Science.gov

Sample records for exhaust affects gene

  1. Exhaustive Search for Fuzzy Gene Networks from Microarray Data

    SciTech Connect

    Sokhansanj, B A; Fitch, J P; Quong, J N; Quong, A A

    2003-07-07

    Recent technological advances in high-throughput data collection allow for the study of increasingly complex systems on the scale of the whole cellular genome and proteome. Gene network models are required to interpret large and complex data sets. Rationally designed system perturbations (e.g. gene knock-outs, metabolite removal, etc) can be used to iteratively refine hypothetical models, leading to a modeling-experiment cycle for high-throughput biological system analysis. We use fuzzy logic gene network models because they have greater resolution than Boolean logic models and do not require the precise parameter measurement needed for chemical kinetics-based modeling. The fuzzy gene network approach is tested by exhaustive search for network models describing cyclin gene interactions in yeast cell cycle microarray data, with preliminary success in recovering interactions predicted by previous biological knowledge and other analysis techniques. Our goal is to further develop this method in combination with experiments we are performing on bacterial regulatory networks.

  2. Inhalation of diesel engine exhaust affects spermatogenesis in growing male rats.

    PubMed Central

    Watanabe, N; Oonuki, Y

    1999-01-01

    We conducted experiments to determine whether diesel engine exhaust affects reproductive endocrine function in growing rats. The rats were assigned to three groups: a group exposed to total diesel engine exhaust containing 5.63 mg/m3 particulate matter, 4.10 ppm nitrogen dioxide, and 8.10 ppm nitrogen oxide; a group exposed to filtered exhaust without particulate matter; and a group exposed to clean air. Dosing experiments were performed for 3 months beginning at birth (6 hr/day for 5 days/week). Serum levels of testosterone and estradiol were significantly higher in animals exposed to total diesel exhaust and filtered exhaust (p < 0.05 for each group) as compared to the controls. Follicle-stimulating hormone was significantly decreased in the two groups exposed to diesel exhaust as compared to the control group (p < 0.05). Luteinizing hormone was significantly decreased in the total exhaust-exposed group as compared to the control and filtered groups (p < 0.05). Although testis weight did not show any significant difference among the groups, sperm production and activity of testicular hyaluronidase were significantly reduced in both exhaust-exposed groups as compared to the control group. Histological examination showed decreased numbers of step 18 and 19 spermatids in stage VI, VII, and VIII tubules in the testes of both diesel exhaust-exposed groups. This study suggests that diesel exhaust stimulates hormonal secretion of the adrenal cortex, depresses gonadotropin-releasing-hormone, and inhibits spermatogenesis in rats. Because these effects were not inhibited by filtration, the gaseous phase of the exhaust appears to be more responsible than particulate matter for disrupting the endocrine system. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:10379000

  3. Factors and Trends Affecting the Identification of a Reliable Biomarker for Diesel Exhaust Exposure.

    PubMed

    Morgott, David A

    2014-08-01

    The monitoring of human exposures to diesel exhaust continues to be a vexing problem for specialists seeking information on the potential health effects of this ubiquitous combustion product. Exposure biomarkers have yielded a potential solution to this problem by providing a direct measure of an individual's contact with key components in the exhaust stream. Spurred by the advent of new, highly sensitive, analytical methods capable of detecting substances at very low levels, there have been numerous attempts at identifying a stable and specific biomarker. Despite these new techniques, there is currently no foolproof method for unambiguously separating diesel exhaust exposures from those arising from other combustion sources. Diesel exhaust is a highly complex mixture of solid, liquid, and gaseous components whose exact composition can be affected by many variables, including engine technology, fuel composition, operating conditions, and photochemical aging. These factors together with those related to exposure methodology, epidemiological necessity, and regulatory reform can have a decided impact on the success or failure of future research aimed at identifying a suitable biomarker of exposure. The objective of this review is to examine existing information on exposure biomarkers for diesel exhaust and to identify those factors and trends that have had an impact on the successful identification of metrics for both occupational and community settings. The information will provide interested parties with a template for more thoroughly understanding those factors affecting diesel exhaust emissions and for identifying those substances and research approaches holding the greatest promise for future success. PMID:25170242

  4. Factors and Trends Affecting the Identification of a Reliable Biomarker for Diesel Exhaust Exposure

    PubMed Central

    2014-01-01

    The monitoring of human exposures to diesel exhaust continues to be a vexing problem for specialists seeking information on the potential health effects of this ubiquitous combustion product. Exposure biomarkers have yielded a potential solution to this problem by providing a direct measure of an individual's contact with key components in the exhaust stream. Spurred by the advent of new, highly sensitive, analytical methods capable of detecting substances at very low levels, there have been numerous attempts at identifying a stable and specific biomarker. Despite these new techniques, there is currently no foolproof method for unambiguously separating diesel exhaust exposures from those arising from other combustion sources. Diesel exhaust is a highly complex mixture of solid, liquid, and gaseous components whose exact composition can be affected by many variables, including engine technology, fuel composition, operating conditions, and photochemical aging. These factors together with those related to exposure methodology, epidemiological necessity, and regulatory reform can have a decided impact on the success or failure of future research aimed at identifying a suitable biomarker of exposure. The objective of this review is to examine existing information on exposure biomarkers for diesel exhaust and to identify those factors and trends that have had an impact on the successful identification of metrics for both occupational and community settings. The information will provide interested parties with a template for more thoroughly understanding those factors affecting diesel exhaust emissions and for identifying those substances and research approaches holding the greatest promise for future success. PMID:25170242

  5. [Exposure to nanoparticle-rich diesel exhaust affects hippocampal functions in mice].

    PubMed

    Win-Shwe, Tin Tin; Fujitani, Yuji; Hirano, Seishiro; Fujimaki, Hidekazu

    2011-09-01

    Epidemiological studies have indicated associations between day-to-day particulate air pollution and increased risks of various adverse health outcomes. Although an association between exposure to diesel exhaust particles (DEPs) and the development of pulmonary inflammation has been reported, there are limited reports on the neurotoxic effects of DEPs, particularly those of nanoparticle-rich diesel exhaust (NRDE). In this minireview, we highlighted the effects of NRDE which was generated in the National Institute for Environmental Studies, on hippocampus-dependent spatial learning ability and the expression of memory-function-related genes, neurotrophins, and proinflammatory cytokines in a mouse model. PMID:21996758

  6. Severe hypoxia during incremental exercise to exhaustion provokes negative post-exercise affects.

    PubMed

    Keramidas, Michail E; Stavrou, Nektarios A M; Kounalakis, Stylianos N; Eiken, Ola; Mekjavic, Igor B

    2016-03-15

    The post-exercise emotional response is mainly dependent on the intensity of the exercise performed; moderate exercise causes positive feelings, whereas maximal exercise may prompt negative affects. Acute hypoxia impairs peak O2 uptake (V̇O2peak), resulting in a shift to a lower absolute intensity at the point of exhaustion. Hence, the purpose of the study was to examine whether a severe hypoxic stimulus would influence the post-exercise affective state in healthy lowlanders performing an incremental exercise to exhaustion. Thirty-six male lowlanders performed, in a counter-balanced order and separated by a 48-h interval, two incremental exercise trials to exhaustion to determine their V̇O2peak, while they were breathing either room air (AIR; FiO2: 0.21), or a hypoxic gas mixture (HYPO; FiO2: 0.12). Before and immediately after each trial, subjects were requested to complete two questionnaires, based on how they felt at that particular moment: (i) the Profile of Mood States-Short Form, and (ii) the Activation Deactivation Adjective Check List. During the post-exercise phase, they also completed the Multidimensional Fatigue Inventory. V̇O2peak was significantly lower in the HYPO than the AIR trial (~15%; p<0.001). Still, after the HYPO trial, energy, calmness and motivation were markedly impaired, whereas tension, confusion, and perception of physical and general fatigue were exaggerated (p≤0.05). Accordingly, present findings suggest that an incremental exercise to exhaustion performed in severe hypoxia provokes negative post-exercise emotions, induces higher levels of perceived fatigue and decreases motivation; the affective responses coincide with the comparatively lower V̇O2peak than that achieved in normoxic conditions. PMID:26802281

  7. Blood Pressure Interventions Affect Acute and Four-Week Diesel Exhaust Induced Pulmonary Injury in Healthy and Hypertensive Rats

    EPA Science Inventory

    Rationale: We recently showed that inhalation exposure of normotensive Wistar Kyoto (WKY) rats to whole diesel exhaust (DE) elicits changes in cardiac gene expression that broadly mimics expression in spontaneously hypertensive (SH) rats without DE. We hypothesized that pharmacol...

  8. Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice.

    PubMed

    Win-Shwe, Tin-Tin; Yamamoto, Shoji; Fujitani, Yuji; Hirano, Seishiro; Fujimaki, Hidekazu

    2012-08-01

    We investigated the effect of exposure to nanoparticle-rich diesel exhaust (NRDE) on hippocampal-dependent spatial learning and memory function-related gene expressions in female mice. Female BALB/c mice were exposed to clean air, middle-dose NRDE (M-NRDE), high-dose NRDE (H-NRDE) or filtered diesel exhaust (F-DE) for three months. A Morris water maze apparatus was used to examine spatial learning. The expression levels of the N-methyl-D-aspartate (NMDA) receptor subunit, proinflammatory cytokines and neurotrophin mRNAs in the hippocampus were then investigated using real-time RT-PCR. Mice exposed to H-NRDE required a longer time to reach the hidden platform and showed higher mRNA expression levels of the NMDA receptor subunit NR2A, the proinflammatory cytokine CCL3, and brain-derived neurotrophic factor (BDNF) in the hippocampus, compared with the findings in the control group. These results indicate that three months of exposure to NRDE affected spatial learning and memory function-related gene expressions in the female mouse hippocampus. PMID:21663545

  9. Does inbreeding affect gene expression in birds?

    PubMed Central

    Hansson, Bengt; Naurin, Sara; Hasselquist, Dennis

    2014-01-01

    Inbreeding increases homozygosity, exposes genome-wide recessive deleterious alleles and often reduces fitness. The physiological and reproductive consequences of inbreeding may be manifested already during gene regulation, but the degree to which inbreeding influences gene expression is unknown in most organisms, including in birds. To evaluate the pattern of inbreeding-affected gene expression over the genome and in relation to sex, we performed a transcriptome-wide gene expression (10 695 genes) study of brain tissue of 10-day-old inbred and outbred, male and female zebra finches. We found significantly lower gene expression in females compared with males at Z-linked genes, confirming that dosage compensation is incomplete in female birds. However, inbreeding did not affect gene expression at autosomal or sex-linked genes, neither in males nor in females. Analyses of single genes again found a clear sex-biased expression at Z-linked genes, whereas only a single gene was significantly affected by inbreeding. The weak effect of inbreeding on gene expression in zebra finches contrasts to the situation, for example, in Drosophila where inbreeding has been found to influence gene expression more generally and at stress-related genes in particular. PMID:25232028

  10. Factors affecting swimming performance of fasted rainbow trout with implications of exhaustive exercise on overwinter mortality

    USGS Publications Warehouse

    Simpkins, D.G.; Hubert, W.A.; Del Rio, C.M.; Rule, D.C.

    2004-01-01

    We evaluated the effects of body size, water temperature, and sustained swimming activity on swimming performance and the effects of exhaustive exercise on mortality of fasted juvenile rainbow trout. Fasting caused swimming performance to decline more rapidly for small fish than large fish, and warmer water temperatures and sustained swimming activity further decreased swimming performance. Exhaustive exercise increased mortality among fasted fish. Our observations suggest that juvenile rainbow trout with little or no food intake during winter can swim for long periods of time with little effect on mortality, but swimming to exhaustion can enhance mortality, especially among the smallest juveniles.

  11. Allergic inflammation in the human lower respiratory tract affected by exposure to diesel exhaust.

    PubMed

    Riedl, Marc A; Diaz-Sanchez, David; Linn, William S; Gong, Henry; Clark, Kenneth W; Effros, Richard M; Miller, J Wayne; Cocker, David R; Berhane, Kiros T

    2012-02-01

    To improve understanding of human health risks from exposure to diesel exhaust particles (DEP*), we tested whether immunologic effects previously observed in the human nose also occur in the lower airways. Our overall hypothesis was that cell influx and production of cytokines, chemokines, immunoglobulin E (IgE), and other mediators, which would be measurable in sputum and blood, occur in people with asthma after realistic controlled exposures to diesel exhaust (DE). In Phase 1 we tested for direct effects of DE in subjects with clinically undifferentiated mild asthma. In Phase 2 we tested whether DE exposure would exacerbate response to inhaled cat allergen in subjects with both asthma and cat sensitivity. The exposure facility was a controlled-environment chamber supplied with DE from an idling medium-duty truck with ultra-low-sulfur fuel and no catalytic converter. We exposed volunteers for 2 hours with intermittent exercise to exhaust with DEP mass concentration near 100 microg/m3. Exposures to nitrogen dioxide (NO2) near 0.35 ppm (similar to its concentration in DE) and to filtered air (FA) served as controls. Blood was drawn before exposure on day 1 and again the next morning (day 2). Sputum was induced only on day 2. Bronchial reactivity was measured -1 hour after exposure ended. Supplementary endpoints included measures of blood coagulation status, cardiopulmonary physiology, and symptoms. Each phase employed 15 subjects with asthma; 3 subjects participated in both phases. In Phase 1, airway reactivity was measured with inhaled methacholine; in Phase 2, with inhaled cat allergen. We found little biologic response to DE exposure compared with exposure to control atmospheres. In Phase 1, interleukin 4 (IL-4) in sputum showed an estimated 1.7-fold increase attributable to DE exposure, which was close to statistical significance; airway resistance increased modestly but significantly on day 2 after DE exposure; and nonspecific symptom scores increased

  12. One-Month Diesel Exhaust Inhalation Produces Hypertensive Gene Expression Phenotype in Healthy Rats

    EPA Science Inventory

    Exposure to diesel exhaust (DE) is linked to vasoconstriction, endothelial 26 dysfunction, and myocardial ischemia in compromised individuals. We hypothesized that DE 27 inhalation would cause greater inflammation, hematological alterations, and cardiac molecular 28 impairment ...

  13. DIESEL EXHAUST PARTICLE INDUCED GENE EXPRESSION CHANGES IN A MURINE MUCOSAL SENSITIZATION MODEL

    EPA Science Inventory

    Studies in humans and animals have shown diesel exhaust particles (DEP) can act as an immunological adjuvant to enhance the development of allergic lung disease and this effect is influenced by the chemical composition of the DEP. The adjuvancy of NIST SRM 2975 (NDEP) generated...

  14. Inhalation of Whole Diesel Exhaust but not Gas-Phase Components Affects In Vitro Platelet Aggregation in Hypertensive Rats

    EPA Science Inventory

    Rationale: Intravascular thrombosis and platelet aggregation are enhanced following exposure to diesel exhaust (DE) and other respirable particulate matter; however, the roles of endothelial and circulating mediators on platelet aggregation remain unclear. We hypothesized that ad...

  15. Methods of Combinatorial Optimization to Reveal Factors Affecting Gene Length

    PubMed Central

    Bolshoy, Alexander; Tatarinova, Tatiana

    2012-01-01

    In this paper we present a novel method for genome ranking according to gene lengths. The main outcomes described in this paper are the following: the formulation of the genome ranking problem, presentation of relevant approaches to solve it, and the demonstration of preliminary results from prokaryotic genomes ordering. Using a subset of prokaryotic genomes, we attempted to uncover factors affecting gene length. We have demonstrated that hyperthermophilic species have shorter genes as compared with mesophilic organisms, which probably means that environmental factors affect gene length. Moreover, these preliminary results show that environmental factors group together in ranking evolutionary distant species. PMID:23300345

  16. The Glass Half Empty: How Emotional Exhaustion Affects the State-Trait Discrepancy in Self-Reports of Teaching Emotions

    PubMed Central

    Goetz, Thomas; Becker, Eva S.; Bieg, Madeleine; Keller, Melanie M.; Frenzel, Anne C.; Hall, Nathan C.

    2015-01-01

    Following from previous research on intensity bias and the accessibility model of emotional self-report, the present study examined the role of emotional exhaustion in explaining the discrepancy in teachers’ reports of their trait (habitual) versus state (momentary, “real”) emotions. Trait reports (habitual emotions, exhaustion) were assessed via trait questionnaires, and state reports (momentary emotions) were assessed in real time via the experience sampling method by using personal digital assistants (N = 69 high school teachers; 1,089 measures within teachers). In line with our assumptions, multi-level analyses showed that, as compared to the state assessment, teachers reported higher levels of habitual teaching-related emotions of anger, anxiety, shame, boredom, enjoyment, and pride. Additionally, the state-trait discrepancy in self-reports of negative emotions was accounted for by teachers’ emotional exhaustion, with high exhaustion levels corresponding with a greater state-trait discrepancy. Exhaustion levels did not moderate the state-trait discrepancy in positive emotions indicating that perceived emotional exhaustion may reflect identity-related cognitions specific to the negative belief system. Implications for research and educational practice are discussed. PMID:26368911

  17. Investigation of factors affecting RNA-seq gene expression calls

    PubMed Central

    Harati, Sahar; Phan, John H.; Wang, May D.

    2016-01-01

    RNA-seq enables quantification of the human transcriptome. Estimation of gene expression is a fundamental issue in the analysis of RNA-seq data. However, there is an inherent ambiguity in distinguishing between genes with very low expression and experimental or transcriptional noise. We conducted an exploratory investigation of some factors that may affect gene expression calls. We observed that the distribution of reads that map to exonic, intronic, and intergenic regions are distinct. These distributions may provide useful insights into the behavior of gene expression noise. Moreover, we observed that these distributions are qualitatively similar between two sequence mapping algorithms. Finally, we examined the relationship between gene length and gene expression calls, and observed that they are correlated. This preliminary investigation is important for RNA-seq gene expression analysis because it may lead to more effective algorithms for distinguishing between true gene expression and experimental or transcriptional noise. PMID:25571173

  18. Genome-wide scan of job-related exhaustion with three replication studies implicate a susceptibility variant at the UST gene locus

    PubMed Central

    Sulkava, Sonja; Ollila, Hanna M.; Ahola, Kirsi; Partonen, Timo; Viitasalo, Katriina; Kettunen, Johannes; Lappalainen, Maarit; Kivimäki, Mika; Vahtera, Jussi; Lindström, Jaana; Härmä, Mikko; Puttonen, Sampsa; Salomaa, Veikko; Paunio, Tiina

    2013-01-01

    Job-related exhaustion is the core dimension of burnout, a work-related stress syndrome that has several negative health consequences. In this study, we explored the molecular genetic background of job-related exhaustion. A genome-wide analysis of job-related exhaustion was performed in the GENMETS subcohort (n = 1256) of the Finnish population-based Health 2000 study. Replication analyses included an analysis of the strongest associations in the rest of the Health 2000 sample (n = 1660 workers) and in three independent populations (the FINRISK population cohort, n = 10 753; two occupational cohorts, total n = 1451). Job-related exhaustion was ascertained using a standard self-administered questionnaire (the Maslach Burnout Inventory (MBI)-GS exhaustion scale in the Health 2000 sample and the occupational cohorts) or a single question (FINRISK). A variant located in an intron of UST, uronyl-2-sulfotransferase (rs13219957), gave the strongest statistical evidence in the initial genome-wide study (P = 1.55 × 10−7), and was associated with job-related exhaustion in all the replication sets (P < 0.05; P = 6.75 × 10−7 from the meta-analysis). Consistent with studies of mood disorders, individual common genetic variants did not have any strong effect on job-related exhaustion. However, the nominally significant signals from the allelic variant of UST in four separate samples suggest that this variant might be a weak risk factor for job-related exhaustion. Together with the previously reported associations of other dermatan/chondroitin sulfate genes with mood disorders, these results indicate a potential molecular pathway for stress-related traits and mark a candidate region for further studies of job-related and general exhaustion. PMID:23620144

  19. Drug2Gene: an exhaustive resource to explore effectively the drug-target relation network

    PubMed Central

    2014-01-01

    Background Information about drug-target relations is at the heart of drug discovery. There are now dozens of databases providing drug-target interaction data with varying scope, and focus. Therefore, and due to the large chemical space, the overlap of the different data sets is surprisingly small. As searching through these sources manually is cumbersome, time-consuming and error-prone, integrating all the data is highly desirable. Despite a few attempts, integration has been hampered by the diversity of descriptions of compounds, and by the fact that the reported activity values, coming from different data sets, are not always directly comparable due to usage of different metrics or data formats. Description We have built Drug2Gene, a knowledge base, which combines the compound/drug-gene/protein information from 19 publicly available databases. A key feature is our rigorous unification and standardization process which makes the data truly comparable on a large scale, allowing for the first time effective data mining in such a large knowledge corpus. As of version 3.2, Drug2Gene contains 4,372,290 unified relations between compounds and their targets most of which include reported bioactivity data. We extend this set with putative (i.e. homology-inferred) relations where sufficient sequence homology between proteins suggests they may bind to similar compounds. Drug2Gene provides powerful search functionalities, very flexible export procedures, and a user-friendly web interface. Conclusions Drug2Gene v3.2 has become a mature and comprehensive knowledge base providing unified, standardized drug-target related information gathered from publicly available data sources. It can be used to integrate proprietary data sets with publicly available data sets. Its main goal is to be a ‘one-stop shop’ to identify tool compounds targeting a given gene product or for finding all known targets of a drug. Drug2Gene with its integrated data set of public compound

  20. Exhaustive Analysis of BH4 and Dopamine Biosynthesis Genes in Patients with Dopa-Responsive Dystonia

    ERIC Educational Resources Information Center

    Clot, Fabienne; Grabli, David; Cazeneuve, Cecile; Roze, Emmanuel; Castelnau, Pierre; Chabrol, Brigitte; Landrieu, Pierre; Nguyen, Karine; Ponsot, Gerard; Abada, Myriem; Doummar, Diane; Damier, Philippe; Gil, Roger; Thobois, Stephane; Ward, Alana J.; Hutchinson, Michael; Toutain, Annick; Picard, Fabienne; Camuzat, Agnes; Fedirko, Estelle; San, Chankannira; Bouteiller, Delphine; LeGuern, Eric; Durr, Alexandra; Vidailhet, Marie; Brice, Alexis

    2009-01-01

    Dopa-responsive dystonia is a childhood-onset dystonic disorder, characterized by a dramatic response to low dose of L-Dopa. Dopa-responsive dystonia is mostly caused by autosomal dominant mutations in the "GCH1" gene (GTP cyclohydrolase1) and more rarely by autosomal recessive mutations in the "TH" (tyrosine hydroxylase) or "SPR" (sepiapterin…

  1. Gene Targeting of Mouse Tardbp Negatively Affects Masp2 Expression

    PubMed Central

    Dib, Samar; Xiao, Shangxi; Miletic, Denise; Robertson, Janice

    2014-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a devastating adult onset neurodegenerative disease affecting both upper and lower motor neurons. TDP-43, encoded by the TARDBP gene, was identified as a component of motor neuron cytoplasmic inclusions in both familial and sporadic ALS and has become a pathological signature of the disease. TDP-43 is a nuclear protein involved in RNA metabolism, however in ALS, TDP-43 is mislocalized to the cytoplasm of affected motor neurons, suggesting that disease might be caused by TDP-43 loss of function. To investigate this hypothesis, we attempted to generate a mouse conditional knockout of the Tardbp gene using the classical Cre-loxP technology. Even though heterozygote mice for the targeted allele were successfully generated, we were unable to obtain homozygotes. Here we show that although the targeting vector was specifically designed to not overlap with Tardbp adjacent genes, the homologous recombination event affected the expression of a downstream gene, Masp2. This may explain the inability to obtain homozygote mice with targeted Tardbp. PMID:24740308

  2. Combined Inhaled Diesel Exhaust Particles and Allergen Exposure Alter Methylation of T Helper Genes and IgE Production In Vivo

    PubMed Central

    Liu, Jinming; Ballaney, Manisha; Al-alem, Umaima; Quan, Chunli; Jin, Ximei; Perera, Frederica; Chen, Lung-Chi; Miller, Rachel L.

    2008-01-01

    Changes in methylation of CpG sites at the interleukin (IL)-4 and interferon (IFN)-γ promoters are associated with T helper (Th) 2 polarization in vitro. No previous studies have examined whether air pollution or allergen exposure alters methylation of these two genes in vivo. We hypothesized that diesel exhaust particles (DEP) would induce hypermethylation of the IFN-γ promoter and hypomethylation of IL-4 in CD4+ T cells among mice sensitized to the fungus allergen Aspergillus fumigatus.We also hypothesized that DEP-induced methylation changes would affect immunoglobulin (Ig) E regulation. BALB/c mice were exposed to a 3-week course of inhaled DEP exposure while undergoing intranasal sensitization to A. fumigatus. Purified DNA from splenic CD4+ cells underwent bisulfite treatment, PCR amplification, and pyrosequencing. Sera IgE levels were compared with methylation levels at several CpG sites in the IL-4 and IFN-γ promoter. Total IgE production was increased following intranasal sensitization A. fumigatus. IgE production was augmented further following combined exposure to A. fumigatus and DEP exposure. Inhaled DEP exposure and intranasal A. fumigatus induced hypermethylation at CpG−45, CpG−53, CpG−205 sites of the IFN-γ promoter and hypomethylation at CpG−408 of the IL-4 promoter. Altered methylation of promoters of both genes was correlated significantly with changes in IgE levels. This study is the first to demonstrate that inhaled environmental exposures influence methylation of Th genes in vivo, supporting a new paradigm in asthma pathogenesis. PMID:18042818

  3. Identifying sexual differentiation genes that affect Drosophila life span

    PubMed Central

    2009-01-01

    Background Sexual differentiation often has significant effects on life span and aging phenotypes. For example, males and females of several species have different life spans, and genetic and environmental manipulations that affect life span often have different magnitude of effect in males versus females. Moreover, the presence of a differentiated germ-line has been shown to affect life span in several species, including Drosophila and C. elegans. Methods Experiments were conducted to determine how alterations in sexual differentiation gene activity might affect the life span of Drosophila melanogaster. Drosophila females heterozygous for the tudor[1] mutation produce normal offspring, while their homozygous sisters produce offspring that lack a germ line. To identify additional sexual differentiation genes that might affect life span, the conditional transgenic system Geneswitch was employed, whereby feeding adult flies or developing larvae the drug RU486 causes the over-expression of selected UAS-transgenes. Results In this study germ-line ablation caused by the maternal tudor[1] mutation was examined in a long-lived genetic background, and was found to increase life span in males but not in females, consistent with previous reports. Fitting the data to a Gompertz-Makeham model indicated that the maternal tudor[1] mutation increases the life span of male progeny by decreasing age-independent mortality. The Geneswitch system was used to screen through several UAS-type and EP-type P element mutations in genes that regulate sexual differentiation, to determine if additional sex-specific effects on life span would be obtained. Conditional over-expression of transformer female isoform (traF) during development produced male adults with inhibited sexual differentiation, however this caused no significant change in life span. Over-expression of doublesex female isoform (dsxF) during development was lethal to males, and produced a limited number of female escapers

  4. Immune Exhaustion and Transplantation.

    PubMed

    Sanchez-Fueyo, A; Markmann, J F

    2016-07-01

    Exhaustion of lymphocyte function through chronic exposure to a high load of foreign antigen is well established for chronic viral infection and antitumor immunity and has been found to be associated with a distinct molecular program and characteristic cell surface phenotype. Although exhaustion has most commonly been studied in the context of CD8 viral responses, recent studies indicate that chronic antigen exposure may affect B cells, NK cells and CD4 T cells in a parallel manner. Limited information is available regarding the extent of lymphocyte exhaustion development in the transplant setting and its impact on anti-graft alloreactivity. By analogy to the persistence of a foreign virus, the large mass of alloantigen presented by an allograft in chronic residence could provide an ideal setting for exhausting donor-reactive T cells. The extent of T cell exhaustion occurring with various allografts, the kinetics of its development, whether exhaustion is influenced positively or negatively by different immunosuppressants, and the impact of exhaustion on graft survival and tolerance development remains a fertile area for investigation. Harnessing or encouraging the natural processes of exhaustion may provide a novel means to promote graft survival and transplantation tolerance. PMID:26729653

  5. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.

    PubMed

    Varrella, Stefano; Romano, Giovanna; Costantini, Susan; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  6. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    PubMed Central

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  7. C-GATE - catalogue of genes affected by transposable elements

    PubMed Central

    2012-01-01

    Background Functional regulatory sequences are present in many transposable element (TE) copies, resulting in TEs being frequently exapted by host genes. Today, many examples of TEs impacting host gene expression can be found in the literature and we believe a new catalogue of such exaptations would be useful for the field. Findings We have established the catalogue of genes affected by transposable elements (C-GATE), which can be found at https://sites.google.com/site/tecatalog/. To date, it holds 221 cases of biologically verified TE exaptations and more than 10,000 in silico TE-gene partnerships. C-GATE is interactive and allows users to include missed or new TE exaptation data. C-GATE provides a graphic representation of the entire library, which may be used for future statistical analysis of TE impact on host gene expression. Conclusions We hope C-GATE will be valuable for the TE community but also for others who have realized the role that TEs may have in their research. PMID:22621612

  8. Quantitative expression of candidate genes affecting eggshell color.

    PubMed

    Zheng, Chuanwei; Li, Zesheng; Yang, Ning; Ning, Zhonghua

    2014-05-01

    There are three pigments that affect the color of an eggshell: protoporphyrin, biliverdin and biliverdin-zinc chelate. Protoporphyrin is the main pigment in brown and light-brown eggshells, whereas very little protoporphyrin is found in white eggshells. Eggshell protoporphyrin is derived from the heme formation in birds. Coproporphyrinogen III oxidase (CPOX) and ferrochelatase (FECH) represent rate-limiting enzymes for the heme-biosynthetic pathway. Breast cancer resistance protein (BCRP), feline leukemia virus receptor (FLVCR), and heme-responsive gene-1 (HRG1) serve as primary transporters for both protoporphyrinogen and heme. Finally, four organic anion transporting polypeptide family members (including solute carrier organic anion transporter family, SLCO1C1, SLCO1A2, SLCO1B3 and LOC418189) may affect pigment transport within eggshells. Here we measured gene expression levels in key tissues of egg-producing hens. We analyzed three different types of hens that generated distinct eggshell colors: white, pink or brown. Our data revealed three ways in which eggshell color was genetically influenced. First, high-level expression of CPOX generated more protoporphyrinogen and a brown eggshell color. In contrast, high expression of FECH likely converted more protoporphyrinogen into heme, reduced protoporphyrinogen levels within the eggshell and generated a light color. Second, heme transporters also affected eggshell color. High-level expression of BCRP, HRG1 and FLVCR were associated with brown, white and generally lighter eggshell colors, respectively. Finally, protoporphyrin precipitation also affected eggshell color, as high expression of both SLCO1A2 and SLCO1C1 were associated with brown eggshell color. As such, we have identified seven genes in which expression levels in different tissues were associated with eggshell color. PMID:24612318

  9. Hydrophobin gene expression affects hyphal wall composition in Schizophyllum commune.

    PubMed

    van Wetter, M A; Wösten, H A; Sietsma, J H; Wessels, J G

    2000-11-01

    Disruption of the SC3 hydrophobin gene of Schizophyllum commune (DeltaSC3 strain) affected the composition of the cell wall. Compared to a wild-type strain the amount of mucilage (i.e., water-soluble (1-3)beta-glucan with single glucose residues attached by (1-6)beta-linkages) increased considerably, while the amount of alkali-resistant glucan (linked to chitin) decreased. Reintroduction of the SC3 gene or other hydrophobins genes expressed behind the SC3 promotor restored wild-type cell wall composition. However, addition of purified SC3 protein to the medium or growing the DeltaSC3 strain in spent medium of the wild-type strain had no effect. In young cultures of wild-type strains of S.commune, not yet expressing SC3, the amount of mucilage was also relatively high. These data show that hydrophobins not only function at hydrophilic/hydrophobic interfaces, as shown previously, but also affect wall composition. PMID:11170739

  10. Diesel exhaust particulates affect cell signaling, mucin profiles, and apoptosis in trachea explants of Balb/C mice.

    PubMed

    Seriani, Robson; Junqueira, Mara de Souza; de Toledo, Alessandra Choqueta; Martins, Milton Arruda; Seckler, Marcelo; Alencar, Adriano Mesquita; Negri, Elnara Marcia; Silva, Luiz Fernando Ferraz; Mauad, Thaís; Saldiva, Paulo Hilário Nascimento; Macchione, Mariangela

    2015-11-01

    Particulate matter from diesel exhaust (DEP) has toxic properties and can activate intracellular signaling pathways and induce metabolic changes. This study was conducted to evaluate the activation of extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) and to analyze the mucin profile (acid (AB(+) ), neutral (PAS(+) ), or mixed (AB/PAS(+) ) mucus) and vacuolization (V) of tracheal explants after treatment with 50 or 100 μg/mL DEP for 30 or 60 min. Western blot analyses showed small increases in ERK1/2 and JNK phosphorylation after 30 min of 100 μg/mL DEP treatment compared with the control. An increase in JNK phosphorylation was observed after 60 min of treatment with 50 μg/mL DEP compared with the control. We did not observe any change in the level of ERK1/2 phosphorylation after treatment with 50 μg/mL DEP. Other groups of tracheas were subjected to histological sectioning and stained with periodic acid-Schiff (PAS) reagent and Alcian Blue (AB). The stained tissue sections were then subjected to morphometric analysis. The results obtained were compared using ANOVA. Treatment with 50 μg/mL DEP for 30 min or 60 min showed a significant increase (p < 0.001) in the amount of acid mucus, a reduction in neutral mucus, a significant reduction in mixed mucus, and greater vacuolization. Our results suggest that compounds found in DEPs are able to activate acid mucus production and enhance vacuolization and cell signaling pathways, which can lead to airway diseases. PMID:24777914

  11. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans

    PubMed Central

    2010-01-01

    Background Both the speciation and toxicity of arsenic are affected by bacterial transformations, i.e. oxidation, reduction or methylation. These transformations have a major impact on environmental contamination and more particularly on arsenic contamination of drinking water. Herminiimonas arsenicoxydans has been isolated from an arsenic- contaminated environment and has developed various mechanisms for coping with arsenic, including the oxidation of As(III) to As(V) as a detoxification mechanism. Results In the present study, a differential transcriptome analysis was used to identify genes, including arsenite oxidase encoding genes, involved in the response of H. arsenicoxydans to As(III). To get insight into the molecular mechanisms of this enzyme activity, a Tn5 transposon mutagenesis was performed. Transposon insertions resulting in a lack of arsenite oxidase activity disrupted aoxR and aoxS genes, showing that the aox operon transcription is regulated by the AoxRS two-component system. Remarkably, transposon insertions were also identified in rpoN coding for the alternative N sigma factor (σ54) of RNA polymerase and in dnaJ coding for the Hsp70 co-chaperone. Western blotting with anti-AoxB antibodies and quantitative RT-PCR experiments allowed us to demonstrate that the rpoN and dnaJ gene products are involved in the control of arsenite oxidase gene expression. Finally, the transcriptional start site of the aoxAB operon was determined using rapid amplification of cDNA ends (RACE) and a putative -12/-24 σ54-dependent promoter motif was identified upstream of aoxAB coding sequences. Conclusion These results reveal the existence of novel molecular regulatory processes governing arsenite oxidase expression in H. arsenicoxydans. These data are summarized in a model that functionally integrates arsenite oxidation in the adaptive response to As(III) in this microorganism. PMID:20167112

  12. Associations between DNA methylation in DNA damage response-related genes and cytokinesis-block micronucleus cytome index in diesel engine exhaust-exposed workers.

    PubMed

    Zhang, Xiao; Li, Jie; He, Zhini; Duan, Huawei; Gao, Weimin; Wang, Haisheng; Yu, Shanfa; Chen, Wen; Zheng, Yuxin

    2016-08-01

    Recently, diesel engine exhaust (DEE) was reclassified as a known carcinogen to humans. DNA methylation alterations in DNA damage response (DDR)-related genes have the potential to affect DEE exposure-related cancer risk. However, the evidence regarding the association between DEE exposure and methylation alterations in DDR-related genes is limited. In 117 DEE-exposed workers and 112 non-DEE-exposed workers, we measured urinary concentrations of six mono-hydroxylated polycyclic aromatic hydrocarbons (OH-PAHs). We also determined the methylation levels of three DDR-related genes (p16, RASSF1A, and MGMT) and LINE-1 by bisulfite-pyrosequencing assay. We found that DEE-exposed workers exhibited significantly lower mean promoter methylation levels of p16, RASSF1A, and MGMT than non-DEE-exposed workers (all p < 0.001). In all study subjects and non-smoking workers, increasing quartiles of urinary summed OH-PAHs was associated with hypomethylation of p16, RASSF1A, and MGMT (all p < 0.05). In non-smoking workers, methylation in p16, RASSF1A, and MGMT decreased by 0.36 % [95 % confidential interval (CI): -0.60, -0.11 %], 0.46 % (95 % CI: -0.79, -0.14 %), and 0.55 % (95 % CI: -0.95, -0.15 %), respectively, in association with highest versus lowest quartile of urinary summed OH-PAHs. In addition, p16, RASSF1A, MGMT, and LINE-1 methylation levels showed negative correlations with cytokinesis-block micronucleus cytome index which was previously measured in the same workers (all p < 0.05). In conclusion, our results clearly indicated that DEE exposure and increased genetic damage were associated with hypomethylation of p16, RASSF1A, and MGMT. Future studies with larger sample size are needed to confirm these associations. PMID:26410583

  13. Nitrophenols isolated from diesel exhaust particles regulate steroidogenic gene expression and steroid synthesis in the human H295R adrenocortical cell line

    SciTech Connect

    Furuta, Chie; Noda, Shiho; Li Chunmei; Suzuki, Akira K; Taneda, Shinji; Watanabe, Gen; Taya, Kazuyoshi

    2008-05-15

    Studies of nitrophenols isolated from diesel exhaust particles (DEPs), 3-methyl-4-nitrophenol (PNMC) and 4-nitro-3-phenylphenol (PNMPP) have revealed that these chemicals possess estrogenic and anti-androgenic activity in vitro and in vivo and that PNMC accumulate in adrenal glands in vivo. However, the impacts of exposure to these compounds on adrenal endocrine disruption and steroidogenesis have not been investigated. To elucidate the non-receptor mediated effects of PNMC and PNMPP, we investigated the production of the steroid hormones progesterone, cortisol, testosterone, and estradiol-17{beta} and modulation of nine major enzyme genes involved in the synthesis of steroid hormones (CYP11A, CYP11B1, CYP17, CYP19, 17{beta}HSD1, 17{beta}HSD4, CYP21, 3{beta}HSD2, StAR) in human adrenal H295R cells supplied with cAMP. Exposure to 10{sup -7} to 10{sup -5} M PNMC and 1 mM 8-Br-cAMP for 48 h decreased testosterone, cortisol, and estradiol-17{beta} levels and increased progesterone secretion. At 10{sup -5} M, PNMC with 1 mM 8-Br-cAMP significantly stimulated expression of the 17{beta}HSD4 and significantly suppressed expression of 3{beta}HSD2. In comparison, 10{sup -7} to 2 x 10{sup -5} M PNMPP with 1 mM 8-Br-cAMP for 48 h decreased concentrations of estradiol-17{beta}, increased progesterone levels, but did not affect testosterone and cortisol secretion due to the significant suppression of CYP17 and the non-significant but obvious suppression of CYP19. Our results clarified steroidogenic enzymes as candidates responsible for the inhibition or stimulation for the production of steroid hormones in the steroidogenic pathway, thus providing the first experimental evidence for multiple mechanisms of disruption of endocrine pathways by these nitrophenols.

  14. The FRIABLE1 Gene Product Affects Cell Adhesion in Arabidopsis

    PubMed Central

    Neumetzler, Lutz; Humphrey, Tania; Lumba, Shelley; Snyder, Stephen; Yeats, Trevor H.; Usadel, Björn; Vasilevski, Aleksandar; Patel, Jignasha; Rose, Jocelyn K. C.; Persson, Staffan; Bonetta, Dario

    2012-01-01

    Cell adhesion in plants is mediated predominantly by pectins, a group of complex cell wall associated polysaccharides. An Arabidopsis mutant, friable1 (frb1), was identified through a screen of T-DNA insertion lines that exhibited defective cell adhesion. Interestingly, the frb1 plants displayed both cell and organ dissociations and also ectopic defects in organ separation. The FRB1 gene encodes a Golgi-localized, plant specific protein with only weak sequence similarities to known proteins (DUF246). Unlike other cell adhesion deficient mutants, frb1 mutants do not have reduced levels of adhesion related cell wall polymers, such as pectins. Instead, FRB1 affects the abundance of galactose- and arabinose-containing oligosaccharides in the Golgi. Furthermore, frb1 mutants displayed alteration in pectin methylesterification, cell wall associated extensins and xyloglucan microstructure. We propose that abnormal FRB1 action has pleiotropic consequences on wall architecture, affecting both the extensin and pectin matrices, with consequent changes to the biomechanical properties of the wall and middle lamella, thereby influencing cell-cell adhesion. PMID:22916179

  15. Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration.

    PubMed

    Chen-Plotkin, Alice S; Geser, Felix; Plotkin, Joshua B; Clark, Chris M; Kwong, Linda K; Yuan, Wuxing; Grossman, Murray; Van Deerlin, Vivianna M; Trojanowski, John Q; Lee, Virginia M-Y

    2008-05-15

    Frontotemporal lobar degeneration is a fatal neurodegenerative disease that results in progressive decline in behavior, executive function and sometimes language. Disease mechanisms remain poorly understood. Recently, however, the DNA- and RNA-binding protein TDP-43 has been identified as the major protein present in the hallmark inclusion bodies of frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U), suggesting a role for transcriptional dysregulation in FTLD-U pathophysiology. Using the Affymetrix U133A microarray platform, we profiled global gene expression in both histopathologically affected and unaffected areas of human FTLD-U brains. We then characterized differential gene expression with biological pathway analyses, cluster and principal component analyses, and subgroup analyses based on brain region and progranulin (GRN) gene status. Comparing 17 FTLD-U brains to 11 controls, we identified 414 upregulated and 210 downregulated genes in frontal cortex (P-value < 0.001). Moreover, cluster and principal component analyses revealed that samples with mutations or possibly pathogenic variations in the GRN gene (GRN+, 7/17) had an expression signature that was distinct from both normal controls and FTLD-U samples lacking GRN gene variations (GRN-, 10/17). Within the subgroup of GRN+ FTLD-U, we found >1300 dysregulated genes in frontal cortex (P-value < 0.001), many participating in pathways uniquely dysregulated in the GRN+ cases. Our findings demonstrate a distinct molecular phenotype for GRN+ FTLD-U, not readily apparent on clinical or histopathological examination, suggesting distinct pathophysiological mechanisms for GRN+ and GRN- subtypes of FTLD-U. In addition, these data from a large number of human brains provide a valuable resource for future testing of disease hypotheses. PMID:18223198

  16. Gene duplication and divergence affecting drug content in Cannabis sativa.

    PubMed

    Weiblen, George D; Wenger, Jonathan P; Craft, Kathleen J; ElSohly, Mahmoud A; Mehmedic, Zlatko; Treiber, Erin L; Marks, M David

    2015-12-01

    Cannabis sativa is an economically important source of durable fibers, nutritious seeds, and psychoactive drugs but few economic plants are so poorly understood genetically. Marijuana and hemp were crossed to evaluate competing models of cannabinoid inheritance and to explain the predominance of tetrahydrocannabinolic acid (THCA) in marijuana compared with cannabidiolic acid (CBDA) in hemp. Individuals in the resulting F2 population were assessed for differential expression of cannabinoid synthase genes and were used in linkage mapping. Genetic markers associated with divergent cannabinoid phenotypes were identified. Although phenotypic segregation and a major quantitative trait locus (QTL) for the THCA/CBDA ratio were consistent with a simple model of codominant alleles at a single locus, the diversity of THCA and CBDA synthase sequences observed in the mapping population, the position of enzyme coding loci on the map, and patterns of expression suggest multiple linked loci. Phylogenetic analysis further suggests a history of duplication and divergence affecting drug content. Marijuana is distinguished from hemp by a nonfunctional CBDA synthase that appears to have been positively selected to enhance psychoactivity. An unlinked QTL for cannabinoid quantity may also have played a role in the recent escalation of drug potency. PMID:26189495

  17. Whole and particle-free diesel exhausts differentially affect cardiac electrophysiology, blood pressure, and autonomic balance in heart failure-prone rats

    EPA Science Inventory

    Epidemiologic studies strongly link short-term exposures to vehicular traffic and particulate matter (PM) air pollution with adverse cardiovascular events, especially in those with preexisting cardiovascular disease. Diesel engine exhaust (DE) is a key contributor to urban ambien...

  18. Y-chromosomal genes affecting male fertility: A review

    PubMed Central

    Dhanoa, Jasdeep Kaur; Mukhopadhyay, Chandra Sekhar; Arora, Jaspreet Singh

    2016-01-01

    The mammalian sex-chromosomes (X and Y) have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion) of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility. PMID:27536043

  19. Y-chromosomal genes affecting male fertility: A review.

    PubMed

    Dhanoa, Jasdeep Kaur; Mukhopadhyay, Chandra Sekhar; Arora, Jaspreet Singh

    2016-07-01

    The mammalian sex-chromosomes (X and Y) have evolved from autosomes and are involved in sex determination and reproductive traits. The Y-chromosome is the smallest chromosome that consists of 2-3% of the haploid genome and may contain between 70 and 200 genes. The Y-chromosome plays major role in male fertility and is suitable to study the evolutionary relics, speciation, and male infertility and/or subfertility due to its unique features such as long non-recombining region, abundance of repetitive sequences, and holandric inheritance pattern. During evolution, many holandric genes were deleted. The current review discusses the mammalian holandric genes and their functions. The commonly encountered infertility and/or subfertility problems due to point or gross mutation (deletion) of the Y-chromosomal genes have also been discussed. For example, loss or microdeletion of sex-determining region, Y-linked gene results in XY males that exhibit female characteristics, deletion of RNA binding motif, Y-encoded in azoospermic factor b region results in the arrest of spermatogenesis at meiosis. The holandric genes have been covered for associating the mutations with male factor infertility. PMID:27536043

  20. Exhaust emission control apparatus

    SciTech Connect

    Eng, J.W.

    1991-09-24

    This patent describes an exhaust control apparatus for muffling noise and treating odors and pollutants, including solid particulate and gases in the exhaust of an internal combustion engine. It comprises an exhaust inlet tube for receiving the exhaust generated by an internal combustion engine; a cyclone barrier concentrically surrounding the exhaust inlet tube, a ring cavity between the cyclone tube and exhaust inlet tube defining a cyclone chamber in which the exhaust is treated; means for directing the exhaust from the exhaust inlet tube into the cyclone chamber; electrode means having small openings through which the exhaust passes to enter the cyclone chamber, the electrode means generating electrostatic forces which charge the solid particulate in the exhaust, ionize air and generate ozone in the cyclone chamber near the electrode; means for injecting air into the cyclone chamber causing centrifugal flow of the air and the exhausted within the cyclone chamber and increasing a dwell time of the exhaust within the cyclone chamber.

  1. Early Experiences Can Alter Gene Expression and Affect Long-Term Development. Working Paper #10

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2010

    2010-01-01

    New scientific research shows that environmental influences can actually affect whether and how genes are expressed. Thus, the old ideas that genes are "set in stone" or that they alone determine development have been disproven. In fact, scientists have discovered that early experiences can determine how genes are turned on and off and even…

  2. Candidate genes that affect aging through protein homeostasis.

    PubMed

    Argon, Yair; Gidalevitz, Tali

    2015-01-01

    Because aging is a multifactorial, pleiotropic process where many interacting mechanisms contribute to the organismal decline, the candidate gene approach rarely provides a clear message. This chapter discusses some of the inherent complexity, focusing on aspects that impinge upon protein homeostasis and maintain a healthy proteome. We discuss candidate genes that operate in these pathways, and compare their actions in invertebrates, mice and humans. We highlight several themes that emerge from recent research—the interconnections of pathways that regulate aging, the pleiotropic effects of mutations and other manipulations of the candidate proteins and the tissue specificity in these pleiotropic outcomes. This body of knowledge highlights the need for multiple specific readouts of manipulating longevity genes, beyond measuring lifespan, as well as the need to understand the integrated picture, beyond examining the immediate outputs of individual longevity pathways. PMID:25916585

  3. Tissue Dependent Limited Pleiotropy Affects Gene Expression in Barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Non-synonymous coding mutations in a gene change the resulting protein no matter where it is expressed, but the effects of cis-regulatory mutations could be spatially or temporally limited, a phenomenon termed limited pleiotropy. Here we report the genome-wide occurrence of limited pleiotropy of cis...

  4. Age and Diet Affect Gene Expression Profile in Canine Skeletal Muscle

    PubMed Central

    Middelbos, Ingmar S.; Vester, Brittany M.; Karr-Lilienthal, Lisa K.; Schook, Lawrence B.; Swanson, Kelly S.

    2009-01-01

    We evaluated gene transcription in canine skeletal muscle (biceps femoris) using microarray analysis to identify effects of age and diet on gene expression. Twelve female beagles were used (six 1-year olds and six 12-year olds) and they were fed one of two experimental diets for 12 months. One diet contained primarily plant-based protein sources (PPB), whereas the second diet contained primarily animal-based protein sources (APB). Affymetrix GeneChip Canine Genome Arrays were used to hybridize extracted RNA. Age had the greatest effect on gene transcription (262 differentially expressed genes), whereas the effect of diet was relatively small (22 differentially expressed genes). Effects of age (regardless of diet) were most notable on genes related to metabolism, cell cycle and cell development, and transcription function. All these genes were predominantly down-regulated in geriatric dogs. Age-affected genes that were differentially expressed on only one of two diets were primarily noted in the PPB diet group (144/165 genes). Again, genes related to cell cycle (22/35) and metabolism (15/19) had predominantly decreased transcription in geriatric dogs, but 6/8 genes related to muscle development had increased expression. Effects of diet on muscle gene expression were mostly noted in geriatric dogs, but no consistent patterns in transcription were observed. The insight these data provide into gene expression profiles of canine skeletal muscle as affected by age, could serve as a foundation for future research pertaining to age-related muscle diseases. PMID:19221602

  5. Testing candidate genes that may affect susceptibility to leprosy.

    PubMed

    Cervino, A C; Curnow, R N

    1997-12-01

    Several statistical methods have been used to search familial data sets for marker alleles associated with the occurrence of a disease. In the present paper, a recently developed method is used to re-analyze published data on leprosy and candidate genes at the HLA loci. This new method of analysis, the randomization transmission disequilibrium test (TDT), confirmed previous conclusions that there was no significant evidence against random transmission at the HLA-A locus but significant positive association with the HLA-DR2 allele. The randomization TDT detected significant protective associations, that had not previously been found, with alleles HLA-B8 in Egyptian families and HLA-B21 (current nomenclature B x 4901, 5001-5002) in South Indian families, highlighting a major advantage of permutation tests in analyzing candidate gene loci with rare alleles. These findings provide evidence that HLA class I restricted T lymphocytes may be of protective importance in leprosy. PMID:9465154

  6. Land use type significantly affects microbial gene transcription in soil.

    PubMed

    Nacke, Heiko; Fischer, Christiane; Thürmer, Andrea; Meinicke, Peter; Daniel, Rolf

    2014-05-01

    Soil microorganisms play an essential role in sustaining biogeochemical processes and cycling of nutrients across different land use types. To gain insights into microbial gene transcription in forest and grassland soil, we isolated mRNA from 32 sampling sites. After sequencing of generated complementary DNA (cDNA), a total of 5,824,229 sequences could be further analyzed. We were able to assign nonribosomal cDNA sequences to all three domains of life. A dominance of bacterial sequences, which were affiliated to 25 different phyla, was found. Bacterial groups capable of aromatic compound degradation such as Phenylobacterium and Burkholderia were detected in significantly higher relative abundance in forest soil than in grassland soil. Accordingly, KEGG pathway categories related to degradation of aromatic ring-containing molecules (e.g., benzoate degradation) were identified in high abundance within forest soil-derived metatranscriptomic datasets. The impact of land use type forest on community composition and activity is evidently to a high degree caused by the presence of wood breakdown products. Correspondingly, bacterial groups known to be involved in lignin degradation and containing ligninolytic genes such as Burkholderia, Bradyrhizobium, and Azospirillum exhibited increased transcriptional activity in forest soil. Higher solar radiation in grassland presumably induced increased transcription of photosynthesis-related genes within this land use type. This is in accordance with high abundance of photosynthetic organisms and plant-infecting viruses in grassland. PMID:24553913

  7. Three Genes Which Affect Founding of Aggregations in Polysphondylium Pallidum

    PubMed Central

    Francis, D.; Shaffer, A.; Smoyer, K.

    1991-01-01

    PN6024 is an extraordinary mutant strain of the cellular slime mold Polysphondylium pallidum, characterized by having defects in many unlinked genes. New strains with altered development appeared spontaneously as aberrant clones of PN6024. Genetic crosses using the macrocyst sexual cycle were used to show that PN6030 (a clone like PN6024 in phenotype) carries mutations at two loci, emm and hge, whereas PN6031 (a clone of altered morphology) carries in addition a mutation at a third locus, mgt. hge and possibly mgt are linked to the mating type locus mat. The relatively high frequency of recombination between mat and hge is strong evidence that meiosis precedes macrocyst germination. The mutant genes themselves are of interest. A major effect of the emm-1 mutation is to remove the requirement for light to trigger aggregation. hge-1 greatly reduces the frequency of aggregation, whereas mgt-1 greatly increases it under standard conditions. None of these mutations interrupts later development leading to stalks and spore cells. It is hypothesized that all three genes act on steps immediately preceding the differentiation of the founder cells which initiate aggregation. PMID:1874416

  8. Common and Rare Gene Variants Affecting Plasma LDL Cholesterol

    PubMed Central

    Burnett, John R; Hooper, Amanda J

    2008-01-01

    The plasma level of LDL cholesterol is clinically important and genetically complex. LDL cholesterol levels are in large part determined by the activity of LDL receptors (LDLR) in the liver. Autosomal dominant familial hypercholesterolaemia (FH) – with its high LDL cholesterol levels, xanthomas, and premature atherosclerosis – is caused by mutations in either the LDLR or in APOB – the protein in LDL recognised by the LDLR. A third, rare form – autosomal recessive hypercholesterolaemia – arises from mutations in the gene encoding an adaptor protein involved in the internalisation of the LDLR. A fourth variant of inherited hypercholesterolaemia was recently found to be associated with missense mutations in PCSK9, which encodes a serine protease that degrades LDLR. Whereas the gain-of-function mutations in PCSK9 are rare, a spectrum of more frequent loss-of-function mutations in PCSK9 associated with low LDL cholesterol levels has been identified in selected populations and could protect against coronary heart disease. Heterozygous familial hypobetalipoproteinaemia (FHBL) – with its low LDL cholesterol levels and resistance to atherosclerosis – is caused by mutations in APOB. In contrast to other inherited forms of severe hypocholesterolaemia such as abetalipoproteinaemia - caused by mutations in MTP - and homozygous FHBL, a deficiency of PCSK9 appears to be benign. Rare variants of NPC1L1, the gene encoding the putative intestinal cholesterol receptor, have shown more modest effects on plasma LDL cholesterol than PCSK9 variants, similar in magnitude to the effect of common APOE variants. Taken together, these findings indicate that heritable variation in plasma LDL cholesterol is conferred by sequence variation in various loci, with a small number of common and multiple rare gene variants contributing to the phenotype. PMID:18566665

  9. Heterozygosity in the glutathione synthesis gene Gclm increases sensitivity to diesel exhaust particulate induced lung inflammation in mice

    PubMed Central

    Weldy, Chad S.; White, Collin C.; Wilkerson, Hui-Wen; Larson, Timothy V.; Stewart, James A.; Gill, Sean E.; Parks, William C.; Kavanagh, Terrance J.

    2012-01-01

    Context Inhalation of ambient fine particulate matter (PM2.5) is associated with adverse respiratory and cardiovascular effects. A major fraction of PM2.5 in urban settings is diesel exhaust particulate (DEP), and DEP-induced lung inflammation is likely a critical event mediating many of its adverse health effects. Oxidative stress has been proposed to be an important factor in PM2.5-induced lung inflammation, and the balance between pro- and antioxidants is an important regulator of this inflammation. An important intracellular antioxidant is the tripeptide thiol glutathione (GSH). Glutamate cysteine ligase (GCL) carries out the first step in GSH synthesis. In humans, relatively common genetic polymorphisms in both the catalytic (Gclc) and modifier (Gclm) subunits of GCL have been associated with increased risk for lung and cardiovascular diseases. Objective This study was aimed to determine the effects of Gclm expression on lung inflammation following DEP exposure in mice. Materials and methods We exposed Gclm wild type, heterozygous, and null mice to DEP via intranasal instillation and assessed lung inflammation as determined by neutrophils and inflammatory cytokines in lung lavage, inflammatory cytokine mRNA levels in lung tissue, as well as total lung GSH, Gclc, and Gclm protein levels. Results The Gclm heterozygosity was associated with a significant increase in DEP-induced lung inflammation when compared to that of wild type mice. Discussion and conclusion This finding indicates that GSH synthesis can mediate DEP-induced lung inflammation and suggests that polymorphisms in Gclm may be an important factor in determining adverse health outcomes in humans following inhalation of PM2.5. PMID:21967497

  10. High Prevalence and Clinical Relevance of Genes Affected by Chromosomal Breaks in Colorectal Cancer

    PubMed Central

    van den Broek, Evert; Dijkstra, Maurits J. J.; Krijgsman, Oscar; Sie, Daoud; Haan, Josien C.; Traets, Joleen J. H.; van de Wiel, Mark A.; Nagtegaal, Iris D.; Punt, Cornelis J. A.; Carvalho, Beatriz; Ylstra, Bauke; Abeln, Sanne; Meijer, Gerrit A.; Fijneman, Remond J. A.

    2015-01-01

    Background Cancer is caused by somatic DNA alterations such as gene point mutations, DNA copy number aberrations (CNA) and structural variants (SVs). Genome-wide analyses of SVs in large sample series with well-documented clinical information are still scarce. Consequently, the impact of SVs on carcinogenesis and patient outcome remains poorly understood. This study aimed to perform a systematic analysis of genes that are affected by CNA-associated chromosomal breaks in colorectal cancer (CRC) and to determine the clinical relevance of recurrent breakpoint genes. Methods Primary CRC samples of patients with metastatic disease from CAIRO and CAIRO2 clinical trials were previously characterized by array-comparative genomic hybridization. These data were now used to determine the prevalence of CNA-associated chromosomal breaks within genes across 352 CRC samples. In addition, mutation status of the commonly affected APC, TP53, KRAS, PIK3CA, FBXW7, SMAD4, BRAF and NRAS genes was determined for 204 CRC samples by targeted massive parallel sequencing. Clinical relevance was assessed upon stratification of patients based on gene mutations and gene breakpoints that were observed in >3% of CRC cases. Results In total, 748 genes were identified that were recurrently affected by chromosomal breaks (FDR <0.1). MACROD2 was affected in 41% of CRC samples and another 169 genes showed breakpoints in >3% of cases, indicating that prevalence of gene breakpoints is comparable to the prevalence of well-known gene point mutations. Patient stratification based on gene breakpoints and point mutations revealed one CRC subtype with very poor prognosis. Conclusions We conclude that CNA-associated chromosomal breaks within genes represent a highly prevalent and clinically relevant subset of SVs in CRC. PMID:26375816

  11. Gene Risk Factors for Age-Related Brain Disorders May Affect Immune System Function

    MedlinePlus

    ... for age-related brain disorders may affect immune system function June 17, 2014 Scientists have discovered gene ... factors for age-related neurological disorders to immune system functions, such as inflammation, offers new insights into ...

  12. Identification of Genes Affecting Vacuole Membrane Fragmentation in Saccharomyces cerevisiae

    PubMed Central

    Michaillat, Lydie; Mayer, Andreas

    2013-01-01

    The equilibrium of membrane fusion and fission influences the volume and copy number of organelles. Fusion of yeast vacuoles has been well characterized but their fission and the mechanisms determining vacuole size and abundance remain poorly understood. We therefore attempted to systematically characterize factors necessary for vacuole fission. Here, we present results of an in vivo screening for deficiencies in vacuolar fragmentation activity of an ordered collection deletion mutants, representing 4881 non-essential genes of the yeast Saccharomyces cerevisiae. The screen identified 133 mutants with strong defects in vacuole fragmentation. These comprise numerous known fragmentation factors, such as the Fab1p complex, Tor1p, Sit4p and the V-ATPase, thus validating the approach. The screen identified many novel factors promoting vacuole fragmentation. Among those are 22 open reading frames of unknown function and three conspicuous clusters of proteins with known function. The clusters concern the ESCRT machinery, adaptins, and lipases, which influence the production of diacylglycerol and phosphatidic acid. A common feature of these factors of known function is their capacity to change membrane curvature, suggesting that they might promote vacuole fragmentation via this property. PMID:23383298

  13. Identification of host genes that affect acquisition of an integrative and conjugative element in Bacillus subtilis

    PubMed Central

    Johnson, Christopher M.; Grossman, Alan D.

    2014-01-01

    Summary Conjugation, a major type of horizontal gene transfer in bacteria, involves transfer of DNA from a donor to a recipient using donor-encoded conjugation machinery. Using a high throughput screen (Tn-seq), we identified genes in recipients that contribute to acquisition of the integrative and conjugative element ICEBs1 by Bacillus subtilis. We found that null mutations in some genes caused an increase, and others a decrease in conjugation efficiency. Some mutations affected conjugation only when present in recipients. Other mutations affected conjugation when present in donors or recipients. Most of the genes identified are known or predicted to affect the cell envelope. Several encode enzymes involved in phospholipid biosynthesis and one encodes a homolog of penicillin binding proteins. Two of the genes identified also affected conjugation of Tn916, indicating that their roles in conjugation may be general. We did not identify any genes in recipients that were essential for ICEBs1 conjugation, indicating that if there are such genes, then these are either essential for cell growth or redundant. Our results indicate that acquisition of ICEBs1, and perhaps other conjugative elements, is robust and not easily avoided by mutation and that several membrane-related functions affect the efficiency of conjugation. PMID:25069588

  14. The Somatic Nature of Cancer Allows It to Affect Highly Constrained Genes.

    PubMed

    Ostrow, Sheli L; Hershberg, Ruth

    2016-01-01

    Cancer is special among genetic disorders in two major ways: first, cancer is a disease of the most basic of cellular functions, such as cell proliferation, differentiation, and the maintenance of genomic integrity. Second, in contrast to most genetic disorders that are mediated by germline (hereditary) mutations, cancer is largely a somatic disease. Here we show that these two traits are not detached and that it is the somatic nature of cancer that allows it to affect the most basic of cellular functions. We begin by demonstrating that cancer genes are both more functionally central (as measured by their patterns of expression and protein interaction) and more evolutionarily constrained than non-cancer genetic disease genes. We then compare genes that are only modified somatically in cancer (hereinafter referred to as "somatic cancer genes") to those that can also be modified in a hereditary manner, contributing to cancer development (hereinafter referred to as "hereditary cancer genes"). We show that both somatic and hereditary cancer genes are much more functionally central than genes contributing to non-cancer genetic disorders. At the same time, hereditary cancer genes are only as constrained as non-cancer hereditary disease genes, while somatic cancer genes tend to be much more constrained in evolution. Thus, it appears that it is the somatic nature of cancer that allows it to modify the most constrained genes and, therefore, affect the most basic of cellular functions. PMID:27190005

  15. Osmotic stress at the barley root affects expression of circadian clock genes in the shoot.

    PubMed

    Habte, Ermias; Müller, Lukas M; Shtaya, Munqez; Davis, Seth J; von Korff, Maria

    2014-06-01

    The circadian clock is an important timing system that controls physiological responses to abiotic stresses in plants. However, there is little information on the effects of the clock on stress adaptation in important crops, like barley. In addition, we do not know how osmotic stress perceived at the roots affect the shoot circadian clock. Barley genotypes, carrying natural variation at the photoperiod response and clock genes Ppd-H1 and HvELF3, were grown under control and osmotic stress conditions to record changes in the diurnal expression of clock and stress-response genes and in physiological traits. Variation at HvELF3 affected the expression phase and shape of clock and stress-response genes, while variation at Ppd-H1 only affected the expression levels of stress genes. Osmotic stress up-regulated expression of clock and stress-response genes and advanced their expression peaks. Clock genes controlled the expression of stress-response genes, but had minor effects on gas exchange and leaf transpiration. This study demonstrated that osmotic stress at the barley root altered clock gene expression in the shoot and acted as a spatial input signal into the clock. Unlike in Arabidopsis, barley primary assimilation was less controlled by the clock and more responsive to environmental perturbations, such as osmotic stress. PMID:24895755

  16. Glutathione (GSH) and the GSH synthesis gene Gclm modulate plasma redox and vascular responses to acute diesel exhaust inhalation in mice

    PubMed Central

    Weldy, Chad S.; Luttrell, Ian P.; White, Collin C.; Morgan-Stevenson, Vicki; Cox, David P.; Carosino, Christopher M.; Larson, Timothy V.; Stewart, James A.; Kaufman, Joel D.; Kim, Francis; Chitaley, Kanchan; Kavanagh, Terrance J.

    2013-01-01

    Context Inhalation of fine particulate matter (PM2.5) is associated with acute pulmonary inflammation and impairments in cardiovascular function. In many regions, PM2.5 is largely derived from diesel exhaust (DE), and these pathophysiological effects may be due in part to oxidative stress resulting from DE inhalation. The antioxidant glutathione (GSH) is important in limiting oxidative stress-induced vascular dysfunction. The rate-limiting enzyme in GSH synthesis is glutamate cysteine ligase and polymorphisms in its catalytic and modifier subunits (GCLC and GCLM) have been shown to influence vascular function and risk of myocardial infarction in humans. Objective We hypothesized that compromised de novo synthesis of GSH in Gclm−/+ mice would result in increased sensitivity to DE-induced lung inflammation and vascular effects. Materials and methods WT and Gclm−/+ mice were exposed to DE via inhalation (300 µg/m3) for 6 h. Neutrophil influx into the lungs, plasma GSH redox potential, vascular reactivity of aortic rings and aortic nitric oxide (NO•) were measured. Results DE inhalation resulted in mild bronchoalveolar neutrophil influx in both genotypes. DE-induced effects on plasma GSH oxidation and acetylcholine (ACh)-relaxation of aortic rings were only observed in Gclm−/+ mice. Contrary to our hypothesis, DE exposure enhanced ACh-induced relaxation of aortic rings in Gclm−/+ mice. Discussion and conclusion These data support the hypothesis that genetic determinants of antioxidant capacity influence the biological effects of acute inhalation of DE. However, the acute effects of DE on the vasculature may be dependent on the location and types of vessels involved. Polymorphisms in GSH synthesis genes are common in humans and further investigations into these potential gene-environment interactions are warranted. PMID:23808636

  17. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies

    PubMed Central

    Kosinová, Lucie; Cahová, Monika; Fábryová, Eva; Týcová, Irena; Koblas, Tomáš; Leontovyč, Ivan; Saudek, František; Kříž, Jan

    2016-01-01

    The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0–120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48–120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs

  18. Bioinformatics analysis of time-series genes profiling to explore key genes affected by age in fracture healing.

    PubMed

    Wang, Wei; Shen, Hao; Xie, Jingjing; Zhou, Qiang; Chen, Yu; Lu, Hua

    2014-06-01

    The present study was aimed to explore possible key genes and bioprocess affected by age during fracture healing. GSE589, GSE592 and GSE1371 were downloaded from gene expression omnibus database. The time-series genes of three age levels rats were firstly identified with hclust function in R. Then functional and pathway enrichment analysis for selected time-series genes were performed. Finally, the VennDiagram package of R language was used to screen overlapping n time-series genes. The expression changes of time-series genes in the rats of three age levels were classified into two types: one was higher expressed at 0 day, decreased at 3 day to 2 week, and increased from 4 to 6 week; the other was the opposite. Functional and pathways enrichment analysis showed that 12 time-series genes of adult and old rats were significantly involved in ECM-receptor interaction pathway. The expression changes of 11 genes were consistent with time axis, 10 genes were up-regulated at 3 days after fracture, and increased slowly in 6 week, while Itga2b was down-regulated. The functions of 106 overlapping genes were all associated with growth and development of bone after fracture. The key genes in ECM-receptor interaction pathway including Spp1, Ibsp, Tnn and Col3a1 have been reported to be related to fracture in literatures. The difference during fracture healing in three age levels rats is mainly related to age. The Spp1, Ibsp, Tnn and Col3a1 are possible potential age-related genes and ECM-receptor interaction pathway is the potential age-related process during fracture healing. PMID:24627361

  19. Whole and Particle-Free Diesel Exhausts Differentially Affect Cardiac Electrophysiology, Blood Pressure, and Autonomic Balance in Heart Failure–Prone Rats

    PubMed Central

    Farraj, Aimen K.

    2012-01-01

    Epidemiological studies strongly link short-term exposures to vehicular traffic and particulate matter (PM) air pollution with adverse cardiovascular (CV) events, especially in those with preexisting CV disease. Diesel engine exhaust is a key contributor to urban ambient PM and gaseous pollutants. To determine the role of gaseous and particulate components in diesel exhaust (DE) cardiotoxicity, we examined the effects of a 4-h inhalation of whole DE (wDE) (target PM concentration: 500 µg/m3) or particle-free filtered DE (fDE) on CV physiology and a range of markers of cardiopulmonary injury in hypertensive heart failure–prone rats. Arterial blood pressure (BP), electrocardiography, and heart rate variability (HRV), an index of autonomic balance, were monitored. Both fDE and wDE decreased BP and prolonged PR interval during exposure, with more effects from fDE, which additionally increased HRV triangular index and decreased T-wave amplitude. fDE increased QTc interval immediately after exposure, increased atrioventricular (AV) block Mobitz II arrhythmias shortly thereafter, and increased serum high-density lipoprotein 1 day later. wDE increased BP and decreased HRV root mean square of successive differences immediately postexposure. fDE and wDE decreased heart rate during the 4th hour of postexposure. Thus, DE gases slowed AV conduction and ventricular repolarization, decreased BP, increased HRV, and subsequently provoked arrhythmias, collectively suggesting parasympathetic activation; conversely, brief BP and HRV changes after exposure to particle-containing DE indicated a transient sympathetic excitation. Our findings suggest that whole- and particle-free DE differentially alter CV and autonomic physiology and may potentially increase risk through divergent pathways. PMID:22543275

  20. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis.

    PubMed

    Unte, Ulrike S; Sorensen, Anna-Marie; Pesaresi, Paolo; Gandikota, Madhuri; Leister, Dario; Saedler, Heinz; Huijser, Peter

    2003-04-01

    SQUAMOSA PROMOTER BINDING PROTEIN-box genes (SBP-box genes) encode plant-specific proteins that share a highly conserved DNA binding domain, the SBP domain. Although likely to represent transcription factors, little is known about their role in development. In Arabidopsis, SBP-box genes constitute a structurally heterogeneous family of 16 members known as SPL genes. For one of these genes, SPL8, we isolated three independent transposon-tagged mutants, all of which exhibited a strong reduction in fertility. Microscopic analysis revealed that this reduced fertility is attributable primarily to abnormally developed microsporangia, which exhibit premeiotic abortion of the sporocytes. In addition to its role in microsporogenesis, the SPL8 knockout also seems to affect megasporogenesis, trichome formation on sepals, and stamen filament elongation. The SPL8 mutants described help to uncover the roles of SBP-box genes in plant development. PMID:12671094

  1. SPL8, an SBP-Box Gene That Affects Pollen Sac Development in Arabidopsis

    PubMed Central

    Unte, Ulrike S.; Sorensen, Anna-Marie; Pesaresi, Paolo; Gandikota, Madhuri; Leister, Dario; Saedler, Heinz; Huijser, Peter

    2003-01-01

    SQUAMOSA PROMOTER BINDING PROTEIN–box genes (SBP-box genes) encode plant-specific proteins that share a highly conserved DNA binding domain, the SBP domain. Although likely to represent transcription factors, little is known about their role in development. In Arabidopsis, SBP-box genes constitute a structurally heterogeneous family of 16 members known as SPL genes. For one of these genes, SPL8, we isolated three independent transposon-tagged mutants, all of which exhibited a strong reduction in fertility. Microscopic analysis revealed that this reduced fertility is attributable primarily to abnormally developed microsporangia, which exhibit premeiotic abortion of the sporocytes. In addition to its role in microsporogenesis, the SPL8 knockout also seems to affect megasporogenesis, trichome formation on sepals, and stamen filament elongation. The SPL8 mutants described help to uncover the roles of SBP-box genes in plant development. PMID:12671094

  2. Heat Exhaustion, First Aid

    MedlinePlus

    ... rashes clinical tools newsletter | contact Share | Heat Exhaustion, First Aid A A A Heat exhaustion signs and symptoms ... specific to the other stages of heat illness. First Aid Guide Use a combination of the following measures ...

  3. Interspecies Systems Biology Uncovers Metabolites Affecting C. elegans Gene Expression and Life History Traits

    PubMed Central

    Watson, Emma; MacNeil, Lesley T.; Ritter, Ashlyn D.; Yilmaz, L. Safak; Rosebrock, Adam P.; Caudy, Amy A.; Walhout, Albertha J. M.

    2014-01-01

    SUMMARY Diet greatly influences gene expression and physiology. In mammals, elucidating the effects and mechanisms of individual nutrients is challenging due to the complexity of both the animal and its diet. Here we used an interspecies systems biology approach with Caenorhabditis elegans and two if its bacterial diets, Escherichia coli and Comamonas aquatica, to identify metabolites that affect the animal’s gene expression and physiology. We identify vitamin B12 as the major dilutable metabolite provided by Comamonas aq. that regulates gene expression, accelerates development and reduces fertility, but does not affect lifespan. We find that vitamin B12 has a dual role in the animal: it affects development and fertility via the methionine/S-Adenosylmethionine (SAM) cycle and breaks down the short-chain fatty acid propionic acid preventing its toxic buildup. Our interspecies systems biology approach provides a paradigm for understanding complex interactions between diet and physiology. PMID:24529378

  4. Analysis of thirteen trinucleotide repeat loci as candidate genes for Schizophrenia and bipolar affective disorder

    SciTech Connect

    Jain, S.; Leggo, J.; Ferguson-Smith, M.A.; Rubinsztein, D.C.

    1996-04-09

    A group of diseases are due to abnormal expansions of trinucleotide repeats. These diseases all affect the nervous system. In addition, they manifest the phenomenon of anticipation, in which the disease tends to present at an earlier age or with greater severity in successive generations. Many additional genes with trinucleotide repeats are believed to be expressed in the human brain. As anticipation has been reported in schizophrenia and bipolar affective disorder, we have examined allele distributions of 13 trinucleotide repeat-containing genes, many novel and all expressed in the brain, in genomic DNA from schizophrenic (n = 20-97) and bipolar affective disorder patients (23-30) and controls (n = 43-146). No evidence was obtained to implicate expanded alleles in these 13 genes as causal factors in these diseases. 26 refs., 1 fig., 2 tabs.

  5. FAK and HAS inhibition synergistically decrease colon cancer cell viability and affect expression of critical genes.

    PubMed

    Heffler, Melissa; Golubovskaya, Vita M; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G; Dunn, Kelli B

    2013-05-01

    Focal adhesion kinase (FAK), hyaluronan (HA), and hyaluronan synthase-3 (HAS3) have been implicated in cancer growth and progression. FAK inhibition with the small molecule inhibitor Y15 decreases colon cancer cell growth in vitro and in vivo. HAS3 inhibition in colon cancer cells decreases FAK expression and activation, and exogenous HA increases FAK activation. We sought to determine the genes affected by HAS and FAK inhibition and hypothesized that dual inhibition would synergistically inhibit viability. Y15 (FAK inhibitor) and the HAS inhibitor 4-methylumbelliferone (4-MU) decreased viability in a dose dependent manner; viability was further inhibited by treatment with Y15 and 4-MU in colon cancer cells. HAS inhibited cells treated with 2 μM of Y15 showed significantly decreased viability compared to HAS scrambled cells treated with the same dose (p < 0.05) demonstrating synergistic inhibition of viability with dual FAK/HAS inhibition. Microarray analysis showed more than 2-fold up- or down-regulation of 121 genes by HAS inhibition, and 696 genes by FAK inhibition (p < 0.05) and revealed 29 common genes affected by both signaling. Among the genes affected by FAK or HAS3 inhibition were genes, playing role in apoptosis, cell cycle regulation, adhesion, transcription, heatshock and WNT pathways. Thus, FAK or HAS inhibition decreases SW620 viability and affects several similar genes, which are involved in the regulation of tumor survival. Dual inhibition of FAK and HAS3 decreases viability to a greater degree than with either agent alone, and suggests that synergistic inhibition of colon cancer cell growth can result from affecting similar genetic pathways. PMID:22934709

  6. Suppressors of Mutations in the rII Gene of Bacteriophage T4 Affect Promoter Utilization

    PubMed Central

    Hall, Dwight H.; Snyder, Ronald D.

    1981-01-01

    Homyk, Rodriguez and Weil (1976) have described T4 mutants, called sip, that partially suppress the inability of T4rII mutants to grow in λ lysogens. We have found that mutants sip1 and sip2 are resistant to folate analogs and overproduce FH2 reductase. The results of recombination and complementation studies indicate that sip mutations are in the mot gene. Like other mot mutations (Mattson, Richardson and Goodin 1974; Chace and Hall 1975; Sauerbier, Hercules and Hall 1976), the sip2 mutation affects the expression of many genes and appears to affect promoter utilization. The mot gene function is not required for T4 growth on most hosts, but we have found that it is required for good growth on E. coli CTr5X. Homyk, Rodriguez and Weil (1976) also described L mutations that reverse the effects of sip mutations. L2 decreases the folate analog resistance and the inability of sip2 to grow on CTr5X. L2 itself is partially resistant to a folate analog, and appears to reverse the effects of sip2 on gene expression. These results suggest that L2 affects another regulatory gene related to the mot gene. PMID:7262547

  7. Diesel Exhaust Particles Activate the Matrix-Metalloproteinase-1 Gene in Human Bronchial Epithelia in a β-Arrestin–Dependent Manner via Activation of RAS

    PubMed Central

    Li, Jinju; Ghio, Andrew J.; Cho, Seung-Hyun; Brinckerhoff, Constance E.; Simon, Sidney A.; Liedtke, Wolfgang

    2009-01-01

    Background Diesel exhaust particles (DEPs) are globally relevant air pollutants that exert a detrimental human health impact. However, mechanisms of damage by DEP exposure to human respiratory health and human susceptibility factors are only partially known. Matrix metalloproteinase-1 (MMP-1) has been implied as an (etio)pathogenic factor in human lung and airway diseases such as emphysema, chronic obstructive pulmonary disease, chronic asthma, tuberculosis, and bronchial carcinoma and has been reported to be regulated by DEPs. Objective We elucidated the molecular mechanisms of DEPs’ up-regulation of MMP-1. Methods/Results Using permanent and primary human bronchial epithelial (HBE) cells at air–liquid interface, we show that DEPs activate the human MMP-1 gene via RAS and subsequent activation of RAF-MEK-ERK1/2 mitogen-activated protein kinase signaling, which can be scaffolded by β-arrestins. Short interfering RNA mediated β-arrestin1/2 knockout eliminated formation, subsequent nuclear trafficking of phosphorylated ERK1/2, and resulting MMP-1 transcriptional activation. Transcriptional regulation of the human MMP-1 promoter was strongly influenced by the presence of the –1607GG polymorphism, present in 60–80% of humans, which led to striking up-regulation of MMP-1 transcriptional activation. Conclusion Our results confirm up-regulation of MMP-1 in response to DEPs in HBE and provide new mechanistic insight into how these epithelia, the first line of protection against environmental insults, up-regulate MMP-1 in response to DEP inhalation. These mechanisms include a role for the human –1607GG polymorphism as a susceptibility factor for an accentuated response, which critically depends on the ability of β-arrestin1/2 to generate scaffolding and nuclear trafficking of phosphorylated ERK1/2. PMID:19337515

  8. PTA1, an essential gene of Saccharomyces cerevisiae affecting pre-tRNA processing.

    PubMed Central

    O'Connor, J P; Peebles, C L

    1992-01-01

    We have identified an essential Saccharomyces cerevisiae gene, PTA1, that affects pre-tRNA processing. PTA1 was initially defined by a UV-induced mutation, pta1-1, that causes the accumulation of all 10 end-trimmed, intron-containing pre-tRNAs and temperature-sensitive but osmotic-remedial growth. pta1-1 does not appear to be an allele of any other known gene affecting pre-tRNA processing. Extracts prepared from pta1-1 strains had normal pre-tRNA splicing endonuclease activity. pta1-1 was suppressed by the ochre suppressor tRNA gene SUP11, indicating that the pta1-1 mutation creates a termination codon within a protein reading frame. The PTA1 gene was isolated from a genomic library by complementation of the pta1-1 growth defect. Episome-borne PTA1 directs recombination to the pta1-1 locus. PTA1 has been mapped to the left arm of chromosome I near CDC24; the gene was sequenced and could encode a protein of 785 amino acids with a molecular weight of 88,417. No other protein sequences similar to that of the predicted PTA1 gene product have been identified within the EMBL or GenBank data base. Disruption of PTA1 near the carboxy terminus of the putative open reading frame was lethal. Possible functions of the PTA1 gene product are discussed. Images PMID:1508188

  9. Genomic Copy Number Variation Affecting Genes Involved in the Cell Cycle Pathway: Implications for Somatic Mosaicism

    PubMed Central

    Iourov, Ivan Y.; Vorsanova, Svetlana G.; Zelenova, Maria A.; Korostelev, Sergei A.; Yurov, Yuri B.

    2015-01-01

    Somatic genome variations (mosaicism) seem to represent a common mechanism for human intercellular/interindividual diversity in health and disease. However, origins and mechanisms of somatic mosaicism remain a matter of conjecture. Recently, it has been hypothesized that zygotic genomic variation naturally occurring in humans is likely to predispose to nonheritable genetic changes (aneuploidy) acquired during the lifetime through affecting cell cycle regulation, genome stability maintenance, and related pathways. Here, we have evaluated genomic copy number variation (CNV) in genes implicated in the cell cycle pathway (according to Kyoto Encyclopedia of Genes and Genomes/KEGG) within a cohort of patients with intellectual disability, autism, and/or epilepsy, in which the phenotype was not associated with genomic rearrangements altering this pathway. Benign CNVs affecting 20 genes of the cell cycle pathway were detected in 161 out of 255 patients (71.6%). Among them, 62 individuals exhibited >2 CNVs affecting the cell cycle pathway. Taking into account the number of individuals demonstrating CNV of these genes, a support for this hypothesis appears to be presented. Accordingly, we speculate that further studies of CNV burden across the genes implicated in related pathways might clarify whether zygotic genomic variation generates somatic mosaicism in health and disease. PMID:26421275

  10. ALOX5 gene variants affect eicosanoid production and response to fish oil supplementation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine whether 5-lipoxygenase (ALOX5) gene variants associated with cardiovascular disease affect eicosanoid production by monocytes. The study was a randomized, double-masked, parallel intervention trial with fish oil (5.0 g of fish oil daily, containing 2.0 g ...

  11. A search for candidate genes affecting late heading to orchardgrass/cocksfoot (Dactylis glomerata L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Orchardgrass (Dactylis glomerata L.) is indigenous to Eurasia and northern Africa, but has been naturalized on nearly every continent. Despite its distribution and uses, there is a need for improved late flowering germplasm for use in North American mixed pastures. Many candidate genes affecting h...

  12. An indication of major genes affecting hip and elbow dysplasia in four Finnish dog populations.

    PubMed

    Mäki, K; Janss, L L G; Groen, A F; Liinamo, A-E; Ojala, M

    2004-05-01

    The aim of the study was to assess the possible existence of major genes influencing hip and elbow dysplasia in four dog populations. A Bayesian segregation analysis was performed separately on each population. In total, 34 140 dogs were included in the data set. Data were analysed with both a polygenic and a mixed inheritance model. Polygenic models included fixed and random environmental effects and additive genetic effects. To apply mixed inheritance models, the effect of a major gene was added to the polygenic models. The major gene was modelled as an autosomal biallelic locus with Mendelian transmission probabilities. Gibbs sampling and a Monte Carlo Markov Chain algorithm were used. The goodness-of-fit of the different models were compared using the residual sum-of-squares. The existence of a major gene was considered likely for hip dysplasia in all the breeds and for elbow dysplasia in one breed. Several procedures were followed to exclude the possible false detection of major genes based on non-normality of data: permuted datasets were analysed, data-transformations were applied, and residuals were judged for normality. Allelic effects at the major gene locus showed nearly to complete dominance, with a recessive, unfavourable allele in both traits. Relatively high estimates of the frequencies of unfavourable alleles in each breed suggest that considerable genetic progress would be possible by selection against major genes. However, the major genes that are possibly affecting hip and elbow dysplasia in these populations will require further study. PMID:14997179

  13. Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection

    PubMed Central

    Zhang, Runxuan; Bonar, Nicola; Morris, Jenny; Hedley, Pete E.; Bryan, Glenn J.; Kalantidis, Kriton; Hornyik, Csaba

    2016-01-01

    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection. PMID:26937634

  14. Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection.

    PubMed

    Katsarou, Konstantina; Wu, Yun; Zhang, Runxuan; Bonar, Nicola; Morris, Jenny; Hedley, Pete E; Bryan, Glenn J; Kalantidis, Kriton; Hornyik, Csaba

    2016-01-01

    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection. PMID:26937634

  15. Epigenetic and Genetic Alterations Affect the WWOX Gene in Head and Neck Squamous Cell Carcinoma

    PubMed Central

    Ekizoglu, Seda; Bulut, Pelin; Karaman, Emin; Kilic, Erkan; Buyru, Nur

    2015-01-01

    Different types of genetic and epigenetic changes are associated with HNSCC. The molecular mechanisms of HNSCC carcinogenesis are still undergoing intensive investigation. WWOX gene expression is altered in many cancers and in a recent work reduced WWOX expression has been associated with miR-134 expression in HNSCC. In this study we investigated the WWOX messenger RNA expression levels in association with the promoter methylation of the WWOX gene and miR-134 expression levels in 80 HNSCC tumor and non-cancerous tissue samples. Our results show that WWOX expression is down-regulated especially in advanced-stage tumor samples or in tumors with SCC. This down-regulation was associated with methylation of the WWOX promoter region but not with miR-134 expression. There was an inverse correlation between the expression level and promoter methylation. We also analyzed whole exons and exon/intron boundries of the WWOX gene by direct sequencing. In our study group we observed 10 different alterations in the coding sequences and 18 different alterations in the non-coding sequences of the WWOX gene in HNSCC tumor samples. These results indicate that the WWOX gene can be functionally inactivated by promoter methylation, epigenetically or by mutations affecting the sequences coding for the enzymatic domain of the gene, functionally. We conclude that inactivation of WWOX gene contributes to the progression of HNSCC. PMID:25612104

  16. Heterozygous screen in Saccharomyces cerevisiae identifies dosage-sensitive genes that affect chromosome stability.

    PubMed

    Strome, Erin D; Wu, Xiaowei; Kimmel, Marek; Plon, Sharon E

    2008-03-01

    Current techniques for identifying mutations that convey a small increased cancer risk or those that modify cancer risk in carriers of highly penetrant mutations are limited by the statistical power of epidemiologic studies, which require screening of large populations and candidate genes. To identify dosage-sensitive genes that mediate genomic stability, we performed a genomewide screen in Saccharomyces cerevisiae for heterozygous mutations that increase chromosome instability in a checkpoint-deficient diploid strain. We used two genome stability assays sensitive enough to detect the impact of heterozygous mutations and identified 172 heterozygous gene disruptions that affected chromosome fragment (CF) loss, 45% of which also conferred modest but statistically significant instability of endogenous chromosomes. Analysis of heterozygous deletion of 65 of these genes demonstrated that the majority increased genomic instability in both checkpoint-deficient and wild-type backgrounds. Strains heterozygous for COMA kinetochore complex genes were particularly unstable. Over 50% of the genes identified in this screen have putative human homologs, including CHEK2, ERCC4, and TOPBP1, which are already associated with inherited cancer susceptibility. These findings encourage the incorporation of this orthologous gene list into cancer epidemiology studies and suggest further analysis of heterozygous phenotypes in yeast as models of human disease resulting from haplo-insufficiency. PMID:18245329

  17. Iron nanoparticles significantly affect the in vitro and in vivo expression of Id genes.

    PubMed

    Zou, Jinglu; Wang, Xin; Zhang, Ling; Wang, Jinke

    2015-03-16

    In recent DNA microarray studies, we found that the transcription of the Id3 gene was significantly down-regulated in five cell lines (RAW264.7, Hepa1-6, THP-1, HepG2, and HL7702) treated with two doses (50 and 100 μg/mL) of a DMSA-coated magnetite nanoparticle. Given the regulatory roles of Id genes in the cell cycle, growth, and differentiation, we wanted to do more investigations on the effect of the nanoparticle upon the Id genes. This study detected the expression of Id genes in six cell lines (the above cell lines plus HeLa) treated with the nanoparticle at the same doses using quantitative PCR. The results revealed that the expression of Id genes was significantly affected by the nanoparticle in these cell lines. Under each treatment, the Id3 gene was significantly (p < 0.01) down-regulated in all cell lines, the Id1 gene was significantly down-regulated in all cell lines except the RAW264.7 cells, and the Id2 gene was significantly down-regulated in the HepG2, HL7702, and HeLa cells. Because the Id1, Id2, and Id3 genes were significantly down-regulated in three liver-derived cell lines (Hepa1-6, HepG2, and HL7702) in both microarray and PCR detections, this study then detected the expression of Id genes in the liver tissues of mice that were intravenously injected with the nanoparticle at two doses (2 and 5 mg/kg body weight). The results revealed that the expression of Id1, Id2, and Id3 genes was also significantly down-regulated in the liver tissues under each treatment. Another Id gene, Id4, was also significantly regulated in some cells or liver tissues treated with the nanoparticle. These results reveal that the nanoparticle exerts a significant effect on the in vitro and in vivo expression of Id genes. This study thus provides new insights into the Id-related nanotoxicity of the nanoparticle and the close relationship between the regulation of Id genes and iron. PMID:25522732

  18. Expression of Selenoprotein Genes Is Affected by Heat Stress in IPEC-J2 Cells.

    PubMed

    Cao, Lei; Tang, Jiayong; Li, Qiang; Xu, Jingyang; Jia, Gang; Liu, Guangmang; Chen, Xiaoling; Shang, Haiying; Cai, Jingyi; Zhao, Hua

    2016-08-01

    The aim of this study was to explore the impacts of heat stress (HS) on expressions of selenoprotein genes in IPEC-J2 cells. Cells were cultured with 5 % CO2-humidified chamber at 37 °C until the cells grew to complete confluence and then exposed to a mild hyperthermia at 41.5 °C (HS) or 37 °C (control) for another 24 h, finally harvested for total RNA or protein extraction. Real-time quantitative PCRs (qPCRs) were performed to compare gene expression of 25 selenoprotein genes, 3 tight junction-related genes, and 10 inflammation-related genes. Protein expressions of heat shock protein 70 (Hsp70) and selenoprotein X and P (SelX and SelP) were also investigated by Western blot. The results showed that HS up-regulated (P < 0.05) Hsp70 and one tight junction-related gene [zonula occludens-1 (Zo-1)] in IPEC-J2 cells. At the same time, HS up-regulated (P < 0.05) 4 selenoprotein genes (Gpx3, Dio2, Selk, Sels) and three inflammation-related genes (Il-6, Icam-1, Tgf-β) and down-regulated (P < 0.05 or as indicated) six selenoprotein genes (Gpx2, Gpx6, Txnrd1, Selh, Selm, Selx) and three inflammation-related genes (Ifn-β, Mcp-1, Tnf-α) in the cells. HS also exhibited impacts on protein expressions, which up-regulated Hsp70, down-regulated SelX, and showed no effect on SelP in IPEC-J2 cells. Our results showed that HS affected the expression of inflammation-related genes and up-regulated gene and protein expressions of Hsp70. The changes of so many selenoprotein genes expression implied a potential link between selenoprotein genes and HS. Moreover, the results provided by this IPEC-J2 model may be used to further study the interactive mechanisms between selenoprotein function and potential intestinal damage induced by HS. PMID:26706036

  19. Chronic mild stressors and diet affect gene expression differently in male and female rats.

    PubMed

    Liang, Shuwen; Byers, Donna M; Irwin, Louis N

    2007-01-01

    While depression is reportedly more prevalent in women than men, a neurobiological basis for this difference has not been documented. Chronic mild stress (CMS) is a widely recognized animal model, which uses mild and unpredictable environmental stressors to induce depression. Studies of chronic stress, mainly in males, have reported an increase in the relative intake of "comfort food" as a means of counteracting the effects of stress. This study was designed to test the hypothesis that genes for certain neurotrophic factors, stress markers, and appetite regulators would be expressed differentially in male and female rats exposed to chronic, mild stressors with access to a preferred diet. Gene expression for neuropeptide Y was upregulated in females purely in response to stressors, whereas that for the epidermal growth factor receptor (EGFR) and arginine vasopressin (AVP) in males and fatty acid synthase (FASN) in females responded primarily to diet. Genes for brain-derived neurotrophic factor (BDNF), AVP, and the cocaine-amphetamine regulator of transcription (CART) in males, and leptin in females, showed a significant response to the interaction between stressors and diet. Every affected gene showed a different pattern of expression in males and females. This study confirms the intimate relationship between dietary intake and response to stress at the molecular level, and emphasizes the sex- and gene-specific nature of those interactions. Therefore, it supports a neurobiological basis for differences in the affective state response to stress in males and females. PMID:17917078

  20. Exhaust gas purification device

    SciTech Connect

    Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

    1980-02-19

    The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

  1. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice.

    PubMed

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  2. Analyses for the presence of a major gene affecting uterine capacity in unilaterally ovariectomized rabbits.

    PubMed Central

    Argente, M J; Blasco, A; Ortega, J A; Haley, C S; Visscher, P M

    2003-01-01

    The presence of a major gene for uterine capacity (UC), ovulation rate (OR), number of implanted embryos (IE), embryo survival (ES), fetal survival (FS), and prenatal survival (PS) was investigated in a population of rabbits divergently selected for UC for 10 generations. Selection was performed on estimated breeding values for UC up to four parities. UC was estimated as litter size in the remaining overcrowded horn of unilaterally ovariectomized does. OR and IE were counted by means of laparoscopy. Bartlett's test, Fain's test, and a complex segregation analysis using Bayesian methods were used to test for the presence of a major gene. All three tests showed that the data appeared consistent with the presence of a major gene affecting UC and IE. The results of the complex segregation analysis suggested the presence of a major gene with large effect on IE and ES (a > 1sigma(p)), at high frequency (p = 0.70 and 0.68, respectively), and with a large contribution to the total variance (R(g) = 0.39 and 0.47, respectively); and the presence of a major gene with moderate effect on each of OR, FS, PS, and UC. The results suggest that the studied reproductive traits are determined genetically by at least one gene of large effect. PMID:12663544

  3. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  4. Characterization of the CYP21 gene 5' flanking region in patients affected by 21-OH deficiency.

    PubMed

    Bobba, A; Marra, E; Lattanzio, P; Iolascon, A; Giannattasio, S

    2000-05-01

    In order to test the hypothesis that mutations in the 5' non-coding region of CYP21 gene could contribute to the various spectrum of disease presentation due to 21-OH deficiency, the 400bp nucleotide sequence upstream of the ATG codon of CYP21 gene has been characterized in 28 CAH patients who have previously been genotyped by screening for the ten most frequent CYP21 mutations. Six specific sequence variations (-4C-->T, -73C-->T, -295T-->C, -294A-->C, -283A-->G, -281T-->G) have been identified in this region of CYP21 gene in 3 out of 28 21-OH deficient patients for whom the coding region mutations have been previously identified. Three of these mutations, -295T-->C, -294A-->C, -283A-->G, are apparently generated by a gene-conversion event, thus giving first evidence that this mechanism also applies to the 5' untranslated region of CYP21 gene in 21-OH deficiency. Four other sequence changes, identified at nucleotide position -279, -331, -350 and -353, could be referred to as normal since they are present also in healthy subjects. It may not be excluded that some of the newly-identified single nucleotide changes in the regulatory region could have a modulatory effect on the CYP21 gene transcriptional activity thus affecting the clinical outcome. PMID:10790214

  5. African Swine Fever Virus Multigene Family 360 and 530 Genes Affect Host Interferon Response

    PubMed Central

    Afonso, C. L.; Piccone, M. E.; Zaffuto, K. M.; Neilan, J.; Kutish, G. F.; Lu, Z.; Balinsky, C. A.; Gibb, T. R.; Bean, T. J.; Zsak, L.; Rock, D. L.

    2004-01-01

    African swine fever virus (ASFV) multigene family 360 and 530 (MGF360/530) genes affect viral growth in macrophage cell cultures and virulence in pigs (L. Zsak, Z. Lu, T. G. Burrage, J. G. Neilan, G. F. Kutish, D. M. Moore, and D. L. Rock, J. Virol. 75:3066-3076, 2001). The mechanism by which these novel genes affect virus-host interactions is unknown. To define MGF360/530 gene function, we compared macrophage transcriptional responses following infection with parental ASFV (Pr4) and an MGF360/530 deletion mutant (Pr4Δ35). A swine cDNA microarray containing 7,712 macrophage cDNA clones was used to compare the transcriptional profiles of swine macrophages infected with Pr4 and Pr4Δ35 at 3 and 6 h postinfection (hpi). While at 3 hpi most (7,564) of the genes had similar expression levels in cells infected with either virus, 38 genes had significantly increased (>2.0-fold, P < 0.05) mRNA levels in Pr4Δ35-infected macrophages. Similar up-regulation of these genes was observed at 6 hpi. Viral infection was required for this induced transcriptional response. Most Pr4Δ35 up-regulated genes were part of a type I interferon (IFN) response or were genes that are normally induced by double-stranded RNA and/or viral infection. These included monocyte chemoattractant protein, transmembrane protein 3, tetratricopeptide repeat protein 1, a ubiquitin-like 17-kDa protein, ubiquitin-specific protease ISG43, an RNA helicase DEAD box protein, GTP-binding MX protein, the cytokine IP-10, and the PKR activator PACT. Differential expression of IFN early-response genes in Pr4Δ35 relative to Pr4 was confirmed by Northern blot analysis and real-time PCR. Analysis of IFN-α mRNA and secreted IFN-α levels at 3, 8, and 24 hpi revealed undetectable IFN-α in mock- and Pr4-infected macrophages but significant IFN-α levels at 24 hpi in Pr4Δ35-infected macrophages. The absence of IFN-α in Pr4-infected macrophages suggests that MGF360/530 genes either directly or indirectly suppress a type

  6. African swine fever virus multigene family 360 and 530 genes affect host interferon response.

    PubMed

    Afonso, C L; Piccone, M E; Zaffuto, K M; Neilan, J; Kutish, G F; Lu, Z; Balinsky, C A; Gibb, T R; Bean, T J; Zsak, L; Rock, D L

    2004-02-01

    African swine fever virus (ASFV) multigene family 360 and 530 (MGF360/530) genes affect viral growth in macrophage cell cultures and virulence in pigs (L. Zsak, Z. Lu, T. G. Burrage, J. G. Neilan, G. F. Kutish, D. M. Moore, and D. L. Rock, J. Virol. 75:3066-3076, 2001). The mechanism by which these novel genes affect virus-host interactions is unknown. To define MGF360/530 gene function, we compared macrophage transcriptional responses following infection with parental ASFV (Pr4) and an MGF360/530 deletion mutant (Pr4 Delta 35). A swine cDNA microarray containing 7,712 macrophage cDNA clones was used to compare the transcriptional profiles of swine macrophages infected with Pr4 and Pr4 Delta 35 at 3 and 6 h postinfection (hpi). While at 3 hpi most (7,564) of the genes had similar expression levels in cells infected with either virus, 38 genes had significantly increased (>2.0-fold, P < 0.05) mRNA levels in Pr4 Delta 35-infected macrophages. Similar up-regulation of these genes was observed at 6 hpi. Viral infection was required for this induced transcriptional response. Most Pr Delta 35 up-regulated genes were part of a type I interferon (IFN) response or were genes that are normally induced by double-stranded RNA and/or viral infection. These included monocyte chemoattractant protein, transmembrane protein 3, tetratricopeptide repeat protein 1, a ubiquitin-like 17-kDa protein, ubiquitin-specific protease ISG43, an RNA helicase DEAD box protein, GTP-binding MX protein, the cytokine IP-10, and the PKR activator PACT. Differential expression of IFN early-response genes in Pr4 Delta 35 relative to Pr4 was confirmed by Northern blot analysis and real-time PCR. Analysis of IFN-alpha mRNA and secreted IFN-alpha levels at 3, 8, and 24 hpi revealed undetectable IFN-alpha in mock- and Pr4-infected macrophages but significant IFN-alpha levels at 24 hpi in Pr4 Delta 35-infected macrophages. The absence of IFN-alpha in Pr4-infected macrophages suggests that MGF360/530 genes

  7. Mutant huntingtin downregulates myelin regulatory factor-mediated myelin gene expression and affects mature oligodendrocytes.

    PubMed

    Huang, Brenda; Wei, WenJie; Wang, Guohao; Gaertig, Marta A; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-03-18

    Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington's disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remains unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knockin mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  8. Mutant Huntingtin Downregulates Myelin Regulatory Factor-Mediated Myelin Gene Expression and Affects Mature Oligodendrocytes

    PubMed Central

    Huang, Brenda; Wei, Wenjie; Wang, Guohao; Gaertig, Marta A.; Feng, Yue; Wang, Wei; Li, Xiao-Jiang; Li, Shihua

    2015-01-01

    SUMMARY Growing evidence indicates that non-neuronal mutant huntingtin toxicity plays an important role in Huntington’s disease (HD); however, whether and how mutant huntingtin affects oligodendrocytes, which are vitally important for neural function and axonal integrity, remain unclear. We first verified the presence of mutant huntingtin in oligodendrocytes in HD140Q knock-in mice. We then established transgenic mice (PLP-150Q) that selectively express mutant huntingtin in oligodendrocytes. PLP-150Q mice show progressive neurological symptoms and early death, as well as age-dependent demyelination and reduced expression of myelin genes that are downstream of myelin regulatory factor (MYRF or MRF), a transcriptional regulator that specifically activates and maintains the expression of myelin genes in mature oligodendrocytes. Consistently, mutant huntingtin binds abnormally to MYRF and affects its transcription activity. Our findings suggest that dysfunction of mature oligodendrocytes is involved in HD pathogenesis and may also make a good therapeutic target. PMID:25789755

  9. Linkage of the VNTR/insulin-gene and type I diabetes mellitus: Increased gene sharing in affected sibling pairs

    SciTech Connect

    Owerbach, D.; Gabbay, K.H. )

    1994-05-01

    Ninety-six multiplex type I diabetic families were typed at the 5' flanking region of the insulin gene by using a PCR assay that better resolves the VNTR into multiple alleles. Affected sibling pairs shared 2, 1, and 0 VNTR alleles - identical by descent - at a frequency of .47, .45, and .08, respectively, a ratio that deviated from the expected 1:2:1 ratio (P<.001). These results confirm linkage of the chromosome 11p15.5 region with type I diabetes mellitus susceptibility. 20 refs., 2 tabs.

  10. TITER AND PRODUCT AFFECTS THE DISTRIBUTION OF GENE EXPRESSION AFTER INTRAPUTAMINAL CONVECTION-ENHANCED DELIVERY

    PubMed Central

    Emborg, Marina E.; Hurley, Samuel A.; Joers, Valerie; Tromp, Do P.M.; Swanson, Christine R.; Ohshima-Hosoyama, Sachiko; Bondarenko, Viktorya; Cummisford, Kyle; Sonnemans, Marc; Hermening, Stephan; Blits, Bas; Alexander, Andrew L.

    2014-01-01

    Background Efficacy and safety of intracerebral gene therapy for brain disorders, like Parkinson’s disease, depends on appropriate distribution of gene expression. Objectives To assess if the distribution of gene expression is affected by vector titer and protein type. Methods Four adult macaque monkeys seronegative for adeno-associated virus 5 (AAV5) received in the right and left ventral postcommisural putamen 30μl inoculation of a high or low titer suspension of AAV5 encoding glial derived neurotrophic factor (GDNF) or green fluorescent protein (GFP). Inoculations were performed using convection enhanced delivery and intraoperative MRI (IMRI). Results IMRI confirmed targeting and infusion cloud irradiating from the catheter tip into surrounding area. Postmortem analysis six weeks after surgery revealed GFP and GDNF expression ipsilateral to the injection side that had a titer-dependent distribution. GFP and GDNF expression was also observed in fibers in the Substantia Nigra (SN) pars reticulata (pr), demonstrating anterograde transport. Few GFP-positive neurons were present in the SN pars compacta (pc), possibly by direct retrograde transport of the vector. GDNF was present in many SNpc and SNpr neurons. Conclusions After controlling for target and infusate volume, intracerebral distribution of gene product is affected by vector titer and product biology. PMID:24943657

  11. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression.

    PubMed

    Amador, Ariadna; Wang, Yongjun; Banerjee, Subhashis; Kameneka, Theodore M; Solt, Laura A; Burris, Thomas P

    2016-01-01

    The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression. PMID:26963516

  12. DNA Hypomethylation Affects Cancer-Related Biological Functions and Genes Relevant in Neuroblastoma Pathogenesis

    PubMed Central

    Mayol, Gemma; Martín-Subero, José I.; Ríos, José; Queiros, Ana; Kulis, Marta; Suñol, Mariona; Esteller, Manel; Gómez, Soledad; Garcia, Idoia; de Torres, Carmen; Rodríguez, Eva; Galván, Patricia; Mora, Jaume; Lavarino, Cinzia

    2012-01-01

    Neuroblastoma (NB) pathogenesis has been reported to be closely associated with numerous genetic alterations. However, underlying DNA methylation patterns have not been extensively studied in this developmental malignancy. Here, we generated microarray-based DNA methylation profiles of primary neuroblastic tumors. Stringent supervised differential methylation analyses allowed us to identify epigenetic changes characteristic for NB tumors as well as for clinical and biological subtypes of NB. We observed that gene-specific loss of DNA methylation is more prevalent than promoter hypermethylation. Remarkably, such hypomethylation affected cancer-related biological functions and genes relevant to NB pathogenesis such as CCND1, SPRR3, BTC, EGF and FGF6. In particular, differential methylation in CCND1 affected mostly an evolutionary conserved functionally relevant 3′ untranslated region, suggesting that hypomethylation outside promoter regions may play a role in NB pathogenesis. Hypermethylation targeted genes involved in cell development and proliferation such as RASSF1A, POU2F2 or HOXD3, among others. The results derived from this study provide new candidate epigenetic biomarkers associated with NB as well as insights into the molecular pathogenesis of this tumor, which involves a marked gene-specific hypomethylation. PMID:23144874

  13. Pharmacological and Genetic Modulation of REV-ERB Activity and Expression Affects Orexigenic Gene Expression

    PubMed Central

    Amador, Ariadna; Wang, Yongjun; Banerjee, Subhashis; Kameneka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2016-01-01

    The nuclear receptors REV-ERBα and REV-ERBβ are transcription factors that play pivotal roles in the regulation of the circadian rhythm and various metabolic processes. The circadian rhythm is an endogenous mechanism, which generates entrainable biological changes that follow a 24-hour period. It regulates a number of physiological processes, including sleep/wakeful cycles and feeding behaviors. We recently demonstrated that REV-ERB-specific small molecules affect sleep and anxiety. The orexinergic system also plays a significant role in mammalian physiology and behavior, including the regulation of sleep and food intake. Importantly, orexin genes are expressed in a circadian manner. Given these overlaps in function and circadian expression, we wanted to determine whether the REV-ERBs might regulate orexin. We found that acute in vivo modulation of REV-ERB activity, with the REV-ERB-specific synthetic ligand SR9009, affects the circadian expression of orexinergic genes in mice. Long term dosing with SR9009 also suppresses orexinergic gene expression in mice. Finally, REV-ERBβ-deficient mice present with increased orexinergic transcripts. These data suggest that the REV-ERBs may be involved in the repression of orexinergic gene expression. PMID:26963516

  14. Duplex tab exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  15. Diesel engine exhaust oxidizer

    SciTech Connect

    Kammel, R.A.

    1992-06-16

    This patent describes a diesel engine exhaust oxidizing device. It comprises: an enclosure having an inlet for receiving diesel engine exhaust, a main flow path through the enclosure to an outlet of the enclosure, a by-ass through the enclosure, and a microprocessor control means.

  16. Identification of Differentially Expressed Genes through Integrated Study of Alzheimer’s Disease Affected Brain Regions

    PubMed Central

    Berretta, Regina; Moscato, Pablo

    2016-01-01

    Background Alzheimer’s disease (AD) is the most common form of dementia in older adults that damages the brain and results in impaired memory, thinking and behaviour. The identification of differentially expressed genes and related pathways among affected brain regions can provide more information on the mechanisms of AD. In the past decade, several studies have reported many genes that are associated with AD. This wealth of information has become difficult to follow and interpret as most of the results are conflicting. In that case, it is worth doing an integrated study of multiple datasets that helps to increase the total number of samples and the statistical power in detecting biomarkers. In this study, we present an integrated analysis of five different brain region datasets and introduce new genes that warrant further investigation. Methods The aim of our study is to apply a novel combinatorial optimisation based meta-analysis approach to identify differentially expressed genes that are associated to AD across brain regions. In this study, microarray gene expression data from 161 samples (74 non-demented controls, 87 AD) from the Entorhinal Cortex (EC), Hippocampus (HIP), Middle temporal gyrus (MTG), Posterior cingulate cortex (PC), Superior frontal gyrus (SFG) and visual cortex (VCX) brain regions were integrated and analysed using our method. The results are then compared to two popular meta-analysis methods, RankProd and GeneMeta, and to what can be obtained by analysing the individual datasets. Results We find genes related with AD that are consistent with existing studies, and new candidate genes not previously related with AD. Our study confirms the up-regualtion of INFAR2 and PTMA along with the down regulation of GPHN, RAB2A, PSMD14 and FGF. Novel genes PSMB2, WNK1, RPL15, SEMA4C, RWDD2A and LARGE are found to be differentially expressed across all brain regions. Further investigation on these genes may provide new insights into the development of AD

  17. Exhaust purification apparatus

    SciTech Connect

    Shinzawa, M.; Ushimura, S.

    1987-05-05

    An exhaust purification apparatus is described for use in an internal combustion engine having an exhaust conduit through which exhaust particles are discharged together with exhaust gas to the atmosphere. Included is an outer shell having an inlet connected to the exhaust conduit and an outlet connected to the atmosphere. The outer shell contains a trap element and a regenerative burner located upstream of the trap element, the regenerative burner comprising: a cylindrical hollow member fixed to the liner and extending within a combustion chamber to define an evaporation chamber, a glow plug for igniting the mixture supplied into the evaporated chamber when actuated; and a control unit responsive to a regeneration requirement for actuating the glow plug and supplying an air-fuel mixture into the evaporation chamber through the mixture conduit.

  18. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    PubMed

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  19. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    PubMed Central

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  20. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth

    PubMed Central

    Milanesi, Marco; Torrecilha, Rafaela B. P.; Carmo, Adriana S.; Neves, Haroldo H. R.; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S.; Sölkner, Johann; Contreras-Castillo, Carmen J.; Garcia, José F.

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  1. Pleiotropic Genes Affecting Carcass Traits in Bos indicus (Nellore) Cattle Are Modulators of Growth.

    PubMed

    G T Pereira, Anirene; Utsunomiya, Yuri T; Milanesi, Marco; Torrecilha, Rafaela B P; Carmo, Adriana S; Neves, Haroldo H R; Carvalheiro, Roberto; Ajmone-Marsan, Paolo; Sonstegard, Tad S; Sölkner, Johann; Contreras-Castillo, Carmen J; Garcia, José F

    2016-01-01

    Two complementary methods, namely Multi-Trait Meta-Analysis and Versatile Gene-Based Test for Genome-wide Association Studies (VEGAS), were used to identify putative pleiotropic genes affecting carcass traits in Bos indicus (Nellore) cattle. The genotypic data comprised over 777,000 single-nucleotide polymorphism markers scored in 995 bulls, and the phenotypic data included deregressed breeding values (dEBV) for weight measurements at birth, weaning and yearling, as well visual scores taken at weaning and yearling for carcass finishing precocity, conformation and muscling. Both analyses pointed to the pleomorphic adenoma gene 1 (PLAG1) as a major pleiotropic gene. VEGAS analysis revealed 224 additional candidates. From these, 57 participated, together with PLAG1, in a network involved in the modulation of the function and expression of IGF1 (insulin like growth factor 1), IGF2 (insulin like growth factor 2), GH1 (growth hormone 1), IGF1R (insulin like growth factor 1 receptor) and GHR (growth hormone receptor), suggesting that those pleiotropic genes operate as satellite regulators of the growth pathway. PMID:27410030

  2. Attenuated Oxidative Stress following Acute Exhaustive Swimming Exercise Was Accompanied with Modified Gene Expression Profiles of Apoptosis in the Skeletal Muscle of Mice

    PubMed Central

    Sun, Yi; Cui, Di; Zhang, Zhe; Zhang, Tan; Shi, Jun; Jin, Haixiu; Ge, Zhe; Ji, Liu; Ding, Shuzhe

    2016-01-01

    Purpose. The purpose of the present study was to investigate the effect of acute exhaustive swimming exercise on apoptosis in the skeletal muscle of mice. Method. C57BL/6 mice were averagely divided into seven groups. One group was used as control (C), while the remaining six groups went through one-time exhaustive swimming exercise and were terminated at 0 h, 2 h, 6 h, 12 h, 24 h, and 48 h upon completion of exercise. Result. ABTS was significantly lowered at 12 h and 48 h after exercise. The MDA level was significantly decreased at any time points sampled following exercise. Total SOD activity was significantly decreased at 6 h, 12 h, 24 h, and 48 h after exercise. Neither mRNA of Bax nor Bax/Bcl-2 ratio was significantly altered by exercise. mRNA of Bcl-2 was significantly decreased since 6 h after exercise. mRNA and protein expressions of PGC-1α were significantly increased at different time points following exercise. Conclusion. Cellular oxidative stress level was decreased following low intensity, long duration acute exhaustive swimming exercise in mice, and the enzymatic antioxidant capacity was compromised. Apoptosis of the skeletal muscle was inhibited, which could partially be explained by the enhanced level of PGC-1α. PMID:27143996

  3. Attenuated Oxidative Stress following Acute Exhaustive Swimming Exercise Was Accompanied with Modified Gene Expression Profiles of Apoptosis in the Skeletal Muscle of Mice.

    PubMed

    Sun, Yi; Cui, Di; Zhang, Zhe; Zhang, Tan; Shi, Jun; Jin, Haixiu; Ge, Zhe; Ji, Liu; Ding, Shuzhe

    2016-01-01

    Purpose. The purpose of the present study was to investigate the effect of acute exhaustive swimming exercise on apoptosis in the skeletal muscle of mice. Method. C57BL/6 mice were averagely divided into seven groups. One group was used as control (C), while the remaining six groups went through one-time exhaustive swimming exercise and were terminated at 0 h, 2 h, 6 h, 12 h, 24 h, and 48 h upon completion of exercise. Result. ABTS was significantly lowered at 12 h and 48 h after exercise. The MDA level was significantly decreased at any time points sampled following exercise. Total SOD activity was significantly decreased at 6 h, 12 h, 24 h, and 48 h after exercise. Neither mRNA of Bax nor Bax/Bcl-2 ratio was significantly altered by exercise. mRNA of Bcl-2 was significantly decreased since 6 h after exercise. mRNA and protein expressions of PGC-1α were significantly increased at different time points following exercise. Conclusion. Cellular oxidative stress level was decreased following low intensity, long duration acute exhaustive swimming exercise in mice, and the enzymatic antioxidant capacity was compromised. Apoptosis of the skeletal muscle was inhibited, which could partially be explained by the enhanced level of PGC-1α. PMID:27143996

  4. Schizophrenia susceptibility alleles are enriched for alleles that affect gene expression in adult human brain

    PubMed Central

    Richards, Alexander L; Jones, Lesley; Moskvina, Valentina; Kirov, George; Gejman, Pablo V; Levinson, Douglas F; Sanders, Alan R; Purcell, Shaun; Visscher, Peter M; Craddock, Nick; Owen, Michael J; Holmans, Peter; O’Donovan, Michael C

    2016-01-01

    It is widely thought that alleles that influence susceptibility to common diseases, including schizophrenia, will frequently do so through effects on gene expression. Since only a small proportion of the genetic variance for schizophrenia has been attributed to specific loci, this remains an unproven hypothesis. The International Schizophrenia Consortium (ISC) recently reported a substantial polygenic contribution to that disorder, and that schizophrenia risk alleles are enriched among SNPs selected for marginal evidence for association (p<0.5) from genome wide association studies (GWAS). It follows that if schizophrenia susceptibility alleles are enriched for those that affect gene expression, those marginally associated SNPs which are also eQTLs should carry more true association signals compared with SNPs which are not. To test this, we identified marginally associated (p<0.5) SNPs from two of the largest available schizophrenia GWAS datasets. We assigned eQTL status to those SNPs based upon an eQTL dataset derived from adult human brain. Using the polygenic score method of analysis reported by the ISC, we observed and replicated the observation that higher probability cis-eQTLs predicted schizophrenia better than those with a lower probability for being a cis-eQTL. Our data support the hypothesis that alleles conferring risk of schizophrenia are enriched among those that affect gene expression. Moreover, our data show that notwithstanding the likely developmental origin of schizophrenia, studies of adult brain tissue can in principle allow relevant susceptibility eQTLs to be identified. PMID:21339752

  5. Possible association between the dopamine D{sub 3} receptor gene and bipolar affective disorder

    SciTech Connect

    Parsian, A.; Chakraverty, S.; Todd, R.D.

    1995-06-19

    A variety of studies have reported possible genetic associations between bipolar affective disorder and different loci using relative risk (case-control) comparisons. An alternative approach is to construct a contrast group using parental alleles which were not transmitted to an affected individual. We have used both approaches to test for possible associations between alleles of the dopamine D{sub 3} receptor gene and bipolar affective disorder. For relative risk studies, the probands of multiple incidence bipolar affective disorder families have been compared to alcoholic and psychiatrically normal contrast groups. Nontransmitted allele approaches have used bipolar affective disorder and alcoholic probands in which both parents were available for genotyping. Using the BalI restriction enzyme site polymorphism of Lannfelt et al., we have found no differences in the allele or genotype frequencies for bipolar vs. alcoholic or psychiatrically normal controls. In contrast, we have found evidence for an increased frequency of allele 1 and allele 1 containing genotypes in transmitted alleles from bipolar families. 21 refs., 4 tabs.

  6. Possible association between the dopamine D3 receptor gene and bipolar affective disorder

    SciTech Connect

    Todd, R.D.; Chakraverty, S.; Parsian, A.

    1994-09-01

    A variety of studies have reported possible genetic associations between bipolar affective disorder and different loci using relative risk approaches. An alternative approach is to determine untransmitted genotypes from families selected through a single affected individual. We have used both approaches to test for possible associations between alleles of the dopamine D3 receptor gene and bipolar affective disorder. For relative risk studies, the probands of multiple incidence bipolar affective disorder (n=66) and alcoholism (n=132) families and psychiatric normal controls (n=91) have been compared. Non-transmitted allele approaches have used bipolar affective disorder (n=28) and alcoholic (n=25) probands in which both parents were available for genotyping. Using the Bal I restriction enzyme site polymorphism of Lannfelt, we have found no differences in the allele or genotype frequencies for bipolar or alcoholic probands versus psychiatrically normal controls. In contrast, we have found evidence for an increased frequency of allele 1 and allele 1 containing genotypes in transmitted alleles from bipolar families.

  7. Exhaust gas afterburner

    SciTech Connect

    Hudson, S.J. Jr.

    1986-12-23

    This patent describes an exhaust gas afterburner device adapted for installation between an exhaust manifold and a corresponding portion of the engine block of an internal combustion engine. The device comprises: a spacer sandwiched between portions of two sheet metal members forming a gasket section of the device, the gasket section surrounding at least one exhaust gas port, a plenum section formed by remaining portions of the members, and wall sections defining passageways extending from the interior of the plenum section to the port and an air supply inlet on the plenum.

  8. MIR137 variants identified in psychiatric patients affect synaptogenesis and neuronal transmission gene sets.

    PubMed

    Strazisar, M; Cammaerts, S; van der Ven, K; Forero, D A; Lenaerts, A-S; Nordin, A; Almeida-Souza, L; Genovese, G; Timmerman, V; Liekens, A; De Rijk, P; Adolfsson, R; Callaerts, P; Del-Favero, J

    2015-04-01

    Sequence analysis of 13 microRNA (miRNA) genes expressed in the human brain and located in genomic regions associated with schizophrenia and/or bipolar disorder, in a northern Swedish patient/control population, resulted in the discovery of two functional variants in the MIR137 gene. On the basis of their location and the allele frequency differences between patients and controls, we explored the hypothesis that the discovered variants impact the expression of the mature miRNA and consequently influence global mRNA expression affecting normal brain functioning. Using neuronal-like SH-SY5Y cells, we demonstrated significantly reduced mature miR-137 levels in the cells expressing the variant miRNA gene. Subsequent transcriptome analysis showed that the reduction in miR-137 expression led to the deregulation of gene sets involved in synaptogenesis and neuronal transmission, all implicated in psychiatric disorders. Our functional findings add to the growing data, which implicate that miR-137 has an important role in the etiology of psychiatric disorders and emphasizes its involvement in nervous system development and proper synaptic function. PMID:24888363

  9. Satellite DNA from the brine shrimp Artemia affects the expression of a flanking gene in yeast.

    PubMed

    Maiorano, D; Cece, R; Badaracco, G

    1997-04-11

    We have previously revealed that in the brine shrimp Artemia franciscana an AluI DNA family of repeats, 113 bp in length, is the major component of the constitutive heterochromatin and that this repetitive DNA shows a stable curvature that confers a solenoidal geometry on the double helix in vitro. It was suggested that this particular structure may play a relevant role in determining the condensation of the heterochromatin. In this report we have cloned hexamers of highly-repetitive sequence (AluI-satellite DNA) in proximity to a yeast lacZ reporter gene on a plasmid. We find that the expression of the reporter gene is affected by the presence of this DNA in a dose- and orientation-dependent manner in the yeast, S. cerevisiae. We show that this effect is not dependent on under-replication or re-arrangements of the repetitive DNA in the cell but is due to decreased expression of the reporter gene. Our results indicate that the AluI-satellite DNA of Artemia per se is able to influence gene expression. PMID:9161405

  10. The ratio of unsaturated fatty acids in biosurfactants affects the efficiency of gene transfection.

    PubMed

    Inoh, Yoshikazu; Furuno, Tadahide; Hirashima, Naohide; Kitamoto, Dai; Nakanishi, Mamoru

    2010-10-15

    An unsaturated hydrocarbon chain in phospholipid was reported to affect a phase transition and a fusogenic activity after mixing membranes, and consequently to achieve a high DNA transfection efficiency. We previously showed that a biosurfactant mannosylerythritol lipid-A (MEL-A) enhances the gene transfection efficiency of cationic liposomes. Here, we have studied the effects of unsaturated fatty acid ratio of MEL-A on the physicochemical properties and gene delivery into cells of cationic liposomes using MEL-A with three different unsaturated fatty acid ratios (9.1%, 21.5%, and 46.3%). The gene transfer efficiency of cationic liposomes containing MEL-A (21.5%) was much higher than that of those containing MEL-A (9.1%) and MEL-A (46.3%). MEL-A (21.5%)-containing cationic liposomes induced highly efficient membrane fusion after addition of anionic liposomes and led to subsequent DNA release. Imaging analysis revealed that MEL-A (21.5%)-containing liposomes fused with the plasma membrane and delivered DNA into the nucleus of NIH-3T3 cells, MEL-A (46.3%)-containing liposomes fused with the plasma membrane did not deliver DNA into the nucleus, and MEL-A (9.1%)-containing liposomes neither fused with the plasma membrane nor delivered DNA into the nucleus. Thus, it is understandable that the unsaturated fatty acid ratio of MEL-A strongly influences the gene transfection efficiency of cationic liposomes. PMID:20674726

  11. Biased perception about gene technology: How perceived naturalness and affect distort benefit perception.

    PubMed

    Siegrist, Michael; Hartmann, Christina; Sütterlin, Bernadette

    2016-01-01

    In two experiments, the participants showed biased responses when asked to evaluate the benefits of gene technology. They evaluated the importance of additional yields in corn fields due to a newly introduced variety, which would increase a farmer's revenues. In one condition, the newly introduced variety was described as a product of traditional breeding; in the other, it was identified as genetically modified (GM). The two experiments' findings showed that the same benefits were perceived as less important for a farmer when these were the result of GM crops compared with traditionally bred crops. Mediation analyses suggest that perceived naturalness and the affect associated with the technology per se influence the interpretation of the new information. The lack of perceived naturalness of gene technology seems to be the reason for the participants' perceived lower benefits of a new corn variety in the gene technology condition compared with the perceptions of the participants assigned to the traditional breeding condition. The strategy to increase the acceptance of gene technology by introducing plant varieties that better address consumer and producer needs may not work because people discount its associated benefits. PMID:26505287

  12. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed

    PubMed Central

    Liu, Jing; Hua, Wei; Hu, Zhiyong; Yang, Hongli; Zhang, Liang; Li, Rongjun; Deng, Linbin; Sun, Xingchao; Wang, Xinfa; Wang, Hanzhong

    2015-01-01

    Seed weight (SW), which is one of the three major factors influencing grain yield, has been widely accepted as a complex trait that is controlled by polygenes, particularly in polyploid crops. Brassica napus L., which is the second leading crop source for vegetable oil around the world, is a tetraploid (4×) species. In the present study, we identified a major quantitative trait locus (QTL) on chromosome A9 of rapeseed in which the genes for SW and silique length (SL) were colocated. By fine mapping and association analysis, we uncovered a 165-bp deletion in the auxin-response factor 18 (ARF18) gene associated with increased SW and SL. ARF18 encodes an auxin-response factor and shows inhibitory activity on downstream auxin genes. This 55-aa deletion prevents ARF18 from forming homodimers, in turn resulting in the loss of binding activity. Furthermore, reciprocal crossing has shown that this QTL affects SW by maternal effects. Transcription analysis has shown that ARF18 regulates cell growth in the silique wall by acting via an auxin-response pathway. Together, our results suggest that ARF18 regulates silique wall development and determines SW via maternal regulation. In addition, our study reveals the first (to our knowledge) QTL in rapeseed and may provide insights into gene cloning involving polyploid crops. PMID:26324896

  13. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed.

    PubMed

    Liu, Jing; Hua, Wei; Hu, Zhiyong; Yang, Hongli; Zhang, Liang; Li, Rongjun; Deng, Linbin; Sun, Xingchao; Wang, Xinfa; Wang, Hanzhong

    2015-09-15

    Seed weight (SW), which is one of the three major factors influencing grain yield, has been widely accepted as a complex trait that is controlled by polygenes, particularly in polyploid crops. Brassica napus L., which is the second leading crop source for vegetable oil around the world, is a tetraploid (4×) species. In the present study, we identified a major quantitative trait locus (QTL) on chromosome A9 of rapeseed in which the genes for SW and silique length (SL) were colocated. By fine mapping and association analysis, we uncovered a 165-bp deletion in the auxin-response factor 18 (ARF18) gene associated with increased SW and SL. ARF18 encodes an auxin-response factor and shows inhibitory activity on downstream auxin genes. This 55-aa deletion prevents ARF18 from forming homodimers, in turn resulting in the loss of binding activity. Furthermore, reciprocal crossing has shown that this QTL affects SW by maternal effects. Transcription analysis has shown that ARF18 regulates cell growth in the silique wall by acting via an auxin-response pathway. Together, our results suggest that ARF18 regulates silique wall development and determines SW via maternal regulation. In addition, our study reveals the first (to our knowledge) QTL in rapeseed and may provide insights into gene cloning involving polyploid crops. PMID:26324896

  14. Mutations in the su(s) gene affect RNA processing in Drosophila melanogaster.

    PubMed Central

    Geyer, P K; Chien, A J; Corces, V G; Green, M M

    1991-01-01

    We have studied the effect of mutations in the suppressor of sable [su(s)] gene on P element-induced yellow alleles. Two independent mutations tested, y76d28 and y1#7, contain a 1.1-kilobase (kb) P element inserted in the 5' transcribed untranslated portion of the yellow gene. Sequences responsible for the y1#7 mutation are inserted in the same transcriptional orientation as yellow and cannot be processed by splicing, and this mutation is not suppressed by su(s) mutations. P element sequences are located in a transcriptional orientation opposite to that of the yellow gene in y76d28; these sequences can be spliced from a composite P element-yellow mRNA, resulting in low accumulation of a functional 1.9-kb yellow transcript. The levels of both the putative precursor P element-yellow RNA and the 1.9-kb yellow transcript increase in y76d28 su(s) flies, suggesting that mutations in su(s) do not affect the efficiency of splicing of the P element sequences. Analysis of y76d28 cDNAs isolated from flies carrying a wild-type or mutant su(s) gene demonstrates that the choice of splice junctions to process P element sequences is unchanged in these different backgrounds, suggesting that mutations in su(s) do not affect the selection of donor and acceptor splice sites. We propose that the su(s) protein functions to control the stability of unprocessed RNA during the splicing reaction. Images PMID:1714588

  15. DIESEL EXHAUST ENHANCES INFLUENZA VIRUS INFECTIONS IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Several factors, such as age and nutritional status can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects ...

  16. Atmospheric scavenging exhaust

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.

    1977-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. The airborne HCl concentration varied from 0.2 to 10.0 ppm and the raindrop sizes tested included 0.55 mm, 1.1 mm, and 3.0 mm. Two chambers were used to conduct the experiments. A large, rigid walled, spherical chamber stored the exhaust constituents while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique employed. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity.

  17. The luxS gene of Streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells.

    PubMed

    Marouni, Mehran J; Sela, Shlomo

    2003-10-01

    The gram-positive pathogen Streptococcus pyogenes was recently reported to possess a homologue of the luxS gene that is responsible for the production of autoinducer 2, which participates in quorum sensing of both gram-positive and gram-negative bacteria. To test the effect of LuxS on streptococcal internalization, a LuxS mutant was constructed in strain SP268, an invasive M3 serotype. Functional analysis of the mutant revealed that it was internalized by HEp-2 cells with higher efficiency than the wild type (wt). Several genes, including hasA (hyaluronic acid synthesis), speB (streptococcal pyrogenic exotoxin B), and csrR (capsule synthesis regulator), a part of a two-component regulatory system, are known to affect the internalization of strain SP268 (J. Jadoun, O. Eyal, and S. Sela, Infect. Immun. 70:462-469, 2002). Therefore, the expression of these genes in the mutant and in the wt was examined. LuxS mutation significantly reduced the mRNA level of speB and increased the mRNA level of emm3. No substantial effect was observed on transcription of hasA and csrR. Yet less hyaluronic acid capsule was expressed in the mutant. Further analysis revealed that luxS is under the regulation of the two-component global regulator CsrR. Our results indicate that LuxS activity in strain SP268 plays an important role in the expression of virulence factors associated with epithelial cell internalization. PMID:14500483

  18. The luxS Gene of Streptococcus pyogenes Regulates Expression of Genes That Affect Internalization by Epithelial Cells

    PubMed Central

    Marouni, Mehran J.; Sela, Shlomo

    2003-01-01

    The gram-positive pathogen Streptococcus pyogenes was recently reported to possess a homologue of the luxS gene that is responsible for the production of autoinducer 2, which participates in quorum sensing of both gram-positive and gram-negative bacteria. To test the effect of LuxS on streptococcal internalization, a LuxS mutant was constructed in strain SP268, an invasive M3 serotype. Functional analysis of the mutant revealed that it was internalized by HEp-2 cells with higher efficiency than the wild type (wt). Several genes, including hasA (hyaluronic acid synthesis), speB (streptococcal pyrogenic exotoxin B), and csrR (capsule synthesis regulator), a part of a two-component regulatory system, are known to affect the internalization of strain SP268 (J. Jadoun, O. Eyal, and S. Sela, Infect. Immun. 70:462-469, 2002). Therefore, the expression of these genes in the mutant and in the wt was examined. LuxS mutation significantly reduced the mRNA level of speB and increased the mRNA level of emm3. No substantial effect was observed on transcription of hasA and csrR. Yet less hyaluronic acid capsule was expressed in the mutant. Further analysis revealed that luxS is under the regulation of the two-component global regulator CsrR. Our results indicate that LuxS activity in strain SP268 plays an important role in the expression of virulence factors associated with epithelial cell internalization. PMID:14500483

  19. The ANK3 gene and facial affect processing: An ERP study.

    PubMed

    Zhao, Wan; Zhang, Qiumei; Yu, Ping; Zhang, Zhifang; Chen, Xiongying; Gu, Huang; Zhai, Jinguo; Chen, Min; Du, Boqi; Deng, Xiaoxiang; Ji, Feng; Wang, Chuanyue; Xiang, Yu-Tao; Li, Dawei; Wu, Hongjie; Dong, Qi; Luo, Yuejia; Li, Jun; Chen, Chuansheng

    2016-09-01

    ANK3 is one of the most promising candidate genes for bipolar disorder (BD). A polymorphism (rs10994336) within the ANK3 gene has been associated with BD in at least three genome-wide association studies of BD [McGuffin et al., 2003; Kieseppä, 2004; Edvardsen et al., 2008]. Because facial affect processing is disrupted in patients with BD, the current study aimed to explore whether the BD risk alleles are associated with the N170, an early event-related potential (ERP) component related to facial affect processing. We collected data from two independent samples of healthy individuals (Ns = 83 and 82, respectively) to test the association between rs10994336 and an early event-related potential (ERP) component (N170) that is sensitive to facial affect processing. Repeated-measures analysis of covariance in both samples consistently revealed significant main effects of rs10994336 genotype (Sample I: F (1, 72) = 7.24, P = 0.009; Sample II: F (1, 69) = 11.81, P = 0.001), but no significant interaction of genotype × electrodes (Ps > 0.05) or genotype × emotional conditions (Ps > 0.05). These results suggested that rs10994336 was linked to early ERP component reflecting facial structural encoding during facial affect processing. These results shed new light on the brain mechanism of this risk SNP and associated disorders such as BD. © 2016 Wiley Periodicals, Inc. PMID:27177275

  20. Human bronchial epithelial cells exposed in vitro to diesel exhaust particles exhibit alterations in cell rheology and cytotoxicity associated with decrease in antioxidant defenses and imbalance in pro- and anti-apoptotic gene expression.

    PubMed

    Seriani, Robson; de Souza, Claudia Emanuele Carvalho; Krempel, Paloma Gava; Frias, Daniela Perroni; Matsuda, Monique; Correia, Aristides Tadeu; Ferreira, Márcia Zotti Justo; Alencar, Adriano Mesquita; Negri, Elnara Marcia; Saldiva, Paulo Hilário Nascimento; Mauad, Thais; Macchione, Mariangela

    2016-05-01

    Diesel exhaust particles (DEPs) from diesel engines produce adverse alterations in cells of the airways by activating intracellular signaling pathways and apoptotic gene overexpression, and also by influencing metabolism and cytoskeleton changes. This study used human bronchial epithelium cells (BEAS-2B) in culture and evaluates their exposure to DEPs (15ug/mL for 1 and 2 h) in order to determine changes to cell rheology (viscoelasticity) and gene expression of the enzymes involved in oxidative stress, apoptosis, and cytotoxicity. BEAS-2B cells exposed to DEPs were found to have a significant loss in stiffness, membrane stability, and mitochondrial activity. The genes involved in apoptosis [B cell lymphoma 2 (BCL-2 and caspase-3)] presented inversely proportional expressions (p = 0.05, p = 0.01, respectively), low expression of the genes involved in antioxidant responses [SOD1 (superoxide dismutase 1); SOD2 (superoxide dismutase 2), and GPx (glutathione peroxidase) (p = 0.01)], along with an increase in cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) (p = 0.01). These results suggest that alterations in cell rheology and cytotoxicity could be associated with oxidative stress and imbalance between pro- and anti-apoptotic genes. PMID:26856867

  1. Lipid Biosynthetic Genes Affect Candida albicans Extracellular Vesicle Morphology, Cargo, and Immunostimulatory Properties

    PubMed Central

    Wolf, Julie M.; Espadas, Javier; Luque-Garcia, Jose; Reynolds, Todd

    2015-01-01

    Microbial secretion is integral for regulating cell homeostasis as well as releasing virulence factors during infection. The genes encoding phosphatidylserine synthase (CHO1) and phosphatidylserine decarboxylase (PSD1 and PSD2) are Candida albicans genes involved in phospholipid biosynthesis, and mutations in these genes affect mitochondrial function, cell wall thickness, and virulence in mice. We tested the roles of these genes in several agar-based secretion assays and observed that the cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ strains manifested less protease and phospholipase activity. Since extracellular vesicles (EVs) are surrounded by a lipid membrane, we investigated the effects of these mutations on EV structure, composition, and biological activity. The cho1Δ/Δ mutant releases EVs comparable in size to wild-type EVs, but EVs from the psd1Δ/Δ psd2Δ/Δ strain are much larger than those from the wild type, including a population of >100-nm EVs not observed in the EVs from the wild type. Proteomic analysis revealed that EVs from both mutants had a significantly different protein cargo than that of EVs from the wild type. EVs were tested for their ability to activate NF-κB in bone marrow-derived macrophage cells. While wild-type and psd1Δ/Δ psd2Δ/Δ mutant-derived EVs activated NF-κB, the cho1Δ/Δ mutant-derived EV did not. These studies indicate that the presence and absence of these C. albicans genes have qualitative and quantitative effects on EV size, composition, and immunostimulatory phenotypes that highlight a complex interplay between lipid metabolism and vesicle production. PMID:26024904

  2. Gestational diabetes mellitus epigenetically affects genes predominantly involved in metabolic diseases.

    PubMed

    Ruchat, Stephanie-May; Houde, Andrée-Anne; Voisin, Grégory; St-Pierre, Julie; Perron, Patrice; Baillargeon, Jean-Patrice; Gaudet, Daniel; Hivert, Marie-France; Brisson, Diane; Bouchard, Luigi

    2013-09-01

    Offspring exposed to gestational diabetes mellitus (GDM) have an increased risk for chronic diseases, and one promising mechanism for fetal metabolic programming is epigenetics. Therefore, we postulated that GDM exposure impacts the offspring's methylome and used an epigenomic approach to explore this hypothesis. Placenta and cord blood samples were obtained from 44 newborns, including 30 exposed to GDM. Women were recruited at first trimester of pregnancy and followed until delivery. GDM was assessed after a 75-g oral glucose tolerance test at 24-28 weeks of pregnancy. DNA methylation was measured at>485,000 CpG sites (Infinium HumanMethylation450 BeadChips). Ingenuity Pathway Analysis was conducted to identify metabolic pathways epigenetically affected by GDM. Our results showed that 3,271 and 3,758 genes in placenta and cord blood, respectively, were potentially differentially methylated between samples exposed or not to GDM (p-values down to 1 × 10(-06); none reached the genome-wide significance levels), with more than 25% (n = 1,029) being common to both tissues. Mean DNA methylation differences between groups were 5.7 ± 3.2% and 3.4 ± 1.9% for placenta and cord blood, respectively. These genes were likely involved in the metabolic diseases pathway (up to 115 genes (11%), p-values for pathways = 1.9 × 10(-13)genes, 326 in placenta and 117 in cord blood were also associated with newborn weight. Our results therefore suggest that GDM has epigenetic effects on genes preferentially involved in the metabolic diseases pathway, with consequences on fetal growth and development, and provide supportive evidence that DNA methylation is involved in fetal metabolic programming. PMID:23975224

  3. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells

    PubMed Central

    Moreb, Jan S; Baker, Henry V; Chang, Lung-Ji; Amaya, Maria; Lopez, M Cecilia; Ostmark, Blanca; Chou, Wayne

    2008-01-01

    Background Aldehyde dehydrogenase isozymes ALDH1A1 and ALDH3A1 are highly expressed in non small cell lung cancer. Neither the mechanisms nor the biologic significance for such over expression have been studied. Methods We have employed oligonucleotide microarrays to analyze changes in gene profiles in A549 lung cancer cell line in which ALDH activity was reduced by up to 95% using lentiviral mediated expression of siRNA against both isozymes (Lenti 1+3). Stringent analysis methods were used to identify gene expression patterns that are specific to the knock down of ALDH activity and significantly different in comparison to wild type A549 cells (WT) or cells similarly transduced with green fluorescent protein (GFP) siRNA. Results We confirmed significant and specific down regulation of ALDH1A1 and ALDH3A1 in Lenti 1+3 cells and in comparison to 12 other ALDH genes detected. The results of the microarray analysis were validated by real time RT-PCR on RNA obtained from Lenti 1+3 or WT cells treated with ALDH activity inhibitors. Detailed functional analysis was performed on 101 genes that were significantly different (P < 0.001) and their expression changed by ≥ 2 folds in the Lenti 1+3 group versus the control groups. There were 75 down regulated and 26 up regulated genes. Protein binding, organ development, signal transduction, transcription, lipid metabolism, and cell migration and adhesion were among the most affected pathways. Conclusion These molecular effects of the ALDH knock-down are associated with in vitro functional changes in the proliferation and motility of these cells and demonstrate the significance of ALDH enzymes in cell homeostasis with a potentially significant impact on the treatment of lung cancer. PMID:19025616

  4. Getting older can be exhausting.

    PubMed

    Mittal, Rohit; Ford, Mandy L; Coopersmith, Craig M

    2014-01-01

    Sepsis is a disease that affects primarily the aged. Although mortality is higher in both older septic patients and aged septic mice, the mechanisms underlying decreased survival in older hosts are incompletely understood. New work by Inoue and colleagues demonstrates persistent inflammation and T-cell exhaustion in older septic patients and aged septic mice. The clinical significance of these findings is manifested not only in increased mortality but also in a marked difference in secondary infections in older patients as long as a month following ICU admission. PMID:25184737

  5. Changes in gravity affect gene expression, protein modulation and metabolite pools of arabidopsis

    NASA Astrophysics Data System (ADS)

    Hampp, R.; Martzivanou, M.; Maier, R. M.; Magel, E.

    Callus cultures of Arabidopsis thaliana (cv. Columbia) in Petri dishes / suspension cultures were exposed to altered g-forces by centrifugation (1 to 10 g), klinorotation, and μ g (sounding rocket flights). Using semi-quantitative RT-PCR, transcripts of genes coding for metabolic key enzymes (ADP-glucose pyrophosphorylase, ADPG-PP; ß-amylase, fructose-1,6-bisphosphatase, FBPase; glyceraldehyde-P dehydrogenase, GAPDH; hydroxymethylglutaryl-CoA reductase, HMG; phenylalanine-ammonium-lyase, PAL; PEP carboxylase, PEPC) were used to monitor threshold conditions for g-number (all) and time of exposure (ß-amylase) which led to altered amounts of the gene product. Exposure to approx. 5 g and higher for 1h resulted in altered transcript levels: transcripts of ß-amylase, PAL, and PEPC were increased, those of ADPG-PP decreased, while those of FBPase, GAPDH, and HMG were not affected. This probably indicates a shift from starch synthesis to starch degradation and increased rates of anaplerosis (PEPC: supply of ketoacids for amino acid synthesis). In order to get more information about g-related effects on gene expression, we used a 1h-exposure to 7 g for a microarray analysis. Transcripts of more than 200 genes were significantly increased in amount (ratio 7g / 1g control; 21.6 and larger). They fall into several categories. Transcripts coding for enzymes of major pathways form the largest group (25%), followed by gene products involved in cellular organisation and cell wall formation / rearrangement (17%), signalling, phosphorylation/dephosphorylation (12%), proteolysis and transport (10% each), hormone synthesis plus related events (8%), defense (4%), stress-response (2%), and gravisensing (2%). Many of the alterations are part of a general stress response, but some changes related to the synthesis / rearrangement of cell wall components could be more hyper-g-specific. Using macroarrays with selected genes according to our hypergravity study (metabolism / signalling

  6. Nonsense mutations in the human. beta. -globin gene affect mRNA metabolism

    SciTech Connect

    Baserga, S.J.; Benz, E.J. Jr. )

    1988-04-01

    A number of premature translation termination mutations (nonsense mutations) have been described in the human {alpha}- and {beta}-globin genes. Studies on mRNA isolated from patients with {beta}{sup 0}-thalassemia have shown that for both the {beta}-17 and the {beta}-39 mutations less than normal levels of {beta}-globin mRNA accumulate in peripheral blood cells. (The codon at which the mutation occurs designates the name of the mutation; there are 146 codons in human {beta}-globin mRNA). In vitro studies using the cloned {beta}-39 gene have reproduced this effect in a heterologous transfection system and have suggested that the defect resides in intranuclear metabolism. The authors have asked if this phenomenon of decreased mRNA accumulation is a general property of nonsense mutations and if the effect depends on the location or the type of mutation. Toward this end, they have studied the effect of five nonsense mutations and two missense mutations on the expression of human {beta}-globin mRNA in a heterologous transfection system. In all cases studied, the presence of a translation termination codon correlates with a decrease in the steady-state level of mRNA. The data suggest that the metabolism of a mammalian mRNA is affected by the presence of a mutation that affects translation.

  7. The microarray gene profiling analysis of glioblastoma cancer cells reveals genes affected by FAK inhibitor Y15 and combination of Y15 and temozolomide.

    PubMed

    Huang, Grace; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Qiang, Hu; Golubovskaya, Vita

    2014-01-01

    Focal adhesion is known to be highly expressed and activated in glioma cells. Recently, we demonstrated that FAK autophosphorylation inhibitor, Y15 significantly decreased tumor growth of DBTRG and U87 cells, especially in combination with temozolomide. In the present report, we performed gene expression analysis in these cells to reveal genes affected by Y15, temozolomide and combination of Y15 and temozolomide. We tested the effect of Y15 on gene expression by Illumina Human HT12v4 microarray assay and detected 8087 and 6555 genes, which were significantly either up- or down-regulated by Y15-treatment in DBTRG and U87 cells, respectively (p<0.05). Moreover, DBTRG and U87 cells treated with Y15 changed expression of 1332 and 462 genes more than 1.5 fold, p<0.05, respectively and had 237 common genes affected by Y15. The common genes up-regulated by Y15 included GADD45A, HSPA6 (heat-shock 70); DUSP1, DUSP 5 (dual-phosphatase 5); CDKN1A (p21) and common down-regulated genes included kinesins, such as KIF11, 14, 20A, 20B; topoisomerase II, TOP2A; cyclin F; cell cycle protein: BUB1; PARP1, POLA1. In addition, we detected genes affected by temozolomide and by combination of Y15 and temozolomide treatment in U87 cells. Among genes up-regulated by Y15 and temozolomide more significantly than by each agent alone were: COX7B; interferon, gamma-inducible transcript: IFI16; DDIT4; GADD45G and down-regulated: KIF3A, AKT1; ABL; JAK1, GLI3 and ALDH1A3. Thus, microarray gene expression analysis can be effective in establishing genes affected in response to FAK inhibitor alone and in response to combination of Y15 with temozolomide that is important for glioblastoma therapy. PMID:23387973

  8. Cytogenetic and molecular localization of tipE: A gene affecting sodium channels in Drosophila melanogaster

    SciTech Connect

    Feng, G.; Deak, P.; Hall, L.M.

    1995-04-01

    Voltage-sensitive sodium channels play a key role in nerve cells where they are responsible for the increase in sodium permeability during the rising phase of action potentials. In Drosophila melanogaster a subset of temperature-sensitive paralytic mutations affect sodium channel function. One such mutation is temperature-induced paralysis locus E (tipE), which has been shown by electrophysiology and ligand binding studies to reduce sodium channel numbers. Three new {gamma}-ray-induced tipE alleles associated with either visible deletions in 64AB or a translocation breakpoint within 64B2 provide landmarks for positional cloning of tipE. Beginning with the flanking cloned gene Ras2, a 140-kb walk across the translocation breakpoint was completed. Germline transformation using a 42-kb cosmid clone and successively smaller subclones localized the tipE gene within a 7.4-kb genomic DNA segment. Although this chromosome region is rich in transcripts, only three overlapping mRNAs (5.4, 4.4, and 1.7 kb) lie completely within the smallest rescuing construct. The small sizes of the rescuing construct and transcripts suggests that tipE does not encode a standard sodium channel {alpha}-subunit with four homologous repeats. Sequencing these transcripts will elucidate the role of the tipE gene product in sodium channel functional regulation. 55 refs., 4 figs., 2 tabs.

  9. A 57-bp deletion in the ovine KAP6-1 gene affects wool fibre diameter.

    PubMed

    Zhou, H; Gong, H; Li, S; Luo, Y; Hickford, J G H

    2015-08-01

    High glycine-tyrosine keratin-associated proteins (HGT-KAPs) are predominantly present in the orthocortex of wool fibres. They vary in abundance in different wools and have been implicated in regulating wool fibre properties, but little is known about the functional roles of these proteins in the fibre matrix. In this study, we used polymerase chain reaction--single-strand conformational polymorphism (PCR-SSCP) analysis to screen for variation in a gene encoding the ovine HGT-KAP6-1 protein. We identified three gene variants (A, B and C). Variants A and B were similar to each other, with only three nucleotide differences occurring downstream of the coding sequence. However, variant C had a 57-bp deletion that would notionally result in a loss of 19 amino acids in the protein. The presence of C was found to be associated with an increase in mean fibre diameter (MFD), fibre diameter standard deviation (FDSD), coefficient of variation of fibre diameter (CVFD) and prickle factor (percentage of fibres over 30 microns; PF). Sheep of genotype BC produced wool of greater MFD, FDSD and PF than sheep of genotypes AA, AB and BB. The CVFD was greater in the BC sheep than the AB sheep. The results suggest that variation in ovine KRTAP6-1 affects wool fibre diameter-associated traits and that the 57-bp deletion in this gene would lead to coarser wool with greater FDSD, CVFD and PF. PMID:25782086

  10. Gene size differentially affects the binding of yeast transcription factor tau to two intragenic regions.

    PubMed Central

    Baker, R E; Camier, S; Sentenac, A; Hall, B D

    1987-01-01

    Yeast transcription factor tau (transcription factor IIIC) specifically interacts with tRNA genes, binding to both the A block and the B block elements of the internal promoter. To study the influence of A block-B block spacing, we analyzed the binding of purified tau protein to a series of internally deleted yeast tRNA(3Leu) genes with A and B blocks separated by 0 to 74 base pairs. Optimal binding occurred with genes having A block-B block distances of 30-60 base pairs; the relative helical orientation of the A and B blocks was unimportant. Results from DNase I "footprinting" and lambda exonuclease protection experiments were consistent with these findings and further revealed that changes in A block-B block distance primarily affect the ability of tau to interact with A block sequences; B block interactions are unaltered. When the A block-B block distance is 17 base pairs or less, tau interacts with a sequence located 15 base pairs upstream of the normal A block, and a new RNA initiation site is observed by in vitro transcription. We propose that the initial binding of tau to the B block activates transcription by enhancing its ability to bind at the A block, and that the A block interaction ultimately directs initiation by RNA polymerase III. Images PMID:2827154

  11. Mosaicism for the FMR1 gene influences adaptive skills development in fragile X-affected males

    SciTech Connect

    Cohen, I.L.; Sudhalter, V.; Nolin, S.L.

    1996-08-09

    Fragile X syndrome is one of the most common forms of inherited mental retardation, and the first of a new class of genetic disorders associated with expanded trinucleotide repeats. Previously, we found that about 41% of affected males are mosaic for this mutation in that some of their blood cells have an active fragile X gene and others do not. It has been hypothesized that these mosaic cases should show higher levels of functioning than those who have only the inactive full mutation gene, but previous studies have provided negative or equivocal results. In the present study, the cross-sectional development of communication, self-care, socialization, and motor skills was studied in 46 males with fragile X syndrome under age 20 years as a function of two variables: age and the presence or absence of mosaicism. The rate of adaptive skills development was 2-4 times as great in mosaic cases as in full mutation cases. There was also a trend for cases with autism to be more prevalent in the full-mutation group. These results have implications for prognosis, for the utility of gene or protein replacement therapies for this disorder, and for understanding the association between mental retardation, developmental disorders, and fragile X syndrome. 21 refs., 3 figs.

  12. A family with a dystrophin gene mutation specifically affecting dystrophin expression in the heart

    SciTech Connect

    Muntoni, F.; Davies, K.; Dubowitz, V.

    1994-09-01

    We recently described a family with X-linked dilated cardiomyopathy where a large deletion in the muscle promoter region of the dystrophin gene was associated with a severe dilated cardiomyopathy in absence of clinical skeletal muscle involvement. The deletion removed the entire muscle promoter region, the first muscle exon and part of intron 1. The brain and Purkinje cell promoters were not affected by the deletion. Despite the lack of both the muscle promoter and the first muscle exon, dystrophin was detected immunocytochemically in relative high levels in the skeletal muscle of the affected males. We have now found that both the brain and Purkinje cell promoters were transcribed at high levels in the skeletal muscle of these individuals. This phenomenon, that does not occur in normal skeletal muscle, indicates that these two isoforms, physiologically expressed mainly in the central nervous system, can be transcribed and be functionally active in skeletal muscle under specific circumstances. Contrary to what is observed in skeletal muscle, dystrophin was not detected in the heart of one affected male using immunocytochemistry and an entire panel of anti-dystrophin antibodies. This was most likely the cause for the pronounced cardiac fibrosis observed and eventually responsible for the severe cardiac involvement invariably seen in seven affected males. In conclusion, the mutation of the muscle promoter, first muscle exon and part of intron 1 specifically affected expression of dystrophin in the heart. We believe that this deletion removes sequences involved in regulation of dystrophin expression in the heart and are at the moment characterizing other families with X-linked cardiomyopathy secondary to a dystrophinopathy.

  13. Leptin Receptor Gene Polymorphism may Affect Subclinical Atherosclerosis in Patients with Acromegaly

    PubMed Central

    Turgut, Sebahat; Topsakal, Senay; Ata, Melek Tunç; Herek, Duygu; Akın, Fulya; Özkan, Şeyma; Turgut, Günfer

    2016-01-01

    Background: Acromegaly is associated with increased morbidity and mortality related to cardiovascular diseases. Leptin (LEP) and Leptin Receptor (LEPR) gene polymorphisms can increase cardiovascular risks. The aim of this study was to investigate association between the frequencies of LEP and LEPR gene polymorphisms and subclinical atherosclerosis in acromegalic patients. Methods: Forty-four acromegalic patients and 30 controls were admitted to study. The polymorphisms were identified by using polymerase chain reaction from peripheral blood samples. The levels of systolic and diastolic blood pressure, BMI, fasting plasma glucose, fasting insulin, IGF-I, GH, IGFBP3, leptin, triglyceride, carotid Intima Media Thickness (cIMT) and HDL and LDL cholesterol concentrations were evaluated. Results: There was statistically significant difference between the LEPR genotypes of acromegalic patients (GG 11.4%, GA 52.3%, and AA 36.4%) and controls (GG 33.3%, GA 50%, and AA 16.7%) although their LEP genotype distribution was similar. In addition, the prevalence of the LEPR gene G and A alleles was significantly different between patients and controls. No significant difference was found among the G(-2548) A leptin genotypes of groups in terms of the clinical parameters. cIMT significantly increased homozygote LEPR GG genotype group compared to AA subjects in patients. But the other parameters were not different between LEPR genotypes groups of patients and controls. Conclusion: It can be said that the LEPR gene polymorphism may affect cIMT in patients. The reason is that LEPR GG genotype carriers may have more risk than other genotypes in the development of subclinical atherosclerosis in acromegaly. PMID:27563428

  14. Variation and expression of KAP9.2 gene affecting cashmere trait in goats.

    PubMed

    Wang, X; Zhao, Z D; Xu, H R; Qu, L; Zhao, H B; Li, T; Zhang, Z Y

    2012-12-01

    Keratin-associated proteins 9.2 (KAP9.2) gene encodes one of the ultra high sulfur KAPs. Variation in KAP genes may affect the structure of KAPs and hence cashmere characteristics. In order to test the association between the polymorphism of KAP9.2 gene and cashmere trait, DNA sequencing was used to detect a novel C/T polymorphism of KAP9.2 gene from a genomic DNA pool. The mutation could be recognized by Pst I restriction enzyme. To Shanbei white cashmere goat, Inner Mongolia white cashmere goat and Guanzhong dairy goat, the genotypic frequencies of TT, TC and CC from total 1,236 animals were as follows: 0.047, 0.519 and 0.434; 0.180, 0.592 and 0.228; 0.431, 0.544 and 0.025. The allelic frequencies of T and C were 0.307 and 0.693; 0.476 and 0.524; 0.703 and 0.297, respectively, in breeds mentioned above. The frequency of C allele between cashmere and dairy goat was significant (P < 0.01). To provide support for the hypothesis that SNP 586 was responsible for KAP9.2 expression, quantitative real-time PCR analysis revealed that the expression level of KAP9.2 was reduced in individuals bearing genotype CC compared with TT individuals, suggesting that C was the nucleotide causing decreased expression of KAP9.2 or was in linkage disequilibrium with the causative SNP. The 586C/T SNP found in this study might control translation or stability of KAP9.2 mRNA, which would be beneficial for marker assistant selection in cashmere goat breeding. PMID:23053952

  15. Exon size affects competition between splicing and cleavage-polyadenylation in the immunoglobulin mu gene.

    PubMed

    Peterson, M L; Bryman, M B; Peiter, M; Cowan, C

    1994-01-01

    The alternative RNA processing of microseconds and microns mRNAs from a single primary transcript depends on competition between a cleavage-polyadenylation reaction to produce microseconds mRNA and a splicing reaction to produce microns mRNA. The ratio of microseconds to microns mRNA is regulated during B-cell maturation; relatively more spliced microns mRNA is made in B cells than in plasma cells. The balance between the efficiencies of splicing and cleavage-polyadenylation is critical to the regulation. The mu gene can be modified to either reduce or improve the efficiency of each reaction and thus alter the ratio of the two RNAs produced. However, as long as neither reaction is so strong that it totally dominates, expression of the modified mu genes is regulated in B cells and plasma cells. The current experiments reveal a relationship between the C mu 4 exon size and the microseconds/microns expression ratio. The shorter the distance between the C mu 4 5' splice site and the nearest upstream 3' splice site, the more spliced microns mRNA was produced. Conversely, when this exon was expanded, more microseconds mRNA was produced. Expression from these mu genes with altered exon sizes were regulated between B cells and plasma cells. Since RNA processing in the mu gene can be considered a competition between defining the C mu 4 exon as an internal exon (in microns mRNA) versus a terminal exon (in microseconds mRNA), exon size may affect the competition among factors interacting with this exon. PMID:7903422

  16. Multiple cholinergic nicotinic receptor genes affect nicotine dependence risk in African and European Americans

    PubMed Central

    Saccone, Nancy L.; Schwantes-An, Tae-Hwi; Wang, Jen C.; Grucza, Richard A.; Breslau, Naomi; Hatsukami, Dorothy; Johnson, Eric O.; Rice, John P.; Goate, Alison M.; Bierut, Laura J.

    2010-01-01

    Several independent studies show that the chromosome 15q25.1 region, which contains the CHRNA5-CHRNA3-CHRNB4 gene cluster, harbors variants strongly associated with nicotine dependence, other smoking behaviors, lung cancer, and chronic obstructive pulmonary disease. We investigated whether variants in other cholinergic nicotinic receptor subunit (CHRN) genes affect risk for nicotine dependence in a new sample of African-Americans (N = 710). We also analyzed this African-American sample together with a European-American sample (N=2062, 1608 of which have been previously studied), allowing for differing effects in the two populations. Cases are current nicotine-dependent smokers and controls are non-dependent smokers. Variants in or near CHRND-CHRNG, CHRNA7, and CHRNA10 show modest association with nicotine dependence risk in the African-American sample. In addition, CHRNA4, CHRNB3-CHRNA6, and CHRNB1 show association in at least one population. CHRNG and CHRNA4 harbor SNPs that have opposite directions of effect in the two populations. In each of the population samples, these loci substantially increase the trait variation explained, although no loci meet Bonferroni-corrected significance in the African-American sample alone. The trait variation explained by three key associated SNPs in CHRNA5-CHRNA3-CHRNB4 is 1.9% in European-Americans and also 1.9% in African-Americans; this increases to 4.5% in EAs and 7.3% in AAs when we add six variants representing associations at other CHRN genes. Multiple nicotinic receptor subunit genes outside of chromosome 15q25 are likely to be important in the biological processes and development of nicotine dependence, and some of these risks may be shared across diverse populations. PMID:20584212

  17. Bioaerosols from a Food Waste Composting Plant Affect Human Airway Epithelial Cell Remodeling Genes

    PubMed Central

    Chang, Ming-Wei; Lee, Chung-Ru; Hung, Hsueh-Fen; Teng, Kuo-Sheng; Huang, Hsin; Chuang, Chun-Yu

    2013-01-01

    The composting procedure in food waste plants generates airborne bioaerosols that have the potential to damage human airway epithelial cells. Persistent inflammation and repair responses induce airway remodeling and damage to the respiratory system. This study elucidated the expression changes of airway remodeling genes in human lung mucoepidermoid NCI-H292 cells exposed to bioaerosols from a composting plant. Different types of microorganisms were detectable in the composting plant, using the agar culture method. Real-time polymerase chain reaction was used to quantify the level of Aspergillus fumigatus and the profile of remodeling genes. The real-time PCR results indicated that the amount of A. fumigatus in the composting hall was less than 102 conidia. The endotoxins in the field bioaerosols were determined using a limulus amebocyte lysate test. The endotoxin levels depended on the type of particulate matter (PM), with coarse particles (2.5–10 μm) having higher endotoxin levels than did fine particles (0.5–2.5 μm). After exposure to the conditioned medium of field bioaerosol samples, NCI-H292 cells showed increased pro-inflammatory interleukin (IL)-6 release and activated epidermal growth factor receptor (EGFR), transforming growth factor (TGF)-β1 and cyclin-dependent kinase inhibitor 1 (p21WAF1/CIP1) gene expression, but not of matrix metallopeptidase (MMP)-9. Airborne endotoxin levels were higher inside the composting hall than they were in other areas, and they were associated with PM. This suggested that airborne bioaerosols in the composting plant contained endotoxins and microorganisms besides A. fumigatus that cause the inflammatory cytokine secretion and augment the expression of remodeling genes in NCI-H292 cells. It is thus necessary to monitor potentially hazardous materials from bioaerosols in food composting plants, which could affect the health of workers. PMID:24368426

  18. DISC1 gene and affective psychopathology: a combined structural and functional MRI study.

    PubMed

    Opmeer, Esther M; van Tol, Marie-José; Kortekaas, Rudie; van der Wee, Nic J A; Woudstra, Saskia; van Buchem, Mark A; Penninx, Brenda W; Veltman, Dick J; Aleman, André

    2015-02-01

    The gene Disrupted-In-Schizophrenia-1 (DISC1) has been indicated as a determinant of psychopathology, including affective disorders, and shown to influence prefrontal cortex (PFC) and hippocampus functioning, regions of major interest for affective disorders. We aimed to investigate whether DISC1 differentially modulates brain function during executive and memory processing, and morphology in regions relevant for depression and anxiety disorders (affective disorders). 128 participants, with (n = 103) and without (controls; n = 25) affective disorders underwent genotyping for Ser704Cys (with Cys-allele considered as risk-allele) and structural and functional (f) Magnetic Resonance Imaging (MRI) during visuospatial planning and emotional episodic memory tasks. For both voxel-based morphometry and fMRI analyses, we investigated the effect of genotype in controls and explored genotypeXdiagnosis interactions. Results are reported at p < 0.05 FWE small volume corrected. In controls, Cys-carriers showed smaller bilateral (para)hippocampal volumes compared with Ser-homozygotes, and lower activation in the anterior cingulate cortex (ACC) and dorsolateral PFC during visuospatial planning. In anxiety patients, Cys-carriers showed larger (para)hippocampal volumes and more ACC activation during visuospatial planning. In depressive patients, no effect of genotype was observed and overall, no effect of genotype on episodic memory processing was detected. We demonstrated that Ser704Cys-genotype influences (para)hippocampal structure and functioning the dorsal PFC during executive planning, most prominently in unaffected controls. Results suggest that presence of psychopathology moderates Ser704Cys effects. PMID:25533973

  19. The exhausted horse syndrome.

    PubMed

    Foreman, J H

    1998-04-01

    Exhaustion occurs in most equestrian sports, but it is more frequent in events that require sustained endurance work such as endurance racing, three-day eventing, trial riding, and hunting. Exhaustion is also more likely when an unfit, unacclimatized, or unsound horse is exercised. Mechanisms that contribute to exhaustion include heat retention, fluid and electrolyte loss, acid-base imbalance, and intramuscular glycogen depletion. Clinical signs include elevated temperature, pulse, and respiratory rate; depression; anorexia; unwillingness to continue to exercise; dehydration; weakness; stiffness; hypovolemic shock; exertional myopathy; synchronous diaphragmatic flutter; atrial fibrillation; diarrhea; colic; and laminitis. Treatment includes stopping exercise; rapid cooling; rapid large volume intravenous or oral fluid administration; and nonsteroidal anti-inflammatory drug administration. PMID:9561696

  20. A specific endoribonuclease, RNase P, affects gene expression of polycistronic operon mRNAs

    PubMed Central

    Li, Yong; Altman, Sidney

    2003-01-01

    The rnpA mutation, A49, in Escherichia coli reduces the level of RNase P at 43°C because of a temperature-sensitive mutation in C5 protein, the protein subunit of the enzyme. Microarray analysis reveals the expression of several noncoding intergenic regions that are increased at 43°C compared with 30°C. These regions are substrates for RNase P, and they are cleaved less efficiently than, for example, tRNA precursors. An analysis of the tna, secG, rbs, and his operons, all of which contain RNase P cleavage sites, indicates that RNase P affects gene expression for regions downstream of its cleavage sites. PMID:14585931

  1. A genome-wide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling

    PubMed Central

    Fröhlich, Florian; Moreira, Karen; Aguilar, Pablo S.; Hubner, Nina C.; Mann, Matthias; Walter, Peter

    2009-01-01

    The protein and lipid composition of eukaryotic plasma membranes is highly dynamic and regulated according to need. The sphingolipid-responsive Pkh kinases are candidates for mediating parts of this regulation, as they affect a diverse set of plasma membrane functions, such as cortical actin patch organization, efficient endocytosis, and eisosome assembly. Eisosomes are large protein complexes underlying the plasma membrane and help to sort a group of membrane proteins into distinct domains. In this study, we identify Nce102 in a genome-wide screen for genes involved in eisosome organization and Pkh kinase signaling. Nce102 accumulates in membrane domains at eisosomes where Pkh kinases also localize. The relative abundance of Nce102 in these domains compared with the rest of the plasma membrane is dynamically regulated by sphingolipids. Furthermore, Nce102 inhibits Pkh kinase signaling and is required for plasma membrane organization. Therefore, Nce102 might act as a sensor of sphingolipids that regulates plasma membrane function. PMID:19564405

  2. acj6: a gene affecting olfactory physiology and behavior in Drosophila.

    PubMed Central

    Ayer, R K; Carlson, J

    1991-01-01

    Mutations affecting olfactory behavior provide material for use in molecular studies of olfaction in Drosophila melanogaster. Using the electroantennogram (EAG), a measure of antennal physiology, we have found an adult antennal defect in the olfactory behavioral mutant abnormal chemosensory jump 6 (acj6). The acj6 EAG defect was mapped to a single locus and the same mutation was found to be responsible for both reduction in EAG amplitude and diminished behavioral response, as if reduced antennal responsiveness to odorant is responsible for abnormal chemosensory behavior in the mutant. acj6 larval olfactory behavior is also abnormal; the mutation seems to alter cellular processes necessary for olfaction at both developmental stages. The acj6 mutation exhibits specificity in that visual system function appears normal in larvae and adults. These experiments provide evidence that the acj6 gene encodes a product required for olfactory signal transduction. Images PMID:1905022

  3. Hyperventilation and exhaustion syndrome.

    PubMed

    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

    2014-12-01

    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification - F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed questionnaires about exhaustion, mental state, sleep disturbance, pain and quality of life. The evaluation was repeated 4 weeks later, after half of the patients and healthy subjects had engaged in a therapy method called 'Grounding', a physical exercise inspired by African dance. The patients reported significantly higher levels of hyperventilation as compared to the healthy subjects. All patients' average score on NQ was 26.57 ± 10.98, while that of the healthy subjects was 15.14 ± 7.89 (t = -3.48, df = 42, p < 0.001). The NQ scores correlated strongly with two measures of exhaustion (Karolinska Exhaustion Scale KES r = 0.772, p < 0.01; Shirom Melamed Burnout Measure SMBM r = 0.565, p < 0.01), mental status [Hospital Anxiety and Depression Score (HADS) depression r = 0.414, p < 0.01; HADS anxiety r = 0.627, p < 0.01], sleep disturbances (r = -0.514, p < 0.01), pain (r = -.370, p < 0.05) and poor well-being (Medical Outcomes Survey Short Form 36 questionnaire- SR Health r = -0.529, p < 0.05). In the logistic regression analysis, the variance in the scores from NQ were explained to a high degree (R(2) = 0.752) by scores in KES and HADS. The brief Grounding training contributed to a near significant reduction in hyperventilation (F = 2.521, p < 0.124) and to significant reductions in exhaustion scores and scores of depression and anxiety. The conclusion is that hyperventilation is common in exhaustion syndrome patients and that it can be reduced by systematic physical therapy

  4. Expression Variants of the Lipogenic AGPAT6 Gene Affect Diverse Milk Composition Phenotypes in Bos taurus

    PubMed Central

    Littlejohn, Mathew D.; Tiplady, Kathryn; Lopdell, Thomas; Law, Tania A.; Scott, Andrew; Harland, Chad; Sherlock, Ric; Henty, Kristen; Obolonkin, Vlad; Lehnert, Klaus; MacGibbon, Alistair; Spelman, Richard J.; Davis, Stephen R.; Snell, Russell G.

    2014-01-01

    Milk is composed of a complex mixture of lipids, proteins, carbohydrates and various vitamins and minerals as a source of nutrition for young mammals. The composition of milk varies between individuals, with lipid composition in particular being highly heritable. Recent reports have highlighted a region of bovine chromosome 27 harbouring variants affecting milk fat percentage and fatty acid content. We aimed to further investigate this locus in two independent cattle populations, consisting of a Holstein-Friesian x Jersey crossbreed pedigree of 711 F2 cows, and a collection of 32,530 mixed ancestry Bos taurus cows. Bayesian genome-wide association mapping using markers imputed from the Illumina BovineHD chip revealed a large quantitative trait locus (QTL) for milk fat percentage on chromosome 27, present in both populations. We also investigated a range of other milk composition phenotypes, and report additional associations at this locus for fat yield, protein percentage and yield, lactose percentage and yield, milk volume, and the proportions of numerous milk fatty acids. We then used mammary RNA sequence data from 212 lactating cows to assess the transcript abundance of genes located in the milk fat percentage QTL interval. This analysis revealed a strong eQTL for AGPAT6, demonstrating that high milk fat percentage genotype is also additively associated with increased expression of the AGPAT6 gene. Finally, we used whole genome sequence data from six F1 sires to target a panel of novel AGPAT6 locus variants for genotyping in the F2 crossbreed population. Association analysis of 58 of these variants revealed highly significant association for polymorphisms mapping to the 5′UTR exons and intron 1 of AGPAT6. Taken together, these data suggest that variants affecting the expression of AGPAT6 are causally involved in differential milk fat synthesis, with pleiotropic consequences for a diverse range of other milk components. PMID:24465687

  5. Variable Gene Dispersal Conditions and Spatial Deforestation Patterns Can Interact to Affect Tropical Tree Conservation Outcomes

    PubMed Central

    Kashimshetty, Yamini; Pelikan, Stephan; Rogstad, Steven H.

    2015-01-01

    Tropical lowland rain forest (TLRF) biodiversity is under threat from anthropogenic factors including deforestation which creates forest fragments of different sizes that can further undergo various internal patterns of logging. Such interventions can modify previous equilibrium abundance and spatial distribution patterns of offspring recruitment and/or pollen dispersal. Little is known about how these aspects of deforestation and fragmentation might synergistically affect TLRF tree recovery demographics and population genetics in newly formed forest fragments. To investigate these TLRF anthropogenic disturbance processes we used the computer program NEWGARDEN (NG), which models spatially-explicit, individual-based plant populations, to simulate 10% deforestation in six different spatial logging patterns for the plant functional type of a long-lived TLRF canopy tree species. Further, each logging pattern was analyzed under nine varying patterns of offspring versus pollen dispersal distances that could have arisen post-fragmentation. Results indicated that gene dispersal condition (especially via offspring) had a greater effect on population growth and genetic diversity retention (explaining 98.5% and 88.8% of the variance respectively) than spatial logging pattern (0.2% and 4.7% respectively), with ‘Near’ distance dispersal maximizing population growth and genetic diversity relative to distant dispersal. Within logged regions of the fragment, deforestation patterns closer to fragment borders more often exhibited lower population recovery rates and founding genetic diversity retention relative to more centrally located logging. These results suggest newly isolated fragments have populations that are more sensitive to the way in which their offspring and pollen dispersers are affected than the spatial pattern in which subsequent logging occurs, and that large variation in the recovery rates of different TLRF tree species attributable to altered gene dispersal

  6. Diversity of the Genes Implicated in Algerian Patients Affected by Usher Syndrome.

    PubMed

    Abdi, Samia; Bahloul, Amel; Behlouli, Asma; Hardelin, Jean-Pierre; Makrelouf, Mohamed; Boudjelida, Kamel; Louha, Malek; Cheknene, Ahmed; Belouni, Rachid; Rous, Yahia; Merad, Zahida; Selmane, Djamel; Hasbelaoui, Mokhtar; Bonnet, Crystel; Zenati, Akila; Petit, Christine

    2016-01-01

    Usher syndrome (USH) is an autosomal recessive disorder characterized by a dual sensory impairment affecting hearing and vision. USH is clinically and genetically heterogeneous. Ten different causal genes have been reported. We studied the molecular bases of the disease in 18 unrelated Algerian patients by targeted-exome sequencing, and identified the causal biallelic mutations in all of them: 16 patients carried the mutations at the homozygous state and 2 at the compound heterozygous state. Nine of the 17 different mutations detected in MYO7A (1 of 5 mutations), CDH23 (4 of 7 mutations), PCDH15 (1 mutation), USH1C (1 mutation), USH1G (1 mutation), and USH2A (1 of 2 mutations), had not been previously reported. The deleterious consequences of a missense mutation of CDH23 (p.Asp1501Asn) and the in-frame single codon deletion in USH1G (p.Ala397del) on the corresponding proteins were predicted from the solved 3D-structures of extracellular cadherin (EC) domains of cadherin-23 and the sterile alpha motif (SAM) domain of USH1G/sans, respectively. In addition, we were able to show that the USH1G mutation is likely to affect the binding interface between the SAM domain and USH1C/harmonin. This should spur the use of 3D-structures, not only of isolated protein domains, but also of protein-protein interaction interfaces, to predict the functional impact of mutations detected in the USH genes. PMID:27583663

  7. Exhaust Speciation Studies for Aftertreatment Technology Development

    SciTech Connect

    Graves, Ron

    2000-08-20

    Lean NOx reduction shown to be strongly affected by HC reductant composition. Possibility exists to tailor exhaust HC composition by manipulating HC post-injection process. Why is this relevant if lean NOx catalysis ''isn't going to work'' ? Lean NOx (esp. with post-injection of HC) offers unmatched ''passiveness'' NOx adsorber technology will require reductant - potentially introduced the same way

  8. Affected Kindred Analysis of Human X Chromosome Exomes to Identify Novel X-Linked Intellectual Disability Genes

    PubMed Central

    Niranjan, Tejasvi S.; Skinner, Cindy; May, Melanie; Turner, Tychele; Rose, Rebecca; Stevenson, Roger; Schwartz, Charles E.; Wang, Tao

    2015-01-01

    X-linked Intellectual Disability (XLID) is a group of genetically heterogeneous disorders caused by mutations in genes on the X chromosome. Deleterious mutations in ~10% of X chromosome genes are implicated in causing XLID disorders in ~50% of known and suspected XLID families. The remaining XLID genes are expected to be rare and even private to individual families. To systematically identify these XLID genes, we sequenced the X chromosome exome (X-exome) in 56 well-established XLID families (a single affected male from 30 families and two affected males from 26 families) using an Agilent SureSelect X-exome kit and the Illumina HiSeq 2000 platform. To enrich for disease-causing mutations, we first utilized variant filters based on dbSNP, the male-restricted portions of the 1000 Genomes Project, or the Exome Variant Server datasets. However, these databases present limitations as automatic filters for enrichment of XLID genes. We therefore developed and optimized a strategy that uses a cohort of affected male kindred pairs and an additional small cohort of affected unrelated males to enrich for potentially pathological variants and to remove neutral variants. This strategy, which we refer to as Affected Kindred/Cross-Cohort Analysis, achieves a substantial enrichment for potentially pathological variants in known XLID genes compared to variant filters from public reference databases, and it has identified novel XLID candidate genes. We conclude that Affected Kindred/Cross-Cohort Analysis can effectively enrich for disease-causing genes in rare, Mendelian disorders, and that public reference databases can be used effectively, but cautiously, as automatic filters for X-linked disorders. PMID:25679214

  9. Plasticity and epistasis strongly affect bacterial fitness after losing multiple metabolic genes.

    PubMed

    D'Souza, Glen; Waschina, Silvio; Kaleta, Christoph; Kost, Christian

    2015-05-01

    Many bacterial lineages lack seemingly essential metabolic genes. Previous work suggested selective benefits could drive the loss of biosynthetic functions from bacterial genomes when the corresponding metabolites are sufficiently available in the environment. However, the factors that govern this "genome streamlining" remain poorly understood. Here we determine the effect of plasticity and epistasis on the fitness of Escherichia coli genotypes from whose genome biosynthetic genes for one, two, or three different amino acids have been deleted. Competitive fitness experiments between auxotrophic mutants and prototrophic wild-type cells in one of two carbon environments revealed that plasticity and epistasis strongly affected the mutants' fitness individually and interactively. Positive and negative epistatic interactions were prevalent, yet on average cancelled each other out. Moreover, epistasis correlated negatively with the expected effects of combined auxotrophy-causing mutations, thus producing a pattern of diminishing returns. Moreover, computationally analyzing 1,432 eubacterial metabolic networks revealed that most pairs of auxotrophies co-occurred significantly more often than expected by chance, suggesting epistatic interactions and/or environmental factors favored these combinations. Our results demonstrate that both the genetic background and environmental conditions determine the adaptive value of a loss-of-biochemical-function mutation and that fitness gains decelerate, as more biochemical functions are lost. PMID:25765095

  10. Niemann-Pick C1 Affects the Gene Delivery Efficacy of Degradable Polymeric Nanoparticles

    PubMed Central

    2015-01-01

    Despite intensive research effort, the rational design of improved nanoparticulate drug carriers remains challenging, in part due to a limited understanding of the determinants of nanoparticle entry and transport in target cells. Recent studies have shown that Niemann-Pick C1 (NPC1), the lysosome membrane protein that mediates trafficking of cholesterol in cells, is involved in the endosomal escape and subsequent infection caused by filoviruses, and that its absence promotes the retention and efficacy of lipid nanoparticles encapsulating siRNA. Here, we report that NPC1 deficiency results in dramatic reduction in internalization and transfection efficiency mediated by degradable cationic gene delivery polymers, poly(β-amino ester)s (PBAEs). PBAEs utilized cholesterol and dynamin-dependent endocytosis pathways, and these were found to be heavily compromised in NPC1-deficient cells. In contrast, the absence of NPC1 had minor effects on DNA uptake mediated by polyethylenimine or Lipofectamine 2000. Strikingly, stable overexpression of human NPC1 in chinese hamster ovary cells was associated with enhanced gene uptake (3-fold) and transfection (10-fold) by PBAEs. These findings reveal a role of NPC1 in the regulation of endocytic mechanisms affecting nanoparticle trafficking. We hypothesize that in-depth understanding sites of entry and endosomal escape may lead to highly efficient nanotechnologies for drug delivery. PMID:25010491

  11. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    PubMed

    Medina, Izarne; Casal, José; Fabre, Caroline C G

    2015-01-01

    Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations. PMID:26519517

  12. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  13. Do circadian genes and ambient temperature affect substrate-borne signalling during Drosophila courtship?

    PubMed Central

    Medina, Izarne; Casal, José; Fabre, Caroline C. G.

    2015-01-01

    ABSTRACT Courtship vibratory signals can be air-borne or substrate-borne. They convey distinct and species-specific information from one individual to its prospective partner. Here, we study the substrate-borne vibratory signals generated by the abdominal quivers of the Drosophila male during courtship; these vibrations travel through the ground towards courted females and coincide with female immobility. It is not known which physical parameters of the vibrations encode the information that is received by the females and induces them to pause. We examined the intervals between each vibratory pulse, a feature that was reported to carry information for animal communication. We were unable to find evidence of periodic variations in the lengths of these intervals, as has been reported for fly acoustical signals. Because it was suggested that the genes involved in the circadian clock may also regulate shorter rhythms, we search for effects of period on the interval lengths. Males that are mutant for the period gene produced vibrations with significantly altered interpulse intervals; also, treating wild type males with constant light results in similar alterations to the interpulse intervals. Our results suggest that both the clock and light/dark cycles have input into the interpulse intervals of these vibrations. We wondered if we could alter the interpulse intervals by other means, and found that ambient temperature also had a strong effect. However, behavioural analysis suggests that only extreme ambient temperatures can affect the strong correlation between female immobility and substrate-borne vibrations. PMID:26519517

  14. The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.

    PubMed

    Rimmerman, Neta; Juknat, Ana; Kozela, Ewa; Levy, Rivka; Bradshaw, Heather B; Vogel, Zvi

    2011-08-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed. PMID:21533611

  15. Mutations in the white gene of Drosophila melanogaster affecting ABC transporters that determine eye colouration.

    PubMed

    Mackenzie, S M; Brooker, M R; Gill, T R; Cox, G B; Howells, A J; Ewart, G D

    1999-07-15

    The white, brown and scarlet genes of Drosophila melanogaster encode proteins which transport guanine or tryptophan (precursors of the red and brown eye colour pigments) and belong to the ABC transporter superfamily. Current models envisage that the white and brown gene products interact to form a guanine specific transporter, while white and scarlet gene products interact to form a tryptophan transporter. In this study, we report the nucleotide sequence of the coding regions of five white alleles isolated from flies with partially pigmented eyes. In all cases, single amino acid changes were identified, highlighting residues with roles in structure and/or function of the transporters. Mutations in w(cf) (G589E) and w(sat) (F590G) occur at the extracellular end of predicted transmembrane helix 5 and correlate with a major decrease in red pigments in the eyes, while brown pigments are near wild-type levels. Therefore, those residues have a more significant role in the guanine transporter than the tryptophan transporter. Mutations identified in w(crr) (H298N) and w(101) (G243S) affect amino acids which are highly conserved among the ABC transporter superfamily within the nucleotide binding domain. Both cause substantial and similar decreases of red and brown pigments indicating that both tryptophan and guanine transport are impaired. The mutation identified in w(Et87) alters an amino acid within an intracellular loop between transmembrane helices 2 and 3 of the predicted structure. Red and brown pigments are reduced to very low levels by this mutation indicating this loop region is important for the function of both guanine and tryptophan transporters. PMID:10407069

  16. Advanced Glycation End-Products affect transcription factors regulating insulin gene expression

    SciTech Connect

    Puddu, A.; Storace, D.; Odetti, P.; Viviani, G.L.

    2010-04-23

    Advanced Glycation End-Products (AGEs) are generated by the covalent interaction of reducing sugars with proteins, lipids or nucleic acids. AGEs are implicated in diabetic complications and pancreatic {beta}-cell dysfunction. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T15 to high concentrations of AGEs leads to a significant decrease of insulin secretion and content. Insulin gene transcription is positively regulated by the beta cell specific transcription factor PDX-1 (Pancreatic and Duodenal Homeobox-1). On the contrary, the forkhead transcription factor FoxO1 inhibits PDX-1 gene transcription. Activity of FoxO1 is regulated by post-translational modifications: phosphorylation deactivates FoxO1, and acetylation prevents FoxO1 ubiquitination. In this work we investigated whether AGEs affect expression and subcellular localization of PDX-1 and FoxO1. HIT-T15 cells were cultured for 5 days in presence of AGEs. Cells were then lysed and processed for subcellular fractionation. We determined intracellular insulin content, then we assessed the expression and subcellular localization of PDX-1, FoxO1, phosphoFoxO1 and acetylFoxO1. As expected intracellular insulin content was lower in HIT-T15 cells cultured with AGEs. The results showed that AGEs decreased expression and nuclear localization of PDX-1, reduced phosphorylation of FoxO1, and increased expression and acetylation of FoxO1. These results suggest that AGEs decrease insulin content unbalancing transcription factors regulating insulin gene expression.

  17. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens.

    PubMed

    Ederli, Luisa; Dawe, Adam; Pasqualini, Stefania; Quaglia, Mara; Xiong, Liming; Gehring, Chris

    2015-01-01

    We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens. PMID:25750645

  18. cor Gene Expression in Barley Mutants Affected in Chloroplast Development and Photosynthetic Electron Transport1

    PubMed Central

    Dal Bosco, Cristina; Busconi, Marco; Govoni, Chiara; Baldi, Paolo; Stanca, A. Michele; Crosatti, Cristina; Bassi, Roberto; Cattivelli, Luigi

    2003-01-01

    The expression of several barley (Hordeum vulgare) cold-regulated (cor) genes during cold acclimation was blocked in the albino mutant an, implying a chloroplast control on mRNAs accumulation. By using albino and xantha mutants ordered according to the step in chloroplast biogenesis affected, we show that the cold-dependent accumulation of cor14b, tmc-ap3, and blt14 mRNAs depends on plastid developmental stage. Plants acquire the ability to fully express cor genes only after the development of primary thylakoid membranes in their chloroplasts. To investigate the chloroplast-dependent mechanism involved in cor gene expression, the activity of a 643-bp cor14b promoter fragment was assayed in wild-type and albino mutant an leaf explants using transient β-glucuronidase reporter expression assay. Deletion analysis identified a 27-bp region between nucleotides −274 and −247 with respect to the transcription start point, encompassing a boundary of some element that contributes to the cold-induced expression of cor14b. However, cor14b promoter was equally active in green and in albino an leaves, suggesting that chloroplast controls cor14b expression by posttranscriptional mechanisms. Barley mutants lacking either photosystem I or II reaction center complexes were then used to evaluate the effects of redox state of electron transport chain components on COR14b accumulation. In the mutants analyzed, the amount of COR14b protein, but not the steady-state level of the corresponding mRNA, was dependent on the redox state of the electron transport chain. Treatments of the vir-zb63 mutant with electron transport chain inhibitors showed that oxidized plastoquinone promotes COR14b accumulation, thus suggesting a molecular relationship between plastoquinone/plastoquinol pool and COR14b. PMID:12586903

  19. Lithium differentially affects clock gene expression in serum-shocked NIH-3T3 cells.

    PubMed

    Osland, Teresa M; Fernø, Johan; Håvik, Bjarte; Heuch, Ivar; Ruoff, Peter; Lærum, Ole Didrik; Steen, Vidar M

    2011-07-01

    Bipolar disorder has been associated with disturbances in circadian rhythms. Lithium is frequently used in the long-term treatment of bipolar disorder, and has been shown to prolong such rhythms in animals and humans. To examine whether lithium affects the expression of genes regulating the circadian clock, cultured NIH-3T3 cells were synchronized by serum-shocking, and the relative expression of the clock genes Period1 (Per1), Period2 (Per2), Period3 (Per3), Cryptochrome1 (Cry1), Cryptochrome2 (Cry2), Brain and muscle aryl hydrocarbon nuclear translocator-like 1 (Bmal1), Circadian locomotor output cycles kaput (Clock), Rev-Erb-α (Nr1d1), RAR-related orphan receptor α (Ror-α), Glycogen synthase kinase-3β (Gsk-3β), Casein kinase 1-ε (CK1-ε; Csnk1ε), E4 binding protein 4 (E4BP4; Nfil-3) and albumin D-binding protein (Dbp) was examined for three consecutive days in the presence of lithium (20 mM) or vehicle (20 mM NaCl). We found that lithium significantly increased the expression of Per2 and Cry1, whereas Per3, Cry2, Bmal1, E4BP4 and Rev-Erb-α expression was reduced. We also found that lithium prolonged the period of Per2. Taken together, these effects on clock gene expression may be relevant for the effects of lithium on biological rhythms and could also give new leads to further explore its mood-stabilizing actions in the treatment of bipolar disorder. PMID:20837565

  20. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens

    PubMed Central

    Ederli, Luisa; Dawe, Adam; Pasqualini, Stefania; Quaglia, Mara; Xiong, Liming; Gehring, Chris

    2015-01-01

    We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens. PMID:25750645

  1. Oxidant generation and toxicity enhancement of aged-diesel exhaust

    NASA Astrophysics Data System (ADS)

    Li, Qianfeng; Wyatt, Anna; Kamens, Richard M.

    Diesel exhaust related airborne Particulate Matter (PM) has been linked to a myriad of adverse health outcomes, ranging from cancer to cardiopulmonary disease. The underlying toxicological mechanisms are of great scientific interest. A hypothesis under investigation is that many of the adverse health effects may derive from oxidative stress, initiated by the formation of reactive oxygen species (ROS) within affected cells. In this study, the main objective was to determine whether aged-diesel exhaust PM has a higher oxidant generation and toxicity than fresh diesel exhaust PM. The diesel exhaust PM was generated from a 1980 Mercedes-Benz model 300SD, and a dual 270 m 3 Teflon film chamber was utilized to generate two test atmospheres. One side of the chamber is used to produce ozone-diesel exhaust PM system, and another side of the chamber was used to produce diesel exhaust PM only system. A newly optimized dithiothreitol (DTT) method was used to assess their oxidant generation and toxicity. The results of this study showed: (1) both fresh and aged-diesel exhaust PM had high oxidant generation and toxicity; (2) ozone-diesel exhaust PM had a higher toxicity response than diesel exhaust PM only; (3) the diesel exhaust PM toxicity increased with time; (4) the optimized DTT method could be used as a good quantitative chemical assay for oxidant generation and toxicity measurement.

  2. Misexpression of BRE gene in the developing chick neural tube affects neurulation and somitogenesis

    PubMed Central

    Wang, Guang; Li, Yan; Wang, Xiao-Yu; Chuai, Manli; Yeuk-Hon Chan, John; Lei, Jian; Münsterberg, Andrea; Lee, Kenneth Ka Ho; Yang, Xuesong

    2015-01-01

    The brain and reproductive expression (BRE) gene is expressed in numerous adult tissues and especially in the nervous and reproductive systems. However, little is known about BRE expression in the developing embryo or about its role in embryonic development. In this study, we used in situ hybridization to reveal the spatiotemporal expression pattern for BRE in chick embryo during development. To determine the importance of BRE in neurogenesis, we overexpressed BRE and also silenced BRE expression specifically in the neural tube. We established that overexpressing BRE in the neural tube indirectly accelerated Pax7+ somite development and directly increased HNK-1+ neural crest cell (NCC) migration and TuJ-1+ neurite outgrowth. These altered morphogenetic processes were associated with changes in the cell cycle of NCCs and neural tube cells. The inverse effect was obtained when BRE expression was silenced in the neural tube. We also determined that BMP4 and Shh expression in the neural tube was affected by misexpression of BRE. This provides a possible mechanism for how altering BRE expression was able to affect somitogenesis, neurogenesis, and NCC migration. In summary, our results demonstrate that BRE plays an important role in regulating neurogenesis and indirectly somite differentiation during early chick embryo development. PMID:25568339

  3. Mutations in the clk-1 gene of Caenorhabditis elegans affect developmental and behavioral timing

    SciTech Connect

    Wong, A.; Boutis, P.; Hekimi, S.

    1995-03-01

    We have identified three allelic, maternal-effect mutations that affect developmental and behavioral timing in Caenorhabditis elegans. They result in a mean lengthening of embryonic and postembryonic development, the cell cycle period and life span, as well as the periods of the defecation, swimming and pumping cycles. These mutants also display a number of additional phenotypes related to timing. For example, the variability in the length of embryonic development is several times larger in the mutants than in the wild type, resulting in the occasional production of mutant embryos developing more rapidly than the most rapidly developing wild-type embryos. In addition, the duration of embryonic development of the mutants, but not of the wild type, depends on the temperature at which their parents were raised. Finally, individual variations in the severity of distinct mutant phenotypes are correlated in a counterintuitive way. For example, the animals with the shortest embryonic development have the longest defecation cycle and those with the longest embryonic development have the shortest defecation cycle. Most of the features affected by these mutations are believed to be controlled by biological clocks, and we therefore call the gene defined by these mutations clk-1, for {open_quotes}abnormal function of biological clocks.{close_quotes} 52 refs., 5 figs., 4 tabs.

  4. Disruption of ROOT PHOTOTROPISM2 gene does not affect phototropin-mediated stomatal opening.

    PubMed

    Tsutsumi, Toshifumi; Takemiya, Atsushi; Harada, Akiko; Shimazaki, Ken-ichiro

    2013-03-01

    Phototropins (phot1 and phot2), blue light-receptor protein kinases in plants, mediate stomatal opening by activating the plasma membrane H(+)-ATPase in guard cells, but the signaling from phototropins to the H(+)-ATPase remains unknown. A recent study concluded that ROOT PHOTOTROPISM2 (RPT2) is involved in the primary step of this process. However, this conclusion is based solely on the determination of stomatal apertures in the epidermis. We investigated the role of RPT2 in blue light-dependent stomatal opening in more detail. We generated double mutants of rpt2 and phototropins (phot1 or phot2) in the Col ecotype background and obtained the typical phenotypes of rpt2 mutants, including the impairment in phototropism. In contrast, neither blue light-dependent H(+) pumping nor blue light-dependent H(+)-ATPase activation in guard cells was affected in the rpt2 mutants of rpt2, phot1 rpt2, and phot2 rpt2. Stomata in these rpt2 mutants opened widely by blue light in both epidermal peels and intact leaves, and no difference in the responses was found between the wild type and the mutants. From these results, we concluded that RPT2 gene disruption does not affect blue light-dependent stomatal opening. PMID:23352406

  5. Analysis of Saccharomyces cerevisiae genome for the distributions of stress-response elements potentially affecting gene expression by transcriptional interference.

    PubMed

    Liu, Yunkai; Ye, Sujuan; Erkine, Alexandre M

    2009-01-01

    Cellular stress responses are characterized by coordinated transcriptional induction of genes encoding a group of conserved proteins known as molecular chaperones, most of which are also known as heat shock proteins (HSPs). In S. cerevisiae, transcriptional responses to stress are mediated via two trans-regulatory activators: heat shock transcription factors (HSFs) that bind to heat shock elements (HSEs), and the Msn2 and Msn4 transcription factors that bind to stress response elements (STREs). Recent studies in S. cerevisiae demonstrated that a significant portion of the non-coding region in the genome is transcribed and this intergenic transcription could regulate the transcription of adjacent genes by transcription interference. The goal of this study was to analyze the genomic distribution of HSF and Msn2/4 binding sites and to study the potential for transcription interference regulated by stress response systems. Our genome-wide analysis revealed that 297 genes have STREs in their promoter region, whereas 310 genes contained HSEs. Twenty-five genes had both HSEs and STREs in their promoters. The first set of genes is potentially regulated by the Msn2/Msn4/STRE interaction. For the second set of genes, regulation by heat shock could be mediated through HSF/HSE regulatory mechanisms. The overlap between these groups suggests a co-regulation by the two pathways. Our study yielded 239 candidate genes, whose regulation could potentially be affected by heat-shock via transcription interference directed both from upstream and downstream areas relative to the native promoters. In addition we have categorized 924 genes containing HSE and/or STRE elements within the Open Reading Frames (ORFs), which may also affect normal transcription. Our study revealed a widespread possibility for the regulation of genes via transcriptional interference initiated by stress response. We provided a categorization of genes potentially affected at the transcriptional level by known

  6. Virus Multiplicity of Infection Affects Type I Interferon Subtype Induction Profiles and Interferon-Stimulated Genes

    PubMed Central

    Zaritsky, Luna A.; Bedsaul, Jacquelyn R.

    2015-01-01

    ABSTRACT Type I interferons (IFNs) are induced upon viral infection and important mediators of innate immunity. While there is 1 beta interferon (IFN-β) protein, there are 12 different IFN-α subtypes. It has been reported extensively that different viruses induce distinct patterns of IFN subtypes, but it has not been previously shown how the viral multiplicity of infection (MOI) can affect IFN induction. In this study, we discovered the novel finding that human U937 cells infected with 2 different concentrations of Sendai virus (SeV) induce 2 distinct type I IFN subtype profiles. Cells infected at the lower MOI induced more subtypes than cells infected at the higher MOI. We found that this was due to the extent of signaling through the IFN receptor (IFNAR). The cells infected at the lower viral MOI induced the IFNAR2-dependent IFN-α subtypes 4, 6, 7, 10, and 17, which were not induced in cells infected at higher virus concentrations. IFN-β and IFN-α1, -2, and -8 were induced in an IFNAR-independent manner in cells infected at both virus concentrations. IFN-α5, -14, -16, and -21 were induced in an IFNAR-dependent manner in cells infected at lower virus concentrations and in an IFNAR-independent manner in cells infected at higher virus concentrations. These differences in IFN subtype profiles in the 2 virus concentrations also resulted in distinct interferon-stimulated gene induction. These results present the novel finding that different viral MOIs differentially activate JAK/STAT signaling through the IFNAR, which greatly affects the profile of IFN subtypes that are induced. IMPORTANCE Type I IFNs are pleiotropic cytokines that are instrumental in combating viral diseases. Understanding how the individual subtypes are induced is important in developing strategies to block viral replication. Many studies have reported that different viruses induce distinct type I IFN subtype profiles due to differences in the way viruses are sensed in different cell types

  7. Exhaust bypass flow control for exhaust heat recovery

    SciTech Connect

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  8. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  9. Hybrid Exhaust Component

    NASA Technical Reports Server (NTRS)

    Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)

    2015-01-01

    An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.

  10. Genes of the most conserved WOX clade in plants affect root and flower development in Arabidopsis

    PubMed Central

    2008-01-01

    Background The Wuschel related homeobox (WOX) family proteins are key regulators implicated in the determination of cell fate in plants by preventing cell differentiation. A recent WOX phylogeny, based on WOX homeodomains, showed that all of the Physcomitrella patens and Selaginella moellendorffii WOX proteins clustered into a single orthologous group. We hypothesized that members of this group might preferentially share a significant part of their function in phylogenetically distant organisms. Hence, we first validated the limits of the WOX13 orthologous group (WOX13 OG) using the occurrence of other clade specific signatures and conserved intron insertion sites. Secondly, a functional analysis using expression data and mutants was undertaken. Results The WOX13 OG contained the most conserved plant WOX proteins including the only WOX detected in the highly proliferating basal unicellular and photosynthetic organism Ostreococcus tauri. A large expansion of the WOX family was observed after the separation of mosses from other land plants and before monocots and dicots have arisen. In Arabidopsis thaliana, AtWOX13 was dynamically expressed during primary and lateral root initiation and development, in gynoecium and during embryo development. AtWOX13 appeared to affect the floral transition. An intriguing clade, represented by the functional AtWOX14 gene inside the WOX13 OG, was only found in the Brassicaceae. Compared to AtWOX13, the gene expression profile of AtWOX14 was restricted to the early stages of lateral root formation and specific to developing anthers. A mutational insertion upstream of the AtWOX14 homeodomain sequence led to abnormal root development, a delay in the floral transition and premature anther differentiation. Conclusion Our data provide evidence in favor of the WOX13 OG as the clade containing the most conserved WOX genes and established a functional link to organ initiation and development in Arabidopsis, most likely by preventing premature

  11. Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas.

    PubMed

    Huvet, Arnaud; Béguel, Jean-Philippe; Cavaleiro, Nathalia Pereira; Thomas, Yoann; Quillien, Virgile; Boudry, Pierre; Alunno-Bruscia, Marianne; Fabioux, Caroline

    2015-06-01

    Feeding strategies and digestive capacities can have important implications for variation in energetic pathways associated with ecological and economically important traits, such as growth or reproduction in bivalve species. Here, we investigated the role of amylase in the digestive processes of Crassostrea gigas, using in vivo RNA interference. This approach also allowed us to investigate the relationship between energy intake by feeding and gametogenesis in oysters. Double-stranded (ds)RNA designed to target the two α-amylase genes A and B was injected in vivo into the visceral mass of oysters at two doses. These treatments caused significant reductions in mean mRNA levels of the amylase genes: -50.7% and -59% mRNA A, and -71.9% and -70.6% mRNA B in 15 and 75 µg dsRNA-injected oysters, respectively, relative to controls. Interestingly, reproductive knock-down phenotypes were observed for both sexes at 48 days post-injection, with a significant reduction of the gonad area (-22.5% relative to controls) and germ cell under-proliferation revealed by histology. In response to the higher dose of dsRNA, we also observed reductions in amylase activity (-53%) and absorption efficiency (-5%). Based on these data, dynamic energy budget modeling showed that the limitation of energy intake by feeding that was induced by injection of amylase dsRNA was insufficient to affect gonadic development at the level observed in the present study. This finding suggests that other driving mechanisms, such as endogenous hormonal modulation, might significantly change energy allocation to reproduction, and increase the maintenance rate in oysters in response to dsRNA injection. PMID:25883379

  12. Mutation in the Monocarboxylate Transporter 12 Gene Affects Guanidinoacetate Excretion but Does Not Cause Glucosuria.

    PubMed

    Dhayat, Nasser; Simonin, Alexandre; Anderegg, Manuel; Pathare, Ganesh; Lüscher, Benjamin P; Deisl, Christine; Albano, Giuseppe; Mordasini, David; Hediger, Matthias A; Surbek, Daniel V; Vogt, Bruno; Sass, Jörn Oliver; Kloeckener-Gruissem, Barbara; Fuster, Daniel G

    2016-05-01

    A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome. PMID:26376857

  13. Metal particulate matter components affect gene expression and beat frequency of neonatal rat ventricular myocytes.

    PubMed

    Graff, Donald W; Cascio, Wayne E; Brackhan, Joseph A; Devlin, Robert B

    2004-05-01

    Soluble particulate matter (PM) components (e.g., metals) have the potential to be absorbed into the bloodstream and transported to the heart where they might induce the expression of inflammatory cytokines and remodel electrical properties. We exposed cultured rat ventricular myocytes to similar concentrations of two metals [zinc (Zn) and vanadium (V)] found commonly in PM and measured changes in spontaneous beat rate. We found statistically significant reductions in spontaneous beat rate after both short-term (4-hr) and long-term (24-hr) exposures, with a more substantial effect seen with Zn. We also measured the expression of genes associated with inflammation and a number of sarcolemmal proteins associated with electrical impulse conduction. Exposure to Zn or V (6.25-50 microM) for 6 hr produced significant increases in IL-6, IL-1 alpha, heat shock protein 70, and connexin 43 (Cx43). After 24 hr exposure, Zn induced significant changes in the gene expression of Kv4.2 and KvLQt (potassium channel proteins), the alpha 1 subunit of the L-type calcium channel, and Cx43, as well as IL-6 and IL-1 alpha. In contrast, V produced a greater effect on Cx43 and affected only one ion channel (KvLQT1). These results show that exposure of rat cardiac myocytes to noncytotoxic concentrations of Zn and V alter spontaneous beat rate as well as the expression of ion channels and sarcolemmal proteins relevant to electrical remodeling and slowing of spontaneous beat rate, with Zn producing a more profound effect. As such, these data suggest that the cardiac effects of PM are largely determined by the relative metal composition of particles. PMID:15159208

  14. Genetic factors affecting gene transcription and catalytic activity of UDP-glucuronosyltransferases in human liver

    PubMed Central

    Liu, Wanqing; Ramírez, Jacqueline; Gamazon, Eric R.; Mirkov, Snezana; Chen, Peixian; Wu, Kehua; Sun, Chang; Cox, Nancy J.; Cook, Edwin; Das, Soma; Ratain, Mark J.

    2014-01-01

    The aim of this study was to discover cis- and trans-acting factors significantly affecting mRNA expression and catalytic activity of human hepatic UDP-glucuronosyltransferases (UGTs). Transcription levels of five major hepatic UGT1A (UGT1A1, UGT1A3, UGT1A4, UGT1A6 and UGT1A9) and five UGT2B (UGT2B4, UGT2B7, UGT2B10, UGT2B15 and UGT2B17) genes were quantified in human liver tissue samples (n = 125) using real-time PCR. Glucuronidation activities of 14 substrates were measured in 47 livers. We genotyped 167 tagSNPs (single-nucleotide polymorphisms) in UGT1A (n = 43) and UGT2B (n = 124), as well as the known functional UGT1A1*28 and UGT2B17 CNV (copy number variation) polymorphisms. Transcription levels of 15 transcription factors (TFs) known to regulate these UGTs were quantified. We found that UGT expression and activity were highly variable among the livers (median and range of coefficient of variations: 135%, 74–217% and 52%, 39–105%, respectively). CAR, PXR and ESR1 were found to be the most important trans-regulators of UGT transcription (median and range of correlation coefficients: 46%, 6–58%; 47%, 9–58%; and 52%, 24–75%, respectively). Hepatic UGT activities were mainly determined by UGT gene transcription levels. Twenty-one polymorphisms were significantly (FDR-adjusted P < 0.05) associated with mRNA expression and/or activities of UGT1A1, UGT1A3 and UGT2B17. We found novel SNPs in the UGT2B17 CNV region accounting for variability in UGT2B17 gene transcription and testosterone glucuronidation rate, in addition to that attributable to the UGT2B17 CNV. Our study discovered novel pharmacogenetic markers and provided detailed insight into the genetic network regulating hepatic UGTs. PMID:24879639

  15. Alteration of BRCA1 expression affects alcohol-induced transcription of RNA Pol III-dependent genes

    PubMed Central

    Zhong, Qian; Shi, Ganggang; Zhang, Yanmei; Lu, Lei; Levy, Daniel; Zhong, Shuping

    2014-01-01

    Emerging evidence has indicated that alcohol consumption is an established risk factor for breast cancer. Deregulation of RNA polymerase III (Pol III) transcription enhances cellular Pol III gene production, leading to an increase in translational capacity to promote cell transformation and tumor formation. We have reported that alcohol intake increases Pol III gene transcription to promote cell transformation and tumor formation in vitro and in vivo. Studies revealed that tumor suppressors, pRb, p53, PTEN and Maf1 repress the transcription of Pol III genes. BRCA1 is a tumor suppressor and its mutation is tightly related to breast cancer development. However, it is not clear whether BRCA1 expression affects alcohol-induced transcription of Pol III genes. At the present studies, we report that restoring BRCA1 in HCC 1937 cells, which is a BRCA1 deficient cell line, represses Pol III gene transcription. Expressing mutant or truncated BRCA1 in these cells does not affect the ability of repression on Pol III genes. Our analysis has demonstrated that alcohol induces Pol III gene transcription. More importantly, overexpression of BRCA1 in estrogen receptor positive (ER+) breast cancer cells (MCF-7) decreases the induction of tRNALeu and 5S rRNA genes by alcohol, whereas reduction of BRCA1 by its siRNA slightly increases the transcription of the class of genes. This suggests that BRCA1 is associated with alcohol-induced deregulation of Pol III genes. These studies for the first time demonstrate the role of BRCA1 in induction of Pol III genes by alcohol and uncover a novel mechanism of alcohol-associated breast cancer. PMID:25447904

  16. Ozone enhances diesel exhaust particles (DEP)-induced interleukin-8 (IL-8) gene expression in human airway epithelial cells through activation of nuclear factors- kappaB (NF-kappaB) and IL-6 (NF-IL6).

    PubMed

    Kafoury, Ramzi M; Kelley, James

    2005-12-01

    Ozone, a highly reactive oxidant gas is a major component of photochemical smog. As an inhaled toxicant, ozone induces its adverse effects mainly on the lung. Inhalation of particulate matter has been reported to cause airway inflammation in humans and animals. Furthermore, epidemiological evidence has indicated that exposure to particulate matter (PM[2.5-10]), including diesel exhaust particles (DEP) has been correlated with increased acute and chronic respiratory morbidity and exacerbation of asthma. Previously, exposure to ozone or particulate matter and their effect on the lung have been addressed as separate environmental problems. Ozone and particulate matter may be chemically coupled in the ambient air. In the present study we determined whether ozone exposure enhances DEP effect on interleukin-8 (IL-8) gene expression in human airway epithelial cells. We report that ozone exposure (0.5 ppm x 1 hr) significantly increased DEP-induced IL-8 gene expression in A549 cells (117 +/- 19 pg/ml, n = 6, p < 0.05) as compared to cultures treated with DEP (100 microg/ml x 4 hr) alone (31 +/- 3 pg/ml, n = 6), or cultures exposed to purified air (24 +/- 6 pg/ml, n = 6). The increased DEP-induced IL-8 gene expression following ozone exposure was attributed to ozone-induced increase in the activity of the transcription factors NF-kappaB and NF-IL6. The results of the present study indicate that ozone exposure enhances the toxicity of DEP in human airway epithelial cells by augmenting IL-8 gene expression, a potent chemoattractant of neutrophils in the lung. PMID:16819095

  17. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    PubMed

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. PMID:26890892

  18. Folate-related gene variants in Irish families affected by neural tube defects

    PubMed Central

    Fisk Green, Ridgely; Byrne, Julianne; Crider, Krista S.; Gallagher, Margaret; Koontz, Deborah; Berry, Robert J.

    2013-01-01

    Periconceptional folic acid use can often prevent neural tube defects (NTDs). Variants of genes involved in folate metabolism in mothers and children have been associated with occurrence of NTDs. We identified Irish families with individuals affected by neural tube defects. In these families, we observed that neural tube defects and birth defects overall occurred at a higher rate in the maternal lineage compared with the paternal lineage. The goal of this study was to look for evidence for genetic effects that could explain the discrepancy in the occurrence of these birth defects in the maternal vs. paternal lineage. We genotyped blood samples from 322 individuals from NTD-affected Irish families, identified through their membership in spina bifida associations. We looked for differences in distribution in maternal vs. paternal lineages of five genetic polymorphisms: the DHFR 19 bp deletion, MTHFD1 1958G>A, MTHFR 1298A>C, MTHFR 677C>T, and SLC19A1 80A>G. In addition to looking at genotypes individually, we determined the number of genotypes associated with decreased folate metabolism in each relative (“risk genotypes”) and compared the distribution of these genotypes in maternal vs. paternal relatives. Overall, maternal relatives had a higher number of genotypes associated with lower folate metabolism than paternal relatives (p = 0.017). We expected that relatives would share the same risk genotype as the individuals with NTDs and/or their mothers. However, we observed that maternal relatives had an over-abundance of any risk genotype, rather than one specific genotype. The observed genetic effects suggest an epigenetic mechanism in which decreased folate metabolism results in epigenetic alterations related to the increased rate of NTDs and other birth defects seen in the maternal lineage. Future studies on the etiology of NTDs and other birth defects could benefit from including multigenerational extended families, in order to explore potential epigenetic

  19. The duration of gastrin treatment affects global gene expression and molecular responses involved in ER stress and anti-apoptosis

    PubMed Central

    2013-01-01

    Background How cells decipher the duration of an external signal into different transcriptional outcomes is poorly understood. The hormone gastrin can promote a variety of cellular responses including proliferation, differentiation, migration and anti-apoptosis. While gastrin in normal concentrations has important physiological functions in the gastrointestine, prolonged high levels of gastrin (hypergastrinemia) is related to pathophysiological processes. Results We have used genome-wide microarray time series analysis and molecular studies to identify genes that are affected by the duration of gastrin treatment in adenocarcinoma cells. Among 403 genes differentially regulated in transiently (gastrin removed after 1 h) versus sustained (gastrin present for 14 h) treated cells, 259 genes upregulated by sustained gastrin treatment compared to untreated controls were expressed at lower levels in the transient mode. The difference was subtle for early genes like Junb and c-Fos, but substantial for delayed and late genes. Inhibition of protein synthesis by cycloheximide was used to distinguish between primary and secondary gastrin regulated genes. The majority of gastrin upregulated genes lower expressed in transiently treated cells were primary genes induced independently of de novo protein synthesis. This indicates that the duration effect of gastrin treatment is mainly mediated via post-translational signalling events, while a smaller fraction of the differentially expressed genes are regulated downstream of primary transcriptional events. Indeed, sustained gastrin treatment specifically induced prolonged ERK1/2 activation and elevated levels of the AP-1 subunit protein JUNB. Enrichment analyses of the differentially expressed genes suggested that endoplasmic reticulum (ER) stress and survival is affected by the duration of gastrin treatment. Sustained treatment exerted an anti-apoptotic effect on serum starvation-induced apoptosis via a PKC-dependent mechanism. In

  20. Partially integrated exhaust manifold

    DOEpatents

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  1. Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels.

    PubMed

    Yelin, Ronit; Schyr, Racheli Ben-Haroush; Kot, Hadas; Zins, Sharon; Frumkin, Ayala; Pillemer, Graciela; Fainsod, Abraham

    2005-03-01

    Fetal Alcohol Spectrum Disorder (FASD) is a set of developmental malformations caused by alcohol consumption during pregnancy. Fetal Alcohol Syndrome (FAS), the strongest manifestation of FASD, results in short stature, microcephally and facial dysmorphogenesis including microphthalmia. Using Xenopus embryos as a model developmental system, we show that ethanol exposure recapitulates many aspects of FAS, including a shortened rostro-caudal axis, microcephally and microphthalmia. Temporal analysis revealed that Xenopus embryos are most sensitive to ethanol exposure between late blastula and early/mid gastrula stages. This window of sensitivity overlaps with the formation and early function of the embryonic organizer, Spemann's organizer. Molecular analysis revealed that ethanol exposure of embryos induces changes in the domains and levels of organizer-specific gene expression, identifying Spemann's organizer as an early target of ethanol. Ethanol also induces a defect in convergent extension movements that delays gastrulation movements and may affect the overall length. We show that mechanistically, ethanol is antagonistic to retinol (Vitamin A) and retinal conversion to retinoic acid, and that the organizer is active in retinoic acid signaling during early gastrulation. The model suggests that FASD is induced in part by an ethanol-dependent reduction in retinoic acid levels that are necessary for the normal function of Spemann's organizer. PMID:15708568

  2. Human CalDAG-GEFI gene (RASGRP2) mutation affects platelet function and causes severe bleeding

    PubMed Central

    Canault, Matthias; Ghalloussi, Dorsaf; Grosdidier, Charlotte; Guinier, Marie; Perret, Claire; Chelghoum, Nadjim; Germain, Marine; Raslova, Hana; Peiretti, Franck; Morange, Pierre E.; Saut, Noemie; Pillois, Xavier; Nurden, Alan T.; Cambien, François; Pierres, Anne; van den Berg, Timo K.; Kuijpers, Taco W.; Tregouet, David-Alexandre

    2014-01-01

    The nature of an inherited platelet disorder was investigated in three siblings affected by severe bleeding. Using whole-exome sequencing, we identified the culprit mutation (cG742T) in the RAS guanyl-releasing protein-2 (RASGRP2) gene coding for calcium- and DAG-regulated guanine exchange factor-1 (CalDAG-GEFI). Platelets from individuals carrying the mutation present a reduced ability to activate Rap1 and to perform proper αIIbβ3 integrin inside-out signaling. Expression of CalDAG-GEFI mutant in HEK293T cells abolished Rap1 activation upon stimulation. Nevertheless, the PKC- and ADP-dependent pathways allow residual platelet activation in the absence of functional CalDAG-GEFI. The mutation impairs the platelet’s ability to form thrombi under flow and spread normally as a consequence of reduced Rac1 GTP-binding. Functional deficiencies were confined to platelets and megakaryocytes with no leukocyte alteration. This contrasts with the phenotype seen in type III leukocyte adhesion deficiency caused by the absence of kindlin-3. Heterozygous did not suffer from bleeding and have normal platelet aggregation; however, their platelets mimicked homozygous ones by failing to undergo normal adhesion under flow and spreading. Rescue experiments on cultured patient megakaryocytes corrected the functional deficiency after transfection with wild-type RASGRP2. Remarkably, the presence of a single normal allele is sufficient to prevent bleeding, making CalDAG-GEFI a novel and potentially safe therapeutic target to prevent thrombosis. PMID:24958846

  3. Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene

    PubMed Central

    Zhou, Jiawei

    2016-01-01

    Klotho (KL), originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (−418 bp to −3 bp) as the porcine KL core promoter. MARC0022311SNP (A or G) in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immune-precipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1. PMID:27478698

  4. Transcription factor organic cation transporter 1 (OCT-1) affects the expression of porcine Klotho (KL) gene.

    PubMed

    Li, Yan; Wang, Lei; Zhou, Jiawei; Li, Fenge

    2016-01-01

    Klotho (KL), originally discovered as an aging suppressor, is a membrane protein that shares sequence similarity with the β-glucosidase enzymes. Recent reports showed Klotho might play a role in adipocyte maturation and systemic glucose metabolism. However, little is known about the transcription factors involved in regulating the expression of porcine KL gene. Deletion fragment analysis identified KL-D2 (-418 bp to -3 bp) as the porcine KL core promoter. MARC0022311SNP (A or G) in KL intron 1 was detected in Landrace × DIV pigs using the Porcine SNP60 BeadChip. The pGL-D2-A and pGL-D2-G were constructed with KL-D2 and the intron fragment of different alleles and relative luciferase activity of pGL3-D2-G was significantly higher than that of pGL3-D2-A in the PK cells and ST cells. This was possibly the result of a change in KL binding ability with transcription factor organic cation transporter 1 (OCT-1), which was confirmed using electrophoretic mobility shift assays (EMSA) and chromatin immune-precipitation (ChIP). Moreover, OCT-1 regulated endogenous KL expression by RNA interference experiments. Our study indicates SNP MARC0022311 affects porcine KL expression by regulating its promoter activity via OCT-1. PMID:27478698

  5. Mutations in the 3c and 7b genes of feline coronavirus in spontaneously affected FIP cats.

    PubMed

    Borschensky, C M; Reinacher, M

    2014-10-01

    Feline infectious peritonitis (FIP) is the most frequent lethal infectious disease in cats. However, understanding of FIP pathogenesis is still incomplete. Mutations in the ORF 3c/ORF 7b genes are proposed to play a role in the occurrence of the fatal FIPV biotype. Here, we investigated 282 tissue specimens from 28 cats that succumbed to FIP. Within one cat, viral sequences from different organs were similar or identical, whereas greater discrepancies were found comparing sequences from various cats. Eleven of the cats exhibited deletions in the 3c gene, resulting in truncated amino acid sequences. The 7b gene was affected by deletions only in one cat. In three of the FIP cats, coronavirus isolates with both intact 3c genes as well as 7b genes of full length could also be detected. Thus, deletions or stop codons in the 3c sequence seem to be a frequent but not compelling feature of FIPVs. PMID:25128417

  6. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex.

    PubMed

    Golubovskaya, Vita M; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53+/+ and p53-/- cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53+/+ cells but not in p53-/- cells. Among up-regulated genes in HCT p53+/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53+/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach. PMID:24452144

  7. Single nucleotide polymorphism in the tumor necrosis factor-alpha gene affects inflammatory bowel diseases risk

    PubMed Central

    Ferguson, Lynnette R; Huebner, Claudia; Petermann, Ivonne; Gearry, Richard B; Barclay, Murray L; Demmers, Pieter; McCulloch, Alan; Han, Dug Yeo

    2008-01-01

    AIM: To investigate the role that single nucleotide polymorphisms (SNPs) in the promoter of the tumour necrosis factor-alpha (TNF-α) gene play in the risk of inflammatory bowel diseases (IBDs) in a New Zealand population, in the context of international studies. METHODS: DNA samples from 388 patients with Crohn’s disease (CD), 405 ulcerative colitis (UC), 27 indeterminate colitis (IC) and 201 randomly selected controls, from Canterbury, New Zealand were screened for 3 common polymorphisms in the TNF-α receptor: -238 G→A, -308 G→A and -857C→T, using a TaqmanR assay. A meta-analysis was performed on the data obtained on these polymorphisms combined with that from other published studies. RESULTS: Individuals carrying the -308 G/A allele had a significantly (OR = 1.91, χ2 = 17.36, P < 0.0001) increased risk of pancolitis, and a 1.57-fold increased risk (OR = 1.57, χ2 = 4.34, P = 0.037) of requiring a bowel resection in UC. Carrying the -857 C/T variant decreased the risk of ileocolonic CD (OR = 0.56, χ2 = 4.32, P = 0.037), and the need for a bowel resection (OR = 0.59, χ2 = 4.85, P = 0.028). The risk of UC was reduced in individuals who were smokers at diagnosis, (OR = 0.48, χ2 = 4.86, P = 0.028). CONCLUSION: TNF-α is a key cytokine known to play a role in inflammatory response, and the locus for the gene is found in the IBD3 region on chromosome 6p21, known to be associated with an increased risk for IBD. The -308 G/A SNP in the TNF-α promoter is functional, and may account in part for the increased UC risk associated with the IBD3 genomic region. The -857 C/T SNP may decrease IBD risk in certain groups. Pharmaco- or nutrigenomic approaches may be desirable for individuals with such affected genotypes. PMID:18698679

  8. Association analysis of the monoamine oxidase A gene in bipolar affective disorder by using family-based internal controls

    SciTech Connect

    Noethen, M.M.; Eggermann, K.; Propping, P.

    1995-10-01

    It is well accepted that association studies are a major tool in investigating the contribution of single genes to the development of diseases that do not follow simple Mendelian inheritance pattern (so-called complex traits). Such major psychiatric diseases as bipolar affective disorder and schizophrenia clearly fall into this category of diseases. 7 refs., 1 tab.

  9. Validation of Candidate Causal Genes for Abdominal Obesity Which Affect Shared Metabolic Pathways and Networks

    PubMed Central

    Yang, Xia; Deignan, Joshua L.; Qi, Hongxiu; Zhu, Jun; Qian, Su; Zhong, Judy; Torosyan, Gevork; Majid, Sana; Falkard, Brie; Kleinhanz, Robert R.; Karlsson, Jenny; Castellani, Lawrence W.; Mumick, Sheena; Wang, Kai; Xie, Tao; Coon, Michael; Zhang, Chunsheng; Estrada-Smith, Daria; Farber, Charles R.; Wang, Susanna S.; Van Nas, Atila; Ghazalpour, Anatole; Zhang, Bin; MacNeil, Douglas J.; Lamb, John R.; Dipple, Katrina M.; Reitman, Marc L.; Mehrabian, Margarete; Lum, Pek Y.; Schadt, Eric E.; Lusis, Aldons J.

    2010-01-01

    A major task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription, and phenotypic information. Here we validated our method through the characterization of transgenic and knockout mouse models of candidate genes that were predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being novel, resulted in significant changes in obesity related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F2 intercross studies allows high confidence prediction of causal genes and identification of involved pathways and networks. PMID:19270708

  10. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle

    PubMed Central

    Fey, Vidal; Törmäkangas, Timo; Ronkainen, Paula H. A.; Taaffe, Dennis R.; Takala, Timo; Koskinen, Satu; Cheng, Sulin; Puolakka, Jukka; Kujala, Urho M.; Suominen, Harri; Sipilä, Sarianna; Kovanen, Vuokko

    2010-01-01

    At the moment, there is no clear molecular explanation for the steeper decline in muscle performance after menopause or the mechanisms of counteractive treatments. The goal of this genome-wide study was to identify the genes and gene clusters through which power training (PT) comprising jumping activities or estrogen containing hormone replacement therapy (HRT) may affect skeletal muscle properties after menopause. We used musculus vastus lateralis samples from early stage postmenopausal (50–57 years old) women participating in a yearlong randomized double-blind placebo-controlled trial with PT and HRT interventions. Using microarray platform with over 24,000 probes, we identified 665 differentially expressed genes. The hierarchical clustering method was used to assort the genes. Additionally, enrichment analysis of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was carried out to clarify whether assorted gene clusters are enriched with particular functional categories. The analysis revealed transcriptional regulation of 49 GO/KEGG categories. PT upregulated transcription in “response to contraction”—category revealing novel candidate genes for contraction-related regulation of muscle function while HRT upregulated gene expression related to functionality of mitochondria. Moreover, several functional categories tightly related to muscle energy metabolism, development, and function were affected regardless of the treatment. Our results emphasize that during the early stages of the postmenopause, muscle properties are under transcriptional modulation, which both PT and HRT partially counteract leading to preservation of muscle power and potentially reducing the risk for aging-related muscle weakness. More specifically, PT and HRT may function through improving energy metabolism, response to contraction as well as by preserving functionality of the mitochondria. Electronic supplementary material The online version of this

  11. Social Context–Induced Song Variation Affects Female Behavior and Gene Expression

    PubMed Central

    Woolley, Sarah C; Doupe, Allison J

    2008-01-01

    Social cues modulate the performance of communicative behaviors in a range of species, including humans, and such changes can make the communication signal more salient. In songbirds, males use song to attract females, and song organization can differ depending on the audience to which a male sings. For example, male zebra finches (Taeniopygia guttata) change their songs in subtle ways when singing to a female (directed song) compared with when they sing in isolation (undirected song), and some of these changes depend on altered neural activity from a specialized forebrain-basal ganglia circuit, the anterior forebrain pathway (AFP). In particular, variable activity in the AFP during undirected song is thought to actively enable syllable variability, whereas the lower and less-variable AFP firing during directed singing is associated with more stereotyped song. Consequently, directed song has been suggested to reflect a “performance” state, and undirected song a form of vocal motor “exploration.” However, this hypothesis predicts that directed–undirected song differences, despite their subtlety, should matter to female zebra finches, which is a question that has not been investigated. We tested female preferences for this natural variation in song in a behavioral approach assay, and we found that both mated and socially naive females could discriminate between directed and undirected song—and strongly preferred directed song. These preferences, which appeared to reflect attention especially to aspects of song variability controlled by the AFP, were enhanced by experience, as they were strongest for mated females responding to their mate's directed songs. We then measured neural activity using expression of the immediate early gene product ZENK, and found that social context and song familiarity differentially modulated the number of ZENK-expressing cells in telencephalic auditory areas. Specifically, the number of ZENK-expressing cells in the caudomedial

  12. Pangenome Evidence for Extensive Interdomain Horizontal Transfer Affecting Lineage Core and Shell Genes in Uncultured Planktonic Thaumarchaeota and Euryarchaeota

    PubMed Central

    Deschamps, Philippe; Zivanovic, Yvan; Moreira, David; Rodriguez-Valera, Francisco; López-García, Purificación

    2014-01-01

    Horizontal gene transfer (HGT) is an important force in evolution, which may lead, among other things, to the adaptation to new environments by the import of new metabolic functions. Recent studies based on phylogenetic analyses of a few genome fragments containing archaeal 16S rRNA genes and fosmid-end sequences from deep-sea metagenomic libraries have suggested that marine planktonic archaea could be affected by high HGT frequency. Likewise, a composite genome of an uncultured marine euryarchaeote showed high levels of gene sequence similarity to bacterial genes. In this work, we ask whether HGT is frequent and widespread in genomes of these marine archaea, and whether HGT is an ancient and/or recurrent phenomenon. To answer these questions, we sequenced 997 fosmid archaeal clones from metagenomic libraries of deep-Mediterranean waters (1,000 and 3,000 m depth) and built comprehensive pangenomes for planktonic Thaumarchaeota (Group I archaea) and Euryarchaeota belonging to the uncultured Groups II and III Euryarchaeota (GII/III-Euryarchaeota). Comparison with available reference genomes of Thaumarchaeota and a composite marine surface euryarchaeote genome allowed us to define sets of core, lineage-specific core, and shell gene ortholog clusters for the two archaeal lineages. Molecular phylogenetic analyses of all gene clusters showed that 23.9% of marine Thaumarchaeota genes and 29.7% of GII/III-Euryarchaeota genes had been horizontally acquired from bacteria. HGT is not only extensive and directional but also ongoing, with high HGT levels in lineage-specific core (ancient transfers) and shell (recent transfers) genes. Many of the acquired genes are related to metabolism and membrane biogenesis, suggesting an adaptive value for life in cold, oligotrophic oceans. We hypothesize that the acquisition of an important amount of foreign genes by the ancestors of these archaeal groups significantly contributed to their divergence and ecological success. PMID:24923324

  13. Polymorphisms within beta-catenin encoding gene affect multiple myeloma development and treatment.

    PubMed

    Butrym, Aleksandra; Rybka, Justyna; Łacina, Piotr; Gębura, Katarzyna; Frontkiewicz, Diana; Bogunia-Kubik, Katarzyna; Mazur, Grzegorz

    2015-12-01

    Recent studies have suggested that cereblon (CRBN) is essential for the anti-myeloma (MM) activity of immunomodulatory drugs (IMiDs), such as thalidomide and lenalidomide, and that dysregulation of Wnt/β-catenin pathway may be one of possible reasons of lenalidomide resistance. This prompted us to analyze the effect of polymorphisms within the genes coding for cereblon (CRBN (rs121918368 C>T)) and β-catenin (CTNNB1 (rs4135385 A>G; rs4533622 A>C)). MM patients (n=142) and healthy individuals (n=123) were genotyped using the Light SNiP assays. The presence of the CTNNB1 (rs4533622) A allele was more frequently detected in patients presented with stage II-III disease according to International Staging System (63/82 vs. 26/44, p=0.043) and Durie-Salmon criteria (75/99 vs. 14/26, p=0.049). The CTNNB1 (rs4135385) AA homozygosity was more frequent among patients with better response to CTD, i.e., cyclophosphamide-thalidomide-dexamethasone (18/23 vs. 32/60, p=0.047). Patients carrying the CTNNB1 (rs4533622) AA genotype were better responders to the first line therapy with thalidomide containing regimens (p<0.05). No significant association was observed between the effect of lenalidomide therapy and polymorphisms studied. However, the occurrence of neutropenia during lenalidomide therapy was more frequent among the CTNNB1 (rs4135385) AA carriers (p=0.019), while the CTNNB1 (rs4533622) AA homozygosity characterized patients with high grade (3-4) neutropenia (p=0.044). No association was found for the CRBN polymorphism. These results suggest that the CTNNB1 polymorphisms may affect the clinical course and response to chemotherapy in patients with multiple myeloma. PMID:26521987

  14. ALOX5 gene variants affect eicosanoid production and response to fish oil supplementation[S

    PubMed Central

    Stephensen, Charles B.; Armstrong, Patrice; Newman, John W.; Pedersen, Theresa L.; Legault, Jillian; Schuster, Gertrud U.; Kelley, Darshan; Vikman, Susanna; Hartiala, Jaana; Nassir, Rami; Seldin, Michael F.; Allayee, Hooman

    2011-01-01

    The objective of this study was to determine whether 5-lipoxygenase (ALOX5) gene variants associated with cardiovascular disease affect eicosanoid production by monocytes. The study was a randomized, double-masked, parallel intervention trial with fish oil (5.0 g of fish oil daily, containing 2.0 g of eicosapentaenoic acid [EPA] and 1.0 g of docosahexaenoic acid [DHA]) or placebo oil (5.0 g of corn/soy mixture). A total of 116 subjects (68% female, 20–59 years old) of African American ancestry enrolled, and 98 subjects completed the study. Neither ALOX5 protein nor arachidonic acid-derived LTB4, LTD4, and LTE4 varied by genotype, but 5-hydroxyeicosatetraenoate (5-HETE), 6-trans-LTB4, 5-oxo-ETE, 15-HETE, and 5,15-diHETE levels were higher in subjects homozygous for the ALOX5 promoter allele containing five Sp1 element tandem repeats (“55” genotype) than in subjects with one deletion (d) (three or four repeats) and one common (“d5” genotype) allele or with two deletion (“dd”) alleles. The EPA-derived metabolites 5-HEPE and 15-HEPE and the DHA-derived metabolite 17-HDoHE had similar associations with genotype and increased with supplementation; 5-HEPE and 15-HEPE increased, and 5-oxo-ETE decreased to a greater degree in the 55 than in the other genotypes. This differential eicosanoid response is consistent with the previously observed interaction of these variants with dietary intake of omega-3 fatty acids in predicting cardiovascular disease risk. PMID:21296957

  15. Ectopic Expression Screen Identifies Genes Affecting Drosophila Mesoderm Development Including the HSPG Trol

    PubMed Central

    Trisnadi, Nathanie; Stathopoulos, Angelike

    2014-01-01

    Gastrulation of the embryo involves coordinate cell movements likely supported by multiple signaling pathways, adhesion molecules, and extracellular matrix components. Fibroblast growth factors (FGFs) have a major role in Drosophila melanogaster mesoderm migration; however, few other inputs are known and the mechanism supporting cell movement is unclear. To provide insight, we performed an ectopic expression screen to identify secreted or membrane-associated molecules that act to support mesoderm migration. Twenty-four UAS insertions were identified that cause lethality when expressed in either the mesoderm (Twi-Gal4) or the ectoderm (69B-Gal4). The list was narrowed to a subset of 10 genes that were shown to exhibit loss-of-function mutant phenotypes specifically affecting mesoderm migration. These include the FGF ligand Pyramus, α-integrins, E-cadherin, Cueball, EGFR, JAK/STAT signaling components, as well as the heparan sulfate proteoglycan (HSPG) Terribly reduced optic lobes (Trol). Trol encodes the ortholog of mammalian HSPG Perlecan, a demonstrated FGF signaling cofactor. Here, we examine the role of Trol in Drosophila mesoderm migration and compare and contrast its role with that of Syndecan (Sdc), another HSPG previously implicated in this process. Embryos mutant for Trol or Sdc were obtained and analyzed. Our data support the view that both HSPGs function to support FGF-dependent processes in the early embryo as they share phenotypes with FGF mutants: Trol in terms of effects on mesoderm migration and caudal visceral mesoderm (CVM) migration and Sdc in terms of dorsal mesoderm specification. The differential roles uncovered for these two HSPGs suggest that HSPG cofactor choice may modify FGF-signaling outputs. PMID:25538103

  16. Gene expression of peripheral blood mononuclear cells is affected by cold exposure.

    PubMed

    Reynés, Bàrbara; García-Ruiz, Estefanía; Oliver, Paula; Palou, Andreu

    2015-10-15

    Because of the discovery of brown adipose tissue (BAT) in humans, there is increased interest in the study of induction of this thermogenic tissue as a basis to combat obesity and related complications. Cold exposure is one of the strongest stimuli able to activate BAT and to induce the appearance of brown-like (brite) adipocytes in white fat depots (browning process). We analyzed the potential of peripheral blood mononuclear cells (PBMCs) to reflect BAT and retroperitoneal white adipose tissue (rWAT) response to 1-wk cold acclimation (4°C) at different ages of rat development (1, 2, 4, and 6 mo). As expected, cold exposure increased fatty acid β-oxidation capacity in BAT and rWAT (increased Cpt1a expression), explaining increased circulating nonesterified free fatty acids and decreased adiposity. Cold exposure increased expression of the key thermogenic gene, Ucp1, in BAT and rWAT, but only in 1-mo-old animals. Additionally, other brown/brite markers were affected by cold during the whole developmental period studied in BAT. However, in rWAT, cold exposure increased studied markers mainly at early age. PBMCs did not express Ucp1, but expressed other brown/brite markers, which were cold regulated. Of particular interest, PBMCs reflected adipose tissue-increased Cpt1a mRNA expression in response to cold (in older animals) and browning induction occurring in rWAT of young animals (1 mo) characterized by increased Cidea expression and by the appearance of a high number of multilocular CIDE-A positive adipocytes. These results provide evidence pointing to PBMCs as an easily obtainable biological material to be considered to perform browning studies with minimum invasiveness. PMID:26246506

  17. Flexibility in a Gene Network Affecting a Simple Behavior in Drosophila melanogaster

    PubMed Central

    van Swinderen, Bruno; Greenspan, Ralph J.

    2005-01-01

    Gene interactions are emerging as central to understanding the realization of any phenotype. To probe the flexibility of interactions in a defined gene network, we isolated a set of 16 interacting genes in Drosophila, on the basis of their alteration of a quantitative behavioral phenotype—the loss of coordination in a temperature-sensitive allele of Syntaxin1A. The interactions inter se of this set of genes were then assayed in the presence and in the absence of the original Syntaxin1A mutation to ask whether the relationships among the 16 genes remain stable or differ after a change in genetic context. The pattern of epistatic interactions that occurs within this set of variants is dramatically altered in the two different genetic contexts. The results imply considerable flexibility in the network interactions of genes. PMID:15687281

  18. mef2 activity levels differentially affect gene expression during Drosophila muscle development

    PubMed Central

    Elgar, Stuart J.; Han, Jun; Taylor, Michael V.

    2008-01-01

    Cell differentiation is controlled by key transcription factors, and a major question is how they orchestrate cell-type-specific genetic programs. Muscle differentiation is a well studied paradigm in which the conserved Mef2 transcription factor plays a pivotal role. Recent genomic studies have identified a large number of mef2-regulated target genes with distinct temporal expression profiles during Drosophila myogenesis. However, the question remains as to how a single transcription factor can control such diverse patterns of gene expression. In this study we used a strategy combining genomics and developmental genetics to address this issue in vivo during Drosophila muscle development. We found that groups of mef2-regulated genes respond differently to changes in mef2 activity levels: some require higher levels for their expression than others. Furthermore, this differential requirement correlates with when the gene is first expressed during the muscle differentiation program. Genes that require higher levels are activated later. These results implicate mef2 in the temporal regulation of muscle gene expression, and, consistent with this, we show that changes in mef2 activity levels can alter the start of gene expression in a predictable manner. Together these results indicate that Mef2 is not an all-or-none regulator; rather, its action is more subtle, and levels of its activity are important in the differential expression of muscle genes. This suggests a route by which mef2 can orchestrate the muscle differentiation program and contribute to the stringent regulation of gene expression during myogenesis. PMID:18198273

  19. cis-Jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids

    PubMed Central

    Bruce, Toby J. A.; Matthes, Michaela C.; Chamberlain, Keith; Woodcock, Christine M.; Mohib, Abdul; Webster, Ben; Smart, Lesley E.; Birkett, Michael A.; Pickett, John A.; Napier, Johnathan A.

    2008-01-01

    It is of adaptive value for a plant to prepare its defenses when a threat is detected, and certain plant volatiles associated with insect damage, such as cis-jasmone (CJ), are known to switch-on defense metabolism. We used aphid and aphid parasitoid responses to Arabidopsis thaliana as a model system for studying gene expression and defense chemistry and its impact at different trophic levels. Differential responses to volatiles of induced Arabidopsis occurred for specialist and generalist insects: the generalist aphid, Myzus persicae, was repelled, whereas the specialist, Lipaphis erysimi, was attracted; the generalist aphid parasitoid Aphidius ervi was attracted, but the specialist parasitoid Diaeretiella rapae was not affected. A. ervi also spent longer foraging on induced plants than on untreated ones. Transcriptomic analyses of CJ-induced Arabidopsis plants revealed that a limited number of genes, including a gene for a cytochrome P450, CYP81D11, were strongly up-regulated in the treated plants. We examined transgenic Arabidopsis lines constitutively overexpressing this gene in bioassays and found insect responses similar to those obtained for wild-type plants induced with CJ, indicating the importance of this gene in the CJ-activated defense response. Genes involved in glucosinolate biosynthesis and catabolism are unaffected by CJ and, because these genes relate to interactions with herbivores and parasitoids specific to this family of plants (Brassicaceae), this finding may explain the differences in behavioral response of specialist and generalist insects. PMID:18356298

  20. A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep

    PubMed Central

    Norris, Belinda J.; Whan, Vicki A.

    2008-01-01

    Agouti signaling protein (ASIP) functions to regulate pigmentation in mice, while its role in many other animals and in humans has not been fully determined. In this study, we identify a 190-kb tandem duplication encompassing the ovine ASIP and AHCY coding regions and the ITCH promoter region as the genetic cause of white coat color of dominant white/tan (AWt) agouti sheep. The duplication 5′ breakpoint is located upstream of the ASIP coding sequence. Ubiquitous expression of a second copy of the ASIP coding sequence regulated by a duplicated copy of the nearby ITCH promoter causes the white sheep phenotype. A single copy ASIP gene with a silenced ASIP promoter occurs in recessive black sheep. In contrast, a single copy functional wild-type (A+) ASIP is responsible for the ancient Barbary sheep coat color phenotype. The gene duplication was facilitated by homologous recombination between two non-LTR SINE sequences flanking the duplicated segment. This is the first sheep trait attributable to gene duplication and shows nonallelic homologous recombination and gene conversion events at the ovine ASIP locus could have an important role in the evolution of sheep pigmentation. PMID:18493018

  1. Exhaust gas ignition

    SciTech Connect

    1996-04-01

    This article describes a system developed for rapid light-off of underbody catalysts that has shown potential to meet Euro Stage III emissions targets and to be more cost-effective than some alternatives. Future emissions legislation will require SI engine aftertreatment systems to approach full operating efficiency within the first few seconds after starting to reduce the high total-emissions fraction currently contributed by the cold phase of driving. A reduction of cold-start emissions during Phase 1 (Euro) or Bag 1 (FTP), which in many cases can be as much as 80% of the total for the cycle, has been achieved by electrical heating of the catalytic converter. But electrically heated catalyst (EHC) systems require high currents (100--200 A) to heat the metallic substrate to light-off temperatures over the first 15--20 seconds. Other viable approaches to reducing cold-start emissions include use of a fuel-powered burner upstream of the catalyst. However, as with EHC, the complexity of parts and the introduction of raw fuel into the exhaust system make this device unsatisfactory. Still another approach, an exhaust gas ignition (EGI) system, was first demonstrated in 1991. The operation of a system developed by engineers at Ford Motor Co., Ltd., Cambustion Ltd., and Tickford Ltd. is described here.

  2. Disruption of behavioral circadian rhythms induced by psychophysiological stress affects plasma free amino acid profiles without affecting peripheral clock gene expression in mice.

    PubMed

    Oishi, Katsutaka; Yamamoto, Saori; Itoh, Nanako; Miyazaki, Koyomi; Nemoto, Tadashi; Nakakita, Yasukazu; Kaneda, Hirotaka

    2014-07-18

    Disordered circadian rhythms are associated with various psychiatric conditions and metabolic diseases. We recently established a mouse model of a psychophysiological stress-induced chronic sleep disorder (CSD) characterized by reduced amplitude of circadian wheel-running activity and sleep-wake cycles, sleep fragmentation and hyperphagia. Here, we evaluate day-night fluctuations in plasma concentrations of free amino acids (FAA), appetite hormones and prolactin as well as the hepatic expression of circadian clock-related genes in mice with CSD (CSD mice). Nocturnal increases in wheel-running activity and circadian rhythms of plasma prolactin concentrations were significantly disrupted in CSD mice. Hyperphagia with a decreased leptin/ghrelin ratio was found in CSD mice. Day-night fluctuations in plasma FAA contents were severely disrupted without affecting total FAA levels in CSD mice. Nocturnal increases in branched-chain amino acids such as Ile, Leu, and Val were further augmented in CSD mice, while daytime increases in Gly, Ala, Ser, Thr, Lys, Arg, His, Tyr, Met, Cys, Glu, and Asn were significantly attenuated. Importantly, the circadian expression of hepatic clock genes was completely unaffected in CSD mice. These findings suggest that circadian clock gene expression does not always reflect disordered behavior and sleep rhythms and that plasma FFA profiles could serve as a potential biomarker of circadian rhythm disorders. PMID:24971530

  3. The circadian clock-associated gene zea mays gigantea1 affects maize developmental transitions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The circadian clock is the internal timing mechanism that allows plants to make developmental decisions in accordance with environmental conditions. The genes of the maize circadian clock are not well defined. Gigantea (gi) genes are conserved across flowering plants, including maize. In model plant...

  4. Gene Expression in Gut Symbiotic Organ of Stinkbug Affected by Extracellular Bacterial Symbiont

    PubMed Central

    Futahashi, Ryo; Tanaka, Kohjiro; Tanahashi, Masahiko; Nikoh, Naruo; Kikuchi, Yoshitomo; Lee, Bok Luel; Fukatsu, Takema

    2013-01-01

    The bean bug Riptortus pedestris possesses a specialized symbiotic organ in a posterior region of the midgut, where numerous crypts harbor extracellular betaproteobacterial symbionts of the genus Burkholderia. Second instar nymphs orally acquire the symbiont from the environment, and the symbiont infection benefits the host by facilitating growth and by occasionally conferring insecticide resistance. Here we performed comparative transcriptomic analyses of insect genes expressed in symbiotic and non-symbiotic regions of the midgut dissected from Burkholderia-infected and uninfected R. pedestris. Expression sequence tag analysis of cDNA libraries and quantitative reverse transcription PCR identified a number of insect genes expressed in symbiosis- or aposymbiosis-associated patterns. For example, genes up-regulated in symbiotic relative to aposymbiotic individuals, including many cysteine-rich secreted protein genes and many cathepsin protease genes, are likely to play a role in regulating the symbiosis. Conversely, genes up-regulated in aposymbiotic relative to symbiotic individuals, including a chicken-type lysozyme gene and a defensin-like protein gene, are possibly involved in regulation of non-symbiotic bacterial infections. Our study presents the first transcriptomic data on gut symbiotic organ of a stinkbug, which provides initial clues to understanding of molecular mechanisms underlying the insect-bacterium gut symbiosis and sheds light on several intriguing commonalities between endocellular and extracellular symbiotic associations. PMID:23691247

  5. Integrating Epigenomic Elements and GWASs Identifies BDNF Gene Affecting Bone Mineral Density and Osteoporotic Fracture Risk

    PubMed Central

    Guo, Yan; Dong, Shan-Shan; Chen, Xiao-Feng; Jing, Ying-Aisha; Yang, Man; Yan, Han; Shen, Hui; Chen, Xiang-Ding; Tan, Li-Jun; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2016-01-01

    To identify susceptibility genes for osteoporosis, we conducted an integrative analysis that combined epigenomic elements and previous genome-wide association studies (GWASs) data, followed by validation at population and functional levels, which could identify common regulatory elements and predict new susceptibility genes that are biologically meaningful to osteoporosis. By this approach, we found a set of distinct epigenomic elements significantly enriched or depleted in the promoters of osteoporosis-associated genes, including 4 transcription factor binding sites, 27 histone marks, and 21 chromatin states segmentation types. Using these epigenomic marks, we performed reverse prediction analysis to prioritize the discovery of new candidate genes. Functional enrichment analysis of all the prioritized genes revealed several key osteoporosis related pathways, including Wnt signaling. Genes with high priority were further subjected to validation using available GWASs datasets. Three genes were significantly associated with spine bone mineral density, including BDNF, PDE4D, and SATB2, which all closely related to bone metabolism. The most significant gene BDNF was also associated with osteoporotic fractures. RNA interference revealed that BDNF knockdown can suppress osteoblast differentiation. Our results demonstrated that epigenomic data could be used to indicate common epigenomic marks to discover additional loci with biological functions for osteoporosis. PMID:27465306

  6. Integrating Epigenomic Elements and GWASs Identifies BDNF Gene Affecting Bone Mineral Density and Osteoporotic Fracture Risk.

    PubMed

    Guo, Yan; Dong, Shan-Shan; Chen, Xiao-Feng; Jing, Ying-Aisha; Yang, Man; Yan, Han; Shen, Hui; Chen, Xiang-Ding; Tan, Li-Jun; Tian, Qing; Deng, Hong-Wen; Yang, Tie-Lin

    2016-01-01

    To identify susceptibility genes for osteoporosis, we conducted an integrative analysis that combined epigenomic elements and previous genome-wide association studies (GWASs) data, followed by validation at population and functional levels, which could identify common regulatory elements and predict new susceptibility genes that are biologically meaningful to osteoporosis. By this approach, we found a set of distinct epigenomic elements significantly enriched or depleted in the promoters of osteoporosis-associated genes, including 4 transcription factor binding sites, 27 histone marks, and 21 chromatin states segmentation types. Using these epigenomic marks, we performed reverse prediction analysis to prioritize the discovery of new candidate genes. Functional enrichment analysis of all the prioritized genes revealed several key osteoporosis related pathways, including Wnt signaling. Genes with high priority were further subjected to validation using available GWASs datasets. Three genes were significantly associated with spine bone mineral density, including BDNF, PDE4D, and SATB2, which all closely related to bone metabolism. The most significant gene BDNF was also associated with osteoporotic fractures. RNA interference revealed that BDNF knockdown can suppress osteoblast differentiation. Our results demonstrated that epigenomic data could be used to indicate common epigenomic marks to discover additional loci with biological functions for osteoporosis. PMID:27465306

  7. P-Element Insertion Alleles of Essential Genes on the Third Chromosome of Drosophila Melanogaster: Mutations Affecting Embryonic Pns Development

    PubMed Central

    Salzberg, A.; Prokopenko, S. N.; He, Y.; Tsai, P.; Pal, M.; Maroy, P.; Glover, D. M.; Deak, P.; Bellen, H. J.

    1997-01-01

    To identify novel genes and to isolate tagged mutations in known genes that are required for the development of the peripheral nervous system (PNS), we have screened a novel collection of 2460 strains carrying lethal or semilethal P-element insertions on the third chromosome. Monoclonal antibody 22C10 was used as a marker to visualize the embryonic PNS. We identified 109 mutant strains that exhibited reproducible phenotypes in the PNS. Cytological and genetic analyses of these strains indicated that 87 mutations affect previously identified genes: tramtrack (n = 18 alleles), string (n = 15), cyclin A (n = 13), single-minded (n = 13), Delta (n = 9), neuralized (n = 4), pointed (n = 4), extra macrochaetae (n = 4), prospero (n = 3), tartan (n = 2), and pebble (n = 2). In addition, 13 mutations affect genes that we identified recently in a chemical mutagenesis screen designed to isolate similar mutants: hearty (n = 3), dorsotonals (n = 2), pavarotti (n = 2), sanpodo (n = 2), dalmatian (n = 1), missensed (n = 1), senseless (n = 1), and sticky ch1 (n = 1). The remaining nine mutations define seven novel complementation groups. The data presented here demonstrate that this collection of P elements will be useful for the identification and cloning of novel genes on the third chromosome, since >70% of mutations identified in the screen are caused by the insertion of a P element. A comparison between this screen and a chemical mutagenesis screen undertaken earlier highlights the complementarity of the two types of genetic screens. PMID:9409832

  8. Identification of common regulators of genes in co-expression networks affecting muscle and meat properties.

    PubMed

    Ponsuksili, Siriluck; Siengdee, Puntita; Du, Yang; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus

    2015-01-01

    Understanding the genetic contributions behind skeletal muscle composition and metabolism is of great interest in medicine and agriculture. Attempts to dissect these complex traits combine genome-wide genotyping, expression data analyses and network analyses. Weighted gene co-expression network analysis (WGCNA) groups genes into modules based on patterns of co-expression, which can be linked to phenotypes by correlation analysis of trait values and the module eigengenes, i.e. the first principal component of a given module. Network hub genes and regulators of the genes in the modules are likely to play an important role in the emergence of respective traits. In order to detect common regulators of genes in modules showing association with meat quality traits, we identified eQTL for each of these genes, including the highly connected hub genes. Additionally, the module eigengene values were used for association analyses in order to derive a joint eQTL for the respective module. Thereby major sites of orchestrated regulation of genes within trait-associated modules were detected as hotspots of eQTL of many genes of a module and of its eigengene. These sites harbor likely common regulators of genes in the modules. We exemplarily showed the consistent impact of candidate common regulators on the expression of members of respective modules by RNAi knockdown experiments. In fact, Cxcr7 was identified and validated as a regulator of genes in a module, which is involved in the function of defense response in muscle cells. Zfp36l2 was confirmed as a regulator of genes of a module related to cell death or apoptosis pathways. The integration of eQTL in module networks enabled to interpret the differentially-regulated genes from a systems perspective. By integrating genome-wide genomic and transcriptomic data, employing co-expression and eQTL analyses, the study revealed likely regulators that are involved in the fine-tuning and synchronization of genes with trait

  9. Identification of Common Regulators of Genes in Co-Expression Networks Affecting Muscle and Meat Properties

    PubMed Central

    Ponsuksili, Siriluck; Siengdee, Puntita; Du, Yang; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus

    2015-01-01

    Understanding the genetic contributions behind skeletal muscle composition and metabolism is of great interest in medicine and agriculture. Attempts to dissect these complex traits combine genome-wide genotyping, expression data analyses and network analyses. Weighted gene co-expression network analysis (WGCNA) groups genes into modules based on patterns of co-expression, which can be linked to phenotypes by correlation analysis of trait values and the module eigengenes, i.e. the first principal component of a given module. Network hub genes and regulators of the genes in the modules are likely to play an important role in the emergence of respective traits. In order to detect common regulators of genes in modules showing association with meat quality traits, we identified eQTL for each of these genes, including the highly connected hub genes. Additionally, the module eigengene values were used for association analyses in order to derive a joint eQTL for the respective module. Thereby major sites of orchestrated regulation of genes within trait-associated modules were detected as hotspots of eQTL of many genes of a module and of its eigengene. These sites harbor likely common regulators of genes in the modules. We exemplarily showed the consistent impact of candidate common regulators on the expression of members of respective modules by RNAi knockdown experiments. In fact, Cxcr7 was identified and validated as a regulator of genes in a module, which is involved in the function of defense response in muscle cells. Zfp36l2 was confirmed as a regulator of genes of a module related to cell death or apoptosis pathways. The integration of eQTL in module networks enabled to interpret the differentially-regulated genes from a systems perspective. By integrating genome-wide genomic and transcriptomic data, employing co-expression and eQTL analyses, the study revealed likely regulators that are involved in the fine-tuning and synchronization of genes with trait

  10. Suppression of PCD-related genes affects salt tolerance in Arabidopsis.

    PubMed

    Bahieldin, Ahmed; Alqarni, Dhafer A M; Atef, Ahmed; Gadalla, Nour O; Al-Matary, Mohammed; Edris, Sherif; Al-Kordy, Magdy A; Makki, Rania M; Al-Doss, Abdullah A; Sabir, Jamal S M; Mutwakil, Mohammed H Z; El-Domyati, Fotouh M

    2016-01-01

    This work aims at examining a natural exciting phenomenon suggesting that suppression of genes inducing programmed cell death (PCD) might confer tolerance against abiotic stresses in plants. PCD-related genes were induced in tobacco under oxalic acid (OA) treatment (20mM), and plant cells were characterized to confirm the incidence of PCD. The results indicated that PCD was triggered 24h after the exposure to OA. Then, RNAs were extracted from tobacco cells 0, 2, 6, 12 and 24h after treatment for deep sequencing. RNA-Seq analyses were done with a special emphasis to clusters whose PCD-related genes were upregulated after 2h of OA exposure. Accordingly, 23 tobacco PCD-related genes were knocked down via virus-induced gene silencing (VIGS), whereas our results indicated the influence of five of them on inducing or suppressing PCD. Knockout T-DNA insertion mutants of these five genes in Arabidopsis were tested under salt stress (0, 100, 150, and 200mM NaCl), and the results indicated that a mutant of an antiapoptotic gene, namely Bax Inhibitor-1 (BI-1), whose VIGS induced PCD in tobacco, was salt sensitive, while a mutant of an apoptotic gene, namely mildew resistance locus O (Mlo), whose VIGS suppressed PCD, was salt tolerant as compared to the WT (Col) control. These data support our hypothesis that retarding PCD-inducing genes can result in higher levels of salt tolerance, while retarding PCD-suppressing genes can result in lower levels of salt tolerance in plants. PMID:27052474

  11. Endocrine-disrupting activity of chemicals in diesel exhaust and diesel exhaust particles.

    PubMed

    Takeda, Ken; Tsukue, Naomi; Yoshida, Seiichi

    2004-01-01

    Diesel exhaust (DE) is known as the main cause of air pollution. DE is a complex mixture of particulate and vapor-phase compounds. The soluble organic fraction of the particulate materials in DE contains thousands of compounds including a variety of polycyclic aromatic hydrocarbons and heavy metals. To clarify the endocrine-disrupting activities of DE, we have reviewed the reports about the effects of DE on the reproductive and brain-nervous systems, and the endocrine-disrupting action of diesel exhaust particles (DEP). In utero exposure to low levels (0.1 mg DEP/m3) of DE from day 2 postcoitum (p.c.) until day 13 p.c. reduced the expression level of Ad4BP/SF-1 mRNA and thereby might affect the development of gonads. Low levels of DE also reduced the expression of several genes known to play key roles in gonadal development, including an enzyme necessary for testosterone synthesis. Mature male rats exposed to DE during the fetal period showed an irreversible decrease in daily sperm production due to an insufficient number of Sertoli cells. DE exposure during the fetal period influenced the brain tissue in newborn mice. In the 3 mg DEP/m3 exposure group at 10 weeks of age, a significant reduction in performance was observed in the passive avoidance learning test in both male and female mice. In addition, the fetal exposure of mice to DE affected the emotional behaviors associated with the serotonergic and dopaminergic systems in the mouse brain. In toluidine blue-stained specimens from the DE-exposed group, edema around the vessels where fluorescent granular perithelial (FGP) cells exist and degenerated granules within the FGP cytoplasm were observed; similar findings were obtained by electron microscopic examination. DEP contain many substances that stimulate Ah receptors, such as the polycyclic aromatic hydrocarbon containing benzo[a]pyrene. DEP also contain substances with estrogenic, antiestrogenic and antiandrogenic activities. The neutral substance fraction of

  12. HLA non-class II genes may confer type I diabetes susceptibility in a Mapuche (Amerindian) affected family.

    PubMed

    Pérez-Bravo, Francisco; Martinez-Laso, Jorge; Martin-Villa, Jose M; Moscoso, Juan; Moreno, Almudena; Serrano-Vela, Juan I; Zamora, Jorge; Asenjo, Silvia; Gleisner, Andrea; Arnaiz-Villena, Antonio

    2006-01-01

    A rare case of type I diabetes is studied in an Amerindian (Mapuche) family from Chile, analyzing glutamic acid decarboxylase, islet-cell autoantibodies and human leukocyte antigen (HLA) genes. The affected sib is the only one that has one specific HLA haplotype combination that differs from the other sibs only in the HLA class I genes. It is concluded that HLA diabetes susceptibility factors may be placed outside the class II region or even that susceptibility factors do not exist in the HLA region in this Amerindian family. PMID:16473308

  13. *GAS-PHASE AND PARTICULATE COMPONENTS OF DIESEL EXHAUST PRODUCE DIFFERENTIAL CARDIOPHYSIOLOGICAL IMPAIRMENTS IN HEALTHY RATS

    EPA Science Inventory

    We recently showed that inhalation exposure of normotensive Wistar Kyoto (WKY) rats to whole diesel exhaust (DE) elicited changes in cardiac gene expression pattern that broadly mimicked gene expression in non-exposed spontaneously hypertensive rats. We hypothesized that healthy ...

  14. Identification of nuclear genes affecting 2-Deoxyglucose resistance in Schizosaccharomyces pombe.

    PubMed

    Vishwanatha, Akshay; Rallis, Charalampos; Bevkal Subramanyaswamy, Shubha; D'Souza, Cletus Joseph Michael; Bähler, Jürg; Schweingruber, Martin Ernst

    2016-09-01

    2-Deoxyglucose (2-DG) is a toxic glucose analog. To identify genes involved in 2-DG toxicity in Schizosaccharomyces pombe, we screened a wild-type overexpression library for genes which render cells 2-DG resistant. A gene we termed odr1, encoding an uncharacterized hydrolase, led to strong resistance and altered invertase expression when overexpressed. We speculate that Odr1 neutralizes the toxic form of 2-DG, similar to the Saccharomyces cerevisiae Dog1 and Dog2 phosphatases which dephosphorylate 2-DG-6-phosphate synthesized by hexokinase. In a complementary approach, we screened a haploid deletion library to identify 2-DG-resistant mutants. This screen identified the genes snf5, ypa1, pas1 and pho7 In liquid medium, deletions of these genes conferred 2-DG resistance preferentially under glucose-repressed conditions. The deletion mutants expressed invertase activity more constitutively than the control strain, indicating defects in the control of glucose repression. No S. cerevisiae orthologs of the pho7 gene is known, and no 2-DG resistance has been reported for any of the deletion mutants of the other genes identified here. Moreover, 2-DG leads to derepressed invertase activity in S. pombe, while in S. cerevisiae it becomes repressed. Taken together, these findings suggest that mechanisms involved in 2-DG resistance differ between budding and fission yeasts. PMID:27481777

  15. Silver nanoparticles administered to chicken affect VEGFA and FGF2 gene expression in breast muscle and heart

    NASA Astrophysics Data System (ADS)

    Hotowy, Anna; Sawosz, Ewa; Pineda, Lane; Sawosz, Filip; Grodzik, Marta; Chwalibog, André

    2012-07-01

    Nanoparticles of colloidal silver (AgNano) can influence gene expression. Concerning trials of AgNano application in poultry nutrition, it is useful to reveal whether they affect the expression of genes crucial for bird development. AgNano were administered to broiler chickens as a water solution in two concentrations (10 and 20 ppm). After dissection of the birds, breast muscles and hearts were collected. Gene expression of FGF2 and VEGFA on the mRNA and protein levels were evaluated using quantitative polymerase chain reaction and enzyme-linked immunosorbent assay methods. The results for gene expression in the breast muscle revealed changes on the mRNA level ( FGF2 was up-regulated, P < 0.05) but not on the protein level. In the heart, 20 ppm of silver nanoparticles in drinking water increased the expression of VEGFA ( P < 0.05), at the same time decreasing FGF2 expression both on the transcriptional and translational levels. Changes in the expression of these genes may lead to histological changes, but this needs to be proven using histological and immunohistochemical examination of tissues. In general, we showed that AgNano application in poultry feeding influences the expression of FGF2 and VEGFA genes on the mRNA and protein levels in growing chicken.

  16. Transcriptome expression analysis of candidate milk genes affecting cheese-related traits in 2 sheep breeds.

    PubMed

    Suárez-Vega, A; Gutiérrez-Gil, B; Arranz, J J

    2016-08-01

    Because ewe milk is principally used for cheese making, its quality is related to its content of total solids and the way in which milk constituents influence cheese yield and determine the technological and organoleptic characteristics of dairy products. Therefore, an in-depth knowledge of the expression levels of milk genes influencing cheese-related traits is essential. In the present study, the milk transcriptome data set of 2 dairy sheep breeds, Assaf and Spanish Churra, was used to evaluate the expression levels of 77 transcripts related to cheese yield and quality traits. For the comparison between both breeds, we selected the RNA sequencing (RNA-Seq) data at d 10 of lactation because this is the time point at which within and between breed differences due to lactation length are minimal. The evaluated genes encode major milk proteins (caseins and whey proteins), endogenous proteases, and enzymes related to fatty acid metabolism and citrate content. Through this analysis, we identified the genes predominantly expressed in each of the analyzed pathways that appear to be key genes for traits related to sheep milk cheese. Among the highly expressed genes in both breeds were the genes encoding caseins and whey proteins (CSN2, CSN3, CSN1S1, ENSOARG00000005099/PAEP, CSN1S2, LALBA), genes related to lipid metabolism (BTN1A1, XDH, FASN, ADFP, SCD, H-FABP, ACSS2), and one endogenous protease (CTSB). Moreover, a differential expression analysis between Churra and Assaf sheep allowed us to identify 7 genes that are significantly differentially expressed between the 2 breeds. These genes were mainly linked to endogenous protease activity (CTSL, CTSK, KLK10, KLK6, SERPINE2). Additionally, there were 2 differentially expressed genes coding for an intracellular fatty acid transporter (FABP4), an intermediate molecule of the citric acid cycle (SUCNR1), and 2 heat shock proteins (HSP70, HSPB8) that could be related to high protein production. The differential expression of

  17. Sharp gene pool transition in a population affected by phenotype-based selective hunting

    NASA Astrophysics Data System (ADS)

    Brigatti, E.; Sá Martins, J. S.; Roditi, I.

    2005-06-01

    We use a microscopic model of population dynamics, a modified version of the well known Penna model, to study some aspects of microevolution. This research is motivated by recent reports on the effect of selective hunting on the gene pool of bighorn sheep living in the Ram Mountain region, in Canada. Our model finds a sharp transition in the structure of the gene pool as some threshold for the number of animals hunted is reached.

  18. Variable area exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Johnston, E. A. (Inventor)

    1979-01-01

    An exhaust nozzle for a gas turbine engine comprises a number of arcuate flaps pivotally connected to the trailing edge of a cylindrical casing which houses the engine. Seals disposed within the flaps are spring biased and extensible beyond the side edges of the flaps. The seals of adjacent flaps are maintained in sealing engagement with each other when the flaps are adjusted between positions defining minimum nozzle flow area and the cruise position. Extensible, spring biased seals are also disposed within the flaps adjacent to a supporting pylon to thereby engage the pylon in a sealing arrangement. The flaps are hinged to the casing at the central portion of the flaps' leading edges and are connected to actuators at opposed outer portions of the leading edges to thereby maximize the mechanical advantage in the actuation of the flaps.

  19. Aircraft exhaust sulfur emissions

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Anderson, M. R.; Miake-Lye, R. C.; Kolb, C. E.; Sorokin, A. A.; Buriko, Y. Y.

    The conversion of fuel sulfur to S(VI) (SO3 + H2SO4) in supersonic and subsonic aircraft engines is estimated numerically. Model results indicate between 2% and 10% of the fuel sulfur is emitted as S(VI). It is also shown that, for a high sulfur mass loading, conversion in the turbine is kinetically limited by the level of atomic oxygen. This results in a higher oxidation efficiency at lower sulfur loadings. SO3 is the primary S(VI) oxidation product and calculated H2SO4 emission levels were less than 1% of the total fuel sulfur. This source of S(VI) can exceed the S(VI) source due to gas phase oxidation in the exhaust wake.

  20. Enrichment of SNPs in Functional Categories Reveals Genes Affecting Complex Traits.

    PubMed

    Zhao, Huiying; Fan, Dongsheng; Nyholt, Dale R; Yang, Yuedong

    2016-08-01

    Genome-wide association studies (GWAS) have indicated potential to identify heritability of common complex phenotypes, but traditional approaches have limited ability to detect hiding signals because single SNP has weak effect size accounting for only a small fraction of overall phenotypic variations. To improve the power of GWAS, methods have been developed to identify truly associated genes by jointly testing effects of all SNPs. However, equally considering all SNPs within a gene might dilute strong signals of SNPs in real functional categories. Here, we observed a consistent pattern on enrichment of significant SNPs in eight functional categories across six phenotypes, with the highest enrichment in coding and both UTR regions while the lowest enrichment in the intron. Based on the pattern of SNP enrichment in functional categories, we developed a new approach for detecting gene associations on traits (DGAT) by selecting the most significant functional category and then using SNPs within it to assess gene associations. The method was found to be robust in type I error rate on simulated data, and to have mostly higher power in detecting associated genes for three different diseases than other methods. Further analysis indicated ability of the DGAT to detect novel genes. The DGAT is available by http://sparks-lab.org/server/DGAT. PMID:27113629

  1. Selank Administration Affects the Expression of Some Genes Involved in GABAergic Neurotransmission

    PubMed Central

    Volkova, Anastasiya; Shadrina, Maria; Kolomin, Timur; Andreeva, Lyudmila; Limborska, Svetlana; Myasoedov, Nikolay; Slominsky, Petr

    2016-01-01

    Clinical studies have shown the similarity of the spectrum of physiological effects of Selank and classical benzodiazepines, such as diazepam and phenazepam. These data suggest that there is a similar basis of their mechanism of action. To test this hypothesis we studied the effect of Selank and GABA on the expression of genes involved in neurotransmission. We analyzed the expression of 84 genes involved in neurotransmission (e.g., major subunit of the GABA receptor, transporters, ion channels, dopamine, and serotonin receptors) in the frontal cortex of rats 1 and 3 h after the administration of Selank or GABA (300 μg/kg) using real-time PCR method. We found significant changes in the expression of 45 genes 1 h after the administration of the compounds. Three hours after Selank or GABA administration, 22 genes changed their expression. We found positive correlation between the changes in genes expression within 1 h after administration of Selank or GABA. Our results showed that Selank caused a number of alterations in the expression of genes involved in neurotransmission. The data obtained indicate that Selank is characterized by its complex effects on nerve cells, and one of its possible molecular mechanisms is associated with allosteric modulation of the GABAergic system. PMID:26924987

  2. Identification of genes affecting expression of phosphoglycerate kinase on the surface of group B streptococcus.

    PubMed

    Boone, Tyler J; Tyrrell, Gregory J

    2012-04-01

    Group B streptococcal phosphoglycerate kinase (GBS-PGK), a glycolytic enzyme, has previously been identified on the surface of group B streptococcus (GBS). To identify genes involved in surface expression of GBS-PGK, we performed Tn917 mutagenesis followed by quantification of PGK expressed on the GBS surface. Tn917 mutagenesis identified 4 genes (sag0966, sag0979, sag0980, and sag1003) that when disrupted, alter expression of GBS-PGK on the bacterial surface. Three of the identified genes were localized to a region of the GBS genome containing genes (sag0973-sag0977) predicted to be involved in resistance to antimicrobial peptides. One mutant isolate, designated NCS13sag1003::Tn917, was found to have increased sensitivity to the antimicrobial peptides bacitracin and nisin. In addition, all of the mutant strains assayed were found to have decreased β-hemolysis. In conclusion, we have identified genes involved in surface expression of GBS-PGK. These genes also appear to be involved in antimicrobial peptide resistance and regulate expression of the β-hemolysin. PMID:22444251

  3. AMS-dependent and independent regulation of anther transcriptome and comparison with those affected by other Arabidopsis anther genes

    PubMed Central

    2012-01-01

    Background In flowering plants, the development of male reproductive organs is controlled precisely to achieve successful fertilization and reproduction. Despite the increasing knowledge of genes that contribute to anther development, the regulatory mechanisms controlling this process are still unclear. Results In this study, we analyzed the transcriptome profiles of early anthers of sterile mutants aborted microspores (ams) and found that 1,368 genes were differentially expressed in ams compared to wild type anthers, affecting metabolism, transportation, ubiquitination and stress response. Moreover, the lack of significant enrichment of potential AMS binding sites (E-box) in the promoters of differentially expressed genes suggests both direct and indirect regulation for AMS-dependent regulation of anther transcriptome involving other transcription factors. Combining ams transcriptome profiles with those of two other sterile mutants, spl/nzz and ems1/exs, expression of 3,058 genes were altered in at least one mutant. Our investigation of expression patterns of major transcription factor families, such as bHLH, MYB and MADS, suggested that some closely related homologs of known anther developmental genes might also have similar functions. Additionally, comparison of expression levels of genes in different organs suggested that anther-preferential genes could play important roles in anther development. Conclusion Analysis of ams anther transcriptome and its comparison with those of spl/nzz and ems1/exs anthers uncovered overlapping and distinct sets of regulated genes, including those encoding transcription factors and other proteins. These results support an expanded regulatory network for early anther development, providing a series of hypotheses for future experimentation. PMID:22336428

  4. Mutations in exons of the CYP17-II gene affect sex steroid concentration in male Japanese flounder ( Paralichthys olivaceus)

    NASA Astrophysics Data System (ADS)

    Ma, Ruiqin; He, Feng; Wen, Haishen; Li, Jifang; Shi, Bao; Shi, Dan; Liu, Miao; Mu, Weijie; Zhang, Yuanqing; Hu, Jian; Han, Weiguo; Zhang, Jianan; Wang, Qingqing; Yuan, Yuren; Liu, Qun

    2012-03-01

    As a specific gene of fish, cytochrome P450c17-II ( CYP17-II) gene plays a key role in the growth, development an reproduction level of fish. In this study, the single-stranded conformational polymorphism (SSCP) technique was used to characterize polymorphisms within the coding region of CYP17-II gene in a population of 75 male Japanese flounder ( Paralichthys olivaceus). Three single nucleotide polymorphisms (SNPs) were identified in CYP17-II gene of Japanese flounder. They were c.G594A (p.G188R), c.G939A and c.G1502A (p.G490D). SNP1 (c.G594A), located in exon 4 of CYP17-II gene, was significantly associated with gonadosomatic index (GSI). Individuals with genotype GG of SNP1 had significantly lower GSI ( P < 0.05) than those with genotype AA or AG. SNP2 (c.G939A) located at the CpG island of CYP17-II gene. The mutation changed the methylation of exon 6. Individuals with genotype AA of SNP2 had significantly lower serum testosterone (T) level and hepatosomatic index (HSI) compared to those with genotype GG. The results suggested that SNP2 could influence the reproductive endocrine of male Japanese flounder. However, the SNP3 (c.G1502A) located in exon 9 did not affect the four measured reproductive traits. This study showed that CYP17-II gene could be a potentially useful candidate gene for the research of genetic breeding and physiological aspects of Japanese flounder.

  5. MOT2 encodes a negative regulator of gene expression that affects basal expression of pheromone-responsive genes in Saccharomyces cerevisiae.

    PubMed Central

    Cade, R M; Errede, B

    1994-01-01

    Pheromones induce haploid cells of Saccharomyces cerevisiae to differentiate into a mating-competent state. Ste11p is one of several protein kinases required to transmit the pheromone-induced signal and to maintain basal expression of certain mating-specific genes in the absence of pheromone stimulation. To identify potential regulators of Ste11p, we screened for suppressors that restored mating and basal transcriptional competence to a strain with a conditionally functional Ste11p. This screen uncovered a novel gene we call MOT2, for modulator of transcription. A mot2 deletion mutation leads to modest increases in the basal amounts of mRNA for several pheromone-responsive genes. Yet mot2 deletion does not affect the signal transmission activity of the pathway in either the presence or absence of pheromone stimulation. Therefore, we propose that Mot2p, directly or indirectly, represses basal transcription of certain mating-specific genes. Because mot2 deletion mutants also have a conditional cell lysis phenotype, we expect that Mot2p regulatory effects may be more global than for mating-specific gene expression. Images PMID:8164669

  6. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping

    PubMed Central

    Broekgaarden, Colette; Bucher, Johan; Bac-Molenaar, Johanna; Keurentjes, Joost J. B.; Kruijer, Willem; Voorrips, Roeland E.; Vosman, Ben

    2015-01-01

    Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects. PMID:26699853

  7. Low-temperature affected LC-PUFA conversion and associated gene transcript level in Nannochloropsis oculata CS-179

    NASA Astrophysics Data System (ADS)

    Ma, Xiaolei; Zhang, Lin; Zhu, Baohua; Pan, Kehou; Li, Si; Yang, Guanpin

    2011-09-01

    Nannochloropsis oculata CS-179, a marine eukaryotic unicellular microalga, is rich in long-chain polyunsaturated fatty acids (LC-PUFAs). Culture temperature affected cell growth and the composition of LC-PUFAs. At an initial cell density of 1.5 × 106 cell mL-1, the highest growth was observed at 25°C and the cell density reached 3 × 107 cell mL-1 at the beginning of logarithmic phase. The content of LC-PUFAs varied with culture temperature. The highest content of LC-PUFAs (43.96%) and EPA (36.6%) was gained at 20°C. Real-time PCR showed that the abundance of Δ6-desaturase gene transcripts was significantly different among 5 culture temperatures and the highest transcript level (15°C) of Nanoc-D6D took off at cycle 21.45. The gene transcript of C20-elongase gene was higher at lower temperatures (10, 15, and 20°C), and the highest transcript level (20°C) of Nanoc-E took off at cycle 21.18. The highest conversion rate (39.3%) of Δ6-desaturase was also gained at 20°C. But the conversion rate of Nanoc-E was not detected. The higher content of LC-PUFAs was a result of higher gene transcript level and higher enzyme activity. Compared with C20-elongase gene, Δ6-desaturase gene transcript and enzyme activity varied significantly with temperature. It will be useful to study the mechanism of how the content of LC-PUFAs is affected by temperature.

  8. The synthetic gestagen levonorgestrel directly affects gene expression in thyroid and pituitary glands of Xenopus laevis tadpoles.

    PubMed

    Lorenz, Claudia; Opitz, Robert; Trubiroha, Achim; Lutz, Ilka; Zikova, Andrea; Kloas, Werner

    2016-08-01

    The synthetic gestagen levonorgestrel (LNG) was previously shown to perturb thyroid hormone-dependent metamorphosis in Xenopus laevis. However, so far the mechanisms underlying the anti-metamorphic effects of LNG remained unknown. Therefore, a series of in vivo and ex vivo experiments was performed to identify potential target sites of LNG action along the pituitary-thyroid axis of X. laevis tadpoles. Prometamorphic tadpoles were treated in vivo with LNG (0.01-10nM) for 72h and brain-pituitary and thyroid tissue was analyzed for marker gene expression. While no treatment-related changes were observed in brain-pituitary tissue, LNG treatment readily affected thyroidal gene expression in tadpoles including decreased slc5a5 and iyd mRNA expression and a strong induction of dio2 and dio3 expression. When using an ex vivo organ explant culture approach, direct effects of LNG on both pituitary and thyroid gland gene expression were detecTable Specifically, treatment of pituitary explants with 10nM LNG strongly stimulated dio2 expression and concurrently suppressed tshb expression. In thyroid glands, ex vivo LNG treatment induced dio2 and dio3 mRNA expression in a thyrotropin-independent manner. When thyroid explants were cultured in thyrotropin-containing media, LNG caused similar gene expression changes as seen after 72h in vivo treatment including a very strong repression of thyrotropin-induced slc5a5 expression. Concerning the anti-thyroidal activity of LNG as seen under in vivo conditions, our ex vivo data provide clear evidence that LNG directly affects expression of genes important for thyroidal iodide handling as well as genes involved in negative feedback regulation of pituitary tshb expression. PMID:27262936

  9. Acid environments affect biofilm formation and gene expression in isolates of Salmonella enterica Typhimurium DT104.

    PubMed

    O'Leary, Denis; McCabe, Evonne M; McCusker, Matthew P; Martins, Marta; Fanning, Séamus; Duffy, Geraldine

    2015-08-01

    The aim of this study was to examine the survival and potential virulence of biofilm-forming Salmonella Typhimurium DT104 under mild acid conditions. Salmonella Typhimurium DT104 employs an acid tolerance response (ATR) allowing it to adapt to acidic environments. The threat that these acid adapted cells pose to food safety could be enhanced if they also produce biofilms in acidic conditions. The cells were acid-adapted by culturing them in 1% glucose and their ability to form biofilms on stainless steel and on the surface of Luria Bertani (LB) broth at pH7 and pH5 was examined. Plate counts were performed to examine cell survival. RNA was isolated from cells to examine changes in the expression of genes associated with virulence, invasion, biofilm formation and global gene regulation in response to acid stress. Of the 4 isolates that were examined only one (1481) that produced a rigid biofilm in LB broth at pH7 also formed this same structure at pH5. This indicated that the lactic acid severely impeded the biofilm producing capabilities of the other isolates examined under these conditions. Isolate 1481 also had higher expression of genes associated with virulence (hilA) and invasion (invA) with a 24.34-fold and 13.68-fold increase in relative gene expression respectively at pH5 compared to pH7. Although genes associated with biofilm formation had increased expression in response to acid stress for all the isolates this only resulted in the formation of a biofilm by isolate 1481. This suggests that in addition to the range of genes associated with biofilm production at neutral pH, there are genes whose protein products specifically aid in biofilm production in acidic environments. Furthermore, it highlights the potential for the use of lactic acid for the inhibition of Salmonella biofilms. PMID:25912312

  10. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 27.1123 Section 27.1123... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Exhaust System § 27.1123 Exhaust piping. (a) Exhaust piping... operating temperatures. (b) Exhaust piping must be supported to withstand any vibration and inertia loads...

  11. 14 CFR 29.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 29.1123 Section 29.1123... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1123 Exhaust piping. (a) Exhaust... by operating temperatures. (b) Exhaust piping must be supported to withstand any vibration...

  12. Treatment of power utilities exhaust

    DOEpatents

    Koermer, Gerald

    2012-05-15

    Provided is a process for treating nitrogen oxide-containing exhaust produced by a stationary combustion source by the catalytic reduction of nitrogen oxide in the presence of a reductant comprising hydrogen, followed by ammonia selective catalytic reduction to further reduce the nitrogen oxide level in the exhaust.

  13. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  14. Basal Body Structures Differentially Affect Transcription of RpoN- and FliA-Dependent Flagellar Genes in Helicobacter pylori

    PubMed Central

    Tsang, Jennifer

    2015-01-01

    ABSTRACT Flagellar biogenesis in Helicobacter pylori is regulated by a transcriptional hierarchy governed by three sigma factors, RpoD (σ80), RpoN (σ54), and FliA (σ28), that temporally coordinates gene expression with the assembly of the flagellum. Previous studies showed that loss of flagellar protein export apparatus components inhibits transcription of flagellar genes. The FlgS/FlgR two-component system activates transcription of RpoN-dependent genes though an unknown mechanism. To understand better the extent to which flagellar gene regulation is coupled to flagellar assembly, we disrupted flagellar biogenesis at various points and determined how these mutations affected transcription of RpoN-dependent (flaB and flgE) and FliA-dependent (flaA) genes. The MS ring (encoded by fliF) is one of the earliest flagellar structures assembled. Deletion of fliF resulted in the elimination of RpoN-dependent transcripts and an ∼4-fold decrease in flaA transcript levels. FliH is a cytoplasmic protein that functions with the C ring protein FliN to shuttle substrates to the export apparatus. Deletions of fliH and genes encoding C ring components (fliM and fliY) decreased transcript levels of flaB and flgE but had little or no effect on transcript levels of flaA. Transcript levels of flaB and flgE were elevated in mutants where genes encoding rod proteins (fliE and flgBC) were deleted, while transcript levels of flaA was reduced ∼2-fold in both mutants. We propose that FlgS responds to an assembly checkpoint associated with the export apparatus and that FliH and one or more C ring component assist FlgS in engaging this flagellar structure. IMPORTANCE The mechanisms used by bacteria to couple transcription of flagellar genes with assembly of the flagellum are poorly understood. The results from this study identified components of the H. pylori flagellar basal body that either positively or negatively affect expression of RpoN-dependent flagellar genes. Some of these

  15. Iron Content Affects Lipogenic Gene Expression in the Muscle of Nelore Beef Cattle

    PubMed Central

    Diniz, Wellison Jarles da Silva; Coutinho, Luiz Lehmann; Tizioto, Polyana Cristine; Cesar, Aline Silva Mello; Gromboni, Caio Fernando; Nogueira, Ana Rita Araújo; de Oliveira, Priscila Silva Neubern; de Souza, Marcela Maria

    2016-01-01

    Iron (Fe) is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE) genes and metabolic pathways in Longissimus dorsi (LD) muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter. Eight Nelore steers, with extreme genomic estimated breeding values for iron content (Fe-GEBV), were selected from a reference population of 373 animals. From the 49 annotated DE genes (FDR<0.05) found between the two groups, 18 were up-regulated and 31 down-regulated for the animals in the low Fe-GEBV group. The functional enrichment analyses identified several biological processes, such as lipid transport and metabolism, and cell growth. Lipid metabolism was the main pathway observed in the analysis of metabolic and canonical signaling pathways for the genes identified as DE, including the genes FASN, FABP4, and THRSP, which are functional candidates for beef quality, suggesting reduced lipogenic activities with lower iron content. Our results indicate metabolic pathways that are partially influenced by iron, contributing to a better understanding of its participation in skeletal muscle physiology. PMID:27532424

  16. Thyrotropin releasing hormone (TRH) affects gene expression in pancreatic beta-cells.

    PubMed

    Luo, LuGuang; Yano, Naohiro

    2005-01-01

    Thyrotropin-releasing hormone (TRH), originally identified as a hypothalamic hormone, is expressed in the pancreas. The peptide has been shown to control glycemia, although the role of TRH in the pancreas has not yet been clarified. In quiescent INS-1 cells (rat immortalized beta-cell line), 200 nM of TRH for 24 hours significantly increased insulin levels in the culture medium and in cell extracts. In studies with gene array technology where about 60% to 75% of the 1081 genes were detected, TRH significantly stimulated multiple groups of gene expressions, including G-protein-coupled receptor and related signaling, such as insulin secretion, endoplasmic reticulum traffic mechanisms, cell-cycle regulators, protein turnover factors, DNA recombination, and growth factors. Noticeably, TRH suppressed the genes of proapoptotic Bcl-2-associated protein X, Bcl-xL/ Bcl-2-associated death promoter, and Fas. The multiple gene expressions in response to TRH in pancreatic cells suggest that the changed microenvironment brought about by TRH may influence beta-cellfunction. PMID:16392621

  17. Iron Content Affects Lipogenic Gene Expression in the Muscle of Nelore Beef Cattle.

    PubMed

    Diniz, Wellison Jarles da Silva; Coutinho, Luiz Lehmann; Tizioto, Polyana Cristine; Cesar, Aline Silva Mello; Gromboni, Caio Fernando; Nogueira, Ana Rita Araújo; de Oliveira, Priscila Silva Neubern; Souza, Marcela Maria de; Regitano, Luciana Correia de Almeida

    2016-01-01

    Iron (Fe) is an essential mineral for metabolism and plays a central role in a range of biochemical processes. Therefore, this study aimed to identify differentially expressed (DE) genes and metabolic pathways in Longissimus dorsi (LD) muscle from cattle with divergent iron content, as well as to investigate the likely role of these DE genes in biological processes underlying beef quality parameters. Samples for RNA extraction for sequencing and iron, copper, manganese, and zinc determination were collected from LD muscles at slaughter. Eight Nelore steers, with extreme genomic estimated breeding values for iron content (Fe-GEBV), were selected from a reference population of 373 animals. From the 49 annotated DE genes (FDR<0.05) found between the two groups, 18 were up-regulated and 31 down-regulated for the animals in the low Fe-GEBV group. The functional enrichment analyses identified several biological processes, such as lipid transport and metabolism, and cell growth. Lipid metabolism was the main pathway observed in the analysis of metabolic and canonical signaling pathways for the genes identified as DE, including the genes FASN, FABP4, and THRSP, which are functional candidates for beef quality, suggesting reduced lipogenic activities with lower iron content. Our results indicate metabolic pathways that are partially influenced by iron, contributing to a better understanding of its participation in skeletal muscle physiology. PMID:27532424

  18. Nuclear pore components affect distinct stages of intron-containing gene expression

    PubMed Central

    Bonnet, Amandine; Bretes, Hugo; Palancade, Benoit

    2015-01-01

    Several nuclear pore-associated factors, including the SUMO-protease Ulp1, have been proposed to prevent the export of intron-containing messenger ribonucleoparticles (mRNPs) in yeast. However, the molecular mechanisms of this nuclear pore-dependent mRNA quality control, including the sumoylated targets of Ulp1, have remained unidentified. Here, we demonstrate that the apparent ‘pre-mRNA leakage’ phenotype arising upon ULP1 inactivation is shared by sumoylation mutants of the THO complex, an early mRNP biogenesis factor. Importantly, we establish that alteration of THO complex activity differentially impairs the expression of intronless and intron-containing reporter genes, rather than triggering bona fide ‘pre-mRNA leakage’. Indeed, we show that the presence of introns within THO target genes attenuates the effect of THO inactivation on their transcription. Epistasis analyses further clarify that different nuclear pore components influence intron-containing gene expression at distinct stages. Ulp1, whose maintenance at nuclear pores depends on the Nup84 complex, impacts on THO-dependent gene expression, whereas the nuclear basket-associated Mlp1/Pml39 proteins prevent pre-mRNA export at a later stage, contributing to mRNA quality control. Our study thus highlights the multiplicity of mechanisms by which nuclear pores contribute to gene expression, and further provides the first evidence that intronic sequences can alleviate early mRNP biogenesis defects. PMID:25845599

  19. Novel polymorphisms of the APOA2 gene and its promoter region affect body traits in cattle.

    PubMed

    Zhou, Yang; Li, Caixia; Cai, Hanfang; Xu, Yao; Lan, Xianyong; Lei, Chuzhao; Chen, Hong

    2013-12-01

    Apolipoprotein A-II (APOA2) is one of the major constituents of high-density lipoprotein and plays a critical role in lipid metabolism and obesity. However, similar research for the bovine APOA2 gene is lacking. In this study, polymorphisms of the bovine APOA2 gene and its promoter region were detected in 1021 cows from four breeds by sequencing and PCR-RFLP methods. Totally, we detected six novel mutations which included one mutation in the promoter region, two mutations in the exons and three mutations in the introns. There were four polymorphisms within APOA2 gene were analyzed. The allele A, T, T and G frequencies of the four loci were predominant in the four breeds when in separate or combinations analysis which suggested cows with those alleles to be more adapted to the steppe environment. The association analysis indicated three SVs in Nangyang cows, two SVs in Qinchun cows and the 9 haplotypes in Nangyang cows were significantly associated with body traits (P<0.05 or P<0.01). The results of this study suggested the bovine APOA2 gene may be a strong candidate gene for body traits in the cattle breeding program. PMID:24004543

  20. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen

    PubMed Central

    Mendes-Pereira, Ana M.; Sims, David; Dexter, Tim; Fenwick, Kerry; Assiotis, Ioannis; Kozarewa, Iwanka; Mitsopoulos, Costas; Hakas, Jarle; Zvelebil, Marketa; Lord, Christopher J.; Ashworth, Alan

    2012-01-01

    Therapies that target estrogen signaling have made a very considerable contribution to reducing mortality from breast cancer. However, resistance to tamoxifen remains a major clinical problem. Here we have used a genome-wide functional profiling approach to identify multiple genes that confer resistance or sensitivity to tamoxifen. Combining whole-genome shRNA screening with massively parallel sequencing, we have profiled the impact of more than 56,670 RNA interference reagents targeting 16,487 genes on the cellular response to tamoxifen. This screen, along with subsequent validation experiments, identifies a compendium of genes whose silencing causes tamoxifen resistance (including BAP1, CLPP, GPRC5D, NAE1, NF1, NIPBL, NSD1, RAD21, RARG, SMC3, and UBA3) and also a set of genes whose silencing causes sensitivity to this endocrine agent (C10orf72, C15orf55/NUT, EDF1, ING5, KRAS, NOC3L, PPP1R15B, RRAS2, TMPRSS2, and TPM4). Multiple individual genes, including NF1, a regulator of RAS signaling, also correlate with clinical outcome after tamoxifen treatment. PMID:21482774

  1. Motif effects in Affymetrix GeneChips seriously affect probe intensities

    PubMed Central

    Upton, Graham J. G.; Harrison, Andrew P.

    2012-01-01

    An Affymetrix GeneChip consists of an array of hundreds of thousands of probes (each a sequence of 25 bases) with the probe values being used to infer the extent to which genes are expressed in the biological material under investigation. In this article, we demonstrate that these probe values are also strongly influenced by their precise base sequence. We use data from >28 000 CEL files relating to 10 different Affymetrix GeneChip platforms and involving nearly 1000 experiments. Our results confirm known effects (those due to the T7-primer and the formation of G-quadruplexes) but reveal other effects. We show that there can be huge variations from one experiment to another, and that there may also be sizeable disparities between batches within an experiment and between CEL files within a batch. PMID:22904084

  2. ANTHOCYANINLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis.

    PubMed Central

    Kubo, H; Peeters, A J; Aarts, M G; Pereira, A; Koornneef, M

    1999-01-01

    The ANTHOCYANINLESS2 (ANL2) gene was isolated from Arabidopsis by using the maize Enhancer-Inhibitor transposon tagging system. Sequencing of the ANL2 gene showed that it encodes a homeodomain protein belonging to the HD-GLABRA2 group. As we report here, this homeobox gene is involved in the accumulation of anthocyanin and in root development. Histological observations of the anl2 mutant revealed that the accumulation of anthocyanin was greatly suppressed in subepidermal cells but only slightly reduced in epidermal cells. Furthermore, the primary roots of the anl2 mutant showed an aberrant cellular organization. We discuss a possible role of ANL2 in the accumulation of anthocyanin and cellular organization of the primary root. PMID:10402424

  3. Interaction between bisphenol A and dietary sugar affects global gene transcription in Drosophila melanogaster

    PubMed Central

    Branco, Alan T.; Lemos, Bernardo

    2014-01-01

    Human exposure to environmental toxins is a public health issue. The microarray data available in the Gene Expression Omnibus database under accession number GSE55655 and GSE55670GSE55655GSE55670 show the isolated and combined effects of dietary sugar and two organic compounds present in a variety of plastics [bisphenol A (BPA) and Bis(2-ethylhexyl) phthalate (DEHP)] on global gene expression in Drosophila melanogaster. The study was carried out with samples collected from flies exposed to these compounds for a limited period of time (48 h) in the adult stage, or throughout the entire development of the insect. The arrays were normalized using the limma/Bioconductor package. Differential expression was inferred using linear models in limma and BAGEL. The data show that each compound had its unique consequences to gene expression, and that the individual effect of each organic compound is maximized with the joint ingestion of dietary sugar. PMID:26484116

  4. Exhaust Nozzle Plume and Shock Wave Interaction

    NASA Technical Reports Server (NTRS)

    Castner, Raymond S.; Elmiligui, Alaa; Cliff, Susan

    2013-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the exhaust plume. Both the nozzle exhaust plume shape and the tail shock shape may be affected by an interaction that may alter the vehicle sonic boom signature. The plume and shock interaction was studied using Computational Fluid Dynamics simulation on two types of convergent-divergent nozzles and a simple wedge shock generator. The nozzle plume effects on the lower wedge compression region are evaluated for two- and three-dimensional nozzle plumes. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the deflected lower plume boundary. The sonic boom pressure signature of the wedge is modified by the presence of the plume, and the computational predictions show significant (8 to 15 percent) changes in shock amplitude.

  5. Mod5 protein binds to tRNA gene complexes and affects local transcriptional silencing

    PubMed Central

    Pratt-Hyatt, Matthew; Pai, Dave A.; Haeusler, Rebecca A.; Wozniak, Glenn G.; Good, Paul D.; Miller, Erin L.; McLeod, Ian X.; Yates, John R.; Hopper, Anita K.; Engelke, David R.

    2013-01-01

    The tRNA gene-mediated (tgm) silencing of RNA polymerase II promoters is dependent on subnuclear clustering of the tRNA genes, but genetic analysis shows that the silencing requires additional mechanisms. We have identified proteins that bind tRNA gene transcription complexes and are required for tgm silencing but not required for gene clustering. One of the proteins, Mod5, is a tRNA modifying enzyme that adds an N6-isopentenyl adenosine modification at position 37 on a small number of tRNAs in the cytoplasm, although a subpopulation of Mod5 is also found in the nucleus. Recent publications have also shown that Mod5 has tumor suppressor characteristics in humans as well as confers drug resistance through prion-like misfolding in yeast. Here, we show that a subpopulation of Mod5 associates with tRNA gene complexes in the nucleolus. This association occurs and is required for tgm silencing regardless of whether the pre-tRNA transcripts are substrates for Mod5 modification. In addition, Mod5 is bound to nuclear pre-tRNA transcripts, although they are not substrates for the A37 modification. Lastly, we show that truncation of the tRNA transcript to remove the normal tRNA structure also alleviates silencing, suggesting that synthesis of intact pre-tRNAs is required for the silencing mechanism. These results are discussed in light of recent results showing that silencing near tRNA genes also requires chromatin modification. PMID:23898186

  6. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis.

    PubMed

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha(-1)) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  7. Environmental Conditions Influence Induction of Key ABC-Transporter Genes Affecting Glyphosate Resistance Mechanism in Conyza canadensis

    PubMed Central

    Tani, Eleni; Chachalis, Demosthenis; Travlos, Ilias S.; Bilalis, Dimitrios

    2016-01-01

    Conyza canadensis has been reported to be the most frequent weed species that evolved resistance to glyphosate in various parts of the world. The objective of the present study was to investigate the effect of environmental conditions (temperature and light) on the expression levels of the EPSPS gene and two major ABC-transporter genes (M10 and M11) on glyphosate susceptible (GS) and glyphosate resistant (GR) horseweed populations, collected from several regions across Greece. Real-time PCR was conducted to determine the expression level of the aforementioned genes when glyphosate was applied at normal (1×; 533 g·a.e.·ha−1) and high rates (4×, 8×), measured at an early one day after treatment (DAT) and a later stage (four DAT) of expression. Plants were exposed to light or dark conditions, at three temperature regimes (8, 25, 35 °C). GR plants were made sensitive when exposed to 8 °C with light; those sensitized plants behaved biochemically (shikimate accumulation) and molecularly (expression of EPSPS and ABC-genes) like the GS plants. Results from the current study show the direct link between the environmental conditions and the induction level of the above key genes that likely affect the efficiency of the proposed mechanism of glyphosate resistance. PMID:27104532

  8. JMJD2A attenuation affects cell cycle and tumourigenic inflammatory gene regulation in lipopolysaccharide stimulated neuroectodermal stem cells.

    PubMed

    Das, Amitabh; Chai, Jin Choul; Jung, Kyoung Hwa; Das, Nando Dulal; Kang, Sung Chul; Lee, Young Seek; Seo, Hyemyung; Chai, Young Gyu

    2014-11-01

    JMJD2A is a lysine trimethyl-specific histone demethylase that is highly expressed in a variety of tumours. The role of JMJD2A in tumour progression remains unclear. The objectives of this study were to identify JMJD2A-regulated genes and understand the function of JMJD2A in p53-null neuroectodermal stem cells (p53(-/-) NE-4Cs). We determined the effect of LPS as a model of inflammation in p53(-/-) NE-4Cs and investigated whether the epigenetic modifier JMJD2A alter the expression of tumourigenic inflammatory genes. Global gene expression was measured in JMJD2A knockdown (kd) p53(-/-) NE-4Cs and in LPS-stimulated JMJD2A-kd p53(-/-) NE-4C cells. JMJD2A attenuation significantly down-regulated genes were Cdca2, Ccnd2, Ccnd1, Crebbp, IL6rα, and Stat3 related with cell cycle, proliferation, and inflammatory-disease responses. Importantly, some tumour-suppressor genes including Dapk3, Timp2 and TFPI were significantly up-regulated but were not affected by silencing of the JMJD2B. Furthermore, we confirmed the attenuation of JMJD2A also down-regulated Cdca2, Ccnd2, Crebbp, and Rest in primary NSCs isolated from the forebrains of E15 embryos of C57/BL6J mice with effective p53 inhibitor pifithrin-α (PFT-α). Transcription factor (TF) motif analysis revealed known binding patterns for CDC5, MYC, and CREB, as well as three novel motifs in JMJD2A-regulated genes. IPA established molecular networks. The molecular network signatures and functional gene-expression profiling data from this study warrants further investigation as an effective therapeutic target, and studies to elucidate the molecular mechanism of JMJD2A-kd-dependent effects in neuroectodermal stem cells should be performed. PMID:25193078

  9. A common telomeric gene silencing assay is affected by nucleotide metabolism

    PubMed Central

    Rossmann, Marlies P.; Luo, Weijun; Tsaponina, Olga; Chabes, Andrei; Stillman, Bruce

    2011-01-01

    Telomere-associated position effect variegation (TPEV) in budding yeast has been used as a model for understanding epigenetic inheritance and gene silencing. A widely used assay to identify mutants with improper TPEV employs the URA3 gene at the telomere of chromosome VII-L that can be counter-selected with 5-fluoroorotic acid (5-FOA). 5-FOA resistance has been inferred to represent lack of transcription of URA3 and therefore to represent heterochromatin-induced gene silencing. For two genes implicated in telomere silencing, POL30 and DOT1, we show that the URA3 telomere reporter assay does not reflect their role in heterochromatin formation. Rather, an imbalance in ribonucleotide reductase (RNR), which is induced by 5-FOA, and the specific promoter of URA3 fused to ADH4 at telomere VII-L are jointly responsible for the variegated phenotype. We conclude that metabolic changes caused by the drug employed and certain mutants being studied are incompatible with the use of certain prototrophic markers for TPEV. PMID:21474074

  10. Cognitive Functioning in Affected Sibling Pairs with ADHD: Familial Clustering and Dopamine Genes

    ERIC Educational Resources Information Center

    Loo, Sandra K.; Rich, Erika Carpenter; Ishii, Janeen; McGough, James; McCracken, James; Nelson, Stanley; Smalley, Susan L.

    2008-01-01

    Background: This paper examines familiality and candidate gene associations of cognitive measures as potential endophenotypes in attention-deficit/hyperactivity disorder (ADHD). Methods: The sample consists of 540 participants, aged 6 to 18, who were diagnosed with ADHD from 251 families recruited for a larger genetic study of ADHD. All members of…