercise induces a temporary hyperreactive state in the body with enhanced pro- and anticoagulant responses. As strenuous exercise has a more pronounced effect on platelet function in male subjects, this gives a possible explanation for the higher incidence of sudden cardiac death during exercise compared to women. This trial is registered at www.clinicaltrials.gov as NCT02048462. PMID:26864794

  17. Exercise-induced oxygen desaturation in COPD patients without resting hypoxemia.

    PubMed

    Andrianopoulos, Vasileios; Franssen, Frits M E; Peeters, Jos P I; Ubachs, Tim J A; Bukari, Halah; Groenen, Miriam; Burtin, Chris; Vogiatzis, Ioannis; Wouters, Emiel F M; Spruit, Martijn A

    2014-01-01

    Exercise-induced oxygen desaturation (EID) is associated with increased risk of mortality in chronic obstructive pulmonary disease (COPD). Several screening tests have been proposed to predict EID, including FEV1, DLCO and baseline-SpO2. We aimed to validate a proposed cut-off of baseline-SpO2 ≤95% as simple screening procedure to predict EID during six-minute walk test (6MWT). In addition, we studied the prevalence and characteristics of patients exhibited EID to SpO2nadir ≤88%. 402 non-hypoxemic COPD patients performed 6MWT. Sensitivity and specificity of baseline SpO2 ≤95% as a cut-off to predict EID and determinants of EID were investigated. 158 patients (39%) exhibited EID. The sensitivity of baseline-SpO2 ≤95% to predict EID was 81.0%, specificity 49.2%, positive and negative predictive values were 50.8% and 80.0%, respectively. In a multivariate model, DLCO <50%, FEV1 <45%, PaO2 <10kPa, baseline-SpO2 <95%, and female sex were the strongest determinants of EID. Baseline oxygen saturation solely is inaccurate to predict EID. A combination of clinical characteristics (DLCO, FEV1, PaO2, baseline-SpO2, sex) increases the odds for EID in COPD. PMID:24121092

  18. Dietary polyunsaturated fatty acids in asthma- and exercise-induced bronchoconstriction.

    PubMed

    Mickleborough, T D; Rundell, K W

    2005-12-01

    Despite progress that has been made in the treatment of asthma, the prevalence and burden of this disease has continued to increase. While pharmacological treatment of asthma is usually highly effective, medications may have significant side effects or exhibit tachyphylaxis. Alternative therapies for treatment that reduce the dose requirements of pharmacological interventions would be beneficial, and could potentially reduce the public health burden of this disease. Ecological and temporal data suggest that dietary factors may have a role in recent increases in the prevalence of asthma. A possible contributing factor to the increased incidence of asthma in Western societies may be the consumption of a proinflammatory diet. In the typical Western diet, 20- to 25-fold more omega (n)-6 polyunsaturated fatty acids (PUFA) than n-3 PUFA are consumed, which promotes the release of proinflammatory arachidonic acid metabolites (leukotrienes and prostanoids). This review will analyze the evidence for the health effects of n-3 PUFA in asthma- and exercise-induced bronchoconstriction (EIB). While clinical data evaluating the effect of omega-3 fatty acid supplementation in asthma has been equivocal, it has recently been shown that fish oil supplementation, rich in n-3 PUFA, reduces airway narrowing, medication use, and proinflammatory mediator generation in nonatopic elite athletes with EIB. These findings are provocative and suggest that dietary fish oil supplementation may be a viable treatment modality and/or adjunct therapy in asthma and EIB. PMID:16047026

  19. Syndecan-4 Signaling Is Required for Exercise-Induced Cardiac Hypertrophy

    PubMed Central

    Xie, Jun; He, Guixin; Chen, Qinhua; Sun, Jiayin; Dai, Qin; Lu, Jianrong; Li, Guannan; Wu, Han; Li, Ran; Chen, Jianzhou; Xu, Wei; Xu, Biao

    2016-01-01

    Cardiac hypertrophy can be broadly classified as either physiological or pathological. Physiological stimuli such as exercise cause adaptive cardiac hypertrophy and normal heart function. Pathological stimuli including hypertension and aortic valvular stenosis cause maladaptive cardiac remodeling and ultimately heart failure. Syndecan-4 (synd4) is a transmembrane proteoglycan identified as being involved in cardiac adaptation after injury, but whether it takes part in physiological cardiac hypertrophy is unclear. We observed upregulation of synd4 in exercise-induced hypertrophic myocardium. To evaluate the role of synd4 in the physiological form of cardiac hypertrophy, mice lacking synd4 (synd4–/–) were exercised by swimming for 4 wks. Ultrasonic cardiogram (UCG) and histological analysis revealed that swimming induced the hypertrophic phenotype but was blunted in synd4–/– compared with wild-type (WT) mice. The swimming-induced activation of Akt, a key molecule in physiological hypertrophy was also more decreased than in WT controls. In cultured cardiomyocytes, synd4 overexpression could induce cell enlargement, protein synthesis and distinct physiological molecular alternation. Akt activation also was observed in synd4-overexpressed cardiomyocytes. Furthermore, inhibition of protein kinase C (PKC) prevented the synd4-induced hypertrophic phenotype and Akt phosphorylation. This study identified an essential role of synd4 in mediation of physiological cardiac hypertrophy. PMID:26835698

  20. [Clinical courses of 18 cases with food-dependent exercise-induced anaphylaxis].

    PubMed

    Kano, H; Juji, F; Shibuya, N; Narita, M; Naritaka, S; Suko, M; Morita, Y; Iwata, T

    2000-06-01

    Eighteen cases (7 males and 11 females) of food-dependent exercise-induced anaphylaxis were observed for several years. The age of the patients at the first visit to our hospital ranged from 9 to 43 years (average 24.3 years). The offending foods were wheat in 9 cases, shrimp in 2 cases, shellfish in 1 case, fish in 1 case, and unknown foods in 5 cases. The inducing exercises were ball play games, running, riding a bicycle, swimming, kendo (Japanese fencing), walking, and so on. We advised these patients to avoid eating offending foods or taking exercises, or to take antiallergic medicine such as DSCG, and repirinast. We observed their clinical courses and laboratory data for 2 to 10 years. Only a few cases relapsed anaphylactoid reactions, but all cases have improved until now. In some cases, IgE RAST scores for wheat decreased. In other cases, the rate of histamine release on anti-IgE stimulation decreased after taking DSCG. PMID:10916885

  1. Exercise-induced bronchospasm: A case study in a nonasthmatic patient

    PubMed Central

    Hayden, Mary Lou; Stoloff, Stuart W; Colice, Gene L; Ostrom, Nancy K; Eid, Nemr S; Parsons, Jonathan P

    2012-01-01

    Purpose To provide an overview of the clinical presentation, diagnosis, and management of exercise-induced bronchospasm (EIB) without underlying asthma. Data sources Case presentation and review of the EIB Landmark Survey. Conclusions EIB is a common and well-described occurrence in patients with asthma, as well as in patients with no overt respiratory condition. Treatment with a short-acting beta-agonist before starting exercise is effective, yet this treatment approach is underutilized in the majority of patients with asthma. Implications for practice This case highlights the implications of undermanaged EIB and the disconnect between healthcare provider recommendations and the beliefs and behaviors in patients with EIB. Inhaled short-acting beta-agonists can attenuate EIB in 80%–95% of patients and are effective during 2–3 h of exercise. Patients with a compromised level of physical activity because of EIB who do not respond to conventional treatment strategies should be referred to a respiratory specialist for diagnostic evaluation and confirmation of underlying asthma. Nurse practitioners should remain vigilant to identify untreated EIB and ensure that affected patients understand the condition and appropriate treatment options. PMID:22243677

  2. Exercise-induced stress resistance is independent of exercise controllability and the medial prefrontal cortex.

    PubMed

    Greenwood, Benjamin N; Spence, Katie G; Crevling, Danielle M; Clark, Peter J; Craig, Wendy C; Fleshner, Monika

    2013-02-01

    Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health. PMID:23121339

  3. Prefrontal lactate predicts exercise-induced cognitive dysfunction in Gulf War Illness

    PubMed Central

    Rayhan, Rakib U; Raksit, Megna P; Timbol, Christian R; Adewuyi, Oluwatoyin; VanMeter, John W; Baraniuk, James N

    2013-01-01

    Background: 25% to 30% of Veterans deployed to the 1990 to 1991 Persian Gulf War exhibit an idiopathic syndrome of chronic fatigue, exertional exhaustion, pain, hyperalgesia, cognitive and affective dysfunction known as Gulf War Illness (GWI). Methods: Gulf War veterans (n=15) and sedentary veteran and civilian controls (n=11) completed a 2-back working memory test in an fMRI before and after two bicycle exercise stress test. We performed single voxel 1H MRS to evaluate brain metabolic differences in the left anterior cingulate cortex and the changes associated with exercise. Results: Eight GWI subjects increased their 2-back scores after exercise (labelled increasers) and seven GWI subjects decreased their 2-back scores after exercise (labelled decreasers). These phenotypic responses were absent for controls. Decreasers had significantly elevated prefrontal lactate levels compared to Increasers prior to completion of the exercise stress tests. Evaluation of prefrontal lactate levels prior to exercise demonstrated predictability (ROC analysis) of the two diametrically opposed subgroups. Conclusion: Prefrontal lactate levels may be a potential biomarker for exercise-induced subgroups in GWI. The alterations in brain energetics may be in part responsible for a subgroup of GWI and underlie some of the symptoms present in the patient population. PMID:23573365

  4. The effect of exercise-induced arousal on chosen tempi for familiar melodies.

    PubMed

    Jakubowski, Kelly; Halpern, Andrea R; Grierson, Mick; Stewart, Lauren

    2015-04-01

    Many previous studies have shown that arousal affects time perception, suggesting a direct influence of arousal on the speed of the pacemaker of the internal clock. However, it is unknown whether arousal influences the mental representation of tempo (speed) for highly familiar and complex stimuli, such as well-known melodies, that have long-term representations in memory. Previous research suggests that mental representations of the tempo of familiar melodies are stable over time; the aim of the present study was to investigate whether these representations can be systematically altered via an increase in physiological arousal. Participants adjusted the tempo of 14 familiar melodies in real time until they found a tempo that matched their internal representation of the appropriate tempo for that piece. The task was carried out before and after a physiologically arousing (exercise) or nonarousing (anagrams) manipulation. Participants completed this task both while hearing the melodies aloud and while imagining them. Chosen tempi increased significantly following exercise-induced arousal, regardless of whether a melody was heard aloud or imagined. These findings suggest that a change in internal clock speed affects temporal judgments even for highly familiar and complex stimuli such as music. PMID:25056004

  5. Attenuation of eccentric exercise-induced muscle damage conferred by maximal isometric contractions: a mini review

    PubMed Central

    Lima, Leonardo C. R.; Denadai, Benedito S.

    2015-01-01

    Although, beneficial in determined contexts, eccentric exercise-induced muscle damage (EIMD) might be unwanted during training regimens, competitions and daily activities. There are a vast number of studies investigating strategies to attenuate EIMD response after damaging exercise bouts. Many of them consist of performing exercises that induce EIMD, consuming supplements or using equipment that are not accessible for most people. It appears that performing maximal isometric contractions (ISOs) 2–4 days prior to damaging bouts promotes significant attenuation of EIMD symptoms that are not related to muscle function. It has been shown that the volume of ISOs, muscle length in which they are performed, and interval between them and the damaging bout influence the magnitude of this protection. In addition, it appears that this protection is not long-lived, lasting no longer than 4 days. Although no particular mechanisms for these adaptations were identified, professionals should consider applying this non-damaging stimulus before submitting their patients to unaccustomed exercised. However, it seems not to be the best option for athletes or relatively trained individuals. Future, studies should focus on establishing if ISOs protect other populations (i.e., trained individuals) or muscle groups (i.e., knee extensors) against EIMD, as well as investigate different mechanisms for ISO-induced protection. PMID:26578972

  6. A 45-Year-Old Man With Recurrent Dyspnea and Hemoptysis during Exercise: Exercise-Induced Pulmonary Hemorrhage/Edema

    PubMed Central

    Kim, Dae Sung; Lee, Minhyeok; Kwon, Oh Jung; Jeong, Inbeom; Son, Ji Woong; Na, Moon Jun

    2015-01-01

    A 45-year-old man presented with dyspnea and hemoptysis during exercise. A chest computed tomography (CT) revealed multifocal diffuse patchy ground glass opacity and interlobular septal thickening in both the lungs. Permeability pulmonary edema or pulmonary hemorrhage was suspected. Serologic studies for autoimmune disorders and vasculitis were negative. There was no laboratory evidence of coagulopathy, other hematopoietic disease or infectious disease. Considering correlation with exercise, we diagnosed exercise-induced pulmonary hemorrhage (EIPH) or exercise-induced pulmonary edema (EIPE). The patient was managed with antifibrinolytics, antibiotics, and antitussive agent. After a week, follow-up chest CT revealed completely resolved pulmonary hemorrhage. About 2 months after the first event, he visited again with dyspnea and hemoptysis during running. In the present study, we report a case of recurrent pulmonary hemorrhage after exercise. PMID:26508928

  7. Section 2. Exercise-Induced Bronchospasm: Albuterol versus Montelukast: Highlights of the Asthma Summit 2009: Beyond the Guidelines

    PubMed Central

    2010-01-01

    Exercise-induced bronchospasm (EIB) involves airway obstruction with an onset shortly after exercising. It can occur in individuals without a diagnosis of asthma, but is most common in asthmatic patients (and in this scenario may be referred to as exercise-induced asthma, EIA), correlating with the patient's degree of airway hyperreactivity. While albuterol is the most commonly used rescue and prophylactic medication for EIB, the leukotriene antagonist, monetlukast, may be an appropriate choice for some patients. Clinical data have shown that once-daily treatment with montelukast (5 or 10 mg tablet) can offer protection against EIB within 3 days for some patients. Such an approach might be preferred for patients who have difficulty with inhaled medications and for children who cannot access their inhalers during the school day. Montelukast also may be an option to reduce side effects associated with albuterol for individuals who exercise regularly. PMID:24228852

  8. Nelumbo Nucifera leaf protects against UVB-induced wrinkle formation and loss of subcutaneous fat through suppression of MCP3, IL-6 and IL-8 expression.

    PubMed

    Park, Ki Moon; Yoo, Young Ji; Ryu, Sujin; Lee, Seung Ho

    2016-08-01

    Nelumbo nucifera has long been used in traditional medicine in East Asian countries such as China and Korea. In this study, we report the different property of several Nelumbo nucifera leaf (NNL) extracts on adipocyte differentiation. Adipogenesis was stimulated by administration of dichloromethyl (DCM) or n-hexan extract of NNL but attenuated by that of water extract. We also show that topical administration of DCM extract of NNL attenuated ultraviolet-B (UVB)-mediated wrinkle formation and reduction of subcutaneous (SC) fat in vivo. Interestingly, UVB-induced blood contents of triglyceride (TG) were attenuated significantly by topical administration of the DCM extract. In addition, we found that UVB-induced expression of cytokines (interleukin-6; IL-6, interleukin-8; IL-8, and monocyte chemotactic protein-3; MCP3), which were reported as regulators in SC fat metabolism, was attenuated in mouse skin fibroblast cells upon administration of the DCM extract. Collectively, our data suggest that topical administration of DCM extract of NNL, which plays a regulatory role in adipogenesis, could attenuate UVB-induced wrinkle formation and the metabolism of blood lipids by regulating the expression of cytokines such as IL-6, IL-8, and MCP3 in skin fibroblast cells. Our findings support further development of DCM extract of NNL as a potential therapeutic agent for prevention of photoaging-related disorders. PMID:27262853

  9. The Acute Effect of Local Vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness.

    PubMed

    Pournot, Hervé; Tindel, Jérémy; Testa, Rodolphe; Mathevon, Laure; Lapole, Thomas

    2016-03-01

    Exercise involving eccentric muscle contractions is known to decrease range of motion and increase passive muscle stiffness. This study aimed at using ultrasound shear wave elastography to investigate acute changes in biceps brachii passive stiffness following intense barbell curl exercise involving both concentric and eccentric contractions. The effect of local vibration (LV) as a recovery modality from exercise-induced increased stiffness was further investigated. Eleven subjects performed 4 bouts of 10 bilateral barbell curl movements at 70% of the one-rep maximal flexion force. An arm-to-arm comparison model was then used with one arm randomly assigned to the passive recovery condition and the other arm assigned to the LV recovery condition (10 min of 55-Hz vibration frequency and 0.9-mm amplitude). Biceps brachii shear elastic modulus measurements were performed prior to exercise (PRE), immediately after exercise (POST-EX) and 5 min after the recovery period (POST-REC). Biceps brachii shear elastic modulus was significantly increased at POST-EX (+53 ± 48%; p < 0.001) and POST-REC (+31 ± 46%; p = 0.025) when compared to PRE. No differences were found between passive and LV recovery (p = 0.210). LV as a recovery strategy from exercise-induced increased muscle stiffness was not beneficial, probably due to an insufficient mechanical action of vibrations. Key pointsBouts of barbell curl exercise induce an immediate increased passive stiffness of the biceps brachii muscle, as evidenced by greater shear elastic modulus measured by supersonic shear imaging.The administration of a vibratory massage did not reduce this acute exercise-induced increased stiffness. PMID:26957937

  10. The Acute Effect of Local Vibration As a Recovery Modality from Exercise-Induced Increased Muscle Stiffness

    PubMed Central

    Pournot, Hervé; Tindel, Jérémy; Testa, Rodolphe; Mathevon, Laure; Lapole, Thomas

    2016-01-01

    Exercise involving eccentric muscle contractions is known to decrease range of motion and increase passive muscle stiffness. This study aimed at using ultrasound shear wave elastography to investigate acute changes in biceps brachii passive stiffness following intense barbell curl exercise involving both concentric and eccentric contractions. The effect of local vibration (LV) as a recovery modality from exercise-induced increased stiffness was further investigated. Eleven subjects performed 4 bouts of 10 bilateral barbell curl movements at 70% of the one-rep maximal flexion force. An arm-to-arm comparison model was then used with one arm randomly assigned to the passive recovery condition and the other arm assigned to the LV recovery condition (10 min of 55-Hz vibration frequency and 0.9-mm amplitude). Biceps brachii shear elastic modulus measurements were performed prior to exercise (PRE), immediately after exercise (POST-EX) and 5 min after the recovery period (POST-REC). Biceps brachii shear elastic modulus was significantly increased at POST-EX (+53 ± 48%; p < 0.001) and POST-REC (+31 ± 46%; p = 0.025) when compared to PRE. No differences were found between passive and LV recovery (p = 0.210). LV as a recovery strategy from exercise-induced increased muscle stiffness was not beneficial, probably due to an insufficient mechanical action of vibrations. Key points Bouts of barbell curl exercise induce an immediate increased passive stiffness of the biceps brachii muscle, as evidenced by greater shear elastic modulus measured by supersonic shear imaging. The administration of a vibratory massage did not reduce this acute exercise-induced increased stiffness. PMID:26957937

  11. Effects of Low-Fat Diets Differing in Protein and Carbohydrate Content on Cardiometabolic Risk Factors during Weight Loss and Weight Maintenance in Obese Adults with Type 2 Diabetes.

    PubMed

    Watson, Nerylee; Dyer, Kathryn; Buckley, Jonathan; Brinkworth, Grant; Coates, Alison; Parfitt, Gaynor; Howe, Peter; Noakes, Manny; Murphy, Karen

    2016-01-01

    Despite evidence for the benefits of higher-protein (HP) diets in weight loss, their role in type 2 diabetes mellitus (T2DM) management and weight maintenance is not clear. This randomised study compared the effects of a HP diet (38% carbohydrate, 30% protein, 29% fat) to a isocaloric higher-carbohydrate diet (HC: 53%:21%:23%) on cardiometabolic risk factors for 12 weeks in energy restriction (~30% reduction) followed by 12 weeks of energy balance whilst performing regular exercise. Outcomes were measured at baseline and the end of each phase. Sixty-one overweight/obese adults (BMI (body mass index) 34.3 ± 5.1 kg/m², aged 55 ± 8 years) with T2DM who commenced the study were included in the intention-to-treat analysis including the 17 participants (HP n = 9, HC n = 8) who withdrew. Following weight loss (M ± SEM: -7.8 ± 0.6 kg), there were significant reductions in HbA1c (-1.4% ± 0.1%, p < 0.001) and several cardiometabolic health risk factors. Improvements were sustained for 12 weeks when weight was stabilised and weight loss maintained. Both the HP and HC dietary patterns with concurrent exercise may be effective strategies for weight loss and weight maintenance in T2DM although further studies are needed to determine the longer term effects of weight maintenance. PMID:27187457

  12. Effects of Low-Fat Diets Differing in Protein and Carbohydrate Content on Cardiometabolic Risk Factors during Weight Loss and Weight Maintenance in Obese Adults with Type 2 Diabetes

    PubMed Central

    Watson, Nerylee; Dyer, Kathryn; Buckley, Jonathan; Brinkworth, Grant; Coates, Alison; Parfitt, Gaynor; Howe, Peter; Noakes, Manny; Murphy, Karen

    2016-01-01

    Despite evidence for the benefits of higher-protein (HP) diets in weight loss, their role in type 2 diabetes mellitus (T2DM) management and weight maintenance is not clear. This randomised study compared the effects of a HP diet (38% carbohydrate, 30% protein, 29% fat) to a isocaloric higher-carbohydrate diet (HC: 53%:21%:23%) on cardiometabolic risk factors for 12 weeks in energy restriction (~30% reduction) followed by 12 weeks of energy balance whilst performing regular exercise. Outcomes were measured at baseline and the end of each phase. Sixty-one overweight/obese adults (BMI (body mass index) 34.3 ± 5.1 kg/m2, aged 55 ± 8 years) with T2DM who commenced the study were included in the intention-to-treat analysis including the 17 participants (HP n = 9, HC n = 8) who withdrew. Following weight loss (M ± SEM: −7.8 ± 0.6 kg), there were significant reductions in HbA1c (−1.4% ± 0.1%, p < 0.001) and several cardiometabolic health risk factors. Improvements were sustained for 12 weeks when weight was stabilised and weight loss maintained. Both the HP and HC dietary patterns with concurrent exercise may be effective strategies for weight loss and weight maintenance in T2DM although further studies are needed to determine the longer term effects of weight maintenance. PMID:27187457

  13. No protection by oral terbutaline against exercise-induced asthma in children: a dose-response study.

    PubMed

    Fuglsang, G; Hertz, B; Holm, E B

    1993-04-01

    We wanted to assess the protective effects on exercise-induced asthma as well as the clinical efficacy and safety of increasing doses of a new sustained-release formulation of terbutaline sulphate, in 17 asthmatic children aged 6-12 yrs (mean 9 yrs). Placebo, 2, 4 and 6 mg terbutaline were given b.i.d. for 14 days, in a randomized, double-blind, cross-over design. At the end of each two week period, an exercise test was performed and plasma terbutaline was measured. Compared with placebo, no significant effect was seen on asthma symptoms monitored at home, or on exercise-induced asthma. The percentage falls in FEV1 after the exercise test were 36, 35, 27 and 28%, after placebo, 4, 8 and 12 mg terbutaline.day-1, respectively. There was no correlation between plasma terbutaline and dose of terbutaline. A small but statistically significant dose-related increase in morning and evening peak expiratory flow (PEF) recordings occurred, but the incidence of side-effects also increased with the dose given. There was a trend towards more side-effects when the high doses were used, and two patients withdrew from the study because of side-effects at this dose. It is concluded that continuous treatment, even with high doses of oral terbutaline, does not offer clinically useful protection against exercise-induced asthma. PMID:8491302

  14. Effect of apple pomace fiber and pork fat levels on quality characteristics of uncured, reduced-fat chicken sausages.

    PubMed

    Choi, Yun-Sang; Kim, Young-Boong; Hwang, Ko-Eun; Song, Dong-Heon; Ham, Youn-Kyung; Kim, Hyun-Wook; Sung, Jung-Min; Kim, Cheon-Jei

    2016-06-01

    The effects of reducing pork fat level from 30 to 25 and 20% by partially substituting pork fat with 1 and 2% apple pomace fiber were investigated based on the evaluation of physicochemical properties and textural properties of uncured, reduced-fat chicken sausages. Increased fat level resulted in decreased moisture content, cooking loss, total expressible fluid separation, fat separation, and yellowness of uncured, reduced-fat chicken sausages, whereas, an increase in fat content, caloric energy, pH, lightness, redness, hardness, cohesiveness, gumminess, and chewiness was observed. The results showed that uncured, reduced-fat chicken sausage samples with increased apple pomace fiber level had lower cooking loss, total expressible fluid separation, fat separation, pH, and redness. The results from this study show that inclusion of apple pomace fiber in the formulation will successfully reduce fat content in emulsion sausages, while improving quality characteristics relative to regular-fat (30%) control. PMID:27030694

  15. Taurine supplementation attenuates delayed increase in exercise-induced arterial stiffness.

    PubMed

    Ra, Song-Gyu; Choi, Youngju; Akazawa, Nobuhiko; Ohmori, Hajime; Maeda, Seiji

    2016-06-01

    There is a delayed increase in arterial stiffness after eccentric exercise that is possibly mediated by the concurrent delayed increase in circulating oxidative stress. Taurine has anti-oxidant action, and taurine supplementation may be able to attenuate the increase in oxidative stress after exercise. The purpose of the present study was to investigate whether taurine supplementation attenuates the delayed increase in arterial stiffness after eccentric exercise. In the present double-blind, randomized, and placebo-controlled trial, we divided 29 young, healthy men into 2 groups. Subjects received either 2.0 g of placebo (n = 14) or taurine (n = 15) 3 times per day for 14 days prior to the exercise, on the day of exercise, and the following 3 days. The exercise consisted of 2 sets of 20 maximal-effort eccentric repetitions with the nondominant arm only. On the morning of exercise and for 4 days thereafter, we measured serum malondialdehyde (MDA) and carotid-femoral pulse wave velocity (cfPWV) as indices of oxidative stress and arterial stiffness, respectively. On the third and fourth days after exercise, both MDA and cfPWV significantly increased in the placebo group. However, these elevations were significantly attenuated in the taurine group. The increase in MDA was associated with an increase in cfPWV from before exercise to 4 days after exercise (r = 0.597, p < 0.05) in the placebo group, but not in the taurine group. Our results suggest that delayed increase in arterial stiffness after eccentric exercise was probably affected by the exercise-induced oxidative stress and was attenuated by the taurine supplementation. PMID:27163699

  16. Exercise-induced protection against reperfusion arrhythmia involves stabilization of mitochondrial energetics.

    PubMed

    Alleman, Rick J; Tsang, Alvin M; Ryan, Terence E; Patteson, Daniel J; McClung, Joseph M; Spangenburg, Espen E; Shaikh, Saame Raza; Neufer, P Darrell; Brown, David A

    2016-05-15

    Mitochondria influence cardiac electrophysiology through energy- and redox-sensitive ion channels in the sarcolemma, with the collapse of energetics believed to be centrally involved in arrhythmogenesis. This study was conducted to determine if preservation of mitochondrial membrane potential (ΔΨm) contributes to the antiarrhythmic effect of exercise. We utilized perfused hearts, isolated myocytes, and isolated mitochondria exposed to metabolic challenge to determine the effects of exercise on cardiac mitochondria. Hearts from sedentary (Sed) and exercised (Ex; 10 days of treadmill running) Sprague-Dawley rats were perfused on a two-photon microscope stage for simultaneous measurement of ΔΨm and ECG. After ischemia-reperfusion, the collapse of ΔΨm was commensurate with the onset of arrhythmia. Exercise preserved ΔΨm and decreased the incidence of fibrillation/tachycardia (P < 0.05). Our findings in intact hearts were corroborated in isolated myocytes exposed to in vitro hypoxia-reoxygenation, with Ex rats demonstrating enhanced redox control and sustained ΔΨm during reoxygenation. Finally, we induced anoxia-reoxygenation in isolated mitochondria using high-resolution respirometry with simultaneous measurement of respiration and H2O2 Mitochondria from Ex rats sustained respiration with lower rates of H2O2 emission than Sed rats. Exercise helps sustain postischemic mitochondrial bioenergetics and redox homeostasis, which is associated with preserved ΔΨm and protection against reperfusion arrhythmia. The reduction of fatal ventricular arrhythmias through exercise-induced mitochondrial adaptations indicates that mitochondrial therapeutics may be an effective target for the treatment of heart disease. PMID:26945082

  17. Voluntary exercise-induced changes in beta2-adrenoceptor signalling in rat ventricular myocytes.

    PubMed

    Stones, Rachel; Natali, Antonio; Billeter, Rudolf; Harrison, Simon; White, Ed

    2008-09-01

    Regular exercise is beneficial to cardiovascular health. We tested whether mild voluntary exercise training modifies key myocardial parameters [ventricular mass, intracellular calcium ([Ca2+]i) handling and the response to beta-adrenoceptor (beta-AR) stimulation] in a manner distinct from that reported for beneficial, intensive training and pathological hypertrophic stimuli. Female rats performed voluntary wheel-running exercise for 6-7 weeks. The mRNA expression of target proteins was measured in left ventricular tissue using real-time reverse transcriptase-polymerase chain reaction. Simultaneous measurement of cell shortening and [Ca2+]i transients were made in single left ventricular myocytes and the inotropic response to beta1- and beta2-AR stimulation was measured. Voluntary exercise training resulted in cardiac hypertrophy, the heart weight to body weight ratio being significantly greater in trained compared with sedentary animals. However, voluntary exercise caused no significant alteration in the size or time course of myocyte shortening and [Ca2+]i transients or in the mRNA levels of key proteins that regulate Ca2+ handling. The positive inotropic response to beta1-AR stimulation and the level of beta1-AR mRNA were unaltered by voluntary exercise but both mRNA levels and inotropic response to beta2-AR stimulation were significantly reduced in trained animals. The beta2-AR inotropic response was restored by exposure to pertussis toxin. We propose that in contrast to pathological stimuli and to beneficial, intense exercise training, modulation of Ca2+ handling is not a major adaptive mechanism in the response to mild voluntary exercise. In addition, and in a reversal of the situation seen in heart failure, voluntary exercise training maintains the beta1-AR response but reduces the beta2-AR response. Therefore, although voluntary exercise induces cardiac hypertrophy, there are distinct differences between its effects on key myocardial regulatory mechanisms

  18. Effects of grape seed extract supplementation on exercise-induced oxidative stress in rats.

    PubMed

    Belviranlı, Muaz; Gökbel, Hakkı; Okudan, Nilsel; Başaralı, Kemal

    2012-07-01

    The aim of the present study was to investigate the effects of grape seed extract (GSE) supplementation on exercise performance and oxidative stress in acutely and chronically exercised rats. A total of sixty-four male rats were used in the study. Rats were divided into six groups: control, chronic exercise control, acute exercise control (AEC), GSE-supplemented control, GSE-supplemented chronic exercise and GSE-supplemented acute exercise groups. Chronic exercise consisted of treadmill running at 25 m/min, 45 min/d, 5 d a week for 6 weeks. Rats in the acute exercise groups were run on the treadmill at 30 m/min until exhaustion. GSE were given at 100 mg/kg of body weight with drinking water for 6 weeks. Plasma was separated from blood samples for the analysis of oxidative stress markers. There was no significant difference in time of exhaustion between the acute exercise groups. Plasma malondialdehyde (MDA) levels were higher in the acute exercise groups and lower in the chronic exercise groups. GSE supplementation decreased MDA levels. Xanthine oxidase and adenosine deaminase activities were higher in the AEC group compared to all the other groups. NO levels were increased with both chronic exercise and GSE supplementation. Superoxide dismutase and glutathione peroxidase activities were lower in the acute exercised groups and higher in the chronic exercised groups. GSE supplementation caused an increase in antioxidant enzyme activities. In conclusion, GSE supplementation prevents exercise-induced oxidative stress by preventing lipid peroxidation and increasing antioxidant enzyme activities. PMID:22011589

  19. Endurance training improves the resistance of rat diaphragm to exercise-induced oxidative stress.

    PubMed

    Oh-ishi, S; Kizaki, T; Ookawara, T; Sakurai, T; Izawa, T; Nagata, N; Ohno, H

    1997-11-01

    The current study was designed to test the hypothesis that endurance training improves the ability of the diaphragm muscle to resist exercise-induced oxidative stress. Twenty-eight male Wistar rats were assigned to either untrained or trained groups. Trained rats were treadmill-trained for 9 wk. Each group was subdivided into acutely exercised or nonexercised groups. Diaphragm muscle from each rat was analyzed to determine the levels of certain antioxidant enzymes: Mn-superoxide dismutase (Mn-SOD), Cu,Zn-superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase, and catalase. In addition, interleukin-1 and myeloperoxidase levels were determined. Endurance training upregulated all of the antioxidant enzymes. Conversely, acute exercise increased glutathione peroxidase and catalase in untrained rats, while it had no overt effect on any antioxidant enzymes in trained rats. Both Mn-SOD and Cu,Zn-SOD contents and activities were increased with endurance training. However, the mRNA expressions of both forms of SOD did not show any significant change with endurance training. Acute exercise also increased the levels of interleukin-1 and myeloperoxidase in untrained rats but not in trained rats. Moreover, acute exercise significantly increased the ability of neutrophils to produce superoxide, especially in untrained rats. The results from this study demonstrate that endurance training can upregulate certain antioxidant enzyme activities in rat diaphragm muscle, indicating the potential for improvement of the resistance to intracellular reactive oxygen species. The results of this study also suggest that acute exercise may cause oxidative damage in rat diaphragm through the activation of the inflammatory pathway and that endurance training may minimize such an extracellular oxidative stress by acute exercise. PMID:9372679

  20. Endothelin-1 in exhaled breath condensate of allergic asthma patients with exercise-induced bronchoconstriction

    PubMed Central

    Zietkowski, Ziemowit; Skiepko, Roman; Tomasiak, Maria M; Bodzenta-Lukaszyk, Anna

    2007-01-01

    Background Exercise-induced bronchoconstriction (EIB) is a highly prevalent condition, whose pathophysiology is not well understood. Endothelins are proinflammatory, profibrotic, broncho- and vasoconstrictive peptides which play an important role in the development of airway inflammation and remodeling in asthma. The aim of the study was to evaluate the changes in endothelin-1 levels in exhaled breath condensate following intensive exercise in asthmatic patients. Methods The study was conducted in a group of 19 asthmatic patients (11 with EIB, 8 without EIB) and 7 healthy volunteers. Changes induced by intensive exercise in the concentrations of endothelin-1 (ET-1) in exhaled breath condensate (EBC) during 24 hours after an exercise challenge test were determined. Moreover, the possible correlations of these measurements with the results of other tests commonly associated with asthma and with the changes of airway inflammation after exercise were observed. Results In asthmatic patients with EIB a statistically significant increase in the concentration of ET-1 in EBC collected between 10 minutes and 6 hours after an exercise test was observed. The concentration of ET-1 had returned to its initial level 24 hours after exercise. No effects of the exercise test on changes in the concentrations of ET-1 in EBC in either asthmatic patients without EIB or healthy volunteers were observed. A statistically significant correlation between the maximum increase in ET-1 concentrations in EBC after exercise and either baseline FENO and the increase in FENO or BHR to histamine 24 hours after exercise in the groups of asthmatics with EIB was revealed. Conclusion The release of ET-1 from bronchial epithelium through the influence of many inflammatory cells essential in asthma and interactions with other cytokines, may play an important role in increase of airway inflammation which was observed after postexercise bronchoconstriction in asthmatic patients. PMID:17973986

  1. Comparison of Nigella sativa- and exercise-induced models of cardiac hypertrophy: structural and electrophysiological features.

    PubMed

    Al-Asoom, Lubna Ibrahim; Al-Shaikh, Basil Abdulrahman; Bamosa, Abdullah Omar; El-Bahai, Mohammad Nabil

    2014-09-01

    Exercise training is employed as supplementary therapeutic intervention for heart failure, due to its ability to induce physiological cardiac hypertrophy. In parallel, supplementation with Nigella sativa (N. sativa) was found to enhance myocardial function and induce cardiac hypertrophy. In this study, we aim to compare the morphological and electrophysiological changes associated with these patterns of cardiac hypertrophy and the possible changes upon administration of N. sativa to exercise-trained animals. Fifty-six adult Wistar rats were divided into: control, Nigella-treated (N), exercise-trained (E), and Nigella-treated-exercise-trained (NE) rats. Daily 800 mg/kg N. sativa was administered orally to N and NE. E and NE ran on treadmill, 2 h/day. At the end of 8 weeks ECG, body weight (BW), heart weight (HW), and left ventricular weight (LVW) were recorded. Hematoxylin and Eosin and periodic acid-Schiff sections were prepared to study the histology of left ventricles and to measure diameter of cardiomyocytes (Cdia). HW/BW, LVW/BW, and mean Cdia were significantly higher in all experimental animals compared to the controls. Histology showed normal cardiomyocytes with no fibrosis. ECG showed significantly lower heart rates, higher QRS amplitude, and ventricular specific potential in NE group compared to control group. Supplementation of N. sativa demonstrated a synergistic effect with exercise training as Nigella-exercise-induced cardiac hypertrophy had lower heart rate and well-matched electrical activity of the heart to its mass. Therefore, this model of cardiac hypertrophy might be introduced as a new therapeutic strategy for treatment for heart failure with superior advantages to exercise training. PMID:24448711

  2. Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue.

    PubMed

    Babcock, M A; Pegelow, D F; McClaran, S R; Suman, O E; Dempsey, J A

    1995-05-01

    In nine normal humans we compared the effects on diaphragm fatigue of whole body exercise to exhaustion (86-93% of maximal O2 uptake for 13.2 +/- 2.0 min) to voluntary increases in the tidal integral of transdiaphragmatic pressure (integral of Pdi) while at rest at the same magnitude and frequency and for the same duration as those during exercise. After the endurance exercise, we found a consistent and significant fall (-26 +/- 2.9%, range -19.2 to -41.0%) in the Pdi response to supramaximal bilateral phrenic nerve stimulation at all stimulation frequencies (1, 10, and 20 Hz). Integral of Pdi.fB (where fB is breathing frequency) achieved during exercise averaged 509 +/- 81.0 cmH2O/min (range 304.0-957.0 cmH2O/min). At rest, voluntary production of integral of Pdi.fB, which was < 550-600 cmH2O/min (approximately 4 times the resting eupenic integral of Pdi.fB or 60-70% of Pdi capacity), did not result in significant diaphragmatic fatigue, whereas sustained voluntary production of integral of Pdi.fB in excess of these threshold values usually did result in significant fatigue. Thus, with few exceptions (5 of 23 tests) the ventilatory requirements of whole body endurance exercise demanded a level of integral of Pdi.fB that, by itself, was not fatiguing. The rested first dorsal interosseous muscle showed no fatigue in response to supramaximal ulnar nerve stimulation after whole body exercise. We postulate that the effects of locomotor muscle activity, such as competition for blood flow distribution and/or extracellular fluid acidosis, in conjunction with a contracting diaphragm account for most of the exercise-induced diaphragm fatigue. PMID:7649904

  3. Incidence of exercise-induced asthma in adolescent athletes under different training and environmental conditions.

    PubMed

    Sidiropoulou, Maria P; Kokaridas, Dimitrios G; Giagazoglou, Paraskevi F; Karadonas, Michalis I; Fotiadou, Eleni G

    2012-06-01

    The aim of this study was to establish if there were differences in the incidence of exercise-induced bronchospasm between athletes in different sports, which take place under different environmental conditions such as open places, closed courses, and swimming pools with similar exercise intensity (football, basketball, water polo) using the free running test. The study included 90 adolescents (3 groups of 30) aged 14-18 years recruited from academies in northern Greece. All the participants were initially subjected to (a) a clinical examination and cardiorespiratory assessment by a physician and (b) free running test of a 6-minute duration and measurement with a microspirometer of the forced expiratory volume in 1 second (FEV₁). Only the participants who had measured a decrease in FEV₁ ≥ 10% were reevaluated with the microspirometer during a training session. The examination of all the participants during the free running test showed that 22 athletes, that is, 9, 8, and 5 of football, basketball, and water polo athletes, respectively, demonstrated an FEV₁ ≥ 10 drop. Reevaluation of the 22 participants during training showed that 5 out 9 (55%) football athletes, 4 out of 8 basketball athletes (50%), and none of the 5 athletes of the water polo team displayed a drop of FEV₁ ≥ 10%. Despite the absence of any significant statistical differences between the 3 groups, the analysis of variances did show a trend of a lower incidence of EIA in the water polo athletes. It was found that a football or basketball game can induce EIA in young athletes but to a lesser degree than the free running test can induce. The water polo can be a safer sport even for participants with a medical history of asthma or allergies. PMID:21912293

  4. Vitamin D2 Supplementation Amplifies Eccentric Exercise-Induced Muscle Damage in NASCAR Pit Crew Athletes

    PubMed Central

    Nieman, David C.; Gillitt, Nicholas D.; Shanely, R. Andrew; Dew, Dustin; Meaney, Mary Pat; Luo, Beibei

    2013-01-01

    This study determined if 6-weeks vitamin D2 supplementation (vitD2, 3800 IU/day) had an influence on muscle function, eccentric exercise-induced muscle damage (EIMD), and delayed onset of muscle soreness (DOMS) in National Association for Stock Car Auto Racing (NASCAR) NASCAR pit crew athletes. Subjects were randomized to vitD2 (n = 13) and placebo (n = 15), and ingested supplements (double-blind) for six weeks. Blood samples were collected and muscle function tests conducted pre- and post-study (leg-back and hand grip dynamometer strength tests, body weight bench press to exhaustion, vertical jump, 30-s Wingate test). Post-study, subjects engaged in 90 min eccentric-based exercise, with blood samples and DOMS ratings obtained immediately after and 1- and 2-days post-exercise. Six weeks vitD2 increased serum 25(OH)D2 456% and decreased 25(OH)D3 21% versus placebo (p < 0.001, p = 0.036, respectively), with no influence on muscle function test scores. The post-study eccentric exercise bout induced EIMD and DOMS, with higher muscle damage biomarkers measured in vitD2 compared to placebo (myoglobin 252%, 122% increase, respectively, p = 0.001; creatine phosphokinase 24 h post-exercise, 169%, 32%, p < 0.001), with no differences for DOMS. In summary, 6-weeks vitD2 (3800 IU/day) significantly increased 25(OH)D2 and decreased 25(OH)D3, had no effect on muscle function tests, and amplified muscle damage markers in NASCAR pit crew athletes following eccentric exercise. PMID:24362707

  5. Ammonium Chloride Ingestion Attenuates Exercise-Induced mRNA Levels in Human Muscle

    PubMed Central

    Mündel, Toby; Pilegaard, Henriette; Hawke, Emma; Leikis, Murray; Lopez-Villalobos, Nicolas; Oliveira, Rodrigo S. F.; Bishop, David J.

    2015-01-01

    Minimizing the decrease in intracellular pH during high-intensity exercise training promotes greater improvements in mitochondrial respiration. This raises the intriguing hypothesis that pH may affect the exercise-induced transcription of genes that regulate mitochondrial biogenesis. Eight males performed 10x2-min cycle intervals at 80% V˙O2peak intensity on two occasions separated by ~2 weeks. Participants ingested either ammonium chloride (ACID) or calcium carbonate (PLA) the day before and on the day of the exercise trial in a randomized, counterbalanced order, using a crossover design. Biopsies were taken from the vastus lateralis muscle before and after exercise. The mRNA level of peroxisome proliferator-activated receptor co-activator 1α (PGC-1α), citrate synthase, cytochome c and FOXO1 was elevated at rest following ACID (P<0.05). During the PLA condition, the mRNA content of mitochondrial- and glucose-regulating proteins was elevated immediately following exercise (P<0.05). In the early phase (0–2 h) of post-exercise recovery during ACID, PGC-1α, citrate synthase, cytochome C, FOXO1, GLUT4, and HKII mRNA levels were not different from resting levels (P>0.05); the difference in PGC-1α mRNA content 2 h post-exercise between ACID and PLA was not significant (P = 0.08). Thus, metabolic acidosis abolished the early post-exercise increase of PGC-1α mRNA and the mRNA of downstream mitochondrial and glucose-regulating proteins. These findings indicate that metabolic acidosis may affect mitochondrial biogenesis, with divergent responses in resting and post-exercise skeletal muscle. PMID:26656911

  6. Effects of Exercise Induced Low Back Pain on Intrinsic Trunk Stiffness and Paraspinal Muscle Reflexes

    PubMed Central

    Miller, Emily M.; Bazrgari, Babak; Nussbaum, Maury A.; Madigan, Michael L.

    2012-01-01

    The purpose of this study was to 1) compare trunk neuromuscular behavior between individuals with no history of low back pain (LBP) and individuals who experience exercise-induced LBP (eiLBP) when pain free, and 2) investigate changes in trunk neuromuscular behavior with eiLBP. Seventeen young adult males participated including eight reporting recurrent, acute eiLBP and nine control participants reporting no history of LBP. Intrinsic trunk stiffness and paraspinal muscle reflex delay were determined in both groups using sudden trunk flexion position perturbations 1-2 days following exercise when the eiLBP participants were experiencing an episode of LBP (termed post-exercise) and 4-5 days following exercise when eiLBP had subsided (termed post-recovery). Post-recovery, when the eiLBP group was experiencing minimal LBP, trunk stiffness was 26% higher in the eiLBP group compared to the control group (p=0.033) and reflex delay was not different (p=0.969) between groups. Trunk stiffness did not change (p=0.826) within the eiLBP group from post-exercise to post-recovery, but decreased 22% within the control group (p=0.002). Reflex delay decreased 11% within the eiLBP group from post-exercise to post-recovery (p=0.013), and increased 15% within the control group (p=0.006). Although the neuromuscular mechanisms associated with eiLBP and chronic LBP may differ, these results suggest that previously-reported differences in trunk neuromuscular behavior between individuals with chronic LBP and healthy controls reflect a combination of inherent differences in neuromuscular behavior between these individuals as well as changes in neuromuscular behavior elicited by pain. PMID:23182221

  7. Effects of allopurinol on exercise-induced muscle damage: new therapeutic approaches?

    PubMed

    Sanchis-Gomar, F; Pareja-Galeano, H; Perez-Quilis, C; Santos-Lozano, A; Fiuza-Luces, C; Garatachea, N; Lippi, G; Lucia, A

    2015-01-01

    Intensive muscular activity can trigger oxidative stress, and free radicals may hence be generated by working skeletal muscle. The role of the enzyme xanthine oxidase as a generating source of free radicals is well documented and therefore is involved in the skeletal muscle damage as well as in the potential transient cardiovascular damage induced by high-intensity physical exercise. Allopurinol is a purine hypoxanthine-based structural analog and a well-known inhibitor of xanthine oxidase. The administration of the xanthine oxidase inhibitor allopurinol may hence be regarded as promising, safe, and an economic strategy to decrease transient skeletal muscle damage (as well as heart damage, when occurring) in top-level athletes when administered before a competition or a particularly high-intensity training session. Although continuous administration of allopurinol in high-level athletes is not recommended due to its possible role in hampering training-induced adaptations, the drug might be useful in non-athletes. Exertional rhabdomyolysis is the most common form of rhabdomyolysis and affects individuals participating in a type of intense exercise to which they are not accustomed. This condition can cause exercise-related myoglobinuria, thus increasing the risk of acute renal failure and is also associated with sickle cell trait. In this manuscript, we have reviewed the recent evidence about the effects of allopurinol on exercise-induced muscle damage. More research is needed to determine whether allopurinol may be useful for preventing not only exertional rhabdomyolysis and acute renal damage but also skeletal muscle wasting in critical illness as well as in immobilized, bedridden, sarcopenic or cachectic patients. PMID:25181966

  8. How accurate is the diagnosis of exercise induced asthma among Vancouver schoolchildren?

    PubMed Central

    Seear, M; Wensley, D; West, N

    2005-01-01

    Background: Limited access to exercise testing facilities means that the diagnosis of exercise induced asthma (EIA) is mainly based on self-reported respiratory symptoms. This is open to error since the correlation between exercise related symptoms and subsequent exercise testing has been shown to be poor. Aim: To study the accuracy of clinically diagnosed EIA among Vancouver schoolchildren. Methods: Fifty two children referred for investigation of poorly controlled EIA were studied. Following a careful history and physical examination, children performed pulmonary function tests before, then 5 and 15 minutes after a standardised treadmill exercise test. Based on overall assessment, a diagnostic explanation for each child's respiratory complaints was provided as far as possible. Results: Only eight children (15.4%) fulfilled diagnostic criteria for EIA (fall in FEV1 ⩾10%). Of the remainder: 12 (23.1%) were unfit, 14 (26.9%) had vocal cord dysfunction/sigh dyspnoea, 7 (13.5%) had a habit cough, and 11 (21.1%) had no abnormalities on clinical or laboratory testing, so were given no diagnosis. Initial reported symptoms of wheeze or cough often changed significantly following a careful history, particularly among the eight elite athletes. The final complaint was sometimes not respiratory, and, in a few cases, was not even associated with exercise. Conclusions: The clinical diagnosis of EIA is inaccurate among Vancouver schoolchildren, principally due to the unreliability of their initial exercise related complaints. Symptom exaggeration, familiarity with medical jargon, and psychogenic complaints are all common. A careful history is essential in this population before basing any diagnosis on self-reported respiratory symptoms. PMID:15855180

  9. Identification and partial characterization of an exercise-induced neutrophil chemotactic factor in bronchial asthma.

    PubMed Central

    Lee, T H; Nagy, L; Nagakura, T; Walport, M J; Kay, A B

    1982-01-01

    A heat-stable neutrophil chemotactic factor (NCF) has been identified in the serum of 13 atopic asthmatic subjects after treadmill exercise. Peak activity was detected at 10 min and returned to prechallenge values by 1 h. No NCF activity was detected in the sera of three nonasthmatic atopic or four normal nonatopic individuals performing the same task. NCF produced by exercise (NCFEX) had a similar time-course of release to NCF provoked by specific antigen (NCFAG). The appearance of circulating NCFEX and NCFAG closely paralleled the fall in peak expiratory flow rate/forced expiratory volume in 1 s (PEFR/FEV1). Histamine challenge in atopic asthmatics at concentrations giving a comparable change in PEFR/FEV1 to that evoked by exercise or inhaled antigen was not associated with the appearance of circulating NCF. In seven subjects NCFEX release was inhibited by prior administration of disodium cromoglycate. NCFEX and NCFAG eluted as single peaks of activity when applied separately to columns of Sephadex G-200, and both were an estimated 750,000 daltons. NCFEX and NCFAG also eluted as single peaks of activity, at between 0.15 and 0.30 M NaCl, following anion exchange chromatography on DEAE-Sephacel (pH 7.8). The isoelectric points of NCFEX and NCFAG were virtually identical (between pH 6.0 and 6.5) as determined by chromatofocusing on Polybuffer Exchanger 94. The activities of NCFEX and NCFAG were substantially reduced, in both a time- and dose-dependent fashion, after incubation with trypsin and chymotrypsin. Partially purified NCFEX and NCFAG promoted both stimulated random migration (chemokinesis) as well as directional migration (chemotaxis). These experiments indicate that NCFEX and NCFAG might be identical substances and raise the possibility that mediators by hypersensitivity are released during exercise-induced asthma in atopic subjects. PMID:7076852

  10. Exercise-Induced Wheeze, Urgent Medical Visits, and Neighborhood Asthma Prevalence

    PubMed Central

    Mainardi, Timothy R.; Mellins, Robert B.; Miller, Rachel L.; Acosta, Luis M.; Cornell, Alexandra; Hoepner, Lori; Quinn, James W.; Yan, Beizhan; Chillrud, Steven N.; Olmedo, Omar E.; Perera, Frederica P.; Goldstein, Inge F.; Rundle, Andrew G.; Jacobson, Judith S.

    2013-01-01

    OBJECTIVE: Exercise-induced wheeze (EIW) may identify a distinct population among asthmatics and give insight into asthma morbidity etiology. The prevalence of pediatric asthma and associated urgent medical visits varies greatly by neighborhood in New York City and is highest in low-income neighborhoods. Although increased asthma severity might contribute to the disparities in urgent medical visits, when controlling for health insurance coverage, we previously observed no differences in clinical measures of severity between asthmatic children living in neighborhoods with lower (3%–9%) versus higher (11%–19%) asthma prevalence. Among these asthmatics, we hypothesized that EIW would be associated with urgent medical visits and a child’s neighborhood asthma prevalence. METHODS: Families of 7- to 8-year-old children were recruited into a case-control study of asthma through an employer-based health insurance provider. Among the asthmatics (n = 195), prevalence ratios (PRs) for EIW were estimated. Final models included children with valid measures of lung function, seroatopy, and waist circumference (n = 140). RESULTS: EIW was associated with urgent medical visits for asthma (PR, 2.29; P = .021), independent of frequent wheeze symptoms. In contrast to frequent wheeze, EIW was not associated with seroatopy or exhaled NO, suggesting a distinct mechanism. EIW prevalence among asthmatics increased with increasing neighborhood asthma prevalence (PR, 1.09; P = .012), after adjustment for race, ethnicity, maternal asthma, environmental tobacco smoke, household income, and neighborhood income. CONCLUSIONS: EIW may contribute to the disparities in urgent medical visits for asthma between high- and low-income neighborhoods. Physicians caring for asthmatics should consider EIW an indicator of risk for urgent medical visits. PMID:23248227

  11. Exercise-induced stimulation of murine macrophage chemotaxis: role of corticosterone and prolactin as mediators.

    PubMed Central

    Ortega, E; Forner, M A; Barriga, C

    1997-01-01

    1. Exercise provokes changes in the immune system, including macrophage activity. Chemotaxis is a necessary function of macrophages if they are to reach the focus of infection and strenuous acute exercise may modulate chemotaxis. However, the precise mechanisms remain unknown. 2. Three experiments were performed in the present study. (1) The effect of strenuous acute exercise (swimming until exhaustion) on the chemotactic capacity of macrophages was evaluated. (2) Peritoneal macrophages from control mice were incubated with plasma from exercised mice or control (no exercise) mice. The differences in the resulting chemotactic capacity were measured. (3) Changes in the concentration of plasma corticosterone and prolactin after exercise were also measured, and the effect of incubation with the post-exercise levels of plasma corticosterone and prolactin on the chemotactic capacity of the peritoneal macrophages was then studied in vitro. 3. Exercise induced an increase in the macrophage chemotaxis index (103 +/- 8 vs. 47 +/- 11 in controls). Incubation with plasma from exercised mice led to an increased level of chemotaxis (68 +/- 18 vs. 40 +/- 6 with plasma from controls). Incubation with concentrations of corticosterone and prolactin similar to those observed in plasma immediately after exercise (corticosterone, 0.72 mumol l-1; prolactin, 88 pmol l-1) raised the chemotactic capacity with respect to that following incubation with the basal concentrations of the hormones in control animals (90 +/- 9 vs. 37 +/- 4 for corticosterone; 72 +/- 9 vs. 41 +/- 4 for prolactin). 4. It is concluded that corticosterone and prolactin may mediate the increased chemotaxis of peritoneal macrophages induced by exercise. Images Figure 3 Figure 4 PMID:9051584

  12. Glycogen overload by postexercise insulin administration abolished the exercise-induced increase in GLUT4 protein.

    PubMed

    Chou, Chia-Hau; Tsai, Yin-Lan; Hou, Chien-Wen; Lee, Hsing-Hao; Chang, Wei-Hsiang; Lin, Tzi-Wen; Hsu, Tung-Hsiung; Huang, Yi-Jen; Kuo, Chia-Hua

    2005-12-01

    To elucidate the role of muscle glycogen storage on regulation of GLUT4 protein expression and whole-body glucose tolerance, muscle glycogen level was manipulated by exercise and insulin administration. Sixty Sprague-Dawley rats were evenly separated into three groups: control (CON), immediately after exercise (EX0), and 16 h after exercise (EX16). Rats from each group were further divided into two groups: saline- and insulin-injected. The 2-day exercise protocol consisted of 2 bouts of 3-h swimming with 45-min rest for each day, which effectively depleted glycogen in both red gastrocnemius (RG) and plantaris muscles. EX0 rats were sacrificed immediately after the last bout of exercise on second day. CON and EX16 rats were intubated with 1 g/kg glucose solution following exercise and recovery for 16 h before muscle tissue collection. Insulin (0.5 microU/kg) or saline was injected daily at the time when glucose was intubated. Insulin injection elevated muscle glycogen levels substantially in both muscles above saline-injected group at CON and EX16. With previous day insulin injection, EX0 preserved greater amount of postexercise glycogen above their saline-injected control. In the saline-injected rats, EX16 significantly increased GLUT4 protein level above CON, concurrent with muscle glycogen supercompensation. Insulin injection for EX16 rats significantly enhanced muscle glycogen level above their saline-injected control, but the increases in muscle GLUT4 protein and whole-body glucose tolerance were attenuated. In conclusion, the new finding of the study was that glycogen overload by postexercise insulin administration significantly abolished the exercise-induced increases in GLUT4 protein and glucose tolerance. PMID:16319996

  13. An Evaluation of Levalbuterol HFA in the Prevention of Exercise-Induced Bronchospasm

    PubMed Central

    Pearlman, D.S.; Rees, William; Schaefer, Kendyl; Huang, Holly; Andrews, William T.

    2007-01-01

    Background Exercise-induced bronchospasm (EIB) affects up to 90% of all patients with asthma. Objective This study evaluated the ability of levalbuterol hydrofluoroalkane (HFA) 90 μg (two actuations of 45 μg) administered via metered dose inhaler (MDI) to protect against EIB in mild-to-moderate asthmatics. Methods This was a randomized, double-blind, placebo-controlled, two-way cross-over study. Patients with asthma (n = 15) were ≥18 years, had a ≥6-month history of EIB, ≥70% baseline predicted forced expiratory volume in 1 second (FEV1), and a 20% to 50% decrease in FEV1 after treadmill exercise challenge using single-blind placebo MDI. Levalbuterol or placebo was self-administered 30 minutes before exercise. Treatment sequences were separated by a 3-to 7-day washout period. Spirometry was performed predose, 20 minutes postdose/pre-exercise, and 5, 10, 15, 30, and 60 minutes post-exercise. The primary endpoint was the maximum percent decrease in FEV1 from baseline (postdose/pre-exercise). The percentage of protected (≤20% decrease in post-exercise FEV1) patients was also assessed. Results Levalbuterol had significantly smaller maximum percent post-exercise decrease in FEV1 compared with placebo (LS mean ± SE; −4.8% ± 2.8% versus −22.5% ± 2.8%, respectively). For levalbuterol, 14/15 (93.3%) patients had <20% decrease in post-exercise FEV1 compared with 8/15 (53.3%) for placebo (p = 0.0143). Treatment was well tolerated. Conclusion Levalbuterol HFA MDI (90 μg) administered 30 minutes before exercise was significantly more effective than placebo in protecting against EIB after a single exercise challenge and was well tolerated. Clinical Implications Levalbuterol HFA MDI when administered before exercise was effective in protecting adults with asthma from EIB. PMID:17994402

  14. Congenital laryngomalacia is related to exercise-induced laryngeal obstruction in adolescence

    PubMed Central

    Hilland, Magnus; Røksund, Ola Drange; Sandvik, Lorentz; Haaland, Øystein; Aarstad, Hans Jørgen; Halvorsen, Thomas; Heimdal, John-Helge

    2016-01-01

    Objectives Congenital laryngomalacia (CLM) is the major cause of stridor in infants. Most cases are expected to resolve before 2 years of age, but long-term respiratory prospects are poorly described. We aimed to investigate if CLM was associated with altered laryngeal structure or function in later life. Methods Twenty of 23 (87%) infants hospitalised at Haukeland University Hospital during 1990–2000 for CLM without comorbidities and matched controls were assessed at mean age 13 years. Past and current respiratory morbidity was recorded in a questionnaire, and spirometry performed according to standard quality criteria. Laryngoscopy was performed at rest and continuously throughout a maximal treadmill exercise test (continuous laryngoscopy exercise test (CLE-test)), and scored and classified in a blinded fashion according to preset criteria. Results In the CLM group, laryngeal anatomy supporting CLM in infancy was described at rest in nine (45%) adolescents. Eleven (55%) reported breathing difficulties in relation to exercise, of whom 7 had similarities to CLM at rest and 10 had supraglottic obstruction during CLE-test. Overall, 6/20 had symptoms during exercise and similarities to CLM at rest and obstruction during CLE-test. In the control group, one adolescent reported breathing difficulty during exercise and two had laryngeal obstruction during CLE-test. The two groups differed significantly from each other regarding laryngoscopy scores, obtained at rest and during exercise (p=0.001 or less). Conclusions CLM had left footprints that increased the risk of later exercise-induced symptoms and laryngeal obstruction. The findings underline the heterogeneity of childhood respiratory disease and the importance of considering early life factors. PMID:26906070

  15. Vitamin D2 supplementation amplifies eccentric exercise-induced muscle damage in NASCAR pit crew athletes.

    PubMed

    Nieman, David C; Gillitt, Nicholas D; Shanely, R Andrew; Dew, Dustin; Meaney, Mary Pat; Luo, Beibei

    2014-01-01

    This study determined if 6-weeks vitamin D2 supplementation (vitD2, 3800 IU/day) had an influence on muscle function, eccentric exercise-induced muscle damage (EIMD), and delayed onset of muscle soreness (DOMS) in National Association for Stock Car Auto Racing (NASCAR) NASCAR pit crew athletes. Subjects were randomized to vitD2 (n=13) and placebo (n=15), and ingested supplements (double-blind) for six weeks. Blood samples were collected and muscle function tests conducted pre- and post-study (leg-back and hand grip dynamometer strength tests, body weight bench press to exhaustion, vertical jump, 30-s Wingate test). Post-study, subjects engaged in 90 min eccentric-based exercise, with blood samples and DOMS ratings obtained immediately after and 1- and 2-days post-exercise. Six weeks vitD2 increased serum 25(OH)D2 456% and decreased 25(OH)D3 21% versus placebo (p<0.001, p=0.036, respectively), with no influence on muscle function test scores. The post-study eccentric exercise bout induced EIMD and DOMS, with higher muscle damage biomarkers measured in vitD2 compared to placebo (myoglobin 252%, 122% increase, respectively, p=0.001; creatine phosphokinase 24 h post-exercise, 169%, 32%, p<0.001), with no differences for DOMS. In summary, 6-weeks vitD2 (3800 IU/day) significantly increased 25(OH)D2 and decreased 25(OH)D3, had no effect on muscle function tests, and amplified muscle damage markers in NASCAR pit crew athletes following eccentric exercise. PMID:24362707

  16. Impact of statin use on exercise-induced cardiac troponin elevations.

    PubMed

    Eijsvogels, Thijs M H; Januzzi, James L; Taylor, Beth A; Isaacs, Stephanie K; D'Hemecourt, Pierre; Zaleski, Amanda; Dyer, Sophia; Troyanos, Chris; Weiner, Rory B; Thompson, Paul D; Baggish, Aaron L

    2014-08-15

    Marathon running commonly causes a transient elevation of creatine kinase and cardiac troponin I (cTnI). The use of statins before marathon running exacerbates the release of creatine kinase from skeletal muscle, but the effect of statin use on exercise-induced cTnI release is unknown. We therefore measured cTnI concentrations in statin-using (n = 30) and nonstatin-using (n = 41) runners who participated in the 2011 Boston Marathon. All runners provided venous blood samples the day before, within an hour of finishing, and 24 hours after the marathon. cTnI was assessed at each time point via both a contemporary cTnI and high-sensitivity cTnI (hsTnI) assay. Before the marathon, cTnI was detectable in 99% of runners with the use of the hsTnI assay. All participants completed the marathon (finish time: 4:04:09 ± 0:41:10), and none had symptoms of an acute coronary syndrome. cTnI increased in all runners (p <0.001) immediately after the marathon, and half (hsTnI = 54% vs contemporary cTnI = 47%) exceeded the diagnostic cut-point for an acute myocardial infarction. Statin use did not affect the magnitude of cTnI release (group*time p = 0.47) or the incidence of runners with cTnI elevation greater than the diagnostic cut-point for myocardial infarction (57% vs 51%, p = 0.65). In addition, there was no significant association between statin potency and cTnI release (r = 0.09, p = 0.65). In conclusion, marathon-induced cTnI increases are not altered by statin use. PMID:25015693

  17. Effects of high protein diets on fat-free mass and muscle protein synthesis following weight loss: a randomized controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Context: The benefits of high protein diets for sparing lean body mass and sustaining skeletal muscle protein metabolism during short-term weight loss in normal-weight adults are not well described. Objective: Determine the effects of varying levels of dietary protein intake on body compos...

  18. Cross-generational trans fat intake modifies BDNF mRNA in the hippocampus: Impact on memory loss in a mania animal model.

    PubMed

    Trevizol, Fabíola; Dias, Verônica T; Roversi, Katiane; Barcelos, Raquel C S; Kuhn, Fábio T; Roversi, Karine; Pase, Camila S; Golombieski, Ronaldo; Veit, Juliana C; Piccolo, Jaqueline; Emanuelli, Tatiana; Rocha, João B T; Bürger, Marilise E

    2015-05-01

    Recently, we have described the influence of dietary fatty acids (FA) on mania-like behavior of first generation animals. Here, two sequential generations of female rats were supplemented with soybean oil (SO, rich in n-6 FA, control group), fish oil (FO, rich in n-3 FA) and hydrogenated vegetable fat (HVF, rich in trans FA) from pregnancy and during lactation. In adulthood, half of each group was exposed to an amphetamine (AMPH)-induced mania animal model for behavioral, biochemical and molecular assessments. FO supplementation was associated with lower reactive species (RS) generation and protein carbonyl (PC) levels and increased dopamine transporter (DAT) levels, while HVF increased RS and PC levels, thus decreasing catalase (CAT) activity and DAT levels in hippocampus after AMPH treatment. AMPH impaired short- (1 h) and long- (24 h) term memory in the HVF group. AMPH exposure was able to reduce hippocampal BDNF- mRNA expression, which was increased in FO. While HVF was related to higher trans FA (TFA) incorporation in hippocampus, FO was associated with increased percentage of n-3 polyunsaturated FA (PUFA) together with lower n-6/n-3 PUFA ratio. Interestingly, our data showed a positive correlation between brain-derived neurotrophic factor (BDNF) mRNA and short- and long-term memory (r(2)  = 0.53; P = 0.000/r(2)  = 0.32; P = 0.011, respectively), as well as a negative correlation between PC and DAT levels (r(2)  = 0.23; P = 0.015). Our findings confirm that provision of n-3 or TFA during development over two generations is able to change the neuronal membrane lipid composition, protecting or impairing the hippocampus, respectively, thus affecting neurothrophic factor expression such as BDNF mRNA. In this context, chronic consumption of trans fats over two generations can facilitate the development of mania-like behavior, so leading to memory impairment and emotionality, which are related to neuropsychiatric conditions. PMID:25394793

  19. Transient energy deficit induced by exercise increases 24-h fat oxidation in young trained men.

    PubMed

    Iwayama, Kaito; Kawabuchi, Ryosuke; Park, Insung; Kurihara, Reiko; Kobayashi, Masashi; Hibi, Masanobu; Oishi, Sachiko; Yasunaga, Koichi; Ogata, Hitomi; Nabekura, Yoshiharu; Tokuyama, Kumpei

    2015-01-01

    Whole body fat oxidation increases during exercise. However, 24-h fat oxidation on a day with exercise often remains similar to that of sedentary day, when energy intake is increased to achieve an energy-balanced condition. The present study aimed to examine a possibility that time of the day when exercise is performed makes differences in 24-h fat oxidation. As a potential mechanism of exercise affecting 24-h fat oxidation, its relation to exercise-induced transient energy deficit was examined. Nine young male endurance athletes underwent three trials of indirect calorimetry using a metabolic chamber, in which they performed a session of 100 min of exercise before breakfast (AM), after lunch (PM), or two sessions of 50 min of exercise before breakfast and after lunch (AM/PM) at 65% of maximal oxygen uptake. Experimental meals were designed to achieve individual energy balance. Twenty-four-hour energy expenditure was similar among the trials, but 24-h fat oxidation was 1,142 ± 97, 809 ± 88, and 608 ± 46 kcal/24 h in descending order of its magnitude for AM, AM/PM, and PM, respectively (P < 0.05). Twenty-four-hour carbohydrate oxidation was 2,558 ± 110, 2,374 ± 114, and 2,062 ± 96 kcal/24 h for PM, AM/PM, and AM, respectively. In spite of energy-balanced condition over 24 h, exercise induced a transient energy deficit, the magnitude of which was negatively correlated with 24-h fat oxidation (r = -0.72, P < 0.01). Similarly, transient carbohydrate deficit after exercise was negatively correlated with 24-h fat oxidation (r = -0.40, P < 0.05). The time of the day when exercise is performed affects 24-h fat oxidation, and the transient energy/carbohydrate deficit after exercise is implied as a factor affecting 24-h fat oxidation. PMID:25554797

  20. Fat Characterization

    NASA Astrophysics Data System (ADS)

    Qian, Michael C.; Pike, Oscar A.

    Lipids in food are subjected to many chemical reactions during processing and storage. While some of these reactions are desirable, others are undesirable; so, efforts are made to minimize the reactions and their effects. The laboratory deals with the characterization of fats and oils with respect to composition, structure, and reactivity.

  1. Loss of Ron receptor signaling leads to reduced obesity, diabetic phenotypes and hepatic steatosis in response to high-fat diet in mice

    PubMed Central

    Stuart, William D.; Brown, Nicholas E.; Paluch, Andrew M.

    2015-01-01

    The Ron receptor tyrosine kinase is a heterodimeric, membrane-spanning glycoprotein that participates in divergent processes, including proliferation, motility, and modulation of inflammatory responses. We observed male C57BL/6 mice with a global deletion of the Ron tyrosine kinase signaling domain (TK−/−) to be leaner compared with control (TK+/+) mice under a standard diet. When fed a high-fat diet (HFD), TK−/− mice gained 50% less weight and were more insulin sensitive and glucose tolerant than controls. Livers from HFD TK−/− mice were considerably less steatotic and weighed significantly less than TK+/+ livers. Serum cytokine levels of HFD TK−/− mice were also significantly altered compared with TK+/+ mice. Fewer and smaller adipocytes were present in the TK−/− mice on both control and HFD and were accompanied by diminished adiponectin and peroxisome proliferator-activated receptor-γ expression. In vitro adipogenesis experiments suggested reduced differentiation in TK−/− embryonic fibroblasts (MEFs) that was rescued by Ron reconstitution. Likewise, signal transducer and activator of transcription (STAT)-3 phosphorylation was diminished in TK−/− MEFs but was increased after Ron reconstitution. The adipogenic inhibitors, preadipocyte factor 1 and Sox9, were elevated in TK−/− MEFs and increased in both groups after STAT3 silencing. In total, these studies document a previously unknown function for the Ron receptor in mediating HFD-induced obesity and metabolic dysregulation. PMID:25648832

  2. Bone marrow fat.

    PubMed

    Hardouin, Pierre; Pansini, Vittorio; Cortet, Bernard

    2014-07-01

    Bone marrow fat (BMF) results from an accumulation of fat cells within the bone marrow. Fat is not a simple filling tissue but is now considered as an actor within bone microenvironment. BMF is not comparable to other fat depots, as in subcutaneous or visceral tissues. Recent studies on bone marrow adipocytes have shown that they do not appear only as storage cells, but also as cells secreting adipokines, like leptin and adiponectin. Moreover bone marrow adipocytes share the same precursor with osteoblasts, the mesenchymal stem cell. It is now well established that high BMF is associated with weak bone mass in osteoporosis, especially during aging and anorexia nervosa. But numerous questions remain discussed: what is the precise phenotype of bone marrow adipocytes? What is the real function of BMF, and how does bone marrow adipocyte act on its environment? Is the increase of BMF during osteoporosis responsible for bone loss? Is BMF involved in other diseases? How to measure BMF in humans? A better understanding of BMF could allow to obtain new diagnostic tools for osteoporosis management, and could open major therapeutic perspectives. PMID:24703396

  3. Fecal Fat: The Test

    MedlinePlus

    ... limited. Home Visit Global Sites Search Help? Fecal Fat Share this page: Was this page helpful? Also known as: Qualitative or Quantitative Stool Fat; Stool Lipids; 72 Hour Fecal Fat; Fat Stain ...

  4. Fats and Your Child

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Fats and Your Child KidsHealth > For Parents > Fats and ... an important part of a healthy diet. About Fat Fats are nutrients in food that the body ...

  5. Learning about Fats

    MedlinePlus

    ... Here's Help White House Lunch Recipes Learning About Fats KidsHealth > For Kids > Learning About Fats Print A ... over each gram of fat. continue Types of Fat You might see ads for foods that say ...

  6. Know Your Fats

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Know Your Fats Updated:Mar 28,2016 LDL cholesterol is affected ... eat for a period of time. Know Your Fats Saturated fat The majority of saturated fat comes ...

  7. Saturated fat (image)

    MedlinePlus

    ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ... saturated fats. Vegetable sources of saturated fat include coconut and palm oils. When looking at a food ...

  8. Contribution of respiratory muscle blood flow to exercise-induced diaphragmatic fatigue in trained cyclists

    PubMed Central

    Vogiatzis, Ioannis; Athanasopoulos, Dimitris; Boushel, Robert; Guenette, Jordan A; Koskolou, Maria; Vasilopoulou, Maroula; Wagner, Harrieth; Roussos, Charis; Wagner, Peter D; Zakynthinos, Spyros

    2008-01-01

    We investigated whether the greater degree of exercise-induced diaphragmatic fatigue previously reported in highly trained athletes in hypoxia (compared with normoxia) could have a contribution from limited respiratory muscle blood flow. Seven trained cyclists completed three constant load 5 min exercise tests at inspired O2 fractions () of 0.13, 0.21 and 1.00 in balanced order. Work rates were selected to produce the same tidal volume, breathing frequency and respiratory muscle load at each (63 ± 1, 78 ± 1 and 87 ± 1% of normoxic maximal work rate, respectively). Intercostals and quadriceps muscle blood flow (IMBF and QMBF, respectively) were measured by near-infrared spectroscopy over the left 7th intercostal space and the left vastus lateralis muscle, respectively, using indocyanine green dye. The mean pressure time product of the diaphragm and the work of breathing did not differ across the three exercise tests. After hypoxic exercise, twitch transdiaphragmatic pressure fell by 33.3 ± 4.8%, significantly (P < 0.05) more than after both normoxic (25.6 ± 3.5% reduction) and hyperoxic (26.6 ± 3.3% reduction) exercise, confirming greater fatigue in hypoxia. Despite lower leg power output in hypoxia, neither cardiac output nor QMBF (27.6 ± 1.2 l min−1 and 100.4 ± 8.7 ml (100 ml)−1 min−1, respectively) were significantly different compared with normoxia (28.4 ± 1.9 l min−1 and 94.4 ± 5.2 ml (100 ml)−1 min−1, respectively) and hyperoxia (27.8 ± 1.6 l min−1 and 95.1 ± 7.8 ml (100 ml)−1 min−1, respectively). Neither IMBF was different across hypoxia, normoxia and hyperoxia (53.6 ± 8.5, 49.9 ± 5.9 and 52.9 ± 5.9 ml (100 ml)−1 min−1, respectively). We conclude that when respiratory muscle energy requirement is not different between normoxia and hypoxia, diaphragmatic fatigue is greater in hypoxia as intercostal muscle blood flow is not increased (compared with normoxia) to compensate for the reduction in , thus further compromising O2

  9. Effect of New Zealand blueberry consumption on recovery from eccentric exercise-induced muscle damage

    PubMed Central

    2012-01-01

    Background Exercise-induced muscle damage (EIMD) is accompanied by localized oxidative stress / inflammation which, in the short-term at least, is associated with impaired muscular performance. Dietary antioxidants have been shown to reduce excessive oxidative stress; however, their effectiveness in facilitating recovery following EIMD is not clear. Blueberries demonstrate antioxidant and anti-inflammatory properties. In this study we examine the effect of New Zealand blueberries on EIMD after strenuous eccentric exercise. Methods In a randomized cross-over design, 10 females consumed a blueberry smoothie or placebo of a similar antioxidant capacity 5 and 10 hours prior to and then immediately, 12 and 36 hours after EIMD induced by 300 strenuous eccentric contractions of the quadriceps. Absolute peak and average peak torque across the knee, during concentric, isometric, and eccentric actions were measured. Blood biomarkers of oxidative stress, antioxidant capacity, and inflammation were assessed at 12, 36 and 60 hours post exercise. Data were analyzed using a two-way ANOVA. Results A significant (p < 0.001) decrease in isometric, concentric and eccentric torque was observed 12 hours following exercise in both treatment groups. During the 60 hour recovery period, a significant (p = 0.047) interaction effect was seen for peak isometric tension suggesting a faster rate of recovery in the blueberry intervention group. A similar trend was observed for concentric and eccentric strength. An increase in oxidative stress and inflammatory biomarkers was also observed in both treatment groups following EIMD. Although a faster rate of decrease in oxidative stress was observed in the blueberry group, it was not significant (p < 0.05) until 36 hours post-exercise and interestingly coincided with a gradual increase in plasma antioxidant capacity, whereas biomarkers for inflammation were still elevated after 60 hours recovery. Conclusions This study demonstrates that

  10. The effects of caffeine ingestion on exercise-induced hypoalgesia: A pilot study.

    PubMed

    Black, Christopher D; Gonglach, Alexander R; Renfroe, Jessica B; Hight, Robert E

    2016-07-01

    Exercise acutely reduces pain sensitivity, termed exercise-induced hypoalgesia (EIH). The mechanisms underlying EIH remain unclear. Caffeine, a non-specific adenosine receptor antagonist has been shown to attenuate EIH in animals-suggesting the involvement of the adenosinergic system. This pilot study investigated the effects of caffeine on pain sensitivity following cycling exercise in college-aged men. Pressure pain threshold (PPT) and thermal pain threshold (TPT) were assessed in thirteen low caffeine consuming men prior to ingestion of a counter-balanced 5mg·kg(-1) dose of caffeine or a placebo (Pre), 60min following ingestion (Post-In), and then following a 15min bout of cycling exercise (Post-Ex) at an intensity eliciting a quadriceps muscle pain rating of 3 out of 10. Nine of the men completed follow-up testing which was identical except that the exercise consisted of 10min of cycling eliciting a pain rating of 5 out of 10. Caffeine had no effect compared to placebo on PPT (p≥0.15) or TPT (p≥0.41) 60min following ingestion and following exercise. PPT increased from 599±176kPa to 648±202kPa (p=0.009) and from 578±217kPa to 666±278kPa (p=0.01) following 15 and 10min of cycling, respectively. TPT increased from 46.2±2.9°C to 46.8±2.6°C (p=0.008) following the 15min exercise bout, but did not change (46.4±3.6°C vs. 46.8±3.3°C; p=0.24) following the shorter, higher intensity exercise bout. The results from this study indicate cycling exercise reduces pain sensitivity, especially to pressure stimuli. Caffeine ingestion did not alter the EIH response-suggesting adenosine may not play a prominent role in the EIH response in humans. PMID:27063247

  11. Exercise-Induced Splanchnic Hypoperfusion Results in Gut Dysfunction in Healthy Men

    PubMed Central

    van Wijck, Kim; Lenaerts, Kaatje; van Loon, Luc J. C.; Peters, Wilbert H. M.; Buurman, Wim A.; Dejong, Cornelis H. C.

    2011-01-01

    Background Splanchnic hypoperfusion is common in various pathophysiological conditions and often considered to lead to gut dysfunction. While it is known that physiological situations such as physical exercise also result in splanchnic hypoperfusion, the consequences of flow redistribution at the expense of abdominal organs remained to be determined. This study focuses on the effects of splanchnic hypoperfusion on the gut, and the relationship between hypoperfusion, intestinal injury and permeability during physical exercise in healthy men. Methods and Findings Healthy men cycled for 60 minutes at 70% of maximum workload capacity. Splanchnic hypoperfusion was assessed using gastric tonometry. Blood, sampled every 10 minutes, was analyzed for enterocyte damage parameters (intestinal fatty acid binding protein (I-FABP) and ileal bile acid binding protein (I-BABP)). Changes in intestinal permeability were assessed using sugar probes. Furthermore, liver and renal parameters were assessed. Splanchnic perfusion rapidly decreased during exercise, reflected by increased gapg-apCO2 from −0.85±0.15 to 0.85±0.42 kPa (p<0.001). Hypoperfusion increased plasma I-FABP (615±118 vs. 309±46 pg/ml, p<0.001) and I-BABP (14.30±2.20 vs. 5.06±1.27 ng/ml, p<0.001), and hypoperfusion correlated significantly with this small intestinal damage (rS = 0.59; p<0.001). Last of all, plasma analysis revealed an increase in small intestinal permeability after exercise (p<0.001), which correlated with intestinal injury (rS = 0.50; p<0.001). Liver parameters, but not renal parameters were elevated. Conclusions Exercise-induced splanchnic hypoperfusion results in quantifiable small intestinal injury. Importantly, the extent of intestinal injury correlates with transiently increased small intestinal permeability, indicating gut barrier dysfunction in healthy individuals. These physiological observations increase our knowledge of splanchnic hypoperfusion sequelae, and may help to

  12. Maternal High-Fat Diet-Induced Loss of Fetal Oocytes Is Associated with Compromised Follicle Growth in Adult Rat Offspring.

    PubMed

    Tsoulis, Michael W; Chang, Pauline E; Moore, Caroline J; Chan, Kaitlyn A; Gohir, Wajiha; Petrik, James J; Vickers, Mark H; Connor, Kristin L; Sloboda, Deborah M

    2016-04-01

    Maternal obesity predisposes offspring to metabolic and reproductive dysfunction. We have shown previously that female rat offspring born to mothers fed a high-fat (HF) diet throughout pregnancy and lactation enter puberty early and display aberrant reproductive cyclicity. The mechanisms driving this reproductive phenotype are currently unknown thus we investigated whether changes in ovarian function were involved. Wistar rats were mated and randomized to: dams fed a control diet (CON) or dams fed a HF diet from conception until the end of lactation (HF). Ovaries were collected from fetuses at Embryonic Day (E) 20, and neonatal ovaries at Day 4 (P4), prepubertal ovaries at P27 and adult ovaries at P120. In a subset of offspring, the effects of a HF diet fed postweaning were evaluated. The present study shows that fetuses of mothers fed a HF diet had significantly fewer oocytes at E20, and in neonates, have reduced AMH signaling that may facilitate an increased number of assembled primordial follicles. Both prepubertally and in adulthood, ovaries show increased follicular atresia. As adults, offspring have reduced FSH responsiveness, low expression levels of estrogen receptor alpha (Eralpha), the oocyte-secreted factor, Gdf9, oocyte-specific RNA binding protein, Dazl, and high expression levels of the granulosa-cell derived factor, AMH, in antral follicles. Together, these data suggest that ovarian compromise in offspring born to HF-fed mothers may arise from changes already observable in the fetus and neonate and in the long term, associated with increased follicular atresia through adulthood. PMID:26962114

  13. Single molecular image of cytosolic free Ca2+ of skeletal muscle cells in rats pre- and post-exercise-induced fatigue

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhang, Heming; Zhao, Yanping; Liu, Zhiming

    2009-08-01

    A growing body of literature indicated the cytosolic free Ca2+ concentration of skeletal muscle cells changes significantly during exercise-induced fatigue. But it is confusing whether cytosolic free Ca2+ concentration increase or decrease. Furthermore, current researches mainly adopt muscle tissue homogenate as experiment material, but the studies based on cellular and subcellular level is seldom. This study is aimed to establish rat skeletal muscle cell model of exercise-induced fatigue, and confirm the change of cytosolic free Ca2+ concentration of skeletal muscle cells in rats preand post- exercise-induced fatigue. In this research, six male Wistar rats were randomly divided into two groups: control group (n=3) and exercise-induced fatigue group (n=3). The former group were allowed to freely move and the latter were forced to loaded swimming to exhaustive. Three days later, all the rats were sacrificed, the muscle tissue from the same site of skeletal muscle were taken out and digested to cells. After primary culture of the two kinds of skeletal muscle cells from tissue, a fluorescent dye-Fluo-3 AM was used to label the cytosolic free Ca2+. The fluorescent of Ca2+ was recorded by confocal laser scanning microscopy. The results indicated that, the Ca2+ fluorescence intensity of cells from the rat of exercise-induced fatigue group was significantly higher than those in control group. In conclusion, cytosolic free Ca2+ concentration of skeletal muscle cells has a close relation with exercise-induced fatigue, and the increase of cytosolic free Ca2+ concentration may be one of the important factors of exercise-induced fatigue.

  14. Exploring effects of a natural combination medicine on exercise-induced inflammatory immune response: A double-blind RCT.

    PubMed

    Pilat, C; Frech, T; Wagner, A; Krüger, K; Hillebrecht, A; Pons-Kühnemann, J; Scheibelhut, C; Bödeker, R-H; Mooren, F-C

    2015-08-01

    Traumeel (Tr14) is a natural, combination drug, which has been shown to modulate inflammation at the cytokine level. This study aimed to investigate potential effects of Tr14 on the exercise-induced immune response. In a double-blind, randomized, controlled trial, healthy, untrained male subjects received either Tr14 (n = 40) or placebo (n = 40) for 24 h after a strenuous experimental exercise trial on a bicycle (60 min at 80%VO2 max). A range of antigen-stimulated cytokines (in vitro), white blood cell count, lymphocyte activation and apoptosis markers, and indicators of muscle damage were assessed up to 24 h following exercise. The area under the curve with respect to the increase (AUCI ) was compared between both groups. The Tr14 group showed a reduced exercise-induced leukocytosis and neutrocytosis (P < 0.01 for both), a higher AUCI score of antigen-stimulated IL-1β and IL-1α (absolute and per monocyte, all P < 0.05), a lower AUCI score of antigen-stimulated GM-CSF (P < 0.05) and by trend a lower AUCI score of antigen-stimulated IL-2 and IL-4 as well as a higher AUCI score of antigen-stimulated IL-6 (all P < 0.1). Tr14 might promote differentiated effects on the exercise-induced immune response by (a) decreasing the inflammatory response of the innate immune system; and (b) augmenting the pro-inflammatory cytokine response. PMID:24924232

  15. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.

    PubMed

    Bachasson, D; Temesi, J; Gruet, M; Yokoyama, K; Rupp, T; Millet, G Y; Verges, Samuel

    2016-02-01

    Transcranial magnetic stimulation (TMS) of the motor cortex during voluntary contractions elicits electrophysiological and mechanical responses in the target muscle. The effect of different TMS intensities on exercise-induced changes in TMS-elicited variables is unknown, impairing data interpretation. This study aimed to investigate TMS intensity effects on maximal voluntary activation (VATMS), motor-evoked potentials (MEPs), and silent periods (SPs) in the quadriceps muscles before, during, and after exhaustive isometric exercise. Eleven subjects performed sets of ten 5-s submaximal isometric quadriceps contractions at 40% of maximal voluntary contraction (MVC) strength until task failure. Three different TMS intensities (I100, I75, I50) eliciting MEPs of 53 ± 6%, 38 ± 5% and 25 ± 3% of maximal compound action potential (Mmax) at 20% MVC were used. MEPs and SPs were assessed at both absolute (40% baseline MVC) and relative (50%, 75%, and 100% MVC) force levels. VATMS was assessed with I100 and I75. When measured at absolute force level, MEP/Mmax increased during exercise at I50, decreased at I100 and remained unchanged at I75. No TMS intensity effect was observed at relative force levels. At both absolute and relative force levels, SPs increased at I100 and remained stable at I75 and I50. VATMS assessed at I75 tended to be lower than at I100. TMS intensity affects exercise-induced changes in MEP/Mmax (only when measured at absolute force level), SPs, and VATMS. These results indicate a single TMS intensity assessing maximal voluntary activation and exercise-induced changes in corticomotoneuronal excitability/inhibition may be inappropriate. PMID:26642805

  16. A novel mutation (Arg169Gln) of the cardiac ryanodine receptor gene causing exercise-induced bidirectional ventricular tachycardia.

    PubMed

    Hsueh, Chia-Hsiang; Weng, Yi-Chun; Chen, Chao-Yu; Lin, Tin-Kwang; Lin, Yen-Hung; Lai, Ling-Ping; Lin, Jiunn-Lee

    2006-04-01

    An 18-year-old woman presented with exercise induced sudden collapse. Series of cardiac work up revealed no structural cardiac abnormalities. Bidirectional ventricular tachycardia occurred during a treadmill exercise test. Under the impression of catecholaminergic polymorphic ventricular tachycardia, we screened the cardiac ryanodine receptor gene for mutation. We identified a novel heterozygous mutation at the 169th amino acid (Arg169Gln). This amino acid is highly conserved among many species and this mutation was not present in 50 normal control subjects. This patient was treated with a beta-block with good response. PMID:16517285

  17. [Wheat dependent exercise induced anaphylaxis possibly sensitized by the hydrolyzed wheat proteins in a facial cleansing soap].

    PubMed

    Kobayashi, Miwa; Okura, Risa; Yoshioka, Haruna; Hiromasa, Kana; Yoshioka, Manabu; Nakamura, Motonobu

    2012-03-01

    There are increasing cases of wheat dependent exercise-induced anaphylaxis (WDEIA) with transcutaneous or transmucosal sensitization. Hydrolyzed wheat included in a certain brand of soap was identified as a cause of sensitization. The useful clues to detect this disorder consist of the patient's past usage of a soap containing hydrolyzed wheat, the appearance of cutaneous or mucosal symptoms after the intake of wheat or washing with this soap, and a high level of specific IgE for wheat gluten. Because hydrolyzed wheat is used as an additive in a wide variety of cosmetics, we should pay careful attention to the ingredients of cosmetics when observing WDEIA. PMID:22428462

  18. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss

    PubMed Central

    Giles, Erin D.; Steig, Amy J.; Jackman, Matthew R.; Higgins, Janine A.; Johnson, Ginger C.; Lindstrom, Rachel C.; MacLean, Paul S.

    2016-01-01

    Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  19. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss.

    PubMed

    Giles, Erin D; Steig, Amy J; Jackman, Matthew R; Higgins, Janine A; Johnson, Ginger C; Lindstrom, Rachel C; MacLean, Paul S

    2016-01-01

    Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using (14)C palmitate/oleate and (3)H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising

  20. Fat Analysis

    NASA Astrophysics Data System (ADS)

    Min, David B.; Ellefson, Wayne C.

    Lipids, proteins, and carbohydrates constitute the principal structural components of foods. Lipids are a group of substances that, in general, are soluble in ether, chloroform, or other organic solvents but are sparingly soluble in water. However, there exists no clear scientific definition of a lipid, primarily due to the water solubility of certain molecules that fall within one of the variable categories of food lipids (1). Some lipids, such as triacylglycerols, are very hydrophobic. Other lipids, such as di- and monoacylglycerols, have both hydrophobic and hydrophilic moieties in their molecules and are soluble in relatively polar solvents (2). Short-chain fatty acids such as C1-C4 are completely miscible in water and insoluble in nonpolar solvents (1). The most widely accepted definition is based on solubility as previously stated. While most macromolecules are characterized by common structural features, the designation of "lipid" being defined by solubility characteristics is unique to lipids (2). Lipids comprise a broad group of substances that have some common properties and compositional similarities (3). Triacylglycerols are fats and oils that represent the most prevalent category of the group of compounds known as lipids. The terms lipids, fats, and oils are often used interchangeably. The term "lipid" commonly refers to the broad, total collection of food molecules that meet the definition previously stated. Fats generally refer to those lipids that are solid at room temperature and oils generally refer to those lipids that are liquid at room temperature. While there may not be an exact scientific definition, the US Food and Drug Administration (FDA) has established a regulatory definition for nutrition labeling purposes. The FDA has defined total fat as the sum of fatty acids from C4 to C24, calculated as triglycerides. This definition provides a clear path for resolution of any nutrition labeling disputes.

  1. Weight Loss Surgery

    MedlinePlus

    ... loss surgery (especially gastric bypass). Doctors call this "dumping syndrome." It can cause nausea, weakness, sweating, cramping, ... high-sugar or high-fat foods can make dumping worse. Patients need to be careful about what ...

  2. Exercise-induced cardiac performance in autoimmune (type 1) diabetes is associated with a decrease in myocardial diacylglycerol.

    PubMed

    Loganathan, Rajprasad; Novikova, Lesya; Boulatnikov, Igor G; Smirnova, Irina V

    2012-09-01

    One of the fundamental biochemical defects underlying the complications of diabetic cardiovascular system is elevation of diacylglycerol (DAG) and its effects on protein kinase C (PKC) signaling. It has been noted that exercise training attenuates poor cardiac performance in Type 1 diabetes. However, the role of PKC signaling in exercise-induced alleviation of cardiac abnormalities in diabetes is not clear. We investigated the possibility that exercise training modulates PKC-βII signaling to elicit its beneficial effects on the diabetic heart. bio-breeding diabetic resistant rats, a model reminiscent of Type 1 diabetes in humans, were randomly assigned to four groups: 1) nonexercised nondiabetic (NN); 2) nonexercised diabetic (ND); 3) exercised nondiabetic; and 4) exercised diabetic. Treadmill training was initiated upon the onset of diabetes. At the end of 8 wk, left ventricular (LV) hemodynamic assessment revealed compromised function in ND compared with the NN group. LV myocardial histology revealed increased collagen deposition in ND compared with the NN group, while electron microscopy showed a reduction in the viable mitochondrial fraction. Although the PKC-βII levels and activity were unchanged in the diabetic heart, the DAG levels were increased. With exercise training, the deterioration of LV structure and function in diabetes was attenuated. Notably, improved cardiac performance in training was associated with a decrease in myocardial DAG levels in diabetes. Exercise-induced benefits on cardiac performance in diabetes may be mediated by prevention of an increase in myocardial DAG levels. PMID:22797313

  3. Prophylactic acetylsalicylic acid attenuates the inflammatory response but fails to protect exercise-induced liver damage in exercised rats.

    PubMed

    Huang, Kuo-Chin; Chiu, Yi-Han; Liao, Kuang-Wen; Ke, Chun-Yen; Lee, Chung-Jen; Chao, Yann-Fen C; Lee, Ru-Ping

    2016-09-01

    This study evaluated the effects of acetylsalicylic acid (ASA) on exercise-induced inflammatory response, muscle damage, and liver injury in rats. Wistar-Kyoto (WKY) rats were divided into six groups: control (C), exercise (E), C+20mg ASA, E+20mg ASA, C+100mg/kg ASA, and E+100mg ASA groups. ASA or a vehicle was orally administered through gavage 1h before a treadmill test. Upon trial completion, blood was drawn at 1, 12, and 24h for biochemical analysis, and livers were excised at 24h for a histological assessment. Our results revealed that 100mg/kg ASA significantly reduced interleukin (IL)-6 and tumor necrosis factor (TNF)-α levels in the E groups; however, the IL-10 level was considerably increased. Moreover, aspartate aminotransferase (AST), alanine aminotransferase (ALT) levels and histological hepatic damage increased significantly in the E+100mg ASA group compared with the corresponding changes in the E group. These results suggest that the prophylactic administration of particularly high-dose ASA alleviates exercise-induced inflammatory response but exacerbates liver injury. PMID:27262381

  4. Protective effects of polysaccharide from Euphorbia kansui (Euphorbiaceae) on the swimming exercise-induced oxidative stress in mice.

    PubMed

    Yu, Farong; Lu, Shunqing; Yu, Fahong; Feng, Shutao; McGuire, Peter M; Li, Rende; Wang, Rui

    2006-10-01

    The present study examined the effects of derivatives of galactosides and glucosides in a polysaccharide extract from Euphorbia kansui (Euphorbiaceae) on exercise-induced oxidative stress in mice. Exhaustive swimming exercise significantly increases the degree of lipid peroxidation in terms of malondialdehyde content and reduces the antioxidant activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Our findings revealed that chronic oral treatment with the extract elevates enzymatic activities of SOD and GPx accompanied by a corresponding decrease in malondialdehyde. The antioxidative activities of these compounds against exercise-induced oxidative stress are correlated with various activities such as reducing the production of superoxide and hydroxyl radicals, inhibiting lipid peroxidation, enhancing antioxidative defenses, and increasing the production of SOD and GPx activity and expression in different tissues. These compounds may be involved in glycogen metabolism to meet the requirement of working skeletal muscles and act as antioxidants by terminating the chain reaction of lipid peroxidation to maintain the morphological stability of mitochondria in spinal motor neurons. These observations suggest that E. kansui has antioxidative and antifatigue properties and can be given as prophylactic and (or) therapeutic supplements for increasing antioxidant enzyme activities and preventing lipid peroxidation during strenuous exercise. PMID:17218972

  5. Dietary Supplementation with the Microalga Galdieria sulphuraria (Rhodophyta) Reduces Prolonged Exercise-Induced Oxidative Stress in Rat Tissues

    PubMed Central

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  6. Dietary supplementation with the microalga Galdieria sulphuraria (Rhodophyta) reduces prolonged exercise-induced oxidative stress in rat tissues.

    PubMed

    Carfagna, Simona; Napolitano, Gaetana; Barone, Daniela; Pinto, Gabriele; Pollio, Antonino; Venditti, Paola

    2015-01-01

    We studied the effects of ten-day 1% Galdieria sulphuraria dietary supplementation on oxidative damage and metabolic changes elicited by acute exercise (6-hour swimming) determining oxygen consumption, lipid hydroperoxides, protein bound carbonyls in rat tissue (liver, heart, and muscle) homogenates and mitochondria, tissue glutathione peroxidase and glutathione reductase activities, glutathione content, and rates of H2O2 mitochondrial release. Exercise increased oxidative damage in tissues and mitochondria and decreased tissue content of reduced glutathione. Moreover, it increased State 4 and decreased State 3 respiration in tissues and mitochondria. G. sulphuraria supplementation reduced the above exercise-induced variations. Conversely, alga supplementation was not able to modify the exercise-induced increase in mitochondrial release rate of hydrogen peroxide and in liver and heart antioxidant enzyme activities. The alga capacity to reduce lipid oxidative damage without reducing mitochondrial H2O2 release can be due to its high content of C-phycocyanin and glutathione, which are able to scavenge peroxyl radicals and contribute to phospholipid hydroperoxide metabolism, respectively. In conclusion, G. sulphuraria ability to reduce exercise-linked oxidative damage and mitochondrial dysfunction makes it potentially useful even in other conditions leading to oxidative stress, including hyperthyroidism, chronic inflammation, and ischemia/reperfusion. PMID:25874021

  7. BDNF-stimulated intracellular signalling mechanisms underlie exercise-induced improvement in spatial memory in the male Wistar rat.

    PubMed

    Bechara, Ranya G; Lyne, Ronan; Kelly, Áine M

    2014-12-15

    Exercise-induced improvements in learning are associated with neurotrophic and neurogenic changes in the dentate gyrus, but the intracellular signalling mechanisms that may mediate these improvements remain unknown. In the current study we investigate the effects of one week of forced exercise on spatial memory and analyse in parallel BDNF-stimulated signalling pathways in cells of the dentate gyrus. Additionally, we test whether a single intracerebroventricular (i.c.v.) injection of BDNF can mimic the observed cognitive and signalling changes. Male Wistar rats were assigned to exercised and sedentary groups and tested in a spatial task post-exercise. Tissue from the dentate gyrus was assessed for expression and release of BDNF, and for changes in expression and activation of TrkB, ERK and synapsin-1. In a separate set of experiments, male Wistar rats received a single i.c.v. injection of BDNF and were then tested in the same spatial learning task. Exercised and BDNF-treated (but not control) rats could successfully complete an object displacement task that tests spatial learning. Exercised rats and BDNF-treated rats displayed increases BDNF expression and ERK1 activation, while exercised rats showed increases in cell division, stimulated BDNF release, TrkB activation, and synapsin-1 expression in the dentate gyrus. We conclude that exercise-induced increases in BDNF in the dentate gyrus are sufficient to cause improvements in spatial memory by activating signalling cascades that enhance synaptic transmission in the hippocampus. PMID:24269499

  8. Efficacy and tolerability of slow-release gallopamil in patients with stable exercise-inducible angina pectoris.

    PubMed

    Kottkamp, H; Gülker, H; Emmerich, K; Koch, H P; Minge, C

    1992-01-01

    The anti-ischemic properties and tolerability of a slow-release formulation (SR) of gallopamil were investigated in 118 patients with exercise-inducible ST-segment depression and stable angina pectoris in this double-blind, randomized, placebo-controlled, multicenter study. After a placebo run-in period (A) of 2-7 days and a 7-day open therapy period (B) with gallopamil SR, the patients were randomized to a double-blind 7-day period (C) to receive placebo or gallopamil SR 100 mg twice a day. Each patient was submitted to gradual upright bicycle ergometry and electrocardiography (ECG) at rest on the last 2 days of each period at 6 and 12 h postadministration (p.a.) In period C, exercise time and exercise tolerance remained significantly prolonged at 6 and 12 h after gallopamil SR administration in comparison with the placebo values. Additionally the sum of ST-segment depression and maximal ST-segment depression were significantly reduced by gallopamil SR at 6 h p.a. as were the frequency of angina attacks and nitroglycerin consumption. Four patients were withdrawn from the study because of gallopamil-related adverse events, which, however, were not serious. Constipation was noted in 2.5% of the patients. These data suggest that gallopamil SR is effective in reducing exercise-inducible ST-segment depression and increasing exercise tolerance with no serious adverse effects in patients with stable angina pectoris. PMID:1284163

  9. Clinical significance of exercise-induced left ventricular wall motion abnormality occurring at a low heart rate

    SciTech Connect

    Kimchi, A.; Rozanski, A.; Fletcher, C.; Maddahi, J.; Swan, H.J.; Berman, D.S.

    1987-10-01

    We studied the relationship between the heart rate at the time of onset of exercise-induced wall motion abnormality and the severity of coronary artery disease in 89 patients who underwent exercise equilibrium radionuclide ventriculography as part of their evaluation for coronary artery disease. Segmental wall motion was scored with a five-point system (3 = normal; -1 = dyskinesis); a decrease of one score defined the onset of wall motion abnormality. The onset of wall motion abnormality at less than or equal to 70% of maximal predicted heart rate had 100% predictive accuracy for coronary artery disease and higher sensitivity than the onset of ischemic ST segment depression at similar heart rate during exercise: 36% (25 of 69 patients with coronary disease) vs 19% (13 of 69 patients), p = 0.01. Wall motion abnormality occurring at less than or equal to 70% of maximal predicted heart rate was present in 49% of patients (23 of 47) with critical stenosis (greater than or equal to 90% luminal diameter narrowing), and in only 5% of patients (2 of 42) without such severe stenosis, p less than 0.001. The sensitivity of exercise-induced wall motion abnormality occurring at a low heart rate for the presence of severe coronary artery disease was similar to that of a deterioration in wall motion by more than two scores during exercise (49% vs 53%) or an absolute decrease of greater than or equal to 5% in exercise left ventricular ejection fraction (49% vs 45%).

  10. Exercise-induced downbeat nystagmus in a Korean family with a nonsense mutation in CACNA1A.

    PubMed

    Choi, Jae-Hwan; Seo, Jae-Deuk; Choi, Yu Ri; Kim, Min-Ji; Shin, Jin-Hong; Kim, Ji Soo; Choi, Kwang-Dong

    2015-08-01

    Episodic ataxia type 2 (EA2) is characterized by recurrent attacks of vertigo and ataxia lasting hours triggered by emotional stress or exercise. Although interictal horizontal gaze-evoked nystagmus and rebound nystagmus are commonly observed in patients with EA2, the nystagmus has been rarely reported during the vertigo attack. To better describe exercise-induced nystagmus in EA2, four affected members from three generations of a Korean family with EA2 received full neurological and neuro-otological evaluations. Vertigo was provoked in the proband with running for 10 min to record eye movements during the vertigo attack. We performed a polymerase chain reaction-based direct sequence analysis of all coding regions of CACNA1A in all participants. The four affected members had a history of exertional vertigo, imbalance, childhood epilepsy, headache, and paresthesia. The provocation induced severe vertigo and imbalance lasting several hours, and oculography documented pure downbeat nystagmus during the attack. Genetic analyses identified a nonsense mutation in exon 23 which has been registered in dbSNP as a pathogenic allele (c.3832C>T, p.R1278X) in all the affected members. Ictal downbeat nystagmus in the studied family indicates cerebellar dysfunction during the vertigo attack in EA2. In patients with episodic vertigo and ataxia, the observation of exercise-induced nystagmus would provide a clue for EA2. PMID:25784583

  11. Influence of vitamin D mushroom powder supplementation on exercise-induced muscle damage in vitamin D insufficient high school athletes.

    PubMed

    Shanely, R Andrew; Nieman, David C; Knab, Amy M; Gillitt, Nicholas D; Meaney, Mary Pat; Jin, Fuxia; Sha, Wei; Cialdella-Kam, Lynn

    2014-01-01

    Incidence of vitamin D deficiency is increasing worldwide. The purpose of this study was to determine if supplementation with vitamin D2 from Portobello mushroom powder would enhance skeletal muscle function and attenuate exercise-induced muscle damage in low vitamin D status high school athletes. Participants were randomised to Portobello mushroom powder (600 IU/d vitamin D2) or placebo for 6 weeks. Participants then completed a 1.5-h exercise session designed to induce skeletal muscle damage. Blood samples and measures of skeletal muscle function were taken pre-supplementation, post-supplementation/pre-exercise and post-exercise. Six weeks supplementation with vitamin D2 increased serum 25(OH)D2 by 9.9-fold and decreased serum 25(OH)D3 by 28%. Changes in skeletal muscle function and circulating markers of skeletal muscle damage did not differ between groups. In conclusion, 600 IU/d vitamin D2 increased 25(OH)D2 with a concomitant decrease in 25(OD)D3, with no effect on muscular function or exercise-induced muscle damage in high school athletes. PMID:24117183

  12. Loss of ADAMTS4 reduces high fat diet-induced atherosclerosis and enhances plaque stability in ApoE−/− mice

    PubMed Central

    Kumar, Saran; Chen, Mo; Li, Yan; Wong, Fiona H. S.; Thiam, Chung Wee; Hossain, Md Zakir; Poh, Kian Keong; Hirohata, Satoshi; Ogawa, Hiroko; Angeli, Véronique; Ge, Ruowen

    2016-01-01

    Atherosclerosis is a chronic inflammatory disease characterized by formation of lipid-rich plaques on the inner walls of arteries. ADAMTS4 (a disintegrin-like and metalloproteinase with thrombospondin motifs-4) is a secreted proteinase that regulates versican turnover in the arterial wall and atherosclerotic plaques. Recent reports indicated elevated ADAMTS4 level in human atherosclerotic plaques and in the plasma of acute coronary syndrome patients. Nevertheless, whether increased ADAMTS4 is a consequence of atherosclerosis or ADAMTS4 has a causal role in atherogenesis remains unknown. In this work, we investigated the role of ADAMTS4 in diet induced atherosclerosis using apolipoprotein E deficient (ApoE−/−) and Adamts4 knockout mice. We show that ADAMTS4 expression increases in plaques as atherosclerosis progresses in ApoE−/− mice. ApoE−/−Adamts4−/− double knockout mice presented a significant reduction in plaque burden at 18 weeks of age. Loss of ADAMTS4 lead to a more stable plaque phenotype with a significantly reduced plaque vulnerability index characterized by reduced lipid content and macrophages accompanied with a significant increase in smooth muscle cells, collagen deposition and fibrotic cap thickness. The reduced atherosclerosis is accompanied by an altered plasma inflammatory cytokine profile. These results demonstrate for the first time that ADAMTS4 contributes to diet induced atherosclerosis in ApoE−/− mice. PMID:27491335

  13. Dietary fat restriction increases fat taste sensitivity in people with obesity

    PubMed Central

    Newman, Lisa P.; Bolhuis, Dieuwerke P.; Torres, Susan J.

    2016-01-01

    Objective Individuals with obesity may be less sensitive to the taste of fat, and it is hypothesized that this is due to excess dietary fat intake. This study assessed the effect of a 6‐week low‐fat (LF) or portion control (PC) diet matched for weight loss on fat taste thresholds, fat perception, and preference in people with overweight/obesity. Methods Participants (n = 53) completed a randomized dietary intervention and consumed either a LF diet (25% fat) or PC diet (33% fat) for 6 weeks. Fat taste thresholds (lowest detectable fat concentration), fat perception (discrimination ability), preference, and anthropometry were assessed at baseline and week 6. Results Consumption of a LF diet (n = 26) and PC diet (n = 27) reduced participants' weight (P < 0.001), with no significant differences between groups (LF, −2.9%, PC, −2.7%). Both diets resulted in a decrease in fat taste thresholds (P = 0.014), and the effect tended to be stronger in the LF diet vs. the PC diet (P = 0.060). The ability to perceive different fat concentrations in foods was increased after the LF diet only (P = 0.017); however, food preference did not change on either diet. Conclusions A PC and LF diet both increase fat taste sensitivity in people with overweight/obesity, with the strongest effect after the LF diet. PMID:26813525

  14. Application of cytoplasmic Ca2+ fluorescence imaging techniques to study the molecular mechanisms of exercise-induced fatigue eliminated by Chinese medicine ginseng extract

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhao, Yanping; Zhang, Heming; Liu, Songhao

    2009-11-01

    The exercise-induced fatigue eliminated by Chinese medicine offers advantages including good efficiency and smaller side-effects, however, the exact mechanisms have not been classified. A lot of literatures indicated the cytosolic free Ca2+ concentrations of skeletal muscle cells increased significantly during exercise-induced fatigue. This study is aimed to establish a rat skeletal muscle cell model of exercise-induced fatigue. We applied cytoplasmic Ca2+ fluorescence imaging techniques to study the molecular mechanisms of exercise-induced fatigue eliminated by Chinese medicine ginseng extract. In our research, the muscle tissues from the newborn 3 days rats were taken out and digested into cells. The cells were randomly divided into the ginseng extract group and the control group. The cells from the two groups were cultured in the medium respectively added 2mg/ml ginseng extract and 2mg/ml D-hanks solution. After differentiating into myotubes, the two groups of cells treated with a fluorescent probe Fluo-3 AM were put on the confocal microscope and the fluorescence intensity of cells pre- and post- stimulation with dexamethasone were detected. It was found that cytoplasmic Ca2+ concentrations of the two groups of cells both increased post-stimulation, however, the increasing amplitude of fluorescence intensity of the ginseng extract group was significantly lower than that of the control group. In conclusion, stimulating the cells with dexamethasone is a kind of workable cell models of exercise-induced fatigue, and the molecular mechanisms of exercise-induced fatigue eliminated by ginseng extract may be connected to regulatating cytosolic free Ca2+ concentrations.

  15. Recurrent exercise-induced acute renal failure in a young Pakistani man with severe renal hypouricemia and SLC2A9 compound heterozygosity

    PubMed Central

    2014-01-01

    Background Familial renal hypouricemia (RHUC) is a hereditary disease characterized by hypouricemia, high renal fractional excretion of uric acid (FE-UA) and can be complicated by acute kidney failure and nephrolithiasis. Loss-of-function mutations in the SLC22A12 gene cause renal hypouricemia type 1 (RHUC1), whereas renal hypouricemia type 2 (RHUC2) is caused by mutations in the SLC2A9 gene. Case presentation We describe a 24-year-old Pakistani man who was admitted twice to our hospital for severe exercise-induced acute renal failure (EIARF), abdominal pain and fever; he had very low serum UA levels (0.2 mg/dl the first time and 0.09 mg/dl the second time) and high FE-UA (200% and 732% respectively), suggestive of RHUC. Mutational analyses of both urate transporters revealed a new compound heterozygosity for two distinct missense mutations in the SLC2A9 gene: p.Arg380Trp, already identified in heterozygosity, and p.Gly216Arg, previously found in homozygosity or compound heterozygosity in some RHUC2 patients. Compared with previously reported patients harbouring these mutations, our proband showed the highest FE-UA levels, suggesting that the combination of p.Arg380Trp and p.Gly216Arg mutations most severely affects the renal handling of UA. Conclusions The clinical and molecular findings from this patient and a review of the literature provide new insights into the genotype-phenotype correlation of this disorder, supporting the evidence of an autosomal recessive inheritance pattern for RHUC2. Further investigations into the functional properties of GLUT9, URAT1 and other urate transporters are required to assess their potential research and clinical implications. PMID:24397858

  16. Magnetoencephalography to investigate central perception of exercise-induced breathlessness in people with chronic lung disease: a feasibility pilot

    PubMed Central

    Johnson, Miriam J; Simpson, Michael IG; Currow, David C; Millman, Rebecca E; Hart, Simon P; Green, Gary

    2015-01-01

    Objectives Neuroimaging in chronic breathlessness is challenging. The study objective was to test the feasibility of magnetoencephalography (MEG) for functional neuroimaging of people with chronic breathlessness. Design Feasibility pilot study. Setting Respiratory clinic out-patients. Participants 8 patients (mean age=62; (range 47–83); 4 men) with chronic non-malignant lung disease; modified MRC breathlessness score ≥3 (median mMRC=4), intensity of exercise-induced breathlessness >3/10; no contraindication to MRI scanning. Methods and measures 4 MEG scans were conducted for each participant: (1) at rest (5 mins), (2) postseated leg exercise-induced breathlessness during recovery (10 mins). Recovery scans (2) were conducted with/without facial airflow in random order; both scans were repeated 1 h later. Participants rated breathlessness intensity (0–10 Numerical Rating Scale (NRS)) at baseline, maximal exertion and every minute during recovery, and rated acceptability of study procedures at the end of the study (0–10 NRS). A structural MRI scan was conducted for MEG coregistration and source-space analyses. Rest data were compared with data from healthy volunteers (N=6; 5 men; mean age=30.7 years±3.9 years). Results Exercises and MEG scanning were acceptable to all participants; 7/8 completed the MRI scans. Maximum breathlessness intensity was induced by 5 min’ exercise. The same level was induced for repeat scans (median=8; IQR=7–8). All recovered to baseline by 10 min. Time-frequency profiles of data from the first and last 3 min were analysed in MEG source space based on breathlessness location estimates. Source localisation was performed, but anatomical source inference was limited to the level of the lobe. Differences in areas of activity were seen: during recovery scans; with and without airflow; and between participants/normal volunteers at rest. Conclusions MEG is a feasible method to investigate exercise-induced breathlessness

  17. Dietary Fat and Cholesterol

    MedlinePlus

    ... Gynecology Medical Conditions Nutrition & Fitness Emotional Health Dietary Fat and Cholesterol Posted under Health Guides . Updated 23 ... warm What are the different types of dietary fat? The four main types of fat found in ...

  18. Facts about polyunsaturated fats

    MedlinePlus

    ... gov/ency/patientinstructions/000747.htm Facts about polyunsaturated fats To use the sharing features on this page, ... Alternative names Polyunsaturated fatty acid; PUFA How Polyunsaturated Fats Affect Your Health Polyunsaturated fats can help lower ...

  19. Facts about monounsaturated fats

    MedlinePlus

    ... plant foods, such as nuts, avocados, and vegetable oils. Eating moderate amounts of monounsaturated (and polyunsaturated) fats ... amounts of healthy fats than others. Foods and oils with higher amounts of monounsaturated fats include: Nuts ...

  20. Facts about trans fats

    MedlinePlus

    Trans fatty acids; Partially hydrogenated oils (PHOs); Cholesterol-trans fats; Hyperlipidemia-trans fats ... partially hydrogenated" in the ingredient list. It means oils have been turned to solids and trans fats. ...

  1. Saturated fat (image)

    MedlinePlus

    Saturated fat can raise blood cholesterol and can put you at risk for heart disease and stroke. You should ... limit any foods that are high in saturated fat. Sources of saturated fat include whole-milk dairy ...

  2. Dietary fat and children

    MedlinePlus

    ... These include fats found in fish, nuts, and vegetable oils. Limit foods with saturated and trans fats (such as meats, full-fat dairy products, and processed foods). Fruits and vegetables are healthy snack foods. Children should be taught ...

  3. Dietary fat and children

    MedlinePlus

    Children and fat-free diets; Fat-free diet and children ... Some fat in the diet is needed for normal growth and development. However, many conditions such as obesity, heart disease, and diabetes are linked to ...

  4. Emerging roles of pro-resolving lipid mediators in immunological and adaptive responses to exercise-induced muscle injury.

    PubMed

    Markworth, James F; Maddipati, Krishna Rao; Cameron-Smith, David

    2016-01-01

    Lipid mediators are bioactive metabolites of the essential polyunsaturated fatty acids (PUFA) that play diverse roles inthe initiation, self-limitation, and active resolution of inflammation. Prostaglandins, classical pro-inflammatory lipid metabolites of arachidonic acid, have long been implicated in immunological and adaptive muscle responses to acute injury and exercise-induced stress. More recently, PUFA metabolites have been discovered during the resolution phase of inflammation which collectively function as endogenous 'stop signals' to control inflammation whilst actively promoting the return to a non-inflamed state. The apparent self-resolving nature of inflammatory responses holds important implications for contexts of musculoskeletal injury, exercise recovery, and chronic inflammatory diseases originati ng in or impacting upon muscle. 'Anti-inflammatory' interventions that strive to control inflammation via antagonism of pro-inflammatory signals are currently commonplace in efforts to hasten muscle recovery from damaging or exhaustive exercise, as well as to relieve the pain associated with musculoskeletal injury. However, the scientific literature does not clearly support a benefit of this anti-inflammatory approach. Additionally, recent evidence suggests that strategies to block pro-inflammatory lipid mediator pathways (e.g. NSAIDs) may be counterintuitive and inadvertently derange or impair timely resolution of inflammation; with potentially deleterious implications on skeletal muscle remodelling. The current review will provide an overview of the current understanding of diverse roles of bioactive lipid mediators in the initiation, control, and active resolution of acute inflammation. The established and putative roles of lipid mediators in mediating immunological and adapt ive skeletal muscle responses to acute muscle injury and exercise-induced muscle load/stress will be discussed. PMID:26853678

  5. Protective effect of epimedium combined with oligomeric proanthocyanidins on exercise-induced renal ischemia-reperfusion injury of rats

    PubMed Central

    Zhang, Hua; Sun, Xiao-Qin; Cao, Jian-Min; Zhou, Hai-Tao; Guo, Xian; Wang, Yi

    2014-01-01

    Objective: This paper studied the protective effect and mechanism of epimedium combined with oligomeric proanthocyanidins on exercise-induced renal ischemia-reperfusion injury of rats. Methods: In the experiment, the rats were given exhaustive swimming training and then their blood urea nitrogen (BUN) and other biochemical indexes were measured after they were given gastric perfusion with 6.01 g/kg doze of epimedium and 50 mg/kg doze of oligomeric proanthocyanidins for 56 days. Results: The result indicated that 8 weeks of over training led to ischemia-reperfusion injury of rats. Moreover, their kidney tissues were significantly changed pathologically and renal functions drastically damaged. BUN and serum creatinine increased and EOM group (P < 0.05), OPCOM group (P < 0.05) and EOPCOM group (P < 0.01) were lower than OM group. EOPCOM group was lower than OPCOM group. SOD activity decreased, EOM group (P < 0.05), OPCOM group (P < 0.05), EOPCOM group (P < 0.01) higher than OM group, and EOPCOM group (P < 0.05) higher than OPCOM group. The content of MDA increased, EOM group (P < 0.05), OPCOM group (P < 0.05), EOPCOM group (P < 0.01) lower than OM group, and EOPCOM group (P < 0.05) lower than OPCOM group. Conclusion: Both epimedium and oligomeric proanthocyanidins can boost SOD activity, clean oxygen radicals, clean and alleviate peroxidation of lipids, which exert protection on exercise-induced renal ischemia-reperfusion. The two combined yield a much better result. PMID:25664099

  6. Impact of Percutaneous Coronary Intervention on Exercise-Induced Repolarization Changes in Patients With Stable Coronary Artery Disease.

    PubMed

    Jukić, Anita; Carević, Vedran; Zekanović, Dražen; Stojanović-Stipić, Sanda; Runjić, Frane; Ljubković, Marko; Fabijanić, Damir

    2015-09-15

    Recent reports suggest T peak to T end (Tpe) interval and Tpe/QT ratio as valuable indicators of increased arrhythmogenic risk in patients with coronary artery disease (CAD). We aimed to examine the exercise-induced changes in these indexes in patients with stable CAD, before and after percutaneous coronary intervention (PCI). Forty patients were consecutively included in the interventional group (n = 20), with significant lesions (≥75% luminal narrowing) suitable for PCI and in the control group (n = 20), with no significant coronary artery lesions (<50% luminal narrowing). One day before and 30 days after the coronarography, all patients performed treadmill exercise stress testing, and the electrocardiographic (ECG) indexes of repolarization were assessed during baseline and at peak exercise intensity. In the control group, the QT interval, QTc (QT-corrected) interval, Tpe interval, and Tpe/QT ratio measured at peak exercise significantly decreased from baseline values (p = 0.001, p = 0.004, p <0.001, and p = 0.017, respectively). Conversely, in interventional patients before the PCI, an increase in the Tpe interval and the Tpe/QT ratio was observed at exercise (p = 0.009, and p <0.001, respectively), with only the QT interval exhibiting a significant decrease from baseline (p <0.001). Thirty days after the PCI, all the ECG arrhythmogenic indexes measured at peak exercise significantly decreased from baseline values, thus assuming the same trend as detected in controls. In conclusion, restoration of blood supply normalized exercise-induced repolarization changes, suggesting that revascularization of previously ischemic myocardium lowers the cardiac arrhythmogenic potential in patients with stable CAD. PMID:26174604

  7. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle.

    PubMed

    Combes, Adrien; Dekerle, Jeanne; Webborn, Nick; Watt, Peter; Bougault, Valérie; Daussin, Frédéric N

    2015-09-01

    During transition from rest to exercise, metabolic reaction rates increase substantially to sustain intracellular ATP use. These metabolic demands activate several kinases that initiate signal transduction pathways which modulate transcriptional regulation of mitochondrial biogenesis. The purpose of this study was to determine whether metabolic fluctuations per se affect the signaling cascades known to regulate peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). On two separate occasions, nine men performed a continuous (30-min) and an intermittent exercise (30 × 1-min intervals separated by 1-min of recovery) at 70% of V˙O2peak. Skeletal muscle biopsies from the vastus lateralis were taken at rest and at +0 h and +3 h after each exercise. Metabolic fluctuations that correspond to exercise-induced variation in metabolic rates were determined by analysis of VO2 responses. During intermittent exercise metabolic fluctuations were 2.8-fold higher despite identical total work done to continuous exercise (317 ± 41 vs. 312 ± 56 kJ after intermittent and continuous exercise, respectively). Increased phosphorylation of AMP-activated protein kinase (AMPK) (~2.9-fold, P < 0.01), calcium/calmodulin-dependent protein kinase II (CaMKII) (~2.7-fold, P < 0.01) and p38-mitogen-activated protein kinase (MAPK) (~4.2-fold, P < 0.01) occurred immediately in both exercises and to a greater extent after the intermittent exercise (condition x time interaction, P < 0.05). A single bout of intermittent exercise induces a greater activation of these signaling pathways regulating PGC-1α when compared to a single bout of continuous exercise of matched work and intensity. Chronic adaptations to exercise on mitochondria biogenesis are yet to be investigated. PMID:26359238

  8. Prevalence and prognostic significance of exercise-induced silent myocardial ischemia detected by thallium scintigraphy and electrocardiography in asymptomatic volunteers

    SciTech Connect

    Fleg, J.L.; Gerstenblith, G.; Zonderman, A.B.; Becker, L.C.; Weisfeldt, M.L.; Costa, P.T. Jr.; Lakatta, E.G. )

    1990-02-01

    Although a silent ischemic electrocardiographic response to treadmill exercise in clinically healthy populations is associated with an increased likelihood of future coronary events (i.e., angina pectoris, myocardial infarction, or cardiac death), such a response has a low predictive value for future events because of the low prevalence of disease in asymptomatic populations. To examine whether detection of reduced regional perfusion by thallium scintigraphy improved the predictive value of exercise-induced ST segment depression, we performed maximal treadmill exercise electrocardiography (ECG) and thallium scintigraphy (201Tl) in 407 asymptomatic volunteers 40-96 years of age (mean = 60) from the Baltimore Longitudinal Study on Aging. The prevalence of exercise-induced silent ischemia, defined by concordant ST segment depression and a thallium perfusion defect, increased more than sevenfold from 2% in the fifth and sixth decades to 15% in the ninth decade. Over a mean follow-up period of 4.6 years, cardiac events developed in 9.8% of subjects and consisted of 20 cases of new angina pectoris, 13 myocardial infarctions, and seven deaths. Events occurred in 7% of individuals with both negative 201Tl and ECG, 8% of those with either test positive, and 48% of those in whom both tests were positive (p less than 0.001). By proportional hazards analysis, age, hypertension, exercise duration, and a concordant positive ECG and 201Tl result were independent predictors of coronary events. Furthermore, those with positive ECG and 201Tl had a 3.6-fold relative risk for subsequent coronary events, independent of conventional risk factors.

  9. Exercise-induced improvement in cognitive performance after traumatic brain-injury in rats is dependent on BDNF Activation

    PubMed Central

    Griesbach, Grace Sophia; Hovda, David Allen; Gomez-Pinilla, Fernando

    2009-01-01

    We have previously shown that voluntary exercise upregulates brain-derived neurotrophic factor (BDNF) within the hippocampus and is associated with an enhancement of cognitive recovery after a lateral fluid-percussion injury (FPI). In order to determine if BDNF is critical to this effect we used an immunoadhesin chimera (TrkB-IgG) that inactivates free BDNF. This BDNF inhibitor was administered to adult male rats two weeks after they had received a mild fluid percussion injury (FPI) or sham surgery. These animals were then housed with or without access to a running wheel (RW) from post-injury-day (PID) 14 to 20. On PID 21, rats were tested for spatial learning in a Morris Water Maze. Results showed that exercise counteracted the cognitive deficits associated with the injury. However this exercise-induced cognitive improvement was attenuated in the FPI-RW rats that were treated with TrkB-IgG. Molecules important for synaptic plasticity and learning were measured in a separate group of rats that were sacrificed immediately after exercise (PID 21). Western blot analyses showed that exercise increased the mature form of BDNF, synapsin I and cyclic-AMP response-element-binding protein (CREB) in the vehicle treated Sham-RW group. However, only the mature form of BDNF and CREB were increased in the vehicle treated FPI-RW group. Blocking BDNF (pre administration of TrkB-IgG) greatly reduced the molecular effects of exercise in that exercise-induced increases of BDNF, synapsin I and CREB were not observed. These studies provide evidence that BDNF has a major role in exercise's cognitive effects in traumatically injured brain. PMID:19555673

  10. Efficacy of whey protein supplementation on resistance exercise-induced changes in muscle strength, lean mass, and function in mobility-limited older adults

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Whey protein supplementation may augment resistance exercise-induced increases in muscle strength and mass. Further studies are required to determine whether this effect extends to functionally compromised older adults. The objectives of the study were to compare the effects of whey protein concent...

  11. Chromium picolinate and conjugated linoleic acid do not synergistically influence diet- and exercise-induced changes in body composition and health indexes in overweight women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: This study assessed the effects of combined chromium picolinate (CP) and conjugated linoleic acid (CLA) supplementation on energy-restriction and exercise-induced changes in body composition, glucose metabolism, lipid-lipoprotein profile, and blood pressure in overweight, pre-menopausal w...

  12. How to explain exercise-induced phenotype from molecular data: rethink and reconstruction based on AMPK and mTOR signaling.

    PubMed

    Qi, Zhengtang; Zhai, Xiaofeng; Ding, Shuzhe

    2013-01-01

    During endurance and resistance exercise training, AMPK and mTOR signaling were known as selective pathways implicating the differentiation of exercise-induced phenotype in skeletal muscle. Among the previous studies, however, the differences in exercise protocol, the individuality and the genetic heterogeneity within species make it difficult to reach a consistent conclusion in the roles of AMPK and mTOR signaling. In this review, we aim not to reanalyze the previous articles and present the research progress of AMPK and mTOR signaling in exercise, but to propose an abstract general hypothesis for exercise-induced phenotype. Generally, exercise- induced skeletal muscle phenotype is independent of one and a few genes, proteins and signaling pathways. Convergent adaptation will better summarize the specificity of skeletal muscle phenotype in response to a single mode of exercise. Backward adaptation will open a new concept to illustrate the process of exercise-induced adaptation, such as mitochondrial quality control and muscle mass homeostasis. PMID:24404437

  13. Effects of propranolol and nifedipine on exercise-induced attack in patients variant angina: assessment by exercise thallium-201 myocardial scintigraphy with quantitative rotational tomography

    SciTech Connect

    Kugiyama, K.; Yasue, H.; Horio, Y.; Morikami, Y.; Fujii, H.; Koga, Y.; Kojima, A.; Takahashi, M.

    1986-08-01

    To examine the effects of propranolol and nifedipine on exercise-induced attack in patients with variant angina, exercise /sup 201/Tl myocardial scintigraphy with quantitative analysis by emission-computed tomography was performed in 20 patients with variant angina after oral propranolol (80 mg), nifedipine (20 mg), and placebo. Exercise-induced attack occurred in 11 patients on placebo, in 14 on propranolol, and in none on nifedipine. The exercise duration was significantly shorter in those on propranolol (p less than .05), but significantly longer in patients on nifedipine (p less than .05) than in those on placebo. The peak rate-pressure product was significantly lower in patients on propranolol (p less than .01), but did not change in those on nifedipine, as compared with that in patients on placebo. The size of the perfusion defect as measured by /sup 201/Tl tomography was significantly greater in patients on propranolol (p less than .05), but significantly less in those on nifedipine (p less than .01) than in those on placebo. In conclusion, propranolol does not suppress but rather may aggravate exercise-induced attack in patients with variant angina, while nifedipine suppresses it. This unfavorable effect of propranolol on exercise-induced attack in patients with variant angina is likely to be due to a reduction of regional myocardial blood flow.

  14. Activation of AMPKα2 Is Not Required for Mitochondrial FAT/CD36 Accumulation during Exercise.

    PubMed

    Monaco, Cynthia; Whitfield, Jamie; Jain, Swati S; Spriet, Lawrence L; Bonen, Arend; Holloway, Graham P

    2015-01-01

    Exercise has been shown to induce the translocation of fatty acid translocase (FAT/CD36), a fatty acid transport protein, to both plasma and mitochondrial membranes. While previous studies have examined signals involved in the induction of FAT/CD36 translocation to sarcolemmal membranes, to date the signaling events responsible for FAT/CD36 accumulation on mitochondrial membranes have not been investigated. In the current study muscle contraction rapidly increased FAT/CD36 on plasma membranes (7.5 minutes), while in contrast, FAT/CD36 only increased on mitochondrial membranes after 22.5 minutes of muscle contraction, a response that was exercise-intensity dependent. Considering that previous research has shown that AMP activated protein kinase (AMPK) α2 is not required for FAT/CD36 translocation to the plasma membrane, we investigated whether AMPK α2 signaling is necessary for mitochondrial FAT/CD36 accumulation. Administration of 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) induced AMPK phosphorylation, and resulted in FAT/CD36 accumulation on SS mitochondria, suggesting AMPK signaling may mediate this response. However, SS mitochondrial FAT/CD36 increased following acute treadmill running in both wild-type (WT) and AMPKα 2 kinase dead (KD) mice. These data suggest that AMPK signaling is not required for SS mitochondrial FAT/CD36 accumulation. The current data also implicates alternative signaling pathways that are exercise-intensity dependent, as IMF mitochondrial FAT/CD36 content only occurred at a higher power output. Taken altogether the current data suggests that activation of AMPK signaling is sufficient but not required for exercise-induced accumulation in mitochondrial FAT/CD36. PMID:25965390

  15. Figuring Out Fat and Calories

    MedlinePlus

    ... I Help a Friend Who Cuts? Figuring Out Fat and Calories KidsHealth > For Teens > Figuring Out Fat ... the truth on fat and calories? What Are Fat and Calories? Fats, or lipids , are nutrients in ...

  16. Effect of hydration state on resistance exercise-induced endocrine markers of anabolism, catabolism, and metabolism.

    PubMed

    Judelson, Daniel A; Maresh, Carl M; Yamamoto, Linda M; Farrell, Mark J; Armstrong, Lawrence E; Kraemer, William J; Volek, Jeff S; Spiering, Barry A; Casa, Douglas J; Anderson, Jeffrey M

    2008-09-01

    Hypohydration (decreased total body water) exacerbates the catabolic hormonal response to endurance exercise with unclear effects on anabolic hormones. Limited research exists that evaluates the effect of hypohydration on endocrine responses to resistance exercise; this work merits attention as the acute postexercise hormonal environment potently modulates resistance training adaptations. The purpose of this study was to examine the effect of hydration state on the endocrine and metabolic responses to resistance exercise. Seven healthy resistance-trained men (age = 23 +/- 4 yr, body mass = 87.8 +/- 6.8 kg, body fat = 11.5 +/- 5.2%) completed three identical resistance exercise bouts in different hydration states: euhydrated (EU), hypohydrated by approximately 2.5% body mass (HY25), and hypohydrated by approximately 5.0% body mass (HY50). Investigators manipulated hydration status via controlled water deprivation and exercise-heat stress. Cortisol, epinephrine, norepinephrine, testosterone, growth hormone, insulin-like growth factor-I, insulin, glucose, lactate, glycerol, and free fatty acids were measured during euhydrated rest, immediately preceding resistance exercise, immediately postexercise, and during 60 min of recovery. Body mass decreased 0.2 +/- 0.4, 2.4 +/- 0.4, and 4.8 +/- 0.4% during EU, HY25, and HY50, respectively, supported by humoral and urinary changes that clearly indicated subjects achieved three distinct hydration states. Hypohydration significantly 1) increased circulating concentrations of cortisol and norepinephrine, 2) attenuated the testosterone response to exercise, and 3) altered carbohydrate and lipid metabolism. These results suggest that hypohydration can modify the hormonal and metabolic response to resistance exercise, influencing the postexercise circulatory milieu. PMID:18617629

  17. Exercise-induced immunodepression in endurance athletes and nutritional intervention with carbohydrate, protein and fat-what is possible, what is not?

    PubMed

    Gunzer, Wolfgang; Konrad, Manuela; Pail, Elisabeth

    2012-09-01

    Heavily exercising endurance athletes experience extreme physiologic stress, which is associated with temporary immunodepression and higher risk of infection, particularly upper respiratory tract infections (URTI). The aim of this review is to provide a critical up-to-date review of existing evidence on the immunomodulatory potential of selected macronutrients and to evaluate their efficacy. The results of 66 placebo-controlled and/or crossover trials were compared and analysed. Among macronutrients, the most effective approach to maintain immune function in athletes is to consume ≥6% carbohydrate during prolonged exercise. Because inadequate nutrition affects almost all aspects of the immune system, a well-balanced diet is also important. Evidence of beneficial effects from other macronutrients is scarce and results are often inconsistent. Using a single nutrient may not be as effective as a mixture of several nutritional supplements. Due to limited research evidence, with the exception of carbohydrate, no explicit recommendations to reduce post-exercise URTI symptoms with single macronutrients can be derived. PMID:23112908

  18. Comparative integromics on FAT1, FAT2, FAT3 and FAT4.

    PubMed

    Katoh, Yuriko; Katoh, Masaru

    2006-09-01

    WNT5A, WNT5B, WNT11, FZD3, FZD6, VANGL1, VANGL2, DVL1, DVL2, DVL3, PRICKLE1, PRICKLE2, ANKRD6, NKD1, NKD2, DAAM1, DAAM2, CELSR1, CELSR2, CELSR3, ROR1 and ROR2 are planar cell polarity (PCP) signaling molecules implicated in the regulation of cellular polarity, convergent extension, and invasion. FAT1, FAT2, FAT3 and FAT4 are Cadherin superfamily members homologous to Drosophila Fat, functioning as a positive regulator of PCP in the Drosophila wing. Complete coding sequence (CDS) for human FAT1 (NM_005245.3) and FAT2 (NM_001447.1) are available, while artificial CDS for human FAT3 (XM_926199 and XM_936538) and partial CDS for FAT4 (NM_024582.2). Here, complete CDS of human FAT3 and FAT4 were determined by using bioinformatics and human intelligence (Humint). FAT3 gene, consisting of 26 exons, encoded a 4557-aa protein with extracellular 33 Cadherin repeats, one Laminin G (LamG) domain and two EGF domains. FAT4 gene encoded a 4924-aa protein with extracellular 34 Cadherin repeats, two LamG domains and three EGF domains. Cytoplasmic VCSVxPxLP and SDYxS motifs were identified as novel motifs conserved among FAT1, FAT2 and FAT3 orthologs. Domain architecture comparison and phylogenetic analysis revealed that FAT1, FAT2 and FAR3 were divergent from FAT4. FAT1-MTNR1A locus at 4q35.2 and FAT3-MTNR1B locus at 11q14.3-q21 were paralogous regions within the human genome. FAT1 mRNA was expressed in embryonic stem (ES) cells, neural tissues, gastric cancer, pancreatic cancer, colorectal cancer, breast cancer, lung cancer and brain tumors. FAT2 mRNA was expressed in infant brain, cerebellum, gastric cancer, pancreatic cancer, ovarian cancer, esophageal cancer, skin squamous cell carcinoma, head and neck cancer. FAT3 mRNA was expressed in ES cells, primitive neuroectoderm, fetal brain, infant brain, adult neural tissues and prostate. FAT4 mRNA was expressed in fetal brain, infant brain, brain tumor and colorectal cancer. FAT family members were revealed to be targets of systems

  19. Effects of exercise-induced arterial hypoxaemia and work rate on diaphragmatic fatigue in highly trained endurance athletes

    PubMed Central

    Vogiatzis, Ioannis; Georgiadou, Olga; Giannopoulou, Ifigenia; Koskolou, Maria; Zakynthinos, Spyros; Kostikas, Konstantinos; Kosmas, Epaminondas; Wagner, Harrieth; Peraki, Eleni; Koutsoukou, Antonia; Koulouris, Nickolaos; Wagner, Peter D; Roussos, Charis

    2006-01-01

    Diaphragmatic fatigue occurs in highly trained athletes during exhaustive exercise. Since approximately half of them also exhibit exercise-induced arterial hypoxaemia (EIAH) during high-intensity exercise, the present study sought to test the hypothesis that arterial hypoxaemia contributes to exercise-induced diaphragmatic fatigue in this population. Ten cyclists (: 70.0 ± 1.6 ml kg−1 min−1; mean ± s.e.m.) completed, in a balanced ordering sequence, one normoxic (end-exercise arterial O2 saturation (Sa,O2): 92 ± 1%) and one hyperoxic (FI,O2: 0.5% O2; Sa,O2: 97 ± 1%) 5 min exercise test at intensities equal to 80 ± 3 and 90 ± 3% of maximal work rate (WRmax), respectively, producing the same tidal volume (VT) and breathing frequency (f) throughout exercise. Cervical magnetic stimulation was used to determine reduction in twitch transdiaphragmatic pressure (Pdi,tw) during recovery. Hyperoxic exercise at 90% WRmax induced significantly (P = 0.022) greater post-exercise reduction in Pdi,tw (15 ± 2%) than did normoxic exercise at 80% WRmax (9 ± 2%), despite the similar mean ventilation (123 ± 8 and 119 ± 8 l min−1, respectively), breathing pattern (VT: 2.53 ± 0.05 and 2.61 ± 0.05 l, f: 49 ± 2 and 46 ± 2 breaths min−1, respectively), mean changes in Pdi during exercise (37.1 ± 2.4 and 38.2 ± 2.8 cmH2O, respectively) and end-exercise arterial lactate (12.1 ± 1.4 and 10.8 ± 1.1 mmol l−1, respectively). The difference found in diaphragmatic fatigue between the hyperoxic (at higher leg work rate) and the normoxic (at lower leg work rate) tests suggests that neither EIAH nor lactic acidosis per se are likely predominant causative factors in diaphragmatic fatigue in this population, at least at the level of Sa,O2 tested. Rather, this result leads us to hypothesize that blood flow competition with the legs is an important contributor to diaphragmatic fatigue in heavy exercise, assuming that higher leg work required greater leg blood flow. PMID

  20. Beneficial effects of weight loss associated with moderate calorie/carbohydrate restriction, and increased proportional intake of protein and unsaturated fat on serum urate and lipoprotein levels in gout: a pilot study

    PubMed Central

    Dessein, P; Shipton, E; Stanwix, A; Joffe, B; Ramokgadi, J

    2000-01-01

    OBJECTIVES—Insulin resistance (IR) has been increasingly implicated in the pathogenesis of gout. The lipoprotein abnormalities described in hyperuricaemic subjects are similar to those associated with IR, and insulin influences renal urate excretion. In this study it was investigated whether dietary measures, reported to be beneficial in IR, have serum uric acid (SU) and lipid lowering effects in gout.
METHODS—Thirteen non-diabetic men (median age 50, range 38-62) were enrolled. Each patient had had at least two gouty attacks during the four months before enrolment. Dietary recommendations consisted of calorie restriction to 6690 kJ (1600 kcal) a day with 40% derived from carbohydrate, 30% from protein, and 30% from fat; replacement of refined carbohydrates with complex ones and saturated fats with mono- and polyunsaturated ones. At onset and after 16 weeks, fasting blood samples were taken for determination of SU, serum cholesterol (C), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and triglycerides (TGs). Results were expressed as median (SD).
RESULTS—At onset, the body mass index (BMI) was 30.5 (8.1) kg/m2. Dietary measures resulted in weight loss of 7.7 (5.4) kg (p=0.002) and a decrease in the frequency of monthly attacks from 2.1 (0.8) to 0.6 (0.7) (p=0.002). The SU decreased from 0.57 (0.10) to 0.47 (0.09) mmol/l (p=0.001) and normalised in 7 (58%) of the 12 patients with an initially raised level. Serum cholesterol decreased from 6.0 (1.7) to 4.7 (0.9) mmol/l (p=0.002), LDL-C from 3.5 (1.2) to 2.7 (0.8) mmol/l (p=0.004), TGs from 4.7 (4.2) to 1.9 (1.0) mmol/l (p=0.001), and C:HDL-C ratios from 6.7 (1.7) to 5.2 (1.0) (p=0.002). HDL-C levels increased insignificantly. High baseline SU, frequency of attacks, total cholesterol, LDL-C and TG levels, and total C:HDL-C ratios correlated with higher decreases in the respective variables upon dietary intervention (p<0.05).

  1. Fat embolism syndrome

    PubMed Central

    George, Jacob; George, Reeba; Dixit, R.; Gupta, R. C.; Gupta, N.

    2013-01-01

    Fat embolism syndrome is an often overlooked cause of breathlessness in trauma wards. Presenting in a wide range of clinical signs of varying severity, fat embolism is usually diagnosed by a physician who keeps a high degree of suspicion. The clinical background, chronology of symptoms and corroborative laboratory findings are instrumental in a diagnosis of fat embolism syndrome. There are a few diagnostic criteria which are helpful in making a diagnosis of fat embolism syndrome. Management is mainly prevention of fat embolism syndrome, and organ supportive care. Except in fulminant fat embolism syndrome, the prognosis is usually good. PMID:23661916

  2. A brief review of critical processes in exercise-induced muscular hypertrophy.

    PubMed

    Phillips, Stuart M

    2014-05-01

    With regular practice, resistance exercise can lead to gains in skeletal muscle mass by means of hypertrophy. The process of skeletal muscle fiber hypertrophy comes about as a result of the confluence of positive muscle protein balance and satellite cell addition to muscle fibers. Positive muscle protein balance is achieved when the rate of new muscle protein synthesis (MPS) exceeds that of muscle protein breakdown (MPB). While resistance exercise and postprandial hyperaminoacidemia both stimulate MPS, it is through the synergistic effects of these two stimuli that a net gain in muscle proteins occurs and muscle fiber hypertrophy takes place. Current evidence favors the post-exercise period as a time when rapid hyperaminoacidemia promotes a marked rise in the rate of MPS. Dietary proteins with a full complement of essential amino acids and high leucine contents that are rapidly digested are more likely to be efficacious in this regard. Various other compounds have been added to complete proteins, including carbohydrate, arginine and glutamine, in an attempt to augment the effectiveness of the protein in stimulating MPS (or suppressing MPB), but none has proved particularly effective. Evidence points to a higher protein intake in combination with resistance exercise as being efficacious in allowing preservation, and on occasion increases, in skeletal muscle mass with dietary energy restriction aimed at the promotion of weight loss. The goal of this review is to examine practices of protein ingestion in combination with resistance exercise that have some evidence for efficacy and to highlight future areas for investigation. PMID:24791918

  3. The role of passive muscle stiffness in symptoms of exercise-induced muscle damage.

    PubMed

    McHugh, M P; Connolly, D A; Eston, R G; Kremenic, I J; Nicholas, S J; Gleim, G W

    1999-01-01

    We examined whether passive stiffness of an eccentrically exercising muscle group affects the subsequent symptoms of muscle damage. Passive hamstring muscle stiffness was measured during an instrumented straight-leg-raise stretch in 20 subjects (11 men and 9 women) who were subsequently classified as "stiff" (N = 7), "normal" (N = 6), or "compliant" (N = 7). Passive stiffness was 78% higher in the stiff subjects (36.2 +/- 3.3 N.m.rad(-1)) compared with the compliant subjects (20.3 +/- 1.8 N.m.rad(-1)). Subjects then performed six sets of 10 isokinetic (2.6 rad.s(-1)) submaximal (60% maximal voluntary contraction) eccentric actions of the hamstring muscle group. Symptoms of muscle damage were documented by changes in isometric hamstring muscle strength, pain, muscle tenderness, and creatine kinase activity on the following 3 days. Strength loss, pain, muscle tenderness, and creatine kinase activity were significantly greater in the stiff compared with the compliant subjects on the days after eccentric exercise. Greater symptoms of muscle damage in subjects with stiffer hamstring muscles are consistent with the sarcomere strain theory of muscle damage. The present study provides experimental evidence of an association between flexibility and muscle injury. Muscle stiffness and its clinical correlate, static flexibility, are risk factors for more severe symptoms of muscle damage after eccentric exercise. PMID:10496575

  4. Acute Exercise-Induced Mitochondrial Stress Triggers an Inflammatory Response in the Myocardium via NLRP3 Inflammasome Activation with Mitophagy

    PubMed Central

    Li, Haiying; Miao, Weiguo; Ma, Jingfen; Xv, Zhen; Li, Jianyu; Zhang, Yong; Ji, Li Li

    2016-01-01

    Increasing evidence has indicated that acute strenuous exercise can induce a range of adverse reactions including oxidative stress and tissue inflammation. However, little is currently known regarding the mechanisms that underlie the regulation of the inflammatory response in the myocardium during acute heavy exercise. This study evaluated the mitochondrial function, NLRP3 inflammasome activation, and mitochondrial autophagy-related proteins to investigate the regulation and mechanism of mitochondrial stress regarding the inflammatory response of the rat myocardium during acute heavy exercise. The results indicated that the mitochondrial function of the myocardium was adaptively regulated to meet the challenge of stress during acute exercise. The exercise-induced mitochondrial stress also enhanced ROS generation and triggered an inflammatory reaction via the NLRP3 inflammasome activation. Moreover, the mitochondrial autophagy-related proteins including Beclin1, LC3, and Bnip3 were all significantly upregulated during acute exercise, which suggests that mitophagy was stimulated in response to the oxidative stress and inflammatory response in the myocardium. Taken together, our data suggest that, during acute exercise, mitochondrial stress triggers the rat myocardial inflammatory response via NLRP3 inflammasome activation and activates mitophagy to minimize myocardial injury. PMID:26770647

  5. The Potential Role of 8-Oxoguanine DNA Glycosylase-Driven DNA Base Excision Repair in Exercise-Induced Asthma

    PubMed Central

    Belanger, KarryAnne K.; Ameredes, Bill T.; Boldogh, Istvan

    2016-01-01

    Asthma is characterized by reversible airway narrowing, shortness of breath, wheezing, coughing, and other symptoms driven by chronic inflammatory processes, commonly triggered by allergens. In 90% of asthmatics, most of these symptoms can also be triggered by intense physical activities and severely exacerbated by environmental factors. This condition is known as exercise-induced asthma (EIA). Current theories explaining EIA pathogenesis involve osmotic and/or thermal alterations in the airways caused by changes in respiratory airflow during exercise. These changes, along with existing airway inflammatory conditions, are associated with increased cellular levels of reactive oxygen species (ROS) affecting important biomolecules including DNA, although the underlying molecular mechanisms have not been completely elucidated. One of the most abundant oxidative DNA lesions is 8-oxoguanine (8-oxoG), which is repaired by 8-oxoguanine DNA glycosylase 1 (OGG1) during the base excision repair (BER) pathway. Whole-genome expression analyses suggest a cellular response to OGG1-BER, involving genes that may have a role in the pathophysiology of EIA leading to mast cell degranulation, airway hyperresponsiveness, and bronchoconstriction. Accordingly, this review discusses a potential new hypothesis in which OGG1-BER-induced gene expression is associated with EIA symptoms. PMID:27524866

  6. FSTL1 as a Potential Mediator of Exercise-Induced Cardioprotection in Post-Myocardial Infarction Rats.

    PubMed

    Xi, Yue; Gong, Da-Wei; Tian, Zhenjun

    2016-01-01

    Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI), but the underlying mechanisms are poorly understood. Follistatin-like1 (FSTL1) is a cardioprotective factor against ischemic injury and is induced in cardiomyocytes and skeletal muscle in ischemic and hypoxic conditions. To test the hypothesis that FSTL1 may be a molecular link between exercise and improved heart function post MI, we subjected MI-rats, induced by left coronary artery ligation, to two modes of exercise: intermittent aerobic exercise (IAE) or mechanical vibration training (MVT), for four weeks and examined the relevance of FSTL1 to exercise-mediated cardiac effects. Exercise improved the functional performance, reduced fibrosis of MI-hearts and induced FSTL1 expression, the TGFβ-Smad2/3 signaling and angiogenesis in myocardium. In gastrocnemius, exercise increased the cross-sectional area of myocytes and FSTL1 expression. Importantly, exercise increased circulating FSTL1 levels, which were positively correlated with the skeletal muscle FSTL1 expression and negatively correlated with heart fibrosis. Overall, the IAE was more effective than that of MVT in cardioprotection. Finally, exogenous FSTL1 administration directly improved angiogenesis as well as functionality of post-MI hearts. Taken together, we have demonstrated that FSTL1 is a potential mediator of exercise-induced cardioprotection in post-MI rats. PMID:27561749

  7. Exercise-induced intrapulmonary shunting of venous gas emboli does not occur after open-sea diving.

    PubMed

    Dujić, Zeljko; Palada, Ivan; Obad, Ante; Duplancić, Darko; Brubakk, Alf O; Valic, Zoran

    2005-09-01

    Paradoxical arterializations of venous gas emboli can lead to neurological damage after diving with compressed air. Recently, significant exercise-induced intrapulmonary anatomical shunts have been reported in healthy humans that result in widening of alveolar-to-arterial oxygen gradient. The aim of this study was to examine whether intrapulmonary shunts can be found following strenuous exercise after diving and, if so, whether exercise should be avoided during that period. Eleven healthy, military male divers performed an open-sea dive to 30 m breathing air, remaining at pressure for 30 min. During the bottom phase of the dive, subjects performed mild exercise at approximately 30% of their maximal oxygen uptake. The ascent rate was 9 m/min. Each diver performed graded upright cycle ergometry up to 80% of the maximal oxygen uptake 40 min after the dive. Monitoring of venous gas emboli was performed in both the right and left heart with an ultrasonic scanner every 20 min for 60 min after reaching the surface pressure during supine rest and following two coughs. The diving profile used in this study produced significant amounts of venous bubbles. No evidence of intrapulmonary shunting was found in any subject during either supine resting posture or any exercise grade. Also, short strenuous exercise after the dive did not result in delayed-onset decompression sickness in any subject, but studies with a greater number of participants are needed to confirm whether divers should be allowed to exercise after diving. PMID:15845772

  8. [Two cases of food-dependent exercise-induced anaphylaxis difficult to evoke symptoms by provocation test].

    PubMed

    Morimoto, Kenichi; Sanada, Seiko; Hara, Takeshi; Hide, Michihiro

    2006-11-01

    We report two cases of food-dependent exercise-induced anaphylaxis (FDEIA), which were hardly induced by provocation test in the hospital. Case 1: A 28-years-old Japanese female suffers repeated episodes of sternutation, nasal discharge and edema of eyelids after wheat ingestion of wheat followed by exercise. Case 2: A 14-years-old Japanese male suffers repeated episodes of wheal formation on whole body and dyspnea after lunch containing apple followed by exercise. Both of them had never developed symptoms by either ingestion or exercise alone. Provocation tests were performed on admission by combinations of the ingestion of suspected foods, exercise, and aspirin, but no symptoms were reproduced by any combination of them. After discharge, case 1 reproduced symptoms during exercise after the ingestion of wheat under prostration and cold climate. Case 2 reproduced symptoms during exercise after ingestion of apple when he suffered from common cold. Warm and comfortable condition in admission may make it harder to evoke symptoms by the provocation test. Frigidity, cold, prostration, and stress should be reckoned with in the provocation test to improve the accuracy of diagnosis for FDEIA. PMID:17159435

  9. Hemostatic studies in racing standardbred horses with exercise-induced pulmonary hemorrhage. Hemostatic parameters at rest and after moderate exercise.

    PubMed Central

    Johnstone, I B; Viel, L; Crane, S; Whiting, T

    1991-01-01

    The purpose of this study was to determine whether a defect in hemostasis might be a factor in the etiology of exercise-induced pulmonary hemorrhage (EIPH). Hemostatic parameters were evaluated in 22 EIPH-positive and ten EIPH-negative racing horses while in a rested state. Nineteen EIPH-positive and ten EIPH-negative horses were further evaluated just before and immediately after a 15 min exercise period on a 260 m oval track. When EIPH-positive and EIPH-negative horses were compared at rest, there was no significant difference in any of the coagulation and fibrinolytic parameters studied. There was however, a significant difference in platelet function as assessed by aggregometry. The platelets from affected horses were significantly less responsive than those from nonaffected horses when exposed in vitro to the platelet agonists adenosine diphosphate, collagen and platelet activating factor. Exercise tended to increase the packed cell volume and factor VIII/von Willebrand factor and to decrease platelet aggregation responses to low concentrations of adenosine diphosphate. These effects of exercise however were quantitatively similar in both EIPH-positive and EIPH-negative horses. Reduced platelet function may therefore be a contributing factor in the bleeding characteristic of horses with EIPH. PMID:1909208

  10. Effects of buccal nitrate on left ventricular haemodynamics and volume at rest and during exercise-induced angina.

    PubMed Central

    Silke, B; Verma, S P; Frais, M A; Hafizullah, M; Taylor, S H

    1985-01-01

    A novel approach has been employed to characterize the effects of a cardioactive drug on left ventricular haemodynamics and volume by simultaneously determining cardiac stroke volume (thermodilution) and left ventricular ejection fraction (nuclear probe). The effects of glyceryl trinitrate were evaluated in 12 patients with angiographically proven coronary artery disease at rest and 3, 7, 15 and 30 min following 10 mg buccal nitroglycerin (Suscard) administration. The impact of the drug on left ventricular haemodynamics and volume during exercise-induced angina was determined by repeating exercise 30 min following drug administration, at the workload that reliably induced angina during control exercise. At rest buccal nitroglycerin reduced systemic arterial pressure, cardiac and stroke volume indices, and increased heart rate. The left ventricular ejection fraction (E.F.) increased; its filling pressure together with end-diastolic and end-systolic volumes were significantly reduced. Compared with control supine-bicycle exercise, the drug reduced mean systemic arterial pressure and left ventricular filling pressure without change in cardiac and stroke volume indices. There was a smaller increase in left ventricular volume during exercise, and the fall in E.F. was attenuated. These data demonstrated differential actions of glyceryl trinitrate on left ventricular function related to the physiological state in obstructive coronary artery disease. These techniques appear to hold promise in the evaluation of the effects of other therapies on left ventricular volume in coronary artery disease. PMID:3935147

  11. Exercise-induced lactate accumulation regulates intramuscular triglyceride metabolism via transforming growth factor-β1 mediated pathways.

    PubMed

    Nikooie, Rohollah; Samaneh, Sajadian

    2016-01-01

    The mechanism regulating the utilization of intramuscular triacylglycerol (IMTG) during high-intensity interval training (HIIT) and post-exercise recovery period remains elusive. In this study, the acute and long-term effects of HIIT on transforming growth factor beta 1 (TGF-β1) abundance in rat skeletal muscle and role of lactate and TGF-β1 in IMTG lipolysis during post-exercise recovery period were examined. TGF-β1 and Adipose triacylglycerol lipase (ATGL) abundance as well as total lipase activity in the gastrocnemius muscle significantly increased to a maximum value 10 h after acute bout of HIIT. Inhibition of TGF-β1 signaling by intramuscular injection of SB431542 30 min prior to the acute exercise attenuated ATGL abundance and total lipase activity in the gastrocnemius muscle in response to acute exercise. Intramuscular acute injection of lactate increased TGF-β1 and ATGL abundance in the gastrocnemius muscle and there were a significant increase in Muscle TGF-β1 and ATGL abundance after 5 weeks of HIIT/lactate treatment. These results indicate that exercise-induced lactate accumulation regulates intramuscular triglyceride metabolism via transforming growth factor-β1 mediated pathways during post-exercise recovery from strenuous exercise. PMID:26522131

  12. Increased uptake of 18F-fluorodeoxyglucose in postischemic myocardium of patients with exercise-induced angina

    SciTech Connect

    Camici, P.; Araujo, L.I.; Spinks, T.; Lammertsma, A.A.; Kaski, J.C.; Shea, M.J.; Selwyn, A.P.; Jones, T.; Maseri, A.

    1986-07-01

    Regional myocardial perfusion and exogenous glucose uptake were assessed with rubidium-82 (82Rb) and 18F-2-fluoro-2-deoxyglucose (FDG) in 10 normal volunteers and 12 patients with coronary artery disease and stable angina pectoris by means of positron emission tomography. In patients at rest, the myocardial uptake of /sup 82/Rb and FDG did not differ significantly from that measured in normal subjects. The exercise test performed within the positron camera in eight patients produced typical chest pain and ischemic electrocardiographic changes in all. In each of the eight patients a region of reduced cation uptake was demonstrated in the /sup 82/Rb scan recorded at peak exercise, after which uptake of /sup 82/Rb returned to the control value 5 to 14 min after the end of the exercise. In these patients, FDG was injected in the recovery phase when all the variables that were altered during exercise, including regional myocardial /sup 82/Rb uptake, had returned to control values. In all but one patient, FDG accumulation in the regions of reduced /sup 82/Rb uptake during exercise was significantly higher than that in the nonischemic regions, i.e., the ones with a normal increment of /sup 82/Rb uptake on exercise. In the nonischemic areas, FDG uptake was not significantly different from that found in normal subjects after exercise. In conclusion, myocardial glucose transport and phosphorylation seem to be enhanced in the postischemic myocardium of patients with exercise-induced ischemia.

  13. Effect of exercise-induced neurogenesis on cognitive function deficit in a rat model of vascular dementia

    PubMed Central

    CHOI, DONG-HEE; LEE, KYOUNG-HEE; LEE, JONGMIN

    2016-01-01

    Chronic cerebral hypoperfusion (CCH) is strongly correlated with progressive cognitive decline in neurological diseases, such as vascular dementia (VaD) and Alzheimer's disease. Exercise can enhance learning and memory, and delay age-related cognitive decline. However, exercise-induced hippocampal neurogenesis in experimental animals submitted to CCH has not been investigated. The present study aimed to investigate whether hippocampal neurogenesis induced by exercise can improve cognitive deficit in a rat model of VaD. Male Wistar rats (age, 8 weeks; weight, 292±3.05 g; n=12–13/group) were subjected to bilateral common carotid artery occlusion (2VO) or sham-surgery and each group was then subdivided randomly into no exercise and treadmill exercise groups. Exercise groups performed treadmill exercise daily at 15 m/min for 30 min for 4 weeks from the third to the seventh week after 2VO. It was demonstrated that the number of neural progenitor cells and mature neurons in the subgranular zone of 2VO rats was increased by exercise, and cognitive impairment in 2VO rats was attenuated by treadmill exercise. In addition, mature brain-derived neurotrophic factor (BDNF) levels in the hippocampus were increased in the exercise groups. Thus the present study suggests that exercise delays cognitive decline by the enhancing neurogenesis and increasing BDNF expression in the context of VaD. PMID:26934837

  14. FSTL1 as a Potential Mediator of Exercise-Induced Cardioprotection in Post-Myocardial Infarction Rats

    PubMed Central

    Xi, Yue; Gong, Da-Wei; Tian, Zhenjun

    2016-01-01

    Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI), but the underlying mechanisms are poorly understood. Follistatin-like1 (FSTL1) is a cardioprotective factor against ischemic injury and is induced in cardiomyocytes and skeletal muscle in ischemic and hypoxic conditions. To test the hypothesis that FSTL1 may be a molecular link between exercise and improved heart function post MI, we subjected MI-rats, induced by left coronary artery ligation, to two modes of exercise: intermittent aerobic exercise (IAE) or mechanical vibration training (MVT), for four weeks and examined the relevance of FSTL1 to exercise-mediated cardiac effects. Exercise improved the functional performance, reduced fibrosis of MI-hearts and induced FSTL1 expression, the TGFβ-Smad2/3 signaling and angiogenesis in myocardium. In gastrocnemius, exercise increased the cross-sectional area of myocytes and FSTL1 expression. Importantly, exercise increased circulating FSTL1 levels, which were positively correlated with the skeletal muscle FSTL1 expression and negatively correlated with heart fibrosis. Overall, the IAE was more effective than that of MVT in cardioprotection. Finally, exogenous FSTL1 administration directly improved angiogenesis as well as functionality of post-MI hearts. Taken together, we have demonstrated that FSTL1 is a potential mediator of exercise-induced cardioprotection in post-MI rats. PMID:27561749

  15. [Practical advice for exercise-induced asthma in children: experience of the exercise training centre of Necker-Enfants malades hospital].

    PubMed

    Karila, C; Fuchs-Climent, D; Clairicia, M; Leborgne, P; Salort, M; De Blic, J; Scheinmann, P

    2005-01-01

    Now, to care exercise-induced asthma is not only to prescribe drugs. It is a global and interdisciplinary approach: the pulmonary rehabilitation, matching a therapeutic education and a physical training, with the goal of promoting a regular physical activity in the asthmatic child, achieving physiological benefits and improvement of quality of life. Getting from the experience of Necker-Enfants Malades Hospital's Training Centre, a few advises encourage the physical practice of the asthmatic child, and decrease risks of exercise-induced asthma: optimisation of treatments;progressive beginning and end of exercises; use of the diaphragmatic breathing, keeping up with the exercise; use of the ventilatory threshold (or dysponea threshold) as intensity of the aerobic training; practice of different activities promoting play and conviviality in sports and allowing the integration of sports in the daily life of the asthmatic child. PMID:15653067

  16. Basal fat oxidation decreases with aging in women.

    PubMed

    Calles-Escandón, J; Arciero, P J; Gardner, A W; Bauman, C; Poehlman, E T

    1995-01-01

    The present study tested the hypothesis that a decrease in basal fat oxidation in aging women is related to a loss of fat-free mass. Thirty-two nonsmoking women with a wide range of age (18-73 yr) were characterized for body composition (underwater weight), maximal aerobic capacity, and basal fat oxidation (indirect calorimetry). Results showed that fat oxidation was negatively correlated with age (r2 = 0.17, P = 0.017) but was positively correlated with the fat-free mass (r2 = 0.48, P < 0.0001) and with the level of aerobic fitness (maximal aerobic capacity) (r2 = 0.22, P = 0.007). Unexpectedly, fat oxidation had no relationship with fat mass (r2 = 0.07, P = 0.136). Partial correlation analysis showed that the decline in fat-free mass, and not the age or maximal O2 consumption, was the best single predictor of the decline in basal fat oxidation. These results support the theory that a decrease in fat oxidation with advancing age in healthy women is associated with a decrease in the fat-free mass and not age per se. Interventions that increase or preserve the quantity of fat-free mass (e.g., exercise training) may enhance fat oxidation and thus lessen the age-associated adiposity in women. PMID:7713822

  17. Thermogenic capacity is antagonistically regulated in classical brown and white subcutaneous fat depots by high fat diet and endurance training in rats: impact on whole-body energy expenditure.

    PubMed

    Wu, Michelle V; Bikopoulos, George; Hung, Steven; Ceddia, Rolando B

    2014-12-01

    This study investigated the regulation of thermogenic capacity in classical brown adipose tissue (BAT) and subcutaneous inguinal (SC Ing) white adipose tissue (WAT) and how it affects whole-body energy expenditure in sedentary and endurance-trained rats fed ad libitum either low fat or high fat (HF) diets. Analysis of tissue mass, PGC-1α and UCP-1 content, the presence of multilocular adipocytes, and palmitate oxidation revealed that a HF diet increased the thermogenic capacity of the interscapular and aortic brown adipose tissues, whereas exercise markedly suppressed it. Conversely, exercise induced browning of the SC Ing WAT. This effect was attenuated by a HF diet. Endurance training neither affected skeletal muscle FNDC5 content nor circulating irisin, but it increased FNDC5 content in SC Ing WAT. This suggests that locally produced FNDC5 rather than circulating irisin mediated the exercise-induced browning effect on this fat tissue. Importantly, despite reducing the thermogenic capacity of classical BAT, exercise increased whole-body energy expenditure during the dark cycle. Therefore, browning of subcutaneous WAT likely exerted a compensatory effect and raised whole-body energy expenditure in endurance-trained rats. Based on these novel findings, we propose that exercise-induced browning of the subcutaneous WAT provides an alternative mechanism that reduces thermogenic capacity in core areas and increases it in peripheral body regions. This could allow the organism to adjust its metabolic rate to accommodate diet-induced thermogenesis while simultaneously coping with the stress of chronically increased heat production through exercise. PMID:25344623

  18. Exercise-induced muscle damage and potential mechanisms for the repeated bout effect.

    PubMed

    McHugh, M P; Connolly, D A; Eston, R G; Gleim, G W

    1999-03-01

    Unfamiliar, predominantly eccentric exercise, frequently results in muscle damage. A repeated bout of similar eccentric exercise results in less damage and is referred to as the 'repeated bout effect'. Despite numerous studies that have clearly demonstrated the repeated bout effect, there is little consensus as to the actual mechanism. In general, the adaptation has been attributed to neural, connective tissue or cellular adaptations. Other possible mechanisms include, adaptation in excitation-contraction coupling or adaptation in the inflammatory response. The 'neural theory' predicts that the initial damage is a result of high stress on a relatively small number of active fast-twitch fibres. For the repeated bout, an increase in motor unit activation and/or a shift to slow-twitch fibre activation distributes the contractile stress over a larger number of active fibres. Although eccentric training results in marked increases in motor unit activation, specific adaptations to a single bout of eccentric exercise have not been examined. The 'connective tissue theory' predicts that muscle damage occurs when the noncontractile connective tissue elements are disrupted and myofibrillar integrity is lost. Indirect evidence suggests that remodelling of the intermediate filaments and/or increased intramuscular connective tissue are responsible for the repeated bout effect. The 'cellular theory' predicts that muscle damage is the result of irreversible sarcomere strain during eccentric contractions. Sarcomere lengths are thought to be highly non-uniform during eccentric contractions, with some sarcomeres stretched beyond myofilament overlap. Loss of contractile integrity results in sarcomere strain and is seen as the initial stage of damage. Some data suggest that an increase in the number of sarcomeres connected in series, following an initial bout, reduces sarcomere strain during a repeated bout and limits the subsequent damage. It is unlikely that one theory can explain

  19. Optimal use of fluids of varying formulations to minimise exercise-induced disturbances in homeostasis.

    PubMed

    Lamb, D R; Brodowicz, G R

    1986-01-01

    The rationale underlying the development of various formulations of beverages for consumption before, during, and/or after physical exercise is that such formulations should minimise some of the disturbances in physiological homeostasis that occur during exercise and thereby prevent injury and/or enhance performance. Exercise- and dehydration-induced increases in core temperature, body fluid osmolality, heart rate, losses of plasma and other body fluid volumes, and carbohydrate depletion are probably the most important homeostatic disturbances that can be ameliorated by fluid consumption. With the exception of athletes subject to hyponatraemia after consumption of ordinary water during prolonged activity, changes in electrolyte concentrations in the body fluids of most athletes do not justify the inclusion of electrolytes in fluid replacement beverages to be consumed during exercise. However, small amounts of sodium added to water does speed gastric emptying and fluid absorption from the intestine. Recent evidence suggests that a precompetition meal high in easily digested carbohydrates should be consumed not later than 5 to 6 hours before competition. There is little published research on the optimal composition of this meal. Water ingestion 30 to 60 minutes before exercise seems to be of benefit to temperature regulation and cardiovascular homeostasis if the exercise is of moderate intensity (50 to 65% VO2max), but probably has little effect at the higher intensities of athletic performance. There is no systematic evidence to support the inclusion of calcium or sodium chloride in drinks consumed an hour or 2 before exercise. Furthermore, if glucose solutions are fed 15 to 45 minutes before prolonged exercise, they will probably cause a fall in blood glucose during exercise and may adversely affect performance. These adverse effects are not present when fructose is consumed before exercise. Contrary to the adverse effects of glucose feedings 15 to 60 minutes

  20. Facts About Fat

    MedlinePlus

    ... Current Issue Past Issues Health Lines Facts About Fat Past Issues / Fall 2008 Table of Contents For ... Writer, NLM Scientists are learning more about our fat cells, and their findings could explain why some ...

  1. Facts about trans fats

    MedlinePlus

    ... of servings you eat in one sitting. Many fast food restaurants use solid oils with trans fat for ... frozen yogurt, milk shakes, and pudding Snack foods Fast food Solid fats, such as shortening and margarine Nondairy ...

  2. Lipocytes (fat cells) (image)

    MedlinePlus

    ... to energy output, there is no expansion of fat cells (lipocytes) to accommodate excess. It is only when more calories are taken in than used that the extra fat is stored in the lipocytes and the person ...

  3. Body Fat Measurement Tools

    MedlinePlus

    ... Cyberkitchen Fitness Center Shape Up & Drop 10 Body Fat Lab BMI Calculator Pregnancy Weight Gain Children Assessing ... Contact List Request for Support Measurement Tools Body fat has many important functions. It is: a "storage ...

  4. PGC-1α plays a functional role in exercise-induced mitochondrial biogenesis and angiogenesis but not fiber-type transformation in mouse skeletal muscle

    PubMed Central

    Geng, Tuoyu; Li, Ping; Okutsu, Mitsuharu; Yin, Xinhe; Kwek, Jyeyi; Zhang, Mei

    2010-01-01

    Endurance exercise stimulates peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) expression in skeletal muscle, and forced expression of PGC-1α changes muscle metabolism and exercise capacity in mice. However, it is unclear if PGC-1α is indispensible for endurance exercise-induced metabolic and contractile adaptations in skeletal muscle. In this study, we showed that endurance exercise-induced expression of mitochondrial enzymes (cytochrome oxidase IV and cytochrome c) and increases of platelet endothelial cell adhesion molecule-1 (PECAM-1, CD31)-positive endothelial cells in skeletal muscle, but not IIb-to-IIa fiber-type transformation, were significantly attenuated in muscle-specific Pgc-1α knockout mice. Interestingly, voluntary running effectively restored the compromised mitochondrial integrity and superoxide dismutase 2 (SOD2) protein expression in skeletal muscle in Pgc-1α knockout mice. Thus, PGC-1α plays a functional role in endurance exercise-induced mitochondrial biogenesis and angiogenesis, but not IIb-to-IIa fiber-type transformation in mouse skeletal muscle, and the improvement of mitochondrial morphology and antioxidant defense in response to endurance exercise may occur independently of PGC-1α function. We conclude that PGC-1α is required for complete skeletal muscle adaptations induced by endurance exercise in mice. PMID:20032509

  5. Weighing in on Dietary Fats

    MedlinePlus

    ... our exit disclaimer . Subscribe Weighing in on Dietary Fats Some Fats Are Healthier Than Others With the winter holidays ... of these foods, though, can be high in fat. Learn which fats are naughty and which are ...

  6. The role of AMPK/mTOR/S6K1 signaling axis in mediating the physiological process of exercise-induced insulin sensitization in skeletal muscle of C57BL/6 mice.

    PubMed

    Liu, Xiaolei; Yuan, Hairui; Niu, Yanmei; Niu, Wenyan; Fu, Li

    2012-11-01

    The crosstalk between mTORC1/S6K1 signaling and AMPK is emerging as a powerful and highly regulated way to gauge cellular energy and nutrient content. The aim of the current study was to determine the mechanism by which exercise training reverses lipid-induced insulin resistance and the role of AMPK/mTOR/S6K1 signaling axis in mediating this response in skeletal muscle. Our results showed that high-fat feeding resulted in decreased glucose tolerance, which was associated with decreased Akt expression and increased intramuscular triglyceride deposition in the skeletal muscle of C57BL/6 mice. Impairments in lipid metabolism were accompanied by increased total protein and phosphorylation of S6K1, SREBP-1c cleavage, and decreased AMPK phosphorylation. Exercise training reversed these impairments, resulting in improved serum lipid profiles and glucose tolerance. C2C12 myotubes were exposed to palmitate, resulting in an increased insulin-dependent Akt Ser473 phosphorylation, associated with a significant increase in the level of phosphorylation of S6K1 on T389. All these changes were reversed by activation of AMPK. Consistent with this, inhibition of AMPK by compound C induced an enhanced phosphorylation of both S6K1 and Akt, and silencing of S6K1 with siRNA showed no effect on Akt phosphorylation in both the absence and presence of palmitate cultured myotubes. In addition, compound C led to an elevated SREBP-1c cleavage but was blocked by S6K1 siRNA. In summary, exercise training inhibits SREBP-1c cleavage through AMPK/mTOR/S6K1 signaling, resulting in decreased intramyocellular lipid accumulation. Our results provide new insights into the mechanism by which AMPK/mTOR/S6K1 signaling axis mediates the physiological process of exercise-induced insulin sensitization. PMID:22846606

  7. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity

    PubMed Central

    Shanely, R. Andrew; Nieman, David C.; Perkins-Veazie, Penelope; Henson, Dru A.; Meaney, Mary P.; Knab, Amy M.; Cialdell-Kam, Lynn

    2016-01-01

    Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function. PMID:27556488

  8. Effects of CoQ10 supplementation and swimming training on exhaustive exercise-induced oxidative stress in rat heart.

    PubMed

    Okudan, N; Revan, S; Balci, S S; Belviranli, M; Pepe, H; Gökbel, H

    2012-01-01

    This study examined the combined effects of swimming training and coenzyme Q10 (CoQ10) supplementation on exhaustive exercise-induced oxidative stress in rat heart. The study was carried out with 4-month-old young adult male Wistar rats. Sixty four rats were divided mainly into two groups: trained and control. Each group was further divided into four subgroups: rest, exhausted, rest with CoQ10, exhausted with CoQ10. The training program consisted of swimming one hour each day, five days a week, for six weeks. At the end of sixth week, rats in exhausted exercise group were forced to swim until exhaustion and then they were immediately sacrificed, while rats in rest group were sacrificed at rest. Training alone or in combination with CoQ10 supplementation reduced to increasing MDA levels due to exhaustive exercise in rat heart (p<0.05). The trained-rest with CoQ10 group showed lower 8-OHdG levels than the control-rest with CoQ10 group. Exhaustive exercise effect was significant on SOD activity. Exhaustive exercise increased GSH levels in control groups while decreased GSH levels in training groups (p<0.05). In conclusion, the results suggest that CoQ10 supplementation combined with training may inhibit lipid peroxidation and DNA damage in the heart tissue. Also, it can be said that SOD activity and GSH levels were not influenced by CoQ10 supplementation (Fig. 4, Tab. 1, Ref. 69). PMID:22794511

  9. Effects of Traumeel (Tr14) on Exercise-Induced Muscle Damage Response in Healthy Subjects: A Double-Blind RCT.

    PubMed

    Muders, Kerstin; Pilat, Christian; Deuster, Vanessa; Frech, Torsten; Krüger, Karsten; Pons-Kühnemann, Jörn; Mooren, Frank-Christoph

    2016-01-01

    The present double-blind, randomized, placebo-controlled clinical trial intended to test whether ingestion of a natural combination medicine (Tr14 tablets) affects serum muscle damage and inflammatory immune response after downhill running. 96 male subjects received Tr14 tablets, which consist of 14 diluted biological and mineral components, or a placebo for 72 h after the exercise test, respectively. Changes in postexercise levels of various serum muscle damage and immunological markers were investigated. The area under the curve with respect to the increase (AUCi) of perceived pain score and creatine kinase (CK) were defined as primary outcome measures. While for CK the p value of the difference between the two groups is borderline, the pain score and muscle strength were not statistically significant. However, a trend towards lower levels of muscle damage (CK, p = 0.05; LDH, p = 0.06) in the Tr14 group was shown. Less pronounced lymphopenia (p = 0.02), a trend towards a lower expression of CD69 count (p = 0.07), and antigen-stimulated ICAM-1 (p = 0.01) were found in the verum group. The Tr14 group showed a tendentially lower increase of neutrophils (p = 0.10), BDNF (p = 0.03), stem cell factor (p = 0.09), and GM-CSF (p = 0.09) to higher levels. The results of the current study indicate that Tr14 seems to limit exercise-induced muscle damage most likely via attenuation of both innate and adaptive immune responses. This study was registered with ClinicalTrials.gov (NCT01912469). PMID:27478305

  10. Exercise-induced increase in IL-6 level enhances GLUT4 expression and insulin sensitivity in mouse skeletal muscle.

    PubMed

    Ikeda, Shin-Ichi; Tamura, Yoshifumi; Kakehi, Saori; Sanada, Hiromi; Kawamori, Ryuzo; Watada, Hirotaka

    2016-05-13

    A single bout of exercise is known to increase the insulin sensitivity of skeletal muscle; however, the underlying mechanism of this phenomenon is not fully understood. Because a single bout of exercise induces a transient increase in blood interleukin-6 (IL-6) level, we hypothesized that the enhancement of insulin sensitivity after a single bout of exercise in skeletal muscle is mediated at least in part through IL-6-dependent mechanisms. To test this hypothesis, C57BL6J mice were intravenously injected with normal IgG or an IL-6 neutralizing antibody before exercise. Twenty-four hours after a single bout of exercise, the plantaris muscle was harvested to measure insulin sensitivity and glucose transporter (GLUT)-4 expression levels by ex-vivo insulin-stimulated 2-deoxyglucose (2-DG) uptake and Western blotting, respectively. Compared with sedentary mice, mice that performed exercise showed enhanced IL-6 concentration, insulin-stimulated 2-DG uptake, and GLUT-4 expression in the plantaris muscle. The enhanced insulin sensitivity and GLUT4 expression were canceled by injection of the IL-6 neutralizing antibody before exercise. In addition, IL-6 injection increased GLUT4 expression, both in the plantaris muscle and the soleus muscle in C57BL6J mice. Furthermore, a short period of incubation with IL-6 increased GLUT4 expression in differentiated C2C12 myotubes. In summary, these results suggested that IL-6 increased GLUT4 expression in muscle and that this phenomenon may play a role in the post-exercise enhancement of insulin sensitivity in skeletal muscle. PMID:27040770

  11. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity.

    PubMed

    Shanely, R Andrew; Nieman, David C; Perkins-Veazie, Penelope; Henson, Dru A; Meaney, Mary P; Knab, Amy M; Cialdell-Kam, Lynn

    2016-01-01

    Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM) contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years) participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125). Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05), however, the rating of perceived exertion was greater during the WM trial (p > 0.05). WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05), but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine), antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function. PMID:27556488

  12. [Silent myocardial ischemia and exercise-induced arrhythmia detected by the exercise test in the total health promotion plan (THP)].

    PubMed

    Iwane, M; Shibe, Y; Itoh, K; Kinoshita, F; Kanagawa, Y; Kobayashi, M; Mugitani, K; Ohta, M; Ohata, H; Yoshikawa, A; Ikuta, Z; Nakamura, Y; Mohara, O

    2001-03-01

    We investigated the prevalence and characteristics of ischemic heart disease especially silent myocardial ischemia (SMI) and arrhythmia in need of careful observation in the exercise stress tests in the Total Health Promotion Plan (THP), which was conducted between 1994-96 for the purpose of measuring cardiopulmonary function. All workers (n = 4,918, 4,426 males) aged 18-60 yr old in an occupational field were studied. Exercise tests with an ergometer were performed by the LOPS protocol, in which the maximal workload was set up as a presumed 70-80% maximal oxygen intake, or STEP (original multistage protocol). ECG changes were evaluated with a CC5 lead. Two hundred and fifteen people refused the study because of a common cold, lumbago and so on. Of 4,703 subjects, 17 with abnormal rest ECG and 19 with probable anginal pain were excluded from the exercise tests. Of 4,667 who underwent the exercise test, 37 (0.79%) had ischemic ECG change, and 155 (3.32%) had striking arrhythmia. These 228 subjects then did a treadmill exercise test with Bruce protocol. Twenty-two (0.47% of 4,703) showed positive ECG change, 9 (0.19%) of 22 had abnormal findings on a 201Tl scan. 8 (0.17%) were diagnosed as SMI (Cohn I), in which the prevalence of hypertension, hyperlipidemia, diabetes mellitus, smoker and positive familial history of ischemic heart disease was greater than that of all subjects. In a 15-30 month follow up, none has developed cardiac accidents. Exercise-induced arrhythmia was detected in 11 (0.23%) subjects. Four were non-sustained ventricular tachycardia without any organic disease, 4 were ventricular arrhythmia based on cardiomyopathy detected by echocardiography, 2 were atrial fibrillation and another was WPW syndrome. It is therefore likely that the ergometer exercise test in THP was effective in preventing sudden death caused by ischemic heart disease or striking arrhythmia. PMID:11329953

  13. Influence of polymorphisms of the beta-2 adrenergic receptor on the presence of exercise-induced bronchospasm in adolescents✰

    PubMed Central

    Consentino, Cássio Leandro Mühe; Furtado-Alle, Lupe; da Silva, Larissa Rosa; Lopes, Wendell Arthur; Tureck, Luciane Viater; Milano, Gerusa Einsfeld; Lazarotto, Leilane; Cavaglieri, Cláudia Regina; Leite, Neiva

    2016-01-01

    Abstract Objective: To determine the influence of polymorphisms of the beta-2 adrenergic receptor (ADRB2) in triggering exercise-induced bronchospasm (EIB) in adolescents. Methods: The subjects were divided into two groups: present EIB (EIB+) (n=45) and absent EIB (EIB−) (n=115). The bronchial provocation test with exercise was performed with a protocol that consisted of walking/running for at least eight minutes at high intensity, i.e., >85% of maximum heart rate, considering EIB+ as a 10% decrease in forced expiratory volume in one second (FEV1). The genotyping of the ADRB2 gene was performed by the Taqman method, using the Step One Plus system. Independent t-test, Mann–Whitney and Chi-square tests, as well as Spearman's correlation coefficient were used for the statistical analysis. Results: Age, body weight, height, FEV1, FVC and FEV1/FVC ratio were lower in the EIB+ group when compared to EIB− (p<0.05). There were no significant differences in the proportion of the allele at position 27 and Arg16Gly and Gln27Glu genotypes between the EIB+ and EIB− groups (p=0.26; p=0.97 and p=0.43, respectively). However, there was a trend toward statistical significance regarding the greater proportion of the Gly16 allele for the EIB+ when compared to the EIB− group (p=0.08). Conclusions: The presence of polymorphisms associated with the Glu27 allele and Arg16Gly and Gln27Glu genotypes had no influence on EIB. However, the statistical trend toward greater frequency of the Gly16 allele in individuals with EIB+ can be considered evidence of the influence of polymorphisms of the ADBR2 gene on EIB in adolescents. PMID:26684442

  14. Exercise-induced alterations in pancreatic oxidative stress and mitochondrial function in type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Raza, Haider; John, Annie; Shafarin, Jasmin; Howarth, Frank C

    2016-04-01

    Progressive metabolic complications accompanied by oxidative stress are the hallmarks of type 2 diabetes. The precise molecular mechanisms of the disease complications, however, remain elusive. Exercise-induced nontherapeutic management of type 2 diabetes is the first line of choice to control hyperglycemia and diabetes associated complications. In this study, using 11-month-old type 2 Goto-Kakizaki (GK) rats, we have investigated the effects of exercise on mitochondrial metabolic and oxidative stress in the pancreas. Our results showed an increase in theNADPHoxidase enzyme activity and reactive oxygen species (ROS) production inGKrats, which was inhibited after exercise. Increased lipid peroxidation and protein carbonylation andSODactivity were also inhibited after exercise. Interestingly, glutathione (GSH) level was markedly high in the pancreas ofGKdiabetic rats even after exercise. However,GSH-peroxidase andGSH-reductase activities were significantly reduced. Exercise also induced energy metabolism as observed by increased hexokinase and glutamate dehydrogenase activities. A significant decrease in the activities of mitochondrial ComplexesII/IIIandIVwere observed in theGKrats. Exercise improved only ComplexIVactivity suggesting increased utilization of oxygen. We also observed increased activities of cytochrome P450s in the pancreas ofGKrats which was reduced significantly after exercise.SDS-PAGEresults have shown a decreased expression ofNF-κB, Glut-2, andPPAR-ϒ inGKrats which was markedly increased after exercise. These results suggest differential oxidative stress and antioxidant defense responses after exercise. Our results also suggest improved mitochondrial function and energy utilization in the pancreas of exercisingGKrats. PMID:27095835

  15. Urinary myoglobin quantification by high-performance liquid chromatography: An alternative measurement for exercise-induced muscle damage.

    PubMed

    Lindsay, Angus; Carr, Sam; Draper, Nick; Gieseg, Steven P

    2015-12-15

    This study investigated a means of quantifying urinary myoglobin using a novel reverse-phase high-performance liquid chromatography (RP-HPLC) method that is an alternative measure of exercise-induced muscle damage. It also investigated the effect of storage and alkalization on urinary myoglobin stability issues. An RP-HPLC method was validated by precision and repeatability experiments. Myoglobin stability was determined through spiked urine samples stored at various temperatures over an 8-week period using alkalization and dilution in a pH 7.0 buffer. The method was validated with urine collected from mixed martial arts fighters during a competition and training session. The method produced linearity from 5 to 1000 μg/ml (R(2) = 0.997), intra- and inter-assay coefficients of variation from 0.32 to 2.94%, and a lower detection limit of 0.2 μg/ml in the final dilution and 2 μg/ml in the original urine sample. Recovery ranged from 96.4 to 102.5%, myoglobin remained stable at 4 °C when diluted in a pH 7.0 buffer after 20 h, and a significant increase (P < 0.01) and an identifiable peak were observed following a mixed martial arts contest and training session. Storage length and conditions had significant effects (P < 0.05) on stability. The method's simplicity and noninvasive nature means it can be used as an alternative muscle damage assay following exercise and trauma. PMID:26363103

  16. Exercise-induced changes in atrial peptides in relation to neuroendocrine responses and fluid balance in the horse.

    PubMed

    Kokkonen, U M; Pösö, A R; Hyyppä, S; Huttunen, P; Leppäluoto, J

    2002-04-01

    Previous data show that, in horses, plasma atrial natriuretic peptides (ANP and NT-ANP) remain elevated for a long time after exercise. To study whether exercise-induced changes in hormonal and fluid balance explain this, we measured plasma concentrations of COOH- and NH2-terminal atrial natriuretic peptides (ANP(99-129) and NT-ANP(1-98) together with arginine vasopressin (AVP), adrenocorticotrophin (ACTH), beta-endorphin, cortisol, catecholamines, and indicators of fluid balance in six Finnhorses after a graded submaximal exercise test on a treadmill. After exercise, AVP and catecholamines diminished rapidly; atrial peptides, ACTH, beta-endorphin, and cortisol remained elevated longer. ANP reached its peak value at 5 min and NT-ANP at 30 min post-exercise. At 60 min, ANP was still significantly increased and NT-ANP even above its level at the end of exercise. The different temporal patterns of ANP and NT-ANP are most probably explained by differences in their plasma half-lives. The post-exercise increase in NT-ANP indicates that the release of atrial peptides is stimulated during recovery after exercise. The rapid decrease in AVP and catecholamines suggests that these hormones do not explain the long-lasting increase in atrial peptides. Cortisol remained elevated longer and it may have contributed to some extent. After exercise, the packed cell volume (PCV) decreased more slowly than plasma total protein and electrolytes, which refers to a slow post-exercise return in blood volume. Taken together, the present results show that the long-lasting post-exercise increase in plasma atrial peptides in horses is most probably explained by elevated central blood volume and that the role of vasoactive hormones is small. PMID:12019955

  17. Normal pulmonary gas exchange efficiency and absence of exercise-induced arterial hypoxemia in adults with bronchopulmonary dysplasia.

    PubMed

    Lovering, Andrew T; Laurie, Steven S; Elliott, Jonathan E; Beasley, Kara M; Yang, Ximeng; Gust, Caitlyn E; Mangum, Tyler S; Goodman, Randall D; Hawn, Jerold A; Gladstone, Igor M

    2013-10-01

    Cardiopulmonary function is reduced in adults born very preterm, but it is unknown if this results in reduced pulmonary gas exchange efficiency during exercise and, consequently, leads to reduced aerobic capacity in subjects with and without bronchopulmonary dysplasia (BPD). We hypothesized that an excessively large alveolar to arterial oxygen difference (AaDO2) and resulting exercise-induced arterial hypoxemia (EIAH) would contribute to reduced aerobic fitness in adults born very preterm with and without BPD. Measurements of pulmonary function, lung volumes and diffusion capacity for carbon monoxide (DLco) were made at rest. Measurements of maximal oxygen consumption, peak workload, temperature- and tonometry-corrected arterial blood gases, and direct measure of hemoglobin saturation with oxygen (SaO2) were made preexercise and during cycle ergometer exercise in ex-preterm subjects ≤32-wk gestational age, with BPD (n = 12), without BPD (PRE; n = 12), and full term controls (CONT; n = 12) breathing room air. Both BPD and PRE had reduced pulmonary function and reduced DLco compared with CONT. The AaDO2 was not significantly different between groups, and there was no evidence of EIAH (SaO2 < 95% and/or AaDO2 ≥ 40 Torr) in any subject group preexercise or at any workload. Arterial O2 content was not significantly different between the groups preexercise or during exercise. However, peak power output was decreased in BPD and PRE subjects compared with CONT. We conclude that EIAH in adult subjects born very preterm with and without BPD does not likely contribute to the reduction in aerobic exercise capacity observed in these subjects. PMID:23869070

  18. Effects of Traumeel (Tr14) on Exercise-Induced Muscle Damage Response in Healthy Subjects: A Double-Blind RCT

    PubMed Central

    Deuster, Vanessa; Frech, Torsten; Pons-Kühnemann, Jörn; Mooren, Frank-Christoph

    2016-01-01

    The present double-blind, randomized, placebo-controlled clinical trial intended to test whether ingestion of a natural combination medicine (Tr14 tablets) affects serum muscle damage and inflammatory immune response after downhill running. 96 male subjects received Tr14 tablets, which consist of 14 diluted biological and mineral components, or a placebo for 72 h after the exercise test, respectively. Changes in postexercise levels of various serum muscle damage and immunological markers were investigated. The area under the curve with respect to the increase (AUCi) of perceived pain score and creatine kinase (CK) were defined as primary outcome measures. While for CK the p value of the difference between the two groups is borderline, the pain score and muscle strength were not statistically significant. However, a trend towards lower levels of muscle damage (CK, p = 0.05; LDH, p = 0.06) in the Tr14 group was shown. Less pronounced lymphopenia (p = 0.02), a trend towards a lower expression of CD69 count (p = 0.07), and antigen-stimulated ICAM-1 (p = 0.01) were found in the verum group. The Tr14 group showed a tendentially lower increase of neutrophils (p = 0.10), BDNF (p = 0.03), stem cell factor (p = 0.09), and GM-CSF (p = 0.09) to higher levels. The results of the current study indicate that Tr14 seems to limit exercise-induced muscle damage most likely via attenuation of both innate and adaptive immune responses. This study was registered with ClinicalTrials.gov (NCT01912469). PMID:27478305

  19. Dual AAV therapy ameliorates exercise-induced muscle injury and functional ischemia in murine models of Duchenne muscular dystrophy

    PubMed Central

    Zhang, Yadong; Yue, Yongping; Li, Liang; Hakim, Chady H.; Zhang, Keqing; Thomas, Gail D.; Duan, Dongsheng

    2013-01-01

    Neuronal nitric oxide synthase (nNOS) membrane delocalization contributes to the pathogenesis of Duchenne muscular dystrophy (DMD) by promoting functional muscle ischemia and exacerbating muscle injury during exercise. We have previously shown that supra-physiological expression of nNOS-binding mini-dystrophin restores normal blood flow regulation and prevents functional ischemia in transgenic mdx mice, a DMD model. A critical next issue is whether systemic dual adeno-associated virus (AAV) gene therapy can restore nNOS-binding mini-dystrophin expression and mitigate muscle activity-related functional ischemia and injury. Here, we performed systemic gene transfer in mdx and mdx4cv mice using a pair of dual AAV vectors that expressed a 6 kb nNOS-binding mini-dystrophin gene. Vectors were packaged in tyrosine mutant AAV-9 and co-injected (5 × 1012 viral genome particles/vector/mouse) via the tail vein to 1-month-old dystrophin-null mice. Four months later, we observed 30–50% mini-dystrophin positive myofibers in limb muscles. Treatment ameliorated histopathology, increased muscle force and protected against eccentric contraction-induced injury. Importantly, dual AAV therapy successfully prevented chronic exercise-induced muscle force drop. Doppler hemodynamic assay further showed that therapy attenuated adrenergic vasoconstriction in contracting muscle. Our results suggest that partial transduction can still ameliorate nNOS delocalization-associated functional deficiency. Further evaluation of nNOS binding mini-dystrophin dual AAV vectors is warranted in dystrophic dogs and eventually in human patients. PMID:23681067

  20. Evidence and Mechanisms of Fat Depletion in Cancer

    PubMed Central

    Ebadi, Maryam; Mazurak, Vera C.

    2014-01-01

    The majority of cancer patients experience wasting characterized by muscle loss with or without fat loss. In human and animal models of cancer, body composition assessment and morphological analysis reveals adipose atrophy and presence of smaller adipocytes. Fat loss is associated with reduced quality of life in cancer patients and shorter survival independent of body mass index. Fat loss occurs in both visceral and subcutaneous depots; however, the pattern of loss has been incompletely characterized. Increased lipolysis and fat oxidation, decreased lipogenesis, impaired lipid depositionand adipogenesis, as well as browning of white adipose tissue may underlie adipose atrophy in cancer. Inflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β) produced by the tumor or adipose tissue may also contribute to adipose depletion. Identifying the mechanisms and time course of fat mass changes in cancer may help identify individuals at risk of adipose depletion and define interventions to circumvent wasting. This review outlines current knowledge of fat mass in cancer and illustrates the need for further studies to assess alterations in visceral and subcutaneous adipose depots and possible mechanisms for loss of fat during cancer progression. PMID:25415607

  1. Exercise-Induced Asthma

    MedlinePlus

    ... to recover. And extremes of temperature, especially cold weather, can make it even worse. Diagnosing EIA A ... basketball) may be more challenging, as can cold-weather endurance sports like cross-country skiing or ice ...

  2. Exercise-Induced Bronchospasm

    MedlinePlus

    ... symptoms of EIB. Avoid exercising in extremely cold temperatures or when you have a respiratory infection, such ... by T Sinha, MD; AK David, MD (American Family Physician February 15, 2003, http://www.aafp.org/ ...

  3. Physicochemical properties and sensory characteristics of reduced-fat frankfurters with pork back fat replaced by dietary fiber extracted from makgeolli lees.

    PubMed

    Choi, Yun-Sang; Kim, Hyun-Wook; Hwang, Ko-Eun; Song, Dong-Heon; Choi, Ji-Hun; Lee, Mi-Ai; Chung, Hai-Jung; Kim, Cheon-Jei

    2014-02-01

    The effects of reducing pork fat levels from 30% to 20%, 15%, and 10% by partially substituting pork back fat with a makgeolli lees fiber were investigated regarding approximate composition, energy value, pH, color, cooking loss, emulsion stability, texture profile analysis, apparent viscosity, and sensory evaluation. The moisture and ash contents, redness, and yellowness were higher in reduced-fat frankfurters containing makgeolli lees fiber than in the control with 30% fat. With increasing fat levels, samples displayed higher pH, lightness, hardness, cohesiveness, gumminess, chewiness, apparent viscosity, and sensory quality, while displaying lower cooking loss and total expressible fluid. The results show that fat levels of frankfurters with added makgeolli lees fiber can be successfully reduced. Thus, 20% fat frankfurters with the addition of 2% makgeolli lees fiber are similar in quality to regular frankfurters with 30% fat. PMID:24200582

  4. Limited Weight Loss or Simply No Weight Gain following Lifestyle-Only Intervention Tends to Redistribute Body Fat, to Decrease Lipid Concentrations, and to Improve Parameters of Insulin Sensitivity in Obese Children

    PubMed Central

    2011-01-01

    Objectives. To investigate whether lifestyle-only intervention in obese children who maintain or lose a modest amount of weight redistributes parameters of body composition and reverses metabolic abnormalities. Study Design. Clinical, anthropometric, and metabolic parameters were assessed in 111 overweight or obese children (CA of 11.3 ± 2.8 years; 63 females and 48 males), during 8 months of lifestyle intervention. Patients maintained or lost weight (1–5%) (group A; n: 72) or gained weight (group B). Results. Group A patients presented with a decrease in systolic blood pressure (SBP) and diastolic blood pressure (DBP) ( and , resp.), BMI (), z-score BMI (), waist circumference (), fat mass (), LDL-C (), Tg/HDL-C ratio (), fasting and postprandial insulin (), and HOMA (), while HDL-C () and QUICKI increased (). Conversely, group B patients had an increase in BMI (), waist circumference (), SBP (), and in QUICKI (), while fat mass (), fasting insulin (), and HOMA () decreased. Lean mass, DBP, lipid concentrations, fasting and postprandial glucose, postprandial insulin, and ultrasensitive C-reactive protein (CRP) remained stable. Conclusions. Obese children who maintain or lose a modest amount of weight following lifestyle-only intervention tend to redistribute their body fat, decrease blood pressure and lipid levels, and to improve parameters of insulin sensitivity. PMID:21603203

  5. On fat oppression.

    PubMed

    Eller, G M

    2014-09-01

    Contemporary Western societies are obsessed with the "obesity epidemic," dieting, and fitness. Fat people violate the Western conscience by violating a thinness norm. In virtue of violating the thinness norm, fat people suffer many varied consequences. Is their suffering morally permissible, or even obligatory? In this paper, I argue that the answer is no. I examine contemporary philosophical accounts of oppression and draw largely on the work of Sally Haslanger to generate a set of conditions sufficient for some phenomena to count as oppression, and I illustrate the account's value using the example of gender oppression. I then apply the account to fat people, examine empirical evidence, and argue that the suffering of fat people counts as oppression (and therefore, generally, discriminating against fat people in virtue of their being fat is morally wrong). PMID:25423849

  6. Relationship between exercise induced elevation of left ventricular filling pressure and exercise intolerance in patients with atrial fibrillation

    PubMed Central

    Chen, Shao-Min; He, Rong; Li, Wei-Hong; Li, Zhao-Ping; Chen, Bao-Xia; Feng, Xin-Heng

    2016-01-01

    Background Elevated left ventricular filling pressure (LVFP) is an important cause of exercise intolerance in patients with atrial fibrillation (AF). Exercise stress echocardiography could assess LVFP during exercise. The objective of this study was to investigate the relationship between exercise induced elevation of LVFP and exercise capacity in patients with AF. Methods This study included 145 consecutive patients (81 men and 64 women; mean age 65.5 ± 8.0 years) with persistent non-valvular AF and normal left ventricular systolic function (left ventricular ejection fraction ≥ 50%). All patients underwent a symptom-limited cardiopulmonary exercise test (CPET). Doppler echocardiography was performed both at rest and immediately after exercise. Five consecutive measurements of early diastolic mitral inflow velocity (E) and early diastolic mitral annular velocity (e') were taken and averaged. E/e' ratio was calculated. Elevated LVFP was defined as E/e' > 9, and patients with elevated LVFP at rest were excluded. Results Patients were classified into two groups according to LVFP estimated by E/e' ratio after exercise: 39 (26.9%) with elevated LVFP after exercise and 106 (73.1%) with normal LVFP. As compared with patients with normal LVFP, the ones with elevated LVFP after exercise had significantly lower peak oxygen uptake (VO2 peak) (21.7 ± 2.3 vs. 26.4 ± 3.8 mL/min per kilogram, P < 0.001), lower anaerobic threshold (19.9 ± 2.5 vs. 26.0 ± 4.0 mL/min per kilogram, P < 0.001), and shorter exercise time duration (6.2 ± 0.8 vs. 7.0 ± 1.3 min, P < 0.001). Multivariate analysis showed that age, gender and E/e' after exercise were significantly correlated with VO2 peak. Conclusion Elevated LVFP estimated by E/e' ratio after exercise is independently associated with reduced exercise capacity in AF patients. PMID:27582773

  7. Resistance exercise, but not endurance exercise, induces IKKβ phosphorylation in human skeletal muscle of training-accustomed individuals.

    PubMed

    Møller, Andreas Buch; Vendelbo, Mikkel Holm; Rahbek, Stine Klejs; Clasen, Berthil Forrest; Schjerling, Peter; Vissing, Kristian; Jessen, Niels

    2013-12-01

    The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKβ and the mitogen-activated protein kinases (MAPKs) Erk1/2 and p38 has been suggested to link inflammation and cellular stress to activation of mTORC1 through the tuberous sclerosis 1 (TSC1)/tuberous sclerosis 2 (TSC2) complex. Consequently, activation of these proteins constitutes potential alternative mechanisms of mTORC1 activation following exercise. Previously, we demonstrated that mTOR is preferentially activated in response to resistance exercise compared to endurance exercise in trained individuals without concomitant activation of Akt. In the present study, we extended this investigation by examining IκB kinase complex (IKK), TSC1, MAPK, and upstream Akt activators, along with gene expression of selected cytokines, in skeletal muscles from these subjects. Biopsies were sampled prior to, immediately after, and in the recovery period following resistance exercise, endurance exercise, and control interventions. The major finding was that IKKβ phosphorylation increased exclusively after resistance exercise. No changes in TSC1, Erk1/2, insulin receptor, or insulin receptor substrate 1 phosphorylation were observed in any of the groups, while p38 phosphorylation was higher in the resistance exercise group compared to both other groups immediately after the intervention. Resistance and endurance exercise increased IL6, IL8, and TNFα gene expression immediately after exercise. The non-exercise control group demonstrated that cytokine gene expression is also sensitive to repeated biopsy sampling, whereas no effect of repeated biopsy sampling on protein expression and phosphorylation was observed. In conclusion, resistance exercise, but not endurance exercise, increases IKKβ phosphorylation in trained

  8. Comparison of mannitol and methacholine to predict exercise-induced bronchoconstriction and a clinical diagnosis of asthma

    PubMed Central

    Anderson, Sandra D; Charlton, Brett; Weiler, John M; Nichols, Sara; Spector, Sheldon L; Pearlman, David S

    2009-01-01

    Background Asthma can be difficult to diagnose, but bronchial provocation with methacholine, exercise or mannitol is helpful when used to identify bronchial hyperresponsiveness (BHR), a key feature of the disease. The utility of these tests in subjects with signs and symptoms of asthma but without a clear diagnosis has not been investigated. We investigated the sensitivity and specificity of mannitol to identify exercise-induced bronchoconstriction (EIB) as a manifestation of BHR; compared this with methacholine; and compared the sensitivity and specificity of mannitol and methacholine for a clinician diagnosis of asthma. Methods 509 people (6–50 yr) were enrolled, 78% were atopic, median FEV1 92.5% predicted, and a low NAEPPII asthma score of 1.2. Subjects with symptoms of seasonal allergy were excluded. BHR to exercise was defined as a ≥ 10% fall in FEV1 on at least one of two tests, to methacholine a PC20 ≤ 16 mg/ml and to mannitol a 15% fall in FEV1 at ≤ 635 mg or a 10% fall between doses. The clinician diagnosis of asthma was made on examination, history, skin tests, questionnaire and response to exercise but they were blind to the mannitol and methacholine results. Results Mannitol and methacholine were therapeutically equivalent to identify EIB, a clinician diagnosis of asthma, and prevalence of BHR. The sensitivity/specificity of mannitol to identify EIB was 59%/65% and for methacholine it was 56%/69%. The BHR was mild. Mean EIB % fall in FEV1 in subjects positive to exercise was 19%, (SD 9.2), mannitol PD15 158 (CI:129,193) mg, and methacholine PC20 2.1(CI:1.7, 2.6)mg/ml. The prevalence of BHR was the same: for exercise (43.5%), mannitol (44.8%), and methacholine (41.6%) with a test agreement between 62 & 69%. The sensitivity and specificity for a clinician diagnosis of asthma was 56%/73% for mannitol and 51%/75% for methacholine. The sensitivity increased to 73% and 72% for mannitol and methacholine when two exercise tests were positive

  9. Temperature- and exercise-induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio)

    PubMed Central

    McClelland, Grant B; Craig, Paul M; Dhekney, Kalindi; Dipardo, Shawn

    2006-01-01

    (i.e. HOAD and PK activities). While similar changes in NRF-1 mRNA suggest that common responses might underlie aerobic muscle remodelling there are distinct changes (i.e. CS and PPAR-β1 mRNA) that contribute to specific temperature- and exercise-induced phenotypes. PMID:16990399

  10. Ghrelin receptor controls obesity by fat burning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emerging evidence show that brown fat in the body produces heat to burn energy, thus prompting weight loss. Ghrelin is the only known hormone which increases appetite and promotes weight gain. We have reported that mice that lack the receptor which mediates the functions of ghrelin are lean. Our fu...

  11. Improvements in impaired GABA and GAD65/67 production in the spinal dorsal horn contribute to exercise-induced hypoalgesia in a mouse model of neuropathic pain

    PubMed Central

    Taguchi, MS, Satoru; Tajima, Fumihiro; Senba, Emiko

    2016-01-01

    Background Physical exercise effectively attenuates neuropathic pain, and multiple events including the inhibition of activated glial cells in the spinal dorsal horn, activation of the descending pain inhibitory system, and reductions in pro-inflammatory cytokines in injured peripheral nerves may contribute to exercise-induced hypoalgesia. Since fewer GABAergic hypoalgesic interneurons exist in the dorsal horn in neuropathic pain model animals, the recovery of impaired GABAergic inhibition in the dorsal horn may improve pain behavior. We herein determined whether the production of gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD) in the dorsal horn is restored by treadmill running and contributes to exercise-induced hypoalgesia in neuropathic pain model mice. C57BL/6 J mice underwent partial sciatic nerve ligation (PSL). PSL-Runner mice ran on a treadmill at 7 m/min for 60 min/day, 5 days/week, from two days after PSL. Results Mechanical allodynia and heat hyperalgesia developed in PSL-Sedentary mice but were significantly attenuated in PSL-Runner mice. PSL markedly decreased GABA and GAD65/67 levels in neuropils in the ipsilateral dorsal horn, while treadmill running inhibited these reductions. GABA+ neuronal nuclei+ interneuron numbers in the ipsilateral dorsal horn were significantly decreased in PSL-Sedentary mice but not in PSL-Runner mice. Pain behavior thresholds positively correlated with GABA and GAD65/67 levels and GABAergic interneuron numbers in the ipsilateral dorsal horns of PSL-Sedentary and -Runner mice. Conclusions Treadmill running prevented PSL-induced reductions in GAD65/67 production, and, thus, GABA levels may be retained in interneurons and neuropils in the superficial dorsal horn. Therefore, improvements in impaired GABAergic inhibition may be involved in exercise-induced hypoalgesia. PMID:27030712

  12. Noninvasive prediction of the exercise-induced elevation in left ventricular filling pressure in post-heart transplant patients with normal left ventricular ejection fraction

    PubMed Central

    Meluzin, Jaroslav; Hude, Petr; Krejci, Jan; Spinarova, Lenka; Podrouzkova, Helena; Leinveber, Pavel; Dusek, Ladislav; Soska, Vladimir; Tomandl, Josef; Nemec, Petr

    2013-01-01

    OBJECTIVES: At present, there are conflicting data on the ability of echocardiographic parameters to predict the exercise-induced elevation of left ventricular (LV) filling pressure. The purpose of the present study was to validate the ratio of early diastolic transmitral (E) to mitral annular velocity (e′) obtained at peak exercise in its capacity to determine the exercise-induced elevation of pulmonary capillary wedge pressure (PCWP) and to reveal new noninvasive parameters with such capacity. METHODS: Sixty-one patients who had undergone heart transplantation with normal LV ejection fraction underwent simultaneous exercise echocardiography and right heart catheterization. RESULTS: In 50 patients with a normal PCWP at rest, exercise E/e′ ≥8.5 predicted exercise PCWP ≥25 mmHg with a sensitivity of 64.3% and a specificity of 84.2% (area under the curve [AUC]=0.74). A comparable or slightly better prediction was achieved by exercise E/peak systolic mitral annular velocity (s′) ≥11.0 (sensitivity 79.3%; specificity 57.9%; AUC=0.75) and exercise E/LV systolic longitudinal strain rate ≤−105 cm (sensitivity 78.9%; specificity 78.6%; AUC=0.87). Combined, exercise E/s′ and exercise E/e′ resulted in a trend toward a slightly more precise prediction (sensitivity 53.6%; specificity 89.5%; AUC=0.78) than did either variable alone. CONCLUSIONS: Exercise E/e′, used as a sole parameter, is not sufficiently precise to predict the exercise-induced elevation of PCWP. Exercise E/s′, E/LV systolic longitudinal strain rate or combinations of these parameters may represent further promising possibilities for predicting exercise PCWP elevation. PMID:23940422

  13. Physical exercise-induced changes in the core body temperature of mice depend more on ambient temperature than on exercise protocol or intensity

    NASA Astrophysics Data System (ADS)

    Wanner, Samuel Penna; Costa, Kátia Anunciação; Soares, Anne Danieli Nascimento; Cardoso, Valbert Nascimento; Coimbra, Cândido Celso

    2014-08-01

    The mechanisms underlying physical exercise-induced hyperthermia may be species specific. Therefore, the present study aimed to investigate the effects of exercise intensity and ambient temperature on the core body temperature ( T core) of running mice, which provide an important experimental model for advancing the understanding of thermal physiology. We evaluated the influence of different protocols (constant- or incremental-speed exercises), treadmill speeds and ambient temperatures ( T a) on the magnitude of exercise-induced hyperthermia. To measure T core, a telemetric sensor was implanted in the abdominal cavity of male adult Swiss mice under anesthesia. After recovering from the surgery, the animals were familiarized to running on a treadmill and then subjected to the different running protocols and speeds at two T a: 24 °C or 34 °C. All of the experimental trials resulted in marked increases in T core. As expected, the higher-temperature environment increased the magnitude of running-induced hyperthermia. For example, during incremental exercise at 34 °C, the maximal T core achieved was increased by 1.2 °C relative to the value reached at 24 °C. However, at the same T a, neither treadmill speed nor exercise protocol altered the magnitude of exercise-induced hyperthermia. We conclude that T core of running mice is influenced greatly by T a, but not by the exercise protocols or intensities examined in the present report. These findings suggest that the magnitude of hyperthermia in running mice may be regulated centrally, independently of exercise intensity.

  14. Verification of a canine model of transient exercise induced myocardial dysfunction: antianginal effects of flestolol, an ultra short acting beta adrenoceptor antagonist.

    PubMed

    Fischer, G; Grohs, J G; Raberger, G

    1990-02-01

    STUDY OBJECTIVE - The aim of the study was to verify the reproducibility of a canine model of treadmill exercise induced regional myocardial dysfunction designed to mimic exertional angina pectoris in man. DESIGN - Dogs trained to run on a treadmill were chronically instrumented with a microtip manometer in the left ventricle, a hydraulic occluder around the circumflex branch of the left coronary artery, two pairs of crystals for sonomicrometry, and arterial and venous catheters. Experiments were started 10 d after surgery, when the animals were submitted to seven treadmill exercise cycles, each of 3 min, with a 7 min recovery period. Ischaemia was adjusted so as not to impair regional function at rest but to produce progressive dysfunction with increasing work load. Flestolol (1 microgram.kg-1.min-1) was infused intravenously during the third and fourth exercise cycle. SUBJECTS - Six mongrel dogs, 13.5-29.5 kg, were used. MEASUREMENTS and RESULTS - Flestolol caused a marked reduction in the exercise induced increase in left ventricular positive dP/dtmax, and minor reductions in heart rate and systolic blood pressure, resulting in a decrease in myocardial oxygen demand and an improvement in regional function in the circumflex area of the left coronary artery. The functional improvement was transient and disappeared entirely after termination of flestolol infusion. CONCLUSIONS - The results show that flestolol is beneficial in conditions of limited coronary reserve and exercise induced myocardial dysfunction. The fact that the extent of regional myocardial dysfunction was comparable before and after flestolol infusion confirms the stability and usefulness of this experimental model in the evaluation of antianginal drugs. PMID:1970278

  15. Weight Loss at a Cost: Implications of High-Protein, Low- Carbohydrate Diets.

    ERIC Educational Resources Information Center

    Gabel, Kathe A.; Lund, Robin J.

    2002-01-01

    Addresses three claims of high-protein, low-carbohydrate diets: weight loss is attributed to the composition of the diet; insulin promotes the storage of fat, thereby, by limiting carbohydrates, dieters will decrease levels of insulin and body fat; and weight loss is the result of fat loss. The paper examines relevant scientific reports and notes…

  16. Evidence that the branched-chain amino acid L-valine prevents exercise-induced release of 5-HT in rat hippocampus.

    PubMed

    Gomez-Merino, D; Béquet, F; Berthelot, M; Riverain, S; Chennaoui, M; Guezennec, C Y

    2001-07-01

    The branched-chain amino acid L-valine competes with tryptophan for transport into the brain and has previously been shown to decrease brain 5-HT synthesis. The purpose of this study was to assess, using a combined venous catheterization and in vivo microdialysis method, the effect of pre-exercise L-valine administration on 5-hydroxytryptamine (5-HT) metabolism in the ventral hippocampus of rats submitted to an acute intensive treadmill running (120 min at 25 m x min(-1) followed by 150 min of recovery). The presented results include measurement of extracellular tryptophan (TRP), the 5-HT precursor, and extracellular 5-hydroxyindoleacetic acid (5-HIAA), the 5-HT metabolite. The data clearly demonstrate that exercise induces 5-HT release in the rat hippocampus: in control group, hippocampal 5-HT levels increase from 123.7 +/- 6.4% at the end of exercise to 133.9 +/- 6.4% after 60 min of recovery. Moreover, two hours of intensive running induced significant increases both in extracellular TRP levels (from 120 min of exercise to 30 min of recovery) and 5-HIAA levels (from 90 min of exercise to 90 min of recovery). Pre-exercise administration of L-valine prevents significantly the exercise-induced 5-HT release: 5-HT levels are maintained to baseline during exercise and recovery. With regard to the competitive effect of L-valine with TRP, we could observe a treatment-induced decrease in brain TRP levels (from 120 min of exercise to the end of recovery). Besides, L-valine does not prevent exercise-induced increase in 5-HIAA levels. The present study evidences that an acute intensive exercise stimulates 5-HT metabolism in the rat hippocampus, and that a pre-exercise administration of L-valine prevents, via a limiting effect on 5-HT synthesis, exercise-induced 5-HT release. This study provides some anwers to previous human and animal investigations, showing physiological and psychological benefits of branched-chain amino acids supplementation on performance. PMID:11510866

  17. Fat harvesting techniques for facial fat transfer.

    PubMed

    Lam, Samuel M; Glasgold, Robert A; Glasgold, Mark J

    2010-10-01

    Fat grafting has become popular as a stand-alone technique or as part of a combined procedure for facial rejuvenation, as volume restoration has increasingly become recognized as an important component in overall facial aging. Many facial plastic surgeons who are experienced in operating only in the head and neck region are unaccustomed to working elsewhere in the body. Accordingly, this article sets out to detail the specific technique for safe and effective lipoharvesting for facial fat transfer. In addition, site-specific considerations for the lower abdomen, inner/anterior/outer thighs, triceps, inner knee, buttock, and lower back are also discussed. PMID:20853226

  18. FAT1 mutations cause a glomerulotubular nephropathy

    PubMed Central

    Gee, Heon Yung; Sadowski, Carolin E.; Aggarwal, Pardeep K.; Porath, Jonathan D.; Yakulov, Toma A.; Schueler, Markus; Lovric, Svjetlana; Ashraf, Shazia; Braun, Daniela A.; Halbritter, Jan; Fang, Humphrey; Airik, Rannar; Vega-Warner, Virginia; Cho, Kyeong Jee; Chan, Timothy A.; Morris, Luc G. T.; ffrench-Constant, Charles; Allen, Nicholas; McNeill, Helen; Büscher, Rainer; Kyrieleis, Henriette; Wallot, Michael; Gaspert, Ariana; Kistler, Thomas; Milford, David V.; Saleem, Moin A.; Keng, Wee Teik; Alexander, Stephen I.; Valentini, Rudolph P.; Licht, Christoph; Teh, Jun C.; Bogdanovic, Radovan; Koziell, Ania; Bierzynska, Agnieszka; Soliman, Neveen A.; Otto, Edgar A.; Lifton, Richard P.; Holzman, Lawrence B.; Sibinga, Nicholas E. S.; Walz, Gerd; Tufro, Alda; Hildebrandt, Friedhelm

    2016-01-01

    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function. PMID:26905694

  19. FAT1 mutations cause a glomerulotubular nephropathy.

    PubMed

    Gee, Heon Yung; Sadowski, Carolin E; Aggarwal, Pardeep K; Porath, Jonathan D; Yakulov, Toma A; Schueler, Markus; Lovric, Svjetlana; Ashraf, Shazia; Braun, Daniela A; Halbritter, Jan; Fang, Humphrey; Airik, Rannar; Vega-Warner, Virginia; Cho, Kyeong Jee; Chan, Timothy A; Morris, Luc G T; ffrench-Constant, Charles; Allen, Nicholas; McNeill, Helen; Büscher, Rainer; Kyrieleis, Henriette; Wallot, Michael; Gaspert, Ariana; Kistler, Thomas; Milford, David V; Saleem, Moin A; Keng, Wee Teik; Alexander, Stephen I; Valentini, Rudolph P; Licht, Christoph; Teh, Jun C; Bogdanovic, Radovan; Koziell, Ania; Bierzynska, Agnieszka; Soliman, Neveen A; Otto, Edgar A; Lifton, Richard P; Holzman, Lawrence B; Sibinga, Nicholas E S; Walz, Gerd; Tufro, Alda; Hildebrandt, Friedhelm

    2016-01-01

    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function. PMID:26905694

  20. Predictors of fat mass changes in response to aerobic exercise training in women.

    PubMed

    Sawyer, Brandon J; Bhammar, Dharini M; Angadi, Siddhartha S; Ryan, Dana M; Ryder, Justin R; Sussman, Elizabeth J; Bertmann, Farryl M W; Gaesser, Glenn A

    2015-02-01

    Aerobic exercise training in women typically results in minimal fat loss, with considerable individual variability. We hypothesized that women with higher baseline body fat would lose more body fat in response to exercise training and that early fat loss would predict final fat loss. Eighty-one sedentary premenopausal women (age: 30.7 ± 7.8 years; height: 164.5 ± 7.4 cm; weight: 68.2 ± 16.4 kg; fat percent: 38.1 ± 8.8) underwent dual-energy x-ray absorptiometry before and after 12 weeks of supervised treadmill walking 3 days per week for 30 minutes at 70% of (Equation is included in full-text article.). Overall, women did not lose body weight or fat mass. However, considerable individual variability was observed for changes in body weight (-11.7 to +4.8 kg) and fat mass (-11.8 to +3.7 kg). Fifty-five women were classified as compensators and, as a group, gained fat mass (25.6 ± 11.1 kg to 26.1 ± 11.3 kg; p < 0.001). The strongest correlates of change in body fat at 12 weeks were change in body weight (r = 0.52) and fat mass (r = 0.48) at 4 weeks. Stepwise regression analysis that included change in body weight and body fat at 4 weeks and submaximal exercise energy expenditure yielded a prediction model that explained 37% of the variance in fat mass change (R = 0.37, p < 0.001). Change in body weight and fat mass at 4 weeks were moderate predictors of fat loss and may potentially be useful for identification of individuals who achieve less than expected weight loss or experience unintended fat gain in response to exercise training. PMID:25353081

  1. Fats and fatty acids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  2. 9 CFR 310.13 - Inflating carcasses or parts thereof; transferring caul or other fat.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; transferring caul or other fat. 310.13 Section 310.13 Animals and Animal Products FOOD SAFETY AND INSPECTION... carcasses or parts thereof; transferring caul or other fat. (a)(1) Establishments shall not inflate... swine to facilitate the skinning operation and to minimize the loss of body fat. The method...

  3. Botulinum toxin injections to reduce adiposity: possibility, or fat chance?

    PubMed

    Lim, Erle C H; Seet, Raymond C S

    2006-01-01

    Obese individuals often suffer from negative self-image. Many, even those with a normal body mass index, resort to pharmacotherapy (lipase inhibitors or appetite suppressants), mesotherapy and surgery (gastric volume reduction, liposuction or apronectomy) in a bid to remove excess adipose tissue. These treatments are associated with inherent morbidity and even mortality, and hence should not be undertaken lightly. The observation that denervation of adipose tissue results in lipoatrophy leads us to postulate that chemodenervation using botulinum toxin may achieve the same result, i.e. fat loss, and we explore the methods by which selective fat loss may be achieved. We concede that removal of subcutaneous fat does not, however, reduce the risks associated with the metabolic syndrome, as visceral (intra-abdominal) fat is not reduced by the removal of subcutaneous fat. PMID:16716533

  4. Face the Fats Quiz 2

    MedlinePlus

    Face the Fats Quiz II Do you know your fats by heart? Ready to make informed choices about the foods you ... to fried chicken, test your knowledge about the fats in some familiar foods. Welcome to Face the ...

  5. Fat Necrosis and Oil Cysts

    MedlinePlus

    ... Previous Topic Granular cell tumors Next Topic Mastitis Fat necrosis and oil cysts Fat necrosis happens when ... lumpy area if it becomes bothersome. How do fat necrosis and oil cysts affect your risk for ...

  6. Exercise-induced myofibrillar disruption with sarcolemmal integrity prior to simulated diving has no effect on vascular bubble formation in rats.

    PubMed

    Jørgensen, Arve; Foster, Philip P; Eftedal, Ingrid; Wisløff, Ulrik; Paulsen, Gøran; Havnes, Marianne B; Brubakk, Alf O

    2013-05-01

    Decompression sickness is initiated by gas bubbles formed during decompression, and it has been generally accepted that exercise before decompression causes increased bubble formation. There are indications that exercise-induced muscle injury seems to be involved. Trauma-induced skeletal muscle injury and vigorous exercise that could theoretically injure muscle tissues before decompression have each been shown to result in profuse bubble formation. Based on these findings, we hypothesized that exercise-induced skeletal muscle injury prior to decompression from diving would cause increase of vascular bubbles and lower survival rates after decompression. In this study, we examined muscle injury caused by eccentric exercise in rats prior to simulated diving and we observed the resulting bubble formation. Female Sprague-Dawley rats (n = 42) ran downhill (-16º) for 100 min on a treadmill followed by 90 min rest before a 50-min simulated saturation dive (709 kPa) in a pressure chamber. Muscle injury was evaluated by immunohistochemistry and qPCR, and vascular bubbles after diving were detected by ultrasonic imaging. The exercise protocol resulted in increased mRNA expression of markers of muscle injury; αB-crystallin, NF-κB, and TNF-α, and myofibrillar disruption with preserved sarcolemmal integrity. Despite evident myofibrillar disruption after eccentric exercise, no differences in bubble amounts or survival rates were observed in the exercised animals as compared to non-exercised animals after diving, a novel finding that may be applicable to humans. PMID:23129090

  7. Acute Exercise Induced Mitochondrial H2O2 Production in Mouse Skeletal Muscle: Association with p66Shc and FOXO3a Signaling and Antioxidant Enzymes

    PubMed Central

    Wang, Ping; Qi, Zhengtang; Cui, Di; Ding, Shuzhe

    2015-01-01

    Exercise induced skeletal muscle phenotype change involves a complex interplay between signaling pathways and downstream regulators. This study aims to investigate the effect of acute exercise on mitochondrial H2O2 production and its association with p66Shc, FOXO3a, and antioxidant enzymes. Male ICR/CD-1 mice were subjected to an acute exercise. Muscle tissues (gastrocnemius and quadriceps femoris) were taken after exercise to measure mitochondrial H2O2 content, expression of p66Shc and FOXO3a, and the activity of antioxidant enzymes. The results showed that acute exercise significantly increased mitochondrial H2O2 content and expressions of p66Shc and FOXO3a in a time-dependent manner, with a linear correlation between the increase in H2O2 content and p66Shc or FOXO3a expression. The activity of mitochondrial catalase was slightly reduced in the 90 min exercise group, but it was significantly higher in groups with 120 and 150 min exercise compared to that of 90 min exercise group. The activity of SOD was not significantly affected. The results indicate that acute exercise increases mitochondrial H2O2 production in the skeletal muscle, which is associated with the upregulation of p66Shc and FOXO3a. The association of p66Shc and FOXO3a signaling with exercise induced H2O2 generation may play a role in regulating cellular oxidative stress during acute exercise. PMID:25874020

  8. Physical exercise-induced expression of inducible nitric oxide synthase and heme oxygenase-1 in human leukocytes: effects of RRR-alpha-tocopherol supplementation.

    PubMed

    Niess, A M; Sommer, M; Schneider, M; Angres, C; Tschositsch, K; Golly, I C; Battenfeld, N; Northoff, H; Biesalski, H K; Dickhuth, H H; Fehrenbach, E

    2000-01-01

    This study evaluated the effects of RRR-alpha-tocopherol (500 IU/day, 8 days) on in vivo cytokine response and cytoplasmic expression of inducible nitric oxide synthase (iNOS) and the antioxidant stress protein heme oxygenase-1 (HO-1) in human leukocytes after exhaustive exercise. Thirteen men were investigated in a double-blind, placebo-controlled, cross-over study with a wash-out period of 28 days. The exercise procedure consisted of an incremental treadmill test followed by a continuous run until exhaustion at 110% of the individual anaerobic threshold (total duration 28.5 +/- 0.8 min). HO-1 and iNOS protein were assessed in mono- (M), lympho-, and granulocytes (G) using flow cytometry. Plasma interleukin-6 (IL-6) and IL-8 were measured by ELISA. IL-6 rose significantly whereas IL-8 did not exhibit significant changes after exercise. Changes of IL-6 were not affected by RRR-alpha-tocopherol. Exercise induced an increase of iNOS protein primarily in M and G. A small, but significant, increase of HO-1 protein was measured in M and G. RRR-alpha-Tocopherol did not show any significant effects on cytoplasmic expression of iNOS and HO-1 at rest and after exercise. In conclusion, exhaustive exercise induces expression of iNOS and HO-1 in human leukocytes by a mechanism that is not sensitive to RRR-alpha-tocopherol supplementation. PMID:11232592

  9. Effect of different fat level on microwave cooking properties of goat meat patties.

    PubMed

    Das, Arun K; Rajkumar, V

    2013-12-01

    The study was carried out to evaluate the effect of various fat levels on the cooking and sensory properties of goat meat patties cooked by microwave energy. Goat meat patties were prepared with refined vegetable oil to get fat level of 5, 10, 15 and 20%. Each patty was cooked in a microwave oven with full power (700 W) operating at 2450 MHz to an internal temperature of 75-80 °C. pH value of raw patties with 5% fat level were lower compared to patties with 10, 15 and 20% fat level. Fat level did not affect emulsion stability of batter but it decreased as fat level increased. Microwave cooking time decreased as fat levels increased. With an increase in fat contents, protein and moisture in raw patties decreased and in cooked meat patties with 5% fat had higher protein and moisture content than those with more fat. Patties with 5% level showed lower cooking loss than other fat level. Water activity of patties was affected by fat level and patties with 15 and 20% fat had lower water activity than patties with 5 and 10% fat. As fat level increased, shear force value decreased indicating soft texture. Subjective colour evaluation indicated that 5% patties were darker and redder than patties with more fat. Sensory analysis revealed that goat meat patties with 5 and 10% fat had less flavour and juicer than patties with 15 and 20% fat. Goat meat patties with 20% fat were the juiciest. Tenderness and oiliness increased significantly with an increase in fat level. Patties with 15% fat were rated higher overall palatability than others. PMID:24426036

  10. Imaging of traumatic injury and impingement of anterior knee fat.

    PubMed

    Lapègue, F; Sans, N; Brun, C; Bakouche, S; Brucher, N; Cambon, Z; Chiavassa, H; Larbi, A; Faruch, M

    2016-01-01

    Fat is not just used by the body as bulk tissue. In addition to its role in storing energy and regulating hormone action, fat is used in some parts of the body for its mechanical properties. The anatomy of anterior knee fat is more complex than it appears at first sight and is capable of withstanding considerable compressive and shear stress. Specific lesions occur when such mechanical stress exceeds the physiological limits and are yet little known. Superficial fat can be the site of either acute injury by closed degloving called the Morel-Lavallée lesion or chronic injury, when subject to repeat excessive shear forces, due to more complex and less well-defined disruptions that result in pseudo-bursitis. There are three main anterior, intracapsular and extrasynovial fat pads in the knee joint, which are the infrapatellar fat pad (IFP) or Hoffa's fat pad, the quadriceps fat pad and the prefemoral fat pad. The IFP plays an important role as a mechanical shock absorber and guides the patella tendon and even the patella itself during flexion-extension movements. In response to repeated excessive stress, an inflammatory reaction and swelling of the IFP is first observed, followed by a fibrotic reaction with metaplastic transformation into fibrous, cartilaginous or bone tissue. More rarely, the two other deep fat pads (quadriceps and prefemoral) can, if subject to repeated stress, undergo similar restructuring inflammatory reactions with metaplasia resulting in tissue hardening, anterior pain and partial loss of function. PMID:27118690

  11. Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots

    PubMed Central

    Chusyd, Daniella E.; Wang, Donghai; Huffman, Derek M.; Nagy, Tim R.

    2016-01-01

    The objective of this review was to compare and contrast the physiological and metabolic profiles of rodent white adipose fat pads with white adipose fat depots in humans. Human fat distribution and its metabolic consequences have received extensive attention, but much of what has been tested in translational research has relied heavily on rodents. Unfortunately, the validity of using rodent fat pads as a model of human adiposity has received less attention. There is a surprisingly lack of studies demonstrating an analogous relationship between rodent and human adiposity on obesity-related comorbidities. Therefore, we aimed to compare known similarities and disparities in terms of white adipose tissue (WAT) development and distribution, sexual dimorphism, weight loss, adipokine secretion, and aging. While the literature supports the notion that many similarities exist between rodents and humans, notable differences emerge related to fat deposition and function of WAT. Thus, further research is warranted to more carefully define the strengths and limitations of rodent WAT as a model for humans, with a particular emphasis on comparable fat depots, such as mesenteric fat. PMID:27148535

  12. Fat embolism syndrome

    PubMed Central

    Kwiatt, Michael E.; Seamon, Mark J.

    2013-01-01

    Fat embolism syndrome (FES) is an ill-defined clinical entity that arises from the systemic manifestations of fat emboli within the microcirculation. Embolized fat within capillary beds cause direct tissue damage as well as induce a systemic inflammatory response resulting in pulmonary, cutaneous, neurological, and retinal symptoms. This is most commonly seen following orthopedic trauma; however, patients with many clinical conditions including bone marrow transplant, pancreatitis, and following liposuction. No definitive diagnostic criteria or tests have been developed, making the diagnosis of FES difficult. While treatment for FES is largely supportive, early operative fixation of long bone fractures decreases the likelihood of a patient developing FES. PMID:23724388

  13. Application of guar-xanthan gum mixture as a partial fat replacer in meat emulsions.

    PubMed

    Rather, Sajad A; Masoodi, F A; Akhter, Rehana; Rather, Jahangir A; Gani, Adil; Wani, S M; Malik, A H

    2016-06-01

    The physicochemical, oxidative, texture and microstructure properties were evaluated for low fat meat emulsions containing varying levels of guar/xanthan gum mixture (1:1 ratio) as a fat substitute. Partial replacement of fat with guar/xanthan gum resulted in higher emulsion stability and cooking yield but lower penetration force. Proximate composition revealed that high fat control had significantly higher fat and lower moisture content due to the difference in basic formulation. Colour evaluation revealed that low fat formulations containing gum mixture had significantly lower lightness and higher yellowness values than high fat control formulation. However non-significant difference was observed in redness values between low fat formulations and the high fat control. The pH values of the low fat formulations containing gum mixture were lower than the control formulations (T0 and TC). The MetMb% of the high fat emulsion formulation was higher than low fat formulations. The significant increase of TBARS value, protein carbonyl groups and loss of protein sulphydryl groups in high fat formulation reflect the more oxidative degradation of lipids and muscle proteins during the preparation of meat emulsion than low fat formulations. The SEM showed a porous matrix in the treatments containing gum mixture. Thus, the guar/xanthan gum mixture improved the physicochemical and oxidative quality of low fat meat emulsions than the control formulations. PMID:27478244

  14. Hearing Loss

    MedlinePlus

    ... version of this page please turn Javascript on. Hearing Loss What is Hearing Loss? Hearing loss is a common problem caused by ... sec Click to watch this video Types of Hearing Loss Hearing loss comes in many forms. It can ...

  15. Facts about monounsaturated fats

    MedlinePlus

    ... are found in plant foods, such as nuts, avocados, and vegetable oils. Eating moderate amounts of monounsaturated ( ... with higher amounts of monounsaturated fats include: Nuts Avocado Canola oil Olive oil Safflower oil (high oleic) ...

  16. Dietary fats explained

    MedlinePlus

    ... milk, ice cream, cream, and fatty meats. Some vegetable oils, such as coconut, palm, and palm kernel oil, ... fats can help lower your LDL cholesterol. Most vegetable oils that are liquid at room temperature have unsaturated ...

  17. Facts about saturated fats

    MedlinePlus

    ... at room temperature. Foods like butter, palm and coconut oils, cheese, and red meat have high amounts ... cream, cheese, whole milk) Solid fats such as coconut oil, palm, and palm kernel oils (found in ...

  18. Dietary fat overload reprograms brown fat mitochondria.

    PubMed

    Lettieri Barbato, Daniele; Tatulli, Giuseppe; Vegliante, Rolando; Cannata, Stefano M; Bernardini, Sergio; Ciriolo, Maria R; Aquilano, Katia

    2015-01-01

    Chronic nutrient overload accelerates the onset of several aging-related diseases reducing life expectancy. Although the mechanisms by which overnutrition affects metabolic processes in many tissues are known, its role on BAT physiology is still unclear. Herein, we investigated the mitochondrial responses in BAT of female mice exposed to high fat diet (HFD) at different steps of life. Although adult mice showed an unchanged mitochondrial amount, both respiration and OxPHOS subunits were strongly affected. Differently, offspring pups exposed to HFD during pregnancy and lactation displayed reduced mitochondrial mass but high oxidative efficiency that, however, resulted in increased bioenergetics state of BAT rather than augmented uncoupling respiration. Interestingly, the metabolic responses triggered by HFD were accompanied by changes in mitochondrial dynamics characterized by decreased content of the fragmentation marker Drp1 both in mothers and offspring pups. HFD-induced inactivation of the FoxO1 transcription factor seemed to be the up-stream modulator of Drp1 levels in brown fat cells. Furthermore, HFD offspring pups weaned with normal diet only partially reverted the mitochondrial dysfunctions caused by HFD. Finally these mice failed in activating the thermogenic program upon cold exposure. Collectively our findings suggest that maternal dietary fat overload irreversibly commits BAT unresponsiveness to physiological stimuli such as cool temperature and this dysfunction in the early stage of life might negatively modulate health and lifespan. PMID:26483700

  19. Dietary fat overload reprograms brown fat mitochondria

    PubMed Central

    Lettieri Barbato, Daniele; Tatulli, Giuseppe; Vegliante, Rolando; Cannata, Stefano M.; Bernardini, Sergio; Ciriolo, Maria R.; Aquilano, Katia

    2015-01-01

    Chronic nutrient overload accelerates the onset of several aging-related diseases reducing life expectancy. Although the mechanisms by which overnutrition affects metabolic processes in many tissues are known, its role on BAT physiology is still unclear. Herein, we investigated the mitochondrial responses in BAT of female mice exposed to high fat diet (HFD) at different steps of life. Although adult mice showed an unchanged mitochondrial amount, both respiration and OxPHOS subunits were strongly affected. Differently, offspring pups exposed to HFD during pregnancy and lactation displayed reduced mitochondrial mass but high oxidative efficiency that, however, resulted in increased bioenergetics state of BAT rather than augmented uncoupling respiration. Interestingly, the metabolic responses triggered by HFD were accompanied by changes in mitochondrial dynamics characterized by decreased content of the fragmentation marker Drp1 both in mothers and offspring pups. HFD-induced inactivation of the FoxO1 transcription factor seemed to be the up-stream modulator of Drp1 levels in brown fat cells. Furthermore, HFD offspring pups weaned with normal diet only partially reverted the mitochondrial dysfunctions caused by HFD. Finally these mice failed in activating the thermogenic program upon cold exposure. Collectively our findings suggest that maternal dietary fat overload irreversibly commits BAT unresponsiveness to physiological stimuli such as cool temperature and this dysfunction in the early stage of life might negatively modulate health and lifespan. PMID:26483700

  20. The roles of exercise-induced immune system disturbances in the pathology of heat stroke : the dual pathway model of heat stroke.

    PubMed

    Lim, Chin Leong; Mackinnon, Laurel T

    2006-01-01

    Heat stroke is a life-threatening condition that can be fatal if not appropriately managed. Although heat stroke has been recognised as a medical condition for centuries, a universally accepted definition of heat stroke is lacking and the pathology of heat stroke is not fully understood. Information derived from autopsy reports and the clinical presentation of patients with heat stroke indicates that hyperthermia, septicaemia, central nervous system impairment and cardiovascular failure play important roles in the pathology of heat stroke. The current models of heat stroke advocate that heat stroke is triggered by hyperthermia but is driven by endotoxaemia. Endotoxaemia triggers the systemic inflammatory response, which can lead to systemic coagulation and haemorrhage, necrosis, cell death and multi-organ failure. However, the current heat stroke models cannot fully explain the discrepancies in high core temperature (Tc) as a trigger of heat stroke within and between individuals. Research on the concept of critical Tc as a limitation to endurance exercise implies that a high Tc may function as a signal to trigger the protective mechanisms against heat stroke. Athletes undergoing a period of intense training are subjected to a variety of immune and gastrointestinal (GI) disturbances. The immune disturbances include the suppression of immune cells and their functions, suppression of cell-mediated immunity, translocation of lipopolysaccharide (LPS), suppression of anti-LPS antibodies, increased macrophage activity due to muscle tissue damage, and increased concentration of circulating inflammatory and pyrogenic cytokines. Common symptoms of exercise-induced GI disturbances include diarrhoea, vomiting, gastrointestinal bleeding, and cramps, which may increase gut-related LPS translocation. This article discusses the current evidence that supports the argument that these exercise-induced immune and GI disturbances may contribute to the development of endotoxaemia and

  1. The rise and fall of the world's first fat tax.

    PubMed

    Bødker, Malene; Pisinger, Charlotta; Toft, Ulla; Jørgensen, Torben

    2015-06-01

    In 2011, Denmark introduced the world's first tax on saturated fat, but only 15 months later the fat tax was abolished. The aim of this article is to investigate the political processes surrounding the implementation and rapid abolition of the fat tax. Our findings suggest that industry and trade associations were heavily involved in the political process of formulating the fat tax. Industry representatives used certain tactics to oppose the fat tax: threatening lawsuits, predicting welfare losses, casting doubt on evidence, diverting focus and requesting postponement. After the fat tax was implemented, the food industry continued their opposition through intensified lobbyism and juridical actions at EU level. However, other factors seem to have contributed to the fall of the fat tax. The tax received criticism for being poorly designed and gradually lost popularity among health professionals, politicians and the public. In the end, the fat tax was abolished for financial reasons. This study demonstrates how politicians considered the fat tax as a funding source rather than a public health initiative, which resulted in significant shortcomings. Furthermore, we demonstrate that the massive influence by industry stakeholders was not balanced with inputs from public health professionals, who should assume a more proactive role in policy-making. PMID:25840733

  2. Protein Energy Malnutrition and Fat Mobilization in Neonatal Calves

    PubMed Central

    Schoonderwoerd, Matt; Doige, Cecil E.; Wobeser, Gary A.; Naylor, Jonathan M.

    1986-01-01

    Fat stores and organ weights were assessed in calves at birth (n=5) and after seven days of milk (n=5) or electrolyte (n=5) feeding. Compared to newborn calves, milk-fed calves had a significant (p < 0.05) redistribution of fat from perirenal area to bone marrow. The thymus also involuted during milk feeding. In electrolyte-fed calves there was a significant loss of perirenal and bone marrow fat. The visible omental, mesenteric and subcutaneous fat stores were depleted. Epicardial fat stores were not visibly affected. There was a high correlation between bone marrow crude fat and bone marrow dry matter (R=0.92). This suggests that dry matter estimations can be used to assess bone marrow fat stores. Perirenal fat may be intermediate in type between brown and white adipose tissue because it is mobilized in response to fasting, and formalin fixed perirenal fat did not contain detectable levels of thermogenin. ImagesFigure 1., Figure 2., Figure 3., Figure 4., Figure 5.Figure 6., Figure 7., Figure 8., Figure 9. PMID:17422704

  3. The Effects of Varying Concentrations of Dietary Protein and Fat on Blood Gas, Hematologic Serum Chemistry, and Body Temperature Before and After Exercise in Labrador Retrievers.

    PubMed

    Ober, John; Gillette, Robert L; Angle, Thomas Craig; Haney, Pamela; Fletcher, Daniel J; Wakshlag, Joseph J

    2016-01-01

    Optimal dietary protocols for the athletic canine are often defined by requirements for endurance athletes that do not always translate into optimal dietary interventions for all canine athletes. Prior research studying detection dogs suggests that dietary fat sources can influence olfaction; however, as fat is added to the diet the protein calories can be diminished potentially resulting in decreased red blood cell counts or albumin status. Optimal macronutrient profile for detection dogs may be different considering the unique work they engage in. To study a calorically low protein: high fat (18:57% ME), high protein: high fat (27:57% ME), and high protein: low fat (27:32% ME) approach to feeding, 17 dogs were provided various diets in a 3 × 3 cross over design. Dogs were exercised on a treadmill and blood was taken pre-exercise, immediately post-exercise, 10- and 20-min post-exercise to assess complete blood count, serum chemistry, blood gases, and cortisol; as well as rectal and core body temperature. Exercise induced a decrease in serum phosphorus, potassium, and increases in non-esterified fatty acids and cortisol typical of moderate exercise bouts. A complete and balanced high protein: high-fat diet (27:57% ME) induced decreases in serum cortisol and alkaline phosphatase. Corn oil top dressed low protein: high-fat diet (18:57% ME) induced a slightly better thermal recovery than a complete and balanced high protein: high fat diet and a high protein: low fat (27%:32% ME) diet suggesting some mild advantages when using the low protein: high fat diet that warrant further investigation regarding optimal protein and fat calories and thermal recovery. PMID:27532039

  4. The Effects of Varying Concentrations of Dietary Protein and Fat on Blood Gas, Hematologic Serum Chemistry, and Body Temperature Before and After Exercise in Labrador Retrievers

    PubMed Central

    Ober, John; Gillette, Robert L.; Angle, Thomas Craig; Haney, Pamela; Fletcher, Daniel J.; Wakshlag, Joseph J.

    2016-01-01

    Optimal dietary protocols for the athletic canine are often defined by requirements for endurance athletes that do not always translate into optimal dietary interventions for all canine athletes. Prior research studying detection dogs suggests that dietary fat sources can influence olfaction; however, as fat is added to the diet the protein calories can be diminished potentially resulting in decreased red blood cell counts or albumin status. Optimal macronutrient profile for detection dogs may be different considering the unique work they engage in. To study a calorically low protein: high fat (18:57% ME), high protein: high fat (27:57% ME), and high protein: low fat (27:32% ME) approach to feeding, 17 dogs were provided various diets in a 3 × 3 cross over design. Dogs were exercised on a treadmill and blood was taken pre-exercise, immediately post-exercise, 10- and 20-min post-exercise to assess complete blood count, serum chemistry, blood gases, and cortisol; as well as rectal and core body temperature. Exercise induced a decrease in serum phosphorus, potassium, and increases in non-esterified fatty acids and cortisol typical of moderate exercise bouts. A complete and balanced high protein: high-fat diet (27:57% ME) induced decreases in serum cortisol and alkaline phosphatase. Corn oil top dressed low protein: high-fat diet (18:57% ME) induced a slightly better thermal recovery than a complete and balanced high protein: high fat diet and a high protein: low fat (27%:32% ME) diet suggesting some mild advantages when using the low protein: high fat diet that warrant further investigation regarding optimal protein and fat calories and thermal recovery. PMID:27532039

  5. Heat and exercise acclimation increases intracellular levels of Hsp72 and inhibits exercise-induced increase in intracellular and plasma Hsp72 in humans

    PubMed Central

    Magalhães, Flávio de Castro; Amorim, Fabiano Trigueiro; Passos, Renata L. Freitas; Fonseca, Michele Atalla; Oliveira, Kenya Paula Moreira; Lima, Milene Rodrigues Malheiros; Guimarães, Juliana Bohen; Ferreira-Júnior, João Batista; Martini, Angelo R. P.; Lima, Nilo R. V.; Soares, Danusa Dias; Oliveira, Edilamar Menezes

    2010-01-01

    In order to verify the effects of heat and exercise acclimation (HA) on resting and exercise-induced expression of plasma and leukocyte heat shock protein 72 (Hsp72) in humans, nine healthy young male volunteers (25.0 ± 0.7 years; 80.5 ± 2.0 kg; 180 ± 2 cm, mean ± SE) exercised for 60 min in a hot, dry environment (40 ± 0°C and 45 ± 0% relative humidity) for 11 days. The protocol consisted of running on a treadmill using a controlled hyperthermia technique in which the work rate was adjusted to elevate the rectal temperature by 1°C in 30 min and maintain it elevated for another 30 min. Before and after the HA, the volunteers performed a heat stress test (HST) at 50% of their individual maximal power output for 90 min in the same environment. Blood was drawn before (REST), immediately after (POST) and 1 h after (1 h POST) HST, and plasma and leukocytes were separated and stored. Subjects showed expected adaptations to HA: reduced exercise rectal and mean skin temperatures and heart rate, and augmented sweat rate and exercise tolerance. In HST1, plasma Hsp72 increased from REST to POST and then returned to resting values 1 h POST (REST: 1.11 ± 0.07, POST: 1.48 ± 0.10, 1 h POST: 1.22 ± 0.11 ng mL−1; p < 0.05). In HST2, there was no change in plasma Hsp72 (REST: 0.94 ± 0.08, POST: 1.20 ± 0.15, 1 h POST: 1.17 ± 0.16 ng mL−1; p > 0.05). HA increased resting levels of intracellular Hsp72 (HST1: 1 ± 0.02 and HST2: 4.2 ± 1.2 density units, p < 0.05). Exercise-induced increased intracellular Hsp72 expression was observed on HST1 (HST1: REST, 1 ± 0.02 vs. POST, 2.9 ± 0.9 density units, mean ± SE, p < 0.05) but was inhibited on HST2 (HST2: REST, 4.2 ± 1.2 vs. POST, 4.4 ± 1.1 density units, p > 0.05). Regression analysis showed that the lower the pre-exercise expression of intracellular Hsp72, the higher the exercise-induced increase (R = −0

  6. Marrow Fat and Bone—New Perspectives

    PubMed Central

    Fazeli, Pouneh K.; Horowitz, Mark C.; MacDougald, Ormond A.; Scheller, Erica L.; Rodeheffer, Matthew S.; Rosen, Clifford J.

    2013-01-01

    Context: There is growing interest in the relationship between bone mineral density, bone strength, and fat depots. Marrow adipose tissue, a well-established component of the marrow environment, is metabolically distinct from peripheral fat depots, but its functional significance is unknown. Objective: In this review, we discuss animal and human data linking the marrow adipose tissue depot to parameters of bone density and integrity as well as the potential significance of marrow adipose tissue in metabolic diseases associated with bone loss, including type 1 diabetes mellitus and anorexia nervosa. Potential hormonal determinants of marrow adipose tissue are also discussed. Conclusions: We conclude that whereas most animal and human data demonstrate an inverse association between marrow adipose tissue and measures of bone density and strength, understanding the functional significance of marrow adipose tissue and its hormonal determinants will be critical to better understanding its role in skeletal integrity and the role of marrow adipose tissue in the pathophysiology of bone loss. PMID:23393168

  7. Short Term Exercise Induces PGC-1α, Ameliorates Inflammation and Increases Mitochondrial Membrane Proteins but Fails to Increase Respiratory Enzymes in Aging Diabetic Hearts

    PubMed Central

    Botta, Amy; Laher, Ismail; Beam, Julianne; DeCoffe, Daniella; Brown, Kirsty; Halder, Swagata; Devlin, Angela; Gibson, Deanna L.; Ghosh, Sanjoy

    2013-01-01

    PGC-1α, a transcriptional coactivator, controls inflammation and mitochondrial gene expression in insulin-sensitive tissues following exercise intervention. However, attributing such effects to PGC-1α is counfounded by exercise-induced fluctuations in blood glucose, insulin or bodyweight in diabetic patients. The goal of this study was to investigate the role of PGC-1α on inflammation and mitochondrial protein expressions in aging db/db mice hearts, independent of changes in glycemic parameters. In 8-month-old db/db mice hearts with diabetes lasting over 22 weeks, short-term, moderate-intensity exercise upregulated PGC-1α without altering body weight or glycemic parameters. Nonetheless, such a regimen lowered both cardiac (macrophage infiltration, iNOS and TNFα) and systemic (circulating chemokines and cytokines) inflammation. Curiously, such an anti-inflammatory effect was also linked to attenuated expression of downstream transcription factors of PGC-1α such as NRF-1 and several respiratory genes. Such mismatch between PGC-1α and its downstream targets was associated with elevated mitochondrial membrane proteins like Tom70 but a concurrent reduction in oxidative phosphorylation protein expressions in exercised db/db hearts. As mitochondrial oxidative stress was predominant in these hearts, in support of our in vivo data, increasing concentrations of H2O2 dose-dependently increased PGC-1α expression while inhibiting expression of inflammatory genes and downstream transcription factors in H9c2 cardiomyocytes in vitro. We conclude that short-term exercise-induced oxidative stress may be key in attenuating cardiac inflammatory genes and impairing PGC-1α mediated gene transcription of downstream transcription factors in type 2 diabetic hearts at an advanced age. PMID:23936397

  8. β-glucan reduces exercise-induced stress through downregulation of c-Fos and c-Jun expression in the brains of exhausted rats.

    PubMed

    Hong, Heeok; Kim, Chang-Ju; Kim, Jae-Deung; Seo, Jin-Hee

    2014-05-01

    Immediate-early genes are involved in acute stress responses in the central nervous system. β-glucan stimulates innate immune defenses, exerts an anti-tumor response and increases resistance to a wide variety of types of infection. To date, the effect of β-glucan on the expression of immediate-early genes under stressful conditions has not been elucidated. In the present study, the effects of β-glucan on the expression of the oncogenes c-Fos and c-Jun in the hypothalamus, dentate gyrus and dorsal raphe in rats following exhaustive treadmill running were investigated. Male Sprague Dawley rats were randomly divided into five groups (n=10 in each group) as follows: Control, exercise, exercise and 50 mg/kg β-glucan treatment, exercise and 100 mg/kg β-glucan treatment, and exercise and 200 mg/kg β-glucan treatment. Rats in the β-glucan‑treated groups were administered β-glucan at the respective dose once per day for seven days. Rats in the exercise groups performed treadmill running once per day for six days. On the seventh day of the experiment, the time to exhaustion in response to treadmill running was determined for the exercise groups. The expression of c-Fos and c-Jun in the hypothalamus, dorsal raphe and hippocampus was enhanced by exhaustive treadmill running. Administration of β-glucan resulted in an increase in the time to exhaustion and the suppression of the exercise-induced increment in c-Fos and c-Jun expression. In conclusion, β-glucan may exert an alleviating effect on exercise-induced stress through the suppression of c-Fos and c-Jun expression in the brains of exhausted rats. PMID:24604295

  9. [Exercise-induced ST segment shift in vasospastic angina with special reference to comparisons between treadmill and bicycle ergometer exercise testings].

    PubMed

    Kasai, A; Yamakado, T; Masuda, T; Aoki, T; Futagami, Y; Hamada, M; Nakano, T

    1991-01-01

    To assess the difference between cardiovascular responses to treadmill exercise (TM) and those to bicycle ergometer exercise (EM) in provoking coronary spasm, we compared the ST segment shifts (elevation or depression) during TM and EM in 67 patients with vasospastic angina. Coronary artery spasm was demonstrated on angiography. Both TM and EM were performed on the same day during a medication-free period. For both tests, multistage, symptom-limited exercise protocols were used; EM in the morning and TM in the afternoon. The results obtained were as follows: 1. Rate-pressure products at peak exercise during TM and EM were similar. Systolic blood pressure levels at peak exercise were higher during EM than during TM (p < 0.01). The patients' heart rates at peak exercise were higher during TM than during EM (p < 0.01). Diastolic blood pressure levels at peak exercise were higher during EM than during TM (p < 0.05). 2. Exercise-induced ST elevation occurred more frequently with TM than with EM (19% vs 9%, p < 0.05). 3. Exercise-induced ST depression was provided in 27 patients during TM and in 13 during EM (40% vs 19%, p < 0.01). Among 45 patients without significant lesions, ST depression occurred in 19 during TM, but in only 7 during EM (42% vs 16%, p < 0.01). In conclusion, coronary spasm seemed to occur more frequently with TM than with EM. The mechanism causing such difference remains to be elucidated, however, we speculate that the difference between TM and EM as to enhanced autonomous nervous system activity and coronary perfusion exercise may be related to the difference in the incidence of coronary spasm. PMID:1841908

  10. Assessment of the allergenic potential of transgenic wheat (Triticum aestivum) with reduced levels of omega-5 gliadins, the major sensitizing allergen in wheat-dependent exercise-induced anaphylaxis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The omega-5 gliadins are the major sensitizing allergens in wheat-dependent exercise-induced anaphylaxis (WDEIA). In this study, two-dimensional immunoblot analysis was used to assess the allergenic potential of two transgenic wheat lines in which omega-5 gliadin genes were silenced by RNA interfe...

  11. The Role of Resistance Exercise in Weight Loss.

    ERIC Educational Resources Information Center

    Alexander, Jeffrey L.

    2002-01-01

    Explains the role of weight training in weight loss, noting how weight training contributes to the creation of a negative energy balance and explaining how resistance exercise can cause an increase in fat oxidation, both acutely and chronically. Resistance exercise has an indirect impact on weight and fat loss through increasing resting metabolic…

  12. The Quality Characteristics of Salted Ground Pork Patties Containing Various Fat Levels by Microwave Cooking.

    PubMed

    Jeong, Jong Youn; Lim, Seung Taek; Kim, Cheon Jei

    2016-01-01

    This study was carried out to evaluate the effects of fat level on the microwave cooking properties of ground pork patties with NaCl (1.5%). Ground pork patties were processed from pork hams to achieve fat levels of 10%, 15%, 20%, and 25%, respectively. Each patty was cooked from a thawed state to 75℃ in a microwave oven at full power (700 W). After microwave cooking, protein content, moisture content, fat retention, and shear force values in patties decreased as fat level increased from 10 to 25%. As fat level increased, cooking time decreased but total cooking loss and drip loss were increased, whereas slight differences in diameter reduction and thickness of patties were observed. In raw patties, 10% fat patties had lower L* values and higher a* values compared to patties with more fat, but these differences were reduced when patties were cooked. Patties with 10% fat showed a more pink color on the surface and interior than patties with a higher fat content but more air pockets were noted in higher-fat patties. Higher-fat patties were more tender, juicy, and oily than lower-fat patties. PMID:27621696

  13. The Quality Characteristics of Salted Ground Pork Patties Containing Various Fat Levels by Microwave Cooking

    PubMed Central

    Jeong, Jong Youn; Lim, Seung Taek; Kim, Cheon Jei

    2016-01-01

    This study was carried out to evaluate the effects of fat level on the microwave cooking properties of ground pork patties with NaCl (1.5%). Ground pork patties were processed from pork hams to achieve fat levels of 10%, 15%, 20%, and 25%, respectively. Each patty was cooked from a thawed state to 75℃ in a microwave oven at full power (700 W). After microwave cooking, protein content, moisture content, fat retention, and shear force values in patties decreased as fat level increased from 10 to 25%. As fat level increased, cooking time decreased but total cooking loss and drip loss were increased, whereas slight differences in diameter reduction and thickness of patties were observed. In raw patties, 10% fat patties had lower L* values and higher a* values compared to patties with more fat, but these differences were reduced when patties were cooked. Patties with 10% fat showed a more pink color on the surface and interior than patties with a higher fat content but more air pockets were noted in higher-fat patties. Higher-fat patties were more tender, juicy, and oily than lower-fat patties. PMID:27621696

  14. Effect of Fat Level and the Ripening Time on Quality Traits of Fermented Sausages.

    PubMed

    Yim, Dong-Gyun; Jang, Kyoung-Hwan; Chung, Ku-Young

    2016-01-01

    The objective of this study was to investigate the effect of the fat reduction on the physicochemical and microbiological characteristics of fermented sausages during ripening and drying. Low fat fermented sausages were produced with different fat levels (30%, 20%, 10%, and 5%) under ripening conditions and fermented process. Samples from each treatment were taken for physicochemical and microbiological analyses on the 0, 1, 2, 3, 4, 5, 7, 10, 14, and 21st day of ripening. In proximate analysis, the fat reduction in sausages produced an increase in moisture, protein and ash contents during ripening and drying (p<0.05). The weight losses were significantly higher in high fat formulations during the first 4 days, whereas those were higher in low fat ones after 10 days of storage (p<0.05). Fat reduction was responsible for an increase in shear force values after 3 days of storage. The volatile basic nitrogen (VBN) value of the low fat samples was significantly higher (p<0.05). Low fat sausages reduced the extent of lipid oxidation. The lower fat level produced redder sausages. Total plate bacteria and Pseudomonas counts of sausages showed no significant differences. Production of low fat sausages resulted in the physicochemical and microbiological attributes equal to or better than the high fat sausages without negative effects, except only a higher VBN and weight loss. PMID:26732335

  15. Effect of Fat Level and the Ripening Time on Quality Traits of Fermented Sausages

    PubMed Central

    Yim, Dong-Gyun; Jang, Kyoung-Hwan; Chung, Ku-Young

    2016-01-01

    The objective of this study was to investigate the effect of the fat reduction on the physicochemical and microbiological characteristics of fermented sausages during ripening and drying. Low fat fermented sausages were produced with different fat levels (30%, 20%, 10%, and 5%) under ripening conditions and fermented process. Samples from each treatment were taken for physicochemical and microbiological analyses on the 0, 1, 2, 3, 4, 5, 7, 10, 14, and 21st day of ripening. In proximate analysis, the fat reduction in sausages produced an increase in moisture, protein and ash contents during ripening and drying (p<0.05). The weight losses were significantly higher in high fat formulations during the first 4 days, whereas those were higher in low fat ones after 10 days of storage (p<0.05). Fat reduction was responsible for an increase in shear force values after 3 days of storage. The volatile basic nitrogen (VBN) value of the low fat samples was significantly higher (p<0.05). Low fat sausages reduced the extent of lipid oxidation. The lower fat level produced redder sausages. Total plate bacteria and Pseudomonas counts of sausages showed no significant differences. Production of low fat sausages resulted in the physicochemical and microbiological attributes equal to or better than the high fat sausages without negative effects, except only a higher VBN and weight loss. PMID:26732335

  16. Fat embolism syndrome.

    PubMed

    Taviloglu, Korhan; Yanar, Hakan

    2007-01-01

    Fat embolism syndrome (FES) was first described in 1862, but its frequency today is still unclear. A diagnosis of FES is often missed because of a subclinical illness or coexisting confusing injuries or disease. Fat embolism syndrome develops most commonly after orthopedic injuries, but it has also been reported after other forms of trauma such as severe burns, liver injury, closed-chest cardiac massage, bone marrow transplantation, and liposuction. Although FES usually presents as a multisystem disorder, the most seriously affected organs are the lung, brain, cardiovascular system, and skin. Fat embolism syndrome is a self-limiting disease and treatment should be mainly supportive. Many drugs have been used to treat FES, but the results are inconclusive. PMID:17186337

  17. Fat chance for longevity

    PubMed Central

    Kniazeva, Marina; Han, Min

    2013-01-01

    The health benefits of specific fatty acids and physiological roles of fat metabolism are important subjects that are still poorly understood. In this issue of Genes & Development, O'Rourke and colleagues (pp. 429–440) uncovered a role for lipase-generated ω-6 fatty acids in promoting autophagy and, consequently, life span extension under both fed and fasting conditions. The impact of this finding is discussed with regard to the nutritional value of ω-6 fatty acids and regulatory functions of fat metabolism beyond its well-known role in energy storage. PMID:23431052

  18. Fat embolism after liposuction.

    PubMed

    Ross, R M; Johnson, G W

    1988-06-01

    We present a case of adult respiratory distress syndrome (ARDS) after extensive liposuction. On the basis of fever, tachypnea, hypoxia, and ARDS occurring within 48 hours after surgery without evidence of cardiogenic pulmonary edema or sepsis, the etiology is believed to be fat embolism. Although liposuction is generally an effective and safe procedure, awareness of this life-threatening complication is important in order to institute prompt and appropriate treatment. Fat embolism must be differentiated from thromboembolism, as the treatment is different, and heparin is not indicated. It is recommended that training standards and guidelines be devised in order to reduce morbidity and mortality associated with this procedure. PMID:3371109

  19. Trans Fat Now Listed With Saturated Fat and Cholesterol

    MedlinePlus

    ... you are not seeing trans fat on a product's label. First, products entering interstate commerce on or after ... already begun to declare trans fat on their products' labels. Second, FDA has granted enforcement discretion to some ...

  20. Scoring of sweat losses in exercised horses--a pilot study.

    PubMed

    Zeyner, A; Romanowski, K; Vernunft, A; Harris, P; Kienzle, E

    2014-04-01

    Based on a series of exercise tests which included the estimation of sweat losses, this article proposes a novel sweat scoring system for exercising horses. This provides a practical estimate of individual animal exercise-induced sweat losses, based on visible appearance of sweat on the coat after work, which takes into account the effect of various influencing factors. In terms of accuracy and flexibility, the score seems to provide advantages over estimates based on current general recommendations from reference books. Additional studies are needed to validate this scoring system and its use under more diverse situations. PMID:23534876

  1. That Fat Cat

    ERIC Educational Resources Information Center

    Lambert, Phyllis Gilchrist

    2012-01-01

    This activity began with a picture book, Nurit Karlin's "Fat Cat On a Mat" (HarperCollins; 1998). The author and her students started their project with a 5-inch circular template for the head of their cats. They reviewed shapes as they drew the head and then added the ears and nose, which were triangles. Details to the face were added when…

  2. Subcutaneous encapsulated fat necrosis.

    PubMed

    Aydin, Dogu; Berg, Jais O

    2016-04-01

    We have described subcutaneous encapsulated fat necrosis, which is benign, usually asymptomatic and underreported. Images have only been published on two earlier occasions, in which the necrotic nodules appear "pearly" than the cloudy yellow surface in present case. The presented image may help future surgeons to establish the diagnosis peroperatively. PMID:27099753

  3. The combination of dietary conjugated linoleic acid and treadmill exercise lowers gain in body fat mass and enhances lean body mass in high fat-fed male Balb/C mice.

    PubMed

    Bhattacharya, Arunabh; Rahman, Md Mizanur; Sun, Dongxu; Lawrence, Richard; Mejia, Walter; McCarter, Roger; O'Shea, Marianne; Fernandes, Gabriel

    2005-05-01

    Nearly half of the U.S. adult population is overweight or obese, which may be related to increased energy intake combined with lack of physical activity. Obesity increases the risk of several chronic diseases including diabetes, coronary heart disease, hypertension, and stroke. Conjugated linoleic acids (CLA) were shown to decrease fat and increase lean mass in several animal studies. However, the effects of CLA in combination with exercise (Ex) on body composition have not been studied in an animal model. We examined the effect of a low concentration of either safflower oil as control (0.5%) or mixed isomers of CLA (0.4%) along with treadmill exercise on body composition in male Balb/C mice fed a high-fat diet (20% corn oil) in a 2 x 2 factorial design. CLA consumption lowered change in fat mass (P < 0.001) confirming the results of other studies, and change in fat mass decreased further (P < 0.001) with CLA and exercise. Change in lean mass did not increase with exercise alone; it increased, although not significantly, with CLA alone and increased significantly (P < 0.05) due to the combination of CLA and exercise. This effect was accompanied by decreased serum leptin levels and lower leptin mRNA expression in peritoneal fat (P < 0.001). Serum insulin, glucose, tumor necrosis factor (TNF)-alpha, and interleukin-6 were lower in CLA-fed mice than in controls (P < 0.05), whereas serum TNF-alpha was increased by exercise (P < 0.05). Exercise increased oxygen consumption and energy expenditure when measured under resting conditions (P < 0.05). In summary, the combination of dietary CLA and exercise decreased fat mass and increased lean mass in mice fed a high-fat diet, and these effects may be related in part to decreased serum leptin and exercise-induced increases in oxygen consumption and energy expenditure. PMID:15867292

  4. A Matter of Fat.

    PubMed

    Calder, Philip C

    2015-09-01

    Acute respiratory disease syndrome (ARDS) is a common complication of critical illness, associated with significant morbidity, prolonged intensive care unit (ICU) and hospital stay, and increased mortality. Inflammation plays a central role in ARDS, with inflammatory eicosanoid mediators produced from the ω-6 fatty acid arachidonic acid, such as leukotriene B4, being involved. The ω-3 fatty acids found in fish oil exert anti-inflammatory effects, including decreasing production of inflammatory eicosanoids from arachidonic acid. The ω-3 fatty acids are effective in models relevant to ARDS. Several randomized controlled trials of enteral formulas rich in ω-3 fatty acids, often in combination with other bioactive substances, have been conducted in patients with ARDS. Four of these trials reported marked clinical benefits, 2 reported no effect, and 1 reported a negative impact. A systematic review and meta-analysis of these 7 trials identified no overall effect on ventilator-free days or on ICU-free days. There was a small reduction in ICU length of stay and no overall effect on mortality. However, the authors formally identified that trials that used high fat in both treatment and control groups showed a significant reduction in mortality, while trials that used a high, or higher, fat treatment and a low-fat control group showed a trend toward an increase in mortality. It is concluded that differences in outcome reported among these studies largely relate to the relative fat contents of the treatment and control formulas. Further, it is concluded that high-fat enteral formulas should not be used in this patient group. PMID:25533963

  5. Upregulation of myocellular DGAT1 augments triglyceride synthesis in skeletal muscle and protects against fat-induced insulin resistance

    PubMed Central

    Liu, Li; Zhang, Yiying; Chen, Nancy; Shi, Xiaojing; Tsang, Bonny; Yu, Yi-Hao

    2007-01-01

    Increased fat deposition in skeletal muscle is associated with insulin resistance. However, exercise increases both intramyocellular fat stores and insulin sensitivity, a phenomenon referred to as “the athlete’s paradox”. In this study, we provide evidence that augmenting triglyceride synthesis in skeletal muscle is intrinsically connected with increased insulin sensitivity. Exercise increased diacylglycerol (DAG) acyltransferase (DGAT) activity in skeletal muscle. Channeling fatty acid substrates into TG resulted in decreased DAG and ceramide levels. Transgenic overexpression of DGAT1 in mouse skeletal muscle replicated these findings and protected mice against high-fat diet–induced insulin resistance. Moreover, in isolated muscle, DGAT1 deficiency exacerbated insulin resistance caused by fatty acids, whereas DGAT1 overexpression mitigated the detrimental effect of fatty acids. The heightened insulin sensitivity in the transgenic mice was associated with attenuated fat-induced activation of DAG-responsive PKCs and the stress mediator JNK1. Consistent with these changes, serine phosphorylation of insulin receptor substrate 1 was reduced, and Akt activation and glucose 4 membrane translocation were increased. In conclusion, upregulation of DGAT1 in skeletal muscle is sufficient to recreate the athlete’s paradox and illustrates a mechanism of exercise-induced enhancement of muscle insulin sensitivity. Thus, increasing muscle DGAT activity may offer a new approach to prevent and treat insulin resistance and type 2 diabetes mellitus. PMID:17510710

  6. Weight Loss Nutritional Supplements

    NASA Astrophysics Data System (ADS)

    Eckerson, Joan M.

    Obesity has reached what may be considered epidemic proportions in the United States, not only for adults but for children. Because of the medical implications and health care costs associated with obesity, as well as the negative social and psychological impacts, many individuals turn to nonprescription nutritional weight loss supplements hoping for a quick fix, and the weight loss industry has responded by offering a variety of products that generates billions of dollars each year in sales. Most nutritional weight loss supplements are purported to work by increasing energy expenditure, modulating carbohydrate or fat metabolism, increasing satiety, inducing diuresis, or blocking fat absorption. To review the literally hundreds of nutritional weight loss supplements available on the market today is well beyond the scope of this chapter. Therefore, several of the most commonly used supplements were selected for critical review, and practical recommendations are provided based on the findings of well controlled, randomized clinical trials that examined their efficacy. In most cases, the nutritional supplements reviewed either elicited no meaningful effect or resulted in changes in body weight and composition that are similar to what occurs through a restricted diet and exercise program. Although there is some evidence to suggest that herbal forms of ephedrine, such as ma huang, combined with caffeine or caffeine and aspirin (i.e., ECA stack) is effective for inducing moderate weight loss in overweight adults, because of the recent ban on ephedra manufacturers must now use ephedra-free ingredients, such as bitter orange, which do not appear to be as effective. The dietary fiber, glucomannan, also appears to hold some promise as a possible treatment for weight loss, but other related forms of dietary fiber, including guar gum and psyllium, are ineffective.

  7. Changes in protein structures to improve the rheology and texture of reduced-fat sausages using high pressure processing.

    PubMed

    Yang, Huijuan; Khan, Muhammad Ammar; Yu, Xiaobo; Zheng, Haibo; Han, Minyi; Xu, Xinglian; Zhou, Guanghong

    2016-11-01

    This study investigated the role of high-pressure processing (HPP) for improving the functional properties of meat batters and the textural properties of reduced-fat sausages. Application of 200MPa pressure at 10°C for 2min to pork batters containing various fat contents (0-30%) affected their rheological properties, cooking losses, color, textual properties and their protein imaging. The results revealed that both application of 200MPa and increasing fat content decreased cooking loss, as well as improved the textural and rheological properties. Cooking losses, texture and sensory evaluation of 200MPa treated sausages having 20% fat were similar to those of the 0.1MPa treated sausages having 30% fat. Principal component analysis revealed that certain quality attributes were affected differently by the levels of fat addition and by HPP. These findings indicated the potential of HPP for improving yield and texture of emulsion-type sausages having reduced fat contents. PMID:27288900

  8. Protect Your Heart: Choose Healthy Fats

    MedlinePlus

    Toolkit No. 9 Protect Your Heart: Choose Healthy Fats Why should I choose healthy fats? Diabetes raises your chances of having a heart ... protect your heart and blood vessels by choosing fats wisely. Some kinds of fat, such as butter ...

  9. The effects of acute oral glutamine supplementation on exercise-induced gastrointestinal permeability and heat shock protein expression in peripheral blood mononuclear cells.

    PubMed

    Zuhl, Micah; Dokladny, Karol; Mermier, Christine; Schneider, Suzanne; Salgado, Roy; Moseley, Pope

    2015-01-01

    Chronic glutamine supplementation reduces exercise-induced intestinal permeability and inhibits the NF-κB pro-inflammatory pathway in human peripheral blood mononuclear cells. These effects were correlated with activation of HSP70. The purpose of this paper is to test if an acute dose of oral glutamine prior to exercise reduces intestinal permeability along with activation of the heat shock response leading to inhibition of pro-inflammatory markers. Physically active subjects (N = 7) completed baseline and exercise intestinal permeability tests, determined by the percent ratio of urinary lactulose (5 g) to rhamnose (2 g). Exercise included two 60-min treadmill runs at 70 % of VO2max at 30 °C after ingestion of glutamine (Gln) or placebo (Pla). Plasma levels of endotoxin and TNF-α, along with peripheral blood mononuclear cell (PBMC) protein expression of HSP70 and IκBα, were measured pre- and post-exercise and 2 and 4 h post-exercise. Permeability increased in the Pla trial compared to that at rest (0.06 ± 0.01 vs. 0.02 ± 0.018) and did not increase in the Gln trial. Plasma endotoxin was lower at the 4-h time point in the Gln vs. 4 h in the Pla (6.715 ± 0.046 pg/ml vs. 7.952 ± 1.11 pg/ml). TNF-α was lower 4 h post-exercise in the Gln vs. Pla (1.64 ± 0.09 pg/ml vs. 1.87 ± 0.12 pg/ml). PBMC expression of IkBα was higher 4 h post-exercise in the Gln vs. 4 h in the Pla (1.29 ± 0.43 vs. 0.8892 ± 0.040). HSP70 was higher pre-exercise and 2 h post-exercise in the Gln vs. Pla (1.35 ± 0.21 vs. 1.000 ± 0.000 and 1.65 ± 0.21 vs. 1.27 ± 0.40). Acute oral glutamine supplementation prevents an exercise-induced rise in intestinal permeability and suppresses NF-κB activation in peripheral blood mononuclear cells. PMID:25062931

  10. Activation of γ-aminobutyric Acid (A) Receptor Protects Hippocampus from Intense Exercise-induced Synapses Damage and Apoptosis in Rats

    PubMed Central

    Ding, Yi; Xie, Lan; Chang, Cun-Qing; Chen, Zhi-Min; Ai, Hua

    2015-01-01

    Background: Our previous study has confirmed that one bout of exhaustion (Ex) can cause hippocampus neurocyte damage, excessive apoptosis, and dysfunction. Its initial reason is intracellular calcium overload in hippocampus triggered by N-methyl-D-aspartic acid receptor (NMDAR) over-activation. NMDAR activation can be suppressed by γ-aminobutyric acid (A) receptor (GABAAR). Whether GABAAR can prevent intense exercise-induced hippocampus apoptosis, damage, or dysfunction will be studied in this study. Methods: According to dose test, rats were randomly divided into control (Con), Ex, muscimol (MUS, 0.1 mg/kg) and bicuculline (BIC, 0.5 mg/kg) groups, then all rats underwent once swimming Ex except ones in Con group only underwent training. Intracellular free calcium concentration ([Ca2+]i) was measured by Fura-2-acetoxymethyl ester; glial fibrillary acidic protein (GFAP) and synaptophysin (SYP) immunofluorescence were also performed; apoptosis were displayed by dUTP nick end labeling (TUNEL) stain; endoplasmic reticulum stress-induced apoptosis pathway was detected by Western blotting analysis; Morris water maze was used to detect learning ability and spatial memory. Results: The appropriate dose was 0.1 mg/kg for MUS and 0.5 mg/kg for BIC. Ex group showed significantly increased [Ca2+]i and astrogliosis; TUNEL positive cells and levels of GFAP, B cell lymphoma-2 (Bcl-2) associated X protein (Bax), caspase-3, caspase-12 cleavage, CCAAT/enhancer binding protein homologous protein (CHOP), and p-Jun amino-terminal kinase (p-JNK) in Ex group also raised significantly compared to Con group, while SYP, synapse plasticity, and Bcl-2 levels in Ex group were significantly lower than those in Con group. These indexes were back to normal in MUS group. BIC group had the highest levels of [Ca2+]i, astrogliosis, TUNEL positive cell, GFAP, Bax, caspase-3, caspase-12 cleavage, CHOP, and p-JNK, it also gained the lowest SYP, synapse plasticity, and Bcl-2 levels among all groups

  11. The Difference Between Exercise-Induced Autonomic and Fitness Changes Measured After 12 and 20 Weeks of Medium-to-High Intensity Military Training.

    PubMed

    Grant, Catharina C; Mongwe, Lot; Janse van Rensburg, Dina C; Fletcher, Lizelle; Wood, Paola S; Terblanche, Etrisia; du Toit, Peet J

    2016-09-01

    Grant, CC, Mongwe, L, Janse van Rensburg, DC, Fletcher, L, Wood, PS, Terblanche, E, and du Toit, PJ. The difference between exercise-induced autonomic and fitness changes measured after 12 and 20 weeks of medium-to-high intensity military training. J Strength Cond Res 30(9): 2453-2459, 2016-The aim of this study was to compare the physical fitness, based on VO2max and exercise-induced cardiac autonomic changes, measured by heart rate variability (HRV) of 12 weeks with 20 weeks of training in the South African National Defence Force. Recruits (n = 154) participated in a medium-to-high intensity exercise intervention (daily energy expenditure: 8,485 kJ·d). The significant effect on VO2max between weeks 1 and 12 (48.57, SD = 9.25 vs. 53.36, SD = 7.21]