Science.gov

Sample records for exhumed permian mudstone-dominated

  1. Exhuming Landforms

    NASA Technical Reports Server (NTRS)

    2005-01-01

    26 October 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a crater and adjacent terrain that have been exhumed from beneath a wind-eroded material. The sharp, pointy ridges inside and immediately adjacent to the crater are the remains of a material that once covered the entire scene. Wind has stripped these materials away, forming yardangs. Inside the crater, the erosion has revealed an older, eroded layered material. This smooth-surfaced layered feature inside the crater was already eroded to nearly its present shape before the yardang-forming material was deposited (and then eroded away).

    Location near: 7.2oN, 156.4oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Winter

  2. Late Permian vertebrate community of the Pranhita Godavari valley, India

    NASA Astrophysics Data System (ADS)

    Ray, Sanghamitra; Bandyopadhyay, Saswati

    2003-03-01

    The Kundaram Formation of the Pranhita-Godavari valley yields the only Late Permian multispecies terrestrial vertebrate assemblage from India. This includes various medium and small dicynodonts such as Endothiodon, Oudenodon, Kingoria, Emydops, Cistecephalus and Pristerodon. At present two species of Endothiodon ( E. mahalanobisi and E. uniseries) are known. Apart from these dicynodonts, the Kundaram vertebrate fauna also contains a medium-sized gorgonopsian and a small captorhinid. The material, from the red mudstone dominated Kundaram Formation, includes numerous isolated, disarticulated skulls and lower jaws. Postcranial elements are relatively rare except for a few broken limb ends and vertebrae. The bones are encrusted by iron rich matrix and most of them had suffered deformation. This skull dominant accumulation is attributed to prolonged aerial exposure prior to burial resulting in disarticulation of the skeletons and subsequent inundation by floodwater. The limb bones and other postcranial elements of the already disarticulated skeletons were winnowed out by shallow competent flow while the relatively heavier skulls and lower jaws resisting transportation were buried near the site of death. The Late Permian scenario of the Pranhita-Godavari valley was characterised by the dominance of herbivores. This abundance of herbivores at the base and the presence of relatively few carnivores and omnivores at the top of the Kundaram food pyramid indicate a trophic structure similar to that of the modern-day terrestrial ecosystem.

  3. Modern Pearl River Delta and Permian Huainan coalfield, China: A comparative sedimentary facies study

    USGS Publications Warehouse

    Suping, P.; Flores, R.M.

    1996-01-01

    Sedimentary facies types of the Pleistocene deposits of the Modern Pearl River Delta in Guangdong Province, China and Permian Member D deposits in Huainan coalfield in Anhui Province are exemplified by depositional facies of anastomosing fluvial systems. In both study areas, sand/sandstone and mud/mudstone-dominated facies types formed in diverging and converging, coeval fluvial channels laterally juxtaposed with floodplains containing ponds, lakes, and topogenous mires. The mires accumulated thin to thick peat/coal deposits that vary in vertical and lateral distribution between the two study areas. This difference is probably due to attendant sedimentary processes that affected the floodplain environments. The ancestral floodplains of the Modern Pearl River Delta were reworked by combined fluvial and tidal and estuarine processes. In contrast, the floodplains of the Permian Member D were mainly influenced by freshwater fluvial processes. In addition, the thick, laterally extensive coal zones of the Permian Member D may have formed in topogenous mires that developed on abandoned courses of anastomosing fluvial systems. This is typified by Seam 13-1, which is a blanket-like body that thickens to as much as 8 in but also splits into thinner beds. This seam overlies deposits of diverging and converging, coeval fluvial channels of the Sandstone D, and associated overbank-floodplain deposits. The limited areal extent of lenticular Pleistocene peat deposits of the Modern Pearl River Delta is due to their primary accumulation in topogenous mires in the central floodplains that were restricted by contemporaneous anastomosing channels.

  4. Exhuming South Polar Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    7 February 2004 The large, circular feature in this image is an old meteor impact crater. The crater is larger than the 3 kilometers-wide (1.9 miles-wide) Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image, thus only part of the crater is seen. The bright mesas full of pits and holes--in some areas resembling swiss cheese--are composed of frozen carbon dioxide. In this summertime view, the mesa slopes and pit walls are darkened as sunlight causes some of the ice to sublime away. At one time in the past, the crater shown here may have been completely covered with carbon dioxide ice, but, over time, it has been exhumed as the ice sublimes a little bit more each summer. The crater is located near 86.8oS, 111.6oW. Sunlight illuminates this scene from the upper left.

  5. Exhumed Arabian Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    26 August 2004 Eastern Arabia Terra shares many attributes with western Arabia and Sinus Meridiani. In particular, it is a region of vast layered rock within which are interbedded filled and buried craters and valleys. Erosion has subsequently re-exposed many of these landforms, including the exhumed and eroded crater shown in this Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image. Following the period in which erosion occurred, the region was blanketed by dust. This image is located near 22.5oN, 318.4oW, and covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the left/lower left.

  6. Permian karst topography in the Wichita uplift, southwestern Oklahoma

    SciTech Connect

    Donovan, R.N. Busbey, A.B. . Geology Dept.)

    1993-02-01

    The Wichita uplift in southwestern Oklahoma is one part of a record of Pennsylvania and early Permian deformation that affected the Southern Oklahoma aulacogen. As a result of a partial inversion, the Lower Paleozoic section of this aulacogen was sequentially stripped off an uplift between the Wichita uplift and the Anadarko basin, resulting in the exposure of ultrabasic rocks deep in the Cambrian igneous fill of the aulacogen. Following the late Paleozoic tectonism, the topography of the uplift was entombed beneath Permian sediments and remained essentially undisturbed until exhumation during the present erosional cycle. Modern erosion is gradually exposing this topography, permitting morphometric analysis of the Permian hill forms. Because of the variation of lithology in the uplift, it is possible to isolate the effects of weathering processes such as intense hydrolysis of the igneous rocks (producing, among other features, or topography) and limestone dissolution, in the form of a surface and subsurface karst imprint. The latter process resulted in a network of small caves that are essentially fissures eroded along tectonic fractures. These small caves can be found in all the exposed areas of limestone. They are particularly noteworthy for three reasons: in at least five examples they contain a complex fauna of Permian vertebrates (mostly fragmentary), speleothems in some examples contain hydrocarbon inclusions, derived from the underlying Anadarko basin, some of the caves yield evidence of post burial evolution in the form of clay infiltration from the surface and brine flushing from the underlying Anadarko basin.

  7. Permian chronostratigraphy in Kansas

    SciTech Connect

    Baars, D.L. )

    1990-08-01

    Correlations between the type Permian System of Russia and North American strata have been difficult for decades because of biostratigraphic and nomenclatural confusion. Consequently, a standard Permian section was established in west Texas that is widely accepted throughout North America. Series of the North American standard section are, in ascending order, Wolfcampian, Leonardian, Guadalupian, and Ochoan. This nomenclature was adopted for usage in Kansas in 1951, but was later abandoned in favor of local terminology. However, direct biostratigraphic correlations between Kansas and the west Texas standard section have now been firmly established, and local chronostratigraphic names, i.e., Big Blue, Lyon, Geary, Cimarron, and Custer, have not been widely accepted. The Kansas Geological Survey has now readopted usage of the Wolfcampian Series for rocks of the Admire, Council Grove, and Chase Groups; the Leonardian Series for rocks of the Summer and Nippewalla Groups; and the Guadalupian Series for rocks of the Whitehorse, Day Creek, and Big Basin Formations. The Wolfcampian Series in Kansas (and elsewhere in North America) contains post-Virgilian (latest Carboniferous) strata that predate the classical Permian System of the Russian type section. Consequently, the Pennsylvanian/Permian boundary will probably have to be raised stratigraphically to conform to global usage.

  8. Composition of Permian seawater

    SciTech Connect

    Lazar, B.; Friedmann, T.J.; Holland, H.D.

    1985-01-01

    The authors demonstrated that fluid inclusions in Miocene halite can be used to define the composition of contemporary Miocene seawater. During the past year the authors, have extracted inclusion fluids from halite in the Lower Permian Wellington Formation near Lyons, Kansas and from the Upper Permian Salado Formation near Carlsbad, New Mexico to define the composition of Permian seawater. The extracted inclusion fluids were analyzed by ion chromatography. The concentration of Na/sup +/, Cl/sup -/, and Mg/sup +2/ in these fluids along the evaporation path of present-day seawater. Compared to evaporated modern seawater the solutions are slightly enriched with respect to Br/sup -/ and K/sup +/. The excess of these ions is probably due to heir transfer from enclosing halite to the inclusion fluids during recrystallization. The concentration of SO/sub 4//sup -2/ in the inclusion fluids is lower than in evaporated modern seawater. The SO/sub 4//sup -2/ deficit in the fluids from halite in the Wellington Formation is almost certainly due to dolomitization followed by gypsum and/or anhydrite precipitation. No difference between the SO/sub 4//sup -2/ concentration of lower Permian and present-day seawater is required to explain the SO/sub 4//sup -2/ deficit in these fluids. This explanation does not account for the SO/sub 4//sup -2/ deficit in the inclusion fluids from the Salado Formation. The concentration of Li/sup +/ in the inclusion fluids is higher by a factor of ca. 4 than the concentration to be expected from the evaporation of modern seawater. With this exception, the composition of Permian seawater appears to have been remarkably similar to that of modern seawater.

  9. Exhumation of an unusually large, ~3000 km3 coherent block of oceanic crust from >40 km depth

    NASA Astrophysics Data System (ADS)

    Barrow, Wendy; Metcalf, Rodney; Fairhurst, Robert

    2010-05-01

    The Central Metamorphic terrane (CMt) is an unusually large (~3000 km3) coherent block of mid-ocean ridge (MOR) metabasites; the first one of this scale reported with eclogite facies relicts, decompression assemblages, and thermobarometry indicating exhumation of the entire block from >40 km depth. The CMt is exposed in the eastern Klamath Mountains of northern California and is dominantly an amphibolite facies metabasite which represents remnant oceanic crust subducted in a mid-Paleozoic Pacific-type margin. Thermochronology indicates that the CMt was subsequently exhumed along the Trinity fault during an early Permian extensional event. Newly discovered relict textures with new thermobarometry results suggest the CMt metabasites record the retrograde segment of the P-T-deformation-time path during exhumation from hornblende eclogite facies P-T conditions. A decompression and cooling sequence consisting of rutile cores within ilmenite crystals mantled by titanite is observed in CMt amphibolite samples. Zr-in-rutile thermometry combined with experimental data for rutile stability in metabasites suggests that relict rutile crystals preserve early P-T conditions of ~600° C and >1.3 GPa. Transition from eclogite facies is further supported by ilmenite-plagioclase-amphibole symplectites suggesting replacement of garnet or omphacite during decompression. The dominant mineral assemblages and metamorphic fabrics indicate dynamic recrystallization of metabasites during declining P-T conditions through amphibolite - epidote amphibolite facies. Exhumation via extension along the Trinity fault is suggested by the coplanar relationship between metabasite decompression-related deformation fabrics and the Trinity fault. We propose that subducted oceanic crust (CMt) was subsequently exhumed as a large coherent block from depths >40 km. This is significant because the conversion of mafic oceanic crust to eclogite produces the negative buoyancy (relative to mantle peridotite) that

  10. Phanerozoic orogeny triggers reactivation and exhumation in the northern part of the Archean-Paleoproterozoic North China Craton

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Fu; Zou, Dong-Ya; Santosh, M.; Zhu, Bin

    2016-09-01

    Cratons and orogenic belts are integral components of ancient continents. In some cases, stable continents can be reactivated and even largely destroyed by younger events. The mechanisms of reactivation or destruction of ancient cratons remain equivocal. Here we compile zircon U-Pb data from the metamorphic rocks of the Hongqiyingzi Group in the northern part of the North China Craton (NCC) to evaluate this problem. The results reveal episodic tectonothermal events related to three major periods of Latest Neoarchean-Earliest Paleoproterozoic (2.6-2.4 Ga), Paleoproterozoic (1.85-1.95 Ma) and Phanerozoic (480-220 Ma, with peak at 360-320 Ma). The Neoarchean-Paleoproterozoic crust as represented by the Hongqiyingzi Group was subducted to eclogite facies at ca. 1.95 Ga, followed by the final collision between the Eastern and Western Blocks at ca. 1.85 Ga to produce the Trans-North China Orogen (TNCO). The ubiquitous presence of Phanerozoic concordant zircons in the Hongqiyingzi Group suggests the episodic exhumation of the TNCO in the northern segment during the Phanerozoic. The 460-420 Ma concordant zircons record the onset of exhumation, triggered by the Ordovician-Silurian southward subduction of the Paleoasian Ocean. Widespread occurrence of 360-320 Ma metamorphic and magmatic zircons in the Hongqiyingzi Group demonstrates that the Carboniferous-Permian was an important period of exhumation for the TNCO, possibly related to back-arc extension. A few Permian-Triassic concordant zircons record late Permian accretion and Triassic post-accretional uplifting. Our study demonstrates that the young orogeny during the formation of the Central Asian Orogenic Belt resulted in extensive reactivation of not only the Archean continental crust but also the Paleoproterozoic orogen in the northern NCC.

  11. Early Cenozoic "dome like" exhumation around the Irish Sea

    NASA Astrophysics Data System (ADS)

    Doepke, Daniel; Cogné, Nathan; Chew, David; Stuart, Fin

    2016-04-01

    Despite decades of research the Early Cenozoic exhumation history of Ireland and Britain is still poorly understood and subject to contentious debate (see Davis et al., 2012 and subsequent comments). Previous studies have attributed the Cenozoic exhumation history of Ireland and Britain mainly to: (a) Paleogene - Neogene far-field stress between the opening of the North Atlantic Ocean and the Alpine collision (Ziegler et al., 1995; Hillis et al., 2008) or (b) early Paleogene mantle driven magmatic underplating associated with the development of the proto-Iceland mantle plume beneath the Irish Sea (Brodie and White, 1994; Al-Kindi et al., 2003). The major differences between the two hypotheses are the pattern and timing of spatial exhumation. This project thus seeks to investigate the timing and mechanisms of late Mesozoic - early Cenozoic exhumation on the onshore part of the British Isles by using a combination of apatite fission track (AFT) and apatite (U-Th-Sm)/He (AHe) data, which we then model using the QTQt program of Gallagher (2012) to better constrain the modelled thermal histories. Our studied area centres on the margins of the Irish Sea, but includes all Ireland and western Britain. Overall we analysed 74 samples for AFT and 66 samples for AHe dating. In particular, our results include ten pseudo-vertical profiles. The AFT ages display a wide range of ages from early Carboniferous in Scotland to early Eocene in central Ireland. Our AHe ages range from mid Permian on Shetland to Eocene Ft-corrected. The AFT data do not show any specific spatial distribution, however, the Ft-corrected AHe ages around the Irish Sea only focus around late Cretaceous to Eocene suggesting an important thermal event around this time. The modelled thermal histories of samples located around the Irish Sea and western Scotland show a clear late Cretaceous to early Paleogene cooling event which is not present elsewhere. The distribution of this cooling event is broadly consistent

  12. Exhumation of the Greater Himalayan Sequence Along the Zanskar Shear Zone, NW India

    NASA Astrophysics Data System (ADS)

    Basta, S.; Beck, E.; Burlick, T.

    2013-12-01

    The Zanskar Shear Zone (ZSZ), the western extent of the South Tibetan Detachment System, exposes high-grade metamorphic rocks of the Greater Himalayan Sequence (GHS) in its footwall. Granites and metapelites collected along the the ZSZ in the Suru River valley provide how and when the GHS rocks exhumed and were deformed. There are two suits of Paleozoic granites deformed within the ZSZ: Pan-African Cambrian-Ordovician granites at the cores of gneiss domes and Mississippian-Permian granites related to Panjal Traps magmatism. Age of Himalayan granites indicates 28-16 Ma which is concurrent with anatectic leucogranite crystallization. The metamorphic mineral assemblage indicates increasing metamorhic grade from NE to SW and comprises Qtz × Kfs + Pl + Bt × Ms × Sil × Ky × Grt × St × Chl × Tur × Rt. In addition to macroscopic evidence, strongly deformed quartz grains, deformation twins, pressure shadows, and kink bands have been observed to demonstrate micro-tectonics evidence. There are two different method to explain exhumation and deformation of the GHS metapelites: Electron backscatter diffraction (EBSD) crystallographic mapping and pseudosection modeling. While EBSD indicates the potential temperature of deformation, pseudosection modeling with Perple_X specifically presents the exhumation path of the GHS rocks. Pseudosection modeling with Perple_X , based on whole-rock geochemical analysis, is set pressure and temperature to 0.4-1.2 GPa and 300-900°C, and uses specific solution models, Bio(TCC), Chl(HP), St(HP), feldspar, Mica(CHA), Gt(HP), and hCrd, namely. These two methods are used by combining with geo/thermochronology data from U-Pb, 40Ar/39Ar, and (U-Th)/He, constraining the age of metamorphism, the cooling and exhumation time of the GHS rocks, and the end of shearing of deformation, respectively. 40Ar/39Ar dating on muscovite and biotite constrains cooling and exhumation ages of the GHS as ~20-19 Ma and 15 Ma, respectively. A metamorphic pressure

  13. Petrology of exhumed mantle rocks at passive margins: ancient lithosphere and rejuvenation processes

    NASA Astrophysics Data System (ADS)

    Müntener, Othmar; McCarthy, Anders; Picazo, Suzanne

    2014-05-01

    , an alternative is that these depleted domains represent snapshots of melting processes that are related to Permian and/or even older crust forming processes. The findings of the these refractory mantle rocks over the entire Western Alpine arc and the similarity in model ages of depletion suggests a connection to the Early Permian magmatic activity. Shallow and deep crustal magmatism in the Permian is widespread over Western Europe and the distribution of these mafic rocks are likely to pre-determine the future areas of crustal thinning and exhumation during formation of the Thethyan passive margins.

  14. Thermal and exhumation history of the central Tianshan (NW China): Constraints by U-Pb geochronology and Ar-Ar and (U-Th)/He thermochronology

    NASA Astrophysics Data System (ADS)

    Yin, J.; Chen, W.; Hodges, K. V.; Xiao, W.; Van Soest, M. C.; Cai, K.; Zhang, B.; Mercer, C. M.; Yuan, C.

    2015-12-01

    Geochronology and thermochronology using multiple mineral-isotopic chronometers reveals the thermo-tectonic history of the central Tianshan (NW China) from emplacement to exhumation. Granites from the central Tianshan, which are associated with the southward subduction of the northern Tianshan Ocean, have been dated at 362-354 Ma using the LA-ICP-MS Zircon U-Pb method. A younger diorite sample (282 ± 1 Ma, Zircon U-Pb method by LA-ICP-MS) from northern Tianshan formed during the final closure of the Northern Tianshan Ocean when the Junggar Block collided with the Yili-Central Tianshan Block. 40Ar/39Ar step-wise heating plateau dates (biotite Ar/Ar: 312-293 Ma; Plagioclase Ar/Ar: 270-229 Ma) from the Central Tianshan show rapid post-magmatic cooling during the Late Carboniferous-Early Permian followed by a more modest rate of cooling from the middle Permian to the middle Jurassic. The northern Tianshan diorite (biotite Ar/Ar: 240 ± 1 Ma) also reveals a middle Jurassic cooling. Apatite (U-Th )/He dates from the central Tianshan samples range from ca. 130 Ma to ca. 116 Ma. The Apatite (U-Th )/He date for the northern Tianshan sample is ca. 27 Ma. Previous studies also reported Apatite (U-Th)/He ages of ca. 44 Ma-11 Ma in the Baluntai area of the southern Central Tianshan[1]. Two episodes of cooling are distinguished by thermal history modelling: (1) Mesozoic cooling occurred as the result of the exhumation and tectonic reactivation of the central Tianshan; and (2) The Tianshan orogenic belt has been rapidly exhumed since the Middle Cenozoic. References [1] Lü, H.H., Chang, Y., Wang, W., Zhou, Z.Y., 2013. Rapid exhumation of the Tianshan Mountains since the early Miocene: Evidence from combined apatite fission track and (U-Th)/He thermochronology. Science China: Earth Sciences, 43(12): 1964-1974 (in Chinese).

  15. Reconstructing Late Paleozoic exhumation history of the Inner Mongolia Highland along the northern edge of the North China Craton

    NASA Astrophysics Data System (ADS)

    Ma, Shouxian; Meng, Qingren; Duan, Liang; Wu, Guoli

    2014-06-01

    The Inner Mongolia Highland (IMH), along the northern edge of the North China Craton, was considered to be a long-standing topographic highland, whose exhumation history remains elusive. The aim of this study is to reveal Late Paleozoic exhumation processes of the IMH based on an integrated analysis of stratigraphy, petrography of clastic rocks, and U-Pb ages and Hf isotopes of detrital zircons from Permian-Triassic succession in the middle Yanshan belt. The results of the study show that the Benxi Formation, which was originally regarded as a Late Carboniferous unit, proves to be Early Permian in age because it contains detrital zircons as young as ∼298 Ma. The Lower Shihezi Formation is demonstrated to be a unit whose age spans the boundary of the Middle and Upper Permian, constrained by a U-Pb age of 260 ± 2 Ma from a dacite layer. Clastic compositions of conglomerate and sandstone change markedly, characterised by the predominance of sedimentary components in the Benxi-Shanxi Formations, by large amounts of volcanic clastics in the Lower and Upper Shihezi Formations, and by the presence of both metamorphic and igneous clastics in the Sunjiagou-Ermaying Formations. Sedimentary clastics include chert, carbonate, sandstone and quartzite, which may have been derived from Proterozoic to Lower Paleozoic sedimentary covers. Volcanic clasts were directly related to volcanic eruptions, while granite and gneiss grains were sourced from exhumed Late Paleozoic intrusive rocks and basement rocks. Detrital zircon U-Pb ages can be divided into five populations: 2.6-2.4 Ga, 1.9-1.7 Ga, 400-360 Ma, 325-290 Ma and 270-250 Ma. Precambrian detrital zircons are typically subrounded to rounded in shape, implying a recycling origin. Late Paleozoic zircons show oscillatory zones and their Th/U ratios >0.4, suggesting a magmatic origin. Most Phanerozoic zircons have negative εHf(T) values of -3.2 to -25.5, which are compatible with those of Late Paleozoic plutons in the IMH. The

  16. Exhumation, cooling and deformation history of the necking zone of the fossil Adriatic rifted margin: the Campo/Grosina section (S-Switzerland and N-Italy)

    NASA Astrophysics Data System (ADS)

    Petri, Benoît; Mohn, Geoffroy; Wijbrans, Jan R.; Manatschal, Gianreto; Beltrando, Marco

    2016-04-01

    The Austroalpine units in SE Switzerland and N-Italy preserve remnants of the fossil Adriatic rifted margin. Notably the Campo-Grosina units represent the necking zone where major crustal thinning was accommodated during the Jurassic rifting. This contribution aims to unravel the complex tectonic evolution recorded in these units from the late Carboniferous - early Permian to the Jurassic rifting. The cooling and exhumation of the Campo and overlying Grosina units, separated by the Eita shear zone are explored by the acquisition of 40Ar/39Ar on hornblende, muscovite and biotite. New geochronological data on the Grosina unit present 40Ar/39Ar ages between 273 and 261 Ma for muscovite and between 248 and 246 Ma for biotite. The Campo unit shows clearly younger ages between 210 and 177 Ma on hornblende, between 186 and 176 Ma on muscovite and between 174 and 171 Ma on biotite. Numerous data were discarded due to frequent excess 40Ar on amphiboles, probably associated to the emplacement of the Sondalo gabbro with a high 40Ar/36Ar ratio in Permian times. These new ages, together with a compilation of existing ages obtained with different chronometers (U-Pb, Sm-Nd, Rb-Sr, K-Ar, 40Ar/39Ar) and performed on different lithologies from both the Campo and the Grosina units allow an estimation of the cooling rates for these units to be done. The new results show that both the Campo and the Grosina units underwent a cooling rate around 10°C/Ma in Permian time. The Grosina unit, being in a shallower crustal level, did not record the Jurassic cooling, reaching up to 50°C/Ma in the Campo unit. The notable difference in cooling rates between the Permian and the Jurassic events attests of a cooling without being associated to an exhumation in Permian times, whereas the Campo unit cooled rapidly in Jurassic times, due to an exhumation and an emplacement in shallow crustal levels. The latter tectonic event was likely caused by shearing along the Eita or other greenschist facies

  17. Low-temperature thermochronology of the northern Thomson Orogen: Implications for exhumation of basement rocks in NE Australia

    NASA Astrophysics Data System (ADS)

    Verdel, Charles; Stockli, Daniel; Purdy, David

    2016-01-01

    The Tasmanides of eastern Australia record much of the Phanerozoic tectonic development of the retreating Pacific-Australia plate boundary and are an oft-cited example of an orogen that has undergone "tectonic mode switching." To begin to constrain the timing of exhumation of basement rocks that are now exposed in portions of the NE Tasmanides, we measured apatite and zircon (U-Th)/He ages from the Thomson Orogen and overlying Paleozoic strata in the back-arc of the New England Orogen in NE Australia. Zircon (U-Th)/He ages from basement samples (including those recovered from boreholes at depths of up to 1.1 km) are characterized by large inter- and intra-sample variability and range from approximately 180 Ma (Early Jurassic) to 375 Ma (Late Devonian). (U-Th)/He zircon ages from several individual samples are negatively correlated with effective uranium (eU), a pattern that is also true of the dataset as a whole, suggesting that variations in U and Th zoning and radiation damage are partially responsible for the age variability. The oldest zircon (U-Th)/He cooling ages coincide with the formation of regionally extensive Late Devonian-early Carboniferous back-arc basins, suggesting that Late Devonian extension played a significant role in exhumation of parts of the northern Thomson Orogen. Apatite (U-Th)/He ages from a basement sample and a late Permian sandstone in the overlying Bowen Basin, which are also marked by intra-sample variability and age-eU correlations, span from the Early Cretaceous through Oligocene, in general agreement with previous apatite fission track data. In conjunction with observations of key geologic relationships and prior K-Ar and 40Ar/39Ar data, our results suggest four overall phases in the thermal history of the northern Thomson Orogen: (1) Cambrian-early Silurian metamorphism during the Delamerian and Benambran Orogenies; (2) protracted cooling during the Late Devonian through mid-Permian that likely resulted from extensional

  18. New Permian fauna from tropical Gondwana

    PubMed Central

    Cisneros, Juan C.; Marsicano, Claudia; Angielczyk, Kenneth D.; Smith, Roger M. H.; Richter, Martha; Fröbisch, Jörg; Kammerer, Christian F.; Sadleir, Rudyard W.

    2015-01-01

    Terrestrial vertebrates are first known to colonize high-latitude regions during the middle Permian (Guadalupian) about 270 million years ago, following the Pennsylvanian Gondwanan continental glaciation. However, despite over 150 years of study in these areas, the biogeographic origins of these rich communities of land-dwelling vertebrates remain obscure. Here we report on a new early Permian continental tetrapod fauna from South America in tropical Western Gondwana that sheds new light on patterns of tetrapod distribution. Northeastern Brazil hosted an extensive lacustrine system inhabited by a unique community of temnospondyl amphibians and reptiles that considerably expand the known temporal and geographic ranges of key subgroups. Our findings demonstrate that tetrapod groups common in later Permian and Triassic temperate communities were already present in tropical Gondwana by the early Permian (Cisuralian). This new fauna constitutes a new biogeographic province with North American affinities and clearly demonstrates that tetrapod dispersal into Gondwana was already underway at the beginning of the Permian. PMID:26537112

  19. New Permian fauna from tropical Gondwana.

    PubMed

    Cisneros, Juan C; Marsicano, Claudia; Angielczyk, Kenneth D; Smith, Roger M H; Richter, Martha; Fröbisch, Jörg; Kammerer, Christian F; Sadleir, Rudyard W

    2015-01-01

    Terrestrial vertebrates are first known to colonize high-latitude regions during the middle Permian (Guadalupian) about 270 million years ago, following the Pennsylvanian Gondwanan continental glaciation. However, despite over 150 years of study in these areas, the biogeographic origins of these rich communities of land-dwelling vertebrates remain obscure. Here we report on a new early Permian continental tetrapod fauna from South America in tropical Western Gondwana that sheds new light on patterns of tetrapod distribution. Northeastern Brazil hosted an extensive lacustrine system inhabited by a unique community of temnospondyl amphibians and reptiles that considerably expand the known temporal and geographic ranges of key subgroups. Our findings demonstrate that tetrapod groups common in later Permian and Triassic temperate communities were already present in tropical Gondwana by the early Permian (Cisuralian). This new fauna constitutes a new biogeographic province with North American affinities and clearly demonstrates that tetrapod dispersal into Gondwana was already underway at the beginning of the Permian. PMID:26537112

  20. Permian geology of Gondwana countries: An overview

    SciTech Connect

    Dickins, J.M. )

    1992-10-01

    Earliest Permian sequences of Antarctica, southern and east-central Africa, the southern part of the Arabian Peninsula, Pakistan, peninsular and Himalayan India, Tibet, western and eastern Australia, New Zealand, and South America are all characterized by glacial deposits and cold-water marine faunas. In the course of the Permian, considerable faunal (and floral) and climatic divergence occurred. Although folding is not necessarily present, the effects of the strong compressive tectonic phase (Hunter-Bowen Orogenic Folding Phase of Dickins) beginning in the mid-Permian (traditional two-fold subdivision) and of acidic and intermediate volcano-magmatic activity are apparent in all these regions as in other parts of the world. The progressive continentality of the Upper Permian (worldwide regression) culminates at the Permian-Triassic (Changxingian-Griesbachian) boundary.

  1. The composition of Permian seawater.

    PubMed

    Horita, J; Friedman, T J; Lazar, B; Holland, H D

    1991-01-01

    Forty-nine brine inclusions in marine halite from the Ochoan Salado Formation in the Delaware Basin and fifteen inclusions in halite from the Leonardian Wellington Formation in the Kansas Basin were extracted, and their chemical compositions were determined. The brines are of the Na-K-Mg-Cl-SO4 type; their compositions resemble those of evaporated modern seawater. The values of (mCl(-) - mNa+)/mBr- and (mMg(2+) + mCa(2+) - mSO4(2-) - 1/2mHCO3-)/mBr- of the inclusion brine from the two formations are equal to or slightly higher than those of modern seawater. The original mNa+/mBr- and mCl-/mBr- ratios of the inclusion brines were probably equal to or slightly larger than those of modern seawater. The values of mMg2+/mBr- of the inclusion brines from the Salado Formation are very close to that of modern seawater; the ratios of inclusion brines from the Wellington Formation are slightly lower, probably due to the formation of dolomite/magnesite. The mMg2+/mBr- ratio in the initial seawater was probably close to the parent seawater of the Salado brines. The values of (mSO4(2-) - mCa(2+) + 1/2mHCO3-)/mBr- of the inclusion brines appear to be reduced by the formation of dolomite/magnesite, and the value of this ratio in Permian seawater was probably similar to that of modern seawater. The mK+/mBr- ratios of the inclusion brines are variable, but the original ratios are probably close to or slightly larger than that of modern seawater. If the Br- concentration of Permian seawater was equal to that of modern seawater, the composition of Permian seawater can be narrowly constrained; in mmol/kg H2O, 460 < or = mNa+ < 630, 550 < or = mCl- < 730, mMg2+ = 54 +/- 6, mK+ approximately equal to 11, (mSO4(2-) - mCa(2+) + 1/2mHCO3-) > or = 17, 20 < mSO4(2-) < 45, 5 < mCa2+ < 20, and 0.15 < mHCO3- < 5. The composition of Permian seawater was therefore quite similar to that of modern seawater. PMID:11537200

  2. Late Paleozoic structural evolution of Permian basin

    SciTech Connect

    Ewing, T.E.

    1984-04-01

    The southern Permian basin is underlain by the NNW-trending Central Basin disturbed belt of Wolfcamp age (Lower Permian), the deep Delaware basin to its west, and the shallower Midland basin to its eat. The disturbed belt is highly segmented with zones of left-lateral offset. Major segments from south to north are: the Puckett-Grey Ranch zone; the Fort Stockton uplift; the Monahans transverse zone; the Andector ridges and the Eunice ridge; the Hobbs transverse zone; and the Tatum ridges, which abut the broad Roosevelt uplift to the north. The disturbed belt may have originated along rift zones of either Precambrian or Cambrian age. The extent of Lower and Middle Pennsylvanian deformation is unclear; much of the Val Verde basin-Ozona arch structure may have formed then. The main Wolfcamp deformation over thrust the West Texas crustal block against the Delaware block, with local denudation of the uplifted edge and eastward-directed backthrusting into the Midland basin. Latter in the Permian, the area was the center of a subcontinental bowl of subsidence - the Permian basin proper. The disturbed belt formed a pedestal for the carbonate accumulations which created the Central Basin platform. The major pre-Permian reservoirs of the Permian basin lie in large structural and unconformity-bounded traps on uplift ridges and domes. Further work on the regional structural style may help to predict fracture trends, to assess the timing of oil migration, and to evaluate intrareservoir variations in the overlying Permian giant oil fields.

  3. Exhumation of the Shackleton Range, Antarctica

    NASA Astrophysics Data System (ADS)

    Lucka, Nicole; Lisker, Frank; Läufer, Andreas; Spiegel, Cornelia

    2013-04-01

    The Shackleton Range is situated between 80° - 81°S and 19° - 31°W, where it forms the continuation of the Transantarctic Mountains in the Weddell Sea sector of Antarctica. There, Precambrian igneous and metamorphic basement is overlain by (meta-) sedimentary rocks of an Early Paleozoic nappe stack and post-orogenic red beds. Nappe stacking resulted from the collision of East and West Gondwana due to the closure of the Mozambique Ocean in pan-African times. The uplift and exhumation history of the Shackleton Range has been analysed earlier based on a series of vertical fission track profiles (Schäfer, 1998; Lisker et al., 1999). Zircon ages range from ~160 to 210 Ma while apatite ages between ~95 and ~170 Ma comprise a break in slope of the altitude regression at ~110 Ma, and are accompanied by mean track lengths of 12.7 - 14.1 µm (standard deviation 1.0 - 1.4 µm). These data have been interpreted qualitatively in terms of two cooling/ exhumation stages during Jurassic and mid-Cretaceous times. However, the recognition of Jurassic volcaniclastic rocks associated with the ~180 Ma Ferrar event in the vicinity of the sample locations (Buggisch et al., 1994) challenges this exhumation concept. Moreover, new fission track proxy data (Dpar) and apatite (U-Th-Sm)/He ages between 88 and 171 Ma allow thermal history modelling of the combined thermochronological data. First tentative thermal history models suggest early Mesozoic cooling followed by (post-) Jurassic heating and final cooling since the Late Cretaceous. This scenario requires burial of the Shackleton Range region, and therefore the existence of a sedimentary basin at least during the Jurassic-Early Cretaceous, and subsequent basin inversion. The thickness of the now vanished sedimentary strata did unlikely exceed 2 - 3 km. Future work including additional apatite fission track analyses will help to quantifying geometry, depth and timing of this depocentre and evaluating potential links with the coeval

  4. Zircon and apatite fission-track evidence for an Early Permian thermal peak and relatively rapid Late Permian cooling in the Appalachian Basin

    SciTech Connect

    Roden, M.K. . Dept. of Earth and Environmental Science); Wintsch, R.P. . Dept. of Geological Sciences)

    1992-01-01

    New zircon fission-track ages compliment published apatite fission-track ages in the Appalachian Basin to narrowly constrain its thermal history. Geologic evidence can only constrain timing of the thermal peak to be younger than late Pennsylvanian sediments ([approximately] 300 Ma) and older than Mesozoic sediments in the Newark and Gettysburg Basins ([approximately] 210 Ma). Apatite fission-track ages as old as 246 Ma require the Alleghanian thermal peak to have been pre-Triassic. Preliminary data on reset zircon fission-track ages from middle Paleozoic sediments range from 255 to 290 Ma. Zircon fission-track apparent ages from samples younger and structurally higher than these are not reset. Thus, the oldest reset zircon fission-track age constraints the time of the Alleghanian thermal peak to be earliest Permian. Rates of post-Alleghanian cooling have not been well-constrained by geologic data and could be very slow. The difference between apatite and zircon fission-track ages for most of the samples range from 100--120 m.y. reflecting Permo-Triassic cooling of only 1 C/m.y. However, one sample with one of the oldest apatite ages, 245 Ma, yields one of the younger zircon ages of 255 Ma. This requires cooling rates of 10 C/m.y. and uplift rates of [approximately] 0.5 mm/yr. Collectively, these data support an early Permian thermal peak and a two-stage cooling history, consisting of > 100 C cooling (> 8 km denundation) in the Permian followed by relatively slow cooling and exhumation throughout the Mesozoic.

  5. Long-term landscape evolution, cooling and exhumation history at the Moroccan passive continental margin, Western Anti-Atlas

    NASA Astrophysics Data System (ADS)

    Sehrt, Manuel; Glasmacher, Ulrich A.

    2014-05-01

    The ENE-trending Anti-Atlas of Morocco is located at the northwestern fringe of the West African Craton and south of the High Atlas and represents the Phanerozoic foreland of the Late Palaeozoic North African Variscides and the Cenozoic Atlas Belt. The Anti-Atlas mountain belt extends from the Atlantic Ocean over 500 km into the Moroccan interior and shows a rugged topography with elevations of about 2700 m. The exhumation of the Precambrian basement and the deformation and erosion of the Palaeozoic cover is mainly related to the Variscan orogeny in the Upper Carboniferous-Lower Permian. Subsequently, exhumation of the inliers occurred in the Triassic-Jurassic, as the Anti-Atlas formed the shoulder of the Atlantic rift and finally in the Upper Eocene-Pleistocene, contemporaneously with the uplift of the Atlas belt. In Morocco, a large amount of Mesozoic terrigenous sedimentary rocks are deposited in most of the basins along the continental margin indicating a major episode of erosion during the rift and early post-rift period in the Central Atlantic. In the Tarfaya-Laâyoune-Dakhla Basin, south of the Anti-Atlas, the sedimentary cover reach a thickness of up to 12 km. The presence of high surface elevations in the Anti-Atlas mountain belt indicates a potential source area for the surrounding basins. Currently, phases of exhumation in the Anti-Atlas during the Central Atlantic rifting and places where the associated erosion products are deposited are poorly constrained and there is little quantitative data available at present. The present study was focused on the thermal and exhumation history of the Western Anti-Atlas, the burial and inversion history of the Tarfaya-Laâyoune-Dakhla Basin and on provenance analysis of the Meso-Cenozoic sedimentary rocks in the basin. In order to characterize the t-T history, apatite and zircon fission-track dating, apatite and zircon (U-Th-Sm)/He dating and furthermore 2-D modelling with 'HeFTy' software has been carried out at

  6. Subduction and exhumation of continental crust: insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Bialas, Robert W.; Funiciello, Francesca; Faccenna, Claudio

    2011-01-01

    When slivers of continental crust and sediment overlying oceanic lithosphere enter a subduction zone, they may be scraped off at shallow levels, subducted to depths of up to 100-200 km and then exhumed as high pressure (HP) and ultra-high pressure (UHP) rocks, or subducted and recycled in the mantle. To investigate the factors that influence the behaviour of subducting slivers of continental material, we use 3-D dynamically consistent laboratory models. A laboratory analogue of a slab-upper mantle system is set up with two linearly viscous layers of silicone putty and glucose syrup in a tank. A sliver of continental material, also composed of silicone putty, overlies the subducting lithosphere, separated by a syrup detachment. The density of the sliver, viscosity of the detachment, geometry of the subducting system (attached plate versus free ridge) and dimensions of the sliver are varied in 34 experiments. By varying the density of the sliver and viscosity of the detachment, we can reproduce a range of sliver behaviour, including subduction, subduction and exhumation from various depths and offscraping. Sliver subduction and exhumation requires sufficient sliver buoyancy and a detachment that is strong enough to hold the sliver during initial subduction, but weak enough to allow adequate sliver displacement or detachment for exhumation. Changes to the system geometry alter the slab dip, subduction velocity, pattern of mantle flow and amount of rollback. Shallower slab dips with more trench rollback produce a mantle flow pattern that aids exhumation. Steeper slab dips allow more buoyancy force to be directed in the up-dip direction of the plane of the plate, and aide exhumation of subducted slivers. Slower subduction can also aide exhumation, but if slab dip is too steep or subduction too slow, the sliver will subduct to only shallow levels and not exhume. Smaller slivers are most easily subducted and exhumed and influenced by the mantle flow.

  7. Late Permian to Early Triassic magnetostratigraphy

    NASA Astrophysics Data System (ADS)

    Haag, Maja; Heller, Friedrich

    1991-10-01

    A Late Permian to Early Triassic magnetostratigraphic reference section is presented. The Lower Triassic part is based on results from marine limestone sections in South China published earlier [1,2]. Reliable new Permian data are added here which have been collected in the Nammal gorge (Salt Range, Northwest Pakistan) where marine sediments have been deposited quasi-continuously with occasional minor hiatuses during the late Palaeozoic to early Mesozoic. About 50% of the Permian samples from the Nammal section contain, hidden beneath a strong recent or Tertiary overprint, a characteristic remanent magnetization (ChRM) which is very likely of Permian age. This component, which was imprinted on the southern hemisphere, has normal as well as reversed polarity with a normal mean direction (Decl. = 289.3°, Incl. = -50.3°, α 95 = 4.3° , N = 113) which is in close agreement with the palaeofield direction expected for a site belonging to the Indian plate as part of Gondwanaland during the Permian. In the lower Upper Permian several normal polarity zones are recognized. This contradicts the current assumption that rocks of this age belong to the long, reversely polarized Kiaman hyperzone. The Kiaman interval must end and the Illawarra hyperzone of mixed polarity must begin in or prior to the lowermost Upper Permian. The Permian/Triassic boundary at Nammal as well as in the Chinese sections is situated very close to a transition from a reversed to a normal polarity zone. The Upper Permian at Nammal together with the Lower Triassic South China sections is estimated to cover about 20 Ma. Nearly 30 polarity changes are observed which result in an average reversal frequency very similar to that observed during the early Tertiary. The reversal rate after the end of the long-lasting reversed Kiaman hyperchron apparently increases in a manner similar to that after the end of the Cretaceous Long Normal Superchron. Only a few polarity zones are found in the lower Upper Permian

  8. Late Cenozoic Exhumation of the Terskey Range, Kyrgyz Tien Shan

    NASA Astrophysics Data System (ADS)

    Sobel, E. R.; Macaulay, E. A.; Mikolaichuk, A.; Kohn, B. P.

    2008-12-01

    The glaciated, granitic Terskey range and the associated foreland basin within the Kyrgyz Tien Shan is an ideal region to examine whether Plio-Pleistocene climate change has led to enhanced erosion. Three ca. 1000m vertical profiles were collected in the hanging wall of the main, north-vergent thrust, spaced 25 km apart along strike. AFT analysis have been conducted from the westernmost-transect; all profiles have been analyzed using apatite (U-Th-Sm)/He analysis. AFT and Helium data from the Barskoon gorge profile define parallel trends on the age-elevation plot with apparent exhumation rates of ca. 0.08 km/Myr. The uppermost AFT sample resided for a long period within the partial annealing zone (PAZ); hence, the onset of rapid exhumation defined by the base of the exhumed PAZ appears to be 31±5 Ma. This is earlier than expected from the known regional geology. An alternative interpretation is that the next lowest sample has also been partially reset, such that the onset of exhumation is later and the initial exhumation is more rapid. Helium data from the Kichikyzulsu and Turgenaksu profiles define linear trends on age-elevation plots with apparent exhumation rates of 0.1-0.25 km/Myr and 0.2 km/Myr, respectively. Much older ages at high elevations along the former profile suggest that the base of the Helium partial retention zone (PRZ) has been sampled; the onset of exhumation is roughly constrained to be between 10 and 20 Ma. The onset of rapid exhumation at the latter profile can only be constrained as prior to 11 Ma. Combining the apparent exhumation rate with the age of the youngest samples from each transect provides an estimate of the amount of exhumation since that sample cooled through the PRZ. For the 3 profiles, this implies 1 to 1.2 km, 0.7 to 1.8 km, and 1.5 km of exhumation, assuming that the exhumation rate remained constant. The observed small magnitude and slow rate of exhumation suggests that there has been only limited advection and hence

  9. Neogene Extension and Exhumation in NW Sulawesi

    NASA Astrophysics Data System (ADS)

    Advokaat, E. L.; Hall, R.; White, L. T.; Armstrong, R. A.; Kohn, B. P.; BouDagher-Fadel, M. K.

    2014-12-01

    The unusual K-shaped island of Sulawesi, located in the convergent zone between the Eurasian, Australian and Pacific plates, has traditionally been interpreted as the consequence of collision and accretion. New data challenge this idea and indicate that crustal extension has played an important role in its Neogene development. In the north of the Sulawesi North Arm are Eocene-Lower Miocene basalts intercalated with radiolarian chert and volcaniclastic sediments, which were deformed during collision of the Sula Spur with the North Arm. Undeformed granitoids derived from lower crustal rocks intrude the sequence and preliminary LA-ICP-MS U-Pb zircon ages decrease from 9.44±0.43 Ma in the north to 8.19±0.20 Ma in the south. Structurally beneath all these rocks is the Malino Metamorphic Complex (MMC) which exposes dominantly quartzo-feldspathic muscovite schists to gneisses, with subordinate amphibolites and garnet schists. The MMC is a metamorphic core complex, surrounded by a discontinuous greenschist carapace and shear zones with opposite shear senses on the northern and southern sides of the complex. Metamorphic rocks from the MMC yield SHRIMP U-Pb ages on zircon rims of 15.42±0.62 Ma and 15.36±0.53 Ma. Locally these metamorphic rocks are intruded by undeformed granitoids with SHRIMP U-Pb zircon ages of 4.85 ± 0.07 to 3.78±0.04 Ma. Late stage exhumation accommodated by high angle oblique normal faults is indicated by apatite (U-Th)/He ages between 3.26±0.23 Ma and 1.43±0.24 Ma, at a rate of 0.27 mm/a based on age-elevation plots. Lower Pliocene-Lower Pleistocene syn-extensional shallow marine siliciclastic and carbonate sediments are crosscut by normal faults. The timing of faulting and lack of metamorphic detritus in these young sediments support rapid and recent regional uplift. We interpret two phases of extension in North Sulawesi, one during the Middle Miocene and another during the Late Pliocene-Pleistocene, exhuming the granitic and metamorphic rocks.

  10. The Silurian to Permian history of a metamorphic core complex in Lofoten, northern Scandinavian Caledonides

    NASA Astrophysics Data System (ADS)

    Steltenpohl, Mark G.; Hames, Willis E.; Andresen, Arild

    2004-02-01

    , Permian extension in Lofoten is largely characterized by brittle structures that formed at conditions substantially less than 300°C. Compared to the exhumation history of the southern Western Gneiss Region, the depth of Caledonian, continental (A-type) subduction and subsequent unroofing of Lofoten are of lesser magnitude, and the present erosional level remained in the middle crust for a much longer interval of time. The Permian 40Ar/39Ar mineral ages documented in this study are the youngest such ages yet identified in Scandinavia. These ages relate to episodes of deformation and cooling in response to extensional tectonic events that occurred roughly 100 m.y. after comparable effects identified on the Caledonian mainland. Our preferred explanation for the Carboniferous-Permian radiometric ages, structural evolution, and stratigraphic data for Lofoten is that they all developed in the context of a long-lived Cordilleran-style metamorphic core complex.

  11. Porosity formation in deep-burial environment: overview, with examples, from Permian basin

    SciTech Connect

    Mazzullo, S.J.; Harris, P.M.

    1989-03-01

    Porosity formation accompanying deep burial is ubiquitous and widespread in the Permian basin, particularly but not exclusively in offshore platform and resedimented basinal carbonates of Pennsylvanian and Permian age. Hydrocarbon reservoirs in such platform carbonate examples locally contain evidence of subaerial exposure and meteoric diagenesis. Commonly, much of the porosity formed during exposure is ultimately reduced by compaction and cementation during early burial. By contrast, no evidence of meteoric diagenesis is observed in associated basinal carbonates, although compaction and cementation accompanying progressive burial are readily evident. In both cases, however, such early diagenesis is overprinted by late burial dissolution, sometimes coincident with hydrocarbon emplacement, creating rocks of high porosity. The formation of porosity by cement dissolution may exhume occluded pores or enhance relict pores that formed in the eogenetic zone, the result being a preponderance of interparticle and moldic pores and residual cements that mimic vadose and phreatic products. In other cases, nonfabric selective dissolution, locally associated with fractures or stylolites, creates vuggy porosity which may resemble that formed during eodiagenesis. Multiple phases of deep-burial dissolution and partial cementation or replacement (by calcite or dolomite) are indicated for many of these diagenetic systems and result in a complex suite of different pore types.

  12. Magnitude and spatial patterns of erosional exhumation in the Nevadaplano, eastern Nevada and western Utah: insights from a Paleogene paleogeologic map

    NASA Astrophysics Data System (ADS)

    Long, S. P.

    2011-12-01

    Neoproterozoic and Permian in the Central Nevada thrust belt (CNTB), indicating significant structural relief. Isolated segments of CNTB structures can be correlated by their subcrop patterns, and can be traced southward to connect with thrust faults in southern Nevada. The exhumation map can be divided into three zones that exhibit significant across-strike magnitude changes: 1) high exhumation magnitudes (4-8 km) characterize the deeply-eroded hanging wall of the DWC thrust system and Sevier Culmination, which display little variability for a 350 km along-strike distance; 2) the CNTB displays high magnitudes (4-8 km) in its southern extent, and moderate magnitudes (2-5 km) in its northern extent; 3) the DWC thrust system and CNTB bound a large region that exhibits low (1-3 km) exhumation magnitudes. The close spatial association of high exhumation magnitudes with the hanging walls of thrust faults highlights the first-order control deformation and structural elevation has on exhumation patterns, and suggests that erosional exhumation is a response to relief generation accompanying contractional deformation in orogenic plateaus. The lack of significant exhumation variability within each structural zone implies that relief generation was relatively uniform along-strike.

  13. CONSTRAINTS ON EXHUMATION AND SEDIMENTS PROVENANCE DURING PALEOGENE IN THE NORTHERN PYRENEES (FRANCE) USING DETRITAL AFT, ZHe AND Z(U/Pb) THERMOCHRONOLOGY

    NASA Astrophysics Data System (ADS)

    Filleaudeau, P.; Mouthereau, F.; Fellin, M.; Pik, R.; Lacombe, O.

    2009-12-01

    The Pyrenees are a doubly vergent orogenic wedge built by the convergence between the subducting Iberian microplate and the European plate lasting from late Cretaceous to early Miocene. The backbone of the Pyrenean belt (Axial Zone) consists in a stack of thrusts units composed of Paleozoic series intruded by late-Variscan granitoids. Both pro- and retro-wedge sides of the Pyrenees are fold-and-thrust belts made of Meso-Cenozoic sediments thrusted onto the Ebro and Aquitaine foreland basins. The deep structure, highlighted by the ECORS profile, shows a strong asymmetry caused by the southward migration of deformation associated with the development of a Paleogene antiformal stack emplaced during wedge growth in the Iberian plate. The present study focuses on the synorogenic deposits of the retro-foreland basin in the northern part of the belt. To examine the source rocks and quantify the exhumation rates, we combine fission track thermochronometry on detrital apatites with Helium diffusion and U/Pb thermochronometry on zircons. Due to the very high closure temperature of the U/Pb system and the wide range of age distribution, the U/Pb method, that provides zircon crystallisation ages, is a powerful tool to distinguish the various eroded sources feeding the North Pyrenean basin. Thus, we can separate grains coming from Variscan intrusive basement with ages around 310 Ma from younger grains coming from Permian or Triassic to lower Jurassic volcanics. Zircon ages of 220 Ma found in the Paleocene sandstones point to the Triassic volcanic rocks (the so-called “ophites”) as the main source of detrital grains. We infer that Paleozoic units of the Axial Zone were not outcropping in the Paleocene catchments. Exhumation rates are estimated through apatite fission track grain-age distributions and (U-Th)/He dating for two Lutetian and Bartonian synorogenic sandstone samples of the North Pyenean foreland basin. The first results obtained with AFT dating show two main grain

  14. Permian insect wing from antarctic sentinel mountains.

    PubMed

    Tasch, P; Riek, E F

    1969-06-27

    A homopterous insect wing was found in micaceous graywacke from the Polarstar Formation, Sentinel Mountains. The unusual venation is reminiscent of family Stenoviciidae known from the Permian and Triassic of Eastern Australia and elsewhere. This first documented account of Paleozoic insects in Antarctica bears on drift questions. PMID:17748532

  15. Starting a Business in the Permian Basin.

    ERIC Educational Resources Information Center

    Harrison, Danny

    The business and economic development center of Midland College provides assistance to small businesses. Written for use by future and current small business owners and entrepreneurs living in a 17-county area of the Permian Basin of Texas, this guidebook describes the procedures for developing a business plan and for successfully starting and…

  16. Permian depositional history, Leach Mountains, northeastern Nevada

    SciTech Connect

    Martindale, S.G. . EMA/Construction Div.)

    1993-04-01

    The 4,000 m thick Permian sequence in the Leach Mountains consists of carbonate rock, chert, terrigenous clastic rock and phosphatic rock. These rocks, in ascending order, comprise the Third Fork Fm., Badger Gulch Fm., Trapper Creek Fm., Grandeur Fm., Meade Peak Phosphatic Shale Tongue of the Phosphoria Fm., Murdock Mountain Fm. and Gerster Limestone. This sequence disconformably overlain by Triassic strata. Initial Permian deposition, represented by the late Wolfcampian to early Leonardian Third Fork Fm., was on a slope, at a water depth of about 50 m. Subsequently, a shallowing trend occurred during the early Leonardian to late Leonardian with deposition of the Badger Gulch, Trapper Creek and Grandeur Fms. The Trapper Creek and Grandeur Fms. were deposited on the shelf, in very shallow subtidal to supratidal environments. The shelf persisted through the remainder of the Permian. In the late leonardian, the Meade Peak Tongue was deposited in very shallow subtidal and intertidal environments. A supratidal environment was re-established in latest Leonardian( ) to early Guadalupian with deposition of the lower Murdock Mountain Fm. The upper Murdock Mountain Fm. was deposited in very shallow subtidal to supratidal environments. Later during the early Guadalupian, intertidal to shallow subtidal deposition of the Gerster Limestone occurred. Angular phosphatic pebbles that were derived from phosphatic strata at the top of the Gerster Limestone are contained in the Triassic basal conglomerate. These pebbles indicate that the last Permian event was probably emergence and erosion of the top of the Gerster Limestone.

  17. Exhumation of (ultra-)high-pressure terranes: concepts and mechanisms

    NASA Astrophysics Data System (ADS)

    Warren, C. J.

    2013-02-01

    The formation and exhumation of high and ultra-high-pressure, (U)HP, rocks of crustal origin appears to be ubiquitous during Phanerozoic plate subduction and continental collision events. Exhumation of (U)HP material has been shown in some orogens to have occurred only once, during a single short-lived event; in other cases exhumation appears to have occurred multiple discrete times or during a single, long-lived, protracted event. It is becoming increasingly clear that no single exhumation mechanism dominates in any particular tectonic environment, and the mechanism may change in time and space within the same subduction zone. Subduction zone style and internal force balance change in both time and space, responding to changes in width, steepness, composition of subducting material and velocity of subduction. In order for continental crust, which is relatively buoyant compared to the mantle even when metamorphosed to (U)HP assemblages, to be subducted to (U)HP conditions, it must remain attached to a stronger and denser substrate. Buoyancy and external tectonic forces drive exhumation, although the changing spatial and temporal dominance of different driving forces still remains unclear. Exhumation may involve whole-scale detachment of the terrane from the subducting slab followed by exhumation within a subduction channel (perhaps during continued subduction) or a reversal in motion of the entire plate (eduction) following the removal of a lower part of the subducting slab. Weakening mechanisms that may be responsible for the detachment of deeply subducted crust from its stronger, denser substrate include strain weakening, hydration, melting, grain size reduction and the development of foliation. These may act locally to form narrow high-strain shear zones separating stronger, less-strained crust or may act on the bulk of the subducted material, allowing whole-scale flow. Metamorphic reactions, metastability and the composition of the subducted crust all affect

  18. Exhumation and continental strike-slip fault systems: Introduction

    USGS Publications Warehouse

    Roeske, S.M.; Till, A.B.; Foster, D.A.; Sample, J.C.

    2007-01-01

    Metamorphic rocks adjacent to and within strike-slip faultsystems occur in a wide range of tectonic settings. Detailed studies show that for a number of these locales a significant part of the exhumation occurred during strike-slip fault motion, but the specific processes involved are often cryptic. Although some sites share characteristic features, such as metamorphic rocks exhumed in extensional step-overs within overall transtensional systems, no one common theme emerges from all of the studies. Our understanding of the variables that control continental strike-slip faults' interaction with mid- to lower-crustal structures is still primitive.

  19. The terminal Permian in European Russia: Vyaznikovian Horizon, Nedubrovo Member, and Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Lozovsky, V. R.; Balabanov, Yu. P.; Karasev, E. V.; Novikov, I. V.; Ponomarenko, A. G.; Yaroshenko, O. P.

    2016-07-01

    The comprehensive analysis of the data obtained on terrestrial vertebrata, ostracods, entomologic fauna, megaflora, and microflora in deposits of the Vyaznikovian Horizon and Nedubrovo Member, as well as the paleomagnetic data measured in enclosing rocks, confirms heterogeneity of these deposits. Accordingly, it is necessary to distinguish these two stratons in the terminal Permian of the East European Platform. The combined sequence of Triassic-Permian boundary deposits in the Moscow Syneclise, which is considered to be the most complete sequence in the East European Platform, is as follows (from bottom upward): Vyatkian deposits; Vyaznikovian Horizon, including Sokovka and Zhukovo members; Nedubrovo Member (Upper Permian); Astashikha and Ryabi members of the Vokhmian Horizon (Lower Triassic). None of the sequences of Permian-Triassic boundary deposits known in the area of study characterizes this sequence in full volume. In the north, the Triassic deposits are underlain by the Nedubrovo Member; in the south (the Klyazma River basin), the sections are underlain by the Vyaznikovian Horizon. The Permian-Triassic boundary adopted in the General Stratigraphic Scale of Russia for continental deposits of the East European platform (the lower boundary of the Astashikha Member) is more ancient than the one adopted in the International Stratigraphic Chart. The same geological situation is observed in the German Basin and other localities where Triassic continental deposits are developed. The ways of solving this problem are discussed in this article.

  20. Alpine exhumation of the central Cantabrian Mountains, Northwest Spain

    NASA Astrophysics Data System (ADS)

    Fillon, C.; Pedreira, D.; Beek, P. A.; Huismans, R. S.; Barbero, L.; Pulgar, J. A.

    2016-02-01

    The Cantabrian Mountains extend along the Atlantic coast of northern Spain and are known to have experienced an Alpine phase of deformation, reactivating well-expressed Variscan structures. They form the westward continuation of the Pyrenean range and were similarly uplifted consequently to the convergence between the Iberian and European plates. Nevertheless, due to the scarcity of syntectonic sediments and structural markers in a large outcrop of Variscan basement, little is known about the precise timing and amount of the Alpine exhumation phase in the Cantabrian Mountains. We present a new low-temperature thermochronology data set, composed of nine apatite fission track (AFT) and six zircon (U-Th)/He (ZHe) ages, sampled along structurally well-constrained N-S profiles through the central part of the Cantabrian Mountains and complemented by 3-D thermokinematic modeling. The occurrence of Eocene-Oligocene AFT and ZHe ages in the center of the profiles allows us to frame the period of Alpine exhumation from 39 to 29 Ma, at a rate of 0.24-0.3 km Myr-1. Moreover, the reset ZHe ages imply significant burial of the samples, by up to 8-10 km in the center of the range. Therefore, the Alpine exhumation phase was significant, and synchronous to the main phase of exhumation in the central Pyrenees, although exhumation rates were an order of magnitude lower. Three-dimensional thermokinematic modeling of the data confirms the timing of uplift of this area, but its resolution is limited by the relatively small number of reset ages over a large area.

  1. Succession of Permian and Mesozoic metasomatic events in the eastern Pyrenees with emphasis on the Trimouns talc-chlorite deposit

    NASA Astrophysics Data System (ADS)

    Boutin, Alexandre; de Saint Blanquat, Michel; Poujol, Marc; Boulvais, Philippe; de Parseval, Philippe; Rouleau, Caroline; Robert, Jean-François

    2016-04-01

    Recent studies proposing pre-orogenic mantle exhumation models have helped renew the interest of the geosciences community in the Pyrenees, which should be now interpreted as a hyper-extended passive margin before the convergence between Iberia and Eurasia occurred. Unresolved questions of the Pyrenean geology, as well as the understanding of the formation of hyper-extended passive margins, are how the crust was thinned, and when, where and how the crustal breakoff occurred. The study of the Variscan and pre-Variscan Pyrenean basement is thus critical to document and understand this Cretaceous crustal thinning. In order to specify the timing of Mesozoic metasomatism and the associated deformation in the pre-Mesozoic basement of the Pyrenees, we carried out a U-Th-Pb laser ablation ICP-MS study on a large panel of REE and titanium-rich minerals (titanite and rutile) from talc-chlorite ores from the eastern Pyrenees, with a special emphasis on the Trimouns deposit, the world's largest talc quarry. Our results suggest that the Trimouns talc formation was restricted to the upper Aptian-Cenomanian time, while the talc and chlorite formation in the eastern Pyrenees occurred during several distinct Permian, Jurassic and Cretaceous episodes. These results give strong constraints on the tectonic setting of the Pyrenean domain during the transition between the Variscan and Alpine orogenic cycles, and particularly on when and how the upper crust was thinned before the crustal breakoff and the final mantle exhumation.

  2. Patterns of deformation, exhumation and uplift across the Island of Timor: insights into the processes that control the early stages of orogenesis (Invited)

    NASA Astrophysics Data System (ADS)

    McQuarrie, N.; Tate, G. W.; Van Hinsbergen, D. J.; Harris, R. A.

    2013-12-01

    On the island of Timor, arc-continent collision between the Banda volcanic arc and the Australian continent since the late Miocene has uplifted a mountain range containing both deeply exhumed metamorphic rocks and deepwater synorogenic basins. These varied lithologies are separated by a few tens of kilometers, and provide us with an opportunity to examine the spatial patterns of differential uplift and exhumation and its links to the geometry and magnitude of deformation in an orogen that is still in its infancy. New mapping in Timor has provided a detailed view of how the Australian continental slope and shelf rocks are being structurally repeated below overriding Banda Arc material. In East Timor, a window though the Banda terrane shows Permian and Triassic rocks that are repeated by four NNE-striking thrust faults with ~3 km spacing and 50-75 km along-strike extent. The strike of these faults is rotated 50-60 degrees compared to structures to the east and west of this main window. In addition, mapped fold axes are shown to cut across and warp fault traces. These map patterns indicate that the duplex has been both refolded and tilted since its initial formation. In West Timor, Permian through Triassic stratigraphy is faulted and folded into an antiformal stack with 5 exposed thrusts repeating an ~ 3 km thick section. Both south of and adjacent to these structural highs are 10-20 km wide piggyback basins of deepwater, synorogenic marine limestones and clays that coarsen upward into turbidites. Deposition of these units initiated at 5.5 Ma at lower bathyal depths. Synorogenic deposition directly over the Bobonaro mélange, which acts as the décollement between the overthrust Banda Arc rocks and the structurally repeated Australian margin rocks, requires the removal of both Banda arc material and the Cretaceous and younger Kolbano sequence before deposition. These basins record rapid surface uplift to upper bathyal depths from 3.5-3 Ma with continual uplift to

  3. Clarification and changes in Permian stratigraphic nomenclature in Kansas

    USGS Publications Warehouse

    Sawin, R.S.; Franseen, E.K.; West, R.R.; Ludvigson, Greg A.; Watney, W.L.

    2008-01-01

    This paper outlines Permian nomenclature changes to Zeller (1968) that have been adopted by the Kansas Geological Survey. The Permian System/ Period, Cisuralian Series/Epoch, and Asselian Stage/Age are established at the base of the Bennett Shale Member of the Red Eagle Limestone. Series/epoch names Wolfcampian, Leonardian, and Guadalupian are retained and usage of Gearyan, Cimarronian, and Custerian is abandoned. The repositioned Carboniferous-Permian boundary divides the Council Grove Group into Carboniferous (Upper Pennsylvanian Series/Epoch; Virgilian Stage/Age) and Permian (Wolfcampian Series Epoch) segments.

  4. Southwest USA Exhumation History Recorded Below the Great Unconformity

    NASA Astrophysics Data System (ADS)

    Heizler, M. T.; Karlstrom, K. E.

    2002-05-01

    The Southwestern USA Precambrian terranes preserve a long and variable exhumation history that can be tracked using thermochronological methods. This exhumation history is controlled on two interrelated scales. At first order, it is recognized that 1.7 to 1.4 Ga mid-crustal (10 km, 2-4 kbar) rocks were ultimately exhumed and reside below unconformities of variable age. In Arizona, Mesoproterozoic Apache Group and Neoproterozoic Supergroup sedimentary rocks lie directly on basement and thus indicate exhumation of some regions relatively soon following the 1.4 Ga events. In the Rocky Mountains of Colorado and the Rio Grande rift uplifts of New Mexico, basement is generally overlain by Cambrian to Mississippian strata. The unconformities are useful markers of net exhumation; however do not reveal a time-integrated path. Using published, and hundreds of new 40Ar/39Ar analyses of hornblende, muscovite, biotite and K-feldspar, and a growing U/Pb accessory mineral thermochronology database, we are extracting exhumation information with great detail. The thermochronological data continue to support the claim that relatively low net exhumation occurred following 1.7 to 1.6 Ga accretion of volcanic arc terranes to the southern margin of Laurentia. Mid-crustal (2-4 kbar) rocks stabilized soon after accretion, whereas in some regions like the Upper Granite Gorge, Grand Canyon deeper (6 kbar) metamorphic terranes decompressed to 3 kbar before stabilization. The cooling history of these mid-crustal rocks post 1.65 Ga remains somewhat unknown. Overall slow-cooling models (550 \\deg C to 300 \\deg C from 1.7 to 1.4 Ga) require high geothermal gradients in order to maintain 10 km deep rocks at high temperatures for 100's of Ma. Alternatively, isobaric cooling models to more normal geothermal gradients (i.e. 25 \\deg C/km) at ca. 1.65 Ga require later (1.4 Ga) thermal pulses and/or Mesoproterozoic vertical displacements to explain highly discordant thermochronological data. Either

  5. The timing of exhumation of the Lesser Himalaya

    NASA Astrophysics Data System (ADS)

    Najman, Yani; Foster, Gavin; Millar, Ian; Parrish, Randy; Bickle, Mike; Mark, Darren; Reisberg, Laurie; McKenzie, Ryan; Thiede, Rasmus

    2013-04-01

    Knowledge of the exhumation of the Lesser Himalaya (LH) is important to the development of models of crustal deformation and to testing whether erosion of the LH has contributed to changes in ocean geochemistry, (e.g. Pierson-Wickmann et al 2000; Chesley et al 2000). Since most of the LH is unmetamorphosed, using bedrock to determine the timing of exhumation has been confined to fission track studies, whilst detrital work has concentrated on using the earliest isotopic / petrographic detection of LH detritus in the dated foreland basin sedimentary record to constrain the timing of exhumation (DeCelles et al 1998; Robinson et al 2001; Huyghe et al 2001; Szulc et al 2006; Najman et al 2009). Bulk Sm-Nd analyses of foreland basin mudstones, and U-Pb analyses of detrital zircons were used since the LH and Higher Himalaya (HH), which was exhuming previously, were considered to differ in their Sm-Nd characteristics and zircon age spectra. However, the HH, exhumed earlier and of high topography, continues to dominate the detrital load to the basin, thus hindering detection of the subordinate LH due to dilution effects when bulk isotopic analyses are used. Additionally, emerging work shows that there is some overlap in the U-Pb age spectra of zircons and bulk Nd from the HH and LH (McKenzie et al 2011). Thus there is ambiguity in the detection of the earliest LH detritus in the foreland basin; erosion of the LH occurred by 11 Ma, but may have begun by 16 Ma (Bernet et al 2006). In addition to Ar-Ar analyses on detrital micas and Sm-Nd analyses on conglomerate clasts, we employed new techniques to the foreland basin succession in order to detect LH input: - Re-Os analyses on mudstones. Material of high 187Os/188Os is found in the LH (e.g. Pierson-Wickmann et al 2000) but has not so far been found in the HH. - U-Pb analyses on detrital rutiles. HH and LH rutiles are distinguishable by their different cooling ages (Bracciali et al - poster in this session; this study). - Sm

  6. Concretions in Exhumed Channels Near Hanksville Utah: Implications for Mars

    NASA Technical Reports Server (NTRS)

    Clarke, Jonathan; Stoker, Carol R.

    2011-01-01

    The landscape near Hanksville, Utah, contains a diversity of Mars analogue features. These included segmented and inverted anatasomosing palaeochannels exhumed from the Late Jurassic Brushy Basin Member of the Morrison Formation that hosts abundant small carbonate concretions. The exhumed and inverted channels closely resemble many seen on the surface of Mars in satellite imagery and which may be visited by surface missions in the near future. The channels contain a wealth of palaeo-environmental information, but intrinsically difficult terrain would make their study challenging on Mars. We show that an unexhumed channel feature can be detected geophysically, this may allow their study in more easily accessed terrain. The concretions morphologically and in their surface expression parallel the haematite blue berries that are strewn across the surface of Meridiani Planum on Mars. They are best developed in poorly cemented medium to coarse channel sandstones and appear to have formed early in the diagenetic history.

  7. [Identification of an exhumed unknown infant through DNA analysis].

    PubMed

    Jopp, Eilin; Püschel, Klaus; Warschke, Christian; Kaufmann, Richard; Krebs, Oliver

    2014-01-01

    The article reports on the exhumation and subsequent DNA analysis of the skeletal remains of an unknown male newborn from 1988. Molecular biological methods confirmed the maternity of a woman who was already convicted of infanticide. Since homicide could not be clearly proven and manslaughter becomes barred by the statute of limitation after 20 years, the woman cannot be held accountable for the alleged killing of her first child. PMID:25004622

  8. Permian polar forests: deciduousness and environmental variation.

    PubMed

    Gulbranson, E L; Isbell, J L; Taylor, E L; Ryberg, P E; Taylor, T N; Flaig, P P

    2012-11-01

    Forests are expected to expand into northern polar latitudes in the next century. However, the impact of forests at high latitudes on climate and terrestrial biogeochemical cycling is poorly understood because such forests cannot be studied in the modern. This study presents forestry and geochemical analyses of three in situ fossil forests from Late Permian strata of Antarctica, which grew at polar latitudes. Stem size measurements and stump spacing measurements indicate significant differences in forest density and canopy structure that are related to the local depositional setting. For forests closest to fluvial systems, tree density appears to decrease as the forests mature, which is the opposite trend of self-thinning observed in modern forests. We speculate that a combination of tree mortality and high disturbance created low-density mature forests without understory vegetation near Late Permian river systems. Stable carbon isotopes measured from permineralized wood in these forests demonstrate two important points: (i) recently developed techniques of high-resolution carbon isotope studies of wood and mummified wood can be applied to permineralized wood, for which much of the original organic matter has been lost and (ii) that the fossil trees maintained a deciduous habit at polar latitudes during the Late Permian. The combination of paleobotanical, sedimentologic, and paleoforestry techniques provides an unrivaled examination of the function of polar forests in deep time; and the carbon isotope geochemistry supplements this work with subannual records of carbon fixation that allows for the quantitative analysis of deciduous versus evergreen habits and environmental parameters, for example, relative humidity. PMID:22845834

  9. Permian age from radiolarites of the Hawasina nappes, Oman Mountains

    SciTech Connect

    Wever, P.D. ); Grissac C.B. ); Bechennec, F. )

    1988-10-01

    The Hawasina napper of the Oman Mountains yielded Permian radiolarians from cherts stratigraphically overlying a thick volcanic basement (Al Jil Formation) at the base of the Hamrat Duru Group. This fauna represents the first Permian radiolarians and radiolarites in the central and western Tethyan realm. A Permain age for pelagic sequences within the Hawasina Complex of Oman has major significance for regional paleogeographic reconstruction. A clear differentiation between platform (reefal sediments) and basin (radiolarites) from the base of the Late Permian (255 Ma) is implied. It suggests a flexure of the platform during Permian time; the present data implies that a zone of rifting was already developed adjacent to the northeast Gondwana platform margin during the Late Permian. The Hamrat Duru Basin corresponds to an opening intracontinental rift area (sphenochasm) between Arabia and northeast Gondwana, a reentrant of the paleo-Tethys.

  10. The Major-ion Composition of Permian Seawater

    SciTech Connect

    Lowenstein, T K.; Timofeeff, Michael N.; Kovalevych, Volodymyr M.; Horita, Juske

    2005-01-01

    The major-ion (Mg{sup 2+}, Ca{sup 2+}, Na{sup +}, K{sup +}, SO{sub 4}{sup 2-}, and Cl{sup -}) composition of Permian seawater was determined from chemical analyses of fluid inclusions in marine halites. New data from the Upper Permian San Andres Formation of Texas (274--272 Ma) and Salado Formation of New Mexico (251 Ma), analyzed by the environmental scanning electron microscopy (ESEM) X-ray energy-dispersive spectrometry (EDS) method, along with published chemical compositions of fluid inclusions in Permian marine halites from North America (two formations of different ages) and the Central and Eastern European basins (eight formations of four different ages) show that Permian seawater shares chemical characteristics with modern seawater, including SO{sub 4}{sup 2-} > Ca{sup 2+} at the point of gypsum precipitation, evolution into Mg{sup 2+}-Na{sup +}-K{sup +}-SO{sub 4}{sup 2-}-Cl{sup -} brines, and Mg{sup 2+}/K{sup +} ratios {approx} 5. Permian seawater, however, is slightly depleted in SO{sub 4}{sup 2-} and enriched in Ca{sup 2+}, although modeling results do not rule out Ca{sup 2+} concentrations close to those in present-day seawater. Na{sup +} and Mg{sup 2+} in Permian seawater are close to (slightly below) their concentrations in modern seawater. Permian and modern seawater are both classified as aragonite seas, with Mg{sup 2+}/Ca{sup 2+} ratios >2, conditions favorable for precipitation of aragonite and magnesian calcite as ooids and cements. The chemistry of Permian seawater was modeled using the chemical composition of brine inclusions for three periods: Lower Permian Asselian-Sakmarian (296--283 Ma), Lower Permian Artinskian-Kungurian (283--274 Ma), and Upper Permian Tatarian (258--251 Ma). Parallel changes in the chemistry of brine inclusions from equivalent age evaporites in North America, Central Europe, and Eastern Europe show that seawater underwent secular variations in chemistry over the 50 million years of the Permian. Modeled SO{sub 4}{sup 2

  11. Miocene to Pleistocene Exhumation of the Southern European Alps

    NASA Astrophysics Data System (ADS)

    Reverman, R. L.; Fellin, M. G.; Herman, F.; Willett, S. D.

    2012-04-01

    We apply apatite fission-track, (U-Th-Sm)/He dating, 4He/3He diffusion profiles, and OSL thermochronometry to construct a complete thermal history and constrain the exhumation and topographic evolution of the Adamello complex in the Southern European Alps. The Adamello complex is an Eocene-Oligocene pluton emplaced at a depth of 7 km, now exposed at the intersection of two major fault systems and dissected by deep valleys, which drain into larger fluvial systems overdeepened during the Messinian Salinity Crisis. All our ages span the Miocene and display a normal age-elevation relationship, where age increases with elevation, until 2300m, below which all AHe ages are within error of each other. We interpret this break in slope as the onset of a period of rapid cooling initiating at 8.5 Ma and continuing till at least 6 Ma, our youngest age. Further insight is provided by helium diffusion profiles, which constrains the cooling history of the grain from 80°C-20°C. Our results confirm that rapid cooling began at ~8.5 Ma and continued until 4 Ma. We estimate exhumation rates using age-elevation relationships and cooling histories. We compare these estimates with those predicted from a 3-D heat conduction model including topographic relief and erosion (Pecube; Braun, 2002) paired with the Neighborhood Algorithm, which is a two stage mathematical procedure that finds models, or parameters, which minimize the misfit to the data (Sambridge, 1999a,b). The predicted tectono-geomorphic history is tested for feasibility through comparison with known timing of tectonic and erosional events and the thermal history determined by helium diffusion profiles. We also discuss how our results compare to results from elsewhere in the Alps and the implications for the exhumational/erosional history of the Alps.

  12. Exhumation history of the Serra do Mar, southeast Brazil

    NASA Astrophysics Data System (ADS)

    Carina Siqueira-Ribeiro, Marli; Hackspacher, Peter; Stuart, Finlay M.

    2016-04-01

    The Serra do Mar (SM) mountain range located along the southeast Brazilian continental margin is characterized by a low-lying coastal plateau separated from the elevated inland plateau by a steep escarpment. This morphology is a result of reactivation of Precambrian shear zones since the break-up of the Western Gondwana and opening of the South Atlantic Ocean in Early Cretaceous (1). Previous Thermochronological data from southeast Brazilian highlands (2,3), indicates that the landscape evolution is associated with several distinct exhumation events. In order to clarify the intensity and duration of the post-break up tectonic processes that shaped the SM we have undertaken a low temperature thermochronology study of crystalline basement, from the plateaus and escarpments situated between south of Rio de Janeiro and São Paulo state. Apatite fission track (AFT) and (U-Th/He) and (AHe) dating has been combined with geologic information to generate precise thermal histories and make initial attempts to quantify the amount of exhumation. AFT ages range from 145 to 53 Ma whereas preliminary AHe ages range from 75 to 37 Ma. Forward modeling using QTQt confirms Late Cretaceous-Paleogene cooling identified earlier (4,5) and identifies a distinct cooling phase in Neogene, between 30 and 10 Ma. Neogene cooling rapid caused exhumation of rocks 1 km through of the crust mainly in south portion of the SM in Rio de Janeiro state. (1) Almeida, 1976. An. Academia Bras de Cien 48 (suppl.), 15-(2) (2) Hackspacher et al. 2004. Gondwana Research,vol.2, 91-101. (3) Hiruma et al. 2010. Gondwana Research,18,674-687. (4) Siqueira-Ribeiro et al. 2011. Revista Bras. de Geomorfologia, 13, 3-14 (5) Cogné et al. 2012. Journal Geophysical Research, vol.117,1-16.

  13. Permian magmatism, Permian detachment faulting, and Alpine thrusting in the Orobic Anticline, southern Alps, Italy

    NASA Astrophysics Data System (ADS)

    Pohl, Florian; Froitzheim, Niko; Geisler-Wierwille, Thorsten; Schlöder, Oliver

    2014-05-01

    The Grassi Detachment Fault is located in the Orobic Alps east of Lake Como and was described by Froitzheim et al. (2008) as an Early Permian extensional structure. Many issues still remained unclear, like the exact timing of faulting and the extension from the well-exposed part of the detachment towards west. The Grassi Detachment Fault separates the Variscan Basement in its footwall from the volcanic and sedimentary rocks of the Early Permian Collio Formation within its hanging wall, marked by a mylonitic and cataclastic layer whose textures indicate top-to-the-southeast displacement. The footwall basement is formed by the Variscan Morbegno Gneiss and two granitic intrusions, the Val Biandino Quarz Diorite (VBQD) and the Valle Biagio Granite (VBG). The former is syntectonic with respect to the detachment, whereas for the latter, the relation to the detachment is unknown. The age of the VBQD is poorly defined as 312 Ma ± 48 Ma (Thöni et al. 1992); the VBG has not been dated. Volcanic rocks of the Collio Formation in the hanging wall may represent the extrusive part of the magmatic system. In our study area west of Val Biandino, several faults and shear zones are exposed: (1) The Grassi Detachment Fault is represented by mylonites and cataclasites with top-SE shear sense, between basement rocks and the Collio Volcanics. Towards NW, it is truncated by the unconformably overlying Late Permian Verrucano Lombardo. This may reflect the eroded culmination of a Permian metamorphic core complex. (2) A steeply NW-dipping, brittle normal fault is found further west in the footwall between VBQD and VBG. It is sealed by the basal unconformity of the Verrucano Lombardo and therefore should also be of Early Permian age (Sciunnach, 2001). It may represent an antithetic fault with respect to the detachment, accommodating the uplift of the magmatically inflated core complex. (3) The Biandino Fault is a steeply SE-dipping reverse fault, affecting also the Late Permian Verrucano

  14. An exhumed Late Paleozoic canyon in the rocky mountains

    USGS Publications Warehouse

    Soreghan, G.S.; Sweet, D.E.; Marra, K.R.; Eble, C.F.; Soreghan, M.J.; Elmore, R.D.; Kaplan, S.A.; Blum, M.D.

    2007-01-01

    Landscapes are thought to be youthful, particularly those of active orogenic belts. Unaweep Canyon in the Colorado Rocky Mountains, a large gorge drained by two opposite-flowing creeks, is an exception. Its origin has long been enigmatic, but new data indicate that it is an exhumed late Paleozoic landform. Its survival within a region of profound late Paleozoic orogenesis demands a reassessment of tectonic models for the Ancestral Rocky Mountains, and its form and genesis have significant implications for understanding late Paleozoic equatorial climate. This discovery highlights the utility of paleogeomorphology as a tectonic and climatic indicator. ?? 2007 by The University of Chicago. All rights reserved.

  15. Surface uplift, uplift of rocks, and exhumation of rocks

    SciTech Connect

    England, P. ); Molnar, P. )

    1990-12-01

    Uplift of the surface of mountain belts requires forces that are comparable in magnitude to those associated with plate motion, and therefore determination of rates of surface uplift could provide important information on the dynamics of mountain ranges. Rates of uplift of the surfaces of mountain ranges have not, however, been quantified sufficiently well that they provide useful constraints on those processes. Many reports of surface uplift in mountain ranges are based on mistaking exhumation of rocks or uplift of rocks for surface uplift, and provide no information whatsoever on the rates of surface uplift.

  16. Exhumation Depths of the Lower Crustal Domes of the Pamir

    NASA Astrophysics Data System (ADS)

    McGraw, J. L.; Hacker, B. R.; Ratschbacher, L.

    2009-12-01

    Large-scale orogenic plateaux are important geodynamic features within continental collision systems. In this context, the indo-asian collision and the Tibetan plateau have been the focus of numerous studies aimed at understanding the development of these areas of over-thickened crust. However, the Pamir plateau may provide a better opportunity to understand the mechanics of plateau formation. Because of greater exhumation within the Pamir in the Cenozoic, deeper crustal rocks are exposed which may shed light on the crustal-scale processes occurring within the plateau interior. Examination of lower crustal exposures within the Pamir therefore provides an opportunity to understand the pressure-temperature history of the lower crust that is otherwise not directly observable in the Tibetan Plateau. Samples from three lower crustal domes from the Pamir plateau were analyzed by electron probe microanalysis. The sampled Kurgovat, Yazgulem, and Shakdhara domes likely formed diachronously as the Pamir grew northward, as they are dispersed north to south across the western half of the plateau. Exhumation depths determined from the pressure-temperature history of the rocks were obtained through quantitative thermobarometry. Well-established thermobarometers such as GASP, GHPQ, GBMP and GARB were used on the mainly metapelitic rocks. The typical peak pressure assemblage, garnet + kyanite + biotite + An20 plagioclase ± K-white mica, replaced staurolite, and is itself overgrown by sillimanite and more anorthitic plagioclase. Garnet cores are chemically homogeneous and rims are partially resorbed with long-wavelength rimward increases in Mn. Preliminary data indicate south to north variation in peak metamorphic pressures, which range from 9-11 kbar at temperatures of 700-800°C in the south to ~5 kbar at 500°C in the north; exhumation from peak pressures to 4-6 kbar occurred at temperatures of 500-700°C. These data imply exhumation depths of 32-40 km in the south and ~20 km

  17. Comparative Earth history and Late Permian mass extinction

    NASA Technical Reports Server (NTRS)

    Knoll, A. H.; Bambach, R. K.; Canfield, D. E.; Grotzinger, J. P.

    1996-01-01

    The repeated association during the late Neoproterozoic Era of large carbon-isotopic excursions, continental glaciation, and stratigraphically anomalous carbonate precipitation provides a framework for interpreting the reprise of these conditions on the Late Permian Earth. A paleoceanographic model that was developed to explain these stratigraphically linked phenomena suggests that the overturn of anoxic deep oceans during the Late Permian introduced high concentrations of carbon dioxide into surficial environments. The predicted physiological and climatic consequences for marine and terrestrial organisms are in good accord with the observed timing and selectivity of Late Permian mass extinction.

  18. Upper Permian fluviolacustrine deposits of southern Africa and the late Permian climate southern Gondwana

    SciTech Connect

    Yemane, K. . Dept. of Geology Bryn Mawr Coll., PA . Dept. of Geology)

    1993-03-01

    Upper Permian-age fluviolacustrine deposits are widespread throughout southern Africa. In the southern part of the subcontinent, where deposition took place in foreland basin settings, the sequences are thicker and fluvial-dominated whereas, lacustrine-dominated deposits accumulated in settings of low relief, broad warping and mild faulting at the northern end. The geographic extent and lateral correlatability of these deposits suggest the existence of concurrent, perhaps interconnected, giant lakes within major fluvial frameworks throughout the subcontinent, thousands of miles inland from the sea. This period of major lake development within fluvial depositional settings suggests climatic conditions that sustained a uniquely wet continental environment, deep in the heart of the Gondwanan supercontinent. Simulations based on various general circulation and energy balance climate models predict extreme seasonal temperatures and aridity for Gondwana at the palaeolatitudes of southern Africa during the Late Permian. On the other hand, distribution of climate-sensitive rocks, palynologic and palaeobotanic data and vertebrate fossils, coroborate the temperature climate documented by sedimentologic studies. The erroneous modeling results may have arisen from the fact that the models do not employ palaeogeographies that accommodate the existence of the vast lakes and rivers of Gondwana. The Late Permian palaeogeography of series of giant lakes within major fluvial frameworks would have had considerable influences on the regional climate. This suggests that it is imperative that numerical modeling studies incorporate accurate palaeogeographies, constructed based on available geological data, in order to recreate past climates with acceptable degree of accuracy.

  19. Upper Permian (Guadalupian) facies and their association with hydrocarbons - Permian basin, west Texas and New Mexico

    SciTech Connect

    Ward, R.F.; Kendall, C.G.S.C.; Harris, P.M.

    1986-03-01

    Outcrops of Guadalupian sedimentary rocks in the Permian basin of west Texas and southeastern New Mexico are a classic example of the facies relationships that span a carbonate shelf. In the subsurface, these rocks form classic hydrocarbon-facies taps. Proceeding from basin to the updip termination of the shelf, the facies are (1) deep-water basin, (2) an apron of allochthonous carbonates, (3) carbonate shelf margin or reef, (4) carbonate sand flats, (5) carbonate barrier islands, (6) lagoon, and (7) coastal playas and supratidal salt flats (sabkhas). Over a half century of exploration drilling has shown that hydrocarbons in the Permian rocks of the Permian basin have accumulated at the updip contact of the lagoonal dolomites and clastics with the coastal evaporites, and in the basinal channel-fill clastics. The shelf marginal (reef) facies contain cavernous porosity, but commonly are water saturated. These facies relationships and hydrocarbon occurrences provide an exploration model with which to explore and rank hydrocarbon potential in other carbonate provinces. 16 figures, 3 tables.

  20. Quantification of tertiary exhumation in the United Kingdom southern North Sea using sonic velocity data

    SciTech Connect

    Hillis, R.R.

    1995-01-01

    Sonic velocities from the Upper and Middle Chalk (Upper Cretaceous), the Bunter Sandstone and the Bunter Shale (both Lower Triassic) were used to independently quantify apparent exhumation (height above maximum burial depth) in the United Kingdom (UK) southern North Sea. Apparent exhumation is the displacement, on the depth axis, of a given velocity/depth trend from the normal (unaffected by exhumation) trend. Apparent exhumation results derived from the Upper and Middle Chalk, the Bunter Sandstone, and the Bunter Shale are statistically similar. The consistency of results from carbonate and clastic units suggests that, at a formational and regional scale, over-compaction (i.e., anomalously high sonic velocity) in all three units analyzed reflects previously greater burial depth, rather than sedimentological and/or diagenetic processes, and validates the use of lithologies other than shale in maximum burial depth studies. The consistency of results from units of Early Triassic to Late Cretaceous age suggests that Tertiary exhumation was of sufficiently great magnitude to mask any earlier Mesozoic periods of exhumation, and the maximum Mesozoic-Cenozoic burial depth in the southern North Sea was attained prior to Tertiary exhumation. The proposed magnitudes of exhumation are generally greater than those previously published for the southern North Sea, but they are consistent with recent estimates from apatite fission track analysis. Cretaceous-Tertiary burial prior to exhumation must have been of great magnitude and more rapid than suggested by the preserved stratigraphy. The effect of this extra burial and subsequent exhumation on sedimentary rock decompaction procedure and thermal maturation modeling is illustrated for the Cleethorpes-1 and 44/7-1 wells, and must also be incorporated in modeling reservoir diagenesis. The regional, Tertiary tectonic uplift associated with exhumation must have had a thick-skinned origin.

  1. How Orogen-scale Exhumed Strike-slip Faults Initiate

    NASA Astrophysics Data System (ADS)

    Cao, S.; Neubauer, F.

    2015-12-01

    Orogen-scale strike-slip faults present one the most important geodynamic processes affecting the lithosphere-asthenosphere system. In specific subtypes, faulting is virtually initiated along hot-to-cool boundaries, e.g. at such of hot granite intrusions or metamorphic core complexes to cool country rocks. Such fault zones are often subparallel to mountain ranges and expose a wide variety of mylonitic, cataclastic and non-cohesive fault rocks, which were formed at different structural levels of the crust and are stacked within each other ("telescoping"). Exhumation of rocks is, therefore, a common feature of such strike-slip faults implying major transtensive and/or transpressive processes accompanying pure strike-slip motion. The hot-to-cool thermal structure across the fault zone significantly influences the physical fault rock properties. One major question is how and where a major strike-slip initiates and further development. Here, we propose a model in which major continental exhumed strike-slip faults potentially evolve along rheologically weak zones such as plutons or margins of metamorphic complexes. As an example, we propose a model for the Ailao Shan-Red River (ASRR) fault, SE Asia, which initiated along the edge of a plutonic belt and evolved in response to India-Asia collision with four tectonic phases.

  2. Extreme mantle uplift and exhumation along a transpressive transform fault

    NASA Astrophysics Data System (ADS)

    Maia, Marcia; Sichel, Susanna; Briais, Anne; Brunelli, Daniele; Ligi, Marco; Ferreira, Nicolas; Campos, Thomas; Mougel, Bérengère; Brehme, Isa; Hémond, Christophe; Motoki, Akihisa; Moura, Denise; Scalabrin, Carla; Pessanha, Ivo; Alves, Eliane; Ayres, Arthur; Oliveira, Pedro

    2016-08-01

    Mantle exhumation at slow-spreading ridges is favoured by extensional tectonics through low-angle detachment faults, and, along transforms, by transtension due to changes in ridge/transform geometry. Less common, exhumation by compressive stresses has been proposed for the large-offset transforms of the equatorial Atlantic. Here we show, using high-resolution bathymetry, seismic and gravity data, that the northern transform fault of the St Paul system has been controlled by compressive deformation since ~10 million years ago. The long-lived transpression resulted from ridge overlap due to the propagation of the northern Mid-Atlantic Ridge segment into the transform domain, which induced the migration and segmentation of the transform fault creating restraining stepovers. An anticlockwise change in plate motion at ~11 million years ago initially favoured extension in the left-stepping transform, triggering the formation of a transverse ridge, later uplifted through transpression, forming the St Peter and St Paul islets. Enhanced melt supply at the ridge axis due to the nearby Sierra Leone thermo chemical anomaly is responsible for the robust response of the northern Mid-Atlantic Ridge segment to the kinematic change. The long-lived process at the origin of the compressive stresses is directly linked to the nature of the underlying mantle and not to a change in the far-field stress regime.

  3. Tectonic evolution of the Montagne Noire and a possible orogenic model for syncollisional exhumation of deep rocks, Variscan belt, France

    NASA Astrophysics Data System (ADS)

    Aerden, Domingo G. A. M.

    1998-02-01

    Namurian times (D4) producing a 2 km wide subhorizontal shear zone in which orogen-parallel stretching continued. At the surface, deformation was accommodated by decollements, normal faulting, and basin formation. Gneissic rocks below the shear zone were not affected by the collapse because a stronger rheology and horizontal shortening was probably continuous here. Retrograde cooling of the cover restored gravitational equilibrium and caused its renewed upright folding during late-Variscan times (D5). Permian postorogenic extension (D6) oriented at a high angle to the previous orogen-parallel stretching completed exhumation of the gneiss dome. The dome structure of the Montagne Noire metamorphic core complex was acquired during compressional tectonics and later modified (flattened) by synorogenic and postorogenic extensional events. A similiar polyphase origin appears not to be excluded for other metamorphic core complexes with poorly constrained preextension histories.

  4. Permian of Norwegian-Greenland sea margins: future exploration target

    SciTech Connect

    Surlyk, F.; Hurst, J.M.; Piasecki, S.; Rolle, F.; Stemmerik, L.; Thomsen, E.; Wrang, P.

    1984-09-01

    Oil and gas exploration in the northern North Sea and the southern Norwegian shelf has mainy been concentrated on Jurassic and younger reservoirs with Late Jurassic black shale source rocks. New onshore investigations in Jameson Land, central East Greenland, suggest that the Permian of the Norwegian-Greenland Sea margins contains relatively thick sequences of potential oil source rocks interbedded with carbonate reefs. The East Greenland, Upper Permian marine basin is exposed over a length of 400 km (250 mi) from Jameson Land in the south to Wollaston Forland in the north, parallel with the continental margin. The Upper Permian black shale is relatively thick, widely distributed, has a high organic carbon content, and a favorable kerogen type. Consequently, the possibilities for a Permian play in the northern part of the Norwegian shelf and along parts of the Norwegian-Greenland Sea margins are worth evaluating.

  5. Life in the end-Permian dead zone

    PubMed Central

    Looy, Cindy V.; Twitchett, Richard J.; Dilcher, David L.; Van Konijnenburg-Van Cittert, Johanna H. A.; Visscher, Henk

    2001-01-01

    The fossil record of land plants is an obvious source of information on the dynamics of mass extinctions in the geological past. In conjunction with the end-Permian ecological crisis, ≈250 million years ago, palynological data from East Greenland reveal some unanticipated patterns. We document the significant time lag between terrestrial ecosystem collapse and selective extinction among characteristic Late Permian plants. Furthermore, ecological crisis resulted in an initial increase in plant diversity, instead of a decrease. Paradoxically, these floral patterns correspond to a “dead zone” in the end-Permian faunal record, characterized by a paucity of marine invertebrate megafossils. The time-delayed, end-Permian plant extinctions resemble modeled “extinction debt” responses of multispecies metapopulations to progressive habitat destruction. PMID:11427710

  6. Diachronous burial and exhumation of a single tectonic unit during collision orogenesis (Sulitjelma, central Scandinavian Caledonides)

    NASA Astrophysics Data System (ADS)

    Boyle, Alan P.; Burton, Kevin W.; Westhead, R. Keith

    1994-11-01

    The Sulitjelma fold nappe represents part of a Caledonian marginal basin obducted during the closure of the Iapetus Ocean and collision between Laurentia and Baltica. Metamorphic pressure-temperature (P-T) paths indicate that various parts of the Sulitjelma fold nappe followed characteristic clockwise P-T paths involving prograde burial followed by prograde exhumation and then near-isothermal exhumation prior to cooling. Geochronological results indicate that foreland rocks followed this general P-T path before more hinterlandward rocks, such that foreland rocks underwent exhumation while hinterlandward rocks were still being buried. This is consistent with the fold nappe passing through a collisional orogen; burial and ultimately prograde metamorphism were terminated sequentially by exhumation as a given part of the fold nappe came into contact with the lower plate, basement ramp (Baltica) and was driven upward. Burial, heating, exhumation, and cooling were thus diachronous within a single tectonic unit.

  7. Rapid Oligocene Exhumation of the Western Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Szameitat, A.; Parrish, R. R.; Stuart, F. M.; Carter, A.; Fishwick, S.

    2014-12-01

    As part of the North American Cordillera the Rocky Mountains of Canada impact the deflection of weather systems and the jet stream and form a distinct barrier to Pacific moisture reaching the continental interior. The extent to which this climatic pattern extended into the past is at present uncertain, so improving our understanding of the elevation history of the Rockies is critical to determining the controls on climate change within the Northern Hemisphere. We have undertaken a comprehensive apatite (U-Th-Sm)/He and fission track study of the southeastern Canadian Cordillera, i.e. the southern Canadian Rocky Mountains, in order to provide insight into the mid to late Cenozoic uplift and exhumation history of this region. Thermal history and exhumation models of widespread low elevation samples in combination with 6 vertical profiles covering elevations from 500 up to 3100 m a.s.l. show at least 1500 m of rapid exhumation west of the Rocky Mountain Trench (RMT) during the Oligocene (Figure 1). In contrast, the ranges east of the RMT low elevation samples provide Eocene ages throughout. The data show a very different history of recent uplift of the Canadian Rockies compared to what is currently known from published work, which mostly infer that the eastern Canadian Cordillera has not experienced significant uplift since the Eocene. We propose that the most likely cause of this rock uplift was upwelling of asthenosphere around the eastward subducting Farallon Plate. This also led to the eruption of the nearby mainly Miocene Chilcotin Group flood basalts and could have caused underplating of the thin lithosphere west of the RMT, adding to the buoyancy of the plate and lifting the range. Because the Trench marks the edge of the normal thickness craton which was underthrust beneath the Rocky Mountains during the initial upper Cretaceous orogeny, the eastern Rockies have a normal lithosperic thickness. This would impede recent uplift and provides an explanation for the

  8. Exhumation and extrusion of the Great Himalaya Complex (GHC)

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqin; Wang, Qi; Cao, Hui

    2013-04-01

    The predominant stretching lineation in the Great Himalaya Complex (GHC) trends perpendicular orogen, which has been attributed to southward exhumation of these mid-crustal rocks between the South Tibet Detachment (STD) and Main Central Thrust (MCT) in wedge extrusion (e.g., Burchfiel and Royden, 1985; Grujic et al., 1996) and channel flow models (e.g., Beaumont et al., 2001; Hodges et al., 2001; Grujic et al., 2002), or to emplacement of the GHC between the MCT and STD in tectonic wedging models (Yin, 2006; Webb et al., 2007, 2011a, b). Our new structural and geochronological data from southern Tibet demonstrate widespread lateral flow marked by orogen-parallel stretching lineation in the upper part of the GHC, which corresponds to decoupling between the high-grade GHC rocks and the overlying Tethyan Himalayan Sequence (THS). The kinematic framework reveals a top-to-the-east shear sense in the eastern GHC, both top-to-the-east and top-to-the-west shearing in the central GHC, and a top-to-the-west shear sense in the western GHC during the late Oligocene and Miocene. Geological observations along the Butwal-Pokhara- Jomsom cross section of the Central Nepal-Himalaya indicate that the STD is characterized by small-scale ductile normal shearing at the top part of the GHC and large-scale listric folding structures at the lower part of the Tethys Himalaya unit (TH) composed by Paleozoic- Mesozoic sediments. But the very wide thrusting deformation domain with about 8 km thickness existed in the both sides of the MCT shows possible ductile thrust shearing occurred earlier than We propose that exhumation and extrusion of the GHC probably experienced following complex processes: (1) Early Partial melting occurred at the deep part of the GHC at Eocene; (2) Orogen-parallel gravitational collapse in the late Oligocene and Miocene; (3) Exhumation of the GHC caused by thrusting and extrusion of the GHC between the MCT and STD at Miocene.

  9. Late Cretaceous and Cenozoic exhumation history of the Malay Peninsula

    NASA Astrophysics Data System (ADS)

    François, Thomas; Daanen, Twan; Matenco, Liviu; Willingshofer, Ernst; van der Wal, Jorien

    2015-04-01

    The evolution of Peninsular Malaysia up to the collisional period in the Triassic is well described but the evolution since the collision between Indochina and the Sukhothai Arc in Triassic times is less well described in the literature. The processes affecting Peninsular Malaysia during the Jurassic up to current day times have to explain the emplacement multiple intrusions (the Stong Complex, and the Kemahang granite), the Jurassic/Cretaceous onland basins, the Cenozoic offshore basins, and the asymmetric extension, which caused the exhumation of Taku Schists dome. The orogenic period in Permo-Triassic times, which also formed the Bentong-Raub suture zone, resulted in thickening of the continental crust of current day Peninsular Malaysia due to the collision of the Indochina continental block and the Sukhothai Arc, and is related to the subduction of oceanic crust once present between these continental blocks. The Jurassic/Cretaceous is a period of extension, resulting in the onland Jurassic/Cretaceous basins, synchronous melting of the crust, resulting in the emplacement Stong Complex and the Kemahang granite and thinning of the continental crust on the scale of the Peninsular, followed by uplift of the Peninsular. Different models can explain these observations: continental root removal, oceanic slab detachment, or slab delamination. These models all describe the melting of the lower crust due to asthenospheric upwelling, resulting in uplift and subsequent extension either due to mantle convective movements or gravitational instabilities related to uplift. The Cenozoic period is dominated by extension and rapid exhumation in the area as documented by low temperature thermocrological ages The extension in this period is most likely related to the subduction, which resumed at 45 Ma, of the Australian plate beneath the Eurasian plate after it terminated in Cretaceous times due to the collision of an Australian microcontinental fragment with the Sunda margin in the

  10. Omphacite breakdown reactions and relation to eclogite exhumation rates

    NASA Astrophysics Data System (ADS)

    Anderson, Eric D.; Moecher, David P.

    2007-09-01

    Clinopyroxene + plagioclase (±Hbl ± Qtz) symplectites after omphacite are widely cited as evidence for prior eclogite-facies or high-pressure (HP) metamorphism. Precursor omphacite compositions of retrograde eclogites, used for reconstructing retrograde P- T paths, are commonly estimated by reintegrating symplectite phases with the assumption that the symplectite-forming reactions were isochemical. Comparisons of broadbeam symplectite compositions to adjacent unreacted pyroxene from various symplectites after clinopyroxene from the Appalachian Blue Ridge (ABR) and Western Gneiss Region (WGR) suggest that the symplectite forming reactions are largely isochemical. Endmember calculations based on reintegrated symplectite compositions from the ABR and WGR suggest that a minor Ca-Eskola (CaEs) component (XCaEs = 0.04-0.15) was present in precursor HP clinopyroxene. WGR symplectites consist of fine-grained (˜1 μm-scale), vermicular intergrowths of Pl + Cpx II ± Hbl that occur at grain boundaries or internally. ABR symplectites contain coarser (˜10 μm-scale) planar lamellae and rods of Pl + Cpx II + Qtz + Hbl within clinopyroxene cores. The contrasting textures correlate with decompression and cooling rate, and degree of overstepping of the retrograde reaction (lamellar: slow, erosionally controlled exhumation with slow/low overstepping; fine-grained, grainboundary symplectite: rapid, tectonic exhumation with rapid/high overstepping). Variations in XCaEs, Xjd, and XCaTs of precursor HP omphacite are related to the symplectic mineral assemblages that result from decompression. Quartz-normative symplectities indicate quartz-producing retrograde reactions (e.g., breakdown of precursor CaEs); quartz-free symplectities (e.g., diopside + plagioclase after omphacite) indicate quartz-consuming reactions (jd, CaTs breakdown) outpaced quartz-producing reactions.

  11. A climate signal in exhumation patterns revealed by porphyry copper deposits

    NASA Astrophysics Data System (ADS)

    Yanites, Brian J.; Kesler, Stephen E.

    2015-06-01

    The processes that build and shape mountain landscapes expose important mineral resources. Mountain landscapes are widely thought to result from the interaction between tectonic uplift and exhumation by erosion. Both climate and tectonics affect rates of exhumation, but estimates of their relative importance vary. Porphyry copper deposits are emplaced at a depth of about 2 km in convergent tectonic settings; their exposure at the surface therefore can be used to track landscape exhumation. Here we analyse the distribution, ages and spatial density of exposed Cenozoic porphyry copper deposits using a global data set to quantify exhumation. We find that the deposits exhibit young ages and are sparsely distributed--both consistent with rapid exhumation--in regions with high precipitation, and deposits are older and more abundant in dry regions. This suggests that climate is driving erosion and mineral exposure in deposit-bearing mountain landscapes. Our findings show that the emplacement ages of porphyry copper deposits provide a means to estimate long-term exhumation rates in active orogens, and we conclude that climate-driven exhumation influences the age and abundance of exposed porphyry copper deposits around the world.

  12. Revised exhumation history of the Wind River Range, WY, and implications for Laramide tectonics

    NASA Astrophysics Data System (ADS)

    Stevens, Andrea L.; Balgord, Elizabeth A.; Carrapa, Barbara

    2016-05-01

    A reanalysis of apatite fission track (AFT) thermochronology coupled with thermal-kinetic modeling of samples from the Wind River Range document Late Cretaceous to early Eocene episodic cooling and exhumation of one of the largest basement-cored ranges in the western United States. Three vertical transects taken at different latitudes along the length of the 145 km Wind River Range reveal that exhumation is uniform along strike suggesting steady displacement along the Wind River Fault, and significant exhumation and relief in the Wind River Range by the early Eocene. Thermal modeling of AFT ages, lengths, and compositional proxies document rapid exhumation from ~65 to 50 Ma. This rapid exhumation episode matches a period of accelerated subsidence in the adjacent Green River and Wind River basins. At ~50 Ma, exhumation dramatically slowed by an order of magnitude coincident with decreasing subsidence in the adjacent basins. No signal of Oligocene cooling is apparent in either AFT cooling ages or thermal modeling suggesting that a possible later phase of reactivation of structures and uplift, as previously suggested, was limited to less than approximately 1 km of exhumation.

  13. Testing models of orogen exhumation using zircon (U-Th)/He thermochronology: Insight from the Ligurian Alps, Northern Italy

    NASA Astrophysics Data System (ADS)

    Maino, Matteo; Dallagiovanna, Giorgio; Dobson, Katherine J.; Gaggero, Laura; Persano, Cristina; Seno, Silvio; Stuart, Finlay M.

    2012-08-01

    Testing models of orogen exhumation requires precise constraint of the time-temperature paths of the exhumed rocks. The zircon (U-Th)/He (ZHe) thermochronometer has a closure temperature of ~ 140-210 °C, and can provide temporal constraints on the exhumation history of rocks through a thermal range which crucially corresponds the onset of brittle behaviour of an exhuming orogen. We performed ZHe analyses to test the existing contradictory models for the exhumation of the Ligurian Alps. The ZHe ages indicate a very rapid (1.3-6.8 mm/yr) and southward migrating exhumation of the orogen between ~ 32 and 25 Ma. These high exhumation rates are unique within the Alpine belt and cannot be reconciled with existing geodynamic models of the evolution of the Ligurian Alps. We propose a model of tectonic denudation via detachment accomplished in the shallowest crust (< 5 km) as a result of the last orogenic phase of extension.

  14. Permian paleoclimate data from fluid inclusions in halite

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.

    1999-01-01

    This study has yielded surface water paleotemperatures from primary fluid inclusions in mid Permian Nippewalla Group halite from western Kansas. A 'cooling nucleation' method is used to generate vapor bubbles in originally all-liquid primary inclusions. Then, surface water paleotemperatures are obtained by measuring temperatures of homogenization to liquid. Homogenization temperatures ranged from 21??C to 50??C and are consistent along individual fluid inclusion assemblages, indicating that the fluid inclusions have not been altered by thermal reequilibration. Homogenization temperatures show a range of up to 26??C from base to top of individual cloudy chevron growth bands. Petrographic and fluid inclusion evidence indicate that no significant pressure correction is needed for the homogenization temperature data. We interpret these homogenization temperatures to represent shallow surface water paleotemperatures. The range in temperatures from base to top of single chevron bands may reflect daily temperatures variations. These Permian surface water temperatures fall within the same range as some modern evaporative surface waters, suggesting that this Permian environment may have been relatively similar to its modern counterparts. Shallow surface water temperatures in evaporative settings correspond closely to local air temperatures. Therefore, the Permian surface water temperatures determined in this study may be considered proxies for local Permian air temperatures.

  15. Middle-Late Permian mass extinction on land

    SciTech Connect

    Retallack, G.J.; Metzger, C.A.; Greaver, T.; Jahren, A.H.; Smith, R.M.H.; Sheldon, N.D.

    2006-11-15

    The end-Permian mass extinction has been envisaged as the nadir of biodiversity decline due to increasing volcanic gas emissions over some 9 million years. We propose a different tempo and mechanism of extinction because we recognize two separate but geologically abrupt mass extinctions on land, one terminating the Middle Permian (Guadalupian) at 260.4 Ma and a later one ending the Permian Period at 251 Ma. Our evidence comes from new paleobotanical, paleopedological, and carbon isotopic studies of Portal Mountain, Antarctica, and comparable studies in the Karoo Basin, South Africa. Extinctions have long been apparent among marine invertebrates at both the end of the Guadalupian and end of the Permian, which were also times of warm-wet greenhouse climatic transients, marked soil erosion, transition from high- to low-sinuosity and braided streams, soil stagnation in wetlands, and profound negative carbon isotope anomalies. Both mass extinctions may have resulted from catastrophic methane outbursts to the atmosphere from coal intruded by feeder dikes to flood basalts, such as the end-Guadalupian Emeishan Basalt and end-Permian Siberian Traps.

  16. Basin development, petrology, and paleogeography - Early Permian carbonates, northwestern Bolivia

    SciTech Connect

    Canter, K.L.; Isaacson, P.E. )

    1990-05-01

    Early Permian carbonate rocks of the Yaurichambi Formation in northwestern Bolivia demonstrate in-situ, low-paleolatitude development within a complexly interbedded sequence punctuated by siliciclastics apparently derived from a western source. The Yaurichambi Formation (Copacabana Group) occurs above a regional caliche surface that caps Upper Carboniferous quartzarenites. Lower beds of the formation are characterized by interbedded carbonate and quartz-rich lithologies. This interval is gradationally overlain by a shallowing-upward, carbonate-dominated sequence. Mud-rich wackestones and packstones grade upward to bioclastic packstones and grainstones. Common allochems in bioclastic-rich lithologies include echinoderms, brachiopods, fenestrate bryozoans, intraclasts, and less common corals. Uppermost beds contain abundant siliciclastic interbeds. Where exposed, this carbonate sequence is terminated by the Tiquina Sandstone. Permian rocks were deposited in a northwest-southeast-oriented basin. Siliciclastic flooding from the western and southwestern margin of the basin dominated throughout the Carboniferous and occurred intermittently during the Permian, with apparent shallowing to the south. A low-latitude paleogeographic setting for these rocks is indicated by the carbonate lithologies dominating the Lower Permian sequence. Sedimentary and diagenetic features diagnostic of semi-arid warm-water deposition include penecontemporaneous dolomites, fenestral fabric, and calcretes. Furthermore, the faunas are similar to those found in equivalent strata of the Permian basin area of west Texas, indicating that deposition occurred at relatively low latitudes.

  17. 40 CFR 81.242 - Pecos-Permian Basin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Pecos-Permian Basin Intrastate Air... Air Quality Control Regions § 81.242 Pecos-Permian Basin Intrastate Air Quality Control Region. The Pecos-Permian Basin Intrastate Air Quality Control Region (New Mexico) consists of the territorial...

  18. 40 CFR 81.242 - Pecos-Permian Basin Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Pecos-Permian Basin Intrastate Air... Air Quality Control Regions § 81.242 Pecos-Permian Basin Intrastate Air Quality Control Region. The Pecos-Permian Basin Intrastate Air Quality Control Region (New Mexico) consists of the territorial...

  19. Interpretation of "fungal spikes" in Permian-Triassic boundary sections

    NASA Astrophysics Data System (ADS)

    Hochuli, Peter A.

    2016-09-01

    Abundant occurrences of the palynomorph Reduviasporonites have been described as "fungal spike" from several Permian/Triassic boundary sections and related to the supposed destruction of woody vegetation by fungal pathogens during the Permian/Triassic extinction event. The biological affinity of this taxa considered by some authors of fungal origin is still controversially discussed since there is geochemical evidence that it is most probably related to algae. The abundance peak of this species is used by some authors as a stratigraphic marker, notably in terrestrial Permian/Triassic boundary sections from South China. Illustrations of the reported fungal remains however show potentially erroneous taxonomic identification of Reduviasporonites, and, based on differences in thermal maturation, they may represent recent contamination. Here Reduviasporonites chalastus of Early Triassic age is illustrated together with recent fungal remains originating from a strongly weathered and otherwise barren sample from a Middle Triassic section.

  20. Late Neogene exhumation patterns in Taranaki Basin (New Zealand): Evidence from offset porosity-depth trends

    NASA Astrophysics Data System (ADS)

    Armstrong, Phillip A.; Allis, Richard G.; Funnell, Robert H.; Chapman, David S.

    1998-12-01

    Taranaki Basin, New Zealand, is located adjacent to the Australian-Pacific Plate boundary where the tectonic regime changes from dominantly subduction-related to the north to transpression-related along the Alpine Fault to the south. During the Neogene, burial and exhumation varied extensively, in both time and space, in response to subsidence and uplift along this evolving plate boundary zone. The basin can be divided into two regions: (1) the Western Platform outside the plate boundary deformation zone where no uplift nor exhumation has occurred and (2) the Eastern Mobile Belt, which lies inside the deformation zone and has been variably uplifted and exhumed. Exhumation magnitudes for sedimentary deposits of the basin are estimated from offset porosity-depth trends. The analysis is based on correlating sonic log travel times with compensated density logs, permitting sonic travel time to be used as a proxy for porosity. Twelve Western Platform wells are used to define a standard exponential porosity-depth trend with an extrapolated surface porosity of 50% and an exponential decay factor of 2265 m, valid for mudstone/shale sections spanning a depth range of 300-3000 m. This curve is a calibration curve against which offset porosity-depth trends from wells in exhumed regions can be compared to determine apparent exhumation amounts. Porosity-depth trends for 43 Eastern Mobile Belt wells are offset 0-2800 m shallower relative to the Western Platform trend but generally are parallel to it. In the southern region of the Eastern Mobile Belt, net exhumation amounts, which are the sum of the porosity-depth trend offset and depth to unconformity, range from 850 to 3000 m; most of this exhumation occurred on discrete contractional structures in late Miocene to early Pliocene time, probably associated with an increased rate of convergence across the Alpine Fault system to the south. In the eastern region of the Eastern Mobile Belt, net exhumation progressively increases from

  1. Hypoxia, global warming, and terrestrial late Permian extinctions.

    PubMed

    Huey, Raymond B; Ward, Peter D

    2005-04-15

    A catastrophic extinction occurred at the end of the Permian Period. However, baseline extinction rates appear to have been elevated even before the final catastrophe, suggesting sustained environmental degradation. For terrestrial vertebrates during the Late Permian, the combination of a drop in atmospheric oxygen plus climate warming would have induced hypoxic stress and consequently compressed altitudinal ranges to near sea level. Our simulations suggest that the magnitude of altitudinal compression would have forced extinctions by reducing habitat diversity, fragmenting and isolating populations, and inducing a species-area effect. It also might have delayed ecosystem recovery after the mass extinction. PMID:15831755

  2. Exhumation by gravitational sliding up an inclined plane

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury; Schmalholz, Stefan; Burg, Jean-Pierre

    2015-04-01

    Gravity causes sliding down an inclined plane if pressure is near lithostatic. If metamorphic pressures are lithostatic pressures, the approximation is inconsistent with pressure-temperature exhumation histories of thrust nappes stacked during compression to form the thickened crust of mountain belts. Overthickened mountain roots and foreland basin-type sedimentation accompanying the downward movement component of the Moho require significant non-lithostatic pressure perturbations within the mountain belts. Relaxation of the subsequent pressure gradients can be achieved by nappe-like thrusting up an inclined plane recording near isothermal decompression and carrying young sediments to high altitudes. We present results of fully dynamic numerical modelling documenting feasibility of this process. Neither thrusting, nor large weakness zones nor S-point-type boundary conditions are kinematically prescribed in our models. Thrusting emerges spontaneously as an instability, strain localization process that may follow preexisting lithological layering or thermal gradients and able to form new zones of weakness by shear heating mechanism. The non-prescribed nature of our modeled deformation modes makes them feasible, even probable as a leading response to continental shortening. In that case, non lithostatic pressure 'cycle' is an alternative or a complement to the classical Wilson cycle invoked alone to explain elevated occurrences of deep-water sediments.

  3. Late Cenozoic exhumation of New Zealand: inversion from bedrock thermochronological ages

    NASA Astrophysics Data System (ADS)

    Jiao, Ruohong; Herman, Frédéric; Seward, Diane

    2016-04-01

    In the SW Pacific, the present subaerial land area of New Zealand straddles the boundary between the Australian and Pacific Plates. This margin has been converging since the mid-Eocene-late Oligocene, leading to a period of widespread crustal deformation and exhumation. During the past decades, the exhumation of the New Zealand basement has been the basis of many thermochronological studies, resulting in a large number of data from the Palaeozoic and Mesozoic bedrocks. We compiled the cooling ages from multiple thermochronological systems (i.e. apatite and zircon (U-Th)/He, apatite and zircon fission-track, K-feldspar, muscovite, biotite and hornblende 40Ar/39Ar or K-Ar) that yielded cooling events younger than 25 Ma, and formally inverted this data set to estimate the large-scale temporal and spatial variations in the exhumation rates of New Zealand during the late Cenozoic. The exhumation results show good agreement with the predicted off-shore sedimentation rates, while the thermal model used in the inversion is in part constrained by the present-day observed surface heat flow. The modelling results indicate crustal exhumation from the earliest Miocene (just prior to 20 Ma). But from ~10 Ma, a moderate acceleration of exhumation is observed at most sites, coincident with an important change in the orientation of the Pacific motion relative to the Australian Plate. Since the Quaternary, rapid exhumation has occurred in the Southern Alps along the west coast of South Island, with the highest rates in the central part of range. In this region, our estimates of the million-year-scale exhumation rates are in general coincidence with those previously estimated over shorter (i.e. 0.1 Ma and 10 ka) time scales, as well as with the contemporary rock uplift rates derived from GPS data, confirming exhumational steady-state in the orogeny. In contrast in eastern North Island, the predicted Quaternary exhumation rates are much lower than the recent rock uplift rates measured

  4. Chronological constraints on the Permian geodynamic evolution of eastern Australia

    NASA Astrophysics Data System (ADS)

    Li, Pengfei; Rosenbaum, Gideon; Vasconcelos, Paulo

    2014-03-01

    The New England Orogen in eastern Australia developed as a subduction-related orogen in the Late Devonian to Carboniferous, and was modified in the Permian by deformation, magmatism and oroclinal bending. The geodynamics associated with the development of the New England oroclines and the exact timing of major tectonic events is still enigmatic. Here we present new 40Ar/39Ar results from metasedimentary and volcanic rocks from the southern New England Orogen. Eight grains from four metasedimentary samples (Texas beds) that originated in the Late Devonian to Carboniferous accretionary wedge yielded reproducible plateau ages of ~ 293, ~ 280, ~ 270 and ~ 260 Ma. These results suggest a complex thermal history associated with multiple thermal events, possibly due to the proximity to Permian intrusions. Two samples from mafic volcanic rocks in the southernmost New England Orogen (Alum Mountain Volcanics and Werrie Basalt) yielded eruption ages of 271.8 ± 1.8 and 266.4 ± 3.0 Ma. The origin of these rocks was previously attributed to slab breakoff, following a period of widespread extension in the early Permian. We suggest that this phase of volcanism marked the transition from backarc extension assisted by trench retreat to overriding-plate contraction. The main phase of oroclinal bending has likely occurred during backarc extension in the early Permian, and terminated at 271-266 Ma with the processes of slab segmentation and breakoff.

  5. Terrestrial Permian - Triassic boundary sections in South China

    NASA Astrophysics Data System (ADS)

    Bercovici, Antoine; Vajda, Vivi

    2016-08-01

    The Permian-Triassic boundary interval in China comprises a significant record of faunal and floral changes during this important extinction event. Here we discuss the details of palynomorph preservation at the classical Western Guizhou and Eastern Yunnan sections in an effort to expand the stratigraphy and paleontology from these earlier studies.

  6. The Great End Permian Tsunamis: Recognition, Extent and Generation

    NASA Astrophysics Data System (ADS)

    Brookfield, M. E.; Algeo, T. J.; Hannigan, R.; Williams, J. C.; Bhat, G. M.

    2013-12-01

    At least three coarse intrabioclastic limestones at the base of the Khunamuh Formation (latest Permian to early Triassic) in Kashmir show features typical features of wave reworking of sediments too deep to be affected by storm waves. These are now interpreted as the deposits of large tsunamis by inferring the wavelengths and amplitudes of the waves from basic wave theory. The same three beds are found in latest Permian shallow marine to moderately deep slope environments throughout the southern Neotethy, as well as further afield in the Alps, East Greenland, and possibly even in the lowland deposits of the European Buntsandstein. Such tsunamis can also account for the contemporary marine erosion surfaces in China and elsewhere in shelf and slope environments. Tsunami waves, unlike storm waves, can also cause reworking of fine sediment and ventilation in deep-sea deposits, and there is some evidence for this in latest Permian oceanic sediments in Japan, New Zealand and western North America. The inferred huge size of the tsunami waves requires marine extraterrestrial impacts or large slumps into and/or under the sea, to generate them. The lack of good evidence for marine extraterrestrial impacts in the latest Permian, and the presence of seismically disturbed beds below the tsunami deposits in some sections suggest that large earthquakes preceded the formation of the tsunamis. These earthquakes might have triggered tsunami-generating large submarine landslides, such as are seen in Quaternary deposits at continental margins and around the Hawaiian and other oceanic volcanic islands. Large slumps of the appropriate age occur in some latest Permian sections in East Greenland and New Zealand.

  7. Thermochronological record of long term faulting, burial and exhumation history in the Sudetes (Bohemian Massif, Central Europe): a multi-system thermochronological approach

    NASA Astrophysics Data System (ADS)

    Štěpančíková, P..; Danišík, M.; Evans, N. J.

    2012-04-01

    Reconstructing erosional and faulting history in the old crystalline basement terrains, with lacking or sparse post-tectonic geological records, is a challenging task where even radiometric data on the basement rocks need not to provide ultimate answers. NE part of the Bohemian Massif (known as the Sudetes) represents a classic example where numerous attempts to constrain denudation, faulting and relief formation on the Variscan basement, often based on incomplete lines of evidence, led to formulation of controversial models. In this study we aim to reconstruct the post-orogenic exhumation history of the Rychlebské hory Mts. in the eastern Sudetes and constrain paleo-activity along the Sudetic Marginal Fault (SMF) - one of the morphologically most prominent, but poorly understood features of Central Europe, forming a >140 km long escarpment separating the Sudetic Mountains from the foreland in the northeast. We do so by applying zircon (U-Th)/He (ZHe), apatite fission track (AFT) and apatite (U-Th)/He (AHe) dating methods to the basement samples from different fault-bounded blocks and sparsely preserved post-orogenic sedimentary samples. New thermochronological data reveals that in the Late Cretaceous at ~95-80 Ma, the Carboniferous-Permian basement blocks SW and NE of the SMF were buried to ~4-7 km and >6.5 km depths, respectively, by sediments of the Bohemian Cretaceous Basin System. This finding contradicts the traditional paleogeographic reconstructions suggesting exposure of large portions of the Sudetes for most of the Mesozoic-Cenozoic. During the burial, the SMF acted as a normal fault as documented by offset in ZHe ages across the fault. At 85-70 Ma, the basin was inverted, Cretaceous strata eroded and basement blocks were exhumed to the near-surface at exhumation rate of ~300 m/Ma as evidenced by Late Cretaceous-Paleocene AFT ages and thermal modelling results. There is no appreciable difference in AFT and AHe ages across the fault suggesting that the

  8. Isotopic age constraints on provenance of exotic terranes, latest Permian collision and fast Late Triassic post-collisional cooling and tectonic exhumation of the Korean collision belt

    NASA Astrophysics Data System (ADS)

    de Jong, Koenraad; Han, Seokyoung; Ruffet, Gilles; Yi, Keewook

    2016-04-01

    The Korean peninsula is located in the eastern margin of the Eurasian continent where major late Palaeozoic to early Mesozoic continental collision zones, like the Central Asian Orogenic Belt and the Central China Orogen, merge with circum-Pacific subduction-accretion systems. We present an integrated view of the Korean collision belt using recent Ar/Ar laser-probe step-heating single grain ages from the uppermost Gyeonggi Massif, central Korea's Palaeoproterozoic high-grade granite-gneiss terrane affected by Permo-Triassic metamorphism, the bordering Hongseong zone and the overlying Imjingang belt and the correlative Taean Formation, as well as SHRIMP isotopic ages of detrital zircons from meta-sandstones from the latter metamorphic marine turbidite sequences. We show that early Paleozoic isolated exotic terranes form part of the collision belt and were reworked in Permo-Triassic time. Age spectra of zircons from mature meta-sandstones in the Misan Formation (Imjingang Belt) and Taean Formation do not match the age distribution of the Gyeonggi Massif, to which both are usually assigned, as they show only subordinate 1.9-1.8 Ga and ~2.5 Ga age modes but dominant 441-426 Ma and 978-919 Ma peaks. Much of the sediment appears to have been derived from distant, exotic middle Paleozoic and Early Neoproterozoic magmatic sources, not present in Gyeonggi or other Korean basement massifs. The youngest concordant zircon ages are: 394, 398 and 402 Ma, showing that both formations are at least of Early Devonian age. Terranes with a substratum with Early Neoproterozoic and Silurian-Devonian granitoids are present in the South Chinese Cathaysia Terrane and in the Qinling Terrane (Central China Orogen). Both formations may, hence, represent the submarine fan part of a routing system and a delta-shelf system originally situated in China. The Taean Formation and Imjingang Belt are thus exotic Paleozoic terranes tectonically emplaced in the Korean collision belt. Muscovite, biotite and amphibole from different units of the Imjingang Belt yielded tightly clustered Ar/Ar plateau ages between 255±1 and 249±1 Ma, dating fast cooling after peak temperature conditions. Slightly younger 243±1 and 240±1 Ma muscovite plateau ages in strongly retrogressed mylonites in the top of the Gyeonggi Massif and 241-237 Ma age components (Taean Formation) point to collisional tectonism. Concordant 233-229 Ma isotopic ages of titanite, hornblende and mica in Hongseong zone and Taean Formation, and detrital muscovite in Jurassic Gimpo sandstones reveal a regional thermal event affecting large portions of the peninsula's crust, also manifested in widespread 237-226 Ma mantle-sourced Mg-rich potassic magmatism and associated mafic dykes truncating folds and tectonic foliations. The Late Triassic thermal pulse implies rapid advective-conductive asthenospheric heat transport promoted by extension and magmatic underplating during post- or late-collisional lower crust and uppermost mantle delamination and/or oceanic slab break-off. The efficiency of cooling is underlined by identical biotite (228±1 Ma) and hornblende (230±1 Ma) plateau ages in Hongseong amphibolites that are partly concordant with 243-229 Ma (average: ˜235 Ma) U-Pb zircon ages in the Gyeonggi Massif and the Hongseong zone, in the literature. This indicates that the Gyeonggi Massif is a Late Triassic core complex.

  9. Concept of the exhumed partial annealing (retention) zone in thermochronology: An appraisal

    NASA Astrophysics Data System (ADS)

    Fitzgerald, P. G.

    2013-12-01

    The concept of an exhumed partial annealing zone (PAZ) in fission track (FT) thermochronology has been a widely used and successful interpretative tool since the 1980s. This 1D-interpretative approach is typically applied to samples collected over significant relief, with best results if the sampling is undertaken in steep short-wavelength topography and samples collected parallel to topography (perpendicular to curved isotherms), and for samples following a vertical exhumation path. While annealing of fission tracks occurs even at low ambient temperatures the PAZ is defined as the zone between where tracks are annealed 'geologically' instantaneously and where the rate of annealing slows dramatically; between ~60 and ~110°C for tracks in apatite depending on composition. The shape and average slope of a PAZ varies depending on the paleogeothermal gradient and its stability, and the length of time over which a PAZ forms. PAZs and partial retention zones (PRZ) are now known for different minerals for various techniques. Single grain age dispersion can be significantly magnified in a PAZ/PRZ depending on composition, grain size, [eU], radiation damage and zoning for the FT and (U-Th)/He methods. An exhumed PAZ/PRZ may be revealed in an age-elevation ('vertical') profile when, following a period of uplift/exhumation, the form of the PAZ/PRZ is retained with a 'sharp' convex inflexion (the 'break in slope') marking the base of the exhumed PAZ/PRZ with reset samples structurally beneath. The break in slope represents a minimal age for the transition from 'relative thermal stability' to rapid cooling, as the rock column has to cool through the PAZ/PRZ, with the underestimate greater if the change in cooling rate is not significant. The base of an exhumed PAZ/PRZ is a curve, but we approximate it with straight lines, with less precision with fewer samples. The break in slope may not be distinguishable if the cooling/exhumation was long ago and/or of low magnitude. The

  10. Style of exhumation and rheological evolution of a Mediterranean subduction complex

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; Behr, W. M.

    2011-12-01

    We examine the style of exhumation and rheological evolution of a subduction complex forming part of the Betic Cordillera in the Western Mediterranean. Rocks within the Nevado-Filabride complex (NFC) were subducted and exhumed to the surface within ~10 m.y. in the Miocene. Ti-in-quartz thermobarometry, Raman spectroscopy on graphite, and chlorite thermometry indicate that the exhumation path of the NFC was close to linear, reaching peak T and P of 550 ± 50°C and 15 ± 3 kbar. Two-dimensional thermal modeling allows us to fit this P-T-t path using exhumation rate and exhumation geometry as free parameters. We find that the P-T-t path is best fit by a model in which the rocks are subducted to > 50 km depth, exhumed rapidly along the same trajectory within a subduction channel, then captured by a low angle detachment fault cutting through the overlying crust. This model can be reconciled with the thermal history preserved in the overlying plate and is supported by the kinematics recorded in high strain fabrics within the NFC itself. We also link the exhumation history of the NFC subduction channel to the rheology of quartz-rich rocks within it by tracking changes in deformation mechanism, stress, strain rate, water content, and crystallographic preferred orientation (CPO) over time. Increasing localization during cooling allowed earlier microstructures to be preserved, such that the rocks record several stages in their exhumation history. Early deformation during initial subduction was accommodated by pressure solution under low-stress (<6 MPa), low-strain-rate, variable T conditions, and produced an inverted metamorphic gradient within the NFC. At the early stages of exhumation, the deformation mechanism at the top of the channel switched to dislocation creep at stresses of ~6-20 MPa, strain rates of < 5E-13/s and temperatures of 500-550°C. Both stress and strain rate increased with decreasing T in the channel margin, culminating in stresses of ~180 MPa, strain

  11. Style of exhumation and rheological evolution of a Mediterranean subduction complex

    NASA Astrophysics Data System (ADS)

    Behr, W. M.; Platt, J. P.

    2012-04-01

    We examine the style of exhumation and rheological evolution of a subduction complex forming part of the Betic Cordillera in the Western Mediterranean. Rocks within the Nevado-Filabride complex (NFC) were subducted and exhumed to the surface within ~10 m.y. in the Miocene. Ti-in-quartz thermobarometry, Raman spectroscopy on graphite, and chlorite thermometry indicate that the exhumation path of the NFC was close to linear, reaching peak T and P of 550 ± 50°C and 15 ± 3 kbar. Two-dimensional thermal modeling allows us to fit this P-T-t path using exhumation rate and exhumation geometry as free parameters. We find that the P-T-t path is best fit by a model in which the rocks are subducted to > 50 km depth, exhumed rapidly along the same trajectory within a subduction channel, then captured by a low angle detachment fault cutting through the overlying crust. This model can be reconciled with the thermal history preserved in the overlying plate and is supported by the kinematics recorded in high strain fabrics within the NFC itself. We also link the exhumation history of the NFC subduction channel to the rheology of quartz-rich rocks within it by tracking changes in deformation mechanism, stress, strain rate, water content, and crystallographic preferred orientation (CPO) over time. Increasing localization during cooling allowed earlier microstructures to be preserved, such that the rocks record several stages in their exhumation history. Early deformation during initial subduction was accommodated by pressure solution under low-stress (<6 MPa), low-strain-rate, variable T conditions, and produced an inverted metamorphic gradient within the NFC. At the early stages of exhumation, the deformation mechanism at the top of the channel switched to dislocation creep at stresses of ~6-20 MPa, strain rates of < 5E-13/s and temperatures of 500-550°C. Both stress and strain rate increased with decreasing T in the channel margin, culminating in stresses of ~180 MPa, strain

  12. Testing exhumation models using PTt paths: an Alpine perspective based on deformation ages

    NASA Astrophysics Data System (ADS)

    Reddy, S.; Butler, R.; Wheeler, J.; Cliff, B.; Freeman, S.; Biggs, A.

    2005-12-01

    Geochronological data are now commonly used to establish the timing and rates of exhumation of high pressure metamorphic rocks, critical for testing geodynamic models of orogenic belts. Such approaches must be used with care. Ages of peak pressure metamorphic assemblages allied to younger cooling ages give a general insight into the rates of exhumation when tied to PT paths. However, the results of this workflow are difficult to relate to the kinematic history and therefore maybe of limited use in the critical testing of exhumation models. An alternative strategy is to date directly synkinematic mineral phases in characterised deformation zones. Examples are drawn from the deformed and variably subducted "European" continental crust now exposed in the Western Alps to illustrate this, chiefly using Rb-Sr mica dating, applied to greenschist facies shear zones. Some structures are synchronously active for c. 100km along strike (e.g. the regional "retrocharriage" shear system of the Eastern Brianconnais: 34 Ma). However, UHP terrains of the basement massifs attained peak pressures and were exhumed diachronously (38 Ma - 32 Ma). These results indicate that tectono-metamorphic histories based on single orogenic transects may give misleading pictures of geodynamic evolution. In an Alpine context it appears that exhumation of UHP and shallower parts of the evolving continental subduction channel occurred as variably detached flakes rather than relate to the dynamics of larger scale plate processes.

  13. Direct observation of strain localization along the differentially exhumed SEMP fault system, Austria

    NASA Astrophysics Data System (ADS)

    Frost, E.; Dolan, J. F.; Hacker, B. R.; Ratschbacher, L.; Sammis, C. G.; Seward, G.; Cole, J.

    2009-12-01

    Structural analysis of key outcrops from ~5 to ~25 km exhumation depth along the Salzach-Ennstal-Mariazell-Puchberg (SEMP) fault-zone in Austria reveal highly localized deformation in the seismogenic crust down through the brittle-ductile transition (BDT), widening into a 2-km-wide mylonite at mid-crustal levels. Specifically, grain-size distribution analysis of brittley-deformed dolomite exhumed from the seismogenic crust reveals that strain progressively localized into a 10-m-wide fault core. Microstructural analysis of marbles and greywackes exhumed from the BDT shows off-fault ductile deformation only accommodated a minor portion of the displacement along the SEMP, with most of the strain localized along the contact between these two units. Similar analysis of gneisses and amphibolite-facies metasediments exhumed from just below the BDT shows that at this depth, the majority of displacement is focused into a 100-m-wide ductile shear zone, with further evidence for strain localization along grain boundaries, creating throughgoing shear zones at the grain-scale. At deeper exhumation levels (Rosenberg and Schneider, 2008), the SEMP is a 1-2-km-wide mylonite zone that extends to depths of at least 25 km. Collectively, these data indicate that slip along the SEMP was highly localized from throughout the seismogenic crust downward into at least the mid-crust.

  14. Tracing trends in erosion and exhumation during the Middle-Late Paleozoic tectonic evolution of the Farewell terrane, SW Alaska

    NASA Astrophysics Data System (ADS)

    Hampton, B. A.; Malkowski, M. A.; Bradley, D. C.; Fujita, K.; O'Sullivan, P. B.

    2010-12-01

    The Farewell terrane of southwest and west-central Alaska is located at the northernmost endpoint of the North American Cordillera and is just beyond the present-day margin of the Amerasia Basin. The initial geologic framework of this region has been constrained, yet the origin, Paleozoic tectonic development, and paleogeography of the Farewell terrane prior to opening of the Arctic Ocean remain unknown. In southwestern Alaska, the Farewell is defined by a three-part succession that consist of (1) Neoproterozoic-Devonian carbonate rocks and subordinate clastic strata of the Nixon Fork subterrane, (2) Cambrian-Devonian clastic and carbonate units of the Dillinger subterrane, and (3) Devonian-Permian(?) siliciclastic strata of the Mystic subterrane. Although previous studies have suggested a Siberian origin for the oldest parts of the Farewell based on faunal data, it has yet to be determined if the Dillinger and Mystic subterranes share links with regions to the north (e.g. Siberia, Baltica, Greenland) or with the northern and western regions of Laurentia. Here we present U-Pb detrital zircon data as well as modal composition trends from Paleozoic strata of the Dillinger and Mystic subterranes that reflect an upsection transition in detrital contribution from middle to top of the Farewell terrane. U-Pb detrital zircon age spectra from Silurian-Devonian strata of the Dillinger subterrane reveal a range of Precambrian and Paleozoic ages with primary occurrences between 400-440 and 1000-2000 Ma. Isolated age peaks occur at 430, 500, 890, 1100, and1400 Ma. The oldest strata from the overlying Mystic subterrane contain primary peaks at 380, 420, 925 Ma with an elevated occurrence of Proterozoic ages between 500-2000 Ma. Younger Devonian-Permian age strata of the Mystic subterrane yield primary age peaks between 300-350 and 420-450 Ma with smaller peaks between 1800-2000 Ma. Modal composition trends from the Dillinger and Mystic subterranes reveal pervasive occurrences of

  15. Mechanisms of mantle exhumation at oceanic core complexes

    NASA Astrophysics Data System (ADS)

    MacLeod, C. J.; Escartin, J.; Dick, H. J. B.; Allerton, S.

    2003-04-01

    Mantle rocks are exposed on the seafloor at many slow-spreading mid-ocean ridges as well as at the ocean-continent transitions of rifted continental margins. Similarities in morphology are evident in the two environments and it is likely that the mechanisms that give rise to exhumation of the mantle are comparable to some degree. We review the processes of deformation and magmatism in two contrasting modern oceanic core complexes and compare it with observations from the Lizard Complex (SW England), which is variously interpreted either as an ancient fragment of slow-spread ocean lithosphere or as a piece of lithosphere from a rifted continental margin. Mantle and lower crustal rocks are exposed at Atlantis Bank, on the SW Indian Ridge, and on corrugated highs north of the Fifteen-Twenty fracture zone on the Mid-Atlantic Ridge. Wireline rock drilling has shown that these ‘oceanic core complex’ massifs are the footwalls of large detachment fault systems. Despite their general similarities the two examples exhibit very different mechanisms of strain localisation, and may represent end-members of a range of processes by which detachment faults may form. At Atlantis Bank widespread high-temperature crystal-plastic (and locally syn-magmatic) deformation of gabbros indicates that the detachment fault did not form and move only during amagmatic phases: instead, a continuous gabbro layer was being formed and accreting in the footwall at the same time as the detachment was active, implying that the 'hot' detachment rooted within or near an active magma chamber. In contrast, evidence for high-temperature deformation on the Fifteen-Twenty detachment fault is absent: fault rocks are instead composed of talc-chlorite-tremolite schists, indicating that deformation took place under greenschist facies conditions and suggesting that fluid circulation accompanied and assisted strain localisation. This 'cold' detachment fault must therefore have rooted and slipped in the shallow

  16. Complex Burial and Exhumation of South Polar Cap Pitted Terrain

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This image is illuminated by sunlight from the upper left. The two prominent bright stripes at the left/center of the image are covered with bright frost and thus create the illusion that they are sunlit from the lower left.

    The large pits, troughs, and 'swiss cheese' of the south polar residual cap appear to have been formed in the upper 4 or 5 layers of the polar material. Each layer is approximately 2 meters (6.6 feet) thick. Some Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images of this terrain show examples in which older pitted and eroded layers have been previously buried and are now being exhumed. The example shown here includes two narrow, diagonal slopes that trend from upper left toward lower right at the left/center portion of the frame. Along the bottoms of these slopes are revealed a layer that underlies them in which there are many more pits and troughs than in the upper layer. It is likely in this case that the lower layer formed its pits and troughs before it was covered by the upper layer. This observation suggests that the troughs, pits, and 'swiss cheese' features of the south polar cap are very old and form over long time scales.

    The picture is located near 84.6oS, 45.1oW, and covers an area 3 km by 5 km (1.9 x 3.1 mi) at a resolution of about 3.8 meters (12 ft) per pixel. The image was taken during southern spring on August 29, 1999.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  17. Thermal structure, rock exhumation, and glacial erosion of the Namche Barwa Peak, constraints from thermochronological data

    NASA Astrophysics Data System (ADS)

    Tu, Ji-Yao; Ji, Jian-Qing; Sun, Dong-Xia; Gong, Jun-Feng; Zhong, Da-Lai; Han, Bao-Fu

    2015-06-01

    In this paper, we report thermochronological data from the southwest slope of Namche Barwa Peak, the core region of the eastern Himalayan syntaxis. The data include apatite fission track (AFT) ages of ten bedrock samples ranging from 0.5 ± 0.1 to 3.5 ± 0.5 Myr and biotite 40Ar/39Ar ages from 2.53 ± 0.14 to 5.57 ± 0.19 Myr, corresponding to elevations from 5370 to 3060 m. These ages are characterized by inverted age-elevation relationships (AERs), and the AERs of the AFT ages and the biotite 40Ar/39Ar ages are approximately parallel. Numerical modeling suggests that a possible change in the surface topography or faulting in this region could not have led to the observed inverted AERs. These observed ages demonstrate that a field of nonuniform exhumation rates existed in the relatively shallow crust (above the 110 °C isotherm) of the Namche Barwa Peak region. The exhumation rates increase significantly from 0.3 km/Myr to 5 km/Myr with increasing proximity to the peak. However, the exhumation rates in the relatively deep crust (below the 110 °C isotherm) of the same area are uniform at approximately 1.7 km/Myr. This distinctive exhumation field and the strong spatial correlation between the intense glacial erosion and high rock exhumation rate of Namche Barwa Peak suggest that glacial erosion most likely drives the rapid exhumation of Namche Barwa Peak.

  18. Late-Quaternary exhumation of Namche Barwa constrained using low-temperature multi-OSL-thermochronometry

    NASA Astrophysics Data System (ADS)

    King, Georgina; Herman, Frederic

    2016-04-01

    The influence of climate on tectonic processes remains a controversial concept. Exhumation rates of >5 mm/yr make Namche Barwa, Tibet, one of the most rapidly exhuming places on earth, and two main hypotheses have developed to explain the very high rates of exhumation there. The tectonic aneurysm model (Zeitler et al., 2001) proposes that crustal weakening coupled with extremely active surface processes causes a spatial stationarity of exhumation. Alternatively, a northward plunging antiform that is progressively migrating north-eastward (Seward and Burg, 2008) may explain the concentration of extremely low cooling ages and rapid exhumation that characterise the Namche Barwa massif. Here we use multi-OSL-thermochronometry of feldspar, which comprises a series of different systems with closure temperatures ranging from 30 to 70 C, to quantify spatial and temporal changes in exhumation rates. We have applied this new technique to a suite of samples from the Namche Barwa massif and inverting our data enables us to precisely resolve cooling histories over 0.1 Ma timescales. Our data indicate propagation of a knick-point along the Parlung river, which can be explained by progressive north-eastward migration of a northward plunging antiform. We suggest that river incision does not therefore feedback onto tectonics, as proposed by the aneurysm model. Zeitler, P.K., Meltzer, A.S., Koons, P.O., et al., 2001. Erosion, Himalayan Geodynamics, and the Geomorphology of Metamorphism. GSA Today 11, 4-9 Seward, D., Burg, J-P., 2008. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data. Tectonophysics 451, 282-289.

  19. Significance of "stretched" mineral inclusions for reconstructing P- T exhumation history

    NASA Astrophysics Data System (ADS)

    Ashley, Kyle T.; Darling, Robert S.; Bodnar, Robert J.; Law, Richard D.

    2015-06-01

    Analysis of mineral inclusions in chemically and physically resistant hosts has proven to be valuable for reconstructing the P- T exhumation history of high-grade metamorphic rocks. The occurrence of cristobalite-bearing inclusions in garnets from Gore Mountain, New York, is unexpected because the peak metamorphic conditions reached are well removed (>600 °C too cold) from the stability field of this low-density silica polymorph that typically forms in high temperature volcanic environments. A previous study of samples from this area interpreted polymineralic inclusions consisting of cristobalite, albite and ilmenite as representing crystallized droplets of melt generated during a garnet-in reaction, followed by water loss from the inclusion to explain the reduction in inclusion pressure that drove the transformation of quartz to cristobalite. However, the recent discovery of monomineralic inclusions of cristobalite from the nearby Hooper Mine cannot be explained by this process. For these inclusions, we propose that the volume response to pressure and temperature changes during exhumation to Earth's surface resulted in large tensile stresses within the silica phase that would be sufficient to cause transformation to the low-density (low-pressure) form. Elastic modeling of other common inclusion-host systems suggests that this quartz-to-cristobalite example may not be a unique case. The aluminosilicate polymorph kyanite also has the capacity to retain tensile stresses if exhumed to Earth's surface after being trapped as an inclusion in plagioclase at P- T conditions within the kyanite stability field, with the stresses developed during exhumation sufficient to produce a transformation to andalusite. These results highlight the elastic environment that may arise during exhumation and provide a potential explanation of observed inclusions whose stability fields are well removed from P- T paths followed during exhumation.

  20. Effect of horseshoe crab spawning density on nest disturbance and exhumation of eggs: A simulation study

    USGS Publications Warehouse

    Smith, D.R.

    2007-01-01

    Because the Delaware Bay horseshoe crab (Limulus polyphemus) population is managed to provide for dependent species, such as migratory shorebirds, there is a need to understand the process of egg exhumation and to predict eggs available to foraging shorebirds. A simple spatial model was used to simulate horseshoe crab spawning that would occur on a typical Delaware Bay beach during spring tide cycles to quantify density-dependent nest disturbance. At least 20% of nests and eggs were disturbed for levels of spawning greater than one third of the average density in Delaware Bay during 2004. Nest disturbance increased approximately linearly as spawning density increased from one half to twice the 2004 level. As spawning density increased further, the percentage of eggs that were disturbed reached an asymptote of 70% for densities up to 10 times the density in 2004. Nest disturbance was heaviest in the mid beach zone. Nest disturbance precedes entrainment and begins the process of exhumation of eggs to surface sediments. Model predictions were combined with observations from egg surveys to estimate a snap-shot exhumation rate of 5-9% of disturbed eggs. Because an unknown quantity of eggs were exhumed and removed from the beach prior to the survey, cumulative exhumation rate was likely to have been higher than the snap-shot estimate. Because egg exhumation is density-dependent, in addition to managing for a high population size, identification and conservation of beaches where spawning horseshoe crabs concentrate in high densities (i.e., hot spots) are important steps toward providing a reliable food supply for migratory shorebirds. ?? 2007 Estuarine Research Federation.

  1. Decoupling of long-term exhumation and short-term erosion rates in the Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Abrahami, Rachel; van der Beek, Peter; Huyghe, Pascale; Hardwick, Elisabeth; Carcaillet, Julien

    2016-01-01

    Understanding the relative strengths of tectonic and climatic forcing on erosion at different spatial and temporal scales is important to understand the evolution of orogenic topography. To address this question, we quantified exhumation rates at geological timescales and erosion rates at millennial timescales in modern river sands from 10 sub-catchments of the Tista River drainage basin in the Sikkim Himalaya (northeast India) using detrital apatite fission-track thermochronology and cosmogenic 10Be analyses, respectively. We compare these rates to several potential geomorphic or climatic forcing parameters. Our results show that millennial erosion rates are generally higher and spatially more variable than long-term exhumation rates in Sikkim. They also show strongly contrasting spatial patterns, suggesting that the processes controlling these rates are decoupled. At geological timescales, exhumation rates decrease from south to north, with rates up to 1.2 ± 0.6 mm/yr recorded in southwest Sikkim and as low as 0.5 ± 0.2 mm/yr in the northernmost catchment. Long-term exhumation rates do not correlate with any geomorphic or climatic parameter. We suggest they are tectonically controlled: high rates in southwest Sikkim may be linked to the building of the Lesser Himalaya Rangit Duplex, whereas low rates in north Sikkim are consistent with cessation of extensional exhumation along the South Tibetan Detachment after 13 Ma. The highest apparent erosion rates recorded by cosmogenic nuclides (˜5 mm/yr) occur in catchments spanning the Main Central Thrust Zone, but these appear to be strongly influenced by recent landsliding. High millennial erosion rates (1-2 mm/yr) also occur in north Sikkim and may be climatically driven through strong glacial inheritance of the landscape, as attested by high channel-steepness values close to the maximum extent of glaciers during the Last Glacial Maximum. In contrast, variations in rainfall rate do not seem to strongly influence

  2. Environmental mutagenesis during the end-Permian ecological crisis.

    PubMed

    Visscher, Henk; Looy, Cindy V; Collinson, Margaret E; Brinkhuis, Henk; van Konijnenburg-van Cittert, Johanna H A; Kürschner, Wolfram M; Sephton, Mark A

    2004-08-31

    During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism. PMID:15282373

  3. Environmental mutagenesis during the end-Permian ecological crisis

    PubMed Central

    Visscher, Henk; Looy, Cindy V.; Collinson, Margaret E.; Brinkhuis, Henk; van Konijnenburg-van Cittert, Johanna H. A.; Kürschner, Wolfram M.; Sephton, Mark A.

    2004-01-01

    During the end-Permian ecological crisis, terrestrial ecosystems experienced preferential dieback of woody vegetation. Across the world, surviving herbaceous lycopsids played a pioneering role in repopulating deforested terrain. We document that the microspores of these lycopsids were regularly released in unseparated tetrads indicative of failure to complete the normal process of spore development. Although involvement of mutation has long been hinted at or proposed in theory, this finding provides concrete evidence for chronic environmental mutagenesis at the time of global ecological crisis. Prolonged exposure to enhanced UV radiation could account satisfactorily for a worldwide increase in land plant mutation. At the end of the Permian, a period of raised UV stress may have been the consequence of severe disruption of the stratospheric ozone balance by excessive emission of hydrothermal organohalogens in the vast area of Siberian Traps volcanism. PMID:15282373

  4. Zircon (U-Th)/He thermochronometry and modeling of Cenozoic exhumation of the West Spitsbergen Fold Belt: a HeFTy task

    NASA Astrophysics Data System (ADS)

    Barnes, Chris; Schneider, David; Majka, Jaroslaw; Lorenz, Henning; Kosminska, Karolina; Manecki, Maciej

    2015-04-01

    The West Spitsbergen Fold Belt (WSFB) is part of a ca. 55 Ma Eurekan deformation zone which trends N-S along the western margin of the Svalbard archipelago and is largely comprised of Meso- to Neoproterozoic metasediments and metavolcanics. (U-Th)/He thermochronometry is being conducted from three different regions within the fold belt to resolve the time-temperature history: Wedel Jarlsberg Land, Prins Karls Forland, and Sorkapp Land. Preliminary data obtained from Wedel Jarlsberg Land (amphibolite facies Eimfjellet Group and greenschist facies Sofiebogen Group) yield zircon (U-Th)/He (ZHe) ages indicative of Late Cretaceous to Early Paleogene cooling. It is apparent from the cooling ages that these Neoproterozoic rocks were >200°C before Eurekan deformation. Despite no clear trend between cooling age and grain size, the zircons exhibit a large range of eU values (51 to 826), viewed as a proxy for radiation damage, corresponding to a Gaussian distribution with age. Preliminary ZHe ages obtained from the Macnairrabbane unit of Prins Karls Forland suggests slightly younger cooling, as young as Late Eocene. HeFTy inversion models suggest the possibility that these rocks were at near-surface conditions through much of the Carboniferous and Permian as part of the Sorkapp-Hornsund High as a consequence of the Late Devonian Svalbardian Event. A moderate-temperature burial or heating event is therefore required to explain the Late Cretaceous /Early Paleogene ZHe cooling ages. With the current data, it is difficult to resolve whether this heating event was the result of pre-Eurekan sedimentation or syn-Eurekan over-thrusting. Nonetheless, the data strongly suggest fast cooling (and exhumation) through the He partial-retention zone during Eurekan tectonism, which may have commenced prior to 55 Ma. Similar thermochronometry results have been produced from Mesozoic rocks of the Sverdrup Basin exposed on Axel Heiberg and Ellesmere Islands of Canada; apatite fission-track and

  5. Geodynamic models for the post-orogenic exhumation of the lower crust

    NASA Astrophysics Data System (ADS)

    Bodur, O. F.; Gogus, O.; Karabulut, H.; Pysklywec, R. N.; Okay, A. I.

    2015-12-01

    Recent geodynamic modeling studies suggest that the exhumation of the high pressure and the very/ultra high-pressure crustal rocks may occur due to the slab detachment (break-off), slab roll-back (retreat) and the buoyancy-flow controlled subduction channel. We use convective removal (Rayleigh-Taylor, 'dripping' instability) mechanism to quantitatively investigate the burial and the exhumation pattern of the lower/middle crustal rocks from ocean subduction to post-collisional geodynamic configuration. In order to address the model evolution and track crustal particles for deciphering P-T-t variation, we conduct a series of thermo-mechanical numerical experiments with arbitrary Eularian-Lagrangian finite element code (SOPALE). We show how additional model parameters (e.g moho temperature, upper-middle crustal activation energy, density contrast between the lithosphere and the underlying mantle) can effectively influence the burial and exhumation depths, rate and the styles (e.g clockwise or counterclockwise). First series of experiments are designed to investigate the exhumation of crustal rocks at 32 km depth for only post-collisional tectonic setting -where pre-existing ocean subduction has not been implemented-. Model predictions show that a max. 8 km lower crustal burial occurs concurrent with the lower crustal convergence as a response to the mantle lithosphere dripping instability. The subsequent exhumation of these rocks up to -25 km- is predicted at an exhumation rate of 1.24 cm/year controlled by the removal of the underlying mantle lithosphere instability with crustal extension. At the second series of experiments, we tracked the burial and exhumation history of crustal particles at 22 and 31 km depths while pre-existing ocean subduction has been included before the continental collision. Model results show that burial depths down to 62 km occurs and nearly the 32 km of exhumation is predicted again by the removal of the mantle lithosphere after the

  6. Precollisional, multistage exhumation of subducted continental crust: The Sesia Zone, western Alps

    NASA Astrophysics Data System (ADS)

    Babist, J.; Handy, M. R.; Konrad-Schmolke, M.; Hammerschmidt, K.

    2006-12-01

    The Sesia Zone within the Tertiary arc of the western Alps is a relic of the subducted part of the Adriatic continental margin along the SE border of the Tethyan ocean. The Sesia Zone comprises three basement nappes which individuated during Late Cretaceous (65-80 Ma) subduction to different depths at high-pressure (HP, blueschist, eclogite facies) conditions (peak pressures of 1.0-1.2, 1.0-1.5, and 1.5-2.0 GPa). The thrusts bounding these nappes developed where the crust was previously thinned during Jurassic rifting. Crustal-scale shear zones partly overprinted these early thrusts and exhumed coherent slices of crust containing HP rocks. Initial exhumation of the internal part of the accreted margin involved thrusting (D1) and transpressional shearing (D2) along a subvertical, E-W trending mylonitic shear zone under retrograde blueschist- to greenschist-facies conditions. This exhumation was nearly isothermal to a depth of about 25 km, where the basement nappes were juxtaposed. Subsequent exhumation of these nappes to a common depth of about 15-20 km occurred in the footwall of a greenschist-facies, top-SE extensional shear zone (D3) preserved in some of the highest mountain peaks of the Sesia Zone. New Rb-Sr mineral ages constrain D2 to have occurred at about 60-65 Ma and D3 at about 45-55 Ma. Thus top-SE extensional exhumation was broadly coeval with Eocene, SE directed subduction of the Liguro-Piemont oceanic lithosphere beneath the Adriatic margin. Slow cooling and erosional denudation of the Sesia Zone from 45 to 30 Ma occurred in the hanging wall of the Gressoney extensional shear zone (D4), which itself contributed to the exhumation of Eocene HP and ultra-HP oceanic rocks in its footwall. By 30 Ma, HP rocks of the Sesia Zone were intruded by shallow granitic plutons which were eroded and redeposited within volcanoclastic sediments. Oligo-Miocene Insubric backfolding and thrusting (D5) only exhumed northeastern parts of the Sesia Zone, where HP metamorphism

  7. Thecamoebians from Late Permian Gondwana sediments of peninsular India.

    PubMed

    Farooqui, Anjum; Aggarwal, Neha; Jha, Neerja

    2014-02-01

    The evolutionary history of thecamoebians (testate amoebae) extends back to the Neoproterozoic Era. However, until now, these have had a restricted, discontinuous and modest record across the world. The studied sediment of Raniganj Formation (Godavari Graben), Andhra Pradesh, India has been assigned as Late Permian on the basis of co-occurring age-diagnostic Late Permian palynomorphs. About sixteen thecamoebian species and one taxon incertae sedis have been recorded here in the palynological slides on the basis of shell morphology and morphometry. Out of these, five belong to the family Arcellidae, seven to Centropyxidae, two to Trigonopyxidae, one to Difflugiidae, one to Plagiopyxidae, and one is regarded incertae sedis. The morphometric characteristics of fossil forms resemble their corresponding extant species studied from ecologically diverse fresh water wetlands in India. In general, the ratio of shell diameter and aperture diameter of Late Permian fossil and extant specimens show significant correlation in all the studied species. Except that, the ratio of shell length and breadth is the distinguishing feature between Centropyxis aerophila and C. aerophila 'sylvatica', rather than the ratio of shell length and longest diameter of the shell aperture in both fossil and extant forms. The study elucidates the minimal morphological evolution in thecamoebians and their survival during mass extinction periods and stressful environmental conditions over the geological timescale. PMID:23876495

  8. Hooked: Habits of the Chinese Permian gigantopterid Gigantonoclea

    NASA Astrophysics Data System (ADS)

    Seyfullah, Leyla J.; Glasspool, Ian J.; Hilton, Jason

    2014-04-01

    Based upon anatomical evidence, Permian aged gigantopterid fossils are in general reconstructed as climbing or scrambling plants. Gigantonoclea, a genus of adpressed gigantopterid foliage from the Permian of northern China, has been reported to co-occur with hook-like organs that were interpreted as indicating a scrambling/climbing habit. We reinvestigated these hook-like structures and re-evaluated the nature of the co-occurrences in context with the flora preserved in each plant-bearing fossil 'bed' in the North China sedimentary succession. New findings show that the species Gigantonoclea hallei probably climbed using specially adapted clusters of compound grappling hook-like shoots borne on the stems. This structural arrangement comprising shoots of hooks is new to the scrambling/climbing concept in gigantopterids. However, a key figured specimen previously reported as showing intermediate hook-tipped leaf morphology on a sole pinnule tip is discounted as such and is reinterpreted as a 'normal' pinnule partially hidden under sediment that results in an unusual appearance to this pinnule tip. Adaptations for climbing or scrambling based upon 'hooked leaves' observed in Gigantonoclea lagrelii are no longer supported and are reinterpreted as incompletely expanded leaves where the vernation process was interrupted. These data weaken prior interpretations of G. lagrelii as a climber/scrambler and raise doubts about the ubiquity of hooks amongst the gigantopterids as structures enabling them to climb or scramble their way through the Permian world.

  9. Pennsylvanian-Permian Antler foreland of eastern Nevada

    SciTech Connect

    Snyder, W.S. . Dept. of Geosciences); Trexler, J.H. Jr. . Dept. of Geological Sciences)

    1993-04-01

    Models for the Antler foreland generally assume that it was a Mississippian feature dominated by a single, large basin (the Antler foredeep). Recent work indicates that the foreland, as a tectonic region, is longer-lived, and is better described as a series of sub-basins separated by intervening structural highs. Long sections reveal space/time changes in depositional facies and sedimentologic features indicative or suggestive of this repeated tectonism. For example, in the southern Pancake Range, the fluvial-deltaic clastic units of the Late Mississippian-earliest Pennsylvanian Neward Canyon sequence are overlain by 540 m of cyclical Pennsylvanian Ely Limestone. The flooding event that marks the boundary between these units occurs during a long-term 2nd order eustatic low stand and thus reflects the regional tectonism that created the Ely basin'. Further, tectonically driven subsidence seems necessary to sustain deposition of the thick of marginal marine-open shelf Ely Limestone at this locality. Regionally, Early Permian deposition within the Dry Mountain trough was dominated by a complex series of local tectonic controls. Within eastern Nevada, tectonic influences on the stratigraphy continued through at least the Middle Permian, and this tectonism perhaps merged with that of the classic Late Permian-Early Triassic Sonoma orogeny. One consequence of this protracted tectonism was development or reactivation of zones of structural weakness that fragmented the foreland into a series of basins and highs and that accommodated differing geometries and styles of deformation.

  10. Spiral-shaped graphoglyptids from an Early Permian intertidal flat

    NASA Astrophysics Data System (ADS)

    Minter, Nicholas J.; Buatois, Luis A.; Lucas, Spencer G.; Braddy, Simon J.; Smith, Joshua A.

    2006-12-01

    Spiral-shaped foraging trace fossils, assigned to the grapho glyptid cf. Spirorhaphe azteca, are reported from an Early Permian intertidal flat in the Robledo Mountains of southern New Mexico, USA. Remarkably similar spiral-shaped structures are produced in modern intertidal flats by the paraonid polychaete Paraonis fulgens, and function as traps to capture mobile microorganisms migrating in the sediment in response to tides. We envisage a similar function for the Early Permian trace fossils. Previous studies have suggested that the lack of P. fulgens type traces from ancient intertidal deposits indicates that such behavior only evolved geologically recently in such settings. However, this report demonstrates that such specialized foraging behavior was present in intertidal settings by at least the Early Permian. Graphoglyptids are typical of deep-marine settings, and characteristic of the Nereites ichnofacies. This represents their first undoubted occurrence in intertidal facies in the geological record. We postulate that the occurrence of graphoglyptids in deep-marine and intertidal settings is related to the predictability of resources. The scarcity of intertidal graphoglyptids in the geological record is most likely a preservational effect.

  11. Lower Permian Dry Mountain trough, eastern Nevada: preliminary basin analysis

    SciTech Connect

    Schwarz, D.L.; Snyder, W.S.; Spinosa, C.

    1987-08-01

    The Lower Permian Dry Mountain trough (DMT) is one of several basins that developed during the Late Pennsylvanian to Permian along the western edge of the North American continent. A tectonic mechanism has been suggested for the subsidence of the DMT, possibly due to reactivation of the Antler orogenic belt during the waning stages of Ancestral Rocky Mountain deformation. The DMT records marked subsidence with the appearance during the Artinskian (latest Wolfcampian) of a deeper water facies that consists of thin-bedded silty micrites and micritic mudstones rich in radiolarians and sponge spicules, characterized by a relative abundance of ammonoids, and rarer conodonts and Nereites ichnofacies trace fossils. Taxa recovered from a distinctive concretionary horizon at various locations provide an Artinskian datum on which to palinspastically reconstruct the DMT paleogeography. These taxa include ammonoids: Uraloceras, Medlicottia, Marathonites, Crimites, Metalegoceras, properrinitids; and conodonts: Neogondolella bisselli, Sweetognathus whitei, S. behnkeni, and Diplognathodus stevensi. The western margin facies of the DMT consists of Permian Carbon Ridge/Garden Valley Formations. Here, lowermost black Artinskianage euxinic micrites, considered a potential source rock for petroleum generation, are overlain by base-of-slope carbonate apron deposits, which, in turn, are overlain by base-of-slope carbonate apron deposits, which, in turn, are overlain by a thick, eastwardly prograding conglomerate wedge. Seismic profiles across Diamond Valley indicate a 3.0-4.6-km thick Tertiary sequence above the Paleozoic strata.

  12. Resolving spatial heterogeneities in exhumation and surface uplift in Timor-Leste: Constraints on deformation processes in young orogens

    NASA Astrophysics Data System (ADS)

    Tate, Garrett W.; McQuarrie, Nadine; Hinsbergen, Douwe J. J.; Bakker, Richard R.; Harris, Ron; Willett, Sean; Reiners, Peter W.; Fellin, Maria Giuditta; Ganerød, Morgan; Zachariasse, Willem Jan

    2014-06-01

    Although exhumation and surface uplift are important parameters in understanding orogenesis, the opportunity to measure both in close proximity is rare. In Timor-Leste (East Timor), deeply exhumed metamorphic rocks and piggyback deepwater synorogenic basins are only tens of kilometers apart, permitting direct relation of uplift and exhumation by comparing micropaleontology to thermochronology interpreted through one-dimensional thermal modeling. Foraminifera in two deepwater synorogenic basins suggest basin uplift from depths of 1-2 km to depths of 350-1000 m between 3.35 and 1.88 Ma. Thermochronologic sampling was conducted in the central mountain belt between these basins. Of four muscovite 40Ar/39Ar samples, one provides a reset age of 7.13 ± 0.25 Ma in the Aileu high-grade belt that suggests ~9-16 km of exhumation since that time. Eighteen zircon (U-Th)/He samples contain a group of reset ages in the Aileu Complex ranging from 4.4 to 1.5 Ma, which suggest exhumation rates of 1.0-3.1 mm/yr with 2.7-7.8 km of exhumation since these ages. Thirteen apatite (U-Th)/He ages in the Gondwana Sequence range from 5.5 to 1.4 Ma, suggesting 1-2 km of exhumation and defining a pattern of exhumation rates (ranging from 0.2 to 1.3 mm/yr) that positively correlates with average annual rainfall. Seven apatite fission track samples display varying degrees of partial resetting, with greatest resetting where apatite (U-Th)/He ages are youngest. Together, these data demonstrate extreme variability in surface uplift and exhumation over small spatial scales. We propose ongoing subsurface duplexing driven by subduction and underplating of Australian continental crust as the predominant driver for surface uplift and uplift-induced exhumation.

  13. Episodic exhumation and relief growth in the Mont Blanc massif, Western Alps from numerical modelling of thermochronology data

    NASA Astrophysics Data System (ADS)

    Glotzbach, C.; van der Beek, P. A.; Spiegel, C.

    2011-04-01

    The Pliocene-Quaternary exhumational and topographic evolution of the European Alps and its potential climatic and tectonic controls remain a subject of controversy. Here, we apply inverse numerical thermal-kinematic modelling to a spatially dense thermochronological dataset (apatite fission-track and (U-Th)/He) of both tunnel and surface samples across the Mont Blanc massif in the Western Alps, complemented by new zircon fission-track data, in order to better quantify its Neogene exhumation and relief history. Age-elevation relationships and modelling results show that an episodic exhumation scenario best fits the data. Initiation of exhumation in the Mont Blanc massif at 22 ± 2 Ma with a rate of 0.8 ± 0.15 km/Myr is probably related to NW-directed thrusting during nappe emplacement. Exhumation rates decrease at 6 ± 2 Ma to values of 0.15 ± 0.65 km/Myr, which we interpret to be the result of a general decrease in convergence rates and/or extensive exposure of less erodible crystalline basement rocks from below more easily erodible Mesozoic sediments. Finally, local exhumation rates increase up to 2.0 ± 0.6 km/Myr at 1.7 ± 0.8 Ma. Modelling shows that this recent increase in local exhumation can be explained by valley incision and the associated increase in relief at 0.9 ± 0.8 Ma, leading to erosional unloading, isostatic rebound and additional rock uplift and exhumation. Given the lack of tectonic activity as evidenced by constant thermochronological ages along the tunnel transect, we suggest that the final increase in exhumation and relief in the Mont Blanc massif is the result of climate change, with the initiation of mid-Pleistocene glaciations leading to rapid valley incision and related local exhumation.

  14. Strontium isotope evolution of Late Permian and Triassic seawater

    NASA Astrophysics Data System (ADS)

    Korte, Christoph; Kozur, Heinz W.; Bruckschen, Peter; Veizer, Ján

    2003-01-01

    The 87Sr/ 86Sr values based on brachiopods and conodonts define a nearly continuous record for the Late Permian and Triassic intervals. Minor gaps in measurements exist only for the uppermost Brahmanian, lower part of the Upper Olenekian, and Middle Norian, and only sparse data are available for the Late Permian. These 219 measurements include 67 brachiopods and 114 conodont samples from the Tethyan realm as well as 37 brachiopods and one conodont sample from the mid-European Middle Triassic Muschelkalk Sea. The Late Permian/Lower Triassic interval is characterized by a steep 1.3 × 10 -3 rise, from 0.7070 at the base of the Dzhulfian to 0.7082 in the late Olenekian, a rate of change comparable to that in the Cenozoic. In the mid-Triassic (Anisian and Ladinian), the isotope values fall to 0.7075, followed again by a rise to 0.7081 in the Middle/Late Norian. The 87Sr/ 86Sr values decline again in the Late Norian (Sevatian) and Rhaetian to 0.7076. The sharp rise in the 87Sr/ 86Sr values during the Late Permian/Early Triassic was coincident with widespread clastic sedimentation. Because of the paucity of tectonic uplifts, the enhanced erosion may have been due to intermittent humid phases, during mainly an arid interval, coupled with the absence of a dense protective land plant cover following the mass extinction during the latest Permian. The apex of the 87Sr/ 86Sr curve at the Olenekian/Anisian boundary coincides with cessation of the large-scale clastic sedimentation and also marks the final recovery of land vegetation, as indicated by the renewed onset of coal formation in the Middle Triassic. The rising 87Sr/ 86Sr values from the Middle Carnian to the Late Norian coincide with the uplift and erosion of the Cimmeride-Indosinian orogens marking the closure of the Palaeotethys. The subsequent Rhaetian decline that continues into Jurassic (Pliensbachian/Toarcian boundary), on the other hand, coincides with the opening of the Vardar Ocean and its eastern continuation

  15. Pliocene eclogite exhumation at plate tectonic rates in eastern Papua New Guinea.

    PubMed

    Baldwin, Suzanne L; Monteleone, Brian D; Webb, Laura E; Fitzgerald, Paul G; Grove, Marty; Hill, E June

    2004-09-16

    As lithospheric plates are subducted, rocks are metamorphosed under high-pressure and ultrahigh-pressure conditions to produce eclogites and eclogite facies metamorphic rocks. Because chemical equilibrium is rarely fully achieved, eclogites may preserve in their distinctive mineral assemblages and textures a record of the pressures, temperatures and deformation the rock was subjected to during subduction and subsequent exhumation. Radioactive parent-daughter isotopic variations within minerals reveal the timing of these events. Here we present in situ zircon U/Pb ion microprobe data that dates the timing of eclogite facies metamorphism in eastern Papua New Guinea at 4.3 +/- 0.4 Myr ago, making this the youngest documented eclogite exposed at the Earth's surface. Eclogite exhumation from depths of approximately 75 km was extremely rapid and occurred at plate tectonic rates (cm yr(-1)). The eclogite was exhumed within a portion of the obliquely convergent Australian-Pacific plate boundary zone, in an extending region located west of the Woodlark basin sea floor spreading centre. Such rapid exhumation (> 1 cm yr(-1)) of high-pressure and, we infer, ultrahigh-pressure rocks is facilitated by extension within transient plate boundary zones associated with rapid oblique plate convergence. PMID:15372021

  16. A revised thermal history of the Ronda peridotite, S. Spain: New evidence for excision during exhumation

    NASA Astrophysics Data System (ADS)

    Johanesen, Katharine; Platt, John P.; Kaplan, Michael S.; Ianno, Adam J.

    2014-05-01

    The Ronda peridotite massif of southern Spain exposes subcontinental lithospheric mantle that records pressure-temperature data and microstructures formed during exhumation beneath the rapidly extending Alboran domain. The peridotite is zoned from garnet- and spinel-bearing mylonites at the structural top, to spinel-bearing tectonites, to melt-percolated spinel-bearing granular peridotites, to plagioclase-bearing tectonites at the structural base. We find microstructural evidence of melt present in the spinel zones prior to the deformation event which exhumed the peridotites, and we therefore reinterpret the spinel tectonites as being a result of deformational overprinting of part of the granular domain. We also reinterpret garnet intergrown with spinel in the mylonite zone as part of the pre-mylonitic porphyroclast assemblage, rather than as a syn-mylonite assemblage. This places mylonite formation within the spinel field, rather than right on the garnet-spinel transition (18 kb). Two-dimensional thermal modeling indicates that these conditions require removal of lithospheric mantle below 100 km followed by exhumation along a low angle shear zone. Excision of material during exhumation is required to explain the steep thermal gradients observed. These results shed light on the mechanisms of back-arc extension, as well as the emplacement of orogenic lherzolites.

  17. Late-Quaternary exhumation rates constrained by OSL thermochronometry at the Franz Josef Glacier, New Zealand

    NASA Astrophysics Data System (ADS)

    Duverger, Arnaud; King, Georgina; Valla, Pierre; Cox, Simon; Herman, Frederic

    2016-04-01

    The Southern Alps of New Zealand are often cited as the primary example of a mountain range that has reached exhumation and topographic steady state, especially on the West Coast where exhumation rates reach up to about 10 mm/yr. However, cyclic climatic changes, throughout the Quaternary period have meant that the Alps cycled between being completely glaciated and ice free. The impact that such glacial cycles may have had on the spatial variability of erosion rates remains poorly constrained. Here we use Optically Stimulated Luminescence (OSL) as a very low temperature thermochronometer to constrain rock cooling histories at 10-100 kyr timescales on samples collected near the Franz Josef glacier. OSL-thermochronometry is based on the amount of electrons accumulated in the lattice defects of natural minerals such as quartz or feldspar, due to the competing effects of charge trapping due to the natural radioactivity within the rock and charge detrapping due to thermal loss during rock exhumation towards the surface. We collected 9 samples along the Waiho valley (crossing the Alpine Fault) and the Franz Josef glacier to quantify late-Quaternary exhumation rates and their potential spatial variations. Bedrock samples have been crushed to extract the light-safe rock interiors which have then been processed to isolate potassium-rich feldspars (K-feldspars). We used the Infra-Red Stimulated Luminescence at 50°C (IRSL50) protocol, including the measurement of the natural IRSL50 trapped charge population and the laboratory characterization of sample-specific thermal and athermal kinetic parameters. Once measured, the luminescence signal can be inverted into cooling histories. We also explored the potential of the recently developed multi-OSL-thermochronometer (King et al., accepted) to better constrain the cooling path. Our first OSL measurements show that samples are not in saturation and thus contain useful thermochronometric information over the last ~100 kyr. Inverse

  18. Efficient exhumation of (ultra) high-pressure rocks by slab extraction

    NASA Astrophysics Data System (ADS)

    Zhao, Zhongbao; Bons, Paul; Gomez-Rivas, Enrique; Soesoo, Alvar; Evgueni, Burov

    2015-04-01

    A range of mechanisms has been proposed for the enigmatic exhumation of (ultra) high-pressure (UHP) rocks from great depths. These include channel flow, wedge extrusion, diapiric rise, metamorphic core complexes and eduction. Most current models envisage exhumation to occur in a subduction setting, where exhumation of UHP rocks takes place in the context of the downward movement of the subducting slab. In addition, removal of the downward pull on the subducting slab (by slab break-off and slab retreat) may lead to buoyant rise of the UHP material, especially in case of subduction of continental crust. Here we consider the alternative scenario of slab extraction, where subduction is reversed and the slab is pulled up and away from the overriding plate, instead of sliding down into the mantle. UHP rocks are then exhumed together with the ascending plate. Slab extraction occurs when the downward pull of the subducted slab is exceeded by an opposite force, for example in case of plate divergence. Another case is a divergent double subduction zone (DDSZ), where the two hinges inevitably converge by rollback. At some point the pull of one slab can exceed that of the other one if it is short enough, leading to the extraction of the shorter slab and concomitant exhumation of UHP rocks. The evolution of a DDSZ with one short slab was modelled with the thermo-mechanical code FLAMAR, varying the relative movement of the two overriding plates. If the two overriding plates do not converge too fast, the short slab is pulled up and away from its suture and is eventually pulled down at the opposite suture. UHP rocks are exhumed at rates exceeding cms/yr in what is effectively a lithospheric-scale core complex. This mechanism may explain the exhumation of UHP rocks in the Tibetan Qiangtang Metamorphic Belt and the d'Entercasteaux Islands. If the sutures converge slower than the long slab slides down, an oceanic basin forms, which we suggest is the cause for the rapid opening of the

  19. Cyclostratigraphy and duration of the Yates Formation (Permian, Late Guadalupian) of the Permian Basin

    SciTech Connect

    Borer, J.M.; Harris, P.M. )

    1990-05-01

    Using log, core, and outcrop data, the authors have identified patterns in cyclic sequences of the mixed siliciclastic-carbonate Yates Formation of the Permian basin. A composite well log, representing the entire formation through a single sea level-sensitive facies tract, exhibits two orders of cyclicity with Milankovitch band periodicity. At the shelf margin, large-scale cycles consist of subequal dolomite- and siliciclastic-rich intervals. Small-scale cycles are carbonate and siliciclastic couplets that exhibit regular changes in lithology and thickness (bundling) that define the large-scale cycles. Cycle packaging changes across the shelf due to the updip (landward) pinch-out of high frequency carbonate intervals. Several lines of evidence suggest that the depositional cycles are the product of orbitally forced sea level fluctuations with 100- and 400-k.y. periods (Milankovitch eccentricity cycles). This implies that the five large-scale cycles present in the Yates represent about 2 m.y. of deposition. A lower frequency (third-order) sea level cycle was also active during Yates deposition. This 1.5- to 2-m.y. cycle is apparent from Fischer plots and a lithofacies cross section. The third-order cycle may be related to a low-frequency Milankovitch signal or tectonics. Fischer plots and stratigraphic analysis suggest that all the sea level fluctuations had relatively low magnitudes ranging from approximately 2 m for the 100-k.y. cycles, 8-12 m for the 400-k.y. cycles, and 5 m for the 1.5- to 2-m.y. cycle. The architecture of Yates Formation reservoirs is related to the stacking of depositional sequences during the three orders of sea-level fluctuations. In general, the low frequency (1.5-2 m.y.) cycle controlled the lateral position and reservoir quality of 400-k.y. depositional cycles (reservoir units); whereas, high-frequency (100 k.y.) sea level cycles controlled heterogeneity within reservoir units.

  20. Processes of subduction and exhumation of continental blocks in collisional orogeny

    NASA Astrophysics Data System (ADS)

    Tirel, C.; Brun, J.; Burov, E. B.; Wortel, M. J.; Lebedev, S.

    2009-12-01

    Understanding the mechanism of accretion, subduction and exhumation of rocks during orogeny is a fundamental issue for plate tectonics. Numerous models have been proposed in order to explain the tectonic events that accompany continental subduction. Here, in order to examine the different processes in a simple, self-consistent manner, the fully coupled thermo-mechanical numerical code PARAFLAM is used to perform a parametric study on the subduction mode and, particularly, on the continental subduction processes. A wide range of parameters including slab-pull magnitude, temperature and viscosity distribution, initial geometry of the subduction zone and rheology, is explored to understand the dynamics of accretion, the different processes of exhumation, the deformation of the slab and the deformation of the overriding plate. The first results of this study show the evolution of one or two small continental blocks (terranes) reaching the subduction-zone continental margin. A set of experiments demonstrates that the progressive incorporation of a continental block into the over-riding plate is governed by the dynamics of subduction. Initially, the continental block is partly or entirely subducted, which increases its buoyancy and induces its detachment from the subducting slab. By the time the emplacement of the block into the continental margin is completed, exhumation is likely to have occurred, depending mainly on the slab pull magnitude and the rheology of the continental block itself. As an example, some experiments show the continuous subduction of a continental block followed by an UHP-HP exhumation and a metamorphic-core-complex type of exhumation. These cases can be compared with the pattern of deformation observed in the Aegean-Sea domain or in the Tyrrhenian one.

  1. Cenozoic Exhumation History and Evolutionary Model For The Central Catalan Coastal Ranges (ne Spain)

    NASA Astrophysics Data System (ADS)

    Gaspar-Escribano, J. M.; Garcia-Castellanos, D.; Roca, E.; Juez-Larre, J.; Cloetingh, S.

    We have studied the Cenozoic exhumation history of the Catalan Coastal Ranges (NE Spain) and propose a model for its kinematic evolution. Two difficulties appear when reconstructing the geological evolution of the study area: (1) Neogene fault extensional reactivation overrides former compressional structures, leading to uncertainties of fault slips and amounts of exhumation and hence misinter- pretation of basin evolution; (2) Absence of parts of the sedimentary record impedes a complete description of timing and significance of erosion-sedimentation during the corresponding time interval. We address these problems by using multiple data sets as constraints for a kinematic model. The observations accounted for in the model consist of: (1) Partially reconstructed geological sections based on seismics and/or sedimentological studies; and (2) New fission track data, that were translated in terms of exhumation to validate the evolu- tionary model. In order to quantitatively link these observations, we use a fault block model that as- sumes vertical shear and incorporates flexural isostasy and surface transport (erosion and sedimentation). Modifying input fault geometries and velocities we can adjust modeling predictions with the observed geometry and exhumation-time diagrams. A gradual variation of effective elastic thickness (low value~5 km offshore, higher value ~25 km in the Ebro Basin) is required to fit exhumation curves derived and the topog- raphy in the Littoral Range. Results of our model provide constraints on the evolution of the region in terms of topography and fault activity. The mass balance between deposition and erosion is also calculated, indicating significant out-of-plane surface transport.

  2. Putting it all together: Exhumation histories from a formal combination of heat flow and a suite of thermochronometers

    USGS Publications Warehouse

    d'Alessio, M. A.; Williams, C.F.

    2007-01-01

    A suite of new techniques in thermochronometry allow analysis of the thermal history of a sample over a broad range of temperature sensitivities. New analysis tools must be developed that fully and formally integrate these techniques, allowing a single geologic interpretation of the rate and timing of exhumation and burial events consistent with all data. We integrate a thermal model of burial and exhumation, (U-Th)/He age modeling, and fission track age and length modeling. We then use a genetic algorithm to efficiently explore possible time-exhumation histories of a vertical sample profile (such as a borehole), simultaneously solving for exhumation and burial rates as well as changes in background heat flow. We formally combine all data in a rigorous statistical fashion. By parameterizing the model in terms of exhumation rather than time-temperature paths (as traditionally done in fission track modeling), we can ensure that exhumation histories result in a sedimentary basin whose thickness is consistent with the observed basin, a physically based constraint that eliminates otherwise acceptable thermal histories. We apply the technique to heat flow and thermochronometry data from the 2.1 -km-deep San Andreas Fault Observatory at Depth pilot hole near the San Andreas fault, California. We find that the site experienced <1 km of exhumation or burial since the onset of San Andreas fault activity ???30 Ma.

  3. The Permian-Triassic boundary & mass extinction in China

    USGS Publications Warehouse

    Metcalfe, I.; Nicoll, R.S.; Mundil, R.; Foster, C.; Glen, J.; Lyons, J.; Xiaofeng, W.; Cheng-Yuan, W.; Renne, P.R.; Black, L.; Xun, Q.; Xiaodong, M.

    2001-01-01

    The first appearance of Hindeodus parvus (Kozur & Pjatakova) at the Permian-Triassic (P-T) GSSP level (base of Bed 27c) at Meishan is here confirmed. Hindeodus changxingensis Wang occurs from Beds 26 to 29 at Meishan and appears to be restricted to the narrow boundary interval immediately above the main mass extinction level in Bed 25. It is suggested that this species is therefore a valuable P-T boundary interval index taxon. Our collections from the Shangsi section confirm that the first occurrence of Hindeodus parvus in that section is about 5 in above the highest level from which a typical Permian fauna is recovered. This may suggest that that some section may be missing at Meishan. The age of the currently defined Permian-Triassic Boundary is estimated by our own studies and a reassessment of previous worker's data at c. 253 Ma, slightly older than our IDTIMS 206Pb/238U age of 252.5 ??0.3 Ma for Bed 28, just 8 cm above the GSSP boundary (Mundil et al., 2001). The age of the main mass extinction, at the base of Bed 25 at Meishan, is estimated at slightly older than 254 Ma based on an age of >254 Ma for the Bed 25 ash. Regardless of the absolute age of the boundary, it is evident that the claimed <165,000 y short duration for the negative carbon isotope excursion at the P-T boundary (Bowring et al., 1998) cannot be confirmed. Purportedly extraterrestrial fullerenes at the boundary (Hecker et al., 2001) have equivocal significance due to their chronostratigraphic non-uniqueness and their occurrence in a volcanic ash.

  4. Controls on reservoir development in Devonian Chert: Permian Basin, Texas

    SciTech Connect

    Ruppel, S.C.; Hovorka, S.D.

    1995-12-01

    Chert reservoirs of the Lower Devonian Thirtyone Formation contain a significant portion of the hydrocarbon resource in the Permian basin. More than 700 million bbl of oil have been produced from these rocks, and an equivalent amount of mobile oil remains. Effective exploitation of this sizable remaining resource, however, demands a comprehensive appreciation of the complex factors that have contributed to reservoir development. Analysis of Thirtyone Formation chert deposits in Three Bar field and elsewhere in the Permian basin indicates that reservoirs display substantial heterogeneity resulting from depositional, diagenetic, and structural processes. Large-scale reservoir geometries and finer scale, intra-reservoir heterogeneity are primarily attributable to original depositional processes. Despite facies variations, porosity development in these cherts is principally a result of variations in rates and products of early silica diagenesis. Because this diagenesis was in part a function of depositional facies architecture, porosity development follows original depositional patterns. In reservoirs such as Three Bar field, where the Thirtyone Formation has been unroofed by Pennsylvanian deformation, meteoric diagenesis has created additional heterogeneity by causing dissolution of chert and carbonate, especially in areas of higher density fracturing and faulting and along truncated reservoir margins. Structural deformation also has exerted direct controls on heterogeneity that are particularly noteworthy in reservoirs under waterflood. High-density fracture zones create preferred flow paths that result in nonuniform sweep through the reservoir. Faulting locally creates compartments by offsetting reservoir flow units. As such, the processes and models defined here improve understanding of the causes of heterogeneity in all Thirtyone chert reservoirs in the Permian basin and aid recovery of the sizable hydrocarbon resource remaining in these rocks.

  5. Forward stratigraphic modeling of the Permian of the Delaware Basin

    SciTech Connect

    Qiucheng, Ye; Kerans, C.; Bowman, S.

    1996-12-31

    Permian platform-to-basin strata of the Delaware Basin In west Texas and New Mexico represent one of the world`s most complete, best studied, and most hydrocarbon productive records of this geologic period in the world. This superb marriage of a refined stratigraphic framework and active exploration provided impetus to develop a forward stratigraphic model of this section to better predict the distribution of reservoir and seal relationships. The approximately 30 m.y. interval modeled is composed of 2 km of platform strata and 3 km of basinal strata divided into 8 composite sequences (average 3 m.y. duration) and 45 high-frequency sequences (400 ky m.y. duration). A 130 km dip section through the basin margin Guadalupe/Deleware Mountain outcrop is inversely modeled to derive local tectonic subsidence and a sea level curve for the Permian. In this process, the highest and lowest shoreline positions of each sequence are interpreted based on facies description which are assumed to approximate the highest and lowest relative sea level. A eustatic sea level curve is calculated by restoring these shoreline positions and removing local tectonic subsidence using a polynomial fit to the derived relative sea level curve. The quantitatively constrained curve for the Permian contains 2nd, 3rd, and 4th order 180m. This quantitatively constrained accommodation history (calculated eustatic curve and subsidence history) are input into the PHIL forward modeling program. Model variables of sediment supply are depositional system are adjusted to match known outcrop relations. The resulting model is potentially capable of predicting stratigraphy elsewhere in the basin using only subsidence history data from the inverse model.

  6. Forward stratigraphic modeling of the Permian of the Delaware Basin

    SciTech Connect

    Qiucheng, Ye; Kerans, C.; Bowman, S. )

    1996-01-01

    Permian platform-to-basin strata of the Delaware Basin In west Texas and New Mexico represent one of the world's most complete, best studied, and most hydrocarbon productive records of this geologic period in the world. This superb marriage of a refined stratigraphic framework and active exploration provided impetus to develop a forward stratigraphic model of this section to better predict the distribution of reservoir and seal relationships. The approximately 30 m.y. interval modeled is composed of 2 km of platform strata and 3 km of basinal strata divided into 8 composite sequences (average 3 m.y. duration) and 45 high-frequency sequences (400 ky m.y. duration). A 130 km dip section through the basin margin Guadalupe/Deleware Mountain outcrop is inversely modeled to derive local tectonic subsidence and a sea level curve for the Permian. In this process, the highest and lowest shoreline positions of each sequence are interpreted based on facies description which are assumed to approximate the highest and lowest relative sea level. A eustatic sea level curve is calculated by restoring these shoreline positions and removing local tectonic subsidence using a polynomial fit to the derived relative sea level curve. The quantitatively constrained curve for the Permian contains 2nd, 3rd, and 4th order 180m. This quantitatively constrained accommodation history (calculated eustatic curve and subsidence history) are input into the PHIL forward modeling program. Model variables of sediment supply are depositional system are adjusted to match known outcrop relations. The resulting model is potentially capable of predicting stratigraphy elsewhere in the basin using only subsidence history data from the inverse model.

  7. Spatial Variations in Deformation and Exhumation at the Yakutat plate corner, SE Alaska

    NASA Astrophysics Data System (ADS)

    Enkelmann, E.; Ehlers, T. A.; Falkowski, S.; Grabowski, D.

    2012-12-01

    Quantification of exhumation processes near plate boundaries provides insights into the mechanics and history of deformation along transpressional structures. Here we present an analysis of regional variations in plate deformation near the corner of the obliquely converging Yakutat Terrane and North American plate. Techniques used include an integration of bedrock and detrital thermochronometer ages collected around the major faults in the region. The Yakutat Terrane is transported northward along the western margin of North America and is colliding with the southern margin of Alaska, forming the St. Elias Mountains. The boundaries of the Yakutat Terrane to North America are formed by the dextral Fairweather transform fault in the east and the Chugach-St. Elias thrust and the fold-and thrust belt to the north. One of the major questions is how stress from the Fairweather transform is transferred and distributed inboard when the transform fault runs into the continent and deformation style changes to convergent. This region of change in deformation is called the St. Elias syntaxis and is characterized by a 90° bend of the major structures, the highest mountain peaks (5959 m), high local relief (5000 m), and it is mainly covered by thick ice fields and glaciers. This ice cover hampers field observations, structural measurements, and rock sampling and thus it is unclear how strain is distributed in the syntaxis region. Observed cooling ages indicate that the region of the St. Elias syntaxis contains 3-2 Ma detrital zircon fission track (ZFT) ages in the Seward-Malaspina Glacier outwash, indicating cooling rates of >100°C/Ma somewhere in the catchment. We revisited the Malaspina Glacier and investigated the petrology and cooling ages of clast-size material. Zircon U-Th/He ages of 3-2 Ma are observed in clasts of various lithologies including amphibolite, granulite, gneiss, and undeformed granite and granodiorite. This variety in rock types suggest that rapid

  8. New Permian durhaminid cerioid corals from east-central California

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.

    2009-01-01

    Permian colonial corals from Artinskian to Kungurian strata in the Conglomerate Mesa area, Inyo Mountains, east-central California, include five new species, one of which is assigned to a new genus. The new taxa are: Malpaisia maceyi n. gen. and n. sp., Pararachnastraea bellula n. sp., P. delicata n. sp., P. owensensis n. sp., and Cordillerastraea inyoensis n. sp. These species, several of which compare most closely with other Artinskian and Kungurian species from eastern Nevada and northern Mexico, represent three distinct stocks that differentiated on an isolated submarine uplift offshore from the main part of the Cordilleran carbonate shelf.

  9. A sudden end-Permian mass extinction (Invited)

    NASA Astrophysics Data System (ADS)

    Shen, S.

    2013-12-01

    The end-Permian mass extinction is the largest of the Phanerozoic. In the immediate aftermath the marine ecosystem was dominated by microbial and communities with disaster taxa. Plausible kill mechanism includes an extremely rapid, explosive release of gases such as carbon dioxide, methane and hydrogen sulfide. Siberian flood volcanism has been suggested as the most possible mechanism to trigger the massive release of greenhouse gases from volcanic eruptions and interaction of magmas with carbon from thick organic-rich deposits or rapid venting of coal-derived methane or massive combustion of coal. A sharp δ13C isotopic excursion, rapid disappearance of carbonate benthic communities and δ18O data from conodont apatite suggest rapid global warming. The end-Permian mass extinction occurred in less than 200,000 years. This extinction interval is constrained by two ash beds (Beds 25 and 28) at the Meishan section. However, the extinction patterns remain controversial largely due to the condensed nature of the Meishan sections. Geochemical signals and their interpretations are also contentious. Thus, the level of achievable stratigraphic resolution becomes crucial to determine the nature of the event and a detailed study of the extinction interval is essential to unravel the extinction pattern, chemostratigraphy, and the causes. However, the extinction interval at Meishan is only 26 cm thick and contains distinct gaps at the Permian-Triassic boundary (PTB) and possibly the base of Bed 25. Thus, it is impossible to resolve a detailed extinction pattern. Studying expanded sections is crucial to understand the detailed events before, during and after the main extinction. In this report, we show a highly-expanded Permian-Triassic boundary section in Guangxi Province, South China. The last 4.5 m between beds 22 and 28 of the Meishan sections is represented by a sequence of ~560 m at the section and the extinction interval between beds 24e and 28 at Meishan is represented

  10. Volcanism, mantle exhumation and spreading at the axial zone of a fossil slow spreading ocean

    NASA Astrophysics Data System (ADS)

    Chalot-Prat, F.; Coco, E.

    2003-04-01

    Within an axial zone of a slow spreading ocean, the mechanisms checking together volcano emplacement, mantle exhumation and ocean enlargement are poorly known. In order to better assess how they could be linked , a detailed mapping of a fossil ocean-floor structure, preserved from alpine tectonic and metamorphism, was performed in the Chenaillet unit (Franco-Italian Alps)(Chalot-Prat &Coco, submit.). The detailed 3D geometry of the ophiolite evidences that from its dimensions, topography, morphology, and the architecture of the volcanic cover at different scales, the Chenaillet unit is a witness of an axial zone of Atlantic type. The basement (serpentinized peridotites and gabbros), below and in the prolongation of the volcanic cover (le50 m), is capped by a tectonic breccias horizon (Chalot-Prat and Manatschal, 2002), underlining detachment faults responsible for its exhumation at the seafloor. Clasts of dolerite, found within the fault zone, indicate that basement exhumation had to be active during and even after volcano emplacement. Stair- and comb-type volcanic systems check the distribution of individual volcanoes; the higher the edifice, the younger it is relative to the others. In the stair-type (up to 600 m of height difference between base and top), each step is formed with a pillow and tube tongue stacking fed from fissural conduits located at the root of each step. This system formed by uplift, step by step fracturation of an already exhumed basement, and magma injection along the fissures once formed. The comb-type (up to 200 m of height difference between base and top) consists in well-defined alignments of pillow and tube conic edifices. Their central feeder dykes are emplaced on the crossing of two types of fractures, oblique (tooth) and parallel (line) to the main branch of the comb. Along a same line, eruptions are coeval as proved by rhythmic variations of major and trace element contents of basalts from one line to another. The comb formation

  11. A Thermochronometric Approach to Understanding Exhumation in the Southern Colorado Rockies

    NASA Astrophysics Data System (ADS)

    Abbey, A. L.; Niemi, N. A.; Geissman, J. W.; Heizler, M. T.

    2015-12-01

    We use 40Ar/39Ar thermochronometry of hornblende, biotite and feldspar, coupled with apatite (U-Th-Sm)/He thermochronometry, to refine emplacement age and exhumation history of the latest Cretaceous Whitehorn Granodiorite, in the SW Front Range east of the Arkansas River Valley. The pluton intrudes Pennsylvanian and Precambrian wall rocks and has a surface exposure of ~8 km (E-W) by ~25 km (N-S). 40Ar/39Ar analysis on Whitehorn samples from two locations (2920 m and 2890 m) yield dates of 68.2 Ma and 69.1 Ma (hbl), 68.4 Ma and 68.9 Ma (bt), and 67.1 Ma and 74.2 Ma (kfs), respectively. AHe dates from 4 samples collected in Proterozoic wall rocks northwest of the Whitehorn pluton along a 625 m vertical transect, range from 56.9 Ma to 63.4 Ma, and 3 samples in a 345 m vertical transect east of the pluton range from 67.3Ma to 135.3Ma. Previous thermochronometric, paleomagnetic, and petrologic studies indicate Whitehorn pluton was emplaced at paleodepths of 8-10 km with ambient host rock temperatures of ~200°C, and insignificant tilting since then. We infer that, the biotite and hornblende Ar40/Ar39 dates record timing of pluton emplacement, and K-feldspar MDD modeling records post-emplacement cooling to ambient temperatures by 66 Ma. AHe dates record lower temperature (<60°C) cooling of the wall rocks and must reflect post-emplacement exhumation of the pluton and host rocks. The SW Front Range thus appears to have experienced rapid, large magnitude (~6-8 km) exhumation and differential uplift at ca. 60 Ma with respect to the SE Front Range. Presently, the southern Front Range is overlain by horizontal Oligocene volcanic rocks, deposited on a widespread regional erosion surface across the central CO Rockies. The preservation of Paleocene AHe dates below this regional surface suggests that it formed shortly after exhumation, and experienced < 2 km of reburial, or exhumation, from ~55 Ma until deposition of the Wall Mountain tuff at ca. 34 Ma. The Arkansas River cuts

  12. An integrated approach to study the exhumation of rocks in Neelum valley, NW Himalayas, Pakistan.

    NASA Astrophysics Data System (ADS)

    Turab, Syed Ali; Stüwe, Kurt; Stuart, Finlay M.; Chew, David M.

    2016-04-01

    Tectonics and erosion have both been suggested as alternative driving mechanisms for rapid exhumation of rocks in the western Himalayan syntaxis. This debate could be resolved by understanding the plan view-geometry of the exhumation of rocks in the region: does it follow the major structures?, or is it related to the drainage geometry? In order to resolve this geometry we have undertaken a low-temperature thermochronologic study, using crystalline rocks, of a critical region of the western syntaxis: Neelum valley region, Pakistan. Apatite (U-Th-Sm)/He (AHe), fission track (AFT) and U-Pb dating has been combined with geomorphic stream power analysis in order to discern the relationship of exhumation of rocks to tectonics (main faults) or erosion. Pooled AFT ages show a range of 2.2 ± 0.4 to 7.0 ± 0.4 Ma (1σ). Recoil corrected AHe ages exhibit a range from 2.0 ± 0.1 to 8.7 ± 0.5 Ma (1σ). U-Pb ages could be used to divide the samples in three groups: ages that are completely-, partly- and not- affected by Himalayan tectonics. The range of apatite U-Pb ages displayed by both completely- and partly- affected samples is from 17.0 to 43.0 Ma (2σ, unanchored, i.e. constrained by isochrones alone) and 6.0 to 48.3 Ma (2σ, anchored using the Stacey and Kramers terrestrial Pb evolution model). Stream power analysis of the Neelum river catchment indicates a region with high steepness index (Ksn, normalized to reference concavity, θref = 0.45) values of > 500 m0.9 which coincides well the region sampled. In combination with earlier published ages, our data indicate that exhumation contours run more or less parallel to the major structures in the region. The boundary between samples with unaffected and affected U-Pb ages as well as transition from high Ksn to lower Ksn values along the main Neelum river fits well with the mapped trace of the Main Central Thrust (MCT), corroborating the presence of the MCT in the southeastern parts of our study area. Thermal history

  13. Thermochronologic evidence for Miocene mid-crustal tectonic exhumation of the Huachuca Mountains, southeast Arizona

    NASA Astrophysics Data System (ADS)

    King, C. C.; Orme, D. A.; Biswas, A.; Reiners, P. W.

    2011-12-01

    Zircon double dating of detrital grains from the northward flowing upper San Pedro river valley at Murray Springs in southeastern Arizona yields abundant zircons with variable U/Pb crystallization ages of ~70-1400 Ma, but a restricted range of (U-Th)/He cooling ages of ~18-25 Ma. This combination of diverse formation ages but uniform mid-Miocene cooling ages is characteristic of zircons from the core complexes and deeply exhumed Santa Catalina, Rincon, and Pinaleno Mountains, which experienced tectonic exhumation from mid-crustal depths during mid-Miocene extension. But all these sources are far downstream or outside the watershed of the upper San Pedro valley. To trace the source of these detrital grains and understand the implications for regional tectonics, we also measured U/Pb and (U-Th)/He dates of zircons from the Tombstone Hills and Huachuca Mountains, proximal to the Murray Springs site. Magmatic rocks in the Tombstone Hills yielded U/Pb dates of 76-83 Ma and zircon He ages of 53-60 Ma. In contrast, crystalline basement of the Huachucas yields Cretaceous through 1.5-Ga U/Pb ages and zircon He ages of 17-25 Ma, with most between 21-22 Ma. These data require that a large region of the Huachucas contains rocks that cooled rapidly below temperatures of at least 180 oC in the mid-Miocene. Assuming typical geothermal gradients of 20-30 oC, this requires exhumation of at least 7-9 km of crust, likely within 1-2 Myr. While it is possible that erosion contributed, it is more likely that denudation was accommodated by deep tectonic exhumation. Faults are observed on the basin-bounding east-side of the Huachucas, but most are inferred to accommodate Laramide-age thrusting, and the normal faults have been interpreted as high-angle and unlikely to cause significant tectonic exhumation. Our new data suggest that a large part of the presently exposed Huachucas was exhumed from depths at least as great as ~7-9 km, requiring a considerable revision of structural

  14. Reconciling Geodetic Deformation and Long-term Exhumation Rates Across the Western Greater Caucasus

    NASA Astrophysics Data System (ADS)

    Avdeev, B.; Niemi, N. A.

    2011-12-01

    Low modern geodetic strain rates and minimal instrumentally recorded seismicity in the western Greater Caucasus contradict the the high topography, deep exhumation, and young low-temperature thermochronometric ages indicative of active tectonic deformation in this mountain range. We use new and existing low-temperature thermochronometric data to show that the rate of present-day convergence across the range is sufficient to sustain observed rates of long-term exhumation and topographic growth. Thus, it is possible that the western Greater Caucasus has existed in an erosional steady state since shortly after the onset of exhumation of the range in Pliocene. We employ a Markov chain Monte Carlo algorithm to estimate the parameters of a thermokinematic model constrained by thermochronometric data and a focal mechanism solution from the 1991 Racha earthquake. We find that the thermochronometric data are best fit by exhumation commencing at ~4 Ma and driven by 3-5 mm/y of overthrusting on the Main Caucasus thrust dipping 40-45° at the surface and becoming flat at a depth of 15-20 km. This long-term exhumation model was compared with active rates of convergence in the western Greater Caucasus using an elastic half-space deformation model to estimate the geometry and rate of slip on a buried dislocation that best fits the observed geodetic velocity field. The estimated active slip of 4-7 mm/y is comparable to the long-term rate of overthrusting and is, therefore, sufficient to produce the observed rock uplift. Up to 4 mm/y excess of active convergence may potentially be consumed by underthrusting of the Transcaucasus or on faults south of the Main Caucasus thrust. We conclude that high rates of rock uplift observed in the western Greater Caucasus are the result of focused shortening occurring on a single fault. This differs from the deformation style of the eastern Greater Caucasus, where a larger amount of shortening is distributed across the width of the range with

  15. Depositional Environment of Permian Tak Fa Formation, Nakhonsawan, Northern Thailand

    NASA Astrophysics Data System (ADS)

    Ketwetsuriya, Chatchalerm; Nützel, Alexander; Kanjanapayont, Pitsanupong

    2016-04-01

    The carbonate rocks of the study area at Amphoe Tak Fa and Amphoe Takhli, Changwat Nakhon Sawan belong to the Tak Fa Formation, Saraburi Group. This formation crops out in the Khao Khwang Platform and consists of late Palaeozoic carbonate platform deposits. It reaches a thickness of 900 meters and crops out in a vast area. The exposures have been measured and samples were collected for petrographic study. The rock consists of limestones, argillaceous limestones, mudstones and dolomites with nodular and banded cherts, which comprise many invertebrate fossils such as fusulinids, ammonoid, pelecypod, gastropod, coral and bryozoa. Many of the fossils are silicified. The gastropod assemblage is currently under study and represents one of the most diverse faunas reported from SE Asia. The age of the rock is Yakhtashian or Artinskian (late Early Permian) to Midian or Capitanian (late Middle Permian). The study of carbonate facies and fauna indicates that the depositional environment was on shelf lagoon within the carbonate platform varying from shallow marine to barrier bar.

  16. The end-Permian mass extinction: A complex, multicausal extinction

    NASA Technical Reports Server (NTRS)

    Erwin, D. H.

    1994-01-01

    The end-Permian mass extinction was the most extensive in the history of life and remains one of the most complex. Understanding its causes is particularly important because it anchors the putative 26-m.y. pattern of periodic extinction. However, there is no good evidence for an impact and this extinction appears to be more complex than others, involving at least three phases. The first began with the onset of a marine regression during the Late Permian and resulting elimination of most marine basins, reduction in habitat area, and increased climatic instability; the first pulse of tetrapod extinctions occurred in South Africa at this time. The second phase involved increased regression in many areas (although apparently not in South China) and heightened climatic instability and environmental degradation. Release of gas hydrates, oxidation of marine carbon, and the eruption of the Siberian flood basalts occurred during this phase. The final phase of the extinction episode began with the earliest Triassic marine regression and destruction of nearshore continental habitats. Some evidence suggests oceanic anoxia may have developed during the final phase of the extinction, although it appears to have been insufficient to the sole cause of the extinction.

  17. The Permian and Triassic in the Albanian Alps

    NASA Astrophysics Data System (ADS)

    Gaetani, Maurizio; Meço, Selam; Rettori, Roberto; Henderson, Charles M.; Tulone, Accursio

    2015-09-01

    The sedimentary succession of the Permian to Middle Triassic of the Albanian Alps is described, as part of the eastern Adria passive margin towards the Tethys. A carbonate ramp deepening towards NE in present day coordinates developed during the Middle Permian and was affected by block faulting with the deposition of carbonate breccia. The Early Triassic was characterized by intense terrigenous deposition with several cobble conglomerate units up to 80 m-thick, and by oolitic carbonate shoals. The fine clastic deposition ended gradually during the earliest Anisian and a wide calcarenitic ramp occupied the area, with small local carbonate mounds. Basinward, the red nodular limestone of the Han Bulog Formation was interbedded with calcarenitic material exported from the ramp. Drowning to more open conditions occurred towards the end of the Pelsonian. Subsequently, cherty limestone and tuffitic layers spread over the entire area. Towards the end of the Ladinian, with the end of the volcanic activity, red pelagic limestone was deposited locally for a short period. By the latest Ladinian most of the area returned to shallow-water conditions, with a peritidal carbonate platform. In the Theth area, in contrast, a basin with black organic-rich dolostone and limestone developed which seems to be unique in that part of the Adria passive margin. The occurrence of cobble conglomerate units in the Lower Triassic testifies to very active block faulting and high accommodation, not yet described for the area.

  18. Flourishing ocean drives the end-Permian marine mass extinction.

    PubMed

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2015-08-18

    The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian-Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth's history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness. PMID:26240323

  19. A potential biomarker for the Permian Triassic ecological crisis

    NASA Astrophysics Data System (ADS)

    Grice, Kliti; Twitchett, Richard J.; Alexander, Robert; Foster, C. B.; Looy, Cindy

    2005-07-01

    A unique biomarker, a C 33n-alkylcyclohexane ( n-heptacosylcyclohexane), which strongly increases in abundance within the extinction interval of the end-Permian ecological crisis, is here reported from the key Permian-Triassic (P-Tr) marine section in Greenland. Prior to this study, this compound had been known from Early Triassic organic-rich marine rocks and oils from the northern Perth Basin, Western Australia for two decades. We have identified the compound in high relative abundance in 29 samples from P-Tr marine sections from two separate paleogeographic localities, from Laurasia and Gondwana. Relative concentrations of the C 33n-alkylcyclohexane show similar changes to the relative abundances of extinct spinose acritarchs ( Veryhachium and Micrhystridium) indicating that the source organism of the C 33n-alkylcyclohexane is associated with the depositional environments/facies in which the acritarchs are identified. These organisms probably formed the cornerstone of the unique marine ecosystem that thrived in the extinction aftermath in the Early Triassic Ocean.

  20. Calcium isotope constraints on the end-Permian mass extinction

    PubMed Central

    Payne, Jonathan L.; Turchyn, Alexandra V.; Paytan, Adina; DePaolo, Donald J.; Lehrmann, Daniel J.; Yu, Meiyi; Wei, Jiayong

    2010-01-01

    The end-Permian mass extinction horizon is marked by an abrupt shift in style of carbonate sedimentation and a negative excursion in the carbon isotope (δ13C) composition of carbonate minerals. Several extinction scenarios consistent with these observations have been put forward. Secular variation in the calcium isotope (δ44/40Ca) composition of marine sediments provides a tool for distinguishing among these possibilities and thereby constraining the causes of mass extinction. Here we report δ44/40Ca across the Permian-Triassic boundary from marine limestone in south China. The δ44/40Ca exhibits a transient negative excursion of ∼0.3‰ over a few hundred thousand years or less, which we interpret to reflect a change in the global δ44/40Ca composition of seawater. CO2-driven ocean acidification best explains the coincidence of the δ44/40Ca excursion with negative excursions in the δ13C of carbonates and organic matter and the preferential extinction of heavily calcified marine animals. Calcium isotope constraints on carbon cycle calculations suggest that the average δ13C of CO2 released was heavier than -28‰ and more likely near -15‰; these values indicate a source containing substantial amounts of mantle- or carbonate-derived carbon. Collectively, the results point toward Siberian Trap volcanism as the trigger of mass extinction. PMID:20421502

  1. Western Tibet: Low-temperature thermochronology data and interpretation on exhumation history.

    NASA Astrophysics Data System (ADS)

    Gourbet, L.; Shuster, D. L.; Maheo, G.; Leloup, P. H.; Paquette, J.

    2013-12-01

    The Tibetan plateau is the highest and largest orogenic plateau in the world. Uplift of the plateau is related to the India-Asia collision. However, recent studies [1] suggest that peneplanation predates collision. This implies that a low-relief, low-elevation surface could have existed prior to the uplift and have therefore gained elevation following the India-Asia collision. Some models of long timescale, regional topographic evolution have been mostly based on low-temperature thermochronometry, but so far most data have been obtained in Central and Southern Tibet, where " plateau " conditions, (i.e. low exhumation rates), seem to have been reached prior to the collision [1,2]. Our study focuses on Western Tibet, where the landscape is internally drained and characterized by high local relief on the order of 2 km. We performed (U-Th)/He dating on 21 granitic samples collected in Western Tibet, between the Karakoram fault and the Pangong Co. Apatite (U-Th)/He ages from a vertical transect in the Rutog granite vary between 13.11 +/- 0.14 and 29.25 +/- 0.31 Ma and reveal a clear ages-elevation correlation. Based on the crystallization age of the sampled granite (74.4 +/- 1.9 Ma, U/Pb on zircons), apatite ages are not related to post-intrusion cooling but rather record exhumation or relief evolution. Mean apparent exhumation rate is ~67 m/Ma, which is significatively higher than rates estimated in central Tibet [1,2]. Western Tibet, as Central Tibet, is currently a cold, arid environment with low rates of river incision; modern exhumation rates are presumably similar to Central Tibet and extremely low (< 0.003 mm/a) [3]. Apparent exhumation rates are at least one-order-of-magnitude greater than modern exhumation rates; this suggests that exhumation slowed down after 13 Ma. A possible hypothesis to explain the cooling age difference between Central and Western Tibet is that internal drainage, responsible for low exhumation rates, was established later in Western Tibet

  2. Cooling and exhumation of continents at billion-year time scales

    NASA Astrophysics Data System (ADS)

    Blackburn, T.; Bowring, S. A.; Perron, T.; Mahan, K. H.; Dudas, F. O.

    2011-12-01

    The oldest rocks on Earth are preserved within the continental lithosphere, where assembled fragments of ancient orogenic belts have survived erosion and destruction by plate tectonic and surface processes for billions of years. Though the rate of orogenic exhumation and erosion has been measured for segments of an orogenic history, it remains unclear how these exhumation rates have changed over the lifetime of any terrane. Because the exhumation of the lithospheric surface has a direct effect on the rate of heat loss within the lithosphere, a continuous record of lithosphere exhumation can be reconstructed through the use of thermochronology. Thermochronologic studies have typically employed systems sensitive to cooling at temperatures <300 °C, such as the (U-Th)/He and 40Ar/39Ar systems. This largely restricts their application to measuring cooling in rocks from the outer 10 km of the Earth's crust, resulting in a thermal history that is controlled by either upper crustal flexure and faulting and/or isotherm inflections related to surface topography. Combining these biases with the uplift, erosion and recycling of these shallow rocks results in a poor preservation potential of any long-term record. Here, an ancient and long-term record of lithosphere exhumation is constructed using U-Pb thermochronology, a geochronologic system sensitive to cooling at temperatures found at 20-50 km depth (400-650 °C). Lower crustal xenoliths provide material that resided at these depths for billions of years or more, recording a thermal history that is buried deep enough to remain insensitive to upper crustal deformation and instead is dominated by the vertical motions of the continents. We show how this temperature-sensitive system can produce a long-term integrated measure of continental exhumation and erosion. Preserved beneath Phanerozoic sedimentary rocks within Montana, USA, the Great Falls Tectonic Zone formed when two Archean cratons, the Wyoming Province and Medicine

  3. Exhumation of high-pressure rocks beneath the Solund Basin, Western Gneiss Region of Norway

    USGS Publications Warehouse

    Hacker, B.R.; Andersen, T.B.; Root, D.B.; Mehl, L.; Mattinson, J.M.; Wooden, J.L.

    2003-01-01

    The Solund-Hyllestad-Lavik area affords an excellent opportunity to understand the ultrahigh-pressure Scandian orogeny because it contains a near-complete record of ophiolite emplacement, high-pressure metamorphism and large-scale extension. In this area, the Upper Allochthon was intruded by the c. 434 Ma Sogneskollen granodiorite and thrust eastward over the Middle/Lower Allochthon, probably in the Wenlockian. The Middle/Lower Allochthon was subducted to c. 50 km depth and the structurally lower Western Gneiss Complex was subducted to eclogite facies conditions at c. 80 km depth by c. 410-400 Ma. Within 100. Exhumation to upper crustal levels was complete by c. 403 Ma. The Solund fault produced the last few km of tectonic exhumation, bringing the near-ultrahigh-pressure rocks to within c. 3 km vertical distance from the low-grade Solund Conglomerate.

  4. Fission track ages and Exhumation mechanisms of the Tauern Window, Eastern Alps

    NASA Astrophysics Data System (ADS)

    Bertrand, Audrey; Rosenberg, Claudio; Garcia, Sebastian

    2010-05-01

    The Tauern Window (TW) is a thermal and structural dome which exposes Penninic basement, its cover units as well as parts of the overlying Austroalpine basement in the central part of the Eastern Alps. The peak of metamorphism was attained approximately at 30Ma (Selverstone et .al, 1992), followed by cooling and exhumation throughout Miocene time. Most of the tertiary exhumation of the Eastern Alps was localized in the TW, from Early Oligocene to late Miocene time. A current debate centers on the exhumation mechanisms of Penninic rocks in the core of the TW, namely to assess whether orogen-parallel extension (e.g., Selverstone, 1988) or a combination of folding and erosion (eg., Rosenberg et al., 2004) with subordinate extension were the controlling processes. E-W extension is well documented at the western (Brenner Fault) and eastern (Katschberg Fault) margins of the window (e.g., Behrmann, 1988; Selverstone, 1988; Genser and Neubauer, 1989). In contrast, upright folding dominates the internal structure of the dome, and in particular along its western part, where fold amplitudes, mostly eroded during folding, attained up to 10 km. This study attempts to assess the relative importance of folding and erosion and of orogen-parallel extension during exhumation by analyzing the spatial and temporal cooling patterns of apatite and zircon fission track ages. The compilation of published apatite and zircon fission track ages indicates a concentric younging of both the apatite and zircon ages toward the core of the TW. The concentric isochrones follow the map trace of the axial planes of the upright folds of the western and eastern TW. This cooling pattern is in contrast to the one expected by a process of extensional unroofing, which in map view would results in isochrons parallel to the extensional faults and progressively younging towards them (e.g., Foster et al., 2001). We therefore propose that folding and erosion were primarily responsible for exhuming the Penninic

  5. Contrasting styles of (U)HP rock exhumation along the Cenozoic Adria-Europe plate boundary (Western Alps, Calabria, Corsica)

    NASA Astrophysics Data System (ADS)

    Malusà, Marco G.; Faccenna, Claudio; Baldwin, Suzanne L.; Fitzgerald, Paul G.; Rossetti, Federico; Balestrieri, Maria Laura; Danišík, Martin; Ellero, Alessandro; Ottria, Giuseppe; Piromallo, Claudia

    2015-06-01

    Since the first discovery of ultrahigh pressure (UHP) rocks 30 years ago in the Western Alps, the mechanisms for exhumation of (U)HP terranes worldwide are still debated. In the western Mediterranean, the presently accepted model of synconvergent exhumation (e.g., the channel-flow model) is in conflict with parts of the geologic record. We synthesize regional geologic data and present alternative exhumation mechanisms that consider the role of divergence within subduction zones. These mechanisms, i.e., (i) the motion of the upper plate away from the trench and (ii) the rollback of the lower plate, are discussed in detail with particular reference to the Cenozoic Adria-Europe plate boundary, and along three different transects (Western Alps, Calabria-Sardinia, and Corsica-Northern Apennines). In the Western Alps, (U)HP rocks were exhumed from the greatest depth at the rear of the accretionary wedge during motion of the upper plate away from the trench. Exhumation was extremely fast, and associated with very low geothermal gradients. In Calabria, HP rocks were exhumed from shallower depths and at lower rates during rollback of the Adriatic plate, with repeated exhumation pulses progressively younging toward the foreland. Both mechanisms were active to create boundary divergence along the Corsica-Northern Apennines transect, where European southeastward subduction was progressively replaced along strike by Adriatic northwestward subduction. The tectonic scenario depicted for the Western Alps trench during Eocene exhumation of (U)HP rocks correlates well with present-day eastern Papua New Guinea, which is presented as a modern analog of the Paleogene Adria-Europe plate boundary.

  6. Changing exhumation patterns during Cenozoic growth and glaciation of the Alaska Range: Insights from detrital thermochronology and geochronology

    NASA Astrophysics Data System (ADS)

    Lease, Richard O.; Haeussler, Peter J.; O'Sullivan, Paul

    2016-04-01

    Cenozoic growth of the Alaska Range created the highest topography in North America, but the space-time pattern and drivers of exhumation are poorly constrained. We analyzed U/Pb and fission-track double dates of detrital zircon and apatite grains from 12 catchments that span a 450 km length of the Alaska Range to illuminate the timing and extent of exhumation during different periods. U/Pb ages indicate a dominant Late Cretaceous to Oligocene plutonic provenance for the detrital grains, with only a small percentage of grains recycled from the Mesozoic and Paleozoic sedimentary cover. Fission-track ages record exhumation during Alaska Range growth and incision and reveal three distinctive patterns. First, initial Oligocene exhumation was focused in the central Alaska Range at ~30 Ma and expanded outward along the entire length of the range until 18 Ma. Oligocene exhumation, coeval with initial Yakutat microplate collision >600 km to the southeast, suggests a far-field response to collision that was localized by the Denali Fault within a weak Mesozoic suture zone. Second, the variable timing of middle to late Miocene exhumation suggests independently evolving histories influenced by local structures. Time-transgressive cooling ages suggest successive rock uplift and erosion of Mounts Foraker (12 Ma) through Denali (6 Ma) as crust was advected through a restraining bend in the Denali Fault and indicate a long-term slip rate ~4 mm/yr. Third, Pliocene exhumation is synchronous (3.7-2.7 Ma) along the length of the Alaska Range but only occurs in high-relief, glacier-covered catchments. Pliocene exhumation may record an acceleration in glacial incision that was coincident with the onset of Northern Hemisphere glaciation.

  7. Exhumation of an eclogite terrane as a hot migmatitic nappe, Sveconorwegian orogen

    NASA Astrophysics Data System (ADS)

    Möller, Charlotte; Andersson, Jenny; Dyck, Brendan; Antal Lundin, Ildiko

    2015-06-01

    We demonstrate a case of eclogite exhumation in a partially molten, low-viscosity fold nappe within high-grade metamorphosed crust in the Eastern Segment of the Sveconorwegian orogen. The nappe formed during tectonic extrusion, melt-weakening assisted exhumation and foreland-directed translation of eclogitized crust, and stalled at 35-40 km depth within the collisional belt. The eclogites are structurally restricted to a regional recumbent fold in which stromatic orthogneiss with pods of amphibolitized eclogite make up the core. High-temperature mylonitic gneiss with remnants of kyanite eclogite (P > 15 kbar) composes a basal shear zone 50 km long and < 4 km wide. Heterogeneously sheared and partly migmatized augen gneiss forms a tectonostratigraphic marker in front of and beneath the nappe, and is in turn structurally enveloped by a composite sequence of orthogneisses and metabasites. The entire tectonostratigraphic pile underwent near-pervasive deformation and recrystallization under high-pressure granulite and upper amphibolite conditions. U-Pb SIMS metamorphic zircon ages of eclogite and stromatic orthogneiss constrain the time of eclogitization at 988 ± 6 Ma and 978 ± 7 Ma. Migmatization, concomitant deformation, and exhumation are dated at 976 ± 6 Ma, and crystallization of post-kinematic melt at 956 ± 7 Ma. Orthogneiss protoliths are dated at 1733 ± 11 and 1677 ± 10 Ma (stromatic gneiss) and 1388 ± 7 Ma (augen gneiss in footwall), demonstrating origins indigenous to the Eastern Segment. Eclogitization and exhumation were coeval with the Rigolet phase of the Grenvillian orogeny, reflecting the late stage of continental collision during construction of the supercontinent Rodinia.

  8. Post-orogenic exhumation history of a Variscan mid-crustal basement in Galicia (NW Spain)

    NASA Astrophysics Data System (ADS)

    Grobe, Rene; Alvarez-Marrón, Joaquina; Glasmacher, Ulrich A.; Stuart, Finlay; Castañeda-Zarauz, A.

    2010-05-01

    The present study aims to quantify the complex post-orogenic history of cooling, denudation, and long-term landscape evolution of a mid-crustal section of Variscan basement in Galicia (NW Spain). We use apatite fission-track and apatite (U-Th)/He thermochronological techniques combined with time-temperature (t-T) path modelling using the software code HeFTy©. The topography is characterized by an extensive, low relief area at ~500 m elevation in central Galicia, and a WNW-ESE ridge that reaches up to 1000 m to the North. The area experienced two major tectonic events since the end of the Variscan orogeny in the Late Palaeozoic: 1) continental break-up and Mesozoic rifting leading to the opening of the Atlantic Ocean and the Bay of Biscay, and 2) limited convergence between Iberia and Eurasia since Middle Eocene times. Apatite fission-track ages range from 68.1 ± 5.0 Ma to 174.5 ± 7.7 Ma and apatite (U-Th)/He ages range from 73.6 ± 5.4 to 147.1 ± 16.6 Ma. Age-elevation plots and t-T path modelling suggest a tectonothermal evolution with faster exhumation associated to faulting during Mesozoic rifting. In particular, two major fault systems trending WNW-ESE and NNE-SSW, the As Pontes and the Lugo faults respectively separate areas with the fastest exhumation around 115 Ma from areas with overall slow exhumation since 200-150 Ma. A landscape of subdued topography in central Galicia was acquired prior to Eocene convergence. The higher elevation areas along the northern ridge formed since Middle Eocene times due to fault reactivation and minor exhumation occurred along the fault escarpment.

  9. Ancestral Rocky Mountian Tectonics: A Sedimentary Record of Ancestral Front Range and Uncompahgre Exhumation

    NASA Astrophysics Data System (ADS)

    Smith, T. M.; Saylor, J. E.; Lapen, T. J.

    2015-12-01

    The Ancestral Rocky Mountains (ARM) encompass multiple crustal provinces with characteristic crystallization ages across the central and western US. Two driving mechanisms have been proposed to explain ARM deformation. (1) Ouachita-Marathon collision SE of the ARM uplifts has been linked to an E-to-W sequence of uplift and is consistent with proposed disruption of a larger Paradox-Central Colorado Trough Basin by exhumation of the Uncompahgre Uplift. Initial exhumation of the Amarillo-Wichita Uplift to the east would provide a unique ~530 Ma signal absent from source areas to the SW, and result in initial exhumation of the Ancestral Front Range. (2) Alternatively, deformation due to flat slab subduction along a hypothesized plate boundary to the SW suggests a SW-to-NE younging of exhumation. This hypothesis suggests a SW-derived Grenville signature, and would trigger uplift of the Uncompahgre first. We analyzed depositional environments, sediment dispersal patterns, and sediment and basement zircon U-Pb and (U-Th)/He ages in 3 locations in the Paradox Basin and Central Colorado Trough (CCT). The Paradox Basin exhibits an up-section transition in fluvial style that suggests a decrease in overbank stability and increased lateral migration. Similarly, the CCT records a long-term progradation of depositional environments from marginal marine to fluvial, indicating that sediment supply in both basins outpaced accommodation. Preliminary provenance results indicate little to no input from the Amarillo-Wichita uplift in either basin despite uniformly westward sediment dispersal systems in both basins. Results also show that the Uncompahgre Uplift was the source for sediment throughout Paradox Basin deposition. These observations are inconsistent with the predictions of scenario 1 above. Rather, they suggest either a synchronous response to tectonic stress across the ARM provinces or an SW-to-NE pattern of deformation.

  10. Burial, Uplift and Exhumation History of the Atlantic Margin of NE Brazil

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Bonow, Johan M.; Green, Paul F.; Cobbold, Peter R.; Chiossi, Dario; Lilletveit, Ragnhild

    2010-05-01

    We have undertaken a regional study of landscape development and thermo-tectonic evo-lution of NE Brazil. Our results reveal a long history of post-Devonian burial and exhuma-tion across NE Brazil. Uplift movements just prior to and during Early Cretaceous rifting led to further regional denudation, to filling of rift basins and finally to formation of the Atlantic margin. The rifted margin was buried by a km-thick post-rift section, but exhumation began in the Late Cretaceous as a result of plate-scale forces. The Cretaceous cover probably extended over much of NE Brazil where it is still preserved over extensive areas. The Late Cretaceous exhumation event was followed by events in the Paleogene and Neogene. The results of these events of uplift and exhumation are two regional peneplains that form steps in the landscape. The plateaux in the interior highlands are defined by the Higher Surface at c. 1 km above sea level. This surface formed by fluvial erosion after the Late Cretaceous event - and most likely after the Paleogene event - and thus formed as a Paleogene pene-plain near sea level. This surface was reburied prior to the Neogene event, in the interior by continental deposits and along the Atlantic margin by marine and coastal deposits. Neo-gene uplift led to reexposure of the Palaeogene peneplain and to formation of the Lower Surface by incision along rivers below the uplifted Higher Surface that characterise the pre-sent landscape. Our results show that the elevated landscapes along the Brazilian margin formed during the Neogene, c. 100 Myr after break-up. Studies in West Greenland have demonstrated that similar landscapes formed during the late Neogene, c. 50 Myr after break-up. Many passive continental margins around the world are characterised by such elevated plateaus and it thus seems possible, even likely, that they may also post-date rifting and continental separation by many Myr.

  11. Permian and Triassic rocks near Quinn River Crossing, Humboldt County, Nevada

    NASA Astrophysics Data System (ADS)

    Ketner, Keith B.; Wardlaw, Bruce R.

    1981-03-01

    Permian and Triassic rocks near Quinn River Crossing, Humboldt County, Nevada, consist of four structural blocks: (1) a Lower Permian volcanic block; (2) a Permian(?) chert-arenite block; (3) a Lower Permian limestone block; and (4) a Permian and Triassic block. The contacts between the Permian volcanic block and the others are interpreted as thrust faults or glide surfaces. None of these rocks are metamorphosed, in contrast to those of the surrounding mountain ranges. Each of the blocks is lithically similar in some respects to rocks of the Osgood Mountains area 80 km to the southeast. The fusulinid and brachiopod faunas of two of the blocks display affinities to those of the McCloud Limestone of northern California and the Coyote Butte Limestone of central Oregon, and the fauna of another block has elements in common with autochthonous rocks of eastern Nevada and Utah. All four blocks probably are allochthonous with respect to the rocks exposed in the surrounding mountain ranges, but their points of origin remain obscure. The rocks at Quinn River Crossing provide a link among the Permian rocks of north-central Nevada, northern California, and central Oregon and a possible key to their original relations, but more comparative data are needed.

  12. Evolution of a complex behavior: the origin and initial diversification of foliar galling by Permian insects

    NASA Astrophysics Data System (ADS)

    Schachat, Sandra R.; Labandeira, Conrad C.

    2015-04-01

    A central notion of the early evolution of insect galling is that this unique behavior was uncommon to rare before the diversification of angiosperms 135 to 125 m.yr. ago. However, evidence accumulated during recent years shows that foliar galls were diverse and locally abundant as early as the Permian Period, 299 to 252 m.yr. ago. In particular, a diversity of leaf galling during the Early Permian has recently been documented by the plant-damage record of foliar galls and, now, our interpretation of the body-fossil record of culprit insect gallers. Small size is a prerequisite for gallers. Wing-length measurements of Permian insects indicate that several small-bodied hemipteroid lineages originated early during the Permian, some descendant lineages of which gall the leaves of seed plants to the present day. The earliest foliar gallers likely were Protopsyllidiidae (Hemiptera) and Lophioneuridae (Thripida). Much of the Early Permian was a xeric interval, and modern galls are most common in dry, extra-tropical habitats such as scrubland and deserts. Plant-damage, insect body fossils, and the paleoclimate record collectively support the ecological expansion of foliar galling during the Early Permian and its continued expansion through the Late Permian.

  13. Evolution of a complex behavior: the origin and initial diversification of foliar galling by Permian insects.

    PubMed

    Schachat, Sandra R; Labandeira, Conrad C

    2015-04-01

    A central notion of the early evolution of insect galling is that this unique behavior was uncommon to rare before the diversification of angiosperms 135 to 125 m.yr. ago. However, evidence accumulated during recent years shows that foliar galls were diverse and locally abundant as early as the Permian Period, 299 to 252 m.yr. ago. In particular, a diversity of leaf galling during the Early Permian has recently been documented by the plant-damage record of foliar galls and, now, our interpretation of the body-fossil record of culprit insect gallers. Small size is a prerequisite for gallers. Wing-length measurements of Permian insects indicate that several small-bodied hemipteroid lineages originated early during the Permian, some descendant lineages of which gall the leaves of seed plants to the present day. The earliest foliar gallers likely were Protopsyllidiidae (Hemiptera) and Lophioneuridae (Thripida). Much of the Early Permian was a xeric interval, and modern galls are most common in dry, extra-tropical habitats such as scrubland and deserts. Plant-damage, insect body fossils, and the paleoclimate record collectively support the ecological expansion of foliar galling during the Early Permian and its continued expansion through the Late Permian. PMID:25783809

  14. Relating orogen width to shortening, erosion, and exhumation during Alpine collision

    NASA Astrophysics Data System (ADS)

    Rosenberg, C. L.; Berger, A.; Bellahsen, N.; Bousquet, R.

    2015-06-01

    We investigate along-strike width changes of the thickened, accreted lower plate (TALP) in the Central and in the Eastern Alps. We set the width of the TALP in relation to the inferred amount of collisional shortening and exhumation along six orogen-scale cross sections. Taking the present-day, along-strike gradients in the amount of collisional shortening to represent the temporal evolution of the collisional wedge, it may be concluded that the cross-sectional area of the TALP diminishes during ongoing shortening, indicating that the erosional flux outpaced the accretionary flux. Higher amounts of collisional shortening systematically coincide with smaller widths of the TALP and dramatic increases of the reconstructed eroded rock column. Higher amounts of shortening also coincide with larger amplitudes of orogen-scale, upright folds, with higher exhumation and with higher exhumation rates. Hence, erosion did play a major role in reducing by >30 km the vertical crustal thickness in order to accommodate and allow shortening by folding. Long-term climate differences cannot explain alternating changes of width by a factor of almost 2 along straight segments of the orogen on length scales less than 200 km, as observed from the western Central Alps to the easternmost Eastern Alps. Sedimentary or paleontological evidences supporting such paleo-climatic differences are lacking, suggesting that erosional processes did not directly control the width of the orogen.

  15. Exhumation history of the Mindoro, Philippine and its implication to mountain building process.

    NASA Astrophysics Data System (ADS)

    Wei, S. C.

    2014-12-01

    Exhumation history of the Mindoro, Philippine and its implication to mountain building process Chung-Wei Shiu1,Yuan-Hsi Lee1, Reuy-juin Rau2, Toto Bacolcol3 Department of Earth and Environmental Sciences, National Chung-Cheng university, Taiwan Department of earth science, National Cheng Kung University, Taiwan Department of science and technology, Philippine institute of volcanology and seismology The Mindoro orogenic belt is result from the collision between the Palawan continental crust and Philippine Mobile zone. In this study we report the zircon fission track ages to identify the timing of rapid exhumation of Mindoro orogenic belt. The NNW striking East Mindoro fault (EMF) separates the mountain belt and Luzon arc block. The highest mountain reaches to 2500m on hanging wall of the EMF. In the western side of the EMF the mountain belt can be separate into two blocks by NW trending Mindoro suture zone. To the north and south are Mindoro block and north Palawan block, respectively. The Mindoro block is major comprised of unmetamorphic Eocene strata and Mindoro metamorphic complex. The oldest zircon reset fission track ages shows 4-5 Ma in eastern and western side of the Mindoro metamorphic complex which infers the timing of rapid exhumation since ca. 5Ma which indicate the timing of collision between the Palawan block and Luzon arc.

  16. Regional flow perturbation folding within an exhumation channel: A case study from the Cycladic Blueschists

    NASA Astrophysics Data System (ADS)

    Xypolias, P.; Alsop, G. I.

    2014-05-01

    Kilometre-scale cylindrical folds and associated parasitic folds that trend at small angles to the transport lineation are analysed along a 100-km-long transport-normal segment of the Cycladic Blueschists in an attempt to reconstruct the 3D structural architecture within an exhumation channel. Reversals in the polarity of both fold vergence and the hinge/lineation obliquity occur in a flow-normal direction, defining transport-parallel culmination and depression surfaces that root downwards onto an underlying detachment. Fold patterns generated around culmination and depression surfaces support models of flow-perturbation folding where folds initiate at small angles or sub-parallel to transport in response to wrench-dominated differential shearing. Successive culmination and depression surfaces are separated from one another by along strike distances of ˜20 km, although atypical fold geometries developed in the flanks of major culmination and depressions follow their own patterns, revealing that smaller perturbations occur within the larger scheme. Major culminations are interpreted to reflect regions of surging flow marked by increased velocity during exhumation, whilst the opposite is true for depressions. This behaviour implies that on a regional scale, differential shear varies laterally in an irregular-sinusoidal manner defining areas of relative high and relative low displacement within the exhumation channel.

  17. Regional structural cross sections, mid-permian to quaternary strata, Texas Panhandle and Eastern New Mexico

    SciTech Connect

    McGookey, D.A.; Gustavson, T.C.; Hoadley, A.D.

    1989-01-01

    Twelve regional cross sections (with text) of the Palo Duro, Dalhart, and Anadarko Basins illustrating the tabular geometry of Permian evaporite beds, areas where salt has been lost by dissolution, and the effects of dissolution-induced subsidence on Permian and post-Permian strata. The authors identify areas of dissolution beneath the High Plains, the Caprock Escarpment, the Rolling Plains, the Pecos Plains, and along the Canadian River valley. The cross sections are printed at a vertical scale of 1 inch equals 400 feet and a horizontal scale of 1 inch equals approximately 8 miles and were constructed using geophysical logs, sample logs, and surficial geologic data.

  18. Appalachian Piedmont landscapes from the Permian to the Holocene

    NASA Astrophysics Data System (ADS)

    Cleaves, Emery T.

    1989-09-01

    Between the Potomac and Susquehanna Rivers and from the Blue Ridge to the Fall Zone, landscapes of the Piedmont are illustrated for times in the Holocene, Late Wisconsin, Early Miocene, Early Cretaceous, Late Triassic, and Permian. Landscape evolution took place in tectonic settings marked by major plate collisions (Permian), arching and rifting (Late Triassic) and development of the Atlantic passive margin by sea floor spreading (Early Cretaceous). Erosion proceeded concurrently with tectonic uplift and continued after cessation of major tectonic activity. Atlantic Outer Continental Shelf sediments record three major erosional periods: (1) Late Triassic-Early Jurassic; (2) Late Jurassic-Early Cretaceous; and (3) Middle Miocene-Holocene. The Middle Miocene-Holocene pulse is related to neotectonic activity and major climatic fluctuations. In the Piedmont upland the Holocene landscape is interpreted as an upland surface of low relief undergoing dissection. Major rivers and streams are incised into a landscape on which the landforms show a delicate adjustment to rock lithologies. The Fall Zone has apparently evolved from a combination of warping, faulting, and differential erosion since Late Miocene. The periglacial environment of the Late Wisconsin (and earlier glacial epochs) resulted in increased physical erosion and reduced chemical weathering. Even with lowered saprolitization rates, geochemical modeling suggests that 80 m or more of saprolite may have formed since Late Miocene. This volume of saprolite suggests major erosion of upland surfaces and seemingly contradicts available field evidence. Greatly subdued relief characterized the Early Miocene time, near the end of a prolonged interval of tropical morphogenesis. The ancestral Susquehanna and Potomac Rivers occupied approximately their present locations. In Early Cretaceous time local relief may have been as much as 900 m, and a major axial river draining both the Piedmont and Appalachians flowed southeast

  19. Appalachian Piedmont landscapes from the Permian to the Holocene

    USGS Publications Warehouse

    Cleaves, E.T.

    1989-01-01

    Between the Potomac and Susquehanna Rivers and from the Blue Ridge to the Fall Zone, landscapes of the Piedmont are illustrated for times in the Holocene, Late Wisconsin, Early Miocene, Early Cretaceous, Late Triassic, and Permian. Landscape evolution took place in tectonic settings marked by major plate collisions (Permian), arching and rifting (Late Triassic) and development of the Atlantic passive margin by sea floor spreading (Early Cretaceous). Erosion proceeded concurrently with tectonic uplift and continued after cessation of major tectonic activity. Atlantic Outer Continental Shelf sediments record three major erosional periods: (1) Late Triassic-Early Jurassic; (2) Late Jurassic-Early Cretaceous; and (3) Middle Miocene-Holocene. The Middle Miocene-Holocene pulse is related to neotectonic activity and major climatic fluctuations. In the Piedmont upland the Holocene landscape is interpreted as an upland surface of low relief undergoing dissection. Major rivers and streams are incised into a landscape on which the landforms show a delicate adjustment to rock lithologies. The Fall Zone has apparently evolved from a combination of warping, faulting, and differential erosion since Late Miocene. The periglacial environment of the Late Wisconsin (and earlier glacial epochs) resulted in increased physical erosion and reduced chemical weathering. Even with lowered saprolitization rates, geochemical modeling suggests that 80 m or more of saprolite may have formed since Late Miocene. This volume of saprolite suggests major erosion of upland surfaces and seemingly contradicts available field evidence. Greatly subdued relief characterized the Early Miocene time, near the end of a prolonged interval of tropical morphogenesis. The ancestral Susquehanna and Potomac Rivers occupied approximately their present locations. In Early Cretaceous time local relief may have been as much as 900 m, and a major axial river draining both the Piedmont and Appalachians flowed southeast

  20. Eocene extensional exhumation of basement and arc rocks along southwesternmost Peru, Central Andes.

    NASA Astrophysics Data System (ADS)

    Noury, Mélanie; Bernet, Matthias; Sempéré, Thierry

    2014-05-01

    The overthickened crust of the current Central Andes is commonly viewed as the result of tectonic shortening. However, in the present-day terrestrial forearc and arc of southwesternmost Peru, crustal thickness increases from 30 km along the coastline to >60 km below the active arc, whereas the upper crust exhibits little to no evidence of crustal shortening and, in constrast, many extensional features. How (and when) crustal overthickness was acquired in this region is thus little understood. Because crustal overthickening often results in extensional collapse and/or significant erosion, here we address this issue through a regional-scale study of exhumation using fission-track thermochronology. The limited fission-track data previously available in the area suggested that exhumation began during the Mesozoic. In this study, we present new apatite and zircon fission-track data obtained along the current terrestrial forearc of southwesternmost Peru. This relatively restricted area presents the interest of providing extensive outcrops of Precambrian to Ordovician basement and Early Jurassic to Late Cretaceous arc plutons. In order to compare the chronology of exhumation of these units, we performed extensive sampling for fission-track dating, as well as structural mapping. Our results indicate that the basement rocks and Jurassic plutons that crop out in the Arequipa region, where the crust is now >50 km-thick, experienced a rapid cooling through the 240-110°C temperature range between ~65 and ~35 Ma. This period of rapid exhumation coincided in time with the accumulation of terrestrial forearc deposits (the Lower Moquegua Group), that exhibit many syn-sedimentary extensional features and are bounded by conspicuous normal faults, specifically along the region where intense activity of the main arc between ~90 and ~60 Ma had led to voluminous magma emplacement. This close succession of (1) intense magmatic activity and (2) regional-scale exhumation associated with

  1. Cenozoic exhumation history of Sulu terrane: Implications from (U-Th)/He thermochrology

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Monié, Patrick; Wang, Fei; Lin, Wei; Ji, Wenbin; Bonno, Michael; Münch, Philippe; Wang, Qingchen

    2016-03-01

    The Qinling-Dabie-Sulu orogen is the most prominent Phanerozoic orogenic belt in China. The discovery of ultra-high pressure (UHP) minerals in zircon inclusions suggests that the crust was subducted to deeper than 120 km into the mantle and then exhumed to shallow crustal. Recently, low temperature thermochronology has been applied to constrain the final exhumation of Dabie Shan, while there are few studies describing the Cenozoic exhumation history of the Sulu belt. Here we report some (U-Th)/He ages for various lithologies from Sulu Orogenic belt and its northern part-Jiaobei terrane. The single grain He ages range between 18 and 154 Ma, and most of the samples having large intra-sample age scattering. Several reasons such as invisible U/Th-rich inclusions, grain size effect, slow cooling rate, and zonation of parent nuclide or radiation damage effect may account for this dispersion. For all samples, the pattern of the single grain age data exhibits a peak at ~ 45 Ma which is consistent with the borehole fission-track age pattern in adjacent Hefei Basin. Both (U-Th)/He and fission track ages of the Sulu area suggest an enhanced exhumation/cooling in Early-Middle Eocene in the southern part of Tan-Lu fault zone. This enhanced cooling event coincides with rapid subsidence of North China Basin and rapid uplift of its surrounding reliefs, which indicates basin-mountain coupling. This Eocene event is widespread in central China and could be far-field consequence of India-Asia collision. The convergence rate between Pacific Plate and Eurasia decreased substantially during early Tertiary and reached a minimum in Eocene (~ 30-40 mm/yr) while at the same time the collision between India and Asia was completed. Therefore, the Cenozoic exhumation history of the Sulu Orogenic Belt was a combined result of far-field effect of India-Asia collision and declined subduction rate of the Pacific Plate under Eurasia.

  2. Burial and exhumation history of the Polish Outer Carpathians: Discriminating the role of thrusting and post-thrusting extension

    NASA Astrophysics Data System (ADS)

    Andreucci, B.; Castelluccio, A.; Jankowski, L.; Mazzoli, S.; Szaniawski, R.; Zattin, M.

    2013-11-01

    Several tectonic processes have been proposed to be important in the Alpine to the recent evolution of the Polish Outer Carpathians, i.e., Paleogene-Neogene thrusting, post-thrusting extension, Quaternary reactivation of compression. This work tests the effect of these processes on exhumation of the wedge, in order to verify their timing and relative role in shaping the Polish Outer Carpathians. AFT, AHe and ZHe analyses were performed on samples collected along the study region. This allowed the reconstruction of their post-depositional minimum heating, depth of burial and timing of cooling and exhumation. After deposition samples from the innermost units were heated up to temperatures of ca. 60-120 °C (ca. 4-9 km), whereas samples from the outer units were heated to temperatures lower than 60 °C (ca. 4 km). Cooling and exhumation occurred progressively later from west to east (between ca. 25 and 10 Ma in the western sector, between ca. 15 and 5 Ma in the eastern sector). These results have been put in relationship with single structural features to understand the relative role of thrusts and normal faults. In the eastern sector of the study region samples at the footwall of significant normal faults show a higher degree of reset and younger ages than samples located at the hangingwall. This implies that, in this sector, extensional tectonics played an important role in exhumation. However, proper tectonic exhumation only had a minor role, the major exhumation mechanism being erosion, which is enhanced in the footwalls and reduced in the hangingwalls. In the western sector of the Polish Outer Carpathians only in few cases evidence of enhanced erosion to the footwall of major normal faults could be observed based on the present data. In this region the wedge exhumed mainly as a response to thrusting and normal faulting only played a minor role, locally modifying the pattern of erosion. Finally no major exhumation events occurred after Miocene, pointing to a minor

  3. Multiple broadly synchronous km-scale exhumation episodes on different continents: implications for controlling processes

    NASA Astrophysics Data System (ADS)

    Green, Paul; Duddy, Ian; Japsen, Peter

    2015-04-01

    Numerous low temperature thermochronology studies have defined regional cooling episodes which imply removal of several km of section over areas of several 104 km2. The origin of such events has long been the subject of debate, while their reality has sometimes been questioned because of the lack of a viable mechanism. Kilometre-scale denudation at rifted margins has traditionally been interpreted as related to rifting and breakup, magnified by the flexural response to denudation of the uplifted rift flanks. But it is now clear that at many margins the post-breakup history is more complex, with km-scale uplift and erosion commonly post-dating breakup by 10s of Myr and often affecting regions many 100s of kilometres inland of the margins (Green et al., 2013; Brown et al., 2014). Numerous examples around the world of km-scale exhumation affecting regions distant from continental margins, including cratonic regions traditionally regarded as stable over Phanerozoic time (e.g. Ault et al., 2009; Flowers & Kelley, 2011), cannot be explained by margin-related mechanisms. It has also become clear that periods of exhumation are separated by episodes of burial, defining a series of positive and negative vertical movements. Previous studies have defined a broad synchroneity of Early, Middle and Late Cenozoic exhumation events in regions from Alaska to Greenland, Norway and Svalbard (Green and Duddy, 2010). New results from SE Australia define a series of exhumation episodes ranging in time from Carboniferous to Cenozoic which are broadly synchronous with similar events previously defined in Brazil and South Africa (Green et al. 2013). While estimates of the timing of exhumation in different areas are subject to some uncertainty, data across three southern hemisphere continents show a broad synchronicity in similar fashion to the northern hemisphere examples cited above. Dynamic topography has been invoked as a possible mechanism for producing uplift, the effects of which

  4. Neogene exhumation of the Internal Rif units (Northern Morocco) evidenced by low- temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Romagny, Adrien; Munch, Philippe; Corsini, Michel; Azdimoussa, Ali; Arnaud, Nicolas; Monié, Patrick; Bonno, Michael; Vazquez, Mercedes

    2013-04-01

    The Rif Chain (Northern Morocco) belongs, with the Betic Cordillera (Southern Spain) to the westernmost part of the Alpine belt. There, the Beni Bousera peridotite massif is exhumed and corresponds to one of the deepest exhumed lithospheric rocks of the chain. Tectono-metamorphic studies showed that the internal units were subjected to very fast exhumation during the late Oligocene - early Miocene interval in relation with a crustal thinning and the Alboran sea rifting (synthesis in Chalouan et al., 2008). However, no data are available for the subsequent period despite that Neogene uplift sediments are well known in the internal domain since the work of Wildi and Wernli (1977) and predicted during the Messinian by thermomecanical modelling (Duggen et al., 2003). We present here for the first time a low temperature thermochronologic study (apatite (U-Th)/He and fission tracks; AHe and AFT) of these rocks in order to date and quantify the Neogene exhumation history of internal units of the Rif Chain. Most AHe ages are comprised between 14.25 ± 0.21 and 21.32 ± 0.31 Ma however some are younger (e.g. 6.92 ± 0.14 Ma). AHe ages are closed to fission tracks ages, indicating a very rapid cooling. Moreover they do not show any clear age-elevation relationship that is consistent with a very rapid cooling. Youngest ages correspond to apatite with low eU concentration and thus are interpreted in terms of lower closure temperatures. We performed thermal modelling with HeFTy software (Ehlers et al., 2005; Ketcham et al., 2007) on fission tracks lengths and He diffusion data as they provide a statistical but more complete temperature-time history for the samples. We also used available 40Ar/39Ar data on biotite and field data to better constrain thermal modelling. Exhumation occurred in two main steps: i) a very rapid cooling between 22 and 17 Ma until rocks reached the top of the PAZ (80 to 60°C) at a rate of ~70 to 120°C/Ma) and ii) a very slow cooling between 17 and 4 Ma

  5. Mesozoic burial, Mesozoic and Cenozoic exhumation of the Funeral Mountains core complex, Death Valley, Southeastern California

    NASA Astrophysics Data System (ADS)

    Beyene, Mengesha Assefa

    2011-12-01

    The Funeral Mountains of Death Valley National Park, CA, provide an opportunity to date metamorphism resulting from crustal shortening and subsequent episodic extensional events in the Sevier hinterland. It was not clear whether crustal shortening and thus peak temperature metamorphism in the hinterland of the Sevier-Laramide orogenic wedge have occurred whether in Late Jurassic, Early Cretaceous, Late Cretaceous or somewhere between. Particularly ambiguous is the timing of crustal shortening in the deep levels of the hinterland of the Sevier belt, now manifest in the metamorphic core complexes, and how and when these middle-to-lower crustal rocks were exhumed. A 6-point garnet and a whole rock Savillax isochron from middle greenschist facies pelitic schist of the southeastern Funeral Mountains core complex yields an age of 162.1 +/- 5.8 Ma (2sigma). Composite PT paths determined from growth-zoned garnets from the same samples show a nearly isothermal pressure increase of ˜2 kbar at ˜490°C, suggesting thrust burial at 162.1 +/- 5.8 Ma. A second sample of Johnnie Formation from the comparatively higher metamorphic grade area to the northwest (East of Chloride Cliff) yielded an age of 172.9 +/- 4.9 Ma (2sigma) suggesting an increase of thrust burial age towards the higher grade rocks (northwest part of the core complex), consistent with paleo-depth interpretation and metamorphic grade. 40Ar/ 39Ar muscovite ages along footwall of the Boundary Canyon detachment fault and intra-core Chloride Cliff shear zone exhibit significant 40Ar/39Ar muscovite age differences. For samples from the immediate footwall of BCD, the pattern of ages decreasing toward the northwest is consistent with differences in depth of metamorphism, and for Late Cretaceous, top-to-northwest exhumation by motion along the precursor BCD; consistent with mesoscopic and microscopic kinematic studies. Samples from the footwall of the structurally-lower Chloride Cliff shear zone yield Tertiary 40Ar/39Ar

  6. Karst in Permian evaporite rocks of western Oklahoma

    SciTech Connect

    Johnson, K.S. )

    1993-02-01

    Bedded evaporites (gypsum and salt) of Permian age have been dissolved naturally by ground water to form a major evaporite-karst region in western Oklahoma. The Blaine Formation and associated evaporites comprise 100--800 ft of strata that dip gently into broad, structural basins. Outcropping gypsum, dolomite, and red-bed shales of the Blaine display typical karstic features, such as sinkholes, caves, disappearing streams, and springs. Large caves are developed in gypsum beds 10--30 ft thick at several places, and a major gypsum/dolomite karst aquifer provides irrigation water to a large region in southwestern Oklahoma, where salt layers above and below the Blaine Formation have been partly dissolved at depths of 30--800 ft below the land surface. Salt dissolution causes development of brine-filled cavities, into which overlying strata collapse, and the brine eventually is emitted at the land surface in large salt plains.

  7. Methanogenic burst in the end-Permian carbon cycle

    PubMed Central

    Rothman, Daniel H.; Fournier, Gregory P.; French, Katherine L.; Alm, Eric J.; Boyle, Edward A.; Cao, Changqun; Summons, Roger E.

    2014-01-01

    The end-Permian extinction is associated with a mysterious disruption to Earth’s carbon cycle. Here we identify causal mechanisms via three observations. First, we show that geochemical signals indicate superexponential growth of the marine inorganic carbon reservoir, coincident with the extinction and consistent with the expansion of a new microbial metabolic pathway. Second, we show that the efficient acetoclastic pathway in Methanosarcina emerged at a time statistically indistinguishable from the extinction. Finally, we show that nickel concentrations in South China sediments increased sharply at the extinction, probably as a consequence of massive Siberian volcanism, enabling a methanogenic expansion by removal of nickel limitation. Collectively, these results are consistent with the instigation of Earth’s greatest mass extinction by a specific microbial innovation. PMID:24706773

  8. Mg Isotopes of the Late Permian Evaporites, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Feng, C.; Gao, C. H.; Chang, S. C.

    2015-12-01

    Mg isotope holds promise to decipher the evaporative environment of evaporites. High-precision Mg isotope compositions of the late Permian langbeinites have been measured by using MC-ICPMS. The equilibrium Mg isotope fractionation factor between langbeinite and aqueous Mg2+ solutions has been determined using quantum chemistry calculations. All computations are employed at B3LYP/6-311++G(2d,2p) level and solvation effects are treated by solvent model ("water-droplet" approach), mineral structures are constructed using volume variable cluster models (VVCM). The Mg isotope compositions of the langbeinite samples, whose total formation thickness ranges up to 100 meters, are extremely isotopically lighter than that of modern seawater and relatively homogeneous (δ26MgDSM3 is from -4.12±0.03‰ to -3.81±0.07‰ v.s. -0.83‰ of modern seawater). The computed equilibrium Mg isotope fractionation factors between langbeinite and aqueous Mg2+ solutions are -2.73‰, -2.66‰ and -2.53‰ at 25, 30 and 40 ℃, respectively. These significant equilibrium fractionation factors indicate that a huge equilibrium Mg isotope fractionation between langbeinite and its parent brine can happen during langbeinite depositions, and langbeinites are enriched in isotopically light 24Mg comparing to the brine. Using the computed fractionation factors to simulate a Rayleigh fractionation process of langbeinite Mg precipitation, we find that a significant Mg isotope difference between langbeinite and its growing brine (seawater) is indeed present but the Mg isotope composition of langbeinite merely increase monotonically in a closed system. Because of that, the homogenous Mg isotope compositions of such a thick evaporite sequence suggest a disequlibrium effect rather than an equilibrium Mg isotope fractionation behavior during its formation. Combined with its prevailing Mg-bearing character, the homogenous Mg isotope compositions reveal that this the late Permian langbeinite sequence has

  9. No reff-rimmed margins to the Permian carbonate platforms of Thailand

    NASA Astrophysics Data System (ADS)

    Dawson, Orapin; Baird, Angus; Bosence, Dan

    In the central Thailand platform, marginal buildups (Early Permian) are formed mainly by fossiliferous grainstones with boundstones occurring only as small biostrome. Boundstones have a dominant skeletal element of encrusting Archaelithoporella and Tubiphytes with calcisponges and abundant syndepositional marine cements. This boundstone texture is similar to that of many other well documented Permian examples, such as El Capitan, U.S.A. and Trogkofel, Austria. In the Ratburi area of Peninsular Thailand, small bioherms (Middle Permian) are interbedded within grainstone shoals. Boundstone textures are matrix rich, with bryozoa, the main skeletal element and Tubiphytes, the main binding element. The Peninsular Thailand buildups formed on platform interior ridges and not in a shelf marginal position. These small biostromal and biohermal buildups in central and Peninsular Thailand did not form massive shelf-margin reef bodies as have been described from Permian platforms in western U.S.A. and southern China.

  10. Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Eshet, Yoram; Rampino, Michael R.; Visscher, Henk

    1995-11-01

    The end of the Permian Period was marked by the most severe mass extinction in the geologic record. Detailed quantitative study of pollen and spores from shallow-marine deposits spanning the Permian-Triassic (P-Tr) boundary in Israel reveals a sequence of palynological-ecological stages reflecting a major crisis among land plants. The disappearance of the gymnosperm-dominated palynoflora of the Late Permian Lueckisporites virkkiae Zone is recorded at a claystone horizon containing almost exclusively abundant fungal remains and carbonized terrestrial plant debris. This “fungal spike” is followed by a zone dominated by marine acritarchs and a succession showing ecological recovery with abundant lycopod spores and eventual reappearance of bisaccate gymnosperm pollen in the Early Triassic. The latest Permian proliferation of fungi is recognizable worldwide and can be correlated with other paleontological and geochemical markers of a global ecological disaster.

  11. New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal

    NASA Astrophysics Data System (ADS)

    Satterfield, Cindy L.; Lowenstein, Tim K.; Vreeland, Russell H.; Rosenzweig, William D.; Powers, Dennis W.

    2005-04-01

    The purported oldest living organism, the spore-forming bacterium Virgibacillus sp. Permian strain 2 9-3, was recently cultured from a brine inclusion in halite of the 250 Ma Permian Salado Formation. However, the antiquity of Virgibacillus sp. 2 9-3 has been challenged; it has been argued that the halite crystal and the fluid inclusion from which the bacterial spores were extracted may be younger than the Permian Salado salts. Here we report that brine inclusions from the same layer of salt that housed Virgibacillus sp. 2 9-3 are composed of evaporated Late Permian seawater that was trapped in halite cement crystals precipitated syndepositionally from shallow groundwater brines at temperatures of 17 37 °C. These results support the 250 Ma age of the fluid inclusions, and by inference, the long-term survivability of microorganisms such as Virgibacillus sp. 2 9-3.

  12. Exhumation of Basement-cored Uplifts: Example of the Kyrgyz Range Quantified with Apatite Fission-track Thermochronology

    NASA Technical Reports Server (NTRS)

    Sobel, Edward R.; Oskin, Michael; Burbank, Douglas; Mikolaichuk, Alexander

    2005-01-01

    The Kyrgyz Range, the northernmost portion of the Kyrgyzstan Tien Shan, displays topographic evidence for lateral propagation of surface uplift and exhumation. The highest and most deeply dissected segment lies in the center of the range. To the east, topography and relief decrease, and preserved remnants of a Cretaceous regional erosion surface imply minimal amounts of bedrock exhumation. The timing of exhumation of range segments defines the lateral propagation rate of the range-bounding reverse fault and quantifies the time and erosion depth needed to transform a mountain range from a juvenile to a mature morphology. New apatite fission-track (AFT) data from three transects from the eastern Kyrgyz Range, combined with published AFT data, demonstrate that the range has propagated over 110 km eastwards over the last 7-11 Myr. Based on the thermal and topographic evolutionary history, we present a model for a time-varying exhumation rate driven by rock uplift and changes in erodability and the time scale of geomorphic adjustment to surface uplift. Easily eroded, Cenozoic sedimentary rocks overlying resistant basement control early, rapid exhumation and slow surface upliftrates. As increasing amounts of resistant basement are exposed, exhumation rates decrease while surface uplift rates are sustained or increase, thereby growing topography. As the range becomes high enough to cause ice accumulation and develop steep river valleys, fluvial and glacial erosion become more powerful and exhumation rates once again increase. Independently determined range-noma1 shortening rates have also varied over time, suggesting a feedback between erosional efficiency and shortening rate.

  13. The history of the Arabian platform evolution in the Late Permian and Triassic

    SciTech Connect

    Bebeshev, I.I.

    1995-03-01

    On the basis of comprehensive investigations of the Upper Permian and Triassic sequences of the Arabian platform, three stages were recognized, corresponding to distinct time intervals. The first stage corresponds to the Latest Permian-Early Triassic, the second - to the Early-Middle Triassic, the third - to the Late Triassic. Special maps were plotted for the second and third stages, reflecting major paleogeographic and paleotectonic events. An effort was made to test the oil potential of the sequences.

  14. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10`` to 20`` API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  15. Feasibility study of heavy oil recovery in the Permian Basin (Texas and New Mexico)

    SciTech Connect

    Olsen, D.K.; Johnson, W.I.

    1993-05-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Permian Basin of West Texas and Southeastern New Mexico is made up of the Midland, Delaware, Val Verde, and Kerr Basins; the Northwestern, Eastern, and Southern shelves; the Central Basin Platform, and the Sheffield Channel. The present day Permian Basin was one sedimentary basin until uplift and subsidence occurred during Pennsylvanian and early Permian Age to create the configuration of the basins, shelves, and platform of today. The basin has been a major light oil producing area served by an extensive pipeline network connected to refineries designed to process light sweet and limited sour crude oil. Limited resources of heavy oil (10'' to 20'' API gravity) occurs in both carbonate and sandstone reservoirs of Permian and Cretaceous Age. The largest cumulative heavy oil production comes from fluvial sandstones of the Cretaceous Trinity Group. Permian heavy oil is principally paraffinic and thus commands a higher price than asphaltic California heavy oil. Heavy oil in deeper reservoirs has solution gas and low viscosity and thus can be produced by primary and by waterflooding. Because of the nature of the resource, the Permian Basin should not be considered a major heavy oil producing area.

  16. Accretion/underplating, detachment and exhumation: short/long-term rheology of the subduction plate interface

    NASA Astrophysics Data System (ADS)

    Agard, Philippe; Angiboust, Samuel; Plunder, Alexis; Guillot, Stéphane; Yamato, Philippe; Oncken, Onno; Ruh, Jonas; Burov, Evgueni; Bonnet, Guillaume

    2016-04-01

    The presence of km-scale accreted terranes/units in both ancient and present-day subduction zones attests to changes in strain localization along the plate interface, whereby these terranes/units get detached from the downgoing slab (or, in places, are eroded away from the tip of the upper plate) and either directly exhumed or accreted/underplated below the upper plate before final exhumation. The rock record (P-T-t data) indicates that, for a given subduction zone, exhumation is episodic: no more than a few My compared to the ~100 My lifetime of typical subduction zones. Not much is known, however, regarding this process and important open questions remain: what exactly is episodic (i.e., detachment from the slab and/or exhumation?), for how long and where? How is mechanical coupling impacted by the initial structure of the incoming plates (structural/lithological heterogeneities, thermo-fluid regime, geodynamic boundary conditions, etc...)? We herein present both new and literature structural and P-T-t data ranging from shallow (i.e., 15-20 km) to intermediate depths (~100 km) along the subduction interface, that span a range from long-term to short-lived events of underplating and/or exhumation, and confront them with the recent wealth of geophysical data gathered on subduction zones. Structural and petrological data indicate that the slicing of km-scale units mostly occurs at specific depths where major mechanical changes occur along the plate interface: at 30-40 km (downdip of the seismogenic zone) and 70-80 km (where mechanical coupling between the two plates resumes and where eclogites get critically dense). This suggests that switches in mechanical coupling (i.e., in the rheology of the material) are key in controlling the ability to detach pieces from the slab (and that later exhumation is rather controlled by large-scale, lithospheric-scale boundary conditions). The study of rock remnants detached from the slab and underplated during subduction infancy (i

  17. Rifting and UHP exhumation in Eastern Papua New Guinea: Temperature and pressure constraints from primitive magmas

    NASA Astrophysics Data System (ADS)

    Ruprecht, P.; Plank, T. A.; Jin, G.; Abers, G. A.

    2013-12-01

    The area east and northeast of the Papuan peninsula is one of the most tectonically complex regions worldwide, with three different processes superimposed. The rock record on the peninsula provides evidence for multiple episodes of arc collisions over the Cenozoic. Simultaneously ocean spreading in the Woodlark Basin has progressed westward and impinges on Papuan mainland, leading to rifting at the easternmost extension of the peninsula. This complex plate reconfiguration coincides with the exhumation of the youngest HP/UHP rocks on Earth, 5-6 Ma, in the D'Entrecasteaux Islands. The dynamic controls between those three processes are unknown. The thermal structure in the mantle is one of the most fundamental constraints for any dynamic model and as well as for seismic studies. Primitive magmas that erupted around the rift provide estimates of mantle temperatures beneath the volcanoes and in the vicinity of the exhuming HP/UHP rocks. Trace elements and volatiles in olivine-hosted melt inclusions provide new insights into the geochemical make-up of the mantle source region and the influence of subduction and/or rifting on magma generation. We present data primarily from two Holocene volcanic centers (Wagifa and Goropu) that erupted basaltic andesites containing primitive olivines (> Fo89). Thermobarometry on these tephras suggest that the magmas equilibrated prior to their extraction from the mantle at temperatures and pressures of ~1150-1200 degree C and 0.55-0.75 GPa, respectively. If these estimates represent equilibrium below the Moho then, in particular, results from Wagifa suggest that crustal thicknesses in the area of the D'Entrecasteaux islands do not exceed ~23 +/-6 km, which is somewhat thinner than currently proposed average Moho depth estimates from receiver functions and and SsPmP phases (23-24 +/- 3km). Moreover, local mantle temperatures are well above the melting point of exhumed felsic HP/UHP rocks, suggesting that either (1) the thermal pulse that

  18. Brittle deformation and exhumation mechanisms in the core of the Eastern Alps, The Tauern Window

    NASA Astrophysics Data System (ADS)

    Bertrand, Audrey; Garcia, Sebastian; Rosenberg, Claudio

    2010-05-01

    The Tauern Window (TW) is a Tertiary structural and thermal dome located in the core of the Eastern Alpine orogen and in front of the Dolomite indenter. The Penninic basement and cover units within the TW attained their thermal peak about 30 Myr ago (e.g., Selverstone et al., 1992) followed by cooling and exhumation from Early Oligocene to late Miocene time (e.g., Grundmann and Morteani, 1985). Most exhumation was partly accommodated by two normal faults at the western and eastern ends of the TW (Brenner and Katschberg faults, respectively). Although these normal faults are well described in the literature, their roles in the exhumation of the TW are still under debate: Exhumation accommodated primarily by folding and erosion (e.g., Rosenberg et al., 2004) versus exhumation mainly accommodated by Brenner and Katschberg normal faulting (e.g., Selverstone, 1988; Ratschbacher et al., 1989). New fault-slip data from the TW allow us to reconstruct paleostress axes by inversion and to constrain the relative roles of the folding and orogen-parallel extension during the late deformation history of the TW, in the brittle-field. Our results show little evidence of compression and a clear zoning of the paleostress field in the TW. In the central part of the TW, the σ1 direction is sub-horizontal N-S to NE-SW (strike-slip), whereas it is steep in the footwall of the Brenner and the Katschberg normal faults. Local variability of the σ3 direction are observed; indeed, the σ3 direction varies from E-W to WNW-ESE along the Brenner fault, to NW-SE along the Jaufen fault, the inferred southern continuation of the Brenner fault (Schneider et al., this session). Along the Katschberg fault, the σ3 direction is mainly NNW-SSE oriented, which is consistent with extension in front of a triangular dead zone shape induced by the WSW-striking Dolomites indenter. Nearly no evidence of a stress field compatible with upright folding (D2 phase of deformation) was found in the brittle domain

  19. Recent Exhumation in the Chugach, St. Elias, and Fairweather Ranges, Alaska

    NASA Astrophysics Data System (ADS)

    Spotila, J. A.; Berger, A. L.; McAleer, R. J.

    2006-12-01

    The motion of the Yakutat block into North America has produced a band of crustal deformation that begins near the tip of the Aleutian megathrust, continues through the eastern Chugach Range and St. Elias Mountains, and wraps southeastward along the Fairweather transform. Because of the extreme climate of the southern Alaska margin, this oblique collision has developed under the intense action of glacial erosion for the past few million years. This makes this orogen suitable for investigating the nature of feedbacks between climate, tectonics, and topography. We have measured the spatial and temporal patterns of exhumation at scales of orogenic evolution using apatite (U-Th)/He dating. In conjunction with previously published (U-Th)/He and fission-track ages (O'Sullivan and Currie, 1996; O'Sullivan et al., 1997; Buscher et al., 2002; Spotila et al., 2004; Johnston, 2005; Meigs et al., 2006; Perry et al., 2006), our new low-temperature cooling ages are beginning to reveal patterns of vertical strain localization on individual structures and in climatic zones, as well as the balance between tectonic influx and erosional efflux in the orogen. Data obtained thus far form a rough bull's eye pattern of concentric rings of cooling ages in the core of the orogen that become older with distance away from focused exhumation near the bend in the plate boundary. A similar bull's eye of young ages occurs along the Fairweather Range southeast of the bend and continuing to Glacier Bay, such that the zone of rapid exhumation is actually boomerang in shape. This is surprising, given that geologic and geodetic data indicate the Fairweather fault is pure strike-slip. Uplift and exhumation of the Fairweather corridor instead implies plate motion is oblique, with a significant component of partitioned shortening. Further west within the core of the Yakutat collision, the youngest apatite helium ages, less than 1 Ma, occur in a band along the coast that extends westwards from Mt. St

  20. Oblique divergence and exhumation of giant ultrahigh-pressure terrains (Western Gneiss Region, Norway)

    NASA Astrophysics Data System (ADS)

    Teyssier, Christian; Whitney, Donna L.; Gordon, Stacia M.; Renedo, Roxanne; Fossen, Haakon

    2013-04-01

    The subduction of continental rocks to ultrahigh-pressure (UHP) conditions is an integral part of the evolution of many orogens, but the processes that exhume these rocks are still highly debated. Syn-convergence exhumation can explain the forced and/or buoyant return of relatively small UHP bodies in a subduction channel. However, we propose that the exhumation of giant UHP terrains, such as the Western Gneiss Region (WGR) of Norway, is consistent with oblique divergence, not convergence. Oblique divergence is expected to produce transtensional structures, including extension-parallel fold hinges and boudins as well as constrictional fabrics. The structural style of the WGR is dominated by transtension strain from UHP to low P conditions. We propose that the timing of exhumation of UHP rocks is tied to a large transform-detachment system along the western coast of southern and central Norway. The UHP WGR is bounded to the north by the SW-NE trending Møre-Trøndelag Fault Zone (MTFZ), a ~10 km wide transform shear zone that connects two extensional systems over a distance of several hundred kilometers. The extensional system to the S of the MTSZ consists of the W-directed Nordfjord-Sogn detachment that exhumed the UHP terrain. The extensional system on the northern side of the MTFZ is defined by the SW-directed Høybakken and NE-directed Kollstraumen detachments that bound a bivergent extensional core complex, the Central Norway Basement Window (CNBW). South of the MTFZ, UHP and HP eclogite is dispersed in an extensively deformed gneissic and migmatitic host with strong linear fabrics, lineation-parallel folds, and variably oriented shear zones that accommodated strike-slip to normal sense (top-to-W) shear. Omphacite CPO in layered eclogite indicates that fabrics developed in constriction (consistent with transtension) at HP and possibly UHP conditions. U-Pb ICPMS dating of zircon from leucosome in the gneissic host of UHP eclogite reveals dates between 410 and

  1. Cenozoic uplift, exhumation and deformation in the north Kuqa Depression, China as constrained by (U-Th)/He thermochronometry

    NASA Astrophysics Data System (ADS)

    Yu, Shun; Chen, Wen; Evans, Noreen J.; McInnes, Brent I. A.; Yin, Jiyuan; Sun, Jingbo; Li, Jie; Zhang, Bin

    2014-09-01

    Placing spatial and temporal constraints on deformation, uplift and exhumation using thermochronology methods can shed light on Cenozoic orogenic evolution in the Kuqa foreland. New apatite (U-Th)/He and previously published apatite fission track thermochronology are combined with vitrinite reflectance data and modeling to compile a low temperature, multi-stage thermal history of tectonic uplift/thrust and exhumation. A rapid uplift and exhumation event originated in South Tianshan during the Eocene (~ 46 Ma), with systematic younging of mean apatite (U-Th)/He ages from north to south (from the margin towards the interior). Uplift and exhumation south edge of the Biyoulebaoguzi anticline in the northern monocline belt at ~ 36 Ma with more than 3400 m of stratum denuded. Subsequently, deformation and uplift south edge of the Biyoulebaoguzi anticline in the northern monocline belt at ~ 36 Ma with more than 3400 m of stratum denuded. Subsequently, deformation and uplift extended to the northern edge of Kelasu-Yiqikelike at ~ 10 Ma and then at ~ 6 Ma, the Kanyaken anticline formed and uplifted resulting in 3000-3700 m of overburden erosion. The data support sequential southward propagating deformation and uplift (inferred exhumation) in the north Kuqa Depression during the Cenozoic, probably as a result of the collision of India with Asia far to the south of the Tianshan.

  2. Constraining the deformation and exhumation history of the Ronda Massif, Southern Spain

    NASA Astrophysics Data System (ADS)

    Myall, Jack; Donaldson, Colin

    2016-04-01

    The Ronda peridotite, southern Spain is comprised of four peridotite units hosted within metasedimentary units of the Betic Cordillera, Western Alps. These four areas of differing mineral facies are termed: the Garnet Mylonite , the Foliated Spinel Peridotite, the Granular Spinel Peridotite and the Foliated Plagioclase Peridotite. Whilst two of these units show a strong NE-SW foliation, the granular unit has no foliation and the Plagioclase facies shows a NW-SE foliation. The massif is separated from the metasedimentary host through a mylonite shear zone to the NW and thrust faults to the SE. The Garnets contain rims of Kelyphite which when combined with the rims of Spinel on the Plagioclase crystals illustrate the complicated exhumation of this massif. The Kelyphite shows the breakdown of garnet back to spinel and pyroxene showing the deeper high pressure high temperature mineral is under shallowing conditions whereas in contrast to this the low pressure low temperature plagioclase crystals have spinel rims showing that they have been moved into deeper conditions. The P-T-t pathway of the massif suggests slow exhumation to allow for partial recrystallisation of not only the garnets and plagioclases but of a 100m band of peridotite between the Foliated Spinel Peridotite and the Granular Spinel Peridotite facies. The tectonic model for the Ronda Peridotite that best describes the field data and subsequent lab work of this study is Mantle Core complex and slab roll back models. These models support mantle uprising during an extensional event that whereby slab roll back of the subducting lithosphere provides uplift into a void and emplacement into the crust. Further extension and final exhumation causes rotation of a mantle wedge into its present day position.

  3. Constraints and inferences of conditions of seismic slip from analyses of exhumed faults

    NASA Astrophysics Data System (ADS)

    Evans, J. P.

    2008-12-01

    The study of exhumed faults, where constrained by geochemical or geochronologic evidence for depth of deformation, has provided abundant insights into the processes by which the upper crust accommodates strain. What remains elusive in these studies are: a] what evidence do we have for diagnosing [paleo] seismic slip, b ] how do we extrapolate the textures and composition of formerly active faults to constraining the conditions at depth, c] determining the conditions that promote seismic vs. aseismic slip, and d] to what degree do interseismic [healing] and post-slip processes exhumation affect what we see at the surface. Field evidence for the conditions that promote or are of diagnostic seismic vs. aseismic slip, is elusive, as there are few ways to determine seismic rates of slip in faults other than the presence of pseudotachylytes. Recent work on these rocks in a variety of settings and the increase in recognition of the presence of fault- related melts document the relationships between pseudotachylytes and cataclastically deformed rocks in what is thought to be the frictional regime, or with ductily deformed rocks at the base of a fault. Conditions that appear to promote seismic slip are alteration of granitic host rock to lower melting temperature phases and the presence of geometric complexities that may act as stress risers in the faults. Drilling into portions of faults where earthquakes occur at the top of the seismogenic zone have sampled fault-related rocks that have striking similarities to exhumed faults, exhibiting narrow slip surfaces, foliated cataclasites, injected gouge textures, polished slip surfaces, and thermally altered rocks along slip surfaces. We review the recent work from a wide range of studies to suggest that relatively small changes in conditions may initiate seismic slip, and suggest further avenues of investigation.

  4. Fault slip analysis and late exhumation of the Tauern Window, Eastern Alps

    NASA Astrophysics Data System (ADS)

    Bertrand, Audrey; Rosenberg, Claudio; Garcia, Sebastian

    2015-05-01

    Exhumation of the Eastern Alps from the early Tertiary to the late Miocene was localized mainly in the Tauern Window, a thermal and structural dome located in front of the Dolomites indenter. Stress inversions based on new structural investigations over the entire Tauern Window indicate a regional zoning of the paleostress field with a predominance of strike-slip states of stress in the core of the investigated area, and dominant extensional regimes in the eastern and western borders of the dome. Few inverse fault structures have been highlighted. We propose a two-stage deformation history in order to explain the different types of structures that characterise the ductile and the brittle domains. During the first stage of exhumation of the Tauern Window, corresponding to the folding event, the brittle crust was probably dominated by N-S shortening and compression. The second stage of exhumation was marked by normal faulting at the borders of the dome and strike-slip faulting in the core. During the second stage, the brittle part of the crust that was previously affected by compressive structures belonging to the first stage was eroded. Normal faulting associated to E-W extension along the eastern and western borders of the Tauern Window was accommodated by strike-slip faulting located in the core of the Tauern Window, yielding E-W extension and N-S shortening. The orientation of the extensional axes and the nature of the stress tensors are similar to the ones inferred for the late-stage, brittle overprint of the internal basement massifs of the Central Alps pointing to a possible common, large-scale, state of stress acting well beyond the area of the Eastern Alps.

  5. Kinematics of Cretaceous subduction and exhumation in the western Rhodope (Chalkidiki block)

    NASA Astrophysics Data System (ADS)

    Kydonakis, Konstantinos; Brun, Jean-Pierre; Sokoutis, Dimitrios; Gueydan, Frédéric

    2015-12-01

    In the Chalkidiki Peninsula of northern Greece a thrust complex made of a basement (Vertiskos Unit), a cover (Circum-Rhodope belt) and arc/back-arc units (Chortiatis Magmatic Suite and eastern Vardar Ophiolites) is exposed in the Chalkidiki Peninsula of northern Greece. The complex forms the western part of the Rhodope Metamorphic Province and lies on the hanging-wall of the Kerdylion Detachment, the structure responsible for the exhumation of the Southern Rhodope Core Complex and the most prominent and visible ductile structure related to the Tertiary Aegean extension. The Chalkidiki thrust complex arguably preserves a complete record of Cretaceous deformation and related fabrics. In this contribution we describe the geometry of foliation, stretching lineation and shear sense(s) on a regional scale. The regional foliation strikes NW-SE and displays different patterns in the three studied units: (i) dominantly dipping at low angle in the Vertiskos Unit, (ii) affected by upright folding in the Circum-Rhodope belt and (iii) systematically steeply dipping to the NE in the Chortiatis Magmatic Suite. Stretching lineation trend dominantly SW-NE in the three mentioned units. On the basis of new mapping, neglecting local perturbations and deformation related to Tertiary extension, we infer the regional kinematics of Cretaceous syn-metamorphic thrusting and subsequent exhumation of the metamorphic units. Thrusting took place toward the SW (in present-day coordination) and the related fabrics are recorded throughout the metamorphic pile. On the contrary, exhumation-related fabrics are related to shear toward the NE and are preferentially recorded in the uppermost part of the metamorphic pile suggesting that extension was more localised and of less finite intensity compared to thrusting.

  6. Influence of paleo-heat flow variations on estimates of exhumation rates

    NASA Astrophysics Data System (ADS)

    von Hagke, Christoph; Luijendijk, Elco

    2016-04-01

    Deriving exhumation estimates from thermochronological data requires assumptions on the paleo-thermal field of the Earth's crust. Existing thermal models take into account heat transfer by diffusion and advection caused by the movement of the crust and erosion as well as changes in geothermal gradient over time caused by changes in structure or thermal properties of the crust, surface temperature and elevation. However, temperature field of mountain belts and basins may vary not only due to tectonic activity or landscape evolution. We present a high-resolution thermochronology data set from the foreland fold-and-thrust belt of the European Alps that shows substantial variation of cooling rates probably caused by hydrothermal flow in the subsurface in the past. Tectonic blocks with uniform exhumation history show variations in cooling of up to 50°C. In addition, changes in cooling between two different fault blocks show opposite trend than expected by models of their tectonic history. The observed historic changes in paleo-geothermal gradients are equal in magnitude to a present-day thermal anomaly caused by the upward flow of warm fluids in the distal part of the foreland basin. The strong variations in geothermal gradients by fluid flow imply that straightforward interpretation of landscape evolution rates using thermochronology is not possible, unless the thermal effects of fluid flow are taken into account. This is of particular importance to studies where the amount of thermochronology data is limited and local hydrothermal anomalies could easily be interpreted as regional exhumation signals. On the other hand, our findings suggest that thermochronology offers new opportunities to constrain magnitude and timing of paleo-heat flow variations in the upper crust.

  7. Collision in the Central Alps: 2. Exhumation of high-pressure fragments

    NASA Astrophysics Data System (ADS)

    Brouwer, F. M.; Burri, T.; Berger, A.; Engi, M.

    2003-04-01

    In the Central Alps high-pressure metamorphic rocks are confined to but a few tectonic units. In the Adula nappe pressures range from about 12 kbar in the north, to 20 kbar in the south [1]. The Southern Steep Belt (SSB) is a high-strain zone at the contact between rocks deriving from Apulia and Eurasia. The SSB contains a tectonic composite of ortho and paragneisses, with widespread bands and lenses of mafic and ultramafic composition. Many of the mafic fragments are garnet-amphibolites or eclogites, with a highly variable degree of retrogression. Our petrological studies indicate that the HP rocks in the SSB show extensive variation in metamorphic pressure. In mafic fragments, pressures retained by assemblages predating the amphibolite facies overprint range from 8 to 21 kbar, while pressure estimates for some peridotites are >30 kbar. Some HP fragments show evidence of substantial heating during decompression. New Lu-Hf and Sm-Nd geochronology, in conjunction with previously published data, indicates a spread in ages obtained from the high-pressure metamorphic assemblage. Thermal models based on simplified kinematics produce computed PTt histories that resemble those documented in individual HP fragments [2]. The SSB is interpreted to represent an exhumed part of a Tectonic Accretion Channel (TAC, cf. [3]), assembled of numerous, relatively small fragments which reflect a variety of paths. The different residence times and exhumation rates reflect a protracted history of subduction and extrusion, in which the fragments moved independently from their current neighbours. Combination of thermal modelling and field-based studies improve our conceptual thinking on the dynamics of exhumation of high-pressure rocks in a convergent orogen. [1] Heinrich (1986) J. Pet. 27: 123-154 [2] Roselle et al. (2002) Amer. J. Sci. 302: 381-409 [3] Engi et al. (2001) Geology 29: 1143-1146

  8. Peneplains on Tibetan Plateau: a long-term archive of exhumation and slow erosion

    NASA Astrophysics Data System (ADS)

    Haider, Vicky; Dunkl, István; von Eynatten, Hilmar; Lin, Ding

    2010-05-01

    Peneplains are not only representative and well recognizable geomorphological features but also archives of slow erosion and long-term exhumation. In the Lhasa terrane between the Banggong Suture in the north and the Nyaingentangtha Mountain range in the south, especially in the area around lake Nam Co, peneplains were graved into Jurassic and Cretaceous granitic intrusions. Some peneplains are crossing massive Jurassic sandstone. Characteristic outstanding paleosurfaces are wide planar surfaces that extend over 1 km at different elevation. They are not to mix up with also present sub-recent, smaller sized plane surfaces which were formed by abrasion processes of the local lakes. We used low-temperature chronological methods such as (U-Th)/He and fission track (FT) for dating heavy minerals such as apatite and zircon to measure and extract information about processes like erosion and exhumation that are closely related to orogenic stacking and uplift. Around hundred samples in particular from Cretaceous to Eocene granites, volcanics and sedimentary rocks were taken from the peneplains and their surroundings. Apatite crystals from more than 25 samples and zircon crystals from ten samples have been successfully analysed by (U-Th)/He method. While (U-Th)/He apatite ages cluster in Paleocene and Eocene ranging from 38 to 60 Ma, apatite and zircon FT ages cluster in Late Cretaceous. The age clusters are internally consistent in areas smaller than 100 km2. This first thermochronological data lead us most surely to a Late Cretaceous to Early Tertiary thermotectonical event which is probably connected to erosion and planation of the paleosurface. The deposition of Late Cretaceous to Eocene siliciclastic sediments close to the currently exhumed peneplains are also evidence of such an event.

  9. Seismic valve as the main mechanism for sedimentary fluid entrapment within extensional basin: example of the Lodève Permian Basin (Hérault, South of France).

    NASA Astrophysics Data System (ADS)

    Laurent, D.; Lopez, M.; Chauvet, A.; Imbert, P.; Sauvage, A. C.; Martine, B.; Thomas, M.

    2014-12-01

    During syn-sedimentary burial in basin, interstitial fluids initially trapped within the sedimentary pile are easily moving under overpressure gradient. Indeed, they have a significant role on deformation during basin evolution, particularly on fault reactivation. The Lodève Permian Basin (Hérault, France) is an exhumed half graben with exceptional outcrop conditions providing access to barite-sulfides mineralized systems and hydrocarbon trapped into rollover faults of the basin. Architectural studies shows a cyclic infilling of fault zone and associated S0-parallel veins according to three main fluid events during dextral/normal faulting. Contrasting fluid entrapment conditions are deduced from textural analysis, fluid inclusion microthermometry and sulfide isotope geothermometer: (i) the first stage is characterized by an implosion breccia cemented by silicifications and barite during abrupt pressure drop within fault zone; (ii) the second stage consists in succession of barite ribbons precipitated under overpressure fluctuations, derived from fault-valve action, with reactivation planes formed by sulphide-rich micro-shearing structures showing normal movement; and (iii) the third stage is associated to the formation of dextral strike-slip pull-apart infilling by large barite crystals and contemporary hydrocarbons under suprahydrostatic pressure values. Microthermometry, sulfide and strontium isotopic compositions of the barite-sulfides veins indicate that all stages were formed by mixing between deep basinal fluids at 230°C, derived from cinerite dewatering, and formation water from overlying sedimentary cover channelized trough fault planes. We conclude to a polyphase history of fluid trapping during Permian synrift formation of the basin: (i) a first event, associated with the dextral strike-slip motion on faults, leads to a first sealing of the fault zone; (ii) periodic reactivations of fault planes and bedding-controlled shearing form the main mineralized

  10. The Tyrrhenian Basin: fault activity migration, focusing of deformation, break up, magmatism and fast mantle exhumation

    NASA Astrophysics Data System (ADS)

    Ranero, Cesar R.; Sallarés, Valenti; Vendrell, Montserrat G.; Prada, Manuel; Grevemeyer, Ingo; Zitellini, Nevio

    2015-04-01

    We present a new interpretation of the creation of the geological domains and the processes forming the Tyrrhenian basin by rifting of Cratonic Variscan lithosphere. The basin is not presently extending, but its crustal structure preserves information of the temporal evolution of rifting processes. Our work is based on the tectonic structure and stratigraphy of over 3000 km of calibrated multichannel seismic data and full coverage multibeam bathymetry of the basin. From these data circa 2000 km are new and about 1000 are vintage data. The seismic data are used to understand the formation of the domains (continental, backarc magmatism, exhumed mantle) defined with our recently published, under review, or submitted 5 across-the-basin wide-angle reflection and refraction transects. The 5 transects provide the Vp distribution of the crust and upper mantle. This information has allowed defining the petrological nature and distribution of the geological domains, and to infer the importance of magmatism in the rifting process, to constrain the location of break up and the expanse of the region of mantle exhumation. The seismic reflection images have been interpreted to map in time and space the evolution of the deformation across the basin. We analyzed the tectonic structure and mapped the calibrated stratigraphy across the basin to understand the temporal evolution and styles of faulting processes. The stratigraphy provides also constraints on the rates at which the different processes of extension, magmatism, break up and mantle exhumation have occurred. The basin has opened with different extension factors from north to south. The northern region stopped opening after a relatively low extension factors. Towards the south extension increased up to full crustal separation. Here extension in some areas was coeval with abundant magmatism. Changing in the locus of faulting and rates of extension led to break up and to a surprisingly fast mantle exhumation. Subsequent

  11. Does Late Miocene Exhumation Along the Western Slope of the Colorado Rockies Reflect Differential Rock Uplift?

    NASA Astrophysics Data System (ADS)

    Rosenberg, R. H.; Kirby, E.; Aslan, A.; Karlstrom, K. E.; Heizler, M. T.; Kelley, S. A.; Piotraschke, R. E.; Furlong, K. P.

    2011-12-01

    It is increasingly recognized that dynamic effects associated with changes in mantle flow and buoyancy can influence the evolution of surface topography. In the Rocky Mountain province of the western United States, recent seismic deployments reveal intriguing correlations between anomalies in the velocity structure of the upper mantle and regions of high topography. Here, we investigate whether regional correlations between upper-mantle structure and topography are associated with the history of Late Cenozoic fluvial incision and exhumation. Major tributaries of the upper Colorado River, including the Gunnison and Dolores Rivers, which drain high topography in central and western Colorado overlie upper mantle with slow seismic wave velocities; these drainages exhibit relatively steep longitudinal profiles (normalized for differences in drainage area and discharge) and are associated with ~1000-1500 m of incision over the past 10 Ma. In contrast, tributaries of the Green River that drain the western slope in northern Colorado (White, Yampa, and Little Snake Rivers) overlie mantle of progressively higher seismic wave velocities. River profiles in northern Colorado are two to three times less steep along reaches with comparable bedrock lithologies. New Ar39/Ar40 ages on ~11 Ma basalt flows capping the Tertiary Brown's Park Formation in northern Colorado indicate that the magnitude of exhumation along these profiles ranges from ~400 - 600 m over this time interval. The correspondence of steep river profiles in regions of greater incision implies that the fluvial systems are dynamically adjusting to an external forcing. New constraints on the exhumation history of the upper Colorado River from apatite fission track ages in boreholes near Rifle, Colorado are best explained by an onset of exhumation at ca. 8-10 Ma. Thus, relative base level fall associated with development of Grand Canyon (ca. 6-5 Ma) does not explain the regional onset of incision along the western slope

  12. Low temperature thermochronological constrains on the late exhumation of the Alpine foreland (Digne nappe, France).

    NASA Astrophysics Data System (ADS)

    Schwartz, S.; Gautheron, C.; Audin, L.; Dumont, T.; Nomade, J.; Pinna-Jamme, R.

    2015-12-01

    The frontal part of the southwestern Alpine belt is characterized by important compressional deformation marked by the emplacement of the Digne nappe and the formation of the Valavoire thrust-sheet. The final emplacement of this nappe is dated Late Miocene thanks to Tertiary continental molasses of the foreland basin that are involved in the famous Vélodrôme recumbent syncline and exposed in erosional windows. The stratigraphic series of the Digne nappe is made of ~5000 m thick Liassic to Eocene deposits, which overthrust the vélodrôme syncline. We performed a low temperature apatite fission tracks (AFT) and (U-Th)/He (AHe) study on detrital grains of Tertiary molasses in order to (i) characterize the thermal conditions during burial and exhumation and to (ii) propose a late tectonic evolution in the front of the European Alpine foreland. Tertiary molasses were sampled in two sites of the erosional windows at different elevations. Samples present dispersed AHe and AFT ages due to an incomplete resetting of both thermochronometers, expected for the lowest elevation samples. In detail, AHe ages ranges from 2±0.2 to 60.4±5.4 Ma, whereas central AFT ages range from 11±1 to 67±16 Ma. On both sites, the total and partial reset of the thermochronological data suggests a heating event after the sediment deposition. Using QTQt inverse modeling and He damage codes, we determined the samples thermal history. The results implied a common burial temperature at 110±5°C during ~5Ma and a similar exhumation starting at 6±1 Ma. From these results, we conclude that the thermal conditions during burial associated with the Digne nappe thrusting were sufficient to reset the detrital apatites. Using mean surface temperature of 10°C and typical thermal gradient from 25°C/km, our new data show that the Digne Nappe reached at least 4.5 to 3.6 km-thick on both sites before further erosion. We propose that the late exhumation occurred at ~6 Ma ago, before the Messinian incision

  13. Structural and thermochronometric evidence for multi-stage exhumation of southern Syros, Cycladic islands, Greece

    NASA Astrophysics Data System (ADS)

    Soukis, Konstantinos; Stockli, Daniel F.

    2013-06-01

    The Attic-Cycladic metamorphic-core complex province was formed during Miocene to recent regional back-arc extension in response to slab-rollback and gravitational collapse. The development of several metamorphic-core complexes along extensional low-angle detachment faults resulted in the exhumation of lower-plate rocks and the tectonic denudation of the upper plate that is only sparsely exposed throughout the Aegean Sea. One of these areas is in southern Syros where the tectonic configuration includes three tectonometamorphic units separated by two detachment faults. The lower-plate Cycladic Blueschist Unit underwent late Cretaceous-Eocene HP/LT metamorphism and subsequent greenschist-facies overprint during Oligo-Miocene times. The tectonically overlying greenschist-facies Upper Unit is a tectonic sliver between the Cycladic Blueschist Unit and the structurally highest unit, the Vari Unit, which is dominated by quartzofeldspathic gneisses that are affected by four distinct deformation events (D1-D4). The late Cretaceous upper greenschist-facies D1 episode is related to late Cretaceous-Eocene subduction while D2-D4 fabrics were formed in response to late Cenozoic extension and exhumation. Field relations and structural data suggest that the late Miocene brittle Vari Detachment juxtaposes both Vari Unit and Upper Unit against the Cycladic Blueschist Unit. Mylonitic rocks observed at the base of Vari Unit along the contact with Upper Unit and zircon and apatite (U-Th)/He thermochronometry corroborate this scenario with lower-plate Cycladic Blueschist Unit rocks recording rapid cooling at ~ 8-10 Ma. In contrast, cooling ages from the Vari Unit cluster at ~ 13-15 Ma, indicating rapid exhumation coeval with activity along the Livadi Detachment on the neighboring island of Tinos. These data document new evidence that Vari Unit was affected by a major middle Miocene phase of exhumation and an older semi-brittle episode, both unrelated to late Miocene detachment faulting

  14. Progressive Extensional Exhumation of the Ultrahigh-Pressure Tso Morari Terrain, NW Indian Himalaya

    NASA Astrophysics Data System (ADS)

    Hodges, K.; Clark, R.; Monteleone, B.; Sachan, H.; Mukherjee, B. K.; Ahmad, T.

    2011-12-01

    The core of the Tso Morari dome in the Ladakh region of NW India (roughly 33 °10'N; 78°10'E) is one of only two known ultrahigh-pressure (UHP) terrains in the Himalayan-Tibetan orogenic system. The quartzofeldspathic Puga Orthogneiss from the structurally deepest portions of the terrain does not contain UHP mineralogy but surrounds dismembered lenses of mafic eclogite with accessory coesite, confirming that at least the eclogite lenses experienced UHP metamorphic conditions (Mukherjee et al., 2003, International Geology Review; Sachan et al., 2004, European Journal of Mineralogy). U-Pb zircon dates from the Puga orthogneiss (53.3 ± 0.7 Ma: Leech et al., 2007, International Geology Review) provide what appear to be the most precise available constraints on the age of UHP metamorphism at Tso Morari provided we presume that the UHP assemblages in the eclogite lenses developed at the same time as the 53.3 ± 0.7 Ma metamorphic zircon in the orthogneiss. However, other components of the zircon population studied by Leech and co-workers, as well as the results obtained using other thermochronometers and geochronometers (de Sigoyer et al., 2004, Tectonics), demonstrate that a series of lower pressure metamorphic events also affected the Tso Morari terrain between ca. 53 Ma and ca. 45 Ma, implying rapid decompression at elevated temperatures (ca. 800 - 350°C). Our 1:50000-scale geologic mapping at Tso Morari provides evidence that this exhumation was largely accommodated by two previously unrecognized low-angle ductile detachments that separate the terrain into three tectonostratigraphic units with distinctive metamorphic histories. The structurally lowest shear zone (Karla detachment) separates the Puga Orthogneiss from overlying lower amphibolite facies metasedimentary rocks of the Zoboshisha Unit, which contains no UHP assemblages. Structurally higher and demonstrably younger detachments separate the Zoboshisha Unit and the Puga Orthogneiss from greenschist to

  15. Grain-rimming kaolinite in Permian Rotliegend reservoir rocks

    NASA Astrophysics Data System (ADS)

    Waldmann, Svenja; Gaupp, Reinhard

    2016-04-01

    Upper Rotliegend sediments of Permian age from the northeast Netherlands show moderate to good reservoir qualities. The predominant control is by the presence of authigenic grain-rimming kaolinite, which has a negative, but in some parts also a positive, effect on reservoir quality. To better understand the formation and distribution of grain-rimming kaolinite, reservoir rocks were studied in terms of composition and diagenetic processes. Petrographic evidence, summarized as a paragenetic sequence, is integrated with geochemical modeling results to identify early mesodiagenetic water-rock interactions under the participation of gases, i.e., CO2 and H2S, released from underlying Carboniferous source rocks. The sediments investigated were deposited at varying distance from the southern flank of the Southern Permian Basin. Sediments near the basin margin are mainly attributed to a fluvial environment and comprise medium to coarse-grained sandstones and conglomerates. There, vermicular kaolinite occurs with a lath-like structure. Distal to the basin margin, mainly in sandstones intercalated with fine-grained playa sediments, comparatively high amounts of grain-rimming kaolinite occur. There, the presence of this mineral has a significant influence on the rock properties and the reservoir quality. Geochemical modeling suggests that the formation of such kaolinites cannot be explained exclusively by in situ feldspar dissolution. The modeling results support evidence that kaolinite can be formed from precursor clay minerals under the presence of CO2-rich formation waters. Such clay minerals could be corrensite, smectite-chlorite mixed-layer minerals, or chlorite that is potentially present in Rotliegend sediments during early diagenesis. Furthermore, the geochemical modeling can reflect several mineral reactions that were identified from petrographic analysis such as the formation of illite and kaolinite at the expense of feldspar dissolution and consequent silica

  16. CENOZOIC EXHUMATION OF THE ANTIOQUEÑO PLATEAU, NORTHERN ANDES, COLOMBIA, FROM APATITE LOW-TEMPERATURE THERMOCHRONOLOGY

    NASA Astrophysics Data System (ADS)

    Restrepo-Moreno, S. A.; Foster, D. A.; O'Sullivan, P. B.; Donelick, R.; Stockli, D. F.

    2009-12-01

    The Antioqueño plateau (AP), in the northernmost Cordillera Central, Colombia, is the most extensive and best preserved relict surface in the Northern Andes. Apatite (U-Th)/He (AHe) and fission track (AFT) results from twenty two samples, collected from paleocrustal depths along two vertical profiles in canyons dissecting the AP, constrain Cenozoic erosional exhumation of this segment of the Andean range. The two profiles exhibit excellent reproducibility of AHe and AFT data. Helium ages increase with elevation from ~22-49 Ma. A marked inflection point in the AHe age-elevation plots at 25 Ma defines the bottom of the post-Oligocene He partial retention zone (PRZ). Virtually invariant ages at ~25 Ma record onset of rapid exhumation in the AP. A more subtle slope change in the PRZ at ~43 Ma is interpreted as a minor exhumation pulse. AFT better defines timing and intensity of Eocene exhumation. AFT ages for both profiles vary from ~30-49 Ma and are consistently older than AHe ages. AFT data display invariant ages (±2σ) between 1500-2400 m elevations while confined track length data exhibit uni-modal distributions with a mean track length of ~14.2 μm. Both facts indicate rapid cooling. This is further supported by virtually concordant AFT and AHe ages for both profiles between 1500 to 2200 m implying that rocks were exhumed from temperatures >120°C to below AHe closure temperature 60°C. Assuming a geothermal gradient of ~25°C/km this corresponds to exhumation rates in the order of 0.5 mm/y, comparable in intensity to the Miocene pulse defined by AHe. Integrated thermal modeling show an episode of rapid cooling at ~43-49 Ma. AFT profiles show an apparent inflection point at ~1400 m, which defines the upper boundary of an apatite partial annealing zone (PAZ) exhumed during the 43-49 Ma cooling event. The position of the PAZ and PRZ relative to the present erosional surface point to average erosion rates of ~0.03 mm/yr, which constitute very low denudation rates

  17. Petrofabrics of High-Pressure Rocks Exhumed at the Slab-Mantle Interface from the 'Point of No Return'

    NASA Astrophysics Data System (ADS)

    Whitney, D. L.; Teyssier, C. P.; Seaton, N. C.; Fornash, K.

    2014-12-01

    The highest pressure typically recorded by metamorphic rocks exhumed from oceanic subduction zones is ~2.5±1 GPa, corresponding to the maximum decoupling depth (MDD) (80±10 km) identified in active subduction zones; beyond the MDD (the 'point of no return') exhumation is unlikely. One of the few places where rocks returned from the MDD largely unaltered is Sivrihisar, Turkey: a structurally coherent terrane of lawsonite eclogite and blueschist facies rocks in which assemblages and fabrics record P-T-fluid-deformation conditions during exhumation from ~80 to 45 km. Crystallographic fabrics and other structural features of high-pressure metasedimentary and metabasaltic rocks record transitions during exhumation. In quartzite, heterogeneous microstructures and crystallographic fabrics record deformation and dynamic recrystallization from ~2.6 GPa to ~1.5 GPa, as expressed by transition from prism c-axis patterns through progressive overprinting and activation of rhomb and basal slip. Omphacite, glaucophane, phengite, and lawsonite in quartzite remained stable during deformation. In marble, CaCO3 deformed in dislocation creep as aragonite, producing strong crystallographic fabrics. This fabric persisted through formation of calcite and destruction of the shape-preferred orientation, indicating the strength of aragonite marble. Omphacite in metabasalt and quartzite displays an L-type crystallographic fabric. Lawsonite kinematic vorticity data and other fabrics in metabasalt are consistent with exhumation involving increasing amounts of pure shear relative to simple shear and indicate strain localization and simple shear near the fault contact between the high-pressure unit and a serpentinite body. This large coaxial component multiplied the exhuming power of the subduction channel and forced rocks to return from the MDD.

  18. Eduction, extension, and exhumation of ultrahigh-pressure rocks in metamorphic core complexes due to subduction initiation

    NASA Astrophysics Data System (ADS)

    Petersen, Kenni Dinesen; Buck, W. Roger

    2015-09-01

    The controversy over the exhumation of ultrahigh-pressure (UHP) rocks centers on whether it involves rising of pieces of crust detached from subducted continental lithosphere or an entire subducted plate that undergoes "eduction," i.e., reverse subduction. We present a new thermomechanical model of continental subduction showing that these apparently contrasting mechanisms can occur together: crust subducted deep enough is heated and weakened, causing limited diapiric rise, while crust subducted to shallower depths retains strength and is exhumed only by eduction. The model also shows for the first time how eduction followed by seafloor spreading can occur in a zone of regional convergence. This occurs spontaneously when subduction of buoyant crust causes a subduction zone to "lock up" in one place causing a new subduction zone to form in another. The model is consistent with many features of the youngest region of UHP rock exhumation on earth: the D'Entrecasteaux Islands. UHP exhumation and the amount of regional extension, as well as the seismic structure around the islands, can be explained by eduction. Ductile flow fabrics, seen on the islands, would result from exhumation of the most deeply subducted crust heated enough to undergo partial melting. Reversal of motion on the north-dipping continental subduction zone, required by this model, was likely triggered by initiation of the New Britain Trench, as suggested previously. Our model implies that the crust of Goodenough Basin, south of the islands, was exhumed by eduction in the last 5 Ma and this hypothesis can be tested by drilling.

  19. An Early Permian fusuline fauna from southernmost Peninsular Thailand: Discovery of Early Permian warming spikes in the peri-Gondwanan Sibumasu Block

    NASA Astrophysics Data System (ADS)

    Ueno, Katsumi; Arita, Michiko; Meno, Satomi; Sardsud, Apsorn; Saesaengseerung, Doungrutai

    2015-05-01

    An Early Permian fusuline fauna is reported from the Tarn To Formation of the Yala area in southernmost Peninsular Thailand, which geotectonically belongs to the peri-Gondwanan Sibumasu Block. The fauna consists of Pseudofusulina and Praeskinnerella? species, including forms closely resembling Tethyan and Panthalassan Pseudofusulina fusiformis and Pseudofusulina ex gr. kraffti. A Yakhtashian-Bolorian age is estimated for this fauna. In Sibumasu, shallow-marine biotas showing similar Tethyan affinities, such as the fusulines Misellina and alatoconchid bivalves, also occur in the Early Permian succession of the Kinta Valley area in western Peninsular Malaysia. These unusual Tethyan faunas within Early Permian peri-Gondwanan fossil records suggest episodic influences from paleo-tropical Tethyan biotas. They are here interpreted as showing short-term warming spikes during the late Yakhtashian-Bolorian transgression, which would facilitate sporadic migration and temporal inhabitation of warm-water dwellers into the eastern Cimmerian areas. The Yala and Kinta Valley fusuline and other invertebrate faunas would give us a new insight for the Permian geohistory and environmental change of the peri-Gondwanan Sibumasu Block.

  20. Late-orogenic heating during exhumation: Alpine PTt trajectories and thermomechanical models

    NASA Astrophysics Data System (ADS)

    Brouwer, F. M.; van de Zedde, D. M. A.; Wortel, M. J. R.; Vissers, R. L. M.

    2004-03-01

    During the Alpine orogeny, the Penninic zone of the Alps was affected by Eoalpine high-pressure metamorphism. In the central and western Alps, this was followed by Lepontine medium-pressure, high-temperature metamorphism during exhumation. We compare the pressure-temperature-time (PTt) trajectories established in two key areas in the central and western Alps with 2-D numerical models of two possible causes of Lepontine metamorphism: (1) detachment or breakoff of a subducting slab, and (2) the presence of a wedge of accreted radiogenic material. Numerical models show that both mechanisms are capable of producing significant heating during orogeny. Heating by slab detachment is fast and transient (more than 100°C in up to 10 million years, depending on the location), whereas radiogenic heating requires time spans of the order of tens of millions of years and cessation of the subduction process. The combination of PTt trajectories and synthetic PT paths deduced from our thermomechanical modelling results suggests that the metamorphism observed in the central Alps has not been caused by radiogenic heating alone. Slab breakoff, on the other hand, seems a viable mechanism to account for the documented rise in metamorphic temperatures during exhumation. In view of the time constraints posed by the geological data, and acknowledging the effects of large-scale block rotations and out-of-section transport, slab detachment is also a more likely mechanism to have provided sufficient heat to cause re-heating in the western Alps.

  1. Deformation history of a subducted continental crust (Gran Paradiso, Western Alps): continuing crustal shortening during exhumation

    NASA Astrophysics Data System (ADS)

    Le Bayon, Benjamin; Ballèvre, Michel

    2006-05-01

    Eclogite-facies continental basement in the Western Alps outcrops as tectonic windows below the oceanic units. In the Gran Paradiso massif, eclogite-facies assemblages in mafic rocks display a N-S stretching lineation (D A1). The main-phase foliation formed under epidote amphibolite-facies conditions (D A2) and defines a regional dome structure for the whole Gran Paradiso massif. Structural data, including new detailed mapping, microstructural analyses and metamorphic studies in the northern part of the Gran Paradiso (Cogne valley) reveal the occurrence of major thrusts in this continental basement associated with the D A2 deformation. E-W-trending stretching lineations and fold axes are associated with this second and main deformation. Nappe stacking of the different units was achieved by top-to-the-west shearing during exhumation of the eclogite-facies basement. The antiformal doming of the Gran Paradiso basement is thus produced by the nappe stacking during exhumation, under epidote amphibolite facies.

  2. Tales from the grave: Opposing autopsy reports from a body exhumed.

    PubMed

    Gunasekera, R S; Brown, A B; Costas, E H

    2012-07-01

    We report an autopsy case of a 42-year-old woman who, when discovered, had been dead in her apartment for approximately 1 week under circumstances involving treachery, assault and possible drug overdose. This case is unique as it involved two autopsies of the deceased by two different medical examiners who reached opposing conclusions. The first autopsy was performed about 10 days after death. The second autopsy was performed after an exhumation approximately 2 years after burial. Evidence collected at the crime scene included blood samples from which DNA was extracted and analysed, fingerprints and clothing containing dried body fluids. The conclusion of the first autopsy was accidental death due to cocaine toxicity; the conclusion of the second autopsy was death due to homicide given the totality of evidence. Suspects 1 and 2 were linked to the death of the victim by physical evidence and suspect 3 was linked by testimony. Suspect 1 received life in prison, and suspects 2 and 3 received 45 and 20 years in prison, respectively. This case indicates that cocaine toxicity is difficult to determine in putrefied tissue and that exhumations can be important in collecting forensic information. It further reveals that the combined findings of medical examiners, even though contradictory, are useful in determining the circumstances leading to death in criminal justice. Thus, this report demonstrates that such criminal circumstances require comparative forensic review and, in such cases, scientific conclusions can be difficult. PMID:22687773

  3. Nb-Ta mobility and fractionation during exhumation of UHP eclogite from southwestern Tianshan, China

    NASA Astrophysics Data System (ADS)

    Zhang, Lijuan; Zhang, Lifei; Lü, Zeng; Bader, Thomas; Chen, Zhenyu

    2016-05-01

    In order to study the behavior of high field strength elements (HFSE) during retrograde overprint of ultrahigh-pressure (UHP) eclogites, analysis of Nb and Ta concentrations was carried out on bulk rock, rutile (in both veins and host rocks) and titanite in the host eclogite. The studied samples were collected from the UHP metamorphic belt of southwestern Tianshan, China. Petrographic observation and phase equilibria modeling show that the host eclogites have experienced UHP metamorphism and the rutile-bearing veins are thought to be originated from an internal fluid source, probably by lawsonite dehydration during exhumation. The presence of vein rutile indicates HFSE could be mobilized from host eclogites to veins, which is probably facilitated by complexation with dissolved Na-Al silicates and fluorine-rich fluids. Changes in fluid composition (e.g., F-1, X(CO2)) may trigger the precipitation of rutile. Rutile/fluid partitioning may be the key to fractionating Nb and Ta, with preference for Ta in the fluid, resulting in Nb/Ta ratio of rutile in the veins lower than that in the host eclogite. Besides, the transformation of rutile into titanite also might be an effective mechanism for fractionating Nb from Ta, resulting in the intra-grain Nb-Ta zonations in vein rutile. The Nb-Ta mobility and fractionation can happen during exhumation of the UHP eclogite, which should be very important for understanding the behavior of HFSE in subduction zone metamorphism.

  4. From nappe stacking to exhumation: Cretaceous tectonics in the Apuseni Mountains (Romania)

    NASA Astrophysics Data System (ADS)

    Reiser, Martin Kaspar; Schuster, Ralf; Spikings, Richard; Tropper, Peter; Fügenschuh, Bernhard

    2016-05-01

    New Ar-Ar muscovite and Rb-Sr biotite age data in combination with structural analyses from the Apuseni Mountains provide new constraints on the timing and kinematics of deformation during the Cretaceous. Time-temperature paths from the structurally highest basement nappe of the Apuseni Mountains in combination with sedimentary data indicate exhumation and a position close to the surface after the Late Jurassic emplacement of the South Apuseni Ophiolites. Early Cretaceous Ar-Ar muscovite ages from structurally lower parts in the Biharia Nappe System (Dacia Mega-Unit) show cooling from medium-grade conditions. NE-SW-trending stretching lineation and associated kinematic indicators of this deformation phase (D1) are overprinted by top-NW-directed thrusting during D2. An Albian to Turonian age (110-90 Ma) is proposed for the main deformation (D2) that formed the present-day geometry of the nappe stack and led to a pervasive retrograde greenschist-facies overprint. Thermochronological and structural data from the Bihor Unit (Tisza Mega-Unit) allowed to establish E-directed differential exhumation during Early-Late Cretaceous times (D3.1). Brittle detachment faulting (D3.2) and the deposition of syn-extensional sediments indicate general uplift and partial surface exposure during the Late Cretaceous. Brittle conditions persist during the latest Cretaceous compressional overprint (D4).

  5. Plio-Pleistocene exhumation of the eastern Himalayan syntaxis and its domal 'pop-up'

    NASA Astrophysics Data System (ADS)

    Bracciali, Laura; Parrish, Randall R.; Najman, Yani; Carter, Andrew; Wijbrans, Jan R.; Smye, Andrew

    2016-04-01

    The eastern termination of the Himalayan orogen at the southern margin of the Tibetan Plateau forms a syntaxial antiform that folds the suture zone between the Indian and Asian plates and is characterised by 10 to < 1 Ma dates of various geo- and thermo-chronometers. These document Late Miocene to Pleistocene structural, metamorphic, igneous and exhumation events and a recent history of very rapid cooling. The northern third of the syntaxis corresponds to a steep domal 'pop-up' structure bounded by the India-Asia suture on three sides and a thrust zone to the south. One of the major rivers of the eastern Himalaya-Tibet region, the Yarlung Tsangpo, dissects the eastern syntaxis. The river becomes the Brahmaputra River in the Indian foreland basin before emptying into the Bay of Bengal. Exceptionally high relief and one of the deepest gorges on Earth have developed where the river's tortuous route crosses the Namche Barwa-Gyala Peri massif (> 7 km in elevation) in the core of the syntaxis. Downstream of the gorge very high erosion rates contribute ~ 50% of total detritus to the sediment load of the river. The initiation of the exceptional exhumation has been attributed either to the extreme erosive power of a river flowing across a deforming indentor corner and the positive feedback that would establish between the two, or to subduction geometry of a stiffened indentor corner. It has also been suggested that the growth of the antiformal structure and the exhumation of its high grade metamorphic core resulted from buckling as a means to accommodate shortening in the indentor corner. In this study [1] we provide new chronological data on the bedrock of the eastern syntaxis and its erosion products to date the inception of very rapid uplift and erosion and discuss its cause, with the ultimate aim to reconstruct the structural and exhumation history of the syntaxis. We use U-Pb zircon and rutile, white mica Ar-Ar and fission track zircon dating of bedrock, modern

  6. The thermal and structural evolution of the Ronda peridotite during exhumation

    NASA Astrophysics Data System (ADS)

    Johanesen, Katharine Elizabeth

    The Ronda peridotite massif of southern Spain exposes subcontinental lithospheric mantle that records pressure-temperature data and microstructures formed during exhumation beneath the rapidly extending Alboran domain. The peridotite is zoned from garnet- and spinel-bearing mylonites at the structural top, to spinel-bearing tectonites, to melt-percolated spinel-bearing granular peridotites, to plagioclase-bearing tectonites at the structural base. I find microstructural evidence of melt present in the spinel zones prior to the deformation event which exhumed the peridotites, and I, therefore, reinterpret the spinel tectonites as being a result of deformational overprinting of part of the granular domain. I also reinterpret garnet intergrown with spinel in the mylonite zone as part of the pre-mylonitic porphyroclast assemblage, rather than as a syn-mylonite assemblage. This places mylonite formation within the spinel field, rather than right on the garnet-spinel transition (18 kb). Two-dimensional thermal modeling indicates that these conditions require removal of lithospheric mantle below 100 km followed by exhumation along a low angle shear zone. Olivine crystallographic lattice preferred orientations (LPO) from these samples fall into three categories: A-type with a maximum of (010) poles normal to foliation and bands of (100) and (001) parallel to foliation, B-type with (010) poles normal to foliation and (100) parallel foliation and normal to lineation, and E-type with (100) parallel to lineation and (010) parallel foliation and normal to lineation. The garnet- and spinel-bearing mylonites and recrystallized grains in the spinel tectonites show A-type LPO, indicating dry conditions and moderate stresses during deformation. Coarse grains in the spinel tectonites and granular peridotites have a B-type LPO indicative of higher stresses and possible water contents. A shear zone that cross-cuts the granular peridotites has an E-type LPO, which suggests high water

  7. Continental subduction and exhumation of UHP rocks. Structural and geochronological insights from the Dabieshan (East China)

    NASA Astrophysics Data System (ADS)

    Faure, Michel; Lin, Wei; Schärer, Urs; Shu, Liangshu; Sun, Yan; Arnaud, Nicolas

    2003-10-01

    In the Dabieshan, the available models for exhumation of ultrahigh-pressure (UHP) rocks are poorly constrained by structural data. A comprehensive structural and kinematic map and a general cross-section of the Dabieshan including its foreland fold belt and the Northern Dabieshan Domain (Foziling and Luzenguang groups) are presented here. South Dabieshan consists from bottom to top of stacked allochtons: (1) an amphibolite facies gneissic unit, devoid of UHP rocks, interpreted here as the relative autochton; (2) an UHP allochton; (3) a HP rock unit (Susong group) mostly retrogressed into greenschist facies micaschists; (4) a weakly metamorphosed Proterozoic slate and sandstone unit; and (5) an unmetamorphosed Cambrian to Early Triassic sedimentary sequence unconformably covered by Jurassic sandstone. All these units exhibit a polyphase ductile deformation characterized by (i) a NW-SE lineation with a top-to-the-NW shearing, and (ii) a southward refolding of early ductile fabrics. The Central Dabieshan is a 100-km scale migmatitic dome. Newly discovered eclogite xenoliths in a Cretaceous granitoid dated at 102 Ma by the U-Pb method on titanite demonstrate that migmatization post-dates HP-UHP metamorphism. Ductile faults formed in the subsolidus state coeval to migmatization allow us to characterize the structural pattern of doming. Along the dome margins, migmatite is gneissified under post-solidus conditions and mylonitic-ultramylonitic fabrics commonly develop. The north and west boundaries of the Central Dabieshan metamorphics, i.e. the Xiaotian-Mozitan and Macheng faults, are ductile normal faults formed before Late Jurassic-Early Cretaceous. A Cretaceous reworking is recorded by synkinematic plutons. North of the Xiaotian-Mozitan fault, the North Dabieshan Domain consists of metasediments and orthogneiss (Foziling and Luzenguang groups) metamorphosed under greenschist to amphibolite facies which never experienced UHP metamorphism. A rare N-S-trending lineation

  8. A review of the Carboniferous and Permian trilobites of Australia.

    PubMed

    Vanderlaan, Tegan A; Ebach, Malte C

    2015-01-01

    The first complete review of the Carboniferous and Permian trilobite species found within Australia is presented to assess the current standing of Australian taxa in a modern systematic context. The review consists of four families, 20 genera and 61 known species from the early Tournaisian to Moscovian (358.9 Ma to 304 Ma), throughout New South Wales, Tasmania, Western Australia and Queensland. The revision also includes a revised anatomical nomenclature for Australian Carboniferous trilobites. Emended diagnoses are provided for seven genera and 28 species. The genus Thalabaria is placed within the subfamily Archegoninae, and the genera Australokaskia and Planokaskia are placed within Cummingellinae. The subgenera Brachymetopus (Spinimetopus), Bollandia (Capricornia), Australokaskia (Longilobus) and Australokaskia (Planilobus) are suppressed within Brachymetopus, Bollandia, Australokaskia, respectively. All Brachymetopus (Brachymetopus) maccoyi subspecies are elevated to species. Species of Linguaphillipsia are considered sensu lato until there is adequate revision of the entire genus. New combinations include the following: Aprathia semicircularis is reassigned to Weania; Aprathia applanata is questionably reassigned to Carbonocoryphe; and Phillipsia squamata is tentatively reassigned to Palaeophillipsia. The following have been synonymised: Conophillipsia with Monodechenella; Megaproetus with Pudoproetus; Weberiphillipsia with Palaeophillipsia; Weania (Rosehillia) with Schizophillipsia; Conophillipsia breviceps dungogensis with Monodechenella breviceps; Linguaphillipsia raglanensis with Linguaphillipsia stanvellensis; and Weberiphillipsia girvanensis with Palaeophillipsia collinsi. Carbonocoryphe (Winterbergia) elegans, Carbonocoryphe (Winterbergia) keepitensis and Winterbergia? waterhousei are considered representatives of indeterminate genera. PMID:25781767

  9. Permian nonmarine bivalve zonation of the East European platform

    NASA Astrophysics Data System (ADS)

    Silantiev, V. V.

    2014-01-01

    New finds and revision of available collections of nonmarine bivalves provided grounds for development of a zonal scale for terrestrial sequences of the Permian System based on species belonging to the genus Palaeomutela Amalitzky, 1891, which are characterized by regular changes in the structure of the shell hinge. The scale includes two parallel zonal successions that are based on the stratigraphic distribution and evolutionary trends of two morphological lineages of the genus. The zonal succession based on development of the P. umbonata group (dwellers of mobile waters and silty-psammitic substrates) includes 11 range zones: stegocephalum, ovatiformis, umbonata, quadriangularis, krotowi, wohrmani, numerosa, ulemensis, keyserlingi, curiosa, golubevi. The zonal succession based on development of the P. castor group (dwellers of calm waters and silty-pelitic substrates) includes eight range zones: larae, castor, olgae, doratioformis, marposadica, fischeri, obunca, amalitzkyi. The proposed zonal units are correlated with scales based on ostracod, fish, and tetrapod fossils. New species Palaeomutela golubevi sp. nov. and P. amalitzkyi sp. nov. are described with the extended diagnosis of the genus Palaeomutela.

  10. Recrystallized microbial trace fossils from metamorphosed Permian basalt, southwestern Japan

    NASA Astrophysics Data System (ADS)

    Sugawara, H.; Sakakibara, M.; Ikehara, M.

    2014-05-01

    Microbial trace fossils on terrestrial basalts can be used as an analogue in the search for traces of life on other terrestrial planets. This study reports on microbial trace fossils within Permian greenstones in the Maizuru Terrane, southwest Japan, which is recognized as back-arc basin oceanic crust that consists mainly of metabasalt and metagabbro. The trace fossils have been studied by means of morphology, mineralogy, elemental mapping, and carbon isotope analysis. Although minute original textures of trace fossils are recrystallized in these rocks, Granulohyalichnus vulgaris isp., Tubulohyalichnus spiralis isp., and Tubulohyalichnus annularis isp. were identified. Significant concentration of C within the trace fossils implies these are organic remnants from microbes. The δ13CPDB values <-7‰ of calcite within the greenstones indicates that the bacterial activity took place prior to the formation of calcite veins. The results support that microbial trace fossils within low-grade metamorphic basalt can be reliably identified based on their morphology and chemical composition, as reveled by elemental mapping. In this context, glassy Martian basalt may be the best rock type to investigate in terms of searching for signs of microbial activity on Earth and other planets.

  11. Time-calibrated Milankovitch cycles for the late Permian

    PubMed Central

    Wu, Huaichun; Zhang, Shihong; Hinnov, Linda A.; Jiang, Ganqing; Feng, Qinglai; Li, Haiyan; Yang, Tianshui

    2013-01-01

    An important innovation in the geosciences is the astronomical time scale. The astronomical time scale is based on the Milankovitch-forced stratigraphy that has been calibrated to astronomical models of paleoclimate forcing; it is defined for much of Cenozoic–Mesozoic. For the Palaeozoic era, however, astronomical forcing has not been widely explored because of lack of high-precision geochronology or astronomical modelling. Here we report Milankovitch cycles from late Permian (Lopingian) strata at Meishan and Shangsi, South China, time calibrated by recent high-precision U–Pb dating. The evidence extends empirical knowledge of Earth’s astronomical parameters before 250 million years ago. Observed obliquity and precession terms support a 22-h length-of-day. The reconstructed astronomical time scale indicates a 7.793-million year duration for the Lopingian epoch, when strong 405-kyr cycles constrain astronomical modelling. This is the first significant advance in defining the Palaeozoic astronomical time scale, anchored to absolute time, bridging the Palaeozoic–Mesozoic transition. PMID:24030138

  12. Time-calibrated Milankovitch cycles for the late Permian.

    PubMed

    Wu, Huaichun; Zhang, Shihong; Hinnov, Linda A; Jiang, Ganqing; Feng, Qinglai; Li, Haiyan; Yang, Tianshui

    2013-01-01

    An important innovation in the geosciences is the astronomical time scale. The astronomical time scale is based on the Milankovitch-forced stratigraphy that has been calibrated to astronomical models of paleoclimate forcing; it is defined for much of Cenozoic-Mesozoic. For the Palaeozoic era, however, astronomical forcing has not been widely explored because of lack of high-precision geochronology or astronomical modelling. Here we report Milankovitch cycles from late Permian (Lopingian) strata at Meishan and Shangsi, South China, time calibrated by recent high-precision U-Pb dating. The evidence extends empirical knowledge of Earth's astronomical parameters before 250 million years ago. Observed obliquity and precession terms support a 22-h length-of-day. The reconstructed astronomical time scale indicates a 7.793-million year duration for the Lopingian epoch, when strong 405-kyr cycles constrain astronomical modelling. This is the first significant advance in defining the Palaeozoic astronomical time scale, anchored to absolute time, bridging the Palaeozoic-Mesozoic transition. PMID:24030138

  13. Extremely acid Permian lakes and ground waters in North America

    USGS Publications Warehouse

    Benison, K.C.; Goldstein, R.H.; Wopenka, B.; Burruss, R.C.; Pasteris, J.D.

    1998-01-01

    Evaporites hosted by red beds (red shales and sandstones), some 275-265 million years old, extend over a large area of the North American mid- continent. They were deposited in non-marine saline lakes, pans and mud- flats, settings that are typically assumed to have been alkaline. Here we use laser Raman microprobe analyses of fluid inclusions trapped in halites from these Permian deposits to argue for the existence of highly acidic (pH < 1) lakes and ground waters. These extremely acidic systems may have extended over an area of 200,000 km2. Modern analogues of such systems may be natural acid lake and groundwater systems (pH ~2-4) in southern Australia. Both the ancient and modern acid systems are characterized by closed drainage, arid climate, low acid-neutralizing capacity, and the oxidation of minerals such as pyrite to generate acidity. The discovery of widespread ancient acid lake and groundwater systems demands a re-evaluation of reconstructions of surface conditions of the past, and further investigations of the geochemistry and ecology of acid systems in general.

  14. Complete tylosis formation in a latest Permian conifer stem

    PubMed Central

    Feng, Zhuo; Wang, Jun; Rößler, Ronny; Kerp, Hans; Wei, Hai-Bo

    2013-01-01

    Background and Aims Our knowledge of tylosis formation is mainly based on observations of extant plants; however, its developmental and functional significance are less well understood in fossil plants. This study, for the first time, describes a complete tylosis formation in a fossil woody conifer and discusses its ecophysiological implications. Methods The permineralized stem of Shenoxylon mirabile was collected from the upper Permian (Changhsingian) Sunjiagou Formation of Shitanjing coalfield, northern China. Samples from different portions of the stem were prepared by using the standard thin-sectioning technique and studied in transmitted light. Key Results The outgrowth of ray parenchyma cells protruded into adjacent tracheids through pits initially forming small pyriform or balloon-shaped structures, which became globular or slightly elongated when they reached their maximum size. The tracheid luminae were gradually occluded by densely spaced tyloses. The host tracheids are arranged in distinct concentric zones representing different growth phases of tylosis formation within a single growth ring. Conclusions The extensive development of tyloses from the innermost heartwood (metaxylem) tracheids to the outermost sapwood tracheids suggests that the plant was highly vulnerable and reacted strongly to environmental stress. Based on the evidence available, the tyloses were probably not produced in response to wound reaction or pathogenic infection, since evidence of wood traumatic events or fungal invasion are not recognizable. Rather, they may represent an ecophysiological response to the constant environmental stimuli. PMID:23532049

  15. The Alashan Terrane did not amalgamate with North China block by the Late Permian: Evidence from Carboniferous and Permian paleomagnetic results

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Yang, Zhenyu

    2015-05-01

    Rock magnetic and paleomagnetic studies have been carried out on the early Carboniferous limestones and the Late Permian purple sandstones sampled in the eastern Alashan Terrane (ALT), northwest of China. Two components were isolated from the Early Carboniferous limestone by thermal progressive demagnetisation: a low unblocking temperature component (LTC) of recent origin; a pre-folding medium temperature component (MTC) (the paleomagnetic pole is λ = 13.1°N, Ф = 11.0°E, A95 = 7.0°) that is probably the result of the hydrothermal fluids from the Qilian Orgenic Belt acquired during the Late Carboniferous-Early Permian. Also, two components were separated from the Late Permian purple sandstone by thermal progressive demagnetisation: the LTC with the recent viscous remanent magnetisation, and the higher temperature component (HTC) revealed from three sections which has passed a regional fold test at the 95% probability level and reversal test, suggesting a primary characteristic magnetisation. The corresponding paleomagnetic pole is λ = 27.2° N, Ф = 18.8° E, A95 = 12.0°. The apparent polar wander path (including early Carboniferous, late Carboniferous-Early Permian, Late Permian and Early-middle Triassic poles) of the ALT is significantly different with those of the NCB. Comparison of the APWPs between the ALT and NCB shows a strong similarity. If the APWP of Hexi Corridor-Alashan rotated counterclockwise around an Euler pole at 44°N, 84°E by 32°, then the coeval APW path of the ALT overlaps to that of the NCB. This result indicates that the ALT migrated to the NCB after the Early-Middle Triassic along a tectonic boundary located between Helanshan Mountain and Zhuozishan Mountain, and finally amalgamated to the NCB before the Early Cretaceous.

  16. Permian and Triassic microfloral assemblages from the Blue Nile Basin, central Ethiopia

    NASA Astrophysics Data System (ADS)

    Dawit, Enkurie L.

    2014-11-01

    Palynological investigation was carried out on surface samples from up to 400 m thick continental siliciclastic sediments, here referred to as “Fincha Sandstone”, in the Blue Nile Basin, central Ethiopia. One hundred sixty species were identified from 15 productive samples collected along a continuous road-cut exposure. Six informal palynological assemblage zones have been identified. These assemblage zones, in ascending order, are: “Central Ethiopian Permian Assemblage Zone - CEPAZ I”, earliest Permian (Asselian-Sakmarian); “CEPAZ II”, late Early Permian (Artinskian-Kungurian); CEPAZ III - Late Permian (Kazanian-Tatarian); “CETAZ IV”, Lower Triassic (Olenekian Induan); “CETAZ V”, Middle Triassic (Anisian Ladinian); “CETAZ VI”, Late Triassic (Carnian Norian). Tentative age ranges proposed herein are compared with faunally calibrated palynological zones in Gondwana. The overall composition and vertical distribution of miospores throughout the studied section reveals a wide variation both qualitatively and quantitatively. The high frequency of monosaccate pollen in CEPAZ I may reflect a Glossopterid-dominated upland flora in the earliest Permian. The succeeding zone is dominated by straite/taeniate disaccate pollen and polyplicates, suggesting a notable increase in diversity of glossopterids. The decline in the diversity of taeniate disaccate pollen and the concomitant rise in abundance of non-taeniate disaccates in CEPAZ III may suggest the decline in Glossopteris diversity, though no additional evidence is available to equate this change with End-Permian extinction. More diverse and dominant non-taeniate, disaccate, seed fern pollen assignable to FalcisporitesAlisporites in CETAZ IV may represent an earliest Triassic recovery flora. The introduction of new disaccate forms with thick, rigid sacci, such as Staurosaccites and Cuneatisporites, in CETAZ V and VI may indicate the emergence of new gymnospermous plants that might have favourably

  17. Permian-Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution.

    PubMed

    Romano, Carlo; Koot, Martha B; Kogan, Ilja; Brayard, Arnaud; Minikh, Alla V; Brinkmann, Winand; Bucher, Hugo; Kriwet, Jürgen

    2016-02-01

    The Permian and Triassic were key time intervals in the history of life on Earth. Both periods are marked by a series of biotic crises including the most catastrophic of such events, the end-Permian mass extinction, which eventually led to a major turnover from typical Palaeozoic faunas and floras to those that are emblematic for the Mesozoic and Cenozoic. Here we review patterns in Permian-Triassic bony fishes, a group whose evolutionary dynamics are understudied. Based on data from primary literature, we analyse changes in their taxonomic diversity and body size (as a proxy for trophic position) and explore their response to Permian-Triassic events. Diversity and body size are investigated separately for different groups of Osteichthyes (Dipnoi, Actinistia, 'Palaeopterygii', 'Subholostei', Holostei, Teleosteomorpha), within the marine and freshwater realms and on a global scale (total diversity) as well as across palaeolatitudinal belts. Diversity is also measured for different palaeogeographical provinces. Our results suggest a general trend from low osteichthyan diversity in the Permian to higher levels in the Triassic. Diversity dynamics in the Permian are marked by a decline in freshwater taxa during the Cisuralian. An extinction event during the end-Guadalupian crisis is not evident from our data, but 'palaeopterygians' experienced a significant body size increase across the Guadalupian-Lopingian boundary and these fishes upheld their position as large, top predators from the Late Permian to the Late Triassic. Elevated turnover rates are documented at the Permian-Triassic boundary, and two distinct diversification events are noted in the wake of this biotic crisis, a first one during the Early Triassic (dipnoans, actinistians, 'palaeopterygians', 'subholosteans') and a second one during the Middle Triassic ('subholosteans', neopterygians). The origination of new, small taxa predominantly among these groups during the Middle Triassic event caused a

  18. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction

    NASA Astrophysics Data System (ADS)

    Takahashi, Satoshi; Yamasaki, Shin-ichi; Ogawa, Yasumasa; Kimura, Kazuhiko; Kaiho, Kunio; Yoshida, Takeyoshi; Tsuchiya, Noriyoshi

    2014-05-01

    We describe variations in trace element compositions that occurred on the deep seafloor of palaeo-superocean Panthalassa during the end-Permian mass extinction based on samples of sedimentary rock from one of the most continuous Permian-Triassic boundary sections of the pelagic deep sea exposed in north-eastern Japan. Our measurements revealed low manganese (Mn) enrichment factor (normalised by the composition of the average upper continental crust) and high cerium anomaly values throughout the section, suggesting that a reducing condition already existed in the depositional environment in the Changhsingian (Late Permian). Other redox-sensitive trace-element (vanadium [V], chromium [Cr], molybdenum [Mo], and uranium [U]) enrichment factors provide a detailed redox history ranging from the upper Permian to the end of the Permian. A single V increase (representing the first reduction state of a two-step V reduction process) detected in uppermost Changhsingian chert beds suggests development into a mildly reducing deep-sea condition less than 1 million years before the end-Permian mass extinction. Subsequently, a more reducing condition, inferred from increases in Cr, V, and Mo, developed in overlying Changhsingian grey siliceous claystone beds. The most reducing sulphidic condition is recognised by the highest peaks of Mo and V (second reduction state) in the uppermost siliceous claystone and overlying lowermost black claystone beds, in accordance with the end-Permian mass extinction event. This significant increase in Mo in the upper Changhsingian led to a high Mo/U ratio, much larger than that of modern sulphidic ocean regions. This trend suggests that sulphidic water conditions developed both at the sediment-water interface and in the water column. Above the end-Permian mass extinction horizon, Mo, V and Cr decrease significantly. On this trend, we provide an interpretation of drawdown of these elements in seawater after the massive element precipitation event

  19. The last "pelycosaur": a varanopid synapsid from the Pristerognathus Assemblage Zone, Middle Permian of South Africa

    NASA Astrophysics Data System (ADS)

    Modesto, Sean P.; Smith, Roger M. H.; Campione, Nicolás E.; Reisz, Robert R.

    2011-12-01

    We report on a partial varanopid skull and mandible from the Pristerognathus Assemblage Zone of the Beaufort Group, in the South African Karoo Basin, which is probably latest Middle Permian (Capitanian) in age. This mycterosaurine is not only the youngest known varanopid from the Southern Hemisphere, but it is also the youngest known "pelycosaur" (i.e., non-therapsid synapsid). Like all other members of this clade of hypercarnivores, the teeth are strongly flattened, recurved, and have finely serrated cutting edges. The anterior dentary teeth form a caniniform region, and the splenial features a foramen intermandibularis oralis, the first ever to be described in a "pelycosaur." The last varanopids were the smallest carnivores of latest Middle Permian continental faunas. Occupation of the small carnivore guild appears to have allowed varanopids to achieve a nearly cosmopolitan distribution throughout the Middle Permian, between the great Early Permian radiation of basal synapsids and the spectacular diversification of therapsid synapsids in the Late Permian and Early Triassic.

  20. Permian tectonism in Rocky Mountain foreland and its importance in Exploration for Minnelusa and Lyons sandstones

    SciTech Connect

    Moore, W.R.

    1985-05-01

    Permian sandstones are important producers of oil in the Powder River and Denver basins of the Rocky Mountain foreland region. In the Powder River basin, Wolfcampian Minnelusa Sandstone produces oil from structural and stratigraphic traps on both sides of the basin axis, whereas in Denver basin, the Leonardian Lyons Sandstone produces oil mainly from structural traps on the west flank of the basin. Two fields, North Fork-Cellars Ranch in the Powder River basin, and Black Hollow in the Denver basin, are examples of Permian growth of structural features. At North Fork-Cellars Ranch, a period of Permian structural growth and resultant differential sedimentation is documented by structure and isopach maps of the Minnelusa and overlying Goose Egg Formation. Structural growth began at the end of Minnelusa deposition and resulted in deposition of a much thicker Goose Egg section on the west flank of the field. At Black Hollow, mapping indicates structural growth was initiated before deposition of the Lyons Sandstone and continued throughout Leonardian time. In both fields growth abruptly ceased in the Late Permian. Both North Fork-Cellars Ranch and Black Hollow are located on structural highs, or arches, which trend east-west across the Powder River and Denver basins. These arches were present during the pre-Laramide migration of Paleozoic-sourced hydrocarbons into the basins and acted as pathways for migration. Exploration for Permian reservoirs in the two basins should be concentrated on the arches, as the early formed traps were present when migration began.

  1. Development of the Permian-Triassic unconformity in southwestern Utah, southeastern Nevada and northwestern Arizona

    SciTech Connect

    Nielson, R.L. . Dept. of Geology)

    1993-04-01

    Development of positive areas, that are oriented northwest-southeast in south-western Utah, southeastern Nevada, and northwestern Arizona, are indicated by the depositional patterns of the Rock Canyon Conglomerate and facies changes produced by on-lapping during the deposition of the Timpoweap, Lower Red, and Virgin Limestone Members of the Moenkopi Formation. The lack of facies change in the Kaibab Formation indicates that uplift of the positive areas did not start during the early Permian. The Fossil Mountain Member of the Kaibab Formation, is a marker of continuous shallow marine sedimentation across the area. The Harrisburg Member contains three limestone units, separated by gypsum and shale units, that represent regressions and transgressions. Where the gypsum in the Kaibab Formation thins, collapse breccia and deformed shale units are present indicating that the gypsum was deposited and then removed by dissolution. Channels cut during the late Permian and early Triassic Periods do not cut through the Harrisburg Member of the Kaibab Formation. West of St. George, Utah, where the gypsum deposits are thickest, is the location where Timpoweap, Lower Red, and Virgin Limestone members thin and are absent. Late Permian and early Triassic topography may have in part been controlled by dissolution of the gypsum deposits in the Kaibab Formation. The low angle of discordance between Permian and Triassic units indicated that the area was not subjected to major deformation during the late Permian and early Triassic, but was gently tilted and uplifted.

  2. Paleomagnetism and question of original location of the Permian Brook Street Terrane, New Zealand

    NASA Astrophysics Data System (ADS)

    Haston, Roger B.; Luyendyk, Bruce P.; Landis, C. A.; Coombs, D. S.

    1989-08-01

    Over 400 rock samples from 30 sites were collected for paleomagnetic study from the volcanogenic section in the Brook Street terrane within the Takitimu Mountains in western Southland, New Zealand. The section includes igneous and sedimentary rocks of the Permian Takitimu Group and White Hill Intrusive Suite. Many of the samples show a partial or complete remagnetization in the present field because of a recent acquisition of viscous remanent magnetization. An Early Permian direction (inclination = 46.1°, declination = 257°), isolated from the Heartbreak and Chimney Peaks formations of the Takitimu Group, indicates a low paleolatitude to midpaleolatitude, position (27° ± 5°) for the Brook Street terrane. Directions from the Late Permian (?) White Hill Intrusives (inclination = 64.6°, declination = 173.3°) suggest a slightly higher paleolatitude than the Early Permian Takitimu Group directions and 70°-90° of intervening clockwise rotation. Plate reconstructions and paleomagnetic data predict a high paleolatitude for the New Zealand margin of Gondwana throughout the late Paleozoic and Mesozoic. The low paleolatitude to middle paleolatitude, implied by the Early Permian Brook Street result, together with the oceanic nature of the Brook Street arc, suggest that the Brook Street terrane is allochthonous to the margin of Gondwana. A published Late Triassic/Early Jurassic paleomagnetic pole from the adjacent Murihiku terrane indicates a high paleolatitude. This suggests that the Brook Street and Murihiku terranes are genetically distinct.

  3. Dynamics of subduction, accretion, exhumation and slab roll-back: Mediterranean scenarios

    NASA Astrophysics Data System (ADS)

    Tirel, C.; Brun, J.; Burov, E. B.; Wortel, M. J.; Lebedev, S.

    2010-12-01

    A dynamic orogen reveals various tectonic processes brought about by subduction: accretion of oceanic and continental crust, exhumation of UHP-HP rocks, and often, back-arc extension. In the Mediterranean, orogeny is strongly affected by slab retreat, as in the Aegean and Tyrrhenian Seas. In order to examine the different dynamic processes in a self-consistent manner, we perform a parametric study using the fully coupled thermo-mechanical numerical code PARAFLAM. The experiments reproduce a subduction zone in a slab pull mode, with accretion of one (the Tyrrhenian case) and two continental blocks (the Aegean case) that undergo, in sequence, thrusting, burial and exhumation. The modeling shows that despite differences in structure between the two cases, the deformation mechanisms are fundamentally similar and can be described as follows. The accretion of a continental block at the trench beneath the suture zone begins with its burial to UHP-HP conditions and thrusting. Then the continental block is delaminated from its subducting lithosphere. During the subduction-accretion process, the angle of the subducting slab increases due to the buoyancy of the continental block. When the oceanic subduction resumes, the angle of the slab decreases to reach a steady-state position. The Aegean and Tyrrhenian scenarios diverge at this stage, due naturally to the differences of their accretion history. When continental accretion is followed by oceanic subduction only, the continental block that has been accreted and detached stays at close to the trench and does not undergo further deformation, despite the continuing rollback. The extensional deformation is located further within the overriding plate, resulting in continental breakup and the development of an oceanic basin, as in the Tyrrhenian domain. When the continental accretion is followed first by oceanic subduction and then by accretion of another continental block, however, the evolution of the subduction zone is

  4. Evolution of Continental Lower Crust Recorded By an Exhumed Deep Crustal Intracontinental Shear Zone

    NASA Astrophysics Data System (ADS)

    Dumond, G.; Mahan, K. H.; Regan, S. P.; Williams, M. L.; Goncalves, P.; Wood, V. R.

    2014-12-01

    Exposures of deep crustal shear zones are fundamental records of strain localization and the temporal evolution of ductile to brittle behavior as these tectonites were exhumed to the surface. We present results from a decade of field-based research on a deeply exhumed (~35 km-paleodepths) strike-slip shear zone in the western Churchill province of the Canadian Shield. The Grease River shear zone is a >400 km-long and 7 km-thick structure that cuts the Athabasca granulite terrane, North America's largest exposure of continental lower crust (>20,000 km2). The shear zone is dominated by granulite- to amphibolite-grade L-S and L>S tectonites characterized by penetrative NE-striking steeply-dipping foliations with gently-plunging to sub-horizontal stretching and intersection lineations. These fabrics are locally overprinted by pseudotachylyte and narrow (<500 m-thick) greenschist-grade zones of cataclasite. Dextral kinematics are defined by deflected foliation trajectories, C' shear bands, and well-developed σ- and δ-type porphyroclasts of Kfs + Pl + Opx + Grt + Hb in felsic to intermediate granulite paragneisses and orthogneisses. Data collected along a well-exposed, nearly 150 km-long segment of the shear zone documents a >100 m.y. episodic record of transpressive to strike-slip intracontinental strain accumulation that coincided with two oppositely convergent orogenies: the east-vergent arc-continent collision of the 1.94-1.90 Ga Taltson orogen and the west-vergent continent-continent collision of the 1.9-1.8 Ga Trans-Hudson orogen. Deformation mechanisms evolved from distributed ductile dynamic recrystallization and grain-size reduction to localized pseudotachylyte development, cataclastic flow, and brittle faulting. Lower crustal behavior during strain localization was dynamic. Melt-weakened mono-cyclic crust was juxtaposed against strong isobarically-cooled poly-cyclic crust along the shear zone at 1.92-1.90 Ga. Brittle-ductile reactivation of the structure

  5. How does the lithosphere deformation mode during continental breakup affect mantle exhumation and subsidence history?

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N.; Manatschal, G.

    2012-04-01

    Mantle exhumation at magma-poor rifted continental margin requires that continental crust ruptures prior to the onset of significant decompression melting. Both the relative timing of crustal rupture and melting, and therefore mantle exhumation, and rifted margin subsidence are dependent on the deformation mode of the continental lithosphere stretching and thinning leading to breakup. Fletcher et al. (2009) showed that for the Iberia-Newfoundland rifted margin, modelling of continental lithosphere stretching and thinning by pure-shear resulted in decompression melt initiation before continental crustal-rupture, while stretching and thinning by upwelling-divergent "corner flow" resulted in crustal-rupture before melt initiation. Observations at rifted continental margins (including Iberia-Newfoundland rifted margin) suggest a complex rifting evolution that cannot be explained by simplistic end-member pure-shear or "corner flow" deformation modes of lithosphere thinning and stretching (Péron-Pinvidic and Manatschal, 2009). By analogy with the deformation processes occurring at slow spreading ocean-ridges (Cannat, 1996), a more realistic lithosphere deformation mode for magma-poor continental breakup is extensional faulting for the colder brittle upper 12-15km above upwelling-divergent "corner flow" for the remaining lithosphere and asthenosphere. We use a kinematic numerical model of continental lithosphere thinning and stretching to examine decompression melt initiation, continental crustal rupture and subsidence for such a hybrid lithosphere deformation model represented by pure-shear deformation in the topmost brittle lithosphere above upwelling-divergent flow. We explore the relative contributions of pure-shear and upwelling-divergent "corner flow" deformation and its sensitivity to deformation rate, pure-shear half-width, the "corner flow" Vz/Vx ration and mantle potential temperature. The kinematic numerical model that we use represents lithosphere and

  6. Kinematics of post-orogenic extension and exhumation of the Taku Schist, NE Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Md Ali, M. A.; Willingshofer, E.; Matenco, L.; Francois, T.; Daanen, T. P.; Ng, T. F.; Taib, N. I.; Shuib, M. K.

    2016-09-01

    Recent studies imply that the formation and evolution of many SE Asian basins was driven by extensional detachments or systems of low-angle normal faults that created significant crustal exhumation in their footwalls. In this context, the architecture of the Triassic Indosinian orogen presently exposed in Peninsular Malaysia is compatible with significant extension post-dating the orogenic event. In this study we performed a kinematic analysis based on fieldwork and microstructural observations in the Taku Schist, Kemahang granite and the surrounding Gua Musang sediments of northern Peninsular Malaysia in order to shed light on processes related to the build-up and subsequent demise of the Indosinian orogen. The first three phases of deformation were related to an overall period of E-W oriented contraction and burial metamorphism. These phases of deformation are characterized by isoclinal folding with flat lying axial plane cleavages (D1), asymmetrical folding, top-to-the-W-SW shearing (D2) and upright folding (D3). All are in general agreement with observations of the previously inferred Permo-Triassic Indosinian orogeny. During these times, the Taku Schist, a sequence of Paleozoic clastic sediments with mafic intercalations was metamorphosed to amphibolite facies. These rocks are most likely equivalent to the ones exposed in the Bentong-Raub suture zone. Structural relations suggest that the Triassic Kemahang pluton is syn-kinematic, which provides important constraints for the timing of these contractional events. We demonstrate that the overall shortening was followed by a hitherto undescribed extension in NW-SE direction resulting in the formation of a large-scale detachment, the Taku detachment, in northern Peninsular Malaysia. Extension probably reactivated the former subduction plane as a detachment and exhumed previously buried and metamorphosed rocks of similar lithological composition to the neighboring Bentong-Raub suture zone. Such a mechanism is

  7. Time and duration of metamorphism and exhumation of the central Rhodopian core complex, Bulgaria

    NASA Astrophysics Data System (ADS)

    Ovtcharova, M.; von Quadt, A.; Peytcheva, I.; Neubauer, F.; Heinrich, C. A.; Kaiser, M.

    2003-04-01

    The evolution of central Rhodopian dome (Bulgaria) is interpreted in terms of an extensional collapse of thickened crust (Ivanov at al., 2000). U-Pb isotope dating (single Zr and Mnz), Rb-Sr (W.R., Bt and Ap) and Ar-Ar (on Bt) were carried out on different rocks from the central Rhodope, Bulgaria, to constrain the timing and duration of the metamorphism and exhumation of the core complex. The beginning of extensional stage is marked by intrusion of earliest non-penetratively deformed granite bodies at 53Ma (U-Pb on single Zr and Mnz). The late Alpine extensional evolution of the massif is marked by a detachment system connected with exhumation of the migmatites in the core part of the dome (lower plate). U-Pb analyses on Mnz and Zr from mesosome and discordant leucosome yield a Variscan protolith age of the gneiss (311 Ma) and Eocene age (37Ma) of crystallization of the newly formed anatectic melt that corresponds with the peak of the Alpine metamorphic event (P 4.5-6kbar and T 720-750^oC; Georgieva et al., 2002). Rb-Sr mineral system of the weakly deformed gneisses from lower plate of the core complex gives evidence for a cooling age of 34.5±0.34Ma. This result is confirmed by Ar-Ar on Bt from the same rock: 35.5±0.4Ma. Ar-Ar data on biotite from gneisses of the upper plate yield an age of 34.9±0.6Ma. The same age is reflected by an Rb-Sr isochron (W.R., Bt and Ap) of 35.22±0.35Ma. The post-collisional extension was followed by graben depressions filled with sediments of Eocene-Oligocene age and active volcanism and ore mineralization (Zn-Pb and Cu-Pb-Zn ore deposits). Connected with the most intensively "stretched" sections of the extensional system is emplacement of rhyolitic dikes at 32.8±0.41Ma (U-Pb on single Zr, Xe). The available data constrain narrow time bracket between timing of high-grade metamorphism event (37Ma, >600^oC), cooling (35Ma, 300ºC) of the core complex and volcanic activity (32Ma) that corresponds with rapid exhumation tectonic regime

  8. Glacial morphology in the Chinese Pamir: Connections among climate, erosion, topography, lithology and exhumation

    NASA Astrophysics Data System (ADS)

    Schoenbohm, Lindsay M.; Chen, Jie; Stutz, Jamey; Sobel, Edward R.; Thiede, Rasmus C.; Kirby, Benjamin; Strecker, Manfred R.

    2014-09-01

    Modification of the landscape by glacial erosion reflects the dynamic interplay of climate through temperature, precipitation, and prevailing wind direction, and tectonics through rock uplift and exhumation rate, lithology, and range and fault geometry. We investigate these relationships in the northeast Pamir Mountains using mapping and dating of moraines and terraces to determine the glacial history. We analyze modern glacial morphology to determine glacier area, spacing, headwall relief, debris cover, and equilibrium line altitude (ELA) using the area x altitude balance ratio (AABR), toe-to-headwall altitude ratio (THAR) and toe-to-summit altitude method (TSAM) for 156 glaciers and compare this to lithologic, tectonic, and climatic data. We observe a pronounced asymmetry in glacial ELA, area, debris cover, and headwall relief that we interpret to reflect both structural and climatic control: glaciers on the downwind (eastern) side of the range are larger, more debris covered, have steeper headwalls, and tend to erode headward, truncating the smaller glaciers of the upwind, fault-controlled side of the range. We explain this by the transfer of moisture deep into the range as wind-blown or avalanched snow and by limitations imposed on glacial area on the upwind side of the range by the geometry of the Kongur extensional system (KES). The correspondence between rapid exhumation along the KES and maxima in glacier debris cover and headwall relief and minimums in all measures of ELA suggest that taller glacier headwalls develop in a response to more rapid exhumation rates. However, we find that glaciers in the Muji valley did not extend beyond the range front until at least 43 ka, in contrast to extensive glaciation since 300 ka in the south around the high peaks, a pattern which does not clearly reflect uplift rate. Instead, the difference in glacial history and the presence of large peaks (Muztagh Ata and Kongur Shan) with flanking glaciers likely reflects

  9. From crustal thinning to mantle exhumation: what the Pyrenean breccia formations tell us.

    NASA Astrophysics Data System (ADS)

    Clerc, C.; Chauvet, A.; Lagabrielle, Y.; Reynaud, J.-Y.; Boulvais, P.; Bousquet, R.; Lahfid, A.; Vauchez, A.; Mahé, S.

    2012-04-01

    Several formations with various breccia types occur in Mesozoic basins disseminated along the North Pyrenean fault, on the northern flank of the French Pyrenees. Due to their location along the Iberia-Europa plate boundary, the North Pyrenean breccia formations represent complex archives documenting the tectonic and sedimentary evolution of the Pyrenean realm during the Aptian-Albian period. In particular, the North Pyrenean breccia formations have recorded the main stages of crustal thinning, continental break-up and mantle exhumation, which occurred along the North Pyrenean Zone (NPZ). We will review the main sedimentary, structural, metamorphic and geochemical characters of these breccias, based on new field investigations conducted in both the Western and Eastern Pyrenées (Agly, Aulus, Moncaup-St Béas and Urdach localities). Based on our new founding, we re-intrepret the significance of the breccia formations in the light of the most recent models developed for the pre-orogenic evolution of the Pyrenees. In several places and mostly close to the contact between Paleozoic basement and Mesozoic cover, we systematically recognized the following three types of breccias: i) Semi-ductile syn-metamorphic breccias resulting from the boudinage of silicic or dolomitic beddings in ductily deformed marbles. ii) Cataclastic breccias disturbing the neighbouring host rocks and displaying a relatively monogenetic character. These tectonic breccias result from the disruption of the Mesozoic metamorphic platform under cooling conditions. They are dominated by cataclastic levels mainly located in the Triassic and Liassic weaker levels, iii) Polymictic sedimentary breccias, which composition is dominated by clasts of Mesozoic metasediments. Locally, close to subcontinental mantle bodies, the sedimentary breccias include numerous clasts of ultramafic and/or crustal basement rocks. Such breccias are the witness of the disruption of the sedimentary cover of the North Pyrenean Zone

  10. Uplift, exhumation and erosion along the Angolan continental margin: an integrated approach

    NASA Astrophysics Data System (ADS)

    Gröger, Heike R.; Machado, Vladimir; Di Pinto, Giuseppe

    2013-04-01

    The topographical development along the SW African margin is not exclusively rift-related. In addition to the onset of rifting in the Early Cretaceous, additional Late Cretaceous and Cenozoic events of uplift, exhumation and erosion are discussed. Thermochronology has proven to be a valuable tool to constrain phases of exhumation in passive continental margins. For South Africa and Namibia a large number of thermochronological data are available. Angola on the other hand is still scarcely investigated. This study is based on thermochronological data from onshore Angola, integrated with quantitative morphotectonic analysis and the on- and offshore stratigraphic record. In South Africa and Namibia published thermochronological data document pronounced Early and Late Cretaceous cooling events, which can be related to 2.5-3.5 km of removed section during the Cretaceous. An additional 1-2 km of removed section are estimated during the Cenozoic. In Angola predominantly Permo-Triassic apatite fission track ages indicate significantly less Cretaceous to Cenozoic erosion (< 2.5 km). The apatite fission track data do not provide high resolution constraints on the syn-post rift topographical development along the Angolan margin. However, thermal modelling points to a pronounced Miocene final cooling event. River bed topography upstream the Angolan escarpment is in equilibrium, while the escarpment itself forms a major knick zone. Downstream the main knick point towards the coast, river long-profiles are characterised by convex reaches which are the evidence of an immature, non steady-state topography. Estimation from knick point migration reveals about 1 km uplift within the Cenozoic (< 57 Ma). Published basin reconstructions offshore South Africa and Namibia confirm the general picture of pronounced Cretaceous erosion in the offshore sedimentary record of the basins south of the Walvis ridge (Walvis, Lüderitz and Orange basin). More pronounced Cenozoic erosion in Angola

  11. A new permopsocidan genus and species from the Late Permian of Australia (Insecta: Acercaria: Psocidiidae).

    PubMed

    Prokop, Jakub; Garrouste, Romain; Nel, André

    2016-01-01

    The psocidiid Hypopsylla belmontensis gen. et sp. nov., new psocidiid genus and species, is described and figured from the Late Permian of New South Wales in Australia. This discovery extends the knowledge on the diversity of the small order Permopsocida whose members passed the Permian-Triassic boundary and became extinct in Cretaceous. PMID:27515638

  12. Exhumation history of the NW Indian Himalaya revealed by fission track and 40Ar/39Ar ages

    USGS Publications Warehouse

    Schlup, M.; Steck, A.; Carter, A.; Cosca, M.; Epard, J.-L.; Hunziker, J.

    2011-01-01

    New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) - Tso Morari transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55. Ma and metamorphosed by ca. 48-40. Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10. km) by 40-30. Ma in the Tso Morari dome (northern section of the transect) and by 30-20. Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.Metamorphism started in the High Himalayan nappe prior to the Late Oligocene. High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26. Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19. Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (<10. km) between 20 and 6. Ma, while its southern front reached this depth at 10-5. Ma. ?? 2010 Elsevier Ltd.

  13. Exhumation of Wistar rats experimentally exposed to the carbamate pesticides aldicarb and carbofuran: A pathological and toxicological study.

    PubMed

    de Siqueira, Adriana; Rodrigues, Karina Borges Almeida; Gonçalves-Júnior, Vagner; Calefi, Atilio Sersun; Fukushima, André Rinaldi; Cuevas, Silvia Elena Campusano; Spinosa, Helenice de Souza; Maiorka, Paulo César

    2016-06-01

    Exhumation is required for the investigation of suspicions deaths when a body is buried and is usually performed under court order. Exhumation of animals is not a routine practice in forensic pathology. In this study, 30 male 70-day-old Wistar rats were experimentally exposed to the carbamate pesticides aldicarb and carbofuran. Toxicological, macroscopic and microscopic examinations were performed. Groups of 3 animals (2 exposed and 1 control) were evaluated at 24h, 3days, 5days, 7days and 10days post-mortem. In histopathological examination, the brain, liver, lungs and kidneys were assessed, and for toxicological analysis, the gastric contents, liver, vitreous humor, skeletal muscle and larvae (when available) were collected. The pesticides were detected by HPLC and quantified in the analyzed matrices, and a possible delay in tissue putrefaction due to the pesticides was observed. This study has revealed that it is possible to exhume animals for investigations of possible poisoning by carbamates and has demonstrated that the exhumation of an animal in a suspected case of poisoning should not be ruled out. The increasing demand for investigations of suspicious animal deaths, e.g., in cases of poisoning, will likely lead to an increase in the use of this type of procedure in veterinary pathology. PMID:27020045

  14. Ocean anoxia did not cause the Latest Permian Extinction

    NASA Astrophysics Data System (ADS)

    Proemse, Bernadette C.; Grasby, Stephen E.; Wieser, Michael E.; Mayer, Bernhard; Beauchamp, Benoit

    2014-05-01

    The Latest Permian Extinction (LPE, ~252 million years ago) was a turning point in the history of life on Earth with a loss of ~96% of all marine species and ~70% of all terrestrial species. While, the event undoubtedly shaped the evolution of life its cause remains enigmatic. A leading hypothesis is that the global oceans became depleted in oxygen (anoxia). In order to test this hypothesis we investigated a proxy for marine oxygen levels (molybdenum isotopic composition) in shale across the LPE horizon located on the subtropical northwest margin of Pangea at that time. We studied two sedimentary records in the Sverdrup basin, Canadian High Arctic: Buchanan Lake (eastern Axel Heiberg Island; 79° 26.1'N, 87° 12.6'W), representing a distal deep-water slope environment, and West Blind Fiord (southwest Ellesmere Island; 78° 23.9'N, 85° 57.2'W), representing a deep outer shelf environment (below storm wave base). The molybdenum isotopic composition (δ98/95Mo) of sediments has recently become a powerful tool as a paleo-oceanographic proxy of marine oxygen levels. Sample preparation was carried out in a metal-free clean room facility in the isotope laboratory of the Department of Physics and Astronomy, University of Calgary, Canada, that is supplied by HEPA-filtered air. Molybdenum isotope ratios were determined on a Thermo Scientific multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) with an uncertainty better than ±0.10o for δ98/95Mo values. Results from the Buchanan Lake section show a large shift in δ98/95Mo values from 2.02o to +2.23o at the extinction horizon, consistent with onset of euxinic conditions. In contrast, West Blind Fiord shales, representing the sub-storm wave base shelf environment, show little change in the molybdenum isotopic composition (1.34o to +0.05), indicating ongoing oxic conditions across the LPE (Proemse et al., 2013). Our results suggest that areas of the Pangea continental shelf (North West Pangea) experienced

  15. Permian-Triassic plutonism and tectonics, Death Valley region, California and Nevada

    SciTech Connect

    Snow, J.K.; Asmerom, Y. ); Lux, D.R. )

    1991-06-01

    Significant contractional structures that deform Permian rocks but predate an Early Triassic overlap sequence are recognized within the Cordilleran orogen, western US. Thrusting in the Death Valley region of the orogen, however, has been regarded as Middle Triassic or younger and thus kinematically distinct. The authors present new isotopic age limits on two posttectonic stocks that intrude major structures of the Death Valley thrust belt. The stocks are no younger than Middle Triassic, but are likely Late Permian in age, consistent with stratigraphic and structural data suggesting that thrusting predates the overlap sequence. The authors hypothesize that Permian shortening may have affected more than 700 km of the Cordilleran orogen at the same time arc activity began within cratonic North America but prior to Early Triassic emplacement of the structurally higher Sonomian arc terrane.

  16. Chondritic meteorite fragments associated with the Permian-Triassic boundary in Antarctica.

    PubMed

    Basu, Asish R; Petaev, Michail I; Poreda, Robert J; Jacobsen, Stein B; Becker, Luann

    2003-11-21

    Multiple chondritic meteorite fragments have been found in two sedimentary rock samples from an end-Permian bed at Graphite Peak in Antarctica. The Ni/Fe, Co/Ni, and P/Fe ratios in metal grains; the Fe/Mg and Mn/Fe ratios in olivine and pyroxene; and the chemistry of Fe-, Ni-, P-, and S-bearing oxide in the meteorite fragments are typical of CM-type chondritic meteorites. In one sample, the meteoritic fragments are accompanied by more abundant discrete metal grains, which are also found in an end-Permian bed at Meishan, southern China. We discuss the implications of this finding for a suggested global impact event at the Permian-Triassic boundary. PMID:14631038

  17. Permian reptilian fauna from the Kundaram Formation, Pranhita-Godavari Valley, India

    NASA Astrophysics Data System (ADS)

    Ray, Sanghamitra

    1999-07-01

    The Kundaram Formation of the Pranhita-Godavari Valley yields the only Permian reptilian fauna in India. It is composed essentially of a dicynodont assemblage and includes Endothiodon, Cistecephalus, Pristerodon, Oudenodon and Emydops-like forms. The only non-dicynodont member is a captorhinid reptile. These taxa allow the correlation of the Kundaram Formation with the Tropidostoma and/or Cistecephalus Assemblage Zones of the Beaufort Group of South Africa, the basal beds of Madumabisa Mudstones of Zambia, the Ruhuhu and lower part of the Kawinga Formation of Tanzania and the Morro Pelado member of the Rio do Rasto Formation of Brazil, indicating a Late Permian (Tatarian) age. The Kundaram fauna helps in fixing the upper age of the coal-bearing Damuda Group more precisely at Tatarian. The distribution of the Late Permian dicynodonts in the now widely separated geographic areas suggests the close proximity of the continents and a lack of endemism or provinciality.

  18. Permian tetrapods from the Sahara show climate-controlled endemism in Pangaea.

    PubMed

    Sidor, Christian A; O'Keefe, F Robin; Damiani, Ross; Steyer, J Sébastien; Smith, Roger M H; Larsson, Hans C E; Sereno, Paul C; Ide, Oumarou; Maga, Abdoulaye

    2005-04-14

    New fossils from the Upper Permian Moradi Formation of northern Niger provide an insight into the faunas that inhabited low-latitude, xeric environments near the end of the Palaeozoic era (approximately 251 million years ago). We describe here two new temnospondyl amphibians, the cochleosaurid Nigerpeton ricqlesi gen. et sp. nov. and the stem edopoid Saharastega moradiensis gen. et sp. nov., as relicts of Carboniferous lineages that diverged 40-90 million years earlier. Coupled with a scarcity of therapsids, the new finds suggest that faunas from the poorly sampled xeric belt that straddled the Equator during the Permian period differed markedly from well-sampled faunas that dominated tropical-to-temperate zones to the north and south. Our results show that long-standing theories of Late Permian faunal homogeneity are probably oversimplified as the result of uneven latitudinal sampling. PMID:15829962

  19. Polish permian basin: Lithofacies traps for gas within the Rotliegende deposits as a new exploration potential

    SciTech Connect

    Karnkowski, P.H. )

    1993-09-01

    Rotliegende deposits are the most prospective reservoir gas rocks in the Polish Permian basin. Thirty years of their exploration have led to location of numerous gas fields in the upper-most part of these series, particularly in the area of the Fore-Sudetic monocline. Up to this time, exploration studies concentrated mainly on structural objects, and most of the structures were positive gas traps. Well and seismic data also indicate an occurrence of lithofacies gas traps; they occur mainly in the sandstone zones within the fanglomerates surrounding the Wolsztyn Ridge. When comparing the facies regularities in the known gas fields in the German Permian basin (interfingering sandstones and claystones) to the facies patterns of the Polish Permian basin, one may suspect similar exploration possibilities. These are the first promising results. Advances in analysis of the Rotliegende depositional systems will enable us to create a new exploration potential.

  20. Trouble Upstairs: Reconstructing Permian-Triassic Climate during Siberian Traps Magmatism

    NASA Astrophysics Data System (ADS)

    Black, B. A.; Neely, R. R., III; Lamarque, J. F.; Elkins-Tanton, L. T.; Mills, M. J.

    2014-12-01

    The eruption of large igneous provinces can transfer significant masses of volatiles from Earth's interior to the atmosphere. What are the consequences of this degassing for habitability and extinction? In this presentation, we consider this question in the context of Siberian Traps magmatism, which has been shown to overlap within geochronologic uncertainty with catastrophic deterioration of Permian-Triassic marine and terrestrial ecosystems. To investigate the impacts of endogenic gases on climate, atmospheric chemistry, and ocean circulation, we conducted a series of numerical experiments with a comprehensive global model for the Permian-Triassic. Our simulations predict the intensity and distribution of acid rain and ozone depletion, with implications for terrestrial biota. We further explore feedbacks between sulfur emissions, transient cooling, and shifts in ocean circulation. We suggest that Siberian Traps magmatism may have triggered several distinct kill mechanisms in the oceans and on land, contributing to a complex combined pattern of environmental stress and latest Permian ecological failure.

  1. The Pennsylvanian and Permian Oquirrh-Wood River basin

    SciTech Connect

    Geslin, J.K. . Dept. of Earth and Planetary Sciences)

    1993-04-01

    Strata of the Middle Pennsylvanian to Lower Permian Oquirrh-Wood River Basin (OWRB) lie unconformably above the Antler orogenic belt and flysch trough/starved basin in NW Utah, NE Nevada, and SC Idaho. Strata of the basin, now separated geographically by the Neogene Snake River Plain, show similar subsidence histories, identical mixed carbonate-siliciclastic sedimentary fill, and identical chert pebble conglomerate beds supplied by one or more DesMoinesian uplifts containing Lower Paleozoic strata. This conglomerate, of the lower Sun Valley Group, Snaky Canyon Formation, and parts of the Oquirrh Formation, was reworked progressively southward, to at least the Idaho-Utah border. It is present in strata as young as Virgilian. Virgilian to Leonardian rocks are ubiquitously fine-grained mixed carbonate-siliciclastic turbidites. These rocks contain cratonal, well-sorbed subarkosic and quartzose sand and silt in part derived from the Canadian Shield. This siliciclastic fraction is intimately mixed with arenaceous micritized skeletal material and peloids derived from an eastern carbonate platform represented by the Snaky Canyon Formation in east-central Idaho, an eastern facies of the Eagle Creek Member, Wood River Formation in the Boulder Mountains, and the Oquirrh Formation in the Deep Creek Mountains. Subsidence of the OWRB may have been caused by two phases (DesMoinesian and Wolfcampian to Leonardian) of crustal loading by continental margin tectonism to the west. An elevated rim separated the OWRB from coeval volcanogenic basins to the west. Earlier, Antler-age structures may have been reactivated. A new pulse of tectonism occurred in Leonardian to Guadalupian time as in most places carbonatic and phosphatic strata of the Leonardian to Guadalupian Park City and Phosphoria Formation overlie OWRB strata, with different geographic arrangement of basinal, slope, and shelf depocenters.

  2. Flourishing ocean drives the end-Permian marine mass extinction

    PubMed Central

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2015-01-01

    The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian−Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth’s history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness. PMID:26240323

  3. Early Permian volcano-sedimentary successions, Beishan, NW China: Peperites demonstrate an evolving rift basin

    NASA Astrophysics Data System (ADS)

    Chen, Shi; Guo, Zhaojie; Qi, Jiafu; Zhang, Yuanyuan; Pe-Piper, Georgia; Piper, David J. W.

    2016-01-01

    The Lower Permian volcano-sedimentary Zhesi Group has been investigated in the Hongliuhe and Liuyuan areas in Beishan, China, which is significant for the reconstruction of Late Paleozoic evolution in the southern part of the Central Asian Orogenic Belt. A variety of volcanic facies were distinguished in the Upper Zhesi Group: pillow basalt with interstitial limestone, thin-interbedded limestone and basalt, closely packed pillows, pillow-fragmented hyaloclastite breccia, and peperite. Laser 40Ar/39Ar whole-rock dating of the basalt yielding an age of 277 ± 11 Ma, as well as Early Permian brachiopod fossils in the limestone interbedded with the basalt, indicate that basalt was erupted in the Early Permian. The identification of the peperite and other facies originating from magma-sediment mingling reveals that the basaltic lava flows were derived from autochthonous basaltic magmatism and formed as part of the Lower Permian succession. The peperite also indicates that these subaqueous basaltic lava flows are not dismembered ophiolitic components, but formed in an autochthonous extensional setting in the Early Permian. The clastic rocks in the Lower Zhesi Group underlying the basaltic flows and peperites in the Hongliuhe and Liuyuan areas show a general fining-upwards sequence, indicating that they were deposited in a progressively deepening basin overlying the Devonian Hongliuhe suture zone. Subaqueous volcanism in a rift basin or basins, accompanied by coeval deposition of carbonate sediment and mud, built up the peperite-bearing volcanogenic-sedimentary successions. From among the various tectonic hypotheses for the Beishan region, this study demonstrates that by Early Permian the region was developing post-collisional rift basins.

  4. Two pulses of oceanic environmental disturbance during the Permian-Triassic boundary crisis

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Feng, Qinglai; Algeo, Thomas J.; Li, Chao; Planavsky, Noah J.; Zhou, Lian; Zhang, Mingliang

    2016-06-01

    Pyrite morphology, iron speciation, and pyrite sulfur isotope data from the Xiakou section (Hubei Province, South China) were integrated to explore oceanic environmental variations through the Permian-Triassic transition and their possible relations to the largest mass extinction in Earth history. High ratios of highly-reactive iron to total iron (FeHR/FeT > 0.6) and pyrite iron to highly-reactive iron (FePy/FeHR > 0.7) together with a high abundance of small (mean diameter <5 μm) framboidal pyrite show that euxinic conditions existed in the late Permian (pre-extinction interval). High ratios of FeHR/FeT (mostly >0.6) along with lower values of FePy/FeHR (<0.7) and more variable framboid content among samples indicate anoxic but dominantly ferruginous conditions punctuated by episodic euxinic events in the latest Permian to earliest Triassic (post-extinction interval). The largest fluctuations of these redox proxies are observed in the ∼1.0 m of strata directly overlying the first (latest Permian) extinction horizon, indicating unsettled marine environmental conditions marked by frequent perturbations during the ∼60-kyr interval immediately following the mass extinction. The two largest redox events at Xiakou coincided with deposition of volcanic ash layers that have been correlated with Beds 25 and 28 of the Meishan D section, each of which was associated with an extinction pulse (the first and second extinction horizons of latest Permian and earliest Triassic age, respectively). Thus, our observations document two pulses of oceanic environmental change during the Permian-Triassic transition, each associated with a faunal crisis and possibly triggered by contemporaneous volcanic activity.

  5. Ochoan (upper Permian) stratigraphy and age determinations, southeastern New Mexico and west Texas

    SciTech Connect

    Lucas, S.G. ); Anderson, O.R. )

    1994-03-01

    Upper Permian strata, which are the stratotype of the Ochoan State (Series), have an extensive subsurface distribution and limited outcrop area in southeastern New Mexico and west Texas. The oldest strata are alternating laminae of anhydrite and calcite of the Castile Formation and are as much as 700 m thick. The closely related and overlying Salado Formation is a much as 600 m thick and is mostly halite and argillaceous halite with minor anhydrite. The overlying Rustler Formation is as much as 150 m thick and consists of anhydrite, red silty shale and magnesian limestone. Overlying red beds are the Quartermaster Formation (Dewey Lake Formation is a synonym, as is the term Pierce Canyon red beds), which is as much as 106 m thick and consist of fine sandstones, siltstones, and minor gypsum. The Castile rests disconformably on the Capitanian (middle Permian) Lamar Limestone Member of the Bell Canyon Formation and its equivalent, the Tansill Formation of the Artesia Group. Counting of Castile-Salado laminae and their posited relationship to astronomical cycles suggests that Castile-Salado deposition took only 200,000-300,000 yr. Limited assemblages of brachiopods and conodonts from the Rustler Formation indicate a Late Permian age, but are no more precise age indicators. A small assemblage of bivalves, K-Ar ages and magnetostratigraphy indicate a late Permian age for the Quartermaster Formation. There is no evidence to support a Triassic age assignment for the Quarter-master; it is disconformably overlain by the Upper Triassic (Carnian) Chinle group. Most workers us the Ochoan as a Late Permian Stage-Age, although its typical strata generally lack good age indicators and may represent relatively short and sporadic intervals of the Late Permian. We prefer recognition of the Ochoan as a lithostratigraphic unit (group) without regional or global geochronologial significance.

  6. Terrestrial paleoenvironment characterization across the Permian-Triassic boundary in South China

    NASA Astrophysics Data System (ADS)

    Bercovici, Antoine; Cui, Ying; Forel, Marie-Béatrice; Yu, Jianxin; Vajda, Vivi

    2015-02-01

    Well-preserved marine fossils in carbonate rocks permit detailed studies of the end-Permian extinction event in the marine realm. However, the rarity of fossils in terrestrial depositional environments makes it more challenging to attain a satisfactory degree of resolution to describe the biotic turnover on land. Here we present new sedimentological, paleontological and geochemical (X-ray fluorescence) analysis from the study of four terrestrial sections (Chahe, Zhejue, Mide and Jiucaichong) in Western Guizhou and Eastern Yunnan (Yangtze Platform, South China) to evaluate paleoenvironmental changes through the Permian-Triassic transition. Our results show major differences in the depositional environments between the Permian Xuanwei and the Triassic Kayitou formations with a change from fluvial-lacustrine to coastal marine settings. This change is associated with a drastic modification of the preservation mode of the fossil plants, from large compressions to small comminuted debris. Plant fossils spanning the Permian-Triassic boundary show the existence of two distinct assemblages: In the Xuanwei Formation, a Late Permian (Changhsingian) assemblage with characteristic Cathaysian wetland plants (mainly Gigantopteris dictyophylloides, Gigantonoclea guizhouensis, G. nicotianaefolia, G. plumosa, G. hallei, Lobatannularia heinanensis, L. cathaysiana, L. multifolia, Annularia pingloensis, A. shirakii, Paracalamites stenocostatus, Cordaites sp.) is identified. In the lowermost Kayitou Formation, an Early Triassic (Induan) Annalepis-Peltaspermum assemblage is shown, associated with very rare, relictual gigantopterids. Palynological samples are poor, and low yield samples show assemblages almost exclusively represented by spores. A ∼1 m thick zone enriched in putative fungal spores was identified near the top of the Xuanwei Formation, including diverse multicellular forms, such as Reduviasporonites sp. This interval likely corresponds to the PTB "fungal spike

  7. Surface water paleotemperatures and chemical compositions from fluid inclusions in Permian Nippewalla Group halite

    SciTech Connect

    Benison, K.C. )

    1996-01-01

    Quantitative climatic data for the Permian have been determined from Nippewalla Group halite. The middle Permian Nippewalla Group of Kansas and Oklahoma consists of several hundred feet of bedded halite, anhydrite, and red beds. Study of core and surface samples suggest that this halite was deposited by ephemeral lakes. Fluid inclusions provide evidence for the geochemistry of these Permian saline lake waters, including temperatures, salinities, and chemical compositions. Primary fluid inclusions are well-preserved in the Nippewalla halite. They are 5 - 30 [mu]m cubic inclusions situated along chevron and cornet growth bands. Most are one phase aqueous inclusions, but some also contain anhydride [open quote]accidental[close quotes] crystals. Rare two phase liquid-vapor inclusions may have formed by subaqueous outgassing or trapping of air at the water surface. Fluid inclusion freezing-melting behavior and leachate analyses suggest that Nippewalla halite precipitated from Na-Cl-rich waters with lesser quantities of SO[sub 4], Mg, K, Al, and Si. This composition may be a product of long-term weathering. Surface water paleotemperatures were determined from one phase aqueous fluid inclusions. Homogenization temperatures range from 32 to 46[degrees]C in primary fluid inclusions and are consistent (within 3[degrees]C) along individual chevrons and cornets. These homogenization temperatures are interpreted to represent maximum surface water temperatures. These fluid inclusion data are significant in addressing global change problems. Temperatures and chemistries in these Permian lake waters agree with some modern shallow saline lake waters and with Permian climate models. This study suggests that this Permian environment was relatively similar to its modern counterparts.

  8. Surface water paleotemperatures and chemical compositions from fluid inclusions in Permian Nippewalla Group halite

    SciTech Connect

    Benison, K.C.

    1996-12-31

    Quantitative climatic data for the Permian have been determined from Nippewalla Group halite. The middle Permian Nippewalla Group of Kansas and Oklahoma consists of several hundred feet of bedded halite, anhydrite, and red beds. Study of core and surface samples suggest that this halite was deposited by ephemeral lakes. Fluid inclusions provide evidence for the geochemistry of these Permian saline lake waters, including temperatures, salinities, and chemical compositions. Primary fluid inclusions are well-preserved in the Nippewalla halite. They are 5 - 30 {mu}m cubic inclusions situated along chevron and cornet growth bands. Most are one phase aqueous inclusions, but some also contain anhydride {open_quote}accidental{close_quotes} crystals. Rare two phase liquid-vapor inclusions may have formed by subaqueous outgassing or trapping of air at the water surface. Fluid inclusion freezing-melting behavior and leachate analyses suggest that Nippewalla halite precipitated from Na-Cl-rich waters with lesser quantities of SO{sub 4}, Mg, K, Al, and Si. This composition may be a product of long-term weathering. Surface water paleotemperatures were determined from one phase aqueous fluid inclusions. Homogenization temperatures range from 32 to 46{degrees}C in primary fluid inclusions and are consistent (within 3{degrees}C) along individual chevrons and cornets. These homogenization temperatures are interpreted to represent maximum surface water temperatures. These fluid inclusion data are significant in addressing global change problems. Temperatures and chemistries in these Permian lake waters agree with some modern shallow saline lake waters and with Permian climate models. This study suggests that this Permian environment was relatively similar to its modern counterparts.

  9. Colorado Plateau rock strength, exhumation, and river knickzones - spatial datasets relating erodability to topographic metrics

    NASA Astrophysics Data System (ADS)

    Tressler, C.; Pederson, J. L.

    2009-12-01

    Bedrock resistance to erosion has a fundamental role in controlling topography and surface processes. This has been recognized since the birth of geomorphology, yet measurements and datasets quantifying rock strength are rare. This is despite it being an essential parameter in tectonic, fluvial, and hillslope process geomorphology, where erodability is commonly marginalized within the diffusivity constant, as well as the K coefficient in stream-power formulations and the channel-concavity and steepness indexes derived from it. The Colorado Plateau landscape, because of its semiarid climate and extensive exhumation, is strongly influenced by variations in bedrock. It is a prime setting to complete such a dataset of rock strength and analyze it in the context of erosion and topography because of both its historic scientific importance and the fact that all bedrock units are exposed for study. We are completing the measurement and mapping of the erodability of all major bedrock units at over 150 sites across the plateau through several approaches, including traditional Schmidt-hammer compressive strength, fracture spacing, and other characteristics associated with Selby rock-mass strength (RMS). These measures may specifically relate to erosion by mass-movement and fluvial plucking processes. Results highlight two problems with these basic data: they overestimate the strength of rock with massive bedding because of the heavy weighting of fracture spacing in Selby RMS, and they don’t include the extensive shale bedrock of the region. To address these issues, we are measuring sample tensile strength (Brazilian splitting test) to capture disintegration and fluvial abrasion erosion of massive units, and we are utilizing the stratigraphic proportion of shale within geologic units as a scaling factor in RMS. We are then exploring spatial relations of these strength measures to topography, exhumation, stream power, and steepness within the Colorado River drainage basin

  10. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars

    USGS Publications Warehouse

    Grotzinger, J.P.; Gupta, S.; Malin, M.C.; Rubin, D.M.; Schieber, J.; Siebach, K.; Sumner, D.Y.; Stack, K.M.; Vasavada, A.R.; Arvidson, R.E.; Calef, F.; Edgar, Lauren; Fischer, W.F.; Grant, J.A.; Griffes, J.L.; Kah, L.C.; Lamb, M.P.; Lewis, K.W.; Mangold, N.; Minitti, M.E.; Palucis, M.C.; Rice, M.; Williams, R.M.E.; Yingst, R.A.; Blake, D.; Blaney, D.; Conrad, P.; Crisp, J.A.; Dietrich, W.E.; Dromart, G.; Edgett, K.S.; Ewing, R.C.; Gellert, R.; Hurowitz, J.A.; Kocurek, G.; Mahaffy, P.G.; McBride, M.J.; McLennan, S.M.; Mischna, M.A.; Ming, D.; Milliken, R.E.; Newsom, H.; Oehler, D.; Parker, T.J.; Vaniman, D.; Wiens, R.C.; Wilson, S.A.

    2015-01-01

    The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake basin to a thickness of at least 75 meters. This intracrater lake system probably existed intermittently for thousands to millions of years, implying a relatively wet climate that supplied moisture to the crater rim and transported sediment via streams into the lake basin. The deposits in Gale crater were then exhumed, probably by wind-driven erosion, creating Aeolis Mons (Mount Sharp).