Sample records for exhaust particle exposure

  1. Prenatal exposure to diesel exhaust particles and effect on the male reproductive system in mice

    Microsoft Academic Search

    Jette Gjerke Hemmingsen; Karin Sørig Hougaard; Chris Talsness; Anja Wellejus; Steffen Loft; Håkan Wallin; Peter Møller

    2009-01-01

    In utero exposure to diesel exhaust particles may reduce sperm production in adulthood. We investigated the effect of prenatal exposure to diesel exhaust particles on the male reproductive system and assessed endocrine disruption and regulation of aquaporin expression as possible mechanisms of action. Dams inhaled 20mg\\/m3 of diesel exhaust particle standard reference material 2975 (SRM2975) or clean air for 1h\\/day

  2. Assessing exposure to diesel exhaust particles: a case study.

    PubMed

    See, Siao Wei; Balasubramanian, Rajasekhar; Yang, Tzuo Sern; Karthikeyan, Sathrugnan

    2006-11-01

    The assessment of the vehicular contributions to urban pollution levels is of particular importance given the current interest in the possible adverse health effects. This study focused on human exposure to diesel-engine-derived particulate matter. Diesel vehicles are known to emit fine particulate matter (PM2.5) containing carcinogens such as polycyclic aromatic hydrocarbons (PAHs), and have therefore received considerable attention. In this study, the physical (mass and number concentration, and size distribution) and chemical (PAHs) properties were investigated at a major bus interchange in Singapore, influenced only by diesel exhausts. Number concentration and size distribution of particles were determined in real time, while the mass concentrations of PM2.5, and PAHs were measured during operating and nonoperating hours. The average mass concentrations of PM2.5 and PAHs increased by a factor of 2.34 and 5.18, respectively, during operating hours. The average number concentration was also elevated by a factor of 5.07 during operating hours. This increase in the concentration of PM2.5 particles and their chemical constituents during operating hours was attributable to diesel emissions from in-use buses based on the particle size analysis, correlation among PAHs, and the commonly used PAHs diagnostic ratios. To evaluate the potential health threat due inhalation of air pollutants released from diesel engines, the incremental lifetime cancer risk was also calculated for a maximally exposed individual. The findings indicate that the air quality at the bus interchange poses adverse health effects. PMID:16982530

  3. Bronchoalveolar inflammation after exposure to diesel exhaust: comparison between unfiltered and particle trap filtered exhaust

    Microsoft Academic Search

    B. Rudell; A. Blomberg; R. Helleday; M. C. Ledin; B. Lundback; N. Stjernberg; P. Horstedt; T. Sandstrom

    1999-01-01

    OBJECTIVES: Air pollution particulates have been identified as having adverse effects on respiratory health. The present study was undertaken to further clarify the effects of diesel exhaust on bronchoalveolar cells and soluble components in normal healthy subjects. The study was also designed to evaluate whether a ceramic particle trap at the end of the tail pipe, from an idling engine,

  4. NASAL RESPONSES IN ASTHMATIC AND NONASTHMATIC SUBJECTS FOLLOWING EXPOSURE TO DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Asthma rates have been increasing world-wide, and exposure to diesel exhaust particles may be implicated in this increase. Additionally DEP may also play a role in the increased morbidity and mortality associated with ambient airborne PM exposure. Two types of nasal responses hav...

  5. Assessing Exposure to Diesel Exhaust Particles: A Case Study

    Microsoft Academic Search

    Siao Wei See; Rajasekhar Balasubramanian; Tzuo Sern Yang; Sathrugnan Karthikeyan

    2006-01-01

    The assessment of the vehicular contributions to urban pollution levels is of particular importance given the current interest in the possible adverse health effects. This study focused on human exposure to diesel-engine-derived particulate matter. Diesel vehicles are known to emit fine particulate matter (PM2.5) containing carcinogens such as polycyclic aromatic hydrocarbons (PAHs), and have therefore received considerable attention. In this

  6. Diesel and biodiesel exhaust particle effects on rat alveolar macrophages with in vitro exposure

    PubMed Central

    Bhavaraju, Laya; Shannahan, Jonathan; William, Aaron; McCormick, Robert; McGee, John; Kodavanti, Urmila; Madden, Michael

    2014-01-01

    Combustion emissions from diesel engines emit particulate matter which deposits within the lungs. Alveolar macrophages (AM) encounter the particles and attempt to engulf the particles. Emissions particles from diesel combustion engines have been found to contain diverse biologically active components including metals and polyaromatic hydrocarbons which cause adverse health effects. However little is known about AM response to particles from the incorporation of biodiesel. The objective of this study was to examine the toxicity in Wistar Kyoto rat AM of biodiesel blend (B20) and low sulfur petroleum diesel (PDEP) exhaust particles. Particles were independently suspended in media at a range of 1–500µg/mL. Results indicated B20 and PDEP initiated a dose dependent increase of inflammatory signals from AM after exposure. After 24hr exposure to B20 and PDEP gene expression of cyclooxygenase-2 (COX-2) and macrophage inflammatory protein 2 (MIP-2) increased. B20 exposure resulted in elevated prostaglandin E2 (PGE2) release at lower particle concentrations compared to PDEP. B20 and PDEP demonstrated similar affinity for sequesteration of PGE2 at high concentrations, suggesting detection is not imparied. Our data suggests PGE2 release from AM is dependent on the chemical composition of the particles. Particle analysis including measurments of metals and ions indicate B20 contains more of select metals than PDEP. Other particle components generally reduced by 20% with 20% incoporation of biodiesel into original diesel. This study shows AM exposure to B20 results in increased production of PGE2 in vitro relative to diesel. PMID:24268344

  7. Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice

    PubMed Central

    Hougaard, Karin S; Jensen, Keld A; Nordly, Pernille; Taxvig, Camilla; Vogel, Ulla; Saber, Anne T; Wallin, Håkan

    2008-01-01

    Background Results from epidemiological studies indicate that particulate air pollution constitutes a hazard for human health. Recent studies suggest that diesel exhaust possesses endocrine activity and therefore may affect reproductive outcome. This study in mice aimed to investigate whether exposure to diesel exhaust particles (DEP; NIST 2975) would affect gestation, postnatal development, activity, learning and memory, and biomarkers of transplacental toxicity. Pregnant mice (C57BL/6; BomTac) were exposed to 19 mg/m3 DEP (~1·106 particles/cm3; mass median diameter ? 240 nm) on gestational days 9–19, for 1 h/day. Results Gestational parameters were similar in control and diesel groups. Shortly after birth, body weights of DEP offspring were slightly lower than in controls. This difference increased during lactation, so by weaning the DEP exposed offspring weighed significantly less than the control progeny. Only slight effects of exposure were observed on cognitive function in female DEP offspring and on biomarkers of exposure to particles or genotoxic substances. Conclusion In utero exposure to DEP decreased weight gain during lactation. Cognitive function and levels of biomarkers of exposure to particles or to genotoxic substances were generally similar in exposed and control offspring. The particle size and chemical composition of the DEP and differences in exposure methods (fresh, whole exhaust versus aged, resuspended DEP) may play a significant role on the biological effects observed in this compared to other studies. PMID:18331653

  8. Reduction of exposure to ultrafine particles by kitchen exhaust hoods: the effects of exhaust flow rates, particle size, and burner position.

    PubMed

    Rim, Donghyun; Wallace, Lance; Nabinger, Steven; Persily, Andrew

    2012-08-15

    Cooking stoves, both gas and electric, are one of the strongest and most common sources of ultrafine particles (UFP) in homes. UFP have been shown to be associated with adverse health effects such as DNA damage and respiratory and cardiovascular diseases. This study investigates the effectiveness of kitchen exhaust hoods in reducing indoor levels of UFP emitted from a gas stove and oven. Measurements in an unoccupied manufactured house monitored size-resolved UFP (2 nm to 100 nm) concentrations from the gas stove and oven while varying range hood flow rate and burner position. The air change rate in the building was measured continuously based on the decay of a tracer gas (sulfur hexafluoride, SF(6)). The results show that range hood flow rate and burner position (front vs. rear) can have strong effects on the reduction of indoor levels of UFP released from the stove and oven, subsequently reducing occupant exposure to UFP. Higher range hood flow rates are generally more effective for UFP reduction, though the reduction varies with particle diameter. The influence of the range hood exhaust is larger for the back burner than for the front burner. The number-weighted particle reductions for range hood flow rates varying between 100 m(3)/h and 680 m(3)/h range from 31% to 94% for the front burner, from 54% to 98% for the back burner, and from 39% to 96% for the oven. PMID:22750181

  9. Controlled human exposures to diesel exhaust

    EPA Science Inventory

    Diesel exhaust (DE) is a complex mixture of gaseous and particulate compounds resulting from an incomplete combustion of diesel fuel. Controlled human exposures to DE and diesel exhaust particles (DEP) have contributed to understanding health effects. Such exposure studies of h...

  10. Lung expression of cytochrome P450 1A1 as a possible biomarker of exposure to diesel exhaust particles

    Microsoft Academic Search

    Hirohisa Takano; Rie Yanagisawa; Takamichi Ichinose; Kaori Sadakane; Ken-ichiro Inoue; Sei-ichi Yoshida; Ken Takeda; Shin Yoshino; Toshikazu Yoshikawa; Masatoshi Morita

    2002-01-01

    Polycyclic aromatic hydrocarbons (PAH) and reactive oxygen species (ROS) derived from diesel exhaust particles (DEP) are implicated in the pathophysiology of respiratory diseases. Cytochrome P450 (Cyp) 1A1 can be induced by several kinds of PAH and produce ROS. We determined whether acute inhalation exposure to DEP induced the expression of Cyp 1A1 in murine lung. Intratracheal instillation of DEP dose-dependently

  11. EXHAUST MAIN PERSONNEL EXPOSURE CALCULATION

    SciTech Connect

    S. Su

    1999-09-29

    The purpose of this activity is to identify and determine potential radiation hazards in the service exhaust main due to a waste package leakage from an emplacement drift. This work supports the subsurface ventilation system design for the EDA II, which consists of an accessible service exhaust main for personnel, and an exhaust main for hot air flow. The objective is to provide the necessary radiation exposure calculations to determine if the service exhaust main is accessible following a waste package leak. This work includes the following items responsive to the stated purpose and objective: Calculate the limiting transient radiation exposure of personnel in the service exhaust main due to the passage of airborne radioactive material through the ventilation raise and connecting horizontal raise to the exhaust main in the event of a leaking waste package Calculate the potential exposures to maintenance workers in the service exhaust main from residual radioactive material deposited inside of the ventilation raise and connecting horizontal raise This calculation is limited to external radiation only, since the airborne and contamination sources will be contained in the ventilation raise and connecting horizontal raise.

  12. Diesel and biodiesel exhaust particle effects on rat alveolar machrophages with in vitro exposure

    EPA Science Inventory

    We conducted in vitro exposures of Wistar rat alveolar macrophages (AM) to compare and contrast the toxicity of particulate matter (PM) produced in combustion of biodiesel blend (B20) and petroleum diesel (PDEP). The PM contain detectable levels of transition metals and ions howe...

  13. QUANTITATIVE DETERMINATION OF TRUCKING INDUSTRY WORKERS' EXPOSURES TO DIESEL EXHAUST PARTICLES

    Microsoft Academic Search

    D. D. Zaebst; D. E. Clapp; L. M. Blade; D. A. Marlow; K. Steenland; R. W. Hornung; D. Scheutzle; J. Butler

    1991-01-01

    As part of a case-control mortality study of trucking industry workers, exposures to diesel aerosol were measured among the four major presumably exposed job groups (road drivers, local drivers, dock workers, and mechanics) in the industry. Eight industrial hygiene surveys were conducted during both warm and cold weather at eight U.S. terminals and truck repair shops. A single-stage personal impactor

  14. Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice

    PubMed Central

    Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M.; Owen, Robert W.; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais

    2013-01-01

    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50??g of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250?mg/kg of anacardic acids or vehicle (100??L of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50?mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs. PMID:23533495

  15. Anacardic acids from cashew nuts ameliorate lung damage induced by exposure to diesel exhaust particles in mice.

    PubMed

    Carvalho, Ana Laura Nicoletti; Annoni, Raquel; Torres, Larissa Helena Lobo; Durão, Ana Carolina Cardoso Santos; Shimada, Ana Lucia Borges; Almeida, Francine Maria; Hebeda, Cristina Bichels; Lopes, Fernanda Degobbi Tenorio Quirino Santos; Dolhnikoff, Marisa; Martins, Milton Arruda; Silva, Luiz Fernando Ferraz; Farsky, Sandra Helena Poliselli; Saldiva, Paulo Hilário Nascimento; Ulrich, Cornelia M; Owen, Robert W; Marcourakis, Tania; Trevisan, Maria Teresa Salles; Mauad, Thais

    2013-01-01

    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle- (DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50? ? g of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250?mg/kg of anacardic acids or vehicle (100? ? L of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50?mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs. PMID:23533495

  16. Pulmonary exposure to diesel exhaust particles induces airway inflammation and cytokine expression in NC\\/Nga mice

    Microsoft Academic Search

    Ken-ichiro Inoue; Hirohisa Takano; Rie Yanagisawa; Takamichi Ichinose; Akinori Shimada; Toshikazu Yoshikawa

    2005-01-01

    Although several studies have reported that diesel exhaust particles (DEP) affect cardiorespiratory health in animals and humans, the effect of DEP on animal models with spontaneous allergic disorders has been far less intensively studied. The Nc\\/Nga mouse is known to be a typical animal model for human atopic dermatitis (AD). In the present study, we investigated the effects of repeated

  17. Deposition, metabolism, and excretion of 1-[14C]nitropyrene and 1-[14C]nitropyrene coated on diesel exhaust particles as influenced by exposure concentration.

    PubMed

    Bond, J A; Sun, J D; Medinsky, M A; Jones, R K; Yeh, H C

    1986-08-01

    Nitrated polycyclic aromatic hydrocarbons (nitro-PAH) have been detected in the environment, originating from sources such as diesel exhaust emissions and coal combustion fly ash. 1-Nitropyrene (NP) is a predominant mutagenic and carcinogenic nitro-PAH found in diesel exhaust emissions. Since inhalation of NP is a likely route of exposure in humans, it is important to determine the biological fate of inhaled NP both in its pure form and associated with particles. The purpose of this study was to determine the disposition of NP aerosols inhaled by rats. The studies described in this paper were designed to determine the deposition of [14C]NP over a range of exposure concentrations, identify the pathways and half-times for excretion of absorbed NP, and determine the distribution of inhaled NP and metabolites in tissues. Male F344 rats were exposed nose only to various concentrations of NP and NP coated on diesel exhaust particles (50-1100 ng/liter). The results indicate that, over the range of concentrations tested, pathways for excretion of [14C]NP equivalents in urine and feces were independent of the exposure concentration of NP, whether in its pure form or associated with diesel exhaust particles. In all cases, fecal excretion was the major route of elimination of [14C]NP equivalents, with about 2 times more excreted by this route than by urine. The fractional deposition of [14C]NP in the respiratory tract did not appear to be dependent on exposure concentration. Half-times for elimination of 14C in urine and feces were about 15 to 20 hr. In all exposures, 14C was widely distributed in the tissues examined. Analysis of the tissues for NP and its metabolites indicated that within 1 hr after exposure, greater than 90% of the 14C was NP metabolites. Lungs of rats exposed to [14C]NP coated on diesel exhaust particles contained nearly 5 times more 14C than lungs from rats exposed to pure aerosols of [14C]NP (148 vs 29 pmol/g lung) within 1 hr after exposure. This difference was increased to 80-fold at 94 hr after exposure (80 vs 1 pmol/g lung). Long-term clearance half-times of 14C from various tissues were similar. The results demonstrate that particle association of NP significantly alters the biological fate of inhaled NP. PMID:2425457

  18. Effect of short-term exposure to diesel exhaust particles and carboxylic acids on mitochondrial membrane disruption in airway epithelial cells

    EPA Science Inventory

    Rationale: Diesel exhaust has been shown to induce adverse pulmonary health effects; however, the underlying mechanisms for these effects are still unclear. Previous studies have imlplicated mitochondrial dysfunction in the toxicity of diesel exhaust particles (DEP). DEP contain...

  19. Disruption of the integrity and function of brain microvascular endothelial cells in culture by exposure to diesel engine exhaust particles.

    PubMed

    Tobwala, Shakila; Zhang, Xinsheng; Zheng, Youyou; Wang, Hsiu-Jen; Banks, William A; Ercal, Nuran

    2013-06-20

    Diesel exhaust particles (DEPs), a by-product of diesel engine exhaust (DEE), are known to produce pro-oxidative and pro-inflammatory effects, thereby leading to oxidative stress-induced damage. Given the key role of DEPs in inducing oxidative stress, we investigated the role of DEPs in disrupting the integrity and function of immortalized human brain microvascular endothelial cells (HBMVEC). To study this, HBMVEC cells were exposed to media containing three different concentrations of DEPs or plain media for 24h. Those exposed to DEPs showed significantly higher oxidative stress than the untreated group, as indicated by the glutathione (GSH) and malondialdehyde (MDA) levels, and the glutathione peroxidase and glutathione reductase activities. DEPs also induced oxidative stress-related disruption of the HBMVEC cells monolayer, as measured by trans-epithelial electrical resistance. Taken together, these data suggest that DEPs induce cell death and disrupt the function and integrity of HBMVEC cells, indicating a potential role of DEPs in neurotoxicities. PMID:23542817

  20. The roles of diesel exhaust particle extracts and the promotive effects of NO2 and/or SO2 exposure on rat lung tumorigenesis.

    PubMed

    Ohyama, K; Ito, T; Kanisawa, M

    1999-05-24

    This experiment was carried out to clarify the roles of diesel exhaust particle (DEP) extracts and the promotive effects of nitrogen dioxide (NO2) and/or sulfur dioxide (SO2) exposure on rat lung tumorigenesis. F344 male rats were intratracheally administered DEP extract-coated carbon black particles (DEcCBP) and exposed to 6 ppm NO2 and/or 4 ppm SO2 for 10 months. At 18 months after starting the experiment, lung lesions were histopathologically investigated and DNA in rat lungs was analyzed for the presence of adducts using the 32P-postlabeling assay. Infiltration of alveolar macrophages, which was significant in the lungs of rats administered carbon black particles, was not prominent in those administered DEcCBP. DEcCBP occasionally formed small hyaline masses in the alveolar ducts and alveolar bronchiolization developed in the epithelium of alveolar ducts near the masses. Lung tumorigenesis and DNA aduct formation were observed in the animals administered DEcCBP with exposure to NO2 and/or SO2, but not in those administered DEcCBP alone. The results of the present study suggested that DEP extracts eluting from the small masses cause DNA damage in alveolar epithelial cells and alveolar epithelial cell proliferation, and that NO2 and/or SO2 exposure promote lung tumor induction by DEP extracts. PMID:10395178

  1. DNA strand breaks, acute phase response and inflammation following pulmonary exposure by instillation to the diesel exhaust particle NIST1650b in mice.

    PubMed

    Kyjovska, Zdenka O; Jacobsen, Nicklas R; Saber, Anne T; Bengtson, Stefan; Jackson, Petra; Wallin, Håkan; Vogel, Ulla

    2015-07-01

    We investigated the inflammatory response, acute phase response and genotoxic effect of diesel exhaust particles (DEPs, NIST1650b) following a single intratracheal instillation. C57BL/6J BomTac mice received 18, 54 or 162 µg/mouse and were killed 1, 3 and 28 days post-exposure. Vehicle controls and the benchmark particle carbon black (CB, Printex 90; 162 µg/mouse) were tested alongside for comparison. The cellular composition and protein concentration were determined in bronchoalveolar lavage (BAL) fluid as markers for an inflammatory response. Pulmonary and systemic genotoxicity was analysed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The pulmonary acute phase response was analysed by Saa3 mRNA levels by real-time quantitative polymerase chain reaction. Instillation of DEP induced a strong neutrophil influx 1 and 3 days, but not 28 days post-exposure. Saa3 mRNA levels were increased at all time point for the highest dose and 28 days post-exposure for the middle dose. DEP increased levels of DNA strand breaks in lung tissue for all doses 1 day post-exposure and after 28 days for mid- and high-dose groups. Pulmonary exposure to DEP induced transient inflammation but long-lasting pulmonary acute phase response as well as genotoxicity in lung tissue 28 days post-exposure. The observed long-term pulmonary genotoxicity by DEP was less than the previously observed genotoxicity for CB using identical experimental set-up. PMID:25771385

  2. Prenatal and early-life exposure to high-level diesel exhaust particles leads to increased locomotor activity and repetitive behaviors in mice.

    PubMed

    Thirtamara Rajamani, Keerthi; Doherty-Lyons, Shannon; Bolden, Crystal; Willis, Daniel; Hoffman, Carol; Zelikoff, Judith; Chen, Lung-Chi; Gu, Howard

    2013-08-01

    Abundant evidence indicates that both genetic and environmental factors contribute to the etiology of autism spectrum disorders (ASDs). However, limited knowledge is available concerning these contributing factors. An epidemiology study reported a link between increased incidence of autism and living closely to major highways, suggesting a possible role for pollutants from highway traffic. We investigated whether maternal exposure to diesel exhaust particles (DEP) negatively affects fetal development leading to autism-like phenotype in mice. Female mice and their offspring were exposed to DEP during pregnancy and nursing. Adult male offspring were then tested for behaviors reflecting the typical symptoms of ASD patients. Compared to control mice, DEP-exposed offspring exhibited higher locomotor activity, elevated levels of self-grooming in the presence of an unfamiliar mouse, and increased rearing behaviors, which may be relevant to the restricted and repetitive behaviors seen in ASD patients. However, the DEP-exposed mice did not exhibit deficits in social interactions or social communication which are the key features of ASD. These results suggest that early life exposure to DEP could have an impact on mouse development leading to observable changes in animal behaviors. Further studies are needed to reveal other environmental insults and genetic factors that would lead to animal models expressing key phenotypes of the autism spectrum disorders. PMID:23495194

  3. Power and particle exhaust in tokamaks

    SciTech Connect

    Stambaugh, R.D.

    1998-01-01

    The status of power and particle exhaust research in tokamaks is reviewed in the light of ITER requirements. There is a sound basis for ITER`s nominal design positions; important directions for further research are identified.

  4. Differences between Cytokine Release from Bronchial Epithelial Cells of Asthmatic Patients and Non–Asthmatic Subjects: Effect of Exposure to Diesel Exhaust Particles

    Microsoft Academic Search

    J. L. Devalia; H. Bayram; M. M. Abdelaziz; R. J. Sapsford; R. J. Davies

    1999-01-01

    Background: Recent evidence suggests that the airways of asthmatics are more susceptible to adverse effects of air pollutants than the airways of non–asthmatics, but the underlying mechanisms are not clear. Methods: We have cultured bronchial epithelial cells (HBEC) from biopsies of atopic mild asthmatic patients and non–atopic non–asthmatic subjects, and investigated constitutive and diesel exhaust particles (DEP)–induced release of several

  5. DIESEL EXHAUST PARTICLES INDUCE ABERRANT ALVEOLAR EPITHELIAL DIRECTED CELL MOVEMENT BY DISRUPTION OF POLARITY MECHANISMS

    EPA Science Inventory

    Disruption of the respiratory epithelium contributes to the progression of a variety of respiratory diseases that are aggravated by exposure to air pollutants, specifically traffic-based pollutants such as diesel exhaust particles (DEP). Recognizing that lung repair following inj...

  6. Occupational diesel exhaust exposure as a risk factor for COPD

    PubMed Central

    Hart, Jaime E; Eisen, Ellen A; Laden, Francine

    2013-01-01

    Purpose of Review Chronic obstructive pulmonary disease (COPD) is a major source of morbidity and mortality worldwide. Although cigarette smoking is the major cause of COPD, occupational exposures have emerged as an important risk factor, especially in nonsmokers. In this review we assess the state of the literature on the association of COPD with a specific occupational exposure, diesel exhaust. Recent Findings A large body of literature links general occupational exposures to dust and fumes with an increased risk of COPD, particularly in nonsmokers. Few studies, however, have explicitly examined the role of occupational diesel exhaust exposures to COPD risk. Suggestive recent findings link occupational diesel exposures to an increased risk of COPD, Summary The available literature directly examining the effects of occupational diesel exhaust on risk of COPD is quite small, but does suggest that increasing exposures are associated with increasing risk. Additional research, with more advanced exposure metrics is needed to fully elucidate this association. PMID:22234274

  7. Occupational exposure to diesel engine exhaust: A literature review

    Microsoft Academic Search

    Anjoeka Pronk; Joseph Coble; Patricia A Stewart

    2009-01-01

    Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter

  8. Particle Characterization in Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Callen, E. Eugene, Jr.; Fisher, J. Scott

    1997-01-01

    A method to characterize particles in rocket exhaust plumes is developed. The particle velocity, size, and material composition are determined from crater characteristics resulting from impacts into aluminum and copper targets passed through the plume. The targets are mounted on a steel arm approximately 21 inches (53 cm) long which is rotated through the plume at sufficient velocity to prevent material failure resulting from thermal effects. A Scanning Electron Microscope (SEM) with secondary x-ray detectors is used to determine the particle material, and a standard optical measurement microscope is used to determine the crater diameter and depth. The crater diameter and depth are used in turn, as inputs to a ballistics computer code to estimate the velocity and size of the particle. The target has a safe residence time in the plume of approximately 50 ms before reaching an unacceptably high temperature. The = must mach a velocity of 104 ft/s (32 m/s) before entering the plume to produce the design residence time of 20 ms. The arm is actuated by a torsion spring with a 5-inch (13 cm) outer diameter, 0.625-inch (16 mm wire diameter, and 11 coils. A prototype of the entire rocket exhaust particle impact characterization system (PICS) was constructed and statically tested.

  9. Measuring soot particles from automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  10. GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY

    SciTech Connect

    Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

    2003-08-24

    The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

  11. NASAL RESPONSES OF ASTHMATIC AND NON-ASTHMATIC VOLUNTEERS TO DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Asthma rates have been increasing world-wide, and exposure to diesel exhaust particles (DEP) may be implicated in this increase. Additionally DEP may also play a role in the increased morbidity and mortality associated with ambient airborne PM exposure. Two types of nasal respons...

  12. Experimental exposure to diesel exhaust increases arterial stiffness in man

    Microsoft Academic Search

    Magnus Lundbäck; Nicholas L Mills; Andrew Lucking; Stefan Barath; Ken Donaldson; David E Newby; Thomas Sandström; Anders Blomberg

    2009-01-01

    INTRODUCTION: Exposure to air pollution is associated with increased cardiovascular morbidity, although the underlying mechanisms are unclear. Vascular dysfunction reduces arterial compliance and increases central arterial pressure and left ventricular after-load. We determined the effect of diesel exhaust exposure on arterial compliance using a validated non-invasive measure of arterial stiffness. METHODS: In a double-blind randomized fashion, 12 healthy volunteers were

  13. DIESEL EXHAUST EXPOSURE INCREASES SEVERITY OF AN ONGOING INFLUENZA INFECTION

    EPA Science Inventory

    Numerous studies have shown that air pollutants including diesel exhaust (DE) alter host defense responses, resulting in decreased resistance to respiratory infection. The purpose of this study was to evaluate the effects of DE exposure on the severity of an ongoing influenza in...

  14. Are Urinary PAHs Biomarkers of Controlled Exposure to Diesel Exhaust?

    EPA Science Inventory

    Urinary polycyclic aromatic hydrocarbons (PAHs) were evaluated as possible biomarkers of exposure to diesel exhaust (DE) in two controlled-chamber studies. We report levels of 14 PAHs from 28 subjects in urine that were collected before, immediately after and the morning after ex...

  15. Exposure to Diesel Exhaust Enhances the Generation of Vascular Microparticles

    EPA Science Inventory

    Introduction: In the study of the health impacts of traffic-related air pollution, diesel exhaust is a pollutant of particular interest, since it is a major source of particulate matter (PM). Epidemiological studies associate exposure to ambient levels of PM with cardiovascular m...

  16. INHIBITION OF TYROSINE PHOSPHATASE ACTIVITY INITIATES RECEPTOR SIGNALING IN AIRWAY EPITHELIAL CELLS EXPOSED TO DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Exposure to particulate matter is associated with increased cardiopulmonary morbidity and mortality. Diesel exhaust particles (DEP) are a major component of PM in urban areas and may contribute to PM toxicity through a mechanism involving pulmonary inflammation. Expression of inf...

  17. Concordance in Genomic Changes Between Mouse Lungs and Human Airway Epithelial Cells Exposed to Diesel Exhaust Particles

    EPA Science Inventory

    Human and animal toxicity studies have shown that exposure to diesel exhaust particles (DEP) or their constituents affect multiple biological processes including immune and inflammatory pathways, mutagenesis and in some cases carcinogenesis. This study compared genomic changes by...

  18. Occupational exposure to diesel engine exhaust: A literature review

    PubMed Central

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia

    2010-01-01

    Background Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Methods Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO2). Information on determinants of exposure was abstracted. Results In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO2 measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles, and 68% from off-road vehicles (30% mining, 15% railroad, and 22% other). Highest levels were reported for enclosed underground work sites where heavy equipment is used: mining, mine maintenance, and construction, (EC: 27-658 ?g/m3). Intermediate exposure levels were generally reported for above ground (semi-)enclosed areas where smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC< 50 ?g/m3). Lowest levels were reported for enclosed areas separated from the source such as drivers and train crew, or outside such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 ?g/m3). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Conclusions Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above ground (semi-)enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population-based epidemiological studies and guide future exposure assessment efforts for industrial hygiene and epidemiological studies. PMID:19277070

  19. Occupational exposure to diesel engine exhaust: a literature review.

    PubMed

    Pronk, Anjoeka; Coble, Joseph; Stewart, Patricia A

    2009-07-01

    Diesel exhaust (DE) is classified as a probable human carcinogen. Aims were to describe the major occupational uses of diesel engines and give an overview of personal DE exposure levels and determinants of exposure as reported in the published literature. Measurements representative of personal DE exposure were abstracted from the literature for the following agents: elemental carbon (EC), particulate matter (PM), carbon monoxide (CO), nitrogen oxide (NO), and nitrogen dioxide (NO(2)). Information on determinants of exposure was abstracted. In total, 3528 EC, 4166 PM, 581 CO, 322 NO, and 1404 NO(2) measurements were abstracted. From the 10,001 measurements, 32% represented exposure from on-road vehicles and 68% from off-road vehicles (30% mining, 15% railroad, and 22% others). Highest levels were reported for enclosed underground work sites in which heavy equipment is used: mining, mine maintenance, and construction (EC: 27-658 microg/m(3)). Intermediate exposure levels were generally reported for above-ground (semi-) enclosed areas in which smaller equipment was run: mechanics in a shop, emergency workers in fire stations, distribution workers at a dock, and workers loading/unloading inside a ferry (generally: EC<50 microg/m(3)). Lowest levels were reported for enclosed areas separated from the source, such as drivers and train crew, or outside, such as surface mining, parking attendants, vehicle testers, utility service workers, surface construction and airline ground personnel (EC<25 microg/m(3)). The other agents showed a similar pattern. Determinants of exposure reported for enclosed situations were ventilation and exhaust after treatment devices. Reported DE exposure levels were highest for underground mining and construction, intermediate for working in above-ground (semi-) enclosed areas and lowest for working outside or separated from the source. The presented data can be used as a basis for assessing occupational exposure in population-based epidemiological studies and guide future exposure assessment efforts for industrial hygiene and epidemiological studies. PMID:19277070

  20. The Involvement of Superoxide and Nitric Oxide in Inflammation-Enhanced Diesel Exhaust Particle Cytotoxicity

    EPA Science Inventory

    Thirty-four million Americans have asthma, a chronic inflammatory lung disease. Although the mechanisms are unclear, epidemiologic studies show that exposure of asthmatics to air pollutants, like diesel exhaust particles (DEP), is more likely to result in adverse health effects....

  1. Particle collector scoops for improved exhaust in ''axisymmetric'' devices

    Microsoft Academic Search

    R. W. Conn; G. H. Wolf

    1987-01-01

    Application of particle collector scoops in front of the pumping ducts of axisymmetric divertor\\/magnetic limiter configurations is proposed. These scoops should enclose a significant fraction of the recycling particles. The resulting increase in natural particle pressure in front of the pumping ducts leads to an improved exhaust efficiency. This can permit an extension of the operational margin for density control.

  2. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia

    PubMed Central

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G.; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S. H.; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-01-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies. PMID:26119831

  3. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia.

    PubMed

    Künzi, Lisa; Krapf, Manuel; Daher, Nancy; Dommen, Josef; Jeannet, Natalie; Schneider, Sarah; Platt, Stephen; Slowik, Jay G; Baumlin, Nathalie; Salathe, Matthias; Prévôt, André S H; Kalberer, Markus; Strähl, Christof; Dümbgen, Lutz; Sioutas, Constantinos; Baltensperger, Urs; Geiser, Marianne

    2015-01-01

    Particulate matter (PM) pollution is a leading cause of premature death, particularly in those with pre-existing lung disease. A causative link between particle properties and adverse health effects remains unestablished mainly due to complex and variable physico-chemical PM parameters. Controlled laboratory experiments are required. Generating atmospherically realistic aerosols and performing cell-exposure studies at relevant particle-doses are challenging. Here we examine gasoline-exhaust particle toxicity from a Euro-5 passenger car in a uniquely realistic exposure scenario, combining a smog chamber simulating atmospheric ageing, an aerosol enrichment system varying particle number concentration independent of particle chemistry, and an aerosol deposition chamber physiologically delivering particles on air-liquid interface (ALI) cultures reproducing normal and susceptible health status. Gasoline-exhaust is an important PM source with largely unknown health effects. We investigated acute responses of fully-differentiated normal, distressed (antibiotics-treated) normal, and cystic fibrosis human bronchial epithelia (HBE), and a proliferating, single-cell type bronchial epithelial cell-line (BEAS-2B). We show that a single, short-term exposure to realistic doses of atmospherically-aged gasoline-exhaust particles impairs epithelial key-defence mechanisms, rendering it more vulnerable to subsequent hazards. We establish dose-response curves at realistic particle-concentration levels. Significant differences between cell models suggest the use of fully-differentiated HBE is most appropriate in future toxicity studies. PMID:26119831

  4. Impaired vascular function after exposure to diesel exhaust generated at urban transient running conditions

    Microsoft Academic Search

    Stefan Barath; Nicholas L Mills; Magnus Lundbäck; Håkan Törnqvist; Andrew J Lucking; Jeremy P Langrish; Stefan Söderberg; Christoffer Boman; Roger Westerholm; Jakob Löndahl; Ken Donaldson; Ian S Mudway; Thomas Sandström; David E Newby; Anders Blomberg

    2010-01-01

    BACKGROUND: Traffic emissions including diesel engine exhaust are associated with increased respiratory and cardiovascular morbidity and mortality. Controlled human exposure studies have demonstrated impaired vascular function after inhalation of exhaust generated by a diesel engine under idling conditions. OBJECTIVES: To assess the vascular and fibrinolytic effects of exposure to diesel exhaust generated during urban-cycle running conditions that mimic ambient 'real-world'

  5. Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain

    Microsoft Academic Search

    Damien van Berlo; Catrin Albrecht; Ad M. Knaapen; Flemming R. Cassee; Miriam E. Gerlofs-Nijland; Ingeborg M. Kooter; Nicola Palomero-Gallagher; Hans-Jürgen Bidmon; Frederik-Jan van Schooten; Jean Krutmann; Roel P. F. Schins

    2010-01-01

    Combustion-derived nanoparticles, such as diesel engine exhaust particles, have been implicated in the adverse health effects\\u000a of particulate air pollution. Recent studies suggest that inhaled nanoparticles may also reach and\\/or affect the brain. The\\u000a aim of our study was to comparatively evaluate the effects of short-term diesel engine exhaust (DEE) inhalation exposure on\\u000a rat brain and lung. After 4 or

  6. Thermoregulation during cold exposure after several days of exhaustive exercise.

    PubMed

    Castellani, J W; Young, A J; Degroot, D W; Stulz, D A; Cadarette, B S; Rhind, S G; Zamecnik, J; Shek, P N; Sawka, M N

    2001-03-01

    This study examined the hypothesis that several days of exhaustive exercise would impair thermoregulatory effector responses to cold exposure, leading to an accentuated core temperature reduction compared with exposure of the same individual to cold in a rested condition. Thirteen men (10 experimental and 3 control) performed a cold-wet walk (CW) for up to 6 h (6 rest-work cycles, each 1 h in duration) in 5 degrees C air on three occasions. One cycle of CW consisted of 10 min of standing in the rain (5.4 cm/h) followed by 45 min of walking (1.34 m/s, 5.4 m/s wind). Clothing was water saturated at the start of each walking period (0.75 clo vs. 1.1 clo when dry). The initial CW trial (day 0) was performed (afternoon) with subjects rested before initiation of exercise-cold exposure. During the next 7 days, exhaustive exercise (aerobic, anaerobic, resistive) was performed for 4 h each morning. Two subsequent CW trials were performed on the afternoon of days 3 and 7, approximately 2.5 h after cessation of fatiguing exercise. For controls, no exhaustive exercise was performed on any day. Thermoregulatory responses and body temperature during CW were not different on days 0, 3, and 7 in the controls. In the experimental group, mean skin temperature was higher (P < 0.05) during CW on days 3 and 7 than on day 0. Rectal temperature was lower (P < 0.05) and the change in rectal temperature was greater (P < 0.05) during the 6th h of CW on day 3. Metabolic heat production during CW was similar among trials. Warmer skin temperatures during CW after days 3 and 7 indicate that vasoconstrictor responses to cold, but not shivering responses, are impaired after multiple days of severe physical exertion. These findings suggest that susceptibility to hypothermia is increased by exertional fatigue. PMID:11181604

  7. Infant leukemia and paternal exposure to motor vehicle exhaust fumes

    SciTech Connect

    Vianna, N.J.; Kovasznay, B.; Polan, A.; Ju, C.

    1984-09-01

    The children of fathers who work in gas stations, automobile or truck repair, and aircraft maintenance appear to be at increased risk for acute leukemia during their first year of life. The odds ratio was found to be about 2.5 overall, but risk appears to be greater for female offspring. A decline in sex ratio was observed for the three decades of the study, with the lowest ratio observed from 1969 through 1978. These preliminary findings suggest that exposure to one or more of the components of exhaust fumes might be of etiologic importance for this malignancy. The limitations of this investigation are discussed.

  8. Investigation into pedestrian exposure to near-vehicle exhaust emissions

    PubMed Central

    2009-01-01

    Background Inhalation of diesel particulate matter (DPM) is known to have a negative impact on human health. Consequently, there are regulations and standards that limit the maximum concentrations to which persons may be exposed and the maximum concentrations allowed in the ambient air. However, these standards consider steady exposure over large spatial and time scales. Due to the nature of many vehicle exhaust systems, pedestrians in close proximity to a vehicle's tailpipe may experience events where diesel particulate matter concentrations are high enough to cause acute health effects for brief periods of time. Methods In order to quantify these exposure events, instruments which measure specific exhaust constituent concentrations were placed near a roadway and connected to the mouth of a mannequin used as a pedestrian surrogate. By measuring concentrations at the mannequin's mouth during drive-by events with a late model diesel truck, a representative estimate of the exhaust constituent concentrations to which a pedestrian may be exposed was obtained. Typical breathing rates were then multiplied by the measured concentrations to determine the mass of pollutant inhaled. Results The average concentration of diesel particulate matter measured over the duration of a single drive-by test often exceeded the low concentrations used in human clinical studies which are known to cause acute health effects. It was also observed that higher concentrations of diesel particulate matter were measured at the height of a stroller than were measured at the mouth of a mannequin. Conclusion Diesel particulate matter concentrations during drive-by incidents easily reach or exceed the low concentrations that can cause acute health effects for brief periods of time. For the case of a particularly well-tuned late-model year vehicle, the mass of particulate matter inhaled during a drive-by incident is small compared to the mass inhaled daily at ambient conditions. On a per breath basis, however, the mass of particulate matter inhaled is large compared to the mass inhaled at ambient conditions. Finally, it was determined that children, infants, or people breathing at heights similar to that of a passing vehicle's tailpipe may be exposed to higher concentrations of particulate matter than those breathing at higher locations, such as adults standing up. PMID:19331669

  9. Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers

    EPA Science Inventory

    Rationale: Diesel exhaust enhances allergic inflammation, and pollutants are associated with heightened susceptibility to viral respiratory infections. The effects of combined diesel and virus exposure in humans are unknown. Objective: Test whether acute exposure to diesel modif...

  10. Identification of Surrogate Measures of Diesel Exhaust Exposure in a Controlled Chamber Study

    EPA Science Inventory

    Exposure to diesel exhaust (DE) has been associated with acute cardiopulmonary and vascular responses, chronic noncancer health effects, and respiratory cancers in humans. To better understand DE exposures and eventually their related health effects, we established a controlled c...

  11. Elemental Carbon-Based Method for Monitoring Occupational Exposures to Particulate Diesel Exhaust

    Microsoft Academic Search

    M. E. Birch; R. A. Cary

    1996-01-01

    Diesel exhaust has been classified a probable human carcinogen, and the National Institute for Occupational Safety and Health (NIOSH) has recommended that employers reduce workers' exposures. Because diesel exhaust is a chemically complex mixture containing thousands of compounds, some measure of exposure must be selected. Previously used methods involving gravimetry or analysis of the soluble organic fraction of diesel soot

  12. Particle collector scoops for improved exhaust in ''axisymmetric'' devices

    SciTech Connect

    Conn, R.W.; Wolf, G.H.

    1987-11-01

    Application of particle collector scoops in front of the pumping ducts of axisymmetric divertor/magnetic limiter configurations is proposed. These scoops should enclose a significant fraction of the recycling particles. The resulting increase in natural particle pressure in front of the pumping ducts leads to an improved exhaust efficiency. This can permit an extension of the operational margin for density control. Alternatively, aiming at a prescribed exhaust flow in reactor-type devices such as INTOR, the pumping ducts could be reduced in aperture, leaving valuable space for other components. The lay-out of the proposed scheme depends on the heat load on the leading edge in front of the scoop and on the deflector in front of the pumping ducts. 14 refs., 5 figs.

  13. Myocardial infarction and occupational exposure to motor exhaust: a population-based case-control study in Sweden.

    PubMed

    Ilar, Anna; Lewné, Marie; Plato, Nils; Hallqvist, Johan; Alderling, Magnus; Bigert, Carolina; Hogstedt, Christer; Gustavsson, Per

    2014-07-01

    There is a well-established association between particulate urban air pollution and cardiovascular disease, but few studies have investigated the risk associated with occupational exposure to particles from motor exhaust. This study investigated the risk of myocardial infarction (MI) after occupational exposure to motor exhaust, using elemental carbon (EC) as a marker of exposure. A population-based case-control study of first-time non-lethal MI was conducted among Swedish citizens in ages 45-70 living in Stockholm County 1992-1994, including 1,643 cases and 2,235 controls. Working histories and data on potential confounders were collected by questionnaire and medical examination. The exposure to EC was assessed through a job-exposure matrix. Odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were estimated by unconditional logistic regression. We investigated various exposure metrics: intensity, cumulative exposure and years since exposure. There was an exposure-response relation between the highest average exposure intensity during the work history and the risk of MI when adjusting for smoking and alcohol drinking (p for trend 0.034), with an OR of 1.30 (95% CI 0.99-1.71) in the highest tertile of exposure compared to the unexposed. An exposure-response pattern was observed in the analysis of years since exposure cessation among formerly exposed. Additional adjustments for markers of the metabolic syndrome reduced ORs and trends to non-significant levels, although this might be an over-adjustment since the metabolic syndrome may be part of the causal pathway. Occupational exposure to motor exhaust was associated with a moderately increased risk of MI. PMID:24981789

  14. Evaluation of the effects of ozone oxidation on redox-cycling activity of two-stroke engine exhaust particles.

    PubMed

    McWhinney, Robert D; Gao, Shawna S; Zhou, Shouming; Abbatt, Jonathan P D

    2011-03-15

    The effect of oxidation on the redox-cycling activity of engine exhaust particles is examined. Particles obtained from a two-stroke gasoline engine were oxidized in a flow tube with ozone on a one-minute time scale both in the presence and absence of substantial gas-phase exhaust components. Whereas ozone concentrations were high, the ozone exposures were approximately equivalent to 60 ppb ozone for 2-8 h. Oxidation led to substantial increases in redox-cycling of aqueous extracts of filtered particles, as measured using the dithiothreitol (DTT) assay. Increases in redox activity when the entire exhaust was oxidized were primarily driven by deposition of redox-active secondary organic aerosol (SOA), resulting in an upper-limit DTT activity of 8.6 ± 2.0 pmol DTT consumed per min per microgram of particles, compared to 0.73 ± 0.60 pmol min(-1) ?g(-1) for fresh, unoxidized exhaust particles. Redox-cycling activity reached higher levels when VOC denuded exhaust was oxidized, with the highest DTT activity observed being 16.7 ± 1.6 pmol min(-1) ?g(-1) with no upper limit reached for the range of ozone exposures used in this study. Our results provide laboratory support for the hypothesis that the toxicity of engine combustion particles due to redox-cycling may increase as they age in the atmosphere. PMID:21341691

  15. Long-term inhalation of diesel exhaust affects cytokine expression in murine lung tissues: comparison between low- and high-dose diesel exhaust exposure.

    PubMed

    Saito, Yoshinobu; Azuma, Arata; Kudo, Shoji; Takizawa, Hajime; Sugawara, Isamu

    2002-09-01

    The authors investigated the effect of diesel exhaust (DE) on cytokine expression in murine lung tissues. BALB/c mice were exposed to DE for 1 month at different dose levels of DE (low dose: diesel exhaust particles [DEP] 100 micro g/m(3); high dose: 3mg/m(3)). After exposure, the authors examined mRNA expression of cytokines (tumor nocrosis factor alpha [TFN-alpha], Interleukin [IL]-1beta, IL-4, IL-6, IL-10, IL-12p40, and interferon gamma [IFN-gamma] and inducible nitric oxide synthase (iNOS) in the lung, and also measured the secretion of TNF-alpha and IL-10 protein by alveolar macrophages (AM). The mRNA expression levels of inflammatory cytokines (TNF-alpha, IL-1beta, IL-6, IL-12p40, IFN-gamma) and iNOS, which are important for host defense, were suppressed significantly. However, the IL-10 mRNA level was increased by DE exposure. The IL-4 mRNA level was increased by low-dose DE exposure but suppressed by high-dose DE exposure. TNF-alpha and IL-10 secretion by AM paralleled mRNA expression. Chronic inhalation of DE affects cytokine expression in murine lung. These results suggest that DE alters immunological responses in the lung and may increase susceptibility to pathogens, and that increased IL-4 expression by low-dose DE exposure may induce allergic reaction such as asthma. PMID:12217215

  16. Microscopic characterization of individual particles from multicomponent ship exhaust.

    PubMed

    Popovicheva, Olga; Kireeva, Elena; Persiantseva, Natalia; Timofeev, Mikhail; Bladt, Henrike; Ivleva, Natalia P; Niessner, Reinhard; Moldanová, Jana

    2012-12-01

    Particles sampled from the main and auxiliary ship diesel engine exhausts during a measurement campaign aboard a cargo ship are studied by SEM and energy-dispersive X-ray (EDX) microanalysis. Cluster analysis (CA) is applied to characterize the particles by separating them into distinct groups of similar morphology and chemical composition, representative of the particle types in the exhaust from the main and auxiliary engines. Raman microspectroscopy, Fourier transform infrared (FTIR) spectroscopy, inductively coupled plasma mass spectrometry and ion chromatography provide the criteria for the clustering of a large data set of individual particles. To identify chemical and morphological features of heavy and distillate fuel oil-derived PM emissions, micromarkers discriminating between the different types of emitted particles are proposed. These micromarkers could enable the classification of multicomponent aerosols according to a source type. This characterization of complex multicomponent aerosols emitted by ship diesel engines improves the quantification of the contribution of shipping to ambient air particulates, and can help to identify a source type in apportionment studies. PMID:23090431

  17. Cerium dioxide nanoparticles can interfere with the associated cellular mechanistic response to diesel exhaust exposure.

    PubMed

    Steiner, Sandro; Mueller, Loretta; Popovicheva, Olga B; Raemy, David O; Czerwinski, Jan; Comte, Pierre; Mayer, Andreas; Gehr, Peter; Rothen-Rutishauser, Barbara; Clift, Martin J D

    2012-10-17

    The aim of this study was to compare the biological response of a sophisticated in vitro 3D co-culture model of the epithelial airway barrier to a co-exposure of CeO(2) NPs and diesel exhaust using a realistic air-liquid exposure system. Independent of the individual effects of either diesel exhaust or CeO(2) NPs investigation observed that a combined exposure of CeO(2) NPs and diesel exhaust did not cause a significant cytotoxic effect or alter cellular morphology after exposure to diesel exhaust for 2h at 20?g/ml (low dose) or for 6h at 60?g/ml (high dose), and a subsequent 6h exposure to an aerosolized solution of CeO(2) NPs at the same doses. A significant loss in the reduced intracellular glutathione level was recorded, although a significant increase in the oxidative marker HMOX-1 was found after exposure to a low and high dose respectively. Both the gene expression and protein release of tumour necrosis factor-? were significantly elevated after a high dose exposure only. In conclusion, CeO(2) NPs, in combination with diesel exhaust, can significantly interfere with the cell machinery, indicating a specific, potentially adverse role of CeO(2) NPs in regards to the biological response of diesel exhaust exposure. PMID:22960666

  18. Nitrogen dioxide and ultrafine particles dominate the biological effects of inhaled diesel exhaust treated by a catalyzed diesel particulate filter.

    PubMed

    Karthikeyan, Subramanian; Thomson, Errol M; Kumarathasan, Prem; Guénette, Josée; Rosenblatt, Debbie; Chan, Tak; Rideout, Greg; Vincent, Renaud

    2013-10-01

    We studied the impact of a catalyzed diesel particulate filter (DPF) on the toxicity of diesel exhaust. Rats inhaled exhaust from a Cummins ISM heavy-duty diesel engine, with and without DPF after-treatment, or HEPA-filtered air for 4h, on 1 day (single exposure) and 3 days (repeated exposures). Biological effects were assessed after 2h (single exposure) and 20h (single and repeated exposures) recovery in clean air. Concentrations of pollutants were (1) untreated exhaust (-DPF), nitric oxide (NO), 43 ppm; nitrogen dioxide (NO2), 4 ppm; carbon monoxide (CO), 6 ppm; hydrocarbons, 11 ppm; particles, 3.2×10(5)/cm(3), 60-70nm mode, 269 ?g/m(3); (2) treated exhaust (+DPF), NO, 20 ppm; NO2, 16 ppm; CO, 1 ppm; hydrocarbons, 3 ppm; and particles, 4.4×10(5)/cm(3), 7-8nm mode, 2 ?g/m(3). Single exposures to -DPF exhaust resulted in increased neutrophils, total protein and the cytokines, growth-related oncogene/keratinocyte chemoattractant, macrophage inflammatory protein-1?, and monocyte chemoattractant protein-1 in lung lavage fluid, as well as increased gene expression of interleukin-6, prostaglandin-endoperoxide synthase 2, metallothionein 2A, tumor necrosis factor-?, inducible nitric oxide synthase, glutathione S-transferase A1, heme oxygenase-1, superoxide dismutase 2, endothelin-1 (ET-1), and endothelin-converting enzyme-1 in the lung, and ET- 1 in the heart. Ratio of bigET-1 to ET-1 peptide increased in plasma in conjunction with a decrease in endothelial nitric oxide synthase gene expression in the lungs after exposure to diesel exhaust, suggesting endothelial dysfunction. Rather than reducing toxicity, +DPF exhaust resulted in heightened injury and inflammation, consistent with the 4-fold increase in NO2 concentration. The ratio of bigET-1 to ET-1 was similarly elevated after -DPF and +DPF exhaust exposures. Endothelial dysfunction, thus, appeared related to particle number deposited, rather than particle mass or NO2 concentration. The potential benefits of particulate matter reduction using a catalyzed DPF may be confounded by increase in NO2 emission and release of reactive ultrafine particles. PMID:23897985

  19. Characterisation of lightly oxidised organic aerosol formed from the photochemical aging of diesel exhaust particles

    E-print Network

    Kroll, Jesse

    The oxidative aging of the semivolatile fraction of diesel exhaust aerosol is studied in order to better understand the influence of oxidation reactions on particle chemical composition. Exhaust is sampled from an idling ...

  20. INCREASED SUSCEPTIBILITY TO INFLUENZA INFECTION AFTER DIESEL EXHAUST EXPOSURE

    EPA Science Inventory

    Inhaled environmental pollutants have a possible role in modulating the susceptibility of humans to respiratory infections. Diesel exhaust (DE) is a major component of urban air pollution and their effects on pulmonary infections is of great concern. Influenza infections cause ...

  1. INCREASED SUSCEPTIBILITY TO INFLUENZA INFECTION AFTER DIESEL EXHAUST EXPOSURE.

    EPA Science Inventory

    Inhaled environmental pollutants have a possible role in modulating the susceptibility of humans to respiratory infections. Diesel exhaust (DE) is a major component of urban air pollution and their effects on pulmonary infections is of great concern. Influenza infections cause ...

  2. Personal exposure to ultrafine particles.

    PubMed

    Wallace, Lance; Ott, Wayne

    2011-01-01

    Personal exposure to ultrafine particles (UFP) can occur while people are cooking, driving, smoking, operating small appliances such as hair dryers, or eating out in restaurants. These exposures can often be higher than outdoor concentrations. For 3 years, portable monitors were employed in homes, cars, and restaurants. More than 300 measurement periods in several homes were documented, along with 25?h of driving two cars, and 22 visits to restaurants. Cooking on gas or electric stoves and electric toaster ovens was a major source of UFP, with peak personal exposures often exceeding 100,000 particles/cm³ and estimated emission rates in the neighborhood of 10¹² particles/min. Other common sources of high UFP exposures were cigarettes, a vented gas clothes dryer, an air popcorn popper, candles, an electric mixer, a toaster, a hair dryer, a curling iron, and a steam iron. Relatively low indoor UFP emissions were noted for a fireplace, several space heaters, and a laser printer. Driving resulted in moderate exposures averaging about 30,000 particles/cm³ in each of two cars driven on 17 trips on major highways on the East and West Coasts. Most of the restaurants visited maintained consistently high levels of 50,000-200,000 particles/cm³ for the entire length of the meal. The indoor/outdoor ratios of size-resolved UFP were much lower than for PM?.? or PM??, suggesting that outdoor UFP have difficulty in penetrating a home. This in turn implies that outdoor concentrations of UFP have only a moderate effect on personal exposures if indoor sources are present. A time-weighted scenario suggests that for typical suburban nonsmoker lifestyles, indoor sources provide about 47% and outdoor sources about 36% of total daily UFP exposure and in-vehicle exposures add the remainder (17%). However, the effect of one smoker in the home results in an overwhelming increase in the importance of indoor sources (77% of the total). PMID:20087407

  3. Exacerbation of allergic inflammation in mice exposed to diesel exhaust particles prior to viral infection.

    EPA Science Inventory

    Background: Viral infections and exposure to oxidant air pollutants are two ofthe most important inducers ofasthma exacerbation. Our previous studies have demonstrated that exposure to diesel exhaust increases the susceptibility to influenza virus infections both in epithelial ce...

  4. Blood pressure response to controlled diesel exhaust exposure in human subjects.

    PubMed

    Cosselman, Kristen E; Krishnan, Ranjini M; Oron, Assaf P; Jansen, Karen; Peretz, Alon; Sullivan, Jeffrey H; Larson, Timothy V; Kaufman, Joel D

    2012-05-01

    Exposure to traffic-related air pollution is associated with risk of cardiovascular disease and mortality. We examined whether exposure to diesel exhaust increased blood pressure (BP) in human subjects. We analyzed data from 45 nonsmoking subjects, 18 to 49 years of age in double-blinded, crossover exposure studies, randomized to order. Each subject was exposed to diesel exhaust, maintained at 200 ?g/m(3) of fine particulate matter, and filtered air for 120 minutes on days separated by ?2 weeks. We measured BP pre-exposure, at 30-minute intervals during exposure, and 3, 5, 7, and 24 hours from exposure initiation and analyzed changes from pre-exposure values. Compared with filtered air, systolic BP increased at all of the points measured during and after diesel exhaust exposure; the mean effect peaked between 30 and 60 minutes after exposure initiation (3.8 mm Hg [95% CI: -0.4 to 8.0 mm Hg] and 5.1 mm Hg [95% CI: 0.7-9.5 mm Hg], respectively). Sex and metabolic syndrome did not modify this effect. Combining readings between 30 and 90 minutes, diesel exhaust exposure resulted in a 4.4-mm Hg increase in systolic BP, adjusted for participant characteristics and exposure perception (95% CI: 1.1-7.7 mm Hg; P=0.0009). There was no significant effect on heart rate or diastolic pressure. Diesel exhaust inhalation was associated with a rapid, measurable increase in systolic but not diastolic BP in young nonsmokers, independent of perception of exposure. This controlled trial in humans confirms findings from observational studies. The effect may be important on a population basis given the worldwide prevalence of exposure to traffic-related air pollution. PMID:22431582

  5. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration. PMID:25518646

  6. Exposure to Inhalable, Respirable, and Ultrafine Particles in Welding Fume

    PubMed Central

    Pesch, Beate

    2012-01-01

    This investigation aims to explore determinants of exposure to particle size-specific welding fume. Area sampling of ultrafine particles (UFP) was performed at 33 worksites in parallel with the collection of respirable particles. Personal sampling of respirable and inhalable particles was carried out in the breathing zone of 241 welders. Median mass concentrations were 2.48 mg m?3 for inhalable and 1.29 mg m?3 for respirable particles when excluding 26 users of powered air-purifying respirators (PAPRs). Mass concentrations were highest when flux-cored arc welding (FCAW) with gas was applied (median of inhalable particles: 11.6 mg m?3). Measurements of particles were frequently below the limit of detection (LOD), especially inside PAPRs or during tungsten inert gas welding (TIG). However, TIG generated a high number of small particles, including UFP. We imputed measurements exposure to welding fume. Concentrations were mainly predicted by the welding process and were significantly higher when local exhaust ventilation (LEV) was inefficient or when welding was performed in confined spaces. Substitution of high-emission techniques like FCAW, efficient LEV, and using PAPRs where applicable can reduce exposure to welding fume. However, harmonizing the different exposure metrics for UFP (as particle counts) and for the respirable or inhalable fraction of the welding fume (expressed as their mass) remains challenging. PMID:22539559

  7. Mutagenicity of diesel exhaust particles and oil shale particles dispersed in lecithin surfactant

    SciTech Connect

    Wallace, W.E.; Keane, M.J.; Hill, C.A.; Xu, J.; Ong, T.M.

    1987-01-01

    Diesel exhaust particulate material from exhaust pipe scrapings of two trucks, diluted automobile diesel exhaust particulate material collected on filters, and two oil shale ores were prepared for the Ames mutagenicity assay by dichloromethane (DCM) extraction, by dispersion into 0.85% saline, or by dispersion into dipalmitoyl lecithin (DPL) emulsion in saline. Salmonella typhimurium TA98 was used to detect frameshift mutagens in the samples. Samples of diesel soot gave positive mutagenic responses with both DCM extraction and DPL dispersion, with the DPL dispersion giving higher results in some cases. The results suggest that possible mutagens associated with inhaled particles may be dispersed or solubilized into the phospholipid component of pulmonary surfactant and become active in such a phase.

  8. Mutagenicity of diesel exhaust particles and oil shale particles dispersed in lecithin surfactant.

    PubMed

    Wallace, W E; Keane, M J; Hill, C A; Xu, J; Ong, T M

    1987-01-01

    Diesel exhaust particulate material from exhaust pipe scrapings of two trucks, diluted automobile diesel exhaust particulate material collected on filters, and two oil shale ores were prepared for the Ames mutagenicity assay by dichloromethane (DCM) extraction, by dispersion into 0.85% saline, or by dispersion into dipalmitoyl lecithin (DPL) emulsion in saline. Salmonella typhimurium TA98 was used to detect frameshift mutagens in the samples. Samples of diesel soot gave positive mutagenic responses with both DCM extraction and DPL dispersion, with the DPL dispersion giving higher results in some cases. The results suggest that possible mutagens associated with inhaled particles may be dispersed or solubilized into the phospholipid component of pulmonary surfactant and become active in such a phase. PMID:2437315

  9. Comparative evaluation of the effects of short-term inhalation exposure to diesel engine exhaust on rat lung and brain

    PubMed Central

    van Berlo, Damien; Albrecht, Catrin; Knaapen, Ad M.; Cassee, Flemming R.; Gerlofs-Nijland, Miriam E.; Kooter, Ingeborg M.; Palomero-Gallagher, Nicola; Bidmon, Hans-Jürgen; van Schooten, Frederik-Jan; Krutmann, Jean

    2010-01-01

    Combustion-derived nanoparticles, such as diesel engine exhaust particles, have been implicated in the adverse health effects of particulate air pollution. Recent studies suggest that inhaled nanoparticles may also reach and/or affect the brain. The aim of our study was to comparatively evaluate the effects of short-term diesel engine exhaust (DEE) inhalation exposure on rat brain and lung. After 4 or 18 h recovery from a 2 h nose-only exposure to DEE (1.9 mg/m3), the mRNA expressions of heme oxygenase-1 (HO-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and cytochrome P450 1A1 (CYP1A1) were investigated in lung as well as in pituitary gland, hypothalamus, olfactory bulb, olfactory tubercles, cerebral cortex, and cerebellum. HO-1 protein expression in brain was investigated by immunohistochemistry and ELISA. In the lung, 4 h post-exposure, CYP1A1 and iNOS mRNA levels were increased, while 18 h post-exposure HO-1 was increased. In the pituitary at 4 h post-exposure, both CYP1A1 and HO-1 were increased; HO-1 was also elevated in the olfactory tuberculum at this time point. At 18 h post-exposure, increased expression of HO-1 and COX-2 was observed in cerebral cortex and cerebellum, respectively. Induction of HO-1 protein was not observed after DEE exposure. Bronchoalveolar lavage analysis of inflammatory cell influx, TNF-?, and IL-6 indicated that the mRNA expression changes occurred in the absence of lung inflammation. Our study shows that a single, short-term inhalation exposure to DEE triggers region-specific gene expression changes in rat brain to an extent comparable to those observed in the lung. PMID:20467864

  10. The Diesel Exhaust in Miners Study: IV. Estimating Historical Exposures to Diesel Exhaust in Underground Non-metal Mining Facilities

    PubMed Central

    Vermeulen, Roel; Coble, Joseph B.; Lubin, Jay H.; Portengen, Lützen; Blair, Aaron; Attfield, Michael D.; Silverman, Debra T.

    2010-01-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no historical measurements of diesel exhaust (DE), historical REC (a component of DE) levels were estimated based on REC data from monitoring surveys conducted in 1998–2001 as part of the DEMS investigation. These values were adjusted for underground workers by carbon monoxide (CO) concentration trends in the mines derived from models of historical CO (another DE component) measurements and DE determinants such as engine horsepower (HP; 1 HP = 0.746 kW) and mine ventilation. CO was chosen to estimate historical changes because it was the most frequently measured DE component in our study facilities and it was found to correlate with REC exposure. Databases were constructed by facility and year with air sampling data and with information on the total rate of airflow exhausted from the underground operations in cubic feet per minute (CFM) (1 CFM = 0.0283 m3 min?1), HP of the diesel equipment in use (ADJ HP), and other possible determinants. The ADJ HP purchased after 1990 (ADJ HP1990+) was also included to account for lower emissions from newer, cleaner engines. Facility-specific CO levels, relative to those in the DEMS survey year for each year back to the start of dieselization (1947–1967 depending on facility), were predicted based on models of observed CO concentrations and log-transformed (Ln) ADJ HP/CFM and Ln(ADJ HP1990+). The resulting temporal trends in relative CO levels were then multiplied by facility/department/job-specific REC estimates derived from the DEMS surveys personal measurements to obtain historical facility/department/job/year-specific REC exposure estimates. The facility-specific temporal trends of CO levels (and thus the REC estimates) generated from these models indicated that CO concentrations had been generally greater in the past than during the 1998–2001 DEMS surveys, with the highest levels ranging from 100 to 685% greater (median: 300%). These levels generally occurred between 1970 and the early 1980s. A comparison of the CO facility-specific model predictions with CO air concentration measurements from a 1976–1977 survey external to the modeling showed that our model predictions were slightly lower than those observed (median relative difference of 29%; range across facilities: 49 to –25%). In summary, we successfully modeled past CO concentration levels using selected determinants of DE exposure to derive retrospective estimates of REC exposure. The results suggested large variations in REC exposure levels both between and within the underground operations of the facilities and over time. These REC exposure estimates were in a plausible range and were used in the investigation of exposure–response relationships in epidemiologic analyses. PMID:20876235

  11. EXPOSURE TO DIESEL EXHAUST ENHANCES THE SEVERITY OF AN ONGOING INFLUENZA INFECTION.

    EPA Science Inventory

    Numerous studies have shown that air pollutants including diesel exhaust (DE), alter host defense responses to decrease resistance to respiratory infection. The purpose of this study was to evaluate the effects of DE exposure on the severity of an ongoing influenza infection in ...

  12. EFFECT OF SHORT TERM DIESEL EXHAUST EXPOSURE ON NASAL RESPONSES TO INFLUENZA IN ALLERGIC RHINITICS.

    EPA Science Inventory

    Introduction: Recently published data suggest that diesel exhaust (DE) has special impact on allergic inflammation, suppressing Th1 and augmenting Th2 responses to allergen via oxidant stress effects on airway cells. Exposures to particulate air pollutants including DE are also a...

  13. ACUTE BEHAVORIAL EFFECTS FROM EXPOSURE TO TWO-STROKE ENGINE EXHAUST

    EPA Science Inventory

    Benefits of changing from two-stroke to four-stroke engines (and other remedial requirements) can be evaluated (monetized) from the standpoint of acute behavioral effects of human exposure to exhaust from these engines. The monetization process depends upon estimates of the magn...

  14. Diesel exhaust exposure enhances the expression of IL13 in the bronchial epithelium of healthy subjects

    Microsoft Academic Search

    Jamshid Pourazar; Anthony J Frew; Anders Blomberg; Ragnberth Helleday; Frank J Kelly; Susan Wilson; Thomas Sandström

    2004-01-01

    Epidemiological studies have demonstrated adverse health effects of environmental pollution. Diesel exhaust (DE) is an important contributor to ambient particulate matter pollution. DE exposure has been shown to induce a pronounced inflammatory response in the airways, with an enhanced epithelial expression of IL-8, and Gro-? in healthy subjects. The present investigation was aimed to further characterise the epithelial response to

  15. Lactate and pH evaluation in exhausted humans with prolonged TASER X26 exposure or continued exertion

    Microsoft Academic Search

    Jeffrey D. Ho; Donald M. Dawes; Jon B. Cole; Julie C. Hottinger; Kenneth G. Overton; James R. Miner

    2009-01-01

    ObjectiveSafety concerns about TASER® Conducted Electrical Weapon (CEW) use and media reports of deaths after exposure have been expressed. CEWs are sometimes used on exhausted subjects to end resistance. The alternative is often a continued struggle. It is unclear if CEW use is metabolically different than allowing a continued struggle. We sought to determine if CEW exposure on exhausted humans

  16. Inhibition of catalase activity in vitro by diesel exhaust particles

    SciTech Connect

    Mori, Yoki; Murakami, Sumika; Sagae, Toshiyuki [Health Sciences Univ. of Hokkaido (Japan)] [and others] [Health Sciences Univ. of Hokkaido (Japan); and others

    1996-02-09

    The effect of diesel exhaust particles (DEP) on the activity of catalase, an intracellular anti-oxidant, was investigated because H{sub 2}O{sub 2} is a cytotoxic oxidant, and catalase released from alveolar cells is an important antioxidant in the epithelial lining fluid in the lung. DEP inhibited the activity of bovine liver catalase dose-dependently, to 25-30% of its original value. The inhibition of catalase by DEP was observed only in the presence of anions such as Cl{sup {minus}}, Br{sup {minus}}, or thiocyanate. Other anions, such as CH{sub 3}COO{sup {minus}} or SO{sub 4}{sup {minus}}, and cations such as K{sup +}, Na{sup +}, Mg{sup 2+}, or Fe{sup 2+}, did not affect the activity of catalase, even in the presence of DEP extract. Catalase from guinea pig alveolar cells and catalase from red blood cells were also inhibited by DEP extracts, as was catalase from bovine liver. These results suggest that DEP taken up in the lung and located on alveolar spaces might cause cell injury by inhibiting the activity of catalase in epithelial lining fluid, enhancing the toxicity of H{sub 2}O{sub 2} generated from cells in addition to that of O{sub 2}{sup {minus}} generated by the chemical reaction of DEP with oxygen. 10 refs., 6 figs.

  17. Markers of exposure to diesel exhaust in railroad workers. Research report

    SciTech Connect

    Schenker, M.B.; Samuels, S.J.; Kado, N.Y.; Hammond, S.K.; Smith, T.J.

    1990-01-01

    The study measured the exposure of railroad workers to diesel exhaust and environmental tobacco smoke by using personal air samples taken over two consecutive work shifts. Urine samples were collected from 87 subjects at the end of the study work shifts and were analyzed for markers of cigarette smoking (nicotine, cotinine) and for mutagenicity, using a sensitive microsuspension assay (Salmonella strain TA98 with or without S9 enzyme). Among smokers, a dose-response relationship was observed between urinary mutagenicity and the number of cigarettes smoked on the study day. After cigarette smoking was controlled for, no association was present between diesel exhaust exposure and urinary mutagenicity. Among nonsmokers, detectable concentrations of mutagens were present in the urine, but no association could be found between markers of diesel exhaust or environmental tobacco smoke and urinary mutagenicity. It was concluded that the mutagens associated with the levels of exposure to diesel exhaust or environmental tobacco smoke in the study were undetectable in the urine.

  18. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles.

    PubMed

    Cooney, Daniel J; Hickey, Anthony J

    2008-01-01

    The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

  19. The generation of diesel exhaust particle aerosols from a bulk source in an aerodynamic size range similar to atmospheric particles

    PubMed Central

    Cooney, Daniel J; Hickey, Anthony J

    2008-01-01

    The influence of diesel exhaust particles (DEP) on the lungs and heart is currently a topic of great interest in inhalation toxicology. Epidemiological data and animal studies have implicated airborne particulate matter and DEP in increased morbidity and mortality due to a number of cardiopulmonary diseases including asthma, chronic obstructive pulmonary disorder, and lung cancer. The pathogeneses of these diseases are being studied using animal models and cell culture techniques. Real-time exposures to freshly combusted diesel fuel are complex and require significant infrastructure including engine operations, dilution air, and monitoring and control of gases. A method of generating DEP aerosols from a bulk source in an aerodynamic size range similar to atmospheric DEP would be a desirable and useful alternative. Metered dose inhaler technology was adopted to generate aerosols from suspensions of DEP in the propellant hydrofluoroalkane 134a. Inertial impaction data indicated that the particle size distributions of the generated aerosols were trimodal, with count median aerodynamic diameters less than 100 nm. Scanning electron microscopy of deposited particles showed tightly aggregated particles, as would be expected from an evaporative process. Chemical analysis indicated that there were no major changes in the mass proportion of 2 specific aromatic hydrocarbons (benzo[a]pyrene and benzo[k]fluoranthene) in the particles resulting from the aerosolization process. PMID:19337412

  20. Diesel engine exhaust and lung cancer mortality: time-related factors in exposure and risk.

    PubMed

    Moolgavkar, Suresh H; Chang, Ellen T; Luebeck, Georg; Lau, Edmund C; Watson, Heather N; Crump, Kenny S; Boffetta, Paolo; McClellan, Roger

    2015-04-01

    To develop a quantitative exposure-response relationship between concentrations and durations of inhaled diesel engine exhaust (DEE) and increases in lung cancer risks, we examined the role of temporal factors in modifying the estimated effects of exposure to DEE on lung cancer mortality and characterized risk by mine type in the Diesel Exhaust in Miners Study (DEMS) cohort, which followed 12,315 workers through December 1997. We analyzed the data using parametric functions based on concepts of multistage carcinogenesis to directly estimate the hazard functions associated with estimated exposure to a surrogate marker of DEE, respirable elemental carbon (REC). The REC-associated risk of lung cancer mortality in DEMS is driven by increased risk in only one of four mine types (limestone), with statistically significant heterogeneity by mine type and no significant exposure-response relationship after removal of the limestone mine workers. Temporal factors, such as duration of exposure, play an important role in determining the risk of lung cancer mortality following exposure to REC, and the relative risk declines after exposure to REC stops. There is evidence of effect modification of risk by attained age. The modifying impact of temporal factors and effect modification by age should be addressed in any quantitative risk assessment (QRA) of DEE. Until there is a better understanding of why the risk appears to be confined to a single mine type, data from DEMS cannot reliably be used for QRA. PMID:25683254

  1. Effects of diesel exhaust particles on microRNA-21 in human bronchial epithelial cells and potential carcinogenic mechanisms.

    PubMed

    Zhou, Fang; Li, Suli; Jia, Wenliang; Lv, Gang; Song, Chonglin; Kang, Chunsheng; Zhang, Qingyu

    2015-08-01

    Air pollution plays a role in cancer risk, particularly in lung cancer, which is the leading cause of cancer?related mortality worldwide. Diesel exhaust particles (DEPs), a component of diesel exhaust products, is a complex mixture of particle compounds that include a large number of known and suspected human carcinogens. Historically, lung cancer, which is associated with DEPs, has been the focus of attention as a health risk in human and animal studies. However, the mechanism by which DEPs cause lung cancer remains unclear. The present study reports that DEPs increased miR?21 expression and then activated the PTEN/PI3K/AKT pathway in human bronchial epithelial (HBE) cells, which may serve as an important carcinogenic mechanism. However, the data revealed that short?term exposure to a high DEP concentration did not cause evident cell carcinogenesis in HBE cells. PMID:25901472

  2. Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans

    Microsoft Academic Search

    A. F. Behndig; I. S. Mudway; J. L. Brown; N. Stenfors; R. Helleday; S. T. Duggan; S. J. Wilson; C. Boman; F. R. Cassee; A. J. Frew; F. J. Kelly; T. Sandstrom; A. Blomberg

    2006-01-01

    Pulmonary cells exposed to diesel exhaust (DE) particles in vitro respond in a hierarchical fashion with protective antioxidant responses predominating at low doses and inflammation and injury only occurring at higher concentrations. In the present study, the authors examined whether similar responses occurred in vivo, specifically whether antioxidants were upregulated following a low-dose DE challenge and investigated how these responses

  3. Effect of atmospheric ageing on volatility and ROS of biodiesel exhaust nano-particles

    NASA Astrophysics Data System (ADS)

    Pourkhesalian, A. M.; Stevanovic, S.; Rahman, M. M.; Faghihi, E. M.; Bottle, S. E.; Masri, A. R.; Brown, R. J.; Ristovski, Z. D.

    2015-03-01

    In the prospect of limited energy resources and climate change, effects of alternative biofuels on primary emissions are being extensively studied. Our two recent studies have shown that biodiesel fuel composition has a~significant impact on primary particulate matter emissions. It was also shown that particulate matter caused by biodiesels was substantially different from the emissions due to petroleum diesel. Emissions appeared to have higher oxidative potential with the increase in oxygen content and decrease of carbon chain length and unsaturation levels of fuel molecules. Overall, both studies concluded that chemical composition of biodiesel is more important than its physical properties in controlling exhaust particle emissions. This suggests that the atmospheric ageing processes, including secondary organic aerosol formation, of emissions from different fuels will be different as well. In this study, measurements were conducted on a modern common-rail diesel engine. To get more information on realistic properties of tested biodiesel particulate matter once they are released into the atmosphere, particulate matter was exposed to atmospheric oxidants, ozone and ultra-violet light; and the change in their properties was monitored for different biodiesel blends. Upon the exposure to oxidative agents, the chemical composition of the exhaust changes. It triggers the cascade of photochemical reactions resulting in the partitioning of semi-volatile compounds between the gas and particulate phase. In most of the cases, aging lead to the increase in volatility and oxidative potential, and the increment of change was mainly dependent on the chemical composition of fuels as the leading cause for the amount and the type of semi-volatile compounds present in the exhaust.

  4. Diesel-exhaust/coal-dust exposure study: characterization of selected vapor-phase organic emissions

    SciTech Connect

    Lunsford, R.A.; Okenfuss, J.R.; Shulman, S.A.

    1984-02-28

    In efforts to characterize the atmospheres present in animal exposure chambers, samples of the air were taken during coal dust and diesel exhaust inhalation studies. No detectable quantities of phenol, cresol, and the xylenols were found in the exposure chambers. Formaldehyde and acetaldehyde were present at slightly under 40 parts per billion (ppb) concentration levels. Other aldehydes present in the chambers were at much lower concentrations, about 6ppb. Formaldehyde was the only aldehyde consistently present in the nondiesel chambers, at 7ppb. It is suggested that the water scrubber on the diesel engine used in the study might have moderated the concentrations of water-soluble pollutants, such as aldehydes and phenols. A combination of analytical results suggests that formaldehyde, acetaldehyde, and acrolein were the major aldehydes present in the diesel exhaust, each at levels less than 100ppb.

  5. Occupational exposure to diesel exhaust and lung cancer: a meta-analysis.

    PubMed Central

    Lipsett, M; Campleman, S

    1999-01-01

    OBJECTIVES: We undertook a meta-analysis of epidemiological studies investigating the relationship between occupational diesel exhaust exposure and lung cancer. METHODS: Thirty of 47 studies initially identified as potentially relevant met specified inclusion criteria. We extracted or calculated 39 independent estimates of relative risk and derived pooled estimates of risk for all studies and for numerous study subsets by using a random-effects model. We also examined interstudy heterogeneity by using linear metaregressions. RESULTS: There was substantial heterogeneity in the pooled risk estimates for all studies combined and for most subsets. Several factors consistent with higher study quality, however, contributed to increased pooled estimates of risk and lower heterogeneity, including (1) adjustment for confounding by cigarette smoking and other covariates, (2) having a lower likelihood of selection bias, and (3) having increased study power. CONCLUSION: This analysis provides quantitative support for prior qualitative reviews that have ascribed an etiologic role to occupational diesel exhaust exposure in lung cancer induction. Among study populations most likely to have had substantial exposure to diesel exhaust, the pooled smoking-adjusted relative risk was 1.47 (95% confidence interval = 1.29, 1.67). PMID:10394308

  6. Cardiovascular Responses of Largemouth Bass to Exhaustive Exercise and Brief Air Exposure over a Range of Water Temperatures

    Microsoft Academic Search

    Steven J. Cooke; Kenneth G. Ostrand; Christopher M. Bunt; Jason F. Schreer; David H. Wahl; David P. Philipp

    2003-01-01

    In this study we examined the effects of exhaustive exercise and brief air exposure on the cardiovascular function of largemouth bass Micropterus salmoides at four water temperatures (13, 17, 21, and 25°C). We used Doppler flow probes to monitor cardiac output and its components (i.e., stroke volume and heart rate) while we manually chased fish to exhaustion to simulate angling,

  7. Diesel Exhaust Exposure and the Risk of Lung Cancer—A Review of the Epidemiological Evidence

    PubMed Central

    Sun, Yi; Bochmann, Frank; Nold, Annette; Mattenklott, Markus

    2014-01-01

    To critically evaluate the association between diesel exhaust (DE) exposure and the risk of lung cancer, we conducted a systematic review of published epidemiological evidences. To comprehensively identify original studies on the association between DE exposure and the risk of lung cancer, literature searches were performed in literature databases for the period between 1970 and 2013, including bibliographies and cross-referencing. In total, 42 cohort studies and 32 case-control studies were identified in which the association between DE exposures and lung cancer was examined. In general, previous studies suffer from a series of methodological limitations, including design, exposure assessment methods and statistical analysis used. A lack of objective exposure information appears to be the main problem in interpreting epidemiological evidence. To facilitate the interpretation and comparison of previous studies, a job-exposure matrix (JEM) of DE exposures was created based on around 4,000 historical industrial measurements. The values from the JEM were considered during interpretation and comparison of previous studies. Overall, neither cohort nor case-control studies indicate a clear exposure-response relationship between DE exposure and lung cancer. Epidemiological studies published to date do not allow a valid quantification of the association between DE and lung cancer. PMID:24473109

  8. Model studies of volatile diesel exhaust particle formation: organic vapours involved in nucleation and growth?

    NASA Astrophysics Data System (ADS)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-02-01

    High concentration of volatile nucleation mode particles (NUP) formed in the atmosphere during exhaust cools and dilutes have hazardous health effects and impair visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulphur content (FSC), under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested; based on the measured gaseous sulphuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrierless heteromolecular homogeneous nucleation between GSA and semi-volatile organic vapour (for example adipic acid) combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur by the same organic vapour at concentrations of (1-2) ×1012cm-3. The pre-existing core and soot mode concentrations had opposite trend on the NUP formation, and maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, NUP formation was ceased if the GSA concentration was less than 1010cm-3 which suggests, based on the measurements, the usage of biofuel to prevent volatile particles in diesel exhaust.

  9. Autocrine ligands of the epithelial growth factor receptor mediate inflammatory responses to diesel exhaust particles

    PubMed Central

    2014-01-01

    Background Diesel exhaust is associated with cardiovascular and respiratory mortality and morbidity. Acute exposure leads to increased IL-8 expression and airway neutrophilia, however the mechanism of this response is unknown. Objectives: As cigarette smoke-induced IL-8 expression by epithelial cells involves transactivation of the epidermal growth factor receptor (EGFR), we studied the effects of diesel exhaust particles (DEP) on IL-8 release and the role of the EGFR. Methods Primary bronchial epithelial cells (PBEC) were exposed to DEPs or carbon black. IL-8 and EGFR ligand expression (transforming growth factor alpha (TGF?), heparin-binding EGF-like growth factor, and amphiregulin (AR)) were assessed by quantitative RT-PCR and ELISA. Results DEP, but not carbon black, caused a dose-dependent increase in mitogen-activated protein kinase (MAPK) activation and IL-8 expression, however above 50 ?g/ml there was an increase in cytotoxicity. At 50 ?g/ml, DEPs stimulated transcription and release of IL-8 and EGFR ligands. IL-8 release was blocked by EGFR neutralizing antibodies, an EGFR-selective tyrosine kinase inhibitor and by the metalloprotease inhibitor, GM6001, which blocks EGFR ligand shedding. Neutralizing antibodies to AR, TGF? and heparin-binding (HB)-EGF reduced DEP-induced IL-8 by >50%. Conclusion Expression of IL-8 in response to DEPs is dependent on EGFR activation and that autocrine production of EGFR ligands makes a substantial contribution to this response. Capsule Summary: This study identifies a mechanism whereby diesel particles stimulates IL-8 release from bronchial epithelial cells. This mechanism may help to explain the recruitment of neutrophils into the airways of people exposed to particulate air pollution. PMID:24555532

  10. Examination of cytokines and metals in exhaled breath condensate and lung lavage fluids after diesel exhaust exposure

    EPA Science Inventory

    Epidemiology studies link human exposure to ambient air pollution with the development and exacerbation of cardiopulmonary disease. Diesel exhaust (DE) is a significant source of ambient air pollution, and thus may contribute to adverse pulmonary health effects. Previous human re...

  11. Diesel Exhaust Particle-Induced Airway Responses are Augmented in Obese Rats

    PubMed Central

    Moon, Kuk-Young; Park, Moo-Kyun; Leikauf, George D.; Park, Choon-Sik; Jang, An-Soo

    2015-01-01

    Air pollutants and obesity are important factors that contribute to asthma. The aim of this study was to assess the airway responsiveness and inflammation in Otsuka-Long Evans Tokushima Fatty (OLETF) obese rats and Long Evans Tokushima-Otsuka (LETO) nonobese rats exposed to diesel exhaust particles (DEPs). Otsuka Long Evans Tokushima fatty rats and LETO rats were exposed intranasally to DEP and then challenged with aerosolized DEP on days 6 to 8. Body plethysmography, bronchoalveolar lavage (BAL), and histology were performed. Enhanced pause (Penh) was measured as an indicator of airway resistance on day 9 and samples were collected on day 10. After exposure to DEP, the OLETF group exhibited a greater increase in Penh compared to that in the LETO group. Moreover, the BAL fluid in mice showed an increase in the total and differential cell counts in the DEP-exposed OLETF group compared to that in the DEP-exposed LETO group. Histological assessment of lung tissue from each group revealed that the DEP-exposed OLETF group tended to have increased inflammatory cell infiltrations in the prebronchial area. Increased peroxisome proliferator-activated receptor ?, coactivator 1? messenger RNA was observed in the lungs of obese rats compared to that in nonobese rats following DEP exposure. These data indicate that the DEP-exposed OLETF group had increased airway responses and inflammation compared to the DEP-exposed LETO group, indicating that diesel particulates and obesity may be co-contributors to asthma. PMID:24536021

  12. Quantification of 1-aminopyrene in human urine after a controlled exposure to diesel exhaust

    PubMed Central

    Laumbach, Robert; Tong, Jian; Zhang, Lin; Ohman-Strickland, Pamela; Stern, Alan; Fiedler, Nancy; Kipen, Howard; Kelly-McNeil, Kathie; Lioy, Paul

    2014-01-01

    Diesel exhaust (DE) is a significant source of air pollution that has been linked to respiratory and cardiovascular morbidity and mortality. Many components in DE, such as polycyclic aromatic hydrocarbons, are present in the environment from other sources. 1-Nitropyrene appears to be a more specific marker of DE exposure. 1-Nitropyrene is partially metabolized to 1-aminopyrene and excreted in urine. We developed a practical, sensitive method for measuring 1-aminopyrene in human urine using a HPLC-fluorescence technique. We measured 1-aminopyrene concentrations in spot urine samples collected prior to and during 24 h following the start of 1 h controlled exposures to DE (target concentration 300 ?g m?3 as PM10) and clean air control. Time-weighted-average concentrations of urinary 1-aminopyrene were significantly greater following the DE exposure compared to the control (median 138.7 ng g?1 creatinine vs. 21.7 ng g?1 creatinine, p < 0.0001). Comparing DE to control exposures, we observed significant increases in 1-aminopyrine concentration from pre-exposure to either first post-exposure void or peak spot urine concentration following exposure (p = 0.027 and p = 0.0026, respectively). Large inter-individual variability, in both the concentration of urinary 1-aminopyrene and the time course of appearance in the urine following the standardized exposure to DE, suggests the need to explore subject variables that may affect conversion of inhaled 1-nitropyrene to urinary excretion of 1-aminopyrene. PMID:19137151

  13. Diesel exhaust particles modulate vascular endothelial cell permeability: Implication of ZO-1 Expression

    PubMed Central

    Li, Rongsong; Ning, Zhi; Cui, Jeffrey; Yu, Fei; Sioutas, Constantinos; Hsiai, Tzung

    2010-01-01

    Exposure to air pollutants increases the incidence of cardiovascular disease. Recent toxicity studies revealed that ultra fine particles (UFP, dp<100–200 nm), the major portion of particulate matter (PM) by numbers in the atmosphere, induced atherosclerosis. In this study, we posited that variations in chemical composition in diesel exhausted particles (DEP) regulated endothelial cell permeability to a different extent. Human aortic endothelial cells (HAEC) were exposed to well-characterized DEP (dp<100 nm) emitted from a diesel engine in either idling mode (DEP1) or in urban dynamometer driving schedule (UDDS) (DEP2). Horse Radish Peroxidase-Streptavidin activity assay showed that DEP2 increased endothelial permeability to a greater extent than DEP1 (Control=0.077± 0.005, DEP1=0.175±0.003, DEP2=0.265±0.006, n=3, p<0.01). DEP2 also down-regulated tight junction protein, Zonular Occludin-1 (ZO-1), to a greater extent compared to DEP1. LDH and caspase-3 activities revealed that DEP-mediated increase in permeability was not due to direct cytotoxicity, and DEP-mediated ZO-1 down-regulation was not due to a decrease in ZO-1 mRNA. Hence, our findings suggest that DEP1 versus DEP2 differentially influenced the extent of endothelial permeability at the post-translational level. This increase in endothelium permeability is implicated in inflammatory cell transmigration into subendothelial layers with relevance to the initiation of atherosclerosis. PMID:20576493

  14. On-road measurement of particle emission in the exhaust plume of a diesel passenger car.

    PubMed

    Vogt, Rainer; Scheer, Volker; Casati, Roberto; Benter, Thorsten

    2003-09-15

    Particle size distributions were measured under real world dilution conditions in the exhaust plume of a diesel passenger car closely followed by a mobile laboratory on a high speed test track. Under carefully controlled conditions the exhaust plume was continuously sampled and analyzed inside the mobile laboratory. Exhaust particle size distribution data were recorded together with exhaust gas concentrations, i.e., CO, CO2, and NO(x), and compared to data obtained from the same vehicle tested on a chassis dynamometer. Good agreement was found for the soot mode particles which occurred at a geometric mean diameter of approximately 50 nm and a total particle emission rate of 10(14) particles km(-1). Using 350 ppm high sulfur fuel and the standard oxidation catalyst a bimodal size distribution with a nucleation mode at 10 nm was observed at car velocities of 100 km h(-1) and 120 km h(-1), respectively. Nucleation mode particles were only present if high sulfur fuel was used with the oxidation catalyst installed. This is in agreement with prior work that these particles are of semivolatile nature and originate from the nucleation of sulfates formed inside the catalyst. Temporal effects of the occurrence of nucleation mode particles during steady-state cruising and the dynamical behavior during acceleration and deceleration were investigated. PMID:14524437

  15. CULTURE CONDITIONS AFFECT HUMAN AIRWAY EPITHELIAL CELL RESPONSE TO DIESEL PARTICLE EXPOSURE IN VITRO

    EPA Science Inventory

    Diesel exhaust particles (DEP) are a ubiquitous ambient air contaminant that may contribute to the health effects of particulate matter inhalation. In vitro studies have shown that DEP exposure induces pro-inflammatory proteins in human airway epithelial cells (HAEC) with varying...

  16. The Diesel Exhaust in Miners Study: I. Overview of the Exposure Assessment Process

    PubMed Central

    Stewart, Patricia A.; Coble, Joseph B.; Vermeulen, Roel; Schleiff, Patricia; Blair, Aaron; Lubin, Jay; Attfield, Michael; Silverman, Debra T.

    2010-01-01

    This report provides an overview of the exposure assessment process for an epidemiologic study that investigated mortality, with a special focus on lung cancer, associated with diesel exhaust (DE) exposure among miners. Details of several components are provided in four other reports. A major challenge for this study was the development of quantitative estimates of historical exposures to DE. There is no single standard method for assessing the totality of DE, so respirable elemental carbon (REC), a component of DE, was selected as the primary surrogate in this study. Air monitoring surveys at seven of the eight study mining facilities were conducted between 1998 and 2001 and provided reference personal REC exposure levels and measurements for other agents and DE components in the mining environment. (The eighth facility had closed permanently prior to the surveys.) Exposure estimates were developed for mining facility/department/job/year combinations. A hierarchical grouping strategy was developed for assigning exposure levels to underground jobs [based on job titles, on the amount of time spent in various areas of the underground mine, and on similar carbon monoxide (CO, another DE component) concentrations] and to surface jobs (based on the use of, or proximity to, diesel-powered equipment). Time trends in air concentrations for underground jobs were estimated from mining facility-specific prediction models using diesel equipment horsepower, total air flow rates exhausted from the underground mines, and, because there were no historical REC measurements, historical measurements of CO. Exposures to potentially confounding agents, i.e. respirable dust, silica, radon, asbestos, and non-diesel sources of polycyclic aromatic hydrocarbons, also were assessed. Accuracy and reliability of the estimated REC exposures levels were evaluated by comparison with several smaller datasets and by development of alternative time trend models. During 1998–2001, the average measured REC exposure level by facility ranged from 40 to 384 ?g m?3 for the underground workers and from 2 to 6 ?g m?3 for the surface workers. For one prevalent underground job, ‘miner operator’, the maximum annual REC exposure estimate by facility ranged up to 685% greater than the corresponding 1998–2001 value. A comparison of the historical CO estimates from the time trend models with 1976–1977 CO measurements not used in the modeling found an overall median relative difference of 29%. Other comparisons showed similar levels of agreement. The assessment process indicated large differences in REC exposure levels over time and across the underground operations. Method evaluations indicated that the final estimates were consistent with those from alternative time trend models and demonstrated moderate to high agreement with external data. PMID:20876233

  17. Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers

    PubMed Central

    Zhou, Haibo; Zhang, Hongtao; Horvath, Katie; Robinette, Carole; Kesic, Matthew; Meyer, Megan; Diaz-Sanchez, David; Jaspers, Ilona

    2012-01-01

    Rationale: Diesel exhaust enhances allergic inflammation, and pollutants are associated with heightened susceptibility to viral respiratory infections. The effects of combined diesel and virus exposure in humans are unknown. Objectives: Test whether acute exposure to diesel modifies inflammatory responses to influenza virus in normal humans and those with allergies. Methods: We conducted a double-blind, randomized, placebo-controlled study of nasal responses to live attenuated influenza virus in normal volunteers and those with allergic rhinitis exposed to diesel (100 ?g/m3) or clean air for 2 hours, followed by standard dose of virus and serial nasal lavages. Endpoints were inflammatory mediators (ELISA) and virus quantity (quantitative reverse-transcriptase polymerase chain reaction). To test for exposure effect, we used multiple regression with exposure group (diesel vs. air) as the main explanatory variable and allergic status as an additional factor. Measurements and Main Results: Baseline levels of mediators did not differ among groups. For most postvirus nasal cytokine responses, there was no significant diesel effect, and no significant interaction with allergy. However, diesel was associated with significantly increased IFN-? responses (P = 0.02), with no interaction with allergy in the regression model. Eotaxin-1 (P = 0.01), eosinophil cationic protein (P < 0.01), and influenza RNA sequences in nasal cells (P = 0.03) were significantly increased with diesel exposure, linked to allergy. Conclusions: Short-term exposure to diesel exhaust leads to increased eosinophil activation and increased virus quantity after virus inoculation in those with allergic rhinitis. This is consistent with previous literature suggesting a diesel “adjuvant” effect promoting allergic inflammation, and our data further suggest this change may be associated with reduced virus clearance. Clinical trial registered with www.clinicaltrials.gov (NCT00617110). PMID:22071326

  18. Nitrophenols isolated from diesel exhaust particles promote the growth of MCF-7 breast adenocarcinoma cells

    SciTech Connect

    Furuta, Chie [Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 (Japan); Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan); Suzuki, Akira K. [Environmental Nanotoxicology Section, Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba, 305-8506 (Japan); Watanabe, Gen [Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 (Japan); Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan); Li, ChunMei; Taneda, Shinji [Environmental Nanotoxicology Section, Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba, 305-8506 (Japan); Taya, Kazuyoshi [Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 (Japan); Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan)], E-mail: taya@cc.tuat.ac.jp

    2008-08-01

    Diesel exhaust particles (DEPs) cause many adverse health problems, and reports indicate increased risk of breast cancer in men and women through exposure to gasoline and vehicle exhaust. However, DEPs include vast numbers of compounds, and the specific compound(s) responsible for these actions are not clear. We recently isolated two nitrophenols from DEPs-3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) and 4-nitro-3-phenylphenol (PNMPP)-and showed that they had estrogenic and anti-androgenic activities. Here, we tried to clarify the involvement of these two nitrophenols in promoting the growth of the MCF-7 breast cancer cell line. First, comet assay was used to detect the genotoxicity of PNMC and PNMPP in a CHO cell line. At all doses tested, PNMC and PNMPP showed negative genotoxicity, indicating that they had no tumor initiating activity. Next, the estrogen-responsive breast cancer cell line MCF-7 was used to assess cell proliferation. Proliferation of MCF-7 cells was stimulated by PNMC, PNMPP, and estradiol-17{beta} and the anti-estrogens 4-hydroxytamoxifen and ICI 182,780 inhibited the proliferation. To further investigate transcriptional activity through the estrogen receptor, MCF-7 cells were transfected with a receptor gene that allowed expression of luciferase enzyme under the control of the estrogen regulatory element. PNMC and PNMPP induced luciferase activity in a dose-dependent manner at submicromolar concentrations. ICI 182,780 inhibited the luciferase activity induced by PNMC and PNMPP. These results clearly indicate that PNMC and PNMPP do not show genotoxicity but act as tumor promoters in an estrogen receptor {alpha}-predominant breast cancer cell line.

  19. Sulforaphane-rich broccoli sprout extract attenuates nasal allergic response to diesel exhaust particles.

    PubMed

    Heber, David; Li, Zhaoping; Garcia-Lloret, Maria; Wong, Angela M; Lee, Tsz Ying Amy; Thames, Gail; Krak, Michael; Zhang, Yanjun; Nel, Andre

    2014-01-01

    The generation of oxidative stress by ambient air pollution particles contributes to the development of allergic sensitization and asthma, as demonstrated by intranasal challenge with well-characterized diesel exhaust particle (DEP) suspensions in humans. This effect is due to the presence of redox active organic chemicals in DEP, and can be suppressed by antioxidants and inducers of phase II enzymes in animals. In this communication, we determined whether the administration of a standardized broccoli sprout extract (BSE), which contains a reproducible amount of the sulforaphane (SFN) precursor, glucoraphanin, could be used to suppress the nasal inflammatory response in human subjects challenged with 300 ?g of an aqueous DEP suspension (equivalent to daily PM exposure levels on a Los Angeles freeway). SFN is capable of inducing an antioxidant and phase II response via activation of the nuclear transcription factor (erythroid-derived 2)-like 2 (Nrf2). Previous studies have shown that 70-90% SFN delivered by BSE is absorbed, metabolized, and excreted in humans. An initial intranasal challenge with DEP in 29 human subjects was used to characterize the magnitude of the inflammatory response. Following a 4 week washout, a BSE that delivers a reproducible and standardized dose of 100 ?mol SFN in mango juice was administered daily for four days. The nasal DEP challenge was repeated and lavage fluid collected to perform white blood cell (WBC) counts. The average nasal WBC increased by 66% over the initial screening levels and by 85% over the control levels 24 hours after DEP exposure. However, total cell counts decreased by 54% when DEP challenge was preceded by daily BSE administration for 4 days (p < 0.001). Since the SFN dose in these studies is equivalent to the consumption of 100-200 g broccoli, our study demonstrates the potential preventive and therapeutic potential of broccoli or broccoli sprouts rich in glucoraphanin for reducing the impact of particulate pollution on allergic disease and asthma. PMID:24287881

  20. Suppression of the NF-?B Pathway by Diesel Exhaust Particles Impairs Human Antimycobacterial Immunity

    PubMed Central

    Sarkar, Srijata; Song, Youngmia; Sarkar, Somak; Kipen, Howard M.; Laumbach, Robert J.; Zhang, Junfeng (Jim); Strickland, Pamela A. Ohman; Gardner, Carol R.; Schwander, Stephan

    2012-01-01

    Epidemiological studies suggest that chronic exposure to air pollution increases susceptibility to respiratory infections including tuberculosis in humans. A possible link between particulate air pollutant exposure and antimycobacterial immunity has not been explored in human primary immune cells. We hypothesized that exposure to diesel exhaust particles (DEP), a major component of urban fine particulate matter, suppresses antimycobacterial human immune effector cell functions by modulating TLR-signaling pathways and NF-?B activation. We show that DEP and H37Ra, an avirulent laboratory strain of M.tb, were both taken up by the same peripheral human blood monocytes. To examine the effects of DEP on M.tb-induced production of cytokines, PBMC were stimulated with DEP and M.tb or PPD (purified protein derivative). The production of M.tb and PPD-induced IFN-?, TNF-?, IL-1?, and IL-6 was reduced in a DEP dose-dependent manner. In contrast, the production of anti-inflammatory IL-10 remained unchanged. Furthermore, DEP stimulation prior to M.tb infection altered the expression of TLR 3, 4, 5, 7 and 10 mRNAs and of a subset of M.tb-induced host genes including inhibition of expression of many NF-?B (e.g. CSF3, IFNG, IFNA, IFNB, IL1A, IL6, NFKBIA) and IRF (e.g. IFNG, IFNA1, IFNB1, CXCL10) pathway target genes. We propose that DEP down-regulate M.tb-induced host gene expression via MyD88-dependent (IL6, IL1A, PTGS2) as well as MyD88-independent (IFNA, IFNB) pathways. Pre-stimulation of PBMC with DEP suppressed the expression of proinflammatory mediators upon M.tb infection inducing a hypo-responsive cellular state. Therefore, DEP alters crucial components of antimycobacterial host immune responses, providing a possible mechanism by which air pollutants alter antimicrobial immunity. PMID:22345648

  1. Suppression of the NF-?B pathway by diesel exhaust particles impairs human antimycobacterial immunity.

    PubMed

    Sarkar, Srijata; Song, Youngmia; Sarkar, Somak; Kipen, Howard M; Laumbach, Robert J; Zhang, Junfeng; Strickland, Pamela A Ohman; Gardner, Carol R; Schwander, Stephan

    2012-03-15

    Epidemiological studies suggest that chronic exposure to air pollution increases susceptibility to respiratory infections, including tuberculosis in humans. A possible link between particulate air pollutant exposure and antimycobacterial immunity has not been explored in human primary immune cells. We hypothesized that exposure to diesel exhaust particles (DEP), a major component of urban fine particulate matter, suppresses antimycobacterial human immune effector cell functions by modulating TLR-signaling pathways and NF-?B activation. We show that DEP and H37Ra, an avirulent laboratory strain of Mycobacterium tuberculosis, were both taken up by the same peripheral human blood monocytes. To examine the effects of DEP on M. tuberculosis-induced production of cytokines, PBMC were stimulated with DEP and M. tuberculosis or purified protein derivative. The production of M. tuberculosis and purified protein derivative-induced IFN-?, TNF-?, IL-1?, and IL-6 was reduced in a DEP dose-dependent manner. In contrast, the production of anti-inflammatory IL-10 remained unchanged. Furthermore, DEP stimulation prior to M. tuberculosis infection altered the expression of TLR3, -4, -7, and -10 mRNAs and of a subset of M. tuberculosis-induced host genes including inhibition of expression of many NF-?B (e.g., CSF3, IFNG, IFNA, IFNB, IL1A, IL6, and NFKBIA) and IFN regulatory factor (e.g., IFNG, IFNA1, IFNB1, and CXCL10) pathway target genes. We propose that DEP downregulate M. tuberculosis-induced host gene expression via MyD88-dependent (IL6, IL1A, and PTGS2) as well as MyD88-independent (IFNA, IFNB) pathways. Prestimulation of PBMC with DEP suppressed the expression of proinflammatory mediators upon M. tuberculosis infection, inducing a hyporesponsive cellular state. Therefore, DEP alters crucial components of antimycobacterial host immune responses, providing a possible mechanism by which air pollutants alter antimicrobial immunity. PMID:22345648

  2. Test of a theoretical commuter exposure model to vehicle exhaust in traffic

    SciTech Connect

    Flachsbart, P.; Ah Yo, C.

    1986-04-01

    A theoretical model of commuter exposure is presented as a box or cell model with the automobile passenger compartment representing the microenvironment exposed to CO concentrations resulting from vehicle exhaust leaks and emissions from traffic. Equations that describe this situation are developed and discussed. The model is evaluated according to predictive power, explanatory power when compared to a more-parsimonious model, and the influence of initial CO concentrations inside a vehicle's passenger compartment. The model is shown to have relatively high predictive power and excellent explanatory power when compared to the more-conservative model.

  3. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method in which all gaseous compounds are absorbed before particles are collected, and in which the volatile compounds are derivatized, would improve the precision and the accuracy of the data.

  4. Airborne particle exposure and extrinsic skin aging.

    PubMed

    Vierkötter, Andrea; Schikowski, Tamara; Ranft, Ulrich; Sugiri, Dorothea; Matsui, Mary; Krämer, Ursula; Krutmann, Jean

    2010-12-01

    For decades, extrinsic skin aging has been known to result from chronic exposure to solar radiation and, more recently, to tobacco smoke. In this study, we have assessed the influence of air pollution on skin aging in 400 Caucasian women aged 70-80 years. Skin aging was clinically assessed by means of SCINEXA (score of intrinsic and extrinsic skin aging), a validated skin aging score. Traffic-related exposure at the place of residence was determined by traffic particle emissions and by estimation of soot in fine dust. Exposure to background particle concentration was determined by measurements of ambient particles at fixed monitoring sites. The impact of air pollution on skin aging was analyzed by linear and logistic regression and adjusted for potential confounding variables. Air pollution exposure was significantly correlated to extrinsic skin aging signs, in particular to pigment spots and less pronounced to wrinkles. An increase in soot (per 0.5 × 10(-5) per m) and particles from traffic (per 475? kg per year and square km) was associated with 20% more pigment spots on forehead and cheeks. Background particle pollution, which was measured in low residential areas of the cities without busy traffic and therefore is not directly attributable to traffic but rather to other sources of particles, was also positively correlated to pigment spots on face. These results indicate that particle pollution might influence skin aging as well. PMID:20664556

  5. FACTORS THAT INFLUENCE THE RELATIVE POTENCY OF DIESEL EXHAUST PARTICLES AS ADJUVANTS IN ALLERGIC AIRWAY DISEASE

    EPA Science Inventory

    Description: Studies have shown that diesel exhaust particles (DEP) worsen respiratory diseases including allergic asthma. The adjuvant effects of DEP in the airways have been widely reported; however, the precise determinants and mechanisms of these effects are ill-defined. S...

  6. DIESEL EXHAUST PARTICLE COMPOSITION AND THE METHOD OF SONICATION INFLUENCE THE ADJUVANCY EFFECT AND TARC PRODUCTION

    EPA Science Inventory

    Numerous reports have shown diesel exhaust particles (DEP) can act as an immunological adjuvant in asthma. Recent interest has focused on thymus and activation-regulated chemokine (TARC) as an important modulator of this effect. This study evaluated the adjuvancy effects of thr...

  7. SAMPLE CHARACTERIZATION OF AUTOMOBILE AND FORKLIFT DIESEL EXHAUST PARTICLES AND COMPARATIVE PULMONARY TOXICITY IN MICE

    EPA Science Inventory

    Abstract Two samples of diesel exhaust particles (DEP) predominate in DEP health effects research: an automobile-source DEP (A-DEP) sample and the National Institute of Standards Technology (NIST) standard reference material (SRM 2975) generated from a forklift engine...

  8. Pseudo-electret filter for micron sized particles in 300°C exhaust gases

    Microsoft Academic Search

    I. I. Inculet; G. S. P. Castle; M. Slanina; M. Duca

    2000-01-01

    The pseudo electret fibres developed at the Applied Electrostatics Research Centre of the University of Western Ontario have been used to build an unlimited life, high efficiency filter for micron sized particles entrained in a 300°C hot exhaust gas. The pseudo-electret fibres used here consist of a close assembly of two submillimetre size fine wires, in which one of the

  9. Enhancement of allergic inflammation by the interaction between diesel exhaust particles and the immune system

    Microsoft Academic Search

    Andre E. Nel; David Diaz-Sanchez; David Ng; Timothy Hiura; Andrew Saxon

    1998-01-01

    There is growing evidence that fossil fuel combustion products act as adjuvants in the immune system and may lead to enhancement of allergic inflammation. Through this mechanism, particulate air pollutants may be an important contributor to the increased prevalence and morbidity of asthma and allergic rhinitis. In this communication we focus on the role of diesel exhaust particles (DEPs) in

  10. EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE

    EPA Science Inventory

    EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE S. Mundandhara1 and M.C. Madden2, 1UNC Center for Environmental Medicine, Asthma, and Lung Biology, 2US EPA, NHEERL, Human Studies Division, Chapel Hill, NC, USA Epidemiologica...

  11. EFFECTS OF DIESEL EXHAUST PARTICLES ON HUMAN ALVEOLAR MACROPHAGE RESPONSIVENESS TO LIPOPOLYSACCHARIDE

    EPA Science Inventory

    Effects of diesel exhaust particles on human alveolar macrophage responsiveness to lipopolysaccharide S. Mundandhara1 , S. Becker2 and M. Madden2, 1UNC Center for Environmental Medicine, Asthma, and Lung Biology, 2US EPA, NHEERL, HSD, Chapel Hill, NC, US Epidemiological...

  12. Motorcycle Exhaust Particles Induce Airway Inflammation and Airway Hyperresponsiveness in BALB\\/C Mice

    Microsoft Academic Search

    Chen-Chen Lee; Jiunn-Wang Liao; Jaw-Jou Kang

    2004-01-01

    A number of large studies have reported that environmental pollutants from fossil fuel combustion can cause deleterious effects to the immune system, resulting in an allergic reaction leading to respiratory tract damage. In this study, we investigated the effect of motorcycle exhaust particles (MEP), a major pollutant in the Taiwan urban area, on airway inflammation and airway hyperre- sponsiveness in

  13. BIOASSAY-DIRECTED FRACTIONAL AND SALMONELLA MUTAGENICITY OF AUTOMOBILE AND FORKLIFT DIESEL EXHAUST PARTICLES

    EPA Science Inventory

    Abstract Many pulmonary toxicity studies of diesel exhaust particles (DEP) have used an automobile-generated sample (A-DEP) whose mutagenicity has not been reported. In contrast, rnany inutagenicity studies of DEP have used a forklift-generated sample (SRM ...

  14. NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION.

    EPA Science Inventory

    NANOMETER DIESEL EXHAUST PARTICLES ARE NEUROTOXIC TO DOPAMINERGIC NEURONS THROUGH MICROGLIAL ACTIVATION. M.L. Block1,2, X. Wu1, P. Zhong1, G. Li1, T. Wang1, J.S. Hong1 & B.Veronesi.2 1The Laboratory of Pharmacology and Chemistry, NIEHS, RTP, NC and 2 National Health and Envi...

  15. CONTROLLED EXPOSURES OF HUMAN VOLUNTEERS TO DIESEL ENGINE EXHAUST: BIOMARKERS OF EXPOSURE AND HEALTH OUTCOMES

    EPA Science Inventory

    Combustion of diesel fuel contributes to ambient air pollutant fine particulate matter (PM) and gases. Fine PM exposure has been associated with increased mortality due to adverse cardiac events, and morbidity, such as increased hospitalization for asthma symptoms and lung infect...

  16. Tracking the pathway of diesel exhaust particles from the nose to the brain by X-ray florescence analysis

    NASA Astrophysics Data System (ADS)

    Matsui, Yasuto; Sakai, Nobumitsu; Tsuda, Akira; Terada, Yasuko; Takaoka, Masaki; Fujimaki, Hidekazu; Uchiyama, Iwao

    2009-08-01

    Studies have shown that exposure to nano-sized particles (< 50 nm) result in their translocation to the central nervous system through the olfactory nerve. Translocation commonly occurs via inhalation, ingestion and skin uptake. Little information is available on the specific pathway of cellular localization of nano-sized particles in the olfactory bulb. The nano-sized particles entrance into the postsynaptics cell is of particular interest because the mitral cell projects to the central nucleus of the amygdala and the piriform cortex. Therefore, our objective in this follow-up study has been to determine whether or not the mitral cells project nano-sized particles to the brain. Nano-sized particles in this study were generated using diesel exhaust. Lab mice were exposed for a period of 4 weeks. We employed synchrotron radiation (SPring-8, Japan) to determine the concentration levels of metal in the olfactory neuron pathway. Metal levels were assayed by mapping, using X-ray fluorescence analysis. The major metal components measured in the filter that collected the inhaled diesel exhaust particles were calcium, copper, iron, nickel and zinc. Our studies reveal an increase in the amount of nano-sized particles in the glomerular layer as well as in the neurons in the olfactory epithelium. Higher levels of nickel and iron were found in the olfactory epithelium's lamina propria mucosae in comparison to that in the control group. Higher levels of iron also were observed in the glomerular layer. Our studies do not clarify the specifics of metal adhesion and detachment. This remains to be one of the key issues requiring further clarification.

  17. Diesel exhaust particles induce the over expression of tumor necrosis factor-alpha (TNF-alpha) gene in alvelor machrophage and failed to induce apoptosis through activation of nuclear factor-kappaB (NF-kappaB)

    EPA Science Inventory

    Exposure to particulate matter (PM2.5-10), including diesel exhaust particles (DEP) has been reported to induce lung injury and exacerbation of asthma and chronic obstructive pulmonary disease. Alveolar macrophages play a major role in the lung's response to inhaled particles and...

  18. Polycyclic nitroarenes (nitro-PAHs) as biomarkers of exposure to diesel exhaust.

    PubMed

    Zwirner-Baier, I; Neumann, H G

    1999-04-26

    Diesel exhaust contains numerous genotoxic carcinogens. It is essentially unknown to which extent this source contributes to the total load of these chemicals in humans. One possible approach to the problem is to find suitable biomarkers. To this end five polycyclic mononitroarenes (nitro-PAH) were selected and methods developed to determine the sulfinic acid-type hemoglobin adducts they form in vivo. The nitro-PAHs are: 1-nitropyrene, 2-nitrofluorene, 3-nitrofluoranthene, 9-nitrophenanthrene, and 6-nitrochrysene. Hydrolysis of the hemoglobin adducts yields the respective arylamines which were analyzed by gas chromatography/mass spectrometry. The detection limit was 0.01-0.08 pmol/g Hb. Blood samples were analyzed from 29 bus garage workers, occupationally exposed to diesel exhaust, and from 20 urban hospital workers and 14 rural council workers as controls. Hb adducts above the detection limit were found in most blood samples. The most abundant cleavage products were 1-aminopyrene and 2-aminofluorene with levels ranging from 0.01 to 0.68 pmol/g Hb. However, there was no significant difference between the groups for 1-nitropyrene and 2-nitrofluorene supporting the conclusion that both are widespread environmental contaminants resulting in significant background exposures. A significant difference on a group from individuals from urban and rural areas was found only if all five adducts were added, this may indicate an additional exposure from traffic. The new specific nitro-PAH Hb adducts are proposed to be used as biomarkers to trace the sources and to identify above-background exposures. PMID:10224330

  19. Water uptake by sunlight and ozone exposed diesel exhaust particles

    Microsoft Academic Search

    Matti Vartiainen; Stephen R. McDow; Richard M. Kamens

    1996-01-01

    Two types of experiments were conducted to investigate the effect of aerosol aging on water uptake by diesel soot particles. First, in three experiments diluted diesel soot was exposed to sunlight for up to 10 hours in a 190 m3 Teflon film smog chamber and filter samples were collected at various time intervals. Second, diesel soot filter samples were exposed

  20. Mechanisms of GM-CSF increase by diesel exhaust particles in human airway epithelial cells.

    PubMed

    Boland, S; Bonvallot, V; Fournier, T; Baeza-Squiban, A; Aubier, M; Marano, F

    2000-01-01

    We have previously shown that exposure to diesel exhaust particles (DEPs) stimulates human airway epithelial cells to secrete the inflammatory cytokines interleukin-8, interleukin-1beta, and granulocyte-macrophage colony-stimulating factor (GM-CSF) involved in allergic diseases. In the present paper, we studied the mechanisms underlying the increase in GM-CSF release elicited by DEPs using the human bronchial epithelial cell line 16HBE14o-. RT-PCR analysis has shown an increase in GM-CSF mRNA levels after DEP treatments. Comparison of the effects of DEPs, extracted DEPs, or extracts of DEPs has shown that the increase in GM-CSF release is mainly due to the adsorbed organic compounds and not to the metals present on the DEP surface because the metal chelator desferrioxamine had no inhibitory effect. Furthermore, radical scavengers inhibited the DEP-induced GM-CSF release, showing involvement of reactive oxygen species in this response. Moreover genistein, a tyrosine kinase inhibitor, abrogated the effects of DEPs on GM-CSF release, whereas protein kinase (PK) C, PKA, cyclooxygenase, or lipoxygenase inhibitors had no effect. PD-98059, an inhibitor of mitogen-activated protein kinase, diminished the effects of DEPs, whereas SB-203580, an inhibitor of p38 mitogen-activated protein kinase, had a lower effect, and DEPs did actually increase the active, phosphorylated form of the extracellular signal-regulated kinase as shown by Western blotting. In addition, cytochalasin D, which inhibits the phagocytosis of DEPs, reduced the increase in GM-CSF release after DEP treatment. Together, these data suggest that the increase in GM-CSF release is mainly due to the adsorbed organic compounds and that the effect of native DEPs requires endocytosis of the particles. Reactive oxygen species and tyrosine kinase(s) may be involved in the DEP-triggered signaling of the GM-CSF response. PMID:10645887

  1. Impact of selective catalytic reduction on exhaust particle formation over excess ammonia events.

    PubMed

    Amanatidis, Stavros; Ntziachristos, Leonidas; Giechaskiel, Barouch; Bergmann, Alexander; Samaras, Zissis

    2014-10-01

    The introduction of selective catalytic reduction (SCR) aftertreatment to meet stringent diesel NOx emission standards around the world increases exhaust ammonia. Further to the direct air quality and health implications of ammonia, this may also lead to particle formation in the exhaust. In this study, an ammonia SCR system was examined with respect to its impact on both solid and total exhaust particle number and size distribution, downstream of a diesel particulate filter (DPF). Fuel post-injection was conducted in some tests to investigate the effect of ammonia during active DPF regeneration. On average, the post-DPF solid >23 nm and total <23 nm particle number emissions were increased by 129% (range 80-193%) and by 67% (range 26-136%), respectively, when 100 ppm ammonia level was induced downstream of the SCR catalyst. This is a typical level during ammonia overdosing, often practiced for efficient NOx control. Ammonia did not have a significant additional effect on the high particle concentrations measured during DPF regeneration. Based on species availability and formation conditions, sulfate, nitrate, and chloride salts with ammonium are possible sources of the new particles formed. Ammonia-induced particle formation corresponds to an environmental problem which is not adequately addressed by current regulations. PMID:25167537

  2. Effect of AC Electrostatic Precipitator on Removal Diesel Exhaust Particles

    NASA Astrophysics Data System (ADS)

    Kawakami, Hitomi; Zukeran, Akinori; Yasumoto, Koji; Kubojima, Masaki; Ehara, Yoshiyasu; Yamamoto, Toshiaki

    Collection of low resistive particulate matter (PM) generated from automobile and marine diesel engines or diesel generators have been known to be difficult by the conventional electrostatic precipitators (ESP). The collection efficiency for two types ESPs such as conventional DC energized ESP (DC ESP) and rectangular-AC-waveform energized ESP (AC ESP) were investigated. The low resistive PMs agglomerate like a pearl-chain on the collection plate in DC ESP, so that these are detached from the collection plate by electrostatic repulsion force and wind force. The pearl-chain particles are changed the shape, which is such a spherical, by AC ESP. Therefore, the particle re-entrainment is suppressed by AC ESP.

  3. EUV mask particle adders during scanner exposure

    NASA Astrophysics Data System (ADS)

    Hyun, Yoonsuk; Kim, Jinsoo; Kim, Kyuyoung; Koo, Sunyoung; Kim, SeoMin; Kim, Youngsik; Lim, Changmoon; Kwak, Nohjung

    2015-03-01

    As EUV reaches high volume manufacturing, scanner source power and reticle defectivity attract a lot of attention. Keeping a EUV mask clean after mask production is as essential as producing a clean EUV mask. Even though EUV pellicle is actively investigated, we might expose EUV masks without EUV pellicle for some time. To keep clean EUV mask under pellicle-less lithography, EUV scanner cleanliness needs to meet the requirement of high volume manufacturing. In this paper, we will show the cleanliness of EUV scanners in view of mask particle adders during scanner exposure. From this we will find several tendencies of mask particle adders depending on mask environment in scanner. Further we can categorize mask particle adders, which could show the possible causes of particle adders during exposure in scanners.

  4. NIOSH/NCI study of exposure to diesel exhaust in underground mines -- An industry perspective

    SciTech Connect

    Pritchard, C.J.

    1999-07-01

    In 1992, the National Institute for Occupational Safety and Health (NIOSH) initiated a study, funded by the National Cancer Institute (NCI), to evaluate the health effects, if any, involving underground miners exposure to diesel exhaust. An industry organization, the Methane Awareness Research Group (MARG) already in place to respond to gassy mine related issues, was redirected to work with diesel concerns. In 1995, NIOSH released a draft protocol and feasibility assessment, indicating its intent to initiate a study at 14 underground mines, some of which were operated by MARG members. After considerable debate on the study protocol, in-mine industrial hygiene studies were begun in December, 1997 and expected to end in early 1999.

  5. Differential proinflammatory responses induced by diesel exhaust particles with contrasting PAH and metal content.

    PubMed

    Totlandsdal, Annike I; Låg, Marit; Lilleaas, Edel; Cassee, Flemming; Schwarze, Per

    2015-02-01

    Exposure to diesel engine exhaust particles (DEPs), representing a complex and variable mixture of components, has been linked with cellular production and release of several types of mediators related to pulmonary inflammation. A key challenge is to identify the specific components, which may be responsible for these effects. The aim of this study was to compare the proinflammatory potential of two DEP-samples with contrasting contents of polycyclic aromatic hydrocarbons (PAHs) and metals. The DEP-samples were compared with respect to their ability to induce cytotoxicity, expression and release of proinflammatory mediators (IL-6, IL-8), activation of mitogen-activated protein kinases (MAPKs) and expression of CYP1A1 and heme oxygenase-1 (HO-1) in human bronchial epithelial (BEAS-2B) cells. In addition, dithiothreitol and ascorbic acid assays were performed in order to examine the oxidative potential of the PM samples. The DEP-sample with the highest PAH and lowest metal content was more potent with respect to cytotoxicity and expression and release of proinflammatory mediators, CYP1A1 and HO-1 expression and MAPK activation, than the DEP-sample with lower PAH and higher metal content. The DEP-sample with the highest PAH and lowest metal content also possessed a greater oxidative potential. The present results indicate that the content of organic components may be determinant for the proinflammatory effects of DEP. The findings underscore the importance of considering the chemical composition of particulate matter-emissions, when evaluating the potential health impact and implementation of air pollution regulations. PMID:23900936

  6. Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle.

    PubMed

    Rönkkö, Topi; Virtanen, Annele; Kannosto, Jonna; Keskinen, Jorma; Lappi, Maija; Pirjola, Liisa

    2007-09-15

    The characteristics of the nucleation mode particles of a Euro IV heavy-duty diesel vehicle exhaust were studied. The NOx and PM emissions of the vehicle were controlled through the use of cooled EGR and high-pressure fuel injection techniques; no exhaust gas after-treatment was used. Particle measurements were performed in vehicle laboratory and on road. Nucleation mode dominated the particle number size distribution in all the tested driving conditions. According to the on-road measurements, the nucleation mode was already formed after 0.7 s residence time in the atmosphere and no significant changes were observed for longer residence times. The nucleation mode was insensitive to the fuel sulfur content, dilution air temperature, and relative humidity. An increase in the dilution ratio decreased the size of the nucleation mode particles. This behavior was observed to be linked to the total hydrocarbon concentration in the diluted sample. In volatility measurements, the nucleation mode particles were observed to have a nonvolatile core with volatile species condensed on it. The results indicate that the nucleation mode particles have a nonvolatile core formed before the dilution process. The core particles have grown because of the condensation of semivolatile material, mainly hydrocarbons, during the dilution. PMID:17948783

  7. Pseudoelectret filter for micrometer-sized particles in exhaust gases at 210°C

    Microsoft Academic Search

    Ion I. Inculet; G. S. Peter Castle; Mircea Slanina; Mihai Duca

    2002-01-01

    The pseudoelectret fibers developed at the Applied Electrostatics Research Centre, University of Western Ontario, London, ON, Canada, have been used to build an unlimited-life high-efficiency filter for micron-sized particles entrained in up to 300°C hot exhaust gas. This pseudoelectret filter has considerable advantages when compared to mechanical or conventional electret-type filters. In a comparable unblinded mechanical filter, the pressure drop

  8. Ym1 and Ym2 expression in a mouse model exposed to diesel exhaust particles

    Microsoft Academic Search

    Hyun-Mi Song; An-Soo Jang; Mi-Hyun Ahn; Hajime Takizawa; Shin-Hwa Lee; Ji-Hee Kwon; Young-Mok Lee; TaiYoun Rhim; Choon-Sik Park

    2008-01-01

    Background: Chitinase may play a role in regulating allergic diseases. Objective: We stud- ied the role of chitinase in a mouse model exposed to diesel exhaust particles (DEP). Mice were exposed to intranasal DEP (0.6 mg\\/mL) for 5 days and challenged with aerosolized DEP (6 mg\\/m3) on days 6-8. Enhanced pause (Penh), as an airway obstruction marker, was measured on

  9. MUTAGENICITY OF DIESEL-EXHAUST PARTICLE EXTRACTS COLLECTED UNDER SMOG-CHAMBER CONDITIONS USING THE 'SALMONELLA TYPHIMURIUM' TEST SYSTEM

    EPA Science Inventory

    The study was designed to detect the effect that different environmental conditions have upon diesel-exhaust organics. In this study, diesel-exhaust was injected into the Calspan smog chamber under different conditions, and the resulting particles were collected upon Pallflex gla...

  10. Differential transcriptional regulation of IL-8 expression by human airway epithelial cells exposed to diesel exhaust particles

    SciTech Connect

    Tal, Tamara L. [Curriculum in Toxicology, University of North Carolina, Chapel Hill (United States); Simmons, Steven O. [Integrated Systems Toxicology, National Health and Environmental Effects Research Laboratory, U.S. EPA (United States); Silbajoris, Robert; Dailey, Lisa [Environmental and Public Health, National Health and Environmental Effects Research Laboratory, U.S. EPA (United States); Cho, Seung-Hyun [Air Pollution Prevention Control Division, National Risk Management Research Laboratory, U.S. EPA (United States); Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge (United States); Ramabhadran, Ram [Curriculum in Toxicology, University of North Carolina, Chapel Hill (United States); Integrated Systems Toxicology, National Health and Environmental Effects Research Laboratory, U.S. EPA (United States); Linak, William [Air Pollution Prevention Control Division, National Risk Management Research Laboratory, U.S. EPA (United States); Reed, William; Bromberg, Philip A. [Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill (United States); Samet, James M., E-mail: samet.james@epa.go [Curriculum in Toxicology, University of North Carolina, Chapel Hill (United States); Environmental and Public Health, National Health and Environmental Effects Research Laboratory, U.S. EPA (United States)

    2010-02-15

    Exposure to diesel exhaust particles (DEP) induces inflammatory signaling characterized by MAP kinase-mediated activation of NFkB and AP-1 in vitro and in bronchial biopsies obtained from human subjects exposed to DEP. NFkB and AP-1 activation results in the upregulation of genes involved in promoting inflammation in airway epithelial cells, a principal target of inhaled DEP. IL-8 is a proinflammatory chemokine expressed by the airway epithelium in response to environmental pollutants. The mechanism by which DEP exposure induces IL-8 expression is not well understood. In the current study, we sought to determine whether DEP with varying organic content induces IL-8 expression in lung epithelial cells, as well as, to develop a method to rapidly evaluate the upstream mechanism(s) by which DEP induces IL-8 expression. Exposure to DEP with varying organic content differentially induced IL-8 expression and IL-8 promoter activity human airway epithelial cells. Mutational analysis of the IL-8 promoter was also performed using recombinant human cell lines expressing reporters linked to the mutated promoters. Treatment with a low organic-containing DEP stimulated IL-8 expression by a mechanism that is predominantly NFkB-dependent. In contrast, exposure to high organic-containing DEP induced IL-8 expression independently of NFkB through a mechanism that requires AP-1 activity. Our study reveals that exposure to DEP of varying organic content induces proinflammatory gene expression through multiple specific mechanisms in human airway epithelial cells. The approaches used in the present study demonstrate the utility of a promoter-reporter assay ensemble for identifying transcriptional pathways activated by pollutant exposure.

  11. Diesel exhaust particulate (DEP) and nanoparticle exposures: what do DEP human clinical studies tell us about potential human health hazards of nanoparticles?

    PubMed

    Hesterberg, Thomas W; Long, Christopher M; Lapin, Charles A; Hamade, Ali K; Valberg, Peter A

    2010-07-01

    Engineered nanoparticles (ENPs) are increasingly tested in cellular and laboratory-animal experiments for hazard potential, but there is a lack of health effects data for humans exposed to ENPs. However, human data for another source of nanoparticle (NP) exposure are available, notably for the NPs contained in diesel exhaust particulate (DEP). Studies of human volunteers exposed to diesel exhaust (DE) in research settings report DEP-NP number concentrations (i.e., >10(6) particles/cm(3)) that exceed number concentrations reported for worst-case exposure conditions for workers manufacturing and handling ENPs. Recent human DE exposure studies, using sensitive physiological instrumentation and well-characterized exposure concentrations and durations, suggest that elevated DE exposures from pre-2007 engines may trigger short-term changes in, for example, lung and systemic inflammation, thrombogenesis, vascular function, and brain activity. Considerable uncertainty remains both as to which DE constituents underlie the observed responses (i.e., DEP NPs, DEP mass, DE gases), and as to the implications of the observed short-term changes for the development of disease. Even so, these DE human clinical data do not give evidence of a unique toxicity for NPs as compared to other small particles. Of course, physicochemical properties of toxicological relevance may differ between DEP NPs and other NPs, yet overall, the DE human clinical data do not support the idea that elevated levels of NPs per se (at least in the DEP context) must be acutely toxic by virtue of their nano-sized nature alone. PMID:20462394

  12. Particle-Bound PAH Emission from the Exhaust of Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Asgari Lamjiri, M.; Medrano, Y. S.; Guillaume, D. W.; Khachikian, C. S.

    2013-12-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are harmful, semi-volatile organic compounds which are generated due to the incomplete combustion of organic substances. PAHs are of concern as a pollutant because some of these compounds are carcinogenic and mutagenic even at low levels. Most of the PAHs are recalcitrant and persistent in the environment. The PAHs carcinogenic potential can be increased by the adsorption onto small size particles (< 1?m) which can easily get into the bronchioles and alveoli of the lungs. PAHs associated with sub-micron particles are mostly generated from high temperature sources like combustion chambers. In this current study, the presence of 16 priority PAHs (listed by United States Environmental Protection Agency) which are attached to the particulates emitted from the exhaust of the jet engine are evaluated. The engine was operated at different swirl numbers (S; the ratio of tangential air flow to axial air flow) to investigate the effect of this parameter on the effluent of combustion chamber. The samples were collected using two instruments simultaneously: a particle analyzer and a Micro-Orifice Uniform Deposited Impactor (MOUDI). Particle analyzer was used to count the number of particles in different sizes and MOUDI was used to collect particles with respect to their size as they were emitted from the exhaust. The MOUDI's aluminum substrates were weighed before and after the experiment in order to measure the mass of particles that were collected during the sampling period. The concentration of PAHs associated with the particles was measured by extracting the particles with dichloromethane followed by analysis via gas chromatography/mass spectrometry (GC/MS). In general, lower molecular weight PAHs emitted from the exhaust of combustion chamber are mostly in gas phase while PAHs of higher molecular weight are adsorbed onto particles. Preliminary results from GC/MS confirm the presence of higher molecular weight PAHs like Benzo[a]pyrene in most of the samples. Better recirculation between air and fuel in higher swirl numbers results in better combustion. In higher swirl numbers, the temperature of the combustion process increases which leads to a more complete combustion. Another result of higher swirl number is a longer residence time which allows the organic substances in the fuel to remain in the reaction longer and also leads to a more complete combustion. The preliminary results from particle analyzer show that the abundance ratio of smaller particles to larger particles increases at higher swirl numbers. For example, at swirl 86, the abundance ratio of 0.3 micron particles to 0.7 micron particles was 400 while at swirl 0, this ratio was 35. Smaller particles have higher specific surface area which allows for more PAH adsorption. The preliminary results show that operating the jet engine at higher swirl numbers can have positive or negative effects on particle-bound PAH emissions. Higher temperature and residence time as well as better mixture of fuel and air can reduce PAH emission while generating more small size particles can increase surface available for PAH adsorption and, as a result, increases PAH emission. In future experiments, particle-bound PAHs of different swirl numbers will be compared in order to find a swirl number range which generates fewer Particle-bound PAHs.

  13. Regulation of Human Hepatic Drug Transporter Activity and Expression by Diesel Exhaust Particle Extract

    PubMed Central

    Le Vee, Marc; Jouan, Elodie; Stieger, Bruno; Lecureur, Valérie; Fardel, Olivier

    2015-01-01

    Diesel exhaust particles (DEPs) are common environmental air pollutants primarily affecting the lung. DEPs or chemicals adsorbed on DEPs also exert extra-pulmonary effects, including alteration of hepatic drug detoxifying enzyme expression. The present study was designed to determine whether organic DEP extract (DEPe) may target hepatic drug transporters that contribute in a major way to drug detoxification. Using primary human hepatocytes and transporter-overexpressing cells, DEPe was first shown to strongly inhibit activities of the sinusoidal solute carrier (SLC) uptake transporters organic anion-transporting polypeptides (OATP) 1B1, 1B3 and 2B1 and of the canalicular ATP-binding cassette (ABC) efflux pump multidrug resistance-associated protein 2, with IC50 values ranging from approximately 1 to 20 ?g/mL and relevant to environmental exposure situations. By contrast, 25 ?g/mL DEPe failed to alter activities of the SLC transporter organic cation transporter (OCT) 1 and of the ABC efflux pumps P-glycoprotein and bile salt export pump (BSEP), whereas it only moderately inhibited those of sodium taurocholate co-transporting polypeptide and of breast cancer resistance protein (BCRP). Treatment by 25 ?g/mL DEPe was next demonstrated to induce expression of BCRP at both mRNA and protein level in cultured human hepatic cells, whereas it concomitantly repressed mRNA expression of various transporters, including OATP1B3, OATP2B1, OCT1 and BSEP. Such changes in transporter expression were found to be highly correlated to those caused by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a reference activator of the aryl hydrocarbon receptor (AhR) pathway. This suggests that DEPe, which is enriched in known ligands of AhR like polycyclic aromatic hydrocarbons, alters drug transporter expression via activation of the AhR cascade. Taken together, these data established human hepatic transporters as targets of organic chemicals containing in DEPs, which may contribute to their systemic effects through impairing hepatic transport of endogenous compound or drug substrates of these transporters. PMID:25803276

  14. TERATOLOGIC EFFECTS OF LONG-TERM EXPOSURE TO DIESEL EXHAUST EMISSIONS (RABBITS)

    EPA Science Inventory

    This research project was initiated with the objective of evaluating the potential for diesel exhaust emissions to produce malformations in rabbit fetuses. The pregnant does were exposed by the inhalation route to a 10% concentration of diesel exhaust emissions in inhalation cham...

  15. TERATOLOGIC EFFECTS OF LONG-TERM EXPOSURE TO DIESEL EXHAUST EMISSIONS (RATS)

    EPA Science Inventory

    This research project was initiated with the objective of evaluating the potential for diesel exhaust emissions to produce malformations in rat fetuses. The dams were exposed by the inhalation route to a 10% concentration of diesel exhaust emissions in inhalation chambers on days...

  16. Process and apparatus for exhausting fumes and oxide particles generated by plasma-ARC cutting machine

    SciTech Connect

    Kawakami, M.

    1984-04-10

    A process and apparatus for absorbing and exhausting efficiently dust (oxide particles), fumes, smoke, harmful gases and the like generated by plasma-arc cutting. The lower space of a fixed board for supporting the material which is cut is divided by plural partition plates to the direction crossing at right angles with the driving direction of the cutting machine body, an absorbing hood connected with a dust collector through a duct is installed and fixed to the cutting machine body in order to exhaust from the side of partition space corresponding to the plasma-arc cutting torch, fumes in each partition space at every position of cutting at the shortest distance and efficiently by making the absorbing hood move together with the movement of the cutting machine body. A reduction of the dust collector's capacity and a simplification of the accessory equipment are possible and cost reduction of the equipment for exhausting smoke including dust, fumes and the like in the plasma-arc cutting machine is possible.

  17. Extract of motorcycle exhaust particles induced macrophages apoptosis by calcium-dependent manner.

    PubMed

    Lee, Chen-Chen; Kang, Jaw-Jou

    2002-12-01

    Large survey and experiments have reported that environment pollutants from fossil fuel combustion would cause immune system deleterious by enhancement of allergic reaction and damage to respiratory tract. In this study, we reported that the extract of motorcycle exhaust particles (MEP) might affect the immune system by inducing cell apoptosis on macrophages. The motorcycle exhaust particles were collected from a two-stoke engine and their cytotoxic effect on macrophages was investigated. We found MEP is cytotoxic and induced apoptosis in RAW 264.7 cells, murine peritoneal macrophage, and rat alveolar macrophage. Pretreatment with mitochondria permeability transition inhibitor (cyclosporin A), intracellular (BAPTA-AM) and extracellular (EGTA) Ca(2+) chelator, and antioxidants (NAC, GSH, catalase, SOD) attenuated the MEP-induced cell apoptosis, and BAPTA-AM was the most effective one. Utilized Fura-2/AM loaded RAW 264.7 cells to directly detect the change of intracellular Ca(2+) concentration ([Ca(2+)](i)), we found that MEP could induce a sustained increase of [Ca(2+)](i). The raise of [Ca(2+)](i) induced by MEP could be completely blocked by the intracellular Ca(2+) chelator, BAPTA-AM, however, only partially inhibited by the extracellular Ca(2+) chelator, EGTA. These results suggested that both influx of extracellular Ca(2+) and release of Ca(2+) from the internal storage were involved. We also found that MEP caused a decrease of mitochondria membrane potential and an increase of oxidative stress in RAW 264.7 cells. In conclusion, we found that the particles, collected from the motorcycle exhaust, contain chemicals that will induce apoptosis of macrophage in calcium-dependent manner. PMID:12482235

  18. Diesel exhaust particles impair endothelial progenitor cells, compromise endothelial integrity, reduce neoangiogenesis, and increase atherogenesis in mice.

    PubMed

    Pöss, Janine; Lorenz, Dominik; Werner, Christian; Pavlikova, Valerie; Gensch, Christoph; Speer, Thimoteus; Alessandrini, Francesca; Berezowski, Vincent; Kuntz, Mélanie; Mempel, Martin; Endres, Matthias; Böhm, Michael; Laufs, Ulrich

    2013-09-01

    The mechanisms of the harmful cardiovascular effects of small particulate matter are incompletely understood. Endothelial progenitor cells (EPCs) predict outcome of patients with vascular disease. The aim of our study was to examine the effects of diesel exhaust particles (DEP) on EPC and on the associated vascular damage in mice. C57Bl/6 mice were exposed to DEP. 2 ?g DEP/day was applicated intranasally for 3 weeks. Exposure to DEP reduced DiLDL/lectin positive EPC to 58.4 ± 5.6% (p < 0.005). Migratory capacity was reduced to 65.8 ± 3.9% (p < 0.0001). In ApoE(-/-) mice, DEP application reduced the number of EPC to 75.6 ± 6.4% (p < 0.005) and EPC migration to 58.5 ± 6.8% (p < 0.005). Neoangiogenesis was reduced to 39.5 ± 14.6% (p < 0.005). Atherogenesis was profoundly increased by DEP treatment (157.7 ± 18.1% vs. controls, p < 0.05). In cultured human EPC, DEP (0.1-100 ?g/mL) reduced migratory capacity to 25 ± 2.6% (p < 0.001). The number of colony-forming units was reduced to 8.8 ± 0.9% (p < 0.001) and production of reactive oxygen species was elevated by DEP treatment (p < 0.001). Furthermore, DEP treatment increased apoptosis of EPC (to 266 ± 62% of control, p < 0.05). In a blood-brain barrier model, DEP treatment impaired endothelial cell integrity during oxygen-glucose deprivation (p < 0.001). Diesel exhaust particles impair endothelial progenitor cell number and function in vivo and in vitro. The reduction in EPC was associated with impaired neoangiogenesis and a marked increase in atherosclerotic lesion formation. PMID:23584878

  19. New method for time-resolved diesel engine exhaust particle mass measurement.

    PubMed

    Lehmann, U; Niemelä, V; Mohr, M

    2004-11-01

    The Dekati mass monitor (DMM; Dekati Ltd., Finland), a relatively new real-time mass measurement instrument, was investigated in this project. In contrast to the existing gravimetric filter method also used as a standard for regulation purposes, this instrument provides second-by-second data on mass concentration in the engine exhaust gas. The principle of the DMM is based on particle charging, inertial and electrical size classification, and electrical detection of aerosol particles. This study focuses on the instrument's practical performance. Details on calibration and the theory of operation will be published elsewhere. The exhaust emissions of two heavy-duty engines complying with the Euro III emission standard were measured on a dynamic engine test bench. We looked atthe particle number and mass emissions of the engines in different transient test cycles and steady-state conditions. The ability to follow transient test cycles and the response times of the DMM were investigated. The aerosol mass concentration measured by the DMM was compared with the mass concentration obtained by the standard gravimetric filter method with Teflon-coated glass fiber filters. The total mass concentration (integral over the whole cycle) measured by the DMM is about 20% higher than that measured by the standard gravimetric filter method. The total mass concentration from the DMM was also compared with the volume concentration calculated from the electrical low-pressure impactor (ELPI) measurements. Correlations were made with other particle measuring systems. The DMM correlates very well with the particulate mass (R2 = 0.95) and exhibits good linearity and repeatability. The response time to a well-defined change in exhaust concentration was observed to be fast and stable. The DMM was able to follow transient test cycles and provides good results on a second-by-second basis. The instrument used in this study was still under development, and there is therefore no complete scientific background reference for the DMM. This study therefore focuses more on the measurements than on the scientific background. The measurements have shown thatthe DMM is an adequate instrument for measuring the mass concentration of engine exhaust, with results comparable to those from the standard gravimetric filter method. In addition, the DMM provides real-time second-by-second data of the mass concentration during transient test cycles. PMID:15575290

  20. Controlled human exposures to ambient pollutant particles in susceptible populations

    EPA Science Inventory

    Epidemiologic studies have established an association between exposures to air pollution particles and human mortality and morbidity at concentrations of particles currently found in major metropolitan areas. The adverse effects of pollution particles are most prominent in suscep...

  1. Hard metal exposures. Part 1: Observed performance of three local exhaust ventilation systems.

    PubMed

    Guffey, S E; Simcox, N; Booth, D W; Hibbard, R; Stebbins, A

    2000-04-01

    Not every ventilation system performs as intended; much can be learned when they do not. The purpose of this study was to compare observed initial performance to expected levels for three saw-reconditioning shop ventilation systems and to characterize the changes in performance of the systems over a one-year period. These three local exhaust ventilation systems were intended to control worker exposures to cobalt, cadmium, and chromium during wet grinding, dry grinding, and welding/brazing activities. Prior to installation the authors provided some design guidance based on Industrial Ventilation, a Manual of Recommended Practice. However, the authors had limited influence on the actual installation and operation and no line authority for the systems. In apparent efforts to cut costs and to respond to other perceived needs, the installed systems deviated from the specifications used in pressure calculations in many important aspects, including adding branch ducts, use of flexible ducts, the choice of fans, and the construction of some hoods. After installation of the three systems, ventilation measurements were taken to determine if the systems met design specifications, and worker exposures were measured to determine effectiveness. The results of the latter will be published as a companion article. The deviations from design and maintenance failures may have adversely affected performance. From the beginning to the end of the study period the distribution of air flow never matched the design specifications for the systems. The observed air flows measured within the first month of installation did not match the predicated design air flows for any of the systems, probably because of the differences between the design and the installed system. Over the first year of operation, hood air flow variability was high due to inadequate cleaning of the sticky process materials which rapidly accumulated in the branch ducts. Poor distribution of air flows among branch ducts frequently produced individual hood air flows that were far below specified design levels even when the total air flow through that system was more than adequate. To experienced practitioners, it is not surprising that deviations from design recommendations and poor maintenance would be associated with poor system performance. Although commonplace, such experiences have not been documented in peer-reviewed publications to date. This publication is a first step in providing that documentation. PMID:10750277

  2. Exposure to particles from laser printers operating within office workplaces.

    PubMed

    McGarry, Peter; Morawska, Lidia; He, Congrong; Jayaratne, Rohan; Falk, Matthew; Tran, Quang; Wang, Hao

    2011-08-01

    While recent research has provided valuable information as to the composition of laser printer particles, their formation mechanisms, and explained why some printers are emitters while others are low emitters, questions relating to the potential exposure of office workers remained unanswered. In particular, (i) what impact does the operation of laser printers have on the background particle number concentration (PNC) of an office environment over the duration of a typical working day? (ii) What is the airborne particle exposure to office workers in the vicinity of laser printers? (iii) What influence does the office ventilation have upon the transport and concentration of particles? (iv) Is there a need to control the generation of, and/or transport of particles arising from the operation of laser printers within an office environment? (v) What instrumentation and methodology is relevant for characterizing such particles within an office location? We present experimental evidence on printer temporal and spatial PNC during the operation of 107 laser printers within open plan offices of five buildings. The 8 h time-weighted average printer particle exposure is significantly less than the 8 h time-weighted local background particle exposure, but that peak printer particle exposure can be greater than 2 orders of magnitude higher than local background particle exposure. The particle size range is predominantly ultrafine (<100 nm diameter). In addition we have established that office workers are constantly exposed to nonprinter derived particle concentrations, with up to an order of magnitude difference in such exposure among offices, and propose that such exposure be controlled along with exposure to printer derived particles. We also propose, for the first time, that peak particle reference values be calculated for each office area analogous to the criteria used in Australia and elsewhere for evaluating exposure excursion above occupational hazardous chemical exposure standards. A universal peak particle reference value of 2.0 × 10(4) particles cm(-3) has been proposed. PMID:21662984

  3. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction

    PubMed Central

    Quan, Chunli; Sun, Qinghua; Lippmann, Morton; Chen, Lung-Chi

    2011-01-01

    Ambient air PM2.5 (particulate matter less than 2.5 ?m in diameter) has been associated with cardiovascular diseases (CVDs), but the underlying mechanisms affecting CVDs are unknown. The authors investigated whether subchronic inhalation of concentrated ambient PM2.5 (CAPs), whole diesel exhaust (WDE), or diesel exhaust gases (DEGs) led to exacerbation of atherosclerosis, pulmonary and systemic inflammation, and vascular dysfunction; and whether DEG interactions with CAPs alter cardiovascular effects. ApoE?/? mice were simultaneously exposed via inhalation for 5 hours/day, 4 days/week, for up to 5 months to one of five different exposure atmospheres: (1) filtered air (FA); (2) CAPs (105 ?g/m3); (3) WDE (DEP = 436 ?g/m3); (4) DEG (equivalent to gas levels in WDE group); and (5) CAPs+DEG (PM2.5: 113 ?g/m3; with DEG equivalent to WDE group). After 3 and 5 months, lung lavage fluid and blood sera were analyzed, and atherosclerotic plaques were quantified by ultrasound imaging, hematoxylin and eosin (H&E stain), and en face Sudan IV stain. Vascular functions were assessed after 5 months of exposure. The authors showed that (1) subchronic CAPs, WDE, and DEG inhalations increased serum vascular cell adhesion molecule (VCAM)-1 levels and enhanced phenylephrine (PE)-induced vasoconstriction; (2) for plaque exacerbation, CAPs > WDE > DEG = FA, thus PM components (not present in WDE) were responsible for plaque development; (3) atherosclerosis can exacerbated through mechanistic pathways other than inflammation and vascular dysfunction; and (4) although there were no significant interactions between CAPs and DEG on plaque exacerbation, it is less clear whether the effects of CAPs on vasomotor dysfunction and pulmonary/systemic inflammation were enhanced by the DEG coexposure. PMID:20462391

  4. Emodin mitigates diesel exhaust particles-induced increase in airway resistance, inflammation and oxidative stress in mice.

    PubMed

    Nemmar, Abderrahim; Al-Salam, Suhail; Yuvaraju, Priya; Beegam, Sumaya; Ali, Badreldin H

    2015-08-15

    Clinical and experimental studies have reported that short-term exposure to particulate air pollution is associated with inflammation, oxidative stress and impairment of lung function. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) has a strong antioxidant and anti-inflammatory actions. Therefore, in the present study, we evaluated the possible ameliorative effect of emodin on diesel exhaust particles (DEP)-induced impairment of lung function, inflammation and oxidative stress in mice. Mice were intratracheally instilled with DEP (20?g/mouse) or saline (control). Emodin was administered intraperitoneally 1h before and 7h after pulmonary exposure to DEP. Twenty-four hours following DEP exposure, we evaluated airway resistance measured by forced oscillation technique, lung inflammation and oxidative stress. Emodin treatment abated the DEP-induced increase in airway resistance, and prevented the influx of neutrophils in bronchoalveolar lavage fluid. Similarly, lung histopathology confirmed the protective effect of emodin on DEP-induced lung inflammation. DEP induced a significant increase of proinflammatory cytokines in the lung including tumor necrosis factor ?, interleukin 6 and interleukin 1?. The latter effect was significantly ameliorated by emodin. DEP caused a significant increase in lung lipid peroxidation, reactive oxygen species and a significant decrease of reduced glutathione concentration. These effects were significantly mitigated by emodin. We conclude that emodin significantly mitigated DEP-induced increase of airway resistance, lung inflammation and oxidative stress. Pending further pharmacological and toxicological studies, emodin may be considered a potentially useful pulmonary protective agent against particulate air pollution-induced lung toxicity. PMID:26001677

  5. Lung cancer in heavy equipment operators and truck drivers with diesel exhaust exposure in the construction industry

    PubMed Central

    Jarvholm, B; Silverman, D

    2003-01-01

    Background: Several studies indicate that truck drivers have an increased risk of lung cancer, but few studies have examined lung cancer risk in heavy equipment operators. Workers in both occupations are exposed to diesel exhaust. Aims: To examine the incidence and mortality from lung cancer among truck drivers and among drivers of heavy vehicles. Methods: A computerised register of Swedish construction workers participating in health examinations between 1971 and 1992 was used. Male truck drivers (n = 6364) and drivers of heavy construction vehicles (n = 14 364) were selected as index groups; carpenters/electricians constituted the reference group (n = 119 984). Results: Operators of heavy construction equipment experienced no increased risk of lung cancer compared to risk among the carpenter/electrician referents (61 cases v 70.1 expected). However, a significant inverse trend risk with increasing use of cabins was apparent. Truck drivers had increased risks of cancer of the lung (61 cases v 47.3 expected) and prostate (124 cases v 99.7 expected), although only mortality for lung cancer was significantly increased. Comparisons with the general population showed similar results. Conclusion: Results are consistent with those of previous studies suggesting that heavy equipment operators with potential exposure to diesel exhaust may have little or no increased risk of lung cancer, although the use of cabins seemed to decrease the risk of lung cancer. The results for truck drivers are also consistent with previous reports of increased lung cancer risk among truck drivers exposed to diesel exhaust, as well as recent reports linking diesel exhaust exposure to prostate cancer. PMID:12819286

  6. Estrogenic and anti-androgenic activities of 4-nitrophenol in diesel exhaust particles

    SciTech Connect

    Li Chunmei [Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 (Japan); Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan); Taneda, Shinji [Environmental Nanotoxicology Section, Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506 (Japan); Suzuki, Akira K. [Environmental Nanotoxicology Section, Research Center for Environmental Risk, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506 (Japan)]. E-mail: suzukiak@nies.go.jp; Furuta, Chie [Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 (Japan); Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan); Watanabe, Gen [Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 (Japan); Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan); Taya, Kazuyoshi [Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 (Japan); Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan)

    2006-11-15

    A 4-nitrophenol (PNP) isolated from diesel exhaust particles (DEP) has been identified as a vasodilator. PNP is also a known degradation product of the insecticide parathion. We used uterotrophic and Hershberger assays to study the estrogenic and anti-androgenic activities of PNP in-vivo. In ovariectomized immature female rats injected subcutaneously with 1, 10, or 100 mg/kg PNP daily for 7 days, significant (P < 0.05) increases in uterine weight were seen in only those receiving 10 or 100 mg/kg PNP. Furthermore, in castrated immature male rats implanted with a silastic tube (length, 5 mm) containing crystalline testosterone and injected subcutaneously with 0.01, 0.1, or 1 mg/kg PNP daily for 5 days, those receiving the doses of 0.1 mg/kg showed significant (P < 0.05) weight decreases in seminal vesicles, ventral prostate, levator ani plus bulbocavernosus muscles, and glans penis. Plasma FSH and LH levels did not change in female rats but were significantly (P < 0.05) increased in male rats treated with 0.1 mg/kg PNP. These results clearly demonstrated that PNP has estrogenic and anti-androgenic activities in-vivo. Our results therefore suggest that diesel exhaust emissions and the degradation of parathion can lead to accumulation of PNP in air, water, and soil and thus could have serious deleterious effects on wildlife and human health.

  7. Whole and Particle-Free Diesel Exhausts Differentially Affect Cardiac Electrophysiology, Blood Pressure, and Autonomic Balance in Heart Failure–Prone Rats

    PubMed Central

    Farraj, Aimen K.

    2012-01-01

    Epidemiological studies strongly link short-term exposures to vehicular traffic and particulate matter (PM) air pollution with adverse cardiovascular (CV) events, especially in those with preexisting CV disease. Diesel engine exhaust is a key contributor to urban ambient PM and gaseous pollutants. To determine the role of gaseous and particulate components in diesel exhaust (DE) cardiotoxicity, we examined the effects of a 4-h inhalation of whole DE (wDE) (target PM concentration: 500 µg/m3) or particle-free filtered DE (fDE) on CV physiology and a range of markers of cardiopulmonary injury in hypertensive heart failure–prone rats. Arterial blood pressure (BP), electrocardiography, and heart rate variability (HRV), an index of autonomic balance, were monitored. Both fDE and wDE decreased BP and prolonged PR interval during exposure, with more effects from fDE, which additionally increased HRV triangular index and decreased T-wave amplitude. fDE increased QTc interval immediately after exposure, increased atrioventricular (AV) block Mobitz II arrhythmias shortly thereafter, and increased serum high-density lipoprotein 1 day later. wDE increased BP and decreased HRV root mean square of successive differences immediately postexposure. fDE and wDE decreased heart rate during the 4th hour of postexposure. Thus, DE gases slowed AV conduction and ventricular repolarization, decreased BP, increased HRV, and subsequently provoked arrhythmias, collectively suggesting parasympathetic activation; conversely, brief BP and HRV changes after exposure to particle-containing DE indicated a transient sympathetic excitation. Our findings suggest that whole- and particle-free DE differentially alter CV and autonomic physiology and may potentially increase risk through divergent pathways. PMID:22543275

  8. Exposure-Response Estimates for Diesel Engine Exhaust and Lung Cancer Mortality Based on Data from Three Occupational Cohorts

    PubMed Central

    Silverman, Debra T.; Garshick, Eric; Vlaanderen, Jelle; Portengen, Lützen; Steenland, Kyle

    2013-01-01

    Background: Diesel engine exhaust (DEE) has recently been classified as a known human carcinogen. Objective: We derived a meta-exposure–response curve (ERC) for DEE and lung cancer mortality and estimated lifetime excess risks (ELRs) of lung cancer mortality based on assumed occupational and environmental exposure scenarios. Methods: We conducted a meta-regression of lung cancer mortality and cumulative exposure to elemental carbon (EC), a proxy measure of DEE, based on relative risk (RR) estimates reported by three large occupational cohort studies (including two studies of workers in the trucking industry and one study of miners). Based on the derived risk function, we calculated ELRs for several lifetime occupational and environmental exposure scenarios and also calculated the fractions of annual lung cancer deaths attributable to DEE. Results: We estimated a lnRR of 0.00098 (95% CI: 0.00055, 0.0014) for lung cancer mortality with each 1-?g/m3-year increase in cumulative EC based on a linear meta-regression model. Corresponding lnRRs for the individual studies ranged from 0.00061 to 0.0012. Estimated numbers of excess lung cancer deaths through 80 years of age for lifetime occupational exposures of 1, 10, and 25 ?g/m3 EC were 17, 200, and 689 per 10,000, respectively. For lifetime environmental exposure to 0.8 ?g/m3 EC, we estimated 21 excess lung cancer deaths per 10,000. Based on broad assumptions regarding past occupational and environmental exposures, we estimated that approximately 6% of annual lung cancer deaths may be due to DEE exposure. Conclusions: Combined data from three U.S. occupational cohort studies suggest that DEE at levels common in the workplace and in outdoor air appear to pose substantial excess lifetime risks of lung cancer, above the usually acceptable limits in the United States and Europe, which are generally set at 1/1,000 and 1/100,000 based on lifetime exposure for the occupational and general population, respectively. Citation: Vermeulen R, Silverman DT, Garshick E, Vlaanderen J, Portengen L, Steenland K. 2014. Exposure-response estimates for diesel engine exhaust and lung cancer mortality based on data from three occupational cohorts. Environ Health Perspect 122:172–177;?http://dx.doi.org/10.1289/ehp.1306880 PMID:24273233

  9. Variability in bioreactivity linked to changes in size and zeta potential of diesel exhaust particles in human immune cells.

    PubMed

    Sarkar, Srijata; Zhang, Lin; Subramaniam, Prasad; Lee, Ki-Bum; Garfunkel, Eric; Strickland, Pamela A Ohman; Mainelis, Gediminas; Lioy, Paul J; Tetley, Teresa D; Chung, Kian Fan; Zhang, Junfeng; Ryan, Mary; Porter, Alex; Schwander, Stephan

    2014-01-01

    Acting as fuel combustion catalysts to increase fuel economy, cerium dioxide (ceria, CeO2) nanoparticles have been used in Europe as diesel fuel additives (Envirox™). We attempted to examine the effects of particles emitted from a diesel engine burning either diesel (diesel exhaust particles, DEP) or diesel doped with various concentrations of CeO2 (DEP-Env) on innate immune responses in THP-1 and primary human peripheral blood mononuclear cells (PBMC). Batches of DEP and DEP-Env were obtained on three separate occasions using identical collection and extraction protocols with the aim of determining the reproducibility of particles generated at different times. However, we observed significant differences in size and surface charge (zeta potential) of the DEP and DEP-Env across the three batches. We also observed that exposure of THP-1 cells and PBMC to identical concentrations of DEP and DEP-Env from the three batches resulted in statistically significant differences in bioreactivity as determined by IL-1?, TNF-?, IL-6, IFN-?, and IL-12p40 mRNA (by qRT-PCR) and protein expression (by ELISPOT assays). Importantly, bioreactivity was noted in very tight ranges of DEP size (60 to 120 nm) and zeta potential (-37 to -41 mV). Thus, these physical properties of DEP and DEP-Env were found to be the primary determinants of the bioreactivity measured in this study. Our findings also point to the potential risk of over- or under- estimation of expected bioreactivity effects (and by inference of public health risks) from bulk DEP use without taking into account potential batch-to-batch variations in physical (and possibly chemical) properties. PMID:24825358

  10. Variability in Bioreactivity Linked to Changes in Size and Zeta Potential of Diesel Exhaust Particles in Human Immune Cells

    PubMed Central

    Sarkar, Srijata; Zhang, Lin; Subramaniam, Prasad; Lee, Ki-Bum; Garfunkel, Eric; Strickland, Pamela A. Ohman.; Mainelis, Gediminas; Lioy, Paul J.; Tetley, Teresa D.; Chung, Kian Fan; Zhang, Junfeng; Ryan, Mary; Porter, Alex; Schwander, Stephan

    2014-01-01

    Acting as fuel combustion catalysts to increase fuel economy, cerium dioxide (ceria, CeO2) nanoparticles have been used in Europe as diesel fuel additives (Envirox™). We attempted to examine the effects of particles emitted from a diesel engine burning either diesel (diesel exhaust particles, DEP) or diesel doped with various concentrations of CeO2 (DEP-Env) on innate immune responses in THP-1 and primary human peripheral blood mononuclear cells (PBMC). Batches of DEP and DEP-Env were obtained on three separate occasions using identical collection and extraction protocols with the aim of determining the reproducibility of particles generated at different times. However, we observed significant differences in size and surface charge (zeta potential) of the DEP and DEP-Env across the three batches. We also observed that exposure of THP-1 cells and PBMC to identical concentrations of DEP and DEP-Env from the three batches resulted in statistically significant differences in bioreactivity as determined by IL-1?, TNF-?, IL-6, IFN-?, and IL-12p40 mRNA (by qRT-PCR) and protein expression (by ELISPOT assays). Importantly, bioreactivity was noted in very tight ranges of DEP size (60 to 120 nm) and zeta potential (?37 to ?41 mV). Thus, these physical properties of DEP and DEP-Env were found to be the primary determinants of the bioreactivity measured in this study. Our findings also point to the potential risk of over- or under- estimation of expected bioreactivity effects (and by inference of public health risks) from bulk DEP use without taking into account potential batch-to-batch variations in physical (and possibly chemical) properties. PMID:24825358

  11. EFFECT OF DIESEL EXHAUST EXPOSURE ON MUCOSAL SENSITIZATION TO OVALBUMIN ANTIGEN.

    EPA Science Inventory

    Several studies in humans and animals have shown that diesel exhaust (DE) can act as an immunological adjuvant to increase the severity of Type I hypersensitivity immune responses. The mechanism by which DE causes these effects is unknown but thought to be associated with lung in...

  12. NEUROPHYSIOLOGICAL ALTERATIONS DUE TO DIESEL EXHAUST EXPOSURE DURING THE NEONATAL LIFE OF THE RAT

    EPA Science Inventory

    This study was designed to assess the effects of diesel exhaust on the development of the nervous system in rats as measurably somatosensory and visual evoked potentials (SEPs an VEPs, respectively). SEPs, elicited by 1 mamp, 0.5 msec pulses delivered to the tibial nerve at the t...

  13. Inflammation-related effects of diesel engine exhaust particles: studies on lung cells in vitro.

    PubMed

    Schwarze, P E; Totlandsdal, A I; Låg, M; Refsnes, M; Holme, J A; Øvrevik, J

    2013-01-01

    Diesel exhaust and its particles (DEP) have been under scrutiny for health effects in humans. In the development of these effects inflammation is regarded as a key process. Overall, in vitro studies report similar DEP-induced changes in markers of inflammation, including cytokines and chemokines, as studies in vivo. In vitro studies suggest that soluble extracts of DEP have the greatest impact on the expression and release of proinflammatory markers. Main DEP mediators of effects have still not been identified and are difficult to find, as fuel and engine technology developments lead to continuously altered characteristics of emissions. Involved mechanisms remain somewhat unclear. DEP extracts appear to comprise components that are able to activate various membrane and cytosolic receptors. Through interactions with receptors, ion channels, and phosphorylation enzymes, molecules in the particle extract will trigger various cell signaling pathways that may lead to the release of inflammatory markers directly or indirectly by causing cell death. In vitro studies represent a fast and convenient system which may have implications for technology development. Furthermore, knowledge regarding how particles elicit their effects may contribute to understanding of DEP-induced health effects in vivo, with possible implications for identifying susceptible groups of people and effect biomarkers. PMID:23509760

  14. Bioassay-Directed Fractionation and Sub-fractionation for Mutagenicity and Chemical Analysis of Diesel Exhaust Particles

    EPA Science Inventory

    Several types of diesel exhaust particles (DEPs) have been used for toxicology studies, including a high-organic automobile DEP (A-DEP) from Japan, and a low-organic forklift DEP developed by the National Institute of Standards and Technology (N-DEP). However, these DEPs were no...

  15. NANOMETER SIZE DIESEL EXHAUST PARTICLES ARE SELECTIVELY TOXIC TO DOPAMINERGIC NEURONS: THE ROLE OF MICROGLIA, PHAGOCYTOSIS, AND NADPH OXIDASE.

    EPA Science Inventory

    This manuscript describes the neurotoxic response of cultured brain cells to diesel exhaust particles (DEP). DEP produces an early production of free radicals (i.e., oxidative stress) in one CNS cell type (the microglial) and the subsequent degeneration of specific neuronal...

  16. Evaluation and recommendations for reduction of a silica dust exposure 

    E-print Network

    Gruben, Raymond L

    2000-01-01

    particle sizing method were used to quantify exposure. Exposures that might exceed control levels were found to exist. In addition, work practices that increased worker exposure were identified. The local exhaust system in place was not controlling the dust...

  17. Exhaust exposure potential from the combustion of JP-8 jet fuel in C-130 engines 

    E-print Network

    Pirkle, Paul S

    2000-01-01

    carcinogen' ' and the American Conference of Governmental of Industrial Hygienists (ACGIH) has tagged it as a suspected human carcinogen. Whether these classifications have any relevance to turbine engine exhaust has yet to be determined... have been conducted to characterize in-flight turbine engine emission for the purposes of determining the impact of civilian and military aviation on atmospheric air quality. t 0 One study showed that carbon dioxide was emitted at nearly 3 percent...

  18. Perinatal exposure to diesel exhaust affects gene expression in mouse cerebrum

    Microsoft Academic Search

    Naomi Tsukue; Manabu Watanabe; Takayuki Kumamoto; Hirohisa Takano; Ken Takeda

    2009-01-01

    Many environmental toxins alter reproductive function and affect the central nervous system (CNS). Gonadal steroid hormones\\u000a cause differentiation of neurons and affect brain function and behavior during the perinatal period, and the CNS is thought\\u000a to be particularly susceptible to toxic insult during this period. It was, therefore, hypothesized that inhalation of diesel\\u000a exhaust (DE) during the fetal or suckling

  19. Diesel Exhaust Particles Increase NF-kappaB DNA Binding Activity and c-FOS Proto-oncogene Expression in Human Bronchial Epithelial Cells.

    PubMed

    Baeza-Squiban, A; Bonvallot, V; Boland, S; Marano, F

    1999-01-01

    There is increasing evidence that diesel exhaust particles (DEP) could be incriminated in respiratory diseases. They have been shown to induce an inflammatory response in the lung and are suspected to be carcinogenic because of the presence of polyaromatic hydrocarbons (PAH) on their surface. DEP were tested on a human bronchial epithelial cell line (16HBE) in comparison with carbon black particles (CB) devoid of PAH. DEP and CB at 10mug/cm(2) induced the release of the lactate dehydrogenase (LDH) by 16HBE cells from 48hr of exposure. DEP at 5mug/cm(2) but not CB activated the binding of the nuclear factor kappaB (NF-kappaB) to DNA from 2hr of exposure up to 15hr. NF-kappaB is a transcription factor involved in the expression of some cytokines such as IL-8 and GM-CSF which have been shown to be released by 16HBE cells after DEP exposure. In addition, DEP as well as CB induced the expression of the c-fos proto-oncogene. Taken together, these new data suggest that the activation of NF-kappaB and the expression of c-fos could contribute to the proliferation and chronic inflammation processes induced in lungs after DEP exposure. PMID:20654555

  20. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    PubMed

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (<0.5-5 ?m) are abundant upstream of the DPF and are ash-free or contain notably little attached ash. Post-DPF soot agglomerates are very few, typically large (>1-5 ?m, exceptionally 13 ?m), rarely <0.5 ?m, and contain abundant ash carried mostly from inside the DPF. The ash that reaches the atmosphere also occurs as separate aggregates ca. 0.2-2 ?m in size consisting of sintered primary phases, ca. 20-400 nm large. Insoluble particles of these sizes may harm the respiratory and cardiovascular systems. The DPF probably promotes breakout of large soot agglomerates (mostly ash-bearing) by favoring sintering. Noble metals detached from the DOC coating may reach the ambient air. Finally, very few agglomerates of Fe-oxide nanoparticles form newly from engine wear and escape into the atmosphere. PMID:24274188

  1. Exposure to diesel exhaust up-regulates iNOS expression in ApoE knockout mice

    SciTech Connect

    Bai Ni [Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC (Canada); James Hogg Research Centre, Providence Heart and Lung Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC (Canada); Kido, Takashi [James Hogg Research Centre, Providence Heart and Lung Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC (Canada); Kavanagh, Terrance J.; Kaufman, Joel D.; Rosenfeld, Michael E. [Department of Occupational and Environmental Health, University of Washington, Seattle, WA (United States); Breemen, Cornelis van [Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC (Canada); Eeden, Stephan F. van, E-mail: Stephan.vanEeden@hli.ubc.ca [James Hogg Research Centre, Providence Heart and Lung Institute, St. Paul's Hospital, University of British Columbia, Vancouver, BC (Canada)

    2011-09-01

    Traffic related particulate matter air pollution is a risk factor for cardiovascular events; however, the biological mechanisms are unclear. We hypothesize that diesel exhaust (DE) inhalation induces up-regulation of inducible nitric oxide synthase (iNOS), which is known to contribute to vascular dysfunction, progression of atherosclerosis and ultimately cardiovascular morbidity and mortality. Methods: ApoE knockout mice (30-week) were exposed to DE (at 200 {mu}g/m{sup 3} of particulate matter) or filtered-air (control) for 7 weeks (6 h/day, 5 days/week). iNOS expression in the blood vessels and heart was evaluated by immunohistochemistry and western blotting analysis. To examine iNOS activity, thoracic aortae were mounted in a wire myograph, and vasoconstriction stimulated by phenylephrine (PE) was measured with and without the presence of the specific inhibitor for iNOS (1400 W). NF-{kappa}B (p65) activity was examined by ELISA. The mRNA expression of iNOS and NF-{kappa}B (p65) was determined by real-time PCR. Results: DE exposure significantly enhanced iNOS expression in the thoracic aorta (4-fold) and heart (1.5 fold). DE exposure significantly attenuated PE-stimulated vasoconstriction by {approx} 20%, which was partly reversed by 1400 W. The mRNA expression of iNOS and NF-{kappa}B was significantly augmented after DE exposure. NF-{kappa}B activity was enhanced 2-fold after DE inhalation, and the augmented NF-{kappa}B activity was positively correlated with iNOS expression (R{sup 2} = 0.5998). Conclusions: We show that exposure to DE increases iNOS expression and activity possibly via NF-{kappa}B-mediated pathway. We suspect that DE exposure-caused up-regulation of iNOS contributes to vascular dysfunction and atherogenesis, which could ultimately lead to urban air pollution-associated cardiovascular morbidity and mortality. - Highlights: > Exposed ApoE knockout mice (30-week) to diesel exhaust (DE) for 7 weeks. > Examine iNOS expression and activity in the blood vessels and heart. > DE exposure enhanced iNOS protein and mRNA expression in the aorta and heart. > iNOS activity was also increased after DE exposure. > This up-regulation of iNOS may contribute to vascular dysfunction and atherogenesis.

  2. In utero and early life exposure to diesel exhaust air pollution increases adult susceptibility to heart failure in mice

    PubMed Central

    2013-01-01

    Background Fine particulate air pollution (PM2.5) is a global health concern, as exposure to PM2.5 has consistently been found to be associated with increased cardiovascular morbidity and mortality. Although adult exposure to traffic related PM2.5, which is largely derived from diesel exhaust (DE), has been associated with increased cardiac hypertrophy, there are limited investigations into the potential effect of in utero and early life exposure on adult susceptibility to heart disease. In this study, we investigate the effect of in utero and early life exposure to DE on adult susceptibility to heart failure. Methods Female C57BL/6 J mice were exposed to either filtered air (FA) or DE for 3 weeks (?300 ?g/m3 PM2.5 for 6 hours/day, 5 days/week) and then introduced to male breeders for timed matings. Female mice were exposed to either FA or DE throughout pregnancy and until offspring were 3 weeks of age. Offspring were then transferred to either FA or DE for an additional 8 weeks of exposure. At 12 weeks of age, male offspring underwent a baseline echocardiographic assessment, followed by a sham or transverse aortic constriction (TAC) surgery to induce pressure overload. Following sacrifice three weeks post surgery, ventricles were processed for histology to assess myocardial fibrosis and individual cardiomyocyte hypertrophy. mRNA from lung tissue was isolated to measure expression of inflammatory cytokines IL6 and TNF?. Results We observed that mice exposed to DE during in utero and early life development have significantly increased susceptibility to cardiac hypertrophy, systolic failure, myocardial fibrosis, and pulmonary congestion following TAC surgery compared to FA control, or adult DE exposed mice. In utero and early life DE exposure also strongly modified the inflammatory cytokine response in the adult lung. Conclusions We conclude that exposure to diesel exhaust air pollution during in utero and early life development in mice increases adult susceptibility to heart failure. The results of this study may imply that the effects of air pollution on cardiovascular disease in human populations may be strongly mediated through a ‘fetal origins’ of adult disease pathway. Further investigations on this potential pathway of disease are warranted. PMID:24279743

  3. Concentrations of ultrafine particles at a highway toll collection booth and exposure implications for toll collectors.

    PubMed

    Cheng, Yu-Hsiang; Huang, Cheng-Hsiung; Huang, Hsiao-Lin; Tsai, Chuen-Jinn

    2010-12-15

    Research regarding the magnitude of ultrafine particle levels at highway toll stations is limited. This study measured ambient concentrations of ultrafine particles at a highway toll station from October 30 to November 1 and November 5 to November 6, 2008. A scanning mobility particle sizer was used to measure ultrafine particle concentrations at a ticket/cash tollbooth. Levels of hourly average ultrafine particles at the tollbooth were about 3-6 times higher than those in urban backgrounds, indicating that a considerable amount of ultrafine particles are exhausted from passing vehicles. A bi-modal size distribution pattern with a dominant mode at about <6 nm and a minor mode at about 40 nm was observed at the tollbooth. The high amounts of nanoparticles in this study can be attributed to gas-to-particle reactions in fresh fumes emitted directly from vehicles. The influences of traffic volume, wind speed, and relative humidity on ultrafine particle concentrations were also determined. High ambient concentrations of ultrafine particles existed under low wind speed, low relative humidity, and high traffic volume. Although different factors account for high ambient concentrations of ultrafine particles at the tollbooth, measurements indicate that toll collectors who work close to traffic emission sources have a high exposure risk. PMID:21071066

  4. Determining times to maximum urine excretion of 1-aminopyrene after diesel exhaust exposure

    Microsoft Academic Search

    Susan Huyck; Pamela Ohman-Strickland; Lin Zhang; Jian Tong; X U Xu

    2010-01-01

    Biomonitoring of exposures to toxins is an important tool for monitoring public health and safety. Using this tool, exposures are typically measured by the collection of biological specimens such as blood and urine samples. Urine sampling represents a more convenient and less-invasive alternative to blood sampling; however, less work has been published on methodologies for characterizing the time course of

  5. Health effects of ambient particulate matter--biological mechanisms and inflammatory responses to in vitro and in vivo particle exposures.

    PubMed

    Maier, Konrad Ludwig; Alessandrini, Francesca; Beck-Speier, Ingrid; Hofer, Thomas Philipp Josef; Diabaté, Silvia; Bitterle, Ellen; Stöger, Tobias; Jakob, Thilo; Behrendt, Heidrun; Horsch, Marion; Beckers, Johannes; Ziesenis, Axel; Hültner, Lothar; Frankenberger, Marion; Krauss-Etschmann, Susanne; Schulz, Holger

    2008-02-01

    In this article, we review and analyze different modes of exposure to ultrafine particles in order to assess particle-induced inflammatory responses and the underlying mechanisms in vitro and in vivo. Based on results from monocytic cells cultured under submerged conditions, we discuss (1) the impact of particle properties such as surface area and oxidative potential on lipid metabolism as a highly sensitive regulatory pathway and (2) the interference of diesel exhaust particles with toll-like receptor-mediated inflammatory responses. Furthermore, new developments of air-liquid interface exposure used as an alternative approach to simulate cell particle interactions are presented. In addition to the in vitro approaches, animal exposure studies are described that apply selected mouse models to elucidate potential allergic and inflammatory pulmonary responses and mast-cell-related mechanisms after particle exposure. Long-term inhalation of ultrafine particles might lead to irreversible changes in lung structure and function. Clinical studies addressing the characteristics of inflammatory airway cells are a promising approach to understand underlying pathophysiological mechanisms in chronic obstructive pulmonary disease. Finally, a potential outcome of human particle exposure is chronic cough in children. Here, discrimination between asthmatic and nonasthmatic cough by means of immunological parameters appears to be an important step toward improving diagnosis and therapy. PMID:18300050

  6. Effects of a brief low-level exposure to the particulate fraction of diesel exhaust on pulmonary function of conscious sheep.

    PubMed

    Abraham, W M; Kim, C S; Januszkiewicz, A J; Welker, M; Mingle, M; Schreck, R

    1980-01-01

    This study was undertaken to determine the effects of an acute low-level exposure to diesel exhaust particulate material on pulmonary function in conscious sheep. This was accomplished by measuring pulmonary mechanics, airway reactivity to increasing doses of aerosolized carbachol, and tracheal mucous velocity both prior to and immediately after exposure to the diesel exhaust particulates. The diesel exhaust particulate material was aerosolized by a fluidized-bed dust generator. The mass concentration of the dust ranged between 400 to 500 micrograms/m3 and a mass median aerodynamic diameter of 2.8 micrometers. The sheep breathed the diesel exhaust particulates for 30 min by means of a Plexiglas helmet. The particulates caused no material alteration in pulmonary resistance, airway reactivity to aerosolized carbachol, or static lung compliance when compared to pre-exposure values. Tracheal mucous velocity was likewise unaffected. In conscious sheep under the present exposure conditions, the diesel exhaust material administered as a respirable aerosol does not materially affect the function of the large airways, the elastic properties of the lung, nor tracheal mucous transport. PMID:6154444

  7. Adjuvant activity of various diesel exhaust and ambient particles in two allergic models.

    PubMed

    Steerenberg, P A; Withagen, C E T; Dormans, J A M A; van Dalen, W J; van Loveren, H; Casee, F R

    2003-08-01

    In the framework of an EU study entitled "Respiratory Allergy and Inflammation Due to Ambient Particles" (RAIAP), various collected particulate matter samples were to be tested for their adjuvant potency in two animal models of allergy. A pollen allergy model in the Brown Norway (BN) rat and an ovalbumin model in the BALB/c mouse were used in this study to compare the discriminatory value of these two models and to evaluate them for later studies of collected RAIAP-samples. Two different sources of diesel exhaust particles (DEP I and DEP II ), a residual oil fly ash source (ROFA), and two sources of ambient particles (Ottawa dust, EHC-93, and road tunnel dust, RTD) were tested. Rats were sensitized intratracheally with Timothy grass pollen (Phleum pratense, 200 microl, 10 mg/ml) on d 0, challenged on d 21, and examined on d 25. Mice were sensitized intranasally at d 0 and 14, challenged intranasally at d 35, 38, and 41 (50 microl, 0.4 mg ovalbumin/ml), and examined at d 42. Particulate matter (PM) was administered either during the sensitization phase only or during the sensitization and challenge phases (for mice only) or during the challenge phase only. In the pollen model, only DEP I, but not DEP II, ROFA, EHC-93, and RTD, stimulated the immunoglobulin (Ig) E and IgG1 response in serum to pollen allergens. In addition to this adjuvant effect noted, no other biomarkers in lung or bronchoalveolar lavage (BAL) revealed adjuvant activity in the pollen model. In the BAL of BN rats exposed to a combination of pollen and PM, the percentages of eosinophilic granulocytes were decreased compared to the BAL of BN rats immunized with pollen only. In the ovalbumin model, the IgE levels in serum were increased in mice after coexposure to ovalbumin and PM (including DEPI, DEPII, ROFA, EHC-93, and RTD) in the sensitization phase but not after coexposure during the challenge phase only. The inflammatory response was greater in the lung, predominantly the influx of eosinophilic granulocytes, as was observed by both histopathological examination and BAL analysis. In addition, BAL levels of inflammatory interleukin (IL)-4 were increased. Based on the IgE antibody response to ovalbumin, the ovalbumin model ranked the adjuvant capacity of the particles in the following order: RTD > ROFA > EHC-93 > DEPI > DEPII. In conclusion, the ovalbumin model is a sensitive system to detect adjuvant activity of airborne particles, whereas the pollen-induced allergy model in rat was less sensitive. PMID:12857633

  8. Bioassay-directed fractionation and salmonella mutagenicity of automobile and forklift diesel exhaust particles.

    PubMed Central

    DeMarini, David M; Brooks, Lance R; Warren, Sarah H; Kobayashi, Takahiro; Gilmour, M Ian; Singh, Pramila

    2004-01-01

    Many pulmonary toxicity studies of diesel exhaust particles (DEPs) have used an automobile-generated sample (A-DEPs) whose mutagenicity has not been reported. In contrast, many mutagenicity studies of DEPs have used a forklift-generated sample (SRM 2975) that has been evaluated in only a few pulmonary toxicity studies. Therefore, we evaluated the mutagenicity of both DEPs in Salmonella coupled to a bioassay-directed fractionation. The percentage of extractable organic material (EOM) was 26.3% for A-DEPs and 2% for SRM 2975. Most of the A-EOM (~55%) eluted in the hexane fraction, reflecting the presence of alkanes and alkenes, typical of uncombusted fuel. In contrast, most of the SRM 2975 EOM (~58%) eluted in the polar methanol fraction, indicative of oxygenated and/or nitrated organics derived from combustion. Most of the direct-acting, base-substitution activity of the A-EOM eluted in the hexane/dichloromethane (DCM) fraction, but this activity eluted in the polar methanol fraction for the SRM 2975 EOM. The direct-acting frameshift mutagenicity eluted across fractions of A-EOM, whereas > 80% eluted only in the DCM fraction of SRM 2975 EOM. The A-DEPs were more mutagenic than SRM 2975 per mass of particle, having 227 times more polycyclic aromatic hydrocarbon-type and 8-45 more nitroarene-type mutagenic activity. These differences were associated with the different conditions under which the two DEP samples were generated and collected. A comprehensive understanding of the mechanisms responsible for the health effects of DEPs requires the evaluation of DEP standards for a variety of end points, and our results highlight the need for multidisciplinary studies on a variety of representative samples of DEPs. PMID:15175166

  9. Occupational exposure to volatile organic compounds and mitigation by push-pull local exhaust ventilation in printing plants.

    PubMed

    Leung, Michael K H; Liu, Chun-Ho; Chan, Alan H S

    2005-11-01

    The extensive use of multiple organic solvents in offset lithographic printing causing high emissions of volatile organic compounds (VOCs) indeed poses a serious risk to printing workers' health. In this study, indoor air quality (IAQ) assessments were carried out in seven printing plants and the main objectives were to understand the effect of VOC emissions on IAQ and develop effective mitigation measures to protect workers. The thorough gas chromatography/mass spectrometry (GC/MS) measurements showed that although a variety of VOCs were presented in the indoor air, none of them was found close to individual 8-h time-weighted average (TWA) of the occupational exposure limit (OEL). The additive effect was also found below the critical value of unity. However, short-term personal exposure to total volatile organic compounds (TVOCs) was exceedingly high when a print worker carried out blanket and ink roller cleaning procedures. Therefore, the occupational health risk was mainly due to repeated short-term exposures during intermittent VOC-emitting procedures rather than long-term exposure to background VOCs. Push-pull local exhaust ventilation (LEV) was identified as an effective mitigation measure. Computational fluid dynamics (CFD) analysis was conducted to study the push-pull LEV operation. It was found that there existed a threshold LEV air flow rate for an abrupt reduction in the worker's exposure to VOCs. The reduction was less sensitive when the LEV airflow was further increased beyond the threshold. These phenomena, consistent with experimental results reported by other investigators, were explained by detailed CFD analysis showing the competition between the general ventilation and the push-pull LEV to become the dominating driving force for the resultant local flow pattern. PMID:16369118

  10. Characterization of non-exhaust coarse and fine particles from on-road driving and laboratory measurements.

    PubMed

    Kwak, Ji-hyun; Kim, Hongsuk; Lee, Janghee; Lee, Seokhwan

    2013-08-01

    We investigated the physical and chemical properties of non-exhaust coarse and fine particles generated by on-road driving and in a laboratory setting using a mobile sampling system. The on-road driving and laboratory measurements performed under constant speed driving revealed that particles produced by tire wear had a size distribution in the range of 2-3 ?m, while roadway particles (RWPs) measured behind the front tire during on-road driving largely comprised crustal materials such as road surface wear particles and road dust as well as tire wear particles (TWPs). The mode diameters of particles obtained from on-road driving under cornering conditions were similar to those obtained under constant speed conditions, but with higher concentrations of crustal elements. Under braking conditions, the particulate matter (PM) concentrations of brake wear particles (BWPs) sampled near the brake pad increased significantly and were much higher than the concentration of RWPs during deceleration, indicating that BWPs are one of the main sources of non-exhaust emissions. In addition, BWPs observed from on-road and laboratory measurements had a broader PM size range (1-10 ?m) than RWPs. Size-segregated chemical analysis of PM samples indicated that the concentrations of Fe and Ca were highest in the coarse fraction emitted under constant speed and cornering conditions, while Fe, Ba, and Ti were most abundant in the fine fraction emitted during braking events. PMID:23664985

  11. Exposure of churchgoers to airborne particles.

    PubMed

    Weber, Stephan

    2006-09-01

    Particle mass and number measurements in a church indicate significant increases of indoor particle concentrations during the burning of incense. Generally, varying concentration regimes can be attributed to different "modes of indoor activity" and emission sources. While periods of candle burning are negligible concerning particle concentrations, increases by a factor of 6.9 and 9.1 during incense burning were observed for PM10 and PM1, respectively. At maximum, indoor PM10 shows an 8.1-fold increase in comparison to outdoor measurements. The increase of particles < 2 microm is significantly enhanced in comparison to larger particles. Due to a particle decay rate of 0.9 h(-1) post-service concentrations are elevated for a time span of approximately 24 h above indoor background concentrations. PMID:16999095

  12. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.

    PubMed Central

    Pleil, J D; Smith, L B; Zelnick, S D

    2000-01-01

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective equipment that optimize risk reduction without undue impact on a mission. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:10706522

  13. Roles of CD4+ and CD8+ T Cells in Adjuvant Activity of Diesel Exhaust Particles in Mice

    Microsoft Academic Search

    Hidekazu Fujimaki; Naoya Ui; Hiroko Ushio; Keiko Nohara; Tomohiko Endo

    2001-01-01

    Through an imbalance in Th1 and Th2 cytokine profiles, diesel exhaust particles (DEP) are thought to induce Th2-dominated IgE and IgG1 production. However, the roles of CD4+ and CD8+ T-cell subtypes in the increased immune responses to antigen in mice exposed to DEP are unclear. In the present study, we investigated whether treatment with anti-CD4 or anti-CD8 mAb abrogated the

  14. Involvement of oxidative stress in motorcycle exhaust particle-induced DNA damage and inhibition of intercellular communication

    Microsoft Academic Search

    Min-Liang Kuo; Shiou-Hwa Jee; Ming-Hong Chou; Tzuu-Huei Ueng

    1998-01-01

    In this study, we investigated the involvement of reactive oxygen species (ROS) in the motorcycle exhaust particle (MEP)-induced genotoxic and non-genotoxic activity in mammalian cell systems. Initially, the capability of MEP to induce ROS was evaluated by using 2?,7?-dichlorofluorescin diacetate (DCFH-DA) to detect hydrogen peroxide (H2O2). A five-fold increase in H2O2 was observed in Chinese hamster lung V79 and human

  15. In situ observations of particles in jet aircraft exhausts and contrails for different sulfur-containing fuels

    Microsoft Academic Search

    U. Schumann; J. Ström; R. Busen; R. Baumann; K. Gierens; M. Krautstrunk; F. P. Schröder; J. Stingl

    1996-01-01

    The impact of sulfur oxides on particle formation and contrails is investigated in the exhaust plumes of a twin-engine jet aircraft. Different fuels were used with sulfur mass fractions of 170 and 5500 ppm in the fuel, one lower than average, the other above the specification limit of standard Jet-A1 fuel. During various phases of the same flight, the two

  16. Influential parameters on particle exposure of pedestrians in urban microenvironments

    NASA Astrophysics Data System (ADS)

    Buonanno, G.; Fuoco, F. C.; Stabile, L.

    2011-03-01

    Exposure to particle concentrations in urban areas was evaluated in several studies since airborne particles are considered to bring about adverse health effects. Transportation modes and urban microenvironments account for the highest contributions to the overall daily particle exposure concentration. In the present study an evaluation of the influential parameters affecting particle exposure of pedestrian in urban areas is reported. Street geometry, traffic mode, wind speed and direction effects were analyzed through an experimental campaign performed in different streets of an Italian town. To this purpose a high-resolution time measurement apparatus was used in order to capture the dynamic of the freshly emitted particles. Number, surface area and mass concentrations and distributions were measured continuously along both the sides of street canyons and avenue canyons during 10-minutes walking routes. The combined effect of street geometry and wind direction may contribute strongly to dilute the fresh particles emitted by vehicles. In particular, street canyons are characterized by lower ventilation phenomena which lead to similar concentration values on both the side of the street. Higher wind speed was found to decrease concentrations in the canyon. Traffic mode also seems to influence exposure concentrations. In particular, submicrometer particle mass concentration was higher as the traffic is more congested; otherwise, coarse fraction dominates mass exposure concentration along street characterized by a more fluent traffic, showing a typical resuspension modality.

  17. PERSONAL EXPOSURE TO JP-8 JET FUEL VAPORS AND EXHAUST AT AIR FORCE BASES

    EPA Science Inventory

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and gro...

  18. EXPOSURE TO CONCENTRATED AMBIENT PARTICLES (CAPS): REVIEW

    EPA Science Inventory

    Epidemiologic studies support a participation of fine particulate matter (PM) with a diameter of 0.1 to 2.5 microm in the effects of air pollution particles on human health. The ambient fine particle concentrator is a recently developed technology that can enrich the mass of ambi...

  19. The influence of diesel exhaust particles on mononuclear phagocytic cell-derived cytokines: IL-10, TGF-? and IL-1?

    PubMed Central

    Pacheco, K A; Tarkowski, M; Sterritt, C; Negri, J; Rosenwasser, L J; Borish, L

    2001-01-01

    Diesel exhaust particles (DEP) are known to modulate the production of cytokines associated with acute and chronic respiratory symptoms and allergic respiratory disease. Tolerance is an important mechanism through which the immune system can maintain nonresponsiveness to common environmental antigens. We examined the effect of DEP on IL-10 and TGF-?, cytokines produced by macrophages and repressor (Tr-like) lymphocytes which influence tolerance. Human PBMCs (n = 22) were incubated with 1–100 ng/ml of DEP, and suboptimally primed with LPS. IL-10 gene expression was assessed by the S1 nuclease protection assay, and production of IL-10, TGF-?, TNF-?, IL-1? and IL-4 stimulated CD23 was evaluated by ELISA after 24 and 48 h. The effect of the order of exposure to DEP and LPS was evaluated on IL-10 protein and mRNA in cells (1) preincubated with LPS followed by DEP, or (2) exposed first to DEP followed by LPS. IL-10 was further evaluated using benzo[a]pyrene and [?]naphthoflavone as a surrogate for the polyaromatic hydrocarbons (PAHs) adsorbed to DEP. Control cells were incubated with carbon black, without PAHs. In PBMCs exposed to DEP with LPS, or preincubated with LPS before DEP, IL-10 production and mRNA fall significantly. TGF-? is similarly suppressed, IL-1? secretion is significantly stimulated, and IL-4 stimulated CD23 release rises in the atopic subjects. In contrast, when DEP is added prior to LPS, IL-10 production rises, and IL-1? falls to zero. These effects on IL-10 are reproduced with benzo[a]pyrene and reversed by the coaddition of [?]naphthoflavone, its known antagonist. The carbon black fraction has no effect on IL-10 production. The effect of DEP on IL-10 can be inhibitory or stimulatory, depending on the order of exposure to DEP and LPS. Pro-inflammatory cytokines and factors rise when IL-10 is inhibited, and are suppressed when IL-10 is stimulated. These results are duplicated with benzo[a]pyrene, suggesting that the PAH portion of the DEP is the active agent. PMID:11737050

  20. One versus five-days of exposure to varying concentrations of B100 soya biodiesel exhaust reveals a threshold concentration for increased sensitivity to aconitine-induced arrhythmia

    EPA Science Inventory

    Although biodiesel (BD) is rapidly being considered as an alternative to diesel fuel, its health effects have not been thoroughly characterized. We previously used the aconitine challenge test to demonstrate that a single exposure to petroleum diesel exhaust (DE) increases the ri...

  1. Circulating factors induce coronary endothelial cell activation following exposure to inhaled diesel exhaust and nitrogen dioxide in humans: Evidence from a novel translational in vitro model**

    EPA Science Inventory

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  2. Biodiesel exhaust-induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells.

    PubMed

    Mullins, Benjamin J; Kicic, Anthony; Ling, Kak-Ming; Mead-Hunter, Ryan; Larcombe, Alexander N

    2014-07-01

    Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow-sulfur-diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)-6, IL-8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL-8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size. © 2014 Wiley Periodicals, Inc. Environ Toxicol, 2014. PMID:25045158

  3. Airborne Particle Exposure and Extrinsic Skin Aging

    Microsoft Academic Search

    Andrea Vierkötter; Tamara Schikowski; Ulrich Ranft; Dorothea Sugiri; Mary Matsui; Ursula Krämer; Jean Krutmann

    2010-01-01

    For decades, extrinsic skin aging has been known to result from chronic exposure to solar radiation and, more recently, to tobacco smoke. In this study, we have assessed the influence of air pollution on skin aging in 400 Caucasian women aged 70–80 years. Skin aging was clinically assessed by means of SCINEXA (score of intrinsic and extrinsic skin aging), a

  4. Exposure to Manufactured Nanostructured Particles in an Industrial Pilot Plant

    Microsoft Academic Search

    EVANGELIA DEMOU; PHILIPPE PETER; STEFANIE HELLWEG

    2008-01-01

    Objectives: Nanomaterial production and the number of people directly in contact with these materials are increasing. Yet, little is known on the association between exposure and corre- sponding risks, such as pulmonary inflammation and oxidative stress. Methods: Condensation Particle Counters, a DustTrak and Scanning Mobility Particle Sizer quantified real-time size, mass and number concentrations in a nanostructure particle pilot-scale production

  5. Diesel exhaust exposure enhances venoconstriction via uncoupling of eNOS

    SciTech Connect

    Knuckles, Travis L.; Lund, Amie K.; Lucas, Selita N. [Toxicology Division, Lovelace Respiratory Research Institute, Albuquerque, NM (United States); Campen, Matthew J. [Toxicology Division, Lovelace Respiratory Research Institute, Albuquerque, NM (United States)], E-mail: mcampen@lrri.org

    2008-08-01

    Environmental air pollution is associated with adverse cardiovascular events, including increased hospital admissions due to heart failure and myocardial infarction. The exact mechanism(s) by which air pollution affects the heart and vasculature is currently unknown. Recent studies have found that exposure to air pollution enhances arterial vasoconstriction in humans and animal models. Work in our laboratory has shown that diesel emissions (DE) enhance vasoconstriction of mouse coronary arteries. Thus, we hypothesized that DE could enhance vasoconstriction in arteries and veins through uncoupling of endothelial nitric oxide synthase (eNOS). To test this hypothesis, we first bubbled DE through a physiological saline solution and exposed isolated mesenteric veins. Second, we exposed animals, whole body, to DE at 350 {mu}g/m{sup 3} for 4 h, after which mesenteric arteries and veins were isolated. Results from these experiments show that saline bubbled with DE as well as inhaled DE enhances vasoconstriction in veins but not arteries. Exposure to several representative volatile organic compounds found in the DE-exposed saline did not enhance arterial constriction. L-nitro-arginine-methyl-ester (L-NAME), an eNOS inhibitor, normalized the control vessels to the DE-exposed vessels implicating an uncoupling of eNOS as a mechanism for enhanced vasoconstriction. The principal conclusions of this research are 1) veins exhibit endothelial dysfunction following in vivo and ex vivo exposures to DE, 2) veins appear to be more sensitive to DE effects than arteries, and 3) DE components most likely induce endothelial dysfunction through the uncoupling of eNOS.

  6. Relative biological effectiveness of alpha particles at radon exposure.

    PubMed

    Zhukovsky, M; Bastrikova, N; Vasilyev, A

    2015-06-01

    The relative biological effectiveness (RBE) of alpha particles at radon exposure is estimated by comparison of radiation risks at external gamma exposure and radon exposure in different situations. For external gamma exposure, the BEIR VII model of radiation risk assessment was used. For occupational and indoor radon exposure, models such as BEIR VI, WISMUT, Tomasek's and combined miners population were considered. It was demonstrated that RBE values are strongly dependent on models of radiation risk assessment used for RBE calculation, sex of exposed peoples and age at the exposure. The average values of RBE in dependence on model of risk assessment choice are in the range from 1.5 to 12.0 for males and in the range from 0.34 to 2.7 for females. PMID:25979745

  7. HEALTH ASSESSMENT DOCUMENT FOR DIESEL ENGINE EXHAUST (Final 2002)

    EPA Science Inventory

    This assessment examined information regarding the possible health hazards associated with exposure to diesel engine exhaust (DE), which is a mixture of gases and particles. The assessment concludes that long-term (i.e., chronic) inhalation exposure is likely to pose a l...

  8. Inhalation of diesel exhaust induces acute arterial vasocontruction in healthy volunteers

    EPA Science Inventory

    Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Diesel exhaust particles (DE) are a major contributor to PM in urban areas. Advanced age and certain polymorphisms are among...

  9. DESIGN AND CHARACTERIZATION OF AN ISOKINETIC SAMPLING TRAIN FOR PARTICLE SIZE MEASUREMENTS USING EXHAUST GAS RECIRCULATION

    EPA Science Inventory

    A particulate sampling train has been constructed which satisfies the conflicting requirements of isokinetic sample extraction and constant flowrate through an inertial sizing device. Its design allows a variable fraction of the filtered exhaust gas to be added to the sample upst...

  10. Divergent Electrocardiographic Responses to Whole and Particle-Free Diesel Exhaust Inhalation in Spontaneously Hypertensive Rats

    EPA Science Inventory

    Diesel exhaust (DE) is a major contributor to traffic-related fine PM2.5. While inroads have been made in understanding the mechanisms of PM related health effects, DE?s complex mixture of PM, gases and volatile organics makes it difficult to determine how the constituents contri...

  11. Mortality among members of a heavy construction equipment operators union with potential exposure to diesel exhaust emissions.

    PubMed Central

    Wong, O; Morgan, R W; Kheifets, L; Larson, S R; Whorton, M D

    1985-01-01

    A historical prospective mortality study was conducted on a cohort of 34 156 male members of a heavy construction equipment operators union with potential exposure to diesel exhaust emissions. This cohort comprised all individuals who were members of the International Union of Operating Engineers, Locals 3 and 3A, for at least one year between 1 January 1964 and 31 December 1978. The mortality experience of the entire cohort and several subcohorts was compared with that of United States white men, adjusted for age and calendar time. The comparison statistic was the commonly used standardised mortality ratio (SMR). Historical environmental measurements did not exist, but partial work histories were available for some cohort members through the union dispatch computer tapes. An attempt was made to relate mortality experience to the union members' dispatch histories. Overall mortality for the entire cohort and several subgroups was significantly lower than expected. When cause specific mortality was examined, however, the study provided suggestive evidence for the existence of several potential health problems in this cohort. Mortality from liver cancer for the entire cohort was significantly high. Although mortality from lung cancer for the entire cohort was similar to expected, a positive trend by latency was observed for lung cancer. A significant excess of mortality from lung cancer was found among the retirees and the group for whom no dispatch histories were available. Other dispatch groups showed no evidence of lung cancer excess. In addition, the total cohort experienced significant mortality excess from emphysema and accidental deaths. PMID:2410010

  12. Mortality among members of a heavy construction equipment operators union with potential exposure to diesel exhaust emissions.

    PubMed

    Wong, O; Morgan, R W; Kheifets, L; Larson, S R; Whorton, M D

    1985-07-01

    A historical prospective mortality study was conducted on a cohort of 34 156 male members of a heavy construction equipment operators union with potential exposure to diesel exhaust emissions. This cohort comprised all individuals who were members of the International Union of Operating Engineers, Locals 3 and 3A, for at least one year between 1 January 1964 and 31 December 1978. The mortality experience of the entire cohort and several subcohorts was compared with that of United States white men, adjusted for age and calendar time. The comparison statistic was the commonly used standardised mortality ratio (SMR). Historical environmental measurements did not exist, but partial work histories were available for some cohort members through the union dispatch computer tapes. An attempt was made to relate mortality experience to the union members' dispatch histories. Overall mortality for the entire cohort and several subgroups was significantly lower than expected. When cause specific mortality was examined, however, the study provided suggestive evidence for the existence of several potential health problems in this cohort. Mortality from liver cancer for the entire cohort was significantly high. Although mortality from lung cancer for the entire cohort was similar to expected, a positive trend by latency was observed for lung cancer. A significant excess of mortality from lung cancer was found among the retirees and the group for whom no dispatch histories were available. Other dispatch groups showed no evidence of lung cancer excess. In addition, the total cohort experienced significant mortality excess from emphysema and accidental deaths. PMID:2410010

  13. Bioreactivity of carbon black and diesel exhaust particles to primary Clara and type II epithelial cell cultures

    PubMed Central

    Murphy, S. A.; BeruBe, K. A.; Richards, R. J.

    1999-01-01

    OBJECTIVES: To begin to elucidate the mechanisms of particle toxicity to the lung, the bioreactivity of four carbon black (CB) and diesel exhaust particles ((DEPs), a surrogate for particulate matter of aerodynamic diameter < 10 microns (PM10), were examined with primary cultures of Clara and type II epithelial cells. METHODS: The particles were extensively characterised by surface chemistry, size, and aggregation properties. Toxicity of the particles was assessed by determining cell attachment to an extracellular matrix substratum. RESULTS: The spherulite size range for the particles ranged from 50, 40, 20, 20, and 30 nm for CB1-4 and DEPs. All particle samples had different surface chemical compositions. CB1 was the least toxic to Clara (170 micrograms) and type II cells (150 micrograms) and CB4 was the most toxic (55 micrograms and 23 micrograms respectively). DEPs stored for 2 weeks were equally toxic to both epithelial cell types (27- 28 micrograms). DEPs became progressively less toxic to type II cells with time of storage. Both primary epithelial cell types internalised the particles in culture. CONCLUSIONS: Bioreactivity was found to be related to CB particle spherulite size and hence surface area: the smaller the particle and larger the surface area, the more toxic the particles. Also, CB particles with the most complicated surface chemistry were the most bioreactive. Freshly prepared DEPs were equally toxic to type II and Clara cells and they became progressively less toxic to the type II cells with time. With all CB and DEPs, the primary epithelial cells internalised the particles, although this was noted most in cells of low functional competence.   PMID:10658537

  14. The occurrence of polycyclic aromatic hydrocarbons and their derivatives and the proinflammatory potential of fractionated extracts of diesel exhaust and wood smoke particles.

    PubMed

    Totlandsdal, Annike I; Øvrevik, Johan; Cochran, Richard E; Herseth, Jan-Inge; Bølling, Anette Kocbach; Låg, Marit; Schwarze, Per; Lilleaas, Edel; Holme, Jørn A; Kubátová, Alena

    2014-01-01

    Exposure to combustion emissions, including diesel engine exhaust and wood smoke particles (DEPs and WSPs), has been associated with inflammatory responses. To investigate the possible role of polycyclic aromatic hydrocarbons (PAHs) and PAH-derivatives, the DEPs and WSPs methanol extracts were fractionated by solid phase extraction (SPE), and the fractions were analyzed for more than ?120 compounds. The pro-inflammatory effects of the fractionated extracts were characterized by exposure of bronchial epithelial lung cells (BEAS-2B). Both native DEPs and WSPs caused a concentration-dependent increase in IL-6 and IL-8 release and cytotoxicity. This is consistent with the finding of a rather similar total content of PAHs and PAH-derivatives. Yet, the samples differed in specific components, suggesting that different species contribute to the toxicological response in these two types of particles. The majority of the IL-6 release and cytotoxicity was induced upon exposure to the most polar (methanol) SPE fraction of extracts from both samples. In these fractions hydroxy-PAHs, carboxy-PAHs were observed along with nitro-amino-PAHs in DEP. However, the biological effects induced by the polar fractions could not be attributed only to the occurrence of PAH-derivatives. The present findings indicate a need for further characterization of organic extracts, beyond an extensive analysis of commonly suspected PAH and PAH-derivatives. Supplemental materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A, to view the supplemental file. PMID:24345236

  15. Exploratory assessment of the risk of lung cancer associated with exposure to diesel exhaust based on a study in rats. Exploratory diesel risk assessment

    SciTech Connect

    Smith, R.; Stayner, L.

    1990-08-29

    A request was made by the Mine Safety and Health Administration to assess quantitatively the risk of lung cancer among those occupationally exposed to diesel exhaust. The Armitage-Doll multistage model was adapted to fit both the cases of all tumors and malignant neoplasms alone. A number of assumptions were made to extend the risk estimates derived from the models of tumor response in rats to the risks for humans. These assumptions fell into three categories: those concerning the development of biologically equivalent doses for rats and humans, those relating external exposure to internal dose, and those concerning the scaling of age between rats and humans to account for the temporal aspects of exposure. Uncertainties in the study included the effects of exposure on lung clearance mechanisms, the deposition rates in humans, and the relevance of the exposure index limit. Based on the findings of the study the excess risk to miners of lung cancer at the upper range of the diesel particulate exposure reported, 1.5mg/cu m, was approximately 1.5 to 3 in 100. According to the authors, the results are consistent with previous recommendations by NIOSH that diesel exhaust should be regarded as a potential human carcinogen, and that efforts should be made to reduce exposures to the lowest feasible concentration.

  16. Part 4. Assessment of plasma markers and cardiovascular responses in rats after chronic exposure to new-technology diesel exhaust in the ACES bioassay.

    PubMed

    Conklin, Daniel J; Kong, Maiying

    2015-01-01

    Although epidemiologic and experimental studies suggest that chronic exposure to diesel exhaust (DE*) emissions causes adverse cardiovascular effects, neither the specific components of DE nor the mechanisms by which DE exposure could induce cardiovascular dysfunction and exacerbate cardiovascular disease (CVD) are known. Because advances in new technologies have resulted in cleaner fuels and decreased engine emissions, uncertainty about the relationship between DE exposure and human cardiovascular health effects has increased. To address this ever-changing baseline of DE emissions, as part of the larger Advanced Collaborative Emissions Study (ACES) bioassay studying the health effects of 2007-compliant diesel engine emissions (new-technology diesel exhaust), we examined whether plasma markers of vascular inflammation, thrombosis, cardiovascular aging, cardiac fibrosis, and aorta morphometry were changed over 24 months in an exposure-level-, sex-, or exposure-duration-dependent manner. Many plasma markers--several recognized as human CVD risk factors--were measured in the plasma of rats exposed for up to 24 months to filtered air (the control) or DE. Few changes in plasma markers resulted from 12 months of DE exposure, but significant exposure-level-dependent increases in soluble intercellular adhesion molecule 1 (sICAM-1) and interleukin-6 (IL-6) levels, as well as decreases in total and non-high-density-lipoprotein cholesterol (non-HDL) levels in plasma, were observed in female rats after 24 months of DE exposure. These effects were not observed in male rats, and no changes in cardiac fibrosis or aorta morphometry resulting from DE exposure were observed in either sex. Collectively, the significant changes may reflect an enhanced sensitivity of the female cardiovascular system to chronic DE exposure; however, this conclusion should be interpreted within both the context and limitations of the current study. PMID:25842618

  17. Atmospheric scavenging of solid rocket exhaust effluents

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.

    1978-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. Two chambers were used to conduct the experiments; a large, rigid walled, spherical chamber stored the exhaust constituents, while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique used. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity. Characterization of the aluminum oxide particles substantiated the similarity between the constituents of the small scale rocket and the full size vehicles.

  18. CARDIOVASCULAR RESPONSES TO ULTRAFINE CARBON PARTICLE EXPOSURES IN RATS

    EPA Science Inventory

    TD-02-042 (U. KODAVANTI) GPRA # 10108 Cardiovascular Responses to Ultrafine Carbon Particle Exposures in Rats. V. Harder1, B. Lentner1, A. Ziesenis1, E. Karg1, L. Ruprecht1, U. Kodavanti2, A. Stampfl3, J. Heyder1, H. Schulz1 GSF- Institute for Inhalation Biology1, I...

  19. Effects on symptoms and lung function in humans experimentally exposed to diesel exhaust.

    PubMed Central

    Rudell, B; Ledin, M C; Hammarström, U; Stjernberg, N; Lundbäck, B; Sandström, T

    1996-01-01

    OBJECTIVES: Diesel exhaust is a common air pollutant made up of several gases, hydrocarbons, and particles. An experimental study was carried out which was designed to evaluate if a particle trap on the tail pipe of an idling diesel engine would reduce effects on symptoms and lung function caused by the diesel exhaust, compared with exposure to unfiltered exhaust. METHODS: Twelve healthy non-smoking volunteers (aged 20-37) were investigated in an exposure chamber for one hour during light work on a bicycle ergometer at 75 W. Each subject underwent three separate double blind exposures in a randomised sequence: to air and to diesel exhaust with the particle trap at the tail pipe and to unfiltered diesel exhaust. Symptoms were recorded according to the Borg scale before, every 10 minutes during, and 30 minutes after the exposure. Lung function was measured with a computerised whole body plethysmograph. RESULTS: The ceramic wall flow particle trap reduced the number of particles by 46%, whereas other compounds were relatively constant. It was shown that the most prominent symptoms during exposure to diesel exhaust were irritation of the eyes and nose and an unpleasant smell increasing during exposure. Both airway resistance (R(aw)) and specific airway resistance (SR(aw)) increased significantly during the exposures to diesel exhaust. Despite the 46% reduction in particle numbers by the trap effects on symptoms and lung function were not significantly attenuated. CONCLUSION: Exposure to diesel exhaust caused symptoms and bronchoconstriction which were not significantly reduced by a particle trap. PMID:8943829

  20. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase.

    PubMed

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Hallier, Ernst; Brüning, Thomas; Bünger, Jürgen

    2012-06-01

    Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced mutagenic effects most effectively in the gas phase. Mutagenicity of particle extracts was less efficiently diminished. No significant differences of mutagenic effects were observed among the tested fuels. In conclusion, the benefits of the DOC concern regulated emissions except NO(X) as well as nonregulated emissions such as the mutagenicity of the exhaust. The reduction of mutagenicity was particularly observed in the condensates of the gas phase. This is probably due to better accessibility of gaseous mutagenic compounds during the passage of the DOC in contrast to the particle-bound mutagens. Concerning the particulate emissions DOC especially decreased ultrafine particles. PMID:22587467

  1. Adsorption of Pb, Cd, Cu, Zn, and Ni to titanium dioxide nanoparticles: effect of particle size, solid concentration, and exhaustion

    Microsoft Academic Search

    Karen E. Engates; Heather J. Shipley

    2011-01-01

    Purpose  Adsorption of metals (Pb, Cd, Cu, Ni, Zn) to TiO2 nanoparticles and bulk particles was examined for use as a contaminant removal substrate as a function of particle size,\\u000a sorbent concentration, and exhaustion.\\u000a \\u000a \\u000a \\u000a \\u000a Methods  Adsorption experiments were conducted with 0.01, 0.1, and 0.5 g\\/L nanoparticles in a pH 8 solution and in spiked San Antonio\\u000a tap water.\\u000a \\u000a \\u000a \\u000a \\u000a Results  When results were normalized by mass,

  2. Dose profiles through the dermis for on and off-skin hot particle exposures

    E-print Network

    Shaw, Kimberly Rochelle

    1993-01-01

    reports measurements of depth-dose profiles for on- and off-skin hot particle exposures using radiochromic dye film. Dose profiles from both a "Co hot particle, and activated depleted uranium oxide microspheres were measured with the film. Exposures... 24 27 32 TABLE OF CONTENTS Icontinued) Page RESULTS 34 ' Co On-Contact Exposures 34 Co Exposures Through Protective Clothing ~Co Off-Skin Exposures Uranium Microsphere On-Contact Exposures 45 49 Uranium Microsphere Exposures Through...

  3. Dose profiles through the dermis for on and off-skin hot particle exposures 

    E-print Network

    Shaw, Kimberly Rochelle

    1993-01-01

    reports measurements of depth-dose profiles for on- and off-skin hot particle exposures using radiochromic dye film. Dose profiles from both a "Co hot particle, and activated depleted uranium oxide microspheres were measured with the film. Exposures... 24 27 32 TABLE OF CONTENTS Icontinued) Page RESULTS 34 ' Co On-Contact Exposures 34 Co Exposures Through Protective Clothing ~Co Off-Skin Exposures Uranium Microsphere On-Contact Exposures 45 49 Uranium Microsphere Exposures Through...

  4. DIESEL PARTICLE GENERATION, CHARACTERIZATION, AND DIRECT ANIMAL EXPOSURE STUDIES

    EPA Science Inventory

    Inhalation of diesel exhaust is associated with the development of asthma as well as other adverse health effects. Studies have also demonstrated that diesel exhaust induces pulmonary changes that worsen asthmatic responses to respiratory allergens. This paper describes the des...

  5. Prediction of the Size of Aluminum-Oxide Particles in Exhaust Plumes of Solid Rocket Motors

    Microsoft Academic Search

    O. B. Kovalev

    2002-01-01

    The processes of coagulation and aerodynamic fragmentation of liquid particles of aluminum oxide in an accelerating gas flow in the Laval nozzle are analyzed. A formula obtained by an approximate analytical solution of equations of a two-phase flow is proposed to calculate the characteristic particle diameter at the nozzle exit. The limiting particle diameter in the nozzle throat calculated theoretically

  6. HEMATOLOGICAL AND MOLECULAR CARDIAC EFFECTS FOLLOWING PULMONARY EXPOSURE TO OIL COMBUSTION PARTICLES

    EPA Science Inventory

    Hematological and Molecular Cardiac Effects Following Pulmonary Exposure to Oil Combustion Particles K. Dreher, R. Jaskot, and J. Richards. USEPA, Research Triangle Park, NC Systemic health effects induced following pulmonary exposure to various combustion particles are...

  7. CHARACTERIZING THE SOURCES OF HUMAN EXPOSURE TO MUTAGENIC AND CARCINOGENIC CHEMICALS IN AIRBORNE FINE PARTICLES

    EPA Science Inventory

    Personal and ambient exposures to airborne fine particles, polycyclic aromatic hydrocarbons (PAH), and genotoxic activity has been studied in populations in the US, Japan, China, and the Czech Republic. Personal exposure monitors used to collect fine particles were extracted f...

  8. Monitoring of heavy metal particle emission in the exhaust duct of a foundry using LIBS.

    PubMed

    Dutouquet, C; Gallou, G; Le Bihan, O; Sirven, J B; Dermigny, A; Torralba, B; Frejafon, E

    2014-09-01

    Heavy metals have long been known to be detrimental to human health and the environment. Their emission is mainly considered to occur via the atmospheric route. Most of airborne heavy metals are of anthropogenic origin and produced through combustion processes at industrial sites such as incinerators and foundries. Current regulations impose threshold limits on heavy metal emissions. The reference method currently implemented for quantitative measurements at exhaust stacks consists of on-site sampling of heavy metals on filters for the particulate phase (the most prominent and only fraction considered in this study) prior to subsequent laboratory analysis. Results are therefore known only a few days after sampling. Stiffer regulations require the development of adapted tools allowing automatic, on-site or even in-situ measurements with temporal resolutions. The Laser-Induced Breakdown Spectroscopy (LIBS) technique was deemed as a potential candidate to meet these requirements. On site experiments were run by melting copper bars and monitoring emission of this element in an exhaust duct at a pilot-scale furnace in a French research center dedicated to metal casting. Two approaches designated as indirect and direct analysis were broached in these experiments. The former corresponds to filter enrichment prior to subsequent LIBS interrogation whereas the latter entails laser focusing right through the aerosol for detection. On-site calibration curves were built and compared with those obtained at laboratory scale in order to investigate possible matrix and analyte effects. Eventually, the obtained results in terms of detection limits and quantitative temporal monitoring of copper emission clearly emphasize the potentialities of the direct LIBS measurements. PMID:24913859

  9. Municipal waste incinerators: air and biological monitoring of workers for exposure to particles, metals, and organic compounds

    PubMed Central

    Maitre, A; Collot-Fertey, D; Anzivino, L; Marques, M; Hours, M; Stoklov, M

    2003-01-01

    Aims: To evaluate occupational exposure to toxic pollutants at municipal waste incinerators (MWIs). Methods: Twenty nine male subjects working near the furnaces in two MWIs, and 17 subjects not occupationally exposed to combustion generated pollutants were studied. Individual air samples were taken throughout the shift; urine samples were collected before and after. Stationary air samples were taken near potential sources of emission. Results: Occupational exposure did not result in the infringement of any occupational threshold limit value. Atmospheric exposure levels to particles and metals were 10–100 times higher in MWIs than at the control site. The main sources were cleaning operations for particles, and residue transfer and disposal operations for metals. MWI workers were not exposed to higher levels of polycyclic aromatic hydrocarbons than workers who are routinely in contact with vehicle exhaust. The air concentrations of volatile organic compounds and aldehydes were low and did not appear to pose any significant threat to human health. Only the measurement of chlorinated hydrocarbon levels would seem to be a reliable marker for the combustion of plastics. Urine metal levels were significantly higher at plant 1 than at plant 2 because of high levels of pollutants emanating from one old furnace. Conclusion: While biological monitoring is an easy way of acquiring data on long term personal exposure, air monitoring remains the only method that makes it possible to identify the primary sources of pollutant emission which need to be controlled if occupational exposure and environmental pollution are to be reduced. PMID:12883016

  10. DIET AS A FACTOR IN BEHAVIORAL RADIATION PROTECTION FOLLOWING EXPOSURE TO HEAVY PARTICLES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Major risks associated with radiation exposures on deep space missions include carcinogenesis due to heavy-particle exposure of cancer-prone tissues and performance decrements due to neurological damage produced by heavy particles. Because exposure to heavy particles can cause oxidative stress, it ...

  11. Design and testing of electrostatic aerosol in vitro exposure system (EAVES): An alternative exposure system for particles

    EPA Science Inventory

    Conventional in vitro exposure methods for cultured human lung cells rely on prior suspension of particles in a liquid medium; these have limitations for exposure intensity and may modify the particle composition. Here electrostatic precipitation was used as an effective method f...

  12. Nitrophenols isolated from diesel exhaust particles regulate steroidogenic gene expression and steroid synthesis in the human H295R adrenocortical cell line

    SciTech Connect

    Furuta, Chie [Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 (Japan); Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan); Noda, Shiho [Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan); Li Chunmei; Suzuki, Akira K; Taneda, Shinji [Environmental Nanotoxicology Section, Research Center for Environmental Risk, National Institute for Environmental Studies, Tsukuba (Japan); Watanabe, Gen [Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 (Japan); Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan); Taya, Kazuyoshi [Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193 (Japan); Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509 (Japan)], E-mail: taya@cc.tuat.ac.jp

    2008-05-15

    Studies of nitrophenols isolated from diesel exhaust particles (DEPs), 3-methyl-4-nitrophenol (PNMC) and 4-nitro-3-phenylphenol (PNMPP) have revealed that these chemicals possess estrogenic and anti-androgenic activity in vitro and in vivo and that PNMC accumulate in adrenal glands in vivo. However, the impacts of exposure to these compounds on adrenal endocrine disruption and steroidogenesis have not been investigated. To elucidate the non-receptor mediated effects of PNMC and PNMPP, we investigated the production of the steroid hormones progesterone, cortisol, testosterone, and estradiol-17{beta} and modulation of nine major enzyme genes involved in the synthesis of steroid hormones (CYP11A, CYP11B1, CYP17, CYP19, 17{beta}HSD1, 17{beta}HSD4, CYP21, 3{beta}HSD2, StAR) in human adrenal H295R cells supplied with cAMP. Exposure to 10{sup -7} to 10{sup -5} M PNMC and 1 mM 8-Br-cAMP for 48 h decreased testosterone, cortisol, and estradiol-17{beta} levels and increased progesterone secretion. At 10{sup -5} M, PNMC with 1 mM 8-Br-cAMP significantly stimulated expression of the 17{beta}HSD4 and significantly suppressed expression of 3{beta}HSD2. In comparison, 10{sup -7} to 2 x 10{sup -5} M PNMPP with 1 mM 8-Br-cAMP for 48 h decreased concentrations of estradiol-17{beta}, increased progesterone levels, but did not affect testosterone and cortisol secretion due to the significant suppression of CYP17 and the non-significant but obvious suppression of CYP19. Our results clarified steroidogenic enzymes as candidates responsible for the inhibition or stimulation for the production of steroid hormones in the steroidogenic pathway, thus providing the first experimental evidence for multiple mechanisms of disruption of endocrine pathways by these nitrophenols.

  13. Nose-only exposure system for inhalation exposures of rodents to large particles

    SciTech Connect

    Yeh, H.C.; Snipes, M.B.; Brodbeck, R.D.

    1987-03-01

    A large-particle exposure system for animals was designed, constructed and evaluated. The system was designed by incorporating a fluidized bed aerosol generator (FBG) and a nose-only exposure device to accommodate 40 small animals into a single unit. The system has four levels of exposure ports, each level having ten exposure ports radially positioned around the aerosol delivery components of the system. The aerosol generator produces aerosols that travel to the top of the system then downwards in order to be drawn past each animal's nose via vacuum ports immediately above the exposure ports. Nearly monodisperse polystyrene latex aerosols with nominal sizes of 3.0, 9.0 and 15.0 ..mu..m were generated as dry powders in an FBG with an inside diameter of 5 cm. During 60-min test runs, average aerosol mass concentrations up to 37 mg/m/sup 3/ were achieved with less than 10% variation in mass concentration distribution throughout the unit.

  14. Comparison of the particle size distribution of heavy-duty diesel exhaust using a dilution tailpipe sampler and an in-plume sampler during on-road operation.

    PubMed

    Brown, J E; Clayton, M J; Harris, D B; King, F G

    2000-08-01

    Originally constructed to develop gaseous emission factors for heavy-duty diesel trucks, the U.S. Environmental Protection Agency's (EPA) On-Road Diesel Emissions Characterization Facility has been modified to incorporate particle measurement instrumentation. An electrical low-pressure impactor designed to continuously measure and record size distribution data was used to monitor the particle size distribution of heavy-duty diesel truck exhaust. For this study, which involved a high-mileage (900,000 mi) truck running at full load, samples were collected by two different methods. One sample was obtained directly from the exhaust stack using an adaptation of the University of Minnesota's air-ejector-based mini-dilution sampler. The second sample was pulled from the plume just above the enclosed trailer, at a point approximately 11 m from the exhaust discharge. Typical dilution ratios of about 300:1 were obtained for both the dilution and plume sampling systems. Hundreds of particle size distributions were obtained at each sampling location. These were compared both selectively and cumulatively to evaluate the performance of the dilution system in simulating real-world exhaust plumes. The data show that, in its current residence-time configuration, the dilution system imposes a statistically significant bias toward smaller particles, with substantially more nanoparticles being collected than from the plume sample. PMID:11002602

  15. Concentrated ambient ultrafine particle exposure induces cardiac change in young healthy volunteers

    EPA Science Inventory

    Exposure to ambient ultrafine particles has been associated with cardiopulmonary toxicity and mortality. Adverse effects specifically linked to ultrafine particles include loss of sympathovagal balance and altered hemostasis. To characterize the effects of ultrafine particles in ...

  16. Sampling submicrometer particles suspended in near sonic and supersonic free jets. [from GTE exhaust

    NASA Technical Reports Server (NTRS)

    Martone, J. A.; Daley, P. S.; Boubel, R. W.

    1980-01-01

    Aerosols containing solid, spherical stearic acid particles with a mean diameter of 0.8 micron and a geometric standard deviation of 1.28 were sampled with small bore front-facing aspirating probes in near-sonic and supersonic unheated free jets. The results are compared to compute the sampling error associated with a high-speed jet sample.

  17. Exposure to ultrafine and fine particles and noise during cycling and driving in 11 Dutch cities

    Microsoft Academic Search

    Hanna Boogaard; Frank Borgman; Jaap Kamminga; Gerard Hoek

    2009-01-01

    Recent studies have suggested that exposures during traffic participation may be associated with adverse health effects. Traffic participation involves relatively short but high exposures. Potentially relevant exposures include ultrafine particles, fine particles (PM2.5) and noise.Simultaneously, detailed real time exposure of particle number concentration (PNC), PM2.5 and noise has been measured while driving and cycling 12 predefined routes of approximately 10–20 min

  18. Physicochemical characterisation of diesel exhaust particles: Factors for assessing biological activity

    NASA Astrophysics Data System (ADS)

    Bérubé, K. A.; Jones, T. P.; Williamson, B. J.; Winters, C.; Morgan, A. J.; Richards, R. J.

    A range of microscopy and analytical techniques have been used to investigate the physicochemical properties of diluted DEP that may be important in determining its biological activity. Transmission electron microscopy demonstrated four basic categories of particle morphology: (1) "spherulites" [individual particles]; (2) "chains" or "clusters" of spherulites; (3) "spherules", [large bodies of spherulites]; (4) "flake-like bodies". Image analysis of TEM photomicrographs determined empirical morphological parameters (30 nm mean spherulite diameter, aspect ratio 1.5, mean particle area 0.078 ?m, equivalent spherical diameter 0.23 ?m, roundness 2.76) and derived parameters (0.313 ?m 2 surface area, 3.7 ?m 2 pg surface area per mass and 0.042 ?m 3 volume) of DEP. Distributions of the particle sizes by number showed 10.1% were ultrafine (<0.1 ?m), 89.5% fine (0.1-2.0 ?m), 0.4% coarse (>2.5 ?m), but distributions based on a mass value were different (0.01% ultrafine; 52.6% fine, 47.4% coarse). In contrast, impacted DEP contained 60.87% ultrafine, 39.13% fine and 0% coarse particles by number. Field emission scanning electron microscopy of spherulites revealed smooth surfaces and flocculated spherules with large surface areas. Electron probe X-ray micro-analysis demonstrated the presence of C, O, Na, Mg, K, Al, Si, P, S, Cl, Ca along with a range of metals (Ti, Mn, Fe, Zn, Cr), that were heterogeneous in distribution. Inductively coupled plasma mass and atomic emission spectrometry identified Mg, P, Ca, Cr, Mn, Zn, Sr, Mo, Ba, Na, Fe, S, and Si as the mobile sorbed metals readily removed during sonication in water from DEP suspensions. X-ray Diffraction confirmed previous observations of the presence of nanometer sized crystallites of disordered graphite. Comparison of microscopy and analytical results between sonicated and impacted DEP revealed a physicochemical difference that must be taken into account in any toxicological investigations.

  19. Involvement of reactive oxygen species in the metabolic pathways triggered by diesel exhaust particles in human airway epithelial cells.

    PubMed

    Baulig, Augustin; Garlatti, Michèle; Bonvallot, Véronique; Marchand, Alexandre; Barouki, Robert; Marano, Francelyne; Baeza-Squiban, Armelle

    2003-09-01

    Diesel exhaust particles (DEP) induce a proinflammatory response in human bronchial epithelial cells (16HBE) characterized by the release of proinflammatory cytokines after activation of transduction pathways involving MAPK and the transcription factor NF-kappaB. Because cellular effects induced by DEP are prevented by antioxidants, they could be mediated by reactive oxygen species (ROS). Using fluorescent probes, we detected ROS production in bronchial and nasal epithelial cells exposed to native DEP, organic extracts of DEP (OE-DEP), or several polyaromatic hydrocarbons. Carbon black particles mimicking the inorganic part of DEP did not increase ROS production. DEP and OE-DEP also induced the expression of genes for phase I [cytochrome P-450 1A1 (CYP1A1)] and phase II [NADPH quinone oxidoreductase-1 (NQO-1)] xenobiotic metabolization enzymes, suggesting that DEP-adsorbed organic compounds become bioavailable, activate transcription, and are metabolized since the CYP1A1 enzymatic activity is increased. Because NQO-1 gene induction is reduced by antioxidants, it could be related to the ROS generated by DEP, most likely through the activation of the stress-sensitive Nrf2 transcription factor. Indeed, DEP induced the translocation of Nrf2 to the nucleus and increased protein nuclear binding to the antioxidant responsive element. In conclusion, we show that DEP-organic compounds generate an oxidative stress, activate the Nrf2 transcription factor, and increase the expression of genes for phase I and II metabolization enzymes. PMID:12730081

  20. The simulation of condensation removal of a heavy metal from exhaust gases onto sorbent particles

    SciTech Connect

    Rodriguez, A.; Hall, M.J

    2003-07-01

    A numerical model BAEROSOL for solving the general dynamic equation (GDE) of aerosols is presented. The goal was to model the capture of volatilized metals by sorbents under incinerator-like conditions. The model is based on algorithms presented by Jacobson and Turco [Aerosol Science and Technology 22 (1995) 73]. A hybrid size bin was used to model growth and formation of particles from the continuum phase and the coagulation of existing particles. Condensation and evaporation growth were calculated in a moving size bin approach, where coagulation and nucleation was modeled in the fixed size bin model of the hybrid grid. To account for the thermodynamic equilibrium in the gas phase, a thermodynamic equilibrium code CET89 was implemented. The particle size distribution (PSD) calculated with the model was then compared to analytical solutions provided for growth, coagulation and both combined. Finally, experimental findings by Rodriguez and Hall [Waste Management 21 (2001) 589-607] were compared to the PSD predicted by the developed model and the applicability of the model under incineration conditions is discussed.

  1. Comparison of Algorithm-based Estimates of Occupational Diesel Exhaust Exposure to Those of Multiple Independent Raters in a Population-based Case–Control Study

    PubMed Central

    Friesen, Melissa C.

    2013-01-01

    Objectives: Algorithm-based exposure assessments based on patterns in questionnaire responses and professional judgment can readily apply transparent exposure decision rules to thousands of jobs quickly. However, we need to better understand how algorithms compare to a one-by-one job review by an exposure assessor. We compared algorithm-based estimates of diesel exhaust exposure to those of three independent raters within the New England Bladder Cancer Study, a population-based case–control study, and identified conditions under which disparities occurred in the assessments of the algorithm and the raters. Methods: Occupational diesel exhaust exposure was assessed previously using an algorithm and a single rater for all 14 983 jobs reported by 2631 study participants during personal interviews conducted from 2001 to 2004. Two additional raters independently assessed a random subset of 324 jobs that were selected based on strata defined by the cross-tabulations of the algorithm and the first rater’s probability assessments for each job, oversampling their disagreements. The algorithm and each rater assessed the probability, intensity and frequency of occupational diesel exhaust exposure, as well as a confidence rating for each metric. Agreement among the raters, their aggregate rating (average of the three raters’ ratings) and the algorithm were evaluated using proportion of agreement, kappa and weighted kappa (?w). Agreement analyses on the subset used inverse probability weighting to extrapolate the subset to estimate agreement for all jobs. Classification and Regression Tree (CART) models were used to identify patterns in questionnaire responses that predicted disparities in exposure status (i.e., unexposed versus exposed) between the first rater and the algorithm-based estimates. Results: For the probability, intensity and frequency exposure metrics, moderate to moderately high agreement was observed among raters (?w = 0.50–0.76) and between the algorithm and the individual raters (?w = 0.58–0.81). For these metrics, the algorithm estimates had consistently higher agreement with the aggregate rating (?w = 0.82) than with the individual raters. For all metrics, the agreement between the algorithm and the aggregate ratings was highest for the unexposed category (90–93%) and was poor to moderate for the exposed categories (9–64%). Lower agreement was observed for jobs with a start year <1965 versus ?1965. For the confidence metrics, the agreement was poor to moderate among raters (?w = 0.17–0.45) and between the algorithm and the individual raters (?w = 0.24–0.61). CART models identified patterns in the questionnaire responses that predicted a fair-to-moderate (33–89%) proportion of the disagreements between the raters’ and the algorithm estimates. Discussion: The agreement between any two raters was similar to the agreement between an algorithm-based approach and individual raters, providing additional support for using the more efficient and transparent algorithm-based approach. CART models identified some patterns in disagreements between the first rater and the algorithm. Given the absence of a gold standard for estimating exposure, these patterns can be reviewed by a team of exposure assessors to determine whether the algorithm should be revised for future studies. PMID:23184256

  2. Exposure to Airborne Particles and Volatile Organic Compounds from Polyurethane Molding, Spray Painting, Lacquering, and Gluing in a Workshop

    PubMed Central

    Mølgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Søren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E.; Hämeri, Kaarle; Koivisto, Antti Joonas

    2015-01-01

    Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm?3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers’ exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source. PMID:25849539

  3. Exposure to airborne particles and volatile organic compounds from polyurethane molding, spray painting, lacquering, and gluing in a workshop.

    PubMed

    Mølgaard, Bjarke; Viitanen, Anna-Kaisa; Kangas, Anneli; Huhtiniemi, Marika; Larsen, Søren Thor; Vanhala, Esa; Hussein, Tareq; Boor, Brandon E; Hämeri, Kaarle; Koivisto, Antti Joonas

    2015-04-01

    Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs) in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC) concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm-3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both). The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers' exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source. PMID:25849539

  4. In Utero Exposure to Diesel Exhaust Air Pollution Promotes Adverse Intrauterine Conditions, Resulting in Weight Gain, Altered Blood Pressure, and Increased Susceptibility to Heart Failure in Adult Mice

    PubMed Central

    Weldy, Chad S.; Liu, Yonggang; Liggitt, H. Denny; Chin, Michael T.

    2014-01-01

    Exposure to fine particulate air pollution (PM2.5) is strongly associated with cardiovascular morbidity and mortality. Exposure to PM2.5 during pregnancy promotes reduced birthweight, and the associated adverse intrauterine conditions may also promote adult risk of cardiovascular disease. Here, we investigated the potential for in utero exposure to diesel exhaust (DE) air pollution, a major source of urban PM2.5, to promote adverse intrauterine conditions and influence adult susceptibility to disease. We exposed pregnant female C57Bl/6J mice to DE (?300 µg/m3 PM2.5, 6 hrs/day, 5 days/week) from embryonic day (E) 0.5 to 17.5. At E17.5 embryos were collected for gravimetric analysis and assessed for evidence of resorption. Placental tissues underwent pathological examination to assess the extent of injury, inflammatory cell infiltration, and oxidative stress. In addition, some dams that were exposed to DE were allowed to give birth to pups and raise offspring in filtered air (FA) conditions. At 10-weeks of age, body weight and blood pressure were measured. At 12-weeks of age, cardiac function was assessed by echocardiography. Susceptibility to pressure overload-induced heart failure was then determined after transverse aortic constriction surgery. We found that in utero exposure to DE increases embryo resorption, and promotes placental hemorrhage, focal necrosis, compaction of labyrinth vascular spaces, inflammatory cell infiltration and oxidative stress. In addition, we observed that in utero DE exposure increased body weight, but counterintuitively reduced blood pressure without any changes in baseline cardiac function in adult male mice. Importantly, we observed these mice to have increased susceptibility to pressure-overload induced heart failure, suggesting this in utero exposure to DE ‘reprograms’ the heart to a heightened susceptibility to failure. These observations provide important data to suggest that developmental exposure to air pollution may strongly influence adult susceptibility to cardiovascular disease. PMID:24533117

  5. Alleviative effect of quercetin on germ cells intoxicated by 3-methyl-4-nitrophenol from diesel exhaust particles*

    PubMed Central

    Bu, Tong-liang; Jia, Yu-dong; Lin, Jin-xing; Mi, Yu-ling; Zhang, Cai-qiao

    2012-01-01

    As a component of diesel exhaust particles, 3-methyl-4-nitrophenol (4-nitro-m-cresol, PNMC) is also a metabolite of the insecticide fenitrothion and imposes hazardous effects on human health. In the present study, the alleviative effect of a common antioxidant flavonoid quercetin on mouse germ cells intoxicated by PNMC was investigated. Results showed that a single intraperitoneal injection of PNMC at 100 mg/kg induced severe testicular damage after one week. PNMC-treated mice showed a significant loss of germ cells (approximate 40% loss of round germ cells). PNMC caused an increase of hydroxyl radical and hydrogen peroxide production and lipid peroxidation, as well as a decrease in glutathione level, superoxide dismutase and glutathione peroxidase activities. Furthermore, treatment of PNMC increased expression of the pro-apoptotic protein Bax and decreased expression of the anti-apoptotic protein Bcl-XL in germ cells. In addition, testicular caspase-3 activity was significantly up-regulated and germ cell apoptosis was significantly increased in the PNMC-treated mice. In contrast, combined administration of quercetin at 75 mg/kg significantly attenuated PNMC-induced testicular toxicity. These results indicate that the antioxidant quercetin displays a remarkable protective effect on PNMC-induced oxidative damage in mouse testes and may represent an efficient supplement to attenuate reproductive toxicity by environmental toxicants to ensure healthy sperm production. PMID:22467373

  6. Human airway epithelial cells in culture for studying the molecular mechanisms of the inflammatory response triggered by diesel exhaust particles.

    PubMed

    Marano, F; Boland, S; Bonvallot, V; Baulig, A; Baeza-Squiban, A

    2002-01-01

    Epidemiological studies have shown that particulate air pollution is linked to the increase of morbidity and mortality due to respiratory diseases. Diesel exhaust particles (DEPs), which are the most important part of PM2.5 in Western European and Japanese urban areas, have been suspected. The mechanisms of proinflammatory response induced by DEPS were elucidated using a human epithelial cell line (16-HBE). It has been shown that DEPs can be phagocytosed by HBE cells, inducing the release of cytokines. MAP kinase pathways (i.e., ERK1/2 and P38) were triggered as well as the activation of the nuclear factor NF-kappaB. Reactive oxygen species (ROS) were strongly incriminated in this response because DEPs induce the increase of intracellular hydroperoxides and antioxidants inhibit the release of DEP-induced cytokines, the activation of MAP kinases and NF-kappaB. Organic compounds adsorbed on DEPs seemed to be involved in the response and the production of ROS. Moreover, we have demonstrated that DEPs can activate CYP1A1 in HBE cells. These experimental results give biological plausibility to the epidemiological findings. PMID:12240962

  7. The Role of MAC1 in Diesel Exhaust Particle-induced Microglial Activation and Loss of Dopaminergic Neuron Function

    PubMed Central

    Levesque, Shannon; Taetzsch, Thomas; Lull, Melinda E.; Johnson, Jo Anne; McGraw, Constance; Block, Michelle L.

    2013-01-01

    Increasing reports support that air pollution causes neuroinflammation and is linked to central nervous system (CNS) disease/damage. Diesel exhaust particles (DEP) are a major component of urban air pollution, which has been linked to microglial activation and Parkinson’s disease-like pathology. To begin to address how DEP may exert CNS effects, microglia and neuron-glia cultures were treated with either nanometer-sized DEP (<0.22 µM; 50µg/mL), ultrafine carbon black (ufCB, 50µg/ml), or DEP extracts (eDEP; from 50 µg/ml DEP) and the effect of microglial activation and dopaminergic (DA) neuron function was assessed. All three treatments showed enhanced amoeboid microglia morphology, increased H2O2 production, and decreased DA uptake. Mechanistic inquiry revealed that the scavenger receptor inhibitor fucoidan blocked DEP internalization in microglia, but failed to alter DEP-induced H2O2 production in microglia. However, pretreatment with the MAC1/CD11b inhibitor antibody blocked microglial H2O2 production in response to DEP. MAC1?/? mesencephalic neuron-glia cultures were protected from DEP-induced loss of DA neuron function, as measured by DA uptake. These findings support that DEP may activate microglia through multiple mechanisms, where scavenger receptors regulate internalization of DEP and the MAC1 receptor is mandatory for both DEP-induced microglial H2O2 production and loss of DA neuron function. PMID:23470120

  8. Characteristics of aerosol particles and trace gases in ship exhaust plumes

    NASA Astrophysics Data System (ADS)

    Drewnick, F.; Diesch, J.; Borrmann, S.

    2011-12-01

    Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 ?m. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high-sulfur fuel, the chemical submicron aerosol fraction is mainly composed of hydrocarbon-like organic aerosol (HOA) species. These include PAHs that are adsorbed onto the high number of ultrafine particles. Nevertheless, the chemical composition, typical particle sizes as well as emitted gaseous components vary substantially dependent on the engine or ship type, engine operation condition and fuel mixture. This results in cargo vessels compared to tankers, passenger ships and river boats being the largest polluters influencing the Elbe shipping lane areas by high amounts of NOx, SO2, CO2, PAH, BC and ultrafine particulate matter. The tropospheric ozone chemistry in this area is also substantially affected particularly due to the increasing number of Elbe-passing ships. As onshore regions can be influenced by aged shipping plumes, trajectory pathways and transportation times were examined. As a consequence of the plumes' aging, variations of the organic fraction of the mass spectral fingerprints were found. Eyring, V. et al. (2010), Atmospheric Environment, 44, 4735-4771.

  9. Design of a circular slot hood for a local exhaust system and its application to a mixing process for fine particles and organic solvents.

    PubMed

    Iwasaki, T; Ojima, J

    1997-01-01

    The characteristics of airflow (pressure loss and entry loss factor) were measured around a circular slot hood for its application to a local exhaust system. Centerline velocity, defined as the ratio of air velocity on the centerline of the slot hood to average slot face velocity, was found to be independent of the airflow rate. The relationship between the centerline velocity and the ratio of centerline distance to slot width was also found to be independent of the slot size. The empirical centerline velocity equation for the circular slot hood was thus constructed to design the local exhaust system. Recommended values for airflow rate into the circular slot hood and the average slot face velocity were found to be 20.14 m3/min and 8.55 m/sec, respectively. The optimum air velocity at a capture point was also found to be 5% of the average slot face velocity, i.e. 0.43 m/sec, and the effective ventilation with the hood was achieved with these values. The local exhaust system with the circular slot hood was installed for a mixing process of fine particles and organic solvents in a magnetic coating works. The effectiveness of the circular slot hood was confirmed by measuring the concentrations of airborne particles and vapors before and during the operation of the local exhaust system. PMID:9009512

  10. Motorcycle exhaust particles induce IL-8 production through NF-kappaB activation in human airway epithelial cells.

    PubMed

    Lee, Chen-Chen; Cheng, Yu-Wen; Kang, Jaw-Jou

    2005-09-01

    Motorcycle exhaust particles (MEP) are among the major air pollutants, especially in urban area of Taiwan. In our previous study, data showed that MEP induce proinflammatory and proallergic response profiles in BALB/c mice. Effects of MEP on interleukin (IL)-8 production in A549 human airway epithelial cells were further investigated in this study. It was found that MEP enhanced IL-8 protein and mRNA expression in human epithelial cells. Pretreatment with an NF-kappaB inhibitor (1 mM PDTC), extracellular signal-regulated kinase (ERK) inhibitor (50 microM PD98059), JNK inhibitor (25 microM SP600125), p38 inhibitor (2 microM SB203580), and three antioxidants (500 U/ml superoxide dismutase [SOD], 50 microM vitamin E, 10 mMN-acetylcysteine [NAC]) attenuated the MEP-induced increase in IL-8 production. Through further, direct detection of nuclear factor (NF)-kappaB activation in epithelial cells using immunoblotting of nuclear p65 and NF-kappaB reporter assay, data showed that MEP induced nuclear translocation of p65 and enhancement of NF-kappaB luciferase gene expression. MEP also induced activation of ERK, JNK, and p38 signaling pathways and produced an increase of oxidative stress in A549 cells. By using mitogen-activated protein kinase (MAPK) inhibitors and antioxidant, it was demonstrated that ERK inhibitor, JNK inhibitor, and antioxidants but not p38 inhibitor attenuated the MEP-induced increase in NF-kappaB reporter activity. In conclusion, evidence shows that filter-trapped particles emitted from unleaded gasoline-fueled, two-stroke motorcycle engines induce an increase in IL-8 production by activation of NF-kappaB in human airway epithelial cells. PMID:16076765

  11. Monitoring exposure to airborne ultrafine particles in Lisbon, Portugal.

    PubMed

    Gomes, João Fernando Pereira; Bordado, João Carlos Moura; Albuquerque, Paula Cristina Silva

    2012-06-01

    The aim of this study is to contribute to the assessment of exposure levels of ultrafine particles (UFP) in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung-deposited alveolar surface area (resulting from exposure to UFP) in a major avenue leading to the town centre during late Spring, as well as in indoor buildings facing it. This study revealed differentiated patterns for week days and weekends, consistent with PM(2.5) and PM(10) patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels could be directly related with the fluxes of automobile traffic. During a typical week, UFP alveolar deposited surface area varied between 35.0 and 89.2 µm(2)/cm(3), which is comparable with levels reported for other towns such in Germany and United States. The measured values allowed the determination of the number of UFP per cm(3), which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32-63%) outdoor, which is somewhat lower than levels observed in houses in Ontario. PMID:22642291

  12. Atmospheric scavenging exhaust

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.

    1977-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. The airborne HCl concentration varied from 0.2 to 10.0 ppm and the raindrop sizes tested included 0.55 mm, 1.1 mm, and 3.0 mm. Two chambers were used to conduct the experiments. A large, rigid walled, spherical chamber stored the exhaust constituents while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique employed. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity.

  13. ATTRIBUTION OF PARTICLE EXPOSURE AND RISK TO COMBUSTION SOURCE EMISSIONS BASED ON PERSONAL PAH EXPOSURE AND URINARY METABOLITES

    EPA Science Inventory

    Personal airborne exposures to carcinogenic particulate PAH have been significantly correlated with exposure to respirable fine particle mass (PM 2.5) in several studies. All combustion sources emit PAH, however the relative concentrations of different PAH and other organic tr...

  14. Application of Novel Method to Measure Endogenous VOCs in Exhaled Breath Condensate Before and After Exposure to Diesel Exhaust

    EPA Science Inventory

    Polar volatile organic compounds (PVOCs) such as aldehydes, ketones, and alcohols are byproducts of normal human metabolism and are present in exhaled breath and blood. Environmental exposures, individual activities, and disease states can perturb normal metabolic processes and ...

  15. Aconitine "challenge" test reveals a single whole-body exposure to diesel exhaust increases cardiac arrhythmia risk in hypertensive rats

    EPA Science Inventory

    Epidemiological studies demonstrate a significant association between cardiac electrical dysfunction, arrhythmias and air pollution exposure. Sensitivity to aconitine-induced arrhythmia has been used repeatedly to examine the factors that increase the risk of such cardiac electri...

  16. UPREGULATION OF TISSUE FACTOR IN HUMAN ENDOTHELIAL CELLS FOLLOWING ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Epidemiology studies have linked the exposure to air pollutant particles with increased cardiovascular mortality and morbidity, but the mechanisms remain unknown. In our laboratory we have tested the hypothesis that the ultrafine fraction of ambient pollutant particles would cau...

  17. UP-REGULATION OF TISSUE FACTOR IN HUMAN PULMONARY ARTERY ENDOTHELIAL CELLS AFTER ULTRAFINE PARTICLE EXPOSURE

    EPA Science Inventory

    Background: Epidemiology studies have linked exposure to pollutant particles to increased cardiovascular mortality and morbidity, but the mechanisms remain unknown. Objectives: We tested the hypothesis that the ultrafine fraction of ambient pollutant particle...

  18. Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements

    Microsoft Academic Search

    Christof Asbach; Heinz Kaminski; Heinz Fissan; Christian Monz; Dirk Dahmann; Sonja Mülhopt; Hanns R. Paur; Heinz J. Kiesling; Friedhelm Herrmann; Matthias Voetz; Thomas A. J. Kuhlbusch

    2009-01-01

    Exposure to airborne ultrafine and nanoparticles has raised increased interest over the recent years as they may cause adverse\\u000a health effects. A common way to quantify exposure to airborne particles is to measure particle number size distributions through\\u000a electrical mobility analysis. Four mobility particle sizers have been subject to a detailed intercomparison study, a TSI Fast\\u000a Mobility Particle Sizer (FMPS),

  19. Inflammatory response of lung cells exposed to whole, filtered, and hydrocarbon denuded diesel exhaust.

    PubMed

    Holder, Amara L; Lucas, Donald; Goth-Goldstein, Regine; Koshland, Catherine P

    2007-11-01

    In vitro studies with the organic extracts of diesel particles have suggested that hydrocarbons such as PAH may play a role in an inflammatory response, but these have been limited by the possible artifacts introduced in the particle collection and processing. In this study, we avoid these artifacts and use an activated carbon denuder to remove hydrocarbons from the exhaust stream to investigate their role in the inflammatory response. Human bronchial epithelial cells (16HBE14o) were exposed at the air-cell interface to diluted and aged exhaust from a diesel generator operated at partial and no load conditions. When particles were removed with a filter before cell exposure, exhaust gases accounted for almost half of the response compared to the whole exhaust. Removal of gas phase and a portion of the particle phase hydrocarbons with the denuder decreased the interleukin-8 (IL-8) secretion to unexposed levels. PMID:17767946

  20. Glutathione-S-transferase M1 regulation of diesel exhaust particle-induced pro-inflammatory mediator expression in normal human bronchial epithelial cells

    PubMed Central

    2012-01-01

    Background Diesel exhaust particles (DEP) contribute substantially to ambient particulate matter (PM) air pollution in urban areas. Inhalation of PM has been associated with increased incidence of lung disease in susceptible populations. We have demonstrated that the glutathione S-transferase M1 (GSTM1) null genotype could aggravate DEP-induced airway inflammation in human subjects. Given the critical role airway epithelial cells play in the pathogenesis of airway inflammation, we established the GSTM1 deficiency condition in primary bronchial epithelial cells from human volunteers with GSTM1 sufficient genotype (GSTM1+) using GSTM1 shRNA to determine whether GSTM1 deficiency could exaggerate DEP-induced expression of interleukin-8 (IL-8) and IL-1? proteins. Furthermore, the mechanisms underlying GSTM1 regulation of DEP-induced IL-8 and IL-1? expression were also investigated. Methods IL-8 and IL-1? protein levels were measured using enzyme-linked immunosorbent assay. GSTM1 deficiency in primary human bronchial epithelial cells was achieved using lentiviral GSTM1 shRNA particles and verified using real-time polymerase chain reaction and immunoblotting. Intracellular reactive oxygen species (ROS) production was evaluated using flow cytometry. Phosphorylation of protein kinases was detected using immunoblotting. Results Exposure of primary human bronchial epithelial cells (GSTM1+) to 25-100??g/ml DEP for 24?h significantly increased IL-8 and IL-1? protein expression. Knockdown of GSTM1 in these cells further elevated DEP-induced IL-8 and IL-1? expression, implying that GSTM1 deficiency aggravated DEP-induced pro-inflammatory response. DEP stimulation induced the phosphorylation of extracellular signal-regulated kinase (ERK) and Akt, the downstream kinase of phosphoinositide 3-kinase (PI3K), in GSTM1+ bronchial epithelial cells. Pharmacological inhibition of ERK kinase and PI3K activity blocked DEP-induced IL-8 and IL-1? expression. DEP-induced ERK and Akt phosphorylation could be increased by GSTM1 knockdown. In addition, pretreatment of HBEC with the antioxidant N-acetyl cysteine significantly inhibited DEP-induced ERK and Akt phosphorylation, and subsequent IL-8 and IL-1? expression. Conclusion GSTM1 regulates DEP-induced IL-8 and IL-1? expression in primary human bronchial epithelial cells by modulation of ROS, ERK and Akt signaling. PMID:22867088

  1. Circulating factors induce coronary endothelial ceIl activation foIlowing exposure to inhaled diesel exhaust and nitrogen dioxide in humans :Evidence from a novel translational in vitro model

    EPA Science Inventory

    The vascular toxicity of inhaled agents may be caused by soluble factors that are released into the systemic circulation. To confirm this in a straightforward manner, we obtained plasma from healthy human volunteers before and after exposure to diesel exhaust (DE) and nitrogen di...

  2. Traffic generated non-exhaust particulate emissions from concrete pavement: A mass and particle size study for two-wheelers and small cars

    NASA Astrophysics Data System (ADS)

    Aatmeeyata; Kaul, D. S.; Sharma, Mukesh

    This study aimed to understand the non-exhaust (NE) emission of particles from wear of summer tire and concrete pavement, especially for two wheelers and small cars. A fully enclosed laboratory-scale model was fabricated to simulate road tire interaction with a facility to collect particles in different sizes. A road was cast using the M-45 concrete mixture and the centrifugal casting method. It was observed that emission of large particle non exhaust emission (LPNE) as well as PM 10 and PM 2.5 increased with increasing load. The LPNE was 3.5 mg tire -1 km -1 for a two wheeler and 6.4 mg tire -1 km -1 for a small car. The LPNE can lead to water pollution through water run-off from the roads. The contribution of the PM 10 and PM 2.5 was smaller compared to the LPNE particles (less than 0.1%). About 32 percent of particle mass of PM 10 was present below 1 ?m. The number as well as mass size distribution for PM 10 was observed to be bi-modal with peaks at 0.3 ?m and 4-5 ?m. The NE emissions did not show any significant trend with change in tire pressure.

  3. Similar cellular effects induced by diesel exhaust particles from a representative diesel vehicle recovered from filters and Standard Reference Material 1650.

    PubMed

    Boland, S; Baeza-Squiban, A; Bonvallot, V; Houcine, O; Pain, C; Meyer, M; Marano, F

    2001-01-01

    Standard reference diesel exhaust particles (DEP) SRM 1650 are often used to evaluate the toxicity of DEP. However, these particles did not necessarily reflect the effects of DEP representative of present diesel automobiles. This study was designed to compare the effects of SRM 1650 to DEP from representative cars (RC-DEP) on airway epithelial cells. Therefore we established a method to recover RC-DEP impacted on filters after emission from diesel automobiles on test beds. Electron microscopy and flow cytometry showed that these two types of particles were phagocytosed to the same extent by epithelial cells. This phagocytosis is not dependent on the adsorbed organic compounds in contrast to the cytotoxic effect evaluated by measurements of LDH release. This is emphasized by the fact that RC-DEP equipped with an oxidation catalyst are less cytotoxic than particles from a non-equipped vehicle or SRM 1650. This type of catalyst also reduces significantly the release of GM-CSF by bronchial epithelial cells. We have shown in the present paper that SRM 1650 may be used as a surrogate of DEP. However, exhaust gas post-treatment devices of current diesel automobiles reduce the cytotoxicity as well as the inflammatory response of these particles. PMID:11566567

  4. Characterization of exposures among cemented tungsten carbide workers. Part I: Size-fractionated exposures to airborne cobalt and tungsten particles.

    PubMed

    Stefaniak, Aleksandr B; Virji, M Abbas; Day, Gregory A

    2009-07-01

    As many as 30,000 workers in the United States of America are exposed to cemented tungsten carbides (CTC), alloys composed primarily of tungsten carbide and cobalt, which are used in cutting tools. Inhalation of cobalt-containing particles may be sufficient for the development of occupational asthma, whereas tungsten carbide particles in association with cobalt particles are associated with the development of hard metal disease (HMD) and lung cancer. Historical epidemiology and exposure studies of CTC workers often rely only on measures of total airborne cobalt mass concentration. In this study, we characterized cobalt- and tungsten-containing aerosols generated during the production of CTC with emphasis on (1) aerosol "total" mass (n=252 closed-face 37 mm cassette samples) and particle size-selective mass concentrations (n=108 eight-stage cascade impactor samples); (2) particle size distributions; and (3) comparison of exposures obtained using personal cassette and impactor samplers. Total cobalt and tungsten exposures were highest in work areas that handled powders (e.g., powder mixing) and lowest in areas that handled finished product (e.g., grinding). Inhalable, thoracic, and respirable cobalt and tungsten exposures were observed in all work areas, indicating potential for co-exposures to particles capable of getting deposited in the upper airways and alveolar region of the lung. Understanding the risk of CTC-induced adverse health effects may require two exposure regimes: one for asthma and the other for HMD and lung cancer. All sizes of cobalt-containing particles that deposit in the lung and airways have potential to cause asthma, thus a thoracic exposure metric is likely biologically appropriate. Cobalt-tungsten mixtures that deposit in the alveolar region of the lung may potentially cause HMD and lung cancer, thus a respirable exposure metric for both metals is likely biologically appropriate. By characterizing size-selective and co-exposures as well as multiple exposure pathways, this series of papers offer an approach for developing biologically meaningful exposure metrics for use in epidemiology. PMID:18628793

  5. PERSONAL EXPOSURE TO PARTICLES IN BANSKA BYSTRICA, SLOVAKIA

    EPA Science Inventory

    Epidemiological studies have associated adverse health impacts with ambient concentrations of particulate matter (PM), though these studies have been limited in their characterization of personal exposure to PM. An exposure study of healthy nonsmoking adults and children was cond...

  6. Personal exposure to particles in Banská Bystrica, Slovakia

    Microsoft Academic Search

    MICHAEL BRAUER; FRANTIŠKA HRUBÁ; EVA MIHALÍKOVÁ; ELEONÓRA FABIÁNOVÁ; PETER MISKOVIC; ALENA PLZIKOVÁ; MARIE LENDACKÁ; JOHN VANDENBERG; ALISON CULLEN

    2000-01-01

    Epidemiological studies have associated adverse health impacts with ambient concentrations of particulate matter (PM), though these studies have been limited in their characterization of personal exposure to PM. An exposure study of healthy nonsmoking adults and children was conducted in Banska Bystrica, Slovakia, to characterize the range of personal exposures to air pollutants and to determine the influence of occupation,

  7. Influence of physical and chemical characteristics of diesel fuels and exhaust emissions on biological effects of particle extracts: a multivariate statistical analysis of ten diesel fuels.

    PubMed

    Sjögren, M; Li, H; Banner, C; Rafter, J; Westerholm, R; Rannug, U

    1996-01-01

    The emission of diesel exhaust particulates is associated with potentially severe biological effects, e.g., cancer. The aim of the present study was to apply multivariate statistical methods to identify factors that affect the biological potency of these exhausts. Ten diesel fuels were analyzed regarding physical and chemical characteristics. Particulate exhaust emissions were sampled after combustion of these fuels on two makes of heavy duty diesel engines. Particle extracts were chemically analyzed and tested for mutagenicity in the Ames test. Also, the potency of the extracts to competitively inhibit the binding of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to the Ah receptor was assessed. Relationships between fuel characteristics and biological effects of the extracts were studied, using partial least squares regression (PLS). The most influential chemical fuel parameters included the contents of sulfur, certain polycyclic aromatic compounds (PAC), and naphthenes. Density and flash point were positively correlated with genotoxic potency. Cetane number and upper distillation curve points were negatively correlated with both mutagenicity and Ah receptor affinity. Between 61% and 70% of the biological response data could be explained by the measured chemical and physical factors of the fuels. By PLS modeling of extract data versus the biological response data, 66% of the genotoxicity could be explained, by 41% of the chemical variation. The most important variables, associated with both mutagenicity and Ah receptor affinity, included 1-nitropyrene, particle bound nitrate, indeno[1,2,3-cd]pyrene, and emitted mass of particles. S9-requiring mutagenicity was highly correlated with certain PAC, whereas S9-independent mutagenicity was better correlated with nitrates and 1-nitropyrene. The emission of sulfates also showed a correlation both with the emission of particles and with the biological effects. The results indicate that fuels with biologically less hazardous potentials should have high cetane number and contain less PAC and sulfur. The results also indicate that engine factors affect the formation and emission of nitrated PAC. PMID:8924591

  8. MicroRNA Expression in Response to Controlled Exposure to Diesel Exhaust: Attenuation by the Antioxidant N-Acetylcysteine in a Randomized Crossover Study

    PubMed Central

    Yamamoto, Masatsugu; Singh, Amrit; Sava, Francesco; Pui, Mandy; Tebbutt, Scott J.

    2013-01-01

    Background: Adverse health effects associated with diesel exhaust (DE) are thought to be mediated in part by oxidative stress, but the detailed mechanisms are largely unknown. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and may respond to exposures such as DE. Objectives: We profiled peripheral blood cellular miRNAs in participants with mild asthma who were exposed to controlled DE with and without antioxidant supplementation. Methods: Thirteen participants with asthma underwent controlled inhalation of filtered air and DE in a double-blinded, randomized crossover study of three conditions: a) DE plus placebo (DEP), b) filtered air plus placebo (FAP), or c) DE with N-acetylcysteine supplementation (DEN). Total cellular RNA was extracted from blood drawn before exposure and 6 hr after exposure for miRNA profiling by the NanoString nCounter assay. MiRNAs significantly associated with DEP exposure and a predicted target [nuclear factor (erythroid-derived 2)-like 2 (NRF2)] as well as antioxidant enzyme genes were assessed by reverse transcription–quantitative polymerase chain reaction (RT-qPCR) for validation, and we also assessed the ability of N-acetylcysteine supplementation to block the effect of DE on these specific miRNAs. 8-hydroxy-2´-deoxyguanosine (8-OHdG) was measured in plasma as a systemic oxidative stress marker. Results: Expression of miR-21, miR-30e, miR-215, and miR-144 was significantly associated with DEP. The change in miR-144 was validated by RT-qPCR. NRF2 and its downstream antioxidant genes [glutamate cysteine ligase catalytic subunit (GCLC) and NAD(P)H:quinone oxidoreductase 1 (NQO1)] were negatively associated with miR-144 levels. Increases in miR-144 and miR-21 were associated with plasma 8-hydroxydeoxyguanosine 8-OHdG level and were blunted by antioxidant (i.e, DEN). Conclusions: Systemic miRNAs with plausible biological function are altered by acute moderate-dose DE exposure. Oxidative stress appears to mediate DE-associated changes in miR-144. PMID:23584289

  9. Prediction of frequency and exposure level of solar particle events.

    PubMed

    Kim, Myung-Hee Y; Hayat, Matthew J; Feiveson, Alan H; Cucinotta, Francis A

    2009-07-01

    For future space missions outside of the Earth's magnetic field, the risk of radiation exposure from solar particle events (SPEs) during extra-vehicular activities (EVAs) or in lightly shielded vehicles is a major concern when designing radiation protection including determining sufficient shielding requirements for astronauts and hardware. While the expected frequency of SPEs is strongly influenced by solar modulation, SPE occurrences themselves are chaotic in nature. We report on a probabilistic modeling approach, where a cumulative expected occurrence curve of SPEs for a typical solar cycle was formed from a non-homogeneous Poisson process model fitted to a database of proton fluence measurements of SPEs that occurred during the past 5 solar cycles (19-23) and those of large SPEs identified from impulsive nitrate enhancements in polar ice. From the fitted model, we then estimated the expected frequency of SPEs at any given proton fluence threshold with energy >30 MeV (Phi(30)) during a defined space mission period. Analytic energy spectra of 34 large SPEs observed in the space era were fitted over broad energy ranges extending to GeV, and subsequently used to calculate the distribution of mGy equivalent (mGy-Eq) dose for a typical blood-forming organ (BFO) inside a spacecraft as a function of total Phi(30) fluence. This distribution was combined with a simulation of SPE events using the Poisson model to estimate the probability of the BFO dose exceeding the NASA 30-d limit of 250 mGy-Eq per 30 d. These results will be useful in implementing probabilistic risk assessment approaches at NASA and guidelines for protection systems for astronauts on future space exploration missions. PMID:19509510

  10. Residents' particle exposures in six different communities in Taiwan

    Microsoft Academic Search

    Shih-Chun Candice Lung; I-Fang Mao; Lee-Jane Sally Liu

    2007-01-01

    Exposure assessment studies for particulates have been conducted in several U.S. and European cities; however, exposure data remain sparse for Asian populations whose cultural practices and living styles are distinct from those in the developed world. This study assessed personal PM10 exposure in urban residents and evaluated PM10 indoor\\/outdoor levels in communities with different characteristics. Important factors of personal PM10

  11. FINE PARTICLE EXPOSURE IS ASSOCIATED WITH ALTERED VENTRICULAR REPOLARIZATION

    EPA Science Inventory

    Exposure to fine airborne particulate matter (PM2.5) has previously been associated with cardiac events, especially in older people with cardiovascular disease and in diabetics. This study examined the cardiac effects of short-term exposures to ambient PM2.5 in a prospective pane...

  12. Interplanetary particle transport simulation for warning system for aviation exposure to solar energetic particles

    E-print Network

    Kubo, Yûki; Sato, Tatsuhiko

    2015-01-01

    Solar energetic particles (SEPs) are one of the extreme space weather phenomena. A huge SEP event increases the radiation dose received by aircrews, who should be warned of such events as early as possible. We developed a warning system for aviation exposure to SEPs. This article describes one component of the system, which calculates the temporal evolution of the SEP intensity and the spectrum immediately outside the terrestrial magnetosphere. To achieve this, we performed numerical simulations of SEP transport in interplanetary space, in which interplanetary SEP transport is described by the focused transport equation. We developed a new simulation code to solve the equation using a set of stochastic differential equations. In the code, the focused transport equation is expressed in a magnetic field line coordinate system, which is a non-orthogonal curvilinear coordinate system. An inverse Gaussian distribution is employed as the injection profile of SEPs at an inner boundary located near the Sun. We applie...

  13. Influence of preexisting pulmonary emphysema on susceptibility of rats to inhaled diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Griffith, W.C.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. (Inhalation Toxicology Research Institute, Albuquerque, NM (USA))

    1990-05-01

    The susceptibilities of normal rats and rats with preexisting pulmonary emphysema to chronically inhaled diesel exhaust were compared. Rats were exposed 7 h/day, 5 days/wk for 24 months to diesel exhaust at 3.5 mg soot/m3, or to clean air as controls. Emphysema was induced in one-half of the rats by intratracheal instillation of elastase 6 wk before exhaust exposure. Measurements included lung burdens of diesel soot, respiratory function, bronchoalveolar lavage, clearance of radiolabeled particles, pulmonary immune responses, lung collagen, excised lung weight and volume, histopathology, and mean linear intercept of terminal air spaces. Parameters indicated by analysis of variance to exhibit significant interactions between the influences of emphysema and exhaust were examined to determine if the effects were more than additive (indicating increased susceptibility). Although 14 of 63 parameters demonstrated emphysema-exhaust interactions, none indicated increased susceptibility. Less soot accumulated in lungs of emphysematous rats than in those of nonemphysematous rats, and the reduced accumulation had a sparing effect in the emphysematous rats. The results did not support the hypothesis that emphysematous lungs are more susceptible than are normal lungs to chronic exposure to high levels of diesel exhaust. The superimposition of effects of emphysema and exhaust, however, might still warrant special concern for heavy exposures of emphysematous subjects.

  14. Human Bronchial Epithelial Cell Response to Heavy Particle Exposure

    NASA Astrophysics Data System (ADS)

    Story, Michael; Ding, Liang-Hao; Minna, John; Park, Seong-mi; Peyton, Michael; Larsen, Jill

    2012-07-01

    A battery of non-oncogenically immortalized human bronchial epithelial cells (HBECs) are being used to examine the molecular changes that lead to lung carcinogenesis after exposure to heavy particles found in the free space environment. The goal is to ultimately identify biomarkers of radioresponse that can be used for prediction of carcinogenic risk for fatal lung cancer. Our initial studies have focused on the cell line HBEC3 KT and the isogenic variant HBEC3 KTR53, which overexpresses the RASv12 mutant and where p53 has been knocked down by shRNA, and is considered to be a more oncogenically progressed variant. We have previously described the response of HBEC3 KT at the cellular and molecular level, however, the focus here is on the rate of cellular transformation after HZE radiation exposure and the molecular changes in transformed cells. When comparing the two cell lines we find that there is a maximum rate of cellular transformation at 0.25 Gy when cells are exposed to 1 GeV Fe particles, and, for the HBEC3 KTR53 there are multiple pathways upregulated that promote anchorage independent growth including the mTOR pathway, the TGF-1 pathway, RhoA signaling and the ERK/MAPK pathway as early as 2 weeks after radiation. This does not occur in the HBEC3 KT cell line. Transformed HBEC3 KT cells do not show any morphologic or phenotypic changes when grown as cell cultures. HBEC3 KTR53 cells on the other hand show substantial changes in morphology from a cobblestone epithelial appearance to a mesenchymal appearance with a lack of contact inhibition. This epithelial to mesenchymal change in morphology is accompanied by the expression of vimentin and a reduction in the expression of E-cadherin, which are hallmarks of epithelial to mesenchymal transition. Interestingly, for HBEC3 KT transformed cells there are no mutations in the p53 gene, 2 of 15 clones were found to be heterozygous for the RASV12 mutation, and 3 of 15 clones expressed high levels of BigH3, a TGFB-responsive gene associated with loss of cell anchorage. There is also a range of aneuploidy amongst the transformed clones and ongoing chromosomal analysis by array-based comparative genomic hybridization has identified single or two copy loss of the tumor suppressor gene FHIT, in 8 of 15 transformed clones. This is accompanied by a 6-fold reduction, overall, in FHIT gene expression amongst the 15 clones under examination. Interestingly, in spite of these changes at the molecular level, when implanted subcutaneously into immune-compromised mice, the transformed clones from the HBEC3 KT cell line do not form tumors. This suggests that additional hits are required for oncogenesis, at least in a subcutaneous model, and/or, 2-D tissue culture models to not adequately reflect the underlying biology. We have therefore, begun to examine transformation in a 3-D tissue culture model, bronchocysts, where HBEC cells ultimately differentiate and stop cycling. We have shown that cells in 3-D have reduced gene expression of key DNA repair genes, and are less effective at repairing complex damage. We are now irradiating at dose rates as low as 0.2 cGy/min to test the notion of an inverse dose rate effect for carcinogenesis by HZE particles. In our early experiments we have shown that as the dose rate dropped from 20 cGy/min to 0.2 cGy/min, for the same total dose (0.25 and 0.50 Gy) an increasing percentage of bronchocysts become mis-shapen, suggesting that some cells within the cyst have de-differentiated and have reentered the cell cycle. We are now testing whether those cells are, in fact, cycling and wherther they are transformed by disaggregating the cyst and placing the cells into soft agar culture.

  15. On-road and laboratory investigations on non-exhaust ultrafine particles from the interaction between the tire and road pavement under braking conditions

    NASA Astrophysics Data System (ADS)

    Kwak, Jihyun; Lee, Sunyoup; Lee, Seokhwan

    2014-11-01

    We investigated the physical and chemical characteristics of non-exhaust ultrafine particles from on-road driving and laboratory measurements using a mobile sampling vehicle. The on-road driving and laboratory measurements during constant speed conditions revealed no enhancement of ultrafine particles. Under braking events, the total number concentrations of tire particles (TPs) sampled 90 mm above the road surface was 6 times higher with broader mode diameters when compared to 40 mm above the road surface. In contrast to braking events, under cornering conditions, the total number concentrations of TPs sampled 40 mm above the road surface were 50 times higher relative to 90 mm above the road surface. From the morphological and elemental analyses, it is likely that the ultrafine particles generated from the interaction between the tire and the road surface under braking conditions might originated from sulfur-containing materials or anti-oxidants which are contained in TPs, and/or graphite and solid lubricants which are mainly present in brake particles (BPs). However, Zn which was a distinguishing elemental marker of tire wear particles didn't show in EDS spectra. Further research would be required as to the exact emission source of ultrafine particles.

  16. Factors affecting the association between ambient concentrations and personal exposures to particles and gases.

    PubMed

    Sarnat, Stefanie Ebelt; Coull, Brent A; Schwartz, Joel; Gold, Diane R; Suh, Helen H

    2006-05-01

    Results from air pollution exposure assessment studies suggest that ambient fine particles [particulate matter with aerodynamic diameterexposures. For particles, the strength of the personal-ambient association can differ by particle component and level of home ventilation. For gases, however, such as ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2), the impact of home ventilation on personal-ambient associations is untested. We measured 24-hr personal exposures and corresponding ambient concentrations to PM2.5, sulfate (SO2-(4)), elemental carbon, O3, NO2, and SO2 for 10 nonsmoking older adults in Steubenville, Ohio. We found strong associations between ambient particle concentrations and corresponding personal exposures. In contrast, although significant, most associations between ambient gases and their corresponding exposures had low slopes and R2 values; the personal-ambient NO2 association in the fall season was moderate. For both particles and gases, personal-ambient associations were highest for individuals spending most of their time in high- compared with low-ventilated environments. Cross-pollutant models indicated that ambient particle concentrations were much better surrogates for exposure to particles than to gases. With the exception of ambient NO2 in the fall, which showed moderate associations with personal exposures, ambient gases were poor proxies for both gas and particle exposures. In combination, our results suggest that a) ventilation may be an important modifier of the magnitude of effect in time-series health studies, and b) results from time-series health studies based on 24-hr ambient concentrations are more readily interpretable for particles than for gases. PMID:16675415

  17. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes

    PubMed Central

    Tseng, Chia-Yi; Chang, Jing-Fen; Wang, Jhih-Syuan; Chang, Yu-Jung; Gordon, Marion K.; Chao, Ming-Wei

    2015-01-01

    Exposure to diesel exhaust particles (DEP) is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-? and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- ? and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione. PMID:26148005

  18. Exposure To An Organic PM Component Induces Inflammatory And Adaptive Gene Expression Through Mitochondrial Oxidative Stress

    EPA Science Inventory

    RATIONALE. Exposure to ambient particulate matter (PM) has been associated with adverse health effects including inflammatory responses in the lung. Diesel exhaust particles (DEP) are a ubiquitous contributor to the fine and ultrafine PM burden in ambient air. Toxicological studi...

  19. LIVE CELL IMAGING OF THE OXIDATIVE EFFECTS OF EXPOSURE TO AN ORGANIC PM COMPONENT

    EPA Science Inventory

    RATIONALE. Exposure to ambient particulate matter (PM) has been associated with adverse health effects, including inflammatory responses in the lung. Diesel exhaust particles (DEP) are a ubiquitous contributor of the fine and ultrafine PM burden in ambient air. Toxicological stud...

  20. Effect of isothermal dilution on emission factors of organic carbon and n-alkanes in the particle and gas phases of diesel exhaust

    NASA Astrophysics Data System (ADS)

    Fujitani, Yuji; Saitoh, Katsumi; Fushimi, Akihiro; Takahashi, Katsuyuki; Hasegawa, Shuich; Tanabe, Kiyoshi; Kobayashi, Shinji; Furuyama, Akiko; Hirano, Seishiro; Takami, Akinori

    2012-11-01

    To investigate the effect of isothermal dilution (30 °C) on emission factors (EFs) of semivolatile and nonvolatile compounds of heavy-duty diesel exhaust, we measured EFs for particulate matter (PM), organic carbon (OC), and elemental carbon (EC) in the particle phase, and EFs for n-alkanes in both the particle phase and the gas phase of exhaust produced under high-idle engine operating conditions at dilution ratios (DRs) ranging from 8 to 1027. The EC EFs did not vary with DR, whereas the OC EFs in the particle phase determined at DR = 1027 were 13% of the EFs determined at DR = 8, owing to evaporation of organic compounds. Using partitioning theory and n-alkane EFs measured at DR = 14 and 238, we calculated the distributions of compounds between the particle and gas phases at DR = 1760, which corresponds to the DR for tailpipe emissions as they move from the tailpipe to the roadside atmosphere. The gas-phase EF of a compound with a vapor pressure of 10-7 Pa was 0.01 ?g kg-1-fuel at DR = 14, and this value is 1/330 the value derived at DR = 1760. Our results suggest that the EFs of high-volatility compounds in the particle phase will be overestimated and that the EFs of low-volatility compounds in the gas phase will be underestimated if the estimates are derived from data obtained at the low DRs and they are applied to the real world. Therefore, extrapolation from EFs derived at low DR values to EFs at atmospherically relevant DRs will be a source of error in predictions of the concentrations of particulate matter and gas-phase precursors to secondary organic aerosols in air quality models.

  1. Exposure to Traffic-related Particles and Endotoxin during Infancy Is Associated with Wheezing at Age 3 Years

    Microsoft Academic Search

    Patrick H. Ryan; David I. Bernstein; James Lockey; Tiina Reponen; Linda Levin; Sergey Grinshpun; Manuel Villareal; Gurjit K. Khurana Hershey; Jeff Burkle; Grace LeMasters

    2009-01-01

    Rationale: Murine models demonstrate a synergistic production of reactive oxygen species on coexposure to diesel exhaust particles and endotoxin. Objectives: It was hypothesized that coexposure to traffic-related particles and endotoxin would have an additive effect on persistent wheezing during early childhood. Methods: Persistent wheezing at age 36 months was assessed in the Cincinnati Childhood Allergy and Air Pollution Study, a

  2. COMPARISON OF THE PARTICLE SIZE DISTRIBUTION OF HEAVY-DUTY DIESEL EXHAUST USING A DILUTION TAIL-PIPE SAMPLER AND IN-PLUME SAMPLER DURING ON-ROAD OPERATION

    EPA Science Inventory

    The paper compares the particle size distribution of heavy-duty diesel exhaust using a dilution tail-pipe sampler and an in-plume sampler during on-road operation. EPA's On-road Diesel Emissions Characterization Facility, modified to incorporate particle measurement instrumentat...

  3. Biomarker as a Research Tool in Linking Exposure to Air Particles and Respiratory Health

    PubMed Central

    2015-01-01

    Some of the environmental toxicants from air pollution include particulate matter (PM10), fine particulate matter (PM2.5), and ultrafine particles (UFP). Both short- and long-term exposure could result in various degrees of respiratory health outcomes among exposed persons, which rely on the individuals' health status. Methods. In this paper, we highlight a review of the studies that have used biomarkers to understand the association between air particles exposure and the development of respiratory problems resulting from the damage in the respiratory system. Data from previous epidemiological studies relevant to the application of biomarkers in respiratory system damage reported from exposure to air particles are also summarized. Results. Based on these analyses, the findings agree with the hypothesis that biomarkers are relevant in linking harmful air particles concentrations to increased respiratory health effects. Biomarkers are used in epidemiological studies to provide an understanding of the mechanisms that follow airborne particles exposure in the airway. However, application of biomarkers in epidemiological studies of health effects caused by air particles in both environmental and occupational health is inchoate. Conclusion. Biomarkers unravel the complexity of the connection between exposure to air particles and respiratory health. PMID:25984536

  4. Exhaust Fine Particle and Nitrogen Oxide Emissions from Individual Heavy-Duty Trucks at the Port of Oakland

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; Harley, R. A.; Kirchstetter, T.

    2010-12-01

    Heavy-duty (HD) diesel trucks are a source of nitrogen oxide (NOx) emissions as well as primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. Heavy-duty trucks contribute significantly to elevated levels of diesel particulate matter found near highways and in communities surrounding major freight-handling facilities. To reduce the air quality impact of diesel engine emissions, the California Air Resources Board has adopted new rules requiring the retrofit or replacement of in-use HD trucks. These rules take effect during 2010 at ports and railyards, and apply to all trucks operating in California by 2014. This study involves on-road measurements of PM2.5, BC, and NOx emission factor distributions from individual HD trucks driving into the Port of Oakland in the San Francisco Bay area. Measurements of exhaust plumes from individual trucks were made using a mobile laboratory equipped with fast time response (1 Hz) PM2.5, BC, NOx, and carbon dioxide (CO2) sensors. The mobile laboratory was stationed on an overpass above an arterial roadway that connects the Port to a nearby highway (I-880). The air sampling inlet was thereby located above the vertical exhaust pipes of HD diesel trucks passing by on the arterial roadway below. Fuel-specific PM2.5, BC, and NOx emission factors for individual trucks were calculated using a carbon balance method in which concentrations of these species in an exhaust plume are normalized to CO2 concentrations. Initial field sampling was conducted in November, 2009 prior to the implementation of new emission rules. Additional emission measurements were made at the same location during June 2010 and emission factor distributions and averages will be compared.

  5. Variation in Penetration of Submicrometric Particles Through Electrostatic Filtering Facepieces During Exposure to Paraffin Oil Aerosol

    Microsoft Academic Search

    Carmela Plebani; Stefano Listrani; Giovanna Tranfo; Francesca Tombolini

    2012-01-01

    Several studies show the increase of penetration through electrostatic filters during the exposure to an aerosol flow because of particle deposition on filter fibers. We studied the effect of increasing loads of paraffin oil aerosol on the penetration of selected particle sizes through a model of electrostatic filtering facepiece. FFP2 facepieces were exposed for 8 hr to a flow rate

  6. Can real-world diesel exhaust particle size distribution be reproduced in the laboratory? A critical review.

    PubMed

    Keskinen, Jorma; Rönkkö, Topi

    2010-10-01

    Real-world particulate emission measurements usually include a fresh nanoparticle mode called the nucleation mode. The formation of the nucleation mode during mixing, dilution, and cooling of diesel exhaust is discussed based on existing experimental and modeling data. The further evolution of the nucleation mode and the local dilution ratio within the vehicle exhaust is reviewed. The nucleation mode forms at low dilution ratios (< or = 10) and is fully formed at the dilution ratio of approximately 100. The findings of the studies comparing real-world and dynamometer measurements are reviewed. A qualitative agreement of nucleation mode formation is generally observed. The geometric mean diameter of the nucleation mode, measured on-road, is well reproduced in the laboratory. However, the number concentration of the nucleation mode is too low in the laboratory (by a factor of 2-10). Nevertheless, the trends are reproduced, including those caused by differences in vehicle speed and engine load, engine and aftertreatment technology, as well as fuel and lubricant composition. PMID:21090552

  7. Organic compounds from diesel exhaust particles elicit a proinflammatory response in human airway epithelial cells and induce cytochrome p450 1A1 expression.

    PubMed

    Bonvallot, V; Baeza-Squiban, A; Baulig, A; Brulant, S; Boland, S; Muzeau, F; Barouki, R; Marano, F

    2001-10-01

    Diesel exhaust particles (DEP) are known to enhance inflammatory responses in human volunteers. In cultured human bronchial epithelial (16HBE) cells, they induce the release of proinflammatory cytokines after triggering transduction pathways, including nuclear factor (NF)-kappaB activation and mitogen-activated protein kinase (MAPK) phosphorylation. This study compares the effects of native DEP (nDEP), organic extracts of DEP (OE-DEP), and carbonaceous particles, represented by stripped DEP (sDEP) and carbon black particles (CB), in order to clarify their respective roles. OE-DEP and nDEP induce granulocyte macrophage colony-stimulating factor (GM-CSF) release, NF-kappaB activation, and MAPK phosphorylation. The carbonaceous core generally induces less intense effects. Reactive oxygen species are produced in 16HBE cells and are involved in GM-CSF release and in the stimulation of NF-kappaB DNA binding by nDEP and OE-DEP. We demonstrate, for the first time, in airway epithelial cells in vitro that nDEP induce the expression of the CYP1A1, a cytochrome P450 specifically involved in polycyclic aromatic hydrocarbons metabolism, thereby demonstrating the critical role of organic compounds in the DEP-induced proinflammatory response. Understanding the respective contributions of DEP components in these effects is important for vehicle manufacturers in order to improve their exhaust gas post-treatment technologies. In conclusion, the DEP-induced inflammatory response in airway epithelial cells mainly involves organic compounds such as PAH, which induce CYP1A1 gene expression. PMID:11694458

  8. Diet as a factor in behavioral radiation protection following exposure to heavy particles

    NASA Technical Reports Server (NTRS)

    Rabin, Bernard M.; Shukitt-Hale, Barbara; Joseph, James; Todd, Paul

    2005-01-01

    Major risks associated with radiation exposures on deep space missions include carcinogenesis due to heavy-particle exposure of cancer-prone tissues and performance decrements due to neurological damage produced by heavy particles. Because exposure to heavy particles can cause oxidative stress, it is possible that antioxidants can be used to mitigate these risks (and possibly some health risks of microgravity). To assess the capacity of antioxidant diets to mitigate the effects of exposure to heavy particles, rats were maintained on antioxidant diets containing 2% blueberry or strawberry extract or a control diet for 8 weeks prior to exposure to 1.5 or 2.0 Gy of accelerated iron particles at Brookhaven National Laboratory. Following irradiation rats were tested on a series of behavioral tasks: amphetamine-induced taste aversion learning, operant responding and spatial learning and memory. The results indicated that the performance of the irradiated rats maintained on the antioxidant diets was, in general, significantly better than that of the control animals, although the effectiveness of the diets ameliorating the radiation-induced deterioration in performance varied as a function of both the specific diet and the specific endpoint. In addition, animals fed antioxidant diets prior to exposure showed reduced heavy particle-induced tumorigenesis one year after exposure compared to the animals fed the control diet. These results suggest that antioxidant diets have the potential to serve as part of a system designed to provide protection to astronauts against the effects of heavy particles on exploratory missions outside the magnetic field of the earth.

  9. Rat- and human-based risk estimates of lung cancer from occupational exposure to poorly-soluble particles: A quantitative evaluation

    NASA Astrophysics Data System (ADS)

    Kuempel, E. D.; Smith, R. J.; Dankovic, D. A.; Stayner, L. T.

    2009-02-01

    In risk assessment there is a need for quantitative evaluation of the capability of animal models to predict disease risks in humans. In this paper, we compare the rat- and human-based excess risk estimates for lung cancer from working lifetime exposures to inhaled poorly-soluble particles. The particles evaluated include those for which long-term dose-response data are available in both species, i.e., coal dust, carbon black, titanium dioxide, silica, and diesel exhaust particulate. The excess risk estimates derived from the rat data were generally lower than those derived from the human studies, and none of the rat- and human-based risk estimates were significantly different (all p-values>0.05). Residual uncertainty in whether the rat-based risk estimates would over- or under-predict the true excess risks of lung cancer from inhaled poorly-soluble particles in humans is due in part to the low power of the available human studies, limited particle size exposure data for humans, and ambiguity about the best animal models and extrapolation methods.

  10. Large-scale time-resolved digital particle image velocimetry (TR-DPIV) for measurement of high subsonic hot coaxial jet exhaust of a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Timmerman, B. H.; Skeen, A. J.; Bryanston-Cross, P. J.; Graves, M. J.

    2009-07-01

    The development of a highly configurable triple digital particle image velocimetry (DPIV) system is described, which is capable of acquiring both continuous, statistically independent measurements at up to 14 Hz and time-resolved PIV data at MHz rates. The system was used at QinetiQ's Noise Test Facility (NTF) as part of the EU-funded CoJeN programme to obtain measurements from high subsonic (Mach <= 0.9), hot (~500 °C), large (1/10th) scale coaxial jet flows at a standoff distance of ~1 m. High-resolution time-averaged velocity and turbulence data were obtained for complete coaxial engine exhaust plumes down to 4 m (20 jet diameters) from the nozzle exit in less than 1 h. In addition, the system allowed volumetric data to be obtained, enabling fast assessment of spatial alignment of nozzle configurations. Furthermore, novel six-frame time-series data-capture is demonstrated up to 330 kHz, used to calculate time-space correlations within the exhaust, allowing for study of spatio-temporal developments in the jet, associated with jet-noise production. The highly automated system provides synchronization triggers for simultaneous acquisition from different measurement systems (e.g. LDA) and is shown to be versatile, rugged, reliable and portable, operating remotely in a hostile environment. Data are presented for three operating conditions and two nozzle geometries, providing a database to be used to validate CFD models of coaxial jet flow.

  11. Exposure to Airborne Ultrafine Particles from Cooking in Portuguese Homes

    Microsoft Academic Search

    J. C. Bordado; J. F. Gomes; P. C. Albuquerque

    2012-01-01

    Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted on the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables or pasta, frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased

  12. Exposure for ultrafine carbon particles at levels below detectable pulmonary inflammation affects cardiovascular performance in spontaneously hypertensive rats*

    EPA Science Inventory

    Rationale: Exposure to particulate matter is a risk factor for cardiopulmonary disease but the related molecular mechanisms are poorly understood. Previously we studied cardiovascular responses in healthy WKY rats following inhalation exposure to ultrafine carbon particles (UfCPs...

  13. Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens.

    PubMed

    Buonanno, Giorgio; Morawska, Lidia

    2015-03-01

    On the basis of the growing interest on the impact of airborne particles on human exposure as well as the strong debate in Western countries on the emissions of waste incinerators, this work reviewed existing literature to: (i) show the emission factors of ultrafine particles (particles with a diameter less than 100 nm) of waste incinerators; and (ii) assess the contribution of waste incinerators in terms of ultrafine particles to exposure and dose of people living in the surrounding areas of the plants in order to estimate eventual risks. The review identified only a limited number of studies measuring ultrafine particle emissions, and in general they report low particle number concentrations at the stack (the median value was equal to 5.5×10(3) part cm(-3)), in most cases higher than the outdoor background value. The lowest emissions were achieved by utilization of the bag-house filter which has an overall number-based filtration efficiency higher than 99%. Referring to reference case, the corresponding emission factor is equal to 9.1×10(12) part min(-1), that is lower than one single high-duty vehicle. Since the higher particle number concentrations found in the most contributing microenvironments to the exposure (indoor home, transportation, urban outdoor), the contribution of the waste incinerators to the daily dose can be considered as negligible. PMID:24726660

  14. Comparison of ciliary activity and inflammatory mediator release from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients and the effect of diesel exhaust particles in vitro

    Microsoft Academic Search

    Hasan Bayram; Jagdish L. Devalia; Omar A. Khair; Muntasir M. Abdelaziz; Raymond J. Sapsford; Masaru Sagai; Robert J. Davies

    1998-01-01

    Background: Recent studies have suggested that asthmatic patients may be more susceptible to the adverse effects of air pollutants, including diesel exhaust particles (DEP). The underlying mechanisms, however, are not clear. Methods: We cultured bronchial epithelial cells from bronchial biopsy specimens of well-characterized groups of nonatopic, nonasthmatic individuals and atopic patients with mild asthma and compared the ciliary beat frequency

  15. Multi-metric measurement of personal exposure to ultrafine particles in selected urban microenvironments

    NASA Astrophysics Data System (ADS)

    Spinazzè, Andrea; Cattaneo, Andrea; Scocca, Damiano R.; Bonzini, Matteo; Cavallo, Domenico M.

    2015-06-01

    At the beginning of the study, our hypothesis was that visiting certain microenvironments (MEs) is one of the most important determinants of personal exposure to ultrafine particles (UFP) and that moving between microenvironments significantly differentiates exposure. The overall aim of this study is to perform relevant exposure measurements to extend our knowledge on environmental exposure to UFP in urban environments. The UFP concentrations in different urban MEs were measured by personal monitoring in repeated sampling campaigns along a fixed route. The measurement runs were performed on one-week periods and at different times of day (AM: 08.00-10.30; PM: 16.00-18.30) and repeated in different periods of the year (winter, spring, summer, and autumn) for a total of 56 runs (>110 h). Measurements included on-line monitoring of the UFP particle number concentration (PNC), mean diameter (mean-d) and lung-deposited surface-area (LDSA). Additionally, the PNC, particle mass concentration (PMC) profiles for quasi-ultrafine particles (QUFP; PM0.25) were estimated. A significant seasonal difference in the PNC and PMC, mean diameter and surface area was observed as well as between different times of the day and days of the week. In addition, differences in the UFP concentrations were also found in each ME, and there were specific mean-diameter and surface area concentrations. In general, the mean particle diameters showed an inverse relationship with the PNC, while the LDSA had the opposite behaviour. Appreciable differences among all MEs and monitoring periods were observed; the concentration patterns and variations seemed related to the typical sources of urban pollutants (traffic), proximity to sources and time of day. The highest exposures were observed for walking or biking along high-trafficked routes and while using public buses. The UFP exposure levels in modern cars, equipped with high-efficiency filters and in air recirculation mode, were significantly lower.

  16. Protective effects of pulmonary epithelial lining fluid on oxidative stress and DNA single-strand breaks caused by ultrafine carbon black, ferrous sulphate and organic extract of diesel exhaust particles

    SciTech Connect

    Chuang, Hsiao-Chi [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China) [School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan (China); Cheng, Yi-Ling; Lei, Yu-Chen [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China)] [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Chang, Hui-Hsien [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)] [Institute of Environmental Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Cheng, Tsun-Jen, E-mail: tcheng@ntu.edu.tw [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China) [Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan (China); Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan (China)

    2013-02-01

    Pulmonary epithelial lining fluid (ELF) is the first substance to make contact with inhaled particulate matter (PM) and interacts chemically with PM components. The objective of this study was to determine the role of ELF in oxidative stress, DNA damage and the production of proinflammatory cytokines following physicochemical exposure to PM. Ultrafine carbon black (ufCB, 15 nm; a model carbonaceous core), ferrous sulphate (FeSO{sub 4}; a model transition metal) and a diesel exhaust particle (DEP) extract (a model organic compound) were used to examine the acellular oxidative potential of synthetic ELF and non-ELF systems. We compared the effects of exposure to ufCB, FeSO{sub 4} and DEP extract on human alveolar epithelial Type II (A549) cells to determine the levels of oxidative stress, DNA single-strand breaks and interleukin-8 (IL-8) production in ELF and non-ELF systems. The effects of ufCB and FeSO{sub 4} on the acellular oxidative potential, cellular oxidative stress and DNA single-strand breakage were mitigated significantly by the addition of ELF, whereas there was no decrease following treatment with the DEP extract. There was no significant effect on IL-8 production following exposure to samples that were suspended in ELF/non-ELF systems. The results of the present study indicate that ELF plays an important role in the initial defence against PM in the pulmonary environment. Experimental components, such as ufCB and FeSO{sub 4}, induced the production of oxidative stress and led to DNA single-strand breaks, which were moderately prevented by the addition of ELF. These findings suggest that ELF plays a protective role against PM-driven oxidative stress and DNA damage. -- Highlights: ? To determine the role of ELF in ROS, DNA damage and IL-8 after exposure to PM. ? ufCB, FeSO{sub 4} and DEP extract were used to examine the protective effects of ELF. ? PM-driven oxidative stress and DNA single-strand breakage were mitigated by ELF. ? The findings suggest that ELF has a protective role against PM. ? The synthetic ELF system could reduce the use of animals in PM-driven ROS testing.

  17. Indoor exposure to radiation in the case of an outdoorrelease

    SciTech Connect

    Price, Phillip N.; Jayaraman, Buvana

    2006-06-01

    This report quantifies the effectiveness of ''sheltering in place'' in a commercial building in the event of an outdoor radiological release. The indoor exposure to airborne particles is calculated by solving the mass balance equation that accounts for the loss of particles due to deposition, filtration and exhaust. Quantitative estimates of shelter-inplace effectiveness are provided for typical commercial buildings.

  18. The exposure to coarse, fine and ultrafine particle emissions from concrete mixing, drilling and cutting activities.

    PubMed

    Azarmi, Farhad; Kumar, Prashant; Mulheron, Mike

    2014-08-30

    Building activities generate coarse (PM10?10?m), fine (PM2.5?2.5?m) and ultrafine particles (<100nm) making it necessary to understand both the exposure levels of operatives on site and the dispersion of ultrafine particles into the surrounding environment. This study investigates the release of particulate matter, including ultrafine particles, during the mixing of fresh concrete (incorporating Portland cement with Ground Granulated Blastfurnace Slag, GGBS or Pulverised Fuel Ash, PFA) and the subsequent drilling and cutting of hardened concrete. Particles were measured in the 5-10,000nm size range using a GRIMM particle spectrometer and a fast response differential mobility spectrometer (DMS50). The mass concentrations of PM2.5-10 fraction contributed ?52-64% of total mass released. The ultrafine particles dominated the total particle number concentrations (PNCs); being 74, 82, 95 and 97% for mixing with GGBS, mixing with PFA, drilling and cutting, respectively. Peak values measured during the drilling and cutting activities were 4 and 14 times the background. Equivalent emission factors were calculated and the total respiratory deposition dose rates for PNCs for drilling and cutting were 32.97±9.41×10(8)min(-1) and 88.25±58.82×10(8)min(-1). These are a step towards establishing number and mass emission inventories for particle exposure during construction activities. PMID:25068443

  19. Assessment of Two Portable Real-Time Particle Monitors Used in Nanomaterial Workplace Exposure Evaluations

    PubMed Central

    Liu, Yuewei; Beaucham, Catherine C.; Pearce, Terri A.; Zhuang, Ziqing

    2014-01-01

    Background Nanoparticle emission assessment technique was developed to semi-quantitatively evaluate nanomaterial exposures and employs a combination of filter based samples and portable real-time particle monitors, including a condensation particle counter (CPC) and an optical particle counter (OPC), to detect nanomaterial releases. This laboratory study evaluated the results from CPC and OPC simultaneously measuring a polydisperse aerosol to assess their variability and accuracy. Methods and Results Two CPCs and two OPCs were used to evaluate a polydisperse sodium chloride aerosol within an enclosed chamber. The measurement results for number concentration versus time were compared between paired particle monitors of the same type, and to results from the Scanning Mobility Particle Spectrometer (SMPS) which was widely used to measure concentration of size-specific particles. According to analyses by using the Bland-Altman method, the CPCs displayed a constant mean percent difference of ?3.8% (95% agreement limits: ?9.1 to 1.6%; range of 95% agreement limit: 10.7%) with the chamber particle concentration below its dynamic upper limit (100,000 particles per cubic centimeter). The mean percent difference increased from ?3.4% to ?12.0% (range of 95% agreement limits: 7.1%) with increasing particle concentrations that were above the dynamic upper limit. The OPC results showed the percent difference within 15% for measurements in particles with size ranges of 300 to 500 and 500 to 1000 regardless of the particle concentration. Compared with SMPS measurements, the CPC gave a mean percent difference of 22.9% (95% agreement limits: 10.5% to 35.2%); whereas the measurements from OPC were not comparable. Conclusions This study demonstrated that CPC and OPC are useful for measuring nanoparticle exposures but the results from an individual monitor should be interpreted based upon the instrument's technical parameters. Future research should challenge these monitors with particles of different sizes, shapes, or composition, to determine measurement comparability and accuracy across various workplace nanomaterials. PMID:25148239

  20. Analysis of Exposure-Dose Variation of Inhaled Particles in Adult Subjects.

    EPA Science Inventory

    Although internal dose is a key factor for determining the health risk of inhaled pollutant particles, available dose information is largely limited to young healthy adults under a few typical exposure conditions. Extrapolation of the limited dose information to different populat...

  1. RESPIRABLE PARTICLES AND MISTS IN MOUSE PULMONARY INFECTIVITY MODEL. EFFECT OF CHRONIC OR INTERMITTENT EXPOSURE

    EPA Science Inventory

    The effects of respirable-sized sulfuric acid mist or mixtures containing acid mist and carbon particles (A-C) on the susceptibility to bacterial and viral respiratory infection were studied in mice and hamsters. Both species showed mortalities upon single 3-hour exposure to 600 ...

  2. PARTICLE TOTAL EXPOSURE ASSESSMENT METHODOLOGY (PTEAM): RIVERSIDE, CALIFORNIA PILOT STUDY - VOLUME I

    EPA Science Inventory

    The goal of this study was to estimate the frequency distribution of exposure of an urban population to inhalable particles (less than 10 micrometers in diameter). Probability sampling design was used to select 178 nonsmoking residents aged 10 or above in Riverside, CA. Each pers...

  3. Analyses of risks associated with radiation exposure from past major solar particle events

    Microsoft Academic Search

    Mark D. Weyland; William Atwell; Francis A. Cucinotta; John W. Wilson; Alva C. Hardy

    1991-01-01

    Radiation exposures and cancer induction\\/mortality risks were investigated for several major solar particle events (SPE's). The SPE's included are: February 1956, November 1960, August 1972, October 1989, and the September, August, and October 1989 events combined. The three 1989 events were treated as one since all three could affect a single lunar or Mars mission. A baryon transport code was

  4. Interaction between age and exposure to 56Fe particles on behavior and neurochemistry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has shown that exposure to HZE particles, which will be encountered on long-term space missions, can adversely affect the ability of rats to perform a variety of behavioral tasks. This outcome has implications for an astronaut's ability to successfully complete requirements associ...

  5. Assessing Bicyclist and Pedestrian Exposure to Ultrafine Particles: Passive1 Shielding with Noise Barriers2

    E-print Network

    Bertini, Robert L.

    traveling4 in near-road areas with high concentrations of UFP often have high respiration rates that make exposure to2 ultrafine particles (UFP), particulate matter with aerodynamic diameter less than 0.1 µm, physical6 noise barriers border high-volume roads to reduce noise pollution. Non-motorized facilities may

  6. Analysing the causes of chronic cough: relation to diesel exhaust, ozone, nitrogen oxides, sulphur oxides and other environmental factors

    Microsoft Academic Search

    Beatrix Groneberg-Kloft; Thomas Kraus; Anke van Mark; Ulrich Wagner; Axel Fischer

    2006-01-01

    Air pollution remains a leading cause of many respiratory diseases including chronic cough. Although episodes of incidental, dramatic air pollution are relatively rare, current levels of exposure of pollutants in industrialized and developing countries such as total articles, diesel exhaust particles and common cigarette smoke may be responsible for the development of chronic cough both in children and adults. The

  7. Variability in onset of ECG changes indicative of ischemia after exposure to whole vs filtered diesel exhaust in hypertensive rats. Insight on mechanism?

    EPA Science Inventory

    Diesel exhaust (DE) is a complex mixture of gases including C02, O2, N02, CO, aldehydes, benzene, and polycyclic aromatic hydrocarbons (PAHs) as well as highly respirable particulate matter. DE is a significant component of fine particulate matter (PM2.5) air pollution, which its...

  8. Foliar or root exposures to smelter particles: consequences for lead compartmentalization and speciation in plant leaves.

    PubMed

    Schreck, Eva; Dappe, Vincent; Sarret, Géraldine; Sobanska, Sophie; Nowak, Dorota; Nowak, Jakub; Stefaniak, El?bieta Anna; Magnin, Valérie; Ranieri, Vincent; Dumat, Camille

    2014-04-01

    In urban areas with high fallout of airborne particles, metal uptake by plants mainly occurs by foliar pathways and can strongly impact crop quality. However, there is a lack of knowledge on metal localization and speciation in plants after pollution exposure, especially in the case of foliar uptake. In this study, two contrasting crops, lettuce (Lactuca sativa L.) and rye-grass (Lolium perenne L.), were exposed to Pb-rich particles emitted by a Pb-recycling factory via either atmospheric or soil application. Pb accumulation in plant leaves was observed for both ways of exposure. The mechanisms involved in Pb uptake were investigated using a combination of microscopic and spectroscopic techniques (electron microscopy, laser ablation, Raman microspectroscopy, and X-ray absorption spectroscopy). The results show that Pb localization and speciation are strongly influenced by the type of exposure (root or shoot pathway) and the plant species. Foliar exposure is the main pathway of uptake, involving the highest concentrations in plant tissues. Under atmospheric fallouts, Pb-rich particles were strongly adsorbed on the leaf surface of both plant species. In lettuce, stomata contained Pb-rich particles in their apertures, with some deformations of guard cells. In addition to PbO and PbSO4, chemical forms that were also observed in pristine particles, new species were identified: organic compounds (minimum 20%) and hexagonal platy crystals of PbCO3. In rye-grass, the changes in Pb speciation were even more egregious: Pb-cell wall and Pb-organic acid complexes were the major species observed. For root exposure, identified here as a minor pathway of Pb transfer compared to foliar uptake, another secondary species, pyromorphite, was identified in rye-grass leaves. Finally, combining bulk and spatially resolved spectroscopic techniques permitted both the overall speciation and the minor but possibly highly reactive lead species to be determined in order to better assess the health risks involved. PMID:24508855

  9. Estimates of Carrington-class solar particle event radiation exposures on Mars

    NASA Astrophysics Data System (ADS)

    Townsend, L. W.; Pourarsalan, M.; Hall, M. I.; Anderson, J. A.; Bhatt, S.; Delauder, N.; Adamczyk, A. M.

    2011-09-01

    Radiation exposure estimates for crew members on the surface of Mars are made for solar particle event proton radiation environments comparable to the Carrington event of 1859. We assume that the proton energy distributions for these Carrington-type events are similar to those measured for other, more recent large events. The fluence levels of these hypothetical events are normalized to the value for the Carrington event, as reported from measurements in ice core data. In this work, we use the BRYNTRN radiation transport code, originally developed at NASA Langley Research Center, and the Computerized Anatomical Male and Female human geometry models to estimate exposures for aluminum shield areal densities similar to those provided by a spacesuit, a surface lander, and a permanent habitat located at various altitudes in the Mars atmosphere. Comparisons of the predicted organ exposures with current NASA Permissible Exposure Limits are made.

  10. Combined air pollution particle and ozone exposure increases airway responsiveness in mice.

    PubMed

    Goldsmith, Carroll-Ann W; Ning, YaoYu; Qin, Guozhong; Imrich, Amy; Lawrence, Joy; Murthy, G G Krishna; Catalano, Paul J; Kobzik, Lester

    2002-04-01

    We investigated whether coexposure to inhaled ambient particles and ozone affects airway responsiveness (AR, measured as enhanced pause, Penh) and allergic inflammation (AI) in a murine model of asthma. Ovalbumin-sensitized mice were challenged with either ovalbumin ("asthmatic") or phosphate-buffered saline (PBS) aerosols for 3 successive days. Immediately after daily challenge, mice were exposed for 5 h to concentrated ambient particles (CAPs), or 0.3 ppm ozone, or both, or neither (n > or = 61/group, 12 experiments). Exposure to CAPs alone or coexposure to CAPs + O(3) caused an increase in Penh in both normal and "asthmatic" mice. These responses were transient and small, increasing approximately 0.9% per 100-microg/m(3) increase in CAPs. Analysis of the effects of particle composition on AR revealed an association between the AlSi particle fraction and increased AR in "asthmatic" mice exposed to ozone and particles. No effects of pollutants on AI were noted. We conclude that (1) particle exposure causes an immediate, short-lived (<24 h) increase in AR in mice; (2) these responses are small; and (3) changes in AR may be correlated with specific elements within the particle mixture. PMID:12028808

  11. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    NASA Astrophysics Data System (ADS)

    Polidori, A.; Hu, S.; Biswas, S.; Delfino, R. J.; Sioutas, C.

    2007-12-01

    A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH) content, and the physical/chemical characteristics of aerosols collected a) in Wilmington (CA) near the Los Angeles port and close to 2 major freeways, and b) at a dynamometer testing facility in downtown Los Angeles (CA), where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4-8 times higher at 09:00-11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converted) were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (?g/m3) and the measured photo-electric aerosol sensor signal (fA) was also established. Estimated ambient p-PAH concentrations (Average = 0.64 ng/m3; Standard deviation = 0.46 ng/m3) were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day) lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a significant part of the total lung-cancer risk attributable to "black" carbon.

  12. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    NASA Astrophysics Data System (ADS)

    Polidori, A.; Hu, S.; Biswas, S.; Delfino, R. J.; Sioutas, C.

    2008-03-01

    A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH) content, and the physical/chemical characteristics of aerosols collected a) in Wilmington (CA) near the Los Angeles port and close to 2 major freeways, and b) at a dynamometer testing facility in downtown Los Angeles (CA), where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4-8 times higher at 09:00-11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converter) were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (?g/m3) and the measured photo-electric aerosol sensor signal (fA) was also established. Estimated ambient p-PAH concentrations (Average=0.64 ng/m3; Standard deviation=0.46 ng/m3 were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day) lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a significant part of the total lung-cancer risk attributable to "black" carbon.

  13. IN VIVO EVIDENCE OF FREE RADICAL FORMATION IN THE RAT LUNG AFTER EXPOSURE TO AN EMISSION SOURCE AIR POLLUTION PARTICLE

    EPA Science Inventory

    Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...

  14. Cognitive differences between male and female rats following exposure to 56Fe particles

    NASA Astrophysics Data System (ADS)

    Rabin, Bernard; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty; Luskin, Katharine; Long, Lauren; Joseph, James

    On exploratory class missions astronauts will be exposed to types and doses of radiation (HZE particles) that are not experienced in low earth orbit. While it is likely that the crew will consist of both male and female astronauts, there has been little research on the effects of exposure to HZE particles on cognitive performance in female subjects. While previous research has shown that exposure to HZE particles disrupts cognitive performance in male rats it remains to be established whether or not similar effects will occur with female subjects because estrogen may act as a neuroprotectant. Ovariectomized (OVX) female rats were obtained from Taconic Farms. Thirty mm segments of silastic tubing containing either 180 pg l7-estradiol/mL in sesame oil or vehicle alone were implanted subcutaneously in the neck. Three days following surgery the rats were exposed to 56Fe particles (1000 MeV/n, 0-200 cGy) at the NSRL. Following irradiation the rats were shipped to UMBC for behavioral testing. The results indicated that the pattern of decrements in cognitive performance differed between male and female rats. In addition, for female rats, there were differences in performance as a function of the presence or absence of estradiol. In the vehicle implanted subjects exposure to 56Fe particles did not affect operant responding on an ascending fixed-ratio schedule; whereas irradiation did disrupt responding in OVX animals given estradiol. These results suggest that estrogen may not be protective following exposure to HZE particles. This research was supported by Grant NNX08AM66G from NASA.

  15. A single-particle characterization of a mobile Versatile Aerosol Concentration Enrichment System for exposure studies

    PubMed Central

    Freney, Evelyn J; Heal, Mathew R; Donovan, Robert J; Mills, Nicholas L; Donaldson, Kenneth; Newby, David E; Fokkens, Paul HB; Cassee, Flemming R

    2006-01-01

    Background An Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) was used to investigate the size and chemical composition of fine concentrated ambient particles (CAPs) in the size range 0.2–2.6 ?m produced by a Versatile Aerosol Concentration Enrichment System (VACES) contained within the Mobile Ambient Particle Concentrator Exposure Laboratory (MAPCEL). The data were collected during a study of human exposure to CAPs, in Edinburgh (UK), in February-March 2004. The air flow prior to, and post, concentration in the VACES was sampled in turn into the ATOFMS, which provides simultaneous size and positive and negative mass spectral data on individual fine particles. Results The particle size distribution was unaltered by the concentrator over the size range 0.2–2.6 ?m, with an average enrichment factor during this study of ~5 (after dilution of the final air stream). The mass spectra from single particles were objectively grouped into 20 clusters using the multivariate K-means algorithm and then further grouped manually, according to similarity in composition and time sequence, into 8 main clusters. The particle ensemble was dominated by pure and reacted sea salt and other coarse inorganic dusts (as a consequence of the prevailing maritime-source climatology during the study), with relatively minor contributions from carbonaceous and secondary material. Very minor variations in particle composition were noted pre- and post-particle concentration, but overall there was no evidence of any significant change in particle composition. Conclusion These results confirm, via single particle analysis, the preservation of the size distribution and chemical composition of fine ambient PM in the size range 0.2–2.6 ?m after passage through the VACES concentration instrumentation. PMID:16723024

  16. Analysing the health effects of simultaneous exposure to physical and chemical properties of airborne particles

    PubMed Central

    Pirani, Monica; Best, Nicky; Blangiardo, Marta; Liverani, Silvia; Atkinson, Richard W.; Fuller, Gary W.

    2015-01-01

    Background Airborne particles are a complex mix of organic and inorganic compounds, with a range of physical and chemical properties. Estimation of how simultaneous exposure to air particles affects the risk of adverse health response represents a challenge for scientific research and air quality management. In this paper, we present a Bayesian approach that can tackle this problem within the framework of time series analysis. Methods We used Dirichlet process mixture models to cluster time points with similar multipollutant and response profiles, while adjusting for seasonal cycles, trends and temporal components. Inference was carried out via Markov Chain Monte Carlo methods. We illustrated our approach using daily data of a range of particle metrics and respiratory mortality for London (UK) 2002–2005. To better quantify the average health impact of these particles, we measured the same set of metrics in 2012, and we computed and compared the posterior predictive distributions of mortality under the exposure scenario in 2012 vs 2005. Results The model resulted in a partition of the days into three clusters. We found a relative risk of 1.02 (95% credible intervals (CI): 1.00, 1.04) for respiratory mortality associated with days characterised by high posterior estimates of non-primary particles, especially nitrate and sulphate. We found a consistent reduction in the airborne particles in 2012 vs 2005 and the analysis of the posterior predictive distributions of respiratory mortality suggested an average annual decrease of ? 3.5% (95% CI: ? 0.12%, ? 5.74%). Conclusions We proposed an effective approach that enabled the better understanding of hidden structures in multipollutant health effects within time series analysis. It allowed the identification of exposure metrics associated with respiratory mortality and provided a tool to assess the changes in health effects from various policies to control the ambient particle matter mixtures. PMID:25795926

  17. Using the Aerasense NanoTracer for simultaneously obtaining several ultrafine particle exposure metrics

    NASA Astrophysics Data System (ADS)

    Marra, J.

    2011-07-01

    The expanding production and use of nanomaterials increases the chance of human exposure to engineered nanoparticles (NP), also referred to as ultrafine particles (UFP; <= 100 - 300 nm). This is particularly true in workplaces where they can become airborne and thereafter inhaled by workers during nanopowder processing. Considering the suspected hazard of many engineered UFPs, the general recommendation is to take measures for minimizing personal exposure while monitoring the UFP pollution for assessment and control purposes. The portable Aerasense NanoTracer accomplishes this UFP monitoring, either intermittently or in real time. This paper reviews its design and operational characteristics and elaborates on a number of application extensions and constraints. The NanoTracer's output signals enable several UFP exposure metrics to be simultaneously inferred. These include the airborne UFP number concentration and the number-averaged particle size, serving as characteristics of the pertaining UFP pollution. When non-hygroscopic particles are involved, the NanoTracer's output signals also allow an estimation of the lung-deposited UFP surface area concentration and the lung-deposited UFP mass concentration. It is thereby possible to distinguish between UFP depositions in the alveolar region, the trachea-bronchial region and the head airway region, respectively, by making use of the ICRP particle deposition model.

  18. Assessment of Inter-Individual, Geographic, and Seasonal Variability in Estimated Human Exposure to Fine Particles

    PubMed Central

    Jiao, Wan; Frey, H. Christopher; Cao, Ye

    2012-01-01

    Health effects associated with ambient fine particle (PM2.5) exposure are typically estimated based on concentration-response (C-R) functions using area-wide concentration as an exposure surrogate. Persons 65 and older are particularly susceptible to adverse effects from PM2.5 exposure. Using a stochastic microenvironmental simulation model, distributions of daily PM2.5 exposures were estimated based on ambient concentration, air exchange rate, penetration factor, deposition rate, indoor emission sources, census data, and activity diary data, and compared for selected regions and seasons. Even though the selected subpopulation spends an average of over 20 hours per day indoors, the ratio of daily average estimated exposure to ambient concentration (Ea/C) is approximately 0.5. The daily average Ea/C ratio varies by a factor of 4 to 5 over a 95% frequency range among individuals, primarily from variability in air exchange rates. The mean Ea/C varies by 6 to 36% among selected NC, TX and NYC domains, and 15 to 34% among four seasons, as a result of regional differences in housing stock and seasonal differences in air exchange rates. Variability in Ea/C is a key factor that may help explain heterogeneity in C-R functions across cities and seasons. Priorities for improving exposure estimates are discussed. PMID:23095102

  19. Assessment of road users’ elemental carbon personal exposure levels, London, UK

    Microsoft Academic Search

    H. S. Adams; M. J. Nieuwenhuijsen; R. N. Colvile; M. J. Older; M. Kendall

    2002-01-01

    Little is known about particulate elemental carbon (EC) personal exposure levels, a key component of diesel exhaust, specifically in transport microenvironments. A method utilizing the optical properties of EC particles has been applied to personal exposure measurement filter samples. In a series of field studies carried out in London, UK, during 1999–2000 over 400 fine particle (PM2.5) personal exposure level

  20. Effects of prolonged exposure of lettuce seeds to HZE particles on orbital stations

    NASA Astrophysics Data System (ADS)

    Nevzgodina, L. V.; Maksimova, E. N.; Kaminskaya, E. V.

    In a study of the biological effects of cosmic HZE particles, lettuce (Lactuca sativa) seeds were flown on the orbital stations Salyut 6 and 7 for varying periods of time (from 40 to 457 days). The dependence of the biological damage on flight duration, physical parameters and the fact of passage of an HZE particle through the seed was estimated using the criterion of the frequency of aberrant cells. The arrangement of the flight biological container Biobloc made it possible to trace the location of tracks of individual HZE particles with Z>=6 and LET 200 keV/um. In seeds hit by HZE particles, for all exposure times, a statistically significant much higher yield of aberrant cells and also of cells containing multiple chromosome aberrations was observed than in the control material. The frequency of aberrant cells is markedly higher (by a factor of 1,5) in seeds hit than in non-hit ones. The changes of the yield of aberrant cells as a function of the absorbed dose (3.2-63.4 mGy) and the fluence (4.8-44.2 particles/cm2) are linear for the exposure duration ranging from 40 to 457 days.

  1. Occupational Exposure to Ultrafine Particles among Airport Employees - Combining Personal Monitoring and Global Positioning System

    PubMed Central

    Møller, Karina Lauenborg; Thygesen, Lau Caspar; Schipperijn, Jasper; Loft, Steffen; Bonde, Jens Peter; Mikkelsen, Sigurd; Brauer, Charlotte

    2014-01-01

    Background Exposure to ultrafine particles (UFP) has been linked to cardiovascular and lung diseases. Combustion of jet fuel and diesel powered handling equipment emit UFP resulting in potentially high exposure levels among employees working at airports. High levels of UFP have been reported at several airports, especially on the apron, but knowledge on individual exposure profiles among different occupational groups working at an airport is lacking. Purpose The aim of this study was to compare personal exposure to UFP among five different occupational groups working at Copenhagen Airport (CPH). Method 30 employees from five different occupational groups (baggage handlers, catering drivers, cleaning staff and airside and landside security) at CPH were instructed to wear a personal monitor of particle number concentration in real time and a GPS device. The measurements were carried out on 8 days distributed over two weeks in October 2012. The overall differences between the groups were assessed using linear mixed model. Results Data showed significant differences in exposure levels among the groups when adjusted for variation within individuals and for effect of time and date (p<0.01). Baggage handlers were exposed to 7 times higher average concentrations (geometric mean, GM: 37×103 UFP/cm3, 95% CI: 25–55×103 UFP/cm3) than employees mainly working indoors (GM: 5×103 UFP/cm3, 95% CI: 2–11×103 UFP/cm3). Furthermore, catering drivers, cleaning staff and airside security were exposed to intermediate concentrations (GM: 12 to 20×103 UFP/cm3). Conclusion The study demonstrates a strong gradient of exposure to UFP in ambient air across occupational groups of airport employees. PMID:25203510

  2. Personal day-time exposure to ultrafine particles in different microenvironments.

    PubMed

    Gu, Jianwei; Kraus, Ute; Schneider, Alexandra; Hampel, Regina; Pitz, Mike; Breitner, Susanne; Wolf, Kathrin; Hänninen, Otto; Peters, Annette; Cyrys, Josef

    2015-03-01

    In order to assess the personal exposure to ultrafine particles (UFP) during individual day-time activities and to investigate the impact of different microenvironments on exposure, we measured personal exposure to particle number concentrations (PNC), a surrogate for UFP, among 112 non-smoking participants in Augsburg, Germany over a nearly two-year period from March 2007 to December 2008. We obtained 337 personal PNC measurements from 112 participants together with dairies of their activities and locations. The measurements lasted on average 5.5h and contained on average 330 observations. In addition, ambient PNC were measured at an urban background stationary monitoring site. Personal PNC were highly variable between measurements (IQR of mean: 11780-24650cm(-3)) and also within a single measurement. Outdoor personal PNC in traffic environments were about two times higher than in non-traffic environments. Higher indoor personal PNC were associated with activities like cooking, being in a bistro or exposure to passive smoking. Overall, personal and stationary PNC were weakly to moderately correlated (r<0.41). Personal PNC were much higher than stationary PNC in traffic (ratio: 1.5), when shopping (ratio: 2.4), and indoors with water vapor (ratio: 2.5). Additive mixed models were applied to predict personal PNC by participants' activities and locations. Traffic microenvironments were significant determinants for outdoor personal PNC. Being in a bistro, passive smoking, and cooking contributed significantly to an increased indoor personal PNC. PMID:25458919

  3. THE INFLUENCE OF HUMAN ACTIVITY PATTERNS ON PERSONAL PM EXPOSURE: A COMPARATIVE ANALYSIS OF FILTER-BASED AND CONTINUOUS PARTICLE MEASUREMENTS

    EPA Science Inventory

    Particulate matter (PM) exposure data from the U.S. Environmental Protection Agency sponsored 1998 Baltimore and 1999 Fresno PM Exposure Studies were analyzed to identify important microenvironments and activities that may lead to increased particle exposure for select elderly ...

  4. Interaction between age and exposure to 56Fe particles on behavior and neurochemistry

    NASA Astrophysics Data System (ADS)

    Carey, Amanda N.; Shukitt-Hale, Barbara; Rabin, Bernard M.; Joseph, James A.

    Previous research has shown that exposure to HZE particles, which will be encountered on long-term space missions, can adversely affect the ability of rats to perform a variety of behavioral tasks. This outcome has implications for an astronaut’s ability to successfully complete requirements associated with these missions. It has also been found that irradiation can lead to increases in oxidative stress, similar to that seen in the aging brain. Given that astronauts are often middle-aged or older it is important to determine if their age puts them at higher risk for the potentially hazardous effects of exposure to HZE particles. Therefore, we exposed young and old rats to either 1 or 2 Gy of 56Fe irradiation and evaluated performance in a spatial learning and memory task, in addition to examining levels of dopamine (DA) release from superfused striatal slices. Results indicated that exposure to 56Fe particles can produce alterations in behavior and neuronal signaling and that these alterations may be more apparent in older organisms, a finding which suggests that the aging brain may be more susceptible to the deleterious effects of irradiation on performance. Therefore, age may be a factor for consideration in planning long-term missions into space.

  5. Effects of combined ozone and air pollution particle exposure in mice.

    PubMed

    Kobzik, L; Goldsmith, C A; Ning, Y Y; Qin, G; Morgan, B; Imrich, A; Lawrence, J; Murthy, G G; Catalano, P J

    2001-12-01

    Epidemiologic studies indicate that ozone (O3*) and air pollution particles can exacerbate asthma symptoms. We investigated whether coexposure to inhaled particles and O3 causes a synergistic effect on airway responsiveness and allergic inflammation in a murine (BALB/c) model of ovalbumin (OVA)-induced asthma. Half of the mice were sensitized by intraperitoneal injection of OVA and then exposed to OVA aerosol on 3 successive days to create the asthmatic phenotype; the other half were sensitized to OVA and exposed to phosphate-buffered saline (PBS) to create the nonasthmatic control group. On the same 3 days that the OVA or PBS challenge was administered, mice were further divided into groups that were exposed for 5 hours to concentrated ambient particles (CAPs; mass values ranging from 63 to 1,569 microg/m3 for 1 day's exposure), 0.3 ppm O3, both, or neither (n > or = 61 total mice per exposure group for all 12 experiments). Whole-body plethysmography was used to measure airway responsiveness after challenge with aerosolized methacholine (MCh). Enhanced pause (Penh), an index that closely correlates with pulmonary resistance (Hamelmann et al 1997), was measured daily in each mouse immediately after pollutant exposure and, for 7 of the 12 experiments (n > or = 36/exposure group), beginning 24 hours after the final OVA or PBS challenge. Using several complementary statistical models, we found that exposure to CAPs alone caused a small but significant increase in Penh in both normal and asthmatic mice immediately after exposure (an increase of approximately 1% per 100-microg/m3 increase in CAPs). No increase in Penh was found in animals exposed to O3 alone or to filtered air. Compared with control animals, no combination of exposure atmosphere plus asthma produced a synergistic effect on Penh. By 24 hours after the last OVA or PBS challenge, any enhanced response induced by pollutant exposure had declined to control levels. The pollutant exposures did not significantly increase airway inflammation (assessed by bronchoalveolar lavage [BAL] fluid analysis beginning 24 or 48 hours after the final OVA or PBS challenge). Because CAPs are a heterogeneous mixture of particles, elemental analysis was conducted and associations between specific elemental groupings (present in daily samples) and airway responsiveness were analyzed. This analysis showed that increased Penh in asthmatic mice exposed to CAPs plus O3 was associated with the AlSi fraction of CAPs. No such association was found in control mice or in asthmatic mice not exposed to O3. We conclude that CAPs exposure causes an immediate, short-lived (< 24-hour), small increase in airway responsiveness in mice and that changes in airway physiology are correlated with specific elements found within the particle mixture. PMID:16220691

  6. Lung cancer risk from exposure to alpha particles and inhalation of other pollutants in rats

    SciTech Connect

    Burns, F.J.

    1990-01-01

    The goal of these experiments is to establish a quantitative correlation between early DNA damage and cancer incidence in a way that would be helpful for assessing the carcinogenic risk of radon alone or in combination with specific indoor pollutants. Rat tracheal epithelium has been exposed in vivo to {sup 210}Po alpha particles in the presence and absence of NO{sub 2} or cigarette smoke. The major accomplishments so far are: the design and implementation of a tracheal implant to simulate radon alpha particle exposure, the measurement of DNA breaks in a small 7.0 mm segment of the trachea exposed to external x-irradiation, the measurement of the rate of repair of the x-ray induced tracheal DNA strand breaks, the measurement of DNA strand breaks following inhalation of cigarette smoke or NO{sub 2}, the measurement of tracheal DNA stand breaks following exposure to high doses {sup 210}Po alpha particle radiation, the assessment of the amount of mucous in the goblet cells and in the underlying mucous glands. So far we have been unable to detect DNA strand breaks in the tracheal epithelium as a result of exposure to NO{sub 2} cigarette smoke or {sup 210}Po alpha particles. We have developed a simple artificial' trachea consisting of rat tracheal epithelial cells growing on a basement membrane coated millipore filter. Experiments are proposed to utilize these artificial tracheas to eliminate the potential interference of increased mucous secretion and/or inflammation that can significantly affect the radiation dose from the alpha particles. 61 refs., 17 figs.

  7. Generation and characterization of radiolabeled diesel exhaust.

    PubMed

    Dutcher, J S; Sun, J D; Lopez, J A; Wolf, I; Wolff, R K; McClellan, R O

    1984-07-01

    To evaluate the potential health risks associated with increased use of diesel engines, information is needed on the biological fate of inhaled diesel exhaust components. Appropriately radiolabeled exhaust produced by burning radiolabeled fuel could be used to gain this information. The purpose of this study was to characterize different radiolabeled diesel exhausts with respect to their potential use in studies of the biological fate of exhaust carbon particles and particle-associated organic compounds (particle extracts). A single-cylinder diesel engine was used to burn diesel fuel containing trace amounts of 14C-labeled hexadecane, dotriacontane, benzene, phenanthrene or benzo(a)pyrene. Greater than 98% of the 14C in all additives was converted to volatile materials upon combustion. The remainder was distributed in varying amounts between the carbon particles and particle extracts. Aromatic additives labeled carbon particles more efficiently than aliphatic additives. Column chromatography of the particle extracts showed that, in most cases, the majority of the radioactivity eluted in fractions identical to the specific fuel additive employed, suggesting that a large amount of the particle-associated organic compounds consisted of uncombusted fuel constituents. Applying an electrical load to the engine-electrical generator increased carbon particle radioactivity, but had variable effects on the amount of radioactivity in the particle extracts. 67Ga-tetramethylheptanedione was also studied as a fuel additive to label carbon particles. 67Ga was incorporated into the exhaust particles and lung deposition of particles in rats was found to be approximately 10%. However, the 67Ga-radiolabel was found to separate from the particles in vivo, making it an unsuitable radiolabel for studying the long-term lung retention of diesel exhaust carbonaceous particles. PMID:6205579

  8. On the assessment of exposure to airborne ultrafine particles in urban environments.

    PubMed

    Gomes, João Fernando Pereira; Bordado, João Carlos Moura; Albuquerque, Paula Cristina Silva

    2012-01-01

    The aim of this study was to contribute to the assessment of exposure levels of ultrafine particles in the urban environment of Lisbon, Portugal, due to automobile traffic, by monitoring lung deposited alveolar surface area (resulting from exposure to ultrafine particles) in a major avenue leading to the town center during late spring, as well as in indoor buildings facing it. Data revealed differentiated patterns for week days and weekends, consistent with PM(2.5) and PM?? patterns currently monitored by air quality stations in Lisbon. The observed ultrafine particulate levels may be directly correlated with fluxes in automobile traffic. During a typical week, amounts of ultrafine particles per alveolar deposited surface area varied between 35 and 89.2 ?m²/cm³, which are comparable with levels reported for other towns in Germany and the United States. The measured values allowed for determination of the number of ultrafine particles per cubic centimeter, which are comparable to levels reported for Madrid and Brisbane. In what concerns outdoor/indoor levels, we observed higher levels (32 to 63%) outdoors, which is somewhat lower than levels observed in houses in Ontario. PMID:23095150

  9. Human exposure to space radiation: role of primary and secondary particles.

    PubMed

    Trovati, S; Ballarini, F; Battistoni, G; Cerutti, F; Fassò, A; Ferrari, A; Gadioli, E; Garzelli, M V; Mairani, A; Ottolenghi, A; Paretzke, H G; Parini, V; Pelliccioni, M; Pinsky, L; Sala, P R; Scannicchio, D; Zankl, M

    2006-01-01

    Human exposure to space radiation implies two kinds of risk, both stochastic and deterministic. Shielding optimisation therefore represents a crucial goal for long-term missions, especially in deep space. In this context, the use of radiation transport codes coupled with anthropomorphic phantoms allows to simulate typical radiation exposures for astronauts behind different shielding, and to calculate doses to different organs. In this work, the FLUKA Monte Carlo code and two phantoms, a mathematical model and a voxel model, were used, taking the Galactic Cosmic Rays (GCR) spectra from the model of Badhwar and O'Neill. The time integral spectral proton fluence of the August 1972 Solar Particle Event (SPE) was represented by an exponential function. For each aluminium shield thickness, besides total doses the contributions from primary and secondary particles for different organs and tissues were calculated separately. More specifically, organ-averaged absorbed doses, dose equivalents and a form of 'biological dose', defined on the basis of initial (clustered) DNA damage, were calculated. As expected, the SPE doses dramatically decreased with increasing shielding, and doses in internal organs were lower than in skin. The contribution of secondary particles to SPE doses was almost negligible; however it is of note that, at high shielding (10 g cm(-2)), most of the secondaries are neutrons. GCR organ doses remained roughly constant with increasing Al shielding. In contrast to SPE results, for the case of cosmic rays, secondary particles accounted for a significant fraction of the total dose. PMID:17151013

  10. In Vitro and In Vivo Assessment of Pulmonary Risk Associated with Exposure to Combustion Generated Fine Particles

    PubMed Central

    Fahmy, Baher; Ding, Liren; You, Dahui; Lomnicki, Slawo; Dellinger, Barry; Cormier, Stephania A.

    2009-01-01

    Strong correlations exist between exposure to PM2.5 and adverse pulmonary effects. PM2.5 consists of fine (?2.5 ?m) and ultrafine (?0.1 ?m) particles with ultrafine particles accounting for >70% of the total particles. Environmentally persistent free radicals (EPFRs) have recently been identified in airborne PM2.5. To determine the adverse pulmonary effects of EPFRs associated with exposure to elevated levels of PM2.5, we engineered 2.5 ?m surrogate EPFR-particle systems. We demonstrated that EPFRs generated greater oxidative stress in vitro, which was partly responsible for the enhanced cytotoxicity following exposure. In vivo studies using rats exposed to EPFRs containing particles demonstrated minimal adverse pulmonary effects. Additional studies revealed that fine particles failed to reach the alveolar region. Overall, our study implies qualitative differences between the health effects of PM size fractions. PMID:20369027

  11. Contribution of various microenvironments to the daily personal exposure to ultrafine particles: Personal monitoring coupled with GPS tracking

    NASA Astrophysics Data System (ADS)

    Bekö, Gabriel; Kjeldsen, Birthe Uldahl; Olsen, Yulia; Schipperijn, Jasper; Wierzbicka, Aneta; Karottki, Dorina Gabriela; Toftum, Jørn; Loft, Steffen; Clausen, Geo

    2015-06-01

    Exposure to ultrafine particles (UFP) may have adverse health effects. Central monitoring stations do not represent the personal exposure to UFP accurately. Few studies have previously focused on personal exposure to UFP. Sixty non-smoking residents living in Copenhagen, Denmark were asked to carry a backpack equipped with a portable monitor, continuously recording particle number concentrations (PN), in order to measure the real-time individual exposure over a period of ?48 h. A GPS logger was carried along with the particle monitor and allowed us to estimate the contribution of UFP exposure occurring in various microenvironments (residence, during active and passive transport, other indoor and outdoor environments) to the total daily exposure. On average, the fractional contribution of each microenvironment to the daily integrated personal exposure roughly corresponded to the fractions of the day the subjects spent in each microenvironment. The home environment accounted for 50% of the daily personal exposure. Indoor environments other than home or vehicles contributed with ?40%. The highest median UFP concentration was obtained during passive transport (vehicles). However, being in transit or outdoors contributed 5% or less to the daily exposure. Additionally, the subjects recorded in a diary the periods when they were at home. With this approach, 66% of the total daily exposure was attributable to the home environment. The subjects spent 28% more time at home according to the diary, compared to the GPS. These results may indicate limitations of using diaries, but also possible inaccuracy and miss-classification in the GPS data.

  12. Linking in-vehicle ultrafine particle exposures to on-road concentrations

    NASA Astrophysics Data System (ADS)

    Hudda, Neelakshi; Eckel, Sandrah P.; Knibbs, Luke D.; Sioutas, Constantinos; Delfino, Ralph J.; Fruin, Scott A.

    2012-11-01

    For traffic-related pollutants like ultrafine particles (UFP), a significant fraction of overall exposure occurs within or close to the transit microenvironment. Therefore, understanding exposure to these pollutants in such microenvironments is crucial to accurately assessing overall UFP exposure. The aim of this study was to develop models for predicting in-cabin UFP concentrations if roadway concentrations are known, quantifying the effect of vehicle characteristics, ventilation settings, driving conditions and air exchange rates (AER). Particle concentrations and AER were measured in 43 and 73 vehicles, respectively, under various ventilation settings and driving speeds. Multiple linear regression (MLR) and generalized estimating equation (GEE) regression models were used to identify and quantify the factors that determine inside-to-outside (I/O) UFP ratios and AERs across a full range of vehicle types and ages. AER was the most significant determinant of UFP I/O ratios, and was most strongly influenced by ventilation setting (recirculation or outside air intake). Further inclusion of ventilation fan speed, vehicle age or mileage, and driving speed explained greater than 79% of the variability in measured UFP I/O ratios.

  13. A Biopersistence Study following Exposure to Chrysotile Asbestos Alone or in Combination with Fine Particles

    PubMed Central

    Bernstein, D. M.; Donaldson, K.; Decker, U.; Gaering, S.; Kunzendorf, P.; Chevalier, J.; Holm, S. E.

    2008-01-01

    In designing a study to evaluate the inhalation biopersistence of a chrysotile asbestos that was used as a component of a joint-compound, a feasibility study was initiated to evaluate the short-term biopersistence of the chrysotile alone and of the chrysotile in combination witht the sanded reformulated joint-compound. Two groups of Wistar rats were exposed to either 7RF3 chrysotile (Group 2) or to 7RF3 chrysotile combined with aerosolized sanded joint-compound (Group 3). In addition, a control group was exposed to flltered-air. The chrysotile used in the Ready Mix joint compound is rapidly removed from the lung. The chrysotile alone exposure group had a clearance half-time of fibers L > 20 ?m of 2.2 days; in the chrysotile plus sanded exposure group the clearance half-time of fibers L > 20 ?m was 2.8 days. However, across all size ranges there was approximately an order of magnitude decrease in the mean number of fibers remaining in the lungs of Group 3 as compared to Group 2 despite similiar aerosol exposures. Histopathological examination showed that the chrysotile exposed lungs had the same appearance as the flltered-air controls. This study uniquely illustrates that additional concurrent exposure to an aerosol of the sanded joint-compound, with large numbers of fine-particles depositing in the lungs, accelerates the recruitment of macrophages, resulting in a tenfold decrease in the number of fibers remaining in the lung. The increased number of macrophages in the chrysotile/sanded joint exposure group was confirmed histologically, with this being the only exposure-related histological finding reported. PMID:18788018

  14. Indoor ultrafine particle exposures and home heating systems: A cross-sectional survey of Canadian homes during the winter months

    Microsoft Academic Search

    Scott Weichenthal; Andre Dufresne; Claire Infante-Rivard; Lawrence Joseph

    2007-01-01

    Exposure to airborne particulate matter has a negative effect on respiratory health in both children and adults. Ultrafine particle (UFP) exposures are of particular concern owing to their enhanced ability to cause oxidative stress and inflammation in the lungs. In this investigation, our objective was to examine the contribution of home heating systems (electric baseboard heaters, wood stoves, forced-air oil\\/natural

  15. Ozone and limonene in indoor air: a source of submicron particle exposure.

    PubMed Central

    Wainman, T; Zhang, J; Weschler, C J; Lioy, P J

    2000-01-01

    Little information currently exists regarding the occurrence of secondary organic aerosol formation in indoor air. Smog chamber studies have demonstrated that high aerosol yields result from the reaction of ozone with terpenes, both of which commonly occur in indoor air. However, smog chambers are typically static systems, whereas indoor environments are dynamic. We conducted a series of experiments to investigate the potential for secondary aerosol in indoor air as a result of the reaction of ozone with d-limonene, a compound commonly used in air fresheners. A dynamic chamber design was used in which a smaller chamber was nested inside a larger one, with air exchange occurring between the two. The inner chamber was used to represent a model indoor environment and was operated at an air exchange rate below 1 exchange/hr, while the outer chamber was operated at a high air exchange rate of approximately 45 exchanges/hr. Limonene was introduced into the inner chamber either by the evaporation of reagent-grade d-limonene or by inserting a lemon-scented, solid air freshener. A series of ozone injections were made into the inner chamber during the course of each experiment, and an optical particle counter was used to measure the particle concentration. Measurable particle formation and growth occurred almost exclusively in the 0.1-0.2 microm and 0.2-0.3 microm size fractions in all of the experiments. Particle formation in the 0.1-0.2 microm size range occurred as soon as ozone was introduced, but the formation of particles in the 0.2-0.3 microm size range did not occur until at least the second ozone injection occurred. The results of this study show a clear potential for significant particle concentrations to be produced in indoor environments as a result of secondary particle formation via the ozone-limonene reaction. Because people spend the majority of their time indoors, secondary particles formed in indoor environments may make a significant contribution to overall particle exposure. This study provides data for assessing the impact of outdoor ozone on indoor particles. This is important to determine the efficacy of the mass-based particulate matter standards in protecting public health because the indoor secondary particles can vary coincidently with the variations of outdoor fine particles in summer. PMID:11133393

  16. Diminished injury in hypotransferrinemic mice after exposure to a metal-rich particle.

    PubMed

    Ghio, A J; Carter, J D; Richards, J H; Crissman, K M; Bobb, H H; Yang, F

    2000-05-01

    Using the hypotransferrinemic (Hp) mouse model, we studied the effect of altered iron homeostasis on the defense of the lung against a catalytically active metal. The homozygotic (hpx/hpx) Hp mice had greatly diminished concentrations of both serum and lavage fluid transferrin relative to wild-type mice and heterozygotes. Fifty micrograms of a particle containing abundant concentrations of metals (a residual oil fly ash) was instilled into wild-type mice and heterozygotic and homozygotic Hp animals. There was an oxidative stress associated with particle exposure as manifested by decreased lavage fluid concentrations of ascorbate. However, rather than an increase in lung injury, diminished transferrin concentrations in homozygotic Hp mice were associated with decreased indexes of damage, including concentrations of relevant cytokines, inflammatory cell influx, lavage fluid protein, and lavage fluid lactate dehydrogenase. Comparable to other organs in the homozygotic Hp mouse, siderosis of the lung was evident, with elevated concentrations of lavage fluid and tissue iron. Consequent to these increased concentrations of iron, proteins to store and transport iron, ferritin, and lactoferrin, respectively, were increased when assayed by immunoprecipitation and immunohistochemistry. We conclude that the lack of transferrin in Hp mice did not predispose the animals to lung injury after exposure to a particle abundant in metals. Rather, these mice demonstrated a diminished injury that was associated with an increase in the metal storage and transport proteins. PMID:10781438

  17. Characterization of Exposures to Airborne Nanoscale Particles During Friction Stir Welding of Aluminum

    PubMed Central

    Pfefferkorn, Frank E.; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; Mccarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M. Abbas; Gruetzmacher, George; Hoover, Mark D.

    2010-01-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 ?m) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 ?m) with 1-s resolution, lung deposited surface areas, and PM2.5 concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 ?m) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at ?30 and ?550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at ?4.0 × 105 particles cm?3, whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm?3, depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10–100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) ?g m?3; the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may exist, especially in larger scale industrial operations. PMID:20453001

  18. Characterization of exposures to airborne nanoscale particles during friction stir welding of aluminum.

    PubMed

    Pfefferkorn, Frank E; Bello, Dhimiter; Haddad, Gilbert; Park, Ji-Young; Powell, Maria; McCarthy, Jon; Bunker, Kristin Lee; Fehrenbacher, Axel; Jeon, Yongho; Virji, M Abbas; Gruetzmacher, George; Hoover, Mark D

    2010-07-01

    Friction stir welding (FSW) is considered one of the most significant developments in joining technology over the last half century. Its industrial applications are growing steadily and so are the number of workers using this technology. To date, there are no reports on airborne exposures during FSW. The objective of this study was to investigate possible emissions of nanoscale (<100 nm) and fine (<1 microm) aerosols during FSW of two aluminum alloys in a laboratory setting and characterize their physicochemical composition. Several instruments measured size distributions (5 nm to 20 microm) with 1-s resolution, lung deposited surface areas, and PM(2.5) concentrations at the source and at the breathing zone (BZ). A wide range aerosol sampling system positioned at the BZ collected integrated samples in 12 stages (2 nm to 20 microm) that were analyzed for several metals using inductively coupled plasma mass spectrometry. Airborne aerosol was directly collected onto several transmission electron microscope grids and the morphology and chemical composition of collected particles were characterized extensively. FSW generates high concentrations of ultrafine and submicrometer particles. The size distribution was bimodal, with maxima at approximately 30 and approximately 550 nm. The mean total particle number concentration at the 30 nm peak was relatively stable at approximately 4.0 x 10(5) particles cm(-3), whereas the arithmetic mean counts at the 550 nm peak varied between 1500 and 7200 particles cm(-3), depending on the test conditions. The BZ concentrations were lower than the source concentrations by 10-100 times at their respective peak maxima and showed higher variability. The daylong average metal-specific concentrations were 2.0 (Zn), 1.4 (Al), and 0.24 (Fe) microg m(-3); the estimated average peak concentrations were an order of magnitude higher. Potential for significant exposures to fine and ultrafine aerosols, particularly of Al, Fe, and Zn, during FSW may exist, especially in larger scale industrial operations. PMID:20453001

  19. Assessing and predicting the exposures of polycyclic aromatic hydrocarbons (PAHs) and their carcinogenic potencies from vehicle engine exhausts to highway toll station workers

    NASA Astrophysics Data System (ADS)

    Tsai, Perng-Jy; Shih, Tung-Sheng; Chen, Hsiao-Lung; Lee, Wen-Jhy; Lai, Ching-Huang; Liou, Saou-Hsing

    The objective of this study was set out to assess the exposure levels of both polycyclic aromatic hydrocarbons (PAHs) and their corresponding carcinogenic potencies for highway toll station workers associated with vehicle emissions. We collected 48, 35, and 33 personal PAH samples from booth attendants of the dayshift (08:00 AM-16:00 PM), nightshift (16:00 PM-00:00 AM), and late-nightshift (00:00 AM-08:00 AM), respectively. We found no significant difference in PAH homologue distributions among the workers' exposure profiles of the three work shifts. Both total-PAH and total-BaP eq exposure levels for dayshift workers (=12,300 and 230 ng/m 3, respectively) were not significantly different from that for nightshift workers (=11,500 and 203 ng/m 3, respectively), but both were significantly higher than that for late-nightshift workers (=8280 and 151 ng/m 3, respectively). We conducted multivariate linear regression analyses to relate booth attendants' exposure levels to the involved vehicle flow rates and environmental factors. We found none of the three environmental factors (i.e., wind speed, humidity and air temperature) was significant. On the other hand, we found the vehicle flow rate was able to explain 76% and 62% variations of booth attendants' total-PAH and total-BaP eq exposures, respectively. Considering measuring vehicle flow rate is much less labor consuming and costly than direct measuring PAHs, the above regression results can be regarded, at least, as a useful indirect approach for estimating the booth attendants' exposure levels.

  20. Assessment of the mutagenic potential of ethanol auto engine exhaust gases by the Salmonella typhimurium microsomal mutagenesis assay, using a direct exposure method

    SciTech Connect

    Lotfi, C.F.; Brentani, M.M.; Boehm, G.M. (Univ. of Sao Paulo (Brazil))

    1990-08-01

    The mutagenic activity of the new Brazilian fuel, ethanol, was determined by employing the Salmonella typhimurium microsomal mutagenesis assay (TA97, TA98, TA100, TA102, and TA104) and a direct exposure method. This methodology was first used to determine the mutagenic activity of gasoline, revealing mutagenic activity of base-pair substitution without any need for metabolic activation, indicating the presence of direct-action mutagens. Experiments with ethanol suggest an indirect mutagenic activity of the oxidant type. The exposure system was considered suitable for future studies of gaseous mixtures.

  1. The rapid alveolar absorption of diesel soot-adsorbed benzo[a]pyrene: bioavailability, metabolism and dosimetry of an inhaled particle-borne carcinogen

    Microsoft Academic Search

    P. Gerde; B. A. Muggenburg; M. Lundborg; A. R. Dahl

    2001-01-01

    Exposure to diesel exhaust may contribute to lung cancer hydrocarbons (PAHs) and nitrated PAHs (5), some of which in humans. It remains unclear whether the carbonaceous are carcinogenic. Yet, the mechanism by which diesel exhaust core of the soot particle or its coat of adsorbed\\/condensed may induce lung cancer remains unclear. The adsorbed PAHs organics contributes most to cancer risk.

  2. Assessment of the capacity of vehicle cabin air inlet filters to reduce diesel exhaust-induced symptoms in human volunteers

    PubMed Central

    2014-01-01

    Background Exposure to particulate matter (PM) air pollution especially derived from traffic is associated with increases in cardiorespiratory morbidity and mortality. In this study, we evaluated the ability of novel vehicle cabin air inlet filters to reduce diesel exhaust (DE)-induced symptoms and markers of inflammation in human subjects. Methods Thirty healthy subjects participated in a randomized double-blind controlled crossover study where they were exposed to filtered air, unfiltered DE and DE filtered through two selected particle filters, one with and one without active charcoal. Exposures lasted for one hour. Symptoms were assessed before and during exposures and lung function was measured before and after each exposure, with inflammation assessed in peripheral blood five hours after exposures. In parallel, PM were collected from unfiltered and filtered DE and assessed for their capacity to drive damaging oxidation reactions in a cell-free model, or promote inflammation in A549 cells. Results The standard particle filter employed in this study reduced PM10 mass concentrations within the exposure chamber by 46%, further reduced to 74% by the inclusion of an active charcoal component. In addition use of the active charcoal filter was associated by a 75% and 50% reduction in NO2 and hydrocarbon concentrations, respectively. As expected, subjects reported more subjective symptoms after exposure to unfiltered DE compared to filtered air, which was significantly reduced by the filter with an active charcoal component. There were no significant changes in lung function after exposures. Similarly diesel exhaust did not elicit significant increases in any of the inflammatory markers examined in the peripheral blood samples 5 hour post-exposure. Whilst the filters reduced chamber particle concentrations, the oxidative activity of the particles themselves, did not change following filtration with either filter. In contrast, diesel exhaust PM passed through the active charcoal combination filter appeared less inflammatory to A549 cells. Conclusions A cabin air inlet particle filter including an active charcoal component was highly effective in reducing both DE particulate and gaseous components, with reduced exhaust-induced symptoms in healthy volunteers. These data demonstrate the effectiveness of cabin filters to protect subjects travelling in vehicles from diesel exhaust emissions. PMID:24621126

  3. Hippocampal neurogenesis and PSA-NCAM expression following exposure to 56Fe particles mimics that seen during aging in rats

    Microsoft Academic Search

    Gemma Casadesus; Heather M. Stellwagen; Mark A. Smith; Bernard M. Rabin; James A. Joseph

    2005-01-01

    Exposure to particles of high energy and charge can disrupt the neuronal systems as well as the motor and cognitive behaviors mediated by these systems in a similar fashion to that seen during the aging process. In the hippocampus, adult neurogenesis is affected both by aging and irradiation with ionizing particles. Likewise, the maturation of newly formed cells in this

  4. Long-term changes in amphetamine-induced reinforcement and aversion in rats following exposure to 56Fe particle

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2003-01-01

    Exposing rats to heavy particles produces alterations in the functioning of dopaminergic neurons and in the behaviors that depend upon the integrity of the dopaminergic system. Two of these dopamine-dependent behaviors include amphetamine-induced reinforcement, measure using the conditioned place preference procedure, and amphetamine-induced reinforcement, measured using the conditioned place preference procedure, and amphetamine-induced aversion, measured using the conditioned taste aversion. Previous research has shown that exposing rats to 1.0 Gy of 1GeV/n 56Fe particles produced a disruption of an amphetamine-induced taste aversion 3 days following exposure, but produced an apparent enhancement of the aversion 112 days following exposure. The present experiments were designed to provide a further evaluation of these results by examining taste aversion learning 154 days following exposure to 1.0 Gy 56Fe particles and to establish the convergent validity of the taste aversion results by looking at the effects of exposure on the establishment of an amphetamine-induced conditioned place preference 3, 7, and 16 weeks following irradiation. The taste aversion results failed to confirm the apparent enhancement of the amphetamine-induced CTA observed in the prior experiment. However, exposure to 56Fe particles prevented the acquisition of amphetamine-induced place preference at all three-time intervals. The results are interpreted as indicating that exposure to heavy particles can produce long-term changes in behavioral functioning. c2002 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  5. Increased lung resistance after diesel particulate and ozone co-exposure not associated with enhanced lung inflammation in allergic mice*

    EPA Science Inventory

    Exposure to diesel exhaust particle matter (DEP) exacerbates asthma. Likewise, similar effects have been reported with exposure to the oxidizing air pollutant ozone (03) . Since levels of both pollutants in ambient air tend to be simultaneously elevated, we investigated the possi...

  6. The Variable Effects of Ozone and/or Diesel Particulate Inhalation Exposure on Allergic Airways Responses in Mice

    EPA Science Inventory

    Exposure to diesel exhaust particle matter (DEP) associated with the combustion of diesel fuel exacerbates asthma. Likewise, similar effects have been reported with exposure to the oxidizing air pollutant ozone (O3). Since levels of both pollutants in ambient air are e...

  7. Jet exhaust noise suppressor

    NASA Technical Reports Server (NTRS)

    Huff, R. G. (inventor)

    1974-01-01

    Noise suppression for a jet engine exhaust is provided by an annular divergent body attached to an exhaust nozzle. The smallest diameter of the divergent body is larger than the diameter of the exhaust nozzle exit to form an annular step which produces a shock wave in the exhaust as it passes the step. An annular shroud is disposed around the divergent body and causes outside air to pass through voids in the divergent body to mix with the jet exhaust gas. The divergent body includes a plurality of channels with separators between the channels.

  8. Comparison of the effects of partial- or whole-body exposures to ¹?O particles on cognitive performance in rats.

    PubMed

    Rabin, Bernard M; Shukitt-Hale, Barbara; Carrihill-Knoll, Kirsty L; Gomes, Stacey M

    2014-03-01

    Studies using a ground-based system (NASA Space Radiation Laboratory) to examine the effects of exposure to high-energy charged particles or HZE particles on cognitive performance have interchangeably used whole-body exposures or exposures restricted to the head of the subject. For this study, we hypothesized that different types of exposure such as whole body vs. head only vs. body only might modulate the impact of irradiation on cognitive performance in different ways with the resulting cognitive performance outcomes being either independent of exposure type or strongly dependent on exposure type with each producing performance outcomes. To test these possibilities, three groups of rats were exposed to ¹?O particles (1,000 MeV/n): (1) head only; (2) body only; (3) whole body. Cognitive performance was measured using the elevated plus-maze, novel object recognition, spatial location memory and operant responding on an ascending fixed-ratio schedule. The results indicated that the performance of the rats on the spatial location memory task was markedly different when they received head-only irradiation compared to whole-body exposure. For the operant responding task, irradiation of the whole body resulted in a more severe performance decrement than exposures restricted to the head. The results are discussed in terms of nontargeted effects of HZE particles and the findings suggest that studies that utilize different patterns of exposure may not be directly comparable and that astronauts may be at a greater risk for HZE particle-induced cognitive deficits than previously thought. PMID:24611658

  9. Developmental Exposure to Concentrated Ambient Particles and Preference for Immediate Reward in Mice

    PubMed Central

    Allen, Joshua L.; Conrad, Katherine; Oberdörster, Günter; Johnston, Carl J.; Sleezer, Brianna

    2012-01-01

    Background: Recent epidemiological studies indicate negative associations between a diverse group of air pollutants and cognitive functioning in children and adults, and aspects of attention deficit in children. Neuroinflammation and oxidative stress are two putative biological mechanisms by which air pollutants may adversely affect the brain. Objectives: We sought to determine whether exposure to concentrated ambient particulate matter (CAPS) during the first 2 weeks of life, alone or again in adulthood, could alter responding for delayed reward, a critical component of human decision making. Greater preference for immediate reward has been implicated as a component of several psychiatric disorders, addiction, obesity, and attention deficit. Methods: C57BL/6J mice were exposed to ultrafine particles (< 100 nm in aerodynamic diameter; CAPS) using the Harvard University Concentrated Ambient Particle System (HUCAPS) or filtered air in the postnatal period (days 4–7 and 10–13) with and without adult exposure over days 56–60. In adulthood, delay behavior was assessed using a fixed-ratio waiting-for-reward (FR wait) paradigm in which 25 responses (FR25) were required to initiate the waiting-for-reward component during which mice obtained “free” sucrose pellets with the stipulation that these “free” pellets were delivered at increasing delay intervals. Results: Coupled with increased FR response rates, mice exposed to postnatal CAPS displayed increased FR resets that reinstated short delays, indicating a preference for shorter delays, despite the added response cost of the FR25. No associated changes in locomotor activity were observed. Conclusions: Postnatal CAPS exposure produces an enhanced bias towards immediate rewards, a risk factor for several central nervous system (CNS) disorders. This enhancement does not appear to be the result of hyperactivity. The findings underscore the need for further evaluation of air pollution effects on the CNS and its potential contribution to CNS diseases and disorders. PMID:23063827

  10. Development and application of a model (ExDoM) for calculating the respiratory tract dose and retention of particles under variable exposure conditions

    Microsoft Academic Search

    Victoria Aleksandropoulou; Mihalis Lazaridis

    The ExDoM is a model for calculating the human exposure and the deposition, dose, clearance, and finally retention of aerosol\\u000a particles in the respiratory tract at specific times during and after exposure, under variable exposure conditions. Specifically,\\u000a the model incorporates an exposure module which allows the user to set variable or static exposure conditions (exposure concentration,\\u000a physical exertion levels, and

  11. Marine exhaust manifold and elbow

    SciTech Connect

    Lindstedt, D.H.

    1992-05-05

    This patent describes a marine propulsion system having an internal combustion engine exhausted through a water jacketed exhaust assembly. This patent describes improvement in a manifold portion having intake exhaust passages receiving engine exhaust; an elbow portion extending upwardly from the manifold portion and having transfer exhaust passages extending from the intake exhaust passages and communicating through a bend with a discharge exhaust passage, wherein exhaust flows upwardly from the manifold portion into the elbow portion and around the bend to the discharge exhaust passage; water jacket means around the intake exhaust passages and the transfer exhaust passages and directing water along the exterior of the intake exhaust passages and the transfer exhaust passages, wherein water flows upwardly along the manifold portion to the elbow portion and then upwardly and around the bend and then to the end of the discharge exhaust passage to mix with exhaust thereat; wall supports between the water jacket means and the elbow portion.

  12. Exposure Pathways

    MedlinePLUS

    ... to decay, the exposure continues. For radionuclides that decay slowly, the exposure continues over a very long time. Inhalation is of most concern for radionuclides that are alpha or beta particle emitters. Alpha and beta particles can transfer ...

  13. Modeling personal particle-bound polycyclic aromatic hydrocarbon (pb-pah) exposure in human subjects in Southern California

    PubMed Central

    2012-01-01

    Background Exposure to polycyclic aromatic hydrocarbon (PAH) has been linked to various adverse health outcomes. Personal PAH exposures are usually measured by personal monitoring or biomarkers, which are costly and impractical for a large population. Modeling is a cost-effective alternative to characterize personal PAH exposure although challenges exist because the PAH exposure can be highly variable between locations and individuals in non-occupational settings. In this study we developed models to estimate personal inhalation exposures to particle-bound PAH (PB-PAH) using data from global positioning system (GPS) time-activity tracking data, traffic activity, and questionnaire information. Methods We conducted real-time (1-min interval) personal PB-PAH exposure sampling coupled with GPS tracking in 28 non-smoking women for one to three sessions and one to nine days each session from August 2009 to November 2010 in Los Angeles and Orange Counties, California. Each subject filled out a baseline questionnaire and environmental and behavior questionnaires on their typical activities in the previous three months. A validated model was used to classify major time-activity patterns (indoor, in-vehicle, and other) based on the raw GPS data. Multiple-linear regression and mixed effect models were developed to estimate averaged daily and subject-level PB-PAH exposures. The covariates we examined included day of week and time of day, GPS-based time-activity and GPS speed, traffic- and roadway-related parameters, meteorological variables (i.e. temperature, wind speed, relative humidity), and socio-demographic variables and occupational exposures from the questionnaire. Results We measured personal PB-PAH exposures for 180?days with more than 6 h of valid data on each day. The adjusted R2 of the model was 0.58 for personal daily exposures, 0.61 for subject-level personal exposures, and 0.75 for subject-level micro-environmental exposures. The amount of time in vehicle (averaging 4.5% of total sampling time) explained 48% of the variance in daily personal PB-PAH exposure and 39% of the variance in subject-level exposure. The other major predictors of PB-PAH exposures included length-weighted traffic count, work-related exposures, and percent of weekday time. Conclusion We successfully developed regression models to estimate PB-PAH exposures based on GPS-tracking data, traffic data, and simple questionnaire information. Time in vehicle was the most important determinant of personal PB-PAH exposure in this population. We demonstrated the importance of coupling real-time exposure measures with GPS time-activity tracking in personal air pollution exposure assessment. PMID:22784481

  14. The high energy multicharged particle exposure of the microbial ecology evaluation device on board the Apollo 16 spacecraft

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Henke, R. P.

    1973-01-01

    The high energy multicharged cosmic-ray-particle exposure of the Microbial Ecology Evaluation Device package on board the Apollo 16 spacecraft was monitored using cellulose nitrate, Lexan polycarbonate, nuclear emulsion, and silver chloride crystal nuclear-track detectors. The results of the analysis of these detectors include the measured particle fluences, the linear energy transfer spectra, and the integral atomic number spectrum of stopping particle density. The linear energy transfer spectrum is used to compute the fractional cell loss in human kidney (T1) cells caused by heavy particles. Because the Microbial Ecology Evaluation Device was better shielded, the high-energy multicharged particle exposure was less than that measured on the crew passive dosimeters.

  15. EXHAUST EMISSIONS FROM A DIESEL ENGINE

    EPA Science Inventory

    Studies were performed using (1) Diesel particles collected from the undiluted exhaust of a single-cylinder engine, operated at constant speed and load, using a binary pure hydrocarbon fuel with air or gas mixture oxidizers, and (2) Diesel particles collected from the diluted exh...

  16. Exhaust gas purification device

    SciTech Connect

    Fujiwara, H.; Hibi, T.; Sayo, S.; Sugiura, Y.; Ueda, K.

    1980-02-19

    The exhaust gas purification device includes an exhaust manifold , a purification cylinder connected with the exhaust manifold through a first honey-comb shaped catalyst, and a second honeycomb shaped catalyst positioned at the rear portion of the purification cylinder. Each catalyst is supported by steel wool rings including coarse and dense portions of steel wool. The purification device further includes a secondary air supplying arrangement.

  17. Measurements of Ultrafine Particles and Other Vehicular Pollutants inside a Mobile Exposure System on Los Angeles Freeways

    Microsoft Academic Search

    Yifang Zhu; David C. Fung; Nola Kennedy; William C. Hinds; Arantzazu Eiguren-Fernandez; Christian Dye; Kostantinos Eleftheriadis; Eleftheria Katsivela; Donald Martello; Natalie Pekney; Richard Anderson; Cliff Davidson; Philip Hopke; Eugene Kim; William Christensen; Nolan Mangelson; Delbert Eatough; Saqib Mukhtar; Atilla Mutlu; Sergio Capareda; Calvin Parnell; Andrew Rutter; Katy Hanford; Jaime Zwers; Anthony Perillo-Nicholas; James Schauer; Mark Olson; Paul Scott; Deborah Proctor; Yinka Afon; David Ervin; Li Wang; Praveen Kolar; James Kastner; Brian Herner; David Stieb; Richard Burnett; Marc Smith-Doiron; Orly Brion; Hwashin Shin; Vanita Economou; Rich Cook; Vlad Isakov; Jawad Touma; William Benjey; James Thurman; Ellen Kinnee; Darrell Ensley

    2008-01-01

    A mobile exposure and air pollution measurement system was developed and used for on-freeway ultrafine particle health effects studies. A nine-passenger van was modified with a high-efficiency particulate air (HEPA) filtration system that can deliver filtered or unfiltered air to an exposure chamber inside the van. State-of-the-art instruments were used to measure concentration and size distribution of fine and ultrafine

  18. Investigation of a potential cotumorigenic effect of the dioxides of nitrogen and sulfur, and of diesel-engine exhaust, on the respiratory tract of Syrian golden hamsters.

    PubMed

    Heinrich, U; Mohr, U; Fuhst, R; Brockmeyer, C

    1989-05-01

    Syrian golden hamsters (480 males and 480 females) allocated into 24 groups were exposed 19 hours per day and 5 days per week for 6, 10.5, 15, or 18 months to total diesel exhaust, diesel exhaust without particles, a mixture of nitrogen dioxide (5 parts per million [ppm]2) and sulfur dioxide (10 ppm), or clean air. Two exposure groups from each test atmosphere were also treated by a single subcutaneous injection of either 3 mg or 6 mg of diethylnitrosamine/kg of body weight to evaluate an enhancing effect of diethylnitrosamine on exposure-related changes. Morphological evaluation was done by histopathology. Minor changes of the larynx and trachea were investigated by scanning electron microscopy, which showed a loss of ciliated cells in all exhaust-exposed groups. After exposure to diesel exhaust with or without particles, focal metaplasia and dysplasia of the respiratory epithelium were seen in the oldest animals by scanning electron microscopy. In the same specimens, attached mucous droplets indicated changes in mucous cells and mucous viscosity. Only the exposure to total diesel exhaust significantly increased the tumor rate in the upper respiratory tract of male hamsters treated with 6 mg of diethylnitrosamine per kg of body weight. At the lower diethylnitrosamine dose, no exposure-related effects on the tumor rates could be observed. The results from this study and from our other inhalation experiments appear to be insufficiently conclusive to demonstrate that diesel-engine exhaust should be classified as a cocarcinogen or enhancer for the test system used. PMID:2481467

  19. Investigation of a potential cotumorigenic effect of the dioxides of nitrogen and sulfur, and of diesel-engine exhaust, on the respiratory tract of Syrian golden hamsters

    SciTech Connect

    Heinrich, U.; Mohr, U.; Fuhst, R.; Brockmeyer, C. (Fraunhofer Institute for Toxicology and Aerosol Research, Hannover (Germany, F.R.))

    1989-05-01

    Syrian golden hamsters (480 males and 480 females) allocated into 24 groups were exposed 19 hours per day and 5 days per week for 6, 10.5, 15, or 18 months to total diesel exhaust, diesel exhaust without particles, a mixture of nitrogen dioxide (5 parts per million (ppm)2) and sulfur dioxide (10 ppm), or clean air. Two exposure groups from each test atmosphere were also treated by a single subcutaneous injection of either 3 mg or 6 mg of diethylnitrosamine/kg of body weight to evaluate an enhancing effect of diethylnitrosamine on exposure-related changes. Morphological evaluation was done by histopathology. Minor changes of the larynx and trachea were investigated by scanning electron microscopy, which showed a loss of ciliated cells in all exhaust-exposed groups. After exposure to diesel exhaust with or without particles, focal metaplasia and dysplasia of the respiratory epithelium were seen in the oldest animals by scanning electron microscopy. In the same specimens, attached mucous droplets indicated changes in mucous cells and mucous viscosity. Only the exposure to total diesel exhaust significantly increased the tumor rate in the upper respiratory tract of male hamsters treated with 6 mg of diethylnitrosamine per kg of body weight. At the lower diethylnitrosamine dose, no exposure-related effects on the tumor rates could be observed. The results from this study and from our other inhalation experiments appear to be insufficiently conclusive to demonstrate that diesel-engine exhaust should be classified as a cocarcinogen or enhancer for the test system used.

  20. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China

    NASA Astrophysics Data System (ADS)

    Tie, Xuexi; Wu, Dui; Brasseur, Guy

    In recent years, China and other emerging countries have been experiencing severe air pollution problems with high concentrations of atmospheric aerosol particles. Satellite measurements indicate that the aerosol loading of the atmosphere in highly populated regions of China is about 10 times higher than, for example, in Europe and in the Eastern United States. The exposure to extremely high aerosol concentrations might lead to important human health effects, including respiratory and cardiovascular diseases as well as lung cancers. Here, we analyze 52-year historical surface measurements of haze data in the Chinese city of Guangzhou, and show that the dramatic increase in the occurrence of air pollution events between 1954 and 2006 has been followed by a large enhancement in the incidence of lung cancer.

  1. Modeling the acute health effects of astronauts from exposure to large solar particle events.

    PubMed

    Hu, Shaowen; Kim, Myung-Hee Y; McClellan, Gene E; Cucinotta, Francis A

    2009-04-01

    Radiation exposure from Solar Particle Events (SPE) presents a significant health concern for astronauts for exploration missions outside the protection of the Earth's magnetic field, which could impair their performance and result in the possibility of failure of the mission. Assessing the potential for early radiation effects under such adverse conditions is of prime importance. Here we apply a biologically based mathematical model that describes the dose- and time-dependent early human responses that constitute the prodromal syndromes to consider acute risks from SPEs. We examine the possible early effects on crews from exposure to some historically large solar events on lunar and/or Mars missions. The doses and dose rates of specific organs were calculated using the Baryon radiation transport (BRYNTRN) code and a computerized anatomical man model, while the hazard of the early radiation effects and performance reduction were calculated using the Radiation-Induced Performance Decrement (RIPD) code. Based on model assumptions we show that exposure to these historical events would cause moderate early health effects to crew members inside a typical spacecraft or during extra-vehicular activities, if effective shielding and medical countermeasure tactics were not provided. We also calculate possible even worse cases (double intensity, multiple occurrences in a short period of time, etc.) to estimate the severity, onset and duration of various types of early illness. Uncertainties in the calculation due to limited data on relative biological effectiveness and dose-rate modifying factors for protons and secondary radiation, and the identification of sensitive sites in critical organs are discussed. PMID:19276707

  2. Exhaust gas deflector for truck exhaust stacks

    SciTech Connect

    Yates, C.I.; Krah, R.W.

    1990-11-20

    This patent describes an improved exhaust gas deflector for the top of a vertical truck exhaust stack. It comprises: a vertical tubular member having an upper and a lower end; means to attach the tubular member lower end to the top of a truck exhaust stack; a deflector body affixed to the tubular member at the upper end thereof, the deflector body having a forward and a rearward end and a passageway therethrough communicating with the tubular member; an upwardly inclined air scoop means at the forward end of the deflector body having a rearward edge, the rearward edge extending above and over the tubular member; and an upwardly inclined deflector means at the rearward end of the deflector body.

  3. Acid droplet generation in SRM exhaust clouds

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1983-01-01

    A free energy analysis is applied to the co-condensation/evaporation of H2O and HCl vapors on wettable particles in open air in order to model droplet nucleation in solid rocket motor (SRM) exhaust clouds. Formulations are defined for the free energy change, the drop radius, the saturation ratio, the total number of molecules, and the mean molecular radius in solution, as well as the molecular volume and the concentration range. The free energy release in the phase transition for the AL2O3 nuclei in the SRM exhaust is examined as a function of the HCl molefraction and nucleating particle radius, based on Titan III launch exhaust cloud conditions 90 sec after ignition. The most efficient droplet growth is determined to occur at an HCl molefraction of 0.082 and a particle radius of 0.0000013 cm, i.e. a molality of 5.355.

  4. Spatial learning and memory deficits induced by exposure to iron-56-particle radiation

    NASA Technical Reports Server (NTRS)

    Shukitt-Hale, B.; Casadesus, G.; McEwen, J. J.; Rabin, B. M.; Joseph, J. A.

    2000-01-01

    It has previously been shown that exposing rats to particles of high energy and charge (HZE) disrupts the functioning of the dopaminergic system and behaviors mediated by this system, such as motor performance and an amphetamine-induced conditioned taste aversion; these adverse behavioral and neuronal effects are similar to those seen in aged animals. Because cognition declines with age, spatial learning and memory were assessed in the Morris water maze 1 month after whole-body irradiation with 1.5 Gy of 1 GeV/nucleon high-energy (56)Fe particles, to test the cognitive behavioral consequences of radiation exposure. Irradiated rats demonstrated cognitive impairment compared to the control group as seen in their increased latencies to find the hidden platform, particularly on the reversal day when the platform was moved to the opposite quadrant. Also, the irradiated group used nonspatial strategies during the probe trials (swim with no platform), i.e. less time spent in the platform quadrant, fewer crossings of and less time spent in the previous platform location, and longer latencies to the previous platform location. These findings are similar to those seen in aged rats, suggesting that an increased release of reactive oxygen species may be responsible for the induction of radiation- and age-related cognitive deficits. If these decrements in behavior also occur in humans, they may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere.

  5. Health impacts due to personal exposure to fine particles caused by insulation of residential buildings in Europe

    NASA Astrophysics Data System (ADS)

    Gens, Alexandra; Hurley, J. Fintan; Tuomisto, Jouni T.; Friedrich, Rainer

    2014-02-01

    The insulation of residential buildings affects human exposure to fine particles. According to current EU guidelines, insulation is regulated for energy saving reasons. As buildings become tighter, the air exchange rate is reduced and, thus, the indoor concentration of pollutants is increased if there are significant indoor sources. While usually the effects of heat insulation and increase of the air-tightness of buildings on greenhouse gas emissions are highlighted, the negative impacts on human health due to higher indoor concentrations are not addressed. Thus, we investigated these impacts using scenarios in three European countries, i. e. Czech Republic, Switzerland and Greece. The assessment was based on modelling the human exposure to fine particles originating from sources of particles within outdoor and indoor air, including environmental tobacco smoke. Exposure response relationships were derived to link (adverse) health effects to the exposure. Furthermore, probable values for the parameters influencing the infiltration of fine particles into residential buildings were modelled. Results show that the insulation and increase of the air-tightness of residential buildings leads to an overall increase of the mean population exposure - and consequently adverse health effects - in all considered countries (ranging for health effects from 0.4% in Czech Republic to 11.8% in Greece for 100% insulated buildings) due to an accumulation of particles indoors, especially from environmental tobacco smoke. Considering only the emission reductions in outdoor air (omitting changes in infiltration parameters) leads to a decrease of adverse health effects. This study highlights the importance of ensuring a sufficient air exchange rate when insulating buildings, e. g. by prescribing heat ventilation and air conditioning systems in new buildings and information campaigns on good airing practice in renovated buildings. It also shows that assessing policy measures based on the exposure may provide different recommendations compared to an assessment based on only the outdoor air concentration.

  6. Diesel engine exhaust and lung cancer: An unproven association

    SciTech Connect

    Muscat, J.E.; Wynder, E.L. [American Health Foundation, New York, NY (United States)

    1995-09-01

    The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, internal inconsistencies, or inadequate characterization of diesel exposure. Four studies found no statistically significant association. It can be concluded that short-term exposure to diesel engine exhaust (<20 years) does not have a causative role in human lung cancer. There is statistical but no causal evidence that long-term exposure to diesel exhaust (>20 years) increases the risk of lung cancer for locomotive engineers, brakemen, and diesel engine mechanics. There is inconsistent evidence on the effects of long-term exposure to diesel exhaust in the trucking industry. There is no evidence for a joint effect of diesel exhaust and cigarette smoking on lung cancer risk. Using common criteria for determining causal associations, the epidemiologic evidence is insufficient to establish diesel engine exhaust as a human lung carcinogen. 77 refs., 1 tab.

  7. Diesel engine exhaust and lung cancer: an unproven association.

    PubMed Central

    Muscat, J E; Wynder, E L

    1995-01-01

    The risk of lung cancer associated with diesel exhaust has been calculated from 14 case-control or cohort studies. We evaluated the findings from these studies to determine whether there is sufficient evidence to implicate diesel exhaust as a human lung carcinogen. Four studies found increased risks associated with long-term exposure, although two of the four studies were based on the same cohort of railroad workers. Six studies were inconclusive due to missing information on smoking habits, internal inconsistencies, or inadequate characterization of diesel exposure. Four studies found no statistically significant associations. It can be concluded that short-term exposure to diesel engine exhaust (< 20 years) does not have a causative role in human lung cancer. There is statistical but not causal evidence that long-term exposure to diesel exhaust (> 20 years) increases the risk of lung cancer for locomotive engineers, brakemen, and diesel engine mechanics. There is inconsistent evidence on the effects of long-term exposure to diesel exhaust in the trucking industry. There is no evidence for a joint effect of diesel exhaust and cigarette smoking on lung cancer risk. Using common criteria for determining causal associations, the epidemiologic evidence is insufficient to establish diesel engine exhaust as a human lung carcinogen. Images p812-a PMID:7498093

  8. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGESBeta

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; Brune, W. H.; Hunter, J. F.; Kroll, J. H.; Cummings, M. J.; Brogan, J. F.; Parmar, Y.; Worsnop, D. R.; et al

    2015-01-01

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm?3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm?3 over exposure times of several hours. The OH concentration in themore »chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm?3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.« less

  9. DIESEL EXHAUST ENHANCES INFLUENZA VIRUS INFECTIONS IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Several factors, such as age and nutritional status can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects ...

  10. A coupled road dust and surface moisture model to predict non-exhaust road traffic induced particle emissions (NORTRIP). Part 2: Surface moisture and salt impact modelling

    NASA Astrophysics Data System (ADS)

    Denby, B. R.; Sundvor, I.; Johansson, C.; Pirjola, L.; Ketzel, M.; Norman, M.; Kupiainen, K.; Gustafsson, M.; Blomqvist, G.; Kauhaniemi, M.; Omstedt, G.

    2013-12-01

    Non-exhaust traffic induced emissions are a major source of airborne particulate matter in most European countries. This is particularly important in Nordic and Alpine countries where winter time road traction maintenance occurs, e.g. salting and sanding, and where studded tyres are used. Though the total mass generated by wear sources is a key factor in non-exhaust emissions, these emissions are also strongly controlled by surface moisture conditions. In this paper, Part 2, the road surface moisture sub-model of a coupled road dust and surface moisture model (NORTRIP) is described. We present a description of the road surface moisture part of the model and apply the coupled model to seven sites in Stockholm, Oslo, Helsinki and Copenhagen over 18 separate periods, ranging from 3.5 to 24 months. At two sites surface moisture measurements are available and the moisture sub-model is compared directly to these observations. The model predicts the frequency of wet roads well at both sites, with an average fractional bias of -2.6%. The model is found to correctly predict the hourly surface state, wet or dry, 85% of the time. From the 18 periods modelled using the coupled model an average absolute fractional bias of 15% for PM10 concentrations was found. Similarly the model predicts the 90'th daily mean percentiles of PM10 with an average absolute bias of 19% and an average correlation (R2) of 0.49. When surface moisture is not included in the modelling then this average correlation is reduced to 0.16, demonstrating the importance of the surface moisture conditions. Tests have been carried out to assess the sensitivity of the model to model parameters and input data. The model provides a useful tool for air quality management and for improving our understanding of non-exhaust traffic emissions.

  11. Analyses of risks associated with radiation exposure from past major solar particle events

    NASA Technical Reports Server (NTRS)

    Weyland, Mark D.; Atwell, William; Cucinotta, Francis A.; Wilson, John W.; Hardy, Alva C.

    1991-01-01

    Radiation exposures and cancer induction/mortality risks were investigated for several major solar particle events (SPE's). The SPE's included are: February 1956, November 1960, August 1972, October 1989, and the September, August, and October 1989 events combined. The three 1989 events were treated as one since all three could affect a single lunar or Mars mission. A baryon transport code was used to propagate particles through aluminum and tissue shield materials. A free space environment was utilized for all calculations. Results show the 30-day blood forming organs (BFO) limit of 25 rem was surpassed by all five events using 10 g/sq cm of shielding. The BFO limit is based on a depth dose of 5 cm of tissue, while a more detailed shield distribution of the BFO's was utilized. A comparison between the 5 cm depth dose and the dose found using the BFO shield distribution shows that the 5 cm depth value slightly higher than the BFO dose. The annual limit of 50 rem was exceeded by the August 1972, October 1989, and the three combined 1989 events with 5 g/sq cm of shielding. Cancer mortality risks ranged from 1.5 to 17 percent at 1 g/sq cm and 0.5 to 1.1 percent behind 10 g/sq cm of shielding for five events. These ranges correspond to those for a 45 year old male. It is shown that secondary particles comprise about 1/3 of the total risk at 10 g/sq cm of shielding. Utilizing a computerized Space Shuttle shielding model to represent a typical spacecraft configuration in free space at the August 1972 SPE, average crew doses exceeded the BFO dose limit.

  12. Energy Implications of Residential Particle Control Technologies Jeffrey A. Siegel1,*

    E-print Network

    Siegel, Jeffrey

    is one of the most serious indoor particle sources and many homes have rangehood fans that exhaust air of exposure to particles are serious and particulate matter is a ubiquitous indoor air pollutant. There are a variety of investigations of air cleaning efficiency and effectiveness for different types of air cleaners

  13. Inflammatory and cytotoxic potential of the airborne particle material assessed by nasal lavage and cell exposure methods.

    PubMed

    Roponen, Marjut; Toivola, Mika; Alm, Sari; Nevalainen, Aino; Jussila, Juha; Hirvonen, Maija-Riitta

    2003-01-01

    Exposure to bioaerosols in moisture-damaged indoor environments has been shown to be a potential health risk. The aim of the present study was to evaluate the inflammatory and cytotoxic potential of airborne particle material using both the nasal lavage (NAL) method and a cell exposure study. A 24-h sample collection for airborne particles was performed using personal sampling and microenvironmental measurements in homes and an 8-h sample collection in the working places of the studied subjects. At the end of the sampling period, the production of nitric oxide, tumor necrosis factor alpha, interleukin (IL)-1 beta, IL-4, and IL-6 was analyzed in the NAL samples of the subjects. The same mediators, excluding IL-4, were measured in the cell culture medium of mouse RAW264.7 macrophages, which were exposed to the pooled filter extracts representing personal, home, and workplace exposure of each individual during the 24 h before the NAL. Samplings were repeated after 2 wk. The subjects were divided into groups of "low exposure" and "high exposure" according to the concentrations of viable fungi, viable bacteria, or total microbial amount in the pooled extract. Cytokine levels in the NAL samples of subjects with high microbial exposure were slightly increased compared to the corresponding values of the subjects with low exposure. Filter samples collected from the subjects with high microbial exposure induced a significant increase in the production of cytokines in the RAW264.7 macrophages, as compared to those from the subjects with low exposure. The within-subject variation was low in all of the cytokine measurements, but the correlation between the studied methods was poor. In conclusion, both of the methods discriminate at the group level between subjects with high and low microbial exposure. Sampling of airborne particle material and exposure of the mammalian cells to the obtained samples seems to be highly applicable in the environmental monitoring, whereas examination of the exposed subjects directly, for example by using the NAL method, is essential when association between exposure and health effects is evaluated. PMID:12476358

  14. Susceptibility of Tribolium confusum (Coleoptera: Tenebrionidae) to pyrethrin aerosol: effects of aerosol particle size, concentration, and exposure conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A series of laboratory studies were conducted to assess effect of droplet size on efficacy of pyrethrin aerosol against adults of Tribolium confusum Jacqueline DuVal, the confused flour beetle. A vertical flow aerosol exposure chamber that generated a standardized particle size diameter was used for...

  15. PULMONARY AND SYSTEMIC EFFECTS OF ZINC-CONTAINING EMISSION PARTICLES IN THREE RAT STRAINS: MULTIPLE EXPOSURE SCENARIOS

    EPA Science Inventory

    Abstract Pulmonary and Systemic Effects of Zinc-Containing Emission Particles in Three Rat Strains: Multiple Exposure Scenarios. Kodavanti, U. P., Schladweiler, M. C. J., Ledbetter, A. D., Hauser, R.*, Christiani, D. C.*, McGee, J., Richards, J. R., and Costa, D. L. (2002)....

  16. Development of All-Solid-State Sensors for Measurement of Nitric Oxide and Ammonia Concentrations by Optical Absorption in Particle-Laden Combustion Exhaust Streams

    SciTech Connect

    Jerald A. Caton; Kalyan Annamalai; Robert P. Lucht

    2006-12-31

    An all-solid-state continuous-wave (cw) laser system for ultraviolet absorption measurements of the nitric oxide (NO) molecule has been developed and demonstrated. For the NO sensor, 250 nW of tunable cw ultraviolet radiation is produced by sum-frequency-mixing of 532-nm radiation from a diode-pumped Nd:YAG laser and tunable 395-nm radiation from an external cavity diode laser (ECDL). The sum-frequency-mixing process occurs in a beta-barium borate crystal. The nitric oxide absorption measurements are performed by tuning the ECDL and scanning the sum-frequency-mixed radiation over strong nitric oxide absorption lines near 226 nm. In Year 1 of the research, the nitric oxide sensor was used for measurements in the exhaust of a coal-fired laboratory combustion facility. The Texas A&M University boiler burner facility is a 30 kW (100,000 Btu/hr) downward-fired furnace with a steel shell encasing ceramic insulation. Measurements of nitric oxide concentration in the exhaust stream were performed after modification of the facility for laser based NOx diagnostics. The diode-laser-based ultraviolet absorption measurements were successful even when the beam was severely attenuated by particulate in the exhaust stream and window fouling. Single-laser-sweep measurements were demonstrated with an effective time resolution of 100 msec, limited at this time by the scan rate of our mechanically tuned ECDL system. In Year 2, the Toptica ECDL in the original system was replaced with a Sacher Lasers ECDL. The mode-hop-free tuning range and tuning rate of the Toptica ECDL were 25 GHz and a few Hz, respectively. The mode-hop-free tuning range and tuning rate of the Sacher Lasers ECDL were 90 GHz and a few hundred Hz, respectively. The Sacher Lasers ECDL thus allows us to scan over the entire NO absorption line and to determine the absorption baseline with increased accuracy and precision. The increased tuning rate is an advantage in that data can be acquired much more rapidly and the absorption measurements are less susceptible to the effects of transient fluctuations in the properties of the coal combustor exhaust stream. Gas cell measurements were performed using the NO sensor with the new ECDL, and a few spectra were acquired from the coal exhaust stream. However, the laser diode in the new ECDL failed during the coal combustor tests. In Year 3, however, we obtained a new GaN laser diode for our ECDL system, installed it, and completed an extensive series of measurements in the Texas A&M coal-fired laboratory combustion facility. The combustor was operated with coal and coal/biomass as fuels, with and without reburn, and with and without ammonia injection. Several different fuel equivalence ratios were investigated for each operating condition.

  17. Space shuttle exhaust cloud properties

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Keller, V. W.

    1983-12-01

    A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.

  18. Space shuttle exhaust cloud properties

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Keller, V. W.

    1983-01-01

    A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.

  19. Impact of smoking on in-vehicle fine particle exposure during driving

    NASA Astrophysics Data System (ADS)

    Sohn, Hongji; Lee, Kiyoung

    2010-09-01

    Indoor smoking ban in public places can reduce secondhand smoke (SHS) exposure. However, smoking in cars and homes has continued. The purpose of this study was to assess particulate matter less than 2.5 ?m (PM 2.5) concentration in moving cars with different window opening conditions. The PM 2.5 level was measured by an aerosol spectrometer inside and outside moving cars simultaneously, along with ultrafine particle (UFP) number concentration, speed, temperature and humidity inside cars. Two sport utility vehicles were used. Three different ventilation conditions were evaluated by up to 20 repeated experiments. In the pre-smoking phase, average in-vehicle PM 2.5 concentrations were 16-17 ?g m -3. Regardless of different window opening conditions, the PM 2.5 levels promptly increased when smoking occurred and decreased after cigarette was extinguished. Although only a single cigarette was smoked, the average PM 2.5 levels were 506-1307 ?g m -3 with different window opening conditions. When smoking was ceased, the average PM 2.5 levels for 15 min were several times higher than the US National Ambient Air Quality Standard of 35 ?g m -3. It took longer than 10 min to reach the level of the pre-smoking phase. Although UFP levels had a similar temporal profile of PM 2.5, the increased levels during the smoking phase were relatively small. This study demonstrated that the SHS exposure in cars with just a single cigarette being smoked could exceed the US EPA NAAQS under realistic window opening conditions. Therefore, the findings support the need for public education against smoking in cars and advocacy for a smoke-free car policy.

  20. Time course of lung retention and toxicity of inhaled particles: short-term exposure to nano-Ceria.

    PubMed

    Keller, Jana; Wohlleben, Wendel; Ma-Hock, Lan; Strauss, Volker; Gröters, Sibylle; Küttler, Karin; Wiench, Karin; Herden, Christiane; Oberdörster, Günter; van Ravenzwaay, Bennard; Landsiedel, Robert

    2014-11-01

    Two Ceria nanomaterials (NM-211 and NM-212) were tested for inhalation toxicity and organ burdens in order to design a chronic and carcinogenicity inhalation study (OECD TG No. 453). Rats inhaled aerosol concentrations of 0.5, 5, and 25 mg/m(3) by whole-body exposure for 6 h/day on 5 consecutive days for 1 or 4 weeks with a post-exposure period of 24 or 129 days, respectively. Lungs were examined by bronchoalveolar lavage and histopathology. Inhaled Ceria is deposited in the lung and cleared with a half-time of 40 days; at aerosol concentrations higher than 0.5 mg/m(3), this clearance was impaired resulting in a half-time above 200 days (25 mg/m(3)). After 5 days, Ceria (>0.5 mg/m(3)) induced an early inflammatory reaction by increases of neutrophils in the lung which decreased with time, with sustained exposure, and also after the exposure was terminated (during the post-exposure period). The neutrophil number observed in bronchoalveolar lavage fluid (BALF) was decreasing and supplemented by mononuclear cells, especially macrophages which were visible in histopathology but not in BALF. Further progression to granulomatous inflammation was observed 4 weeks post-exposure. The surface area of the particles provided a dose metrics with the best correlation of the two Ceria's inflammatory responses; hence, the inflammation appears to be directed by the particle surface rather than mass or volume in the lung. Observing the time course of lung burden and inflammation, it appears that the dose rate of particle deposition drove an initial inflammatory reaction by neutrophils. The later phase (after 4 weeks) was dominated by mononuclear cells, especially macrophages. The progression toward the subsequent granulomatous reaction was driven by the duration and amount of the particles in the lung. The further progression of the biological response will be determined in the ongoing long-term study. PMID:25273020

  1. Assessment of environmental tobacco smoke and respirable suspended particle exposures for nonsmokers in Basel by personal monitoring

    NASA Astrophysics Data System (ADS)

    Phillips, K.; Howard, D. A.; Bentley, M. C.; Alván, G.

    One hundred and ninety-six randomly selected nonsmoking subjects collected air samples close to their breathing zone by wearing personal monitors for 24 h. The study was centred in Basel, Switzerland, and comprised housewives in one group, primarily for assessing exposures in the home, and office workers in a second group to assess the contribution of the workplace to overall exposure. Samples collected were analysed for respirable suspended particles (RSP), nicotine, 3-ethenylpyridine and environmental tobacco smoke (ETS) particles by using ultraviolet absorbance, fluorescence and solanesol measurements. Saliva cotinine analyses were also undertaken to confirm the nonsmoking status of the subjects. Based upon median 24 h time weighted average concentrations, office workers who live and work with smokers were exposed to 39 ?g m -3 RSP, 6.6 ?g m -3 ETS particles and 0.90 ?g m -3 nicotine. Housewives living with smokers were exposed to median concentrations of 34 ?g m -3 RSP, 1.4 ?g m -3 ETS particles and 0.60 ?g m -3 nicotine. Workplaces where smoking occurred were estimated, on average, to contribute between 34 and 46% to annual exposure of ETS particles and nicotine. Based upon 90th percentile values the most highly exposed housewives, those living with smokers, would potentially inhale 18 cigarette equivalents per year whilst the most highly exposed office workers, both living and working with smokers, might inhale 61 cigarette equivalents. The rate at which subjects misreported their nonsmoking status varied between 9.7 and 12.2%.

  2. Effects of exposure to 56Fe particles on the acquisition of a conditioned place preference in rats

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Shukitt-Hale, B.; Joseph, J. A.; Denissova, N.

    2001-01-01

    Exposure to low doses of 56Fe particles produces changes in neural function and behavior. The present experiments were designed to examine the effects of irradiation on the acquisition of a dopamine-mediated conditioned place preference (CPP). In the CPP procedure, rats are given an injection of the dopamine agonist amphetamine in one distinctive compartment and a saline injection in a different compartment of a three-compartment apparatus. Control rats develop a preference for the amphetamine-paired compartment. In contrast, rats exposed to 1 Gy of 56Fe particles fail to develop a similar preference. The results of the experiment indicate that exposure to low doses of heavy particles can disrupt the neural mechanisms that mediate the reinforcement of behavior.

  3. Astrophysics: Exhaust inspection

    NASA Astrophysics Data System (ADS)

    Meier, David L.

    2008-04-01

    What do you see if you peer into the exhaust of a jet engine larger than our Solar System? Only astronomers with the largest radio telescopes can see the full picture - and definitive observations are beginning to filter through.

  4. Exhaust back pressure reducer

    SciTech Connect

    Eller, H.E.

    1987-05-19

    This patent describes an exhaust back pressure reducer for the internal combustion engine of a tractor for pulling a trailer. The tractor has a cab. An air deflector on the top of the cab deflect air over the top of the trailer as the tractor pulls the trailer over the road, and it includes exhaust system for the engine. The reducer comprises: means at the top of the air deflector on the top of the cab for aspirating gas from the engine exhaust system to reduce the exhaust back pressure on the engine. The aspirating means is positioned for flow therepast of air relative to the air deflector as the tractor travels forward. The aspirating means is ported for suctioning gas therefrom by the air flowing therepast.

  5. Electrically charged small soot particles in the exhaust of an aircraft gas-turbine engine combustor: comparison of model and experiment

    NASA Astrophysics Data System (ADS)

    Sorokin, A.; Arnold, F.

    The emission of electrically charged soot particles by an aircraft gas-turbine combustor is investigated using a theoretical model. Particular emphasis is placed on the influence of the fuel sulfur content (FSC). The model considers the production of primary "combustion" electrons and ions in the flame zone and their following interaction with molecular oxygen, sulfur-bearing molecules (e.g. O 2, SO 2, SO 3, etc.) and soot particles. The soot particle size distribution is approximated by two different populations of mono-dispersed large and small soot particles with diameters of 20-30 and 5-7 nm, respectively. The effect of thermal ionization of soot and its interaction with electrons and positive and negative ions is included in the model. The computed positive and negative chemiion (CI) concentrations at the combustor exit and relative fractions of small neutral and charged soot particles were found to be in satisfactory agreement with experimental data. The results show that the FSC indeed may influence the concentration of negative CI at low fuel flow into combustor. Importantly the simulation indicates a very efficient mutual interaction of electrons and ions with soot particles with a large effect on both ion and charged soot particle concentrations. This result may be interpreted as a possible indirect effect of FSC on the growth and size distribution of soot particles.

  6. Bacterial spore survival after exposure to HZE particle bombardment -implication for the lithopanspermia hypothesis.

    NASA Astrophysics Data System (ADS)

    Moeller, Ralf; Berger, Thomas; Matthiä, Daniel; Okayasu, Ryuichi; Kitamura, H.; Reitz, Guenther

    Based on their unique resistance to various space parameters, bacterial spores (mainly spores of Bacillus subtilis) are one of the model systems used for astrobiological studies. More re-cently, spores of B. subtilis have been applied for experimental research on the likelihood of interplanetary transfer of life. Since its first postulation by Arrhenius in 1903, the pansper-mia hypothesis has been revisited many-times, e.g. after the discovery of several lunar and Martian meteorites on Earth [1,2]. These information provided intriguing evidence that rocks may naturally be transferred between the terrestrial planets. The scenario of panspermia, now termed "lithopanspermia" involves three basic hypothetical steps: (i) the escape process, i.e. removal to space of biological material, which has survived being lifted from the surface to high altitudes; (ii) interim state in space, i.e., survival of the biological material over time scales comparable with interplanetary or interstellar passage; (iii) the entry process, i.e. nondestruc-tive deposition of the biological material on another planet [2]. In our research, spores of B. subtilis were used to study the effects of galactic cosmic radiation on spore survival and induced mutations. On an interplanetary journey, outside a protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galac-tic sources and from the sun. Air-dried spore layers on three different host materials (i.e., non-porous igneous rocks (gabbro), quartz, and spacecraft analog material (aluminum)) were irradiated with accelerated heavy ions (Helium and Iron) with a LET (linear energy transfer) ˆ of 2 and 200 keV/Am, at the Heavy Ion Medical Accelerator (HIMAC) at the National In-stitute of Radiological Sciences, (NIRS), Chiba, Japan in the frame of the HIMAC research project 20B463 "Characterization of heavy ion-induced damage in Bacillus subtilis spores and their global transcriptional response during spore germination" (Moeller et al., 2008 [3]). To simulate the interplanetary journey of a meteorite, stacks of spore-samples on gabbro slides in different depths were exposed. Spore survival and the rate of the induced mutations (i.e., sporulation-deficiency (Spo-)) depended on the LET of the applied species of ions as well as on the location (and depth) of the irradiated spores in the artificial meteorite. The exposure to high LET iron ions led to a low level of spore survival and increased frequency of mutation to Spo-compared to low-energy charged particles compared to the low LET helium ions. In order to obtain insights on the role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination (HR) and apurinic/apyrimidinic (AP) endonucleases in B. subtilis spore resistance to high-energy charged particles has been studied in parallel. Spores deficient in NHEJ and AP endonucleases were significantly more sensitive to HZE particle bombardment than were the HR-mutant and wild-type spores, indicating that NHEJ and AP endonucleases provide DNA break repair pathways during spore germination. ((References: [1] Arrhenius, S. 1903. Die Verbreitung des Lebens im Weltenraum. Umschau 7:481-485.; [2] Nicholson, W. L. 2009. Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Mi-crobiol. 17:243-250.; [3] Moeller, R., P. Setlow, G. Horneck, T. Berger, G. Reitz, P. Rettberg, A. J. Doherty, R. Okayasu, and W. L. Nicholson. 2008. Roles of the major, small, acid-soluble spore proteins and spore-specific and universal DNA repair mechanisms in resistance of Bacillus subtilis spores to ionizing radiation from X-rays and high-energy charged-particle bombardment. J. Bacteriol. 190:1134-1140.))

  7. Interlaboratory Test of Exhaust PM Using ELPI

    Microsoft Academic Search

    E. Zervas; P. Dorlhène; L. Forti; C. Perrin; J. C. Momique; R. Monier; H. Ing; B. Lopez

    2005-01-01

    The Particulate Measurement Programme (PMP) works on the development of an improved method for the exhaust particulate matter (PM) measurement, which can include, if feasible and necessary, the measurement of particle number. The French PMP subgroup, composed of IFP, PSA Peugeot-Citroën, Renault, and UTAC, has defined a measurement protocol based on electrical low-pressure impactor (ELPI) and conducted an interlaboratory test

  8. Development of an exposure system for the toxicological evaluation of particles derived from coal-fired power plants

    SciTech Connect

    Pablo A. Ruiz; Tarun Gupta; Choong-Min Kang; Joy E. Lawrence; Stephen T. Ferguson; Jack M. Wolfson; Annette C. Rohr; Petros Koutrakis [Harvard School of Public Health, Boston, MA (United States). Exposure, Epidemiology, and Risk Program, Department of Environmental Health

    2007-06-15

    To investigate the toxicity of particles originating from coal-fired power plants it is necessary to consider the effects of both primary particles and secondary components formed in the air through atmospheric reactions. This report describes a new exposure system that can be used to expose animals to both directly emitted particles and to secondary particles. The system consists of three main components. The first is a sampling system to continuously collect and dilute power plant stack emissions. The second is a reaction laboratory that contains reaction chambers to simulate atmospheric reactions. The following atmospheric reactions were simulated: (1) the oxidation of sulfur dioxide to form sulfuric acid, (2) the neutralization of sulfuric acid by ammonia, and (3) the reaction of -pinene with ozone to form secondary organic aerosol. Using these chambers with the diluted emissions, different typical atmospheric scenarios can be simulated. The final component is a mobile toxicology laboratory where animals are exposed to the resulting test aerosols. We report here the characteristics of the test aerosol exposures obtained at a coal-fired electric power plant. Particle exposures were characterized for concentrations of mass, elements, elemental carbon, organic species, inorganic ions, strong acidity, particle number, and size distributions. Mass concentrations ranged from a few micrograms per cubic meter for a scenario of primary emissions only, to about 250 {mu}g m{sup 3} for the most complex scenario. We show that the different scenarios produced a large variation in the composition of the test aerosol, thus potentially changing the toxicity of the emissions.

  9. Influence of experimental pulmonary emphysema on the toxicological effects from inhaled nitrogen dioxide and diesel exhaust

    SciTech Connect

    Mauderly, J.L.; Bice, D.E.; Cheng, Y.S.; Gillett, N.A.; Henderson, R.F.; Pickrell, J.A.; Wolff, R.K. (Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM (USA))

    1989-10-01

    This project examined the influence of preexisting, experimentally induced pulmonary emphysema on the adverse health effects in rats of chronic inhalation exposure to either nitrogen dioxide or automotive diesel-engine exhaust. Previous reports indicated that humans with chronic lung disease were among those most severely affected by episodic exposures to high concentrations of airborne toxicants. There were no previous reports comparing the effects of chronic inhalation exposure to components of automotive emissions in emphysematous and normal animals. The hypothesis tested in this project was that rats with preexisting pulmonary emphysema were more susceptible than rats with normal lungs to the adverse effects of the toxicant exposures. Young adult rats were housed continuously in inhalation exposure chambers and exposed seven hours per day, five days per week, for 24 months to nitrogen dioxide at 9.5 parts per million (ppm)2, or to diesel exhaust at 3.5 mg soot/m3, or to clean air as control animals. These concentrations were selected to produce mild, but distinct, effects in rats with normal lungs. Pulmonary emphysema was induced in one-half of the rats by intratracheal instillation of the proteolytic enzyme elastase six weeks before the toxicant exposures began. Health effects were evaluated after 12, 18, and 24 months of exposure. The measurements included respiratory function, clearance of inhaled radiolabeled particles, pulmonary immune responses to instilled antigen, biochemistry and cytology of airway fluid, total lung collagen, histopathology, lung morphometry, and lung burdens of diesel soot. The significance of influences of emphysema and toxicant exposure, and interactions between influences of the two treatments, were evaluated by analysis of variance.

  10. The LDCE Particle Impact Experiment as flown on STS-46. [limited duration space environment candidate materials exposure (LDCE)

    NASA Technical Reports Server (NTRS)

    Maag, Carl R.; Tanner, William G.; Borg, Janet; Bibring, Jean-Pierre; Alexander, W. Merle; Maag, Andrew J.

    1992-01-01

    Many materials and techniques have been developed by the authors to sample the flux of particles in Low Earth Orbit (LEO). Though regular in-site sampling of the flux in LEO the materials and techniques have produced data which compliment the data now being amassed by the Long Duration Exposure Facility (LDEF) research activities. Orbital debris models have not been able to describe the flux of particles with d sub p less than or = 0.05 cm, because of the lack of data. Even though LDEF will provide a much needed baseline flux measurement, the continuous monitoring of micron and sub-micron size particles must be carried out. A flight experiment was conducted on the Space Shuttle as part of the LDCE payload to develop an understanding of the Spatial Density (concentration) as a function of size (mass) for particle sizes 1 x 10(exp 6) cm and larger. In addition to the enumeration of particle impacts, it is the intent of the experiment that hypervelocity particles be captured and returned intact. Measurements will be performed post flight to determine the flux density, diameters, and subsequent effects on various optical, thermal control and structural materials. In addition to these principal measurements, the Particle Impact Experiment (PIE) also provides a structure and sample holders for the exposure of passive material samples to the space environment, e.g., thermal cycling, and atomic oxygen, etc. The experiment will measure the optical property changes of mirrors and will provide the fluence of the ambient atomic oxygen environment to other payload experimenters. In order to augment the amount of material returned in a form which can be analyzed, the survivability of the experiment as well as the captured particles will be assessed. Using Sandia National Laboratory's hydrodynamic computer code CTH, hypervelocity impacts on the materials which comprise the experiments have been investigated and the progress of these studies are reported.

  11. Effects of exposure to 56Fe particles or protons on fixed-ratio operant responding in rats

    NASA Technical Reports Server (NTRS)

    Rabin, Bernard M.; Buhler, Lynn L.; Joseph, James A.; Shukitt-Hale, Barbara; Jenkins, Daniel G.

    2002-01-01

    On long-duration trips outside of the magnetosphere, astronauts will be exposed to protons and to heavy particles which can affect their performance of required tasks. It is essential to determine the range of behaviors that might be affected by exposure to these types of radiation in order to understand the nature of behavioral deficits and to develop effective countermeasures. The present experiment examined the ability of rats to make an operant response following exposure to protons (250 MeV, 4 Gy) or 56Fe particles (1 GeV/n, 1 or 2 Gy). Following irradiation, rats were trained to press a lever in order to obtain food reinforcement. They were then placed on an ascending fixed-ratio schedule from FR-1 (each lever press rewarded with a food pellet) through FR-35 (35 lever presses required for 1 food pellet). Rats exposed to 4 Gy of protons or 1 Gy of 56Fe particles responded similarly to controls, increasing their rate of responding as the ratio increased. However, rats exposed to 2 Gy of 56Fe particles failed to increase their rate of responding at ratios greater than FR-20, indicating that rats exposed to 2 Gy of 56Fe particles cannot respond appropriately to increasing work requirements.

  12. Understanding cancer development processes after HZE-particle exposure: roles of ROS, DNA damage repair and inflammation.

    PubMed

    Sridharan, D M; Asaithamby, A; Bailey, S M; Costes, S V; Doetsch, P W; Dynan, W S; Kronenberg, A; Rithidech, K N; Saha, J; Snijders, A M; Werner, E; Wiese, C; Cucinotta, F A; Pluth, J M

    2015-01-01

    During space travel astronauts are exposed to a variety of radiations, including galactic cosmic rays composed of high-energy protons and high-energy charged (HZE) nuclei, and solar particle events containing low- to medium-energy protons. Risks from these exposures include carcinogenesis, central nervous system damage and degenerative tissue effects. Currently, career radiation limits are based on estimates of fatal cancer risks calculated using a model that incorporates human epidemiological data from exposed populations, estimates of relative biological effectiveness and dose-response data from relevant mammalian experimental models. A major goal of space radiation risk assessment is to link mechanistic data from biological studies at NASA Space Radiation Laboratory and other particle accelerators with risk models. Early phenotypes of HZE exposure, such as the induction of reactive oxygen species, DNA damage signaling and inflammation, are sensitive to HZE damage complexity. This review summarizes our current understanding of critical areas within the DNA damage and oxidative stress arena and provides insight into their mechanistic interdependence and their usefulness in accurately modeling cancer and other risks in astronauts exposed to space radiation. Our ultimate goals are to examine potential links and crosstalk between early response modules activated by charged particle exposure, to identify critical areas that require further research and to use these data to reduced uncertainties in modeling cancer risk for astronauts. A clearer understanding of the links between early mechanistic aspects of high-LET response and later surrogate cancer end points could reveal key nodes that can be therapeutically targeted to mitigate the health effects from charged particle exposures. PMID:25564719

  13. Proinflammatory effects of diesel exhaust nanoparticles on scleroderma skin cells.

    PubMed

    Mastrofrancesco, A; Alfè, M; Rosato, E; Gargiulo, V; Beatrice, C; Di Blasio, G; Zhang, B; Su, D S; Picardo, M; Fiorito, S

    2014-01-01

    Autoimmune diseases are complex disorders of unknown etiology thought to result from interactions between genetic and environmental factors. We aimed to verify whether environmental pollution from diesel engine exhaust nanoparticulate (DEP) of actually operating vehicles could play a role in the development of a rare immune-mediated disease, systemic sclerosis (SSc), in which the pathogenetic role of environment has been highlighted. The effects of carbon-based nanoparticulate collected at the exhaust of newer (Euro 5) and older (Euro 4) diesel engines on SSc skin keratinocytes and fibroblasts were evaluated in vitro by assessing the mRNA expression of inflammatory cytokines (IL-1 ? , IL-6, IL-8, and TNF-?) and fibroblast chemical mediators (metalloproteases 2, 3, 7, 9, and 12; collagen types I and III; VEGF). DEP was shown to stimulate cytokine gene expression at a higher extent in SSc keratinocytes versus normal cells. Moreover, the mRNA gene expression of all MMPs, collagen types, and VEGF genes was significantly higher in untreated SSc fibroblasts versus controls. Euro 5 particle exposure increased the mRNA expression of MMP-2, -7, and -9 in SSc fibroblasts in a dose dependent manner and only at the highest concentration in normal cells. We suggest that environmental DEP could trigger the development of SSc acting on genetically hyperreactive cell systems. PMID:24982919

  14. Proinflammatory Effects of Diesel Exhaust Nanoparticles on Scleroderma Skin Cells

    PubMed Central

    Mastrofrancesco, A.; Alfè, M.; Rosato, E.; Gargiulo, V.; Beatrice, C.; Di Blasio, G.; Zhang, B.; Su, D. S.; Picardo, M.; Fiorito, S.

    2014-01-01

    Autoimmune diseases are complex disorders of unknown etiology thought to result from interactions between genetic and environmental factors. We aimed to verify whether environmental pollution from diesel engine exhaust nanoparticulate (DEP) of actually operating vehicles could play a role in the development of a rare immune-mediated disease, systemic sclerosis (SSc), in which the pathogenetic role of environment has been highlighted. The effects of carbon-based nanoparticulate collected at the exhaust of newer (Euro 5) and older (Euro 4) diesel engines on SSc skin keratinocytes and fibroblasts were evaluated in vitro by assessing the mRNA expression of inflammatory cytokines (IL-1?, IL-6, IL-8, and TNF-?) and fibroblast chemical mediators (metalloproteases 2, 3, 7, 9, and 12; collagen types I and III; VEGF). DEP was shown to stimulate cytokine gene expression at a higher extent in SSc keratinocytes versus normal cells. Moreover, the mRNA gene expression of all MMPs, collagen types, and VEGF genes was significantly higher in untreated SSc fibroblasts versus controls. Euro 5 particle exposure increased the mRNA expression of MMP-2, -7, and -9 in SSc fibroblasts in a dose dependent manner and only at the highest concentration in normal cells. We suggest that environmental DEP could trigger the development of SSc acting on genetically hyperreactive cell systems. PMID:24982919

  15. Exposure to O-16 particle irradiation causes age-like decrements in rats through increased oxidative stress, inflammation and loss of autophagy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Exposing young rats to particles of high energy and charge (HZE particles) enhances indices of oxidative stress and inflammation, disrupts the functioning of neuronal communication, and alters cognitive behaviors. Even though exposure to these highly charged particles occurs at low fluence rates, p...

  16. EFFECTS OF DIESEL EXHAUST ON TLR3 EXPRESSION IN MICE

    EPA Science Inventory

    There are a variety of intrinsic as well as extrinsic factors, such as exposure to air pollution that can affect the pathogenesis of respiratory infections. Exposure to diesel exhaust (DE) emissions can alter host defense and immune responses and we have previously demonstrated t...

  17. Effects of long-term exposure to ammonium sulfate particles on growth and gas exchange rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica seedlings

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Otani, Yoko; Li, Peiran; Nagao, Hiroshi; Lenggoro, I. Wuled; Ishida, Atsushi; Yazaki, Kenichi; Noguchi, Kyotaro; Nakaba, Satoshi; Yamane, Kenichi; Kuroda, Katsushi; Sano, Yuzou; Funada, Ryo; Izuta, Takeshi

    2014-11-01

    To clarify the effects of long-term exposure to ammonium sulfate (AS) particles on growth and physiological functions of forest tree species, seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to submicron-size AS particles during two growing seasons from 3 June 2011 to 8 October 2012. The mean sulfate concentration in PM2.5 increased during the exposure inside the chamber in 2011 and 2012 by 2.73 and 4.32 ?g SO42- m-3, respectively. No significant effects of exposure to AS particles were detected on the whole-plant dry mass of the seedlings. These results indicate that the exposure to submicrometer AS particles at the ambient level for two growing seasons did not significantly affect the growth of the seedlings. No significant effects of exposure to AS particles were found on the net photosynthetic rate in the leaves or needles of F. crenata, C. sieboldii and L. kaempferi seedlings. Also, in the previous-year needles of C. japonica seedlings, exposure to AS particles significantly reduced the net photosynthetic rate, which may be caused by the reduction in the concentration of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco). On the contrary, in current-year needles of C. japonica seedlings, net photosynthetic rate significantly increased with exposure to AS particles, which may be the result of increases in stomatal conductance and concentrations of Rubisco and chlorophyll. Furthermore, exposure to AS particles correlated with an increase in concentrations of NH4+, free amino acid and total soluble protein, suggesting that AS particles may be deliquesced, absorbed into the leaves and metabolized into amino acid and protein. These results suggest that net photosynthesis in the needles of C. japonica is relatively sensitive to submicron-size AS particles as compared with the other three tree species.

  18. Diesel Exhaust in Miners Study (DEMS)

    Cancer.gov

    In March 2012, the National Cancer Institute (NCI) and the National Institute for Occupational Safety and Health (NIOSH) completed a retrospective cohort mortality and nested case-control study of 12,315 workers at eight non-metal mining facilities to investigate risk of lung cancer in relation to quantitative measures of historical exposure to diesel exhaust, after taking into account smoking and other lung cancer risk factors

  19. Geomagnetic influence on aircraft radiation exposure during a solar energetic particle event in October 2003

    Microsoft Academic Search

    Christopher J. Mertens; Brian T. Kress; Michael Wiltberger; Steve R. Blattnig; Tony S. Slaba; Stanley C. Solomon; M. Engel

    2010-01-01

    We present initial results from the Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) model during the Halloween 2003 superstorm. The objective of NAIRAS is to produce global, real-time, data-driven predictions of ionizing radiation for archiving and assessing the biologically harmful radiation exposure levels at commercial airline altitudes. We have conducted a case study of radiation exposure during a

  20. Synergistic effects of exposure to concentrated ambient fine pollution particles and nitrogen dioxide in humans

    EPA Science Inventory

    Exposure to single pollutants such as ambient particulate matter (PM) is associated with adverse health effects. It is unclear, however, if simultaneous exposure to multiple air pollutants (e.g. PM and ozone or nitrogen dioxide), a more real world scenario, results in non-additiv...

  1. BIOLOGICAL EFFECTS OF CO-EXPOSURE TO FINE PARTICLES AND NITROGEN DIOXIDE IN HEALTHY YOUNG ADULTS

    EPA Science Inventory

    Exposure to particulate matter (PM) is associated with adverse health effects. It is unclear if co-exposure to NO2, a common pollutant gas, potentiates the PM effects. Healthy young volunteers were recruited and exposed to either filtered air (FA), NO2 (0.5 ppm), concentrated Cha...

  2. Particle Deposition and Decay in a Chamber and the Implications to Exposure Assessment

    Microsoft Academic Search

    Alvin C. K. Lai

    2006-01-01

    Accurate modeling indoor aerosol deposition and decay is an important step for exposure assessment. High deposition rate reduces indoor pollutant concentration and results in lower inhalation exposure. Many of indoor surfaces have random roughness protrusion scales up to several millimeters which it may significantly affect the deposition loss rate. Aerosols deposition onto most indoor surfaces can be considered as “rough’

  3. Ion Temperature Anisotropy across Reconnection Exhaust Jets

    NASA Astrophysics Data System (ADS)

    Hietala, H.; Drake, J. F.; Phan, T. D.; Eastwood, J. P.; McFadden, J. P.

    2014-12-01

    Magnetic reconnection redistributes energy by releasing magnetic energy into plasma kinetic energy - high speed bulk flows, heating, and particle acceleration. In the magnetotail, most of the released energy appears to go into ion heating. However, previous observations and simulations show that this heating is anisotropic with the plasma temperature parallel to the magnetic field generally increasing more than the perpendicular temperature. Simulations and theory indicate that this temperature anisotropy can balance part of the magnetic tension force that accelerates the jet, and may even exceed it leading to firehose instability.Here we report the results of a new study of ion temperature anisotropy in reconnection exhausts generated by anti-parallel reconnection. We have examined ARTEMIS dual-spacecraft observations of long-duration magnetotail exhausts at lunar distances in conjunction with Particle-In-Cell simulations. In particular, we have studied spatial variations in the ion temperature anisotropy across the outflows far away (>100 ion inertial lengths) from the X-line. A consistent pattern is found in both the spacecraft data and the simulations: whilst the total temperature profile across the exhaust is flat, near the exhaust boundaries the parallel temperature dominates. A consequence of this is that firehose threshold is greatly exceeded in a significant fraction of the exhaust. In contrast, the perpendicular temperature dominates at the neutral plane (|BX| < 0.1 B0), indicating that, despite the turbulence and the large distance to the X-line, particles undergo Speiser-like motion (rather than isotropization by scattering). We also analyse the characteristics of the particle distributions leading to these anisotropies at different distances from the mid-plane.

  4. Crossfire calibrated exhaust system

    SciTech Connect

    Barth, R.S.

    1992-09-08

    This patent describes a dual-exhaust system for an internal combustion engine having a pair of spaced-apart pipes channeling exhaust gases from the engine towards a muffler. It comprises first and second additional pipes connected between the pair of spaced-apart pipes at substantially 45[degrees] angles with respect to each of the pair of pipes and at substantially a 90[degrees] angle with respect to each other; and wherein the first and second additional pipes are also interconnected with each other substantially at the midpoints thereof, measured along their respective lengths, and substantially midway between the pair of spaced-apart pipes.

  5. Hyperventilation and exhaustion syndrome

    PubMed Central

    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

    2014-01-01

    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification – F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed questionnaires about exhaustion, mental state, sleep disturbance, pain and quality of life. The evaluation was repeated 4 weeks later, after half of the patients and healthy subjects had engaged in a therapy method called ‘Grounding’, a physical exercise inspired by African dance. The patients reported significantly higher levels of hyperventilation as compared to the healthy subjects. All patients’ average score on NQ was 26.57 ± 10.98, while that of the healthy subjects was 15.14 ± 7.89 (t = ?3.48, df = 42, p < 0.001). The NQ scores correlated strongly with two measures of exhaustion (Karolinska Exhaustion Scale KES r = 0.772, p < 0.01; Shirom Melamed Burnout Measure SMBM r = 0.565, p < 0.01), mental status [Hospital Anxiety and Depression Score (HADS) depression r = 0.414, p < 0.01; HADS anxiety r = 0.627, p < 0.01], sleep disturbances (r = ?0.514, p < 0.01), pain (r = ?.370, p < 0.05) and poor well-being (Medical Outcomes Survey Short Form 36 questionnaire- SR Health r = ?0.529, p < 0.05). In the logistic regression analysis, the variance in the scores from NQ were explained to a high degree (R2 = 0.752) by scores in KES and HADS. The brief Grounding training contributed to a near significant reduction in hyperventilation (F = 2.521, p < 0.124) and to significant reductions in exhaustion scores and scores of depression and anxiety. The conclusion is that hyperventilation is common in exhaustion syndrome patients and that it can be reduced by systematic physical therapy such as Grounding. PMID:24134551

  6. Exhaust gas recirculation system

    SciTech Connect

    Rachedi, S.H.

    1983-08-30

    An engine exhaust gas recirculation (EGR) system is provided in which a sonic flow EGR valve is moved to open positions to establish a different constant rate of flow at each open position of the EGR valve in response to air pressure acting on a servo means secured to the valve, the air pressure force being controlled by changes in a control vacuum opposing the air pressure force and modified by an air bleed device as a function of changes in engine exhaust gas backpressure levels, to provide an EGR valve movement that varies essentially in proportion to changes in engine air flow.

  7. Acute and Fractionated Exposure to High-LET 56Fe HZE-Particle Radiation Both Result in Similar Long-Term Deficits in Adult Hippocampal Neurogenesis

    PubMed Central

    Rivera, Phillip D.; Shih, Hung-Ying; LeBlanc, Junie A.; Cole, Mara G.; Amaral, Wellington Z.; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J.; DeCarolis, Nathan A.; Chen, Benjamin P. C.; Eisch, Amelia J.

    2014-01-01

    Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreERT2/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy 56Fe-particle exposure or five fractionated 20 cGy 56Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of 56Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054

  8. Acute and fractionated exposure to high-LET (56)Fe HZE-particle radiation both result in similar long-term deficits in adult hippocampal neurogenesis.

    PubMed

    Rivera, Phillip D; Shih, Hung-Ying; Leblanc, Junie A; Cole, Mara G; Amaral, Wellington Z; Mukherjee, Shibani; Zhang, Shichuan; Lucero, Melanie J; Decarolis, Nathan A; Chen, Benjamin P C; Eisch, Amelia J

    2013-12-01

    Astronauts on multi-year interplanetary missions will be exposed to a low, chronic dose of high-energy, high-charge particles. Studies in rodents show acute, nonfractionated exposure to these particles causes brain changes such as fewer adult-generated hippocampal neurons and stem cells that may be detrimental to cognition and mood regulation and thus compromise mission success. However, the influence of a low, chronic dose of these particles on neurogenesis and stem cells is unknown. To examine the influence of galactic cosmic radiation on neurogenesis, adult-generated stem and progenitor cells in Nestin-CreER(T2)/R26R-YFP transgenic mice were inducibly labeled to allow fate tracking. Mice were then sham exposed or given one acute 100 cGy (56)Fe-particle exposure or five fractionated 20 cGy (56)Fe-particle exposures. Adult-generated hippocampal neurons and stem cells were quantified 24 h or 3 months later. Both acute and fractionated exposure decreased the amount of proliferating cells and immature neurons relative to sham exposure. Unexpectedly, neither acute nor fractionated exposure decreased the number of adult neural stem cells relative to sham expsoure. Our findings show that single and fractionated exposures of (56)Fe-particle irradiation are similarly detrimental to adult-generated neurons. Implications for future missions and ground-based studies in space radiation are discussed. PMID:24320054

  9. Lung cancer and diesel exhaust: a review

    SciTech Connect

    Steenland, K.

    1986-01-01

    The evidence from animal studies indicates that organic extracts of diesel particulate are mutagenic and carcinogenic. Of four animal inhalation studies, two have been positive and two have been largely negative. The most recent data indicate that inhalation studies may be positive only with high doses of exhaust. Human studies of diesel-exposed occupations have been inconclusive. These studies have focused on truck drivers, bus drivers and garage workers, railroad workers, and heavy equipment operators. Most human studies have not been able to estimate exposure to diesel exhaust. Negative studies have frequently suffered from insufficient potential latency. Positive studies have often failed to control for smoking, and have sometimes involved confounding occupational exposures. In general, the occupational epidemiology of diesel-exposed workers is made difficult by the fact that many of the suspected toxic components of diesel-exhaust are also present in cigarette smoke and in ambient air. There are two ongoing epidemiologic studies in the United States, focusing on railway workers and truck drivers, which attempt to overcome prior difficulties. Preliminary data from the study of truck drivers indicates an excess of lung cancer among workers in the trucking industry compared to the U.S. population, but these data need to be controlled for smoking and analyzed according to diesel exposure.

  10. Modulation of pulmonary inflammatory responses and antimicrobial defenses in mice exposed to diesel exhaust

    SciTech Connect

    Gowdy, Kymberly [Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27606 (United States); Krantz, Quentin T.; Daniels, Mary [Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, RTP, NC 27711 (United States); Linak, William P. [Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, United States Environmental Protection Agency, RTP, NC 27711 (United States); Jaspers, Ilona [Center for Environmental Medicine, Asthma, and Lung Biology, University of North Carolina, Chapel Hill, NC 27599 (United States); Department of Pediatrics, University of North Carolina, Chapel Hill, NC 27599 (United States); Gilmour, M. Ian [Experimental Toxicology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, RTP, NC 27711 (United States)], E-mail: gilmour.ian@epa.gov

    2008-06-15

    Diesel exhaust (DE) is a major component of urban air pollution and has been shown to increase the severity of infectious and allergic lung disease. The purpose of this study was to evaluate the effects of DE exposure on pulmonary inflammation, mediator production and antimicrobial defenses in an exposure model that had previously been shown to increase susceptibility to influenza. BALB/c mice were exposed to filtered air, or to DE diluted to yield 0.5 or 2 mg/m{sup 3} of diesel exhaust particles (DEP) for 4 h per day for 1 or 5 days. Immediately and 18 h after one or five diesel exposures mice were euthanized to assess both immediate and delayed effects. DE exposure for 5 days at either concentration caused higher neutrophil numbers and lesion scoring compared to air controls. Intracellular adhesion molecule-1 (ICAM-1), which recruits inflammatory cells and is an entry site for rhinoviruses was increased immediately after 1 or 5 days of DE exposure. Several inflammatory and immune cytokines (TNF-{alpha}, MIP-2, IL-6, IFN-{gamma}, and IL-13) were also upregulated at various time points and concentrations. In contrast, clara cell secretory protein (CCSP), surfactant protein A (SP-A), and surfactant protein D (SP-D) which are important host defense molecules, were significantly decreased at both the message and protein level with DE exposure. We conclude that exposure to moderate and high occupational levels of DE caused an increase in lung injury and inflammation, and a decrease in host defense molecules, which could result in increased susceptibility to respiratory pathogens.

  11. In situ studies on volatile jet exhaust particle emissions: Impact of fuel sulfur content and environmental conditions on nuclei mode aerosols

    Microsoft Academic Search

    F. Schröder; C. A. Brock; R. Baumann; A. Petzold; R. Busen; P. Schulte; M. Fiebig

    2000-01-01

    In situ measurements of ultrafine aerosol particle emissions were performed at cruise altitudes behind the Deutsches Zentrum für Luft- und Raumfahrt ATTAS research jet (Rolls-Royce\\/Snecma M45H M501 engines) and a B737-300 aircraft (CFM International 56-3B1 engines). Measurements were made 0.15-20 s after emission as the source aircraft burned fuel with sulfur contents (FSC) of 2.6, 56, or 118 mg kg-1.

  12. Diesel exhaust odor

    Microsoft Academic Search

    S. Lesley; C. C. J. French

    1976-01-01

    The relationship between diesel exhaust odor and build and setting of the engine is reported. Odor was measured by a panel of observers, using a differential technique. Two odors were presented in each test, one from a reference engine, and one from an engine with variable characteristics. The observers were asked to score the difference between the two odors. This

  13. Catalytic automotive exhaust aftertreatment

    Microsoft Academic Search

    Grigorios C. Koltsakis; Anastasios M. Stamatelos

    1997-01-01

    Catalytic exhaust aftertreatment of vehicle engines is increasingly employed to the benefit of the atmosphere quality, especially in the large urban area of the world. Both spark-ignition and compression-ignition engines benefit from the application of catalytic converters for the elimination of their main pollutants. Catalysts are further employed in various forms as regeneration aids in particulate filters of diesel engines.

  14. Hybrid Exhaust Component

    NASA Technical Reports Server (NTRS)

    Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)

    2015-01-01

    An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.

  15. EXHAUST GAS RECIRCULATION

    E-print Network

    Chapman, Clark R.

    to be an effective approach to reduce NOx emissions in order to meet US2007 and US2010 emissions regulations environmental regulations for diesel engine emissions are becoming increas- ingly stringent, and are driving) and oxides of nitrogen (NOx). The use of exhaust gas recirculation (EGR) coolers is considered

  16. Worker Exposure and High Time-Resolution Analyses of Process-Related Submicrometre Particle Concentrations at Mixing Stations in Two Paint Factories.

    PubMed

    Koponen, Ismo Kalevi; Koivisto, Antti Joonas; Jensen, Keld Alstrup

    2015-07-01

    The paint and coatings industry is known to have significant particulate matter (PM) emissions to the atmosphere. However, exposure levels are not studied in detail especially when considering submicrometre (PM1) and ultrafine particles (particle diameter below 100nm). The evidence is increasing that pulmonary exposures to these size fractions are potentially very harmful. This study investigates particle emissions during powder handling and paint mixing in two paint factories at two mixing stations in each factory. In each case measurements were made simultaneously at the mixing station (near-field; NF), as well as at 5-15 m distance into the workroom far-field (FF), and in the workers breathing zone. Particle concentrations (5nm to 30 µm) were measured using high time-resolution particle instruments and gravimetrically using PM1 cyclone filter samplers. The PM1 filters were also characterized by scanning electron microscopy (SEM). The NF particle and dust concentration levels were linked to pouring powder and were used to characterize the emissions and efficiencies of localized controls. NF particle number concentrations were 1000-40000cm(-3) above FF concentrations. NF particles were mainly between 100 and 500nm and emissions appeared to occur in short bursts. Personal PM1 exposure levels varied between 0.156 and 0.839mg m(-3) and were 1.6-15 times higher than stationary NF PM1 concentrations. SEM results verified that the personal exposure and NF particles were strongly dominated by the pigments and fillers used. Better understanding of the entire temporal personal exposure could be improved by using real-time particle monitors for personal exposure measurements. This study provides better insight into PM exposure characteristics and concentration levels in the paint industry. PMID:25863226

  17. EVALUATION OF ULTRAFINE PARTICLES AS PART OF A HEALTH EFFECTS EXPOSURE STUDY

    EPA Science Inventory

    Ambient particulate matter (PM) is a complex mixture that includes bioactive and toxic compounds of natural and anthropogenic origin. Numerous epidemiological studies have reported associations between exposure to ambient levels of PM and various indices of cardiopulmonary morbi...

  18. ENDOTHELIAL CELL DYSFUNCTION AND VASCULAR INFLAMMATION ARE ASSOCIATED WITH EXPOSURE TO FINE PARTICLES IN DIABETICS

    EPA Science Inventory

    Exposure to fme airborne particulate matter (PM2.5) has been shown to be responsible for cardiovascular and hematological effects, especially in older people with cardiovascular disease. Some epidemiology studies suggest that diabetics may be a particularly susceptible population...

  19. CONCENTRATED COARSE AIR PARTICLE EXPOSURE PRODUCES MILD TOXICOLOGICAL EFFECTS IN HEALTHY VOLUNTEERS

    EPA Science Inventory

    Epidemiological studies have shown that the adverse health effects of ambient particulate matter (PM) exposure to be in general more strongly associated with "fine" PM (2.5 µM) from wind-blown dust, mechanical ...

  20. Effects of Ambient Coarse, Fine, and Ultrafine Particles and Their Biological Constituents on Systemic Biomarkers: A Controlled Human Exposure Study

    PubMed Central

    Urch, Bruce; Poon, Raymond; Szyszkowicz, Mieczyslaw; Speck, Mary; Gold, Diane R.; Wheeler, Amanda J.; Scott, James A.; Brook, Jeffrey R.; Thorne, Peter S.; Silverman, Frances S.

    2015-01-01

    Background Ambient coarse, fine, and ultrafine particles have been associated with mortality and morbidity. Few studies have compared how various particle size fractions affect systemic biomarkers. Objectives We examined changes of blood and urinary biomarkers following exposures to three particle sizes. Methods Fifty healthy nonsmoking volunteers, mean age of 28 years, were exposed to coarse (2.5–10 ?m; mean, 213 ?g/m3) and fine (0.15–2.5 ?m; mean, 238 ?g/m3) concentrated ambient particles (CAPs), and filtered ambient and/or medical air. Twenty-five participants were exposed to ultrafine CAP (< 0.3 ?m; mean, 136 ?g/m3) and filtered medical air. Exposures lasted 130 min, separated by ? 2 weeks. Blood/urine samples were collected preexposure and 1 hr and 21 hr postexposure to determine blood interleukin-6 and C-reactive protein (inflammation), endothelin-1 and vascular endothelial growth factor (VEGF; vascular mediators), and malondialdehyde (lipid peroxidation); as well as urinary VEGF, 8-hydroxy-deoxy-guanosine (DNA oxidation), and malondialdehyde. Mixed-model regressions assessed pre- and postexposure differences. Results One hour postexposure, for every 100-?g/m3 increase, coarse CAP was associated with increased blood VEGF (2.41 pg/mL; 95% CI: 0.41, 4.40) in models adjusted for O3, fine CAP with increased urinary malondialdehyde in single- (0.31 nmol/mg creatinine; 95% CI: 0.02, 0.60) and two-pollutant models, and ultrafine CAP with increased urinary 8-hydroxydeoxyguanosine in single- (0.69 ng/mg creatinine; 95% CI: 0.09, 1.29) and two-pollutant models, lasting < 21 hr. Endotoxin was significantly associated with biomarker changes similar to those found with CAPs. Conclusions Ambient particles with various sizes/constituents may influence systemic biomarkers differently. Endotoxin in ambient particles may contribute to vascular mediator changes and oxidative stress. Citation Liu L, Urch B, Poon R, Szyszkowicz M, Speck M, Gold DR, Wheeler AJ, Scott JA, Brook JR, Thorne PS, Silverman FS. 2015. Effects of ambient coarse, fine, and ultrafine particles and their biological constituents on systemic biomarkers: a controlled human exposure study. Environ Health Perspect 123:534–540;?http://dx.doi.org/10.1289/ehp.1408387 PMID:25616223

  1. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model

    Microsoft Academic Search

    Barbara Rothen-Rutishauser; Christian Mühlfeld; Fabian Blank; Claudia Musso; Peter Gehr

    2007-01-01

    BACKGROUND: Experimental studies provide evidence that inhaled nanoparticles may translocate over the airspace epithelium and cause increased cellular inflammation. Little is known, however, about the dependence of particle size or material on translocation characteristics, inflammatory response and intracellular localization. RESULTS: Using a triple cell co-culture model of the human airway wall composed of epithelial cells, macrophages and dendritic cells we

  2. The biological effects of subacute inhalation of diesel exhaust following addition of cerium oxide nanoparticles in atherosclerosis-prone mice

    SciTech Connect

    Cassee, Flemming R., E-mail: flemming.cassee@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); Campbell, Arezoo, E-mail: acampbell@westernu.edu [Western University of Health Sciences, Pomona, CA (United States)] [Western University of Health Sciences, Pomona, CA (United States); Boere, A. John F., E-mail: john.boere@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands)] [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); McLean, Steven G., E-mail: smclean1@staffmail.ed.ac.uk [BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh (United Kingdom); Duffin, Rodger, E-mail: Rodger.Duffin@ed.ac.uk [MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh (United Kingdom)] [MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh (United Kingdom); Krystek, Petra, E-mail: petra.krystek@philips.com [Philips Innovation Services, Eindhoven (Netherlands)] [Philips Innovation Services, Eindhoven (Netherlands); Gosens, Ilse, E-mail: Ilse.gosens@rivm.nl [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands)] [National Institute for Public Health and the Environment, PO box 1, 3720 BA Bilthoven (Netherlands); Miller, Mark R., E-mail: Mark.Miller@ed.ac.uk [BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh (United Kingdom)

    2012-05-15

    Background: Cerium oxide (CeO{sub 2}) nanoparticles improve the burning efficiency of fuel, however, little is known about health impacts of altered emissions from the vehicles. Methods: Atherosclerosis-prone apolipoprotein E knockout (ApoE{sup -/-}) mice were exposed by inhalation to diluted exhaust (1.7 mg/m{sup 3}, 20, 60 or 180 min, 5 day/week, for 4 weeks), from an engine using standard diesel fuel (DE) or the same diesel fuel containing 9 ppm cerium oxide nanoparticles (DCeE). Changes in hematological indices, clinical chemistry, atherosclerotic burden, tissue levels of inflammatory cytokines and pathology of the major organs were assessed. Results: Addition of CeO{sub 2} to fuel resulted in a reduction of the number (30%) and surface area (10%) of the particles in the exhaust, whereas the gaseous co-pollutants were increased (6-8%). There was, however, a trend towards an increased size and complexity of the atherosclerotic plaques following DE exposure, which was not evident in the DCeE group. There were no clear signs of altered hematological or pathological changes induced by either treatment. However, levels of proinflammatory cytokines were modulated in a brain region and liver following DCeE exposure. Conclusions: These results imply that addition of CeO{sub 2} nanoparticles to fuel decreases the number of particles in exhaust and may reduce atherosclerotic burden associated with exposure to standard diesel fuel. From the extensive assessment of biological parameters performed, the only concerning effect of cerium addition was a slightly raised level of cytokines in a region of the central nervous system. Overall, the use of cerium as a fuel additive may be a potentially useful way to limit the health effects of vehicle exhaust. However, further testing is required to ensure that such an approach is not associated with a chronic inflammatory response which may eventually cause long-term health effects.

  3. Lung cancer risk in relation to traffic-related nano\\/ultrafine particle-bound PAHs exposure: A preliminary probabilistic assessment

    Microsoft Academic Search

    Chung-Min Liao; Chia-Pin Chio; Wei-Yu Chen; Yun-Ru Ju; Wen-Hsuan Li; Yi-Hsien Cheng; Vivian Hsiu-Chuan Liao; Szu-Chieh Chen; Min-Pei Ling

    2011-01-01

    Exposures to carcinogenic polycyclic aromatic hydrocarbons (PAHs) have been linked to human lung cancer. The purpose of this study was to assess lung cancer risk caused by inhalation exposure to nano\\/ultrafine particle-bound PAHs at the population level in Taiwan appraised with recent published data. A human respiratory tract model was linked with a physiologically based pharmacokinetic model to estimate deposition

  4. Respiratory effects of fine and ultrafine particles from indoor sources--a randomized sham-controlled exposure study of healthy volunteers.

    PubMed

    Soppa, Vanessa J; Schins, Roel P F; Hennig, Frauke; Hellack, Bryan; Quass, Ulrich; Kaminski, Heinz; Kuhlbusch, Thomas A J; Hoffmann, Barbara; Weinmayr, Gudrun

    2014-07-01

    Particulate air pollution is linked to impaired respiratory health. We analyzed particle emissions from common indoor sources (candles burning (CB), toasting bread (TB), frying sausages (FS)) and lung function in 55 healthy volunteers (mean age 33.0 years) in a randomized cross-over controlled exposure study. Lung-deposited particle surface area concentration (PSC), size-specific particle number concentration (PNC) up to 10 µm, and particle mass concentration (PMC) of PM1, PM2.5 and PM10 were determined during exposure (2 h). FEV1, FVC and MEF25%-75% was measured before, 4 h and 24 h after exposure. Wilcoxon-rank sum tests (comparing exposure scenarios) and mixed linear regression using particle concentrations and adjusting for personal characteristics, travel time and transportation means before exposure sessions were performed. While no effect was seen comparing the exposure scenarios and in the unadjusted model, inverse associations were found for PMC from CB and FS in relation to FEV1 and MEF25%-75%. with a change in 10 µg/m3 in PM2.5 from CB being associated with a change in FEV1 of -19 mL (95%-confidence interval:-43; 5) after 4 h. PMC from TB and PNC of UFP were not associated with lung function changes, but PSC from CB was. Elevated indoor fine particles from certain sources may be associated with small decreases in lung function in healthy adults. PMID:25000149

  5. Respiratory Effects of Fine and Ultrafine Particles from Indoor Sources—A Randomized Sham-Controlled Exposure Study of Healthy Volunteers

    PubMed Central

    Soppa, Vanessa J.; Schins, Roel P. F.; Hennig, Frauke; Hellack, Bryan; Quass, Ulrich; Kaminski, Heinz; Kuhlbusch, Thomas A. J.; Hoffmann, Barbara; Weinmayr, Gudrun

    2014-01-01

    Particulate air pollution is linked to impaired respiratory health. We analyzed particle emissions from common indoor sources (candles burning (CB), toasting bread (TB), frying sausages (FS)) and lung function in 55 healthy volunteers (mean age 33.0 years) in a randomized cross-over controlled exposure study. Lung-deposited particle surface area concentration (PSC), size-specific particle number concentration (PNC) up to 10 µm, and particle mass concentration (PMC) of PM1, PM2.5 and PM10 were determined during exposure (2 h). FEV1, FVC and MEF25%–75% was measured before, 4 h and 24 h after exposure. Wilcoxon-rank sum tests (comparing exposure scenarios) and mixed linear regression using particle concentrations and adjusting for personal characteristics, travel time and transportation means before exposure sessions were performed. While no effect was seen comparing the exposure scenarios and in the unadjusted model, inverse associations were found for PMC from CB and FS in relation to FEV1 and MEF25%–75%. with a change in 10 µg/m3 in PM2.5 from CB being associated with a change in FEV1 of ?19 mL (95%-confidence interval:?43; 5) after 4 h. PMC from TB and PNC of UFP were not associated with lung function changes, but PSC from CB was. Elevated indoor fine particles from certain sources may be associated with small decreases in lung function in healthy adults. PMID:25000149

  6. Estimating Mortality Derived from Indoor Exposure to Particles of Outdoor Origin

    PubMed Central

    Ji, Wenjing; Zhao, Bin

    2015-01-01

    Following an extensive review of the literature, we further analyze the published data to examine the health effects of indoor exposure to particulate matter (PM) of outdoor origin. We obtained data on all-cause, cardiovascular, and respiratory mortality per 10 ?g/m3 increase in outdoor PM10 or PM2.5; the infiltration factors for buildings; and estimated time spent outdoors by individuals in the United States, Europe, China, and globally. These data were combined log-linear exposure–response model to estimate the all-cause, cardiovascular, and respiratory mortality of exposure to indoor PM pollution of outdoor origin. Indoor PM pollution of outdoor origin is a cause of considerable mortality, accounting for 81% to 89% of the total increase in mortality associated with exposure to outdoor PM pollution for the studied regions. The findings suggest that enhancing the capacity of buildings to protect occupants against exposure to outdoor PM pollution has significant potential to improve public health outcomes. PMID:25860147

  7. Particle size-specific distributions and preliminary exposure assessments of organophosphate flame retardants in office air particulate matter.

    PubMed

    Yang, Fangxing; Ding, Jinjian; Huang, Wei; Xie, Wei; Liu, Weiping

    2014-01-01

    In this study, the concentrations, size-specific distributions, and preliminary exposure assessments of 10 organophosphate flame retardants (OPFRs) were investigated in suspended particulate matter collected from offices. OPFRs were detected in a range of 5.00-147.77 ng/m(3). Tri(chloropropyl) phosphate (TCPP) was the most abundant analog followed by tri(2-chloroethyl) phosphate (TCEP) and triphenyl phosphate (TPhP). Chlorinated OPFRs (TCPP, TCEP, and tris(1,3-dichloroisopropyl) phosphate (TDCPP)) contributed to about 77% of the total OPFRs. Size-specific distributions revealed that TCEP, tri-n-propyl phosphate (TnPP), TCPP, and tri-n-butyl phosphate (TnBP) shared a similar distribution pattern with a peak in the fraction 4.7-5.8 ?m. A peak was also found in the distributions of tricresyl phosphate (TCrP), 2-ethylhexyl diphenyl phosphate (EHDPP), and tri(2-ethylhexyl) phosphate (TEHP) but in different fractions. A bimodal distribution was observed for TDCPP, TPhP, and tributoxyethyl phosphate (TBEP). The results of mass median aerodynamic diameter (MMAD) indicated that TDCPP, TCrP, and TEHP were mainly located on ultrafine particles (?1 ?m), while TnPP, TBEP, and EHDPP mainly on fine particles (?2.5 ?m). Furthermore, MMADs of OPFRs were found to be positively correlated with their vapor pressures (Vp) (p < 0.01), indicating that OPFR analogs with low Vp were inclined to adsorb on small size particles. Preliminary exposure assessments suggested a low risk of exposure to OPFRs for people working in such offices, and inhaled OPFRs would mainly deposit in the head region of the respiratory tract. PMID:24308350

  8. Alpha-quartz-induced chemokine expression by rat lung epithelial cells: effects of in vivo and in vitro particle exposure.

    PubMed Central

    Driscoll, K. E.; Howard, B. W.; Carter, J. M.; Asquith, T.; Johnston, C.; Detilleux, P.; Kunkel, S. L.; Isfort, R. J.

    1996-01-01

    Chemokines are chemotactic cytokines that can play a key role in leukocyte recruitment to sites of tissue injury or infection. Previous studies have demonstrated that exposure to alpha-quartz as well as other noxious particles increases chemokine gene expression in rat lung, although the cells responsible for chemokine expression and the mechanisms underlying this response have remained unclear. The present studies demonstrate that exposure of rats to alpha-quartz induced expression of mRNA for the chemokine macrophage-inflammatory protein (MIP)-2 in epithelial cells lining the terminal bronchioles and alveolar ducts as well as macrophages and alveolar type II cells in the more distal lung. Treatment of rats with an anti-MIP-2 antiserum before alpha-quartz exposure markedly attenuated neutrophilic infiltration of the lungs demonstrating an important role for MIP-2 in alpha-quartz-induced pulmonary inflammation. In vitro exposure of primary cultures of rat alveolar type II cells or the rat alveolar type II cell line RLE-6TN to tumor necrosis factor-alpha, endotoxin, or alpha-quartz increased mRNA for MIP-2 as well as the structurally and functionally similar chemokine cytokine-induced neutrophil chemoattractant but not the chemokine MIP-1 alpha. The alpha-quartz-induced increase in epithelial MIP-2 mRNA resulted, at least in part, from increased gene transcription and was associated with the release of active MIP-2 protein. Induction of RLE-6TN MIP-2 and cytokine-induced neutrophil chemoattractant mRNA expression was not unique to alpha-quartz, being also increased by crocidolite asbestus fibers but not by titanium dioxide or MMVF-10 glass fibers. These findings indicate that epithelial cells contribute to chemokine expression in rat lung after exposure to alpha-quartz and potentially other noxious particles and suggest that alpha-quartz-activated MIP-2 expression in vivo results, at least in part, from a direct action of the particles on the lung epithelium. Images Figure 1 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 PMID:8909252

  9. Protective effects of blueberry and strawberry diets on neuronal stress following exposure to 56Fe particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Particles of high energy and charge (HZE particles), which are abundant outside the magnetic field of the earth, have been shown to disrupt the functioning of neuronal communication in critical regions of the brain. Previous studies have shown that irradiation produces enhanced indices of oxidative ...

  10. EXTRAPULMONARY TRANSLOCATION OF ULTRAFINE CARBON PARTICLES FOLLOWING WHOLE-BODY INHALATION EXPOSURE OF RATS

    Microsoft Academic Search

    Günter Oberdörster; Zachary Sharp; Viorel Atudorei; Alison Elder; Robert Gelein; Alex Lunts; Wolfgang Kreyling; Christopher Cox

    2002-01-01

    Studies with intravenously injected ultrafine particles have shown that the liver is the major organ of their uptake from the blood circulation. Measuring translocation of inhaled ultrafine particles to extrapulmonary organs via the blood compartment is hampered by methodological difficulties (i.e., label may come off, partial solubilization) and analytical limitations (measurement of very small amounts). The objective of our pilot

  11. Activation of respiratory epithelial cells by wood smoke particles persists beyond immediate exposure.

    EPA Science Inventory

    The biological effect of particles on epithelial cells involves, in part, oxidant generation and a cascade of reactions culminating in inflammatory mediator release. Whether there is an immediate short-lived activation or continued persistent response of the cells to the particle...

  12. A benchmark for numerical scheme validation of airborne particle exposure in street canyons.

    PubMed

    Marini, S; Buonanno, G; Stabile, L; Avino, P

    2015-02-01

    Measurements of particle concentrations and distributions in terms of number, surface area, and mass were performed simultaneously at eight sampling points within a symmetric street canyon of an Italian city. The aim was to obtain a useful benchmark for validation of wind tunnel experiments and numerical schemes: to this purpose, the influence of wind directions and speeds was considered. Particle number concentrations (PNCs) were higher on the leeward side than the windward side of the street canyon due to the wind vortex effect. Different vertical PNC profiles were observed between the two canyon sides depending on the wind direction and speed at roof level. A decrease in particle concentrations was observed with increasing rooftop wind speed, except for the coarse fraction indicating a possible particle resuspension due to the traffic and wind motion. This study confirms that particle concentration fields in urban street canyons are strongly influenced by traffic emissions and meteorological parameters, especially wind direction and speed. PMID:25167823

  13. Intranasal exposure to amorphous nanosilica particles could activate intrinsic coagulation cascade and platelets in mice

    PubMed Central

    2013-01-01

    Background Nanomaterials with particle sizes <100 nm have been already applied in various applications such as cosmetics, medicines, and foods. Therefore, ensuring the safety of nanomaterials is becoming increasingly important. Here we examined the localization and biological responses of intranasally administered amorphous nanosilica particles in mice, focusing on the coagulation system. Methods We used nanosilica particles with diameters of 30, 70, or 100 nm (nSP30, nSP70, or nSP100 respectively), and conventional microscale silica particles with diameters of 300 or 1000 nm (mSP300 or mSP1000, respectively). BALB/c mice were intranasally exposed to nSP30, nSP70, nSP100, mSP300, or mSP1000 at concentrations of 500 ?g/mouse for 7 days. After 24 hours of last administration, we performed the in vivo transmission electron microscopy analysis, hematological examination and coagulation tests. Results In vivo transmission electron microscopy analysis showed that nanosilica particles with a diameter <100 nm were absorbed through the nasal cavity and were distributed into liver and brain. Hematological examination and coagulation tests showed that platelet counts decreased and that the activated partial thromboplastin time was prolonged in nSP30 or nSP70-treated groups of mice, indicating that nanosilica particles might have activated a coagulation cascade. In addition, in in vitro activation tests of human plasma, nanosilica particles had greater potential than did conventional microscale silica particles to activate coagulation factor XII. In nanosilica-particle-treated groups, the levels of soluble CD40 ligand, and von Willebrand factor which are involved in stimulating platelets tended to slightly increase with decreasing particle size. Conclusions These results suggest that intranasally administered nanosilica particles with diameters of 30 and 70 nm could induce abnormal activation of the coagulation system through the activation of an intrinsic coagulation cascade. This study provides information to advance the development of safe and effective nanosilica particles. PMID:23958113

  14. MUCOCILIARY CLEARANCE OF INHALED PARTICLES MEASURED AT TWO HOURS FOLLOWING OZONE EXPOSURE IN HUMANS

    EPA Science Inventory

    Mucociliary transport has been shown to increase during ozone exposure. his increase may have been due to a number of factors such as stimulation of muscarinic receptors, induction of cough, or a byproduct of inflammation. e exposed 15 healthy male and female on-smoking subjects,...

  15. Health effects research and regulation of diesel exhaust: an historical overview focused on lung cancer risk.

    PubMed

    Hesterberg, Thomas W; Long, Christopher M; Bunn, William B; Lapin, Charles A; McClellan, Roger O; Valberg, Peter A

    2012-06-01

    The mutagenicity of organic solvent extracts from diesel exhaust particulate (DEP), first noted more than 55 years ago, initiated an avalanche of diesel exhaust (DE) health effects research that now totals more than 6000 published studies. Despite an extensive body of results, scientific debate continues regarding the nature of the lung cancer risk posed by inhalation of occupational and environmental DE, with much of the debate focused on DEP. Decades of scientific scrutiny and increasingly stringent regulation have resulted in major advances in diesel engine technologies. The changed particulate matter (PM) emissions in "New Technology Diesel Exhaust (NTDE)" from today's modern low-emission, advanced-technology on-road heavy-duty diesel engines now resemble the PM emissions in contemporary gasoline engine exhaust (GEE) and compressed natural gas engine exhaust more than those in the "traditional diesel exhaust" (TDE) characteristic of older diesel engines. Even with the continued publication of epidemiologic analyses of TDE-exposed populations, this database remains characterized by findings of small increased lung cancer risks and inconsistent evidence of exposure-response trends, both within occupational cohorts and across occupational groups considered to have markedly different exposures (e.g. truckers versus railroad shopworkers versus underground miners). The recently published National Institute for Occupational Safety and Health (NIOSH)-National Cancer Institute (NCI) epidemiologic studies of miners provide some of the strongest findings to date regarding a DE-lung cancer association, but some inconsistent exposure-response findings and possible effects of bias and exposure misclassification raise questions regarding their interpretation. Laboratory animal studies are negative for lung tumors in all species, except for rats under lifetime TDE-exposure conditions with durations and concentrations that lead to "lung overload." The species specificity of the rat lung response to overload, and its occurrence with other particle types, is now well-understood. It is thus generally accepted that the rat bioassay for inhaled particles under conditions of lung overload is not predictive of human lung cancer hazard. Overall, despite an abundance of epidemiologic and experimental data, there remain questions as to whether TDE exposure causes increased lung cancers in humans. An abundance of emissions characterization data, as well as preliminary toxicological data, support NTDE as being toxicologically distinct from TDE. Currently, neither epidemiologic data nor animal bioassay data yet exist that directly bear on NTDE carcinogenic potential. A chronic bioassay of NTDE currently in progress will provide data on whether NTDE poses a carcinogenic hazard, but based on the significant reductions in PM mass emissions and the major changes in PM composition, it has been hypothesized that NTDE has a low carcinogenic potential. When the International Agency for Research on Cancer (IARC) reevaluates DE (along with GEE and nitroarenes) in June 2012, it will be the first authoritative body to assess DE carcinogenic health hazards since the emergence of NTDE and the accumulation of data differentiating NTDE from TDE. PMID:22663144

  16. Health effects research and regulation of diesel exhaust: an historical overview focused on lung cancer risk

    PubMed Central

    Hesterberg, Thomas W.; Long, Christopher M.; Bunn, William B.; Lapin, Charles A.; McClellan, Roger O.; Valberg, Peter A.

    2012-01-01

    The mutagenicity of organic solvent extracts from diesel exhaust particulate (DEP), first noted more than 55 years ago, initiated an avalanche of diesel exhaust (DE) health effects research that now totals more than 6000 published studies. Despite an extensive body of results, scientific debate continues regarding the nature of the lung cancer risk posed by inhalation of occupational and environmental DE, with much of the debate focused on DEP. Decades of scientific scrutiny and increasingly stringent regulation have resulted in major advances in diesel engine technologies. The changed particulate matter (PM) emissions in “New Technology Diesel Exhaust (NTDE)” from today's modern low-emission, advanced-technology on-road heavy-duty diesel engines now resemble the PM emissions in contemporary gasoline engine exhaust (GEE) and compressed natural gas engine exhaust more than those in the “traditional diesel exhaust” (TDE) characteristic of older diesel engines. Even with the continued publication of epidemiologic analyses of TDE-exposed populations, this database remains characterized by findings of small increased lung cancer risks and inconsistent evidence of exposure-response trends, both within occupational cohorts and across occupational groups considered to have markedly different exposures (e.g. truckers versus railroad shopworkers versus underground miners). The recently published National Institute for Occupational Safety and Health (NIOSH)-National Cancer Institute (NCI) epidemiologic studies of miners provide some of the strongest findings to date regarding a DE-lung cancer association, but some inconsistent exposure-response findings and possible effects of bias and exposure misclassification raise questions regarding their interpretation. Laboratory animal studies are negative for lung tumors in all species, except for rats under lifetime TDE-exposure conditions with durations and concentrations that lead to'lung overload."The species specificity of the rat lung response to overload, and its occurrence with other particle types, is now well-understood. It is thus generally accepted that the rat bioassay for inhaled particles under conditions of lung overload is not predictive of human lung cancer hazard. Overall, despite an abundance of epidemiologic and experimental data, there remain questions as to whether TDE exposure causes increased lung cancers in humans. An abundance of emissions characterization data, as well as preliminary toxicological data, support NTDE as being toxicologically distinct from TDE. Currently, neither epidemiologic data nor animal bioassay data yet exist that directly bear on NTDE carcinogenic potential. A chronic bioassay of NTDE currently in progress will provide data on whether NTDE poses a carcinogenic hazard, but based on the significant reductions in PM mass emissions and the major changes in PM composition, it has been hypothesized that NTDE has a low carcinogenic potential. When the International Agency for Research on Cancer (IARC) reevaluates DE (along with GEE and nitroarenes) in June 2012, it will be the first authoritative body to assess DE carcinogenic health hazards since the emergence of NTDE and the accumulation of data differentiating NTDE from TDE. PMID:22663144

  17. Experimental determination of LR115 detector efficiency for exposure to alpha particles

    Microsoft Academic Search

    D Marocco; F Bochicchio

    2001-01-01

    The alpha particle detection efficiency of LR-115 detectors has been measured against alpha particle energy E and incidence angle ? (with respect to the normal to the detector surface), using an experimental apparatus with an 241Am alpha source and air in a pressure-controlled chamber as the degrading medium, and a spark-counter for counting tracks. About 200 LR-115 detectors were exposed

  18. Vehicle engines produce exhaust nanoparticles even when not fueled.

    PubMed

    Rönkkö, Topi; Pirjola, Liisa; Ntziachristos, Leonidas; Heikkilä, Juha; Karjalainen, Panu; Hillamo, Risto; Keskinen, Jorma

    2014-01-01

    Vehicle engines produce submicrometer exhaust particles affecting air quality, especially in urban environments. In on-road exhaust studies with a heavy duty diesel vehicle and in laboratory studies with two gasoline-fueled passenger cars, we found that as much as 20-30% of the number of exhaust particles larger than 3 nm may be formed during engine braking conditions-that is, during decelerations and downhill driving while the engine is not fueled. Particles appeared at size ranges extending even below 7 nm and at high number concentrations. Their small size and nonvolatility, coupled with the observation that these particles contain lube-oil-derived metals zinc, phosphorus, and calcium, are suggestive of health risks at least similar to those of exhaust particles observed before. The particles' characteristics indicate that their emissions can be reduced using exhaust after-treatment devices, although these devices have not been mandated for all relevant vehicle types. Altogether, our findings enhance the understanding of the formation vehicle emissions and allow for improved protection of human health in proximity to traffic. PMID:24397401

  19. Ultrafine particle size distributions near freeways: Effects of differing wind directions on exposure

    PubMed Central

    Kozawa, Kathleen H.; Winer, Arthur M.; Fruin, Scott A.

    2013-01-01

    High ambient ultrafine particle (UFP) concentrations may play an important role in the adverse health effects associated with living near busy roadways. However, UFP size distributions change rapidly as vehicle emissions dilute and age. These size changes can influence UFP lung deposition rates and dose because deposition in the respiratory system is a strong function of particle size. Few studies to date have measured and characterized changes in near-road UFP size distributions in real-time, thus missing transient variations in size distribution due to short-term fluctuations in wind speed, direction, or particle dynamics. In this study we measured important wind direction effects on near-freeway UFP size distributions and gradients using a mobile platform with 5-s time resolution. Compared to more commonly measured perpendicular (downwind) conditions, parallel wind conditions appeared to promote formation of broader and larger size distributions of roughly one-half the particle concentration. Particles during more parallel wind conditions also changed less in size with downwind distance and the fraction of lung-deposited particle number was calculated to be 15% lower than for downwind conditions, giving a combined decrease of about 60%. In addition, a multivariate analysis of several variables found meteorology, particularly wind direction and temperature, to be important in predicting UFP concentrations within 150 m of a freeway (R2 = 0.46, p = 0.014). PMID:24415904

  20. Application of the Junge- and Pankow-equation for estimating indoor gas/particle distribution and exposure to SVOCs

    NASA Astrophysics Data System (ADS)

    Salthammer, Tunga; Schripp, Tobias

    2015-04-01

    In the indoor environment, distribution and dynamics of an organic compound between gas phase, particle phase and settled dust must be known for estimating human exposure. This, however, requires a detailed understanding of the environmentally important compound parameters, their interrelation and of the algorithms for calculating partitioning coefficients. The parameters of major concern are: (I) saturation vapor pressure (PS) (of the subcooled liquid); (II) Henry's law constant (H); (III) octanol/water partition coefficient (KOW); (IV) octanol/air partition coefficient (KOA); (V) air/water partition coefficient (KAW) and (VI) settled dust properties like density and organic content. For most of the relevant compounds reliable experimental data are not available and calculated gas/particle distributions can widely differ due to the uncertainty in predicted Ps and KOA values. This is not a big problem if the target compound is of low (<10-6 Pa) or high (>10-2 Pa) volatility, but in the intermediate region even small changes in Ps or KOA will have a strong impact on the result. Moreover, the related physical processes might bear large uncertainties. The KOA value can only be used for particle absorption from the gas phase if the organic portion of the particle or dust is high. The Junge- and Pankow-equation for calculating the gas/particle distribution coefficient KP do not consider the physical and chemical properties of the particle surface area. It is demonstrated by error propagation theory and Monte-Carlo simulations that parameter uncertainties from estimation methods for molecular properties and variations of indoor conditions might strongly influence the calculated distribution behavior of compounds in the indoor environment.

  1. Selective gene amplification in mammalian cells after exposure to 60Co gamma rays, 241Am alpha particles, or uv light

    SciTech Connect

    Luecke-Huhle, C.P.; Pech, M.; Herrlich, P.

    1986-06-01

    Simian Virus 40 wild type (SV40)-transformed Chinese hamster embryo cells (Co631) contain about five viral copies integrated per cell genome. These SV40 sequences were used as endogenous indicator genes to study the response of mammalian cells to radiation at the gene level. An increase in copy number was detected by dispersed cell blotting and Southern analysis in combination with specific DNA hybridization. All types of radiation tested induce a 15- to 25-fold amplification of SV40 sequences without producing intact virus. The amplification is dose dependent and increases with time after irradiation: a maximum effect is observed at Day 3 after alpha particle or uv exposure and at Day 6 after gamma-ray exposure. A RBE of 6 can be calculated for alpha particles if amplification rates at Day 3 are compared. However, when the maximum effect is considered independent of time, no difference between different types of radiation is observed. Southern blots of genomic DNA show that not all integrated SV40 sequences are amplified upon radiation. Amplified sequences are found either in restriction fragments of relatively high molecular weight or in unit size fragments. SV40 amplification is selective in that the amplification of other genes, e.g., of alpha-actin, dhfr (dihydrofolate reductase), and of two oncogenes of the ras family (Kirsten ras and Harvey ras), was below detection level.

  2. Changes in Gene Expression in the Hippocampus Following Exposure to 56Fe Particles and Protection by Berry Diets

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, Barbara; Lau, Francis; Carey, Amanda; Carrihill-Knoll, Kirsty; Rabin, Bernard; Joseph, James

    Exposing young rats to particles of high energy and charge (HZE particles), such as 56 Fe, enhances indices of oxidative stress and inflammation and disrupts the functioning of the dopaminergic system and behaviors mediated by this system in a manner similar to that seen in aged animals. Behaviors affected by radiation include deficits in motor performance, spatial learning and memory behavior, amphetamine-induced conditioned taste aversion learning, conditioned place preference, and operant conditioning. Berry fruit diets are high in antioxidant and antiinflammatory activity, and prevent the occurrence of the neurochemical and behavioral changes that occur in aging and by exposure to 56 Fe particles. In the present study, we examined whether gene expression in the hippocampus, an area of the brain important in memory, is affected by exposure to 56 Fe particles 36 hours post-irradiation. We also evaluated whether the blueberry (BB) and strawberry (SB) diets could ameliorate irradiation-induced deficits in gene expression by maintaining rats on these diets or a control diet for 8 weeks prior to being exposed to radiation. Therefore, to measure gene expression, 4 rats/group were euthanized 36 hours post whole-body irradiation with 1.5 Gy or 2.5 Gy of 1 GeV/n high-energy 56 Fe particles. Alterations in gene expression profile induced by radiation were analyzed by pathway-focused microarrays on the inflammatory cytokines and genes involved in NF-?B signal transduction pathways. For the diet studies, 3 rats/group were irradiated with 2.5 Gy of 56 Fe following 8 weeks supplementation with either the 2% BB or the 2% SB diet. We found that genes that directly or indirectly interact in the regulation of growth and differentiation of neurons were changed following irradiation. Genes that regulate apoptosis were up-regulated whereas genes that modulate cellular proliferation were down-regulated, possibly to eliminate damaged cells and to stop cell proliferation to prevent DNA damage caused by radiation to new cells. Supplementation with the berry diets enhanced neuronal communication and cell signaling by altering gene regulation of some of the protective stress signals. Therefore, these data suggest that 56 Fe particle irradiation causes deficits in gene expression in rats which are ameliorated by berry fruit diets.

  3. Tissue distribution of inhaled micro- and nano-sized cerium oxide particles in rats: results from a 28-day exposure study.

    PubMed

    Geraets, Liesbeth; Oomen, Agnes G; Schroeter, Jeffry D; Coleman, Victoria A; Cassee, Flemming R

    2012-06-01

    In order to obtain more insight into the tissue distribution, accumulation, and elimination of cerium oxide nanoparticles after inhalation exposure, blood and tissue kinetics were investigated during and after a 28-day inhalation study in rats with micro- and nanocerium oxide particles (nominal primary particle size: < 5000, 40, and 5-10 nm). Powder aerosolization resulted in comparable mass median aerodynamic diameter (1.40, 1.17, and 1.02 ?m). After single exposure, approximately 10% of the inhaled dose was measured in lung tissue, as was also estimated by a multiple path particle dosimetry model (MPPD). Though small differences in pulmonary deposition efficiencies of cerium oxide were observed, no consistent differences in pulmonary deposition between the micro- and nanoparticles were observed. Each cerium oxide sample was also distributed to tissues other than lung after a single 6-h exposure, such as liver, kidney, and spleen and also brain, testis, and epididymis. No clear particle size-dependent effect on extrapulmonary tissue distribution was observed. Repeated exposure to cerium oxide resulted in significant accumulation of the particles in the (extra)pulmonary tissues. In addition, tissue clearance was shown to be slow, and, overall, insignificant amounts of cerium oxide were eliminated from the body at 48- to 72-h post-exposure. In conclusion, no clear effect of the primary particle size or surface area on pulmonary deposition and extrapulmonary tissue distribution could be demonstrated. This is most likely explained by similar aerodynamic diameter of the cerium oxide particles in air because of the formation of aggregates and irrespective possible differences in surface characteristics. The implications of the accumulation of cerium oxide particles for systemic toxicological effects after repeated chronic exposure via ambient air are significant and require further exploration. PMID:22430073

  4. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles.

    PubMed

    Roedel, Erik Q; Cafasso, Danielle E; Lee, Karen W M; Pierce, Lisa M

    2012-02-15

    Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals. PMID:22198552

  5. Pulmonary toxicity after exposure to military-relevant heavy metal tungsten alloy particles

    SciTech Connect

    Roedel, Erik Q., E-mail: Erik.Roedel@amedd.army.mil [Department of General Surgery, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Cafasso, Danielle E., E-mail: Danielle.Cafasso@amedd.army.mil [Department of General Surgery, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Lee, Karen W.M., E-mail: Karen.W.Lee@amedd.army.mil [Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859 (United States); Pierce, Lisa M., E-mail: Lisa.Pierce@amedd.army.mil [Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI 96859 (United States)

    2012-02-15

    Significant controversy over the environmental and public health impact of depleted uranium use in the Gulf War and the war in the Balkans has prompted the investigation and use of other materials including heavy metal tungsten alloys (HMTAs) as nontoxic alternatives. Interest in the health effects of HMTAs has peaked since the recent discovery that rats intramuscularly implanted with pellets containing 91.1% tungsten/6% nickel/2.9% cobalt rapidly developed aggressive metastatic tumors at the implantation site. Very little is known, however, regarding the cellular and molecular mechanisms associated with the effects of inhalation exposure to HMTAs despite the recognized risk of this route of exposure to military personnel. In the current study military-relevant metal powder mixtures consisting of 92% tungsten/5% nickel/3% cobalt (WNiCo) and 92% tungsten/5% nickel/3% iron (WNiFe), pure metals, or vehicle (saline) were instilled intratracheally in rats. Pulmonary toxicity was assessed by cytologic analysis, lactate dehydrogenase activity, albumin content, and inflammatory cytokine levels in bronchoalveolar lavage fluid 24 h after instillation. The expression of 84 stress and toxicity-related genes was profiled in lung tissue and bronchoalveolar lavage cells using real-time quantitative PCR arrays, and in vitro assays were performed to measure the oxidative burst response and phagocytosis by lung macrophages. Results from this study determined that exposure to WNiCo and WNiFe induces pulmonary inflammation and altered expression of genes associated with oxidative and metabolic stress and toxicity. Inhalation exposure to both HMTAs likely causes lung injury by inducing macrophage activation, neutrophilia, and the generation of toxic oxygen radicals. -- Highlights: ? Intratracheal instillation of W–Ni–Co and W–Ni–Fe induces lung inflammation in rats. ? W–Ni–Co and W–Ni–Fe alter expression of oxidative stress and toxicity genes. ? W–Ni–Co induces a greater oxidative burst response than W–Ni–Fe in lung macrophages.

  6. 56Fe Particle Exposure Results in a Long-Lasting Increase in a Cellular Index of Genomic Instability and Transiently Suppresses Adult Hippocampal Neurogenesis in Vivo

    PubMed Central

    DeCarolis, Nathan A.; Rivera, Phillip D.; Ahn, Francisca; Amaral, Wellington Z.; LeBlanc, Junie A.; Malhotra, Shveta; Shih, Hung-Ying; Petrik, David; Melvin, Neal; Chen, Benjamin P.C.; Eisch, Amelia J.

    2014-01-01

    The high-LET HZE particles from galactic cosmic radiation pose tremendous health risks to astronauts, as they may incur sub-threshold brain injury or maladaptations that may lead to cognitive impairment. The health effects of HZE particles are difficult to predict and unfeasible to prevent. This underscores the importance of estimating radiation risks to the central nervous system as a whole as well as to specific brain regions like the hippocampus, which is central to learning and memory. Given that neurogenesis in the hippocampus has been linked to learning and memory, we investigated the response and recovery of neurogenesis and neural stem cells in the adult mouse hippocampal dentate gyrus after HZE particle exposure using two nestin transgenic reporter mouse lines to label and track radial glia stem cells (Nestin-GFP and Nestin-CreERT2/R26R:YFP mice, respectively). Mice were subjected to 56Fe particle exposure (0 or 1 Gy, at either 300 or 1000 MeV/n) and brains were harvested at early (24h), intermediate (7d), and/or long time points (2–3mo) post-irradiation. 56Fe particle exposure resulted in a robust increase in 53BP1+ foci at both the intermediate and long time points post-irradiation, suggesting long-term genomic instability in the brain. However, 56Fe particle exposure only produced a transient decrease in immature neuron number at the intermediate time point, with no significant decrease at the long time point post-irradiation. 56Fe particle exposure similarly produced a transient decrease in dividing progenitors, with fewer progenitors labeled at the early time point but equal number labeled at the intermediate time point, suggesting a recovery of neurogenesis. Notably, 56Fe particle exposure did not change the total number of nestin-expressing neural stem cells. These results highlight that despite the persistence of an index of genomic instability, 56Fe particle-induced deficits in adult hippocampal neurogenesis may be transient. These data support the regenerative capacity of the adult SGZ after HZE particle exposure and encourage additional inquiry into the relationship between radial glia stem cells and cognitive function after HZE particle exposure. PMID:25170435

  7. Effect of ejector dilutors on measurements of automotive exhaust gas aerosol size distributions

    Microsoft Academic Search

    Barouch Giechaskiel; Leonidas Ntziachristos; Zissis Samaras

    2009-01-01

    Ejector dilutors have long been used for automotive exhaust particle sampling, as they can offer a low-cost option for stable dilution. In an ejector dilutor, pressurized air expanding in the periphery of a nozzle draws in and mixes with an exhaust sample which is then led to analytical equipment. The combination of processes involved may lead to particle losses which

  8. The relationship between various exposure metrics for elongate mineral particles (EMP) in the taconite mining and processing industry.

    PubMed

    Hwang, Jooyeon; Ramachandran, Gurumurthy; Raynor, Peter C; Alexander, Bruce H; Mandel, Jeffrey H

    2014-01-01

    Different dimensions of elongate mineral particles (EMP) have been proposed as being relevant to respiratory health end-points such as mesothelioma and lung cancer. In this article, a methodology for converting personal EMP exposures measured using the National Institute for Occupational Safety and Health (NIOSH) 7400/7402 methods to exposures based on other size-based definitions has been proposed and illustrated. Area monitoring for EMP in the taconite mines in Minnesota's Mesabi Iron Range was conducted using a Micro Orifice Uniform Deposit Impactor (MOUDI) size-fractionating sampler. EMP on stages of the MOUDI were counted and sized according to each EMP definition using an indirect-transfer transmission electron microscopy (ISO Method 13794). EMP were identified using energy-dispersive x-ray and electron diffraction analysis. Conversion factors between the EMP counts based on different definitions were estimated using (1) a linear regression model across all locations and (2) a location-specific ratio of the count based on each EMP definition to the NIOSH 7400/7402 count. The highest fractions of EMP concentrations were found for EMP that were 1-3 ?m in length and 0.2-0.5 ?m in width. Therefore, the current standard NIOSH Method 7400, which only counts EMP >5 ?m in length and ? 3 in aspect ratio, may underestimate amphibole EMP exposures. At the same time, there was a high degree of correlation between the exposures estimated according to the different size-based metrics. Therefore, the various dimensional definitions probably do not result in different dose-response relationships in epidemiological analyses. Given the high degree of correlation between the various metrics, a result consistent with prior research, a more reasonable metric might be the measurement of all EMP irrespective of size. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: figures detailing EMP concentration.]. PMID:24512074

  9. Induction of genomic instability in TK6 human lymphoblasts exposed to 137Cs gamma radiation: comparison to the induction by exposure to accelerated 56Fe particles

    NASA Technical Reports Server (NTRS)

    Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, M.; Jordan, Robert; Schwartz, Jeffrey L.

    2003-01-01

    The induction of genomic instability in TK6 human lymphoblasts by exposure to (137)Cs gamma radiation was investigated by measuring the frequency and characteristics of unstable clones isolated approximately 36 generations after exposure. Clones surviving irradiation and control clones were analyzed for 17 characteristics including chromosomal aberrations, growth defects, alterations in response to a second irradiation, and mutant frequencies at the thymidine kinase and Na(+)/K(+) ATPase loci. Putative unstable clones were defined as those that exhibited a significant alteration in one or more characteristics compared to the controls. The frequency and characteristics of the unstable clones were compared in clones exposed to (137)Cs gamma rays or (56)Fe particles. The majority of the unstable clones isolated after exposure to either gamma rays or (56)Fe particles exhibited chromosomal instability. Alterations in growth characteristics, radiation response and mutant frequencies occurred much less often than cytogenetic alterations in these unstable clones. The frequency and complexity of the unstable clones were greater after exposure to (56)Fe particles than to gamma rays. Unstable clones that survived 36 generations after exposure to gamma rays exhibited increases in the incidence of dicentric chromosomes but not of chromatid breaks, whereas unstable clones that survived 36 generations after exposure to (56)Fe particles exhibited increases in both chromatid and chromosome aberrations.

  10. Environment effects from SRB exhaust effluents: Technique development and preliminary assessment

    NASA Technical Reports Server (NTRS)

    Goldford, A. I.; Adelfang, S. I.; Hickey, J. S.; Smith, S. R.; Welty, R. P.; White, G. L.

    1977-01-01

    Techniques to determine the environmental effects from the space shuttle SRB (Solid Rocket Booster) exhaust effluents are used to perform a preliminary climatological assessment. The exhaust effluent chemistry study was performed and the exhaust effluent species were determined. A reasonable exhaust particle size distribution is constructed for use in nozzle analyses and for the deposition model. The preliminary assessment is used to identify problems that are associated with the full-scale assessment; therefore, these preliminary air quality results are used with caution in drawing conclusion regarding the environmental effects of the space shuttle exhaust effluents.

  11. Diverse delayed effects in human lymphoblastoid cells surviving exposure to high-LET (56)Fe particles or low-LET (137)Cs gamma radiation

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Horng, M. F.; Ricanati, M.; Diaz-Insua, M.; Jordan, R.; Schwartz, J. L.

    2001-01-01

    To obtain information on the origin of radiation-induced genomic instability, we characterized a total of 166 clones that survived exposure to (56)Fe particles or (137)Cs gamma radiation, isolated approximately 36 generations after exposure, along with their respective control clones. Cytogenetic aberrations, growth alterations, responses to a second irradiation, and mutant frequencies at the Na(+)/K(+) ATPase and thymidine kinase loci were determined. A greater percentage of clones that survived exposure to (56)Fe particles exhibited instability (defined as clones showing one or more outlying characteristics) than in the case of those that survived gamma irradiation. The phenotypes of the unstable clones that survived exposure to (56)Fe particles were also qualitatively different from those of the clones that survived gamma irradiation. A greater percentage (20%) of the unstable clones that survived gamma irradiation than those that survived exposure to (56)Fe particles (4%) showed an altered response to the second irradiation, while an increase in the percentage of clones that had an outlying frequency of ouabain-resistant and thymidine kinase mutants was more evident in the clones exposed to (56)Fe particles than in those exposed to gamma rays. Growth alterations and increases in dicentric chromosomes were found only in clones with more than one alteration. These results underscore the complex nature of genomic instability and the likelihood that radiation-induced genomic instability arises from different original events.

  12. EXPERIMENTAL METHODOLOGIES AND PRELIMINARY TRANSFER FACTOR DATA FOR ESTIMATION OF DERMAL EXPOSURES TO PARTICLES

    EPA Science Inventory

    Developmental efforts and experimental data are described that focused on quantifying the transfer of particles on a mass basis from indoor surfaces to human skin. Methods were developed that utilized a common fluorescein-tagged Arizona Test Dust (ATD) as a possible surrogate ...

  13. Vascular Effects of a Subchronic Inhalation Exposure to Concentrated Ambient Air Particles in Atherosclerosis Susceptible Mice

    EPA Science Inventory

    Numerous studies have reported the adverse effects of particulate air pollution on cardiovascular function and disease. The causal physiochemical properties of particles and their mechanisms of action/injury remain unknown. This study examined the vascular effects in 15 wk old ma...

  14. Comparative pulmonary toxicological assessment of oil combustion particles following inhalation or instillation exposure.

    PubMed

    Costa, Daniel L; Lehmann, James R; Winsett, Darrell; Richards, Judy; Ledbetter, Allen D; Dreher, Kevin L

    2006-05-01

    Controversy persists regarding the validity of intratracheal instillation (IT) of particulate matter (PM) as a surrogate for inhalation exposure (IH) in rodents. Concerns center on dose, dose-rate, and distribution of material within the lung. Acute toxicity of a residual oil fly ash (ROFA) administered by IH was compared to those effects of a single IT bolus at an IH-equivalent dose. Male Sprague Dawley rats (60 days old) were exposed by nose-only IH to approximately 12 mg/m3 for 6 h. Inter-lobar dose distribution of ROFA, dissected immediately post exposure, was assayed by neutron activation. Vanadium and nickel were used as ROFA markers. IT administration of the IH-equivalent dose (110 microg) showed similar (<15%) interlobular distribution, with the exception of the inferior lobe dose (IT>IH approximately 25%). Evaluation of airway hyperreactivity (AHR), bronchoalveolar lavage fluid (BALF) constituents, and histopathology was conducted at 24, 48, and 96 h post exposure. AHR in the IH group was minimally (p > 0.05) affected by treatment, but was significantly increased ( approximately 40%) at both 24 and 48 h post IT. Inflammation in both groups, as measured by alterations in BALF protein, lactate dehydrogenase and neutrophils, was virtually identical at all time points. Alveolitis and bronchial inflammation/epithelial hypertrophy were prominent 24 h following IT, but not apparent after IH. Conversely, alveolar hemorrhage, congestion, and airway exudate were pronounced at 48 h post-IH but not remarkable in the IT group. Thus, IT-ROFA mimicked IH in terms of lobar distribution and injury biomarkers over 96 h, while morphological alterations and AHR appeared to be more dependent on the method of administration. PMID:16449252

  15. Effects of particle size and coating on nanoscale Ag and TiO? exposure in zebrafish (Danio rerio) embryos.

    PubMed

    Osborne, Olivia J; Johnston, Blair D; Moger, Julian; Balousha, Mohammed; Lead, Jamie R; Kudoh, Tetsuhiro; Tyler, Charles R

    2013-12-01

    Manufactured metal (oxide) nanoparticles are entering the aquatic environment with little understanding on their potential health impacts for exposed organisms. Adopting an integrative approach, we investigated effects of particle size and coating on biological responses for two of the most commonly used metal (oxide) nanoscale particles, silver (Ag) and titanium dioxide (TiO?) in zebrafish embryos. Titanium dioxide nanoparticles (nominally, 4 nm, 10 nm, 30 nm and 134 nm) had little or no toxicity on the endpoints measured. Ag both in nano form (10 nm and 35 nm) and its larger counterpart (600-1600 nm) induced dose-dependent lethality and morphological defects, occurring predominantly during gastrula stage. Of the silver material tested 10 nm nanoparticles appeared to be the most toxic. Coating Ag nanoparticles with citrate or fulvic acid decreased toxicity significantly. In situ hybridisation analysis identified the yolk syncytial layer (YSL) as a target tissue for Ag-nano toxicity where there was a significant induction of the heavy metal stress response gene, metallothionein 2 (Mt2) at sub-lethal exposures. Coherent Anti-stroke Raman Scattering (CARS) microscopy provided no evidence for silver particles crossing the chorionic membrane in exposed embryos. Collectively, our data suggest that silver ions play a major role in the toxicity of Ag nanoparticles. PMID:23035978

  16. Diesel asthma. Reactive airways disease following overexposure to locomotive exhaust.

    PubMed

    Wade, J F; Newman, L S

    1993-02-01

    While some of the gaseous and particulate components of diesel exhaust can cause pulmonary irritation and bronchial hyperreactivity, diesel exhaust exposure has not been shown to cause asthma. Three railroad workers developed asthma following excessive exposure to locomotive emissions while riding immediately behind the lead engines of caboose-less trains. Asthma diagnosis was based on symptoms, pulmonary function tests, and measurement of airways hyperreactivity to methacholine or exercise. One individual's peak expiratory flow rates fell in a work-related pattern when riding immediately behind the lead diesel engine. None had a previous history of asthma or other respiratory disease and none were current smokers. All three developed persistent asthma. In two cases, physiologic abnormalities suggesting reversible restriction were observed. This is the first report implicating diesel exhaust as a cause of reactive airways disease. PMID:8433186

  17. Enhanced microchannel plate performance at high particle fluxes by pulsed exposure mode of operation

    SciTech Connect

    Tournianski, M.R.; Carolan, P.G.; Akers, R.J. [EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB (United Kingdom)

    2004-09-01

    Operating a microchannel plate (MCP) in saturated mode provides a simple photon and particle counting detector. However, there is a finite recovery time after individual events during which individual microchannels no longer respond, reducing the overall sensitivity. At continuous high flux levels, the corrections from measured to true flux become increasingly large as the fraction of live microchannels rapidly decays to low values. Gating the flux arriving at the MCP greatly increases the proportion of live microchannels allowing periodic measurements to be made that accommodate high fluxes and associated low errors. Such improvements have been observed in a neutral particle analyzer on the Mega Ampere Spherical Tokamak. A simple analytical treatment accounts for the measured improvements.

  18. AUTOMOTIVE EXHAUST AND MOUSE ACTIVITY: RELATIONSHIPS BETWEEN POLLUTANT CONCENTRATIONS AND DECREASES IN WHEEL RUNNING

    EPA Science Inventory

    Groups of male and female mice inhaled either clean air, 100 ppm carbon monoxide, or light-irradiated and nonirridiated automotive exhaust containing nominally 25, 50, 75, or 100 ppm carbon monoxide in three tests with exposure lasting from 4 to 7 days. Exhaust from a factory or ...

  19. ALTERED FUNCTION AND HISTOLOGY IN GUINEA PIGS AFTER INHALATION OF DIESEL EXHAUST

    EPA Science Inventory

    Health effects of inhaled diesel engine exhaust were evaluated in infant guinea pigs following 4 and 8 weeks of exposure. Animals were exposed to 1 part exhaust diluted by 13 parts clean air for 20 hr/day, 7 days/week. Lung function, electrocardiogram, growth rate, and histopatho...

  20. CHAPTER ONE: EXPOSURE MEASUREMENTS.

    EPA Science Inventory

    Determining human exposure to suspended particualte concentrations requires measurements that quantify different particle properties in microenvironments where people live, work, and play. Particle mass, size, and chemical composition are important exposure variables, and these ...

  1. Electrocardiographic changes during exposure to residual oil fly ash (ROFA) particles in a rat model of myocardial infarction.

    PubMed

    Wellenius, Gregory A; Saldiva, Paulo H N; Batalha, Joao R F; Krishna Murthy, G G; Coull, Brent A; Verrier, Richard L; Godleski, John J

    2002-04-01

    Epidemiological studies have reported a positive association of short-term increases in ambient particulate matter (PM) with daily mortality and hospital admissions for cardiovascular disease. Although patients with cardiopulmonary disease appear to be most at risk, particulate-related cardiac effects following myocardial infarction (MI) have not been examined. To improve understanding of mechanisms, we developed and tested a model for investigating the effects of inhaled PM on arrhythmias and heart rate variability (HRV), a measure of autonomic nervous system activity, in rats with acute MI. Left-ventricular MI was induced in 31 Sprague-Dawley rats by thermocoagulation of the left coronary artery; 32 additional rats served as sham-operated controls. Diazepam-sedated rats were exposed (1 h) to residual oil fly ash (ROFA), carbon black, or room air at 12-18 h after surgery. Each exposure was immediately preceded and followed by a 1-h exposure to room air (baseline and recovery periods, respectively). Lead-II electrocardiograms were recorded. In the MI group, 41% of rats exhibited one or more premature ventricular complexes (PVCs) during the baseline period. Exposure to ROFA, but not to carbon black or room air, increased arrhythmia frequency in animals with preexisting PVCs. Furthermore, MI rats exposed to ROFA, but not to carbon black or room air, decreased HRV. There was no difference in arrhythmia frequency or HRV among sham-operated animals. These results underscore the usefulness of this model for elucidating the physiologic mechanisms of pollution-induced cardiovascular arrhythmias and contribute to defining the specific constituents of ambient particles responsible for arrhythmias. PMID:11896300

  2. Using electron beam radiation to simulate the dose distribution for whole body solar particle event proton exposure.

    PubMed

    Cengel, Keith A; Diffenderfer, Eric S; Avery, Stephen; Kennedy, Ann R; McDonough, James

    2010-11-01

    As a part of the near solar system exploration program, astronauts may receive significant total body proton radiation exposures during a solar particle event (SPE). In the Center for Acute Radiation Research (CARR), symptoms of the acute radiation sickness syndrome induced by conventional radiation are being compared to those induced by SPE-like proton radiation, to determine the relative biological effectiveness (RBE) of SPE protons. In an SPE, the astronaut's whole body will be exposed to radiation consisting mainly of protons with energies below 50 MeV. In addition to providing for a potentially higher RBE than conventional radiation, the energy distribution for an SPE will produce a relatively inhomogeneous total body dose distribution, with a significantly higher dose delivered to the skin and subcutaneous tissues than to the internal organs. These factors make it difficult to use a (60)Co standard for RBE comparisons in our experiments. Here, the novel concept of using megavoltage electron beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation is described. In these studies, Monte Carlo simulation was used to determine the dose distribution of electron beam radiation in small mammals such as mice and ferrets as well as large mammals such as pigs. These studies will help to better define the topography of the time-dose-fractionation versus biological response landscape for astronaut exposure to an SPE. PMID:20725839

  3. Application of laser capture microdissection and protein microarray technologies in the molecular analysis of airway injury following pollution particle exposure.

    PubMed

    Roberts, Elizabeth; Charboneau, Lu; Espina, Virginia; Liotta, Lance; Petricoin, Emanuel; Dreher, Kevin

    2004-06-11

    Understanding the mechanisms by which various types of air pollution particles (particulate matter, PM) mediate adverse health effects would provide biological plausibility to epidemiological associations of increased rates of morbidity and mortality. The majority of information regarding the means by which PM generates lung injury has been derived from in vitro studies. However, it is unclear as to what extent these mechanisms can be extrapolated to the in vivo situation. Current methods to assess mechanisms of PM-induced lung injury make it difficult to obtain site-specific, sensitive, and comprehensive determinations of cellular and molecular pathology associated with PM-induced injury. In the present study, the ability of laser capture microdissection (LCM) and protein microarray technologies were assessed to examine the effect of residual oil fly ash (ROFA) exposure on airway intracellular signaling pathways and transcription factor activation. Sprague-Dawley rats were intratracheally instilled with 0.5 mg/rat of ROFA. LCM was used to recover airway cells and protein extracts derived from the microdissected airways were analyzed by protein microarray. ROFA exposure increased p-ERK:ERK and p-I kappa B:I kappa B, suggesting changes in cell growth, transformation, and inflammation within the airway. These results are consistent with previously reported in vitro findings, demonstrating for the first time the credibility of applying LCM and protein microarray technologies to assess acute lung injury induced by environmental air pollutants. PMID:15205040

  4. Cosmogenic neon from individual grains of CM meteorites - Extremely long pre-compaction exposure histories or an enhanced early particle flux

    NASA Technical Reports Server (NTRS)

    Hohenberg, Charles M.; Nichols, Robert H., Jr.; Olinger, Chad T.; Goswami, J. N.

    1990-01-01

    This paper presents the results on cosmogenic Ne extracted from individual meteoritic grains by a laser extraction system which used, at different times, two CW lasers: an Ar-ion laser and an Nd:YAG laser, with 20 and 70 W of deliverable power, respectively. Chemical etching was used to select grains exposed to solar flare VH particles. Results show that most of the grains with solar flare VH tracks (but not those which did not exhibit such tracks) contain spallation-produed Ne in significant excess of that due to the nominal cosmic-ray exposure, providing evidence for extensive energetic particle exposure during the precompaction era.

  5. Aircraft exhaust sulfur emissions

    NASA Astrophysics Data System (ADS)

    Brown, R. C.; Anderson, M. R.; Miake-Lye, R. C.; Kolb, C. E.; Sorokin, A. A.; Buriko, Y. Y.

    The conversion of fuel sulfur to S(VI) (SO3 + H2SO4) in supersonic and subsonic aircraft engines is estimated numerically. Model results indicate between 2% and 10% of the fuel sulfur is emitted as S(VI). It is also shown that, for a high sulfur mass loading, conversion in the turbine is kinetically limited by the level of atomic oxygen. This results in a higher oxidation efficiency at lower sulfur loadings. SO3 is the primary S(VI) oxidation product and calculated H2SO4 emission levels were less than 1% of the total fuel sulfur. This source of S(VI) can exceed the S(VI) source due to gas phase oxidation in the exhaust wake.

  6. Variable area exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Johnston, E. A. (inventor)

    1979-01-01

    An exhaust nozzle for a gas turbine engine comprises a number of arcuate flaps pivotally connected to the trailing edge of a cylindrical casing which houses the engine. Seals disposed within the flaps are spring biased and extensible beyond the side edges of the flaps. The seals of adjacent flaps are maintained in sealing engagement with each other when the flaps are adjusted between positions defining minimum nozzle flow area and the cruise position. Extensible, spring biased seals are also disposed within the flaps adjacent to a supporting pylon to thereby engage the pylon in a sealing arrangement. The flaps are hinged to the casing at the central portion of the flaps' leading edges and are connected to actuators at opposed outer portions of the leading edges to thereby maximize the mechanical advantage in the actuation of the flaps.

  7. Prolonged TASER use on exhausted humans does not worsen markers of acidosis

    Microsoft Academic Search

    Jeffrey D. Ho; Donald M. Dawes; Laura L. Bultman; Ronald M. Moscati; Timothy A. Janchar; James R. Miner

    2009-01-01

    ObjectiveThere are safety concerns about TASER conducted electrical weapon (CEW) use on humans, and there have been media reports of adverse human outcomes after CEW exposure. Conducted electrical weapons are often used on physically exhausted subjects. A single CEW application of a CEW is generally accepted to be 5 seconds of exposure. Some exposures in reality involve more than 5

  8. Control of diesel exhaust odors

    Microsoft Academic Search

    Karl J. Springer; Ralph C. Stahman

    1974-01-01

    Attempts to reduce diesel exhaust odors, particularly from city buses, are reviewed along with some of the problems associated with odor measurement. Most research on diesel exhaust odor utilizes the Environmental Protection Agency Diesel Odor Quality-Intensity Rating System which consists of 28 plastic squeeze bottles, each partially filled with a different intensity or odor. A trained panel routinely evaluates simultaneously

  9. Treatment of power utilities exhaust

    DOEpatents

    Koermer, Gerald (Basking Ridge, NJ)

    2012-05-15

    Provided is a process for treating nitrogen oxide-containing exhaust produced by a stationary combustion source by the catalytic reduction of nitrogen oxide in the presence of a reductant comprising hydrogen, followed by ammonia selective catalytic reduction to further reduce the nitrogen oxide level in the exhaust.

  10. *GAS-PHASE AND PARTICULATE COMPONENTS OF DIESEL EXHAUST PRODUCE DIFFERENTIAL CARDIOPHYSIOLOGICAL IMPAIRMENTS IN HEALTHY RATS

    EPA Science Inventory

    We recently showed that inhalation exposure of normotensive Wistar Kyoto (WKY) rats to whole diesel exhaust (DE) elicited changes in cardiac gene expression pattern that broadly mimicked gene expression in non-exposed spontaneously hypertensive rats. We hypothesized that healthy ...

  11. Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China.

    PubMed

    Yan, Caiqing; Zheng, Mei; Yang, Qiaoyun; Zhang, Qunfang; Qiu, Xinghua; Zhang, Yanjun; Fu, Huaiyu; Li, Xiaoying; Zhu, Tong; Zhu, Yifang

    2015-09-01

    Exposure to fine and ultrafine particles as well as particulate polycyclic aromatic hydrocarbons (PAHs) by commuters in three transportation modes (walking, subway and bus) were examined in December 2011 in Beijing, China. During the study period, real-time measured median PM2.5 mass concentration (PMC) for walking, riding buses and taking the subway were 26.7, 32.9 and 56.9 ?g m(-3), respectively, and particle number concentrations (PNC) were 1.1 × 10(4), 1.0 × 10(4) and 2.2 × 10(4) cm(-3). Commuters were exposed to higher PNC in air-conditioned buses and aboveground-railway, but higher PMC in underground-subway compared to aboveground-railway. PNC in roadway modes (bus and walking) peaked at noon, but was lower during traffic rush hours, negatively correlated with PMC. Toxic potential of particulate-PAHs estimated based on benzo(a)pyrene toxic equivalents (BaP TEQs) showed that walking pedestrians were subjected to higher BaP TEQs than bus (2.7-fold) and subway (3.6-fold) commuters, though the highest PMC and PNC were observed in subway. PMID:25978352

  12. Interplanetary charged particle models (1974). [and the effects of cosmic exposure upon spacecraft and spacecraft components

    NASA Technical Reports Server (NTRS)

    Divine, N.

    1975-01-01

    The design of space vehicles for operation in interplanetary space is given, based on descriptions of solar wind, solar particle events, and galactic cosmic rays. A state-of-the-art review is presented and design criteria are developed from experiment findings aboard interplanetary and high-altitude earth-orbiting spacecraft. Solar cells were found to be particularly sensitive. Solar protons may also impact the reliability of electric propulsion systems and spacecraft surfaces, as well as causing interference, detector saturation, and spurious signals. Galactic cosmic-ray impact can lead to similar electronic failure and interference and may register in photographic films and other emulsions. It was concluded that solar wind electron measurements might result from differential charging when shadowed portions of the spacecraft acquired a negative charge from electron impact.

  13. Effects of repeated inhalation exposures to 1-nitropyrene, benzo[a]pyrene, Ga2O3 particles, and SO2 alone and in combinations on particle clearance, bronchoalveolar lavage fluid composition, and histopathology.

    PubMed

    Wolff, R K; Griffith, W C; Henderson, R F; Hahn, F F; Harkema, J R; Rebar, A H; Eidson, A F; McClellan, R O

    1989-01-01

    The toxicities of 1-nitropyrene (NP) and benzo[a]pyrene (BaP), inhaled alone and in combination with particles and an irritant gas, were examined to evaluate synergisms among the organic compounds, particles, and gas. Groups of F344 rats were exposed 2 h/d, 5 d/wk for 4 wk to atmospheres of pure NP aerosol (7.5 mg/m3), and to these same compounds adsorbed to Ga2O3 particles (27 mg/m3) both with and without coexposure to 5 ppm SO2. Rats were also exposed to Ga2O3 and SO2 alone. Measurements were made of lung burdens of Ga2O3 particles and retention of radiolabeled tracer particles after the cessation of exposure to evaluate effects on particle clearance. Bronchoalveolar lavage fluid was analyzed to assess inflammation and cytotoxicity. Histopathology was examined to assess the nature and extent of lung injury. Particle clearance was significantly impaired (p less than .05) in all groups whose exposure atmosphere included Ga2O3, but was not significantly changed in the other exposure groups. PMID:2724363

  14. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...exhaust tubing should be specified as the sample point, or first point of dilution...air, and exhaust according to § 1065.655 to verify exhaust system integrity. ...restriction, and sufficiently upstream of any sample probes to ensure complete mixing...

  15. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...exhaust tubing should be specified as the sample point, or first point of dilution...air, and exhaust according to § 1065.655 to verify exhaust system integrity. ...restriction, and sufficiently upstream of any sample probes to ensure complete mixing...

  16. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...exhaust tubing should be specified as the sample point, or first point of dilution...air, and exhaust according to § 1065.655 to verify exhaust system integrity. ...restriction, and sufficiently upstream of any sample probes to ensure complete mixing...

  17. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...exhaust tubing should be specified as the sample point, or first point of dilution...air, and exhaust according to § 1065.655 to verify exhaust system integrity. ...restriction, and sufficiently upstream of any sample probes to ensure complete mixing...

  18. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...exhaust tubing should be specified as the sample point, or first point of dilution...air, and exhaust according to § 1065.655 to verify exhaust system integrity. ...restriction, and sufficiently upstream of any sample probes to ensure complete mixing...

  19. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...System § 27.1123 Exhaust piping. (a) Exhaust piping must be heat and corrosion resistant...must have provisions to prevent failure due to expansion by operating temperatures. (b) Exhaust piping must be supported to...

  20. 14 CFR 29.1123 - Exhaust piping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...System § 29.1123 Exhaust piping. (a) Exhaust piping must be heat and corrosion resistant...must have provisions to prevent failure due to expansion by operating temperatures. (b) Exhaust piping must be supported to...

  1. 14 CFR 29.1123 - Exhaust piping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...System § 29.1123 Exhaust piping. (a) Exhaust piping must be heat and corrosion resistant...must have provisions to prevent failure due to expansion by operating temperatures. (b) Exhaust piping must be supported to...

  2. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...System § 27.1123 Exhaust piping. (a) Exhaust piping must be heat and corrosion resistant...must have provisions to prevent failure due to expansion by operating temperatures. (b) Exhaust piping must be supported to...

  3. 14 CFR 29.1123 - Exhaust piping.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...System § 29.1123 Exhaust piping. (a) Exhaust piping must be heat and corrosion resistant...must have provisions to prevent failure due to expansion by operating temperatures. (b) Exhaust piping must be supported to...

  4. 14 CFR 27.1123 - Exhaust piping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...System § 27.1123 Exhaust piping. (a) Exhaust piping must be heat and corrosion resistant...must have provisions to prevent failure due to expansion by operating temperatures. (b) Exhaust piping must be supported to...

  5. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    PubMed

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE. PMID:22561182

  6. Radiation Exposure Analyses Supporting the Development of Solar Particle Event Shielding Technologies

    NASA Technical Reports Server (NTRS)

    Walker, Steven A.; Clowdsley, Martha S.; Abston, H. Lee; Simon, Hatthew A.; Gallegos, Adam M.

    2013-01-01

    NASA has plans for long duration missions beyond low Earth orbit (LEO). Outside of LEO, large solar particle events (SPEs), which occur sporadically, can deliver a very large dose in a short amount of time. The relatively low proton energies make SPE shielding practical, and the possibility of the occurrence of a large event drives the need for SPE shielding for all deep space missions. The Advanced Exploration Systems (AES) RadWorks Storm Shelter Team was charged with developing minimal mass SPE storm shelter concepts for missions beyond LEO. The concepts developed included "wearable" shields, shelters that could be deployed at the onset of an event, and augmentations to the crew quarters. The radiation transport codes, human body models, and vehicle geometry tools contained in the On-Line Tool for the Assessment of Radiation In Space (OLTARIS) were used to evaluate the protection provided by each concept within a realistic space habitat and provide the concept designers with shield thickness requirements. Several different SPE models were utilized to examine the dependence of the shield requirements on the event spectrum. This paper describes the radiation analysis methods and the results of these analyses for several of the shielding concepts.

  7. Elevated plus-maze performance of Fischer-344 rats as a function of age and of exposure to 56Fe particles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aging process is characterized by a series of changes in neurochemical functioning and in motor and cognitive performance. Exposure to 56Fe particles, a component of cosmic rays, produces accelerated aging such that these changes that are characteristic of aged organisms are observed in young a...

  8. Modulating Effects of Maternal Fish Consumption on the Occurrence of Respiratory Symptoms in Early Infancy Attributed to Prenatal Exposure to Fine Particles

    Microsoft Academic Search

    Wieslaw Jedrychowski; Elzbieta Flak; Elzbieta Mroz; Agnieszka Pac; Ryszard Jacek; Elzbieta Sochacka-Tatara; John Spengler; Virginia Rauh; Frederica Perera

    2008-01-01

    The purpose of the study was to test the hypothesis whether infants with higher prenatal exposure to fine particles (PM2.5) are at greater risk of developing respiratory symptoms and whether fish consumption in pregnancy may modulate the effect. The study was carried out in a cohort of 465 newborns in Krakow (Poland) who have been followed over the first 2

  9. PARTICLE EXPOSURE ASSESSMENT METHODOLOGY (PTEAM) STUDY: DISTRIBUTIONS OF AEROSOL AND ELEMENTAL CONCENTRATIONS IN PERSONAL, INDOOR, AND OUTDOOR AIR SAMPLES IN A SOUTHERN CALIFORNIACOMMUNITY

    EPA Science Inventory

    Particle concentrations were measured for a probability-based sample of 178 nonsmoking individuals aged 10 or older residing in Riverside, California, in the fall of 1990. Two 12-hr personal-exposure PM10 samples were obtained for each participant, along with fixed-location PM10 ...

  10. Reduction of 3-methoxytyramine concentrations in the caudate nucleus of rats after exposure to high-energy iron particles: Evidence for deficits in dopaminergic neurons

    SciTech Connect

    Hunt, W.A.; Dalton, T.K.; Joseph, J.A.; Rabin, B.M.

    1990-01-01

    The prospect of long-term space travel raises a number of questions about the safety of astronauts asked to venture on prolonged journeys. The problems of microgravity are well known, but the hazards of exposure to radation are less understood. Most space travel has involved a few days to many months in low-altitude, equatorial orbits, where the dangers of radiation are lessened by the magnetic field surrounding the earth. Travel to polar or geostationary orbits or travel to the moon or the planets has a far greater radiation hazard. Almost nothing is known about possible risks to behavior and brain function after radiation exposure, such as found after the emission of solar flares or from long-term exposure from galactic cosmic radiation. Exposure to low doses of high-energy iron particles can alter motor behavior. The ability of rats to hang from a wire has been reported to be significantly degraded after exposure to doses as low as 0.5 Gy. In addition, deficits in the ability of acetylcholine to regulate dopamine release in the caudate nucleus (an area in the brain important for motor function) have been found. These results provide further evidence that exposure to heavy particles can degrade motor behavior through an action on dopaminergic mechanisms and that this can occur after doses much lower than those needed for low-LET radiation.

  11. Entake or exhaust valve actuator

    SciTech Connect

    Smietana, J.M.

    1993-08-03

    Intake or exhaust valve actuator assembly is described for an internal combustion engine for hydraulically opening and closing an intake or exhaust valve for admitting intake gases from an intake conduit into a combustion chamber or permitting exhaust gases to escape from the combustion chamber into an exhaust conduit, the engine including a piston which oscillates in the combustion chamber, a cylinder head which encloses the combustion chamber and contains the intake or exhaust valve and the intake or exhaust conduit, and timing means to detect phase of the piston as it oscillates in the combustion chamber; the intake or exhaust valve actuator assembly comprising a sleeve mounted in the cylinder head, a piston member slidably disposed in the sleeve cylindrical cavity, the piston member being affixed onto the stem of the associated intake or exhaust valve, and a rod bearing member mounted in the distal end of the sleeve for guiding the rod portion and forming a sliding seal therewith, and the sleeve having a distal port and a proximal port formed therein for communicating fluid pressure to the cylindrical cavity respectively distally and proximally of the piston member head portion; and hydraulic valve means actuated by the timing means and coupled to the distal and proximal ports to apply fluid pressure to at least one of the ports to move the piston member and open and close the associated intake or exhaust valve in accordance with the detected phase of the piston of the engine; and wherein the actuator assembly piston member is provided with a coating of titanium nitride on the cylindrical face of the head portion and on the rod portion, and wherein the mating surfaces of the sleeve cylindrical cavity and the rod bearing member are provided with a coating of a hard material of a lower hardness than the titanium nitride.

  12. Anatomical and physiological responses of Colorado blue spruce to vehicle exhausts.

    PubMed

    Qin, Xuebo; Sun, Nan; Ma, Lixin; Chang, Yingqiao; Mu, Liqiang

    2014-09-01

    In order to examine whether the leaves of the Colorado blue spruce (Picea pungens) are damaged or not by traffic pollution, the traits of the anatomy and physiology of its leaves are investigated by exposure to vehicle exhausts in a laboratory experiment lasting 30 days. The results show that both the anatomical structures and physiological traits of the leaves are significantly affected by vehicle exhausts. The anatomical structures, including epidermis, cuticle, palisade, and spongy parenchyma are modified when exposed to the high concentrations (? 0.4 mg/m(3)) of vehicle exhausts. However, physiological traits such as total chlorophyll content are not changed when exposed to different concentrations of vehicle exhaust. Unlike the total chlorophyll content, the electrical conductivities increased, whereas the POD activities decreased when presented in vehicle exhausts. The present study indicates that the Colorado blue spruce changes its anatomical structures and physiological traits to avoid possible damage by vehicle exhausts. PMID:24878553

  13. A CFD modeling study in an urban street canyon for ultrafine particles and population exposure: The intake fraction approach.

    PubMed

    Habilomatis, George; Chaloulakou, Archontoula

    2015-10-15

    Air quality in street canyons is of major importance, since the highest pollution levels are often encountered in these microenvironments. The canyon effect (reduced natural ventilation) makes them "hot spots" for particulate pollution contributing to adverse health effects for the exposed population. In this study we tried to characterize the influence of UFP (ultrafine particle) emissions from traffic on population exposure in an urban street canyon, by applying the intake fraction (iF) approach. One month long measurements of UFP levels have been monitored and used for the need of this study. We applied a three dimensional computational fluid dynamic (CFD) model based on real measurements for the simulation of UFP levels. We used infiltration factors, evaluated on a daily basis for the under study area, to estimate the indoor UFP levels. As a result the intake fraction for the pedestrians, residents and office workers is in the range of (1E-5)-(1E-4). The street canyon is mostly residential justifying partially the higher value of intake fraction for residents (1E-4). The above iF value is on the same order of magnitude with the corresponding one evaluated in a relative street canyon study. The total iF value in this microenvironment is one order of magnitude higher than ours, explained partially by the different use and activities. Two specific applications of iF to assess prioritization among emission sources and environmental justice issues are also examined. We ran a scenario with diesel and gasoline cars and diesel fueled vehicle seems to be a target source to improve overall iF. Our application focus on a small residential area, typical of urban central Athens, in order to evaluate high resolution iF. The significance of source-exposure relationship study in a micro scale is emphasized by recent research. PMID:26047855

  14. Selective exposure and analysis of the sheep tracheal lobe as a model for toxicological studies of respirable particles

    SciTech Connect

    Begin, R.; Masse, S.; Rola-Pleszczynski, M.; Drapeau, G.; Dalle, D.

    1985-04-01

    A conscious sheep model, recently developed to study sequentially the bronchoalveolar milieu, was further refined to use in the rapid in vivo assessment of the biological effects of respirable particles. In this model, the anatomically isolated tracheal lobe was selectively exposed to either 100 ml phosphate buffered saline (PBS) (control group of 12 sheep), 100 mg of 0.1-..mu..m latex beads in 100 ml PBS (latex group of 12 sheep), or 100 mg of UICC Canadian chrysotile fibers in 100 ml PBS (asbestos group of 12 sheep). Bronchoalveolar lavages (BAL) of the tracheal lobe were obtained prior to exposure and at Days 1, 8, 15, 21, 29, 45, and 60 after exposure. Whole-lung detailed pulmonary function tests (PFT) were performed at the same times and the histopathology of the lobe was examined in six sheep in each group at Days 29 and 60. In the latex group, there was no significant change in PFT, the BAL analyses documented early transient increase in cellularity (macrophages and neutrophils at Day 1) and only macrophages after; lung histology documented an early macrophagic alveolitis which decreased to less than 10% of the initial inflammatory reaction at Day 60, without other distortion of the lung and airway architecture. In the asbestos sheep, the only change in whole-lung PFT was a 10-torr fall in arterial O/sub 2/ pressure. BAL analyses documented persistent increases in macrophages, neutrophils, and lactate dehydrogenase as well as increasing ..gamma..-globulins. Lung histology revealed a macrophagic and neutrophilic peribronchiolar alveolitis, early fibrosis, and severe distortion of the small airways, lesions comparable to those of early asbestosis in sheep or humans.

  15. Associations of Mortality with Long-Term Exposures to Fine and Ultrafine Particles, Species and Sources: Results from the California Teachers Study Cohort

    PubMed Central

    Hu, Jianlin; Goldberg, Debbie; Reynolds, Peggy; Hertz, Andrew; Bernstein, Leslie; Kleeman, Michael J.

    2015-01-01

    Background Although several cohort studies report associations between chronic exposure to fine particles (PM2.5) and mortality, few have studied the effects of chronic exposure to ultrafine (UF) particles. In addition, few studies have estimated the effects of the constituents of either PM2.5 or UF particles. Methods We used a statewide cohort of > 100,000 women from the California Teachers Study who were followed from 2001 through 2007. Exposure data at the residential level were provided by a chemical transport model that computed pollutant concentrations from > 900 sources in California. Besides particle mass, monthly concentrations of 11 species and 8 sources or primary particles were generated at 4-km grids. We used a Cox proportional hazards model to estimate the association between the pollutants and all-cause, cardiovascular, ischemic heart disease (IHD), and respiratory mortality. Results We observed statistically significant (p < 0.05) associations of IHD with PM2.5 mass, nitrate, elemental carbon (EC), copper (Cu), and secondary organics and the sources gas- and diesel-fueled vehicles, meat cooking, and high-sulfur fuel combustion. The hazard ratio estimate of 1.19 (95% CI: 1.08, 1.31) for IHD in association with a 10-?g/m3 increase in PM2.5 is consistent with findings from the American Cancer Society cohort. We also observed significant positive associations between IHD and several UF components including EC, Cu, metals, and mobile sources. Conclusions Using an emissions-based model with a 4-km spatial scale, we observed significant positive associations between IHD mortality and both fine and ultrafine particle species and sources. Our results suggest that the exposure model effectively measured local exposures and facilitated the examination of the relative toxicity of particle species. Citation Ostro B, Hu J, Goldberg D, Reynolds P, Hertz A, Bernstein L, Kleeman MJ. 2015. Associations of mortality with long-term exposures to fine and ultrafine particles, species and sources: results from the California Teachers Study cohort. Environ Health Perspect 123:549–556;?http://dx.doi.org/10.1289/ehp.1408565 PMID:25633926

  16. Engine exhaust control system and method

    SciTech Connect

    Billington, W.G.

    1990-04-03

    This patent describes an exhaust gas control apparatus for an internal combustion engine. It comprises: a rotary fan blade assembly having a hollow hub and plurality of hollow blades, each having a plurality of apertures in a trailing edge; drive means for driving the rotary fan blade assembly; feed means feeding exhaust gases from the engine into the hollow hub and hollow blades; air intake means for feeding intake air to the rotary fan blade assembly from a direction opposite to the direction of flow of the exhaust gases into the hollow hub of the rotary fan blade assembly; exhaust means for exhausting a mixture of air and the exhaust gases; whereby the flow of exhaust gases through the rotary fan blade assembly and out through the exhaust means reduces back-pressure, exhaust noise, exhaust temperature and exhaust pollutants.

  17. Complex nanominerals and ultrafine particles assemblages in phosphogypsum of the fertilizer industry and implications on human exposure.

    PubMed

    Silva, Luis F O; Hower, James C; Izquierdo, Maria; Querol, Xavier

    2010-10-01

    Phosphogypsum (CaSO(4).2H(2)O), a by-product of phosphate-rock processing, contains high amounts of impurities such P(2)O(5), F, radioactive elements, organic substances, secondary nanominerals, and ultrafine particles (UFP) enriched in metals and metalloids. In this study, we examine phosphogypsum (PG) collected from abandoned fertilizer industry facility in south Brazil (Santa Catarina state). The fragile nature of nanominerals and UFP assemblages from fertilizer industry systems required novel techniques and experimental approaches. The investigation of the geochemistry of complex nanominerals and UFP assemblages was a prerequisite to accurately assess the environmental and human health risks of contaminants and cost-effective chemical and biogeological remediation strategies. Particular emphasis was placed on the study and characterization of the complex mixed nanominerals and UFP containing potentially toxic elements. Nanometer-sized phases in PG were characterized using energy-dispersive X-ray spectrometer (EDS), field-emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscopy (HR-TEM) images. The chemical composition and possible correlations with morphology of nanominerals and UFP, as well as aspects of nanominerals and UFP, are discussed in the context of human health exposure, as well as in relation to management of the nanominerals and UFP in PG environments. PMID:20701953

  18. Effects of Exposure Measurement on Particle Matter Epidemiology: A Simulation Using Data from a Panel Study in Baltimore MD

    EPA Science Inventory

    Ascertaining the true risk associated with exposure to particulate matter (PM) is difficult, given the fact that pollutant components are frequently correlated with each other and with other gaseous pollutants; relationships between ambient concentrations and personal exposures a...

  19. Diesel exhaust rapidly degrades floral odours used by honeybees

    PubMed Central

    Girling, Robbie D.; Lusebrink, Inka; Farthing, Emily; Newman, Tracey A.; Poppy, Guy M.

    2013-01-01

    Honeybees utilise floral odours when foraging for flowers; we investigated whether diesel exhaust pollution could interrupt these floral odour stimuli. A synthetic blend of eight floral chemicals, identified from oilseed rape, was exposed to diesel exhaust pollution. Within one minute of exposure the abundances of four of the chemicals were significantly lowered, with two components rendered undetectable. Honeybees were trained to recognise the full synthetic odour mix; altering the blend, by removing the two chemicals rendered undetectable, significantly reduced the ability of the trained honeybees to recognize the altered odour. Furthermore, we found that at environmentally relevant levels the mono-nitrogen oxide (NOx) fraction of the exhaust gases was a key facilitator of this odour degradation. Such changes in recognition may impact upon a honeybee's foraging efficiency and therefore the pollination services that they provide. PMID:24091789

  20. Effects of diesel engine exhaust origin secondary organic aerosols on novel object recognition ability and maternal behavior in BALB/c mice.

    PubMed

    Win-Shwe, Tin-Tin; Fujitani, Yuji; Kyi-Tha-Thu, Chaw; Furuyama, Akiko; Michikawa, Takehiro; Tsukahara, Shinji; Nitta, Hiroshi; Hirano, Seishiro

    2014-11-01

    Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs) are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE) in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs) produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control), DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week) and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-D-aspartate (NMDA) receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER)-?, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus, respectively. PMID:25361045

  1. Effects of Diesel Engine Exhaust Origin Secondary Organic Aerosols on Novel Object Recognition Ability and Maternal Behavior in BALB/C Mice

    PubMed Central

    Win-Shwe, Tin-Tin; Fujitani, Yuji; Kyi-Tha-Thu, Chaw; Furuyama, Akiko; Michikawa, Takehiro; Tsukahara, Shinji; Nitta, Hiroshi; Hirano, Seishiro

    2014-01-01

    Epidemiological studies have reported an increased risk of cardiopulmonary and lung cancer mortality associated with increasing exposure to air pollution. Ambient particulate matter consists of primary particles emitted directly from diesel engine vehicles and secondary organic aerosols (SOAs) are formed by oxidative reaction of the ultrafine particle components of diesel exhaust (DE) in the atmosphere. However, little is known about the relationship between exposure to SOA and central nervous system functions. Recently, we have reported that an acute single intranasal instillation of SOA may induce inflammatory response in lung, but not in brain of adult mice. To clarify the whole body exposure effects of SOA on central nervous system functions, we first created inhalation chambers for diesel exhaust origin secondary organic aerosols (DE-SOAs) produced by oxidation of diesel exhaust particles caused by adding ozone. Male BALB/c mice were exposed to clean air (control), DE and DE-SOA in inhalation chambers for one or three months (5 h/day, 5 days/week) and were examined for memory function using a novel object recognition test and for memory function-related gene expressions in the hippocampus by real-time RT-PCR. Moreover, female mice exposed to DE-SOA for one month were mated and maternal behaviors and the related gene expressions in the hypothalamus examined. Novel object recognition ability and N-methyl-d-aspartate (NMDA) receptor expression in the hippocampus were affected in male mice exposed to DE-SOA. Furthermore, a tendency to decrease maternal performance and significantly decreased expression levels of estrogen receptor (ER)-?, and oxytocin receptor were found in DE-SOA exposed dams compared with the control. This is the first study of this type and our results suggest that the constituents of DE-SOA may be associated with memory function and maternal performance based on the impaired gene expressions in the hippocampus and hypothalamus, respectively. PMID:25361045

  2. 49 CFR 393.83 - Exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 false Exhaust systems. 393.83...Accessories § 393.83 Exhaust systems. (a...expelling harmful combustion fumes shall have a system...the discharge of such fumes. No part shall be...vehicle. (b) No exhaust system shall discharge...filler pipe. (c) The exhaust system of a bus...

  3. Health risk characterization for resident inhalation exposure to particle-bound halogenated flame retardants in a typical e-waste recycling zone.

    PubMed

    Luo, Pei; Bao, Lian-Jun; Wu, Feng-Chang; Li, Shao-Meng; Zeng, Eddy Y

    2014-08-01

    Inhalation of pollutants is an important exposure route for causing human health hazards, and inhalation exposure assessment must take into account particle size distribution because particle-bound pollutants are size-dependent. Such information is scarce, particularly for residents dwelling within e-waste recycling zones where abundant atmospheric halogenated flame retardants (HFRs) commonly used in electronic/electrical devices have been widely reported. Atmospheric size-fractioned particle samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor from an e-waste recycling zone in South China. The deposition efficiencies and fluxes of size-fractioned HFRs including polybrominated diphenyl ethers (PBDEs), alternative brominated flame retardants, and Dechlorane Plus in the human respiratory tract were estimated using the International Commission on Radiological Protection deposition model. The majority of HFRs was found to deposit in the head airways, with coarse particles (aerodynamic diameter (Dp) > 1.8 ?m) contributing the most (69-91%). Conversely, fine particles (Dp < 1.8 ?m) were dominant in the alveolar region (62-80%). The inhalation intake of PBDEs within the e-waste recycling zone was 44 ng/d (95% confidence interval (CI): 30-65 ng/d), close to those through food consumption in non-e-waste recycling regions. The estimated total hazard quotient of particle-bound HFRs was 5.6 × 10(-4) (95% CI: 3.8 × 10(-4)-8.8 × 10(-4)). In addition, incremental lifetime cancer risk induced by BDE-209 was 1.36 × 10(-10) (95% CI: 7.3 × 10(-11)-2.3 × 10(-10)), much lower than the Safe Acceptable Range (1.0 × 10(-6)-1.0 × 10(-4)) established by the United States Environmental Protection Agency. These results indicate that the potential health risk from inhalation exposure to particle-bound HFRs for residents dwelling in the e-waste recycling zone was low. PMID:24992563

  4. Modelling of the influence of aerosol processes for the dispersion of vehicular exhaust plumes in street environment

    Microsoft Academic Search

    Mia Pohjola; Liisa Pirjola; Jaakko Kukkonen; Markku Kulmala

    2003-01-01

    We have analysed the influence of various aerosol dynamical processes and plume dilution on the properties of vehicular exhaust particulate matter. A monodisperse aerosol process model MONO32 with four size modes was applied for evaluating the number concentration, size distribution and chemical composition of the particles during a time period of 25s, after the particles were emitted from the exhaust

  5. Model-based assessment for human inhalation exposure risk to airborne nano/fine titanium dioxide particles.

    PubMed

    Liao, Chung-Min; Chiang, Yu-Hui; Chio, Chia-Pin

    2008-12-15

    This paper proposed a model-based approach to assess inhalation risk levels to manufacturing workers in titanium dioxide (TiO2) production factories. The risk level-based analytical schemes were present for investigations of job-related airborne nano/fine TiO2 dust exposures. A Hill model was used to reconstruct dose-response function based on data from rats exposed by chronic inhalation to poorly soluble fine and nanosized particles. A physiologically based lung model was used to predict surface area-based TiO2 burdens in alveolar surface and interstitial granuloma, respectively. The exposure effect was characterized by polymorphonuclear leukocytes (PMN) elevation effect on lung surface and lung tumor proportion on interstitium. Combining laboratory, field, and modeling results, two major findings were proposed to the current epidemiological studies: (i) the estimated median effective surface area-based TiO2 lung burden (EC50) for PMN elevation effect is 0.11 m2 g(-1) lung (95% CI: 0.04-0.2) and EC50 for lung tumor proportion is 1.15 m2 g(-1) lung (95% CI: 0.65-1.89) and (ii) the estimates of risk curves are the pivotal results for public policy. The results demonstrate that packers in US factories have approximately 85.77 fold (95% CI: 63.84-94.33) of standard PMN counts of 10(6), whereas 86.97 fold (95% CI: 66.72-94.54) for surface treatment workers in EU factories at risk of 0.5. The lung had approximately 45% (95% CI: 15%-54%) tumor proportion for packers in US factories, whereas 48.19% (95% CI: 20-53.79%) for surface treatment workers in EU factories at risk of 0.5. The findings point out that dry/wet treatment and ore handlers in US and maintenance mechanics in EU factories were unlikely to pose substantial lung cancer risks. PMID:18952258

  6. Measuring the optimal exposure for single particle cryo-EM using a 2.6 Å reconstruction of rotavirus VP6.

    PubMed

    Grant, Timothy; Grigorieff, Nikolaus

    2015-01-01

    Biological specimens suffer radiation damage when imaged in an electron microscope, ultimately limiting the attainable resolution. At a given resolution, an optimal exposure can be defined that maximizes the signal-to-noise ratio in the image. Using a 2.6 Å resolution single particle cryo-EM reconstruction of rotavirus VP6, determined from movies recorded with a total exposure of 100 electrons/Å(2), we obtained accurate measurements of optimal exposure values over a wide range of resolutions. At low and intermediate resolutions, our measured values are considerably higher than obtained previously for crystalline specimens, indicating that both images and movies should be collected with higher exposures than are generally used. We demonstrate a method of using our optimal exposure values to filter movie frames, yielding images with improved contrast that lead to higher resolution reconstructions. This 'high-exposure' technique should benefit cryo-EM work on all types of samples, especially those of relatively low-molecular mass. PMID:26023829

  7. Diesel exhaust particulate induces pulmonary and systemic inflammation in rats without impairing endothelial function ex vivo or in vivo

    PubMed Central

    2012-01-01

    Background Inhalation of diesel exhaust impairs vascular function in man, by a mechanism that has yet to be fully established. We hypothesised that pulmonary exposure to diesel exhaust particles (DEP) would cause endothelial dysfunction in rats as a consequence of pulmonary and systemic inflammation. Methods Wistar rats were exposed to DEP (0.5 mg) or saline vehicle by intratracheal instillation and hind-limb blood flow, blood pressure and heart rate were monitored in situ 6 or 24 h after exposure. Vascular function was tested by administration of the endothelium-dependent vasodilator acetylcholine (ACh) and the endothelium-independent vasodilator sodium nitroprusside (SNP) in vivo and ex vivo in isolated rings of thoracic aorta, femoral and mesenteric artery from DEP exposed rats. Bronchoalveolar lavage fluid (BALF) and blood plasma were collected to assess pulmonary (cell differentials, protein levels & interleukin-6 (IL-6)) and systemic (IL-6), tumour necrosis factor alpha (TNF?) and C-reactive protein (CRP)) inflammation, respectively. Results DEP instillation increased cell counts, total protein and IL-6 in BALF 6 h after exposure, while levels of IL-6 and TNF? were only raised in blood 24 h after DEP exposure. DEP had no effect on the increased hind-limb blood flow induced by ACh in vivo at 6 or 24 h. However, responses to SNP were impaired at both time points. In contrast, ex vivo responses to ACh and SNP were unaltered in arteries isolated from rats exposed to DEP. Conclusions Exposure of rats to DEP induces both pulmonary and systemic inflammation, but does not modify endothelium-dependent vasodilatation. Other mechanisms in vivo limit dilator responses to SNP and these require further investigation. PMID:22480168

  8. Interpretation of Secondary Organic Aerosol Formation from Diesel Exhaust Photooxidation in an Environmental Chamber

    SciTech Connect

    Nakao, Shunsuke; Shrivastava, ManishKumar B.; Nguyen, Anh; Jung, Hee-Jung; Cocker, David R.

    2011-04-14

    Secondary organic aerosol (SOA) formation from diesel exhaust in a smog chamber was investigated. Particle volume measurement based on mobility diameter is shown to underestimate SOA formation from diesel exhaust due to the external void space of agglomerate particles, in which case mass-based measurement technique is necessary. Rapid determination of particle effective density as a function of particle mass was performed by an Aerosol Particle Mass analyzer – Scanning Mobility Particle Sizer (APM-SMPS) to obtain particle mass concentration and fractal dimension. Continuous aging of aerosol was observed in terms of atomic ratio (O/C), from 0.05 to 0.25 in 12 hours, underscoring the importance of multi-generational oxidation of low-volatile organic vapors emitted from diesel engine as the significant source of oxygenated SOA. Experimental conditions possibly have strong impacts on physical evolution of diesel particulates in a smog chamber. Higher particle effective densities were observed when raw exhaust was injected into a full bag as opposed to filling a bag with diluted exhaust using an ejector diluter. When longer transfer line was used for injecting diesel exhaust into the smog chamber, rapid particle coagulation was observed, leading to increasing particle volume concentration in dark while its mass concentration is decreasing.

  9. EFFECTS OF DIESEL EXHAUST ON TLR3 EXPRESSION AND SIGNALING IN MICE

    EPA Science Inventory

    There are a variety of intrinsic as well as extrinsic factors, such as exposure to air pollution that can affect the pathogenesis of respiratory infections. Exposure to diesel exhaust (DE) emissions can alter host defense and immune responses and we have previously demonstrated t...

  10. Increased Transcription of Immune and Metabolic Pathways in Naive and Allergic Mice Exposed to Diesel Exhaust

    EPA Science Inventory

    Diesel exhaust (DE) has been shown to enhance allergic sensitization in animals following high dose instillation or chronic inhalation exposure scenarios. The purpose of this study was to determine if short term exposures to diluted DE enhance allergic immune responses to antigen...

  11. EFFECTS OF DIESEL EXHAUST ON TLR3 SIGNALING IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    There are a variety of intrinsic as well as extrinsic factors, such as exposure to air pollution that can affect the pathogenesis of respiratory infections. Diesel exhaust (DE) emissions can significantly contribute to air pollution levels and exposure to DE can alter host defens...

  12. Chronic lymphatic leukaemia and engine exhausts, fresh wood, and DDT: a case-referent study.

    PubMed Central

    Flodin, U; Fredriksson, M; Persson, B; Axelson, O

    1988-01-01

    The effect of potential risk factors for chronic lymphatic leukaemia was evaluated in a case-referent study encompassing 111 cases and 431 randomised referents, all alive. Information on exposure was obtained by questionnaires posted to the subjects. Crude rate ratios were increased for occupational exposure to solvents. DDT, engine exhausts, fresh wood (lumberjacks, paper pulp workers, and sawmill workers, for example) and also in farming. Further analysis of the material by means of the Miettinen confounder score technique reduced the number of rate ratios significantly exceeding unity to encompass only occupational exposure to engine exhaust, fresh wood, DDT, and contact with horses. PMID:2449239

  13. Comparison of the smog forming properties of the exhaust gases from two types of motor fuels using plants as indicators

    Microsoft Academic Search

    W. M. Noble; W. Pelle; L. Wright; P. P. Mader

    1958-01-01

    As part of a general study of the influence of fuel composition on the smog forming potential of exhausts from internal combustion engines, a comparison was made of the effect on growing plants produced by exposure to exhaust gases resulting from the combustion of high and low olefinic fuels under otherwise identical conditions. The two types of fuels were used

  14. Microwave-Regenerated Diesel Exhaust Particulate Filter

    SciTech Connect

    Nixdorf, Richard D. (Industrial Ceramic Solution, LLC); Green, Johney Boyd; Story, John M.; Wagner, Robert M. (Oak Ridge National Laboratory)

    2001-03-05

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  15. Hard metal exposures. Part 2: Prospective exposure assessment.

    PubMed

    Simcox, N J; Stebbins, A; Guffey, S; Atallah, R; Hibbard, R; Camp, J

    2000-04-01

    Hard metal exposures may precipitate lung disease in exposed workers. This article reports on a project investigating the relationship between local exhaust hood air flow levels and workplace hard metal exposures. Airborne cobalt, chromium, and cadmium exposure concentrations, and ventilation system function were monitored for three consecutive days prior to installation of three new ventilation systems, and then were followed monthly for one year. Work activities included wet and dry grinding of saw blades, brazing, welding, and setup. Work task exposures were highly variable over the period of the study. Ventilation air flows failed to meet design goals due to low total air volume and poor distribution; however, worker exposures to metals were controlled in most cases. Hood design, worker acceptance, and use of the hoods were as important in controlling exposures as were exhaust hood air flow levels. PMID:10750278

  16. The effects of indoor particle exposure on blood pressure and heart rate among young adults: An air filtration-based intervention study

    NASA Astrophysics Data System (ADS)

    Lin, Lian-Yu; Chen, Hua-Wei; Su, Te-Li; Hong, Gui-Bing; Huang, Li-Chu; Chuang, Kai-Jen

    2011-10-01

    This study aims to evaluate whether air filtration can modify the effect of indoor particles on blood pressure (BP) and heart rate (HR) in a young, healthy population. We recruited 60 students to participate in a study of multiple, prolonged exposures to either particle-filtered or non-filtered indoor air. We made four home visits in which we took continuous 48-hour measurements of systolic BP (SBP), diastolic BP (DBP), and HR in each participant. Particulate matter less than 2.5 ?m in diameter (PM 2.5) and total volatile organic compounds (VOCs) were measured at each participant's home. We used mixed-effects models to associate BP and HR with indoor particles and total VOCs, which were averaged over 1-hour to 8-hour periods prior to physiological measurements. We found that the mean values for indoor PM 2.5 exposures at 1-hour to 4-hour were associated with an elevation in SBP, DBP and HR. The effects of indoor PM 2.5 on BP and HR were greatest during the visits without air filtration. During visits with air filtration, participants showed no significant change in BP and HR in response to indoor PM 2.5 exposure. We concluded that air filtration can reduce indoor PM 2.5 concentrations and modify the effect of PM 2.5 on BP and HR in a healthy, young population.

  17. Applicability of a noise-based model to estimate in-traffic exposure to black carbon and particle number concentrations in different cultures.

    PubMed

    Dekoninck, Luc; Botteldooren, Dick; Panis, Luc Int; Hankey, Steve; Jain, Grishma; S, Karthik; Marshall, Julian

    2015-01-01

    Several studies show that a significant portion of daily air pollution exposure, in particular black carbon (BC), occurs during transport. In a previous work, a model for the in-traffic exposure of bicyclists to BC was proposed based on spectral evaluation of mobile noise measurements and validated with BC measurements in Ghent, Belgium. In this paper, applicability of this model in a different cultural context with a totally different traffic and mobility situation is presented. In addition, a similar modeling approach is tested for particle number (PN) concentration. Indirectly assessing BC and PN exposure through a model based on noise measurements is advantageous because of the availability of very affordable noise monitoring devices. Our previous work showed that a model including specific spectral components of the noise that relate to engine and rolling emission and basic meteorological data, could be quite accurate. Moreover, including a background concentration adjustment improved the model considerably. To explore whether this model could also be used in a different context, with or without tuning of the model parameters, a study was conducted in Bangalore, India. Noise measurement equipment, data storage, data processing, continent, country, measurement operators, vehicle fleet, driving behavior, biking facilities, background concentration, and meteorology are all very different from the first measurement campaign in Belgium. More than 24h of combined in-traffic noise, BC, and PN measurements were collected. It was shown that the noise-based BC exposure model gives good predictions in Bangalore and that the same approach is also successful for PN. Cross validation of the model parameters was used to compare factors that impact exposure across study sites. A pooled model (combining the measurements of the two locations) results in a correlation of 0.84 when fitting the total trip exposure in Bangalore. Estimating particulate matter exposure with traffic noise measurements was thus shown to be a valid approach across countries and cultures. PMID:25454224

  18. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  19. Inhalation of diesel exhaust does not exacerbate cardiac hypertrophy or heart failure in two mouse models of cardiac hypertrophy

    PubMed Central

    2013-01-01

    Background Strong associations have been observed between exposure to fine ambient particulate matter (PM2.5) and adverse cardiovascular outcomes. In particular, exposure to traffic related PM2.5 has been associated with increases in left ventricular hypertrophy, a strong risk factor for cardiovascular mortality. As much of traffic related PM2.5 is derived from diesel exhaust (DE), we investigated the effects of chronic DE exposure on cardiac hypertrophy and heart failure in the adult mouse by exposing mice to DE combined with either of two mouse models of cardiac hypertrophy: angiotensin II infusion or pressure overload induced by transverse aortic banding. Methods Wild type male C57BL/6 J mice were either infused with angiotensin II (800 ng/kg/min) via osmotic minipump implanted subcutaneously for 1 month, or underwent transverse aortic banding (27 gauge needle 1 week for observing acute reactions,