Science.gov

Sample records for exogenous arachidonic acid

  1. Absorption and lymphatic transport of exogenous and endogenous arachidonic and linoleic acid in the rat

    SciTech Connect

    Nilsson, A.; Landin, B.; Jensen, E.; Akesson, B.

    1987-06-01

    (/sup 3/H)Arachidonic (20:4) and (/sup 14/C)linoleic acid (18:2) were fed to thoracic duct-cannulated rats in test meals of either tracers alone, cream, Intralipid, pure arachidonic acid, or pure linoleic acid. Less (/sup 3/H)20:4 than (/sup 14/C)18:2 was recovered in chyle during the first 5 h. After cream feeding, the proportion of radioactivity found in phospholipids was high and increased during the first 3 h. After the meal 61 +/- 6% of the /sup 3/H and 57 +/- 10% of the /sup 14/C was in phosphatidylcholine, and 11 +/- 3% of the /sup 3/H and 3.0 +/- 4% of the /sup 14/C was in phosphatidylethanolamine. Changing the fat vehicle to Intralipid or pure 18:2 decreased the proportion of label in the phospholipds and increased the /sup 3/H and /sup 14/C radioactivity in the triacylglycerol fraction, the distribution of /sup 14/C radioactivity in the triacylglycerol fraction, the distribution of /sup 14/C being influenced more than that of /sup 3/H. After feeding the tracers in 200 ..mu..l of pure 20:4, >90% of both isotopes was in triacylglycerol. During fasting, triacylglycerol transported 56% (0.7 ..mu..mol/h), phosphatidylethanolamine transported 10% (0.1 ..mu..mol/h) of the 20:4 mass. After cream or Intralipid feeding, the output of 20:4-containing phosphatidylcholine and phosphatidylethanolamine increased 2.1- to 2.8-fold, whereas the transport of 20:4 with triacylglycerol remained constant. Phospholipids thus became the predominant transport form for 20:4. After feeding 200 ..mu..l of 20:4, the intestine produced, however, 20:4-rich triacylglycerols that transported 80% of the chyle 20:4.

  2. Generation of Bioactive Oxylipins from Exogenously Added Arachidonic, Eicosapentaenoic and Docosahexaenoic Acid in Primary Human Brain Microvessel Endothelial Cells.

    PubMed

    Aukema, Harold M; Winter, Tanja; Ravandi, Amir; Dalvi, Siddhartha; Miller, Donald W; Hatch, Grant M

    2016-05-01

    The human blood-brain barrier (BBB) is the restrictive barrier between the brain parenchyma and the circulating blood and is formed in part by microvessel endothelial cells. The brain contains significant amounts of arachidonic acid (ARA), and docosahexaenoic acid (DHA), which potentially give rise to the generation of bioactive oxylipins. Oxylipins are oxygenated fatty acid metabolites that are involved in an assortment of biological functions regulating neurological health and disease. Since it is not known which oxylipins are generated by human brain microvessel endothelial cells (HBMECs), they were incubated for up to 30 min in the absence or presence of 0.1-mM ARA, eicosapentaenoic acid (EPA) or DHA bound to albumin (1:1 molar ratio), and the oxylipins generated were examined using high performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS). Of 135 oxylipins screened in the media, 63 were present at >0.1 ng/mL at baseline, and 95 were present after incubation with fatty acid. Oxylipins were rapidly generated and reached maximum levels by 2-5 min. While ARA, EPA and DHA each stimulated the production of oxylipins derived from these fatty acids themselves, ARA also stimulated the production of oxylipins from endogenous 18- and 20-carbon fatty acids, including α-linolenic acid. Oxylipins generated by the lipoxygenase pathway predominated both in resting and stimulated states. Oxylipins formed via the cytochrome P450 pathway were formed primarily from DHA and EPA, but not ARA. These data indicate that HBMECs are capable of generating a plethora of bioactive lipids that have the potential to modulate BBB endothelial cell function. PMID:26439837

  3. Control of arachidonic acid release in chick muscle cultures

    NASA Technical Reports Server (NTRS)

    Templeton, G. H.; Padalino, M.; Wright, W.

    1985-01-01

    Cultures from thigh muscles of 12 day old embryonic chicks are utilized to examine arachidonic release, prostaglandin (PG) biosynthesis, and protein synthesis. The preparation of the cultures is described. It is observed that exogenous arachidonic acid is formed into photsphatidylethanolamine and phosphatidylcholine, is released by a calcium ionosphere or phospholiphase simulator, and is the substrate for the biosynthesis of PG; the epidermal growth factor and PGF do not stimulate protein synthesis over the basal levels. The relationship between arachidonate release and melittin is studied. The data reveal that a change in intracellular calcium stimulates phospholiphase activity, arachidonate release, and PG synthesis in chick muscle culture.

  4. Exogenous arachidonic acid mediates permeability of human brain microvessel endothelial cells through prostaglandin E2 activation of EP3 and EP4 receptors.

    PubMed

    Dalvi, Siddhartha; Nguyen, Hieu H; On, Ngoc; Mitchell, Ryan W; Aukema, Harold M; Miller, Donald W; Hatch, Grant M

    2015-12-01

    The blood-brain barrier, formed by microvessel endothelial cells, is the restrictive barrier between the brain parenchyma and the circulating blood. Arachidonic acid (ARA; 5,8,11,14-cis-eicosatetraenoic acid) is a conditionally essential polyunsaturated fatty acid [20:4(n-6)] and is a major constituent of brain lipids. The current study examined the transport processes for ARA in confluent monolayers of human brain microvascular endothelial cells (HBMEC). Addition of radioactive ARA to the apical compartment of HBMEC cultured on Transwell(®) inserts resulted in rapid incorporation of radioactivity into the basolateral medium. Knock down of fatty acid transport proteins did not alter ARA passage into the basolateral medium as a result of the rapid generation of prostaglandin E2 (PGE2 ), an eicosanoid known to facilitate opening of the blood-brain barrier. Permeability following ARA or PGE2 exposure was confirmed by an increased movement of fluorescein-labeled dextran from apical to basolateral medium. ARA-mediated permeability was attenuated by specific cyclooxygenase-2 inhibitors. EP3 and EP4 receptor antagonists attenuated the ARA-mediated permeability of HBMEC. The results indicate that ARA increases permeability of HBMEC monolayers likely via increased production of PGE2 which acts upon EP3 and EP4 receptors to mediate permeability. These observations may explain the rapid influx of ARA into the brain previously observed upon plasma infusion with ARA. The blood-brain barrier, formed by microvessel endothelial cells, is a restrictive barrier between the brain parenchyma and the circulating blood. Radiolabeled arachidonic acid (ARA) movement across, and monolayer permeability in the presence of ARA, was examined in confluent monolayers of primary human brain microvessel endothelial cells (HBMECs) cultured on Transwell(®) plates. Incubation of HBMECs with ARA resulted in a rapid increase in HBMEC monolayer permeability. The mechanism was mediated, in part

  5. The influence of mono- and divalent cations on the cardiac metabolism of arachidonic acid

    SciTech Connect

    Weis, M.T.; Malik, K.U. )

    1989-06-01

    Our previous study indicated that, in the isolated rabbit heart, perfusion with Ca2+ free Krebs Henseleit buffer (KHB) results in increased conversion of exogenous arachidonic acid to PGE2 and 6-keto-PGF1 alpha, probably as the result of increased availability of substrate to cyclooxygenase. Since perfusion with Ca2+ free buffer is known to cause alterations in the cardiac content of various mono- and divalent cations, the present study was performed to determine: (a) The relationship between the conversion of exogenous arachidonic acid to prostaglandins and cardiac content of Na+, K+, Ca2+ and Mg2+; and (b) Whether enhanced arachidonic acid conversion to prostaglandins during Ca2+ free perfusion is due to reduced incorporation of this fatty acid into tissue lipids. Perfusion of the rabbit heart with Ca2+ free buffer produced a significant reduction in the tissue content of Na+, K+, Ca2+ and Mg2+. However, the production of 6-keto-PGF1 alpha from exogenous arachidonic acid was linearly correlated with tissue Mg2+. These observations, together with our finding that perfusion with Ca2+ free KHB reduced the incorporation of (3H) arachidonic acid into tissue lipids, suggests that Ca2+ free perfusion may, by reducing the activity of arachidonyl CoA synthetase (a Mg2+ dependent enzyme), decrease the acylation of arachidonic acid into lipids, thus increasing the availability of arachidonic acid to cyclooxygenase.

  6. The alpha 1-adrenergic transduction system in hamster brown adipocytes. Release of arachidonic acid accompanies activation of phospholipase C.

    PubMed Central

    Schimmel, R J

    1988-01-01

    Previous studies of brown adipocytes identified an increased breakdown of phosphoinositides after selective alpha 1-adrenergic-receptor activation. The present paper reports that this response, elicited with phenylephrine in the presence of propranolol and measured as the accumulation of [3H]inositol phosphates, is accompanied by increased release of [3H]arachidonic acid from cells prelabelled with [3H]arachidonic acid. Differences between stimulated arachidonic acid release and formation of inositol phosphates included a requirement for extracellular Ca2+ for stimulated release of arachidonic acid but not for the formation of inositol phosphates and the preferential inhibition of inositol phosphate formation by phorbol 12-myristate 13-acetate. The release of arachidonic acid in response to phenylephrine was associated with an accumulation of [3H]arachidonic acid-labelled diacylglycerol, and this response was not dependent on extracellular Ca2+ but was partially prevented by treatment with the phorbol ester. The release of arachidonic acid was also stimulated by melittin, which increases the activity of phospholipase A2, by ionophore A23187, by lipolytic stimulation with forskolin and by exogenous phospholipase C. The arachidonic acid response to phospholipase C was completely blocked by RHC 80267, an inhibitor of diacylglycerol lipase, but this inhibitor had no effect on release stimulated with melittin or A23187 and inhibited phenylephrine-stimulated release by only 40%. The arachidonate response to forskolin was additive with the responses to either phenylephrine or exogenous phospholipase C. These data indicate that brown adipocytes are capable of releasing arachidonic acid from neutral lipids via triacylglycerol lipolysis, and from phospholipids via phospholipase A2 or by the sequential activities of phospholipase C and diacylglycerol lipase. Our findings also suggest that the action of phenylephrine to promote the liberation of arachidonic acid utilizes both

  7. DIFFERENCES IN ARACHIDONIC ACID METABOLISM BY HUMAN MYELOMONCYTIC CELL LINES

    EPA Science Inventory

    The production of arachidonic acid metabolites by the HL60, ML3, and U937 human phagocyte cell lines were determined after incubation with interferongamma (IFNg; 500 U/ml) or vehicle for 4 days. ells were prelabeled with tritiated arachidonic acid for 4 hours, and media supernata...

  8. New uses of bioglycerin: production of arachidonic acid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Filamentous fungi of the genus Mortierella are known to produce arachidonic acid from glucose and M. alpina is currently used in industrial scale production of arachidonic acid in Japan. In anticipation of a large excess of co-product bioglycerin from the national biodiesel program, we would like ...

  9. Effects of the oestrous cycle on the metabolism of arachidonic acid in rat isolated lung.

    PubMed Central

    Bakhle, Y S; Zakrzewski, J T

    1982-01-01

    1. The metabolism of exogenous arachidonic acid perfused through the pulmonary circulation was investigated in lungs taken from rats at different stages of the oestrous cycle. 2. Following perfusion with [14C]arachidonic acid there was more radioactivity associated with cyclo-oxygenase products in general at pro-oestrus than at any other stage of the cycle. 3. Production of 6-oxo-prostaglandin F1 alpha and hence of prostacyclin (PGI2) was also highest at pro-oestrus. 4. Production of thromboxane B2 was highest at pro-oestrus although it was never greater than PGI2 production at any stage. 5. Radioactivity retained in lung tissue was mostly present in phospholipid and free fatty acid fractions with the distribution at pro-oestrus being different from the other stages. 6. Following perfusion with [14C]oleic acid (which is not a substrate for cyclooxygenase), variations in the distribution of label in radioactivity in lung were also observed. However, these were not related to the stages of the oestrous cycle in the same way as those associated with arachidonic acid. 7. We conclude that both pathways of arachidonic acid metabolism in lung--oxidation via cyclo-oxygenase and incorporation into phospholipid - are affected by the progress of the oestrous cycle. 8. Altered arachidonate metabolism appeared to be associated chiefly with pro-oestrus and may be linked to those hormones involved in this stage of the oestrous cycle. PMID:6809935

  10. Arachidonic acid metabolism in endotoxin tolerance.

    PubMed

    Wise, W C; Cook, J A; Halushka, P V

    1983-01-01

    The arachidonic acid metabolites thromboxane A2, a potent platelet aggregator, and prostacyclin, a potent vasodilator, are released early in endotoxin shock and may contribute to its pathologic sequelae. Plasma levels of thromboxane (Tx) A2 and prostacyclin were measured via radioimmunoassay of their stable metabolites immunoreactive (i) TxB2 and i6-keto-PGF1 alpha in tolerant and nontolerant rats after endotoxin. Long-Evans rats were made tolerant to endotoxin by four daily IV injections of S enteritidis (endotoxin) (0.1, 0.5, 1, and 5 mg/kg). In normal rats (N = 15) given LPS (IV, 15 mg/kg), only 11% survived at 24 h; in contrast, tolerant rats (N = 13) all survived even at a dose of 50 mg/kg. At 1 h, after endotoxin (15 mg/kg) IV, plasma i6-keto-PGF1 alpha in nontolerant rats was 1,005 +/- 149 pg/ml (N = 14) and continued to rise to 4,209 +/- 757 pg/ml (N = 5) (P less than 0.001) after 4 h. In tolerant rats, given endotoxin (15 mg/kg), plasma i6-keto-PGF1 alpha at 1 h was 800 +/- 203 pg/ml (N = 5) and was not significantly different (734 +/- 254 pg/ml) at 4 h. Plasma iTxB2 at both 1 and 4 h was significantly (P less than 0.01) lower in tolerant than nontolerant rats. Both iTxB2 and i6-keto-PGF1 alpha were significantly (P less than 0.01) lower in tolerant rats given 50 mg/kg IV endotoxin than nontolerant rats. Endotoxin-induced elevation in fibrin degradation products was significantly decreased (P less than 0.05) during endotoxin tolerance although there was no difference in the severity of thrombocytopenia. These composite observations demonstrate that endotoxin tolerance in the rat is associated with altered arachidonic acid metabolism. PMID:6410699

  11. ANALYSIS OF ARACHIDONIC ACID METABOLITE AND PLATELET ACTIVATING FACTOR PRODUCTION

    EPA Science Inventory

    Metabolites of arachidonic acid ("eicosanoids") and platelet activating factor are important bioactive lipids that may be involved in the pathobiological alterations in animals induced by pollutant exposure. nalysis of these substances in biological tissue and fluids is important...

  12. The discovery and early structural studies of arachidonic acid.

    PubMed

    Martin, Sarah A; Brash, Alan R; Murphy, Robert C

    2016-07-01

    Arachidonic acid and esterified arachidonate are ubiquitous components of every mammalian cell. This polyunsaturated fatty acid serves very important biochemical roles, including being the direct precursor of bioactive lipid mediators such as prostaglandin and leukotrienes. This 20 carbon fatty acid with four double bonds was first isolated and identified from mammalian tissues in 1909 by Percival Hartley. This was accomplished prior to the advent of chromatography or any spectroscopic methodology (MS, infrared, UV, or NMR). The name, arachidonic, was suggested in 1913 based on its relationship to the well-known arachidic acid (C20:0). It took until 1940 before the positions of the four double bonds were defined at 5,8,11,14 of the 20-carbon chain. Total synthesis was reported in 1961 and, finally, the configuration of the double bonds was confirmed as all-cis-5,8,11,14. By the 1930s, the relationship of arachidonic acid within the family of essential fatty acids helped cue an understanding of its structure and the biosynthetic pathway. Herein, we review the findings leading up to the discovery of arachidonic acid and the progress toward its complete structural elucidation. PMID:27142391

  13. Dietary arachidonic acid dose-dependently increases the arachidonic acid concentration in human milk.

    PubMed

    Weseler, Antje R; Dirix, Chantal E H; Bruins, Maaike J; Hornstra, Gerard

    2008-11-01

    Lactation hampers normalization of the maternal arachidonic acid (AA) status, which is reduced after pregnancy and can further decline by the presently recommended increased consumption of (n-3) long-chain PUFA [(n-3) LCPUFA]. This may be unfavorable for breast-fed infants, because they also require an optimum supply of (n-6) LCPUFA. We therefore investigated the LCPUFA responses in nursing mothers upon increased consumption of AA and (n-3) LCPUFA. In a parallel, double-blind, controlled trial, lactating women received for 8 wk no extra LCPUFA (control group, n = 8), 200 (low AA group, n = 9), or 400 (high AA group, n = 8) mg/d AA in combination with (n-3) LCPUFA [320 mg/d docosahexaenoic acid (DHA), 80 mg/d eicosapentaenoic acid, and 80 mg/d other (n-3) fatty acids], or this dose of (n-3) LCPUFA alone [DHA + eicosapentaenoic acid group, n = 8]. Relative concentrations of AA, DHA, and sums of (n-6) and (n-3) LCPUFA were measured in milk total lipids (TL) and erythrocyte phospholipids (PL) after 2 and 8 wk and changes were compared by ANCOVA. The combined consumption of AA and (n-3) LCPUFA caused dose-dependent elevations of AA and total (n-6) LCPUFA concentrations in milk TL and did not significantly affect the DHA and total (n-3) LCPUFA increases caused by (n-3) LCPUFA supplementation only. This latter treatment did not significantly affect breast milk AA and total (n-6) LCPUFA concentrations. AA and DHA concentrations in milk TL and their changes were strongly and positively correlated with their corresponding values in erythrocyte PL (r(2) = 0.27-0.50; P

  14. EFFECTS OF PHOSGENE EXPOSURE ON LUNG ARACHIDONIC ACID METABOLISM

    EPA Science Inventory

    Phosgene is a pulmonary toxicant that can produce lung edema, bronchoconstriction, and immune suppression following an acute exposure. he response of the lung to phosgene inhalation may be mediated through alternations in the metabolism of arachidonic acid to the biologically pot...

  15. Ozone-induced alterations in arachidonic acid metabolism in cultured lung cell types

    SciTech Connect

    Madden, M.C.

    1986-01-01

    One of the most sensitive cells to ozone (O/sub 3/) damage is the pulmonary endothelial cell which may mediate the response of the lung to injury by productions of the autacoid prostacyclin (PGl/sub 2/), a metabolite of arachidonic acid. Exposure of endothelial cell cultures to ozone produced a concentration dependent decreases in the synthesis of PGl/sub 2/. Release of /sup 3/H-arachidonic acid from endothelial cells was increased after two hours of 0.3 and 1.0 ppm O/sub 3/ exposure while incubation of cells with 20 ..mu..M and arachidonate (4 min) after exposure resulted in a decreased PGl/sub 2/ synthesis. Cells exposed to 1.0 ppm O/sub 3/ did not have a decreased PGl/sub 2/ production when incubated with 5 ..mu..M PGH/sub 2/ immediately after exposure. These results are consistent with an O/sub 3/-induced inhibition of cyclooxygenase activity. O/sub 3/ exposure (1.0 ppm) produced a rapid decrease in endothelial PGl/sub 2/ synthesis. The data suggest that cyclooxygenase was not inactivated by increased autooxidation due to metabolism of increased free arachidonate. PGl/sub 2/ synthesis returned to control amounts within 12 hours after ozone exposure similar to the recovery time of irreversibly inhibited cyclooxygenase suggesting that recovery was due to de novo synthesis of enzyme. Lipid peroxides and/or hydrogen peroxide (H/sub 2/O/sub 2/) may have caused the inhibition of cyclooxygenase. Incubation of cells with catalase (5 U/ml) protected against the O/sub 3/-induced depression in PGl/sub 2/ synthesis. Exogenously added H/sub 2/O/sub 2/ (greater than or equal to 75 ..mu..M) caused a stimulation of basal PGl/sub 2/ production but depressed arachidonate-stimulated synthesis. O/sub 3/ exposure (2 hr, 1.0 ppm) produced altered metabolism of arachidonate in other important lung cell types, e.g., a decreased PGl/sub 2/ synthesis in smooth muscle cultures. Exposure of lung macrophages to O/sub 3/ caused an increase in almost all arachidonate metabolites produced.

  16. Measurement of the incorporation of orally administered arachidonic acid into tissue lipids

    SciTech Connect

    Kulmacz, R.J.; Sivarajan, M.; Lands, W.E.

    1986-01-01

    The applicability of a stable isotope method to monitor the mixing of dietary arachidonic acid with endogenous arachidonic acid in tissue lipids was evaluated. Rats were fed octadeuterated arachidonic acid during a 20-day period, and the entry of the dietary acid into lipid esters of various tissues was examined by gas chromatography-mass spectrometric (GC-MS) analysis of their fatty acids. The rats were maintained on a fat-free diet from weaning until 63 days old to enhance the ratio of the dietary acid to endogenous arachidonate. Three separate forms of eicosatetraenoic acid in the tissue lipids could be distinguished by GC-MS: octadeuterated arachidonic acid (recent dietary origin), unlabeled arachidonic acid (maternal origin) and unlabeled 4,7,10,13-eicosatetraenoic acid (originating from palmitoleic acid). The total eicosatetraenoic acid in the tissue lipids contained about 90% arachidonate from recent dietary origin in lung, kidney, heart and fat, 70% in muscle and liver and 27% in brain. The n-7 isomer of eicosatetraenoic acid was estimated to make up 6% or less of the total eicosatetraenoic acid in lung, kidney, brain, muscle and heart tissue lipids, but it comprised around 15% of the total eicosatetraenoic acid in liver. The unlabeled arachidonic acid of maternal origin thus comprised only about 10% of the eicosatetraenoic acid in all tissues examined except muscle and brain, where it was 24% and 70% of the eicosatetraenoic acid, respectively.

  17. Depletion of arachidonic acid from GH3 cells. Effects on inositol phospholipid turnover and cellular activation.

    PubMed Central

    Dudley, D T; Macfarlane, D E; Spector, A A

    1987-01-01

    We have adapted rat pituitary GH3 cells to grow in delipidated culture medium. In response, esterfied linoleic acid and arachidonic acid become essentially undetectable, whereas eicosa-5,8,11-trienoic acid accumulates and oleic acid increases markedly. These changes occur in all phospholipid classes, but are particularly pronounced in inositol phospholipids, where the usual stearate/arachidonate profile is replaced with oleate/eicosatrienoate (n - 9) and stearate/eicosatrienoate (n - 9). Incubation of arachidonate-depleted cells with 10 microM-arachidonic acid for only 24 h results in extensive remodelling of phospholipid fatty acids, such that close-to-normal compositions and arachidonic acid content are achieved for the inositol phospholipids. In comparison studies with arachidonic acid-depleted or -repleted cells, it was found that the arachidonate content does not affect thyrotropin-releasing-hormone (TRH)-stimulated responses measured at long time points, including [32P]Pi labelling of phosphatidylinositol and phosphatidic acid, stimulation of protein phosphorylation, and basal or TRH-stimulated prolactin release. However, transient events such as stimulated breakdown of inositol phospholipids and an initial rise in diacylglycerol are enhanced by the presence of arachidonate. These results show that arachidonic acid itself is not required for operation of the phosphatidylinositol cycle and is not an obligatory intermediate in TRH-mediated GH3 cell activation. It is possible that any structural or functional role of arachidonic acid in these processes is largely met by replacement with eicosatrienoate (n - 9). However, since arachidonate in inositol phospholipids facilitates their hydrolysis upon stimulation by TRH, arachidonic acid apparently may have a specific role in the recognition of these lipids by phospholipase C. Images Fig. 4. PMID:3120699

  18. Proliferation-dependent changes in release of arachidonic acid from endothelial cells.

    PubMed Central

    Whatley, R E; Satoh, K; Zimmerman, G A; McIntyre, T M; Prescott, S M

    1994-01-01

    Stimulation of endothelial cells resulted in release of arachidonic acid from phospholipids. The magnitude of this response decreased as the cells became confluent and the change coincided with a decrease in the percentage of cells in growth phases (G2+M); this was not a consequence of time in culture or a factor in the growth medium. Preconfluent cells released approximately 30% of arachidonic acid; confluent cells released only 6%. The decreasing release of arachidonic acid was demonstrated using metabolic labeling, mass measurements of arachidonic acid, and measurement of PGI2. The decrease was not due to a changing pool of arachidonic acid, and mass measurements showed no depletion of arachidonic acid. Release from each phospholipid and from each phospholipid class decreased with confluence. Conversion of confluent cells to the proliferative phenotype by mechanical wounding of the monolayer caused increased release of arachidonic acid. Potential mechanisms for these changes were investigated using assays of phospholipase activity. Phospholipase A2 activity changed in concert with the alteration in release, a consequence of changes in phosphorylation of the enzyme. The increased release of arachidonic acid from preconfluent, actively dividing cells may have important physiologic implications and may help elucidate mechanisms regulating release of arachidonic acid. Images PMID:7962534

  19. Arachidonic acid enhances reproduction in Daphnia magna and mitigates changes in sex ratios induced by pyriproxyfen.

    PubMed

    Ginjupalli, Gautam K; Gerard, Patrick D; Baldwin, William S

    2015-03-01

    Arachidonic acid is 1 of only 2 unsaturated fatty acids retained in the ovaries of crustaceans and an inhibitor of HR97g, a nuclear receptor expressed in adult ovaries. The authors hypothesized that, as a key fatty acid, arachidonic acid may be associated with reproduction and potentially environmental sex determination in Daphnia. Reproduction assays with arachidonic acid indicate that it alters female:male sex ratios by increasing female production. This reproductive effect only occurred during a restricted Pseudokirchneriella subcapitata diet. Next, the authors tested whether enriching a poorer algal diet (Chlorella vulgaris) with arachidonic acid enhances overall reproduction and sex ratios. Arachidonic acid enrichment of a C. vulgaris diet also enhances fecundity at 1.0 µM and 4.0 µM by 30% to 40% in the presence and absence of pyriproxyfen. This indicates that arachidonic acid is crucial in reproduction regardless of environmental sex determination. Furthermore, the data indicate that P. subcapitata may provide a threshold concentration of arachidonic acid needed for reproduction. Diet-switch experiments from P. subcapitata to C. vulgaris mitigate some, but not all, of arachidonic acid's effects when compared with a C. vulgaris-only diet, suggesting that some arachidonic acid provided by P. subcapitata is retained. In summary, arachidonic acid supplementation increases reproduction and represses pyriproxyfen-induced environmental sex determination in D. magna in restricted diets. A diet rich in arachidonic acid may provide protection from some reproductive toxicants such as the juvenile hormone agonist pyriproxyfen. Environ Toxicol Chem 2015;34:527-535. © 2014 SETAC. PMID:25393616

  20. Altered arachidonic acid metabolism and platelet size in atopic subjects

    SciTech Connect

    Audera, C.; Rocklin, R.; Vaillancourt, R.; Jakubowski, J.A.; Deykin, D.

    1988-03-01

    The release and metabolism of endogenous arachidonic acid (AA) in physiologically activated platelets obtained from 11 atopic patients with allergic rhinitis and/or asthma was compared to that of sex- and age-matched nonatopic controls. Prelabeled (/sup 3/H)AA platelets were stimulated with thrombin or collagen and the amount of free (/sup 3/H)AA and radiolabeled metabolites released were measured by high-performance liquid chromatography. The results obtained indicate that although the incorporation of (/sup 3/H)AA into platelet phospholipids and total release of /sup 3/H-radioactivity upon stimulation were comparable in the two groups, the percentage of /sup 3/H-radioactivity released from platelets as free AA was significantly lower (P less than 0.01) in the atopic group. The reduction in free (/sup 3/H)AA was accompanied by an increase (P less than 0.01) in the percentage of /sup 3/H-radioactivity released as cyclooxygenase products in atopic platelets (compared to nonatopic cells) after stimulation with 10 and 25 micrograms/ml collagen. The amount of platelet lipoxygenase product released was comparable between the two groups. Although the blood platelet counts were similar, the mean platelet volume was statistically higher (P less than 0.01) in the atopic group. These results indicate that arachidonic acid metabolism in atopic platelets is altered, the pathophysiological significance of which remains to be clarified.

  1. Modulation of arachidonic acid metabolism by Rous sarcoma virus

    SciTech Connect

    Barker, K.; Aderem, A.; Hanafusa, H. )

    1989-07-01

    Arachidonic acid (C{sub 20:4}) metabolites were released constitutively from wild-type Rous sarcoma virus-transformed chicken embryo fibroblasts (CEF). {sup 3}H-labeled C{sub 20:4} and its metabolites were released from unstimulated and uninfected CEF only in response to stimuli such as serum, phorbol ester, or the calcium ionophore A23187. High-pressure liquid chromatography analysis showed that the radioactivity released from ({sup 3}H)arachidonate-labeled transformed cells was contained in free arachidonate and in the cyclooxygenase products prostaglandin E{sub 2} and prostaglandin F{sub 2} alpha; no lipoxygenase products were identified. The release of C{sub 20:4} and its metabolites from CEF infected with pp60{sup src} deletion mutants was correlated with serum-independent DNA synthesis and with the expression of the mRNA for 9E3, a gene expressed in Rous sarcoma virus-transformed cells which has homology with several mitogenic and inflammatory peptides. {sup 3}H-labeled C{sub 20:4} release was not correlated with p36 phosphorylation, which argues against a role for this protein as a phospholipase A{sub 2} inhibitor. CEF infected with other oncogenic viruses encoding a tyrosine kinase also released C{sub 20:4}, as did CEF infected with viruses that contained mos and ras; however, infection with a crk-containing virus did not result in stimulation of {sup 3}H-labeled C{sub 20:4} release, suggesting that utilization of this signaling pathway is specific for particular transformation stimuli.

  2. [Changes, induced by certain flavonoids, of the hypotensive effects of arachidonic acid].

    PubMed

    Damas, J; Mousty, J C; Lecomte, J

    1977-01-01

    In the rat, silybine and Z 12007, a derivative of rutoside, increase the vasodepressive activities of arachidonic acid, a prostaglandin precursor. They reduce the activity of PGE2. Quercetine also increases the hypotensive action of arachidonic acid. These three flavonoids are supposed to increase the prostaglandin biosynthesis. PMID:143326

  3. Arachidonic acid induces a prolonged inhibition of glutamate uptake into glial cells.

    PubMed

    Barbour, B; Szatkowski, M; Ingledew, N; Attwell, D

    Activation of NMDA (N-methyl-D-aspartate) receptors by neurotransmitter glutamate stimulates phospholipase A2 to release arachidonic acid. This second messenger facilitates long-term potentiation of glutamatergic synapses in the hippocampus, possibly by blocking glutamate uptake. We have studied the effect of arachidonic acid on glutamate uptake into glial cells using the whole-cell patch-clamp technique to monitor the uptake electrically. Micromolar levels of arachidonic acid inhibit glutamate uptake, mainly by reducing the maximum uptake rate with only small effects on the affinity for external glutamate and sodium. On removal of arachidonic acid a rapid (5 minutes) phase of partial recovery is followed by a maintained suppression of uptake lasting at least 20 minutes. Surprisingly, the action of arachidonic acid is unaffected by cyclo-oxygenase or lipoxygenase inhibitors suggesting that it inhibits uptake directly, possibly by increasing membrane fluidity. As blockade of phospholipase A2 prevents the induction of long-term potentiation (LTP), inhibition of glutamate uptake by arachidonic acid may contribute to the increase of synaptic gain that occurs in LTP. During anoxia, release of arachidonic acid could severely compromise glutamate uptake and thus contribute to neuronal death. PMID:2512508

  4. The Essentiality of Arachidonic Acid in Infant Development

    PubMed Central

    Hadley, Kevin B.; Ryan, Alan S.; Forsyth, Stewart; Gautier, Sheila; Salem, Norman

    2016-01-01

    Arachidonic acid (ARA, 20:4n-6) is an n-6 polyunsaturated 20-carbon fatty acid formed by the biosynthesis from linoleic acid (LA, 18:2n-6). This review considers the essential role that ARA plays in infant development. ARA is always present in human milk at a relatively fixed level and is accumulated in tissues throughout the body where it serves several important functions. Without the provision of preformed ARA in human milk or infant formula the growing infant cannot maintain ARA levels from synthetic pathways alone that are sufficient to meet metabolic demand. During late infancy and early childhood the amount of dietary ARA provided by solid foods is low. ARA serves as a precursor to leukotrienes, prostaglandins, and thromboxanes, collectively known as eicosanoids which are important for immunity and immune response. There is strong evidence based on animal and human studies that ARA is critical for infant growth, brain development, and health. These studies also demonstrate the importance of balancing the amounts of ARA and DHA as too much DHA may suppress the benefits provided by ARA. Both ARA and DHA have been added to infant formulas and follow-on formulas for more than two decades. The amounts and ratios of ARA and DHA needed in infant formula are discussed based on an in depth review of the available scientific evidence. PMID:27077882

  5. Dietary arachidonic acid in perinatal nutrition: a commentary.

    PubMed

    Lauritzen, Lotte; Fewtrell, Mary; Agostoni, Carlo

    2015-01-01

    Arachidonic acid (AA) is supplied together with docosahexaenoic acid (DHA) in infant formulas, but we have limited knowledge about the effects of supplementation with either of these long-chain polyunsaturated fatty acids (LCPUFA) on growth and developmental outcomes. AA is present in similar levels in breast milk throughout the world, whereas the level of DHA is highly diet dependent. Autopsy studies show similar diet-dependent variation in brain DHA, whereas AA is little affected by intake. Early intake of DHA has been shown to affect visual development, but the effect of LCPUFA on neurodevelopment remains to be established. Few studies have found any functional difference between infants supplemented with DHA alone compared to DHA+AA, but some studies show neurodevelopmental advantages in breast-fed infants of mothers supplemented with n-3 LCPUFA alone. It also remains to be established whether the AA/DHA balance could affect allergic and inflammatory outcomes later in life. Disentangling effects of genetic variability and dietary intake on AA and DHA-status and on functional outcomes may be an important step in the process of determining whether AA-intake is of any physiological or clinical importance. However, based on the current evidence we hypothesize that dietary AA plays a minor role on growth and development relative to the impact of dietary DHA. PMID:25314584

  6. The rabbit pulmonary cytochrome P450 arachidonic acid metabolic pathway: characterization and significance.

    PubMed Central

    Zeldin, D C; Plitman, J D; Kobayashi, J; Miller, R F; Snapper, J R; Falck, J R; Szarek, J L; Philpot, R M; Capdevila, J H

    1995-01-01

    Cytochrome P450 metabolizes arachidonic acid to several unique and biologically active compounds in rabbit liver and kidney. Microsomal fractions prepared from rabbit lung homogenates metabolized arachidonic acid through cytochrome P450 pathways, yielding cis-epoxyeicosatrienoic acids (EETs) and their hydration products, vic-dihydroxyeicosatrienoic acids, mid-chain cis-trans conjugated dienols, and 19- and 20-hydroxyeicosatetraenoic acids. Inhibition studies using polyclonal antibodies prepared against purified CYP2B4 demonstrated 100% inhibition of arachidonic acid epoxide formation. Purified CYP2B4, reconstituted in the presence of NADPH-cytochrome P450 reductase and cytochrome b5, metabolized arachidonic acid, producing primarily EETs. EETs were detected in lung homogenate using gas chromatography/mass spectroscopy, providing evidence for the in vivo pulmonary cytochrome P450 epoxidation of arachidonic acid. Chiral analysis of these lung EETs demonstrated a preference for the 14(R),15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET enantiomers. Both EETs and vic-dihydroxyeicosatrienoic acids were detected in bronchoalveolar lavage fluid. At micromolar concentrations, methylated 5,6-EET and 8,9-EET significantly relaxed histamine-contracted guinea pig hilar bronchi in vitro. In contrast, 20-hydroxyeicosatetraenoic acid caused contraction to near maximal tension. We conclude that CYP2B4, an abundant rabbit lung cytochrome P450 enzyme, is the primary constitutive pulmonary arachidonic acid epoxygenase and that these locally produced, biologically active eicosanoids may be involved in maintaining homeostasis within the lung. Images PMID:7738183

  7. Mucus glycoprotein secretion by duodenal mucosa in response to luminal arachidonic acid.

    PubMed

    Kosmala, M; Carter, S R; Konturek, S J; Slomiany, A; Slomiany, B L

    1986-12-10

    The effect of luminal application of arachidonic acid on the alkaline secretion, prostaglandin generation, and mucus glycoprotein output and composition was studied in proximal and distal duodenum of conscious dogs. Surgically prepared duodenal loops were instilled in vivo for up to 2 h with saline (control) followed by various concentrations (12.5-100 micrograms/ml) of arachidonic acid. The experiments were conducted with and without intravenous pretreatment with indomethacin. The recovered instillates were assayed for the content of prostaglandin and HCO3-, and used for the isolation of mucus glycoprotein. Exposure of duodenal mucosa to arachidonic acid led to concentration-dependent increase in the output of HCO3- and prostaglandin generation. In both cases this response was greater in the proximal duodenum. Pretreatment with indomethacin caused reduction in the basal HCO3- and prostaglandin output, and prevented the increments evoked by arachidonic acid. The proximal and distal duodenum displayed similar basal output and composition of mucus glycoprotein. Comparable increases in these glycoproteins were also obtained with arachidonic acid, the effect of which was abolished by indomethacin. Compared to basal conditions, mucus glycoproteins elaborated in response to arachidonic acid exhibited higher contents of associated lipids and covalently bound fatty acids, and contained less protein. The associated lipids of mucus glycoproteins elaborated in the presence of arachidonic acid showed enrichment in phospholipids and decrease in neutral lipids. The carbohydrate components in these glycoproteins also exhibited higher proportions of sialic acid and sulfate. The changes brought about by arachidonic acid were prevented by indomethacin pretreatment, and in both cases the glycoprotein composition returned to that obtained under basal conditions. The enrichment of mucus glycoprotein in lipids, sialic acid and sulfate in response to endogenous prostaglandin may be of

  8. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats

    PubMed Central

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography–tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney. PMID:26485038

  9. Chronic Arachidonic Acid Administration Decreases Docosahexaenoic Acid- and Eicosapentaenoic Acid-Derived Metabolites in Kidneys of Aged Rats.

    PubMed

    Katakura, Masanori; Hashimoto, Michio; Inoue, Takayuki; Mamun, Abdullah Al; Tanabe, Yoko; Arita, Makoto; Shido, Osamu

    2015-01-01

    Arachidonic acid (ARA) metabolites produced by cyclo-oxygenase and lipoxygenase are important mediators maintaining physiological renal function. However, the effects of exogenous ARA on kidney function in vivo remain unknown. This study examined the effects of long-term oral ARA administration on normal renal function as well as inflammation and oxidative stress in aged rats. In addition, we measured levels of renal eicosanoids and docosanoids using liquid chromatography-tandem mass spectrometry. Control or ARA oil (240 mg/kg body weight/day) was orally administered to 21-month-old Wistar rats for 13 weeks. Levels of plasma creatinine, blood urea nitrogen, inflammatory and anti-inflammatory cytokines, reactive oxygen species, and lipid peroxidation were not significantly different between the two groups. The ARA concentration in the plasma, kidney, and liver increased in the ARA-administered group. In addition, levels of free-form ARA, prostaglandin E2, and 12- and 15-hydroxyeicosatetraenoic acid increased in the ARA-administered group, whereas renal concentration of docosahexaenoic acid and eicosapentaenoic acid decreased in the ARA-administered group. Levels of docosahexaenoic acid-derived protectin D1, eicosapentaenoic acid-derived 5-, and 18-hydroxyeicosapentaenoic acids, and resolvin E2 and E3 decreased in the ARA-administered group. Our results indicate that long-term ARA administration led to no serious adverse reactions under normal conditions and to a decrease in anti-inflammatory docosahexaenoic acid- and eicosapentaenoic acid-derived metabolites in the kidneys of aged rats. These results indicate that there is a possibility of ARA administration having a reducing anti-inflammatory effect on the kidney. PMID:26485038

  10. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa.

    PubMed

    Yuan, Dongjuan; Zou, Qiuqiong; Yu, Ting; Song, Cuikai; Huang, Shengfeng; Chen, Shangwu; Ren, Zhenghua; Xu, Anlong

    2014-09-01

    Eicosanoids play an important role in inducing complex and crucial physiological processes in animals. Eicosanoid biosynthesis in animals is widely reported; however, eicosanoid production in invertebrate tissue is remarkably different to vertebrates and in certain respects remains elusive. We, for the first time, compared the orthologs involved in arachidonic acid (AA) metabolism in 14 species of invertebrates and 3 species of vertebrates. Based on parsimony, a complex AA-metabolic system may have existed in the common ancestor of the Metazoa, and then expanded and diversified through invertebrate lineages. A primary vertebrate-like AA-metabolic system via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) pathways was further identified in the basal chordate, amphioxus. The expression profiling of AA-metabolic enzymes and lipidomic analysis of eicosanoid production in the tissues of amphioxus supported our supposition. Thus, we proposed that the ancestral complexity of AA-metabolic network diversified with the different lineages of invertebrates, adapting with the diversity of body plans and ecological opportunity, and arriving at the vertebrate-like pattern in the basal chordate, amphioxus. PMID:24801744

  11. Lipoxygenation of arachidonic acid by subcellular preparations from murine keratinocytes

    SciTech Connect

    Ziboh, V.A.; Casebolt, T.L.; Marcelo, C.L.; Voorhees, J.J.

    1984-10-01

    In these studies, we examined the possibility that cell-free preparations from murine keratinocytes possess 5-lipoxygenase activity in addition to the well-established cyclooxygenase pathway of arachidonic acid (AA) in these cells. Our data demonstrated that the high-speed (105,000 g) supernatant preparations of the murine keratinocytes metabolized (14C)AA into labeled lipoxygenase products. Portions of these radioactive metabolites cochromatographed and comigrated with 12-HETE (a marker for 12-lipoxygenase pathway) and with authentic LTB4 (a marker for 5-lipoxygenase pathway) on silicic acid column chromatography and by thin-layer chromatography (TLC) in two solvent systems respectively. Identity of the novel 14C which comigrated with LTB4 on both TLC and column chromatography was verified further by cochromatography of the free acid with authentic LTB4 on a reverse phase (RP) and the methyl esters on a straight phase high-pressure liquid chromatography. Incubation of the cell-free preparations with (14C)AA in the presence of ETYA, NDGA (inhibitors of cyclooxygenase and lipoxygenase pathways) as well as with 15-HETE (an inhibitor of lipoxygenase pathway) resulted in decreased formation of (14C) 12-HETE and the (14C)LTB4-like metabolite. On the contrary, incubations of the cell-free extracts with (14C) AA in the presence of indomethacin (a cyclooxygenase inhibitor) resulted in increased biosynthesis of the labeled lipoxygenase metabolites. These data indicate the existence of enzymes in soluble fraction of murine keratinocyte which can catalyze the transformation of (14C) AA into products of both the 12- and 5-lipoxygenase pathways.

  12. Peripheral mechanisms involved in the pressor and bradycardic effects of centrally administered arachidonic acid.

    PubMed

    Aydin, Cenk; Yalcin, Murat

    2008-06-01

    In the current study, we aimed to determine the cardiovascular effects of arachidonic acid and peripheral mechanisms mediated these effects in normotensive conscious rats. Studies were performed in male Sprague Dawley rats. Arachidonic acid was injected intracerebroventricularly (i.c.v.) at the doses of 75, 150 or 300 microg and it caused dose- and time-dependent increase in mean arterial pressure and decrease in heart rate in normal conditions. Maximal effects were observed 10 min after 150 and 300 microg dose of arachidonic acid and lasted within 30 min. In order to evaluate the role of main peripheral hormonal mechanisms in those cardiovascular effects, plasma adrenaline, noradrenaline, vasopressin levels and renin activity were measured after arachidonic acid (150 microg; i.c.v.) injection. Centrally injected arachidonic acid increased plasma levels of all these hormones and renin activity. Intravenous pretreatments with prazosin (0.5 mg/kg), an alpha1 adrenoceptor antagonist, [beta-mercapto-beta,beta-cyclopentamethylenepropionyl1, O-Me-Tyr2-Arg8]-vasopressin (10 microg/kg), a vasopressin V1 receptor antagonist, or saralasin (250 microg/kg), an angiotensin II receptor antagonist, partially blocked the pressor response to arachidonic acid (150 microg; i.c.v.) while combined administration of these three antagonists completely abolished the effect. Moreover, both individual and combined antagonist pretreatments fully blocked the bradycardic effect of arachidonic acid. In conclusion, our findings show that centrally administered arachidonic acid increases mean arterial pressure and decreases heart rate in normotensive conscious rats and the increases in plasma adrenaline, noradrenaline, vasopressin levels and renin activity appear to mediate the cardiovascular effects of the drug. PMID:18571395

  13. Activation and regulation of arachidonic acid release in rabbit peritoneal neutrophils

    SciTech Connect

    Tao, W.

    1988-01-01

    Arachidonic acid release in rabbit neutrophils can be enhanced by the addition of chemotactic fMet-Leu-Phe, platelet-activating factor, PAF, or the calcium ionophore A23187. Over 80% of the release ({sup 3}H)arachidonic acid comes from phosphatidylcholine and phosphatidylinositol. The release is dose-dependent and increases with increasing concentration of the stimulus. The A23187-induced release increases with increasing time of the stimulation. ({sup 3}H)arachidonic acid release, but not the rise in the concentration of intracellular calcium, is inhibited in pertussis toxin-treated neutrophils stimulated with PAF. The ({sup 3}H)arachidonic acid released by A23187 is potentiated while that release by fMET-Leu-Phe or PAF is inhibited in phorbol 12-myristate 13-acetate, PMA, treated rabbit neutrophils. The protein kinase C inhibitor 1-(5-isoquinoline sulfonyl)-2-methylpiperazine, H-7, has no effect on the potentiation by PMA of the A23187-induced release, it prevents the inhibition by PMA of the release produced by PAF or fMet-Leu-Phe. In addition, PMA increases arachidonic acid release in H-7-treated cells stimulated with fMet-Leu-Phe. The diacylglycerol kinase inhibitor R59022 increases the level of diacylglycerol in neutrophils stimulated with fMet-Leu-Phe. Furthermore, R59022 potentiates ({sup 3}H) arachidonic acid release produced by fMet-Leu-Phe. This potentiation is not inhibited by H-7, in fact, it is increased in H-7-treated neutrophils.

  14. In vitro release of arachidonic acid and in vivo responses to respirable fractions of cotton dust

    SciTech Connect

    Thomson, T.A.; Edwards, J.H.; Al-Zubaidy, T.S.; Brown, R.C.; Poole, A.; Nicholls, P.J.

    1986-04-01

    It was considered that the fall in lung function seen after exposure to cotton dust may be attributable in part to the activity of arachidonic acid metabolites, such as leucotrienes as well as to the more established release of histamine by cotton dust. However, we found that cotton and barley dusts elicited poor release of arachidonic acid from an established macrophage like cell line compared with that observed with other organic dusts. In the experimental animal, pulmonary cellular responses to both cotton and barley dust were similar to those evoked by moldy hay and pigeon dropping dusts, although after multiple doses a more severe response was seen to cotton and barley. Since both moldy hay and pigeon droppings elicit a greater arachidonic acid release than cotton or barley, a role for arachidonic acid in inducing the cellular response is less likely than other factors. There are limitations to our conclusions using this system, i.e., the arachidonic acid may be released in a nonmetabolized form, although it is noted that the two dusts with the greatest arachidonic acid release produce their clinical responses in humans largely by hypersensitivity mechanisms.

  15. Vasopressin induces release of arachidonic acid from vascular smooth muscle cells

    SciTech Connect

    Grillone, L.R.; Clark, M.A.; Heckman, G.; Schmidt, D.; Stassen, F.L.; Crooke, S.T.

    1986-05-01

    Cultured smooth muscle cells (A-10), derived from rat thoracic aorta, have vascular (V/sub 1/) vasopressin receptors. They have previously shown that these receptors mediate phosphatidylinositol turnover, Ca/sup 2 +/ efflux, and inhibition of isoproterenol-induced increases in cAMP. Here they studied the effect of vasopressin on arachidonic acid metabolism of A-10 cells. Cells were incubated for 18-20 hr with (/sup 3/H)-arachidonic acid (80 Ci/mmol). Vasopressin stimulated release of arachidonic acid in a time- and dose-dependent manner. Significant release of arachidonic acid was observed after 4 min with 10/sup -9/ M vasopressin. Maximum release was reached 4 min after addition of 10/sup -7/ M vasopressin (1100 dpm/10/sup 6/ cells). About 800 dmp were released after 1 and 4 min with 10/sup -7/ M and 10/sup -8/ M vasopressin, respectively. The vasopressin-stimulated release of arachidonic acid was blocked by the specific V/sub 1//V/sub 2/ vasopressin antagonist d(CH2)5D-Tyr(Et)VAVP. These data indicate that vascular smooth muscle cells increase arachidonic acid release in response to vasopressin. This response is likely mediated by V/sub 1/ receptors.

  16. Role of Arachidonic Acid in Promoting Hair Growth

    PubMed Central

    Munkhbayar, Semchin; Jang, Sunhyae; Cho, A-Ri; Choi, Soon-Jin; Shin, Chang Yup; Eun, Hee Chul; Kim, Kyu Han

    2016-01-01

    Background Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid present in all mammalian cell membranes, and involved in the regulation of many cellular processes, including cell survival, angiogenesis, and mitogenesis. The dermal papilla, composed of specialized fibroblasts located in the bulb of the hair follicle, contributes to the control of hair growth and the hair cycle. Objective This study investigated the effect of AA on hair growth by using in vivo and in vitro models. Methods The effect of AA on human dermal papilla cells (hDPCs) and hair shaft elongation was evaluated by MTT assay and hair follicle organ culture, respectively. The expression of various growth and survival factors in hDPCs were investigated by western blot or immunohistochemistry. The ability of AA to induce and prolong anagen phase in C57BL/6 mice was analyzed. Results AA was found to enhance the viability of hDPCs and promote the expression of several factors responsible for hair growth, including fibroblast growth factor-7 (FGF-7) and FGF-10. Western blotting identified the role of AA in the phosphorylation of various transcription factors (ERK, CREB, and AKT) and increased expression of Bcl-2 in hDPCs. In addition, AA significantly promoted hair shaft elongation, with increased proliferation of matrix keratinocytes, during ex vivo hair follicle culture. It was also found to promote hair growth by induction and prolongation of anagen phase in telogen-stage C57BL/6 mice. Conclusion This study concludes that AA plays a role in promoting hair growth by increasing the expression of growth factors in hDPCs and enhancing follicle proliferation and survival. PMID:26848219

  17. Exogenous amino acids as fuel in shock.

    PubMed

    Daniel, A M; Kapadia, B; MacLean, L D

    1982-01-01

    It has been suggested that in shock branched-chain amino acids are preferentially oxidized resulting in continued proteolysis and stimulated gluconeogenesis. To determine if exogenous amino acids could be used as fuel in shock, dogs rendered hypotensive by controlled cardiac tamponade and normotensive controls were infused with amino acid mixtures and individual amino acids. When Nephramine, a mixture rich in branched-chain amino acids, was infused, plasma alpha-amino nitrogen levels rose but urea output did not increase in either the control state or in shock, suggesting that these amino acids were not rapidly deaminated to serve as fuels. Travasol, which in addition contained large amounts of alanine and glycine, tripled urea output in the controls and doubled it in shock. The limit of urea production was reached in both groups at 35 mumoles urea/minute/kg. In the Travasol-infused animals plasma alpha-amino nitrogen levels were maintained in normotension but rose sharply in shock. When glycine alone was infused into five dogs in shock urea production rate was 30.6 + 2.1 mumoles/minute/kg; with alanine the same value was 22.5 + 2.2 mumoles/minute/kg. In both cases plasma alpha-amino nitrogen levels were high, suggesting that transport of these amino acids into the cell was slow in shock. In four dogs in shock glycine-14C was added to the glycine infusate as a tracer. At radioactive equilibrium 28% of the label infused appeared in CO2; another 22% appeared in glucose. It is concluded that of all the amino acids tested only glycine and alanine are deaminated rapidly enough to serve as exogenous fuels in shock. PMID:6814205

  18. Kinetic investigation of human 5-lipoxygenase with arachidonic acid.

    PubMed

    Mittal, Monica; Kumar, Ramakrishnan B; Balagunaseelan, Navisraj; Hamberg, Mats; Jegerschöld, Caroline; Rådmark, Olof; Haeggström, Jesper Z; Rinaldo-Matthis, Agnes

    2016-08-01

    Human 5-lipoxygenase (5-LOX) is responsible for the formation of leukotriene (LT)A4, a pivotal intermediate in the biosynthesis of the leukotrienes, a family of proinflammatory lipid mediators. 5-LOX has thus gained attention as a potential drug target. However, details of the kinetic mechanism of 5-LOX are still obscure. In this Letter, we investigated the kinetic isotope effect (KIE) of 5-LOX with its physiological substrate, arachidonic acid (AA). The observed KIE is 20±4 on kcat and 17±2 on kcat/KM at 25°C indicating a non-classical reaction mechanism. The observed rates show slight temperature dependence at ambient temperatures ranging from 4 to 35°C. Also, we observed low Arrhenius prefactor ratio (AH/AD=0.21) and a small change in activation energy (Ea(D)-Ea(H)=3.6J/mol) which suggests that 5-LOX catalysis involves tunneling as a mechanism of H-transfer. The measured KIE for 5-LOX involves a change in regioselectivity in response to deuteration at position C7, resulting in H-abstraction form C10 and formation of 8-HETE. The viscosity experiments influence the (H)kcat, but not (D)kcat. However the overall kcat/KM is not affected for labeled or unlabeled AA, suggesting that either the product release or conformational rearrangement might be involved in dictating kinetics of 5-LOX at saturating conditions. Investigation of available crystal structures suggests the role of active site residues (F421, Q363 and L368) in regulating the donor-acceptor distances, thus affecting H-transfer as well as regiospecificity. In summary, our study shows that that the H-abstraction is the rate limiting step for 5-LOX and that the observed KIE of 5-LOX is masked by a change in regioselectivity. PMID:27363940

  19. Arachidonic acid metabolism in silica-stimulated bovine alveolar macrophages

    SciTech Connect

    Englen, M.D.

    1989-01-01

    The in vitro production of arachidonic acid (AA) metabolites in adherent bovine alveolar macrophages (BAM) incubated with silica was investigated. BAM were pre-labelled with {sup 3}H-AA, and lipid metabolites released into the culture medium were analyzed by high performance liquid chromatography (HPLC). Lactate dehydrogenase (LDH) release was simultaneously assayed to provide an indication of cell injury. Increasing doses of silica selectively stimulated the 5-lipoxygenase pathway of AA metabolism, while cyclooxygenase metabolite output was suppressed. LDH release increased in a linear, dose-dependent fashion over the range of silica doses used. Moreover, within 15 min following addition of a high silica dose, a shift to the production of 5-lipoxygenase metabolites occurred, accompanied by a reduction in cyclooxygenase products. This rapid alteration in AA metabolism preceded cell injury. To examine the relationship between cytotoxicity and AA metabolite release by BAM exposed to silicas with different cytotoxic and fibrogenic activities, BAM were exposed to different doses of DQ-12, Minusil-5, and Sigma silicas, and carbonyl iron beads. The median effective dose (ED{sub 50}) of each particulate to stimulate the release of AA metabolites and LDH was calculated. The ED{sub 50} values for DQ-12, Minusil-5, and Sigma silica showed that the relative cytotoxicities of the different silicas for BAM corresponded to the relative potencies of the silicas to elicit 5-lipoxygenase metabolites from BAM. These results indicate that the cytotoxic, and presumed fibrogenic potential, of a silica is correlated with the potency to stimulate the release of leukotrienes from AM.

  20. Decreased arachidonic acid content and metabolism in tissues of NZB/W F1 females fed a diet containing 0. 45% dehydroisoandrosterone (DHA)

    SciTech Connect

    Matsunaga, A.; Cottam, G.L.

    1987-05-01

    A diet containing 0.45% DHA fed to NZB/W mice, a model of systemic lupus erythematosus, delays the time of onset, improves survival and decreases the formation of antibodies to ds-DNA. Essential fatty acid-deficient diets or inclusion of eicosapentaenoic acid have similar beneficial effects and led them to investigate arachidonic acid metabolism in response to feeding DHA. The arachidonic acid content of plasma cholesteryl ester decreased from 37.4 +/- 2.2 to 28.2 +/- 1.3 mg%. In total liver phospholipid the value decreased from 18.1 +/- 0.52 to 13.7 +/- 1.3 mg%, in total kidney phospholipid the value decreased from 24.10 +/- 0.87 to 20.7 +/- 0.32 mg% and in resident peritoneal macrophages the value decreased from 15.4 +/- 4.6 to 3.6 +/- 1.4 mg%. The metabolism of exogenous (1-/sup 14/C)arachidonic acid by resident peritoneal macrophages in response to Zymosan stimulation for 2 hr was examined by extraction of metabolites and separation by HPLC. Cells isolated from DHA-fed animals produced less PGE2 than controls, yet similar amounts of 6-keto PGF1..cap alpha.. were produced. Arachidonic acid metabolites have significant effects on the immune system and may be a mechanism involved in the benefits obtained by inclusion of DHA in the diet.

  1. Lipoxygenase Pathway in Islet Endocrine Cells. OXIDATIVE METABOLISM OF ARACHIDONIC ACID PROMOTES INSULIN RELEASE

    PubMed Central

    Metz, Stewart; VanRollins, Michael; Strife, Robert; Fujimoto, Wilfred; Robertson, R. Paul

    1983-01-01

    Metabolism of arachidonic acid (AA) via the cyclooxygenase pathway reduces glucose-stimulated insulin release. However, metabolism of AA by the lipoxygenase pathway and the consequent effects on insulin secretion have not been simultaneously assessed in the endocrine islet. Both dispersed endocrine cell-enriched pancreatic cells of the neonatal rat, as well as intact islets of the adult rat, metabolized [3H]AA not only to cyclooxygenase products (prostaglandins E2, F2α, and prostacyclin) but also to the lipoxygenase product 12-hydroxyeicosatetraenoic acid (12-HETE). 12-HETE was identified by coelution with authentic tritiated or unlabeled 12-HETE using four high performance liquid chromatographic systems under eight mobile-phase conditions and its identity was confirmed by gas chromatography/mass spectrometry using selected ion monitoring. The predominant effect of exogenous AA (5 μg/ml) was to stimulate insulin release from pancreatic cells grown in monolayer. This effect was concentration- and time-dependent, and reversible. The effect of AA upon insulin release was potentiated by a cyclooxygenase inhibitor (indomethacin) and was prevented by either of two lipoxygenase inhibitors (5,8,11,14-eicosatetraynoic acid [ETYA] and BW755c). In addition, glucose, as well as two structurally dissimilar agents (the calcium ionophore A23187 and bradykinin), which activate phospholipase(s) and thereby release endogenous AA in several cell systems, also stimulated insulin secretion. The effects of glucose, glucagon, bradykinin and high concentrations of A23187 (5 μg/ml) to augment insulin release were blocked or considerably reduced by lipoxygenase inhibitors. However, a lower concentration of the ionophore (0.25 μg/ml), which did not appear to activate phospholipase, was resistant to blockade. Exogenous 12-HETE (up to 2,000 ng/ml) did not alter glucose-induced insulin release. However, the labile intermediate 12-hydroperoxy-ETE increased insulin release. Furthermore

  2. Inhibition of cystic fibrosis transmembrane conductance regulator chloride channel currents by arachidonic acid.

    PubMed

    Linsdell, P

    2000-06-01

    Chloride permeation through the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is inhibited by a number of different classes of organic anions which are able to enter and block the channel pore from its cytoplasmic end. Here I show, using patch clamp recording from CFTR-transfected baby hamster kidney cell lines, that the cis-unsaturated fatty acid arachidonic acid also inhibits CFTR Cl- currents when applied to the cytoplasmic face of excised membrane patches. This inhibition was of a relatively high affinity compared with other known CFTR inhibitors, with an apparent Kd of 6.5 +/- 0.9 microM. However, in contrast with known CFTR pore blockers, inhibition by arachidonic acid was only very weakly voltage dependent, and was insensitive to the extracellular Cl- concentration. Arachidonic acid-mediated inhibition of CFTR Cl- currents was not abrogated by inhibitors of lipoxygenases, cyclooxygenases or cytochrome P450, suggesting that arachidonic acid itself, rather than some metabolite, directly affects CFTR. Similar inhibition of CFTR Cl- currents was seen with other fatty acids, with the rank order of potency linoleic > or = arachidonic > or = oleic > elaidic > or = palmitic > or = myristic. These results identify fatty acids as novel high affinity modulators of the CFTR Cl- channel. PMID:10914639

  3. Assessment of skin absorption and irritation potential of arachidonic acid and glyceryl arachidonate using in vitro diffusion cell techniques.

    PubMed

    Eppler, A R; Kraeling, M E K; Wickett, R R; Bronaugh, R L

    2007-11-01

    Arachidonic acid (AA), a precursor of pro-inflammatory mediators, and its glycerin ester, glyceryl arachidonate (GA), are reportedly used in cosmetic products. In vitro skin penetration of AA and GA and GA's ester hydrolysis was determined in flow-through diffusion cells. AA penetration with human and rat skin was 19.5% and 52.3% of the applied dose respectively, a substantial amount of which remained in the skin at 24h. Similar penetration results were obtained with GA in human skin. However, GA penetration through cultured skin (EpiDerm) was 51% of the applied dose, almost all of which appeared in the receptor fluid. At least 27.8% of GA penetrating skin was hydrolyzed to AA. In vitro methods were used to assess skin irritation in diffusion cells. Skin irritation of AA, sodium lauryl sulfate (SLS), and Tween 80 was determined by changes in transepidermal water loss (TEWL), skin viability (3-(4,5-dimethylthiaxol-2-yl)-2,5-diphenyltetrazolium bromide, MTT, formation), and cytokine release (IL-1alpha). SLS irritation was much less pronounced in an emulsion versus an aqueous vehicle. No significant irritation was observed in vitro from AA in an emulsion. This work predicts that AA would penetrate human skin in vivo and that it could be formed in skin from topically applied GA. PMID:17602815

  4. The stimulation of arachidonic acid metabolism in human platelets by hydrodynamic stresses

    NASA Technical Reports Server (NTRS)

    Rajagopalan, Sridhar; Mcintire, Larry V.; Hall, Elizabeth R.; Wu, Kenneth K.

    1988-01-01

    The effects of stimulating human platelets by thrombin and by hydrodynamic stresses on the platelets' arachidonic acid metabolism were investigated using (1-C-14)-arachidonic acid label and a specially designed viscometer that ensured laminar shear flow with a nearly uniform shear rate throughout the flow region. It was found that platelets activated by thrombin formed principally thromboxane A2, 12-hydroxy 5,8,10-heptadecatrienoic acid and 12-hydroxy 5,8,10,14-eicosatetraenoic acid (12-HETE). On the other hand, platelets activated by shear, formed only 12-HETE (although arachidonic acid metabolism was stimulated); no cyclooxygenase metabolites were detected. Results indicate that platelets may greatly increase their 12-HETE production when activated by passage through a high-stress region of the circulation, such as an atherosclerotic stenosis.

  5. Molecular mechanism of arachidonic acid inhibition of the CFTR chloride channel.

    PubMed

    Zhou, Jing-Jun; Linsdell, Paul

    2007-06-01

    Arachidonic acid inhibits the activity of a number of different Cl- channels, however its molecular mechanism of action is not known. Here we show that inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channels by arachidonic acid is weakened following mutagenesis of two positively charged pore-lining amino acids. Charge-neutralizing mutants K95Q and R303Q both increased the Kd for inhibition from approximately 3.5 microM in wild type to approximately 17 microM. At both sites, the effects of mutagenesis were dependent of the charge of the substituted side chain. We suggest that arachidonic acid interacts electrostatically with positively charged amino acid side chains in the cytoplasmic vestibule of the CFTR channel pore to block Cl- permeation. PMID:17397825

  6. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells.

    PubMed Central

    Kim, D; Sladek, C D; Aguado-Velasco, C; Mathiasen, J R

    1995-01-01

    1. The presence and properties of K+ channels activated by arachidonic acid were studied in neuronal cells cultured from the mesencephalic and hypothalamic areas of rat brain. 2. Arachidonic acid produced a concentration-dependent (5-50 microM) and reversible activation of whole-cell currents. 3. In excised membrane patches, arachidonic acid applied to the cytoplasmic or extracellular side of the membrane caused opening of three types of channels whose current-voltage relationships were slightly outwardly rectifying, inwardly rectifying and linear, and whose single channel slope conductances at +60 mV were 143, 45 and 52 pS, respectively. 4. All three currents were K+ selective and blocked by 2 mM Ba2+ but not by other K+ channel blockers such as tetraethylammonium chloride, 4-aminopyridine and quinidine. The outwardly and inwardly rectifying currents were slightly voltage dependent with higher channel activity at more depolarized potentials. 5. Arachidonic acid activated the K+ channels in cells treated with cyclo-oxygenase and lipoxygenase inhibitors (indomethacin and nordihydroguaiaretic acid), indicating that arachidonic acid itself can directly activate the channels. Alcohol and methyl ester derivatives of arachidonic acid failed to activate the K+ channels, indicating that the charged carboxyl group is important for activation. 6. Certain unsaturated fatty acids (linoleic, linolenic and docosahexaenoic acids), but not saturated fatty acids (myristic, palmitic, stearic acids), also reversibly activated all three types of K+ channel. 7. All three K+ channels were activated by pressure applied to the membrane (i.e. channels were stretch sensitive) with a half-maximal pressure of approximately 18 mmHg. The K+ channels were not blocked by 100 microM GdCl3. 8. A decrease in intracellular pH (over the range 5.6-7.2) caused a reversible, pH-dependent increase in channel activity whether the channel was initially activated by arachidonic acid or stretch. 9. Glutamate

  7. Changes in arachidonic acid metabolism in UV-irradiated hairless mouse skin

    SciTech Connect

    Ruzicka, T.; Walter, J.F.; Printz, M.P.

    1983-10-01

    This study was conducted to investigate the metabolism of arachidonic acid in the skin of hairless mice exposed to UVA, PUVA, UVB, and UVC irradiation. The main products of arachidonic acid in the epidermis were hydroxyeicosatetraenoic acid (HETE), PGE2, and PGD2. Dermis displayed a lower lipoxygenase activity (expressed as HETE production) than the epidermis and showed no detectable cyclooxygenase activity, i.e., no prostaglandin production. The main changes observed in UV-induced inflammatory reactions were as follows. 1. A 5-fold increase in dermal HETE production in PUVA-treated animals and a 29% reduction in epidermal HETE formation after UVC treatment. 2. A marked decrease of PGD2 and a marked increase of PGE2 formation due to alterations of PGH2 metabolism in the UVB-treated group; however, cyclooxygenase activity was unchanged. These changes in arachidonic acid metabolism in the skin may be of pathophysiologic importance in UV-induced inflammatory reaction.

  8. The effect of fluid mechanical stress on cellular arachidonic acid metabolism

    NASA Technical Reports Server (NTRS)

    Mcintire, L. V.; Frangos, J. A.; Rhee, B. G.; Eskin, S. G.; Hall, E. R.

    1987-01-01

    The effect of sublytic levels of mechanical perturations of cells on cell metabolism were investigated by analyzing the products of arachidonic acid (used as a marker metabolite) in blood platelets, polymorphonuclear leucocytes, and cultured umbilical-vein endothelial cells after the suspensions of these cells were subjected to a shear stress in a modified viscometer. It is shown that the sublytic levels of mechanical stress stimulated the arachidonic acid metabolism in all these cell types. Possible biological implications of this stress-metabolism coupling are discussed.

  9. Arachidonic acid-mediated inhibition of a potassium current in the giant neurons of Aplysia

    SciTech Connect

    Carlson, R.O.

    1990-01-01

    Biochemical and electrophysiological approaches were used to investigate the role of arachidonic acid (AA) in the modulation of an inwardly rectifying potassium current (I{sub R}) in the giant neurons of the marine snail, Aplysia californica. Using ({sup 3}H)AA as tracer, the intracellular free AA pool in Aplysia ganglia was found to be in a state of constant and rapid turnover through deacylation and reacylation of phospholipid, primarily phosphatidyl-inositol. This constant turnover was accompanied by a constant release of free AA and eicosanoids into the extracellular medium. The effects of three pharmacological agents were characterized with regard to AA metabolism in Aplysia ganglia. 4-O-tetra-decanoylphorbol 13-acetate (TPA), an activator of protein kinase C, stimulated liberation of AA from phospholipid, and 4-bromophenacylbromide (BPB), an inhibitor of phospholipate A{sub 2}, inhibited this liberation. Indomethacin at 250 {mu}M was found to inhibit uptake of AA, likely through inhibition of acyl-CoA synthetase. These agents were also found to modulate I{sub R} in ways which were consistent with their biological effects: TPA inhibited I{sub R}, and both BPB and indomethacin stimulated I{sub R} . Modulation of I{sub R} by these substances was found not to involve cAMP metabolism. Acute application of exogenous AA did not affect I{sub R}; however, I{sub R} in giant neurons was found to be inhibited after dialysis with AA or other unsaturated fatty acids. Also, after perfusion with BSA overnight, a treatment which strips the giant neurons of AA in lipid storage, I{sub R} was found to have increased over 2-fold. This perfusion-induced increase was inhibited by the presence of AA or by pretreatment of the giant neurons with BPB. These results suggest AA, provided through constant turnover from phospholipid, mediates constitutive inhibition of I{sub R}.

  10. Unexpected depletion of plasma arachidonate and total protein in cats fed a low arachidonic acid diet due to peroxidation.

    PubMed

    Chamberlin, Amy; Mitsuhashi, Yuka; Bigley, Karen; Bauer, John E

    2011-10-01

    An opportunity to investigate a low-arachidonic acid (AA) feline diet possibly related to elevated peroxide value (PV) during storage on plasma phospholipid (PL) and reproductive tissue fatty acid (FA) profiles presented itself in the present study. Cats (nine animals per group) had been fed one of three dry extruded, complete and balanced diets for 300 d before spaying. The diets contained adequate AA (0.3 g/kg), similar concentration of antioxidants and were stored at ambient temperature, but differed in FA composition. The diets were designated as follows: diet A (high linoleic acid), diet B (high γ-linolenic acid) and diet C (adequate linoleic acid). Diet samples that were obtained the week before spaying revealed an elevated PV of diet A v. diets B and C (135 v. 5.80 and 2.12 meq/kg fat, respectively). Records revealed decreased food consumption of diet A cats beginning at 240 d but without weight loss; thus an opportunity presented to investigate diet PV effects. Total plasma protein and PL-AA concentrations in group A were significantly decreased at 140 and 300 d. Uterine and ovarian tissues collected at surgery revealed modest decrements of AA. Diet A was below minimum standards at 0.015 % (minimum 0.02 %), probably due to oxidation. The time at which diet A became unacceptable may have occurred between 60 and 140 d because plasma PL-AA was within our normal colony range (approximately 4-7 % relative) after 56 d of feeding. High-linoleic acid-containing diets may be more likely to be oxidised requiring additional antioxidants. The findings suggest that reduced plasma protein in combination with plasma AA concentrations may serve as biomarkers of diet peroxidation in cats before feed refusal, weight loss or tissue depletion. PMID:22005409

  11. Involvement of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and invasion of human multiple myeloma cells

    PubMed Central

    Shao, Jing; Wang, Hongxiang; Yuan, Guolin; Chen, Zhichao

    2016-01-01

    Cytochrome P450 (CYP) epoxygenases and the metabolites epoxyeicosatrienoic acids (EETs) exert multiple biological effects in various malignancies. We have previously found EETs to be secreted by multiple myeloma (MM) cells and to be involved in MM angiogenesis, but the role of the arachidonic acid cytochrome P450 epoxygenase pathway in the proliferation and mobility of MM cells remains unknown. In the present study, we found that MM cell lines generated detectable levels of 11,12-EET/14,15-EET and that increased levels of EETs were found in the serum of MM patients compared to healthy donors. The addition of exogenous EETs induced significantly enhanced proliferation of MM cells, whereas 17-octadecynoic acid (17-ODYA), an inhibitor of the CYP epoxygenase pathway, inhibited the viability and proliferation of MM cells. Moreover, this inhibitory effect could be successfully reversed by exogenous EETs. 17-ODYA also inhibited the motility of MM cells in a time-dependent manner, with a reduction of the gelatinolytic activity and protein expression of the matrix metalloproteinases (MMP)-2 and MMP-9. These results suggest the CYP epoxygenase pathway to be involved in the proliferation and invasion of MM cells, for which 17-ODYA could be a promising therapeutic drug. PMID:27077015

  12. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport

    PubMed Central

    Hashidate-Yoshida, Tomomi; Harayama, Takeshi; Hishikawa, Daisuke; Morimoto, Ryo; Hamano, Fumie; Tokuoka, Suzumi M; Eto, Miki; Tamura-Nakano, Miwa; Yanobu-Takanashi, Rieko; Mukumoto, Yoshiko; Kiyonari, Hiroshi; Okamura, Tadashi; Kita, Yoshihiro; Shindou, Hideo; Shimizu, Takao

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) in phospholipids affect the physical properties of membranes, but it is unclear which biological processes are influenced by their regulation. For example, the functions of membrane arachidonate that are independent of a precursor role for eicosanoid synthesis remain largely unknown. Here, we show that the lack of lysophosphatidylcholine acyltransferase 3 (LPCAT3) leads to drastic reductions in membrane arachidonate levels, and that LPCAT3-deficient mice are neonatally lethal due to an extensive triacylglycerol (TG) accumulation and dysfunction in enterocytes. We found that high levels of PUFAs in membranes enable TGs to locally cluster in high density, and that this clustering promotes efficient TG transfer. We propose a model of local arachidonate enrichment by LPCAT3 to generate a distinct pool of TG in membranes, which is required for normal directionality of TG transfer and lipoprotein assembly in the liver and enterocytes. DOI: http://dx.doi.org/10.7554/eLife.06328.001 PMID:25898003

  13. Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport.

    PubMed

    Hashidate-Yoshida, Tomomi; Harayama, Takeshi; Hishikawa, Daisuke; Morimoto, Ryo; Hamano, Fumie; Tokuoka, Suzumi M; Eto, Miki; Tamura-Nakano, Miwa; Yanobu-Takanashi, Rieko; Mukumoto, Yoshiko; Kiyonari, Hiroshi; Okamura, Tadashi; Kita, Yoshihiro; Shindou, Hideo; Shimizu, Takao

    2015-01-01

    Polyunsaturated fatty acids (PUFAs) in phospholipids affect the physical properties of membranes, but it is unclear which biological processes are influenced by their regulation. For example, the functions of membrane arachidonate that are independent of a precursor role for eicosanoid synthesis remain largely unknown. Here, we show that the lack of lysophosphatidylcholine acyltransferase 3 (LPCAT3) leads to drastic reductions in membrane arachidonate levels, and that LPCAT3-deficient mice are neonatally lethal due to an extensive triacylglycerol (TG) accumulation and dysfunction in enterocytes. We found that high levels of PUFAs in membranes enable TGs to locally cluster in high density, and that this clustering promotes efficient TG transfer. We propose a model of local arachidonate enrichment by LPCAT3 to generate a distinct pool of TG in membranes, which is required for normal directionality of TG transfer and lipoprotein assembly in the liver and enterocytes. PMID:25898003

  14. Factors Affecting the Elicitation of Sesquiterpenoid Phytoalexin Accumulation by Eicosapentaenoic and Arachidonic Acids in Potato 1

    PubMed Central

    Bostock, Richard M.; Laine, Roger A.; Kuć, Joseph A.

    1982-01-01

    Eicosapentaenoic and arachidonic acids in extracts of Phytophthora infestans mycelium were identified as the most active elicitors of sesquiterpenoid phytoalexin accumulation in potato tuber slices. These fatty acids were found free or esterified in all fractions with elicitor activity including cell wall preparations. Yeast lipase released a major portion of eicosapentaenoic and arachidonic acids from lyophilized mycelium. Concentration response curves comparing the elicitor activity of the polyunsaturated fatty acids to a cell-free sonicate of P. infestans mycelium indicated that the elicitor activity of the sonicated mycelium exceeded that which would be obtained by the amount of eicosapentaenoic and arachidonic acids (free and esterified) present in the mycelium. Upon acid hydrolysis of lyophilized mycelium, elicitor activity was obtained only from the fatty acid fraction. However, the fatty acids accounted for only 21% of the activity of the unhydrolyzed mycelium and the residue did not enhance their activity. Centrifugation of the hydrolysate, obtained from lyophilized mycelium treated with 2n NaOH, 1 molarity NaBH4 at 100°C, yielded a supernatant fraction with little or no elicitor activity. Addition of this material to the fatty acids restored the activity to that which was present in the unhydrolyzed mycelium. The results indicate that the elicitor activity of the unsaturated fatty acids is enhanced by heat and base-stable factors in the mycelium. PMID:16662691

  15. Modulation of leukotriene release from human polymorphonuclear leucocytes by PMA and arachidonic acid.

    PubMed Central

    Raulf, M; König, W

    1988-01-01

    Stimulation of human neutrophils (PMN) with Ca ionophore A23187, opsonized zymosan and formyl-L-methionyl-L-leucyl-phenylalanine (FMLP) led to a time- and dose-dependent release of LTB4, 20-OH-LTB4, 20-COOH-LTB4, 6-trans-LTB4, 12-epi-6-trans LTB4 and LTC4, as detected by reverse-phase HPLC. Preincubation of the PMN suspension in the presence of Ca2+ and Mg2+ with phorbol-12-myristate-13-acetate (PMA) did not release leukotrienes by itself, but modulated the subsequent Ca ionophore-induced leukotriene release. The release of LTC4, 20-OH-LTB4 and 20-COOH-LTB4 was significantly decreased. Lesser effects were observed for the release of LTB4 and the non-enzymatic LTB4 isomers. In contrast, opsonized zymosan and FMLP enhanced the release of LTB4 and LTB4-omega-oxidation products from cells pretreated with PMA. With arachidonic acid as prestimulus, the amounts of the LTB4 isomers (6-trans-LTB4 and 12-epi-6-trans-LTB4) were enhanced significantly on subsequent stimulation with Ca ionophore. Prestimulation of lymphocytes, monocytes and basophilic granulocytes (LMB) with PMA had no significant effects on the ionophore-induced release of LTC4 and LTB4. PMN, but not LMB, suspensions prestimulated with PMA convert exogenously added LTC4 to LTB4 isomers and LTC4 sulphoxide. Our data suggest that preincubation of human granulocytes with PMA modified leukotriene release by activation or inhibition of different metabolic pathways for LTC4 and LTB4. PMID:2838420

  16. Arachidonic acid pathway activates multidrug resistance related protein in cultured human lung cells.

    PubMed

    Torky, Abdelrahman; Raemisch, Anja; Glahn, Felix; Foth, Heidi

    2008-05-01

    Primary cultures of human lung cells can serve as a model system to study the mechanisms underlying the effects of irritants in air and to get a deeper insight into the (patho)physiological roles of the xenobiotic detoxification systems. For 99 human lung cancer cases the culture duration for bronchial epithelium and peripheral lung cells (PLC) are given in term of generations and weeks. Using this system, we investigated whether and how prostaglandins (PG) modify multidrug resistance related protein (MRP) function in normal human lung cells. PGF2alpha had no effect on MRP function, whereas PGE2 induced MRP activity in cultured NHBECs. The transport activity study of MRP in NHBEC, PLC, and A549 under the effect of exogenously supplied PGF2alpha (10 microM, 1 day) using single cell fluorimetry revealed no alteration in transport activity of MRP. PG concentrations were within the physiological range. COX I and II inhibitors indomethacin (5, 10 microM) and celecoxib (5, 10 microM) could substantially decrease the transport activity of MRP in NHBEC, PLC, and A549 in 1- and 4-day trials. Prostaglandin E2 did not change cadmium-induced caspase 3/7 activation in NHBECs and had no own effect on caspase 3/7 activity. Cadmium chloride (5, 10 microM) was an effective inducer of caspase 3/7 activation in NHBECs with a fivefold and ninefold rise of activity. In primary human lung cells arachidonic acid activates MRP transport function only in primary epithelial lung cells by prostaglandin E2 but not by F2alpha mediated pathways and this effect needs some time to develop. PMID:17943274

  17. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism

    PubMed Central

    Toledo, Daniel A. M.; Roque, Natália R.; Teixeira, Lívia; Milán-Garcés, Erix A.; Carneiro, Alan B.; Almeida, Mariana R.; Andrade, Gustavo F. S.; Martins, Jefferson S.; Pinho, Roberto R.; Freire-de-Lima, Célio G.; Bozza, Patrícia T.; D’Avila, Heloisa

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas’ disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  18. Lipid Body Organelles within the Parasite Trypanosoma cruzi: A Role for Intracellular Arachidonic Acid Metabolism.

    PubMed

    Toledo, Daniel A M; Roque, Natália R; Teixeira, Lívia; Milán-Garcés, Erix A; Carneiro, Alan B; Almeida, Mariana R; Andrade, Gustavo F S; Martins, Jefferson S; Pinho, Roberto R; Freire-de-Lima, Célio G; Bozza, Patrícia T; D'Avila, Heloisa; Melo, Rossana C N

    2016-01-01

    Most eukaryotic cells contain varying amounts of cytosolic lipidic inclusions termed lipid bodies (LBs) or lipid droplets (LDs). In mammalian cells, such as macrophages, these lipid-rich organelles are formed in response to host-pathogen interaction during infectious diseases and are sites for biosynthesis of arachidonic acid (AA)-derived inflammatory mediators (eicosanoids). Less clear are the functions of LBs in pathogenic lower eukaryotes. In this study, we demonstrated that LBs, visualized by light microscopy with different probes and transmission electron microscopy (TEM), are produced in trypomastigote forms of the parasite Trypanosoma cruzi, the causal agent of Chagas' disease, after both host interaction and exogenous AA stimulation. Quantitative TEM revealed that LBs from amastigotes, the intracellular forms of the parasite, growing in vivo have increased size and electron-density compared to LBs from amastigotes living in vitro. AA-stimulated trypomastigotes released high amounts of prostaglandin E2 (PGE2) and showed PGE2 synthase expression. Raman spectroscopy demonstrated increased unsaturated lipid content and AA incorporation in stimulated parasites. Moreover, both Raman and MALDI mass spectroscopy revealed increased AA content in LBs purified from AA-stimulated parasites compared to LBs from unstimulated group. By using a specific technique for eicosanoid detection, we immunolocalized PGE2 within LBs from AA-stimulated trypomastigotes. Altogether, our findings demonstrate that LBs from the parasite Trypanosoma cruzi are not just lipid storage inclusions but dynamic organelles, able to respond to host interaction and inflammatory events and involved in the AA metabolism. Acting as sources of PGE2, a potent immunomodulatory lipid mediator that inhibits many aspects of innate and adaptive immunity, newly-formed parasite LBs may be implicated with the pathogen survival in its host. PMID:27490663

  19. Blood-brain barrier and brain fatty acid uptake: Role of arachidonic acid and PGE2.

    PubMed

    Murphy, Eric J

    2015-12-01

    How do fatty acids enter the brain and what role, if any, do membrane and cytosolic fatty acid binding proteins have on facilitating this process? This is a fundamental question that many lipid neurochemists will freely admit they cannot answer in any kind of definitive manner. A study by Dalvi and colleagues in this issue of the Journal of Neurochemistry now adds to our knowledge in this field. Among other important observations, their experiments demonstrate that a physiological level of arachidonic acid (ARA), that could be associated with many different physiological and pathophysiological states, increases permeability in a model of the human blood brain barrier (BBB) in the absence of cytokines. This last point is very important as it suggests increases in BBB permeability may occur in situations other than those associated with increases in tumor necrosis factor a (TNFα) and interleukin1b (IL1β), giving additional options for developing drugs impacting BBB permeability. PMID:26383055

  20. Selective acceleration of arachidonic acid reincorporation into brain membrane phospholipid following transient ischemia in awake gerbil.

    PubMed

    Rabin, O; Chang, M C; Grange, E; Bell, J; Rapoport, S I; Deutsch, J; Purdon, A D

    1998-01-01

    Awake gerbils were subjected to 5 min of forebrain ischemia by clamping the carotid arteries for 5 min and then allowing recirculation. Radiolabeled arachidonic or palmitic acid was infused intravenously for 5 min at the start of recirculation, after which the brains were prepared for quantitative autoradiography or chemical analysis. Dilution of specific activity of the acyl-CoA pool was independently determined for these fatty acids in control gerbils and following 5 min of ischemia and 5 min of reperfusion. Using a quantitative method for measuring regional in vivo fatty acid incorporation into and turnover within brain phospholipids and determining unlabeled concentrations of acyl-CoAs following recirculation, it was shown that reperfusion after 5 min of ischemia was accompanied by a threefold increase compared with the control in the rate of reincorporation of unlabeled arachidonate that had been released during ischemia, whereas reincorporation of released palmitate was not different from the control. Selective and accelerated reincorporation of arachidonate into brain phospholipids shortly after ischemia may ameliorate specific deleterious effects of arachidonate and its metabolites on brain membranes. PMID:9422378

  1. Phosphate limitation promotes unsaturated fatty acids and arachidonic acid biosynthesis by microalgae Porphyridium purpureum.

    PubMed

    Su, Gaomin; Jiao, Kailin; Li, Zheng; Guo, Xiaoyi; Chang, Jingyu; Ndikubwimana, Theoneste; Sun, Yong; Zeng, Xianhai; Lu, Yinghua; Lin, Lu

    2016-07-01

    Polyunsaturated fatty acids (PUFAs) are highly appreciated on their nutritive value for human health and aquaculture. P. purpureum, one of the red microalgae acknowledged as a promising accumulator of ARA, was chosen as the target algae in the present research. Effects of sodium bicarbonate (0.04-1.2 g/L), temperature (25, 30 and 33 °C) and phosphate (0.00-0.14 g/L) on biomass yield, total fatty acids (TFA) and arachidonic acid (ARA) accumulation were investigated systemically. NaHCO3 dose of 0.8 g/L and moderate temperature of 30 °C were preferred. In addition, TFA and ARA production were significantly enhanced by an appropriate concentration of phosphate, and the highest TFA yield of 666.38 mg/L and ARA yield of 159.74 mg/L were obtained at a phosphate concentration of 0.035 g/L. Interestingly, with phosphate concentration continuing to fall, UFA/TFA and ARA/EPA ratios were increased accordingly, suggesting that phosphate limitation promoted unsaturated fatty acids and arachidonic acid biosynthesis. Low concentration of phosphate may be favored to increase the enzymatic activities of ∆6-desaturase, which played a key role in catalyzing the conversion of C16:0 to C18:2, and thus the selectivity of UFA increased. Meanwhile, the increase of ARA selectivity could be attributed to ω6 pathway promotion and ∆17-desaturase activity inhibition with phosphate limitation. Phosphate limitation strategy enhanced unsaturated fatty acids and ARA biosynthesis in P. purpureum, and can be applied in commercial scale manufacturing and commercialization of ARA. PMID:27004948

  2. Effect of long-term administration of arachidonic acid on n-3 fatty acid deficient mice.

    PubMed

    Harauma, Akiko; Tomita, Makiko; Muto, Daiki; Moriguchi, Toru

    2015-04-01

    The effect of long-term oral administration of arachidonic acid (ARA, 240 mg/kg/day) on brain function was assessed for mice maintained on an n-3 fatty acid adequate or deficient diet. The administration of ARA for 13 weeks resulted in an elevation of spontaneous motor activity, or the tendency thereof, in both the n-3 fatty acid adequate and deficient groups. However, the n-3 fatty acid deficient mice that were administered with ARA revealed marked deterioration in motor function in a motor coordination test. In the experiment to investigate changes over time, the motor activity of the ARA-administered group continued to increase mildly in n-3 deficient mice, although that of the control group showed a decrease involving habituation for both diet groups from the second week. The fatty acid composition of the brain at the end of the behavioral experiments indicated an increase in the levels of ARA and other n-6 fatty acids, as well as a decrease in the levels of docosahexaenoic acid. These results suggest that long-term administration of ARA causes an increase of futile spontaneous motor activity and the diminution of motor function by aggravation of n-3 fatty acid deficiency. PMID:25650363

  3. Associations between a fatty acid desaturase gene polymorphism and blood arachidonic acid compositions in Japanese elderly.

    PubMed

    Horiguchi, Sayaka; Nakayama, Kazuhiro; Iwamoto, Sadahiko; Ishijima, Akiko; Minezaki, Takayuki; Baba, Mamiko; Kontai, Yoshiko; Horikawa, Chika; Kawashima, Hiroshi; Shibata, Hiroshi; Kagawa, Yasuo; Kawabata, Terue

    2016-02-01

    We investigated whether the single nucleotide polymorphism rs174547 (T/C) of the fatty acid desaturase-1 gene, FADS1, is associated with changes in erythrocyte membrane and plasma phospholipid (PL) long-chain polyunsaturated fatty acid (LCPUFA) composition in elderly Japanese participants (n=124; 65 years or older; self-feeding and oral intake). The rs174547 C-allele carriers had significantly lower arachidonic acid (ARA; n-6 PUFA) and higher linoleic acid (LA, n-6 PUFA precursor) levels in erythrocyte membrane and plasma PL (15% and 6% ARA reduction, respectively, per C-allele), suggesting a low LA to ARA conversion rate in erythrocyte membrane and plasma PL of C-allele carriers. α-linolenic acid (n-3 PUFA precursor) levels were higher in the plasma PL of C-allele carriers, whereas levels of the n-3 LCPUFAs eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) were unchanged in erythrocyte membrane and plasma PL. Thus, rs174547 genotypes were significantly associated with different ARA compositions of the blood of elderly Japanese. PMID:26869086

  4. Inhibition of arachidonic acid metabolism decreases tumor cell invasion and matrix metalloproteinase expression.

    PubMed

    Koontongkaew, Sittichai; Monthanapisut, Paopanga; Saensuk, Theeranuch

    2010-11-01

    Head and neck cancers are known to synthesize arachidonic acid metabolites. Interfering with arachidonic acid metabolism may inhibit growth and invasiveness of cancer cells. In this study we investigate effects of sulindac (the non-selective COX inhibitor), aspirin (the irreversible, preferential COX-1 inhibitor), NS-398 (the selective COX-2 inhibitor), NDGA (nordihydroguaiaretic acid, the selective LOX inhibitor) and ETYA (5,8,11,14-eicosatetraynoic acid, the COX and LOX inhibitor) on cell viability, MMP-2 and MMP-9 activities, and in vitro invasion of cancer cells derived from primary and metastatic head and neck, and colon cancers. The inhibitors of COX and/or LOX could inhibit cell proliferation, MMP activity and invasion in head and neck and colon cancer cells. However, the inhibitory effect was obviously observed in colon cancer cells. Inhibition of arachidonic acid metabolism caused a decrease in cancer cell motility, which partially explained by the inhibition of MMPs. Therefore, COX and LOX pathways play important roles in head and neck cancer cell growth. PMID:20654727

  5. Amyloid Plaque-Associated Oxidative Degradation of Uniformly Radiolabeled Arachidonic Acid.

    PubMed

    Furman, Ran; Murray, Ian V J; Schall, Hayley E; Liu, Qiwei; Ghiwot, Yonatan; Axelsen, Paul H

    2016-03-16

    Oxidative stress is a frequently observed feature of Alzheimer's disease, but its pathological significance is not understood. To explore the relationship between oxidative stress and amyloid plaques, uniformly radiolabeled arachidonate was introduced into transgenic mouse models of Alzheimer's disease via intracerebroventricular injection. Uniform labeling with carbon-14 is used here for the first time, and made possible meaningful quantification of arachidonate oxidative degradation products. The injected arachidonate entered a fatty acid pool that was subject to oxidative degradation in both transgenic and wild-type animals. However, the extent of its degradation was markedly greater in the hippocampus of transgenic animals where amyloid plaques were abundant. In human Alzheimer's brain, plaque-associated proteins were post-translationally modified by hydroxynonenal, a well-known oxidative degradation product of arachidonate. These results suggest that several recurring themes in Alzheimer's pathogenesis, amyloid β proteins, transition metal ions, oxidative stress, and apolipoprotein isoforms, may be involved in a common mechanism that has the potential to explain both neuronal loss and fibril formation in this disease. PMID:26800372

  6. A selective defect in arachidonic acid release from macrophage membranes in high potassium media.

    PubMed

    Aderem, A A; Scott, W A; Cohn, Z A

    1984-10-01

    Murine peritoneal macrophages cultured in minimal essential medium (alpha-MEM; 118 mM Na+, 5 mM K+) released arachidonic acid (20:4) from phospholipids on encountering a phagocytic stimulus of unopsonized zymosan. In high concentrations of extracellular K+ (118 mM), 3H release from cells prelabeled with [3H]20:4 was inhibited 80% with minimal reduction (18%) in phagocytosis. The inhibitory effect of K+ on 20:4 release was fully reversed on returning cells to medium containing Na+ (118 mM). Preingestion of zymosan particles by macrophages maintained in high K+ medium resulted in cells being "primed" for 20:4 release, which was only effected (without the further addition of particles) by changing the medium to one containing Na+. In contrast, 20:4 release from cells stimulated with the calcium ionophore A23187 was unimpaired by the elevated K+ medium, suggesting no direct effect of high K+ on the phospholipase. Macrophages stimulated with zymosan in alpha-MEM metabolized the released 20:4 to prostacyclin, prostaglandin E2 (PGE2), and leukotriene C (LTC). The smaller quantity of released 20:4 in high K+ medium was recovered as 6-Keto-PGF1 alpha, the breakdown product of prostacyclin, and PGE2. No LTC was synthesized. In high K+, resting (no zymosan) macrophages synthesized hydroxyeicosatetraenoic acids from exogeneously supplied 20:4 in proportions similar to cells maintained in alpha-MEM. These findings and the similarity of products (including LTC) produced by A23187 stimulated cells in alpha-MEM and high K+ medium indicated that the cyclooxygenase and lipoxygenase pathway enzymes were not directly inhibited by high extracellular K+. We conclude that high concentrations of extracellular K+ uncouple phagocytosis of unopsonized zymosan from the induction of the phospholipase responsible for the 20:4 cascade and suggest that the lesion is at the level of signal transduction between the receptor-ligand complex and the phospholipase. PMID:6434547

  7. Arachidonic acid release and prostaglandin synthesis in a macrophage-like cell line exposed to asbestos.

    PubMed

    Brown, R C; Poole, A

    1984-10-01

    A macrophage-like cell line (P388D1) has been treated with asbestos and the release of arachidonic acid and its metabolites has been studied using two methods. In the first monolayer cultures of the cells were labelled with tritiated arachidonic acid and the release of label into the medium was quantified: secondly the synthesis and release of prostaglandins E2 and F2 alpha were followed using radioimmune assay. Crocidolite asbestos caused the greatest release of tritium while the medium from chrysotile-treated cultures contained more of both prostaglandins. Both of the fibrous dusts were significantly more active in both test systems than were the two 'inert' materials--titanium dioxide and milled sample of crocidolite. It is suggested that these phenomena are due to the effect of mineral dusts on phospholipase activity and that differences in this activity are associated with differences in the pathogenicity of various mineral dusts. PMID:6098173

  8. Expression analysis for genes involved in arachidonic acid biosynthesis in Mortierella alpina CBS 754.68

    PubMed Central

    Samadlouie, Hamid-Reza; Hamidi-Esfahani, Zohreh; Alavi, Seyed-Mehdi; Varastegani, Boshra

    2014-01-01

    The time courses for production of fungal biomass, lipid, phenolic and arachidonic acid (ARA) as well as expression of the genes involved in biosynthesis of ARA and lipid were examined in Mortierella alpina CBS 754.68. A significant increase in the arachidonic acid content in lipids that coincided with reduced levels of lipid was obtained. Reduced gene expression occurred presumably due to the steady reduction of carbon and nitrogen resources. However, these energy resources were inefficiently compensated by the breakdown of the accumulated lipids that in turn, induced up-regulated expression of the candidate genes. The results further indicated that the expression of the GLELO encoding gene is a rate-limiting step in the biosynthesis of ARA in the early growth phase. PMID:25242926

  9. Effects of arachidonic acid on unitary calcium currents in rat sympathetic neurons

    PubMed Central

    Liu, Liwang; Rittenhouse, Ann R

    2000-01-01

    We have characterized the actions of arachidonic acid (AA) on whole cell and unitary calcium (Ca2+) currents in rat neonatal superior cervical ganglion (SCG) neurons using barium (Ba2+) as the charge carrier. Whole cell currents were elicited by stepping the membrane potential from −90 mV to +10 mV. Arachidonic acid (5 μm) was introduced into the bath in the continued presence of 1 μm (+)-202-791, an L-type Ca2+ channel agonist. Under these conditions, the peak current, comprised mainly of N-type current, and a slow, (+)-202-791-induced component of the tail current were inhibited by 67 ± 6 and 60 ± 10%, respectively, indicating that AA inhibits both N- and L-type currents. At a test potential of +30 mV, AA (5 μm) decreased unitary L- and N-type Ca2+ channel open probability (Po) in cell-attached patches that contained a single channel. For both channels, the underlying causes of the decrease in Po were similar. Arachidonic acid caused an increase in the percentage of null sweeps and in the number of null sweeps that clustered together. In sweeps with activity, the average number of openings per sweep decreased, while first latency and mean closed time increased. Arachidonic acid had no significant effect on unitary current amplitude or mean open time. Our findings are the first description of the inhibition of unitary L- and N-type Ca2+ channel activity by AA and are consistent with both channels spending more time in their null mode and with increased dwell time in one or more closed states. PMID:10835042

  10. Immunohistochemical Localization of Key Arachidonic Acid Metabolism Enzymes during Fracture Healing in Mice

    PubMed Central

    Lin, Hsuan-Ni; O’Connor, J. Patrick

    2014-01-01

    This study investigated the localization of critical enzymes involved in arachidonic acid metabolism during the initial and regenerative phases of mouse femur fracture healing. Previous studies found that loss of cyclooxygenase-2 activity impairs fracture healing while loss of 5-lipoxygenase activity accelerates healing. These diametric results show that arachidonic acid metabolism has an essential function during fracture healing. To better understand the function of arachidonic acid metabolism during fracture healing, expression of cyclooxygenase-1 (COX-1), cyclooxygenase -2 (COX-2), 5-lipoxygenase (5-LO), and leukotriene A4 hydrolase (LTA4H) was localized by immunohistochemistry in time-staged fracture callus specimens. All four enzymes were detected in leukocytes present in the bone marrow and attending inflammatory response that accompanied the fracture. In the tissues surrounding the fracture site, the proportion of leukocytes expressing COX-1, COX-2, or LTA4H decreased while those expressing 5-LO remained high at 4 and 7 days after fracture. This may indicate an inflammation resolution function for 5-LO during fracture healing. Only COX-1 was consistently detected in fracture callus osteoblasts during the later stages of healing (day 14 after fracture). In contrast, callus chondrocytes expressed all four enzymes, though 5-LO appeared to be preferentially expressed in newly differentiated chondrocytes. Most interestingly, osteoclasts consistently and strongly expressed COX-2. In addition to bone surfaces and the growth plate, COX-2 expressing osteoclasts were localized at the chondro-osseous junction of the fracture callus. These observations suggest that arachidonic acid mediated signaling from callus chondrocytes or from callus osteoclasts at the chondro-osseous junction regulate fracture healing. PMID:24516658

  11. Deficits in docosahexaenoic acid and associated elevations in the metabolism of arachidonic acid and saturated fatty acids in the postmortem orbitofrontal cortex of patients with bipolar disorder.

    PubMed

    McNamara, Robert K; Jandacek, Ronald; Rider, Therese; Tso, Patrick; Stanford, Kevin E; Hahn, Chang-Gyu; Richtand, Neil M

    2008-09-30

    Previous antemortem and postmortem tissue fatty acid composition studies have observed significant deficits in the omega-3 fatty acid docosahexaenoic acid (DHA, 22:6n-3) in red blood cell (RBC) and postmortem cortical membranes of patients with unipolar depression. In the present study, we determined the fatty acid composition of postmortem orbitofrontal cortex (OFC, Brodmann area 10) of patients with bipolar disorder (n=18) and age-matched normal controls (n=19) by gas chromatography. After correction for multiple comparisons, DHA (-24%), arachidonic acid (-14%), and stearic acid (C18:0) (-4.5%) compositions were significantly lower, and cis-vaccenic acid (18:1n-7) (+12.5%) composition significantly higher, in the OFC of bipolar patients relative to normal controls. Based on metabolite:precursor ratios, significant elevations in arachidonic acid, stearic acid, and palmitic acid conversion/metabolism were observed in the OFC of bipolar patients, and were inversely correlated with DHA composition. Deficits in OFC DHA and arachidonic acid composition, and elevations in arachidonic acid metabolism, were numerically (but not significantly) greater in drug-free bipolar patients relative to patients treated with mood-stabilizer or antipsychotic medications. OFC DHA and arachidonic acid deficits were greater in patients plus normal controls with high vs. low alcohol abuse severity. These results add to a growing body of evidence implicating omega-3 fatty acid deficiency as well as the OFC in the pathoaetiology of bipolar disorder. PMID:18715653

  12. Effect of arachidonic and eicosapentaenoic acids on acute lung injury induced by hypochlorous acid

    PubMed Central

    Wahn, H; Ruenauver, N; Hammerschmidt, S

    2002-01-01

    Background: Hypochlorous acid (HOCl) is the main oxidant of activated polymorphonuclear neutrophil granulocytes (PMN) and generated by myeloperoxidase during respiratory burst. This study investigates the effects of HOCl on pulmonary artery pressure (PAP) and vascular permeability and characterises the influence of arachidonic acid (AA) and eicosapentaenoic acid (EPA) on the observed effects. Methods: HOCl (500, 1000, 2000 nmol/min) was continuously infused into the perfusate (Krebs-Henseleit buffer solution, KHB). AA or EPA in subthreshold doses (both 2 nmol/min) or buffer were simultaneously infused using a separate port. PAP, pulmonary venous pressure (PVP), ventilation pressure, and lung weight gain were continuously recorded. The capillary filtration coefficient (Kf,c) was calculated before and 30, 60, and 90 minutes after starting the HOCl infusion. Results: HOCl application resulted in a dose dependent increase in PAP and Kf,c. The onset of these changes was inversely related to the HOCl dose used. The combined infusion of AA with HOCl resulted in a significant additional rise in pressure and oedema formation which forced premature termination of all experiments. The combination of EPA with HOCl did not result in an enhancement of the HOCl induced rise in pressure and oedema formation. Conclusions: Changes in the pulmonary microvasculature caused by HOCl are differently influenced by ω-6 and ω-3 polyunsaturated free fatty acids, suggesting a link between neutrophil derived oxidative stress and pulmonary eicosanoid metabolism. PMID:12454302

  13. Plasma oxylipin profiling identifies polyunsaturated vicinal diols as responsive to arachidonic acid and docosahexaenoic acid intake in growing piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dose-responsiveness of plasma oxylipins to incremental dietary intake of arachidonic (20:4n-6; ARA) and docosahexaenoic (22:6n-3; DHA) acid was determined in piglets. Piglets randomly received one of six formulas (n=8 per group) from day 3 to 27 postnatally. Diets contained varying ARA and DHA l...

  14. [Deposition of exogenous and endogenously generated unsaturated fatty acids in lipid droplets triacylglycerol as a mechanism of its sequestration in epithelial cells].

    PubMed

    Fedorova, E V; Fok, E M; Bakhteeva, V T; Lavrova, E A; Parnova, R G

    2014-08-01

    Neutral lipids are deposited in intracellular compartments called lipid droplets, which are known to be critically implicated in regulation of cellular lipid metabolism. These organelles consist of a core of neutral lipids, mainly triacylglycerol (TAG) and cholesteryl esters, surrounded by phospholipid monolayer. Using Nile red lipid staining and [3H]-arachidonic and [3H]-oleic acids as precursors for lipid biosynthesis, we have evaluated the mechanisms of lipid body induction elicited by exogenous fatty acids within primary cultured epithelial cells from the frog urinary bladder. It was found that arachidonic and oleic acids at concentrations 10-50 tM stimulated lipid droplets formation accompanied by accumulation of TAG and by the significant increase of incorporation of fatty acids into TAG indicating an enhanced TAG biosynthesis. No changes of cholesteryl esters content were observed under these conditions. In cells, prelabelled with [3H]-oleic acids, etomoxir, an inhibitor of O-carnitine palmitroyltansferase 1, decreased oxidation of oleic acid and increased its incorporation into TAG leading to intracellular TAG accumulation. In cells, prelabelled with [3H]-arachidonic acid, diclofenac, an inhibitor of cyclooxygenase 1 and 2, led to significant decrease in cellular PGE2 production and to reesterification of free arachidonic acid to TAG but not to phospholipids. Taking together, these data evidence that in isolated frog urinary bladder epithelial cells, reacylation of unsaturated free fatty acids into TAG is a main route of their metabolic conversion under the conditions of the increased cytosolic level of free fatty acids. PMID:25682688

  15. Arachidonic acid needed in infant formula when docosahexaenoic acid is present.

    PubMed

    Brenna, J Thomas

    2016-05-01

    Recently, the European Food Safety Authority asserted that arachidonic acid (ARA) is an optional nutrient for the term infant even when docosahexaenoic acid (DHA) is present. The brief rationale is based on an explicit, widespread misapplication of the concept of "essential fatty acids" to linoleic acid that implies it is uniquely required as a nutrient per se. Linoleic acid prevents acute clinical symptoms caused by polyunsaturated fatty acid-deficient diets and is the major precursor for ARA in most human diets. Experimental diets with ARA as the sole n-6 similarly prevent symptoms but at a lower energy percentage than linoleic acid and show ARA is a precursor for linoleic acid. The absence of consistent evidence of ARA benefit from randomized controlled trials is apparently an issue as well. This review highlights basic and clinical research relevant to ARA requirements as an adjunct to DHA in infancy. ARA is a major structural central nervous system component, where it rapidly accumulates perinatally and is required for signaling. Tracer studies show that ARA-fed infants derive about half of their total body ARA from dietary preformed ARA. Clinically, of the 3 cohorts of term infants studied with designs isolating the effects of ARA (DHA-only vs DHA+ARA), none considered ARA-specific outcomes such as vascular or immune function; the study with the highest ARA level showed significant neurocognitive benefit. All breastfed term infants of adequately nourished mothers consume both DHA and ARA. The burden of proof to substantially deviate from the composition of breastmilk is greater than that available from inherently empirical human randomized controlled trial evidence. Infant formulas with DHA but without ARA risk harm from suppression of ARA-mediated metabolism manifest among the many unstudied functions of ARA. PMID:27013482

  16. What is the relationship between gestational age and docosahexaenoic acid (DHA) and arachidonic acid (ARA) levels?

    PubMed

    Baack, Michelle L; Puumala, Susan E; Messier, Stephen E; Pritchett, Deborah K; Harris, William S

    2015-09-01

    Long chain polyunsaturated fatty acids (LCPUFA) including docosahexaenoic acid (DHA) and arachidonic acid (ARA) are increasingly transferred from mother to fetus late in pregnancy. Infants born before this transfer is complete are at risk for deficiency. This study determines the relationship between gestational age (GA) and circulating LCPUFA levels to better understand the unique needs of premature infants born at various GAs. Whole blood was collected within the first 7 days of life from 60 preterm (≤34 weeks GA) and 30 term infants (≥38 weeks GA) and FA levels were analyzed. Since concurrent intravenous lipid emulsion can skew composition data, blood LCPUFA concentrations were also measured. Levels were compared among groups, and linear regression models were used to examine the association between FA composition and GA. Preterm infants had significantly lower DHA and ARA levels than term peers, and whether assessed as concentrations or compositions, both directly correlated with GA (p<0.0001). Moreover, FA comparisons suggest that premature infants have impaired synthesis of LCPUFAs from precursors and may require preformed DHA and ARA. This study confirms that essential FA status is strongly related to GA, and that those babies born the earliest are at the greatest risk of LCPUFA deficiency. PMID:26205427

  17. Stimulation of phospholipid hydrolysis and arachidonic acid mobilization in human uterine decidua cells by phorbol ester.

    PubMed Central

    Schrey, M P; Read, A M; Steer, P J

    1987-01-01

    Vasopressin and oxytocin both stimulated inositol phosphate accumulation in isolated uterine decidua cells. Pretreatment of cells with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) prevented this agonist-induced phosphoinositide hydrolysis. TPA (0.1 microM) alone had no effect on basal inositol phosphate accumulation, but stimulated phosphoinositide deacylation, as indicated by a 2-fold increase in lysophosphatidylinositol and glycerophosphoinositol. TPA also stimulated a dose-related release of arachidonic acid from decidua-cell phospholipid [phosphatidylcholine (PC) much greater than phosphatidylinositol (PI) greater than phosphatidylethanolamine]. The phorbol ester 4 beta-phorbol 12,13-diacetate (PDA) at 0.1 microM had no effect on arachidonic acid mobilization. The TPA-stimulated increase in arachidonic acid release was apparent by 2 1/2 min (116% of control), maximal after 20 min (283% of control), and remained around this value (306% of control) after 120 min incubation. TPA also stimulated significant increases in 1,2-diacylglycerol and monoacylglycerol production at 20 and 120 min. Although the temporal increases in arachidonic acid and monoacylglycerol accumulation in the presence of TPA continued up to 120 min, that of 1,2-diacylglycerol declined after 20 min. In decidua cells prelabelled with [3H]choline, TPA also stimulated a significant decrease in radiolabelled PC after 20 min, which was accompanied by an increased release of water-soluble metabolites into the medium. Most of the radioactivity in the extracellular pool was associated with choline, whereas the main cellular water-soluble metabolite was phosphorylcholine. TPA stimulated extracellular choline accumulation to 183% and 351% of basal release after 5 and 20 min respectively and cellular phosphorylcholine production to 136% of basal values after 20 min. These results are consistent with a model in which protein kinase C activation by TPA leads to arachidonic acid mobilization

  18. Lipoxygenase-mediated pro-radical effect of melatonin via stimulation of arachidonic acid metabolism

    SciTech Connect

    Radogna, F.; Sestili, P.; Martinelli, C.; Paolillo, M.; Paternoster, L.; Albertini, M.C.; Accorsi, A.; Gualandi, G.; Ghibelli, L.

    2009-07-15

    We have shown that melatonin immediately and transiently stimulates intracellular free radical production on a set of leukocytes, possibly as a consequence of calmodulin binding. We show here that melatonin-induced ROS are produced by lipoxygenase (LOX), since they are prevented by a set of LOX inhibitors, and are accompanied by increase of the 5-LOX product 5-HETE. LOX activation is accompanied by strong liberation of AA; inhibition of Ca{sup 2+}-independent, but not Ca{sup 2+}-dependent, phospholipase A2 (PLA2), prevents both melatonin-induced arachidonic acid and ROS production, whereas LOX inhibition only prevents ROS, indicating that PLA2 is upstream with respect to LOX, as occurs in many signaling pathways. Chlorpromazine, an inhibitor of melatonin-calmodulin interaction, inhibits both ROS and arachidonic acid production, thus possibly placing calmodulin at the origin of a melatonin-induced pro-radical pathway. Interestingly, it is known that Ca{sup 2+}-independent PLA2 binds to calmodulin: our results are compatible with PLA2 being liberated by melatonin from a steady-state calmodulin sequestration, thus initiating an arachidonate signal transduction. These results delineate a novel molecular pathway through which melatonin may participate to the inflammatory response.

  19. Individual variation and intraclass correlation in arachidonic acid and eicosapentaenoic acid in chicken muscle

    PubMed Central

    2010-01-01

    Chicken meat with reduced concentration of arachidonic acid (AA) and reduced ratio between omega-6 and omega-3 fatty acids has potential health benefits because a reduction in AA intake dampens prostanoid signaling, and the proportion between omega-6 and omega-3 fatty acids is too high in our diet. Analyses for fatty acid determination are expensive, and finding the optimal number of analyses to give reliable results is a challenge. The objective of the present study was i) to analyse the intraclass correlation of different fatty acids in five meat samples, of one gram each, within the same chicken thigh, and ii) to study individual variations in the concentrations of a range of fatty acids and the ratio between omega-6 and omega-3 fatty acid concentrations among fifteen chickens. Fifteen newly hatched broilers were fed a wheat-based diet containing 4% rapeseed oil and 1% linseed oil for three weeks. Five muscle samples from the mid location of the thigh of each chicken were analysed for fatty acid composition. The intraclass correlation (sample correlation within the same animal) was 0.85-0.98 for the ratios of total omega-6 to total omega-3 fatty acids and of AA to eicosapentaenoic acid (EPA). This indicates that when studying these fatty acid ratios, one sample of one gram per animal is sufficient. However, due to the high individual variation between chicken for these ratios, a relatively high number of animals (minimum 15) are required to obtain a sufficiently high power to reveal significant effects of experimental factors (e.g. feeding regimes). The present experiment resulted in meat with a favorable concentration ratio between omega-6 and omega-3 fatty acids. The AA concentration varied from 1.5 to 2.8 g/100 g total fatty acids in thigh muscle in the fifteen broilers, and the ratio between AA and EPA concentrations ranged from 2.3 to 3.9. These differences among the birds may be due to genetic variance that can be exploited by breeding for lower AA

  20. The effects of the oral administration of fish oil concentrate on the release and the metabolism of (/sup 14/C)arachidonic acid and (/sup 14/C)eicosapentaenoic acid by human platelets

    SciTech Connect

    Hirai, A.; Terano, T.; Hamazaki, T.; Sajiki, J.; Kondo, S.; Ozawa, A.; Fujita, T.; Miyamoto, T.; Tamura, Y.; Kumagai, A.

    1982-11-01

    It has been suggested by several investigators that eicosapentaenoic acid (C20:5 omega 3, EPA) might have anti-thrombotic effects. In this experiment, the effect of the oral administration of EPA rich fish oil concentrate on platelet aggregation and the release and the metabolism of (/sup 1 -14/C)arachidonic acid and ((U)-/sup 14/C)eicosapentaenoic acid by human platelets was studied. Eight healthy male subjects ingested 18 capsules of fish oil concentrate (EPA 1.4 g) per day for 4 weeks. Plasma and platelet concentrations of EPA markedly increased, while those of arachidonic acid (C20:4 omega 6, AA) and docosahexaenoic acid (C22:6 omega 3, DHA) did not change. Platelet aggregation induced by collagen and ADP was reduced. Collagen induced (/sup 14/C)thromboxane B2 (TXB2) formation from (/sup 14/C)AA prelabeled platelets decreased. There was no detectable formation of (/sup 14/C)TXB3 from (/sup 14/C)EPA prelabeled platelets, and the conversion of exogenous (/sup 14/C)EPA to (/sup 14/C)TXB3 was lower than that of (/sup 14/C)AA to (/sup 14/C)TXB2. The release of (/sup 14/C)AA from (/sup 14/C)AA prelabeled platelets by collagen was significantly decreased. These observations raise the possibility that the release of arachidonic acid from platelet lipids might be affected by the alteration of EPA content in platelets.

  1. Induction of renal cytochrome P450 arachidonic acid epoxygenase activity by dietary gamma-linolenic acid.

    PubMed

    Yu, Zhigang; Ng, Valerie Y; Su, Ping; Engler, Marguerite M; Engler, Mary B; Huang, Yong; Lin, Emil; Kroetz, Deanna L

    2006-05-01

    Dietary gamma-linolenic acid (GLA), a omega-6 polyunsaturated fatty acid found in borage oil (BOR), lowers systolic blood pressure in spontaneously hypertensive rats (SHRs). GLA is converted into arachidonic acid (AA) by elongation and desaturation steps. Epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are cytochrome P450 (P450)-derived AA eicosanoids with important roles in regulating blood pressure. This study tested the hypothesis that the blood pressure-lowering effect of a GLA-enriched diet involves alteration of P450-catalyzed AA metabolism. Microsomes and RNA were isolated from the renal cortex of male SHRs fed a basal fat-free diet for 5 weeks to which 11% by weight of sesame oil (SES) or BOR was added. There was a 2.6- to 3.5-fold increase in P450 epoxygenase activity in renal microsomes isolated from the BOR-fed SHRs compared with the SES-fed rats. Epoxygenase activity accounted for 58% of the total AA metabolism in the BOR-treated kidney microsomes compared with 33% in the SES-treated rats. More importantly, renal 14,15- and 8,9-EET levels increased 1.6- to 2.5-fold after dietary BOR treatment. The increase in EET formation is consistent with increases in CYP2C23, CYP2C11, and CYP2J protein levels. There were no differences in the level of renal P450 epoxygenase mRNA between the SES- and BOR-treated rats. Enhanced synthesis of the vasodilatory EETs and decreased formation of the vasoconstrictive 20-HETE suggests that changes in P450-mediated AA metabolism may contribute, at least in part, to the blood pressure-lowering effect of a BOR-enriched diet. PMID:16421287

  2. The effects of centrally injected arachidonic acid on respiratory system: Involvement of cyclooxygenase to thromboxane signaling pathway.

    PubMed

    Erkan, Leman Gizem; Guvenc, Gokcen; Altinbas, Burcin; Niaz, Nasir; Yalcin, Murat

    2016-05-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that is present in the phospholipids of the cell membranes of the body and is abundant in the brain. Exogenously administered AA has been shown to affect brain metabolism and to exhibit cardiovascular and neuroendocrine actions. However, little is known regarding its respiratory actions and/or central mechanism of its respiratory effects. Therefore, the present study was designed to investigate the possible effects of centrally injected AA on respiratory system and the mediation of the central cyclooxygenase (COX) to thromboxane A2 (TXA2) signaling pathway on AA-induced respiratory effects in anaesthetized rats. Intracerebroventricular (i.c.v.) administration of AA induced dose- and time-dependent increase in tidal volume, respiratory rates and respiratory minute ventilation and also caused an increase in partial oxygen pressure (pO2) and decrease in partial carbon dioxide pressure (pCO2) in male anaesthetized Spraque Dawley rats. I.c.v. pretreatment with ibuprofen, a non-selective COX inhibitor, completely blocked the hyperventilation and blood gases changes induced by AA. In addition, central pretreatment with different doses of furegrelate, a TXA2 synthesis inhibitor, also partially prevented AA-evoked hyperventilation and blood gases effects. These data explicitly show that centrally administered AA induces hyperventilation with increasing pO2 and decreasing pCO2 levels which are mediated by the activation of central COX to TXA2 signaling pathway. PMID:26767978

  3. IDENTIFICATION AND FUNCTIONAL CHARACTERIZATION OF THE MOSS PHYSCOMITRELLA PATENS DELTA5-DESATURASE GENE INVOLVED IN ARACHIDONIC AND EICOSAPENTAENOIC ACID BIOSYNTHESIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The moss Physcomitrella patens contains high levels of arachidonic acid and lesser amounts of eicosapentaenoic acid. In general, these C20 polyunsaturated fatty acids are synthesized from linoleic and alpha-linolenic acids, respectively, by a series of reactions catalyzed by a delta6-desaturase, an ...

  4. Eicosapentaenoic Acid, Arachidonic Acid and Eicosanoid Metabolism in Juvenile Barramundi Lates calcarifer.

    PubMed

    Salini, Michael J; Wade, Nicholas M; Araújo, Bruno C; Turchini, Giovanni M; Glencross, Brett D

    2016-08-01

    A two part experiment was conducted to assess the response of barramundi (Lates calcarifer; initial weight = 10.3 ± 0.03 g; mean ± S.D.) fed one of five diets with varying eicosapentaenoic acid (diets 1, 5, 10, 15 and 20 g/kg) or one of four diets with varying arachidonic acid (1, 6, 12, 18 g/kg) against a fish oil control diet. After 6 weeks of feeding, the addition of EPA or ARA did not impact on growth performance or feed utilisation. Analysis of the whole body fatty acids showed that these reflected those of the diets. The ARA retention demonstrated an inversely related curvilinear response to either EPA or ARA. The calculated marginal utilisation efficiencies of EPA and ARA were high (62.1 and 91.9 % respectively) and a dietary ARA requirement was defined (0.012 g/kg(0.796)/day). The partial cDNA sequences of genes regulating eicosanoid biosynthesis were identified in barramundi tissues, namely cyclooxygenase 1 (Lc COX1a, Lc COX1b), cyclooxygenase 2 (Lc COX2) and lipoxygenase (Lc ALOX-5). Both Lc COX2 and Lc ALOX-5 expression in the liver tissue were elevated in response to increasing dietary ARA, meanwhile expression levels of Lc COX2 and the mitochondrial fatty acid oxidation gene carnitine palmitoyltransferase 1 (Lc CPT1a) were elevated in the kidney. A low level of EPA increased the expression of Lc COX1b in the liver. Consideration should be given to the EPA to ARA balance for juvenile barramundi in light of nutritionally inducible nature of the cyclooxygenase and lipoxygenase enzymes. PMID:27300247

  5. Arachidonic acid-dependent carbon-eight volatile synthesis from wounded liverwort (Marchantia polymorpha).

    PubMed

    Kihara, Hirotomo; Tanaka, Maya; Yamato, Katsuyuki T; Horibata, Akira; Yamada, Atsushi; Kita, Sayaka; Ishizaki, Kimitsune; Kajikawa, Masataka; Fukuzawa, Hideya; Kohchi, Takayuki; Akakabe, Yoshihiko; Matsui, Kenji

    2014-11-01

    Eight-carbon (C8) volatiles, such as 1-octen-3-ol, octan-3-one, and octan-3-ol, are ubiquitously found among fungi and bryophytes. In this study, it was found that the thalli of the common liverwort Marchantia polymorpha, a model plant species, emitted high amounts of C8 volatiles mainly consisting of (R)-1-octen-3-ol and octan-3-one upon mechanical wounding. The induction of emission took place within 40min. In intact thalli, 1-octen-3-yl acetate was the predominant C8 volatile while tissue disruption resulted in conversion of the acetate to 1-octen-3-ol. This conversion was carried out by an esterase showing stereospecificity to (R)-1-octen-3-yl acetate. From the transgenic line of M. polymorpha (des6(KO)) lacking arachidonic acid and eicosapentaenoic acid, formation of C8 volatiles was only minimally observed, which indicated that arachidonic and/or eicosapentaenoic acids were essential to form C8 volatiles in M. polymorpha. When des6(KO) thalli were exposed to the vapor of 1-octen-3-ol, they absorbed the alcohol and converted it into 1-octen-3-yl acetate and octan-3-one. Therefore, this implied that 1-octen-3-ol was the primary C8 product formed from arachidonic acid, and further metabolism involving acetylation and oxidoreduction occurred to diversify the C8 products. Octan-3-one was only minimally formed from completely disrupted thalli, while it was formed as the most abundant product in partially disrupted thalli. Therefore, it is assumed that the remaining intact tissues were involved in the conversion of 1-octen-3-ol to octan-3-one in the partially disrupted thalli. The conversion was partly promoted by addition of NAD(P)H into the completely disrupted tissues, suggesting an NAD(P)H-dependent oxidoreductase was involved in the conversion. PMID:25174554

  6. The effect of trinitrobenzene sulfonic acid (TNB) on colonocyte arachidonic acid metabolism.

    PubMed

    Stratton, M D; Sexe, R; Peterson, B; Kaminski, D L; Li, A P; Longo, W E

    1996-02-01

    In previous studies we found that luminal perfusion of the isolated left colon of the rabbit with the hapten, trinitrobenzene, resulted in the production of an acute inflammatory process associated with alterations in eicosanoid metabolism. As the colitis was attenuated by cyclooxygenase inhibitors it is possible that the inflammation was mediated by arachidonic acid metabolites. In the present study it was intended to evaluate the effect of trinitrobenzene on eicosanoid metabolism in transformed human colonic cells by exposing Caco-2++ cells to various doses of trinitrobenzene. Cell injury was evaluated by measuring lactate dehydrogenase levels and cyclooxygenase and lipoxygenase activity was evaluated by measuring prostanoid and leukotriene production. In separate experiments resting and trinitrobenzene stimulated cells were treated with indomethacin and dexamethasone. Trinitrobenzene produced increased prostaglandin E2 and 6-keto prostaglandin F1alpha++ and increased lactate dehydrogenase levels. Leukotriene B4 was significantly increased compared to control values at the highest TNB concentration administered. Indomethacin inhibited the lactate dehydrogenase and prostanoid changes, suggesting that the inflammatory changes produced were mediated by the prostanoids. Dexamethasone administered for 1 hr prior to trinitrobenzene decreased the 6-keto prostaglandin F1alpha but did not alter trinitrobenzene produced changes in lactate dehydrogenase concentrations. Exposure of Caco-2 cells to dexamethasone for 24 hr decreased the trinitrobenzene produced lactate dehydrogenase and eicosanoid changes. The results suggest that trinitrobenzene produces an acute injury to Caco-2 cells that may be mediated by the cyclooxygenase enzymes. PMID:8598672

  7. Evaluation of Bioequivalency and Toxicological Effects of Three Sources of Arachidonic Acid (ARA) in Domestic Piglets

    PubMed Central

    Tyburczy, Cynthia; Brenna, Margaret E.; DeMari, Joseph A.; Kothapalli, Kumar S. D.; Blank, Bryant S.; Valentine, Helen; McDonough, Sean P.; Banavara, Dattatreya; Diersen-Schade, Deborah A.; Brenna, J. Thomas

    2011-01-01

    Arachidonic acid (ARA) and docosahexaenoic acid (DHA) are routinely added to infant formula to support growth and development. We evaluated the bioequivalence and safety of three ARA-rich oils for potential use in infant formula using the neonatal pig model. The primary outcome for bioequivalence was brain accretion of ARA and DHA. Days 3 to 22 of age, domestic pigs fed one of three formulas, each containing ARA at ~0.64% and DHA at ~0.34% total fatty acids (FA). Control diet ARA was provided by ARASCO® and all diets had DHA from DHASCO® (Martek Biosciences Corp., Columbia, MD). The experimental diets a1 and a2 provided ARA from Refined Arachidonic acid-rich Oil (RAO; Cargill, Inc., Wuhan, China) and SUNTGA40S (Nissui, Nippon Suisan Kaisha, Ltd., Tokyo, Japan), respectively. Formula intake and growth were similar across all diets, and ARA was bioequivalent across treatments in the brain, retina, heart, liver and day 21 RBC. DHA levels in the brain, retina and heart were unaffected by diet. Liver sections, clinical chemistry, and hematological parameters were normal. We conclude that RAO and SUNTGA40S, when added to formula to supply ~0.64% ARA are safe and nutritionally bioequivalent to ARASCO in domestic piglets. PMID:21722692

  8. Photoreactivation of ultraviolet radiation-induced release of arachidonic acid from marsupial cells.

    PubMed

    Kaleta, E W; Applegate, L A; Ley, R D

    1991-11-01

    Exposure of an established marsupial cell line, PtK2 (Potorous tridactylus), to ultraviolet radiation (UVR) from an FS-40 sunlamp (280-400 nm) resulted in a fluence-dependent release of radiolabeled arachidonic acid (AA) from cell membranes. Post-UVR, but not pre-UVR, exposure to photoreactivating light reversed UVR-induced pyrimidine dimers in DNA and suppressed the UVR-induced release of AA. These data indicate that DNA damage contributes to the release of AA from membrane phospholipids. PMID:1665911

  9. Intrauterine, postpartum and adult relationships between arachidonic acid (AA) and docosahexaenoic acid (DHA).

    PubMed

    Kuipers, Remko S; Luxwolda, Martine F; Janneke Dijck-Brouwer, D A; Muskiet, Frits A J

    2011-11-01

    Erythrocyte (RBC) fatty acid compositions from populations with stable dietary habits but large variations in RBC-arachidonic (AA) and RBC-docosahexaenoic acid (DHA) provided us with insight into relationships between DHA and AA. It also enabled us to estimate the maternal RBC-DHA (mRBC-DHA) status that corresponded with no decrease in mRBC-DHA during pregnancy, or in infant (i) RBC-DHA or mRBC-DHA during the first 3 months postpartum (DHA-equilibrium) while exclusively breastfeeding. At delivery, iRBC-AA is uniformly high and independent of mRBC-AA. Infants born to mothers with low RBC-DHA exhibit higher, but infants born to mothers with high RBC-DHA exhibit lower RBC-DHA than their mothers. This switch from 'biomagnification' into 'bioattenuation' occurs at 6g% mRBC-DHA. At 6g%, mRBC-DHA is stable throughout pregnancy, corresponds with postpartum infant DHA-equilibrium of 6 and 0.4g% DHA in mature milk, but results in postpartum depletion of mRBC-DHA to 5g%. Postpartum maternal DHA-equilibrium is reached at 8g% mRBC-DHA, corresponding with 1g% DHA in mature milk and 7g% iRBC-DHA at delivery that increases to 8g% during lactation. This 8g% RBC-DHA concurs with the lowest risks of cardiovascular and psychiatric diseases in adults. RBC-data from 1866 infants, males and (non-)pregnant females indicated AA vs. DHA synergism at low RBC-DHA, but antagonism at high RBC-DHA. These data, together with high intakes of AA and DHA from our Paleolithic diet, suggest that bioattenuation of DHA during pregnancy and postnatal antagonism between AA and DHA are the physiological standard for humans across the life cycle. PMID:21561751

  10. Enhancement of arachidonic acid signaling pathway by nicotinic acid receptor HM74A

    SciTech Connect

    Tang, Yuting . E-mail: ytang@prdus.jnj.com; Zhou, Lubing; Gunnet, Joseph W.; Wines, Pamela G.; Cryan, Ellen V.; Demarest, Keith T.

    2006-06-23

    HM74A is a G protein-coupled receptor for nicotinic acid (niacin), which has been used clinically to treat dyslipidemia for decades. The molecular mechanisms whereby niacin exerts its pleiotropic effects on lipid metabolism remain largely unknown. In addition, the most common side effect in niacin therapy is skin flushing that is caused by prostaglandin release, suggesting that the phospholipase A{sub 2} (PLA{sub 2})/arachidonic acid (AA) pathway is involved. Various eicosanoids have been shown to activate peroxisome-proliferator activated receptors (PPAR) that play a diverse array of roles in lipid metabolism. To further elucidate the potential roles of HM74A in mediating the therapeutic effects and/or side effects of niacin, we sought to explore the signaling events upon HM74A activation. Here we demonstrated that HM74A synergistically enhanced UTP- and bradykinin-mediated AA release in a pertussis toxin-sensitive manner in A431 cells. Activation of HM74A also led to Ca{sup 2+}-mobilization and enhanced bradykinin-promoted Ca{sup 2+}-mobilization through Gi protein. While HM74A increased ERK1/2 activation by the bradykinin receptor, it had no effects on UTP-promoted ERK1/2 activation.Furthermore, UTP- and bradykinin-mediated AA release was significantly decreased in the presence of both MAPK kinase inhibitor PD 098059 and PKC inhibitor GF 109203X. However, the synergistic effects of HM74A were not dramatically affected by co-treatment with both inhibitors, indicating the cross-talk occurred at the receptor level. Finally, stimulation of A431 cells transiently transfected with PPRE-luciferase with AA significantly induced luciferase activity, mimicking the effects of PPAR{gamma} agonist rosiglitazone, suggesting that alteration of AA signaling pathway can regulate gene expression via endogenous PPARs.

  11. Protein kinase C is involved in stimulation of arachidonic acid metabolism in Madin-Darby canine kidney (MDCK) cells

    SciTech Connect

    Parker, J.; Daniel, L.W.; Waite, M.

    1986-05-01

    The authors used 12-O-tetradecanoyl-phorbol-13-acetate (TPA) to directly stimulate protein kinase C (PKC) in order to examine the role of PKC in transduction of biological signals that increase metabolism of arachidonic acid. Release of radioactive arachidonic acid and prostaglandins from TPA-stimulated MDCK cells is inhibited by either of two PKC inhibitors: 1-(5-isoquinolinesulfonyl)piperazine and 1-octadecyl-2-methoxy-glycero-3-phosphocholine (ALP). ALP is unable to inhibit cyclooxygenase when added into an in vitro assay for this enzyme. Furthermore, TPA induces de novo synthesis of cyclooxygenase in MDCK cells but ALP fails to prevent this effect of TPA. Thus, cyclooxygenase activity appears to be independent of PKC and TPA can still induce de novo synthesis of cyclooxygenase even in the presence of the PKC inhibitor ALP. Also, ALP has no effect on the release of arachidonic acid which occurs upon addition of the calcium ionophore A23187 to MDCK cells suggesting that there are multiple mechanisms to mobilize arachidonic acid. Their data indicate that activation of PKC by TPA leads to increased release of arachidonic acid through regulation of phospholipase(s) by PKC.

  12. Omega-3 PUFAs Lower the Propensity for Arachidonic Acid Cascade Overreactions

    PubMed Central

    Lands, Bill

    2015-01-01

    A productive view of the benefits from omega-3 (n-3) nutrients is that the dietary essential omega-6 (n-6) linoleic acid has a very narrow therapeutic window which is widened by n-3 nutrients. The benefit from moderate physiological actions of the arachidonic acid cascade can easily shift to harm from excessive pathophysiological actions. Recognizing the factors that predispose the cascade to an unwanted overactivity gives a rational approach for arranging beneficial interactions between the n-3 and n-6 essential nutrients that are initial components of the cascade. Much detailed evidence for harmful cascade actions was collected by pharmaceutical companies as they developed drugs to decrease those actions. A remaining challenge is to understand the factors that predispose the cascade toward unwanted outcomes and create the need for therapeutic interventions. Such understanding involves recognizing the similar dynamics for dietary n-3 and n-6 nutrients in forming the immediate precursors of the cascade plus the more vigorous actions of the n-6 precursor, arachidonic acid, in forming potent mediators that amplify unwanted cascade outcomes. Tools have been developed to aid deliberate day-to-day quantitative management of the propensity for cascade overactivity in ways that can decrease the need for drug treatments. PMID:26301244

  13. Equine tracheal epithelial membrane strips - An alternate method for examining epithelial cell arachidonic acid metabolism

    SciTech Connect

    Gray, P.R.; Derksen, F.J.; Robinson, N.E.; Peter-Golden, M.L. Univ. of Michigan, Ann Arbor )

    1990-02-26

    Arachidonic acid metabolism by tracheal epithelium can be studied using enzymatically dispersed cell suspensions or cell cultures. Both techniques require considerable tissue disruption and manipulation and may not accurately represent in vivo activity. The authors have developed an alternate method for obtaining strips of equine tracheal epithelium without enzymatic digestion. In the horse, a prominent elastic lamina supports the tracheal epithelium. By physical splitting this lamina, they obtained strips ({le}12 x 1.5 cm) of pseudostratified columnar epithelium attached to a layer of elastic tissue 30-100 {mu}m thick. Epithelial strips (1.2 x 0.5 cm) were attached to plexiglass rods and incubated with ({sup 3}H)arachidonic acid in M199 medium (0.5 {mu}Ci/ml) for 24 hours at 37C. The strips incorporated 36{+-}4% (mean {+-} SEM) of the total radioactivity and released 8.0{+-}1.2% of incorporated radioactivity when stimulated by 5.0 {mu}M calcium ionophore A23187. The extracted supernatant was processed using HPLC, resulting in peaks of radioactivity that co-eluted with authentic PGE{sub 2}, PGF{sub 2}{alpha}, and 12-HETE standards. The greatest activity corresponded to the PGE{sub 2} and PGF{sub 2}{alpha} standards, which is a similar pattern to that reported for cultured human tracheal epithelium.

  14. Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1.

    PubMed Central

    Wahl, L M; Corcoran, M L; Pyle, S W; Arthur, L O; Harel-Bellan, A; Farrar, W L

    1989-01-01

    This study reports on the direct effect of the envelope glycoprotein (gp120) of the human immunodeficiency virus type 1 (HIV-1) on human monocyte function. Addition of preparations of purified gp120 from the HIV-1 to human monocytes resulted in the production of interleukin 1 (IL-1) and arachidonic acid metabolites from the cyclooxygenase and lipoxygenase pathways. Quantification of prostaglandin E2 (PGE2) and IL-1 revealed an increase in both mediators with 50 ng of gp120 per ml and an increase of 12- and 30- to 40-fold with 200-400 ng of gp120 per ml, respectively. Unlike native gp120, the recombinant nonglycosylated gp120 fragments PB1-RF and PB1-IIIB, as well as one of the core structural proteins of HIV-1, p24, did not increase arachidonic acid metabolism or IL-1 activity. Cytofluorometric analysis revealed that gp120 blocked the binding of OKT4A to the CD4 on monocytes, whereas OKT4 binding was unaffected. Involvement of the CD4 in signal transduction was further demonstrated by the ability of OKT4 and OKT4A monoclonal antibodies to increase monocyte PGE2, IL-1 activity, and nanogram amounts of IL-1 beta. PMID:2536171

  15. Arachidonic acid metabolism in the platelets and neutrophils of diabetic rabbit and human subjects

    SciTech Connect

    Greco, N.J.

    1985-01-01

    An alteration of arachidonic acid metabolism to prostaglandins and leukotrienes from platelets and polymorphonuclear leukocytes respectively is evident in subjects with diabetes mellitus. There is evidence of altered platelet/vascular wall interactions in diabetes mellitus and evidence that polymorphonuclear leukocytes influence the vascular walls. Theories on the pathogenesis of atherosclerosis include both blood cells. Platelet hypersensitivity is evident in those platelets from the alloxan-induced diabetic rabbit either suspended in plasma or buffer. Arachidonic acid- and collagen-induced platelet aggregation, release of /sup 14/serotonin, and T x B/sub 2/ and 12-HETE production is enhanced when responses of diabetic platelets are compared to control platelets. Control rabbit neutrophils produce more LTB/sub 4/, LTB/sub 4/ isomers and 5-HETE than diabetic rabbits neutrophils. Decreased synthesis from diabetic rabbit neutrophils is not explained by increased catabolism of LTB/sub 4/, reesterification of 5-HETE, or increased eicosanoid formation. These experiments demonstrate both platelet and neutrophil dysfunction in diabetic subjects. Because of the involvement of these cells in regulating circulatory homeostatis, abnormal behavior could aggravate the atherosclerotic process. Platelet and neutrophil dysfunctions are noted before macroscopic vascular lesions are apparent suggesting an important role in the pathogenesis of atherosclerosis.

  16. Lower fetal status of docosahexaenoic acid, arachidonic acid and essential fatty acids is associated with less favorable neonatal neurological condition.

    PubMed

    Dijck-Brouwer, D A Janneke; Hadders-Algra, Mijna; Bouwstra, Hylco; Decsi, Tamás; Boehm, Günther; Martini, Ingrid A; Boersma, E Rudy; Muskiet, Frits A J

    2005-01-01

    Long-chain polyunsaturated fatty acids, notably arachidonic (AA) and docosahexaenoic (DHA) acids are abundant in brain and may be conditionally essential in fetal life. We investigated umbilical artery (UA) and vein (UV) fatty acid compositions and early neonatal neurological condition in 317 term infants. Neurological condition was summarized as a clinical classification and a 'neurological optimality score' (NOS). Neurologically abnormal infants (n=27) had lower UV DHA and essential fatty acid (EFA) status. NOS correlated positively with AA (UV), and EFA (UV) and DHA status (UV and UA) and negatively with 18:2omega6 and omega9 (UV), and 20:3omega9, omega7 and C18 trans fatty acids (UV and UA). UV DHA, AA, saturated fatty acids, gestational age and obstetrical optimality score explained 16.2% of the NOS variance. Early postnatal neurological condition seems negatively influenced by lower fetal DHA, AA and EFA status. C18 trans fatty acids and 18:2omega6 may exert negative effects by impairment of LCP status. PMID:15589396

  17. Rapid Stimulation of 5-Lipoxygenase Activity in Potato by the Fungal Elicitor Arachidonic Acid 1

    PubMed Central

    Bostock, Richard M.; Yamamoto, Hiroyuki; Choi, Doil; Ricker, Karin E.; Ward, Bernard L.

    1992-01-01

    The activity of lipoxygenase (LOX) in aged potato tuber discs increased by almost 2-fold following treatment of the discs with the fungal elicitor arachidonic acid (AA). Enzyme activity increased above that in untreated discs within 30 min after AA treatment, peaked at 1 to 3 h, and returned to near control levels by 6 h. The majority of the activity was detected in a soluble fraction (105,000g supernatant), but a minor portion was also associated with a particulate fraction enriched in microsomal membranes (105,000g pellet); both activities were similarly induced. 5-Hydroperoxyeicosatetraenoic acid was the principal product following incubation of these extracts with AA. Antibodies to soybean LOX strongly reacted with a protein with a molecular mass of approximately 95-kD present in both soluble and particulate fractions whose abundance generally corresponded with LOX activity in extracts. LOX activity was not enhanced by treatment of the discs with nonelicitor fatty acids or by branched β-glucans from the mycelium of Phytophthora infestans. Prior treatment of the discs with abscisic acid, salicylhydroxamic acid, or n-propyl gallate, all of which have been shown to suppress AA induction of the hypersensitive response, inhibited the AA-induced increment in LOX activity. Cycloheximide pretreatment, which abolishes AA elicitor activity for other responses such as phytoalexin induction, did not inhibit LOX activity in water- or elicitor-treated discs but enhanced activity similar to that observed by AA treatment. The elicitor-induced increase in 5-LOX activity preceded or temporally paralleled the induction of other studied responses to AA, including the accumulation of mRNAs for 3-hydroxy-3-methylglutaryl coenzyme A reductase and phenylalanine ammonia lyase reported here. The results are discussed in relation to the proposed role of the 5-LOX in signal-response coupling of arachidonate elicitation of the hypersensitive response. Images Figure 4 Figure 7 PMID

  18. Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats

    SciTech Connect

    Zordoky, Beshay N.M.; Anwar-Mohamed, Anwar; Aboutabl, Mona E.

    2010-01-01

    Doxorubicin (DOX) is a potent anti-neoplastic antibiotic used to treat a variety of malignancies; however, its use is limited by dose-dependent cardiotoxicity. Moreover, there is a strong correlation between cytochrome P450 (CYP)-mediated arachidonic acid metabolites and the pathogenesis of many cardiovascular diseases. Therefore, in the current study, we have investigated the effect of acute DOX toxicity on the expression of several CYP enzymes and their associated arachidonic acid metabolites in the heart of male Sprague-Dawley rats. Acute DOX toxicity was induced by a single intraperitoneal injection of 15 mg/kg of the drug. Our results showed that DOX treatment for 24 h caused a significant induction of CYP1A1, CYP1B1, CYP2C11, CYP2J3, CYP4A1, CYP4A3, CYP4F1, CYP4F4, and EPHX2 gene expression in the heart of DOX-treated rats as compared to the control. Similarly, there was a significant induction of CYP1A1, CYP1B1, CYP2C11, CYP2J3, CYP4A, and sEH proteins after 24 h of DOX administration. In the heart microsomes, acute DOX toxicity significantly increased the formation of 20-HETE which is consistent with the induction of the major CYP omega-hydroxylases: CYP4A1, CYP4A3, CYP4F1, and CYP4F4. On the other hand, the formation of 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) was significantly reduced, whereas the formation of their corresponding dihydroxyeicosatrienoic acids was significantly increased. The decrease in the cardioprotective EETs can be attributed to the increase of sEH activity parallel to the induction of the EPHX2 gene expression in the heart of DOX-treated rats. In conclusion, acute DOX toxicity alters the expression of several CYP and sEH enzymes with a consequent alteration in arachidonic acid metabolism. These results may represent a novel mechanism by which this drug causes progressive cardiotoxicity.

  19. On the ability of prostaglandin E1, and arachidonic acid to modulate experimentally induced oedema in the rat paw.

    PubMed Central

    Lewis, A J; Nelson, D J; Sugrue, M F

    1975-01-01

    1 Prostaglandins E1 and E2 but not prostaglandin F2alpha, arachidonic acid or linolenic acid, produced slight oedema when injected into the rat hindpaw. 2 Prostaglandin E1 potentiated hindpaw oedema produced by carrageenan, kaolin, bradykinin and trypsin but not that produced by 5-hydroxytryptamine (5-HT), histamine, dextran B or compound 48/80. Carrageenan- and bradykinin-induced paw oedemas were also potentiated by prostaglandin E2. Arachidonic acid potentiated responses to carrageenan and kaolin but not responses to bradykinin, trypsin, 5-HT, histamine, dextran B or compound 48/80. Linolenic acid did not potentiate hindpaw oedema induced by carrageenan. 3 Potentiation of carrageenan-induced oedema by prostaglandin E1 was not diminished by pretreatment with indomethacin, hydrocortisone or cyproheptadine. However, arachidonic acid potentiation of carrageenan oedema was reduced by pretreatment with non-steroidal anti-inflammatory drugs but not by anti-inflammatory steroids or by paracetamol. 4 The enhancement of the response to carrageenan and kaolin by prostaglandins E1, E2 and arachidonic acid is discussed in terms of kinin mediation. PMID:1182349

  20. Linoleic acid supplementation results in increased arachidonic acid and eicosanoid production in CF airway cells and in cftr−/− transgenic mice

    PubMed Central

    Zaman, Munir M.; Martin, Camilia R.; Andersson, Charlotte; Bhutta, Abdul Q.; Cluette-Brown, Joanne E.; Laposata, Michael

    2010-01-01

    Cystic fibrosis (CF) patients display a fatty acid imbalance characterized by low linoleic acid levels and variable changes in arachidonic acid. This led to the recommendation that CF patients consume a high-fat diet containing >6% linoleic acid. We hypothesized that increased conversion of linoleic acid to arachidonic acid in CF leads to increased levels of arachidonate-derived proinflammatory metabolites and that this process is exacerbated by increasing linoleic acid levels in the diet. To test this hypothesis, we determined the effect of linoleic acid supplementation on downstream proinflammatory biomarkers in two CF models: 1) in vitro cell culture model using 16HBE14o− sense [wild-type (WT)] and antisense (CF) human airway epithelial cells; and 2) in an in vivo model using cftr−/− transgenic mice. Fatty acids were analyzed by gas chromatography-mass spectrometry (GC/MS), and IL-8 and eicosanoids were measured by ELISA. Neutrophils were quantified in bronchoalveolar lavage fluid from knockout mice following linoleic acid supplementation and exposure to aerosolized Pseudomonas LPS. Linoleic acid supplementation increased arachidonic acid levels in CF but not WT cells. IL-8, PGE2, and PGF2α secretion were increased in CF compared with WT cells, with a further increase following linoleic acid supplementation. cftr−/− Mice supplemented with 100 mg of linoleic acid had increased arachidonic acid levels in lung tissue associated with increased neutrophil infiltration into the airway compared with control mice. These findings support the hypothesis that increasing linoleic acid levels in the setting of loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to increased arachidonic acid levels and proinflammatory mediators. PMID:20656894

  1. Arachidonic Acid and Eicosapentaenoic Acid Metabolism in Juvenile Atlantic Salmon as Affected by Water Temperature

    PubMed Central

    Norambuena, Fernando; Morais, Sofia; Emery, James A.; Turchini, Giovanni M.

    2015-01-01

    Salmons raised in aquaculture farms around the world are increasingly subjected to sub-optimal environmental conditions, such as high water temperatures during summer seasons. Aerobic scope increases and lipid metabolism changes are known plasticity responses of fish for a better acclimation to high water temperature. The present study aimed at investigating the effect of high water temperature on the regulation of fatty acid metabolism in juvenile Atlantic salmon fed different dietary ARA/EPA ratios (arachidonic acid, 20:4n-6/ eicosapentaenoic acid, 20:5n-3), with particular focus on apparent in vivo enzyme activities and gene expression of lipid metabolism pathways. Three experimental diets were formulated to be identical, except for the ratio EPA/ARA, and fed to triplicate groups of Atlantic salmon (Salmo salar) kept either at 10°C or 20°C. Results showed that fatty acid metabolic utilisation, and likely also their dietary requirements for optimal performance, can be affected by changes in their relative levels and by environmental temperature in Atlantic salmon. Thus, the increase in temperature, independently from dietary treatment, had a significant effect on the β-oxidation of a fatty acid including EPA, as observed by the apparent in vivo enzyme activity and mRNA expression of pparα -transcription factor in lipid metabolism, including β-oxidation genes- and cpt1 -key enzyme responsible for the movement of LC-PUFA from the cytosol into the mitochondria for β-oxidation-, were both increased at the higher water temperature. An interesting interaction was observed in the transcription and in vivo enzyme activity of Δ5fad–time-limiting enzyme in the biosynthesis pathway of EPA and ARA. Such, at lower temperature, the highest mRNA expression and enzyme activity was recorded in fish with limited supply of dietary EPA, whereas at higher temperature these were recorded in fish with limited ARA supply. In consideration that fish at higher water temperature

  2. Arachidonic acid stimulates TNFα production in Kupffer cells via a reactive oxygen species-pERK1/2-Egr1-dependent mechanism.

    PubMed

    Cubero, Francisco Javier; Nieto, Natalia

    2012-07-15

    Kupffer cells are a key source of mediators of alcohol-induced liver damage such as reactive oxygen species, chemokines, growth factors, and eicosanoids. Since diets rich in polyunsaturated fatty acids are a requirement for the development of alcoholic liver disease, we hypothesized that polyunsaturated fatty acids could synergize with ethanol to promote Kupffer cell activation and TNFα production, hence, contributing to liver injury. Primary Kupffer cells from control and from ethanol-fed rats incubated with arachidonic acid showed similar proliferation rates than nontreated cells; however, arachidonic acid induced phenotypic changes, lipid peroxidation, hydroperoxides, and superoxide radical generation. Similar effects occurred in human Kupffer cells. These events were greater in Kupffer cells from ethanol-fed rats, and antioxidants and inhibitors of arachidonic acid metabolism prevented them. Arachidonic acid treatment increased NADPH oxidase activity. Inhibitors of NADPH oxidase and of arachidonic acid metabolism partially prevented the increase in oxidant stress. Upon arachidonic acid stimulation, there was a rapid and sustained increase in TNFα, which was greater in Kupffer cells from ethanol-fed rats than in Kupffer cells from control rats. Arachidonic acid induced ERK1/2 phosphorylation and nuclear translocation of early growth response-1 (Egr1), and ethanol synergized with arachidonic acid to promote this effect. PD98059, a mitogen extracellular kinase 1/2 inhibitor, and curcumin, an Egr1 inhibitor, blocked the arachidonic acid-mediated upregulation of TNFα in Kupffer cells. This study unveils the mechanism whereby arachidonic acid and ethanol increase TNFα production in Kupffer cells, thus contributing to alcoholic liver disease. PMID:22538404

  3. Effects of thyroid hormone status on metabolic pathways of arachidonic acid in mice and humans: A targeted metabolomic approach.

    PubMed

    Yao, Xuan; Sa, Rina; Ye, Cheng; Zhang, Duo; Zhang, Shengjie; Xia, Hongfeng; Wang, Yu-cheng; Jiang, Jingjing; Yin, Huiyong; Ying, Hao

    2015-01-01

    Symptoms of cardiovascular diseases are frequently found in patients with hypothyroidism and hyperthyroidism. However, it is unknown whether arachidonic acid metabolites, the potent mediators in cardiovascular system, are involved in cardiovascular disorders caused by hyperthyroidism and hypothyroidism. To answer this question, serum levels of arachidonic acid metabolites in human subjects with hypothyroidism, hyperthyroidism and mice with hypothyroidism or thyroid hormone treatment were determined by a mass spectrometry-based method. Over ten arachidonic acid metabolites belonging to three catalytic pathways: cyclooxygenases, lipoxygenases, and cytochrome P450, were quantified simultaneously and displayed characteristic profiles under different thyroid hormone status. The level of 20-hydroxyeicosatetraenoic acid, a cytochrome P450 metabolite, was positively correlated with thyroid hormone level and possibly contributed to the elevated blood pressured in hyperthyroidism. The increased prostanoid (PG) I2 and decreased PGE2 levels in hypothyroid patients might serve to alleviate atherosclerosis associated with dyslipidemia. The elevated level of thromboxane (TX) A2, as indicated by TXB2, in hyperthyroid patients and mice treated with thyroid hormone might bring about pulmonary hypertension frequently found in hyperthyroid patients. In conclusion, our prospective study revealed that arachidonic acid metabolites were differentially affected by thyroid hormone status. Certain metabolites may be involved in cardiovascular disorders associated with thyroid diseases. PMID:25841349

  4. The Synthesis and In Vivo Pharmacokinetics of Fluorinated Arachidonic Acid: Implications for Imaging Neuroinflammation

    PubMed Central

    Pichika, Rama; Taha, Ameer Y.; Gao, Fei; Kotta, Kishore; Cheon, Yewon; Chang, Lisa; Kiesewetter, Dale; Rapoport, Stanley I.; Eckelman, William C.

    2012-01-01

    Arachidonic acid (AA) is found in high concentrations in brain phospholipids and is released as a second messenger during neurotransmission and much more so during neuroinflammation and excitotoxicity. Upregulated brain AA metabolism associated with neuroinflammation has been imaged in rodents using [1-14C]AA and with PET in Alzheimer disease patients using [1-11C]AA. Radiotracer brain AA uptake is independent of cerebral blood flow, making it an ideal tracer despite altered brain functional activity. However, the 20.4-min radioactive half-life of 11C-AA and challenges of routinely synthesizing 11C fatty acids limit their translational utility as PET biomarkers. Methods As a first step to develop a clinically useful 18F-fluoroarachidonic acid (18F-FAA) with a long radioactive half-life of 109.8 min, we report here a high-yield stereoselective synthetic method of non-radioactive 20-19F-FAA. We tested its in vivo pharmacokinetics by infusing purified nonradioactive 19F-FAA intravenously for 5 min at 2 doses in unanesthetized mice and measured its plasma and brain distribution using gas chromatography–mass spectrometry. Results Incorporation coefficients of injected 19F-FAA into brain phospholipids (ratio of brain 19F-FAA concentration to plasma input function) were 3- to 29-fold higher for choline glycerophospholipid and phosphatidylinositol than for ethanolamine glycerophospholipid and phosphatidylserine at each of the 2 tested doses. The selectivities and values of incorporation coefficients were comparable to those reported after [1-14C]AA (the natural arachidonate) infusion in mice. Conclusion These results suggest that it would be worthwhile to translate our stereoselective synthetic method for 19F-FAA to synthesize positron-emitting 18F-FAA for human brain AA metabolism in neuroinflammatory disorders such as Alzheimer disease. PMID:22851635

  5. In Vitro and In Vivo Activities of Arachidonic Acid against Schistosoma mansoni and Schistosoma haematobium▿

    PubMed Central

    El Ridi, Rashika; Aboueldahab, Marwa; Tallima, Hatem; Salah, Mohamed; Mahana, Noha; Fawzi, Samia; Mohamed, Shadia H.; Fahmy, Omar M.

    2010-01-01

    The development of arachidonic acid (ARA) for treatment of schistosomiasis is an entirely novel approach based on a breakthrough discovery in schistosome biology revealing that activation of parasite tegument-bound neutral sphingomyelinase (nSMase) by unsaturated fatty acids, such as ARA, induces exposure of parasite surface membrane antigens to antibody binding and eventual attrition of developing schistosomula and adult worms. Here, we demonstrate that 5 mM ARA leads to irreversible killing of ex vivo 1-, 3-, 4-, 5-, and 6-week-old Schistosoma mansoni and 9-, 10-, and 12-week-old Schistosoma haematobium worms within 3 to 4 h, depending on the parasite age, even when the worms were maintained in up to 50% fetal calf serum. ARA-mediated worm attrition was prevented by nSMase inhibitors, such as CaCl2 and GW4869. Scanning and transmission electron microscopy revealed that ARA-mediated worm killing was associated with spine destruction, membrane blebbing, and disorganization of the apical membrane structure. ARA-mediated S. mansoni and S. haematobium worm attrition was reproduced in vivo in a series of 6 independent experiments using BALB/c or C57BL/6 mice, indicating that ARA in a pure form (Sigma) or included in infant formula (Nestle) consistently led to 40 to 80% decrease in the total worm burden. Arachidonic acid is already marketed for human use in the United States and Canada for proper development of newborns and muscle growth of athletes; thus, ARA has potential as a safe and cost-effective addition to antischistosomal therapy. PMID:20479203

  6. The Polyunsaturated Fatty Acids Arachidonic Acid and Docosahexaenoic Acid Induce Mouse Dendritic Cells Maturation but Reduce T-Cell Responses In Vitro

    PubMed Central

    Carlsson, Johan A.; Wold, Agnes E.; Sandberg, Ann-Sofie; Östman, Sofia M.

    2015-01-01

    Long-chain polyunsaturated fatty acids (PUFAs) might regulate T-cell activation and lineage commitment. Here, we measured the effects of omega-3 (n-3), n-6 and n-9 fatty acids on the interaction between dendritic cells (DCs) and naïve T cells. Spleen DCs from BALB/c mice were cultured in vitro with ovalbumin (OVA) with 50 μM fatty acids; α-linolenic acid, arachidonic acid (AA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), linoleic acid or oleic acid and thereafter OVA-specific DO11.10 T cells were added to the cultures. Fatty acids were taken up by the DCs, as shown by gas chromatography analysis. After culture with arachidonic acid or DHA CD11c+ CD11b+ and CD11c+ CD11bneg DCs expressed more CD40, CD80, CD83, CD86 and PDL-1, while IAd remained unchanged. However, fewer T cells co-cultured with these DCs proliferated (CellTrace Violetlow) and expressed CD69 or CD25, while more were necrotic (7AAD+). We noted an increased proportion of T cells with a regulatory T cell (Treg) phenotype, i.e., when gating on CD4+ FoxP3+ CTLA-4+, CD4+ FoxP3+ Helios+ or CD4+ FoxP3+ PD-1+, in co-cultures with arachidonic acid- or DHA-primed DCs relative to control cultures. The proportion of putative Tregs was inversely correlated to T-cell proliferation, indicating a suppressive function of these cells. With arachidonic acid DCs produced higher levels of prostaglandin E2 while T cells produced lower amounts of IL-10 and IFNγ. In conclusion arachidonic acid and DHA induced up-regulation of activation markers on DCs. However arachidonic acid- and DHA-primed DCs reduced T-cell proliferation and increased the proportion of T cells expressing FoxP3, indicating that these fatty acids can promote induction of regulatory T cells. PMID:26619195

  7. Arachidonic acid stimulates formation of a novel complex containing nucleolin and RhoA.

    PubMed

    Garcia, Melissa C; Williams, Jason; Johnson, Katina; Olden, Kenneth; Roberts, John D

    2011-02-18

    Arachidonic acid (AA) stimulates cell adhesion through a p38 mitogen activated protein kinase-mediated RhoA signaling pathway. Here we report that a proteomic screen following AA-treatment identified nucleolin, a multifunctional nucleolar protein, in a complex with the GTPase, RhoA, that also included the Rho kinase, ROCK. AA-stimulated cell adhesion was inhibited by expression of nucleolin-targeted shRNA and formation of the multiprotein complex was blocked by expression of dominant-negative RhoA. AA-treatment also induced ROCK-dependent serine phosphorylation of nucleolin and translocation of nucleolin from the nucleus to the cytoplasm, where it appeared to co-localize with RhoA. These data suggest the existence of a new signaling pathway through which the location and post-translational state of nucleolin are modulated. PMID:21281639

  8. Arachidonic acid metabolism in polymorphonuclear cells in headaches. A methodologic study.

    PubMed

    Fragoso, Y D; Seim, A; Stovner, L J; Mack, M; Bjerve, K S; Sjaastad, O

    1988-09-01

    Prostaglandins and leukotrienes have been implicated in the pathogenesis of various types of headache, mainly because some, but not all, cyclo-oxygenase inhibitors are effective in their treatment. We have therefore investigated whether a pathologically changed turnover of arachidonic acid (AA)-containing phospholipids can be seen in headache patients, using isolated polymorphonuclear cells (PMNs) from healthy controls and patients with chronic paroxysmal hemicrania (CPH) and cluster headache. PMNs from healthy controls incorporated 55% of the added (1-14C)AA into total lipids, and 0.5% +/- 0.14% of this radioactivity was found in the phosphatidylserine (PS) fraction. PMNs from a cluster headache and a CPH patient showed 300% and 900% increase in PS labeling from AA, respectively. No other phospholipids showed any difference between controls and patients. The results are discussed in connection with membrane signal transduction via the PS-dependent protein kinase C. PMID:3143481

  9. Neutrophil chemotaxis and arachidonic acid metabolism are not linked: evidence from metal ion probe studies

    SciTech Connect

    Turner, S.R.; Turner, R.A.; Smith, D.M.; Johnson, J.A.

    1986-03-05

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup 3 +/, Zn/sup 2 +/, Cr/sup 3 +/, Mn/sup 2 +/ and Cu/sup 2 +/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-met-leu-phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid release. In contrast to previous reports, no correlation between AA metabolism and chemotaxis was demonstrated, suggesting that these 2 processes are not linked.

  10. Roles for nitric oxide and arachidonic acid in the induction of heterosynaptic cerebellar LTD.

    PubMed

    Reynolds, T; Hartell, N A

    2001-01-22

    In cerebellar slices conjunctive pairing of parallel fibre (PF) stimulation with depolarization of Purkinje cells (PCs) induces a long-term depression (LTD) of PF synaptic transmission that spreads to unpaired PF inputs to the same cell. Inhibitors of NO synthase (7-nitro-indazole), soluble guanylate cyclase (ODQ) and PKG (KT5823) all prevented depression at each of two independent PF pathways to a single PC. Inhibition of NOS also unmasked a platelet activating factor (PAF)-mediated synaptic potentiation of possible presynaptic origin. LTD was also prevented by the phospholipase A2 inhibitor OBAA but was rescued by co-perfusion with arachidonic acid. We conclude that NO and diffusible products of phospholipase A2 metabolism are potential mediators of the spread of cerebellar plasticity at the single cell level. PMID:11201073

  11. Eicosanoids Derived From Arachidonic Acid and Their Family Prostaglandins and Cyclooxygenase in Psychiatric Disorders

    PubMed Central

    Yui, Kunio; Imataka, George; Nakamura, Hiroyuki; Ohara, Naoki; Naito, Yukiko

    2015-01-01

    Arachidonic acid (AA)-derived lipid mediators are called eicosanoids. Eicosanoids have emerged as key regulators of a wide variety of physiological responses and pathological processes, and control important cellular processes. AA can be converted into biologically active compounds by metabolism by cyclooxygenases (COX). Beneficial effect of COX-2 inhibitor celecoxib add-on therapy has been reported in early stage of schizophrenia. Moreover, add-on treatment of celecoxib attenuated refractory depression and bipolar depression. Further, the COX/prostaglandin E pathway play an important role in synaptic plasticity and may be included in pathophysiology in autism spectrum disorders (ASD). In this regard, plasma transferrin, which is an iron mediator related to eicosanoid signaling, may be related to social impairment of ASD. COX-2 is typically induced by inflammatory stimuli in the majority of tissues, and the only isoform responsible for propagating the inflammatory response. Thus, COX-2 inhibitors considered as the best target for Alzheimer’s disease. PMID:26521945

  12. Mechanism for release of arachidonic acid during guinea pig platelet aggregation: a role for the diacylglycerol lipase inhibitor RHC 80267

    SciTech Connect

    Amin, D.

    1986-01-01

    The mechanism of the release of arachidonic acid from phospholipids after the stimulation of guinea pig platelets with collagen, thrombin and platelet activating factor (PAF) was studied. RHC 80267, a diacylglycerol lipase inhibitor, and indomethacin, a cyclooxygenase inhibitor, were used. Various in vitro assays for enzymes involved in arachidonic acid release and metabolism were conducted. Platelet aggregation and simultaneous release of ADP from platelets were monitored using a Chrono-log Lumiaggregometer. Platelets were labeled with (/sup 14/C)arachidonic acid to facilitate sensitive determination of small changes in platelet phospholipids during platelet aggregation. In the present investigation it is shown that collagen, thrombin and PAF increased phospholipase C activity. It was also discovered that cyclooxygenase products were responsible for further stimulation (a positive feed-back) of phospholipase C activity, while diacylglycerol provided a negative feed-back control over receptor-stimulated phospholipase C activity and inhibited ADP release. The guinea pig platelet is an ideal model to study phospholipase C-diacylglycerol lipase pathway for the release of arachidonic acid from platelet phospholipids because it does not have any phospholipase A/sub 2/ activity. It was observed that cyclooxygenase products were responsible for collagen-induced guinea pig platelet aggregation. Indomethacin completely inhibited collagen-induced platelet aggregation, was less effective against thrombin, and had no effect on PAF-induced platelet aggregation. On the other hand, RHC 80267 was a powerful inhibitor of aggregation and ADP release induced by all three of these potent aggregating agents.

  13. Involvement of Nitric Oxide on Calcium Mobilization and Arachidonic Acid Pathway Activation during Platelet Aggregation with different aggregating agonists.

    PubMed

    Banerjee, Debipriya; Mazumder, Sahana; Kumar Sinha, Asru

    2016-03-01

    Platelet aggregation by different aggregating agonists is essential in the normal blood coagulation process, the excess of which caused acute coronary syndrome (ACS). In all cases, the activation of arachidonic acid by cycloxygenase was needed for the synthesis of thromboxane A2 (TXA2) but the mechanism of arachidonic acid release in platelets remains obscure. Studies were conducted to determine the role of nitric oxide (NO), if any, on the release of arachidonic acid in platelets. The cytosolic Ca(2+) was visualized and quantitated by fluorescent spectroscopy by using QUIN-2. NO was measured by methemoglobin method. Arachidonic acid was determined by HPLC. TXA2 was measured as ThromboxaneB2 (TXB2) by ELISA. Treatment of platelets in platelet-rich plasma (PRP) with different aggregating agents resulted in the inhibition of nitric oxide synthase (NOS) which inhibited the production of NO synthesis and increased TXA2 synthesis. Furthermore, the treatment of washed PRP with different platelet aggregating agents resulted in the increase of [Ca(2+)] in nM ranges. In contrast, the pre-treatment of washed PRP with aspirin increased platelet NO level and inhibited the Ca(2+) mobilization and TXA2 synthesis. These results indicated that the aggregation of platelets by different aggregating agonists was caused by the cytosolic Ca(2+) mobilization due to the inhibition of NOS. PMID:27127451

  14. OX1 orexin/hypocretin receptor signaling through arachidonic acid and endocannabinoid release.

    PubMed

    Turunen, Pauli M; Jäntti, Maria H; Kukkonen, Jyrki P

    2012-08-01

    We showed previously that OX(1) orexin receptor stimulation produced a strong (3)H overflow response from [(3)H]arachidonic acid (AA)-labeled cells. Here we addressed this issue with a novel set of tools and methods, to distinguish the enzyme pathways responsible for this response. CHO-K1 cells heterologously expressing human OX(1) receptors were used as a model system. By using selective pharmacological inhibitors, we showed that, in orexin-A-stimulated cells, the AA-derived radioactivity was released as two distinct components, i.e., free AA and the endocannabinoid 2-arachidonoyl glycerol (2-AG). Two orexin-activated enzymatic cascades are responsible for this response: cytosolic phospholipase A(2) (cPLA(2)) and diacylglycerol lipase; the former cascade is responsible for part of the AA release, whereas the latter is responsible for all of the 2-AG release and part of the AA release. Essentially only diacylglycerol released by phospholipase C but not by phospholipase D was implicated as a substrate for 2-AG production, although both phospholipases were strongly activated. The 2-AG released acted as a potent paracrine messenger through cannabinoid CB(1) receptors in an artificial cell-cell communication assay that was developed. The cPLA(2) cascade, in contrast, was involved in the activation of orexin receptor-operated Ca(2+) influx. 2-AG was also released upon OX(1) receptor stimulation in recombinant HEK-293 and neuro-2a cells. The results directly show, for the first time, that orexin receptors are able to generate potent endocannabinoid signals in addition to arachidonic acid signals, which may explain the proposed orexin-cannabinoid interactions (e.g., in neurons). PMID:22550093

  15. Arachidonic acid metabolites do not mediate toluene diisocyanate-induced airway hyperresponsiveness in guinea pigs

    SciTech Connect

    Gordon, T.; Thompson, J.E.; Sheppard, D.

    1988-05-01

    Arachidonic acid metabolites have previously been demonstrated to mediate the airway hyperresponsiveness observed in guinea pigs and dogs after exposure to ozone. Guinea pigs were treated with indomethacin (a cyclooxygenase inhibitor), U-60,257 (piriprost, a 5-lipoxygenase inhibitor), or BW775c (a lipoxygenase and cyclooxygenase inhibitor) and exposed to air or 3 ppm TDI. Airway responsiveness to acetylcholine aerosol was examined 2 h after exposure. In control animals, the provocative concentration of acetylcholine which caused a 200% increase in pulmonary resistance over baseline (PC200) was significantly less (p less than 0.05) after exposure to TDI (8.6 +/- 2.0 mg/ml, geometric mean + geometric SE, n = 10) than after exposure to air (23.9 + 2.5 mg/ml, n = 14). The airway responsiveness to acetylcholine in animals treated with indomethacin or piriprost and exposed to TDI was not different from that of control animals exposed to TDI. Treatment with BW755c enhanced the airway hyperresponsiveness observed in animals exposed to TDI without altering the PC200 of animals exposed to air. The PC200 of animals treated with BW755c and exposed to TDI (2.3 + 0.8 mg/ml, n = 8) was significantly lower than the PC200 of control animals exposed to TDI (p less than 0.025). These results suggest that products of arachidonic acid metabolism are not responsible for TDI-induced airway hyperresponsiveness in guinea pigs. BW755c, however, appears to potentiate the TDI-induced airway hyperresponsiveness to acetylcholine by an as yet unidentified mechanism.

  16. Epoxygenase metabolites of arachidonic acid inhibit vasopressin response in toad bladder

    SciTech Connect

    Schlondorff, D.; Petty, E.; Oates, J.A.; Jacoby, M.; Levine, S.D. Vanderbilt Univ., Nashville, TN )

    1987-09-01

    In addition to cyclooxygenase and lipoxygenase pathways, the kidney can also metabolize arachidonic acid by a NADPH-dependent cytochrome P-450 enzyme to epoxyeicosatrienoic acids (EETs); furthermore, 5,6-EET has been shown to alter electrolyte transport across isolated renal tubules. The authors examined the effects of three ({sup 14}C-labeled)-EETs (5,6-, 11,12-, and 14,15-EET) on osmotic water flow across toad urinary bladder. All three EETs reversibly inhibited vasopressin-stimulated osmotic water flow with 5,6- and 11,12-EET being the most potent. The effects appeared to be independent of prostaglandins EETs inhibited the water flow response to forskolin but not the response to adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) or 8-BrcAMP, consistent with an effect on cAMP generation. To determine whether these effects were due to the EETs or to products of their metabolism, they examined the effects of their vicinal diol hydrolysis products, the dihydroxyeicosatrienoic acids. Nonenzymatic conversion of labeled 5,6-EET to its vicinal diol occurred rapidly in the buffer, whereas 11,12-EET was hydrolyzed in a saturable manner only when incubated in the presence of bladder tissue. The dihydroxyeicosatrienoic acids formed inhibited water flow in a manner paralleling that of the EETs. The data support the hypothesis that EETs and their physiologically active dihydroxyeicosatrienoic acid metabolites inhibit vasopressin-stimulated water flow predominantly via inhibition of adenylate cyclase.

  17. The increased level of COX-dependent arachidonic acid metabolism in blood platelets from secondary progressive multiple sclerosis patients.

    PubMed

    Morel, Agnieszka; Miller, Elzbieta; Bijak, Michal; Saluk, Joanna

    2016-09-01

    Platelet activation is increasingly postulated as a possible component of the pathogenesis of multiple sclerosis (MS), especially due to the increased risk of cardiovascular events in MS. Arachidonic acid cascade metabolized by cyclooxygenase (COX) is a key pathway of platelet activation. The aim of our study was to investigate the COX-dependent arachidonic acid metabolic pathway in blood platelets from secondary progressive multiple sclerosis (SP MS) patients. The blood samples were obtained from 50 patients (man n = 22; female n = 28), suffering from SP MS, diagnosed according to the revised McDonald criteria. Platelet aggregation was measured in platelet-rich plasma after arachidonic acid stimulation. The level of COX activity and thromboxane B2 concentration were determined by ELISA method. Lipid peroxidation was assessed by measuring the level of malondialdehyde. The results were compared with a control group of healthy volunteers. We found that blood platelets obtained from SP MS patients were more sensitive to arachidonic acid and their response measured as platelet aggregation was stronger (about 14 %) relative to control. We also observed a significantly increased activity of COX (about 40 %) and synthesis of thromboxane B2 (about 113 %). The generation of malondialdehyde as a marker of lipid peroxidation was about 10 % higher in SP MS than in control. Cyclooxygenase-dependent arachidonic acid metabolism is significantly increased in blood platelets of patients with SP MS. Future clinical studies are required to recommend the use of low-dose aspirin, and possibly other COX inhibitors in the prevention of cardiovascular risk in MS. PMID:27507559

  18. Production of arachidonic and eicosapentaenoic acids by the marine oomycete Halophytophthora.

    PubMed

    Pang, Ka-Lai; Lin, Han-Jia; Lin, Hung-Yun; Huang, Yu-Fen; Chen, Yi-Min

    2015-04-01

    Polyunsaturated fatty acids (PUFAs) are fatty acids with more than one double bond in the chemical structure. Arachidonic acid (ARA, 20:4 (n-6)) and eicosapentaenoic acid (EPA, 22:5 (n-3)) are common PUFAs with beneficial health effects. Marine fish and meat are the main sources of omega-3 and omega-6 fatty acids in human's diet, respectively. In particular, there is a general decline in fish catch, implicating the need for an alternative source of omega-3 fatty acids. Previous studies have examined the production of polyunsaturated fatty acids including ARA and EPA by various microorganisms, including microalgae, fungi, and thraustochytrids. In this study, the production of ARA and EPA by 10 isolates of four estuarine Halophytophthora species (Halophytophthora avicenniae, Halophytophthora polymorphica, Halophytophthora vesicula, and Halophytophthora spinosa var. spinosa) cultured from fallen mangrove leaves in Taiwan was examined. The yield of ARA ranged from 0.004 to 0.052 g/L with the highest yield of ARA obtained from H. spinosa var. spinosa IMB162, but no or a very low level of EPA was produced by IMB162. For EPA production by Halophytophthora spp., the yield ranged from 0 to 0.047 g/L. Percentage of ARA in total fatty acid ranged between 7.16 and 25.02%. One-way ANOVA analysis using Tukey Test (p ≥ 0.05) suggested that there is significant difference in the percentage of EPA in total fatty acid produced by the isolates, which ranged from 0.01 to 18.42%. BODIPY 505/515 fluorescent staining suggests that lipid bodies were evenly distributed in the mycelia of Halophytophthora species. PMID:25119161

  19. Pretreatment of cultured preadipocytes with arachidonic acid during the differentiation phase without a cAMP-elevating agent enhances fat storage after the maturation phase.

    PubMed

    Khan, Ferdous; Syeda, Pinky Karim; Nartey, Michael Nii N; Rahman, Mohammad Shahidur; Islam, Mohammad Safiqul; Nishimura, Kohji; Jisaka, Mitsuo; Shono, Fumiaki; Yokota, Kazushige

    2016-03-01

    Arachidonic acid (AA) and the related prostanoids exert complex effects on the adipocyte differentiation depending on the culture conditions and life stages. Here, we investigated the effect of the pretreatment of cultured 3T3-L1 preadipocytes with exogenous AA during the differentiation phase without 3-isobutyl-1-methylxanthine (IBMX), a cAMP-elevating agent, on the storage of fats after the maturation phase. This pretreatment with AA stimulated appreciably adipogenesis after the maturation phase as evident with the up-regulated gene expression of adipogenic markers. The stimulatory effect of the pretreatment with AA was attenuated by the co-incubation with each of cyclooxygenase (COX) inhibitors. Among exogenous prostanoids and related compounds, the pretreatment with MRE-269, a selective agonist of the IP receptor for prostaglandin (PG) I2, strikingly stimulated the storage of fats in adipocytes. The gene expression analysis of arachidonate COX pathway revealed that the transcript levels of inducible COX-2, membrane-bound PGE synthase-1, and PGF synthase declined more greatly in cultured preadipocytes treated with AA. By contrast, the expression levels of COX-1, cytosolic PGE synthase, and PGI synthase remained constitutive. The treatment of cultured preadipocytes with AA resulted in the decreased synthesis of PGE2 and PGF2α serving as anti-adipogenic PGs although the biosynthesis of pro-adipogenic PGI2 was up-regulated during the differentiation phase. Moreover, the gene expression levels of EP4 and FP, the respective prostanoid receptors for PGE2 and PGF2α, were gradually suppressed by the supplementation with AA, whereas that of IP for PGI2 remained relatively constant. Collectively, these results suggest the predominant role of endogenous PGI2 in the stimulatory effect of the pretreatment of cultured preadipoccytes with AA during the differentiation phase without IBMX on adipogenesis after the maturation phase. PMID:26928048

  20. IMAGING BRAIN SIGNAL TRANSDUCTION AND METABOLISM VIA ARACHIDONIC AND DOCOSAHEXAENOIC ACID IN ANIMALS AND HUMANS

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Rapoport, Stanley I.

    2012-01-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (AA, 20:4n-6) and docosahexaenoic acid (DHA, 22:6n-3), important second messengers in brain, are released from membrane phospholipid following receptor-mediated activation of specific phospholipase A2 (PLA2) enzymes. We developed an in vivo method in rodents using quantitative autoradiography to image PUFA incorporation into brain from plasma, and showed that their incorporation rates equal their rates of metabolic consumption by brain. Thus, quantitative imaging of unesterified plasma AA or DHA incorporation into brain can be used as a biomarker of brain PUFA metabolism and neurotransmission. We have employed our method to image and quantify effects of mood stabilizers on brain AA/DHA incorporation during neurotransmission by muscarinic M1,3,5, serotonergic 5-HT2A/2C, dopaminergic D2-like (D2, D3, D4) or glutamatergic N-methyl-D-aspartic acid (NMDA) receptors, and effects of inhibition of acetylcholinesterase, of selective serotonin and dopamine reuptake transporter inhibitors, of neuroinflammation (HIV-1 and lipopolysaccharide) and excitotoxicity, and in genetically modified rodents. The method has been extended for the use with positron emission tomography (PET), and can be employed to determine how human brain AA/DHA signaling and consumption are influenced by diet, aging, disease and genetics. PMID:22178644

  1. Metabolic fate of arachidonic acid in hepatocytes of continuously endotoxemic rats.

    PubMed Central

    Rodriguez de Turco, E B; Spitzer, J A

    1988-01-01

    The present experiments were designed to characterize the kinetics of [1-14C]arachidonic acid (AA) metabolism as a function of time in hepatocytes obtained from rats infused continuously for 30 h with a nonlethal dose of Escherichia coli endotoxin (ET). Chronic endotoxemia greatly reduces the ability of hepatocytes to utilize [1-14C]AA, which is reflected from the earliest times of incubation in very low labeling of intermediates in the biosynthetic pathways of glycerolipids (phosphatidic acid and diacylglycerol) and slower removal of [1-14C]AA from the free fatty acid pool as compared with saline-infused rats. At later times of incubation, the labeling of phospholipids (especially phosphatidylethanolamine and phosphatidylinositol [PI]), but not of triacylglycerides is decreased. Analysis of fatty acid composition of individual phospholipids from cells of ET-infused rats reveals that the content of AA is significantly reduced only in PI. Hence an impairment in activation/acylation enzymatic mechanisms could affect the turnover of metabolically active phospholipid pools, i.e., PI, involved in signal transmission processes, and result in increased availability of 20:4 for eicosanoid synthesis, contributing to cellular metabolic perturbations in endotoxicosis. PMID:3125225

  2. Production of human milk fat analogue containing docosahexaenoic and arachidonic acids.

    PubMed

    Turan, Dilek; Sahin Yeşilçubuk, Neşe; Akoh, Casimir C

    2012-05-01

    Human milk fat (HMF) analogue containing docosahexaenoic acid (DHA) and arachidonic acid (ARA) at sn-1,3 positions and palmitic acid (PA) at sn-2 position was produced. Novozym 435 lipase was used to produce palmitic acid-enriched hazelnut oil (EHO). EHO was then used to produce the final structured lipid (SL) through interesterification reactions using Lipozyme RM IM. Reaction variables for 3 h reactions were temperature, substrate mole ratio, and ARASCO/DHASCO (A:D) ratio. After statistical analysis of DHA, ARA, total PA, and PA content at sn-2 position, a large-scale production was performed at 60 °C, 3:2 A:D ratio, and 1:0.1 substrate mole ratio. For the SL, those results were determined as 57.3 ± 0.4%, 2.7 ± 0.0%, 2.4 ± 0.1%, and 66.1 ± 2.2%, respectively. Tocopherol contents were 84, 19, 85, and 23 μg/g oil for α-, β-, γ-, and δ-tocopherol. Melting range of SL was narrower than that of EHO. Oxidative stability index (OSI) value of SL (0.80 h) was similar to that of EHO (0.88 h). This SL can be used in infant formulas to provide the benefits of ARA and DHA. PMID:22497589

  3. Assessment of the arachidonic acid content in foods commonly consumed in the American diet.

    PubMed

    Taber, L; Chiu, C H; Whelan, J

    1998-12-01

    Arachidonic acid (AA) is an extremely important fatty acid involved in cell regulation. When provided in the diet, it is cogently incorporated in membrane phospholipids and enhances eicosanoid biosynthesis in vivo and in vitro; however, controversy exists as to the levels of AA in food and in the diet. This study determined the amount of AA in cooked and raw portions of beef (rib eye), chicken (breast and thigh), eggs, pork (loin), turkey (breast), and tuna; it compared these results to values published in Agriculture Handbook No. 8 (HB-8). The cooked portions were prepared as described in HB-8. With the exception of chicken thigh and tuna, the levels of AA (w/w) in the selected foods analyzed were significantly higher, in general, than those values published in HB-8. The greatest differences were observed in beef (raw and cooked), turkey breast (raw and cooked), and pork (cooked) where AA levels were twice that of the values in HB-8. In contrast, the AA and n-3 fatty acid contents in tuna were almost half the HB-8 values. The present data indicate that HB-8 tends to underreport the amounts of AA in a number of foods commonly consumed in the American diet, and new initiatives should be considered to validate and update the current database for fatty acid composition of foods. PMID:9930399

  4. Dietary arachidonic acid and docosahexaenoic acid regulate liver fatty acid desaturase (FADS) alternative transcript expression in suckling piglets.

    PubMed

    Wijendran, Vasuki; Downs, Ian; Srigley, Cynthia Tyburczy; Kothapalli, Kumar S D; Park, Woo Jung; Blank, Bryant S; Zimmer, J Paul; Butt, C M; Salem, Norman; Brenna, J Thomas

    2013-10-01

    Molecular regulation of fatty acid desaturase (Fads) gene expression by dietary arachidonic acid (ARA) and docosahexaenoic acid (DHA) during early post-natal period, when the demand for long chain polyunsaturated fatty acids (LC-PUFA) is very high, has not been well defined. The objective of the current study was to determine regulation of liver Fads1, Fads2 and Fads3 classical (CS) and alternative transcripts (AT) expression by dietary ARA and DHA, within the physiological range present in human breast milk, in suckling piglets. Piglets were fed one of six milk replacer formula diets (formula-reared groups, FR) with varying ARA and DHA content from days 3-28 of age. The ARA/DHA levels of the six formula diets were as follows (% total fatty acid, FA/FA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3-D3) 0.69/1.0; (A4) 1.1/1.0; (D2) 0.67/0.62; and (D1) 0.66/0.33. The control maternal-reared (MR) group remained with the dam. Fads1 expression was not significantly different between FR and MR groups. Fads2 expression was down-regulated significantly in diets with 1:1 ratio of ARA:DHA, compared to MR. Fads2 AT1 expression was highly correlated to Fads2 expression. Fads3 AT7 was the only Fads3 transcript sensitive to dietary LC-PUFA intake and was up-regulated in the formula diets with lowest ARA and DHA contents compared to MR. Thus, the present study provides evidence that the proportion of dietary ARA:DHA is a significant determinant of Fads2 expression and LC-PUFA metabolism during the early postnatal period. Further, the data suggest that Fads3 AT7 may have functional significance when dietary supply of ARA and DHA are low during early development. PMID:24075244

  5. Myogenic and metabolic feedback in cerebral autoregulation: Putative involvement of arachidonic acid-dependent pathways.

    PubMed

    Berg, Ronan M G

    2016-07-01

    The present paper presents a mechanistic model of cerebral autoregulation, in which the dual effects of the arachidonic acid metabolites 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) on vascular smooth muscle mediate the cerebrovascular adjustments to a change in cerebral perfusion pressure (CPP). 20-HETE signalling in vascular smooth muscle mediates myogenic feedback to changes in vessel wall stretch, which may be modulated by metabolic feedback through EETs released from astrocytes and endothelial cells in response to changes in brain tissue oxygen tension. The metabolic feedback pathway is much faster than 20-HETE-dependent myogenic feedback, and the former thus initiates the cerebral autoregulatory response, while myogenic feedback comprises a relatively slower mechanism that functions to set the basal cerebrovascular tone. Therefore, assessments of dynamic cerebral autoregulation, which may provide information on the response time of the cerebrovasculature, may specifically be used to yield information on metabolic feedback mechanisms, while data based on assessments of static cerebral autoregulation represent the integrated functionality of myogenic and metabolic feedback. PMID:27241246

  6. Effects of arachidonic acid on ATP-sensitive K+ current in murine colonic smooth muscle cells.

    PubMed

    Jun, Jae Yeoul; Yeum, Cheol Ho; Park, Yoo Whan; Jang, In Youb; Kong, In Deok; Sim, Jae Hoon; So, Insuk; Kim, Ki Whan; You, Ho Jin

    2002-09-01

    The effects of arachidonic acid (AA) and the mechanism through which it modulates ATP-sensitive K+ (K(ATP)) currents were examined in single smooth muscle cells of murine proximal colon. In the current-clamping mode, AA and glibenclamide induced depolarization of membrane potential. Using 0.1 mM ATP and 140 mM K+ solution in the pipette and 90 mM K+ in the bath solution at a -80 mV of holding potential, pinacidil activated the glibenclamide-sensitive inward current. The potential of these currents was reversed to near the equilibrium potential of K+ by 60 mM K+ in the bath solution. AA inhibited K(ATP) currents in a dose-dependent manner. This inhibition was not changed when 1 mM GDPbetaS was present in the pipette. Chelerythrine, protein kinase C inhibitor, did not block the AA effects. Superoxide dismutase and metabolic inhibitors (indomethacin and nordihydroguaiacretic acid) of AA did not affect the AA-induced inhibition. Eicosatetraynoic acid, a nonmetabolizable analogue of AA, inhibited the K(ATP) currents. These results suggest that AA-induced inhibition of K(ATP) currents is not mediated by G-protein or protein kinase C activation. The inhibitory action is likely to be a possible mechanism of AA-induced membrane depolarization. PMID:12396031

  7. Identification and localization of an arachidonic acid-sensitive potassium channel in the cochlea.

    PubMed

    Sokolowski, Bernd H A; Sakai, Yoshihisa; Harvey, Margaret C; Duzhyy, Dmytro E

    2004-07-14

    Receptor cells of the auditory and vestibular end organs of vertebrates acquire various types of potassium channels during development. Their expression and kinetics can differ along the tonotopic axis as well as in different cell types of the sensory epithelium. These variations can play a crucial role in modulating sensory transduction and cochlear tuning. Whole-cell tight-seal recordings of isolated hair cells revealed the presence of an arachidonic acid-sensitive A-type channel in the short (outer) hair cells of the chicken cochlea. This polyunsaturated fatty acid blocked the A-current, thereby increasing the amplitude and duration of the voltage response in these cells. We identified the gene encoding this channel as belonging to a member of the Shal subfamily, Kv4.2. Expression of the recombinant channel shows half-activation and inactivation potentials shifted to more positive values relative to native channels, suggesting that the native channel is coexpressed with an accessory subunit. RT-PCR revealed that transcription begins early in development, whereas in situ hybridization showed mRNA expression limited to the intermediate and short hair cells located in specific regions of the adult cochlea. Additional localization, using immunofluorescent staining, revealed clustering in apical-lateral regions of the receptor cell as well as in the cochlear ganglion. These experiments provide evidence that in addition to membrane proteins modulating excitation in these receptor cells, fatty acids contribute to the coding of auditory stimuli via these channels. PMID:15254081

  8. Effects of Angiotensin II Receptor Blockers on Metabolism of Arachidonic Acid via CYP2C8.

    PubMed

    Senda, Asuna; Mukai, Yuji; Toda, Takaki; Hayakawa, Toru; Yamashita, Miki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2015-01-01

    Arachidonic acid (AA) is metabolized to epoxyeicosatrienoic acids (EETs) via cytochrome enzymes such as CYP 2C9, 2C8 and 2J2. EETs play a role in cardioprotection and regulation of blood pressure. Recently, adverse reactions such as sudden heart attack and fatal myocardial infarction were reported among patients taking angiotensin II receptor blockers (ARBs). As some ARBs have affinity for these CYP enzymes, metabolic inhibition of AA by ARBs is a possible cause for the increase in cardiovascular events. In this study, we quantitatively investigated the inhibitory effects of ARBs on the formation of EETs and further metabolites, dihydroxyeicosatrienoic acids (DHETs), from AA via CYP2C8. In incubations with recombinant CYP2C8 in vitro, the inhibitory effects were compared by measuring EETs and DHETs by HPLC-MS/MS. Inhibition of AA metabolism by ARBs was detected in a concentration-dependent manner with IC50 values of losartan (42.7 µM), telmisartan (49.5 µM), irbesartan (55.6 µM), olmesartan (66.2 µM), candesartan (108 µM), and valsartan (279 µM). Losartan, telmisartan and irbesartan, which reportedly accumulate in the liver and kidneys, have stronger inhibitory effects than other ARBs. The lower concentration of EETs leads to less protective action on the cardiovascular system and a higher incidence of adverse effects such as sudden heart attack and myocardial infarction in patients taking ARBs. PMID:26632190

  9. Arachidonic Acid Enhances Reproduction in Daphnia magna and Mitigates Changes in Sex Ratios Induced by Pyriproxyfen

    PubMed Central

    Ginjupalli, Gautam K.; Gerard, Patrick D.; Baldwin, William S.

    2016-01-01

    Arachidonic acid (AA) is one of only two unsaturated fatty acids retained in the ovaries of crustaceans, and an inhibitor of HR97g, a nuclear receptor expressed in adult ovaries. We hypothesized that as a key fatty acid, AA may be associated with reproduction and potentially environmental sex determination in Daphnia. Reproduction assays with AA indicate that it alters female/male sex ratios by increasing female production. This reproductive effect only occurred during a restricted P. subcapitata diet. Next, we tested whether enriching a poorer algal diet (C. vulgaris) with AA enhances overall reproduction and sex ratios. AA enrichment of a C. vulgaris diet also enhances fecundity at 1.0 and 4.0μM by 30–40% in the presence and absence of pyriproxyfen. This indicates that AA is crucial in reproduction regardless of environmental sex determination. Furthermore, our data indicates that P. subcapitata may provide a threshold concentration of AA needed for reproduction. Diet switch experiments from P. subcapitata to C. vulgaris mitigate some but not all of AA’s effects when compared to a C. vulgaris only diet, suggesting that some AA provided by P. subcapitata is retained. In summary, AA supplementation increases reproduction and represses pyriproxyfen-induced environmental sex determination in D. magna in restricted diets. A diet rich in AA may provide protection from some reproductive toxicants such as the juvenile hormone agonist, pyriproxyfen. PMID:25393616

  10. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    PubMed

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  11. Age-related changes in retinoic, docosahexaenoic and arachidonic acid modulation in nuclear lipid metabolism.

    PubMed

    Gaveglio, Virginia L; Pascual, Ana C; Giusto, Norma M; Pasquaré, Susana J

    2016-08-15

    The aim of this work was to study how age-related changes could modify several enzymatic activities that regulate lipid mediator levels in nuclei from rat cerebellum and how these changes are modulated by all-trans retinoic acid (RA), docosahexaenoic acid (DHA) and arachidonic acid (AA). The higher phosphatidate phosphohydrolase activity and lower diacylglycerol lipase (DAGL) activity observed in aged animals compared with adults could augment diacylglycerol (DAG) availability in the former. Additionally, monoacylglycerol (MAG) availability could be high due to an increase in lysophosphatidate phosphohydrolase (LPAPase) activity and a decrease in monocylglycerol lipase activity. Interestingly, RA, DHA and AA were observed to modulate these enzymatic activities and this modulation was found to change in aged rats. In adult nuclei, whereas RA led to high DAG and MAG production through inhibition of their hydrolytic enzymes, DHA and AA promoted high MAG production by LPAPase and DAGL stimulation. In contrast, in aged nuclei RA caused high MAG generation whereas DHA and AA diminished it through LPAPase activity modulation. These results demonstrate that aging promotes a different nuclear lipid metabolism as well as a different type of non-genomic regulation by RA, DHA and AA, which could be involved in nuclear signaling events. PMID:27355428

  12. Kinetics of phospholipase A2, arachidonic acid, and eicosanoid appearance in mouse zymosan peritonitis.

    PubMed

    Lundy, S R; Dowling, R L; Stevens, T M; Kerr, J S; Mackin, W M; Gans, K R

    1990-04-01

    Intraperitoneal injection of zymosan into mice induces a peritonitis characterized by cellular influx, plasma leakage and the appearance of arachidonic acid (AA) metabolites. We report that zymosan injection also stimulates the accumulation of AA, docosahexaenoic acid, linoleic acid, and phospholipase A2 (PLA2) activity. The amount of the unsaturated fatty acids (UnFA) varies both with the zymosan dose and time. Significantly increased levels of UnFA were first detected 15 min after zymosan injection. Maximal levels of the UnFA were reached 1 to 2 h post zymosan injection (AA: 725 +/- 29 ng/mouse, docosahexaenoic acid: 296 +/- 23 ng/mouse, linoleic acid: 4489 +/- 179 ng/mouse) and declined to saline control levels by 8 h. PLA2 activity was significantly increased 5 to 15 min after zymosan injection. Maximal levels of PLA2 activity occurred 15 to 30 min after zymosan injection (31.8 +/- 9.1 nmol phospholipid/mg protein/h) and then decreased by 30% through 24 h. Neither the appearance of UnFA nor PLA2 activity correlated with cellular influx, but both were coincident with plasma exudation at 5 to 15 min after zymosan. However, maximal exudation occurred 1 to 2 h post zymosan injection similar to that seen with the UnFA but not PLA2. These latter results suggest that a significant portion of the UnFA found in the peritoneal cavity of zymosan-injected mice originates from the plasma. PLA2 activity at the early time points (5 to 15 min) may also contribute to the levels of UnFA via hydrolysis of tissue and/or cellular phospholipids. PMID:2108209

  13. Arachidonic acid impairs hypothalamic leptin signaling and hepatic energy homeostasis in mice.

    PubMed

    Cheng, Licai; Yu, Yinghua; Zhang, Qingsheng; Szabo, Alexander; Wang, Hongqin; Huang, Xu-Feng

    2015-09-01

    Epidemiological evidence suggests that the consumption of a diet high in n-6 polyunsaturated fatty acids (PUFA) is associated with the development of leptin resistance and obesity. We aim to examine the central effect of n-6 PUFA, arachidonic acid (ARA) on leptin sensitivity and leptin-regulated hepatic glucose and lipid metabolism. We found that intracerebroventricular injection of ARA (25 nmol/day) for 2.5 days reversed the effect of central leptin on hypothalamic JAK2, pSTAT3, pAkt, and pFOXO1 protein levels, which was concomitant with a pro-inflammatory response in the hypothalamus. ARA also attenuated the effect of central leptin on hepatic glucose and lipid metabolism by reversing the mRNA expression of the genes involved in gluconeogenesis (G6Pase, PEPCK), glucose transportation (GLUT2), lipogenesis (FAS, SCD1), and cholesterol synthesis (HMG-CoA reductase). These results indicate that an increased exposure to central n-6 PUFA induces central cellular leptin resistance with concomitant defective JAK2-STAT3 and PI3K-Akt signaling. PMID:25986657

  14. The Arachidonic Acid Metabolome Serves as a Conserved Regulator of Cholesterol Metabolism

    PubMed Central

    Demetz, Egon; Schroll, Andrea; Auer, Kristina; Heim, Christiane; Patsch, Josef R.; Eller, Philipp; Theurl, Markus; Theurl, Igor; Theurl, Milan; Seifert, Markus; Lener, Daniela; Stanzl, Ursula; Haschka, David; Asshoff, Malte; Dichtl, Stefanie; Nairz, Manfred; Huber, Eva; Stadlinger, Martin; Moschen, Alexander R.; Li, Xiaorong; Pallweber, Petra; Scharnagl, Hubert; Stojakovic, Tatjana; März, Winfried; Kleber, Marcus E.; Garlaschelli, Katia; Uboldi, Patrizia; Catapano, Alberico L.; Stellaard, Frans; Rudling, Mats; Kuba, Keiji; Imai, Yumiko; Arita, Makoto; Schuetz, John D.; Pramstaller, Peter P.; Tietge, Uwe J.F.; Trauner, Michael; Norata, Giuseppe D.; Claudel, Thierry; Hicks, Andrew A.; Weiss, Guenter; Tancevski, Ivan

    2014-01-01

    Summary Cholesterol metabolism is closely interrelated with cardiovascular disease in humans. Dietary supplementation with omega-6 polyunsaturated fatty acids including arachidonic acid (AA) was shown to favorably affect plasma LDL-C and HDL-C. However, the underlying mechanisms are poorly understood. By combining data from a GWAS screening in >100,000 individuals of European ancestry, mediator lipidomics, and functional validation studies in mice, we identify the AA metabolome as an important regulator of cholesterol homeostasis. Pharmacological modulation of AA metabolism by aspirin induced hepatic generation of leukotrienes (LTs) and lipoxins (LXs), thereby increasing hepatic expression of the bile salt export pump Abcb11. Induction of Abcb11 translated in enhanced reverse cholesterol transport, one key function of HDL. Further characterization of the bioactive AA-derivatives identified LX mimetics to lower plasma LDL-C. Our results define the AA metabolome as conserved regulator of cholesterol metabolism, and identify AA derivatives as promising therapeutics to treat cardiovascular disease in humans. PMID:25444678

  15. Photosensitivity of the isolated pigment epithelium and arachidonic acid metabolism: preliminary results.

    PubMed

    Pautler, E L

    1994-09-01

    The administration of 0.1-0.5% of ethanol produces a slow increase in the transepithelial potential (TEP) of about 2 mV in the bovine pigment epithelium (RPE) under ordinary room lighting. However, virtually no response could be observed when ethanol was administered in the dark. Because of this apparent light sensitivity, the ethanol induced response (EIR) was investigated to determine its spectral response characteristics, temporal interaction with light, and the effects of a variety of metabolic inhibitors as well as pertussis and cholera toxins. The spectral response curve peaked at 520 nm with a narrow half width. The EIR was found to be inhibited by pertussis toxin but not cholera toxin. Inhibition of either phospholipase A2 or lipoxygenase/cyclooxygenase resulted in a marked inhibition of the EIR. The incubating solutions of the apical surface of bovine and cultured chick embryo RPE were analyzed by RP-HPLC under conditions of weak white light and darkness. Two peaks in the chromatogram were observed to vary with these conditions and the presence of nordihydroguaiaretic acid simulated the effects of darkness. The RP-HPLC studies did not involve the employment of ethanol. Two different experimental procedures revealed the photosensitivity of the isolated RPE to weak light and suggest that light initiates or promotes arachidonic acid metabolism. A possible regulatory effect of retinoids was also indicated. PMID:7805400

  16. Culture media optimization of Porphyridium purpureum: production potential of biomass, total lipids, arachidonic and eicosapentaenoic acid.

    PubMed

    Kavitha, Mysore Doddaiah; Kathiresan, Shanmugam; Bhattacharya, Sila; Sarada, Ravi

    2016-05-01

    Porphyridium purpureum a red marine microalga is known for phycobiliproteins (PB), polyunsaturated fatty acids and sulphated exopolysaccharides. In the present study, effects of media constituents for the production of different polyunsaturated fatty acids from P. purpureum were considered using a response surface methodology (RSM). A second order polynomial was used to predict the response functions in terms of the independent variables such as the concentrations of sodium chloride, magnesium sulphate, sodium nitrate and potassium dihydrogen phosphate. The response functions were production of biomass yield, total lipid and polyunsaturated fatty acids like arachidonic acid (AA 20:4) and eicosapentaenoic acid (EPA 20:5). Results corroborated that maximum Biomass (0.95 gL(-1)) yield was at the concentrations of sodium chloride (14.89 gL(-1)), magnesium sulfate (3.93 gL(-1)) and sodium nitrate (0.96 gL(-1)) and potassium dihydrogen phosphate (0.09 gL(-1)). Optimum total lipid (17.9 % w/w) and EPA (34.6 % w/w) content was at the concentrations of sodium chloride (29.98 gL(-1)), magnesium sulfate (9.34 gL(-1)) and sodium nitrate (1.86 gL(-1)). Variation in concentration of potassium dihydrogen phosphate for both lipid (0.01gL(-1)) and EPA content (0.20 gL(-1)) was observed. The optimum conditions for biomass, total lipid, AA and EPA varied indicating their batch mode of growth and interaction effect of the salt. PMID:27407193

  17. 2-Hydroxy Arachidonic Acid: A New Non-Steroidal Anti-Inflammatory Drug

    PubMed Central

    Lopez, Daniel H.; Fiol-deRoque, Maria A.; Noguera-Salvà, Maria A.; Terés, Silvia; Campana, Federica; Piotto, Stefano; Castro, José A.; Mohaibes, Raheem J.; Escribá, Pablo V.; Busquets, Xavier

    2013-01-01

    Background Nonsteroidal anti-inflammatory drugs (NSAIDs) are a family of COX1 and COX2 inhibitors used to reduce the synthesis of pro-inflammatory mediators. In addition, inflammation often leads to a harmful generation of nitric oxide. Efforts are being done in discovering safer NSAIDs molecules capable of inhibiting the synthesis of pro-inflammatory lipid mediators and nitric oxide to reduce the side effects associated with long term therapies. Methodology/Principal Findings The analogue of arachidonic acid (AA), 2-hydroxy-arachidonic acid (2OAA), was designed to inhibit the activities of COX1 and COX2 and it was predicted to have similar binding energies as AA for the catalytic sites of COX1 and COX2. The interaction of AA and 2OAA with COX1 and COX2 was investigated calculating the free energy of binding and the Fukui function. Toxicity was determined in mouse microglial BV-2 cells. COX1 and COX2 (PGH2 production) activities were measured in vitro. COX1 and COX2 expression in human macrophage-like U937 cells were carried out by Western blot, immunocytochemistry and RT-PCR analysis. NO production (Griess method) and iNOS (Western blot) were determined in mouse microglial BV-2 cells. The comparative efficacy of 2OAA, ibuprofen and cortisone in lowering TNF-α serum levels was determined in C57BL6/J mice challenged with LPS. We show that the presence of the –OH group reduces the likelihood of 2OAA being subjected to H* abstraction in COX, without altering significantly the free energy of binding. The 2OAA inhibited COX1 and COX2 activities and the expression of COX2 in human U937 derived macrophages challenged with LPS. In addition, 2OAA inhibited iNOS expression and the production of NO in BV-2 microglial cells. Finally, oral administration of 2OAA decreased the plasma TNF-α levels in vivo. Conclusion/Significance These findings demonstrate the potential of 2OAA as a NSAID. PMID:24015204

  18. Arachidonic and oleic acid exert distinct effects on the DNA methylome.

    PubMed

    Silva-Martínez, Guillermo A; Rodríguez-Ríos, Dalia; Alvarado-Caudillo, Yolanda; Vaquero, Alejandro; Esteller, Manel; Carmona, F Javier; Moran, Sebastian; Nielsen, Finn C; Wickström-Lindholm, Marie; Wrobel, Katarzyna; Wrobel, Kazimierz; Barbosa-Sabanero, Gloria; Zaina, Silvio; Lund, Gertrud

    2016-05-01

    Abnormal fatty acid metabolism and availability are landmarks of metabolic diseases, which in turn are associated with aberrant DNA methylation profiles. To understand the role of fatty acids in disease epigenetics, we sought DNA methylation profiles specifically induced by arachidonic (AA) or oleic acid (OA) in cultured cells and compared those with published profiles of normal and diseased tissues. THP-1 monocytes were stimulated with AA or OA and analyzed using Infinium HumanMethylation450 BeadChip (Illumina) and Human Exon 1.0 ST array (Affymetrix). Data were corroborated in mouse embryonic fibroblasts. Comparisons with publicly available data were conducted by standard bioinformatics. AA and OA elicited a complex response marked by a general DNA hypermethylation and hypomethylation in the 1-200 μM range, respectively, with a maximal differential response at the 100 μM dose. The divergent response to AA and OA was prominent within the gene body of target genes, where it correlated positively with transcription. AA-induced DNA methylation profiles were similar to the corresponding profiles described for palmitic acid, atherosclerosis, diabetes, obesity, and autism, but relatively dissimilar from OA-induced profiles. Furthermore, human atherosclerosis grade-associated DNA methylation profiles were significantly enriched in AA-induced profiles. Biochemical evidence pointed to β-oxidation, PPAR-α, and sirtuin 1 as important mediators of AA-induced DNA methylation changes. In conclusion, AA and OA exert distinct effects on the DNA methylome. The observation that AA may contribute to shape the epigenome of important metabolic diseases, supports and expands current diet-based therapeutic and preventive efforts. PMID:27088456

  19. Effect of alpha Ni3S2 on arachidonic acid metabolites in cultured human lung cells (L132 cell line).

    PubMed

    Shirali, P; Teissier, E; Marez, T; Hildebrand, H F; Haguenoer, J M

    1994-04-01

    Our previous investigations have shown evidence of an interaction between alpha Ni3S2 and membranous and cellular lipids of lung cells with a significant increase in the linoleic, linolenic and arachidonic acid pool. The present work is designed to follow the metabolic fate of arachidonic acid in alpha Ni3S2-exposed human embryonic pulmonary epithelial cells (L132) in culture (50 microM alpha Ni3S2 for 3 days). The metabolites of arachidonic acid were assessed by HPLC determination coupled with UV or electrochemical detection. We determined malondialdehyde (MDA), hydroxyeicosatetraenoic acid (HETE), leukotrienes (LT) and reduced glutathione (GSH). In exposed cells we observed a significant increase of MDA, which is a breakdown product of lipid peroxidation. In addition, we noted significant increases of 5-HETE and 15-HETE in L132 cells resulting from the enzymatic reduction of 5-HPETE and 15-HPETE respectively. There was also a simultaneous decrease of GSH--confirmed by a strong decrease of GSH in exposed cells with respect to controls. 5-HPETE is furthermore converted to epoxides such as leukotriene A4 and we also quantified in exposed cells a significant increase of its subsequent catabolites LTB4, LTC4 and LTE4. These investigations show clearly that exposure of L132 cells to alpha Ni3S2 enhances lipid peroxidation based upon direct measurements of MDA and other metabolites of arachidonic acid. This lipid peroxidation is an autocatalytic free-radical process and could be responsible for DNA damage. PMID:8149492

  20. Characterization of the lysyl adducts of prostaglandin H-synthases that are derived from oxygenation of arachidonic acid.

    PubMed

    Boutaud, O; Brame, C J; Chaurand, P; Li, J; Rowlinson, S W; Crews, B C; Ji, C; Marnett, L J; Caprioli, R M; Roberts, L J; Oates, J A

    2001-06-12

    These investigations characterize the covalent binding of reactive products of prostaglandin H-synthases (PGHSs) to the enzyme and to other molecules. The intermediate product of oxygenation of arachidonic acid by the PGHSs, prostaglandin (PG) H2, undergoes rearrangement to the highly reactive gamma-keto aldehydes, levuglandin (LG) E2 and D2. We previously have demonstrated that LGE2 reacts with the epsilon-amine of lysine to form both the lysyl-levuglandin Shiff base and the pyrrole-derived lysyl-levuglandin lactam adducts. We now demonstrate that these lysyl-levuglandin adducts are formed on the PGHSs following the oxygenation of arachidonic acid; after reduction of the putative Schiff base, proteolytic digestion of the enzyme, and isolation of the adducted amino acid residues, these adducts were identified by liquid chromatography-tandem mass spectrometry. The reactivity of the LGs is reflected by the finding that virtually all of the LG predicted to be formed from PGH2 can be accounted for as adducts of the PGH-synthase and that oxygenation of arachidonic acid by PGH-synthases also leads to the formation of adducts of other proteins present in the reaction solution. The reactivity of the PGH-synthase adducts themselves is demonstrated by the formation of intermolecular cross-links. PMID:11389610

  1. Role of arachidonic acid lipoxygenase metabolites in acetylcholine-induced relaxations of mouse arteries.

    PubMed

    Gauthier, Kathryn M; Goldman, Daniel H; Aggarwal, Nitin T; Chawengsub, Yuttana; Falck, J R; Campbell, William B

    2011-03-01

    Arachidonic acid (AA) metabolites function as EDHFs in arteries of many species. They mediate cyclooxygenase (COX)- and nitric oxide (NO)-independent relaxations to acetylcholine (ACh). However, the role of AA metabolites as relaxing factors in mouse arteries remains incompletely defined. ACh caused concentration-dependent relaxations of the mouse thoracic and abdominal aorta and carotid, femoral, and mesentery arteries (maximal relaxation: 57 ± 4%, 72 ± 4%, 82 ± 3%, 80 ± 3%, and 85 ± 3%, respectively). The NO synthase inhibitor nitro-L-arginine (L-NA; 30 μM) blocked relaxations in the thoracic aorta, and L-NA plus the COX inhibitor indomethacin (10 μM) inhibited relaxations in the abdominal aorta and carotid, femoral, and mesenteric arteries (maximal relaxation: 31 ± 10%, 33 ± 5%, 41 ± 8%, and 73 ± 3%, respectively). In mesenteric arteries, NO- and COX-independent relaxations to ACh were inhibited by the lipoxygenase (LO) inhibitors nordihydroguaiaretic acid (NDGA; 10 μM) and BW-755C (200 μM), the K(+) channel inhibitor apamin (1 μM), and 60 mM KCl and eliminated by endothelium removal. They were not altered by the cytochrome P-450 inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide (20 μM) or the epoxyeicosatrienoic acid antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 μM). AA relaxations were attenuated by NDGA or apamin and eliminated by 60 mM KCl. Reverse-phase HPLC analysis revealed arterial [(14)C]AA metabolites that comigrated with prostaglandins, trihydroxyeicosatrienoic acids (THETAs), hydroxyepoxyeicosatrienoic acids (HEETAs), and hydroxyeicosatetraenoic acids (HETEs). Epoxyeicosatrienoic acids were not observed. Mass spectrometry confirmed the identity of 6-keto-PGF(1α), PGE(2), 12-HETE, 15-HETE, HEETAs, 11,12,15-THETA, and 11,14,15-THETA. AA metabolism was blocked by NDGA and endothelium removal. 11(R),12(S),15(S)-THETA relaxations (maximal relaxation: 73 ± 3%) were endothelium independent and blocked by 60 mM KCl. Western

  2. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer

    PubMed Central

    Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki

    2016-01-01

    Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310

  3. 90-Day feeding and genotoxicity studies on a refined arachidonic acid-rich oil.

    PubMed

    Casterton, P L; Curry, L L; Lina, B A R; Wolterbeek, A P M; Kruger, C L

    2009-10-01

    The safety of a refined arachidonic acid-rich oil (RAO) was evaluated for reverse mutation, chromosome aberration and gene mutation, and in a 90-day Wistar rat feeding study with in utero exposure. The results of the genotoxicity assays were all negative. The in utero phase of the 90-day study involved dietary exposure to 0.5%, 1.5% and 5% RAO and two controls diets, a standard feed low-fat diet and a high-fat diet supplemented with 5% corn oil. This exposure covered four-weeks prior to mating, through mating, gestation and lactation until offspring (F(1)) weaning. A subsequent 90-day feeding study in the F(1) rats evaluated the same test and control diets. Statistically significant effects were seen for selected histopathology, clinical chemistry and organ weight endpoints; however, other than increased absolute and relative monocytes seen in both sexes of high-dose rats, the observations were not attributed to treatment for one or more reasons. Based on these findings, no adverse treatment-related effects for RAO were seen at up to 5% in the diet, equivalent to an overall average RAO intake of 3170 mg/kg bwt/day. These and similar findings for other refined ARA-rich oils establish a strong body of evidence for the safety of this RAO. PMID:19576260

  4. Alterations in murine macrophage arachidonic acid metabolism following ingestion of nonviable Histoplasma capsulatum.

    PubMed Central

    Wolf, J E; Massof, S E; Peters, S P

    1992-01-01

    The effect of ingestion of heat-killed Histoplasma capsulatum yeast cells on the metabolism of arachidonic acid (20:4) to prostenoids and leukotrienes was examined in murine peritoneal macrophages (M phi s). H. capsulatum-containing M phi s exhibited a metabolite profile similar to that of zymosan-challenged phagocytes; however, there were differences with respect to the relative and total amounts of products produced. While proteose peptone-elicited M phi s exposed to H. capsulatum released quantitatively less prostaglandin E2 (PGE2) and leukotriene C4 than zymosan-treated M phi s, they metabolized a greater percentage of total product to prostenoids. In addition, whereas in vitro priming with gamma interferon increased both the PGE2 and leukotriene C4 contents of zymosan-stimulated M phi supernatants, similarly primed M phi s challenged with H. capsulatum selectively increased only PGE2 production. The immunosuppressive effect of a relative excess of prostenoids in H. capsulatum-containing M phi s may contribute to the overall disturbance in cell-mediated immunity characteristic of disseminated histoplasmosis. PMID:1319400

  5. Prenatal arachidonic acid exposure and selected immune-related variables in childhood.

    PubMed

    Dirix, Chantal E H; Hogervorst, Janneke G F; Rump, Patrick; Hendriks, Johannes J E; Bruins, Maaike; Hornstra, Gerard

    2009-08-01

    Arachidonic acid (AA) is considered essential in fetal development and some of its metabolites are thought to be important mediators of the immune responses. Therefore, we studied whether prenatal exposure to AA is associated with some immune-related clinical conditions and plasma markers in childhood. In 280 children aged 7 years, atopy, lung function and plasma inflammation markers were measured and their relationships with early AA exposure were studied by linear and logistic regression analyses. AA exposure was deduced from AA concentrations in plasma phospholipids of the mothers collected at several time points during pregnancy and at delivery, and in umbilical cord plasma and arterial and venous wall phospholipids. In unadjusted regression analyses, significant positive associations were observed between maternal AA concentrations at 16 and 32 weeks of pregnancy (proxies for fetal AA exposure) and peak expiratory flow decline after maximal physical exercise and plasma fibrinogen concentrations of their children, respectively. However, after correction for relevant covariables, only trends remained. A significant negative relationship was observed between AA concentrations in cord plasma (reflecting prenatal AA exposure) and the average daily amplitude of peak expiratory flow at rest, which lost significance after appropriate adjustment. Because of these few, weak and inconsistent relationships, a major impact of early-life exposure to AA on atopy, lung function and selected plasma inflammation markers of children at 7 years of age seems unlikely. PMID:19173768

  6. Activation of the central histaminergic system mediates arachidonic-acid-induced cardiovascular effects.

    PubMed

    Altinbas, Burcin; Topuz, Bora Burak; İlhan, Tuncay; Yilmaz, Mustafa Sertac; Erdost, Hatice; Yalcin, Murat

    2014-08-01

    The aim of this study was to explain the involvement of the central histaminergic system in arachidonic acid (AA)-induced cardiovascular effects in normotensive rats using hemodynamic, immunohistochemistry, and microdialysis studies. Intracerebroventricularly (i.c.v.) administered AA (0.25, 0.5, and 1.0 μmol) induced dose- and time-dependent increases in mean arterial pressure and decreased heart rate in conscious normotensive Sprague-Dawley rats. Central injection of AA (0.5 μmol) also increased posterior hypothalamic extracellular histamine levels and produced strong COX-1 but not COX-2 immunoreactivity in the posterior hypothalamus of rats. Moreover, the cardiovascular effects and COX-1 immunoreactivity in the posterior hypothalamus induced by AA (0.5 μmol; i.c.v.) were almost completely blocked by the H2 receptor antagonist ranitidine (50 and 100 nmol; i.c.v.) and partially blocked by the H1 receptor blocker chlorpheniramine (100 nmol; i.c.v.) and the H3-H4 receptor antagonist thioperamide (50 and 100 nmol; i.c.v.). In conclusion, these results indicate that centrally administered AA induces pressor and bradycardic responses in conscious rats. Moreover, we suggest that AA may activate histaminergic neurons and increase extracellular histamine levels, particularly in the posterior hypothalamus. Acting as a neurotransmitter, histamine is potentially involved in AA-induced cardiovascular effects under normotensive conditions. PMID:25065747

  7. Calcium dependency of arachidonic acid incorporation into cellular phospholipids of different cell types.

    PubMed

    Daniele, J J; Fidelio, G D; Bianco, I D

    1999-07-01

    Ca2+ -independent phospholipase A2 (iPLA2) is involved in the incorporation of arachidonic acid (AA) into resting macrophages by the generation of the lysophospholipid acceptor. The role of iPLA2 in AA remodeling in different cells was evaluated by studying the Ca2+ dependency of AA uptake from the medium, the incorporation into cellular phospholipids, and the effect of the iPLA2 inhibitor bromoenol lactone on these events. Uptake and esterification of AA into phospholipids were not affected by Ca2+ depletion in human polymorphonuclear neutrophils and rat fibroblasts. The uptake was Ca2+ independent in chick embryo glial cells, but the incorporation into phospholipids was partially dependent on extracellular Ca2+. Both events were fully dependent on extra and intracellular Ca2+ in human platelets. In human polymorphonuclear neutrophils, the kinetics of incorporation in several isospecies of phospholipids was not affected by the absence of Ca2+ at short times (<30 min). The involvement of iPLA2 in the incorporation of AA from the medium was confirmed by the selective inhibition of this enzyme with bromoenol lactone, which reduced < or =50% of the incorporation of AA into phospholipids of human neutrophils. These data provide evidence that suggests iPLA2 plays a major role in regulating AA turnover in different cell types. PMID:10480488

  8. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites.

    PubMed

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I

    2011-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E₂ (PGE₂) and thromboxane B₂ (TXB₂) to lipoxin A₄ (LXA₄) and 15-epi-LXA₄. However, it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE₂, TXB₂ and leukotriene B₄ (LTB₄) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE₂, but increased LTB₄, LXA₄ and 15-epi-LXA₄ concentrations. Both doses attenuated the LPS effects on PGE₂, and TXB₂. The increments in LXA₄ and 15-epi-LXA₄ caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA₄ and 15-epi-LXA₄ and reduce pro-inflammatory PGE₂ and TXB₂ suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  9. Accumulation of arachidonic acid-containing phosphatidylinositol at the outer edge of colorectal cancer.

    PubMed

    Hiraide, Takanori; Ikegami, Koji; Sakaguchi, Takanori; Morita, Yoshifumi; Hayasaka, Takahiro; Masaki, Noritaka; Waki, Michihiko; Sugiyama, Eiji; Shinriki, Satoru; Takeda, Makoto; Shibasaki, Yasushi; Miyazaki, Shinichiro; Kikuchi, Hirotoshi; Okuyama, Hiroaki; Inoue, Masahiro; Setou, Mitsutoshi; Konno, Hiroyuki

    2016-01-01

    Accumulating evidence indicates that cancer cells show specific alterations in phospholipid metabolism that contribute to tumour progression in several types of cancer, including colorectal cancer. Questions still remain as to what lipids characterize the outer edge of cancer tissues and whether those cancer outer edge-specific lipid compositions emerge autonomously in cancer cells. Cancer tissue-originated spheroids (CTOSs) that are composed of pure primary cancer cells have been developed. In this study, we aimed to seek out the cancer cell-autonomous acquisition of cancer outer edge-characterizing lipids in colorectal cancer by analysing phospholipids in CTOSs derived from colorectal cancer patients with matrix-assisted laser desorption/ionization (MALDI)-imaging mass spectrometry (IMS). A signal at m/z 885.5 in negative ion mode was detected specifically at the surface regions. The signal was identified as an arachidonic acid (AA)-containing phosphatidylinositol (PI), PI(18:0/20:4), by tandem mass spectrometry analysis. Quantitative analysis revealed that the amount of PI(18:0/20:4) in the surface region of CTOSs was two-fold higher than that in the medial region. Finally, PI(18:0/20:4) was enriched at the cancer cells/stromal interface in colorectal cancer patients. These data imply a possible importance of AA-containing PI for colorectal cancer progression, and suggest cells expressing AA-containing PI as potential targets for anti-cancer therapy. PMID:27435310

  10. Improving arachidonic acid fermentation by Mortierella alpina through multistage temperature and aeration rate control in bioreactor.

    PubMed

    Gao, Min-Jie; Wang, Cheng; Zheng, Zhi-Yong; Zhu, Li; Zhan, Xiao-Bei; Lin, Chi-Chung

    2016-05-18

    Effective production of arachidonic acid (ARA) using Mortierella alpina was conducted in a 30-L airlift bioreactor. Varying the aeration rate and temperature significantly influenced cell morphology, cell growth, and ARA production, while the optimal aeration rate and temperature for cell growth and product formation were quite different. As a result, a two-stage aeration rate control strategy was constructed based on monitoring of cell morphology and ARA production under various aeration rate control levels (0.6-1.8 vvm). Using this strategy, ARA yield reached 4.7 g/L, an increase of 38.2% compared with the control (constant aeration rate control at 1.0 vvm). Dynamic temperature-control strategy was implemented based on the fermentation performance at various temperatures (13-28°C), with ARA level in total cellular lipid increased by 37.1% comparing to a constant-temperature control (25°C). On that basis, the combinatorial fermentation strategy of two-stage aeration rate control and dynamic temperature control was applied and ARA production achieved the highest level of 5.8 g/L. PMID:26038800

  11. Release of arachidonic acid from oligodendrocytes by terminal complement proteins, C5b-C9

    SciTech Connect

    Shirazi, Y.; Imagawa, D.K.; Shin, M.L.

    1986-03-01

    Activation of C5b-C9 on monocytes, macrophages, platelets and neutrophils induces membrane lipid hydrolysis and generates arachidonic acid (AA) and its oxygenated derivatives. Additionally, activation of C5b-C9 and myelin lipid hydrolysis has been observed in demyelination. The authors have investigated the modulatory effect of C5b-9 on membrane lipid hydrolysis of oligodendrocytes (OLG), the myelin producing cells in the central nervous system. Antibody-sensitized rat OLG, prelabeled with /sup 14/C AA were treated with excess C6-deficient rabbit serum reconstituted with limiting doses of C6. Qualitative analysis of the supernatants by HPLC revealed the presence of both cyclooxygenase and lipooxygenase products. Prostaglandin E/sub 2/, leukotriene (LT) E/sub 4/, LTB/sub 4/ and free AA were the major radiolabeled products. The kinetics and dose response of LTB/sub 4/ release with respect to the cytolytic dose of C5b-9 were quantitated by radioimmunoassay. LTB/sub 4/ release approached maximum in 1 hr and higher amounts were detected with fewer C5b-9 channels. Addition of C8 to OLG bearing C5b-7 intermediates induced maximum LTB/sub 4/ release without further enhancement by C9 in contrast to the absolute requirement of C9 in mediator release from rat neutrophils. Thus, the requirement of C5b-8 or C5b-9 in mediator release appears to be cell-type dependent.

  12. Effect of heavy metal ions on neutrophil arachidonic acid metabolism and chemotaxis

    SciTech Connect

    Smith, D.M.; Turner, S.R.; Johnson, J.A.; Turner, R.A.

    1986-05-01

    Heavy metal ions can inhibit arachidonic acid (AA) metabolism, protect against ionophore cytotoxicity (ibid) and inhibit neutrophil chemotaxis. In this study they used Au/sup +3/, Zn/sup +2/, Cr/sup +3/, Mn/sup +2/, and Cu/sup +2/ as probes of the interrelationships among AA metabolism, ionophore-mediated cytotoxicity, and chemotaxis. Phospholipid deacylation was measured in ionophore-treated cells prelabeled with /sup 3/H-AA. Eicosanoid release from ionophore-treated cells was monitored both qualitatively by thin-layer chromatography of /sup 3/H-AA metabolities and quantitatively by radioimmunoassay. Cytoprotection was quantitated as ability to exclude trypan blue. Chemotaxis toward f-Met-Leu-Phe was measured by leading front analysis. The results imply that metal ions attenuate ionophore cytotoxicity by blocking phospholipid deacylation and eicosanoid production. In contrast to previous reports, the data obtained using Au/sup +3/ and Cu/sup +2/ demonstrates no correlation between AA metabolism and chemotaxis, suggesting that these 2 processes are not linked.

  13. Effect of Arachidonic Acid-enriched Oil Diet Supplementation on the Taste of Broiler Meat

    PubMed Central

    Takahashi, H.; Rikimaru, K.; Kiyohara, R.; Yamaguchi, S.

    2012-01-01

    To elucidate the relationship between the arachidonic acid (AA) content and the taste of broiler meat, the effects of AA-enriched oil (AAO) supplements on the fatty acid content and sensory perceptions of thigh meat were evaluated. Four types of oil, including corn oil (CO), a 1:1 mixture of AAO and palm oil (PO) (1/2 AAO), a 1:3 mixture of AAO and PO (1/4 AAO), and a 1:7 mixture of AAO and PO (1/8 AAO) were prepared. Each type of oil was mixed with silicate at a ratio of 7:3, and added to the diet at a final proportion of 5% of fresh matter. Broiler chickens were fed these diets for 1 wk before slaughter. In thigh meat, the AA content of the 1/2 and 1/4 AAO groups was significantly higher than that of the CO group. The AA content in thigh meat (y, mg/g) increased linearly with increasing dietary AAO content (x, g/100 g of diet), according to the equation y = 0.5674+0.4596× (r2 = 0.8454). The content of other fatty acids was not significantly different among the 4 diet groups. Sensory evaluation showed that the flavor intensity, umami (L-glutamate taste), kokumi (continuity, mouthfulness, and thickness), and aftertaste of the 1/2 and 1/4 AAO groups were significantly higher than that of the CO group. There were significant positive correlations between AA content in thigh meat and the flavor intensity, total taste intensity, umami, and aftertaste. These data suggest that the taste of broiler meat can be improved by the amount of dietary AA supplementation. PMID:25049636

  14. Chronic cigarette smoke exposure adversely alters /sup 14/C-arachidonic acid metabolism in rat lungs, aortas and platelets

    SciTech Connect

    Lubawy, W.C.; Valentovic, M.A.; Atkinson, J.E.; Gairola, G.C.

    1983-08-08

    Male rats were exposed to freshly generated cigarette smoke once daily, 5 times a week for 10 weeks. Inhalation of smoke was verified by elevated carboxyhemoglobin in blood sampled immediately after smoke exposure and by increased lung aryl hydrocarbon hydroxylase activity 24 hours after the last smoke exposure. Aortic rings isolated from smoke-exposed rats synthesized less prostacyclin (PGI2) from /sup 14/C-arachidonic acid than rings from sham rats. Platelets from smoke-exposed rats synthesized more thromboxane (TXA2) from /sup 14/C-arachidonic acid than platelets from room controls but not those from sham rats. Lung microsomes from smoke-exposed rats synthesized more TXA2 and had a lower PGI2/TXA2 ratio than lung microsomes from room controls and shams. It is concluded that chronic cigarette smoke exposure alters arachidonic acid metabolism in aortas, platelets and lungs in a manner resulting in decreased PGI2 and increased TXA2, thereby creating a condition favoring platelet aggregation and a variety of cardiovascular diseases.

  15. Fatty acid transfer in the food web of a coastal Mediterranean lagoon: Evidence for high arachidonic acid retention in fish

    NASA Astrophysics Data System (ADS)

    Koussoroplis, Apostolos-Manuel; Bec, Alexandre; Perga, Marie-Elodie; Koutrakis, Emmanuil; Bourdier, Gilles; Desvilettes, Christian

    2011-02-01

    The transfer of fatty acids (FAs) in the food web of a Mediterranean lagoon was studied using FA compositional patterns across several trophic levels. The structure of the food web was inferred from C and N stable isotopes values and an isotope mixing model was used in order to estimate the relative contribution of the different potential food sources to the biomass of consumers. Bidimensional plots of FA composition of food web components against their δ 15N values indicated a general trend of increasing proportions of highly unsaturated fatty acids (HUFAs) with increasing trophic levels while the proportions of saturated fatty acids (SAFAs) and 18-carbon polyunsaturated fatty acids (PUFAs) decreased. Using the relative contributions of food sources to consumers and their FA compositions, a model was built in order to estimate the PUFA composition of consumer mixed diets which was compared to consumer PUFA profiles. The latter allowed the identification of the PUFAs which were mostly enriched/retained in consumer lipids. There was a surprisingly high retention of arachidonic acid (ARA), a trend which challenges the idea of low ARA needs in marine fish and suggests the important physiological role of this essential FA for fish in estuarine environments.

  16. Serotonin stimulates phospholipase A sub 2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis

    SciTech Connect

    Felder, C.C.; Ma, A.L.; Axelrod, J.; Kanterman, R.Y. )

    1990-03-01

    Serotonin (5-HT) stimulated the release of arachidonic acid in hippocampal neurons cocultured with glial cells but not in glial cultures alone. Similar results were observed for the 5-HT-stimulated release of inositol phosphates. These results suggest a neural but not glial origin of both responses. Pharmacological studies suggested that release of arachidonic acid and inositol phosphates was mediated by a type 2 5-HTT (5-HT{sub 2}) receptor. 5-HT-stimulated release of arachidonic acid was also detected in cortical neurons, which contain high levels of 5-HT{sub 2} receptors, but not striatum, spinal cord, or cerebellar granule cells, which have very low levels or are devoid of 5-HT{sub 2} receptors. The phorbol ester phorbol 12-myristate 13-acetate augmented the 5-HT-stimulated release of arachidonic acid but inhibited the 5-HT-stimulated release of inositol phosphates. 5-HT-stimulated release of arachidonic acid, but not inositol phosphates, was dependent on extracellular calcium. 5-HT stimulated the release of ({sup 3}H)lysophosphatidylcholine from ({sup 3}H)choline-labeled cells with no increase in the release of ({sup 3}H)choline or phospho({sup 3}H)choline. These data suggest that 5-HT stimulated the release of arachidonic acid in hippocampal neurons through the activation of phospholipase A{sub 2}, independent of the activation of phospholipase C.

  17. Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis.

    PubMed Central

    Felder, C C; Kanterman, R Y; Ma, A L; Axelrod, J

    1990-01-01

    Serotonin (5-HT) stimulated the release of arachidonic acid in hippocampal neurons cocultured with glial cells but not in glial cultures alone. Similar results were observed for the 5-HT-stimulated release of inositol phosphates. These results suggest a neural but not glial origin of both responses. Pharmacological studies suggested that release of arachidonic acid and inositol phosphates was mediated by a type 2 5-HT (5-HT2) receptor. 5-HT-stimulated release of arachidonic acid was also detected in cortical neurons, which contain high levels of 5-HT2 receptors, but not striatum, spinal cord, or cerebellar granule cells, which have very low levels or are devoid of 5-HT2 receptors. The phorbol ester phorbol 12-myristate 13-acetate augmented the 5-HT-stimulated release of arachidonic acid but inhibited the 5-HT-stimulated release of inositol phosphates. 5-HT-stimulated release of arachidonic acid, but not inositol phosphates, was dependent on extracellular calcium. 5-HT stimulated the release of [3H]lysophosphatidylcholine from [3H]choline-labeled cells with no increase in the release of [3H]choline or phospho[3H]choline. These data suggest that 5-HT stimulated the release of arachidonic acid in hippocampal neurons through the activation of phospholipase A2, independent of the activation of phospholipase C. PMID:2315313

  18. Mechanism of arachidonic acid liberation in platelet-activating factor-stimulated human polymorphonuclear neutrophils

    SciTech Connect

    Nakashima, S.; Suganuma, A.; Sato, M.; Tohmatsu, T.; Nozawa, Y. )

    1989-08-15

    Upon stimulation of human polymorphonuclear neutrophils with platelet-activating factor (PAF), arachidonic acid (AA) is released from membrane phospholipids. The mechanism for AA liberation, a key step in the synthesis of biologically active eicosanoids, was investigated. PAF was found to elicit an increase in the cytoplasmic level of free Ca2+ as monitored by fluorescent indicator fura 2. When (3H) AA-labeled neutrophils were exposed to PAF, the enhanced release of AA was observed with a concomitant decrease of radioactivity in phosphatidylinositol and phosphatidylcholine fractions. The inhibitors of phospholipase A2, mepacrine and 2-(p-amylcinnamoyl)-amino-4-chlorobenzoic acid, effectively suppressed the liberation of (3H)AA from phospholipids, indicating that liberation of AA is mainly catalyzed by the action of phospholipase A2. The extracellular Ca2+ is not required for AA release. However, intracellular Ca2+ antagonists, TMB-8 and high dose of quin 2/AM drastically reduced the liberation of AA induced by PAF, indicating that Ca2+ is an essential factor for phospholipase A2 activation. PAF raised the fluorescence of fura 2 at concentrations as low as 8 pM which reached a maximal level about 8 nM, whereas more than nM order concentrations of PAF was required for the detectable release of (3H)AA. Pretreatment of neutrophils with pertussis toxin resulted in complete abolition of AA liberation in response to PAF. However, the fura 2 response to PAF was not effectively inhibited by toxin treatment. In human neutrophil homogenate and membrane preparations, guanosine 5'-O-(thiotriphosphate) stimulated AA release and potentiated the action of PAF. Guanosine 5'-O-(thiodiphosphate) inhibited the effects of guanosine 5'-O-(thiotriphosphate).

  19. Eugenol: a dual inhibitor of platelet-activating factor and arachidonic acid metabolism.

    PubMed

    Saeed, S A; Simjee, R U; Shamim, G; Gilani, A H

    1995-07-01

    Eugenol is an active principal and responsible for several pharmacological activities of clove oil. We studied the effects of eugenol on human platelet aggregation, arachidonic acid (AA) and platelet-activating factor (PAF) metabolism and in vivo effects on AA and PAF-induced shock in rabbits. Eugenol strongly inhibited PAF-induced platelet aggregation with lesser effect against AA and collegen. The IC(50) values were against AA: 31 ± 0.5; collagen: 64 ± 0.7 and PAF 7 ± 0.2 μM (n=9) respectively. In addition, eugenol stimulated PAF-acetylhydrolase activity suggesting that inhibition of PAF could be due to its inactivation to lyso-PAF. Pretreatment of rabbits with eugenol (50-100 mg/kg) prevented the lethal effects of intravenous PAF (11 μgg/kg) or AA (2 mg/kg) in a dose-dependent fashion. The protective effects of eugenol in the rabbits, however, were more pronounced against PAF-induced mortality (100% protection). In addition, eugenol also inhibited AA metabolism via cyclooxygenase and lipoxygenase pathways in human platelets. Both the production of thromboxane-A(2) and 12-hydroxy-eicosatetraenoic acid was inhibited by eugenol in a concentration-related manner (30-120 μM). In vivo, eugenol (50-100 mg/kg; i.p.) inhibited carrageenan-induced rat paw oedema (P < 0.001). In this test, eugenol was 5 times more potent than aspirin. These results provide evidence that eugenol acts as a dual antagonist of AA and PAF. PMID:23196096

  20. Growth Hormone Enhances Arachidonic Acid Metabolites in a Growth Hormone Transgenic Mouse

    PubMed Central

    Oberbauer, A. M.; German, J. B.; Murray, J. D.

    2016-01-01

    In a transgenic growth hormone (GH) mouse model, highly elevated GH increases overall growth and decreases adipose depots while low or moderate circulating GH enhances adipose deposition with differential effects on body growth. Using this model, the effects of low, moderate, and high chronic GH on fatty acid composition were determined for adipose and hepatic tissue and the metabolites of 20:4n-6 (arachidonic acid) were characterized to identify metabolic targets of action of elevated GH. The products of Δ-9 desaturase in hepatic, but not adipose, tissue were reduced in response to elevated GH. Proportional to the level of circulating GH, the products of Δ-5 and Δ-6 were increased in both adipose and hepatic tissue for the omega-6 lipids (e.g., 20:4n-6), while only the hepatic tissues showed an increase for omega-3 lipids (e.g., 22:6n-3). The eicosanoids, PGE2 and 12-HETE, were elevated with high GH but circulating thromboxane was not. Hepatic PTGS1 and 2 (COX1 and COX 2), SOD1, and FADS2 (Δ-6 desaturase) mRNAs were increased with elevated GH while FAS mRNA was reduced; SCD1 (ste-aroyl-coenzyme A desaturase) and SCD2 mRNA did not significantly differ. The present study showed that GH influences the net flux through various aspects of lipid metabolism and especially the desaturase metabolic processes. The combination of altered metabolism and tissue specificity suggest that the regulation of membrane composition and its effects on signaling pathways, including the production and actions of eicosanoids, can be mediated by the GH regulatory axis. PMID:21442273

  1. Arachidonic acid-derived signaling lipids and functions in impaired healing

    PubMed Central

    Dhall, Sandeep; Wijesinghe, Dayanjan Shanaka; Karim, Zubair A.; Castro, Anthony; Vemana, Hari Priya; Khasawneh, Fadi T.; Chalfant, Charles E.; Martins-Green, Manuela

    2016-01-01

    Very little is known about lipid function during wound healing, and much less during impaired healing. Such understanding will help identify what roles lipid signaling plays in the development of impaired/chronic wounds. We took a lipidomics approach to study the alterations in lipid profile in the LIGHT−/− mouse model of impaired healing which has characteristics that resemble those of impaired/chronic wounds in humans, including high levels of oxidative stress, excess inflammation, increased extracellular matrix degradation and blood vessels with fibrin cuffs. The latter suggests excess coagulation and potentially increased platelet aggregation. We show here that in these impaired wounds there is an imbalance in the arachidonic acid (AA) derived eicosonoids that mediate or modulate inflammatory reactions and platelet aggregation. In the LIGHT−/− impaired wounds there is a significant increase in enzymatically derived breakdown products of AA. We found that early after injury there was a significant increase in the eicosanoids 11-, 12-, and 15-hydroxyeicosa-tetranoic acid, and the proinflammatory leukotrienes (LTD4 and LTE) and prostaglandins (PGE2 and PGF2α). Some of these eicosanoids also promote platelet aggregation. This led us to examine the levels of other eicosanoids known to be involved in the latter process. We found that thromboxane (TXA2/B2), and prostacyclins 6kPGF1α are elevated shortly after wounding and in some cases during healing. To determine whether they have an impact in platelet aggregation and hemostasis, we tested LIGHT−/− mouse wounds for these two parameters and found that, indeed, platelet aggregation and hemostasis are enhanced in these mice when compared with the control C57BL/6 mice. Understanding lipid signaling in impaired wounds can potentially lead to development of new therapeutics or in using existing nonsteroidal anti-inflammatory agents to help correct the course of healing. PMID:26135854

  2. Arachidonic acid induction of Rho-mediated transendothelial migration in prostate cancer

    PubMed Central

    Brown, M; Roulson, J-A; Hart, C A; Tawadros, T; Clarke, N W

    2014-01-01

    Background: Bone metastases in prostate cancer (CaP) result in CaP-related morbidity/mortality. The omega-6 polyunsaturated fatty acid (PUFA) arachidonic acid (AA) and lipophilic statins affect metastasis-like behaviour in CaP cells, regulating the critical metastatic step of CaP migration to the bone marrow stroma. Methods: Microscopic analysis and measurement of adhesion and invasion of CaP cells through bone marrow endothelial cells (BMEC) was undertaken with AA stimulation and/or simvastatin (SIM) treatment. Amoeboid characteristics of PC-3, PC3-GFP and DU-145 were analysed by western blotting and Rho assays. Results: The CaP cell lines PC-3, PC3-GFP and DU-145 share the ability to migrate across a BMEC layer. Specific amoeboid inhibition decreased transendothelial migration (TEM). AA stimulates amoeboid characteristics, driven by Rho signalling. Selective knock-down of components of the Rho pathway (RhoA, RhoC, Rho-associated protein kinase 1 (ROCK1) and ROCK2) showed that Rho signalling is crucial to TEM. Functions of these components were analysed, regarding adhesion to BMEC, migration in 2D and the induction of the amoeboid phenotype by AA. TEM was reduced by SIM treatment of PC3-GFP and DU-145, which inhibited Rho pathway signalling. Conclusions: AA-induced TEM is mediated by the induction of a Rho-driven amoeboid phenotype. Inhibition of this cell migratory process may be an important therapeutic target in high-risk CaP. PMID:24595005

  3. Arachidonic acid-derived signaling lipids and functions in impaired healing.

    PubMed

    Dhall, Sandeep; Wijesinghe, Dayanjan Shanaka; Karim, Zubair A; Castro, Anthony; Vemana, Hari Priya; Khasawneh, Fadi T; Chalfant, Charles E; Martins-Green, Manuela

    2015-09-01

    Very little is known about lipid function during wound healing, and much less during impaired healing. Such understanding will help identify what roles lipid signaling plays in the development of impaired/chronic wounds. We took a lipidomics approach to study the alterations in lipid profile in the LIGHT(-/-) mouse model of impaired healing which has characteristics that resemble those of impaired/chronic wounds in humans, including high levels of oxidative stress, excess inflammation, increased extracellular matrix degradation and blood vessels with fibrin cuffs. The latter suggests excess coagulation and potentially increased platelet aggregation. We show here that in these impaired wounds there is an imbalance in the arachidonic acid (AA) derived eicosonoids that mediate or modulate inflammatory reactions and platelet aggregation. In the LIGHT(-/-) impaired wounds there is a significant increase in enzymatically derived breakdown products of AA. We found that early after injury there was a significant increase in the eicosanoids 11-, 12-, and 15-hydroxyeicosa-tetranoic acid, and the proinflammatory leukotrienes (LTD4 and LTE) and prostaglandins (PGE2 and PGF2α ). Some of these eicosanoids also promote platelet aggregation. This led us to examine the levels of other eicosanoids known to be involved in the latter process. We found that thromboxane (TXA2 /B2 ), and prostacyclins 6kPGF1α are elevated shortly after wounding and in some cases during healing. To determine whether they have an impact in platelet aggregation and hemostasis, we tested LIGHT(-/-) mouse wounds for these two parameters and found that, indeed, platelet aggregation and hemostasis are enhanced in these mice when compared with the control C57BL/6 mice. Understanding lipid signaling in impaired wounds can potentially lead to development of new therapeutics or in using existing nonsteroidal anti-inflammatory agents to help correct the course of healing. PMID:26135854

  4. Absorption and metabolism of orally fed arachidonic and linoleic acid in the rat

    SciTech Connect

    Nilsson, A.; Melin, T. )

    1988-11-01

    ({sup 3}H)arachidonic (({sup 3}H)20:4) and ({sup 14}C)linoleic acid ({sup 14}C)18:2 were fed to rats in Intralipid or cream. Later (30-240 min) the stomach, small intestine, plasma, and liver were analyzed for radioactivity in different lipid classes. ({sup 3}H)20:4 and ({sup 14}C)18:2 were emptied from the stomach and absorbed by the intestine at similar rates. The ({sup 3}H)20:4:({sup 14}C)18:2 ratio of the lipids in the small intestinal wall increased, however, with time. This was due to a higher retention of ({sup 3}H)20:4 than ({sup 14}C)18:2 in intestinal phospholipids. In contrast, more of the ({sup 14}C)18:2 was in triacylglycerol of the small intestine and plasma. The highest {sup 3}H:{sup 14}C ratios were found in phosphatidylethanolamine and phosphatidylinositol. The {sup 3}H:{sup 14}C ratio of intestinal phosphatidylcholine varied with the type of fat vehicle used, being highest in the Intralipid experiments. After feeding Intralipid (30-60 min), significantly more of the plasma ({sup 3}H)20:4 than plasma ({sup 14}C)18:2 was in diacylglycerol, the {sup 3}H:{sup 14}C ratio of which was much higher than that of plasma free fatty acids. ({sup 3}H)20:4 and ({sup 14}C)18:2 of chyle triacylglycerol are thus metabolized differently.

  5. Effects of cytochrome P-450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC)

    PubMed Central

    Pavlov, Tengis S.; Ilatovskaya, Daria V.; Levchenko, Vladislav; Mattson, David L.; Roman, Richard J.

    2011-01-01

    Sodium reabsorption via the epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron plays a central role in the regulation of body fluid volume. Previous studies have indicated that arachidonic acid (AA) and its metabolite 11,12-EET but not other regioisomers of EETs inhibit ENaC activity in the collecting duct. The goal of this study was to investigate the endogenous metabolism of AA in cultured mpkCCDc14 principal cells and the effects of these metabolites on ENaC activity. Liquid chromatography/mass spectrometry analysis of the mpkCCDc14 cells indicated that these cells produce prostaglandins, 8,9-EET, 11,12-EET, 14,15-EET, 5-HETE, 12/8-HETE, and 15-HETE, but not 20-HETE. Single-channel patch-clamp experiments revealed that 8,9-EET, 14,15-EET, and 11,12-EET all decrease ENaC activity. Neither 5-, 12-, nor 15-HETE had any effect on ENaC activity. Diclofenac and ibuprofen, inhibitors of cyclooxygenase, decreased transepithelial Na+ transport in the mpkCCDc14 cells. Inhibition of cytochrome P-450 (CYP450) with MS-PPOH activated ENaC-mediated sodium transport when cells were pretreated with AA and diclofenac. Coexpression of CYP2C8, but not CYP4A10, with ENaC in Chinese hamster ovary cells significantly decreased ENaC activity in whole-cell experiments, whereas 11,12-EET mimicked this effect. Thus both endogenously formed EETs and their exogenous application decrease ENaC activity. Downregulation of ENaC activity by overexpression of CYP2C8 was PKA dependent and was prevented by myristoylated PKI treatment. Biotinylation experiments and single-channel analysis revealed that long-term treatment with 11,12-EET and overexpression of CYP2C8 decreased the number of channels in the membrane. In contrast, the acute inhibitory effects are mediated by a decrease in the open probability of the ENaC. We conclude that 11,12-EET, 8,9-EET, and 14,15-EET are endogenously formed eicosanoids that modulate ENaC activity in the collecting duct. PMID:21697242

  6. Metabolism of arachidonic acid by macaque platelets. Implications for studies on atherosclerosis.

    PubMed

    Beatty, C H; Howard, C F; Hoskins, M K; Herrington, P T

    1985-04-01

    The metabolism of [1-14C]arachidonic acid [( 1-14C]AA) by washed platelets from macaques and human subjects was investigated. The results were as follows: At substrate levels of 1 microM, similar amounts of prostaglandin E2 (PGE2), prostaglandin F2 alpha (PGF2 alpha), prostaglandin D2 (PGD2), and thromboxane A2 (TXA2), measured as thromboxane B2 (TXB2), were produced from [1-14C]AA by platelets from rhesus, Celebes black, and cynomolgus macaques and humans. An increase in the AA concentration from 1 microM to 20 microM decreased the TXB2: PGD2 ratio (aggregator: antiaggregator) from greater than 5 to less than 2 in all series. In the human series, the ratio decrease was due to an increase in PGD2 production; in the macaque series, PGD2 production increased and TXB2 production decreased. Under basal conditions and at 1 microM AA concentrations, the amounts of prostaglandins and thromboxanes produced by platelets from male and female rhesus macaques were the same. An increase in substrate concentration from 1 microM to 20 microM AA decreased TXB2 production and increased PGD2 production to the same extent in platelets from male and female rhesus macaques. Imidazole increased prostaglandin production and decreased TXB2 production by platelets from both male and female rhesus macaques. The TXB2: PGD2 ratios were reduced below 1.5; there was no difference between the ratios in the two series. In the presence of 1 mM imidazole, greater amounts of prostaglandins and thromboxanes were produced in the male than in the female series. These data indicate that macaque's platelets are a suitable model for the study of AA metabolism in human platelets. PMID:3924062

  7. Positive cooperativity between the thrombin and bradykinin B2 receptors enhances arachidonic acid release

    PubMed Central

    Hecquet, Claudie; Biyashev, Dauren; Tan, Fulong; Erdös, Ervin G.

    2006-01-01

    Bradykinin (BK) or kallikreins activate B2 receptors (R) which couple Gαi and Gαq proteins to release arachidonic acid (AA) and elevate [Ca2+]i. Thrombin cleaves the protease-activated-receptor-1 (PAR1) that couples Gαi, Gαq and Gα12/13 proteins. In CHO cells stably transfected with human B2R, thrombin liberated little AA, but it significantly potentiated AA release by B2R agonists. We explored mechanisms of cooperativity between constitutively expressed PAR1 and B2R. We also examined human endothelial cells expressing both Rs constitutively. The PAR1 agonist hexapeptide (TRAP) was as effective as thrombin. Inhibitors of components of Gαi, Gαq and Gα12/13 signaling pathways, and a PKCα inhibitor, Gö6976 blocked potentiation while phorbol, an activator, enhanced it. Several inhibitors, including a RhoA kinase inhibitor, a [Ca2+]i antagonist, and an inositol-(1,3,4)-trisphosphate R antagonist, reduced mobilization of [Ca2+]i by thrombin and blocked potentiation of AA release by B2R agonists. Because either a non-selective inhibitor (isotetrandrine) of phospholipase A2 (PLA2) or a Ca2+-dependent PLA2 inhibitor abolished potentiation of AA release by thrombin, while a Ca2+-independent PLA2 inhibitor did not, we concluded that the mechanism involves Ca2+-dependent PLA2 activation. Both thrombin and TRAP modified activation and phosphorylation of the B2R induced by BK. In lower concentrations they enhanced it, while higher concentrations inhibited phosphorylation and diminished B2R activation. Protection of the N-terminal Ser1-Phe2 bond of TRAP by an aminopeptidase inhibitor made this peptide much more active than the unprotected agonist. Thus, PAR1 activation enhances AA release by B2R agonists through signal transduction pathway. PMID:16183725

  8. Anti-inflammatory effects of chronic aspirin on brain arachidonic acid metabolites

    PubMed Central

    Basselin, Mireille; Ramadan, Epolia; Chen, Mei; Rapoport, Stanley I.

    2010-01-01

    Pro-inflammatory and anti-inflammatory mediators derived from arachidonic acid (AA) modulate peripheral inflammation and its resolution. Aspirin (ASA) is a unique non-steroidal anti-inflammatory drug, which switches AA metabolism from prostaglandin E2 (PGE2) and thromboxane B2 (TXB2) to lipoxin A4 (LXA4) and 15-epi-LXA4. However it is unknown whether chronic therapeutic doses of ASA are anti-inflammatory in the brain. We hypothesized that ASA would dampen increases in brain concentrations of AA metabolites in a rat model of neuroinflammation, produced by a 6-day intracerebroventricular infusion of bacterial lipopolysaccharide (LPS). In rats infused with LPS (0.5 ng/h) and given ASA-free water to drink, concentrations in high-energy microwaved brain of PGE2, TXB2 and leukotriene B4 (LTB4) were elevated. In rats infused with artificial cerebrospinal fluid, 6 weeks of treatment with a low (10 mg/kg/day) or high (100 mg/kg/day) ASA dose in drinking water decreased brain PGE2, but increased LTB4, LXA4 and 15-epi-LXA4 concentrations. Both doses attenuated the LPS effects on PGE2, and TXB2. The increments in LXA4 and 15-epi-LXA4 caused by high-dose ASA were significantly greater in LPS-infused rats. The ability of ASA to increase anti-inflammatory LXA4 and 15-epi-LXA4 and reduce pro-inflammatory PGE2 and TXB2 suggests considering aspirin further for treating clinical neuroinflammation. PMID:20981485

  9. P450-dependent arachidonic acid metabolism and angiotensin II-induced renal damage.

    PubMed

    Kaergel, Eva; Muller, Dominik N; Honeck, Horst; Theuer, Juergen; Shagdarsuren, Erdenechimeg; Mullally, Alexander; Luft, Friedrich C; Schunck, Wolf-Hagen

    2002-09-01

    Transgenic rats overexpressing both human renin and angiotensinogen genes (dTGR) develop hypertension, inflammation, and renal failure. We tested the hypothesis that these pathological features are associated with changes in renal P450-dependent arachidonic acid (AA) metabolism. Samples were prepared from 5- and 7-week-old dTGR and from normotensive Sprague-Dawley (SD) rats, ie, before and after the dTGR developed severe hypertension and albuminuria. At both stages, dTGR showed significantly lower renal microsomal AA epoxygenase and hydroxylase activities that reached 63% and 76% of the control values at week 7. Furthermore, the protein levels of several potential AA epoxygenases (CYP2C11, CYP2C23, and CYP2J) were significantly reduced. Immunoinhibition studies identified CYP2C23 as the major AA epoxygenase, both in dTGR and SD rats. Immunohistochemistry showed that CYP2C23 was localized in cortical and outer medullary tubules that progressively lost this enzyme from week 5 to week 7 in dTGR. CYP2C11 expression occurred only in the outer medullary tubules and was markedly reduced in dTGR compared with age-matched SD rats. These findings indicate site-specific decreases in the availability of AA epoxygenase products in the kidney of dTGR. In contrast to renal microsomes, liver microsomes of dTGR and SD rats showed no change in the expression and activity of AA epoxygenases and hydroxylases. We conclude that hypertension and end-organ damage in dTGR is associated with kidney-specific downregulation of P450-dependent AA metabolism. Because the products of AA epoxygenation have anti-inflammatory properties, this alteration may contribute to uncontrolled renal inflammation, which is a major cause of renal damage in dTGR. PMID:12215466

  10. LC/ESI-MS/MS method for determination of salivary eicosapentaenoic acid concentration to arachidonic acid concentration ratio.

    PubMed

    Ogawa, Shoujiro; Tomaru, Koki; Matsumoto, Nagisa; Watanabe, Shui; Higashi, Tatsuya

    2016-01-01

    A simple liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS) method for determination of the eicosapentaenoic acid (EPA) concentration to arachidonic acid (AA) concentration ratio in human saliva has been developed. The EPA/AA ratio in serum or plasma is widely recognized as a useful indicator in identifying the risk of cardiovascular disease, especially atherosclerosis. The salivary EPA/AA ratio is expected to be a convenient alternative to the serum or plasma EPA/AA ratio, because saliva offers the advantages of easy and noninvasive sampling. The saliva was deproteinized with acetonitrile, purified using an Oasis HLB cartridge, and derivatized with 1-[(4-dimethylaminophenyl)carbonyl]piperazine (DAPPZ). The derivatized EPA and AA were subjected to LC/ESI-MS/MS, and the EPA/AA ratio was determined using the selected reaction monitoring mode. The DAPPZ-derivatization increased the ESI sensitivity by 100- and 300-fold for EPA and AA, respectively, and enabled the detection of trace fatty acids in saliva using a 200 μL sample. The assay reproducibility was satisfactory (relative standard deviation, <5.0%). The method was successfully applied to the measurement of the salivary EPA/AA ratios of healthy Japanese subjects and their changes owing to the supplementation of EPA. PMID:25620210

  11. Allometric scaling of dietary linoleic acid on changes in tissue arachidonic acid using human equivalent diets in mice

    PubMed Central

    2011-01-01

    Background It is hypothesized that dietary linoleic acid (LA) promotes chronic and acute diseases in humans by enriching tissues with arachidonic acid (AA), its downstream metabolite, and dietary studies with rodents have been useful for validation. However, levels of LA in research diets of rodents, as published in the literature, are notoriously erratic making interspecies comparisons unreliable. Therefore, the ability to extrapolate the biological effects of dietary LA from experimental rodents to humans necessitates an allometric scaling model that is rooted within a human equivalent context. Methods To determine the physiological response of dietary LA on tissue AA, a mathematical model for extrapolating nutrients based on energy was used, as opposed to differences in body weight. C57BL/6J mice were divided into 9 groups fed a background diet equivalent to that of the US diet (% energy) with supplemental doses of LA or AA. Changes in the phospholipid fatty acid compositions were monitored in plasma and erythrocytes and compared to data from humans supplemented with equivalent doses of LA or AA. Results Increasing dietary LA had little effect on tissue AA, while supplementing diets with AA significantly increased tissue AA levels, importantly recapitulating results from human trials. Conclusions Thus, interspecies comparisons for dietary LA between rodents and humans can be achieved when rodents are provided human equivalent doses based on differences in metabolic activity as defined by energy consumption. PMID:21702942

  12. Oxygenation by COX-2 (cyclo-oxygenase-2) of 3-HETE (3-hydroxyeicosatetraenoic acid), a fungal mimetic of arachidonic acid, produces a cascade of novel bioactive 3-hydroxyeicosanoids

    PubMed Central

    2005-01-01

    Cyclo-oxygenases-1/2 (COX-1/2) catalyse the oxygenation of AA (arachidonic acid) and related polyunsaturated fatty acids to endoperoxide precursors of prostanoids. COX-1 is referred to as a constitutive enzyme involved in haemostasis, whereas COX-2 is an inducible enzyme expressed in inflammatory diseases and cancer. The fungus Dipodascopsis uninucleata has been shown by us to convert exogenous AA into 3(R)-HETE [3(R)-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid]. 3R-HETE is stereochemically identical with AA, except that a hydroxy group is attached at its C-3 position. Molecular modelling studies with 3-HETE and COX-1/2 revealed a similar enzyme–substrate structure as reported for AA and COX-1/2. Here, we report that 3-HETE is an appropriate substrate for COX-1 and -2, albeit with a lower activity of oxygenation than AA. Oxygenation of 3-HETE by COX-2 produced a novel cascade of 3-hydroxyeicosanoids, as identified with EI (electron impact)–GC–MS, LC–MS–ES (electrospray) and LC–MS–API (atmospheric pressure ionization) methods. Evidence for in vitro production of 3-hydroxy-PGE2 (3-hydroxy-prostaglandin E2) was obtained upon infection of HeLa cells with Candida albicans at an MOI (multiplicity of infection) of 100. Analogous to interaction of AA and aspirin-treated COX-2, 3-HETE was transformed by acetylated COX-2 to 3,15-di-HETE (3,15-dihydroxy-HETE), whereby C-15 showed the (R)-stereochemistry. 3-Hydroxy-PGs are potent biologically active compounds. Thus 3-hydroxy-PGE2 induced interleukin-6 gene expression via the EP3 receptor (PGE2 receptor 3) in A549 cells, and raised cAMP levels via the EP4 receptor in Jurkat cells. Moreover, 3R,15S-di-HETE triggered the opening of the K+ channel in HTM (human trabecular meshwork) cells, as measured by the patch–clamp technique. Since many fatty acid disorders are associated with an ‘escape’ of 3-hydroxy fatty acids from the β-oxidation cycle, the production of 3-hydroxyeicosanoids may be critical in

  13. A human dietary arachidonic acid supplementation study conducted in a metabolic research unit: rationale and design.

    PubMed

    Nelson, G J; Kelley, D S; Emken, E A; Phinney, S D; Kyle, D; Ferretti, A

    1997-04-01

    While there are many reports of studies that fed arachidonic acid (AA) to animals, there are very few reports of AA feeding to humans under controlled conditions. This 130-d study was conceived as a controlled, symmetrical crossover design with healthy, adult male volunteers. They lived in the metabolic research unit (MRU) of the Western Human Nutrition Research (WHNRC) for the entire study. All food was prepared by the WHNRC kitchen. The basal (low-AA) diet consisted of natural foods (30 en% fat, 15 en% protein, and 55 en% carbohydrate), containing 210 mg/d of AA, and met the recommended daily allowance for all nutrients. The high-AA (intervention) diet was similar except that 1.5 g/d of AA in the form of a triglyceride containing 50% AA replaced an equal amount of high-oleic safflower oil in the basal diet. The subjects (ages 20 to 39) were within -10 to +20% of ideal body weight, nonsmoking, and not allowed alcohol in the MRU. Their exercise level was constant, and their body weights were maintained within 2% of entry level. Subjects were initially fed the low-AA diet for 15 d. On day 16, half of the subjects (group A) wee placed on the high-AA diet, and the other group (B) remained on the low-AA diets. On day 65, the two groups switched diets. On day 115, group B returned to the low-AA diet. This design, assuming no carryover effect, allowed us to merge the data from the two groups, with the data comparison days being 65 (low-AA) and 115 (high-AA) for group B and 130 (low-AA) and 65 (high-AA) for group A. The main indices studied were the fatty acid composition of the plasma, red blood cells, platelets, and adipose tissue; in vitro platelet aggregation, bleeding times, clotting factors; immune response as measured by delayed hypersensitivity skin tests, cellular proliferation of peripheral blood mononuclear cells in response to various mitogens and antigens, natural killer cell activity, and response to measles/mumps/rubella and influenza vaccines; the

  14. Quantitation of arachidonic acid metabolites in small tissue biopsies by reversed-phase high-performance liquid chromatography.

    PubMed

    Eberhard, J; Jepsen, S; Albers, H K; Açil, Y

    2000-05-01

    Arachidonic acid metabolites exert a variety of distinct biological effects on the initiation and resolution of inflammatory diseases and their measurements in tissue can be critical to evaluate their regulatory function during the course of inflammation and to supplement in vitro experiments. The aim of this study was the detection and quantitative analysis of four arachidonic acid metabolites in small-sized biopsies of human periodontal tissues. The biopsies were homogenized and injected directly into a single analytical column of a RP-HPLC system. Detection was performed by a photodiode array detector. Calibration was established by dilutions of authentic standards of prostaglandin E2 (PGE2), leukotriene B4 (LTB4), 12(R)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-HETE), and 15(S)-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE). A total of 38 specimens weighing between 19 and 191 mg (wet tissue) were analyzed (mean = 59.9 +/- 30.2 mg). The detection limits were 1 pg for LTB4 and 12-HETE, 0.5 pg for 15-HETE, and 10 ng for PGE2. The concentrations of PGE2 and LTB4 were significantly higher in inflamed than in healthy periodontal tissues (P = 0.0079; P = 0. 0114). 12-HETE was detected in one biopsy (30 pg/g); 15-HETE was not detected. This method of homogenization, extraction, and analysis of arachidonic acid metabolites by RP-HPLC appears to be well suited for studies of human oral biopsies. Only small tissue samples and minimal laboratory equipment were required for a sensitive analysis. PMID:10790308

  15. Anger induced by interferon-alpha is moderated by ratio of arachidonic acid to omega-3 fatty acids

    PubMed Central

    Lotrich, Francis E.; Sears, Barry; McNamara, Robert K.

    2013-01-01

    Objective Anger worsens in some patients during interferon-alpha (IFN-α) therapy. Elevated anger has also been associated with lower long-chain omega-3 (LCn-3) fatty acid levels. We examined whether fatty acids could influence vulnerability to anger during IFN-α exposure. Methods Plasma arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) levels were determined prior to IFN-α therapy by mass spectroscopy. Repeated-measure analyses examined the relationship between AA/EPA+DHA and the subsequent development of labile anger and irritability in 82 subjects who prospectively completed the Anger, Irritability, and Assault Questionnaire (AIAQ) during the first eight weeks of IFN-α therapy. Results Prior to IFN-α therapy, AA/EPA+DHA did not correlate with either labile anger or irritability. Pre-treatment AA/EPA+DHA did correlate with the subsequent maximal increase in labile anger during IFN-α therapy (r=0.33; p=0.005). Over time, labile anger increased more in subjects with above median AA/EPA+DHA ratios (p<0.05). Of the 17 subjects ultimately requiring psychiatric intervention for anger, 14/17 had above-median AA/EPA+DHA ratios (p=0.009). There was also an interaction with the tumor necrosis factor-alpha (TNF-α) promoter polymorphism (A-308G), such that only those with both elevated AA/EPA+DHA and the A allele had increased labile anger (p=0.001). In an additional 18 subjects, we conversely observed that selective serotonin reuptake inhibitor treatment was associated with increased irritability during IFN-α therapy. Conclusion LCn-3 fatty acid status may influence anger development during exposure to elevated inflammatory cytokines, and may interact with genetic risk for increased brain TNF-α. LCn-3 supplements may be one strategy for minimizing this adverse side effect of IFN-α. PMID:24182638

  16. In vitro ozone exposure increases release of arachidonic acid products from a human bronchial epithelial cell line

    SciTech Connect

    McKinnon, K.P.; Madden, M.C.; Noah, T.L.; Devlin, R.B. )

    1993-02-01

    Eicosanoids released after ozone exposure of a human bronchial epithelial cell line, BEAS-S6, were analyzed by high-pressure liquid chromatography (HPLC) of supernatants from exposed cells prelabeled with [3H]arachidonic acid. BEAS cells released thromboxane B2 (TxB2), prostaglandin E2 (PGE2), leukotriene C4 (LTC4), LTD4, LTE4, and 12-hydroxyheptadecatrienoic acid (HHT) after exposure to ozone at concentrations of 0.1, 0.25, 0.5, and 1.0 ppm. The eicosanoids were identified by coelution with authentic standards. The largest product from ozone-exposed BEAS cells was the most polar peak, designated Peak 1. Release of cyclooxygenase products such as TxB2, PGE2, and HHT was inhibited by acetylsalicylic acid. Peaks that migrated with authentic standards for LTB4, LTC4, and LTD4 were inhibited by the lipoxygenase inhibitor nordihydroguaiaretic acid. The leukotrienes LTB4 and LTC4/D4 could also be detected by immunoassay of concentrated peak fractions. Thus BEAS cells released eicosanoids from cyclooxygenase and lipoxygenase pathways of arachidonic acid metabolism following exposure to ozone. Airway epithelial cells may be an important source of eicosanoids following ozone stimulation in humans.

  17. Purified group X secretory phospholipase A(2) induced prominent release of arachidonic acid from human myeloid leukemia cells.

    PubMed

    Hanasaki, K; Ono, T; Saiga, A; Morioka, Y; Ikeda, M; Kawamoto, K; Higashino, K; Nakano, K; Yamada, K; Ishizaki, J; Arita, H

    1999-11-26

    Group X secretory phospholipase A(2) (sPLA(2)-X) possesses several structural features characteristic of both group IB and IIA sPLA(2)s (sPLA(2)-IB and -IIA) and is postulated to be involved in inflammatory responses owing to its restricted expression in the spleen and thymus. Here, we report the purification of human recombinant COOH-terminal His-tagged sPLA(2)-X, the preparation of its antibody, and the purification of native sPLA(2)-X. The affinity-purified sPLA(2)-X protein migrated as various molecular species of 13-18 kDa on SDS-polyacrylamide gels, and N-glycosidase F treatment caused shifts to the 13- and 14-kDa bands. NH(2)-terminal amino acid sequencing analysis revealed that the 13-kDa form is a putative mature sPLA(2)-X and the 14-kDa protein possesses a propeptide of 11 amino acid residues attached at the NH(2) termini of the mature protein. Separation with reverse-phase high performance liquid chromatography revealed that N-linked carbohydrates are not required for the enzymatic activity and pro-sPLA(2)-X has a relatively weak potency compared with the mature protein. The mature sPLA(2)-X induced the release of arachidonic acid from phosphatidylcholine more efficiently than other human sPLA(2) groups (IB, IIA, IID, and V) and elicited a prompt and marked release of arachidonic acid from human monocytic THP-1 cells compared with sPLA(2)-IB and -IIA with concomitant production of prostaglandin E(2). A prominent release of arachidonic acid was also observed in sPLA(2)-X-treated human U937 and HL60 cells. Immunohistochemical analysis of human lung preparations revealed its expression in alveolar epithelial cells. These results indicate that human sPLA(2)-X is a unique N-glycosylated sPLA(2) that releases arachidonic acid from human myeloid leukemia cells more efficiently than sPLA(2)-IB and -IIA. PMID:10567392

  18. Arachidonate metabolism, 5-hydroxytryptamine release and aggregation in human platelets activated by palmitaldehyde acetal phosphatidic acid.

    PubMed Central

    Brammer, J. P.; Maguire, M. H.

    1984-01-01

    -methylthio-AMP, both MDA formation and [14C]-5-HT release were abolished and monophasic, reversible aggregation remained. Albumin was required for aggregation of washed human platelets to PGAP . Irreversible PGAP -induced aggregation of washed [14C]-arachidonate-labelled platelets was accompanied by a low net loss of 14C from platelet phospholipids, an equivalent increase in 14C in free fatty acids, and the appearance of 14C in thromboxane (Tx)B2; mepacrine reduced the loss in 14C from phospholipids and inhibited aggregation and formation of [14C]-TxA2.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:6428500

  19. Blockade of arachidonic acid pathway induces sprouting in the adult but not in the neonatal uncrossed retinotectal projection.

    PubMed

    Campello-Costa, P; Fosse-Júnior, A M; Oliveira-Silva, P; Serfaty, C A

    2006-01-01

    The uncrossed retinotectal projection of rats undergoes extensive axonal elimination and subsequent growth of axonal arbors in topographically appropriate territories within the first two/three postnatal weeks. Nitric oxide has been implicated in development and stabilization of synapses in the retinotectal pathway since blockade of nitric oxide synthesis disrupts the normal pattern of retinal innervation in subcortical nuclei. The present work investigated the role of arachidonic acid pathway in the development and maintenance of ipsilateral retinotectal axons. We also investigated the role of this retrograde messenger in the modulation of plasticity that follows retinal lesions in the opposite eye. Pigmented rats received systemic treatment with quinacrine, a phospholipase A2 inhibitor, indomethacin, a cyclooxygenase inhibitor, nordihydroguaiaretic acid, a 5-lipoxygenase inhibitor or vehicle during 4-8 days at various postnatal ages. Rats given a unilateral temporal retinal lesion were treated with either quinacrine or vehicle during the same period. For anterograde tracing of ipsilateral retinal projections, animals received intraocular injections of horseradish peroxidase. Before the third postnatal week no difference was observed in the laminar or topographic organization of the ipsilateral retinotectal projection between vehicle and treated rats in either normal or lesion conditions. After the third postnatal week, however, systemic blockade of phospholipase A2 or 5-lipoxygenase, but not cyclooxygenase induced sprouting of uncrossed axons throughout the collicular visual layers in unoperated rats. In retinal lesion groups, phospholipase A2 blockade increased the sprouting of uncrossed intact axons to the collicular surface in the same period. The results suggest that arachidonic acid or lipoxygenase metabolites play a role in the maintenance of the retinotectal synapses after the critical period and that the blockade of the arachidonic acid pathway induces

  20. Anti-Inflammation Effects and Potential Mechanism of Saikosaponins by Regulating Nicotinate and Nicotinamide Metabolism and Arachidonic Acid Metabolism.

    PubMed

    Ma, Yu; Bao, Yongrui; Wang, Shuai; Li, Tianjiao; Chang, Xin; Yang, Guanlin; Meng, Xiansheng

    2016-08-01

    Inflammation is an important immune response; however, excessive inflammation causes severe tissue damages and secondary inflammatory injuries. The long-term and ongoing uses of routinely used drugs such as non-steroidal anti-inflammatory drugs (NSAIDS) are associated with serious adverse reactions, and not all patients have a well response to them. Consequently, therapeutic products with more safer and less adverse reaction are constantly being sought. Radix Bupleuri, a well-known traditional Chinese medicine (TCM), has been reported to have anti-inflammatory effects. However, saikosaponins (SS) as the main pharmacodynamic active ingredient, their pharmacological effects and action mechanism in anti-inflammation have not been reported frequently. This study aimed to explore the anti-inflammatory activity of SS and clarify the potential mechanism in acute inflammatory mice induced by subcutaneous injection of formalin in hind paws. Paw edema was detected as an index to evaluate the anti-inflammatory efficacy of SS. Then, a metabolomic method was used to investigate the changed metabolites and potential mechanism of SS. Metabolite profiling was performed by high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS). The detection and identification of the changed metabolites were systematically analyzed by multivariate data and pathway analysis. As a result, 12 different potential biomarkers associated with SS in anti-inflammation were identified, including nicotinate, niacinamide, arachidonic acid (AA), and 20-carboxy-leukotriene B4, which are associated with nicotinate and nicotinamide metabolism and arachidonic acid metabolism. The expression levels of biomarkers were effectively modulated towards the normal range by SS. It indicated that SS show their effective anti-inflammatory effects through regulating nicotinate and nicotinamide metabolism and arachidonic acid metabolism. PMID:27251379

  1. Eoxins are proinflammatory arachidonic acid metabolites produced via the 15-lipoxygenase-1 pathway in human eosinophils and mast cells.

    PubMed

    Feltenmark, Stina; Gautam, Narinder; Brunnström, Asa; Griffiths, William; Backman, Linda; Edenius, Charlotte; Lindbom, Lennart; Björkholm, Magnus; Claesson, Hans-Erik

    2008-01-15

    Human eosinophils contain abundant amounts of 15-lipoxygenase (LO)-1. The biological role of 15-LO-1 in humans, however, is unclear. Incubation of eosinophils with arachidonic acid led to formation of a product with a UV absorbance maximum at 282 nm and shorter retention time than leukotriene (LT)C4 in reverse-phase HPLC. Analysis with positive-ion electrospray tandem MS identified this eosinophil metabolite as 14,15-LTC4. This metabolite could be metabolized to 14,15-LTD4 and 14,15-LTE4 in eosinophils. Because eosinophils are such an abundant source of these metabolites and to avoid confusion with 5-LO-derived LTs, we suggest the names eoxin (EX)C4, -D4, and -E4 instead of 14,15-LTC4, -D4, and -E4, respectively. Cord blood-derived mast cells and surgically removed nasal polyps from allergic subjects also produced EXC4. Incubation of eosinophils with arachidonic acid favored the production of EXC4, whereas challenge with calcium ionophore led to exclusive formation of LTC4. Eosinophils produced EXC4 after challenge with the proinflammatory agents LTC4, prostaglandin D2, and IL-5, demonstrating that EXC4 can be synthesized from the endogenous pool of arachidonic acid. EXs induced increased permeability of endothelial cell monolayer in vitro, indicating that EXs can modulate and enhance vascular permeability, a hallmark of inflammation. In this model system, EXs were 100 times more potent than histamine and almost as potent as LTC4 and LTD4. Taken together, this article describes the formation of proinflammatory EXs, in particular in human eosinophils but also in human mast cells and nasal polyps. PMID:18184802

  2. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death

    PubMed Central

    Zhou, Shengtao; Zhao, Linjie; Yi, Tao; Wei, Yuquan; Zhao, Xia

    2016-01-01

    Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic state of genital organs. However, the molecular mechanisms for this process are not fully understood. In this study, we aimed to investigate the potential molecular mechanisms that underlie menopause-induced uterine endometrial atrophy. Our data showed that autophagy was activated in the uterine epithelial cells of both ovariectomized rats and peri-menopausal females. Endoplasmic reticulum (ER) stress occurred even prior to autophagy induction. Integrated bioinformatics analysis revealed that ER stress induced downstream decreased release of arachidonic acid (AA) and downregulation of AA/prostaglandin E2 (PGE2) axis, which led to Akt/mTOR signaling pathway inactivation. Consequently, autophagosomes were recruited and LC3-dependent autophagy was induced in uterine epithelial cells. Treatment with exogenous E2, PGE2, salubrinal or RNAi-mediated silencing of key autophagy genes could effectively counteract estrogen depletion-induced autophagy. Collectively, autophagy is a critical regulator of the uterine epithelium that accounts for endometrial atrophy after menopause. PMID:27506466

  3. Early release of arachidonic acid prevents an otherwise immediate formation of toxic levels of peroxynitrite in astrocytes stimulated with lipopolysaccharide/interferon-gamma.

    PubMed

    Palomba, Letizia; Amadori, Alessandra; Cantoni, Orazio

    2007-11-01

    Addition of bacterial lipopolysaccharides (LPS) and interferon-gamma (IFN-gamma) to rat astrocytes in primary culture promotes an early release of arachidonic acid (ARA) associated with an immediate inhibition of neuronal nitric oxide synthase (nNOS). Preventing the release of constitutive nitric oxide (NO) is indeed critical for activation of the nuclear factor kappa B, and for the expression of inducible nitric oxide synthase responsible for the formation of large amounts of NO. LPS/IFN-gamma also promotes an early release of superoxide, via activation of NADPH oxidase, but the generation of peroxynitrite (ONOO-) is prevented by the different timing of superoxide (minutes) and NO (hours) formation. Upstream inhibition of the ARA-dependent nNOS inhibitory signaling, however, caused the parallel release of superoxide and constitutive NO, thereby leading to formation of ONOO- levels triggering loss of ATP and mitochondrial membrane potential followed by the mitochondrial release of cytochrome c, activation of caspase 3 and morphological evidence of apoptosis. Nanomolar levels of exogenous ARA prevented all these events via inhibition of early ONOO- formation. Thus, the ARA-dependent nNOS inhibition observed in astrocytes exposed to pro-inflammatory stimuli, as LPS/IFN-gamma, is critical for both the expression of nuclear factor kappa B-dependent genes and for survival. PMID:17666049

  4. Menopause-induced uterine epithelium atrophy results from arachidonic acid/prostaglandin E2 axis inhibition-mediated autophagic cell death.

    PubMed

    Zhou, Shengtao; Zhao, Linjie; Yi, Tao; Wei, Yuquan; Zhao, Xia

    2016-01-01

    Women experience menopause later in life. Menopause is characterized by dramatically decreased circulating estrogen level secondary to loss of ovarian function and atrophic state of genital organs. However, the molecular mechanisms for this process are not fully understood. In this study, we aimed to investigate the potential molecular mechanisms that underlie menopause-induced uterine endometrial atrophy. Our data showed that autophagy was activated in the uterine epithelial cells of both ovariectomized rats and peri-menopausal females. Endoplasmic reticulum (ER) stress occurred even prior to autophagy induction. Integrated bioinformatics analysis revealed that ER stress induced downstream decreased release of arachidonic acid (AA) and downregulation of AA/prostaglandin E2 (PGE2) axis, which led to Akt/mTOR signaling pathway inactivation. Consequently, autophagosomes were recruited and LC3-dependent autophagy was induced in uterine epithelial cells. Treatment with exogenous E2, PGE2, salubrinal or RNAi-mediated silencing of key autophagy genes could effectively counteract estrogen depletion-induced autophagy. Collectively, autophagy is a critical regulator of the uterine epithelium that accounts for endometrial atrophy after menopause. PMID:27506466

  5. Plasma oxylipin profiling identifies polyunsaturated vicinal diols as responsive to arachidonic acid and docosahexaenoic acid intake in growing piglets.

    PubMed

    Bruins, Maaike J; Dane, Adrie D; Strassburg, Katrin; Vreeken, Rob J; Newman, John W; Salem, Norman; Tyburczy, Cynthia; Brenna, J Thomas

    2013-06-01

    The dose-responsiveness of plasma oxylipins to incremental dietary intake of arachidonic acid (20:4n-6; ARA) and docosahexaenoic acid (22:6n-3; DHA) was determined in piglets. Piglets randomly received one of six formulas (n = 8 per group) from days 3 to 27 postnatally. Diets contained incremental ARA or incremental DHA levels as follows (% fatty acid, ARA/DHA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3-D3) 0.69/1.0; (A4) 1.1/1.0; (D1) 0.66/0.33; and (D2) 0.67/0.62, resulting in incremental intake (g/kg BW/day) of ARA: 0.07 ± 0.01, 0.43 ± 0.03, 0.55 ± 0.03, and 0.82 ± 0.05 at constant DHA intake (0.82 ± 0.05), or incremental intake of DHA: 0.27 ± 0.02, 0.49 ± 0.03, and 0.81 ± 0.05 at constant ARA intake (0.54 ± 0.04). Plasma oxylipin concentrations and free plasma PUFA levels were determined at day 28 using LC-MS/MS. Incremental dietary ARA intake dose-dependently increased plasma ARA levels. In parallel, ARA intake dose-dependently increased ARA-derived diols 5,6- and 14,15-dihydroxyeicosatrienoic acid (DiHETrE) and linoleic acid-derived 12,13-dihydroxyoctadecenoic acid (DiHOME), downstream metabolites of cytochrome P450 expoxygenase (CYP). The ARA epoxide products from CYP are important in vascular homeostatic maintenance. Incremental DHA intake increased plasma DHA and most markedly raised the eicosapentaenoic acid (EPA) metabolite 17,18-dihydroxyeicosatetraenoic acid (DiHETE) and the DHA metabolite 19,20-dihydroxydocosapentaenoic acid (DiHDPE). In conclusion, increasing ARA and DHA intake dose-dependently influenced endogenous n-6 and n-3 oxylipin plasma concentrations in growing piglets, although the biological relevance of these findings remains to be determined. PMID:23543770

  6. The role of arachidonic acid metabolism in virus-induced alveolar macrophage dysfunction

    SciTech Connect

    Laegreid, W.W.

    1988-01-01

    Alveolar macrophages (AM) recovered from virus-infected lungs have decreased phagocytic, respiratory burst and bactericidal activities. The studies described below investigated the role of eicosanoids in virus induced AM bactericidal dysfunction. The spectrum of eicosanoid metabolites which bovine AM are capable of producing was determined. Cultured AM were exposed to {sup 3}H-arachidonate for 1 hour, stimulated for 4 hours with A23187, phorbol myristate acetate or zymosan and the supernatants extracted and analyzed by HPLC. All stimuli tested caused the release of these cyclooxygenase metabolites: thromboxane B{sub 2}, PGF{sub 2}, PGE{sub 2}, PGD{sub 2} and HHT. The effect of this enhanced release of arachidonate metabolites on the ability of AM to kill bacteria was evaluated. Preincubation with cyclooxygenase inhibitors or dual cyclooxygenase and lipoxygenase inhibitors resulted in partial reversal of the virus-induced bactericidal deficit in PI3 infected AM.

  7. Swelling-activated and arachidonic acid-induced currents are TREK-1 in rat bladder smooth muscle cells.

    PubMed

    Fukasaku, Mitsuko; Kimura, Junko; Yamaguchi, Osamu

    2016-06-01

    Using the perforated patch voltage clamp, we investigated swelling-activated ionic channels (SACs) in rat urinary bladder smooth muscle cells. Hypo-osmotic (60%) bath solution increased a membrane current which was inhibited by the SAC inhibitor, gadolinium. The reversal potential of the hypotonicity-induced current shifted in the positive direction by increasing external K(+) concentration. The hypotonicity-induced current was inhibited by extracellular acidic pH, phorbol ester and forskolin. These pharmacological properties are identical to those of arachidonic acid-induced current present in these cells, suggesting the presence of TREK-1, a four-transmembrane two pore domain K(+) channel. Using RT-PCR we screened rat bladder smooth muscles and cerebellum for expression of TREK-1, TREK-2 and TRAAK mRNAs. Only TREK-1 mRNA was expressed in the bladder, while all three were expressed in the cerebellum. We conclude that a mechanosensitive K(+) channel is present in rat bladder myocytes, which is activated by arachidonic acid and most likely is TREK-1. This K(+) channel may have an important role in the regulation of bladder smooth muscle tone during urine storage. PMID:26911303

  8. Tumor cell-endothelial cell interactions: evidence for roles for lipoxygenase products of arachidonic acid in metastasis.

    PubMed

    Damtew, B; Spagnuolo, P J

    1997-04-01

    Adhesion of tumor cells (TC) to endothelial cells (EC) is necessary for movement of TC out of the interstitium to form metastatic deposits. This interaction may be influenced by proadhesive molecules such as lipoxygenase products of arachidonic acid metabolism. We studied the effect of inflammatory stimuli, A23187 calcium ionophore, n-formyl-methionyl-leucine-phenylalanine (FMLP) and phorbol myristate acetate (PMA) on TC-EC interaction. Adherence of metastatic breast tumor cell line (MCF-7), choriocarcinoma cell line (JEG-3), and non metastatic pituitary cell (GH-3) were assayed as the number of radiolabeled TC attached to EC (cpm/well). TC and EC were incubated with A23187, FMLP, and PMA for varying time periods. Lipoxygenase products (LTB4, 5-HETE) were measured under basal and stimulated conditions using RP-HPLC and RIA. There were no differences in basal adherence of TC lines to EC. When EC were incubated with stimuli, there were significant increases in the numbers of MCF-7 and JEG-3 cells adherent to EC compared to GH-3. Light and phase contrast microscopy confirmed that TC were attached to EC. Upon stimulation, GH-3 preferentially produced prostaglandins (PGI1(2)) while MCF-7 and JEG-3 produced lipoxygenase products (LTB4 and 5-HETE). Pre-incubation of MCF-7 and JEG-3 with the lipoxygenase inhibitor nordihydroguiaretic acid resulted in partial inhibition of adhesion to EC. Our data strongly indicate a role for lipoxygenase products of arachidonic acid in adherence of TC to EC. PMID:9150375

  9. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS.

    PubMed

    Del Bufalo, Aurélia; Bernad, José; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Françoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE(2,) TxB(2) and PGD(2)), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE(2) inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. PMID:21807015

  10. Isoliquiritigenin induces growth inhibition and apoptosis through downregulating arachidonic acid metabolic network and the deactivation of PI3K/Akt in human breast cancer

    SciTech Connect

    Li, Ying; Zhao, Haixia; Wang, Yuzhong; Zheng, Hao; Yu, Wei; Chai, Hongyan; Zhang, Jing; Falck, John R.; Guo, Austin M.; Yue, Jiang; Peng, Renxiu; Yang, Jing

    2013-10-01

    Arachidonic acid (AA)-derived eicosanoids and its downstream pathways have been demonstrated to play crucial roles in growth control of breast cancer. Here, we demonstrate that isoliquiritigenin, a flavonoid phytoestrogen from licorice, induces growth inhibition and apoptosis through downregulating multiple key enzymes in AA metabolic network and the deactivation of PI3K/Akt in human breast cancer. Isoliquiritigenin diminished cell viability, 5-bromo-2′-deoxyuridine (BrdU) incorporation, and clonogenic ability in both MCF-7 and MDA-MB-231cells, and induced apoptosis as evidenced by an analysis of cytoplasmic histone-associated DNA fragmentation, flow cytometry and hoechst staining. Furthermore, isoliquiritigenin inhibited mRNA expression of multiple forms of AA-metabolizing enzymes, including phospholipase A2 (PLA2), cyclooxygenases (COX)-2 and cytochrome P450 (CYP) 4A, and decreased secretion of their products, including prostaglandin E{sub 2} (PGE{sub 2}) and 20-hydroxyeicosatetraenoic acid (20-HETE), without affecting COX-1, 5-lipoxygenase (5-LOX), 5-lipoxygenase activating protein (FLAP), and leukotriene B{sub 4} (LTB{sub 4}). In addition, it downregulated the levels of phospho-PI3K, phospho-PDK (Ser{sup 241}), phospho-Akt (Thr{sup 308}), phospho-Bad (Ser{sup 136}), and Bcl-x{sub L} expression, thereby activating caspase cascades and eventually cleaving poly(ADP-ribose) polymerase (PARP). Conversely, the addition of exogenous eicosanoids, including PGE{sub 2}, LTB{sub 4} and a 20-HETE analog (WIT003), and caspase inhibitors, or overexpression of constitutively active Akt reversed isoliquiritigenin-induced apoptosis. Notably, isoliquiritigenin induced growth inhibition and apoptosis of MDA-MB-231 human breast cancer xenografts in nude mice, together with decreased intratumoral levels of eicosanoids and phospho-Akt (Thr{sup 308}). Collectively, these data suggest that isoliquiritigenin induces growth inhibition and apoptosis through downregulating AA metabolic

  11. Arachidonic acid and prostaglandin E2 influence human osteoblast (MG63) response to titanium surface roughness.

    PubMed

    Dean, David D; Campbell, Casey M; Gruwell, Scott F; Tindall, John W M; Chuang, Hui-Hsiu; Zhong, Weinan; Schmitz, John P; Sylvia, Victor L

    2008-01-01

    Prior studies have shown that implant surface roughness affects osteoblast proliferation, differentiation, matrix synthesis, and local factor production. Further, cell response is modulated by systemic factors, such as 1,25(OH)2D3 and estrogen as well as mechanical forces. Based on the fact that peri-implant bone healing occurs in a site containing elevated amounts of prostaglandin E2 (PGE2), the hypothesis of the current study is that PGE2 and arachidonic acid (AA), the substrate used by cyclooxygenase to form PGE2, influence osteoblast response to implant surface roughness. To test this hypothesis, 4 different types of commercially pure titanium (cpTi) disks with surfaces of varying roughness (smooth Ti, R(a) 0.30 microm; smooth and acid etched Ti [SAE Ti], R(a) 0.40 microm; rough Ti, R(a) 4.3 microm; rough and acid etched Ti [RAE Ti], R(a) 4.15 (microm) were prepared. MG63 osteoblasts were seeded onto the surfaces, cultured to confluence, and then treated for the last 24 hours of culture with AA (0, 0.1, 1, and 10 nM), PGE2 (0, 1, 10, 25, and 100 nM), or the general cyclooxygenase inhibitor indomethacin (0 or 100 nM). At harvest, the effect of treatment on cell proliferation was assessed by measuring cell number and [3H]-thymidine incorporation, and the effect on cell differentiation was determined by measuring alkaline phosphatase (ALP) specific activity. The effect of AA and PGE2 on cell number was somewhat variable but showed a general decrease on plastic and smooth surfaces and an increase on rough surfaces. In contrast, [3H]-thymidine incorporation was uniformly decreased with treatment on all surfaces. ALP demonstrated the most prominent effect of treatment. On smooth surfaces, AA and PGE2 dose-dependently increased ALP, while on rough surfaces, treatment dose-dependently decreased enzyme specific activity. Indomethacin treatment had either no effect or a slightly inhibitory effect on [3H]-thymidine incorporation on all surfaces. In contrast, indomethacin

  12. Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system.

    PubMed Central

    Curnutte, J T

    1985-01-01

    Sonicates from unstimulated human neutrophils produce no measurable superoxide since the superoxide-generating enzyme, NADPH oxidase, is inactive in these preparations. Previous attempts to activate the oxidase in disrupted cells with conventional neutrophil stimuli have been unsuccessful. This report describes a cell-free system in which arachidonic acid (82 microM) was able to activate superoxide generation that was dependent upon the presence of NADPH and the sonicate. For activation to occur, both the particulate and supernatant fractions of the sonicate must be present. Calcium ions, which are required for activation of intact neutrophils by arachidonate, were not necessary in the cell-free system. In quantitative terms, the superoxide-generating activity in the cell-free system could account for at least 20-50% of the superoxide rate observed in intact neutrophils stimulated with arachidonate. Sonicates from patients with chronic granulomatous disease (CGD) could not be activated by arachidonic acid in the cell-free system. In three patients representing both genetic forms of CGD, the defect appeared to reside in the particulate fraction. The soluble cofactor was normal in all three patients and could be used to activate normal neutrophil pellets in the presence of arachidonic acid. Thus, at least a portion of the activation mechanism in the neutrophil, that residing in the soluble phase, appeared to be normal in patients with CGD. PMID:2987311

  13. Diverse ways of perturbing the human arachidonic acid metabolic network to control inflammation.

    PubMed

    Meng, Hu; Liu, Ying; Lai, Luhua

    2015-08-18

    Inflammation and other common disorders including diabetes, cardiovascular disease, and cancer are often the result of several molecular abnormalities and are not likely to be resolved by a traditional single-target drug discovery approach. Though inflammation is a normal bodily reaction, uncontrolled and misdirected inflammation can cause inflammatory diseases such as rheumatoid arthritis and asthma. Nonsteroidal anti-inflammatory drugs including aspirin, ibuprofen, naproxen, or celecoxib are commonly used to relieve aches and pains, but often these drugs have undesirable and sometimes even fatal side effects. To facilitate safer and more effective anti-inflammatory drug discovery, a balanced treatment strategy should be developed at the biological network level. In this Account, we focus on our recent progress in modeling the inflammation-related arachidonic acid (AA) metabolic network and subsequent multiple drug design. We first constructed a mathematical model of inflammation based on experimental data and then applied the model to simulate the effects of commonly used anti-inflammatory drugs. Our results indicated that the model correctly reproduced the established bleeding and cardiovascular side effects. Multitarget optimal intervention (MTOI), a Monte Carlo simulated annealing based computational scheme, was then developed to identify key targets and optimal solutions for controlling inflammation. A number of optimal multitarget strategies were discovered that were both effective and safe and had minimal associated side effects. Experimental studies were performed to evaluate these multitarget control solutions further using different combinations of inhibitors to perturb the network. Consequently, simultaneous control of cyclooxygenase-1 and -2 and leukotriene A4 hydrolase, as well as 5-lipoxygenase and prostaglandin E2 synthase were found to be among the best solutions. A single compound that can bind multiple targets presents advantages including low

  14. Increased fatty acid unsaturation and production of arachidonic acid by homologous over-expression of the mitochondrial malic enzyme in Mortierella alpina

    PubMed Central

    Hao, Guangfei; Du, Kai; Huang, Xiaoyun; Song, Yuanda; Gu, Zhennan; Wang, Lei; Zhang, Hao; Chen, Wei; Chen, Yong Q.

    2015-01-01

    Malic enzyme (ME) catalyses the oxidative decarboxylation of L-malate to pyruvate and provides NADPH for intracellular metabolism, such as fatty acid synthesis. Here, the mitochondrial ME (mME) gene from Mortierella alpina was homologously over-expressed. Compared with controls, fungal arachidonic acid (ARA; 20:4 n-6) content increased by 60 % without affecting the total fatty acid content. Our results suggest that enhancing mME activity may be an effective mean to increase industrial production of ARA in M. alpina. PMID:24863290

  15. Effects of dietary combination of n-3 and n-9 fatty acids on the deposition of linoleic and arachidonic acid in broiler chicken meats.

    PubMed

    Shin, D; Choi, S H; Go, G; Park, J H; Narciso-Gaytán, C; Morgan, C A; Smith, S B; Sánchez-Plata, M X; Ruiz-Feria, C A

    2012-04-01

    To minimize the amount of n-6 fatty acids in broiler chicken meat, 120 Cobb × Ross male broilers were divided into 6 different groups and fed a basal corn-soybean meal diet containing 5% fat from 5 different lipid sources: 1) a commercial mix of animal and vegetable oil, 2) soybean oil and olive oil (2.5% each), 3) flaxseed oil and olive oil (2.5% each), 4) flaxseed oil, eicosapentaenoic acid (C20:5; EPA; n-3), and olive oil (2.45, 0.05, and 2.5% respectively; FEO), 5) flaxseed oil, docosahexaenoic acid (C22:6; DHA; n-3), and olive oil (2.45, 0.05, and 2.5% respectively; FDO), and 6) fish oil and olive oil (2.5% each; FHO). At 6 and 9 wk, one bird per pen (4 pens per treatment) was processed, and liver, breast, and thigh samples were collected and used for fatty acid profiles or Δ6- and Δ9-desaturase mRNA gene expression levels. The deposition of linoleic acid (C18:2; n-6) or arachidonic acid (C20:4; n-6) was decreased in breast and thigh muscles of chickens fed n-3 fatty acids for 9 wk compared with chickens fed animal and vegetable oil and soybean oil and olive oil diets (P < 0.05). The addition of EPA to the diet (FEO; P > 0.05) did not reduce the deposition of linoleic acid and arachidonic acid as much as DHA (FDO; P < 0.05), and it suppressed the expression of Δ6- and Δ9-desaturase. When EPA and DHA were blended (FHO) and supplied to broiler chickens for 9 wk, EPA and DHA combination effects were observed on the deposition of LA and arachidonic acid in breast and thigh muscles. Thereby, the addition of a mixed EPA and DHA to a broiler chicken diet may be recommendable to reduce arachidonic acid accumulation in both broiler chicken breast and thigh meats, providing a functional broiler chicken meat to consumers. PMID:22399741

  16. Differences in responsiveness of intrapulmonary artery and vein to arachidonic acid: mechanism of arterial relaxation involves cyclic guanosine 3':5'-monophosphate and cyclic adenosine 3':5'-monophosphate

    SciTech Connect

    Ignarro, L.J.; Harbison, R.G.; Wood, K.S.; Wolin, M.S.; McNamara, D.B.; Hyman, A.L.; Kadowitz, P.J.

    1985-06-01

    The objective of this study was to examine the relationship between responses of bovine intrapulmonary artery and vein to arachidonic acid and cyclic nucleotide levels in order to better understand the mechanism of relaxation elicited by arachidonic acid and acetylcholine. Arachidonic acid relaxed phenylephrine-precontracted arterial rings and elevated both cyclic GMP and cyclic AMP levels in arteries with intact endothelium. In contrast, endothelium-damaged arterial rings contracted to arachidonic acid without demonstrating significant changes in cyclic nucleotide levels. Indomethacin partially inhibited endothelium-dependent relaxation and abolished cyclic AMP accumulation whereas methylene blue, a guanylate cyclase inhibitor, partially inhibited relaxation and abolished cyclic GMP accumulation in response to arachidonic acid. All vessel responses were blocked by a combination of the two inhibitors. Prostaglandin (PG) I2 relaxed arterial rings and elevated cyclic AMP levels whereas PGE2 and PGF2 alpha caused contraction, suggesting that the indomethacin-sensitive component of arachidonic acid-elicited relaxation is due to PGI2 formation and cyclic AMP accumulation. The methylene blue-sensitive component is attributed to an endothelium-dependent but cyclooxygenase-independent generation of a substance causing cyclic GMP accumulation. Intrapulmonary veins contracted to arachidonic acid with no changes in cyclic nucleotide levels and PGI2 was without effect. Homogenates of intrapulmonary artery and vein formed 6-keto-PGF1 alpha, PGF2 alpha and PGE2 from (/sup 14/C)arachidonic acid, which was inhibited by indomethacin. Thus, bovine intrapulmonary vein may not possess receptors for PGI2.

  17. Involvement of capsaicin-sensitive nerves in the bronchomotor effects of arachidonic acid and melittin: a possible role for lipoxin A4.

    PubMed Central

    Manzini, S.; Meini, S.

    1991-01-01

    1. Functional studies have been performed to evaluate the potential involvement of capsaicin-sensitive nerves in the bronchomotor responses evoked by lipid mediators produced from the metabolic breakdown of arachidonic acid (AA) in the guinea-pig bronchus. 2. In the presence of indomethacin, the exogenous administration of AA (0.01-1 mM) produced a concentration-dependent contractile response in guinea-pig isolated bronchial rings. AA-induced contractions were augmented by epithelium-removal and by thiorphan (10 microM), an inhibitor of tachykinin breakdown. A sustained downward and rightward displacement of the complete concentration-response curve to AA was observed after in vitro capsaicin desensitization. 3. BWA4C (1 microM), a selective inhibitor of 5-lipoxygenase, shifted the AA concentration-response curve to the right. In the presence of this inhibitor, capsaicin desensitization did not have any further inhibitory action. 4. A potent, concentration-dependent and capsaicin-sensitive bronchoconstrictor effect was also observed with the polypeptide, melittin (10 nM-1 microM), an activator of phospholipase A2, which therefore should generate endogenous AA. 5. In vitro capsaicin-desensitization produced a significant reduction of the bronchomotor responses evoked by lipoxin A4 (1-6 microM), but not of those elicited by other lipoxygenases products such as leukotriene D4 (1-100 nM) or by 15-hydroxyeicosatetraenoic acid (15-HETE, 1-6 microM). 6. These findings indicate that lipoxin A4 but not leukotriene D4 or 15-HETE, might be one of the lipoxygenase mediators of excitatory effects of AA on capsaicin-sensitive sensory nerves. PMID:1908731

  18. Heating of vegetable oils influences the activity of enzymes participating in arachidonic acid formation in Wistar rats.

    PubMed

    Stawarska, Agnieszka; Białek, Agnieszka; Tokarz, Andrzej

    2015-10-01

    Dietary intake of lipids and their fatty acids profile influence many aspects of health. Thermal processing changes the properties of edible oils and can also modify their metabolism, for example, eicosanoids formation. The aim of our study was to verify whether the activity of desaturases can be modified by lipids intake, especially by the fatty acids content. The experimental diets contained rapeseed oil, sunflower oil, and olive oil, both unheated and heated (for 10 minutes at 200 °C each time before administration), and influenced the fatty acids composition in serum and the activity of enzymes participating in arachidonic acid (AA) formation. The activity of desaturases was determined by measuring the amounts of AA formed in vitro derived from linoleic acid as determined in liver microsomes of Wistar rats. In addition, the indices of ∆(6)-desaturase (D6D) and ∆(5)-desaturase (D5D) have been determined. To realize this aim, the method of high-performance liquid chromatography has been used with ultraviolet-visible spectrophotometry detection. Diet supplementation with the oils rich in polyunsaturated fatty acids affects the fatty acids profile in blood serum and the activity of D6D and ∆(5)-desaturase in rat liver microsomes, the above activities being dependent on the kind of oil applied. Diet supplementation with heated oils has been found to increase the amount of AA produced in hepatic microsomes; and in the case of rapeseed oil and sunflower oil, it has also increased D6D activity. PMID:26094213

  19. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS

    SciTech Connect

    Del Bufalo, Aurelia; Bernad, Jose; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Francoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1{beta} and TNF-{alpha}) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE{sub 2,} TxB{sub 2} and PGD{sub 2}), eugenol and cinnamaldehyde inhibiting also the production of IL-1{beta} and TNF-{alpha}. We further demonstrated that there is no unique PGE{sub 2} inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. - Highlights: > We investigated how contact sensitizers modulate an inflammatory response. > We used macrophage-differentiated cell line, U-937 treated with PMA/LPS. > Sensitizers specifically inhibit the production of COX metabolites (PGE2, TxB2). > Several mechanisms of inhibition: COX-2 expression/enzymatic activity, isomerases. > New insight in the biochemical properties of sensitizers.

  20. Lipoxin A4 and lipoxin B4 stimulate the release but not the oxygenation of arachidonic acid in human neutrophils: Dissociation between lipid remodeling and adhesion

    SciTech Connect

    Nigam, S.; Fiore, S.; Luscinskas, F.W.; Serhan, C.N. )

    1990-06-01

    The profiles of actions of lipoxin A4 (LXA4) and lipoxin B4 (LXB4), two lipoxygenase-derived eicosanoids, were examined with human neutrophils. At nanomolar concentrations, LXA4 and LXB4 each stimulated the release of (1-14C)arachidonic acid from esterified sources in neutrophils. Lipoxin-induced release of (1-14C)arachidonic acid was both dose- and time-dependent and was comparable to that induced by the chemotactic peptide f-met-leu-phe. Time-course studies revealed that lipoxin A4 and lipoxin B4 each induced a biphasic release of (1-14C)arachidonic acid, which was evident within seconds (5-15 sec) in its initial phase and minutes (greater than 30 sec) in the second phase. In contrast, the all-trans isomers of LXA4 and LXB4 did not provoke (1-14C)AA release. Lipoxin-induced release of arachidonic acid was inhibited by prior treatment of the cells with pertussis toxin but not by its beta-oligomers, suggesting the involvement of guaninine nucleotide-binding regulatory proteins in this event. Dual radiolabeling of neutrophil phospholipid classes with (1-14C)arachidonic acid and (3H)palmitic acid showed that phosphatidylcholine was a major source of lipoxin-induced release of (1-14C)arachidonic acid. They also demonstrated that lipoxins rapidly stimulate both formation of phosphatidic acid as well as phospholipid remodeling. Although both LXA4 and LXB4 (10(-8)-10(-6) M) stimulated the release of (1-14C)arachidonic acid, neither compound evoked its oxygenation by either the 5- or 15-lipoxygenase pathways (including the formation of LTB4, 20-COOH-LTB4, 5-HETE, or 15-HETE). LXA4 and LXB4 (10(-7) M) each stimulated the elevation of cytosolic Ca2+ as monitored with Fura 2-loaded cells, albeit to a lesser extent than equimolar concentrations of FMLP. Neither lipoxin altered the binding of (3H)LTB4 to its receptor on neutrophils.

  1. Purification and characterization of two forms of cytochrome b5 from an arachidonic acid-producing fungus, Mortierella hygrophila.

    PubMed

    Kouzaki, N; Kawashima, H; Chung, M C; Shimizu, S

    1995-06-01

    Two forms of cytochrome b5 have been purified from the microsomes of an arachidonic acid-producing fungus, Mortierella hygrophila IFO 5941, after detergent solubilization. They have monomeric molecular masses of about 16 kDa and 19 kDa. Their absorption spectra are similar to those of mammalian cytochrome b5s. Their amino acid compositions show some similarity to those of mammalian cytochrome b5s, but the contents of some amino acids (glycine, alanine, aspartic acid + asparagine, glutamic acid + glutamine, arginine, proline, histidine, leucine and lysine) are unique to the cytochrome b5s of M. hygrophila. Some of their internal peptide sequences also show close homology with those of some mammals (approx. 65 to 67%), while some others show no or little homology. The addition of various acyl-CoAs to NADH-reduced microsomes caused an abrupt shiftdown of the steady state reduction level of cytochrome b5. This indicates the increased utilization of electrons for the desaturation process and may suggest that the cytochrome b5s of this fungus actually take part in its microsomal desaturation system for polyunsaturated fatty acid biosynthesis as electron carriers. PMID:7786894

  2. Effect of inhibitors of arachidonic acid metabolism on efflux of intracellular enzymes from skeletal muscle following experimental damage.

    PubMed Central

    Jackson, M J; Wagenmakers, A J; Edwards, R H

    1987-01-01

    The role of arachidonic acid metabolism in the efflux of intracellular enzymes from damaged skeletal muscle has been examined in vitro using inhibitors of cyclo-oxygenase and lipoxygenase enzymes. Damage to skeletal muscle induced by either calcium ionophore A23187 (25 microM) or dinitrophenol (1 mM) caused an increase in the efflux of prostaglandins E2 and F2 alpha together with a large efflux of intracellular creatine kinase. Use of a cyclo-oxygenase inhibitor completely prevented the efflux of prostaglandins, but had no effect on creatine kinase efflux. However, several agents having the ability to inhibit lipoxygenase enzymes dramatically reduced creatine kinase efflux following damage. These data suggest that a product or products of lipoxygenase enzymes may be mediators of the changes in plasma membrane integrity which permit efflux of intracellular enzymes as a consequence of skeletal muscle damage. PMID:3109374

  3. Discovery of Novel 15-Lipoxygenase Activators To Shift the Human Arachidonic Acid Metabolic Network toward Inflammation Resolution.

    PubMed

    Meng, Hu; McClendon, Christopher L; Dai, Ziwei; Li, Kenan; Zhang, Xiaoling; He, Shan; Shang, Erchang; Liu, Ying; Lai, Luhua

    2016-05-12

    For disease network intervention, up-regulating enzyme activities is equally as important as down-regulating activities. However, the design of enzyme activators presents a challenging route for drug discovery. Previous studies have suggested that activating 15-lipoxygenase (15-LOX) is a promising strategy to intervene the arachidonic acid (AA) metabolite network and control inflammation. To prove this concept, we used a computational approach to discover a previously unknown allosteric site on 15-LOX. Both allosteric inhibitors and novel activators were discovered using this site. The influence of activating 15-LOX on the AA metabolite network was then investigated experimentally. The activator was found to increase levels of 15-LOX products and reduce production of pro-inflammatory mediators in human whole blood assays. These results demonstrate the promising therapeutic value of enzyme activators and aid in further development of activators of other proteins. PMID:26290290

  4. Role of arachidonic acid metabolites in the action of a beta adrenergic agonist on human monocyte phagocytosis.

    PubMed

    Borda, E S; Tenenbaum, A; Sales, M E; Rumi, L; Sterin-Borda, L

    1998-02-01

    The mechanisms by which beta adrenergic stimulation regulates phagocytosis of Candida albicans by human peripheral monocytes (HPM) are characterized. Isoproterenol (ISO) inhibits phagocytosis in a concentration-dependent manner. This effect was blunted by propranolol, inhibitors of phospholipase A2 (PLA2), cyclooxygenase and verapamil, pointing to a participation of arachidonic acid (AA) metabolites and calcium in the phenomenon. Prostaglandin E2 (PGE2) and dibutyryl cyclic AMP (db-cAMP) also exerted the same inhibitory effect on phagocytosis. ISO interacts with beta adrenergic receptors of HPM increasing PGE2 and cAMP. We conclude that the mechanisms by which beta adrenergic stimulation regulates phagocytosis of Candida albicans by HPM appear to be secondary to beta adrenoceptor-mediated hydrolysis of AA accompanied by an increase in PGE2 generation and cAMP production. Both PGE2 and cAMP could act as mediators of the inhibitory action of beta agonists on the HPM-phagocytosis process. PMID:9578144

  5. Stimulation of arachidonic acid metabolism in primary cultures of osteoblast-like cells by hormones and drugs

    SciTech Connect

    Feyen, J.H.; van der Wilt, G.; Moonen, P.; Di Bon, A.; Nijweide, P.J.

    1984-12-01

    The effects of parathyroid hormone (PTH), dihydroxycholecalciferol (1,25-(OH)2 D3), thrombin, epidermal growth factor (EGF) and 12-o-tetradecanoylphorbol-13-acetate (PMA) on the biosynthesis and release of arachidonic acid metabolites were studied in primary cultures of osteoblast-like cells isolated from 18-day-old chick embryo calvaria. Cells were labelled with (/sup 14/C)-arachidonic acid for 30 h. The radioactive eicosanoids were extracted from the cell culture media after a further 30 h stimulation period and analysed on a PRP-1 column by HPLC. The radioactive products were characterized by co-elution of (/sup 3/H) standard prostanoids. Osteoblasts showed a basal release of the prostanoids 6-keto-PGF1 alpha, TXB2, PGF2 alpha, PGE2, PGD2 and PGB2, the latter being the most abundant one. Indomethacin (10(-5) M) effectively inhibited the basal release, but not that of an as yet unidentified compound. The release of prostanoids was stimulated by PTH (2 U/ml), thrombin (0.4 NIH/ml), EGF (50 ng/ml) and PMA (25 ng/ml), the latter being by far the most potent one. 1,25-(OH)2D3 was found to slightly inhibit the prostanoid release. These results indicate: (1) primary cultures of osteoblasts synthesize several prostaglandins, thromboxane B2 and one unidentified product. (2) the action on bone of PTH and the various drugs tested may be, at least partly, mediated by an increased prostaglandin production by osteoblasts. Clearly this does not apply to 1,25-(OH)2D3.

  6. Effect of olive oil minor components on oxidative stress and arachidonic acid mobilization and metabolism by macrophages RAW 264.7.

    PubMed

    Moreno, Juan J

    2003-11-01

    Minor components of virgin olive oil may explain the healthy effects of the Mediterranean diet on the cardiovascular system and cancer development. The uncontrolled production of reactive oxygen species (ROS) and arachidonic acid (AA) metabolites contributes to the pathogenesis of cardiovascular disease and cancer, and inflammatory cells infiltrated in the atheroma plaque or tumor are a major source of ROS and eicosanoids. We aimed to determine the effects of squalene, beta-sitosterol, and tyrosol, which are representative of the hydrocarbons, sterols, and polyphenols of olive oil, respectively, on superoxide anion (O2(-)), hydrogen peroxide (H2O2), and nitric oxide (*NO) levels. We also studied AA release and eicosanoid production by phorbol esters (PMA)-stimulated macrophages RAW 264.7. beta-Sitosterol and tyrosol decreased the O2(-) and H2O2 production induced by PMA, and tyrosol scavenged the O2(-) released by a ROS generating system. These effects were correlated with the impairment of [3H]AA release, cyclooxygenase-2 (COX-2) expression, and prostaglandin E(2)/leukotriene B(4) synthesis in RAW 264.7 cultures stimulated by PMA. beta-Sitosterol exerted its effects after 3-6 h of preincubation. Tyrosol inhibited the [3H]AA release induced by exogenous ROS. beta-Sitosterol and tyrosol also reduced the *NO release induced by PMA, which was correlated with the impairment of inducible nitric oxide synthase (iNOS) levels. This may be correlated with the modulation of NF-kappaB activation. Further studies are required to gain more insight into the potential healthy effects of minor components of extra virgin olive oil. PMID:14572610

  7. Effects of organometals on cellular signaling. II. Inhibition of reincorporation of free arachidonic acid and influence on paf-acether synthesis by triethyllead.

    PubMed Central

    Krug, H F; Mattern, D; Bidault, J; Ninio, E

    1994-01-01

    Organometal compounds affect many enzymes, especially those containing SH-groups as acyl- and acetyltransferases involved in lysophospholipid reacylation. In HL-60 cells, organotin and -lead compounds stimulate phospholipase A2 activity, contributing thus to increase the level of lysophospholipids. In the present study, we have tested whether paf-acether (paf) biosynthesis was affected by treatment with triethyllead (Et3PbCl) in HL-60 cells. Et3PbCl inhibits the incorporation of exogenous arachidonic acid in the presence of high (> or = 50 microM) but not low concentrations (< or = 1 microM). High concentrations of the lead compound are unable to induce paf formation by itself, however, lower concentrations (< or = 10 microM) acted synergistically with TPA or fMLP to stimulate paf formation. Whereas unstimulated cells produced 0.4 pmole paf/2 x 10(6) cells, the stimulation with low fMLP (0.1 microM) resulted in the synthesis of 1.7 pmole and with low TPA (2 ng/ml) in 0.5 pmole paf. Preincubation of the cells with 10 microM Et3PbCl for 20 to 30 min increased the amount of paf formed by these cells to 3.3 pmole after treatment with 0.1 microM fMLP and 1.5 pmole after TPA. Furthermore, the results showed an inhibition of acetyltransferase (the key enzyme of paf synthesis) by the high and not by low concentrations of the lead compound. We conclude that low concentrations of Et3PbCl (< or = 10 microM) may act as a synergistic inducer of paf synthesis initiated via a receptor-coupled stimulation. PMID:7843129

  8. Lipoxygenase- and cyclooxygenase-reaction products and incorporation into glycerolipids or radiolabeled arachidonic acid in the bovine retina

    SciTech Connect

    Birkle, D.L.; Bazan, N.G.

    1984-02-01

    The metabolism of radiolabeled arachidonic acid (AA) by the intact bovine retina in vitro has been studied. Synthesis of prostaglandins (PGs) and hydroxyeicosatetraenoic acids (HETEs), and incorporation of AA into glycerolipids has been measured by reverse-phase and straight-phase high performance liquid chromatography with flow scintillation detection, and by thin-layer chromatography. AA was actively acylated into glycerolipids, particularly triglycerides, phosphatidylcholine and phosphatidylinositol. AA was also converted to the major PGs, PGF2 alpha, PGE2, PGD2, 6-keto-PGF1 alpha and TXB2, and to the lipoxygenase reaction products, 12-HETE, 5-HETE, and other monohydroxy isomers. Approximately 6% of the radiolabeled AA was converted to eicosanoids. The synthesis of HETEs was inhibited in a concentration-dependent manner (IC50 . 8.3 nM) by nordihydroguaiaretic acid (NDGA). PG synthesis was inhibited by aspirin (10 microM), indomethacin (1 microM) and NDGA (IC50 . 380 nM). Metabolism of AA via lipoxygenase, cyclooxygenase and activation-acylation was inhibited by boiling retinal tissue prior to incubation. These studies demonstrate an active system for the uptake and utilization of AA in the bovine retina, and provide the first evidence of lipoxygenase-mediated metabolism of AA, resulting in the synthesis of mono-hydroxyeicosatetraenoic acids, in the retina.

  9. Differential effects of eicosapentaenoic and docosahexaenoic acids upon oxidant-stimulated release and uptake of arachidonic acid in human lymphoma U937 cells.

    PubMed

    Obajimi, Oluwakemi; Black, Kenneth D; MacDonald, Donald J; Boyle, Rose M; Glen, Iain; Ross, Brian M

    2005-08-01

    The use of n-3 polyunsaturated fatty acids, as found in fish-oil derived dietary supplements, as anti-inflammatory agents is supported by a variety of biochemical and physiological data. Recent studies investigating the therapeutic potential of long chain (>C20) n-3 fatty acids in mental illness have lead to the conclusion, however, that not all n-3 fatty acid types are equally efficacious. In particular eicosapentaeoic acid (EPA) appears to possess antidepressant and antipsychotic activity, while docosahexaenoic acid (DHA) does not, an effect suggested to be due to a differential ability to antagonize arachidonic acid (AA)-dependent cell signalling. In this study, we examine the effect of EPA and DHA supplementation upon uptake and release of arachidonic acid stimulated by tert-butyl hydroperoxide/Fe2+ in U937 cells. Oxidant-stimulated 3H-AA release from cells was enhanced by pre-treatment with EPA, DHA and AA, but not stearic or oleic acids for 18 days, with the order of effect magnitude being EPA > DHA = AA. Supplementation of cells for 1 day gave qualitatively similar results, although the effect magnitude was smaller. To determine whether enhanced release was due to decreased reuptake of AA, cells were cultured in the presence of 10 microM fatty acids. Pre-treatment of cells with EPA, and to a lesser extent AA, but not DHA, inhibited uptake of 3H-AA measured subsequent to the removal of unesterified fatty acids. This study suggests that, in U937 cells, EPA can alter the rate of uptake and release of AA from phospholipids in an exposure time-dependent manner, whereas DHA has no or little effect. Our results predict that EPA will have a more pronounced effect upon AA-dependent processes compared to DHA, and suggests that the relative amounts of EPA and DHA in fish oil supplements may modify their biochemical, and potentially, behavioural effects. PMID:15967385

  10. Profile of capsaicin-induced mouse ear oedema as neurogenic inflammatory model: comparison with arachidonic acid-induced ear oedema.

    PubMed Central

    Inoue, H.; Nagata, N.; Koshihara, Y.

    1993-01-01

    1. We have investigated the mechanism of capsaicin-induced mouse ear oedema compared with that of arachidonic acid (AA)-induced ear oedema, and evaluated the possible involvement of neuropeptides in the development of capsaicin-induced oedema. 2. Topical application of capsaicin (0.1-1.0 mg per ear) to the ear of mice produced immediate vasodilatation and erythema followed by the development of oedema which was maximal at 30 min after the treatment. This oedema was of shorter duration with less swelling than AA-induced oedema (2.0 mg per ear). 3. Capsaicin-induced ear oedema was unaffected when inhibitors of arachidonate metabolites including platelet activating factor (PAF) were administered before capsaicin (250 micrograms per ear) application, while these agents significantly prevented AA-induced oedema. Dexamethasone, histamine H1 and/or 5-hydroxytryptamine (5-HT) antagonists, and substance P (SP) antagonists were effective in inhibiting both models. Furthermore, a Ca(2+)-channel blocker and the capsaicin inhibitor, ruthenium red, were effective inhibitors of capsaicin oedema but had no effect on AA-induced oedema. 4. Phosphoramidon (50 micrograms kg-1, i.v.), an endopeptidase inhibitor, markedly (P < 0.001) enhanced only capsaicin-induced ear oedema, but bestatin (0.5 mg kg-1, i.v.), an aminopeptidase, failed to enhance oedema formation. 5. Neuropeptides (1-100 pmol per site) such as rat calcitonin gene-related peptide (CGRP), SP, neurokinin A (NKA), and vasoactive intestinal peptide (VIP), which are released from capsaicin-sensitive neurones, caused ear oedema by intradermal injection. Furthermore, a synergistic effect of CGRP (10 fmol per site) and SP (10pmol per site) on oedema formation was observed.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7508328

  11. Sulfur mustard-induced increase in intracellular free calcium level and arachidonic acid release from cell membrane

    SciTech Connect

    Ray, R.; Legere, R.H.; Majerus, B.J.; Petrali, J.P.

    1995-12-31

    The mechanism of action of the alkylating agent bis-(2-chloroethyl)sulfide (sulfur mustard, SM) was studied using the in thai vitro mouse neuroblastoma-rat glioma hybrid NG 108-1 S clonal p cell line model. Following 0.3 mM SM exposure, cell viability remained high (>80% of untreated control) up to 9 hr and then declined steadily to about 40% of control after 20-24 hr. During the early period of SM exposure, when there was no significant cell viability loss, the following effects were observed. The cellular glutathione level decreased 20% after 1 hr and 34% after 6 hr. Between 2 and 6 hr, there was a time-dependent increase (about 10 to 30%) in intracellular free calcium (Ca2+), which was localized to the limiting membrane of swollen endoplasmic reticula and mitochondria, to euchromatin areas of the nucleus, and to areas of the cytosol and plasma membrane. Moreover,there was also a time-dependent increase in the release of isotopically labeled arachidonic acid ((3H)AA) from cellular membranes. Increase in (3H)AA release was 28% at 3 hr and about 60-80% between 6 and 9 hr. This increase in I3HIAA release was inhibited by quinacrine (20 uM), which is a phospholipase (PLA2) inhibitor. At 16 hr after SM exposure, there was a large increase (about 200% of control) in I3HIAA release, which was coincident with a 50% loss of cell viability. These results suggest a Ca2+-mediated toxic mechanism of SM via PLA2 activation and arachidonate release.

  12. Arachidonic acid release from rat Leydig cells: the involvement of G protein, phospholipase A2 and regulation of cAMP production.

    PubMed

    Ronco, A M; Moraga, P F; Llanos, M N

    2002-01-01

    We have previously demonstrated that the release of arachidonic acid (AA) from human chorionic gonadotropin (hCG)-stimulated Leydig cells occurs in a dose- and time-dependent manner. In addition, the amount of AA released was dependent on the hormone-receptor interaction and the concentration of LH-hCG binding sites on the cell surface. The present study was conducted to evaluate the involvement of phospholipase A(2) (PLA(2)) and G proteins in AA release from hormonally stimulated rat Leydig cells, and the possible role of this fatty acid in cAMP production. Cells were first prelabelled with [(14)C]AA to incorporate the fatty acid into cell phospholipids, and then treated in different ways to evaluate AA release. hCG (25 mIU) increased the release of AA to 180+/-12% when compared with AA released from control cells, arbitrarily set as 100%. Mepacrine and parabromophenacyl bromide (pBpB), two PLA(2) inhibitors, decreased the hormone-stimulated AA release to 85+/-9 and 70+/-24% respectively. Conversely, melittin, a PLA(2) stimulator, increased the release of AA up to 200% over control. The inhibitory effect of mepacrine on the release of AA was evident in hCG-treated Leydig cells, but not in the melittin-treated cells. To determine if the release of AA was also mediated through a G protein, cells were first permeabilized and subsequently treated with pertussis toxin or GTPgammaS, a non-hydrolyzable analog of GTP. Results demonstrate that GTPgammaS was able to induce a similar level of the release of AA as hCG. In addition, pertussis toxin completely abolished the stimulatory effect of hCG on the release of AA, indicating that a member of the G(i) family was involved in the hCG-dependent release of AA. Cells treated with PLA(2) inhibitors did not modify cAMP production, but exogenously added AA significantly reduced cAMP production from hCG-treated Leydig cells, in a manner dependent on the concentration of AA and hCG. Results presented here suggest an involvement of

  13. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    SciTech Connect

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from (1-14C)myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from (14C)C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from (14C)acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development.

  14. Arachidonic acid is involved in the regulation of hCG induced steroidogenesis in rat Leydig cells

    SciTech Connect

    Didolkar, A.K.; Sundaram, K.

    1987-07-27

    Phospholipase C (PLC), an enzyme involved in the hydrolysis of membrane phospholipid- phosphatidylinositol-bisphosphate to insositol triphosphate and diacylglycerol, and Phorbol 12, myristate 13, acetate (PMA) could significantly stimulate testosterone (T) secretion from Leydig cells. Arachidonic acid (AA) stimulated T secretion by about 2 fold. The steroidogenic effect of PLC and AA was biphasic. At low concentrations both PLC and AA augmented hCG induced T secretion, while at higher concentrations they inhibited steroid production. AA also had a biphasic effect on hCG induced cyclic AMP secretion. 5,8,11,14 Eicosatetrayenoic acid, a general inhibitor of AA metabolism, and Nordihydroguaiaretic acid, an inhibitor of the lipoxygenase pathway of AA metabolism, inhibited hCG induced T secretion while indomethacin, an inhibitor of cyclo-oxygenase pathway, had no effect on hCG induced T secretion. The authors conclude from these data that AA plays a role in the regulation of hCG induced steroidogenic responses in rat Leydig cells and that the metabolite(s) of AA that are involved are not cyclo-oxygenase products. 28 references, 4 figures, 2 tables.

  15. Modulation of Arachidonic Acid Metabolism in the Rat Kidney by Sulforaphane: Implications for Regulation of Blood Pressure

    PubMed Central

    2014-01-01

    Background. We investigated the effects of sulforaphane (SF), the main active isothiocyanate in cruciferous vegetables, on arachidonic acid (AA) metabolism in the kidney and its effect on arterial blood pressure, using spontaneously hypertensive rats (SHR) as models. Methods. Rats were treated for 8 weeks with either drinking water alone (control) or SF (20 or 40 mg/kg) added to drinking water. Mean arterial pressure (MAP) was measured at 7-day intervals throughout the study. At the end of treatment rats were euthanized, and kidneys were harvested to prepare microsomes and measure enzymes involved in regulation of vasoactive metabolites: CYP4A, the key enzyme in the formation of 20-hydroxyeicosatetraenoic acid, and the soluble epoxide hydrolase, which is responsible for the degradation of the vasodilator metabolites such as epoxyeicosatetraenoic acids. Effect of SF on kidney expression of CYP4A was investigated by immunoblotting. Results. We found that treatment with SF leads to significant reductions in both, the expression and activity of renal CYP4A isozymes, as well as the activity of soluble epoxide hydrolase (sEH). Consistent with these data, we have found that treatment with SF resisted the progressive rise in MAP in the developing SHR in a dose-dependent manner. Conclusion. This is the first demonstration that SF modulates the metabolism of AA by both P450 enzymes and sEH in SHR rats. This may represent a novel mechanism by which SF protects SHR rats against the progressive rise in blood pressure. PMID:24734194

  16. Modulation of arachidonic Acid metabolism in the rat kidney by sulforaphane: implications for regulation of blood pressure.

    PubMed

    Elbarbry, Fawzy; Vermehren-Schmaedick, Anke; Balkowiec, Agnieszka

    2014-01-01

    Background. We investigated the effects of sulforaphane (SF), the main active isothiocyanate in cruciferous vegetables, on arachidonic acid (AA) metabolism in the kidney and its effect on arterial blood pressure, using spontaneously hypertensive rats (SHR) as models. Methods. Rats were treated for 8 weeks with either drinking water alone (control) or SF (20 or 40 mg/kg) added to drinking water. Mean arterial pressure (MAP) was measured at 7-day intervals throughout the study. At the end of treatment rats were euthanized, and kidneys were harvested to prepare microsomes and measure enzymes involved in regulation of vasoactive metabolites: CYP4A, the key enzyme in the formation of 20-hydroxyeicosatetraenoic acid, and the soluble epoxide hydrolase, which is responsible for the degradation of the vasodilator metabolites such as epoxyeicosatetraenoic acids. Effect of SF on kidney expression of CYP4A was investigated by immunoblotting. Results. We found that treatment with SF leads to significant reductions in both, the expression and activity of renal CYP4A isozymes, as well as the activity of soluble epoxide hydrolase (sEH). Consistent with these data, we have found that treatment with SF resisted the progressive rise in MAP in the developing SHR in a dose-dependent manner. Conclusion. This is the first demonstration that SF modulates the metabolism of AA by both P450 enzymes and sEH in SHR rats. This may represent a novel mechanism by which SF protects SHR rats against the progressive rise in blood pressure. PMID:24734194

  17. The ω6-fatty acid, arachidonic acid, regulates the conversion of white to brite adipocyte through a prostaglandin/calcium mediated pathway

    PubMed Central

    Pisani, Didier F.; Ghandour, Rayane A.; Beranger, Guillaume E.; Le Faouder, Pauline; Chambard, Jean-Claude; Giroud, Maude; Vegiopoulos, Alexandros; Djedaini, Mansour; Bertrand-Michel, Justine; Tauc, Michel; Herzig, Stephan; Langin, Dominique; Ailhaud, Gérard; Duranton, Christophe; Amri, Ez-Zoubir

    2014-01-01

    Objective Brite adipocytes are inducible energy-dissipating cells expressing UCP1 which appear within white adipose tissue of healthy adult individuals. Recruitment of these cells represents a potential strategy to fight obesity and associated diseases. Methods/Results Using human Multipotent Adipose-Derived Stem cells, able to convert into brite adipocytes, we show that arachidonic acid strongly inhibits brite adipocyte formation via a cyclooxygenase pathway leading to secretion of PGE2 and PGF2α. Both prostaglandins induce an oscillatory Ca++ signaling coupled to ERK pathway and trigger a decrease in UCP1 expression and in oxygen consumption without altering mitochondriogenesis. In mice fed a standard diet supplemented with ω6 arachidonic acid, PGF2α and PGE2 amounts are increased in subcutaneous white adipose tissue and associated with a decrease in the recruitment of brite adipocytes. Conclusion Our results suggest that dietary excess of ω6 polyunsaturated fatty acids present in Western diets, may also favor obesity by preventing the “browning” process to take place. PMID:25506549

  18. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity.

    PubMed

    Royce, Liam A; Yoon, Jong Moon; Chen, Yingxi; Rickenbach, Emily; Shanks, Jacqueline V; Jarboe, Laura R

    2015-05-01

    Carboxylic acids are an attractive biorenewable chemical, but as with many biorenewables, their toxicity to microbial biocatalysts limits their fermentative production. While it is generally accepted that membrane damage is the main mechanism of fatty acid toxicity, previous metabolic engineering efforts that increased membrane integrity did not enable increased carboxylic acid production. Here we used an evolutionary approach to improve tolerance to exogenous octanoic acid, with the goal of learning design strategies from this evolved strain. This evolution of an Escherichia coli MG1655 derivative at neutral pH in minimal media produced a strain with increased tolerance not only to octanoic acid, but also to hexanoic acid, decanoic acid, n-butanol and isobutanol. This evolved strain also produced carboxylic acids at a 5-fold higher titer than its parent strain when expressing the Anaerococcus tetradius thioesterase. While it has been previously suggested that intracellular acidification may contribute to carboxylic acid toxicity, we saw no evidence that the evolved strain has increased resistance to this acidification. Characterization of the evolved strain membrane showed that it had significantly altered membrane polarization (fluidity), integrity (leakage) and composition relative to its parent. The changes in membrane composition included a significant increase in average lipid length in a variety of growth conditions, including 30°C, 42°C, carboxylic acid challenge and ethanol challenge. The evolved strain has a more dynamic membrane composition, showing both a larger number of significant changes and larger fold changes in the relative abundance of membrane lipids. These results highlight the importance of the cell membrane in increasing microbial tolerance and production of biorenewable fuels and chemicals. PMID:25839166

  19. Efficacy and Safety of Arachidonic Acid for Treatment of Schistosoma mansoni-Infected Children in Menoufiya, Egypt

    PubMed Central

    Selim, Sahar; El Sagheer, Ola; El Amir, Azza; Barakat, Rashida; Hadley, Kevin; Bruins, Maaike J.; El Ridi, Rashika

    2014-01-01

    Arachidonic acid (ARA), an omega-6 fatty acid, kills juvenile and adult schistosomes in vitro and displays highly significant and safe therapeutic effects in mice and hamsters infected with Schistosoma mansoni or S. haematobium. This study aims to examine the efficacy and safety of ARA in treatment of school-age children infected with S. mansoni. In total, 66 S. mansoni-infected schoolchildren (20–23 children/study arm) received a single dose of 40 mg/kg praziquantel (PZQ), ARA (10 mg/kg per day for 15 days), or PZQ combined with ARA. The children were examined before and after treatment for worm egg counts in stool and blood biochemical and immunological parameters. ARA proved to be as efficacious as PZQ in treatment of schoolchildren with low infection intensity (78% and 85% cure rates, respectively). For moderate-intensity infection, the ARA and PZQ combination led to 100% cure rate. Biochemical, hematological, and immunological parameters were either unchanged or ameliorated after ARA therapy. PMID:25246692

  20. Efficacy and Safety of Arachidonic Acid for Treatment of School-Age Children in Schistosoma mansoni High-Endemicity Regions

    PubMed Central

    Barakat, Rashida; Abou El-Ela, Nadia E.; Sharaf, Soraya; El Sagheer, Ola; Selim, Sahar; Tallima, Hatem; Bruins, Maaike J.; Hadley, Kevin B.; El Ridi, Rashika

    2015-01-01

    Arachidonic acid (ARA), an omega-6 fatty acid, is a potent schistosomicide that displayed significant and safe therapeutic effects in Schistosoma mansoni-infected schoolchildren in S. mansoni low-prevalence regions. We here report on ARA efficacy and safety in treatment of schoolchildren in S. mansoni high-endemicity areas of Kafr El Sheikh, Egypt. The study was registered with ClinicalTrials.gov (NCT02144389). In total, 268 schoolchildren with light, moderate, or heavy S. mansoni infection were assigned to three study arms of 87, 91, and 90 children and received a single dose of 40 mg/kg praziquantel (PZQ), ARA (10 mg/kg per day for 15 days), or PZQ combined with ARA, respectively. The children were examined before and after treatment for stool parasite egg counts and blood biochemical, hematological, and immunological parameters. ARA, like PZQ, induced moderate cure rates (50% and 60%, respectively) in schoolchildren with light infection and modest cure rates (21% and 20%, respectively) in schoolchildren with high infection. PZQ and ARA combined elicited 83% and 78% cure rates in children with light and heavy infection, respectively. Biochemical and immunological profiles were either unchanged or ameliorated after ARA therapy. Combination of PZQ and ARA might be useful for treatment of children with schistosomiasis in high-endemicity regions. PMID:25624403

  1. Effects of organometals on cellular signaling. I. Influence of metabolic inhibitors on metal-induced arachidonic acid liberation.

    PubMed Central

    Käfer, A; Krug, H F

    1994-01-01

    Organic lead and tin compounds stimulate an increase of free arachidonic acid (AA) in HL-60 cells. This fatty acid is involved in numerous health problems and physiological mechanisms. Three major pathways result in a liberation of AA from membrane phospholipids and there is evidence that G-proteins serve as couplers within all three pathways. Therefore we investigated the influence of pertussis toxin (PT) on the organometallic-induced AA liberation. The effect of all studied compounds (organotin and organo-lead) was diminished by PT. We conclude that the organometals activate PLA2 to some extent via a PT-sensitive pathway. The ionophor A 23187 (1-10 microM) led to an increase of free AA by raising the intracellular Ca2+ level. One of the postulated ways of AA release is via Ca2+ channel activation; phospholipases are Ca2+ dependent. Thus, we examined the necessity of free intracellular Ca2+ for the organometallic effect. The Ca2+ chelator EGTA inhibited the increase of free AA induced by organometals. This is true also for verapamil, a Ca2+ channel blocker. Quinacrine, which is thought to be an inhibitor of phospholipase A2 (PLA2), prevented the AA liberation from membrane phospholipids induced by organometals. This could be due to the inhibition of PLA2, but it could also be the result of an inhibited Ca2+ influx. PMID:7843128

  2. Targeted metabolomics of the arachidonic acid cascade: current state and challenges of LC-MS analysis of oxylipins.

    PubMed

    Willenberg, Ina; Ostermann, Annika I; Schebb, Nils Helge

    2015-04-01

    Quantification of eicosanoids and oxylipins derived from other polyunsaturated fatty acids in biological samples is crucial for a better understanding of the biology of these lipid mediators. Moreover, a robust and reliable quantification is necessary to monitor the effects of pharmaceutical intervention and diet on the arachidonic acid (AA) cascade, one of today's most relevant drug targets. Low (sub-nanomolar) concentrations and a large number of structurally similar analytes, including regioisomers, require high chromatographic resolution and selective and sensitive mass spectrometry analysis. Currently, reversed-phase liquid chromatography in combination with detection on sensitive triple-quadrupole instruments, operating in selected reaction monitoring mode, is the main method of quantitative oxylipin analysis. A lack of standardized sample collection, handling, and preparation procedures, degradation of the analytes during sample preparation, and purity and availability of standards (internal standards) are the major problems of targeted metabolomics approaches for the AA cascade. Major challenges for instrumental analytical methods are the detection of esterified oxylipins, and separation and individual detection of oxylipin isomers. Solving these problems would help to further knowledge of the biology of lipid mediators, and is an important task for bio-analytical research. PMID:25577350

  3. Arachidonic acid metabolomic study of BPH in rats and the interventional effects of Zishen pill, a traditional Chinese medicine.

    PubMed

    Bian, Qiaoxia; Wang, Weihui; Wang, Nannan; Peng, Yan; Ma, Wen; Dai, Ronghua

    2016-09-01

    Zishen pill (ZSP) is a traditional Chinese medicine (TCM) used to treat benign prostatic hyperplasia (BPH). The study used a metabolomic approach based on UHPLC-MS/MS to profile arachidonic acid (AA) metabolic changes and to investigate the interventional mechanisms of ZSP in testosterone- induced BPH rats. In order to explore the potential therapeutic effect of ZSP, rat models were constructed and orally administrated with ZSP. Plasma and urine samples were collected after four weeks and then eleven potential biomarkers (15-HETE, 12-HETE, TXA2, 5-HETE, AA, PGI2, PGF2α, 8-HETE, PGD2, PGE2 and LTB4) were identified and quantified by UHPLC-MS/MS. The chromatographic separation was carried out with gradient elution using a mobile phase comprised of 0.05% formic acid aqueous solution (pH=3.3) (A) and acetonitrile: methanol (80:20, V/V) (B), and each AA metabolites was measured using electrospray ionization source with negative mode and multiple reaction monitoring. The eleven biomarkers in BPH group rat plasma and urine were significant higher than those in sham group rats. Using the potential biomarkers as a screening index, the results suggest that ZSP can potentially reverse the process of BPH by partially regulating AA metabolism through refrain the expression of cyclooxygenase (COX) and lipoxygenase (LOX). This study demonstrates that a metabolomic strategy is useful for identifying potential BPH biomarkers and investigating the underlying mechanisms of a TCM in BPH treatment. PMID:27262108

  4. Influence of formulas with borage oil or borage oil plus fish oil on the arachidonic acid status in premature infants.

    PubMed

    Demmelmair, H; Feldl, F; Horváth, I; Niederland, T; Ruszinkó, V; Raederstorff, D; De Min, C; Muggli, R; Koletzko, B

    2001-06-01

    Several studies have reported that feeding gamma-linolenic acid (GLA) has resulted in no increase in arachidonic acid (AA) in newborns. This result was ascribed to the eicosapentaenoic acid (EPA)-rich fish oil used in these formulas. Docosahexaenoic acid (DHA) sources with only minor amounts of EPA are now available, thus the addition of GLA to infant formulas might be considered an alternative to AA supplementation. Sixty-six premature infants were randomized to feeding one of four formulas [ST: no GLA, no long-chain polyunsaturated fatty acids; BO: 0.6% GLA (borage oil); BO + FOLOW: 0.6% GLA, 0.3% DHA, 0.06% EPA; BO + FOHIGH: 0.6% GLA, 0.3% DHA, 0.2% EPA] or human milk (HM, nonrandomized) for 4 wk. Anthropometric measures and blood samples were obtained at study entry and after 14 and 28 d. There were no significant differences between groups in anthropometric measures, tocopherol, and retinol status at any of the studied time points. The AA content of plasma phospholipids was similar between groups at study start and decreased significantly until day 28 in all formulafed groups, but not in the breast-fed infants [ST: 6.6 +/- 0.2%, BO: 6.9 +/- 0.3%, BO + FOLOW: 6.9 +/- 0.4%, BO + FOHIGH: 6.7 +/- 0.2%, HM: 8.6 +/- 0.5%, where values are reported as mean +/- standard error; all formulas significantly different (P< 0.05) from HM]. There was no significant influence of GLA or fish oil addition to the diet. GLA had only a very limited effect on AA status which was too small to obtain satisfactory concentrations (concentrations similar to breast-fed babies) under the circumstances tested. The effect of GLA on AA is independent of the EPA and DHA content in the diet within the dose ranges studied. PMID:11485158

  5. Dexamethasone blocks arachidonate biosynthesis in isolated hepatocytes and cultured hepatoma cells

    SciTech Connect

    Marra, C.A.; de Alaniz, M.J.; Brenner, R.R.

    1986-03-01

    The effect of dexamethasone on the incorporation and conversion of (1-14C)eicosa-8,11,14-trienoic acid to arachidonic acid in isolated hepatocytes and in hepatoma tissue culture (HTC) cells was studied. In both kinds of cells, no changes in the exogenous acid incorporation were found when the hormone was added to the incubation media at 0.1 or 0.2 mM concentration, while the biosynthesis of arachidonic acid was significantly depressed. The effect on the biosynthesis was faster in isolated normal liver cells (60 min) than in tumoral cells (120 min) and reached an inhibition of ca. 50% after 3 hr of treatment. The addition of cycloheximide (10(-6) M) also caused a marked decrease in the biosynthesis of this polyunsaturated fatty acid, but when dexamethasone was added to the media simultaneously with cycloheximide, a synergistic action was not observed. The results obtained show that protein synthesis would be involved in the modulation of the biosynthesis of arachidonic acid by glucocorticoids. The changes in the delta 5 desaturation of labeled 20:3 omega 6 to arachidonic acid correlated with changes in the fatty acid composition in isolated cells.

  6. Dietary supplementation of arachidonic acid increases arachidonic acid and lipoxin A4 contents in colon, but does not affect severity or prostaglandin E2 content in murine colitis model

    PubMed Central

    2014-01-01

    Background Arachidonic acid (ARA) is an essential fatty acid and a major constituent of biomembranes. It is converted into various lipid mediators, such as prostaglandin E2 (PGE2) and lipoxin A4 (LXA4). The effects of dietary ARA on colon maintenance are unclear because PGE2 has both mucosal protective and proinflammatory effects, and LXA4 has an anti-inflammatory role. Our objective is to clarify the effects of dietary ARA on an experimental murine colitis model. Methods C57BL/6 mice were fed three types of ARA diet (0.075%, 0.15% or 0.305% ARA in diet), DHA diet (0.315% DHA) or control diet for 6 weeks, and were then administered dextran sodium sulphate (DSS) for 7 days to induce colitis. We evaluated colitis severity, fatty acid and lipid mediator contents in colonic tissue, and the expression of genes related to lipid mediator formation. Results ARA composition of colon phospholipids was significantly elevated in an ARA dose-dependent manner. ARA, as well as DHA, did not affect colitis severity (body weight loss, colon shortening, diarrhea and hemoccult phenomena) and histological features. PGE2 contents in the colon were unchanged by dietary ARA, while LXA4 contents increased in an ARA dose-dependent manner. Gene expression of cyclooxygenase (COX)-1 and COX-2 was unchanged, while that of 12/15-lipoxgenase (LOX) was significantly increased by dietary ARA. ARA composition did not correlate with neither colon length nor PGE2 contents, but significantly correlated with LXA4 content. Conclusion These results suggest that dietary ARA increases ARA and LXA4 contents in colon, but that it has no effect on severity and PGE2 content in a DSS-induced murine colitis model. PMID:24507383

  7. COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance.

    PubMed

    Poorani, R; Bhatt, Anant N; Dwarakanath, B S; Das, Undurti N

    2016-08-15

    Polyunsaturated fatty acids (PUFAs) are vital for normal growth and development and physiological function of various tissues in humans. PUFAs have immunomodulatory actions in addition to their ability to modulate inflammation, vascular reactivity, neurotransmission and stem cell biology. PUFAs and their metabolites possess both pro- and anti-inflammatory properties that underlie their actions and involvement in several diseases. Aspirin, a non-steroidal anti-inflammatory drug (NSAID), possesses both cyclo-oxygenase (COX) and lipoxygenase (LOX) inhibitory action and enhances the production of anti-inflammatory lipoxin A4 {(called as epi-lipoxin A4, aspirin-triggered lipoxins (ATLs))}. In addition, at low doses aspirin may not interfere with the production of prostacyclin (PGI2). Both lipoxin A4 and PGI2 have vasodilator, platelet anti-aggregator and anti-inflammatory actions that may underlie the beneficial actions of aspirin. Paradoxically, other NSAIDs may not have the same actions as that of aspirin on PUFA metabolism. Similar anti-inflammatory compounds are formed from eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) by the action of aspirin termed as resolvins (from EPA and DHA) and protectins and maresins from DHA. PUFAs: arachidonic acid (AA), EPA and DHA and their various products modulate not only inflammation and immune response but also possess actions on various genes, nuclear factors, cyclic AMP and GMP, G-protein coupled receptors (GPRs), hypothalamic neurotransmitters, hormones, cytokines and enzymes, and interact with nitric oxide, carbon monoxide, and hydrogen sulfide to regulate their formation and action and to form new compounds that have several biological actions. These pleiotropic actions of PUFAs and their metabolites may explain their ability to play a role in several physiological actions and diseases. The big challenge is to harness these actions to prevent and manage clinical conditions. PMID:26335394

  8. Nitric oxide donors prevent while the nitric oxide synthase inhibitor L-NAME increases arachidonic acid plus CYP2E1-dependent toxicity

    SciTech Connect

    Wu Defeng; Cederbaum, Arthur . E-mail: arthur.cederbaum@mssm.edu

    2006-10-15

    Polyunsaturated fatty acids such as arachidonic acid (AA) play an important role in alcohol-induced liver injury. AA promotes toxicity in rat hepatocytes with high levels of cytochrome P4502E1 and in HepG2 E47 cells which express CYP2E1. Nitric oxide (NO) participates in the regulation of various cell activities as well as in cytotoxic events. NO may act as a protectant against cytotoxic stress or may enhance cytotoxicity when produced at elevated concentrations. The goal of the current study was to evaluate the effect of endogenously or exogenously produced NO on AA toxicity in liver cells with high expression of CYP2E1 and assess possible mechanisms for its actions. Pyrazole-induced rat hepatocytes or HepG2 cells expressing CYP2E1 were treated with AA in the presence or absence of an inhibitor of nitric oxide synthase L-N {sup G}-Nitroarginine Methylester (L-NAME) or the NO donors S-nitroso-N-acetylpenicillamine (SNAP), and (Z)-1-[-(2-aminoethyl)-N-(2-aminoethyl)]diazen-1-ium-1,2-diolate (DETA-NONO). AA decreased cell viability from 100% to 48 {+-} 6% after treatment for 48 h. In the presence of L-NAME, viability was further lowered to 23 {+-} 5%, while, SNAP or DETA-NONO increased viability to 66 {+-} 8 or 71 {+-} 6%. The L-NAME potentiated toxicity was primarily necrotic in nature. L-NAME did not affect CYP2E1 activity or CYP2E1 content. SNAP significantly lowered CYP2E1 activity but not protein. AA treatment increased lipid peroxidation and lowered GSH levels. L-NAME potentiated while SNAP prevented these changes. Thus, L-NAME increased, while NO donors decreased AA-induced oxidative stress. Antioxidants prevented the L-NAME potentiation of AA toxicity. Damage to mitochondria by AA was shown by a decline in the mitochondrial membrane potential (MMP). L-NAME potentiated this decline in MMP in association with its increase in AA-induced oxidative stress and toxicity. NO donors decreased this decline in MMP in association with their decrease in AA

  9. Exogenous fatty acid binding protein 4 promotes human prostate cancer cell progression.

    PubMed

    Uehara, Hisanori; Takahashi, Tetsuyuki; Oha, Mina; Ogawa, Hirohisa; Izumi, Keisuke

    2014-12-01

    Epidemiologic studies have found that obesity is associated with malignant grade and mortality in prostate cancer. Several adipokines have been implicated as putative mediating factors between obesity and prostate cancer. Fatty acid binding protein 4 (FABP4), a member of the cytoplasmic fatty acid binding protein multigene family, was recently identified as a novel adipokine. Although FABP4 is released from adipocytes and mean circulating concentrations of FABP4 are linked with obesity, effects of exogenous FABP4 on prostate cancer progression are unclear. In this study, we examined the effects of exogenous FABP4 on human prostate cancer cell progression. FABP4 treatment promoted serum-induced prostate cancer cell invasion in vitro. Furthermore, oleic acid promoted prostate cancer cell invasion only if FABP4 was present in the medium. These promoting effects were reduced by FABP4 inhibitor, which inhibits FABP4 binding to fatty acids. Immunostaining for FABP4 showed that exogenous FABP4 was taken up into DU145 cells in three-dimensional culture. In mice, treatment with FABP4 inhibitor reduced the subcutaneous growth and lung metastasis of prostate cancer cells. Immunohistochemical analysis showed that the number of apoptotic cells, positive for cleaved caspase-3 and cleaved PARP, was increased in subcutaneous tumors of FABP4 inhibitor-treated mice, as compared with control mice. These results suggest that exogenous FABP4 might promote human prostate cancer cell progression by binding with fatty acids. Additionally, exogenous FABP4 activated the PI3K/Akt pathway, independently of binding to fatty acids. Thus, FABP4 might be a key molecule to understand the mechanisms underlying the obesity-prostate cancer progression link. PMID:24740818

  10. Nitro-Arachidonic Acid Prevents Angiotensin II-Induced Mitochondrial Dysfunction in a Cell Line of Kidney Proximal Tubular Cells

    PubMed Central

    Sánchez-Calvo, Beatriz; Cassina, Adriana; Rios, Natalia; Boggia, José; Radi, Rafael; Rubbo, Homero; Trostchansky, Andres

    2016-01-01

    Nitro-arachidonic acid (NO2-AA) is a cell signaling nitroalkene that exerts anti-inflammatory activities during macrophage activation. While angiotensin II (ANG II) produces an increase in reactive oxygen species (ROS) production and mitochondrial dysfunction in renal tubular cells, little is known regarding the potential protective effects of NO2-AA in ANG II-mediated kidney injury. As such, this study examines the impact of NO2-AA on ANG II-induced mitochondrial dysfunction in an immortalized renal proximal tubule cell line (HK-2 cells). Treatment of HK-2 cells with ANG II increases the production of superoxide (O2●-), nitric oxide (●NO), inducible nitric oxide synthase (NOS2) expression, peroxynitrite (ONOO-) and mitochondrial dysfunction. Using high-resolution respirometry, it was observed that the presence of NO2-AA prevented ANG II-mediated mitochondrial dysfunction. Attempting to address mechanism, we treated isolated rat kidney mitochondria with ONOO-, a key mediator of ANG II-induced mitochondrial damage, in the presence or absence of NO2-AA. Whereas the activity of succinate dehydrogenase (SDH) and ATP synthase (ATPase) were diminished upon exposure to ONOO-, they were restored by pre-incubating the mitochondria with NO2-AA. Moreover, NO2-AA prevents oxidation and nitration of mitochondrial proteins. Combined, these data demonstrate that ANG II-mediated oxidative damage and mitochondrial dysfunction is abrogated by NO2-AA, identifying this compound as a promising pharmacological tool to prevent ANG II–induced renal disease. PMID:26943326

  11. Chronic Valproate Treatment Blocks D2-like Receptor-Mediated Brain Signaling via Arachidonic Acid in Rats

    PubMed Central

    Ramadan, Epolia; Basselin, Mireille; Taha, Ameer Y.; Cheon, Yewon; Chang, Lisa; Chen, Mei; Rapoport, Stanley I.

    2011-01-01

    Background and Objective Hyperdopaminergic signaling and an upregulated brain arachidonic acid (AA) cascade may contribute to bipolar disorder (BD). Lithium and carbamazepine, FDA-approved for the treatment of BD, attenuate brain dopaminergic D2-like (D2, D3, and D4) receptor signaling involving AA when given chronically to awake rats. We hypothesized that valproate (VPA), with mood-stabilizing properties, would also reduce the D2-like-mediated signaling via AA. Methods An acute dose of quinpirole (1 mg/kg) or saline was administered to unanesthetized rats that had been treated for 30 days with a therapeutically relevant dose of VPA (200 mg/kg/day) or vehicle. Regional brain AA incorporation coefficients, k*, and incorporation rates, Jin, markers of AA signaling and metabolism, were measured by quantitative autoradiography after intravenous [1-14C]AA infusion. Whole brain concentrations of prostaglandin (PG)E2 and thromboxane (TX)B2 also were measured. Results Quinpirole compared to saline significantly increased k* in 40 of 83 brain regions, and increased brain concentrations of PGE2 in chronic vehicle-treated rats. VPA treatment by itself reduced concentrations of plasma unesterified AA and whole brain PGE2 and TXB2, and blocked the quinpirole-induced increments in k* and PGE2. Conclusion These results further support our hypothesis that similar to lithium and carbamazepine, VPA downregulates brain dopaminergic D2-like receptor-signaling involving AA. PMID:21839100

  12. Different roles of protein kinase C-beta and -delta in arachidonic acid cascade, superoxide formation and phosphoinositide hydrolysis.

    PubMed Central

    Duyster, J; Schwende, H; Fitzke, E; Hidaka, H; Dieter, P

    1993-01-01

    In contrast with protein kinase C (PKC)-beta, PKC-delta is exclusively detectable in the membrane fraction of liver macrophages. After long-term treatment with phorbol 12-myristate 13-acetate (PMA) PKC-beta is depleted faster (within 3 h) than PKC-delta (> 7h). Simultaneously, pretreatment with PMA for 3 h inhibits the PMA- and zymosan-induced generation of superoxide and the PMA-induced formation of prostaglandin (PG) E2, whereas a preincubation of more than 7 h is required to affect the zymosan-induced release of PGE2 and inositol phosphates. These results support an involvement of PKC-beta in the PMA-induced activation of the arachidonic acid cascade and in superoxide formation and imply an involvement of PKC-delta in zymosan-induced phosphoinositide hydrolysis and PGE2 formation. Two phorbol ester derivates, sapintoxin A (SAPA) and 12-deoxyphorbol 13-phenylacetate 20-acetate (DOPPA), which have been previously reported to activate preferentially PLC-beta but not PKC-delta in vitro [Ryves, Evans, Olivier, Parker and Evans (1992) FEBS Lett. 288, 5-9], induce the formation of PGE2 and superoxide, down-regulate PKC-delta and potentiate inositol phosphate formation in parallel SAPA, but not DOPPA, down-regulates PKC-beta and inhibits the PMA-induced formation of eicosanoids and superoxide. Images Figure 1 Figure 2 Figure 5 PMID:8389125

  13. Arachidonic acid downregulates acyl-CoA synthetase 4 expression by promoting its ubiquitination and proteasomal degradation[S

    PubMed Central

    Kan, Chin Fung Kelvin; Singh, Amar Bahadur; Stafforini, Diana M.; Azhar, Salman; Liu, Jingwen

    2014-01-01

    ACSL4 is a member of the long-chain acyl-CoA synthetase (ACSL) family with a marked preference for arachidonic acid (AA) as its substrate. Although an association between elevated levels of ACSL4 and hepatosteatosis has been reported, the function of ACSL4 in hepatic FA metabolism and the regulation of its functional expression in the liver remain poorly defined. Here we provide evidence that AA selectively downregulates ACSL4 protein expression in hepatic cells. AA treatment decreased the half-life of ACSL4 protein in HepG2 cells by approximately 4-fold (from 17.3 ± 1.8 h to 4.2 ± 0.4 h) without causing apoptosis. The inhibitory action of AA on ACSL4 protein stability could not be prevented by rosiglitazone or inhibitors that interfere with the cellular pathways involved in AA metabolism to biologically active compounds. In contrast, treatment of cells with inhibitors specific for the proteasomal degradation pathway largely prevented the AA-induced ACSL4 degradation. We further show that ACSL4 is intrinsically ubiquitinated and that AA treatment can enhance its ubiquitination. Collectively, our studies have identified a novel substrate-induced posttranslational regulatory mechanism by which AA downregulates ACSL4 protein expression in hepatic cells. PMID:24879802

  14. The effect of antibiotic exposure on eicosanoid generation from arachidonic acid and gene expression in a primitive chordate, Branchiostoma belcheri

    PubMed Central

    Yuan, Dongjuan; Pan, Minming; Zou, Qiuqiong; Chen, Chengyong; Chen, Shangwu; Xu, Anlong

    2015-01-01

    Chloramphenicol (Chl) is an effective antimicrobial agent widely used in veterinary medicine and commonly used in fish. Its use is restricted in the clinic because of adverse effects on the immune system and oxidative stress in mammals. However, the effects of Chl treatment on invertebrates remain unclear. Amphioxus, a basal chordate, is an ideal model to study the origin and evolution of the vertebrate immune system as it has a primary vertebrate-like arachidonic acid (AA) metabolic system. Here, we combined transcriptomic and lipidomic approaches to investigate the immune system and observe the oxygenated metabolites of AA to address the antibiotic effects on amphioxus. Tissue necrosis of the gill slits occurred in the Chl-treated amphioxus, but fewer epithelial cells were lost when treated with both Chl and ampicillin (Amp). The immune related pathways were dysregulated in both of the antibiotic treatment groups. The Chl alone treatment resulted in immunosuppression with down-regulation of the innate immune genes. In contrast, the Chl + Amp treatment resulted in immunostimulation to some extent, as shown by KEGG clustering. Furthermore, Chl induced a 3-fold reduction in the level of the eicosanoids, while the Chl + Amp treatment resulted in 1.7-fold increase of eicosanoid level. Thus in amphioxus, Amp might relieve the effects of the Chl-induced immune suppression and increase the level of eicosanoids from AA. Finally, the oxygenated metabolites from AA might be crucial to evaluate the effects of Chl treatment in animals. PMID:26288743

  15. Metabolism of arachidonic acid in 1 yr old New Zealand white (NZW) and watanabe heritable hyperlipidemic (WHHL) rabbit aortas

    SciTech Connect

    Pfister, S.L.; Schmitz, J.M.; Willerson, J.T.; Campbell, W.B.

    1986-03-01

    This study was designed to characterize the metabolism of arachidonic acid (AA) in normal and atherosclerotic aortas. Segments of aortas were obtained from 1 yr old NZW rabbits, and WHHL rabbits, a genetic model of athero-sclerosis resembling familial hypercholesterolemia. Aortas were incubated at 37/sup 0/C for 15 min with /sup 14/C-AA (5 x 10/sup -5/M) during stimulation by A23187. The media was extracted using octadecylsilica columns and resolved into metabolites by reverse-phase HPLC. Prostaglandins (PGs) were identified by comigration of /sup 14/C-metabolites with standards. The monoxygenated metabolites of AA (HETEs) were resolved by normal-phase HPLC, and their structures confirmed by GC-MS. In extracts from NZW and WHHL aortas, approximately 14% and 6% of the total radioactivity was converted to PGs and HETEs, respectively. The major PG produced by NZW and WHHL aortas was 6-keto PGF/sub 1..cap alpha../ with lesser amounts of PGE/sub 2/. Similarly, NZW and WHHL aortas produced primarily 12- and 15-HETE with lesser amounts of 11-, 9-, 8-, and 5-HETE. There were no qualitative differences between NZW and WHHL aortas in PG and HETE production. Therefore, despite extensive atherosclerosis in aortas of WHHL rabbits, the vessels maintain the ability to synthesize PGs and HETEs.

  16. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production.

    PubMed

    Dichlberger, Andrea; Schlager, Stefanie; Kovanen, Petri T; Schneider, Wolfgang J

    2016-08-15

    Mast cells are potent effectors of immune reactions and key players in various inflammatory diseases such as atherosclerosis, asthma, and rheumatoid arthritis. The cellular defense response of mast cells represents a unique and powerful system, where external signals can trigger cell activation resulting in a stimulus-specific and highly coordinated release of a plethora of bioactive mediators. The arsenal of mediators encompasses preformed molecules stored in cytoplasmic secretory granules, as well as newly synthesized proteinaceous and lipid mediators. The release of mediators occurs in strict chronological order and requires proper coordination between the endomembrane system and various enzymatic machineries. For the generation of lipid mediators, cytoplasmic lipid droplets have been shown to function as a major intracellular pool of arachidonic acid, the precursor for eicosanoid biosynthesis. Recent studies have revealed that not only phospholipids in mast cell membranes, but also triglycerides in mast cell lipid droplets are a substrate source for eicosanoid formation. The present review summarizes current knowledge about mast cell lipid droplet biology, and discusses expansions and challenges of traditional mechanistic models for eicosanoid production. PMID:26164793

  17. Food sources of arachidonic acid (PFA 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

    Cancer.gov

    Food sources of arachidonic acid (PFA 20:4), listed in descending order by percentages of their contribution to intake, based on data from the National Health and Nutrition Examination Survey 2005-2006

  18. Positive Selection on a Regulatory Insertion-Deletion Polymorphism in FADS2 Influences Apparent Endogenous Synthesis of Arachidonic Acid.

    PubMed

    Kothapalli, Kumar S D; Ye, Kaixiong; Gadgil, Maithili S; Carlson, Susan E; O'Brien, Kimberly O; Zhang, Ji Yao; Park, Hui Gyu; Ojukwu, Kinsley; Zou, James; Hyon, Stephanie S; Joshi, Kalpana S; Gu, Zhenglong; Keinan, Alon; Brenna, J Thomas

    2016-07-01

    Long chain polyunsaturated fatty acids (LCPUFA) are bioactive components of membrane phospholipids and serve as substrates for signaling molecules. LCPUFA can be obtained directly from animal foods or synthesized endogenously from 18 carbon precursors via the FADS2 coded enzyme. Vegans rely almost exclusively on endogenous synthesis to generate LCPUFA and we hypothesized that an adaptive genetic polymorphism would confer advantage. The rs66698963 polymorphism, a 22-bp insertion-deletion within FADS2, is associated with basal FADS1 expression, and coordinated induction of FADS1 and FADS2 in vitro. Here, we determined rs66698963 genotype frequencies from 234 individuals of a primarily vegetarian Indian population and 311 individuals from the US. A much higher I/I genotype frequency was found in Indians (68%) than in the US (18%). Analysis using 1000 Genomes Project data confirmed our observation, revealing a global I/I genotype of 70% in South Asians, 53% in Africans, 29% in East Asians, and 17% in Europeans. Tests based on population divergence, site frequency spectrum, and long-range haplotype consistently point to positive selection encompassing rs66698963 in South Asian, African, and some East Asian populations. Basal plasma phospholipid arachidonic acid (ARA) status was 8% greater in I/I compared with D/D individuals. The biochemical pathway product-precursor difference, ARA minus linoleic acid, was 31% and 13% greater for I/I and I/D compared with D/D, respectively. This study is consistent with previous in vitro data suggesting that the insertion allele enhances n-6 LCPUFA synthesis and may confer an adaptive advantage in South Asians because of the traditional plant-based diet practice. PMID:27188529

  19. Positive Selection on a Regulatory Insertion–Deletion Polymorphism in FADS2 Influences Apparent Endogenous Synthesis of Arachidonic Acid

    PubMed Central

    Kothapalli, Kumar S. D.; Ye, , Kaixiong; Gadgil, Maithili S.; Carlson, Susan E.; O’Brien, Kimberly O.; Zhang, Ji Yao; Park, Hui Gyu; Ojukwu, Kinsley; Zou, James; Hyon, Stephanie S.; Joshi, Kalpana S.; Gu, Zhenglong; Keinan, Alon; Brenna, J.Thomas

    2016-01-01

    Long chain polyunsaturated fatty acids (LCPUFA) are bioactive components of membrane phospholipids and serve as substrates for signaling molecules. LCPUFA can be obtained directly from animal foods or synthesized endogenously from 18 carbon precursors via the FADS2 coded enzyme. Vegans rely almost exclusively on endogenous synthesis to generate LCPUFA and we hypothesized that an adaptive genetic polymorphism would confer advantage. The rs66698963 polymorphism, a 22-bp insertion–deletion within FADS2, is associated with basal FADS1 expression, and coordinated induction of FADS1 and FADS2 in vitro. Here, we determined rs66698963 genotype frequencies from 234 individuals of a primarily vegetarian Indian population and 311 individuals from the US. A much higher I/I genotype frequency was found in Indians (68%) than in the US (18%). Analysis using 1000 Genomes Project data confirmed our observation, revealing a global I/I genotype of 70% in South Asians, 53% in Africans, 29% in East Asians, and 17% in Europeans. Tests based on population divergence, site frequency spectrum, and long-range haplotype consistently point to positive selection encompassing rs66698963 in South Asian, African, and some East Asian populations. Basal plasma phospholipid arachidonic acid (ARA) status was 8% greater in I/I compared with D/D individuals. The biochemical pathway product–precursor difference, ARA minus linoleic acid, was 31% and 13% greater for I/I and I/D compared with D/D, respectively. This study is consistent with previous in vitro data suggesting that the insertion allele enhances n-6 LCPUFA synthesis and may confer an adaptive advantage in South Asians because of the traditional plant-based diet practice. PMID:27188529

  20. Arachidonic acid stimulates DNA synthesis in brown preadipocytes through the activation of protein kinase C and MAPK.

    PubMed

    Garcia, Bibian; Martinez-de-Mena, Raquel; Obregon, Maria-Jesus

    2012-10-01

    Arachidonic acid (AA) is a polyunsaturated fatty acid that stimulates the proliferation of many cellular types. We studied the mitogenic potential of AA in rat brown preadipocytes in culture and the signaling pathways involved. AA is a potent mitogen which induces 4-fold DNA synthesis in brown preadipocytes. The AA mitogenic effect increases by NE addition. AA also increases the mitogenic action of different growth factor combinations. Other unsaturated and saturated fatty acids do not stimulate DNA synthesis to the same extent as AA. We analyzed the role of PKC and MEK/MAPK signaling pathways. PKC inhibition by bisindolilmaleimide I (BIS) abolishes AA and phorbol ester stimulation of DNA synthesis and reduces the mitogenic activity of different growth factors in brown preadipocytes. Brown preadipocytes in culture express PKC α, δ, ε and ζ isoforms. Pretreatment with high doses of the phorbol ester PDBu, induces downregulation of PKCs ε and δ and reproduces the effect of BIS indicating that AA-dependent induction of DNA synthesis requires PKC activity. AA also activates MEK/MAPK pathway and the inhibition of MEK activity inhibits AA stimulation of DNA synthesis and brown adipocyte proliferation. Inhibition of PKC δ by rottlerin abolishes AA-dependent stimulation of DNA synthesis and MAPK activation, whereas PKC ε inhibition does not produce any effect. In conclusion, our results identify AA as a potent mitogen for brown adipocytes and demonstrate the involvement of the PDBu-sensitive PKC δ isoform and MEK/MAPK pathway in AA-induced proliferation of brown adipocytes. Increased proliferative activity might increase the thermogenic capacity of brown fat. PMID:22766489

  1. Novel liquid chromatography–mass spectrometry method shows that vitamin E deficiency depletes arachidonic and docosahexaenoic acids in zebrafish (Danio rerio) embryos☆

    PubMed Central

    Lebold, Katie M.; Kirkwood, Jay S.; Taylor, Alan W.; Choi, Jaewoo; Barton, Carrie L.; Miller, Galen W.; Du, Jane La; Jump, Donald B.; Stevens, Jan Frederik; Tanguay, Robert L.; Traber, Maret G.

    2013-01-01

    To test the hypothesis that embryogenesis depends upon α-tocopherol (E) to protect embryo polyunsaturated fatty acids (PUFAs) from lipid peroxidation, new methodologies were applied to measure α-tocopherol and fatty acids in extracts from saponified zebrafish embryos. A solid phase extraction method was developed to separate the analyte classes, using a mixed mode cartridge (reverse phase, π–π bonding, strong anion exchange), then α-tocopherol and cholesterol were measured using standard techniques, while the fatty acids were quantitated using a novel, reverse phase liquid chromatography–mass spectrometry (LC–MS) approach. We also determined if α-tocopherol status alters embryonic lipid peroxidation products by analyzing 24 different oxidized products of arachidonic or docosahexaenoic (DHA) acids in embryos using LC with hybrid quadrupole-time of flight MS. Adult zebrafish were fed E− or E+ diets for 4 months, and then were spawned to obtain E− and E+ embryos. Between 24 and 72 hours post-fertilization (hpf), arachidonic acid decreased 3-times faster in E− (21 pg/h) compared with E+ embryos (7 pg/h, P<0.0001), while both α-tocopherol and DHA concentrations decreased only in E− embryos. At 36 hpf, E− embryos contained double the 5-hydroxy-eicosatetraenoic acids and 7-hydroxy-DHA concentrations, while other hydroxy-lipids remained unchanged. Vitamin E deficiency during embryogenesis depleted DHA and arachidonic acid, and increased hydroxy-fatty acids derived from these PUFA, suggesting that α-tocopherol is necessary to protect these critical fatty acids. PMID:24416717

  2. Modulation of Cell-Substrate Adhesion by Arachidonic Acid: Lipoxygenase Regulates Cell Spreading and ERK1/2-inducible Cyclooxygenase Regulates Cell Migration in NIH-3T3 Fibroblasts

    PubMed Central

    Stockton, Rebecca A.; Jacobson, Bruce S.

    2001-01-01

    Adhesion of cells to an extracellular matrix is characterized by several discrete morphological and functional stages beginning with cell-substrate attachment, followed by cell spreading, migration, and immobilization. We find that although arachidonic acid release is rate-limiting in the overall process of adhesion, its oxidation by lipoxygenase and cyclooxygenases regulates, respectively, the cell spreading and cell migration stages. During the adhesion of NIH-3T3 cells to fibronectin, two functionally and kinetically distinct phases of arachidonic acid release take place. An initial transient arachidonate release occurs during cell attachment to fibronectin, and is sufficient to signal the cell spreading stage after its oxidation by 5-lipoxygenase to leukotrienes. A later sustained arachidonate release occurs during and after spreading, and signals the subsequent migration stage through its oxidation to prostaglandins by newly synthesized cyclooxygenase-2. In signaling migration, constitutively expressed cyclooxygenase-1 appears to contribute ∼25% of prostaglandins synthesized compared with the inducible cyclooxygenase-2. Both the second sustained arachidonate release, and cyclooxygenase-2 protein induction and synthesis, appear to be regulated by the mitogen-activated protein kinase extracellular signal-regulated kinase (ERK)1/2. The initial cell attachment-induced transient arachidonic acid release that signals spreading through lipoxygenase oxidation is not sensitive to ERK1/2 inhibition by PD98059, whereas PD98059 produces both a reduction in the larger second arachidonate release and a blockade of induced cyclooxygenase-2 protein expression with concomitant reduction of prostaglandin synthesis. The second arachidonate release, and cyclooxygenase-2 expression and activity, both appear to be required for cell migration but not for the preceding stages of attachment and spreading. These data suggest a bifurcation in the arachidonic acid adhesion

  3. Lithium and the other mood stabilizers effective in bipolar disorder target the rat brain arachidonic acid cascade.

    PubMed

    Rapoport, Stanley I

    2014-06-18

    This Review evaluates the arachidonic acid (AA, 20:4n-6) cascade hypothesis for the actions of lithium and other FDA-approved mood stabilizers in bipolar disorder (BD). The hypothesis is based on evidence in unanesthetized rats that chronically administered lithium, carbamazepine, valproate, or lamotrigine each downregulated brain AA metabolism, and it is consistent with reported upregulated AA cascade markers in post-mortem BD brain. In the rats, each mood stabilizer reduced AA turnover in brain phospholipids, cyclooxygenase-2 expression, and prostaglandin E2 concentration. Lithium and carbamazepine also reduced expression of cytosolic phospholipase A2 (cPLA2) IVA, which releases AA from membrane phospholipids, whereas valproate uncompetitively inhibited in vitro acyl-CoA synthetase-4, which recycles AA into phospholipid. Topiramate and gabapentin, proven ineffective in BD, changed rat brain AA metabolism minimally. On the other hand, the atypical antipsychotics olanzapine and clozapine, which show efficacy in BD, decreased rat brain AA metabolism by reducing plasma AA availability. Each of the four approved mood stabilizers also dampened brain AA signaling during glutamatergic NMDA and dopaminergic D2 receptor activation, while lithium enhanced the signal during cholinergic muscarinic receptor activation. In BD patients, such signaling effects might normalize the neurotransmission imbalance proposed to cause disease symptoms. Additionally, the antidepressants fluoxetine and imipramine, which tend to switch BD depression to mania, each increased AA turnover and cPLA2 IVA expression in rat brain, suggesting that brain AA metabolism is higher in BD mania than depression. The AA hypothesis for mood stabilizer action is consistent with reports that low-dose aspirin reduced morbidity in patients taking lithium, and that high n-3 and/or low n-6 polyunsaturated fatty acid diets, which in rats reduce brain AA metabolism, were effective in BD and migraine patients. PMID

  4. Arachidonic acid mediates muscarinic inhibition and enhancement of N-type Ca2+ current in sympathetic neurons

    PubMed Central

    Liu, Liwang; Rittenhouse, Ann R.

    2003-01-01

    N-type Ca2+ channels participate in acute activity-dependent processes such as regulation of Ca2+-activated K+ channels and in more prolonged events such as gene transcription and long-term depression. A slow postsynaptic M1 muscarinic receptor-mediated modulation of N-type current in superior cervical ganglion neurons may be important in regulating these processes. This slow pathway inhibits N-type current by using a diffusible second messenger that has remained unidentified for more than a decade. Using whole-cell patch–clamp techniques, which isolate the slow pathway, we found that the muscarinic agonist oxotremorine methiodide not only inhibits currents at positive potentials but enhances N-type current at negative potentials. Enhancement was also observed in cell-attached patches. These findings provide evidence for N-type Ca2+-current enhancement by a classical neurotransmitter. Moreover, enhancement and inhibition of current by oxotremorine methiodide mimics modulation observed with direct application of a low concentration of arachidonic acid (AA). Although no transmitter has been reported to use AA as a second messenger to modulate any Ca2+ current in either neuronal or nonneuronal cells, we nevertheless tested whether a fatty acid signaling cascade was involved. Blocking phospholipase C, phospholipase A2, or AA but not AA metabolism minimized muscarinic modulation of N-type current, supporting the participation of these molecules in the slow pathway. A role for the G protein Gq was also confirmed by blocking muscarinic modulation of Ca2+ currents with anti-Gqα antibody. Our finding that AA participates in the slow pathway strongly suggests that it may be the previously unknown diffusible second messenger. PMID:12496347

  5. Products of ozonized arachidonic acid potentiate the formation of DNA single strand breaks in cultured human lung cells

    SciTech Connect

    Kozumbo, W.J.; Hanley, N.M.; Agarwal, S.

    1996-12-31

    In this study we examined the potential for environmental levels of ozone (O{sub 3}) to degrade arachidonic acid (AA), a polyunsaturated fatty acid abundantly present in the lung, into products that can produce DNA single strand breaks (ssb) in cultured human lung cells. Human lung fibroblasts were incubated with 60 {mu}M AA that had been previously exposed to an degraded by 0.4 ppm O{sub 3} (1 hr). Incubation of the cells with O{sub 3}-exposed AA (but not with vehicle alone) for 1 hr at 4{degrees}C and 37{degrees}C produced 555 and 245 rad-equivalents of DNA ssb, respectively, as determined by the DNA alkaline elution technique. These breaks were completely eliminated when the ozonized AA solution was incubated with catalase prior to cell treatment, indicating that H{sub 2}O{sub 2} was solely responsible for damaging DNA. Superoxide dismutase, bovine serum albumin, or heat-inactivated catalase showed little, if any, inhibitory activity. The H{sub 2}O{sub 2} content for only about 40% of the observed breaks. Potentiation of the H{sub 2}O{sub 2}-induced DNA ssb persisted after removal of the carbonyl substances by chromatographic procedures, suggesting that the non-carbonyl component of ozonized AA was the responsible component for inducing augmentation of the observed increases in DNA ssb. Ozonized AA also induced DNA ssb in cultures of the human bronchial epithelial cell line BEAS-2B. Again, these breaks were shown to exceed levels that could be attributed to the presence of H{sub 2}O{sub 2} alone. These results indicate that products of ozonized AA can interact to potentiate DNA ssb in human lung cells. 42 refs., 6 figs., 3 tabs.

  6. Phospholipases and arachidonic acid contribute independently to sensory transduction and associative neuronal facilitation in Hermissenda type B photoreceptors.

    PubMed

    Talk, A C; Muzzio, I A; Matzel, L D

    1997-03-21

    During contiguous pairings of light and rotation, B photoreceptors in the Hermissenda eye undergo an increase in excitability that contributes to a modification of several light-elicited behaviors. This excitability increase requires a light-induced rise in intracellular Ca2+ in the photoreceptor concomitant with transmitter binding to G protein-coupled receptors as a result of presynaptic vestibular hair cell stimulation. Phospholipases and arachidonic acid (ArA) are here reported to be involved in independent signal transduction pathways that underlie both receptor function and activity-dependent facilitation of the B photoreceptor. 4-Bromophenacyl bromide (BPB), an inhibitor of phospholipases A2 (PLA2) and C (PLC), blocked the generation of light-induced depolarizing generator potentials, but had no affect on the inhibitory postsynaptic potential (IPSP) in the B cell that results from hair cell stimulation. Quinacrine, which predominantly blocks the activity of PLA2 in neurons, had no affect on either the light response or the IPSP, but did block increases in excitability (i.e. increased input resistance and elicited spike rate) of the B cell that results from pairings of light and presynaptic vestibular stimulation (i.e., in vitro associative conditioning). Neither nordihydroquararetic acid (NDGA), which inhibits metabolism of ArA by cyclooxygenase, nor indomethacin, which inhibits lipoxygenase metabolism of ArA, affected the light response or IPSP, but both blocked the increases in excitability in the B cell that accompanied in vitro conditioning. In combination with earlier results, these data suggest that ArA activates PKC in a synergistic fashion with Ca2+ and diacylglycerol in the B cell, and suggest that PLA2-induced ArA release, though not necessary for transduction of light or the hair cell-induced IPSP in the B cell, is a critical component of the convergence of signals that precipitates associative facilitation in this system. PMID:9099806

  7. Effects of dynamic exercise on plasma arachidonic acid epoxides and diols in human volunteers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolites of the cytochrome P450 pathway may contribute to vasodilation of the vasculature of skeletal muscle during exercise. We determined effects of exercise intensity and duration on plasma concentrations of specific metabolites in the epoxyeicosatrienoic acid family. This allowed us to dete...

  8. Trans isomeric octadecenoic acids are related inversely to arachidonic acid and DHA and positively related to mead acid in umbilical vessel wall lipids.

    PubMed

    Decsi, Tamás; Boehm, Günther; Tjoonk, H M Ria; Molnár, Szilárd; Dijck-Brouwer, D A Janneke; Hadders-Algra, Mijna; Martini, Ingrid A; Muskiet, Frits A J; Boersma, E Rudy

    2002-10-01

    Long-chain PUFA play an important role in early human neurodevelopment. Significant inverse correlations were reported between values of trans isomeric and long-chain PUFA in plasma lipids of preterm infants and children aged 1-15 yr as well as in venous cord blood lipids of full-term infants. Here we report FA compositional data of cord blood vessel wall lipids in 308 healthy, full-term infants (gestational age: 39.7 +/- 1.2 wk, birth weight: 3528 +/- 429 g, mean +/- SD). The median (interquartile range) of the sum of 18-carbon trans FA was 0.22 (0.13) % w/w in umbilical artery and 0.16 (0.10) % w/w in umbilical vein lipids. Nonparametric correlation analysis showed significant inverse correlations between the sum of 18-carbon trans FA and both arachidonic acid and DHA in artery (r = -0.38, P < 0.01, and r = -0.20, P < 0.01) and vein (r = -0.36, P < 0.01, and -0.17, P < 0.01) wall lipids. In addition, the sum of 18-carbon trans FA was significantly positively correlated to Mead acid, a general indicator of EFA deficiency, in both artery (r = +0.35, P < 0.01) and vein (r = +0.31, P< 0.01) wall lipids. The present results obtained in a large group of full-term infants suggest that maternal trans FA intake is inversely associated with long-chain PUFA status of the infant at birth. PMID:12530555

  9. How dietary arachidonic- and docosahexaenoic- acid rich oils differentially affect the murine hepatic transcriptome

    PubMed Central

    Berger, Alvin; Roberts, Matthew A; Hoff, Bruce

    2006-01-01

    Introduction Herein, we expand our previous work on the effects of long chain polyunsaturated fatty acids (LC-PUFA) on the murine hepatic transcriptome using novel statistical and bioinformatic approaches for evaluating microarray data. The analyses focuses on key differences in the transcriptomic response that will influence metabolism following consumption of FUNG (rich in 20:4n6), FISH (rich in 20:5n3, 22:5n3, and 22:6n3) and COMB, the combination of the two. Results Using a variance-stabilized F-statistic, 371 probe sets (out of 13 K probe sets in the Affymetrix Mu11K chip set) were changed by dietary treatment (P < 0.001). Relative to other groups, COMB had unique affects on murine hepatic transcripts involved in cytoskeletal and carbohydrate metabolism; whereas FUNG affected amino acid metabolism via CTNB1 signaling. All three diets affected transcripts linked to apoptosis and cell proliferation, with evidence FISH may have increased apoptosis and decreased cell proliferation via various transcription factors, kinases, and phosphatases. The three diets affected lipid transport, lipoprotein metabolism, and bile acid metabolism through diverse pathways. Relative to other groups, FISH activated cyps that form hydroxylated fatty acids known to affect vascular tone and ion channel activity. FA synthesis and delta 9 desaturation were down regulated by COMB relative to other groups, implying that a FA mixture of 20:4n6, 20:5n3, and 22:6n3 is most effective at down regulating synthesis, via INS1, SREBP, PPAR alpha, and TNF signaling. Heme synthesis and the utilization of heme for hemoglobin production were likely affected by FUNG and FISH. Finally, relative to other groups, FISH increased numerous transcripts linked to combating oxidative such as peroxidases, an aldehyde dehydrogenase, and heat shock proteins, consistent with the major LC-PUFA in FISH (20:5n3, 22:5n3, 22:6n3) being more oxidizable than the major fatty acids in FUNG (20:4n6). Conclusion Distinct

  10. Antioxidant modulation of oxidant-stimulated uptake and release of arachidonic acid in eicosapentaenoic acid-supplemented human lymphoma U937 cells.

    PubMed

    Obajimi, Oluwakemi; Black, Kenneth D; Glen, Iain; Ross, Brian M

    2007-02-01

    Omega-3 polyunsaturated fatty acids (PUFA) are increasingly finding use as treatments for a variety of medical conditions. PUFA supplementation can, however, result in increased oxidative stress causing elevated turnover rate of membrane phospholipids, impairment of membrane integrity and increased formation of inflammatory mediators. The aim of this study was to determine which antioxidant compounds were most effective in ameliorating the stimulation of phospholipid turnover by oxidative stress. U937 cells were supplemented with eicosapentaenoic acid and either ascorbic acid, alpha-tocopherol, beta-carotene or astaxanthin prior to being challenged with oxidant. Although all antioxidants were found to be effective in decreasing oxidant-stimulated peroxide formation, only alpha-tocopherol significantly decreased oxidant-stimulated release of 3H-labeled arachidonic acid (AA), while ascorbic acid markedly increased release. All antioxidants except alpha-tocopherol decreased oxidant-stimulated 3H-AA uptake. Our data suggest that antioxidants are not equally effective in combating the effects of oxidative stress upon membrane phospholipid turnover, and that optimal protection will require mixtures of antioxidants. PMID:17198751

  11. Platelet-activating factor induces phospholipid turnover, calcium flux, arachidonic acid liberation, eicosanoid generation, and oncogene expression in a human B cell line

    SciTech Connect

    Schulam, P.G.; Kuruvilla, A.; Putcha, G.; Mangus, L.; Franklin-Johnson, J.; Shearer, W.T. )

    1991-03-01

    Platelet-activating factor is a potent mediator of the inflammatory response. Studies of the actions of platelet-activating factor have centered mainly around neutrophils, monocytes, and platelets. In this report we begin to uncover the influence of platelet-activating factor on B lymphocytes. Employing the EBV-transformed human B cell line SKW6.4, we demonstrate that platelet-activating factor significantly alters membrane phospholipid metabolism indicated by the incorporation of 32P into phosphatidylcholine, phosphatidylinositol, and phosphatidic acid but not significantly into phosphatidylethanolamine at concentrations ranging from 10(-9) to 10(-6) M. The inactive precursor, lyso-platelet-activating factor, at a concentration as high as 10(-7) M had no effect on any of the membrane phospholipids. We also show that platelet-activating factor from 10(-12) to 10(-6) M induced rapid and significant elevation in intracellular calcium levels, whereas lyso-platelet-activating factor was again ineffective. We further demonstrate the impact of platelet-activating factor binding to B cells by measuring platelet-activating factor induced arachidonic acid release and 5-hydroxyeicosatetraenoic acid production. Moreover, platelet-activating factor was capable of inducing transcription of the nuclear proto-oncogenes c-fos and c-jun. Finally we explored the possible role of 5-hydroxyeicosatetraenoic acid as a regulator of arachidonic acid liberation demonstrating that endogenous 5-lipoxygenase activity modulates platelet-activating factor induced arachidonic acid release perhaps acting at the level of phospholipase A2. In summary, platelet-activating factor is shown here to have a direct and profound effect on a pure B cell line.

  12. Transient postnatal fluoxetine leads to decreased brain arachidonic acid metabolism and cytochrome P450 4A in adult mice

    PubMed Central

    Ramadan, Epolia; Blanchard, Helene; Cheon, Yewon; Fox, Meredith A.; Chang, Lisa; Chen, Mei; Ma, Kaizong; Rapoport, Stanley I.; Basselin, Mireille

    2014-01-01

    Fetal and perinatal exposure to selective serotonin (5-HT) reuptake inhibitors (SSRIs) has been reported to alter childhood behavior, while transient early exposure in rodents is reported to alter their behavior and decrease brain extracellular 5-HT in adulthood. Since 5-HT2A/2C receptor-mediated neurotransmission can involve G-protein coupled activation of cytosolic phospholipase A2 (cPLA2), releasing arachidonic acid (ARA) from synaptic membrane phospholipid, we hypothesized that transient postnatal exposure to fluoxetine would decrease brain ARA metabolism in adult mice. Brain ARA incorporation coefficients k* and rates Jin were quantitatively imaged following intravenous [1-14C]ARA infusion of unanesthetized adult mice that had been injected daily with fluoxetine (10 mg/kg i.p.) or saline during postnatal days P4–P21. Expression of brain ARA metabolic enzymes and other relevant markers also was measured. On neuroimaging, k* and Jin was decreased widely in early fluoxetine- compared to saline-treated adult mice. Of the enzymes measured, cPLA2 activity was unchanged, while Ca2+-independent iPLA2 activity was increased. There was a significant 74% reduced protein level of cytochrome P450 (CYP) 4A, which can convert ARA to 20-HETE. Reduced brain ARA metabolism in adult mice transiently exposed to postnatal fluoxetine, and a 74% reduction in CYP4A protein, suggest long-term effects independent of drug presence in brain ARA metabolism, and in CYP4A metabolites. Comparable changes in humans might contribute to reported altered behavior following early SSRI. PMID:24529827

  13. Effects of Arachidonic Acid Supplementation on Acute Anabolic Signaling and Chronic Functional Performance and Body Composition Adaptations

    PubMed Central

    De Souza, Eduardo O.; Lowery, Ryan P.; Wilson, Jacob M.; Sharp, Matthew H.; Mobley, Christopher Brooks; Fox, Carlton D.; Lopez, Hector L.; Shields, Kevin A.; Rauch, Jacob T.; Healy, James C.; Thompson, Richard M.; Ormes, Jacob A.; Joy, Jordan M.; Roberts, Michael D.

    2016-01-01

    Background The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. Methods Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. Results Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-β (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. Conclusions Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation. PMID:27182886

  14. Effects of arachidonic acid intake on inflammatory reactions in dextran sodium sulphate-induced colitis in rats.

    PubMed

    Naito, Yukiko; Ji, Xu; Tachibana, Shigehiro; Aoki, Satoko; Furuya, Mami; Tazura, Yoshiyuki; Miyazawa, Daisuke; Harauma, Akiko; Moriguchi, Toru; Nagata, Tomoko; Iwai, Naoharu; Ohara, Naoki

    2015-09-14

    The aim of this study was to investigate the effects of the administration of oral arachidonic acid (AA) in rats with or without dextran sulphate sodium (DSS)-induced inflammatory bowel disease. Male Wistar rats were administered AA at 0, 5, 35 or 240 mg/kg daily by gavage for 8 weeks. Inflammatory bowel disease was induced by replacing drinking water with 3 % DSS solution during the last 7 d of the AA dosing period. These animals passed loose stools, diarrhoea and red-stained faeces. Cyclo-oxygenase-2 concentration and myeloperoxidase activity in the colonic tissue were significantly increased in the animals given AA at 240 mg/kg compared with the animals given AA at 0 mg/kg. Thromboxane B2 concentration in the medium of cultured colonic mucosae isolated from these groups was found to be dose-dependently increased by AA, and the increase was significant at 35 and 240 mg/kg. Leukotriene B4 concentration was also significantly increased and saturated at 5 mg/kg. In addition, AA at 240 mg/kg promoted DSS-induced colonic mucosal oedema with macrophage infiltration. In contrast, administration of AA for 8 weeks, even at 240 mg/kg, showed no effects on the normal rats. These results suggest that in rats with bowel disease AA metabolism is affected by oral AA, even at 5 mg/kg per d, and that excessive AA may aggravate inflammation, whereas AA shows no effects in rats without inflammatory bowel disease. PMID:26234346

  15. IMAGING SIGNAL TRANSDUCTION VIA ARACHIDONIC ACID IN THE HUMAN BRAIN DURING VISUAL STIMULATION, BY MEANS OF POSITRON EMISSION TOMOGRAPHY

    PubMed Central

    Esposito, Giuseppe; Giovacchini, Giampiero; Der, Margaret; Liow, Jeih-San; Bhattacharjee, Abesh K.; Ma, Kaizong; Herscovitch, Peter; Channing, Michael; Eckelman, William C.; Hallett, Mark; Carson, Richard E.; Rapoport, Stanley I.

    2007-01-01

    Background Arachidonic acid (AA, 20:4n-6), an important second messenger, is released from membrane phospholipid following receptor mediated activation of phospholipase A2 (PLA2). This signaling process can be imaged in brain as a regional brain AA incorporation coefficient K*. Hypothesis K* will be increased in brain visual areas of subjects submitted to visual stimulation. Subjects and methods Regional values of K* were measured with positron emission tomography (PET), following the intravenous injection of [1-11C]AA, in 16 healthy volunteers subjected to visual stimulation at flash frequencies 2.9 Hz (8 subjects) or 7.8 Hz (8 subjects), compared with the dark (0 Hz) condition. Regional cerebral blood flow (rCBF) was measured with intravenous [15O]water under comparable conditions. Results During flash stimulation at 2.9 Hz or 7.8 Hz vs. 0 Hz, K* was increased significantly by 2.3–8.9% in Brodmann areas 17, 18 and 19, and in additional frontal, parietal and temporal cortical regions. rCBF was increased significantly by 3.1% – 22%, often in comparable regions. Increments at 7.8 Hz often exceeded those at 2.9 Hz for both K* and rCBF. Decrements in both parameters also were produced, particularly in frontal brain regions. Conclusions AA plays a role in signaling processes provoked by visual stimulation, since visual stimulation at flash frequencies of 2.9 and 7.8 Hz compared to 0 Hz modifies both K* for AA and rCBF in visual and related areas of the human brain. The two-stimulus condition paradigm of this study might be used with PET to image effects of other functional activations and of drugs on brain signaling via AA. PMID:17196833

  16. Exogenous fatty acids affect CDP-choline pathway to increase phosphatidylcholine synthesis in granular pneumocytes

    SciTech Connect

    Chander, A.; Gullo, J.; Reicherter, J.; Fisher, A.

    1987-05-01

    Regulation of phosphatidylcholine (PC) synthesis in rat granular pneumocytes isolated by tryptic digestion of lungs and maintained in primary culture for 24 h was investigated by following effects of exogenous fatty acids on (/sup 3/H-methyl)choline incorporation into PC and disaturated PC (DSPC). At 0.1 mM choline, the rate of choline incorporation into PC and DSPC was 440 +/- and 380 +/- 50 pmol/h/ug Pi (mean +/- SE, n=3-5), respectively, and was linear for up to 3 h. PC synthesis was significantly increased by 0.1 mM each of palmitic, oleic, linoleic, or linolenic acid. However, synthesis of DSPC was increased only by palmitic acid and this increase was prevented by addition of oleic acid suggesting lack of effect on the remodeling pathway. Pulse-chase experiments with choline in absence or presence of palmitic or oleic acid showed that the label declined in choline phosphate and increased in PC more rapidly in presence of either of the fatty acids, suggesting rapid conversion of choline phosphate to PC. Microsomal choline phosphate cytidyltransferase activity in cells preincubated without or with palmitic acid for 3 h was 0.81 +/- 0.07 and 1.81 +/- 0.09 nmol choline phosphate converted/min/mg protein (n=4). These results suggest that in granular pneumocytes, exogenous fatty acids modulate PC synthesis by increasing choline phosphate cytidyltransferase activity.

  17. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice.

    PubMed

    Midtbø, Lisa Kolden; Borkowska, Alison G; Bernhard, Annette; Rønnevik, Alexander Krokedal; Lock, Erik-Jan; Fitzgerald, Michael L; Torstensen, Bente E; Liaset, Bjørn; Brattelid, Trond; Pedersen, Theresa L; Newman, John W; Kristiansen, Karsten; Madsen, Lise

    2015-06-01

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of fish oil with rapeseed oil or soybean oil in fish feed had distinct spillover effects in mice fed western diets containing the salmon. A reduced ratio of n-3/n-6 polyunsaturated fatty acids in the fish feed, reflected in the salmon, and hence also in the mice diets, led to a selectively increased abundance of arachidonic acid in the phospholipid pool in the livers of the mice. This was accompanied by increased levels of hepatic ceramides and arachidonic acid-derived pro-inflammatory mediators and a reduced abundance of oxylipins derived from eicosapentaenoic acid and docosahexaenoic acid. These changes were associated with increased whole body insulin resistance and hepatic steatosis. Our data suggest that an increased ratio between n-6 and n-3-derived oxylipins may underlie the observed marked metabolic differences between mice fed the different types of farmed salmon. These findings underpin the need for carefully considering the type of oil used for feed production in relation to salmon farming. PMID:25776459

  18. Hydrogen Peroxide Elicits Constriction of Skeletal Muscle Arterioles by Activating the Arachidonic Acid Pathway

    PubMed Central

    Csató, Viktória; Pető, Attila; Koller, Ákos; Édes, István

    2014-01-01

    Aims The molecular mechanisms of the vasoconstrictor responses evoked by hydrogen peroxide (H2O2) have not been clearly elucidated in skeletal muscle arterioles. Methods and Results Changes in diameter of isolated, cannulated and pressurized gracilis muscle arterioles (GAs) of Wistar-Kyoto rats were determined under various test conditions. H2O2 (10–100 µM) evoked concentration-dependent constrictions in the GAs, which were inhibited by endothelium removal, or by antagonists of phospholipase A (PLA; 100 µM 7,7-dimethyl-(5Z,8Z)-eicosadienoic acid), protein kinase C (PKC; 10 µM chelerythrine), phospholipase C (PLC; 10 µM U-73122), or Src family tyrosine kinase (Src kinase; 1 µM Src Inhibitor-1). Antagonists of thromboxane A2 (TXA2; 1 µM SQ-29548) or the non-specific cyclooxygenase (COX) inhibitor indomethacin (10 µM) converted constrictions to dilations. The COX-1 inhibitor (SC-560, 1 µM) demonstrated a greater reduction in constriction and conversion to dilation than that of COX-2 (celecoxib, 3 µM). H2O2 did not elicit significant changes in arteriolar Ca2+ levels measured with Fura-2. Conclusions These data suggest that H2O2 activates the endothelial Src kinase/PLC/PKC/PLA pathway, ultimately leading to the synthesis and release of TXA2 by COX-1, thereby increasing the Ca2+ sensitivity of the vascular smooth muscle cells and eliciting constriction in rat skeletal muscle arterioles. PMID:25093847

  19. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage.

    PubMed

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses. PMID:27347945

  20. Hypoxia Potentiates Anabolic Effects of Exogenous Hyaluronic Acid in Rat Articular Cartilage

    PubMed Central

    Ichimaru, Shohei; Nakagawa, Shuji; Arai, Yuji; Kishida, Tsunao; Shin-Ya, Masaharu; Honjo, Kuniaki; Tsuchida, Shinji; Inoue, Hiroaki; Fujiwara, Hiroyoshi; Shimomura, Seiji; Mazda, Osam; Kubo, Toshikazu

    2016-01-01

    Hyaluronic acid (HA) is used clinically to treat osteoarthritis (OA), but its pharmacological effects under hypoxic conditions remain unclear. Articular chondrocytes in patients with OA are exposed to a hypoxic environment. This study investigated whether hypoxia could potentiate the anabolic effects of exogenous HA in rat articular cartilage and whether these mechanisms involved HA receptors. HA under hypoxic conditions significantly enhanced the expression of extracellular matrix genes and proteins in explant culture, as shown by real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and dimethylmethylene blue (DMMB) assays. Staining with Safranin-O and immunohistochemical staining with antibody to type II collagen were also enhanced in pellet culture. The expression of CD44 was increased by hypoxia and significantly suppressed by transfection with siRNAs targeting hypoxia-inducible factor 1 alpha (siHIF-1α). These findings indicate that hypoxia potentiates the anabolic effects of exogenous HA by a mechanism in which HIF-1α positively regulates the expression of CD44, enhancing the binding affinity for exogenous HA. The anabolic effects of exogenous HA may increase as OA progresses. PMID:27347945

  1. Detection of exogenous citric acid in fruit juices by stable isotope ratio analysis.

    PubMed

    Jamin, Eric; Martin, Frédérique; Santamaria-Fernandez, Rebeca; Lees, Michèle

    2005-06-29

    A new method has been developed for measuring the D/H ratio of the nonexchangeable sites of citric acid by isotope ratio mass spectrometry (IRMS). Pure citric acid is transformed into its calcium salt and subsequently analyzed by pyrolysis-IRMS. The citric acid isolated from authentic fruit juices (citrus, pineapple, and red fruits) systematically shows higher D/H values than its nonfruit counterpart produced by fermentation of various sugar sources. The discrimination obtained with this simplified method is similar to that obtained previously by applying site specific isotopic fractionation-nuclear magnetic resonance (SNIF-NMR) to an ester derivative of citric acid. The combination of carbon 13 and deuterium measurements of extracted citric acid is proposed as a routine method for an optimum detection of exogenous citric acid in all kinds of fruit juices. PMID:15969486

  2. Crystal Structure of Arachidonic Acid Bound to a Mutant of Prostaglandin Endoperoxide Synthase-1 that Forms Predominantly 11-HPETE

    SciTech Connect

    Harman, C.; Rieke, C.J.; Garavito, R.M.; Smith, W.L.

    2010-03-05

    Kinetic studies and analysis of the products formed by native and mutant forms of ovine prostaglandin endoperoxide H synthase-1 (oPGHS-1) have suggested that arachidonic acid (AA) can exist in the cyclooxygenase active site of the enzyme in three different, catalytically competent conformations that lead to prostaglandin G{sub 2} (PGG{sub 2}), 11Rhydroperoxyeicosatetraenoic acid (HPETE), and 15R,SHPETE, respectively. We have identified an oPGHS-1 mutant (V349A/W387F) that forms predominantly 11RHPETE. Thus, the preferred catalytically competent arrangement of AA in the cyclooxygenase site of this double mutant must be one that leads to 11-HPETE. The crystal structure of Co{sup 3+}-protoporphyrin IX V349A/W387F oPGHS-1 in a complex with AA was determined to 3.1 {angstrom}. Significant differences are observed in the positions of atoms C-3, C-4, C-5, C-6, C-10, C-11, and C-12 of bound AA between native and V349A/W387F oPGHS-1; in comparison, the positions of the side chains of cyclooxygenase active site residues are unchanged. The structure of the double mutant presented here provides structural insight as to how Val{sup 349} and Trp{sup 387} help position C-9 and C-11 of AA so that the incipient 11-peroxyl radical intermediate is able to add to C-9 to form the 9,11 endoperoxide group of PGG{sub 2}. In the V349A/W387F oPGHS-1 {center_dot} AA complex the locations of C-9 and C-11 of AA with respect to one another make it difficult to form the endoperoxide group from the 11-hydroperoxyl radical. Therefore, the reaction apparently aborts yielding 11R-HPETE instead of PGG{sub 2}. In addition, the observed differences in the positions of carbon atoms of AA bound to this mutant provides indirect support for the concept that the conformer of AA shown previously to be bound within the cyclooxygenase active site of native oPGHS-1 is the one that leads to PGG{sub 2}.

  3. Nucleic-acid-programmed Ag-nanoclusters as a generic platform for visualization of latent fingerprints and exogenous substances.

    PubMed

    Ran, Xiang; Wang, Zhenzhen; Zhang, Zhijun; Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2016-01-11

    We display a nucleic acid controlled AgNC platform for latent fingerprint visualization. The versatile emission of aptamer-modified AgNCs was regulated by the nearby DNA regions. Multi-color images for simultaneous visualization of fingerprints and exogenous components were successfully obtained. A quantitative detection strategy for exogenous substances in fingerprints was also established. PMID:26537157

  4. Interrelated effects of dihomo-γ-linolenic and arachidonic acids, and sesamin on hepatic fatty acid synthesis and oxidation in rats.

    PubMed

    Ide, Takashi; Ono, Yoshiko; Kawashima, Hiroshi; Kiso, Yoshinobu

    2012-12-14

    Interrelated effects of dihomo-γ-linolenic acid (DGLA) and arachidonic acid (ARA), and sesamin, a sesame lignan, on hepatic fatty acid synthesis and oxidation were examined in rats. Rats were fed experimental diets supplemented with 0 or 2 g/kg sesamin (1:1 mixture of sesamin and episesamin), containing 100 g/kg of maize oil or fungal oil rich in DGLA or ARA for 16 d. Among the groups fed sesamin-free diets, oils rich in DGLA or ARA, especially the latter, compared with maize oil strongly reduced the activity and mRNA levels of various lipogenic enzymes. Sesamin, irrespective of the type of fat, reduced the parameters of lipogenic enzymes except for malic enzyme. The type of dietary fat was rather irrelevant in affecting hepatic fatty acid oxidation among rats fed the sesamin-free diets. Sesamin increased the activities of enzymes involved in fatty acid oxidation in all groups of rats given different fats. The extent of the increase depended on the dietary fat type, and the values became much higher with a diet containing sesamin and oil rich in ARA in combination than with a diet containing lignan and maize oil. Analyses of mRNA levels revealed that the combination of sesamin and oil rich in ARA compared with the combination of lignan and maize oil markedly increased the gene expression of various peroxisomal fatty acid oxidation enzymes but not mitochondrial enzymes. The enhancement of sesamin action on hepatic fatty acid oxidation was also confirmed with oil rich in DGLA but to a lesser extent. PMID:22370182

  5. Arachidonic acid actions on functional integrity and attenuation of the negative effects of palmitic acid in a clonal pancreatic β-cell line

    PubMed Central

    Keane, Deirdre C.; Takahashi, Hilton K.; Dhayal, Shalinee; Morgan, Noel G.; Curi, Rui; Newsholme, Philip

    2010-01-01

    Chronic exposure of pancreatic β-cells to saturated non-esterified fatty acids can lead to inhibition of insulin secretion and apoptosis. Several previous studies have demonstrated that saturated fatty acids such as PA (palmitic acid) are detrimental to β-cell function compared with unsaturated fatty acids. In the present study, we describe the effect of the polyunsaturated AA (arachidonic acid) on the function of the clonal pancreatic β-cell line BRIN-BD11 and demonstrate AA-dependent attenuation of PA effects. When added to β-cell incubations at 100 μM, AA can stimulate cell proliferation and chronic (24 h) basal insulin secretion. Microarray analysis and/or real-time PCR indicated significant AA-dependent up-regulation of genes involved in proliferation and fatty acid metabolism [e.g. Angptl (angiopoietin-like protein 4), Ech1 (peroxisomal Δ3,5,Δ2,4-dienoyl-CoA isomerase), Cox-1 (cyclo-oxygenase-1) and Cox-2, P<0.05]. Experiments using specific COX and LOX (lipoxygenase) inhibitors demonstrated the importance of COX-1 activity for acute (20 min) stimulation of insulin secretion, suggesting that AA metabolites may be responsible for the insulinotropic effects. Moreover, concomitant incubation of AA with PA dose-dependently attenuated the detrimental effects of the saturated fatty acid, so reducing apoptosis and decreasing parameters of oxidative stress [ROS (reactive oxygen species) and NO levels] while improving the GSH/GSSG ratio. AA decreased the protein expression of iNOS (inducible NO synthase), the p65 subunit of NF-κB (nuclear factor κB) and the p47 subunit of NADPH oxidase in PA-treated cells. These findings indicate that AA has an important regulatory and protective β-cell action, which may be beneficial to function and survival in the ‘lipotoxic’ environment commonly associated with Type 2 diabetes mellitus. PMID:20840078

  6. ATP Allosterically Activates the Human 5-Lipoxygenase Molecular Mechanism of Arachidonic Acid and 5(S)-Hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic Acid

    PubMed Central

    2015-01-01

    5-Lipoxygenase (5-LOX) reacts with arachidonic acid (AA) to first generate 5(S)-hydroperoxy-6(E),8(Z),11(Z),14(Z)-eicosatetraenoic acid [5(S)-HpETE] and then an epoxide from 5(S)-HpETE to form leukotriene A4, from a single polyunsaturated fatty acid. This work investigates the kinetic mechanism of these two processes and the role of ATP in their activation. Specifically, it was determined that epoxidation of 5(S)-HpETE (dehydration of the hydroperoxide) has a rate of substrate capture (Vmax/Km) significantly lower than that of AA hydroperoxidation (oxidation of AA to form the hydroperoxide); however, hyperbolic kinetic parameters for ATP activation indicate a similar activation for AA and 5(S)-HpETE. Solvent isotope effect results for both hydroperoxidation and epoxidation indicate that a specific step in its molecular mechanism is changed, possibly because of a lowering of the dependence of the rate-limiting step on hydrogen atom abstraction and an increase in the dependency on hydrogen bond rearrangement. Therefore, changes in ATP concentration in the cell could affect the production of 5-LOX products, such as leukotrienes and lipoxins, and thus have wide implications for the regulation of cellular inflammation. PMID:24893149

  7. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic.

    PubMed

    Kaya, Armagan; Doganlar, Zeynep Banu

    2016-02-01

    Jasmonic acid (JA) is one of the important phytohormones, regulating the stress responses as well as plant growth and development. The aim of this study is to determine the effects of exogenous JA application on stress responses of tobacco plant exposed to imazapic. In this study, phytotoxic responses resulting from both imazapic and imazapic combined with JA treatment are investigated comparatively for tobacco plants. For plants treated with imazapic at different concentrations (0.030, 0.060 and 0.120mM), antioxidant enzyme activities (catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), carotenoids, glutathione and malondialdehyte (MDA) contents, jasmonic acid, abscisic acid and indole-3-acetic acid levels as well as herbicide residue amounts on leaves increased in general compared to the control group. In the plants treated with 45µM jasmonic acid, pigment content, antioxidant activity and phytohormone level increased whereas MDA content and the amount of herbicidal residue decreased compared to the non-treated plants. Our findings show that imazapic treatment induces some phytotoxic responses on tobacco leaves and that exogenous jasmonic acid treatment alleviates the negative effects of herbicide treatment by regulating these responses. PMID:26629659

  8. Protein synthesis in isolated rabbit forelimb muscles. The possible role of metabolites of arachidonic acid in the response to intermittent stretching.

    PubMed Central

    Smith, R H; Palmer, R M; Reeds, P J

    1983-01-01

    Protein synthesis was measured in isolated intact rabbit muscles by the incorporation of [3H]phenylalanine added at a high concentration (2.5 mM) to the incubation medium. Intermittent mechanical stretching substantially increased the rate of protein synthesis relative to that in control muscles incubated under a constant tension. Indomethacin and meclofenamic acid, inhibitors of the enzyme cyclo-oxygenase, which converts free arachidonic acid into the prostaglandins, prostacyclins and thromboxanes, decreased the rate of protein synthesis in intermittently stretched muscles, but had no effect on synthesis rates in the unstimulated controls. Arachidonic acid at concentrations of 0.2 and 1.0 microM gave a highly significant increase in the rate of protein synthesis in muscles incubated under a constant tension. The ability of arachidonic acid to increase protein-synthesis rates was abolished by the addition of indomethacin. Activation of protein synthesis by intermittent stretching persisted for 10-20 min after the stretch stimulation had ceased. Indomethacin, added either during the initial incubation with intermittent stretching or during the subsequent period when protein synthesis was measured after stimulation had ceased, decreased protein-synthesis rates. This decrease was similar whether indomethacin was present during the initial, final or entire incubation period. In experiments analogous with those in (4) above, when Ca2+ was withheld and EGTA added for the entire incubation, rates of protein synthesis were again decreased. The rates of protein synthesis observed when Ca2+ was present during either an initial stimulation phase or a final, unstimulated, measurement phase were similar, and were intermediate between control rates and those in muscles incubated without Ca2+ for the whole experiment. Two prostaglandins, F2 alpha (2.8 microM) and A1 (28 microM), increased rates of protein synthesis in unstimulated muscles, but prostaglandins E2 and D2 and the

  9. Traumatic brain injury causes platelet adenosine diphosphate and arachidonic acid receptor inhibition independent of hemorrhagic shock in humans and rats

    PubMed Central

    Castellino, Francis J.; Chapman, Michael P.; Donahue, Deborah L.; Thomas, Scott; Moore, Ernest E.; Wohlauer, Max V.; Fritz, Braxton; Yount, Robert; Ploplis, Victoria; Davis, Patrick; Evans, Edward; Walsh, Mark

    2014-01-01

    BACKGROUND Coagulopathy in traumatic brain injury (CTBI) is a well-established phenomenon, but its mechanism is poorly understood. Various studies implicate protein C activation related to the global insult of hemorrhagic shock or brain tissue factor release with resultant platelet dysfunction and depletion of coagulation factors. We hypothesized that the platelet dysfunction of CTBI is a distinct phenomenon from the coagulopathy following hemorrhagic shock. METHODS We used thrombelastography with platelet mapping as a measure of platelet function, assessing the degree of inhibition of the adenosine diphosphate (ADP) and arachidonic acid (AA) receptor pathways. First, we studied the early effect of TBI on platelet inhibition by performing thrombelastography with platelet mapping on rats. We then conducted an analysis of admission blood samples from trauma patients with isolated head injury (n = 70). Patients in shock or on clopidogrel or aspirin were excluded. RESULTS In rats, ADP receptor inhibition at 15 minutes after injury was 77.6% ± 6.7% versus 39.0% ± 5.3% for controls (p < 0.0001). Humans with severe TBI (Glasgow Coma Scale [GCS] score ≤ 8) showed an increase in ADP receptor inhibition at 93.1% (interquartile range [IQR], 44.8–98.3%; n = 29) compared with 56.5% (IQR, 35–79.1%; n = 41) in milder TBI and 15.5% (IQR, 13.2–29.1%) in controls (p = 0.0014 and p < 0.0001, respectively). No patient had significant hypotension or acidosis. Parallel trends were noted in AA receptor inhibition. CONCLUSION Platelet ADP and AA receptor inhibition is a prominent early feature of CTBI in humans and rats and is linked to the severity of brain injury in patients with isolated head trauma. This phenomenon is observed in the absence of hemorrhagic shock or multisystem injury. Thus, TBI alone is shown to be sufficient to induce a profound platelet dysfunction. (J Trauma Acute Care Surg. 2014;76: 1169–1176. PMID:24747445

  10. Cross-talk between TLR4 and PPARγ pathways in the arachidonic acid-induced inflammatory response in pancreatic acini.

    PubMed

    Mateu, A; Ramudo, L; Manso, M A; De Dios, I

    2015-12-01

    Arachidonic acid (AA) is generally associated with inflammation in different settings. We assess the molecular mechanisms involved in the inflammatory response exerted by AA on pancreatic acini as an approach to acute pancreatitis (AP). Celecoxib (COX-2 inhibitor), TAK-242 (TLR4 inhibitor) and 15d-PGJ2 (PPARγ agonist) were used to ascertain the signaling pathways. In addition, we examine the effects of TAK-242 and 15d-PGJ2 on AP induced in rats by bile-pancreatic duct obstruction (BPDO). To carry out in vitro studies, acini were isolated from pancreas of control rats. Generation of PGE2 and TXB2, activation of pro-inflammatory pathways (MAPKs, NF-κB, and JAK/STAT3) and overexpression of CCL2 and P-selectin was found in AA-treated acini. In addition, AA up-regulated TLR4 and down-regulated PPARγ expression. Celecoxib prevented the up-regulation of CCL2 and P-selectin but did not show any effect on the AA-mediated changes in TLR4 and PPARγ expression. TAK-242, reduced the generation of AA metabolites and repressed both the cascade of pro-inflammatory events which led to CCL2 and P-selectin overexpression as well as the AA-induced PPARγ down-regulation. Thus, TLR4 acts as upstream activating pro-inflammatory and inhibiting anti-inflammatory pathways. 15d-PGJ2 down-regulated TLR4 expression and hence prevented the synthesis of AA metabolites and the inflammatory response mediated by them. Reciprocal negative cross-talk between TLR4 and PPARγ pathways is evidenced. In vivo experiments showed that TAK-242 and 15d-PGJ2 treatments reduced the inflammatory response in BPDO-induced AP. We conclude that through TLR4-dependent mechanisms, AA up-regulated CCL2 and P-selectin in pancreatic acini, partly mediated by the generation of PGE2 and TXB2, which activated pro-inflammatory pathways, but also directly by down-regulating PPARγ expression with anti-inflammatory activity. In vitro and in vivo studies support the role of TLR4 in AP and the use of TLR4 inhibitors and

  11. Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway.

    PubMed

    Navarro-Núñez, L; Lozano, M L; Palomo, M; Martínez, C; Vicente, V; Castillo, J; Benavente-García, O; Diaz-Ricart, M; Escolar, G; Rivera, J

    2008-05-14

    Previous studies using washed platelets demonstrated that certain flavonoids inhibit platelet function through several mechanisms including blockade of TxA(2) receptors (TPs). We aimed to analyze the binding capacity of flavonoids to TPs in platelet rich plasma (PRP), investigated their effect in flowing blood, and evaluated the ability of apigenin to improve the efficacy of aspirin in the inhibition of platelet aggregation. The binding of flavonoids to TPs in PRP was explored using binding assays and the TP antagonist [ (3)H]SQ29548. Effects of flavonoids on platelet adhesion were assessed using arterial subendothelium with annular plate perfusion chambers, and global evaluation of apigenin on high-shear-dependent platelet function was determined by the PFA-100. To evaluate the ability of apigenin to potentiate the effect of aspirin, arachidonic acid-induced platelet aggregation was measured prior to and after consumption of subaggregatory doses of aspirin in the presence or absence of apigenin. Binding assays revealed that apigenin was an efficient competitor of [ (3)H]SQ29548 binding to PRP ( K i = 155.3 +/- 65.4 microM), and perfusion studies showed that apigenin, genistein, and catechin significantly diminished thrombus formation when compared to control (26.2 +/- 3.8, 33.1 +/- 5.2, and 26.2 +/- 5.2 vs 76.6 +/- 2.6%, respectively; p < 0.05). Apigenin, similarly to the TP antagonist SQ29548, significantly prolonged collagen epinephrine-induced PFA-100 closure time in comparison to the control and, when added to platelets that had been exposed in vivo to aspirin, potentiated its inhibitory effect on platelet aggregation. The inhibitory effect of some flavonoids in the presence of plasma, particularly apigenin, might in part rely on TxA(2) receptor antagonism. There is a clear increase in the ex vivo antiplatelet effect of aspirin in the presence of apigenin, which encourages the idea of the combined use of aspirin and certain flavonoids in patients in which

  12. Ca-mediated and independent effects of arachidonic acid on gap junctions and Ca-independent effects of oleic acid and halothane.

    PubMed

    Lazrak, A; Peres, A; Giovannardi, S; Peracchia, C

    1994-09-01

    In Novikoff hepatoma cell pairs studied by double perforated patch clamp (DPPC), brief (20 s) exposure to 20 microM arachidonic acid (AA) induced a rapid and reversible uncoupling. In pairs studied by double whole-cell clamp (DWCC), uncoupling was completely prevented by effective buffering of Cai2+ with BAPTA. Similarly, AA (20 s) had no effect on coupling in cells perfused with solutions containing no added Ca2+ (SES-no-Ca) and studied by DPPC, suggesting that Ca2+ influx plays an important role. Parallel experiments monitoring [Ca2+]i with fura-2 showed that [Ca2+]i increases with AA to 0.7-1.5 microM in normal [Ca2+]o, and to approximately 400 nM in SES-no-Ca solutions. The rate of [Ca2+]i increase matched that of Gj decrease, but [Ca2+]i recovery was faster. In cells studied by DWCC with 2 mM BAPTA in the pipette solution and superfused with SES-no-Ca, long exposure (1 min) to 20 microM AA caused a slow and virtually irreversible uncoupling. This result suggests that AA has a dual mechanism of uncoupling: one dominant, fast, reversible, and Ca(2+)-dependent, the other slow, poorly reversible, and Ca(2+)-independent. In contrast, uncoupling by oleic acid (OA) or halothane was insensitive to internal buffering with BAPTA, suggesting a Ca(2+)-independent mechanism only. PMID:7811915

  13. Exogenous abscisic acid significantly affects proteome in tea plant (Camellia sinensis) exposed to drought stress

    PubMed Central

    Zhou, Lin; Xu, Hui; Mischke, Sue; Meinhardt, Lyndel W; Zhang, Dapeng; Zhu, Xujun; Li, Xinghui; Fang, Wanping

    2014-01-01

    Tea [Camellia sinensis (L.) O. Kuntze] is an important economic crop, and drought is the most important abiotic stress affecting yield and quality. Abscisic acid (ABA) is an important phytohormone responsible for activating drought resistance. Increased understanding of ABA effects on tea plant under drought stress is essential to develop drought-tolerant tea genotypes, along with crop management practices that can mitigate drought stress. The objective of the present investigation is evaluation of effects of exogenous ABA on the leaf proteome in tea plant exposed to drought stress. Leaf protein patterns of tea plants under simulated drought stress [(polyethylene glycol (PEG)-treated] and exogenous ABA treatment were analyzed in a time-course experiment using two-dimensional electrophoresis (2-DE), followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Among the 72 protein spots identified by MALDI-TOF MS, 16 proteins were downregulated and two were upregulated by exogenous ABA. The upregulated proteins have roles in glycolysis and photosystem II stabilization. Twenty-one protein spots were responsive to drought stress and most participate in carbohydrate and nitrogen metabolism, control of reactive oxygen species (ROS), defense, signaling or nucleic acid metabolism. The combined treatments of exogenous ABA and drought showed upregulation of 10 protein spots at 12 h and upregulation of 11 proteins at 72 h after initiation of drought stress. The results support the importance of the role that ABA plays in the tea plant during drought stress, by improving protein transport, carbon metabolism and expression of resistance proteins. PMID:27076915

  14. An Optimized High Throughput Clean-Up Method Using Mixed-Mode SPE Plate for the Analysis of Free Arachidonic Acid in Plasma by LC-MS/MS

    PubMed Central

    Wang, Wan; Qin, Suzi; Li, Linsen; Chen, Xiaohua; Wang, Qunjie; Wei, Junfu

    2015-01-01

    A high throughput sample preparation method was developed utilizing mixed-mode solid phase extraction (SPE) in 96-well plate format for the determination of free arachidonic acid in plasma by LC-MS/MS. Plasma was mixed with 3% aqueous ammonia and loaded into each well of 96-well plate. After washing with water and methanol sequentially, 3% of formic acid in acetonitrile was used to elute arachidonic acid. The collected fraction was injected onto a reversed phase column at 30°C with mobile phase of acetonitrile/water (70 : 30, v/v) and detected by LC-MS/MS coupled with electrospray ionization (ESI) in multiple reaction monitoring (MRM) mode. The calibration curve ranged from 10 to 2500 ng/mL with sufficient linearity (r2 = 0.9999). The recoveries were in the range of 99.38% to 103.21% with RSD less than 6%. The limit of detection is 3 ng/mL. PMID:25873969

  15. Exogenic controls on sulfuric acid hydrate production at the surface of Europa

    NASA Astrophysics Data System (ADS)

    Dalton, J. B.; Cassidy, T.; Paranicas, C.; Shirley, J. H.; Prockter, L. M.; Kamp, L. W.

    2013-03-01

    External agents have heavily weathered the visible surface of Europa. Internal and external drivers competing to produce the surface we see include, but are not limited to: aqueous alteration of materials within the icy shell, initial emplacement of endogenic material by geologic activity, implantation of exogenic ions and neutrals from Jupiter's magnetosphere, alteration of surface chemistry by radiolysis and photolysis, impact gardening of upper surface layers, and redeposition of sputtered volatiles. Separating the influences of these processes is critical to understanding the surface and subsurface compositions at Europa. Recent investigations have applied cryogenic reflectance spectroscopy to Galileo Near-Infrared Mapping Spectrometer (NIMS) observations to derive abundances of surface materials including water ice, hydrated sulfuric acid, and hydrated sulfate salts. Here we compare derived sulfuric acid hydrate (H2SO4·nH2O) abundance with weathering patterns and intensities associated with charged particles from Jupiter's magnetosphere. We present models of electron energy, ion energy, and sulfur ion number flux as well as the total combined electron and ion energy flux at the surface to estimate the influence of these processes on surface concentrations, as a function of location. We found that correlations exist linking both electron energy flux (r∼0.75) and sulfur ion flux (r=0.93) with the observed abundance of sulfuric acid hydrate on Europa. Sulfuric acid hydrate production on Europa appears to be limited in some regions by a reduced availability of sulfur ions, and in others by insufficient levels of electron energy. The energy delivered by sulfur and other ions has a much less significant role. Surface deposits in regions of limited exogenic processing are likely to bear closest resemblance to oceanic composition. These results will assist future efforts to separate the relative influence of endogenic and exogenic sources in establishing the

  16. Arachidonic Acid Pathway Members PLA2G7, HPGD, EPHX2, and CYP4F8 Identified as Putative Novel Therapeutic Targets in Prostate Cancer

    PubMed Central

    Vainio, Paula; Gupta, Santosh; Ketola, Kirsi; Mirtti, Tuomas; Mpindi, John-Patrick; Kohonen, Pekka; Fey, Vidal; Perälä, Merja; Smit, Frank; Verhaegh, Gerald; Schalken, Jack; Alanen, Kalle A.; Kallioniemi, Olli; Iljin, Kristiina

    2011-01-01

    The arachidonic acid and prostaglandin pathway has been implicated in prostate carcinogenesis, but comprehensive studies of the individual members in this key pathway are lacking. Here, we first conducted a systematic bioinformatic study of the expression of 36 arachidonic acid pathway genes across 9783 human tissue samples. The results showed that the PLA2G7, HPGD, EPHX2, and CYP4F8 genes are highly expressed in prostate cancer. Functional studies using RNA interference in prostate cancer cells indicated that all four genes are also essential for cell growth and survival. Clinical validation confirmed high PLA2G7 expression, especially in ERG oncogene-positive prostate cancers, and its silencing sensitized ERG-positive prostate cancer cells to oxidative stress. HPGD was highly expressed in androgen receptor (AR)-overexpressing advanced tumors, as well as in metastatic prostate cancers. EPHX2 mRNA correlated with AR in primary prostate cancers, and its inhibition in vitro reduced AR signaling and potentiated the effect of antiandrogen flutamide in cultured prostate cancer cells. In summary, we identified four novel putative therapeutic targets with biomarker potential for different subtypes of prostate cancer. In addition, our results indicate that inhibition of these enzymes may be particularly powerful when combined with other treatments, such as androgen deprivation or induction of oxidative stress. PMID:21281786

  17. Diffusion of intracerebrally injected (1-/sup 14/C)arachidonic acid and (2-/sup 3/H)glycerol in the mouse brain. Effects of ischemia and electroconvulsive shock

    SciTech Connect

    Pediconi, M.F.; Rodriguez de Turco, E.B.; Bazan, N.G.

    1982-12-01

    (2-/sup 3/H)Glycerol and (1-/sup 14/C)arachidonic acid were injected into the region of the frontal horn of the left ventricle of mice and were distributed rapidly throughout the brain. After 10 sec, most of the radioactive fatty acid was found in the hemisphere near the injection site; after 10 min, it was recovered in similar proportions in the cerebellum and brain stem. (2-/sup 3/H)Glycerol showed a heterogeneous distribution, with most of the label remaining in the left hemisphere even after 10 min. On a fresh weight basis, cerebrum, cerebellum, and brain stem were found to contain similar amounts of labeled glycerol. However, the amount of (1-/sup 14/C)arachidonate in cerebrum was only 50% of that recovered from cerebellum or brain stem. Brain ischemia or a single electroconvulsive shock reduced the spread of the label, producing an accumulation of radioactivity in the injected hemisphere, except for an increase in (2-/sup 3/H)glycerol in the brain stem during ischemia. Despite the significant decrease in available precursor in the cerebellum and brain stem after electroshock, the amount of label incorporated into lipids was not altered in these areas and only slightly diminished in the cerebrum.

  18. Sex Differences in the Association between the Eicosapentaenoic Acid/Arachidonic Acid Ratio and the Visceral Fat Area among Patients with Type 2 Diabetes.

    PubMed

    Nakanishi, Shuhei; Nagano, Chihiro; Miyahara, Mitsue; Sawano, Fumio

    2016-01-01

    Objective To examine the serum levels of eicosapentaenoic acid (EPA) and the ratios of docosahexaenoic acid (DHA), and the EPA/arachidonic acid (AA) and DHA/AA and to clarify their association with the areas of subcutaneous and visceral fat separately by sex among patients with type 2 diabetes. Methods The study participants included 118 men and 96 women who were hospitalized to receive treatment for type 2 diabetes. We examined the serum levels of EPA and DHA and the ratios of EPA/AA and DHA/AA, and analyzed their association with the total fat area (TFA), subcutaneous fat area (SFA), and visceral fat area (VFA), as measured by computed tomography. Results The mean age of the study participants was 62.6±13.6 years. The mean HbA1c level was 9.37±2.27%. Among men, a multivariate regression analysis adjusted for age and BMI, revealed a significant negative association between VFA and the EPA/AA ratio. When the multivariate regression analysis was adjusted for age, BMI, and HbA1c level, VFA was still found to be significantly negatively associated with the EPA/AA ratio. Although a crude analysis revealed a significant negative association between SFA and the EPA/AA ratio in women, no association was observed in multivariate regression analyses. Conclusion These results suggest the possibility that EPA inhibits the accumulation of visceral fat in men. Furthermore, there appear to be marked differences in the relationships between EPA and DHA and visceral fat accumulation. PMID:27181531

  19. Evaluation of single-cell sources of docosahexaenoic acid and arachidonic acid: 3-month rat oral safety study with an in utero phase.

    PubMed

    Burns, R A; Wibert, G J; Diersen-Schade, D A; Kelly, C M

    1999-01-01

    Owing to the presence of the polyunsaturated fatty acids (PUFA) docosahexaenoic acid (DHA) and arachidonic acid (ARA) in human milk and their important biological function, several authorities recommend that they be added to infant formulas. This study assessed the safety of an algal oil rich in DHA and a fungal oil rich in ARA, blended to provide a DHA to ARA ratio similar to human milk. The oil blend was incorporated into diets and fed to rats such that they received 3, 11 and 22 times the anticipated infant exposure to DHA and ARA. Low-fat and high-fat control groups received canola oil. Rats received experimental diets over a premating interval and throughout mating, gestation and lactation. Pups born during this period (F1) consumed treatment diets from weaning for 3 months. Physical observations, ophthalmoscopic examinations, body weight, food intake, clinical chemistry, neurobehavioural evaluations and postmortem histopathology of selected tissues were performed. No statistically significant, dose-dependent adverse effects were seen in reproductive performance or fertility, nor in the neonates from birth to weaning. Mid- and high-dose treated F1 animals exhibited increased white cell count, neutrophil count and blood urea nitrogen; increased liver and spleen weights (absolute and relative to body weight) also were observed. There were no corresponding microscopic findings. The clinical pathology and organ weight differences at these treatment levels represent physiological or metabolic responses to the test substance rather than adverse responses. These single-cell oils produced no adverse effects in rats when administered in utero and for 90 days at dietary levels resulting in exposures up to 22 or 66 times higher than those expected in infant formulas when extrapolated on the basis of diet composition (g/100 Cal) or intake (g/kg body weight), respectively. PMID:10069479

  20. Inducible Expression of a Resistance-Nodulation-Division-Type Efflux Pump in Staphylococcus aureus Provides Resistance to Linoleic and Arachidonic Acids

    PubMed Central

    Alnaseri, Heba; Arsic, Benjamin; Schneider, James E. T.; Kaiser, Julienne C.; Scinocca, Zachariah C.; Heinrichs, David E.

    2015-01-01

    ABSTRACT Although Staphylococcus aureus is exposed to antimicrobial fatty acids on the skin, in nasal secretions, and in abscesses, a specific mechanism of inducible resistance to this important facet of innate immunity has not been identified. Here, we have sequenced the genome of S. aureus USA300 variants selected for their ability to grow at an elevated concentration of linoleic acid. The fatty acid-resistant clone FAR7 had a single nucleotide polymorphism resulting in an H121Y substitution in an uncharacterized transcriptional regulator belonging to the AcrR family, which was divergently transcribed from a gene encoding a member of the resistance-nodulation-division superfamily of multidrug efflux pumps. We named these genes farR and farE, for regulator and effector of fatty acid resistance, respectively. Several lines of evidence indicated that FarE promotes efflux of antimicrobial fatty acids and is regulated by FarR. First, expression of farE was strongly induced by arachidonic and linoleic acids in an farR-dependent manner. Second, an H121Y substitution in FarR resulted in increased expression of farE and was alone sufficient to promote increased resistance of S. aureus to linoleic acid. Third, inactivation of farE resulted in a significant reduction in the inducible resistance of S. aureus to the bactericidal activity of 100 μM linoleic acid, increased accumulation of [14C]linoleic acid by growing cells, and severely impaired growth in the presence of nonbactericidal concentrations of linoleic acid. Cumulatively, these findings represent the first description of a specific mechanism of inducible resistance to antimicrobial fatty acids in a Gram-positive pathogen. IMPORTANCE Staphylococcus aureus colonizes approximately 25% of humans and is a leading cause of human infectious morbidity and mortality. To persist on human hosts, S. aureus must have intrinsic defense mechanisms to cope with antimicrobial fatty acids, which comprise an important component of

  1. Organochlorine insecticides induce NADPH oxidase-dependent reactive oxygen species in human monocytic cells via phospholipase A2/arachidonic acid.

    PubMed

    Mangum, Lee C; Borazjani, Abdolsamad; Stokes, John V; Matthews, Anberitha T; Lee, Jung Hwa; Chambers, Janice E; Ross, Matthew K

    2015-04-20

    ) levels and enhanced p47(phox) membrane localization compared to that in vehicle-treated cells. p47(phox) is a cytosolic regulatory subunit of Nox, and its phosphorylation and translocation to the NOX2 catalytic subunit in membranes is a requisite step for Nox assembly and activation. Dieldrin and trans-nonachlor treatments of monocytes also resulted in marked increases in arachidonic acid (AA) and eicosanoid production, which could be abrogated by the phospholipase A2 (PLA2) inhibitor arachidonoyltrifluoromethyl ketone (ATK) but not by calcium-independent PLA2 inhibitor bromoenol lactone. This suggested that cytosolic PLA2 plays a crucial role in the induction of Nox activity by increasing the intracellular pool of AA that activates protein kinase C, which phosphorylates p47(phox). In addition, ATK also blocked OC-induced p47(phox) serine phosphorylation and attenuated ROS levels, which further supports the notion that the AA pool liberated by cytosolic PLA2 is responsible for Nox activation. Together, the results suggest that trans-nonachlor and dieldrin are capable of increasing intracellular superoxide levels via a Nox-dependent mechanism that relies on elevated intracellular AA levels. These findings are significant because chronic activation of monocytes by environmental toxicants might contribute to pathogenic oxidative stress and inflammation. PMID:25633958

  2. Role of arachidonic acid metabolism on corticotropin-releasing factor (CRF)-release induced by interleukin-1 from superfused rat hypothalami.

    PubMed

    Cambronero, J C; Rivas, F J; Borrell, J; Guaza, C

    1992-07-01

    The present work shows that the corticotropin-releasing factor (CRF)-releasing activity of interleukin-1 (IL-1) is partially inhibited by a phospholipase A2 (mepacrine) or a cyclooxygenase (indomethacin) inhibitor, but is not affected by inhibition of the lypoxygenase pathway with norhydroguaiaretic acid. These results indicate that the metabolism of arachidonic acid plays an important role as mediator of the effects of IL-1 on CRF release. It is also shown that products of the cyclooxygenase activity such as prostaglandins can stimulate CRF secretion by a direct action on the hypothalamus. Whereas PGE2 failed to induce increases on CRF release, PGF2 alpha stimulated in a dose-dependent manner (21-340 nM), the CRF release from continuous perifused hypothalami. It is suggested that PGF2 alpha could be involved as a messenger in the hypothalamic CRF secretion induced by IL-1. PMID:1619039

  3. Glycated albumin with loss of fatty acid binding capacity contributes to enhanced arachidonate oxygenation and platelet hyperactivity: relevance in patients with type 2 diabetes.

    PubMed

    Blache, Denis; Bourdon, Emmanuel; Salloignon, Pauline; Lucchi, Géraldine; Ducoroy, Patrick; Petit, Jean-Michel; Verges, Bruno; Lagrost, Laurent

    2015-03-01

    High plasma concentrations of nonesterified fatty acids (NEFAs), transported bound to serum albumin, are associated with type 2 diabetes (T2D). The effects of albumin on platelet function were investigated in vitro. Modifications of albumin, such as those due to glycoxidation, were found in patients with T2D, and the consequences of these modifications on biological mechanisms related to NEFA handling were investigated. Mass spectrometry profiles of albumin from patients with T2D differed from those from healthy control subjects. Diabetic albumin showed impaired NEFA binding capacity, and both structural and functional alterations could be reproduced in vitro by incubating native albumin with glucose and methylglyoxal. Platelets incubated with albumin isolated from patients with T2D aggregated approximately twice as much as platelets incubated with albumin isolated from healthy control subjects. Accordingly, platelets incubated with modified albumin produced significantly higher amounts of arachidonate metabolites than did platelets incubated with control albumin. We concluded that higher amounts of free arachidonate are made available for the generation of active metabolites in platelets when the NEFA binding capacity of albumin is blunted by glycoxidation. This newly described mechanism, in addition to hypoalbuminemia, may contribute to platelet hyperactivity and increased thrombosis, known to occur in patients with T2D. PMID:25157094

  4. Exogenous and endogenous hyaluronic acid reduces HIV infection of CD4+ T cells

    PubMed Central

    Li, Peilin; Fujimoto, Katsuya; Bourguingnon, Lilly; Yukl, Steven; Deeks, Steven; Wong, Joseph K

    2014-01-01

    Preventing mucosal transmission of HIV is critical to halting the HIV epidemic. Novel approaches to preventing mucosal transmission are needed. Hyaluronic acid (HA) is a major extracellular component of mucosa and the primary ligand for the cell surface receptor CD44. CD44 enhances HIV infection of CD4+ T cells, but the role of HA in this process is not clear. To study this, virions were generated with CD44 (HIVCD44) or without CD44 (HIVmock). Exogenous HA reduced HIV infection of unstimulated CD4+ T cells in a CD44-dependent manner. Conversely, hyaluronidase-mediated reduction of endogenous HA on the cell surface enhanced HIV binding to and infection of unstimulated CD4+ T cells. Exogenous HA treatment reduced activation of protein kinase C alpha via CD44 on CD4+ T cells during infection with HIVCD44. These results reveal new roles for HA during the interaction of HIV with CD4+ T cells that may be relevant to mucosal HIV transmission and could be exploitable as a future strategy to prevent HIV infection. PMID:24957217

  5. Transcription of exogenous and endogenous deoxyribonucleic acid templates in cold-shocked Bacillus subtilis.

    PubMed Central

    Kuhl, S J; Brown, L R

    1980-01-01

    Ribonucleic acid (RNA) synthesis was examined in cold-shocked Bacillus subtilis cells. The cells were grown to mid-log stage, harvested, and cold shocked. RNA synthesis was monitored by the incorporation of [3H]uridine triphosphate or [alpha 32P]adenosine triphosphate into trichloroacetic acid-precipitable material in the presence of all four nucleoside triphosphates. The inhibition of RNA synthesis in cold-shocked cells by lipiarmycin, ethidium bromide, rifampin. or streptolydigin was analyzed using mutant or wild-type cells. Also examined were the effects of temperature, salt concentration, and the addition of polyamines or highly phosphorylated nucleotides. In ultraviolet-irradiated and cold-shocked cells, RNA wynthesis decreased to low levels. The addition of exogenous phi 29 or TSP-1 template to these cells caused a 13- to 20-fold increase in RNA synthesis, as monitored by trichloroacetic acid-precipitable counts. RNA synthesized in the presence of phi 29 deoxyribonucleic acid (DNA) hybridizes mainly to EcoRI fragments A and C of phi 29 DBA, These two fragments direct transcription by purified RNA polymerase in vitro and hybridize to early phi 29 DNA produced in vivo. Our results with TSP-1 DNA in this system indicated that the RNA produced hybridizes to the same fragments as early RNA produced in vivo. Plasmic pUB110 DNA was not transcribed in this system. Images PMID:6157674

  6. Electrochemical synthesis of poly(3-aminophenylboronic acid) in ethylene glycol without exogenous protons.

    PubMed

    Wang, Feifan; Zou, Feixue; Yu, Xinxin; Feng, Zhenyu; Du, Na; Zhong, Yaohua; Huang, Xirong

    2016-04-21

    A non-aqueous solution of tetra-n-butylammonium fluoride (TBAF) in ethylene glycol has been tried for the first time as a supporting electrolyte for the electropolymerization of 3-aminophenylboronic acid (APBA). Unlike the traditional acidic aqueous solution, the present medium needs no exogenous protons; moreover, the presence of CF3COOH is found to be unfavorable for the polymerization. The protons are in situ generated by the reaction between the boronic acid group on APBA and 1,2-dihydroxyl on ethylene glycol. So, ethylene glycol serves as not only the solvent but also the proton source. As a part of the supporting electrolyte, F(-) is found to be involved in the electrochemical synthesis of poly(3-aminophenylboronic acid) (PAPBA), but it is not indispensable. Studies on the electropolymerization process indicate that the size of the ions in the electrolyte affects the rate of the doping/dedoping process. The smaller the cation, the easier the doping/dedoping process, and the better the stability of the grown film. As demonstrated by Fourier transform infrared spectra, UV-vis spectra, and scanning electron microscopy, the obtained PAPBA is a cross-linked nanoporous polymer membrane that has a good adherence to the glassy carbon electrode. PMID:27004602

  7. Effect of exogenous amylolytic enzymes on the accumulation of chlorogenic acid isomers in wounded potato tubers.

    PubMed

    Torres-Contreras, Ana Mariel; Nair, Vimal; Cisneros-Zevallos, Luis; Jacobo-Velázquez, Daniel A

    2014-08-01

    Potato tubers under wounding stress synthesize chlorogenic acid isomers, which are phenolic compounds that prevent chronic diseases. The biosynthesis of phenolic compounds in plants requires aromatic amino acids that are produced from sugars. Therefore, in this study, we hypothesized that the wound-induced accumulation of chlorogenic acid isomers in potatoes could be enhanced if the availability of sugars is increased by exogenous amylolytic enzymes applied to the surface of the site of wounding. To test this hypothesis, wounded potatoes stored at 20 °C were treated with amylolytic enzymes (pullulanase and amyloglucosidase, 282 units/mL, 10 mL/kg) after being stored for 0 (E0h), 48 (E48h), or 96 h (E96h). The highest level of accumulation of total chlorogenic acid isomers (∼210% higher than that of time 0 h samples) was observed after storage for 120 h for the E96h treatment. The results suggest that increasing the availability of carbon sources needed for the biosynthesis of phenolic compounds would trigger their accumulation in wounded plants. PMID:25032895

  8. Exogenous salicylic acid protects phospholipids against cadmium stress in flax (Linum usitatissimum L.).

    PubMed

    Belkadhi, Aïcha; De Haro, Antonio; Obregon, Sara; Chaïbi, Wided; Djebali, Wahbi

    2015-10-01

    Salicylic acid (SA) promotes plant defense responses against toxic metal stresses. The present study addressed the hypothesis that 8-h SA pretreatment, would alter membrane lipids in a way that would protect against Cd toxicity. Flax seeds were pre-soaked for 8h in SA (0, 250 and 1000µM) and then subjected, at seedling stage, to cadmium (Cd) stress. At 100µM CdCl2, significant decreases in the percentages of phosphatidylcholine (PC), phosphatidylglycerol (PG), phosphatidylethanolamine (PE) and monogalactosyldiacylglycerol (MGDG) and changes in their relative fatty acid composition were observed in Cd-treated roots in comparison with controls. However, in roots of 8-h SA pretreated plantlets, results showed that the amounts of PC and PE were significantly higher as compared to non-pretreated plantlets. Additionally, in both lipid classes, the proportion of linolenic acid (18:3) increased upon the pretreatment with SA. This resulted in a significant increase in the fatty acid unsaturation ratio of the root PC and PE classes. As the exogenous application of SA was found to be protective of flax lipid metabolism, the possible mechanisms of protection against Cd stress in flax roots were discussed. PMID:26057076

  9. A Thioesterase Bypasses the Requirement for Exogenous Fatty Acids in the plsX Deletion of Streptococcus pneumoniae

    PubMed Central

    Parsons, Joshua B.; Frank, Matthew W.; Eleveld, Marc J.; Schalkwijk, Joost; Broussard, Tyler C.; de Jonge, Marien I.; Rock, Charles O.

    2015-01-01

    Summary PlsX is an acyl-acyl carrier protein (ACP):phosphate transacylase that interconverts the two acyl donors in Gram-positive bacterial phospholipid synthesis. The deletion of plsX in Staphylococcus aureus results in a requirement for both exogenous fatty acids and de novo type II fatty acid biosynthesis. Deletion of plsX (SP0037) in Streptococcus pneumoniae did not result in an auxotrophic phenotype. The ΔplsX S. pneumoniae strain was refractory to myristic acid-dependent growth arrest, and unlike the wild-type strain, was susceptible to fatty acid synthesis inhibitors in the presence of exogenous oleate. The ΔplsX strain contained longer-chain saturated fatty acids imparting a distinctly altered phospholipid molecular species profile. An elevated pool of 18- and 20-carbon saturated fatty acids was detected in the ΔplsX strain. A S. pneumoniae thioesterase (TesS, SP1408) hydrolyzed acyl-ACP in vitro, and the ΔtesS ΔplsX double knockout strain was a fatty acid auxotroph. Thus, the TesS thioesterase hydrolyzed the accumulating acyl-ACP in the ΔplsX strain to liberate fatty acids that were activated by fatty acid kinase to bypass a requirement for extracellular fatty acid. This work identifies tesS as the gene responsible for the difference in exogenous fatty acid growth requirement of the ΔplsX strains of S. aureus and S. pneumoniae. PMID:25534847

  10. Arachidonate metabolism in bovine gallbladder muscle

    SciTech Connect

    Nakano, M.; Hidaka, T.; Ueta, T.; Ogura, R.

    1983-04-01

    Incubation of (1-/sup 14/C)arachidonic acid (AA) with homogenates of bovine gallbladder muscle generated a large amount of radioactive material having the chromatographic mobility of 6-keto-PGF1 alpha (stable product of PGI2) and smaller amounts of products that comigrated with PGF2 alpha PGE2. Formation of these products was inhibited by the cyclooxygenase inhibitor indomethacin. The major radioactive product identified by thin-layer chromatographic mobility and by gas chromatography - mass spectrometric analysis was found to be 6-keto-PGF1 alpha. The quantitative metabolic pattern of (1-/sup 14/C)PGH2 was virtually identical to that of (1-/sup 14/C)AA. Incubation of arachidonic acid with slices of bovine gallbladder muscle released labile anti-aggregatory material in the medium, which was inhibited by aspirin or 15-hydroperoxy-AA. These results indicate that bovine gallbladder muscle has a considerable enzymatic capacity to produce PGI2 from arachidonic acid.

  11. Exogenous salicylic acid enhances the resistance of wheat seedlings to hessian fly (Diptera: Cecidomyiidae) infestation under heat stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress exerts significant impact on plant-parasite interactions. Phytohormones, such as salicylic acid (SA) play important roles in plant defense against parasite attacks. Here we studied the impact of a combination of heat stress and exogenous SA on wheat (Triticum aestivum L.) plant resistanc...

  12. Acid production and conversion of konjac glucomannan during in vitro colonic fermentation affected by exogenous microorganisms and tea polyphenols.

    PubMed

    Zhao, Xin-Huai; Geng, Qian

    2016-05-01

    Impacts of exogenous microorganisms and tea polyphenols on acid production and conversion during in vitro colonic fermentation of konjac glucomannan (KGM) were assessed in this study. Colonic fermentation of KGM by the fecal extract of healthy adults resulted in a propionate-rich profile, as acetic, propionic, butyric and lactic acids production were 16.1, 13.0, 3.3 and 20.2 mmol/L, respectively. Inoculation of one of ten exogenous microorganisms in the fermentative systems increased acetic, propionic and butyric acids production by 50-230%, 9-190% and 110-350%, respectively, and also accelerated lactic acid conversion by 14-40%. Tea polyphenols in the fermentative systems showed clear inhibition on both acid production and conversion; however, this inhibition could be partially or mostly antagonised by the inoculated exogenous microorganisms, resulting in improved acid production and conversion. In total, Lactobacillus brevis and Sterptococcus thermophilus were more able to increase acid production, and the propionate-rich profile was not changed in all cases. PMID:26902110

  13. A liquid chromatography/mass spectrometric method for simultaneous analysis of arachidonic acid and its endogenous eicosanoid metabolites prostaglandins, dihydroxyeicosatrienoic acids, hydroxyeicosatetraenoic acids, and epoxyeicosatrienoic acids in rat brain tissue.

    PubMed

    Yue, Hongfei; Jansen, Susan A; Strauss, Kenneth I; Borenstein, Michael R; Barbe, Mary F; Rossi, Luella J; Murphy, Elise

    2007-02-19

    A sensitive, specific, and robust liquid chromatography/mass spectrometric (LC/MS) method was developed and validated that allows simultaneous analysis of arachidonic acid (AA) and its cyclooxygenase, cytochrome P450, and lipoxygenase pathway metabolites prostaglandins (PGs), dihydroxyeicosatrienoic acids (DiHETrEs), hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs), including PGF(2alpha), PGE(2), PGD(2), PGJ(2), 14,15-DiHETrE, 11,12-DiHETrE, 8,9-DiHETrE, 5,6-DiHETrE, 20-HETE, 15-HETE, 12-HETE, 9-HETE, 8-HETE, 5-HETE, 14,15-EET, 11,12-EET, 8,9-EET, and 5,6-EET in rat brain tissues. Deuterium labeled PGF(2alpha)-d(4), PGD(2)-d(4), 15(S)-HETE-d(8), 14,15-EET-d(8), 11,12-EET-d(8), 8,9-EET-d(8), and AA-d(8) were used as internal standards. Solid phase extraction was used for sample preparation. A gradient LC/MS method using a C18 column and electrospray ionization source under negative ion mode was optimized for the best sensitivity and separation within 35 min. The method validation, including LC/MS instrument qualification, specificity, calibration model, accuracy, precision (without brain matrix and with brain matrix), and extraction efficiency were performed. The linear ranges of the calibration curves were 2-1000 pg for PGs, DiHETrEs, HETEs, and EETs, 10-2400 pg for PGE(2) and PGD(2), and 20-2000 ng for AA, respectively. PMID:17125954

  14. Exogenous Abscisic Acid and Gibberellic Acid Elicit Opposing Effects on Fusarium graminearum Infection in Wheat.

    PubMed

    Buhrow, Leann M; Cram, Dustin; Tulpan, Dan; Foroud, Nora A; Loewen, Michele C

    2016-09-01

    Although the roles of salicylate (SA) and jasmonic acid (JA) have been well-characterized in Fusarium head blight (FHB)-infected cereals, the roles of other phytohormones remain more ambiguous. Here, the association between an array of phytohormones and FHB pathogenesis in wheat is investigated. Comprehensive profiling of endogenous hormones demonstrated altered cytokinin, gibberellic acid (GA), and JA metabolism in a FHB-resistant cultivar, whereas challenge by Fusarium graminearum increased abscisic acid (ABA), JA, and SA in both FHB-susceptible and -resistant cultivars. Subsequent investigation of ABA or GA coapplication with fungal challenge increased and decreased FHB spread, respectively. These phytohormones-induced effects may be attributed to alteration of the F. graminearum transcriptome because ABA promoted expression of early-infection genes, including hydrolases and cytoskeletal reorganization genes, while GA suppressed nitrogen metabolic gene expression. Neither ABA nor GA elicited significant effects on F. graminearum fungal growth or sporulation in axenic conditions, nor do these phytohormones affect trichothecene gene expression, deoxynivalenol mycotoxin accumulation, or SA/JA biosynthesis in F. graminearum-challenged wheat spikes. Finally, the combined application of GA and paclobutrazol, a Fusarium fungicide, provided additive effects on reducing FHB severity, highlighting the potential for combining fungicidal agents with select phytohormone-related treatments for management of FHB infection in wheat. PMID:27135677

  15. Evidence for the essentiality of arachidonic and docosahexaenoic acid in the postnatal maternal and infant diet for the development of the infant's immune system early in life.

    PubMed

    Richard, Caroline; Lewis, Erin D; Field, Catherine J

    2016-05-01

    Long-chain polyunsaturated fatty acids (LCPUFA), especially the balance between arachidonic (AA) and docosahexaenoic (DHA) acids are known to have important immunomodulatory roles during the postnatal period when the immune system is rapidly developing. AA and DHA are required in infant formula in many countries but are optional in North America. The rationale for adding these LCPUFA to full-term formula is based on their presence in breast milk and randomized controlled studies that suggest improved cognitive function in preterm infants, but results are more variable in full-term infants. Recently, the European Food Safety Authority has proposed, based on a lack of functional evidence, that AA is not required in infant formula for full-term infants during the first year of life but DHA should remain mandatory. The purpose of this review is to review the evidence from epidemiological and intervention studies regarding the essentiality of AA and DHA in the postnatal infant and maternal diet (breast-feeding) for the immune system development early in life. Although studies support the essentiality of DHA for the immune system development, more research is needed to rule out the essentiality of AA. Nevertheless, intervention studies have demonstrated improvement in many markers of immune function in infants fed formula supplemented with AA and DHA compared with unsupplemented formula, which appears to consistently result in beneficial health outcomes including reduction in the risk of developing allergic and atopic disease early in life. PMID:27138971

  16. Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury.

    PubMed

    Xu, Dongmin; Omura, Takao; Masaki, Noritaka; Arima, Hideyuki; Banno, Tomohiro; Okamoto, Ayako; Hanada, Mitsuru; Takei, Shiro; Matsushita, Shoko; Sugiyama, Eiji; Setou, Mitsutoshi; Matsuyama, Yukihiro

    2016-01-01

    Peripheral nerve injury (PNI) triggers cellular and molecular changes in the spinal cord. However, little is known about how the polyunsaturated fatty acid-containing phosphatidylcholines (PUFA-PCs) are regulated in the spinal cord after PNI and the association of PUFA-PCs with the non-neuronal cells within in the central nervous system (CNS). In this study, we found that arachidonic acid-containing phosphatidylcholine (AA-PC), [PC(16:0/20:4)+K](+), was significantly increased in the ipsilateral ventral and dorsal horns of the spinal cord after sciatic nerve transection, and the increased expression of [PC(16:0/20:4)+K](+) spatiotemporally resembled the increase of reactive microglia and the astrocytes. From the lipidomics point of view, we conclude that [PC(16:0/20:4)+K](+) could be the main phospholipid in the spinal cord influenced by PNI, and the regulation of specific phospholipid molecule in the CNS after PNI is associated with the reactive microglia and astrocytes. PMID:27210057

  17. Increased arachidonic acid-containing phosphatidylcholine is associated with reactive microglia and astrocytes in the spinal cord after peripheral nerve injury

    PubMed Central

    Xu, Dongmin; Omura, Takao; Masaki, Noritaka; Arima, Hideyuki; Banno, Tomohiro; Okamoto, Ayako; Hanada, Mitsuru; Takei, Shiro; Matsushita, Shoko; Sugiyama, Eiji; Setou, Mitsutoshi; Matsuyama, Yukihiro

    2016-01-01

    Peripheral nerve injury (PNI) triggers cellular and molecular changes in the spinal cord. However, little is known about how the polyunsaturated fatty acid-containing phosphatidylcholines (PUFA-PCs) are regulated in the spinal cord after PNI and the association of PUFA-PCs with the non-neuronal cells within in the central nervous system (CNS). In this study, we found that arachidonic acid-containing phosphatidylcholine (AA-PC), [PC(16:0/20:4)+K]+, was significantly increased in the ipsilateral ventral and dorsal horns of the spinal cord after sciatic nerve transection, and the increased expression of [PC(16:0/20:4)+K]+ spatiotemporally resembled the increase of reactive microglia and the astrocytes. From the lipidomics point of view, we conclude that [PC(16:0/20:4)+K]+ could be the main phospholipid in the spinal cord influenced by PNI, and the regulation of specific phospholipid molecule in the CNS after PNI is associated with the reactive microglia and astrocytes. PMID:27210057

  18. AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K+ channels into open leak channels

    PubMed Central

    Sandoz, Guillaume; Thümmler, Susanne; Duprat, Fabrice; Feliciangeli, Sylvain; Vinh, Joëlle; Escoubas, Pierre; Guy, Nicolas; Lazdunski, Michel; Lesage, Florian

    2006-01-01

    TREK channels are unique among two-pore-domain K+ channels. They are activated by polyunsaturated fatty acids (PUFAs) including arachidonic acid (AA), phospholipids, mechanical stretch and intracellular acidification. They are inhibited by neurotransmitters and hormones. TREK-1 knockout mice have impaired PUFA-mediated neuroprotection to ischemia, reduced sensitivity to volatile anesthetics and altered perception of pain. Here, we show that the A-kinase-anchoring protein AKAP150 is a constituent of native TREK-1 channels. Its binding to a key regulatory domain of TREK-1 transforms low-activity outwardly rectifying currents into robust leak conductances insensitive to AA, stretch and acidification. Inhibition of the TREK-1/AKAP150 complex by Gs-coupled receptors such as serotonin 5HT4sR and noradrenaline β2AR is as extensive as for TREK-1 alone, but is faster. Inhibition of TREK-1/AKAP150 by Gq-coupled receptors such as serotonin 5HT2bR and glutamate mGluR5 is much reduced when compared to TREK-1 alone. The association of AKAP150 with TREK channels integrates them into a postsynaptic scaffold where both G-protein-coupled membrane receptors (as demonstrated here for β2AR) and TREK-1 dock simultaneously. PMID:17110924

  19. Manageable cytotoxicity of nanocapsules immobilizing D-amino acid oxidase via exogenous administration of nontoxic prodrug

    NASA Astrophysics Data System (ADS)

    Zhao, Yang; Zhu, Yingchun; Fu, Jingke

    2014-02-01

    D-Amino acid oxidase (DAO), which could catalyze generation of hydrogen peroxide with strong oxidbility and cytotoxicity, has become of interest as a biocatalyst for therapeutic treatments. Herein we report that amino-functional hollow mesoporous silica with large pore size (10.27 nm) and positively charged surface effectively immobilize DAO with negative charge. The adsorption, activity and stability of DAO are demonstrated to depend mainly on the amino-functionalization of surface. Significant cancer cell killing effect is observed when the cells are treated by the nanocapsules entrapping DAO together with D-alanine, showing distinct dose-dependency on concentration of the nanocapsules entrapping DAO or D-alanine. Nevertheless, the toxicity is completely neutralized by the addition of catalase, and anti-tumor effect is not observed when either the nanocapsules entrapping DAO or D-alanine is applied alone. The results indicate that cytotoxicity of the nanocapsules entrapping DAO could be managed by exogenous administration of nontoxic prodrug to tumor tissue, due to the stereoselectivity of DAO and the scarcity of its substrates in mammalian organisms. Thus, the method might be exploited as a potential treatment for cancer therapy.

  20. Altered growth response to exogenous auxin and gibberellic acid by gravistimulation in pulvini of Avena sativa

    NASA Technical Reports Server (NTRS)

    Brock, T. G.; Kaufman, P. B.

    1988-01-01

    Pulvini of excised segments from oats (Avena sativa L. cv Victory) were treated unilaterally with indoleacetic acid (IAA) or gibberellic acid (GA3) with or without gravistimulation to assess the effect of gravistimulation on hormone action. Optimum pulvinus elongation growth (millimeters) and segment curvature (degrees) over 24 hours were produced by 100 micromolar IAA in vertical segments. The curvature response to IAA at levels greater than 100 micromolar, applied to the lower sides of gravistimulated (90 degrees) pulvini, was significantly less than the response to identical levels in vertical segments. Furthermore, the bending response of pulvini to 100 micromolar IAA did not vary significantly over a range of presentation angles between 0 and 90 degrees. In contrast, the response to IAA at levels less than 10 micromolar, with gravistimulation, was approximately the sum of the responses to gravistimulation alone and to IAA without gravistimulation. This was observed over a range of presentation angles. Also, GA3 (0.3-30 micromolar) applied to the lower sides of horizontal segments significantly enhanced pulvinus growth and segment curvature, although exogenous GA3 over a range of concentrations had no effect on pulvinus elongation growth or segment curvature in vertical segments. The response to GA3 (10 micromolar) plus IAA (1.0 or 100 micromolar) was additive for either vertical or horizontal segments. These results indicate that gravistimulation produces changes in pulvinus responsiveness to both IAA and GA3 and that the changes are unique for each growth regulator. It is suggested that the changes in responsiveness may result from processes at the cellular level other than changes in hormonal sensitivity.

  1. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum).

    PubMed

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  2. Exogenous Application of Citric Acid Ameliorates the Adverse Effect of Heat Stress in Tall Fescue (Lolium arundinaceum)

    PubMed Central

    Hu, Longxing; Zhang, Zhifei; Xiang, Zuoxiang; Yang, Zhijian

    2016-01-01

    Citric acid may be involved in plant response to high temperature. The objective of this study was to investigate whether exogenous citric acid could improve heat tolerance in a cool-season turfgrass species, tall fescue (Lolium arundinaceum), and to determine the physiological mechanisms of citric acid effects on heat stress tolerance. The grasses were subjected to four citric acid levels (0, 0.2, 2, and 20 mM) and two temperature levels (25/20 and 35/30 ± 0.5°C, day/night) treatments in growth chambers. Heat stress increased an electrolyte leakage (EL) and malonaldehyde (MDA) content, while reduced plant growth, chlorophyll (Chl) content, photochemical efficiency (Fv/Fm), root activity and antioxidant enzyme activities (superoxide dismutase, SOD; catalase, CAT; peroxidase, POD). External citric acid alleviated the detrimental effects of heat stress on tall fescue, which was evidenced by decreased EL and MDA content, and improved plant growth under stress conditions. Additionally, the reduction in Chl content, Fv/Fm, SOD, POD, CAT and root activity were ameliorated in citric acid treated plants under heat stressed conditions. High temperature induced the expression of heat shock protein (HSP) genes, which exhibited greater expression levels after citric acid treatment under heat stress. These results suggest that exogenous citric acid application may alleviate growth and physiological damage caused by high temperature. In addition, the exogenously applied citric acid might be responsible for maintaining membrane stability, root activity, and activation of antioxidant response and HSP genes which could contribute to the protective roles of citric acid in tall fescue responses to heat stress. PMID:26925085

  3. Detection of 19 types of para-arachidonic acids in five types of plasma/serum by ultra performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Long, Anxiong; Zhong, Guoliang; Li, Qian; Lin, Na; Zhan, Xia; Lu, Shuaijun; Zhu, Yuli; Jiang, Liansheng; Tan, Longyi

    2015-01-01

    The aim of this study was to examine the consistency of ultra performance liquid chromatography-tandem mass spectrometry (UPLC-TMS) in detecting the levels of para-arachidonic acids (PAAs) among differently processed plasma/serum samples. Ethylenediaminetetraacetic acid (EDTA)-K2, sodium citrate, heparin lithium, coagulant/separation gel, and coagulant-free vacuum blood-sampling tubes were used to collect the fasting blood samples from 15 volunteers. All blood samples were subjected to solid-phase extraction using an Oasis HLB μElution 96-well plate, and UPLC-TMS was used to detect 19 types of PAAs in the blood samples. Within the plasma samples, the concentrations of 5, 6-DHET; 11, 12-epoxyeicosatrienoic acid (EET); 5-hydroxyeicosatetraenoic acid (HETE); leukotriene B4 (LTB4); plasma thromboxane B2 (TXB2); and 12-HETE were significantly higher in the heparin lithium group than in the EDTA-K2 and sodium citrate groups. Within the serum samples, the concentration of LTB4 was significantly higher in the coagulant/separation gel group than in the coagulant-free group, while that of TXB2 was significantly higher in the coagulant-free group than in the coagulant/separation gel group. The levels of some types of PAAs in differently processed plasma/serum samples were inconsistent, and the concentrations of 5, 6-DHET; 5-HETE; 12-HETE; TXB2; and LTB4 were significantly higher in the two serum samples and the heparin lithium group than in the EDTA-K2 and sodium citrate groups. PMID:26309582

  4. High contents of both docosahexaenoic and arachidonic acids in milk of women consuming fish from lake Kitangiri (Tanzania): targets for infant formulae close to our ancient diet?

    PubMed

    Kuipers, Remko S; Fokkema, M Rebecca; Smit, Ella N; van der Meulen, Jan; Boersma, E Rudy; Muskiet, Frits A J

    2005-04-01

    Current recommendations for arachidonic (AA) and docosahexaenoic (DHA) acids in infant formulae are based on milk of Western mothers. Validity may be questioned in view of the profound dietary changes in the past 100 years, as opposed to our slowly adapting genome. Hominin evolution occurred in the proximity of East-African freshwater lakes and rivers and early homo sapiens had higher intakes of AA and DHA from a predominantly lacustrine-based diet. In search of milk AA and DHA contents of our African ancestors, we investigated the milk of 29 lactating women living in Doromoni near lake Kitangiri (Tanzania). They consumed sunflower oil-fried local fish as only animal lipid sources, maize and local vegetables. AA and DHA contents of Doromoni milk may be close to that of early homo sapiens, because of the similarity of their life-long consumption of East-African lacustrine-based foods. Human milk fatty acid relationships from our historical worldwide database and the literature revealed that disparities between the Doromoni diet and the presumed ancient diet (i.e. higher carbohydrate and linoleic acid intakes) are unlikely to affect milk AA and DHA contents. Doromoni milk had high contents of AA (median 0.70 mol%), DHA (0.75) and eicosapentaenoic acid (EPA, 0.17), and low AA/DHA ratios (median 0.91; 0.55-2.61). This tracks down to consumption of fish with high AA and DHA contents, and AA/EPA ratios. We conclude that the milk AA, DHA and EPA contents of Doromoni women might provide us with clues to optimize infant formulae and perhaps the milk of Western women. PMID:15763440

  5. Analysis of cytochrome P450 metabolites of arachidonic acid by stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry.

    PubMed

    Zhu, Quan-Fei; Hao, Yan-Hong; Liu, Ming-Zhou; Yue, Jiang; Ni, Jian; Yuan, Bi-Feng; Feng, Yu-Qi

    2015-09-01

    Cytochrome P450 metabolites of arachidonic acid (AA) belong to eicosanoids and are potent lipid mediators of inflammation. It is well-known that eicosanoids play an important role in numerous pathophysiological processes. Therefore, quantitative analysis of cytochrome P450 metabolites of AA, including hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatreinoic acids (EETs), and dihydroxyeicosatrienoic acids (DHETs) can provide crucial information to uncover underlying mechanisms of cytochrome P450 metabolites of AA related diseases. Herein, we developed a highly sensitive method to identify and quantify HETEs, EETs, and DHETs in lipid extracts of biological samples based on stable isotope probe labeling coupled with ultra high-performance liquid chromatography/mass spectrometry. To this end, a pair of stable isotope probes, 2-dimethylaminoethylamine (DMED) and d4-2-dimethylaminoethylamine (d4-DMED), were utilized to facilely label eicosanoids. The heavy labeled eicosanoid standards were prepared and used as internal standards for quantification to minimize the matrix and ion suppression effects in mass spectrometry analysis. In addition, the detection sensitivities of DMED labeled eicosanoids improved by 3-104 folds in standard solution and 5-138 folds in serum matrix compared with unlabeled analytes. Moreover, a good separation of eicosanoids isomers was achieved upon DMED labeling. The established method provided substantial sensitivity (limit of quantification at sub-picogram), high specificity, and broad linear dynamics range (3 orders of magnitude). We further quantified cytochrome P450 metabolites of AA in rat liver, heart, brain tissues and human serum using the developed method. The results showed that 19 eicosanoids could be distinctly detected and the contents of 11-, 15-, 16-, 20-HETE, 5,6-EET, and 14,15-EET in type 2 diabetes mellitus patients and 5-, 11-, 12-, 15-, 16-, 20-HETE, 8,9-EET, and 5,6-DHET in myeloid leukemia patients had significant changes

  6. Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus × canescens exposed to excess zinc.

    PubMed

    Shi, Wen-Guang; Li, Hong; Liu, Tong-Xian; Polle, Andrea; Peng, Chang-Hui; Luo, Zhi-Bin

    2015-01-01

    A greenhouse experiment was conducted to study whether exogenous abscisic acid (ABA) mediates the responses of poplars to excess zinc (Zn). Populus × canescens seedlings were treated with either basal or excess Zn levels and either 0 or 10 μm ABA. Excess Zn led to reduced photosynthetic rates, increased Zn accumulation, induced foliar ABA and salicylic acid (SA), decreased foliar gibberellin (GA3 ) and auxin (IAA), elevated root H2 O2 levels, and increased root ratios of glutathione (GSH) to GSSG and foliar ratios of ascorbate (ASC) to dehydroascorbate (DHA) in poplars. While exogenous ABA decreased foliar Zn concentrations with 7 d treatments, it increased levels of endogenous ABA, GA3 and SA in roots, and resulted in highly increased foliar ASC accumulation and ratios of ASC to DHA. The transcript levels of several genes involved in Zn uptake and detoxification, such as yellow stripe-like family protein 2 (YSL2) and plant cadmium resistance protein 2 (PCR2), were enhanced in poplar roots by excess Zn but repressed by exogenous ABA application. These results suggest that exogenous ABA can decrease Zn concentrations in P. × canescens under excess Zn for 7 d, likely by modulating the transcript levels of key genes involved in Zn uptake and detoxification. PMID:25158610

  7. Changes in PTGS1 and ALOX12 Gene Expression in Peripheral Blood Mononuclear Cells Are Associated with Changes in Arachidonic Acid, Oxylipins, and Oxylipin/Fatty Acid Ratios in Response to Omega-3 Fatty Acid Supplementation

    PubMed Central

    Berthelot, Claire C.; Kamita, Shizuo George; Sacchi, Romina; Yang, Jun; Nording, Malin L.; Georgi, Katrin; Hegedus Karbowski, Christine; German, J. Bruce; Weiss, Robert H.; Hogg, Ronald J.; Hammock, Bruce D.; Zivkovic, Angela M.

    2015-01-01

    Introduction There is a high degree of inter-individual variability among people in response to intervention with omega-3 fatty acids (FA), which may partly explain conflicting results on the effectiveness of omega-3 FA for the treatment and prevention of chronic inflammatory diseases. In this study we sought to evaluate whether part of this inter-individual variability in response is related to the regulation of key oxylipin metabolic genes in circulating peripheral blood mononuclear cells (PBMCs). Methods Plasma FA and oxylipin profiles from 12 healthy individuals were compared to PBMC gene expression profiles following six weeks of supplementation with fish oil, which delivered 1.9 g/d eicosapentaenoic acid (EPA) and 1.5 g/d docosahexaenoic acid (DHA). Fold changes in gene expression were measured by a quantitative polymerase chain reaction (qPCR). Results Healthy individuals supplemented with omega-3 FA had differential responses in prostaglandin-endoperoxide synthase 1 (PTGS1), prostaglandin-endoperoxide synthase 2 (PTGS2), arachidonate 12-lipoxygenase (ALOX12), and interleukin 8 (IL-8) gene expression in isolated PBMCs. In those individuals for whom plasma arachidonic acid (ARA) in the phosphatidylethanolamine (PE) lipid class decreased in response to omega-3 intervention, there was a corresponding decrease in gene expression for PTGS1 and ALOX12. Several oxylipin product/FA precursor ratios (e.g. prostaglandin E2 (PGE2)/ARA for PTGS1 and 12-hydroxyeicosatetraenoic acid (12-HETE)/ARA for ALOX12) were also associated with fold change in gene expression, suggesting an association between enzyme activity and gene expression. The fold-change in PTGS1 gene expression was highly positively correlated with ALOX12 gene expression but not with PTGS2, whereas IL-8 and PTGS2 were positively correlated. Conclusions The regulation of important oxylipin metabolic genes in PBMCs varied with the extent of change in ARA concentrations in the case of PTGS1 and ALOX12

  8. Computational insight into the catalytic implication of head/tail-first orientation of arachidonic acid in human 5-lipoxygenase: consequences for the positional specificity of oxygenation.

    PubMed

    Saura, Patricia; Maréchal, Jean-Didier; Masgrau, Laura; Lluch, José M; González-Lafont, Àngels

    2016-08-17

    In the present work we have combined homology modeling, protein-ligand dockings, quantum mechanics/molecular mechanics calculations and molecular dynamics simulations to generate human 5-lipoxygenase (5-LOX):arachidonic acid (AA) complexes consistent with the 5-lipoxygenating activity (which implies hydrogen abstraction at the C7 position). Our results suggest that both the holo and the apo forms of human Stable 5-LOX could accommodate AA in a productive form for 5-lipoxygenation. The former, in a tail-first orientation, with the AA carboxylate end interacting with Lys409, gives the desired structures with C7 close to the Fe-OH(-) cofactor and suitable barrier heights for H7 abstraction. Only when using the apo form structure, a head-first orientation with the AA carboxylate close to His600 (a residue recently proposed as essential for AA positioning) is obtained in the docking calculations. However, the calculated barrier heights for this head-first orientation are in principle consistent with 5-LOX specificity, but also with 12/8 regioselectivity. Finally, long MD simulations give support to the recent hypothesis that the Phe177 + Tyr181 pair needs to close the active site access during the chemical reaction, and suggest that in the case of a head-first orientation Phe177 may be the residue interacting with the AA carboxylate. PMID:27489112

  9. Prostaglandin E2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells

    NASA Technical Reports Server (NTRS)

    Chen, Y.; Hughes-Fulford, M.

    2000-01-01

    Arachidonic acid (AA) is the precursor for prostaglandin E2 (PGE2) synthesis and increases growth of prostate cancer cells. To further elucidate the mechanisms involved in AA-induced prostate cell growth, induction of c-fos expression by AA was investigated in a human prostate cancer cell line, PC-3. c-fos mRNA was induced shortly after addition of AA, along with a remarkable increase in PGE2 production. c-fos expression and PGE2 production induced by AA was blocked by a cyclo-oxygenase inhibitor, flurbiprofen, suggesting that PGE2 mediated c-fos induction. Protein kinase A (PKA) inhibitor H-89 abolished induction of c-fos expression by AA, and partially inhibited PGE2 production. Protein kinase C (PKC) inhibitor GF109203X had no significant effect on c-fos expression or PGE2 production. Expression of prostaglandin (EP) receptors, which mediate signal transduction from PGE2 to the cells, was examined by reverse transcription polymerase chain reaction in several human prostate cell lines. EP4 and EP2, which are coupled to the PKA signalling pathway, were expressed in all cells tested. Expression of EP1, which activates the PKC pathway, was not detected. The current study showed that induction of the immediate early gene c-fos by AA is mediated by PGE2, which activates the PKA pathway via the EP2/4 receptor in the PC-3 cells.

  10. LC-MS/MS for the simultaneous analysis of arachidonic acid and 32 related metabolites in human plasma: Basal plasma concentrations and aspirin-induced changes of eicosanoids.

    PubMed

    Shinde, Dhananjay D; Kim, Kwon-Bok; Oh, Kyung-Suk; Abdalla, Nagi; Liu, Kwang-Hyeon; Bae, Soo Kyung; Shon, Ji-Hong; Kim, Ho-Sook; Kim, Dong-Hyun; Shin, Jae Gook

    2012-12-12

    Eicosanoids play an important role in various biological responses and can be used as biomarkers for specific diseases. Therefore, we developed a highly selective, sensitive, and robust liquid chromatography-tandem mass spectrometric method to measure arachidonic acid and its 32 metabolites in human plasma. Sample preparation involved solid phase extraction, which efficiently removed sources of interference present in human plasma. Chromatographic separation was performed using a Luna C(8)-column with 0.5mM ammonium formate buffer and acetonitrile as the mobile phase under gradient conditions. Detection was performed using tandem mass spectrometry equipped with an electrospray ionization interface in negative ion mode. The matrix did not affect the reproducibility and reliability of the assay. All analytes showed good linearity over the investigated concentration range (r>0.997). The validated lower limit of quantitation for the analytes ranged from 10 to 400pg/mL. Intra- and inter-day precision (RDS%) over the concentration ranges for all eicosanoids were within 16.8%, and accuracy ranged between 88.1 and 108.2%. This assay was suitable for the determination of basal plasma levels of eicosanoids and the evaluation of effect of aspirin on eicosanoid plasma levels in healthy subjects. PMID:23217314

  11. The role of the arachidonic acid cascade in the species-specific X-ray-induced inflammation of the rabbit eye

    SciTech Connect

    Bito, L.Z.; Klein, E.M.

    1982-05-01

    To identify the mediator(s) of the apparently species-specific X-ray-induced inflammation of the rabbit eye, inhibitors of the synthesis and/or release of known or putative mediators of ocular inflammation were administered prior to irradiation. The X-ray-induced ocular inflammation, particularly the rise in intraocular pressure, was found to be inhibited by intravenous pretreatment of rabbits with flurbiprofen, indomethacin, or imidazole (1, 10, and 100 mg/kg i.v., respectively), or by combined intravitreal and topical administration of flurbiprofen. Systemic, intravitreal, and/or topical pretreatment with prednisolone or disodium cromoglycate or the retrobulbar injection of ethyl alcohol or capsaicin failed to block the inflammatory response, whereas vitamin E apparently exerted some protective effect. These findings show that the X-ray-induced inflammation of the rabbit eye is mediated, at least in part, by prostaglandins (PGs) and/or related autacoids. In addition, these results suggest that the unique sensitivity of the rabbit eye to X-ray-induced inflammation is due either to the presence in this species of a unique or uniquely effective triggering mechanism for the release of PG precursors or to the greater sensitivity of this species to the ocular inflammatory effects of PGs. Thus the rabbit eye may provide a unique model for studying some aspects of arachidonic acid release or ocular PG effects, but extreme caution must be exercised in generalizing such findings to other species.

  12. Direct dopamine D2-receptor-mediated modulation of arachidonic acid release in transfected CHO cells without the concomitant administration of a Ca2+-mobilizing agent

    PubMed Central

    Nilsson, Christer L; Hellstrand, Monika; Ekman, Agneta; Eriksson, Elias

    1998-01-01

    In CHO cells transfected with the rat dopamine D2 receptor (long isoform), administration of dopamine per se elicited a concentration-dependent increase in arachidonic acid (AA) release. The maximal effect was 197% of controls (EC50=25 nM). The partial D2 receptor agonist, (−)-(3-hydroxyphenyl)-N-n-propylpiperidine [(−)-3-PPP], also induced AA release, but with somewhat lower efficacy (maximal effect: 165%; EC50=91 nM). The AA-releasing effect of dopamine was counteracted by pertussis toxin, by the inhibitor of intracellular Ca2+ release, 8-(N N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), by excluding calcium from the medium, by the phospholipase A2 (PLA2) inhibitor, quinacrine, and by long-term pretreatment with the phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA). In addition, it was antagonized by the D2 antagonists, raclopride and (−)-sulpiride–but not by (+)-sulpiride–and absent in sham-transfected CHO cells devoid of D2 receptors. The results obtained contrast to the previous notion that dopamine and other D2 receptor agonists require the concomitant administration of calcium-mobilizing agents such as ATP, ionophore A-23187 (calcimycin), thrombin, and TRH, to influence AA release from various cell lines. PMID:9756380

  13. Chronic dietary n-6 PUFA deprivation leads to conservation of arachidonic acid and more rapid loss of DHA in rat brain phospholipids[S

    PubMed Central

    Lin, Lauren E.; Chen, Chuck T.; Hildebrand, Kayla D.; Liu, Zhen; Hopperton, Kathryn E.; Bazinet, Richard P.

    2015-01-01

    To determine how the level of dietary n-6 PUFA affects the rate of loss of arachidonic acid (ARA) and DHA in brain phospholipids, male rats were fed either a deprived or adequate n-6 PUFA diet for 15 weeks postweaning, and then subjected to an intracerebroventricular infusion of 3H-ARA or 3H-DHA. Brains were collected at fixed times over 128 days to determine half-lives and the rates of loss from brain phospholipids (Jout). Compared with the adequate n-6 PUFA rats, the deprived n-6-PUFA rats had a 15% lower concentration of ARA and an 18% higher concentration of DHA in their brain total phospholipids. Loss half-lives of ARA in brain total phospholipids and fractions (except phosphatidylserine) were longer in the deprived n-6 PUFA rats, whereas the Jout was decreased. In the deprived versus adequate n-6 PUFA rats, the Jout of DHA was higher. In conclusion, chronic n-6 PUFA deprivation decreases the rate of loss of ARA and increases the rate of loss of DHA in brain phospholipids. Thus, a low n-6 PUFA diet can be used to target brain ARA and DHA metabolism. PMID:25477531

  14. Arachidonic acid alters tomato HMG expression and fruit growth and induces 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent lycopene accumulation

    SciTech Connect

    Rodriguez-Concepcion, M.; Gruissem, W.

    1999-01-01

    Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, the authors manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Their results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.

  15. Targeting of Splice Variants of Human Cytochrome P450 2C8 (CYP2C8) to Mitochondria and Their Role in Arachidonic Acid Metabolism and Respiratory Dysfunction*

    PubMed Central

    Bajpai, Prachi; Srinivasan, Satish; Ghosh, Jyotirmoy; Nagy, Leslie D.; Wei, Shouzou; Guengerich, F. Peter; Avadhani, Narayan G.

    2014-01-01

    In this study, we found that the full-length CYP2C8 (WT CYP2C8) and N-terminal truncated splice variant 3 (∼44-kDa mass) are localized in mitochondria in addition to the endoplasmic reticulum. Analysis of human livers showed that the mitochondrial levels of these two forms varied markedly. Molecular modeling based on the x-ray crystal structure coordinates of CYP2D6 and CYP2C8 showed that despite lacking the N-terminal 102 residues variant 3 possessed nearly complete substrate binding and heme binding pockets. Stable expression of cDNAs in HepG2 cells showed that the WT protein is mostly targeted to the endoplasmic reticulum and at low levels to mitochondria, whereas variant 3 is primarily targeted to mitochondria and at low levels to the endoplasmic reticulum. Enzyme reconstitution experiments showed that both microsomal and mitochondrial WT CYP2C8 efficiently catalyzed paclitaxel 6-hydroxylation. However, mitochondrial variant 3 was unable to catalyze this reaction possibly because of its inability to stabilize the large 854-Da substrate. Conversely, mitochondrial variant 3 catalyzed the metabolism of arachidonic acid into 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid when reconstituted with adrenodoxin and adrenodoxin reductase. HepG2 cells stably expressing variant 3 generated higher levels of reactive oxygen species and showed a higher level of mitochondrial respiratory dysfunction. This study suggests that mitochondrially targeted variant 3 CYP2C8 may contribute to oxidative stress in various tissues. PMID:25160618

  16. Development of a Nuclear Transformation System for Oleaginous Green Alga Lobosphaera (Parietochloris) incisa and Genetic Complementation of a Mutant Strain, Deficient in Arachidonic Acid Biosynthesis

    PubMed Central

    Khozin-Goldberg, Inna; Leu, Stefan; Shapira, Michal; Kaye, Yuval; Tourasse, Nicolas; Vallon, Olivier; Boussiba, Sammy

    2014-01-01

    Microalgae are considered a promising source for various high value products, such as carotenoids, ω-3 and ω-6 polyunsaturated fatty acids (PUFA). The unicellular green alga Lobosphaera (Parietochloris) incisa is an outstanding candidate for the efficient phototrophic production of arachidonic acid (AA), an essential ω-6 PUFA for infant brain development and a widely used ingredient in the baby formula industry. Although phototrophic production of such algal products has not yet been established, estimated costs are considered to be 2–5 times higher than competing heterotrophic production costs. This alga accumulates unprecedented amounts of AA within triacylglycerols and the molecular pathway of AA biosynthesis in L. incisa has been previously elucidated. Thus, progress in transformation and metabolic engineering of this high value alga could be exploited for increasing the efficient production of AA at competitive prices. We describe here the first successful transformation of L. incisa using the ble gene as a selection marker, under the control of the endogenous RBCS promoter. Furthermore, we have succeeded in the functional complementation of the L. incisa mutant strain P127, containing a mutated, inactive version of the delta-5 (Δ5) fatty acid desaturase gene. A copy of the functional Δ5 desaturase gene, linked to the ble selection marker, was transformed into the P127 mutant. The resulting transformants selected for zeocine resistant, had AA biosynthesis partially restored, indicating the functional complementation of the mutant strain with the wild-type gene. The results of this study present a platform for the successful genetic engineering of L. incisa and its long-chain PUFA metabolism. PMID:25133787

  17. Identification of the two-phase mechanism of arachidonic acid regulating inflammatory prostaglandin E2 biosynthesis by targeting COX-2 and mPGES-1.

    PubMed

    Akasaka, Hironari; Ruan, Ke-He

    2016-08-01

    Through linking inducible cyclooxygenase (COX)-2 with microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), a Single-Chain Enzyme Complex (SCEC, COX-2-10aa-mPGES-1) was engineered to mimic a specific inflammatory PGE2 biosynthesis from omega-6 fatty acid, arachidonic acid (AA), by eliminating involvements of non-inducible COX-1 and other PGE2 synthases. Using the SCEC, we characterized coupling reactions between COX-2 and mPGES-1 at 1:1 ratio of inflammatory PGE2 production. AA demonstrated two phase activities to regulate inflammatory PGE2 production. In the first phase (<2 μM), AA was a COX-2 substrate and converted to increasing production of PGE2. In the second phase with a further increased AA level (2-10 μM), AA bound to mPGES-1 and inhibited the PGE2 production. The SCEC study was identical to the co-expression of COX-2 and mPGES-1. This was further confirmed by using mPGES-1 and PGH2 as a direct enzyme target and substrate, respectively. Furthermore, the carboxylic acid group of AA binding to R67 and R70 of mPGES-1 was identified by X-ray structure-based docking and mutagenesis. mPGES-1 mutants, R70A, R70K, R67A and R67K, lost 40-100% binding to [(14)C]-AA. To conclude, a cellular model, in which AA is involved in self-controlling initial initiating and later resolving inflammation by its two phase activities, was discussed. PMID:27177970

  18. An arachidonate metabolite is involved in the conversion from alpha 1- to beta-adrenergic glycogenolysis in isolated rat liver cells.

    PubMed Central

    Ishac, E J; Kunos, G

    1986-01-01

    In vitro incubation of isolated rat liver cells in a serum-free buffer leads to the suppression of the glycogenolytic effect of phenylephrine and the simultaneous emergence of a glycogenolytic response to isoproterenol within 4 hr. This time-dependent conversion of the adrenergic receptor response from alpha 1 to beta type is prevented by the presence in the incubation medium of 0.5% fatty-acid-free, but not regular, bovine serum albumin. A 20-min exposure of freshly isolated liver cells to arachidonic acid (10 micrograms/ml), but not to stearic or palmitic acid, causes an acute shift in the receptor response from alpha 1 to mixed alpha 1/beta type, similar in direction to that seen after prolonged incubation of the cells. This effect of arachidonic acid is prevented by 0.2 microM ibuprofen but not by the same concentration of nordihydroguaiaretic acid. Ibuprofen (1 microM) or indomethacin (1 microM) also inhibits the time-dependent shift in the receptor response. Actinomycin D inhibits the change in receptor response that is caused by prolonged incubation but not the change that is caused by exogenous arachidonic acid. It is proposed that the time-dependent conversion from alpha 1- to beta-adrenergic receptor-mediated glycogenolysis in isolated rat liver cells is related to a parallel increase in the phospholipase-mediated release of arachidonic acid and the subsequent formation of a key cyclooxygenase metabolite. A protein factor appears to be involved in the regulation of the release of arachidonic acid but not in the action of its metabolite. A possible mechanism by which this metabolite may regulate inverse changes in the coupling of alpha 1- and beta-receptors to postreceptor pathways is discussed. PMID:3001725

  19. Exogenous Abscisic Acid Mimics Cold Acclimation for Cacti Differing in Freezing Tolerance.

    PubMed Central

    Loik, M. E.; Nobel, P. S.

    1993-01-01

    The responses to low temperature were determined for two species of cacti sensitive to freezing, Ferocactus viridescens and Opuntia ficus-indica, and a cold hardy species, Opuntia fragilis. Fourteen days after shifting the plants from day/night air temperatures of 30/20[deg]C to 10/0[deg]C, the chlorenchyma water content decreased only for O. fragilis. This temperature shift caused the freezing tolerance (measured by vital stain uptake) of chlorenchyma cells to be enhanced only by about 2.0[deg]C for F. viridescens and O. ficus-indica but by 14.6[deg]C for O. fragilis. Also, maintenance of high water content by injection of water into plants at 10/0[deg]C reversed the acclimation. The endogenous abscisic acid (ABA) concentration was below 0.4 pmol g-1 fresh weight at 30/20[deg]C, but after 14 d at 10/0[deg]C it increased to 84 pmol g-1 fresh weight for O. ficus-indica and to 49 pmol g-1 fresh weight for O. fragilis. Four days after plants were sprayed with 7.5 x 10-5 M ABA at 30/20[deg]C, freezing tolerance was enhanced by 0.5[deg]C for F. viridescens, 4.1[deg]C for O. ficus-indica, and 23.4[deg]C for O. fragilis. Moreover, the time course for the change in freezing tolerance over 14 d was similar for plants shifted to low temperatures as for plants treated with exogenous ABA at moderate temperatures. Decreases in plant water content and increases in ABA concentration may be important for low-temperature acclimation by cacti, especially O. fragilis, which is widely distributed in Canada and the United States. PMID:12231985

  20. Modulation of the Expression of Components of the Stress Response by Dietary Arachidonic Acid in European Sea Bass (Dicentrarchus labrax) Larvae.

    PubMed

    Montero, Daniel; Terova, Genciana; Rimoldi, Simona; Betancor, Mónica B; Atalah, Eyad; Torrecillas, Silvia; Caballero, María J; Zamorano, María J; Izquierdo, Marisol

    2015-10-01

    This study reports for the first time on European sea bass, Dicentrarchus labrax (L.), larvae, the effect of different levels of dietary arachidonic acid (ARA; 20:4n-6) on the expression of genes related to the fish stress response. Copies of mRNA from genes related to steroidogenesis [StAR (steroidogenic acute regulatory protein), c-Fos, and CYP11β (11β-hydroxylase gene)], glucocorticoid receptor complex [GR (glucocorticoid receptor) and HSP (heat shock proteins) 70 and 90) and antioxidative stress (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase] were quantified. Eighteen day-old larvae were fed for 14 days with three experimental diets with increasing levels of ARA (0.3, 0.6 and 1.2% d.w.) and similar levels of docosahexaenoic (22:6n-3) and eicosapentaenoic (20:5n-3) acids (5 and 3%, respectively). The quantification of stress-related genes transcripts was conducted by One-Step TaqMan real time RT-PCR with the standard curve method (absolute quantification). Increase dietary levels of ARA induced a significantly (p < 0.05) down-regulation of genes related to cortisol synthesis, such as StAR and CYP11β and up-regulated genes related to glucocorticoid receptor complex, such as HSP70 and GR. No effects were observed on antioxidant enzymes gene expression. These results revealed the regulatory role of dietary ARA on the expression of stress-related genes in European sea bass larvae. PMID:26233819

  1. A Reexamination of Amino Acids in Lunar Soils: Implications for the Survival of Exogenous Organic Material During Impact Delivery

    NASA Technical Reports Server (NTRS)

    Brinton, Karen L. F.; Bada, Jeffrey L.

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of less than or equal to 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is less than or equal to 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth.

  2. A reexamination of amino acids in lunar soils: implications for the survival of exogenous organic material during impact delivery.

    PubMed

    Brinton, K L; Bada, J L

    1996-01-01

    Using a sensitive high performance liquid chromatography technique, we have analyzed both the hot water extract and the acid hydrolyzed hot water extract of lunar soil collected during the Apollo 17 mission. Both free amino acids and those derived from acid labile precursors are present at a level of roughly 15 ppb. Based on the D/L amino acid ratios, the free alanine and aspartic acid observed in the hot water extract can be entirely attributed to terrestrial biogenic contamination. However, in the acid labile fraction, precursors which yield amino acids are apparently present in the lunar soil. The amino acid distribution suggests that the precursor is probably solar wind implanted HCN. We have evaluated our results with regard to the meteoritic input of intact organic compounds to the moon based on an upper limit of < or = 0.3 ppb for alpha-aminoisobutyric acid, a non-protein amino acid which does not generally occur in terrestrial organisms and which is not a major amino acid produced from HCN, but which is a predominant amino acid in many carbonaceous chondrites. We find that the survival of exogenous organic compounds during lunar impact is < or = 0.8%. This result represents an example of minimum organic impact survivability. This is an important first step toward a better understanding of similar processes on Earth and on Mars, and their possible contribution to the budget of prebiotic organic compounds on the primitive Earth. PMID:11541128

  3. Expression of a reflex biting/snapping response to amino acids prior to first exogenous feeding in salmonid alevins.

    PubMed

    Valentincic, T; Lamb, C F; Caprio, J

    1999-10-01

    Five days prior to first exogenous feeding, amino acid stimuli released reflexive biting/snapping behavior in alevins of both rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis). The biting/snapping responses of salmonid larvae, which obtain nutrients solely from their yolk sacs, were videotaped during presentations of amino acids that are potent olfactory and taste stimuli to adult rainbow trout. The tested salmonid alevins possessed developed eyes and olfactory and taste organs several days prior to the start of spontaneous swimming and exogenous feeding. Five days prior to the first occurrence of complex feeding behavior, L-proline and L-alanine, which released swimming, turning, and biting/snapping (exaggerated biting) behaviors in adult rainbow trout, triggered reflexive biting/snapping behavior in the alevins of rainbow and brook trout, but did not induce swimming. In contrast, L-proline released vigorous swimming, but not biting/snapping activity in alevins of the European freshwater huchen (Hucho huncho), another salmonid species. Unlike in adult rainbow trout where visual and olfactory stimuli control all the successive behavior patterns of feeding behavior, taste stimuli released in alevins of rainbow and brook trout the early biting/snapping reflex independently from the complex feeding behavior. The independent biting/snapping reflex of rainbow and brook trout alevins ceased at the onset of spontaneous swimming activity several hours prior to the first exogenous feeding. PMID:10549895

  4. Exogenous tocopherol and ascorbic acid improve in vitro recovery of cryopreserved Rubus shoot tips

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative processes involved in stresses such as cold temperatures can decrease the viability of plant tissues. Antioxidants that counteract these oxidative reactions could improve plant viability following the stresses involved in cryopreservation. We studied the effects of exogenous vitamin E (V...

  5. High dietary arachidonic acid levels affect the process of eye migration and head shape in pseudoalbino Senegalese sole Solea senegalensis early juveniles.

    PubMed

    Boglino, A; Wishkerman, A; Darias, M J; Andree, K B; de la Iglesia, P; Estévez, A; Gisbert, E

    2013-11-01

    The effect of high dietary levels of arachidonic acid (ARA) on the eye migration and cranial bone remodelling processes in Senegalese sole Solea senegalensis early juveniles (age: 50 days post hatch) was evaluated by means of geometric morphometric analysis and alizarin red staining of cranial skeletal elements. The incidence of normally pigmented fish fed the control diet was 99·1 ± 0·3% (mean ± s.e.), whereas it was only 18·7 ± 7·5% for those fed high levels of ARA (ARA-H). The frequency of cranial deformities was significantly higher in fish fed ARA-H (95·1 ± 1·5%) than in those fed the control diet (1·9 ± 1·9%). Cranial deformities were significantly and negatively correlated with the incidence of normally pigmented animals (r² = -0·88, P < 0·001, n = 16). Thus, fish displaying pigmentary disorders differed in the position of their eyes with regard to the vertebral column and mouth axes, and by the interocular distance and head height, which were shorter than in fish not displaying pigmentary disorders. In addition to changes in the positioning of both eyes, pseudoalbino fish showed some ARA-induced osteological differences for some of the skeletal elements from the splanchnocranium (e.g. right premaxillary, dentary, angular, lacrimal, ceratohyal and branchiostegal rays) and neurocranium (e.g. sphenotic, left lateral ethmoid and left frontal) by comparison to normally pigmented specimens. Pseudoalbino fish also had teeth in both lower and upper jaws. This is the first study in Pleuronectiformes that describes impaired metamorphic relocation of the ocular side eye, the right eye in the case of S. senegalensis, whereas the left eye migrated into the ocular side almost normally. PMID:24580667

  6. Exploring the arachidonic acid-induced structural changes in phagocyte NADPH oxidase p47(phox) and p67(phox) via thiol accessibility and SRCD spectroscopy.

    PubMed

    Bizouarn, Tania; Karimi, Gilda; Masoud, Rawand; Souabni, Hager; Machillot, Paul; Serfaty, Xavier; Wien, Frank; Réfrégiers, Matthieu; Houée-Levin, Chantal; Baciou, Laura

    2016-08-01

    The NADPH oxidase is the sole enzymatic complex that produces, in a controlled way, superoxide anions. In phagocytes, it is constituted by the assembly of four cytosolic (p67(phox) , p47(phox) , p40(phox) and Rac) and two membrane (p22(phox) and Nox2) proteins. In response to pro-inflammatory mediators, the NADPH oxidase is activated. In cells, arachidonic acid (cis-AA), released by activated phospholipase A2, also plays a role in activation of the NADPH oxidase complex, but the mechanism of action of cis-AA is still a matter for debate. In cell-free systems, cis-AA is commonly used for activation. We have shown previously that trans-AA isomers were unable to activate the NADPH oxidase complex. Here, we aim to evaluate the structural changes in p47(phox) and p67(phox) induced by AA. The structural impact of both AA isomers on both cytosolic proteins was investigated by the accessibility of the thiol group and by circular dichroism in the far-UV for global folds. cis-AA induces secondary structure changes of p47(phox) and p67(phox) , while the trans isomer does not, suggesting that the changes observed are of importance for the activation process of these proteins. While five of the nine thiol groups in p67(phox) and all of them in p47(phox) have low access to the solvent when proteins are alone in solution, all of them become fully accessible when proteins are together. In conclusion, the secondary structures of p47(phox) and p67(phox) are both dependent on the presence of the partner protein in solution and on the presence of the activator molecule cis-AA. PMID:27284000

  7. Neuroprotection of (+)-2-(1-Hydroxyl-4-Oxocyclohexyl) Ethyl Caffeate Against Hydrogen Peroxide and Lipopolysaccharide Induced Injury via Modulating Arachidonic Acid Network and p38-MAPK Signaling.

    PubMed

    Shen, Jiao-Ning; Xu, Liu-Xin; Shan, Lei; Zhang, Wei-Dong; Li, Hong-Lin; Wang, Rui

    2015-01-01

    Oxidative stress and neuroinflammation are highly relevant to the pathological processes of various neurodegenerative diseases including Alzheimer's disease (AD). (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), a novel 5-lipoxygenase inhibitor, was isolated from the whole plant of Incarvillea mairei var granditlora (Wehrhahn) Grierson. In this study, we investigated the protective effect of HOEC on hydrogen peroxide (H2O2) and lipopolysaccharide (LPS) -induced cytotoxicity and neuroinflammation in vitro and in vivo. MTT assay, LDH release assay, morphological observation and Hoechst 33342/PI dual staining followed by EIA, immunofluorescence staining and Western Blotting analysis were performed to elucidate the neuroprotective effect of HOEC. Treatment with HOEC at various concentrations prior to H2O2 exposure significantly enhanced cell viability, decreased LDH release, prevented cell morphologic changes and apoptosis. Instead of PGE2 reduction, HOEC markedly inhibited the production of LTB4 and suppressed the macrophage-mediated neurotoxicity. Western blotting and immunofluorescence staining showed that HOEC inhibited H2O2-induced p38 phosphorylation and NF-κB activation. Neuroprotective effect of HOEC was abolished by a p38 inhibitor. Further in vivo studies of LPS-induced neuroinflammation confirmed the anti-inflammatory effects of HOEC. These findings that HOEC protects SH-SY5Y cells from H2O2 and LPS-induced injury via arachidonic acid network modulation followed by p38 MAPK and NF-κB signaling, might make HOEC be considered as a therapeutic candidate for prevention and treatment of neurodegenerative diseases involving oxidative stress or/and inflammation. PMID:26510982

  8. Effect of pentoxifylline on arachidonic acid metabolism, neutral lipid synthesis and accumulation during induction of the lipocyte phenotype by retinol in murine hepatic stellate cell.

    PubMed

    Cardoso, Carla C A; Paviani, Ernani R; Cruz, Lavínia A; Guma, Fátima C R; Borojevic, Radovan; Guaragna, Regina M

    2003-12-01

    In liver fibrosis, the quiescent hepatic stellate cells (HSC) are activated to proliferate and express the activated myofibroblast phenotype, losing fat droplets and the stored vitamin A, and depositing more extracellular matrix. Therapeutic strategies for liver fibrosis are focused on HSC. Pentoxifylline (PTF), an analog of the methylxanthine, prevents the biochemical and histological changes associated with animal liver fibrosis. The aim of the present study was to investigate the phenotypic change of myofibroblasts into quiescent lipocytes by PTF and/or retinol, using a permanent cell line GRX that represents murine HSC. We studied the action of both drugs on the synthesis of neutral lipids, activity of phospholipase A2 (PLA2), release of arachidonic acid (AA) and prostaglandins synthesis. Accumulation and synthesis of neutral lipids was dependent upon association of retinol with PTF. PTF (0.5 mg/mL) alone did not induce lipid accumulation and synthesis, but in cells induced by physiologic concentration of retinol (1-2.5 microM), it increased the quantity of stored lipids. Retinol and PTF (5 microM and 0.1 mg/mL, respectively) had a synergistic effect on neutral lipid synthesis and accumulation. In higher PTF concentrations (0.5 and 0.7 mg/ml), the synthesis was stimulated but accumulation decreased. Membrane-associated PLA2 activity decreased after PTF treatment, which increased the AA release 8 fold, and significantly increased the production of PGE2, but not of PGF2. However, when in presence of retinol, we observed a slightly higher increase in PGE2 and PGF2a production. In conclusion, PTF treatment generated an excess of free AA. We propose that retinol counteracts the action of PTF on the AA release and PGs production, even though both drugs stimulated the lipocyte induction in the HSC. PMID:14674680

  9. Arachidonic acid- and prostaglandin E2-induced cerebral vasodilation is mediated by carbon monoxide, independent of reactive oxygen species in piglets

    PubMed Central

    Leffler, Charles W.

    2011-01-01

    Arachidonic acid (AA) and prostaglandin (PG) E2 stimulate carbon monoxide (CO) production, and AA metabolism is known to be associated with the generation of reactive oxygen species (ROS). This study was conducted to address the hypothesis that CO and/or ROS mediate cerebrovascular dilation in newborn pigs. Experiments were performed on anesthetized newborn pigs with closed cranial windows. Different concentrations of AA (10−8-10−6 M), PGE2 (10−8-10−6 M), iloprost (10−8-10−6 M), and their vehicle (artificial cerebrospinal fluid) were given. Piglets with PGE2 and iloprost received indomethacin (5 mg/kg iv) to inhibit cyclooxygenase. AA, PGE2, and iloprost caused concentration-dependent increases in pial arteriolar diameter. The effects of both AA and PGE2 in producing cerebral vascular dilation and associated CO production were blocked by the heme oxygenase inhibitor chromium mesoporphyrin (2 × 10−5 M), but not by the prostacyclin analog, iloprost. ROS inhibitor tempol (SOD mimetic) (1 × 10−5 M) and the H2O2 scavenger catalase (1,000 U/ml) also do not block these vasodilator effects of AA and PGE2. Heme-l-lysinate-induced cerebrovascular dilation and CO production was blocked by chromium mesoporphyrin. Hypoxanthine plus xanthine oxidase, a combination that is known to generate ROS, caused pial arteriolar dilation and CO production that was inhibited by tempol and catalase. These data suggest that AA- and PGE2-induced cerebral vascular dilation is mediated by CO, independent of ROS. PMID:21984542

  10. Glucagon-like peptide 1 receptor activation regulates cocaine actions and dopamine homeostasis in the lateral septum by decreasing arachidonic acid levels.

    PubMed

    Reddy, I A; Pino, J A; Weikop, P; Osses, N; Sørensen, G; Bering, T; Valle, C; Bluett, R J; Erreger, K; Wortwein, G; Reyes, J G; Graham, D; Stanwood, G D; Hackett, T A; Patel, S; Fink-Jensen, A; Torres, G E; Galli, A

    2016-01-01

    Agonism of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) has been effective at treating aspects of addictive behavior for a number of abused substances, including cocaine. However, the molecular mechanisms and brain circuits underlying the therapeutic effects of GLP-1R signaling on cocaine actions remain elusive. Recent evidence has revealed that endogenous signaling at the GLP-1R within the forebrain lateral septum (LS) acts to reduce cocaine-induced locomotion and cocaine conditioned place preference, both considered dopamine (DA)-associated behaviors. DA terminals project from the ventral tegmental area to the LS and express the DA transporter (DAT). Cocaine acts by altering DA bioavailability by targeting the DAT. Therefore, GLP-1R signaling might exert effects on DAT to account for its regulation of cocaine-induced behaviors. We show that the GLP-1R is highly expressed within the LS. GLP-1, in LS slices, significantly enhances DAT surface expression and DAT function. Exenatide (Ex-4), a long-lasting synthetic analog of GLP-1 abolished cocaine-induced elevation of DA. Interestingly, acute administration of Ex-4 reduces septal expression of the retrograde messenger 2-arachidonylglycerol (2-AG), as well as a product of its presynaptic degradation, arachidonic acid (AA). Notably, AA reduces septal DAT function pointing to AA as a novel regulator of central DA homeostasis. We further show that AA oxidation product γ-ketoaldehyde (γ-KA) forms adducts with the DAT and reduces DAT plasma membrane expression and function. These results support a mechanism in which postsynaptic septal GLP-1R activation regulates 2-AG levels to alter presynaptic DA homeostasis and cocaine actions through AA. PMID:27187231

  11. Receptor-mediated inhibition of adenylate cyclase and stimulation of arachidonic acid release in 3T3 fibroblasts. Selective susceptibility to islet-activating protein, pertussis toxin

    SciTech Connect

    Murayama, T.; Ui, M.

    1985-06-25

    Thrombin exhibited diverse effects on mouse 3T3 fibroblasts. It (a) decreased cAMP in the cell suspension, (b) inhibited adenylate cyclase in the Lubrol-permeabilized cell suspension in a GTP-dependent manner, increased releases of (c) arachidonic acid and (d) inositol from the cell monolayer prelabeled with these labeled compounds, (e) increased /sup 45/Ca/sup 2 +/ uptake into the cell monolayer, and (f) increased /sup 86/Rb/sup +/ uptake into the cell monolayer in a ouabain-sensitive manner. Most of the effects were reproduced by bradykinin, platelet-activating factor, and angiotensin II. The receptors for these agonists are thus likely to be linked to three separate effector systems: the adenylate cyclase inhibition, the phosphoinositide breakdown leading to Ca/sup 2 +/ mobilization and phospholipase A2 activation, and the Na,K-ATPase activation. Among the effects of these agonists, (a), (b), (c), and (e) were abolished, but (d) and (f) were not, by prior treatment of the cells with islet-activating protein (IAP), pertussis toxin, which ADP-ribosylates the Mr = 41,000 protein, the alpha-subunit of the inhibitory guanine nucleotide regulatory protein (Ni), thereby abolishing receptor-mediated inhibition of adenylate cyclase. The effects (a), (c), (d), and (e) of thrombin, but not (b), were mimicked by A23187, a calcium ionophore. The effects of A23187, in contrast to those of receptor agonists, were not affected by the treatment of cells with IAP. Thus, the IAP substrate, the alpha-subunit of Ni, or the protein alike, may play an additional role in signal transduction arising from the Ca/sup 2 +/-mobilizing receptors, probably mediating process(es) distal to phosphoinositide breakdown and proximal to Ca/sup 2 +/ gating.

  12. Mildly abnormal general movement quality in infants is associated with higher Mead acid and lower arachidonic acid and shows a U-shaped relation with the DHA/AA ratio.

    PubMed

    van Goor, S A; Schaafsma, A; Erwich, J J H M; Dijck-Brouwer, D A J; Muskiet, F A J

    2010-01-01

    We showed that docosahexaenoic acid (DHA) supplementation during pregnancy and lactation was associated with more mildly abnormal (MA) general movements (GMs) in the infants. Since this finding was unexpected and inter-individual DHA intakes are highly variable, we explored the relationship between GM quality and erythrocyte DHA, arachidonic acid (AA), DHA/AA and Mead acid in 57 infants of this trial. MA GMs were inversely related to AA, associated with Mead acid, and associated with DHA/AA in a U-shaped manner. These relationships may indicate dependence of newborn AA status on synthesis from linoleic acid. This becomes restricted during the intrauterine period by abundant de novo synthesis of oleic and Mead acids from glucose, consistent with reduced insulin sensitivity during the third trimester. The descending part of the U-shaped relation between MA GMs and DHA/AA probably indicates DHA shortage next to AA shortage. The ascending part may reflect a different developmental trajectory that is not necessarily unfavorable. PMID:20022733

  13. Expression of Vibrio harveyi Acyl-ACP Synthetase Allows Efficient Entry of Exogenous Fatty Acids into the Escherichia coli Fatty Acid and Lipid A Synthetic Pathways

    PubMed Central

    Jiang, Yanfang; Morgan-Kiss, Rachael M.; Campbell, John W.; Chan, Chi Ho; Cronan, John E.

    2010-01-01

    Although the Escherichia coli fatty acid synthesis (FAS) pathway is the best studied type II fatty acid synthesis system, a major experimental limitation has been the inability to feed intermediates into the pathway in vivo because exogenously-supplied free fatty acids are not efficiently converted to the acyl-acyl carrier protein (ACP) thioesters required by the pathway. We report that expression of Vibrio harveyi acyl-ACP synthetase (AasS), a soluble cytosolic enzyme that ligates free fatty acids to ACP to form acyl-ACPs, allows exogenous fatty acids to enter the E. coli fatty acid synthesis pathway. The free fatty acids are incorporated intact and can be elongated or directly incorporated into complex lipids by acyltransferases specific for acyl-ACPs. Moreover, expression of AasS strains and supplementation with the appropriate fatty acid restored growth to E. coli mutant strains that lack essential fatty acid synthesis enzymes. Thus, this strategy provides a new tool for circumventing the loss of enzymes essential for FAS function. PMID:20028080

  14. Comparative Proteomic Analysis Reveals the Effects of Exogenous Calcium against Acid Rain Stress in Liquidambar formosana Hance Leaves.

    PubMed

    Hu, Wen-Jun; Wu, Qian; Liu, Xiang; Shen, Zhi-Jun; Chen, Juan; Liu, Ting-Wu; Chen, Juan; Zhu, Chun-Quan; Wu, Fei-Hua; Chen, Lin; Wei, Jia; Qiu, Xiao-Yun; Shen, Guo-Xin; Zheng, Hai-Lei

    2016-01-01

    Acid rain (AR) impacts forest health by leaching calcium (Ca) away from soils and plants. Ca is an essential element and participates in various plant physiological responses. In the present study, the protective role of exogenous Ca in alleviating AR stress in Liquidambar formosana Hance at the physiological and proteomic levels was examined. Our results showed that low Ca condition resulted in the chlorophyll content and photosynthesis decreasing significantly in L. formosana leaves; however, these effects could be reversed by high Ca supplementation. Further proteomic analyses successfully identified 81 differentially expressed proteins in AR-treated L. formosana under different Ca levels. In particular, some of the proteins are involved in primary metabolism, photosynthesis, energy production, antioxidant defense, transcription, and translation. Moreover, quantitative real time polymerase chain reaction (qRT-PCR) results indicated that low Ca significantly increased the expression level of the investigated Ca-related genes, which can be reversed by high Ca supplementation under AR stress. Further, Western blotting analysis revealed that exogenous Ca supply reduced AR damage by elevating the expression of proteins involved in the Calvin cycle, reactive oxygen species (ROS) scavenging system. These findings allowed us to better understand how woody plants respond to AR stress at various Ca levels and the protective role of exogenous Ca against AR stress in forest tree species. PMID:26616104

  15. [Effects of exogenous salicylic acid on membrane lipid peroxidation and photosynthetic characteristics of Cucumis sativus seedlings under drought stress].

    PubMed

    Hao, Jing-Hong; Yi, Yang; Shang, Qing-Mao; Dong, Chun-Juan; Zhang, Zhi-Gang

    2012-03-01

    To approach the related mechanisms of exogenous salicylic acid (SA) in improving plant drought-resistance, this paper studied the effects of applying exogenous SA to the rhizosphere on the plant growth, membrane lipid peroxidation, proline accumulation, water use efficiency, net photosynthetic rate (Pn), and chlorophyll fluorescence parameters of cucumber (Cucumis sativus) seedlings under drought stresses (60% and 50% of saturated water capacity). Applying SA relieved the inhibitory effects of drought stress on plant growth, Pn, and water use efficiency, decreased membrane lipid peroxidation, and promoted proline accumulation. Meanwhile, the SA decreased the decrements of the maximum photochemical efficiency of PS II, actual photochemical efficiency of PS II, potential activity of PS II, effective photochemical efficiency of PS II, and photochemical quenching coefficient under drought stress significantly, and limited the increase of non-photochemical quenching coefficient. All the results suggested that applying exogenous SA could alleviate the oxidation damage of cell membrane resulted from the drought-caused membrane lipid peroxidation, improve the Pn by increasing PS II activity to benefit water utilization, enhance the regulation capability of osmosis to decrease water loss and increase water use efficiency, and thereby, improve the plant drought-resistance. PMID:22720616

  16. Exogenous treatment with salicylic acid attenuates occurrence of citrus canker in susceptible navel orange (Citrus sinensis Osbeck).

    PubMed

    Wang, Yin; Liu, Ji-Hong

    2012-08-15

    Citrus canker caused by Xanthomonas axonopodis pv. citri (Xac) is a devastating bacterial disease threatening the citrus industry. Salicylic acid (SA) plays a key role in plant defense response to biotic stress, but information is scarce concerning the application of SA to enhancing Xac resistance. In the present research attempts were made to investigate how exogenous application of SA influenced canker disease outbreak in navel orange (Citrus sinensis). Exogenously applied SA at 0.25 mM significantly enhanced the endogenous free and bound SA, particularly the latter. Upon exposure to Xac, lower disease incidence rate and smaller lesion sites were observed in the samples pre-treated with SA, accompanied by repression of bacterial growth at the lesion sites. Concurrent with the augmented disease resistance, SA-treated leaves had higher H₂O₂ level and smaller stomata apertures before or after Xac infection when compared with their counterparts pre-treated with water (control). SA treatment elevated the activities of phenylalanine ammonia-lyase and β-1,3-glucanase, but only the latter was higher in the SA-treated samples after Xac infection. In addition, mRNA levels of two pathogenesis-related genes, CsCHI and CsPR4A, were higher in the SA-treated samples relative to the control. Taken together, our results strongly suggest that the exogenously applied SA has evoked a cascade of physiological and molecular events that function singly or in concert to confer resistance to Xac invasion. PMID:22658220

  17. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Patino, R.; Yoshizaki, G.; Bolamba, D.; Thomas, P.

    2003-01-01

    The roles of arachidonic acid (AA) and protein kinase C (PKC) during in vitro maturation-inducing hormone (MIH)-dependent meiotic resumption (maturation) and ovulation were studied in ovarian follicles of Atlantic croaker (Micropogonias undulatus). The requirement for cyclooxygenase (COX) metabolites of AA was examined using a nonspecific COX inhibitor, indomethacin (IM), as well as two COX products, prostaglandin (PG) F2?? and PGE2, whereas the role of lipoxygenase (LOX) was investigated using a specific LOX inhibitor, nordihydroguaiaretic acid (NDGA). The involvement of PKC was examined using phorbol 12-myristate 13-acetate (PMA), a PKC activator, as well as GF109203X (GF), a specific inhibitor of PKC and 1-(5-isoquin- olinesulfonyl)-2-methylpiperazine (H7), nonspecific inhibitor of protein kinases. Genomic mechanisms were examined with the transcription-inhibitor actinomycin D (ActD) and the functionality of heterologous (oocyte-granulosa) gap junctions (GJ) with a dye transfer assay. The AA (100 ??M) and PGF2?? (5 ??M) did not induce maturation, and NDGA (10 ??M) did not affect MIH-dependent maturation. However, IM (100 ??M) partially inhibited MIH-dependent maturation. Conversely, AA and both PGs induced, and IM and NDGA inhibited, MIH-dependent ovulation in matured follicles. The PMA (1 ??g/ml) did not induce maturation but caused ovulation in matured follicles, whereas PKC inhibitors (GF, 5 ??M; H7, 50??M) did not affect MIH-dependent maturation but inhibited MIH- and PMA-dependent ovulation. The PMA-dependent ovulation was inhibited by IM but not by NDGA. In addition, ActD (5 ??M) blocked MIH-dependent, but not PMA-dependent, ovulation, and PGF2?? restored MIH-dependent ovulation in ActD-blocked follicles. The AA and PGs did not induce, and GF did not inhibit, MIH-dependent heterologous GJ uncoupling. In conclusion, AA and PKC mediate MIH-dependent ovulation but not meiotic resumption or heterologous GJ uncoupling in croaker follicles, but a permissive role

  18. Interactions between protein kinase C and arachidonic acid in the gonadotropin response to salmon and chicken gonadotropin-releasing hormone-II in goldfish.

    PubMed

    Chang, J P; Van Goor, F; Neumann, C M

    1994-03-01

    Previous studies have shown that, in goldfish, the gonadotropin (GTH) response to salmon GTH-releasing hormone (sGnRH) is partly mediated by arachidonic acid (AA) metabolism via the lipoxygenase enzyme system, whereas protein kinase C (PKC) participates in both sGnRH- and chicken (c)GnRH-II-induced GTH secretion. In this study, the interactions between AA- and PKC-dependent pathways in mediating the long-term GnRH stimulation of GTH release were further investigated using dispersed goldfish pituitary cell cultures in static incubation. Treatments with AA or the PKC activator tetradecanoylphorbol acetate (TPA) increased GTH release. The GTH responses to AA and TPA were additive. The lipoxygenase inhibitor nordihydroguairetic acid (NDGA) and the PKC inhibitor H7 selectively reduced AA- and TPA-stimulated GTH release, respectively. These findings suggest that the GTH responses to stimulation by AA- and PKC-dependent signaling pathways are independent of one another. In other experiments, the GTH response to cGnRH-II was unaffected by NDGA but was abolished by H7. In contrast, sGnRH-induced GTH release was attenuated by NDGA and H7. Furthermore, in the presence of both NDGA and H7, the GTH response to sGnRH was abolished. These data suggest that sGnRH stimulation of GTH secretion involves both AA- and PKC-dependent mechanisms; in contrast, cGnRH-II action is not dependent on AA metabolism. The pathway by which AA might be mobilized in response to a GnRH challenge was also investigated by pharmacological manipulations. The diacylglcerol (DG) lipase inhibitor, U-57908, did not decrease sGnRH- and cGnRH-II-induced GTH secretion. On the other hand, the phospholipase A2 (PLA2) inhibitors, bromophenacyl bromide (BPB), chloroquine, and quinacrine, reduced sGnRH-elicited, but not cGnRH-II-stimulated GTH release. The addition of AA reversed the inhibitory action of BPB on sGnRH-elicited GTH release. In addition, the GTH response to AA was additive to the cGnRH-II-induced, but

  19. Bacterial lipopolysaccharide primes human neutrophils for enhanced release of arachidonic acid and causes phosphorylation of an 85-kD cytosolic phospholipase A2.

    PubMed Central

    Doerfler, M E; Weiss, J; Clark, J D; Elsbach, P

    1994-01-01

    Production of leukotriene B4 (LTB4) by human neutrophils (PMN) in response to different stimuli is increased after pretreatment with lipopolysaccharides (LPS). We have analyzed the steps in arachidonic acid (AA) metabolism affected by LPS by examining release of AA and its metabolites from [3H]AA prelabeled PMN. Pretreatment of PMN for 60 min with up to 1 microgram/ml of LPS alone had no effect, but release of [3H]AA was stimulated up to fivefold during subsequent stimulation with a second agent. In the absence of LPS-binding protein (LBP), priming was maximal after pretreatment of PMN with 10 ng of LPS/ml for 60 min; in the presence of LBP maximal priming occurred within 45 min at 0.1 ng of LPS/ml and within 15 min at 100 ng of LPS/ml. Treatment of PMN with 10 ng of LPS/ml also increased uptake of opsonized zymosan by up to 60%. Phospholipids are the source of released [3H]AA. No release was observed from [14C]oleic acid (OA)-labeled PMN suggesting that phospholipolysis may be specific for [3H]AA-labeled phospholipid pools. Cytosol from PMN primed with LPS contains two to three times the phospholipase A2 (PLA2) activity of control PMN, against 1-palmitoyl-[2-14C]arachidonoyl-phosphatidylcholine. This activity is Ca2+ dependent and dithiothreitol resistant. LPS priming is accompanied by reduced migration during SDS-PAGE of an 85-kD protein, identified as a cytosolic PLA2. The extent and kinetics of this effect of LPS on cPLA2 parallel the priming of [3H]AA release, both depending on LPS concentration either with or without LBP. These findings suggest that priming by LPS of AA metabolism by PMN includes phosphorylation of an AA-phospholipid-selective cytosolic PLA2 that is dissociated from activation until a second stimulus is applied. Images PMID:7512985

  20. [Effects of exogenous nitric oxide on physiological characteristics of longan (Dimocarpus longana) seedlings under acid rain stress].

    PubMed

    Liu, Jian-fu; Wang, Ming-yuan; Yang, Chen; Zhu, Ai-jun

    2013-08-01

    This paper studied the effects of exogenous nitric oxide donor sodium nitroprusside (SNP) on the chlorophyll content, antioxidant enzyme activities, and osmotic regulation substances of longan (Dimocarpus longana 'Fuyan') seedlings under acid rain (pH 3.0) stress. Under the acid rain stress, the seedling leaf superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and chlorophyll, soluble protein and soluble sugar contents decreased obviously, while the leaf malondialdedyde content had a remarkable increase, suggesting the toxic effect of the acid rain on the seedlings. Exogenous nitric oxide had dual nature on the physiological characteristics of longan seedlings under acid rain stress. Applying 0.1-0.5 mmol x L(-1) of SNP improved the SOD, POD and CAT activities and the chlorophyll, soluble protein and soluble sugar contents significantly, and decreased the malondialdedyde content. Low concentrations SNP reduced the oxidative damage caused by the acid rain stress, and 0.5 mmol x L(-1) of SNP had the best effect. Under the application of 0.5 mmol x L(-1) of SNP, the total chlorophyll, soluble protein, and soluble sugar contents and the SOD, POD and CAT activities increased by 76.0%, 107.0%, 216.1%, 150. 0%, 350.9% and 97.1%, respectively, and the malondialdedyde content decreased by 46.4%. It was suggested that low concentration (0.1-0.5 mmol x L(-1)) SNP could alleviate the toxic effect of acid rain stress on longan seedlings via activating the leaf antioxidant enzyme activities and reducing oxidative stress, while high concentration SNP (1.0 mmol x L(-1)) lowered the mitigation effect. PMID:24380343

  1. Identification of a radical formed in the reaction mixtures of ram seminal vesicle microsomes with arachidonic Acid using high performance liquid chromatography-electron spin resonance spectrometry and high performance liquid chromatography-electron spin resonance-mass spectrometry.

    PubMed

    Minakata, Katsuyuki; Iwahashi, Hideo

    2010-03-01

    The reaction of ram seminal vesicle (RSV) microsomes with arachidonic acid (AA) was examined using electron spin resonance (ESR), high performance liquid chromatography-electron spin resonance spectrometry (HPLC-ESR), and high performance liquid chromatography-electron spin resonance-mass spectrometry (HPLC-ESR-MS) combined use of spin trapping technique. A prominent ESR spectrum (alpha(N) = 1.58 mT and alpha(H)beta = 0.26 mT) was observed in the complete reaction mixture of ram seminal vesicle microsomes with arachidonic acid containing 2.0 mg protein/ml ram seminal vesicle (RSV) microsomal suspension, 0.8 mM arachidonic acid, 0.1 M 4-POBN, and 24 mM tris/HCl buffer (pH 7.4). The ESR spectrum was hardly observed for the complete reaction mixture without the RSV microsomes. The formation of the radical appears to be catalyzed by the microsomal components. In the absence of AA, the intensity of the ESR signal decreased to 16 +/- 15% of the complete reaction mixture, suggesting that the radical is derived from AA. For the complete reaction mixture with boiled microsomes, the intensity of the ESR signal decreased to 49 +/- 4% of the complete reaction mixture. The intensity of the ESR signal of the complete reaction mixture with indomethacin decreased to 74 +/- 20% of the complete reaction mixture, suggesting that cyclooxygenese partly participates in the reaction. A peak was detected on the elution profile of HPLC-ESR analysis of the complete reaction mixture. To determine the structure of the peak, an HPLC-ESR-MS analysis was performed. The HPLC-ESR-MS analysis of the peak showed two prominent ions, m/z 266 and m/z 179, suggesting that the peak is a 4-POBN/pentyl radical adduct. An HPLC-ESR analysis of the authentic 4-POBN/pentyl radical adduct comfirmed the identification. PMID:20216946

  2. Differential effects of polybrominated diphenyl ethers and polychlorinated biphenyls on [3H]arachidonic acid release in rat cerebellar granule neurons.

    PubMed

    Kodavanti, Prasada Rao S; Derr-Yellin, Ethel C

    2002-08-01

    Polybrominated diphenyl ethers (PBDEs), which are widely used as flame-retardants, have been increasing in environmental and human tissue samples during the past 20-30 years, while other structurally related, persistent organic pollutants such as polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins (on a TEQ basis), have decreased. PBDEs have been detected in human blood, adipose tissue, and breast milk, and developmental and long-term exposure to these contaminants may pose a human health risk, especially to children. Previously, we demonstrated that PCBs, which cause neurotoxic effects, including changes in learning and memory, stimulated the release of [(3)H]arachidonic acid ([(3)H]AA) by a cPLA(2)/iPLA(2)-dependent mechanism. PLA(2)(phospholipase A(2)) activity has been associated with learning and memory, and AA has been identified as a second messenger involved in synaptic plasticity. The objective of the present study was to test whether PBDE mixtures (DE-71 and DE-79), like other organohalogen mixtures, have a similar action on [(3)H]AA release in an in vitro neuronal culture model. Cerebellar granule cells at 7 days in culture were labeled with [(3)H]AA for 16-20 h and then exposed in vitro to PBDEs. DE-71, a mostly pentabromodiphenyl ether mixture, significantly stimulated [(3)H]AA release at concentrations as low as 10 microg/ml, while DE-79, a mostly octabromodiphenyl ether mixture, did not stimulate [(3)H]AA release, even at 50 microg/ml. The release of [(3)H]AA by DE-71 is time-dependent, and a significant increase was seen after only 5-10 min of exposure. The removal and chelation of calcium from the exposure buffer, using 0.3 mM EGTA, significantly attenuated the DE-71-stimulated [(3)H]AA release; however, only an 18% inhibition of the release was demonstrated for the calcium replete conditions at 30 microg/ml DE-71. Methyl arachidonylfluorophosphonate (5 microM), an inhibitor of cPLA(2)/iPLA(2), completely attenuated the DE-71

  3. Understanding the Mechanism of the Hydrogen Abstraction from Arachidonic Acid Catalyzed by the Human Enzyme 15-Lipoxygenase-2. A Quantum Mechanics/Molecular Mechanics Free Energy Simulation.

    PubMed

    Suardíaz, Reynier; Jambrina, Pablo G; Masgrau, Laura; González-Lafont, Àngels; Rosta, Edina; Lluch, José M

    2016-04-12

    Lipoxygenases (LOXs) are a family of enzymes involved in the biosynthesis of several lipid mediators. In the case of human 15-LOX, the 15-LOX-1 and 15-LOX-2 isoforms show slightly different reaction regiospecificity and substrate specificity, indicating that substrate binding and recognition may be different, a fact that could be related to their different biological role. Here, we have used long molecular dynamics simulations, QM(DFT)/MM potential energy and free energy calculations (using the newly developed DHAM method), to investigate the binding mode of the arachidonic acid (AA) substrate into 15-LOX-2 and the rate-limiting hydrogen-abstraction reaction 15-LOX-2 catalyzes. Our results strongly indicate that hydrogen abstraction from C13 in 15-LOX-2 is only consistent with the "tail-first" orientation of AA, with its carboxylate group interacting with Arg429, and that only the pro-S H13 hydrogen will be abstracted (being the pro-R H13 and H10 too far from the acceptor oxygen atom). At the B3LYP/6-31G(d) level the potential and free energy barriers for the pro-S H13 abstraction of AA by 15-LOX-2 are 18.0 and 18.6 kcal/mol, respectively. To analyze the kinetics of the hydrogen abstraction process, we determined a Markov model corresponding to the unbiased simulations along the state-discretized reaction coordinate. The calculated rates based on the second largest eigenvalue of the Markov matrices agree well with experimental measurements, and also provide the means to directly determine the pre-exponential factor for the reaction by comparing with the free energy barrier height. Our calculated pre-exponential factor is close to the value of kBT/h. On the other hand, our results suggest that the spin inversion of the complete system (including the O2 molecule) that is required to happen at some point along the full process to lead to the final hydroperoxide product, is likely to take place during the hydrogen transfer, which is a proton coupled electron transfer

  4. Modulatory effects of steroid hormones, oxytocin, arachidonic acid, forskolin and cyclic AMP on the expression of aquaporin 1 and aquaporin 5 in the porcine uterus during placentation.

    PubMed

    Skowronska, A; Mlotkowska, P; Okrasa, S; Nielsen, S; Skowronski, M T

    2016-04-01

    Aquaporins (AQPs) are proteins forming trans-membrane channels responsible for water transport. AQP1 and AQP5 are present in structures of the female reproductive system. In the uterus, these AQPs are involved in water movement between the intraluminal, interstitial and capillary compartments and their uterine expression is essential throughout the pregnancy, including its early stages. Thus, the study aimed to assess the influence of P4 (progesterone), E2 (estradiol), OT (oxytocin), AA (arachidonic acid), cAMP and FSK (forskolin) on the AQP1 and AQP5 mRNA and protein expression in the uterine tissue of gilts on Days 30 - 32 of gestation (the placentation period), following short (3 h) and long (24 h) incubations. Steroid hormones influenced the expression of AQP1 and AQP5; E2 up-regulated, but P4 down-regulated mRNAs of these AQPs, whereas the protein level of studied AQPs was increased by both steroids. OT treatment decreased AQP1 (after 24 h), but increased AQP5 (after 3 h) mRNA expression. Treatment with AA significantly reduced the AQP1 expression at the mRNA level, but stimulated at the protein level. The expression of AQP5 mRNA and protein was stimulated by AA. FSK markedly decreased AQP1 mRNA, but increased of AQP5 after 3-h incubation. In turn, cAMP stimulated and inhibited transcription of AQP5 after 3- and 24-h incubations, respectively. Immunohistochemical analysis confirmed the uterine localization of AQP1 in the apical and basal membranes of endothelial cells and AQP5 in the apical membranes of epithelial cells under control condition. Treatments with P4, E2, AA, cAMP or FSK have caused additional appearance of AQP5 labeling in the basolateral membranes of epithelial cells. These results suggest a participation of steroid hormones (P4 and E2), AA derivatives and cAMP in controlling the expression of AQP1 and AQP5 as well as the distribution of AQP5 in the uterine tissue of pregnant gilts during placentation (Days 30 - 32 of gestation). PMID:27226190

  5. Altered secretion of selected arachidonic acid metabolites during subclinical endometritis relative to estrous cycle stage and grade of fibrosis in mares.

    PubMed

    Gajos, Katarzyna; Kozdrowski, Roland; Nowak, Marcin; Siemieniuch, Marta J

    2015-08-01

    Mares that fail to become pregnant after repeated breeding, without showing typical signs of clinical endometritis, should be suspected of subclinical endometritis (SE). Contact with infectious agents results in altered synthesis and secretion of inflammatory mediators, including cytokines and arachidonic acid metabolites, and disturbs endometrial functional balance. To address the hypothesis that SE affects the immune endocrine status of the equine endometrium, spontaneous secretion of prostaglandin E(2) (PGE(2)), prostaglandin F(2α) (PGF(2α)), 6-keto-PGF(1α )(a metabolite of prostacyclin I(2)), leukotriene B(4) (LTB(4)), and leukotriene C(4) (LTC(4)) was examined. In addition, secretion of these factors was examined relative to the grade of inflammation, fibrosis, and estrous cycle stage. Eighty-two warmblood mares, of known breeding history, were enrolled in this study. On the basis of histopathologic assessment, mares were classified as suffering from first-grade SE, second-grade SE, or being healthy. The grade of fibrosis and the infiltration of endometrial tissue with polymorphonuclear leukocytes were examined by routine hematoxylin-eosin staining. In mares suffering from SE, the secretion profiles of PGE(2), 6-keto-PGF(1α), LTB(4), and LTC(4) were changed compared to mares that did not suffer from endometritis. The secretion of PGE(2) and 6-keto-PGF1α was increased, whereas that of LTB(4) and LTC(4) was decreased. Secretion of 6-keto-PGF(1α) was increased in first- and second-grade SE (P < 0.01). The concentration of PGI(2) metabolite was increased only in inflamed endometrium, independently of the inflammation grade, but was not affected by fibrosis. Prostaglandin E(2) secretion was increased in second-grade SE (P < 0.05). The secretion of LTB(4) decreased in both first- and second-grade SE (P < 0.05), whereas secretion of LTC(4) was decreased only in second-grade SE (P < 0.05). Fibrosis did not change the secretion profile of PGE(2), PGF(2α), and 6

  6. The combined impact of plant-derived dietary ingredients and acute stress on the intestinal arachidonic acid cascade in Atlantic salmon (Salmo salar).

    PubMed

    Oxley, Anthony; Jolly, Cecile; Eide, Torunn; Jordal, Ann-Elise O; Svardal, Asbjørn; Olsen, Rolf-Erik

    2010-03-01

    A study was conducted to assess the effect of substituting high levels of dietary fish oil (FO) and fishmeal (FM) for vegetable oil (VO) and plant protein (PP) on the intestinal arachidonic acid (AA) cascade in the carnivorous fish species Atlantic salmon. Four diets were fed to salmon over a period of 12 months, including a control FMFO diet, with varying replacements of plant-derived ingredients: 80 % PP and 35 % VO; 40 % PP and 70 % VO; 80 % PP and 70 %VO. Subsequently, fish were examined pre- (0 h) and post- (1 h) acute stress for blood parameters and intestinal bioactive lipidic mediators of inflammation (prostaglandins). Plasma cortisol responses were greatest in the FMFO group, while 80 % PP and 70 % VO fish exhibited increased plasma chloride concentrations. The n-3:n-6 PUFA ratio in intestinal glycerophospholipids from 70 % VO groups significantly decreased in both proximal and distal regions due to elevated levels of 18 : 2n-6 and the elongation/desaturation products 20 : 2n-6 and 20 : 3n-6. Increases in n-6 PUFA were not concomitant with increased AA, although the AA:EPA ratio did vary significantly. The 40 % PP and 70 % VO diet produced the highest intestinal AA:EPA ratio proximally, which coincided with a trend in elevated levels of PGF2alpha, PGE2 and 6-keto-PGF1alpha in response to stress. PGE2 predominated over PGF2alpha and 6-keto-PGF1alpha (stable metabolite of PGI2) with comparable concentrations in both intestinal regions. Cyclo-oxygenase-2 (COX-2) mRNA expression was an order of magnitude higher in distal intestine, compared with proximal, and was significantly up-regulated following stress. Furthermore, the 80 % PP and 70 % VO diet significantly amplified proximal COX-2 induction post-stress. Results demonstrate that high replacements with plant-derived dietary ingredients can enhance COX-2 induction and synthesis of pro-inflammatory eicosanoids in the intestine of salmon in response to acute physiological stress. PMID:19943982

  7. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize.

    PubMed

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L(-1) and 50 mg L(-1), in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms. PMID:27446149

  8. Exogenous γ-aminobutyric Acid (GABA) Application Improved Early Growth, Net Photosynthesis, and Associated Physio-Biochemical Events in Maize

    PubMed Central

    Li, Wu; Liu, Jianhua; Ashraf, Umair; Li, Gaoke; Li, Yuliang; Lu, Wenjia; Gao, Lei; Han, Fuguang; Hu, Jianguang

    2016-01-01

    γ-aminobutyric acid (GABA) is an endogenous signaling molecule and involved in growth regulations and plant development, however, a little information is available on the consequences of exogenous GABA application on growth, development, and associated physio-biochemical processes in maize. The present study examined the GABA-induced regulations in early growth, net photosynthetic rate, gas exchange, osmoregulation, and enzymatic activities in three maize cultivars, i.e., Yuecainuo 6, Zhengtian 68, and Yuecainuo 2. Two levels of GABA, i.e., 0 mg L-1 and 50 mg L-1, in solution form, with total application volume of 100 ml per pot containing 15 maize seedlings were exogenously applied. Results revealed that exogenous GABA application improved seedling growth in terms of seedling length and biomass accumulation in all maize cultivars at both 3 and 7 days after treatment (DAT). It also promoted net photosynthesis and variably affected gas exchange attributes, i.e., stomatal conductance (Gs), intercellular CO2 concentration (Ci), and transpiration rate (Tr), as well as leaves SPAD value. Furthermore, lipid peroxidation [in terms of malondialdehyde (MDA)] under GABA treated maize seedlings were also remained variable; however, osmolyte accumulation (protein and proline) and activities of anti-oxidants enzymes, i.e., super-oxide dismutase and peroxidase were also affected differently at both 3 and 7 DAT in all maize cultivars. Furthermore, enzymes involved in nitrogen metabolism, e.g., nitrate reductase and glutamine synthetase were improved. These results suggest the involvement of GABA in various physio-metablical mechanisms which might lead to improvement in morphological growth of maize. In future, research is still needed at molecular and genetic levels to unravel the involvement of GABA-mediated regulations in growth and its associated physio-biochemical mechanisms. PMID:27446149

  9. Enhanced L-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis.

    PubMed

    Tian, Xiwei; Wang, Yonghong; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2016-03-01

    This study investigated cell physiological and metabolic responses of Lactobacillus paracasei to osmotic stresses. Both cellular fatty acid composition and metabolite profiling were responded by increasing unsaturated and epoxy-fatty acid proportions, as well as accumulating some specific intracellular metabolites. Simultaneously, metabolite profiling was adopted to rationally and systematically discover potential osmoprotectants. Consequently, exogenous addition of proline or aspartate was validated to be a feasible and efficacious approach to improve cell growth under hyperosmotic stress in shake flasks. Particularly, with 5-L cultivation system, L-lactic acid concentration increased from 108 to 150 g/L during the following 16-h fermentation in 2 g/L proline addition group, while it only increased from 110 to 140 g/L in no proline addition group. Moreover, glucose consumption rate with proline addition reached 3.49 g/L/h during this phase, 35.8 % higher than that with no proline addition. However, extreme high osmotic pressure would significantly limit the osmoprotection of proline, and the osmolality threshold for L. paracasei was approximately 3600 mOsm/kg. It was suggested that proline principally played a role as a compatible solute accumulated in the cell for hyperosmotic preservation. The strategies of exploiting osmotic protectant with metabolite profiling and enhancing L-lactic acid production by osmoprotectant addition would be potential to provide a new insight for other microorganisms and organic acids production. PMID:26658821

  10. Enhanced efficiency of cadmium removal by Boehmeria nivea (L.) Gaud. in the presence of exogenous citric and oxalic acids.

    PubMed

    Li, Huaying; Liu, Yunguo; Zeng, Guangming; Zhou, Lu; Wang, Xin; Wang, Yaqin; Wang, Chunlin; Hu, Xinjiang; Xu, Weihua

    2014-12-01

    Boehmeria nivea (L.) Gaud. is a potential candidate for the remediation of Cd contaminated sites. The present investigation aims to explore Cd tolerance threshold and to quickly identify the role of exogenous organic acids in Cd uptake and abiotic metal stress damage. Elevated Cd levels (0-10mg/L) resulted in an obvious rise in Cd accumulation, ranging from 268.0 to 374.4 in root and 25.2 to 41.2mg/kg dry weight in shoot, respectively. Citric acid at 1.5 mmol/L significantly facilitated Cd uptake by 26.7% in root and by 1-fold in shoot, respectively. Cd translocation efficiency from root to shoot was improved by a maximum of 66.4% under 3 mmol/L of oxalic acid. Citric acid exhibited more prominent mitigating effect than oxalic acid due to its stronger ligand affinity for chelating with metal and avoiding the toxicity injury of free Cd ions more efficiently. The present work provides a potential strategy for efficient Cd remediation with B. nivea. PMID:25499499

  11. Exogenous malic and acetic acids reduce cadmium phytotoxicity and enhance cadmium accumulation in roots of sunflower plants.

    PubMed

    Hawrylak-Nowak, Barbara; Dresler, Sławomir; Matraszek, Renata

    2015-09-01

    There is increasing evidence showing that low molecular weight organic acids (LMWOA) are involved in heavy metal resistance mechanisms in plants. The aim of this study was to investigate the effects of exogenous malic (MA) or acetic (AA) acids on the toxicity and accumulation of cadmium (Cd) in sunflower (Helianthus annuus L.). For this purpose, plants were grown in hydroponics under controlled conditions. Single Cd stress (5 μM Cd for 14 days) induced strong phytotoxic effects, as indicated by a decrease in all growth parameters, concentration of photosynthetic pigments, and root activity, as well as a high level of hydrogen peroxide (H2O2) accumulation. Exogenous MA or AA (250 or 500 μM) applied to the Cd-containing medium enhanced the accumulation of Cd by the roots and limited Cd translocation to the shoots. Moreover, the MA or AA applied more or less reduced Cd phytotoxicity by increasing the growth parameters, photosynthetic pigment concentrations, decreasing accumulation of H2O2, and improving the root activity. Of the studied organic acids, MA was much more efficient in mitigation of Cd toxicity than AA, probably by its antioxidant effects, which were stronger than those of AA. Plant response to Cd involved decreased production of endogenous LMWOA, probably as a consequence of severe Cd toxicity. The addition of MA or AA to the medium increased endogenous accumulation of LMWOA, especially in the roots, which could be beneficial for plant metabolism. These results imply that especially MA may be involved in the processes of Cd uptake, translocation, and tolerance in plants. PMID:26115548

  12. Transcriptional analysis of the effect of exogenous decanoic acid stress on Streptomyces roseosporus

    PubMed Central

    2013-01-01

    Backgroud Daptomycin is an important antibiotic against infections caused by drug-resistant pathogens. Its production critically depends on the addition of decanoic acid during fermentation. Unfortunately, decanoic acid (>2.5 mM) is toxic to daptomycin producer, Streptomyces roseosporus. Results To understand the mechanism underlying decanoic tolerance or toxicity, the responses of S. roseosporus was determined by a combination of phospholipid fatty acid analysis, reactive oxygen species (ROS) measurement and RNA sequencing. Assays using fluorescent dyes indicated a sharp increase in reactive oxygen species during decanoic acid stress; fatty acid analysis revealed a marked increase in the composition of branched-chain fatty acids by approximately 10%, with a corresponding decrease in straight-chain fatty acids; functional analysis indicated decanoic acid stress has components common to other stress response, including perturbation of respiratory functions (nuo and cyd operons), oxidative stress, and heat shock. Interestingly, our transcriptomic analysis revealed that genes coding for components of proteasome and related to treholase synthesis were up-regulated in the decanoic acid –treated cells. Conclusion These findings represent an important first step in understanding mechanism of decanoic acid toxicity and provide a basis for engineering microbial tolerance. PMID:23432849

  13. Exogenous γ-aminobutyric acid treatment affects citrate and amino acid accumulation to improve fruit quality and storage performance of postharvest citrus fruit.

    PubMed

    Sheng, Ling; Shen, Dandan; Luo, Yi; Sun, Xiaohua; Wang, Jinqiu; Luo, Tao; Zeng, Yunliu; Xu, Juan; Deng, Xiuxin; Cheng, Yunjiang

    2017-02-01

    The loss of organic acids during postharvest storage is one of the major factors that reduces the fruit quality and economic value of citrus. Citrate is the most important organic acid in citrus fruits. Molecular evidence has proved that γ-aminobutyric acid (GABA) shunt plays a key role in citrate metabolism. Here, we investigated the effects of exogenous GABA treatment on citrate metabolism and storage quality of postharvest citrus fruit. The content of citrate was significantly increased, which was primarily attributed to the inhibition of the expression of glutamate decarboxylase (GAD). Amino acids, including glutamate, alanine, serine, aspartate and proline, were also increased. Moreover, GABA treatment decreased the fruit rot rate. The activities of antioxidant enzymes and the content of energy source ATP were affected by the treatment. Our results indicate that GABA treatment is a very effective approach for postharvest quality maintenance and improvement of storage performance in citrus production. PMID:27596402

  14. Gene cloning and functional analysis of a second delta 6-fatty acid desaturase from an arachidonic acid-producing Mortierella fungus.

    PubMed

    Sakuradani, Eiji; Shimizu, Sakayu

    2003-04-01

    We demonstrated that Mortierella alpina 1S-4 has two delta 6-desaturases, which are involved in the desaturation of linoleic acid to gamma-linolenic acid. For one of the two delta 6-desaturases, designated as delta 6I, gene cloning and its heterologous expression in a fungus, Aspergillus oryzae, has previously been reported. In addition, we indicated in this paper that there is an isozyme of the two delta 6-desaturases, designated as delta 6II, in M. alpina 1S-4. The predicted amino acid sequences of the Mortierella delta 6-desaturases were similar to those of ones from other organisms, i.e. borage and Caenorhabditis elegans, and had a cytochrome b5-like domain at the N-terminus, being different from the yeast delta 9-desaturase, which has the corresponding domain at the C-terminus. The full-length delta 6II cDNA was expressed in A. oryzae, resulting in the accumulation of gamma-linolenic acid (which was not detected in the control Aspergillus) up to 37% of the total fatty acids. The analysis of real-time quantitative PCR (RTQ-PCR) showed that the quantity of delta 6I RNA was 2.4-, 9-, and 17-fold higher than that of delta 6II RNA on 2, 3, and 4 days in M. alpina 1S-4, respectively. M. alpina 1S-4 is the first fungus to be confirmed to have two functional delta 6-desaturase genes. PMID:12784608

  15. Responses of Pisum sativum L. to exogenous indole acetic acid application under manganese toxicity.

    PubMed

    Gangwar, Savita; Singh, Vijay Pratap; Maurya, Jagat Narayan

    2011-06-01

    Responses of pea (Pisum sativum L.) seedlings to manganese (50, 100 and 250 μM) and indole acetic acid (10 and 100 μM) treatments were investigated. Single and combined exposure of pea to manganese and 100 μM indole acetic acid decreased root and shoot fresh mass, chlorophyll, carotenoids, protein and nitrogen while ammonium content increased compared to the control. Combined treatment of pea with 250 μM manganese and 100 μM indole acetic acid decreased root and shoot fresh mass by 54% and 51%, chlorophyll and carotenoids by 31% and 26%, root and shoot protein by 47% and 44%, and root and shoot nitrogen by 44% and 40%, respectively. Activities of glutamine synthetase and glutamate synthase were decreased by the exposure of manganese and 100 μM indole acetic acid while glutamate dehydrogenase activity increased. Combined application of 250 μM manganese and 100 μM indole acetic acid decreased root and shoot glutamine synthetase activity by 44% and 39%, and glutamate synthase activity by 39% and 37% while root and shoot glutamate dehydrogenase activity increased by 47% and 42%, respectively compared to the control. In contrast, application of 10 μM indole acetic acid together with manganese decreased the negative impacts of manganese, and promoted seedling growth compared to the manganese treatments alone. This study has shown that 10 μM indole acetic acid protected pea seedlings appreciably from manganese toxicity by regulating ammonium content and the activities of enzymes of ammonium assimilation, while 100 μM of indole acetic acid exhibited opposite response under manganese toxicity. PMID:21516457

  16. Cell membrane fatty acid changes and desaturase expression of Saccharomyces bayanus exposed to high pressure homogenization in relation to the supplementation of exogenous unsaturated fatty acids

    PubMed Central

    Serrazanetti, Diana I.; Patrignani, Francesca; Russo, Alessandra; Vannini, Lucia; Siroli, Lorenzo; Gardini, Fausto; Lanciotti, Rosalba

    2015-01-01

    Aims: The aim of this work was to study the responses of Saccharomyces bayanus cells exposed to sub-lethal high-pressure homogenization (HPH) and determine whether the plasmatic membrane can sense HPH in the presence, or absence, of exogenous unsaturated fatty acids (UFAs) in the growth medium. Methods and Results: High-pressure homogenization damaged and caused the collapse of cell walls and membranes of a portion of cells; however, HPH did not significantly affect S. bayanus cell viability (less than 0.3 Log CFU ml-1). HPH strongly affected the membrane fatty acid (FA) composition by increasing the percentage of total UFA when compared with saturated fatty acids. The gene expression showed that the transcription of OLE1, ERG3, and ERG11 increased after HPH. The presence of exogenous UFA abolished HPH-induced effects on the OLE1 and ERG3 genes, increased the percentage of membrane lipids and decreased the expression of OLE1 and ERG3 within 30 min of treatment. Conclusion: The results suggest a key role for UFA in the microbial cell response to sub-lethal stress. In addition, these data provide insight into the molecular basis of the response of S. bayanus to this innovative technology. Significance and Impact of the Study: Elucidation of the mechanism of action for sub-lethal HPH will enable the utilization of this technology to modulate the starter performance at the industrial scale. PMID:26528258

  17. Remodeling of the Vibrio cholerae membrane by incorporation of exogenous fatty acids from host and aquatic environments

    PubMed Central

    Giles, David K.; Hankins, Jessica V.; Guan, Ziqiang; Trent, M. Stephen

    2011-01-01

    Summary The Gram-negative bacteria Vibrio cholerae poses significant public health concerns by causing an acute intestinal infection afflicting millions of people each year. V. cholerae motility, as well as virulence factor expression and outer membrane protein production, have been shown to be affected by bile (Childers & Klose, 2007). The current study examines the effects of bile on V. cholerae phospholipids. Bile exposure caused significant alterations to the phospholipid profile of V. cholerae but not of other enteric pathogens. These changes consisted of a quantitative increase and migratory difference in cardiolipin, decreases in phosphatidylglycerol and phosphatidylethanolamine, and the dramatic appearance of an unknown phospholipid determined to be lyso-phosphatidylethanolamine. Major components of bile were not responsible for the observed changes, but long chain polyunsaturated fatty acids, which are minor components of bile, were shown to be incorporated into phospholipids of V. cholerae. Although the bile-induced phospholipid profile was independent of the V. cholerae virulence cascade, we identified another relevant environment in which V. cholerae assimilates unique fatty acids into its membrane phospholipids—marine sediment. Our results suggest that Vibrio species possess unique machinery conferring the ability to take up a wider range of exogenous fatty acids than other enteric bacteria. PMID:21255114

  18. Effects of large doses of arachidonic acid added to docosahexaenoic acid on social impairment in individuals with autism spectrum disorders: a double-blind, placebo-controlled, randomized trial.

    PubMed

    Yui, Kunio; Koshiba, Mamiko; Nakamura, Shun; Kobayashi, Yuji

    2012-04-01

    Autism spectrum disorders are a neurodevelopmental disorders with reduced cortical functional connectivity relating to social cognition. Polyunsaturated fatty acids arachidonic acid (ARA) and docosahexaenoic acid (DHA) may have key role in brain network maturation. In particularly, ARA is important in signal transduction related to neuronal maturation. Supplementation with larger ARA doses added to DHA may therefore mitigate social impairment. In a 16-week, double-blind, randomized, placebo-controlled trial, we evaluated the efficacy of supplementation with large doses of ARA added to DHA (n = 7) or placebo (n = 6) in 13 participants (mean age, 14.6 [SD, 5.9] years). To examine underlying mechanisms underlying the effect of our supplementation regimen, we examined plasma levels of antioxidants transferrin and superoxide dismutase, which are useful markers of signal transduction. The outcome measures were the Social Responsiveness Scale and the Aberrant Behavior Checklist-Community. Repeated-measures analysis of variance revealed that our supplementation regimen significantly improved Aberrant Behavior Checklist-Community-measured social withdrawal and Social Responsiveness Scale-measured communication. Treatment effect sizes were more favorable for the treatment group compared with the placebo group (communication: treatment groups, 0.87 vs, placebo, 0.44; social withdrawal: treatment groups, 0.88, vs placebo, 0.54). There was a significant difference in the change in plasma transferrin levels and a trend toward a significant difference in the change in plasma superoxide dismutase levels between the 2 groups. This preliminary study suggests that supplementation with larger ARA doses added to DHA improves impaired social interaction in individuals with autism spectrum disorder by up-regulating signal transduction. PMID:22370992

  19. [Therapeutic effects of larger doses of arachidonic acid added to DHA on social impairment and its relation to alterations of polyunsaturated fatty acids in individuals with autism spectrum disorders].

    PubMed

    Yui, Kunio; Koshiba, Mamiko; Nakamura, Shun; Onishi, Masako

    2011-06-01

    The polyunsaturated fatty acids (PUFAs), arachidonic acid (ARA) and docosahexaenoic acid (DHA) may play key roles in brain network maturation. ARA plays an important role in signal transduction related to neuronal maturation. This study aims to evaluate the efficacy of supplementing with larger doses of ARA added to DHA in a double-blind, placebo-controlled 16-week trial. To confirm findings observed in the placebo-controlled trial, an additional 16-week open-label study was further conducted. To examine the relationship between the efficacy of the supplementation regimen and alterations in PUFAs levels, we examined plasma levels of PUFAs. We used the Social Responsiveness Scale (SRS) and the Aberrant Behavior Checklist-Community (ABC) to estimate psychotic symptoms. Repeated measures ANOVA revealed that this supplementation significantly improved SRS-measured communication as well as ABC-measured social withdrawal during the placebo-controlled trial. The treatment effect sizes were more favorable for the treatment group compared with the placebo group (communication: 0.87 vs. 0.44; social withdrawal: 0.88 vs. 0.54). At the end of the placebo-controlled trial, there was a significant difference in the change in plasma ARA levels from the baseline and a trend towards a significant difference in plasma ARA levels between the two groups. The open-label study was not powered to detect significant improvements in the outcome measures or significant differences in plasma ARA levels. The present clinical trials suggest that supplementation with larger ARA doses added to DHA improves social impairment in individuals with ASD via ARA-induced upregulation of neuronal functioning. PMID:21800702

  20. Exogenous Ghrelin Accelerates the Healing of Acetic Acid-Induced Colitis in Rats.

    PubMed

    Matuszyk, Aleksandra; Ceranowicz, Piotr; Warzecha, Zygmunt; Cieszkowski, Jakub; Ceranowicz, Dagmara; Gałązka, Krystyna; Bonior, Joanna; Jaworek, Jolanta; Bartuś, Krzysztof; Gil, Krzysztof; Olszanecki, Rafał; Dembiński, Artur

    2016-01-01

    Previous studies have shown that ghrelin reduces colonic inflammation induced by trinitrobenzene sulfonic acid and dextran sodium sulfate. In the present study we determined the effect of treatment with ghrelin on the course of acetic acid-induced colitis in rats. Rectal administration of 3% acetic acid solution led to induction of colitis in all animals. Damage of the colonic wall was accompanied by an increase in mucosal concentration of pro-inflammatory interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), as well mucosal activity of myeloperoxidase. Moreover, induction of colitis led to a reduction in colonic blood flow and DNA synthesis. Administration of ghrelin after induction of colitis led to faster regeneration of the colonic wall and reduction in colonic levels of IL-1β, TNF-α, and myeloperoxidase. In addition, treatment with ghrelin improved mucosal DNA synthesis and blood flow. Our study disclosed that ghrelin exhibits a strong anti-inflammatory and healing effect in acetic acid-induced colitis. Our current observation in association with previous findings that ghrelin exhibits curative effect in trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis suggest that therapeutic effect of ghrelin in the colon is universal and independent of the primary cause of colitis. PMID:27598133

  1. Cardioprotective cGMP favors exogenous fatty acid incorporation into tyiglycerides over direct beta-oxidation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While cardiac hypertrophy has been associated with a shift in substrate selection for energy production from fatty acids (FA) to carbohydrates (CHO), it remains controversial whether this shift is adaptive or maladaptive. Since enhanced cGMP signalling can prevent hypertrophy, we hypothesized that t...

  2. Alleviation of chilling injury in tomato fruit by exogenous application of oxalic acid.

    PubMed

    Li, Peiyan; Yin, Fei; Song, Lijun; Zheng, Xiaolin

    2016-07-01

    The effects of oxalic acid on the development of chilling injury (CI), energy metabolism and lycopene metabolism in tomato fruit (Solanum lycopersicum L.) were investigated. Mature green tomatoes were dipped in 10mmoll(-1) oxalic acid (OA) solution for 10min at 25°C. Tomatoes were subsequently stored at 4±0.5°C for 20days before being transferred to 25°C for 12days. Oxalic acid treatment apparently alleviated CI development and membrane damage; maintained higher levels of ATP and ADP; increased activities of succinic dehydrogenase (SDH), Ca(2+)-adenosine triphosphatase (Ca(2+)-ATPase) and H(+)-adenosine triphosphatase (H(+)-ATPase); and elevated lycopene accumulation associated with the upregulation of PSY1 and ZDS expression in tomatoes during a period at room temperature following exposure to chilling stress. Thus, oxalic acid treatment benefited the control of CI and the maintenance of fruit quality in tomatoes stored for long periods (approximately 32days). PMID:26920276

  3. Taurine Bromamine: Reactivity of an Endogenous and Exogenous Anti-Inflammatory and Antimicrobial Amino Acid Derivative

    PubMed Central

    Bertozo, Luiza De Carvalho; Morgon, Nelson Henrique; De Souza, Aguinaldo Robinson; Ximenes, Valdecir Farias

    2016-01-01

    Taurine bromamine (Tau-NHBr) is produced by the reaction between hypobromous acid (HOBr) and the amino acid taurine. There are increasing number of applications of Tau-NHBr as an anti-inflammatory and microbicidal drug for topical usage. Here, we performed a comprehensive study of the chemical reactivity of Tau-NHBr with endogenous and non-endogenous compounds. Tau-NHBr reactivity was compared with HOBr, hypochlorous acid (HOCl) and taurine chloramine (Tau-NHCl). The second-order rate constants (k2) for the reactions between Tau-NHBr and tryptophan (7.7 × 102 M−1s−1), melatonin (7.3 × 103 M−1s−1), serotonin (2.9 × 103 M−1s−1), dansylglycine (9.5 × 101 M−1s−1), tetramethylbenzidine (6.4 × 102 M−1s−1) and H2O2 (3.9 × M−1s−1) were obtained. Tau-NHBr demonstrated the following selectivity regarding its reactivity with free amino acids: tryptophan > cysteine ~ methionine > tyrosine. The reactivity of Tau-NHBr was strongly affected by the pH of the medium (for instance with dansylglycine: pH 5.0, 1.1 × 104 M−1s−1, pH 7.0, 9.5 × 10 M−1s−1 and pH 9.0, 1.7 × 10 M−1s−1), a property that is related to the formation of the dibromamine form at acidic pH (Tau-NBr2). The formation of singlet oxygen was observed in the reaction between Tau-NHBr and H2O2. Tau-NHBr was also able to react with linoleic acid, but with low efficiency compared with HOBr and HOCl. Compared with HOBr, Tau-NHBr was not able to react with nucleosides. In conclusion, the following reactivity sequence was established: HOBr > HOCl > Tau-NHBr > Tau-NHCl. These findings can be very helpful for researchers interested in biological applications of taurine haloamines. PMID:27110829

  4. Taurine Bromamine: Reactivity of an Endogenous and Exogenous Anti-Inflammatory and Antimicrobial Amino Acid Derivative.

    PubMed

    De Carvalho Bertozo, Luiza; Morgon, Nelson Henrique; De Souza, Aguinaldo Robinson; Ximenes, Valdecir Farias

    2016-01-01

    Taurine bromamine (Tau-NHBr) is produced by the reaction between hypobromous acid (HOBr) and the amino acid taurine. There are increasing number of applications of Tau-NHBr as an anti-inflammatory and microbicidal drug for topical usage. Here, we performed a comprehensive study of the chemical reactivity of Tau-NHBr with endogenous and non-endogenous compounds. Tau-NHBr reactivity was compared with HOBr, hypochlorous acid (HOCl) and taurine chloramine (Tau-NHCl). The second-order rate constants (k₂) for the reactions between Tau-NHBr and tryptophan (7.7 × 10² M(-1)s(-1)), melatonin (7.3 × 10³ M(-1)s(-1)), serotonin (2.9 × 10³ M(-1)s(-1)), dansylglycine (9.5 × 10¹ M(-1)s(-1)), tetramethylbenzidine (6.4 × 10² M(-1)s(-1)) and H₂O₂ (3.9 × M(-1)s(-1)) were obtained. Tau-NHBr demonstrated the following selectivity regarding its reactivity with free amino acids: tryptophan > cysteine ~ methionine > tyrosine. The reactivity of Tau-NHBr was strongly affected by the pH of the medium (for instance with dansylglycine: pH 5.0, 1.1 × 10⁴ M(-1)s(-1), pH 7.0, 9.5 × 10 M(-1)s(-1) and pH 9.0, 1.7 × 10 M(-1)s(-1)), a property that is related to the formation of the dibromamine form at acidic pH (Tau-NBr₂). The formation of singlet oxygen was observed in the reaction between Tau-NHBr and H₂O₂. Tau-NHBr was also able to react with linoleic acid, but with low efficiency compared with HOBr and HOCl. Compared with HOBr, Tau-NHBr was not able to react with nucleosides. In conclusion, the following reactivity sequence was established: HOBr > HOCl > Tau-NHBr > Tau-NHCl. These findings can be very helpful for researchers interested in biological applications of taurine haloamines. PMID:27110829

  5. Nitric oxide participates in the regulation of the ascorbate-glutathione cycle by exogenous jasmonic acid in the leaves of wheat seedlings under drought stress.

    PubMed

    Shan, Changjuan; Zhou, Yan; Liu, Mingjiu

    2015-09-01

    In this paper, we investigated whether nitric oxide (NO) participated in the regulation of the ascorbate-glutathione (AsA-GSH) cycle by exogenous jasmonic acid (JA) in the leaves of wheat seedlings under drought stress. The findings of our study showed that drought stress significantly enhanced the AsA-GSH cycle by upregulating the activities of ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and dehydroascorbate reductase (DHAR). Drought stress also markedly increased electrolyte leakage (EL), malondialdehyde (MDA) content, NO content, and significantly reduced the ratios of reduced ascorbate/dehydroascorbic acid (AsA/DHA) and reduced glutathione/oxidized glutathione (GSH/GSSG) compared with control. Exogenous JA significantly increased the above indicators, compared with drought stress alone. All these effects of JA were inhibited by pretreatment with NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Meanwhile, exogenous JA markedly decreased MDA content and electrolyte leakage of wheat leaves under drought stress. Pretreatment with cPTIO reversed the above effects of exogenous JA. Our findings indicated that NO induced by exogenous JA upregulated the activity of the AsA-GSH cycle and had important role in drought tolerance. PMID:25577230

  6. Cadmium Toxicity and Alleviating Effects of Exogenous Salicylic Acid in Iris hexagona.

    PubMed

    Han, Ying; Chen, Gang; Chen, Yahua; Shen, Zhenguo

    2015-12-01

    Cadmium (Cd) toxictity and possible role of salicylic acid (SA) in alleviating Cd-induced toxicity were investigated on ornamental hydrophyte Iris hexagona. Compared to the control, treatments with 100 and 500 µM Cd for 7 days significantly decreased dry weight, the contents of chlorophyll, photosynthetic parameters, and increased the content of thiobarbituric acid reactive substance. Pretreatment of the roots of I. hexagona seedlings with 1 µM SA before Cd exposure may increase dry weight, photosynthetic rate, activities of antioxidant enzymes, improve the cell ultrastructure and protect plants from Cd-induced oxidative stress damage. However, SA pretreatment had no significant effect on Cd concentrations in the leaves and roots. It is suggested that SA-induced Cd tolerances in I. hexagona are likely associated with increases in antioxidant enzyme activities and vacuolar compartmentation, rather than Cd uptake. PMID:26310127

  7. Tissue distribution of exogenous amino acids during transport across the vascularly perfused anuran small intestine.

    PubMed Central

    Cheeseman, C I; King, I; Smith, M W

    1983-01-01

    Microdensitometric analysis of autoradiographs has been used to measure the distribution and intracellular concentration of L-leucine and L-lysine during transport across the vascularly perfused small intestine of Rana pipiens. L-leucine was not accumulated in the mucosal epithelium to a concentration higher than that in the lumen under steady-state conditions, whereas L-lysine was concentrated on average three- to four-fold. 2. At the end of 30 min loading, the majority of both amino acids were found in the mucosal epithelium and the villous core, although significant amounts were also present in the muscle. Lysine showed a gradient of accumulation within the mucosal epithelium along the length of the villous folds, the highest concentrations being achieved in the cells near the tip. Leucine showed no such gradient under steady-state conditions. 3. Superfusion of the mucosal surface of the tissue with leucine for only 3 min did reveal a gradient for uptake into the mucosal epithelium, although it was still not as steep as that seen for lysine. 4. The presence of leucine in the vascular bed while lysine was perfused through the lumen significantly lowered the concentration of lysine in the mucosal epithelium and villous core and eliminated the concentration gradient in the mucosal epithelium seen along the villous fold. 5. When leucine was perfused on its own through the vascular bed, the uptake into the muscle was greatly increased compared to when the amino acid was presented from the lumen. At the same time, the uptake into the mucosal epithelium was reduced by 45%. 6. Analysis of the tissue content of leucine after loading for 30 min from the lumen and then washing out the amino acid for 15 min showed that the mucosal epithelium, villous core and muscle had contributed 74%, 17% and 9% respectively to the total amino acid lost from the tissue. 7. These results are discussed with regard to the significance of the exit mechanisms for these amino acids and the

  8. Modification of intracellular free calcium in cultured A10 vascular smooth muscle cells by exogenous phosphatidic acid.

    PubMed

    Bhugra, Praveen; Xu, Yan-Jun; Rathi, Satyajeet; Dhalla, Naranjan S

    2003-06-15

    Exogenous phosphatidic acid (PA) was observed to produce a concentration-dependent increase in [Ca(2+)](i) in cultured A10 vascular smooth muscle cells. Preincubation of cells with sarcoplasmic reticulum Ca(2+)-ATPase inhibitors (cyclopiazonic acid and thapsigargin), a phospholipase C inhibitor (2-nitro-4-carboxyphenyl-N,N-diphenylcarbamate), inositol 1,4,5-trisphosphate receptor antagonists (2-aminoethoxydiphenyl borate and xestospongin), and an activator of protein kinase C (PKC) (phorbol 12-myristate 13-acetate) depressed the PA-evoked increase in [Ca(2+)](i). Although EGTA, an extracellular Ca(2+) chelator, decreased the PA-induced increase in [Ca(2+)](i), sarcolemmal Ca(2+)-channel blockers (verapamil or diltiazem) did not alter the action of PA. On the other hand, inhibitors of PKC (bisindolylmaleimide I) and G(i)-protein (pertussis toxin) potentiated the increase in [Ca(2+)](i) evoked by PA significantly. These results suggest that the PA-induced increase in [Ca(2+)](i) in vascular smooth muscle cells may occur upon the activation of phospholipase C and the subsequent release of Ca(2+) from the inositol 1,4,5-trisphosphate-sensitive Ca(2+) pool in the sarcoplasmic reticulum. This action of PA may be mediated through the involvement of PKC. PMID:12787890

  9. Glycerol-3-phosphate Acyltransferase Isoform-4 (GPAT4) Limits Oxidation of Exogenous Fatty Acids in Brown Adipocytes.

    PubMed

    Cooper, Daniel E; Grevengoed, Trisha J; Klett, Eric L; Coleman, Rosalind A

    2015-06-12

    Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4(-/-) mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4(-/-) mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4(-/-) mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4(-/-) BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4(-/-) brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state. PMID:25918168

  10. The Juvenile Phase of Maize Sees Upregulation of Stress-Response Genes and Is Extended by Exogenous Jasmonic Acid.

    PubMed

    Beydler, Benjamin; Osadchuk, Krista; Cheng, Chi-Lien; Manak, J Robert; Irish, Erin E

    2016-08-01

    As maize (Zea mays) plants undergo vegetative phase change from juvenile to adult, they both exhibit heteroblasty, an abrupt change in patterns of leaf morphogenesis, and gain the ability to produce flowers. Both processes are under the control of microRNA156 (miR156), whose levels decline at the end of the juvenile phase. Gain of the ability to flower is conferred by the expression of miR156 targets that encode SQUAMOSA PROMOTER-BINDING transcription factors, which, when derepressed in the adult phase, induce the expression of MADS box transcription factors that promote maturation and flowering. How gene expression, including targets of those microRNAs, differs between the two phases remains an open question. Here, we compare transcript levels in primordia that will develop into juvenile or adult leaves to identify genes that define these two developmental states and may influence vegetative phase change. In comparisons among successive leaves at the same developmental stage, plastochron 6, three-fourths of approximately 1,100 differentially expressed genes were more highly expressed in primordia of juvenile leaves. This juvenile set was enriched in photosynthetic genes, particularly those associated with cyclic electron flow at photosystem I, and in genes involved in oxidative stress and retrograde redox signaling. Pathogen- and herbivory-responsive pathways including salicylic acid and jasmonic acid also were up-regulated in juvenile primordia; indeed, exogenous application of jasmonic acid delayed both the appearance of adult traits and the decline in the expression of miR156-encoding loci in maize seedlings. We hypothesize that the stresses associated with germination promote juvenile patterns of differentiation in maize. PMID:27307257

  11. Exogenous Modulation of Retinoic Acid Signaling Affects Adult RGC Survival in the Frog Visual System after Optic Nerve Injury.

    PubMed

    Duprey-Díaz, Mildred V; Blagburn, Jonathan M; Blanco, Rosa E

    2016-01-01

    After lesions to the mammalian optic nerve, the great majority of retinal ganglion cells (RGCs) die before their axons have even had a chance to regenerate. Frog RGCs, on the other hand, suffer only an approximately 50% cell loss, and we have previously investigated the mechanisms by which the application of growth factors can increase their survival rate. Retinoic acid (RA) is a vitamin A-derived lipophilic molecule that plays major roles during development of the nervous system. The RA signaling pathway is also present in parts of the adult nervous system, and components of it are upregulated after injury in peripheral nerves but not in the CNS. Here we investigate whether RA signaling affects long-term RGC survival at 6 weeks after axotomy. Intraocular injection of all-trans retinoic acid (ATRA), the retinoic acid receptor (RAR) type-α agonist AM80, the RARβ agonist CD2314, or the RARγ agonist CD1530, returned axotomized RGC numbers to almost normal levels. On the other hand, inhibition of RA synthesis with disulfiram, or of RAR receptors with the pan-RAR antagonist Ro-41-5253, or the RARβ antagonist LE135E, greatly reduced the survival of the axotomized neurons. Axotomy elicited a strong activation of the MAPK, STAT3 and AKT pathways; this activation was prevented by disulfiram or by RAR antagonists. Finally, addition of exogenous ATRA stimulated the activation of the first two of these pathways. Future experiments will investigate whether these strong survival-promoting effects of RA are mediated via the upregulation of neurotrophins. PMID:27611191

  12. Postharvest Exogenous Application of Abscisic Acid Reduces Internal Browning in Pineapple.

    PubMed

    Zhang, Qin; Liu, Yulong; He, Congcong; Zhu, Shijiang

    2015-06-10

    Internal browning (IB) is a postharvest physiological disorder causing economic losses in pineapple, but there is no effective control measure. In this study, postharvest application of 380 μM abscisic acid (ABA) reduced IB incidence by 23.4-86.3% and maintained quality in pineapple fruit. ABA reduced phenolic contents and polyphenol oxidase and phenylalanine ammonia lyase activities; increased catalase and peroxidase activities; and decreased O2(·-), H2O2, and malondialdehyde levels. This suggests ABA could control IB through inhibiting phenolics biosynthesis and oxidation and enhancing antioxidant capability. Furthermore, the efficacy of IB control by ABA was not obviously affected by tungstate, ABA biosynthesis inhibitor, nor by diphenylene iodonium, NADPH oxidase inhibitor, nor by lanthanum chloride, calcium channel blocker, suggesting that ABA is sufficient for controlling IB. This process might not involve H2O2 generation, but could involve the Ca(2+) channels activation. These results provide potential for developing effective measures for controlling IB in pineapple. PMID:26007196

  13. Exogenous application of salicylic acid to alleviate the toxic effects of insecticides in Vicia faba L.

    PubMed

    Singh, Aradhana; Srivastava, Anjil Kumar; Singh, Ashok Kumar

    2013-12-01

    The present study investigated the possible mediatory role of salicylic acid (SA) in protecting plants from insecticides toxicity. The seeds of Vicia faba var IIVR Selection-1 were treated with different concentrations (1.5, 3.0, and 6.0 ppm) of the insecticides alphamethrin (AM) and endosulfan (ES) for 6 h with and without 12 h conditioning treatment of SA (0.01 mM). Insecticides treatment caused a significant decrease in mitotic index (MI) and induction of different types of chromosomal abnormalities in the meristematic cells of broad bean roots. Pretreatment of seeds with SA resulted in increased MI and significant reduction of chromosomal abnormalities. SA application also regulated proline accumulation and carotenoid content in the leaf tissues. SA resulted in the decrement of insecticides induced increase in proline content and increased the carotenoids content. These results illustrate the ameliorating effect of SA under stress conditions and reveal that SA is more effective in alleviating the toxic effects of insecticides at higher concentrations than that at lower concentrations. PMID:21954193

  14. Effects of exogenous gibberellic acid3 on iron and manganese plaque amounts and iron and manganese uptake in rice.

    PubMed

    Guo, Yue; Zhu, Changhua; Gan, Lijun; Ng, Denny; Xia, Kai

    2015-01-01

    Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L(-1)) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L(-1)) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected. PMID:25710173

  15. Effects of Exogenous Gibberellic Acid3 on Iron and Manganese Plaque Amounts and Iron and Manganese Uptake in Rice

    PubMed Central

    Guo, Yue; Zhu, Changhua; Gan, Lijun; Ng, Denny; Xia, Kai

    2015-01-01

    Gibberellins (GA) regulate various components of plant development. Iron and Mn plaque result from oxiding and hydroxiding Fe and Mn, respectively, on the roots of aquatic plant species such as rice (Oryza sativa L.). In this study, we found that exogenous gibberellic acid3 (GA3) spray decreased Fe plaque, but increased Mn plaque, with applications of Kimura B nutrient solution. Similar effects from GA3, leading to reduced Fe plaque and increased Mn plaque, were also found by scanning electron microscopy and energy dispersive X-ray spectrometric microanalysis. Reduced Fe plaque was observed after applying GA3 to the groups containing added Fe2+ (17 and 42 mg•L-1) and an increasing trend was detected in Mn plaques of the Mn2+ (34 and 84 mg•L-1) added treatments. In contrast, an inhibitor of GA3, uniconazole, reversed the effects of GA3. The uptake of Fe or Mn in rice plants was enhanced after GA3 application and Fe or Mn plaque production. Strong synergetic effects of GA3 application on Fe plaque production were detected. However, no synergetic effects on Mn plaque production were detected. PMID:25710173

  16. [Response of reactive oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress regulated by exogenous γ-aminobutyric acid].

    PubMed

    Xiang, Li-xia; Hu, Li-pan; Hu, Xiao-hui; Pan, Xiong-bo; Ren, Wen-qi

    2015-12-01

    The regulatory effect of exogenous γ-aminobutyric acid (GABA) on metabolism of reactive oxygen species (ROS) in melon chloroplasts under short-term salinity-alkalinity stress were investigated in melon variety 'Jinhui No. 1', which was cultured with deep flow hydroponics. The result showed that under salinity-alkalinity stress, the photosynthetic pigment content, MDA content, superoxide anion (O₂·) production rate and hydrogen peroxide (H₂O₂) content in chloroplast increased significantly, the contents of antioxidants ascorbic acid (AsA) and glutathione (GSH) increased, and the activities of H⁺-ATPase and H⁺-PPiase were inhibited obviously. With exogenous GABA application, the accumulations of O₂·, MDA and H₂O₂ induced by salinity-alkalinity stress were inhibited. Exogenous GABA alleviated the increase of photosynthetic pigment content, improved the activity of SOD, enzymes of AsA-GSH cycle, total AsA and total GSH while decreased the AsA/DHA ratio and GSH/GSSH ratio. Foliar GABA could enhance the H⁺-ATPase and H⁺-PPiase activities. Our results suggested that the exogenous GABA could accelerate the ROS metabolism in chloroplast, promote the recycle of AsA-GSH, and maintain the permeability of cell membrane to improve the ability of melon chloroplast against salinity-alkalinity stress. PMID:27112014

  17. Acetyl eugenol, a component of oil of cloves (Syzygium aromaticum L.) inhibits aggregation and alters arachidonic acid metabolism in human blood platelets.

    PubMed

    Srivastava, K C; Malhotra, N

    1991-01-01

    In continuation of our studies with the oil of cloves--a common kitchen spice and a crude drug for home medicine--we have isolated yet another active component identified as acetyl eugenol (AE); the earlier reported active component being eugenol. The isolated material (IM) was found to be a potent platelet inhibitor; IM abolished arachidonate (AA)-induced aggregation at ca. 12 microM, a concentration needed to abolish the second phase of adrenaline-induced aggregation. Chemically synthesized acetyl eugenol showed similar effects on AA- and adrenaline-induced aggregation. A dose-dependent inhibition of collagen-induced aggregation was also observed. AE did not inhibit either calcium ionophore A23187- or thrombin-induced aggregation. Studies on aggregation and ATP release were done using whole blood (WB). AA-induced aggregation in WB was abolished at 3 micrograms/ml (14.6 microM) which persisted even after doubling the concentration of AA. ATP release was inhibited. Inhibition of aggregation appeared to be mediated by a combination of two effects: reduced formation of thromboxane and increased generation of 12-lipoxygenase product (12-HPETE). These effects were observed by exposing washed platelets to (14C)AA or by stimulating AA-labelled platelets with ionophore A23187. Acetyl eugenol inhibited (14C)TxB2 formation in AA-labelled platelets on stimulation with thrombin. AE showed no effect on the incorporation of AA into platelet phospholipids. PMID:2011614

  18. Exogenous Insulin Enhances Glucose-Stimulated Insulin Response in Healthy Humans Independent of Changes in Free Fatty Acids

    PubMed Central

    Lopez, Ximena; Cypess, Aaron; Manning, Raquel; O'Shea, Sheila; Kulkarni, Rohit N.

    2011-01-01

    Context: Islet β-cells express both insulin receptors and insulin signaling proteins. Recent studies suggest insulin signaling is physiologically important for glucose sensing. Objective: Preexposure to insulin enhances glucose-stimulated insulin secretion (GSIS) in healthy humans. We evaluated whether the effect of insulin to potentiate GSIS is modulated through regulation of free fatty acids (FFA). Design and Setting: Subjects were studied on three occasions in this single-site study at an academic institution clinical research center. Patients: Subjects included nine healthy volunteers. Interventions: Glucose-induced insulin response was assessed on three occasions after 4 h saline (low insulin/sham) or isoglycemic-hyperinsulinemic (high insulin) clamps with or without intralipid and heparin infusion, using B28 Asp-insulin that could be distinguished from endogenous insulin immunologically. During the last 80 min of all three clamps, additional glucose was administered to stimulate insulin secretion (GSIS) with glucose concentrations maintained at similar concentrations during all studies. Main Outcome Measure: β-Cell response to glucose stimulation was assessed. Results: Preexposure to exogenous insulin increased the endogenous insulin-secretory response to glucose by 32% compared with sham clamp (P = 0.001). This was accompanied by a drop in FFA during hyperinsulinemic clamp compared with the sham clamp (0.06 ± 0.02 vs. 0.60 ± 0.09 mEq/liter, respectively), which was prevented during the hyperinsulinemic clamp with intralipid/heparin infusion (1.27 ± 0.17 mEq/liter). After preexposure to insulin with intralipid/heparin infusion to maintain FFA concentration, GSIS was 21% higher compared with sham clamp (P < 0.04) and similar to preexposure to insulin without intralipid/heparin (P = 0.2). Conclusions: Insulin potentiates glucose-stimulated insulin response independent of FFA concentrations in healthy humans. PMID:21956413

  19. Placental docosahexaenoic and arachidonic acids correlate weakly with placental polychlorinated dibenzofurans (PCDF) and are uncorrelated with polychlorinated dibenzo-p-dioxins (PCDD) or polychlorinated biphenyls (PCB) at delivery: a pilot study.

    PubMed

    Huang, Meng-Chuan; Brenna, J Thomas; Sun, Pei-Yi; Chang, Wen-Tsan; Hung, Hsin-Chia; Chao, How-Ran; Wang, Shu-Li

    2011-08-01

    Long chain polyunsaturated fatty acids (LC-PUFA), ARA (arachidonic acid, 20:4n-6) and DHA (docosahexaenoic acid, 22:6n-3) have positive effects and environment pollutants, polychlorinated dibenzo-p-dioxins/dibenzofurans(PCDD/F) and polychlorinated biphenyls (PCB) have negative effects on neural development during early life. Placental dioxin/PCB serves as markers for cumulative exposure to fetus. Fatty acid composition of placenta depends on nutrient supply during pregnancy, serving as indicators for fetal ARA and DHA accretion. This study investigated correlation between placental PCDD/F and PCB toxic equivalent (TEQ) and LC-PUFA in 34 pregnant women from Taiwan. Placental PCDF TEQ were inversely correlated with placental ARA (p=0.020), C20:3n-6 (p=0.01), C22:4n-6 (p=0.04), C22:5n-6 (p<0.01) and with DHA (p=0.03), but ARA and DHA did not vary with PCDD, dioxin-like and indicator PCB. After adjustment for age and body mass index, a one-unit PCDF TEQ increase was associated with 1.021%w/w and 0.312%w/w decreases in ARA (β=-1.021, p=0.03) and DHA (β=-0.312, p=0.03). Since ARA and DHA were unrelated to three classes of toxins, and a weak negative association was found with PCDF, these data provide no basis for discouraging marine fish consumption during pregnancy for Taiwan women on the basis of these organics. Pregnant women should consume fish for its unique package of nutrients while avoiding few species with high organic pollutant or mercury contamination. PMID:21549173

  20. Exogenous Ochronosis.

    PubMed

    Bhattar, Prachi A; Zawar, Vijay P; Godse, Kiran V; Patil, Sharmila P; Nadkarni, Nitin J; Gautam, Manjyot M

    2015-01-01

    Exogenous ochronosis (EO) is a cutaneous disorder characterized by blue-black pigmentation resulting as a complication of long-term application of skin-lightening creams containing hydroquinone but may also occur due to topical contact with phenol or resorcinol in dark-skinned individuals. It can also occur following the use of systemic antimalarials such as quinine. EO is clinically and histologically similar to its endogenous counterpart viz., alkaptonuria, which, however, exhibits systemic effects and is an inherited disorder. Dermoscopy and in vivo skin reflectance confocal microscopy are noninvasive in vivo diagnostic tools. It is very difficult to treat EO, a cosmetically disfiguring and troubling disorder with disappointing treatment options. PMID:26677264

  1. Exogenous Ochronosis

    PubMed Central

    Bhattar, Prachi A; Zawar, Vijay P; Godse, Kiran V; Patil, Sharmila P; Nadkarni, Nitin J; Gautam, Manjyot M

    2015-01-01

    Exogenous ochronosis (EO) is a cutaneous disorder characterized by blue-black pigmentation resulting as a complication of long-term application of skin-lightening creams containing hydroquinone but may also occur due to topical contact with phenol or resorcinol in dark-skinned individuals. It can also occur following the use of systemic antimalarials such as quinine. EO is clinically and histologically similar to its endogenous counterpart viz., alkaptonuria, which, however, exhibits systemic effects and is an inherited disorder. Dermoscopy and in vivo skin reflectance confocal microscopy are noninvasive in vivo diagnostic tools. It is very difficult to treat EO, a cosmetically disfiguring and troubling disorder with disappointing treatment options. PMID:26677264

  2. Complexity of fatty acid distribution inside human macrophages on single cell level using Raman micro-spectroscopy.

    PubMed

    Stiebing, Clara; Matthäus, Christian; Krafft, Christoph; Keller, Andrea-Anneliese; Weber, Karina; Lorkowski, Stefan; Popp, Jürgen

    2014-11-01

    Macrophages are phagocytic cells which are involved in the non-specific immune defense. Lipid uptake and storage behavior of macrophages also play a key role in the development of atherosclerotic lesions within walls of blood vessels. The allocation of exogenous lipids such as fatty acids in the blood stream dictates the accumulation and quantity of lipids within macrophages. In case of an overexposure, macrophages transform into foam cells because of the large amount of lipid droplets in the cytoplasm. Raman micro-spectroscopy is a powerful tool for studying single cells due to the combination of microscopic imaging with spectral information. With a spatial resolution restricted by the diffraction limit, it is possible to visualize lipid droplets within macrophages. With stable isotopic labeling of fatty acids with deuterium, the uptake and storage of exogenously provided fatty acids can be investigated. In this study, we present the results of time-dependent Raman spectroscopic imaging of single THP-1 macrophages incubated with deuterated arachidonic acid. The polyunsaturated fatty acid plays an important role in the cellular signaling pathway as being the precursor of icosanoids. We show that arachidonic acid is stored in lipid droplets but foam cell formation is less pronounced as with other fatty acids. The storage efficiency in lipid droplets is lower than in cells incubated with deuterated palmitic acid. We validate our results with gas chromatography and gain information on the relative content of arachidonic acid and its metabolites in treated macrophages. These analyses also provide evidence that significant amounts of the intracellular arachidonic acid is elongated to adrenic acid but is not metabolized any further. The co-supplementation of deuterated arachidonic acid and deuterated palmitic acid leads to a non-homogenous storage pattern in lipid droplets within single cells. PMID:24939132

  3. Overexpression of human fatty acid transport protein 2/very long chain acyl-CoA synthetase 1 (FATP2/Acsvl1) reveals distinct patterns of trafficking of exogenous fatty acids

    SciTech Connect

    Melton, Elaina M.; Cerny, Ronald L.; DiRusso, Concetta C.; Black, Paul N.

    2013-11-01

    Highlights: •Roles of FATP2 in fatty acid transport/activation contribute to lipid homeostasis. •Use of 13C- and D-labeled fatty acids provide novel insights into FATP2 function. •FATP2-dependent trafficking of FA into phospholipids results in distinctive profiles. •FATP2 functions in the transport and activation pathways for exogenous fatty acids. -- Abstract: In mammals, the fatty acid transport proteins (FATP1 through FATP6) are members of a highly conserved family of proteins, which function in fatty acid transport proceeding through vectorial acylation and in the activation of very long chain fatty acids, branched chain fatty acids and secondary bile acids. FATP1, 2 and 4, for example directly function in fatty acid transport and very long chain fatty acids activation while FATP5 does not function in fatty acid transport but activates secondary bile acids. In the present work, we have used stable isotopically labeled fatty acids differing in carbon length and saturation in cells expressing FATP2 to gain further insights into how this protein functions in fatty acid transport and intracellular fatty acid trafficking. Our previous studies showed the expression of FATP2 modestly increased C16:0-CoA and C20:4-CoA and significantly increased C18:3-CoA and C22:6-CoA after 4 h. The increases in C16:0-CoA and C18:3-CoA suggest FATP2 must necessarily partner with a long chain acyl CoA synthetase (Acsl) to generate C16:0-CoA and C18:3-CoA through vectorial acylation. The very long chain acyl CoA synthetase activity of FATP2 is consistent in the generation of C20:4-CoA and C22:6-CoA coincident with transport from their respective exogenous fatty acids. The trafficking of exogenous fatty acids into phosphatidic acid (PA) and into the major classes of phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidyserine (PS)) resulted in distinctive profiles, which changed with the expression of FATP2. The

  4. Roles of G-protein beta gamma, arachidonic acid, and phosphorylation inconvergent activation of an S-like potassium conductance by dopamine, Ala-Pro-Gly-Trp-NH2, and Phe-Met-Arg-Phe-NH2.

    PubMed

    van Tol-Steye, H; Lodder, J C; Mansvelder, H D; Planta, R J; van Heerikhuizen, H; Kits, K S

    1999-05-15

    Dopamine and the neuropeptides Ala-Pro-Gly-Trp-NH2 (APGWamide or APGWa) and Phe-Met-Arg-Phe-NH2 (FMRFamide or FMRFa) all activate an S-like potassium channel in the light green cells of the mollusc Lymnaea stagnalis, neuroendocrine cells that release insulin-related peptides. We studied the signaling pathways underlying the responses, the role of the G-protein betagamma subunit, and the interference by phosphorylation pathways. All responses are blocked by an inhibitor of arachidonic acid (AA) release, 4-bromophenacylbromide, and by inhibitors of lipoxygenases (nordihydroguaiaretic acid and AA-861) but not by indomethacin, a cyclooxygenase inhibitor. AA and phospholipase A2 (PLA2) induced currents with similar I-V characteristics and potassium selectivity as dopamine, APGWa, and FMRFa. PLA2 occluded the response to FMRFa. We conclude that convergence of the actions of dopamine, APGWa, and FMRFa onto the S-like channel occurs at or upstream of the level of AA and that formation of lipoxygenase metabolites of AA is necessary to activate the channel. Injection of a synthetic peptide, which interferes with G-protein betagamma subunits, inhibited the agonist-induced potassium current. This suggests that betagamma subunits mediate the response, possibly by directly coupling to a phospholipase. Finally, the responses to dopamine, APGWa, and FMRFa were inhibited by activation of PKA and PKC, suggesting that the responses are counteracted by PKA- and PKC-dependent phosphorylation. The PLA2-activated potassium current was inhibited by 8-chlorophenylthio-cAMP but not by 12-O-tetradecanoylphorbol 13-acetate (TPA). However, TPA did inhibit the potassium current induced by irreversible activation of the G-protein using GTP-gamma-S. Thus, it appears that PKA targets a site downstream of AA formation, e.g., the potassium channel, whereas PKC acts at the active G-protein or the phospholipase. PMID:10234006

  5. Intake of farmed Atlantic salmon fed soybean oil increases hepatic levels of arachidonic acid-derived oxylipins and ceramides in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of...

  6. Effect of Exogenous Indole-3-Acetic Acid and Indole-3-Butyric Acid on Internal Levels of the Respective Auxins and Their Conjugation with Aspartic Acid during Adventitious Root Formation in Pea Cuttings.

    PubMed

    Nordström, A C; Jacobs, F A; Eliasson, L

    1991-07-01

    The influence of exogenous indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on the internal levels of these auxins was studied during the first 4 days of adventitious root formation in cuttings of Pisum sativum L. The quantitations were done by high performance liquid chromatography with spectrofluorometric detection. IBA, identified by combined gas chromatography-mass spectrometry (GC-MS), was found to naturally occur in this plant material. The root inducing ability of exogenous IBA was superior to that of IAA. The IAA level in the tissue increased considerably on the first day after application of IAA, but rapidly decreased again, returning to a level twice the control by day 3. The predominant metabolic route was conjugation with aspartic acid, as reflected by the increase in the level of indole-3-acetylaspartic acid. The IBA treatment resulted in increases in the levels of IBA, IAA, and indole-3-acetylaspartic acid. The IAA content rapidly returned to control levels, whereas the IBA level remained high throughout the experimental period. High amounts of indole-3-butyrylaspartic acid were found in the tissue after feeding with IBA. The identity of the conjugate was confirmed by (1)H-nuclear magnetic resonance and GC-MS. IBA was much more stable in solution than IAA. No IAA was detected after 48 hours, whereas 70% IBA was still recovered after this time. The relatively higher root inducing ability of IBA is ascribed to the fact that its level remained elevated longer than that of IAA, even though IBA was metabolized in the tissue. Adventitious root formation is discussed on the basis of these findings. PMID:16668265

  7. Impaired transactivation of the human CYP2J2 arachidonic acid epoxygenase gene in HepG2 cells subjected to nitrative stress

    PubMed Central

    Cui, Pei H; Lee, Andy C; Zhou, Fanfan; Murray, Michael

    2010-01-01

    Background and purpose: Human cytochrome P450 2J2 (CYP2J2) generates epoxyfatty acids that modulate cellular apoptosis and proliferation. CYP2J2 regulation has not been intensively studied but induction of the activator protein-1 (AP-1) subunit c-fos mediates CYP2J2 down-regulation in hypoxia, a component of ischaemic injury. Decreased CYP2J2 expression may contribute to tissue injury. Experimental approach: HepG2 cells were treated with sodium nitroprusside (SNP) to induce nitrative stress, which has been associated with inflammation and infection in liver and other tissues. CYP2J2 protein and mRNA expression were evaluated by immunoblotting and real-time PCR respectively. The role of mitogen-activated protein (MAP) kinases in CYP2J2 dysregulation was assessed using specific inhibitors and dominant negative MAP kinase expression plasmids. CYP2J2-luciferase reporter constructs and electromobility shift assays (EMSAs) were used to identify SNP-regulated regions in the CYP2J2 gene. Key results: Cytochrome P450 2J2 was down-regulated by SNP while the AP-1 proteins c-jun and c-fos were up-regulated; inhibition of p38 and ERK MAP kinases normalized their expression. The gene elements at −105/−95 and −56/−63 were required for the down-regulation of CYP2J2 induced by nitrative stress. Conclusions and implications: p38 and ERK MAP kinases transduce stress stimuli that down-regulate CYP2J2. Targeting these kinases may prevent the loss of CYP2J2 and epoxy-fatty acids that protect cells against deleterious stresses. PMID:20180943

  8. Production of 5,8,11-Eicosatrienoic Acid (Mead Acid) by a (Delta)6 Desaturation Activity-Enhanced Mutant Derived from a (Delta)12 Desaturase-Defective Mutant of an Arachidonic Acid-Producing Fungus, Mortierella alpina 1S-4

    PubMed Central

    Kawashima, H.; Nishihara, M.; Hirano, Y.; Kamada, N.; Akimoto, K.; Konishi, K.; Shimizu, S.

    1997-01-01

    Enhanced production of 5,8,11-eicosatrienoic acid (Mead acid, 20:3(omega)9) was attained by a mutant fungus, Mortierella alpina M209-7, derived from (Delta)12 desaturase-defective M. alpina Mut48. The 20:3(omega)9 production by M209-7 was 1.3 times greater than that by its parent strain, Mut48. This is thought to be due to its enhanced (Delta)6 desaturation activity, which was 1.4 times higher than that of Mut48. In both strains, 87 to 88% of the total lipids comprised triacylglycerol (TG) and 85% of 20:3(omega)9 was contained in TG. On optimization of the culture conditions for M209-7, earlier glucose feeding and shifting of the growth temperature from 28 to 19(deg)C on the second day were shown to be effective. Under the optimal conditions with a 10-liter jar fermentor, 20:3(omega)9 production reached 1.65 g/liter of culture medium (corresponding to 118 mg/g of dry mycelia and 28.9% of total fatty acids), which is about twice that reported previously (0.8 g/liter). PMID:16535598

  9. Production of 5,8,11-Eicosatrienoic Acid (Mead Acid) by a (Delta)6 Desaturation Activity-Enhanced Mutant Derived from a (Delta)12 Desaturase-Defective Mutant of an Arachidonic Acid-Producing Fungus, Mortierella alpina 1S-4.

    PubMed

    Kawashima, H; Nishihara, M; Hirano, Y; Kamada, N; Akimoto, K; Konishi, K; Shimizu, S

    1997-05-01

    Enhanced production of 5,8,11-eicosatrienoic acid (Mead acid, 20:3(omega)9) was attained by a mutant fungus, Mortierella alpina M209-7, derived from (Delta)12 desaturase-defective M. alpina Mut48. The 20:3(omega)9 production by M209-7 was 1.3 times greater than that by its parent strain, Mut48. This is thought to be due to its enhanced (Delta)6 desaturation activity, which was 1.4 times higher than that of Mut48. In both strains, 87 to 88% of the total lipids comprised triacylglycerol (TG) and 85% of 20:3(omega)9 was contained in TG. On optimization of the culture conditions for M209-7, earlier glucose feeding and shifting of the growth temperature from 28 to 19(deg)C on the second day were shown to be effective. Under the optimal conditions with a 10-liter jar fermentor, 20:3(omega)9 production reached 1.65 g/liter of culture medium (corresponding to 118 mg/g of dry mycelia and 28.9% of total fatty acids), which is about twice that reported previously (0.8 g/liter). PMID:16535598

  10. Exogenous myristic acid can be partially degraded prior to activation to form acyl-acyl carrier protein intermediates and lipid A in Vibrio harveyi.

    PubMed Central

    Shen, Z; Byers, D M

    1994-01-01

    To study the involvement of acyl carrier protein (ACP) in the metabolism of exogenous fatty acids in Vibrio harveyi, cultures were incubated in minimal medium with [9,10-3H]myristic acid, and labeled proteins were analyzed by gel electrophoresis. Labeled acyl-ACP was positively identified by immunoprecipitation with anti-V. harveyi ACP serum and comigration with acyl-ACP standards and [3H]beta-alanine-labeled bands on both sodium dodecyl sulfate- and urea-polyacrylamide gels. Surprisingly, most of the acyl-ACP label corresponded to fatty acid chain lengths of less than 14 carbons: C14, C12, C10, and C8 represented 33, 40, 14, and 8% of total [3H]14:0-derived acyl-ACPs, respectively, in a dark mutant (M17) of V. harveyi which lacks myristoyl-ACP esterase activity; however, labeled 14:0-ACP was absent in the wild-type strain. 14:0- and 12:0-ACP were also the predominant species labeled in complex medium. In contrast, short-chain acyl-ACPs (< or = C6) were the major labeled derivatives when V. harveyi was incubated with [3H]acetate, indicating that acyl-ACP labeling with [3H]14:0 in vivo is not due to the total degradation of [3H]14:0 to [3H]acetyl coenzyme A followed by resynthesis. Cerulenin increased the mass of medium- to long-chain acyl-ACPs (> or = C8) labeled with [3H]beta-alanine fivefold, while total incorporation of [3H]14:0 was not affected, although a shift to shorter chain lengths was noted. Additional bands which comigrated with acyl-ACP on sodium dodecyl sulfate gels were identified as lipopolysaccharide by acid hydrolysis and thin-layer chromatography. The levels of incorporation of [3H] 14:0 into acyl-ACP and lipopolysaccharide were 2 and 15%, respectively, of that into phospholipid by 10 min. Our results indicate that in contrast to the situation in Escherichia coli, exogenous fatty acids can be activated to acyl-ACP intermediates after partial degradation in V. harveyi and can effectively label products (i.e., lipid A) that require ACP as an acyl

  11. Driving carbon flux through exogenous butyryl-CoA: Acetate CoA-transferase to produce butyric acid at high titer in Thermobifida fusca.

    PubMed

    Deng, Yu; Mao, Yin; Zhang, Xiaojuan

    2015-12-20

    Butyric acid, a 4-carbon short chain fatty acid, is widely used in chemical, food, and pharmaceutical industries. The low activity of butyryl-CoA: acetate CoA-transferase in Thermobifida fusca muS, a thermophilic actinobacterium whose optimal temperature was 55°C, was found to hinder the accumulation of high yield of butyric acid. In order to solve this problem, an exogenous butyryl-CoA: acetate CoA-transferase gene (actA) from Thermoanaerobacterium thermosaccharolyticum DSM571 was integrated into the chromosome of T. fusca muS by replacing celR gene, forming T. fusca muS-1. We demonstrated that on 5g/L cellulose, the yield of butyric acid by the engineered muS-1 strain was increased by 42.9 % compared to the muS strain. On 100g/L of cellulose, the muS-1 strain could consume 90.5% of total cellulose in 144h, with 33.2g/L butyric acid produced. Furthermore, on the mix substrates including the major components of biomass: cellulose, xylose, mannose and galactose, 70.4g/L butyric acid was produced in 168h by fed-batch fermentation. To validate the ability of fermenting biomass, the muS-1 strain was grown on the milled corn stover ranging from 200 to 250μm. The muS-1 strain had the highest butyrate titer 17.1g/L on 90g/L corn stover. PMID:26535965

  12. Exogenous Carbon Applications Enhance the Simultaneous Occurrence of Growth, Morphogenesis and Rosmarinic Acid Levels in Spearmint Plantelets In Vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The caffeoyl ester rosmarinic acid (RA) synthesized in the phenylpropanoid pathway exhibits several proven medicinal properties. RA is constitutively synthesized in spearmint (Mentha spicata L.) plantlets grown in vitro and its content can be manipulated by nutritional and physical treatments. Car...

  13. The effect of chaya (Cnidoscolus aconitifolius) leaf meal and of exogenous enzymes on amino acid digestibility in broilers.

    PubMed

    Sarmiento-Franco, L; McNab, J M; Pearson, A; Belmar-Casso, R

    2003-07-01

    1. The apparent ileal nitrogen (N) and amino acid digestibilities in chaya leaf meal (CLM) (Cnidoscolus aconitifolius) with added enzymes, and the same variables in diets containing different amounts of CLM were studied in chickens. 2. In the first experiment pectinase, beta-glucanase, and pectinase + beta-glucanase were added to CLM. In the second experiment, there were three diets based on maize and soybean: 0, 150 and 250 g/kg CLM. 3. Pectinase significantly increased both lysine and overall amino acid digestibilities in CLM. 4. In experiment 2, the amino acid digestibility in birds fed on CLM250 was lower than that from birds fed on either control or CLM150. Only the digestibilities of alanine, arginine and proline were lower in birds fed on CLM150 than in those fed on the control diet. Nitrogen digestibility was lower in birds fed on the CLM250 diet than on either control or CLM150 diets. These findings were attributed to the increasing concentration of fibre with increasing dietary CLM. PMID:12964630

  14. Genome defense against exogenous nucleic acids in eukaryotes by non-coding DNA occurs through CRISPR-like mechanisms in the cytosol and the bodyguard protection in the nucleus.

    PubMed

    Qiu, Guo-Hua

    2016-01-01

    In this review, the protective function of the abundant non-coding DNA in the eukaryotic genome is discussed from the perspective of genome defense against exogenous nucleic acids. Peripheral non-coding DNA has been proposed to act as a bodyguard that protects the genome and the central protein-coding sequences from ionizing radiation-induced DNA damage. In the proposed mechanism of protection, the radicals generated by water radiolysis in the cytosol and IR energy are absorbed, blocked and/or reduced by peripheral heterochromatin; then, the DNA damage sites in the heterochromatin are removed and expelled from the nucleus to the cytoplasm through nuclear pore complexes, most likely through the formation of extrachromosomal circular DNA. To strengthen this hypothesis, this review summarizes the experimental evidence supporting the protective function of non-coding DNA against exogenous nucleic acids. Based on these data, I hypothesize herein about the presence of an additional line of defense formed by small RNAs in the cytosol in addition to their bodyguard protection mechanism in the nucleus. Therefore, exogenous nucleic acids may be initially inactivated in the cytosol by small RNAs generated from non-coding DNA via mechanisms similar to the prokaryotic CRISPR-Cas system. Exogenous nucleic acids may enter the nucleus, where some are absorbed and/or blocked by heterochromatin and others integrate into chromosomes. The integrated fragments and the sites of DNA damage are removed by repetitive non-coding DNA elements in the heterochromatin and excluded from the nucleus. Therefore, the normal eukaryotic genome and the central protein-coding sequences are triply protected by non-coding DNA against invasion by exogenous nucleic acids. This review provides evidence supporting the protective role of non-coding DNA in genome defense. PMID:27036064

  15. Exogenous retinoic acid and cytochrome P450 26B1 inhibitor modulate meiosis-associated genes expression in canine testis, an in vitro model.

    PubMed

    Kasimanickam, V; Kasimanickam, R

    2014-04-01

    Pharmacological approaches to control spermatogenesis are required to resolve overpopulation in dogs. The objective of the study was to investigate the regulation of meiosis-associated and male germ cell-related genes, stimulated by retinoic acid gene 8 (STRA8), synaptonemal complex protein 3 (SYCP3), dosage suppressor of mck1 (DMC1), doublesex and mab-3 related transcription factor 1 (DMRT1) and deleted in azoospermia-like (DAZL) following exogenous administration of retinoic acid (RA) and after the modulation of endogenous RA by a cytochrome P450, family 26, subfamily B, polypeptide 1 inhibitor (CYP26B1-I; R115866) in an in vitro testis model. Testicles of five healthy, medium-sized and mixed-breed dogs were used for the organotypic cultures. All-trans-RA at 2 μM, CYP26B1-I at 1 μM and the control dimethyl sulphoxide (DMSO) were administered to the testes cultures, and the cultures were maintained for 24 h. Genes STRA8, DAZL and DMRT1 were significantly up-regulated as a result of the direct and indirect increase in the RA levels in the testis, subsequent to the exogenous administration of all-trans-RA and CYP26B1 inhibitor. Up-regulation of STRA8 was very prominent compared to DAZL and DMRT, and the drastic up-regulation of STRA8 was also observed with CY26B1-I than with all-trans-RA. No significant differences were found with the early meiotic markers, SYCP3 and DMC1 with RA, CY26B1-I and vehicle treatments. Because DAZL encodes a germ cell-specific RNA-binding protein, required for the induction of STRA8 and initiation of meiosis, we might see the expression differences temporally with the stage of spermatogenesis. DMRT1 is a unique gonad- and stage-specific transcription factor, directly activates STRA8 and has the temporal influence on its expression. Protein expression of DAZL and STRA8 was greater in RA- and CYP26B1-I-treated testis culture, whereas DMRT1 showed greater protein expression for RA treatment, but not for CYP26B1-I treatment compared to

  16. Exogenous 5-Aminolevulenic Acid Promotes Seed Germination in Elymus nutans against Oxidative Damage Induced by Cold Stress

    PubMed Central

    Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming

    2014-01-01

    The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l−1) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1–1 mg l−1) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5–25 mg l−1) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l−1 ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2•−) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect. PMID:25207651

  17. Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress.

    PubMed

    Fu, Juanjuan; Sun, Yongfang; Chu, Xitong; Xu, Yuefei; Hu, Tianming

    2014-01-01

    The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l(-1)) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Both seeds treated with ALA at low concentrations (0.1-1 mg l(-1)) had higher final germination percentage (FGP) and dry weight at 5°C than non-ALA-treated seeds, whereas exposure to higher ALA concentrations (5-25 mg l(-1)) brought about a dose dependent decrease. The highest FGP and dry weight of germinating seeds were obtained from seeds pre-soaked with 1 mg l(-1) ALA. After 5 d of cold stress, pretreatment with ALA provided significant protection against cold stress in the germinating seeds, significantly enhancing seed respiration rate and ATP synthesis. ALA pre-treatment also increased reduced glutathione (GSH), ascorbic acid (AsA), total glutathione, and total ascorbate concentrations, and the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide radical (O2•-) release in both germinating seeds under cold stress. In addition, application of ALA increased H+-ATPase activity and endogenous ALA concentration compared with cold stress alone. Results indicate that ALA considered as an endogenous plant growth regulator could effectively protect E. nutans seeds from cold-induced oxidative damage during germination without any adverse effect. PMID:25207651

  18. Poly(γ-Glutamic Acid) as an Exogenous Promoter of Chondrogenic Differentiation of Human Mesenchymal Stem/Stromal Cells

    PubMed Central

    Antunes, Joana C.; Tsaryk, Roman; Gonçalves, Raquel M.; Pereira, Catarina Leite; Landes, Constantin; Brochhausen, Christoph; Ghanaati, Shahram

    2015-01-01

    Cartilage damage and/or aging effects can cause constant pain, which limits the patient's quality of life. Although different strategies have been proposed to enhance the limited regenerative capacity of cartilage tissue, the full production of native and functional cartilaginous extracellular matrix (ECM) has not yet been achieved. Poly(γ-glutamic acid) (γ-PGA), a naturally occurring polyamino acid, biodegradable into glutamate residues, has been explored for tissue regeneration. In this work, γ-PGA's ability to support the production of cartilaginous ECM by human bone marrow mesenchymal stem/stromal cells (MSCs) and nasal chondrocytes (NCs) was investigated. MSC and NC pellets were cultured in basal medium (BM), chondrogenic medium (CM), and CM-γ-PGA-supplemented medium (CM+γ-PGA) over a period of 21 days. Pellet size/shape was monitored with time. At 14 and 21 days of culture, the presence of sulfated glycosaminoglycans (sGAGs), type II collagen (Col II), Sox-9, aggrecan, type XI collagen (Col XI), type X collagen (Col X), calcium deposits, and type I collagen (Col I) was analyzed. After excluding γ-PGA's cytotoxicity, earlier cell condensation, higher sGAG content, Col II, Sox-9 (day 14), aggrecan, and Col X (day 14) production was observed in γ-PGA-supplemented MSC cultures, with no signs of mineralization or Col I. These effects were not evident with NCs. However, Sox-9 (at day 14) and Col X (at days 14 and 21) were increased, decreased, or absent, respectively. Overall, γ-PGA improved chondrogenic differentiation of MSCs, increasing ECM production earlier in culture. It is proposed that γ-PGA incorporation in novel biomaterials has a beneficial impact on future approaches for cartilage regeneration. PMID:25760236

  19. Substitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.

    PubMed

    Futaki, S; Ueno, H; Martinez del Pozo, A; Pospischil, M A; Manning, J M; Ringe, D; Stoddard, B; Tanizawa, K; Yoshimura, T; Soda, K

    1990-12-25

    In bacterial D-amino acid transaminase, Lys-145, which binds the coenzyme pyridoxal 5'-phosphate in Schiff base linkage, was changed to Gln-145 by site-directed mutagenesis (K145Q). The mutant enzyme had 0.015% the activity of the wild-type enzyme and was capable of forming a Schiff base with D-alanine; this external aldimine was formed over a period of minutes depending upon the D-alanine concentration. The transformation of the pyridoxal-5'-phosphate form of the enzyme to the pyridoxamine-5'-phosphate form (i.e. the half-reaction of transamination) occurred over a period of hours with this mutant enzyme. Thus, information on these two steps in the reaction and on the factors that influence them can readily be obtained with this mutant enzyme. In contrast, these reactions with the wild-type enzyme occur at much faster rates and are not easily studied separately. The mutant enzyme shows distinct preference for D- over L-alanine as substrates but it does so about 50-fold less effectively than the wild-type enzyme. Thus, Lys-145 probably acts in concert with the coenzyme and other functional side chain(s) to lead to efficient and stereochemically precise transamination in the wild-type enzyme. The addition of exogenous amines, ethanolamine or methyl amine, increased the rate of external aldimine formation with D-alanine and the mutant enzyme but the subsequent transformation to the pyridoxamine-5'-phosphate form of the enzyme was unaffected by exogenous amines. The wild-type enzyme displayed a large negative trough in the circular dichroic spectrum at 420 nm, which was practically absent in the mutant enzyme. However, addition of D-alanine to the mutant enzyme generated this negative Cotton effect (due to formation of the external aldimine with D-alanine). This circular dichroism band gradually collapsed in parallel with the transformation to the pyridoxamine-5'-phosphate enzyme. Further studies on this mutant enzyme, which displays the characteristics of the wild

  20. Source inference of exogenous gamma-hydroxybutyric acid (GHB) administered to humans by means of carbon isotopic ratio analysis: novel perspectives regarding forensic investigation and intelligence issues.

    PubMed

    Marclay, François; Saudan, Christophe; Vienne, Julie; Tafti, Mehdi; Saugy, Martial

    2011-05-01

    γ-Hydroxybutyric acid (GHB) is an endogenous short-chain fatty acid popular as a recreational drug due to sedative and euphoric effects, but also often implicated in drug-facilitated sexual assaults owing to disinhibition and amnesic properties. Whilst discrimination between endogenous and exogenous GHB as required in intoxication cases may be achieved by the determination of the carbon isotope content, such information has not yet been exploited to answer source inference questions of forensic investigation and intelligence interests. However, potential isotopic fractionation effects occurring through the whole metabolism of GHB may be a major concern in this regard. Thus, urine specimens from six healthy male volunteers who ingested prescription GHB sodium salt, marketed as Xyrem(®), were analysed by means of gas chromatography/combustion/isotope ratio mass spectrometry to assess this particular topic. A very narrow range of δ(13)C values, spreading from -24.81‰ to -25.06‰, was observed, whilst mean δ(13)C value of Xyrem(®) corresponded to -24.99‰. Since urine samples and prescription drug could not be distinguished by means of statistical analysis, carbon isotopic effects and subsequent influence on δ(13)C values through GHB metabolism as a whole could be ruled out. Thus, a link between GHB as a raw matrix and found in a biological fluid may be established, bringing relevant information regarding source inference evaluation. Therefore, this study supports a diversified scope of exploitation for stable isotopes characterized in biological matrices from investigations on intoxication cases to drug intelligence programmes. PMID:21455654

  1. Protein kinase C, arachidonate metabolism, and tracheal smooth muscle - effects of temperature

    SciTech Connect

    Huang, C.; Baraban, J.; Menkes, H.

    1986-03-01

    Cooling causes airway obstruction in asthma. Contractions of airway smooth muscle may be produced through the phosphatidylinositol cycle and the activation of protein kinase C. Protein kinase C can be activated directly with phorbol esters. The authors studied the effects of temperature on responses to phorbol 12,13-diacetate (PDA) in guinea pig tracheal rings bathed in Krebs-Henseleit solution. At 37/sup 0/C, 1 ..mu..M PDA relaxed the tissue (tension fell 0.60 +/- S.E. 0.04 g). At 27/sub 0/C, 1 ..mu..M PDA contracted the tissue (tension rose 0.050 +/- 0.05 g). In comparison, near maximum contractions produced by 4 ..mu..M carbachol were 2.00 +/- 0.09 g at 37/sub 0/C and 1.90 +/- 0.09 g at 27/sup 0/C. Butler-Gralla et al. showed that phorbol esters may stimulate the release of arachidonic acid from cultured cells. In order to determine whether arachidonate metabolites play a role in responses observed in guinea pig trachea, the authors used indomethacin (a cyclooxygenase inhibitor), FPL 55712 (a leukotriene receptor antagonist) and Na arachidonate. At 37/sup 0/C, 3 ..mu..M indomethacin pretreatment abolished relaxationby 1 uM PDA. At 27/sup 0/C, 10 uM FPL 55712 pretreatment abolished contractions by 1 ..mu..M PDA. Like PDA, 1 ..mu..M Na arachidonate produced relaxation at 37/sup 0/C and contraction at 27/sup 0/C. The authors conclude that the effects of PDA at different temperatures parallel the effects of Na arachidonate. These results suggest that the effects of PDA in the guinea pig trachea are related to the release of endogenous arachidonic acid and that the cyclooxygenase pathway predominates at high temperature and the lipoxygenase pathway predominates at low temperature.

  2. Adaptation by the collecting duct to an exogenous acid load is blunted by deletion of the proton-sensing receptor GPR4.

    PubMed

    Sun, Xuming; Stephens, Lisa; DuBose, Thomas D; Petrovic, Snezana

    2015-07-15

    We previously reported that the deletion of the pH sensor GPR4 causes a non-gap metabolic acidosis and defective net acid excretion (NAE) in the GPR4 knockout mouse (GPR4-/-) (Sun X, Yang LV, Tiegs BC, Arend LJ, McGraw DW, Penn RB, and Petrovic S. J Am Soc Nephrol 21: 1745-1755, 2010). Since the major regulatory site of NAE in the kidney is the collecting duct (CD), we examined acid-base transport proteins in intercalated cells (ICs) of the CD and found comparable mRNA expression of kidney anion exchanger 1 (kAE1), pendrin, and the a4 subunit of H(+)-ATPase in GPR4-/- vs. +/+. However, NH4Cl loading elicited adaptive doubling of AE1 mRNA in GPR4+/+, but a 50% less pronounced response in GPR4-/-. In GPR4+/+, NH4Cl loading evoked a cellular response characterized by an increase in AE1-labeled and a decrease in pendrin-labeled ICs similar to what was reported in rabbits and rats. This response did not occur in GPR4-/-. Microperfusion experiments demonstrated that the activity of the basolateral Cl(-)/HCO3(-) exchanger, kAE1, in CDs isolated from GPR4-/- failed to increase with NH4Cl loading, in contrast to the increase observed in GPR4+/+. Therefore, the deficiency of GPR4 blunted, but did not eliminate the adaptive response to an acid load, suggesting a compensatory response from other pH/CO2/bicarbonate sensors. Indeed, the expression of the calcium-sensing receptor (CaSR) was nearly doubled in GPR4-/- kidneys, in the absence of apparent disturbances of Ca(2+) homeostasis. In summary, the expression and activity of the key transport proteins in GPR4-/- mice are consistent with spontaneous metabolic acidosis, but the adaptive response to a superimposed exogenous acid load is blunted and might be partially compensated for by CaSR. PMID:25972512

  3. Effect of exogenous indole-3-acetic acid and naphthalene acetic acid on regeneration of damask rose cuttings in three growing media.

    PubMed

    Khan, Rahmat Ullah; Khan, Muhammad Sohail; Rashid, Abdur; Farooq, Arshad

    2007-10-15

    An experiment was conducted to evaluate the performance of various levels of indole-3-acetic acid (IAA) and naphthalene acetic acid (NAA) treatments i.e., 0, 25, 50, 75, 100 mg L(-1) on the regeneration of damask rose (Rosa damascena Mill.) cuttings in different growing media at the research farm of Arid Zone Research Institute D.I. Khan during 2004. The data revealed significant effect of different levels of growth regulators and growing media on the rose establishment parameters viz., plant height, plant spread, number of primary shoots, secondary shoots and survival percentage. Maximum plant height (134.2 cm), plant spread (46.3 cm), primary shoots (6.3), secondary shoots (25) and survival percentage (94.72%) were recorded when the rose cuttings were applied with NAA at the rate of 50 mg L(-1). Among the plant growth regulators, Naphthalene Acetic Acid (NAA) was found to be superior to indole-3-acetic acid (IAA) for its stronger effect regarding all parameters. The optimum level of Naphthalene Acetic Acid (NAA) was found in the range of 50 and 75 mg L(-1), while no such conclusion could be drawn for indole-3-acetic acid (IAA) as all growth parameters were linearly increased up to the highest concentrations of IAA i.e., 100 mg L(-1). Regarding growing media, the leaf mould appeared the best in terms of its positive effect on establishment of rose cuttings by giving the maximum plant height (125.1 cm), plant spread (37 cm), primary shoots (5.2), secondary shoots (19.48) and survival percentage (85.67%), followed by soil + leaf mould, while soil media was least effective. PMID:19093472

  4. Suppression Subtractive Hybridization Analysis of Genes Regulated by Application of Exogenous Abscisic Acid in Pepper Plant (Capsicum annuum L.) Leaves under Chilling Stress

    PubMed Central

    Gong, Zhen-Hui; Yin, Yan-Xu; Li, Da-Wei

    2013-01-01

    Low temperature is one of the major factors limiting pepper (Capsicum annuum L.) production during winter and early spring in non-tropical regions. Application of exogenous abscisic acid (ABA) effectively alleviates the symptoms of chilling injury, such as wilting and formation of necrotic lesions on pepper leaves; however, the underlying molecular mechanism is not understood. The aim of this study was to identify genes that are differentially up- or downregulated in ABA-pretreated hot pepper seedlings incubated at 6°C for 48 h, using a suppression subtractive hybridization (SSH) method. A total of 235 high-quality ESTs were isolated, clustered and assembled into a collection of 73 unigenes including 18 contigs and 55 singletons. A total of 37 unigenes (50.68%) showed similarities to genes with known functions in the non-redundant database; the other 36 unigenes (49.32%) showed low similarities or unknown functions. Gene ontology analysis revealed that the 37 unigenes could be classified into nine functional categories. The expression profiles of 18 selected genes were analyzed using quantitative RT-PCR; the expression levels of 10 of these genes were at least two-fold higher in the ABA-pretreated seedlings under chilling stress than water-pretreated (control) plants under chilling stress. In contrast, the other eight genes were downregulated in ABA-pretreated seedlings under chilling stress, with expression levels that were one-third or less of the levels observed in control seedlings under chilling stress. These results suggest that ABA can positively and negatively regulate genes in pepper plants under chilling stress. PMID:23825555

  5. Exogenous abscisic acid application decreases cadmium accumulation in Arabidopsis plants, which is associated with the inhibition of IRT1-mediated cadmium uptake

    PubMed Central

    Fan, Shi Kai; Fang, Xian Zhi; Guan, Mei Yan; Ye, Yi Quan; Lin, Xian Yong; Du, Shao Ting; Jin, Chong Wei

    2014-01-01

    Cadmium (Cd) contamination of agricultural soils is an increasingly serious problem. Measures need to be developed to minimize Cd entering the human food chain from contaminated soils. We report here that, under Cd exposure condition, application with low doses of (0.1–0.5 μM) abscisic acid (ABA) clearly inhibited Cd uptake by roots and decreased Cd level in Arabidopsis wild-type plants (Col-0). Expression of IRT1 in roots was also strongly inhibited by ABA treatment. Decrease in Cd uptake and the inhibition of IRT1 expression were clearly lesser pronounced in an ABA-insensitive double mutant snrk2.2/2.3 than in the Col-0 in response to ABA application. The ABA-decreased Cd uptake was found to correlate with the ABA-inhibited IRT1 expression in the roots of Col-0 plants fed two different levels of iron. Furthermore, the Cd uptake of irt1 mutants was barely affected by ABA application. These results indicated that inhibition of IRT1 expression is involved in the decrease of Cd uptake in response to exogenous ABA application. Interestingly, ABA application increased the iron level in both Col-0 plants and irt1 mutants, suggesting that ABA-increased Fe acquisition does not depend on the IRT1 function, but on the contrary, the ABA-mediated inhibition of IRT1 expression may be due to the elevation of iron level in plants. From our results, we concluded that ABA application might increase iron acquisition, followed by the decrease in Cd uptake by inhibition of IRT1 activity. Thus, for crop production in Cd contaminated soils, developing techniques based on ABA application potentially is a promising approach for reducing Cd accumulation in edible organs in plants. PMID:25566293

  6. Arachidonate 12-lipoxygenases with reference to their selective inhibitors

    SciTech Connect

    Yamamoto, Shozo . E-mail: yamamosh@kyoto-wu.ac.jp; Katsukawa, Michiko; Nakano, Ayumi; Hiraki, Emi; Nishimura, Kohji; Jisaka, Mitsuo; Yokota, Kazushige; Ueda, Natsuo

    2005-12-09

    Lipoxygenase is a dioxygenase recognizing a 1-cis,4-cis-pentadiene of polyunsaturated fatty acids. The enzyme oxygenates various carbon atoms of arachidonic acid as a substrate and produces 5-, 8-, 12- or 15-hydroperoxy eicosatetraenoic acid with a conjugated diene chromophore. The enzyme is referred to as 5-, 8-, 12- or 15-lipoxygenase, respectively. Earlier we found two isoforms of 12-lipoxygenase, leukocyte- and platelet-type enzymes, which were distinguished by substrate specificity, catalytic activity, primary structure, gene intron size, and antigenicity. Recently, the epidermis-type enzyme was found as the third isoform. Attempts have been made to find isozyme-specific inhibitors of 12-lipoxygenase, and earlier we found hinokitol, a tropolone, as a potent inhibitor selective for the platelet-type 12-lipoxygenase. More recently, we tested various catechins of tea leaves and found that (-)-geotechnical gallate was a potent and selective inhibitor of human platelet 12-lipoxygenase with an IC{sub 5} of 0.14 {mu}M. The compound was much less active with 12-lipoxygenase of leukocyte-type, 15-, 8-, and 5-lipoxygenases, and cyclo oxygenases-1 and -2.

  7. Adalimumab (tumor necrosis factor-blocker) reduces the expression of glial fibrillary acidic protein immunoreactivity increased by exogenous tumor necrosis factor alpha in an organotypic culture of porcine neuroretina

    PubMed Central

    Garcia-Gutierrez, M.T.; Srivastava, G.K.; Gayoso, M.J.; Gonzalo-Orden, J.M.; Pastor, J.C.

    2013-01-01

    Purpose To determine if exogenous addition of tumor necrosis factor alpha (TNFα) exacerbates retinal reactive gliosis in an organotypic culture of porcine neuroretina and to evaluate if concomitant adalimumab, a TNF-blocker, diminishes it. Methods Porcine retinal explants from 20 eyeballs were cultured. Cultures with 100 pg/ml TNFα, 10 µg/ml adalimumab, 100 pg/ml TNFα plus 10 µg/ml adalimumab, or controls without additives were maintained for 9 days. Freshly detached retinas were processed in parallel. TNFα levels in control culture supernatants were quantified with enzyme-linked immunosorbent assay. Cryostat sections were doubly immunostained for glial fibrillary acidic protein (GFAP), a marker for reactive gliosis, and cellular retinaldehyde-binding protein (CRALBP), a marker for Müller cells. Sections were also labeled with the isolectin IB4, a label for microglia/macrophages. Results TNFα in control culture supernatants was detected only at day 1. Compared to the fresh neuroretinal samples, upregulation of GFAP and downregulation of CRALBP occurred during the 9 days of culture. Exogenous TNFα stimulated glial cells to upregulate GFAP and downregulate CRALBP immunoreactivity. TNFα-treated cultures also initiated the growth of gliotic membranes and underwent retinal disorganization. Adalimumab inhibited the spontaneous increases in GFAP and maintained CRALBP. In combination with TNFα, adalimumab reduced GFAP expression and conserved CRALBP, with only slight retinal disorganization. No appreciable changes in IB4 labeling were observed under the different culture conditions. Conclusions In cultured porcine neuroretina, spontaneous reactive gliosis and retinal disorganization were exacerbated by exogenous TNFα. Adalimumab reduced spontaneous changes and those induced by TNFα. Therefore, inhibiting TNFα may represent a novel approach to controlling retinal fibrosis observed in some human diseases. PMID:23687426

  8. Effects of chronic ethanol administration and withdrawal on incorporation of arachidonate into membrane phospholipids.

    PubMed

    Sun, G Y; Kelleher, J A; Sun, A Y

    1985-01-01

    A plasma membrane fraction isolated from cerebral cortex of control and ethanol-treated rats was used to study the effects of chronic ethanol administration on uptake of arachidonate by membrane phospholipids. Upon incubation of the membranes with [(14)C] arachidonic acid in the presence of ATP, Mg(2+), and CoA, radioactivity was incorporated into all of the phospholipids, although a large proportion of the label was found in phosphatidylinositols (PI, 60%) and phosphatidylcholines (PC, 20%). Rats given ethanol (8-10 g/kg body wt) via intubation in the form of a liquid diet for 4 weeks showed an increase (17-20%) in arachidonate incorporation into PI and PC as compared to phosphatidylethanolamines (PE) and phosphatidylserines (PS). A similar increase in uptake activity was observed at 2 or 24 h upon withdrawal of ethanol, but uptake activity returned readily to that of control level by 72 h. The method described in this study is a sensitive and reliable procedure for monitoring the arachidonoyl turnover activity in neural membranes with respect to chronic ethanol induction and withdrawal. PMID:20492952

  9. Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid.

    PubMed

    Najeeb, Ullah; Jilani, Ghulam; Ali, Shafaqat; Sarwar, Muhammad; Xu, Ling; Zhou, Weijun

    2011-02-15

    This study appraised cadmium (Cd) toxicity stress in wetland plant Juncus effusus, and explored its potential for Cd phytoextraction through chelators (citric acid and EDTA). Cadmium altered morphological and physiological attributes of J. effusus as reflected by growth retardation. Citric acid in the presence of 100 μM Cd significantly countered Cd toxicity by improving plant growth. Elevated Cd concentrations reduced translocation factor that was increased under application of both chelators. Citric acid enhanced Cd accumulation, while EDTA reduced its uptake. Cadmium induced oxidative stress modified the antioxidative enzyme activity. Both levels of citric acid (2.5 and 5.0 mM) and lower EDTA concentration (2.5 mM) helped plants to overcome oxidative stress by enhancing their antioxidative enzyme activities. Cadmium damaged the root cells through cytoplasmic shrinkage and metal deposition. Citric acid restored structure and shape of root cells and eliminated plasmolysis; whereas, EDTA exhibited no positive effect on it. Shoot cells remained unaffected under Cd treatment alone or with citric acid except for chloroplast swelling. Only EDTA promoted starch accumulation in chloroplast reflecting its negative impact on cellular structure. It concludes that Cd and EDTA induce structural and morphological damage in J. effusus; while, citric acid ameliorates Cd toxicity stress. PMID:21159423

  10. Identification of an NADH-Cytochrome b5 Reductase Gene from an Arachidonic Acid-Producing Fungus, Mortierella alpina 1S-4, by Sequencing of the Encoding cDNA and Heterologous Expression in a Fungus, Aspergillus oryzae

    PubMed Central

    Sakuradani, Eiji; Kobayashi, Michihiko; Shimizu, Sakayu

    1999-01-01

    Based on the sequence information for bovine and yeast NADH-cytochrome b5 reductases (CbRs), a DNA fragment was cloned from Mortierella alpina 1S-4 after PCR amplification. This fragment was used as a probe to isolate a cDNA clone with an open reading frame encoding 298 amino acid residues which show marked sequence similarity to CbRs from other sources, such as yeast (Saccharomyces cerevisiae), bovine, human, and rat CbRs. These results suggested that this cDNA is a CbR gene. The results of a structural comparison of the flavin-binding β-barrel domains of CbRs from various species and that of the M. alpina enzyme suggested that the overall barrel-folding patterns are similar to each other and that a specific arrangement of three highly conserved amino acid residues (i.e., arginine, tyrosine, and serine) plays a role in binding with the flavin (another prosthetic group) through hydrogen bonds. The corresponding genomic gene, which was also cloned from M. alpina 1S-4 by means of a hybridization method with the above probe, had four introns of different sizes. These introns had GT at the 5′ end and AG at the 3′ end, according to a general GT-AG rule. The expression of the full-length cDNA in a filamentous fungus, Aspergillus oryzae, resulted in an increase (4.7 times) in ferricyanide reduction activity involving the use of NADH as an electron donor in the microsomes. The M. alpina CbR was purified by solubilization of microsomes with cholic acid sodium salt, followed by DEAE-Sephacel, Mono-Q HR 5/5, and AMP-Sepharose 4B affinity column chromatographies; there was a 645-fold increase in the NADH-ferricyanide reductase specific activity. The purified CbR preferred NADH over NADPH as an electron donor. This is the first report of an analysis of this enzyme in filamentous fungi. PMID:10473389

  11. Effect of exogenous jasmonic acid application on Aspergillus flavus kernel infection and aflatoxin production in two maize hybrids (Zea mays L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Jasmonic acid (JA), produced by the octadecanoid pathway, is a phytohormone that triggers induced resistance against certain pathogens and arthropod herbivores. The octadecanoid pathway has been implicated in playing a role in the Aspergillus flavus-maize seed interaction. In field studies, the ef...

  12. [Exogenous lipoid pneumonia].

    PubMed

    Castañeda-Ramos, S A; Ramos-Solano, F

    1989-09-01

    We report 30 patients with exogenous lipoid pneumonia due to vegetal oil. This was employed in most of the cases during the first month of life for digestive tube symptomatology; clinical manifestations began three months following administrations, as a pneumonia or bronchopneumonia with a respiratory distress syndrome of variable severity. 60% of the thorax x-ray studies were abnormal, the main finding was opacity. One patient has alterations of the mechanics of deglutition; seven had gastroesophageal reflux. Arterial gasometry showed hypoxaemia and increase of alveolo-arterial gradient of oxygen in all. Ten patients died and all the survivors were reevaluated in september, 1988; 18 had normal physical findings. Thorax x-ray studies in 13 patients had right reticulate infiltration and 6 right apical opacity; ECG showed right ventricular hypertrophy in 3. Perfusion pulmonary gamagram with technetium 99 was abnormal in 5. Gastroesophageal reflux was evident in 2. Five were under treatment for several causes. Diagnosis and treatment is discussed. PMID:2604874

  13. Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies.

    PubMed Central

    Yu, W.; Bozza, P. T.; Tzizik, D. M.; Gray, J. P.; Cassara, J.; Dvorak, A. M.; Weller, P. F.

    1998-01-01

    Lipid bodies are inducible lipid domains abundantly present in leukocytes engaged in inflammation. They are rich in esterified arachidonate and are also potential sites for eicosanoid-forming enzyme localization. It is therefore of interest to know whether arachidonate-releasing cytosolic phospholipase A2 (cPLA2) localizes at lipid bodies. Here, we present evidence that cPLA2 and its activating protein kinases, mitogen-activated protein (MAP) kinases, co-localize at lipid bodies. U937 cells express high levels of cPLA2 and contain numerous cytoplasmic lipid bodies. Using double-labeling immunocytochemistry we demonstrated punctate cytoplasmic localizations of both cPLA2 and MAP kinases in U937 cells that were perfectly concordant with fluorescent fatty-acid-labeled lipid bodies. The co-localization of cPLA2 and MAP kinases at lipid bodies was confirmed by subcellular fractionation and immunoblot. Lipid body fractions free of cytosol and other organelles contained significant amounts of [14C]arachidonate-labeled phosphatidylcholine and cPLA2 enzymatic activities. Immunoblotting with specific antibodies identified cPLA2 as well as MAP kinases, including ERK1, ERK2, p85, and p38, in lipid bodies. The co-compartmentalization within arachidonate-rich lipid bodies of cPLA2 and its potentially activating protein kinases suggests that lipid bodies may be structurally distinct intracellular sites active in extracellular ligand-induced arachidonate release and eicosanoid formation. Images Figure 1 Figure 2 Figure 3 Figure 6 Figure 7 PMID:9502418

  14. [The cellular receptors of exogenous RNA].

    PubMed

    Reniewicz, Patryk; Zyzak, Joanna; Siednienko, Jakub

    2016-01-01

    One of the key determinants of survival for organisms is proper recognition of exogenous and endogenous nucleic acids. Therefore, high eukaryotes developed a number of receptors that allow for discrimination between friend or foe DNA and RNA. Appearance of exogenous RNA in cytoplasm provides a signal of danger and triggers cellular responses that facilitate eradication of a pathogen. Recognition of exogenous RNA is additionally complicated by fact that large amount of endogenous RNA is present in cytoplasm Thus, number of different receptors, found in eukaryotic cells, is able to recognize that nucleic acid. First group of those receptors consist endosomal Toll like receptors, namely TLR3, TLR7, TLR8 and TLR13. Those receptors recognize RNA released from pathogens that enter the cell by endocytosis. The second group includes cytoplasmic sensors like PKR and the family of RLRs comprised of RIG-I, MDA5 and LGP2. Cytoplasmic receptors recognize RNA from pathogens invading the cell by non-endocytic pathway. In both cases binding of RNA by its receptors results in activation of the signalling cascades that lead to the production of interferon and other cytokines. PMID:27117110

  15. Exogenous salicylic acid improves photosynthesis and growth through increase in ascorbate-glutathione metabolism and S assimilation in mustard under salt stress

    PubMed Central

    Nazar, Rahat; Umar, Shahid; Khan, Nafees A.

    2015-01-01

    Ascorbate (AsA)–glutathione (GSH) cycle metabolism has been regarded as the most important defense mechanism for the resistance of plants under stress. In this study the influence of salicylic acid (SA) was studied on ascorbate-glutathione pathway, S-assimilation, photosynthesis and growth of mustard (Brassica juncea L.) plants subjected to 100 mM NaCl. Treatment of SA (0.5 mM) alleviated the negative effects of salt stress and improved photosynthesis and growth through increase in enzymes of ascorbate-glutathione pathway which suggest that SA may participate in the redox balance under salt stress. The increase in leaf sulfur content through higher activity of ATP sulfurylase (ATPS) and serine acetyl transferase (SAT) by SA application was associated with the increased accumulation of glutathione (GSH) and lower levels of oxidative stress. These effects of SA were substantiated by the findings that application of SA-analog, 2,6, dichloro-isonicotinic acid (INA) and 1 mM GSH treatment produced similar results on rubisco, photosynthesis and growth of plants establishing that SA application alleviates the salt-induced decrease in photosynthesis mainly through inducing the enzyme activity of ascorbate-glutathione pathway and increased GSH production. Thus, SA/GSH could be a promising tool for alleviation of salt stress in mustard plants. PMID:25730495

  16. Cell-Wall Changes and Cell Tension in Response to Cold Acclimation and Exogenous Abscisic Acid in Leaves and Cell Cultures.

    PubMed Central

    Rajashekar, C. B.; Lafta, A.

    1996-01-01

    Freeze-induced cell tensions were determined by cell water relations in leaves of broadleaf evergreen species and cell cultures of grapes (Vitis spp.) and apple (Malus domestica). Cell tensions increased in response to cold acclimation in leaves of broadleaf evergreen species during extracellular freezing, indicating a higher resistance to cell volume changes during freezing in cold-hardened leaves than in unhardened leaves. Unhardened leaves, typically, did not develop tension greater than 3.67 MPa, whereas cold-hardened leaves attained tensions up to 12 MPa. With further freezing there was a rapid decline and a loss of tension in unhardened leaves of all the broadleaf evergreen species studied. Also, similar results were observed in cold-hardened leaves of all of the species except in those of inkberry (Ilex glabra) and Euonymus fortunei, in which negative pressures persisted below -40[deg]C. Abscisic acid treatment of inkberry and Euonymus kiautschovica resulted in increases in freeze-induced tensions in leaves, suggesting that both cold acclimation and abscisic acid have similar effects on freezing behavior[mdash] specifically on the ability of cell walls to undergo deformation. Decreases in peak tensions were generally associated with lethal freezing injury and may suggest cavitation of cellular water. However, in suspension-cultured cells of grapes and apple, no cell tension was observed during freezing. Cold acclimation of these cells resulted in an increase in the cell-wall strength and a decrease in the limiting cell-wall pore size from 35 to 22 A in grape cells and from 29 to 22 A in apple cells. PMID:12226314

  17. Enhanced isopropanol and n-butanol production by supplying exogenous acetic acid via co-culturing two clostridium strains from cassava bagasse hydrolysate.

    PubMed

    Zhang, Shaozhi; Qu, Chunyun; Huang, Xiaoyan; Suo, Yukai; Liao, Zhengping; Wang, Jufang

    2016-07-01

    The focus of this study was to produce isopropanol and butanol (IB) from dilute sulfuric acid treated cassava bagasse hydrolysate (SACBH), and improve IB production by co-culturing Clostridium beijerinckii (C. beijerinckii) with Clostridium tyrobutyricum (C. tyrobutyricum) in an immobilized-cell fermentation system. Concentrated SACBH could be converted to solvents efficiently by immobilized pure culture of C. beijerinckii. Considerable solvent concentrations of 6.19 g/L isopropanol and 12.32 g/L butanol were obtained from batch fermentation, and the total solvent yield and volumetric productivity were 0.42 g/g and 0.30 g/L/h, respectively. Furthermore, the concentrations of isopropanol and butanol increased to 7.63 and 13.26 g/L, respectively, under the immobilized co-culture conditions when concentrated SACBH was used as the carbon source. The concentrations of isopropanol and butanol from the immobilized co-culture fermentation were, respectively, 42.62 and 25.45 % higher than the production resulting from pure culture fermentation. The total solvent yield and volumetric productivity increased to 0.51 g/g and 0.44 g/L/h when co-culture conditions were utilized. Our results indicated that SACBH could be used as an economically favorable carbon source or substrate for IB production using immobilized fermentation. Additionally, IB production could be significantly improved by co-culture immobilization, which provides extracellular acetic acid to C. beijerinckii from C. tyrobutyricum. This study provided a technically feasible and cost-efficient way for IB production using cassava bagasse, which may be suitable for industrial solvent production. PMID:27116556

  18. [Metabolic changes in arachidonic acid during aspirin desensitization].

    PubMed

    Salazar Villa, R M; Zambrano Villa, S

    1996-01-01

    Aspirin sensitivity occurs in 10% of all asthmatics patients. In this subset of asthmatics, nasal congestion and bronchospasm occurs between 30-180 minutes after ingestion of aspirin. Following a respiratory reaction to aspirin, all patients can be desensitized to aspirin by repetitively introducing small and then larger doses of aspirin until the asthmatic subject can ingest 650 mg of aspirin without adverse effect. The mechanism of aspirin sensitivity are incompletely understood. And the reasons why ASA desensitization occurs universally are unknown. In this study, known ASA sensitive and control insensitive asthmatics were challenged with ASA. Urine was collected before, during induced bronchospasm, and after ingestion of 650 mg of ASA when the adverse effect (ie., acute desensitization) had subsided. Excretion levels of cyclo-oxygenase and lipoxygenase products in the urine were determined. PMID:8963642

  19. [A comparative study of the reactions of the peripheral blood neutrophils from donors and from lymphogranulomatosis patients to arachidonate stimulation of the cells].

    PubMed

    Zorin, V P; Pogirnitskaia, A V; Semenkova, G N; Cherenkevich, S N; Krutilina, N I; Muravskaia, G V

    1993-01-01

    Arachidonate-induced aggregation and generalization of active oxygen forms (OAF) by peripheral blood neutrophils in donors were studied in donors and Hodgkin's disease patients. Leukocytes of the latter had incomplete ability to produce AOF in response to cell stimulation with arachidonic acid. The study of arachidonate-induced aggregation of neutrophils indicated no differences in the speed of the process in the patients and donors. AOF catchers did not act on the rate of leukocyte aggregation in the patients though accelerated the process in the donors. It is inferred that Hodgkin's disease is associated with dysfunction of oxygen activation by neutrophils. The findings suggest that defects in leukocytes ability to activate oxygen in Hodgkin's disease may entail deranged regulation of other processes essential for functional activity of polymorphonuclear leukocytes. PMID:8020703

  20. Stimulation of proliferation of a human osteosarcoma cell line by exogenous acidic fibroblast growth factor requires both activation of receptor tyrosine kinase and growth factor internalization.

    PubMed Central

    Wiedłocha, A; Falnes, P O; Rapak, A; Muñoz, R; Klingenberg, O; Olsnes, S

    1996-01-01

    U2OS Dr1 cells, originating from a human osteosarcoma, are resistant to the intracellular action of diphtheria toxin but contain toxin receptors on their surfaces. These cells do not have detectable amounts of fibroblast growth factor receptors. When these cells were transfected with fibroblast growth factor receptor 4, the addition of acidic fibroblast growth factor to the medium induced tyrosine phosphorylation, DNA synthesis, and cell proliferation. A considerable fraction of the cell-associated growth factor was found in the nuclear fraction. When the growth factor was fused to the diphtheria toxin A fragment, it was still bound to the growth factor receptor and induced tyrosine phosphorylation but did not induce DNA synthesis or cell proliferation, nor was any fusion protein recovered in the nuclear fraction. On the other hand, when the fusion protein was associated with the diphtheria toxin B fragment to allow translocation to the cytosol by the toxin pathway, the fusion protein was targeted to the nucleus and stimulated both DNA synthesis and cell proliferation. In untransfected cells containing toxin receptors but not fibroblast growth factor receptors, the fusion protein was translocated to the cytosol and targeted to the nucleus, but in this case, it stimulated only DNA synthesis. These data indicate that the following two signals are required to stimulate cell proliferation in transfected U2OS Dr1 cells: the tyrosine kinase signal from the activated fibroblast growth factor receptor and translocation of the growth factor into the cell. PMID:8524304

  1. Influence of exogenous ATP on blood sugar, serum insulin and serum free fatty acids in short-term experimental hyperthyroid dogs and in euthyroid controls.

    PubMed

    Renauld, A; Sverdlik, R C

    1989-01-01

    We studied the influence of ATP administration on blood sugar (BS), serum immunoreactive insulin (IRI) and serum free fatty acid (FFA) responses to glucose-induced hyperglycemia in short-term experimental hyperthyroid (STEH) dogs and in euthyroid controls. Hyperthyroidism was induced by a 10-day s.c. treatment with 100 micrograms/kg body weight 1-thyroxine. Glucose challenge was performed by i.v. infusion (700 mg/kg body weight as a priming dose, followed by 20 mg/kg body weight/min for 60 min). ATP (1 mg/kg body weight/min) was infused for 100 min 40 min before and 60 min during glucose administration). Glucose-induced hyperglycemia was more prolonged in the hyperthyroid group. ATP treatment did not affect the BS profile of controls but raised that of STEH animals. In the normal controls the insulinemic response to hyperglycemia was enhanced during ATP infusion. By contrast, in the STEH dogs insulin levels during glucose infusion was lower than in controls and did not significantly increase when ATP was added. ATP infusion induced a significant elevation of serum FFA, which was more pronounced in hyperthyroid animals with a greater fall during glucose administration and a marked increase during the period of recovery from hyperglycemia. In conclusion, we postulate that short-term hyperthyroidism in dogs may inhibit adenylate cyclase function in pancreatic B-cells and chiefly stimulate the action of cAMP-phosphodiesterase activity, thereby affecting insulin secretion. PMID:2698040

  2. The effects of blood feeding and exogenous supply of tryptophan on the quantities of xanthurenic acid in the salivary glands of Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Okech, Bernard; Arai, Meiji; Matsuoka, Hiroyuki

    2006-03-24

    Xanthurenic acid (XA), produced as a byproduct during the biosynthesis of insect eye pigment (ommochromes), is a strong inducer of Plasmodium gametogenesis at very low concentrations. In previous studies, it was shown that XA is present in Anopheles stephensi (Diptera: Culicidae) mosquito salivary glands and that during blood feeding the mosquitoes ingested their own saliva into the midgut. Considering these two facts together, it is therefore likely that XA is discharged with saliva during blood feeding and is swallowed into the midgut where it exerts its effect on Plasmodium gametocytes. However, the quantities of XA in the salivary glands and midgut are unknown. In this study, we used high performance liquid chromatography with electrochemical detection to detect and quantify XA in the salivary glands and midgut. Based on the results of this study, we found 0.28+/-0.05 ng of XA in the salivary glands of the mosquitoes, accounting for 10% of the total XA content in the mosquito whole body. The amounts of XA in the salivary glands reduced to 0.13+/-0.06 ng after mosquitoes ingested a blood meal. Approximately 0.05+/-0.01 ng of XA was detected in the midgut of nonblood fed An. stephensi mosquitoes. By adding synthetic tryptophan as a source of XA into larval rearing water (2 mM) or in sugar meals (10 mM), we evaluated whether XA levels in the mosquito (salivary glands, midgut, and whole body) were boosted and the subsequent effect on infectivity of Plasmodium berghei in the treated mosquito groups. A female specific increase in XA content was observed in the whole body and in the midgut of mosquito groups where tryptophan was added either in the larval water or sugar meals. However, XA in the salivary glands was not affected by tryptophan addition to larval water, and surprisingly it reduced when tryptophan was added to sugar meals. The P. berghei oocyst loads in the mosquito midguts were lower in mosquitoes fed tryptophan treated sugar meals than in mosquitoes

  3. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  4. Cyclooxygenase dependency of the renovascular actions of cytochrome P450-derived arachidonate metabolites.

    PubMed

    Carroll, M A; Garcia, M P; Falck, J R; McGiff, J C

    1992-01-01

    The renovascular effects of cytochrome P450-dependent arachidonic acid (P450-AA) metabolites synthesized by rat and rabbit kidneys were studied in the rabbit isolated kidney under conditions of constant flow and examined for their dependency on cyclooxygenase relative to their expression of vasoactivity. Kidneys were perfused with Krebs-Henseleit solution, and perfusion pressure was raised to levels of 90 to 110 mm Hg with the addition of 2 to 3 microM phenylephrine to the perfusate. Close arterial injection of 1 to 20 micrograms of 5,6-, 8,9- and 11,12-epoxyeicosatrienoic acid (EET) dose-dependently decreased perfusion pressure. The 5,6-EET was the most potent and the only epoxide dependent on cyclooxygenase for expression of vasoactivity, being inhibited by indomethacin (2.8 microM). In contrast, 14,15-EET resulted in dose-dependent increases in perfusion pressure. The vasodilator effects of the omega- and omega-1 oxidation products, 20-hydroxyeicosatetraenoic acid (HETE) and the stereoisomers of 19-HETE, were also inhibited by indomethacin. Furthermore, the renal vasodilator responses to 5,6-EET were not inhibited by either superoxide dismutase (10 U) or catalase (40 U) and, therefore, were unrelated to the formation of oxygen radicals generated during transformation of the epoxide by cyclooxygenase. As 5,6-EET and 19- and 20-HETE are synthesized by the renal tubules and can affect movement of salt and water, expression of vasoactivity by P450-dependent arachidonic acid metabolites, and after release from a nephron segment, may represent a mechanism that couples altered renal tubular function to appropriate changes in local blood flow. PMID:1731035

  5. Exogenous Attention Enables Perceptual Learning

    PubMed Central

    Szpiro, Sarit F. A.; Carrasco, Marisa

    2015-01-01

    Practice can improve visual perception, and these improvements are considered to be a form of brain plasticity. Training-induced learning is time-consuming and requires hundreds of trials across multiple days. The process of learning acquisition is understudied. Can learning acquisition be potentiated by manipulating visual attentional cues? We developed a protocol in which we used task-irrelevant cues for between-groups manipulation of attention during training. We found that training with exogenous attention can enable the acquisition of learning. Remarkably, this learning was maintained even when observers were subsequently tested under neutral conditions, which indicates that a change in perception was involved. Our study is the first to isolate the effects of exogenous attention and to demonstrate its efficacy to enable learning. We propose that exogenous attention boosts perceptual learning by enhancing stimulus encoding. PMID:26502745

  6. A novel omega3-fatty acid desaturase involved in the biosynthesis of eicosapentaenoic acid.

    PubMed Central

    Pereira, Suzette L; Huang, Yung-Sheng; Bobik, Emil G; Kinney, Anthony J; Stecca, Kevin L; Packer, Jeremy C L; Mukerji, Pradip

    2004-01-01

    Long-chain n-3 PUFAs (polyunsaturated fatty acids) such as EPA (eicosapentaenoic acid; 20:5 n-3) have important therapeutic and nutritional benefits in humans. In plants, cyanobacteria and nematodes, omega3-desaturases catalyse the formation of these n-3 fatty acids from n-6 fatty acid precursors. Here we describe the isolation and characterization of a gene ( sdd17 ) derived from an EPA-rich fungus, Saprolegnia diclina, that encodes a novel omega3-desaturase. This gene was isolated by PCR amplification of an S. diclina cDNA library using oligonucleotide primers corresponding to conserved regions of known omega3-desaturases. Expression of this gene in Saccharomyces cerevisiae, in the presence of various fatty acid substrates, revealed that the recombinant protein could exclusively desaturate 20-carbon n-6 fatty acid substrates with a distinct preference for ARA (arachidonic acid; 20:4 n-6), converting it into EPA. This activity differs from that of the known omega3-desaturases from any organism. Plant and cyanobacterial omega3-desaturases exclusively desaturate 18-carbon n-6 PUFAs, and a Caenorhabditis elegans omega3-desaturase preferentially desaturated 18-carbon PUFAs over 20-carbon substrates, and could not convert ARA into EPA when expressed in yeast. The sdd17 -encoded desaturase was also functional in transgenic somatic soya bean embryos, resulting in the production of EPA from exogenously supplied ARA, thus demonstrating its potential for use in the production of EPA in transgenic oilseed crops. PMID:14651475

  7. Epoxyeicosatrienoic acids attenuate cigarette smoke extract-induced interleukin-8 production in bronchial epithelial cells.

    PubMed

    Ma, Wen-Jiang; Sun, Yan-Hong; Jiang, Jun-Xia; Dong, Xin-Wei; Zhou, Jian-Ying; Xie, Qiang-Min

    2015-03-01

    In response to endothelial cell activation, arachidonic acid can be converted by cytochrome P450 (CYP) epoxygenases to epoxyeicosatrienoic acids (EETs), which have potent vasodilator and anti-inflammatory properties. In this study, we investigated the effects of exogenous EETs on cigarette smoke extract (CSE)-induced inflammation in human bronchial epithelial cells (NCI-H292). We found that CSE inhibited the expression of CYP2C8 and mildly stimulated the expression of epoxide hydrolase 2 (EPHX2) but did not change the expression of CYP2J2. Treatment with 11,12-EET or 14,15-EET attenuated the CSE-induced release of interleukin (IL)-8 by inhibiting the phosphorylation of p38 mitogen-activated protein kinases (MAPKs). Our results demonstrated that CSE may reduce the anti-inflammatory ability of epithelial cells themselves by lowering the EET level. EETs from pulmonary epithelial cells may play a critical protective role on epithelial cell injury. PMID:25467970

  8. Thrombin stimulates the release of arachidonate but not 8,11,14-eicosatrienoate from endothelial cell glycerolipids

    SciTech Connect

    Rosenthal, M.D.

    1986-05-01

    Previous studies in their laboratory have shown that thrombin stimulates the release of arachidonate (20:4(n-6)) but not 22:4(n-6) from endothelial cell glycerolipids. The authors now report that thrombin also does not significantly stimulate the release of 8,11,14-(/sup 14/C)eicosatrienoate per se. Human umbilical vein endothelial cells were radiolabeled for 24 hr with 1.25 ..mu..M (/sup 14/C)20:3(n-6) or (/sup 14/C)20:4(n-6). When incubated for 10 min in buffered saline with 50 ..mu..M fat-free albumin and 1 U/ml thrombin, these cells released 4.1% and 7.6%, respectively, of the previously incorporated radioactivity. Analysis of released /sup 14/C-fatty acids by radio-gas chromatography indicated that the thrombin-stimulated release from cells prelabelled with (/sup 14/C)20:3(n-6) was essentially due to release of (/sup 14/C)arachidonate synthesized endogenously by desaturation of the (/sup 14/C)20:3(n-6). Expressed as a percentage of each /sup 14/C-fatty acyl present moiety in cellular glycerolipids of cells prelabelled with (/sup 14/C)20:3(n-6), release was 8.2% for arachidonate but only 0.63% for 20:3(n-6). Studies with other /sup 14/C-fatty acids indicate that 5,8,11-20:3 is released in response to thrombin (5-9%); 8,11,14,17-20:4 is not (<1%). These results suggest that a ..delta..5 double bond in the fatty acid is necessary for thrombin-stimulated release from endothelial cell glycerolipids.

  9. Deinhibition of cardiac Na/sup +/-K/sup +/-ATPase after exposure to exogenous phospholipase A/sub 2/

    SciTech Connect

    Colvin, R.A.

    1987-01-01

    After 2 h of exogenous phospholipase A/sub 2/ (PLA/sub 2/) exposure, membrane phospholipid decreased from 3.22 +/- 0.31 to 1.06 +/- 0.13 ..mu..mol/mg (33% of control). All classes of phospholipid, except sphingomyelin, were hydrolyzed, whereas total cholesterol content was unaffected. Increases in nonesterified fatty acids (NEFA) were reflected primarily in oleic (18:1), linoleic (18:2), and arachidonic (20:4). Na/sup +/-K/sup +/-adenosinetriphosphatase (ATPase) activity was inhibited to 29% of control by 2 h of PLA/sub 2/ treatment, and this inhibition was reversed (albeit, not completely after 5 min of PLA/sub 2/ treatment) by removal of the hydrolysis products with 0.1% bovine serum albumin (BSA). In contrast, the apparent binding capacity for (/sup 3/H)ouabain was not affected by PLA/sub 2/ treatment. Unmasking of latent (/sup 3/H)ouabain binding by alamethicin was utilized to estimate changes in the proportion of sealed vesicles present before and after PLA/sub 2/ treatment. PLA/sub 2/ treatment resulted in a time-dependent loss of sealed vesicles that paralleled the time course of phospholipid hydrolysis and was not reversed by washing with BSA. These studies demonstrate that cardiac Na/sup +/-K/sup +/-ATPase activity is inhibited by accumulation of endogenously produced lysophospholipids and NEFA. In contrast, loss of vesicle integrity may result from both accumulation of endogenously produced hydrolysis products and membrane phospholipid depletion.

  10. Astrocyte arachidonate and palmitate uptake and metabolism is differentially modulated by dibutyryl-cAMP treatment.

    PubMed

    Seeger, D R; Murphy, C C; Murphy, E J

    2016-07-01

    Astrocytes play a vital role in brain lipid metabolism; however the impact of the phenotypic shift in astrocytes to a reactive state on arachidonic acid metabolism is unknown. Therefore, we determined the impact of dibutyryl-cAMP (dBcAMP) treatment on radiolabeled arachidonic acid ([1-(14)C]20:4n-6) and palmitic acid ([1-(14)C]16:0) uptake and metabolism in primary cultured murine cortical astrocytes. In dBcAMP treated astrocytes, total [1-(14)C]20:4n-6 uptake was increased 1.9-fold compared to control, while total [1-(14)C]16:0 uptake was unaffected. Gene expression of long-chain acyl-CoA synthetases (Acsl), acyl-CoA hydrolase (Acot7), fatty acid binding protein(s) (Fabp) and alpha-synuclein (Snca) were determined using qRT-PCR. dBcAMP treatment increased expression of Acsl3 (4.8-fold) and Acsl4 (1.3-fold), which preferentially use [1-(14)C]20:4n-6 and are highly expressed in astrocytes, consistent with the increase in [1-(14)C]20:4n-6 uptake. However, expression of Fabp5 and Fabp7 were significantly reduced by 25% and 45%, respectively. Acot7 (20%) was also reduced, suggesting dBcAMP treatment favors acyl-CoA formation. dBcAMP treatment enhanced [1-(14)C]20:4n-6 (2.2-fold) and [1-(14)C]16:0 (1.6-fold) esterification into total phospholipids, but the greater esterification of [1-(14)C]20:4n-6 is consistent with the observed uptake through increased Acsl, but not Fabp expression. Although total [1-(14)C]16:0 uptake was not affected, there was a dramatic decrease in [1-(14)C]16:0 in the free fatty acid pool as esterification into the phospholipid pool was increased, which is consistent with the increase in Acsl3 and Acsl4 expression. In summary, our data demonstrates that dBcAMP treatment increases [1-(14)C]20:4n-6 uptake in astrocytes and this increase appears to be due to increased expression of Acsl3 and Acsl4 coupled with a reduction in Acot7 expression. PMID:27255639

  11. Administration of Exogenous Growth Hormone Is Associated with Changes in Plasma and Intracellular Mammary Amino Acid Profiles and Abundance of the Mammary Gland Amino Acid Transporter SLC3A2 in Mid-Lactation Dairy Cows

    PubMed Central

    Sciascia, Quentin L.; Pacheco, David; McCoard, Susan A.

    2015-01-01

    The objectives of this study were to (1) identify changes in plasma and mammary intracellular amino acid (AA) profiles in dairy cows treated with growth hormone (GH), and (2) evaluate the expression of mammary gland genes involved in the transport of AA identified in (1). Eight non-pregnant (n = 4 per group) lactating dairy cows were treated with a single subcutaneous injection of either a slow-release formulation of commercially available GH (Lactotropin 500 mg) or physiological saline solution. Six days after treatment, cows were milked and blood collected from the jugular vein for the analysis of free AA in the plasma. Cows were euthanized and mammary tissue harvested. Treatment with GH increased milk, protein, fat and lactose yields, with no effect on dry matter intake. Plasma concentrations of lysine and group I AA decreased significantly, and arginine, methionine, tyrosine and arginine-family AA tended to decrease in GH-treated cows. Concentrations of intracellular glycine, serine and glutamate increased significantly, with a trend for decreased arginine observed in the mammary gland of GH-treated cows. A trend for increased concentrations of intracellular total AA, NEAA and arginine-family AA were observed in the mammary gland of GH-treated cows. Variance in the concentration of plasma methionine, tyrosine, valine, alanine, ornithine, BCAA, EAA was significantly different between treatments. Variance in the concentration of intracellular lysine, valine, glutamine, EAA and group II was significantly different between treatments. AA changes were associated with increased mRNA abundance of the mammary gland AA transporter SLC3A2. We propose that these changes occur to support increased milk protein and fatty acid production in the mammary gland of GH-treated cows via potential mTOR pathway signaling. PMID:26226162

  12. Carboxylic Acid Ionophores as Probes of the Role of Calcium in Biological Systems

    NASA Technical Reports Server (NTRS)

    Reed, P. W.

    1983-01-01

    The biological effects of calcium ionophores are described, focusing on arachidonic acid oxygenation, and the formation of a number of oxygenated metabolites of arachidonic acid. These metabolites are involved in a number of bodily functions, and their production may be regulated by calcium.

  13. Exogenous proteases for meat tenderization.

    PubMed

    Bekhit, Alaa A; Hopkins, David L; Geesink, Geert; Bekhit, Adnan A; Franks, Philip

    2014-01-01

    The use of exogenous proteases to improve meat tenderness has attracted much interest recently, with a view to consistent production of tender meat and added value to lower grade meat cuts. This review discusses the sources, characteristics, and use of exogenous proteases in meat tenderization to highlight the specificity of the proteases toward meat proteins and their impact on meat quality. Plant enzymes (such as papain, bromelain, and ficin) have been extensively investigated as meat tenderizers. New plant proteases (actinidin and zingibain) and microbial enzyme preparations have been of recent interest due to controlled meat tenderization and other advantages. Successful use of these enzymes in fresh meat requires their enzymatic kinetics and characteristics to be determined, together with an understanding of the impact of the surrounding environmental conditions of the meat (pH, temperature) on enzyme function. This enables the optimal conditions for tenderizing fresh meat to be established, and the elimination or reduction of any negative impacts on other quality attributes. PMID:24499119

  14. Antagonism by antipyretics of the hyperthermic effect of a prostaglandin precursor, sodium arachidonate, in the cat.

    PubMed Central

    Clark, W G; Cumby, H R

    1976-01-01

    1. Injection of sodium arachidonate (100-400 mug) into lateral cerebral ventricles of unanaesthetized cats caused shivering and rapid development of dose-related hyperthermic responses. Unless arachidonate is hyperthermogenic per se, this indicates that in vivo formation of prostaglandins, or perhaps an endoperoxide intermediate, can cause hyperthermia. 2. Tolerance gradually developed when arachidonate was administered repeatedly at intervals of 1-7 days. Examination of the brains of several tolerant animals revealed in each case marked enlargement of the lateral ventricles which apparently accounted for the diminished response to arachidonate. 3. Sodium salicylate (40, 160 mg/kg, i.v.) antagonized arachidonate but only after a 3-4 hr latent period. 4. Paracetamol (10, 40 mg/kg, i.v.) reduced the hyperthermic effect of arachidonate but a dose of 40 mg/kg antagonized centrally administered bacterial endotoxin more effectively than it did arachidonate. 5. Indomethacin (40 mug/kg, i.v.) significantly reduced arachidonate-induced hyperthermia in only one of two studies. This reduction was comparable to the hypothermic effect of indomethacin in afebrile animals and was attributed to a non-specific action on thermoregulatory function rather than to inhibition of prostaglandin synthesis. Indomethacin antagonized endotoxin and leucocytic pyrogen to a greater degree than it did arachidonate. 6. Comparison of the relative effectiveness of the antipyretics in blocking hyperthermic responses to pyrogens and to sodium arachidonate indicates that, if prostaglandins do mediate pyrogen-induced fever, these antipyretics exert their primary at a step before prostaglandin synthesis. PMID:950606

  15. Phenol Metabolism, Phytoalexins, and Respiration in Potato Tuber Tissue Treated with Fatty Acid 1

    PubMed Central

    Maina, Gladys; Allen, Robert D.; Bhatia, Satish K.; Stelzig, David A.

    1984-01-01

    Potato (solanum tuberosum L. cv Katahdin) tuber discs treated with arachidonic acid become necrotic and accumulate sesquiterpenoid phytoalexins. The arachidonic acid also causes increases in both phenylalanine ammonia lyase and lignin, but no change in total alcohol-soluble phenols. Linoleic acid does not alter any of these parameters. A high concentration of nonanoic acid promotes both necrosis and accumulation of low levels of phytoalexins, but decreased levels of phenols, phenylalanine ammonia lyase, and lignin. The respiration of the control discs and those treated with linoleic acid declines by 24 hours after treatment, but the respiration of arachidonic acid-treated discs remains constant for at least 48 hours. PMID:16663915

  16. D-2 dopamine receptor activation reduces free ( sup 3 H)arachidonate release induced by hypophysiotropic peptides in anterior pituitary cells

    SciTech Connect

    Canonico, P.L. )

    1989-09-01

    Dopamine reduces the stimulation of intracellular ({sup 3}H)arachidonate release produced by the two PRL-stimulating peptides angiotensin-II and TRH. This effect is concentration dependent and is mediated by stimulation of D-2 dopamine receptors. D-2 receptor agonists (bromocriptine, dihydroergocryptine, and dihydroergocristine) inhibit the release of fatty acid induced by angiotensin-II with a potency that parallels their ability to inhibit PRL release in vitro. Conversely, the selective D-2 receptor antagonist L-sulpiride completely prevents dopamine's effect, whereas SCH 23390 (a D-1 receptor antagonist) is ineffective. The inhibitory action of dopamine does not seem to be consequent to an action on the adenylate cyclase-cAMP system, as 8-bromo-cAMP (1 mM) does not affect either basal or dopamine-inhibited ({sup 3}H)arachidonate release. However, a 24-h pertussis toxin pretreatment significantly reduces the action of dopamine on fatty acid release. Collectively, these results suggest that D-2 dopamine receptor-mediated inhibition of intracellular ({sup 3}H)arachidonate release requires the action of a GTP-binding protein, but is not a consequence of an inhibitory action on cAMP levels.

  17. Essential fatty acid nutrition of the American alligator (Alligator mississippiensis).

    PubMed

    Staton, M A; Edwards, H M; Brisbin, I L; Joanen, T; McNease, L

    1990-07-01

    The essential fatty acid (EFA) nutrition of young American alligators (Alligator mississippiensis) was examined by feeding a variety of fats/oils with potential EFA activity. Over a 12-wk period, alligators fed diets containing 2.5 or 5.0% chicken liver oil grew longer and heavier and converted feed to body mass more efficiently than alligators fed other fat/oil combinations that lacked or contained only trace amounts of arachidonic acid [20:4(n-6)]. Alligators fed an EFA-deficient diet (containing only coconut fat as the dietary fat) were the slowest-growing animals and converted feed to body mass least efficiently. However, over a 41-wk feeding period, alligators fed this diet showed no obvious external signs of deficiency other than being reduced in size and unthrifty. Fatty acid composition of heart, liver, muscle, skin and adipose tissue lipids was influenced markedly by dietary fat composition. Tissues varied significantly in response to dietary fat composition. Heart lipids contained the lowest levels of short- and medium-chain fatty acids and the highest levels of arachidonic acid. Arachidonic acid levels were less influenced by diet than were levels of other 20- and 22-carbon polyunsaturated fatty acids. Radiotracer studies indicated that linoleic acid was converted to arachidonic acid in the liver. Nevertheless, tissue arachidonic acid levels also appeared to be maintained by concentration from dietary sources and selective conservation. It appears that a dietary source of arachidonic acid may be required for a maximum rate of growth. PMID:2114472

  18. Fatty Acids Inhibit Apical Membrane Chloride Channels in Airway Epithelia

    NASA Astrophysics Data System (ADS)

    Anderson, Matthew P.; Welsh, Michael J.

    1990-09-01

    Apical membrane Cl^- channels control the rate of transepithelial Cl^- secretion in airway epithelia. cAMP-dependent protein kinase and protein kinase C regulate Cl^- channels by phosphorylation; in cystic fibrosis cells, phosphorylation-dependent activation of Cl^- channels is defective. Another important signaling system involves arachidonic acid, which is released from cell membranes during receptor-mediated stimulation. Here we report that arachidonic acid reversibly inhibited apical membrane Cl^- channels in cell-free patches of membrane. Arachidonic acid itself inhibited the channel and not a cyclooxygenase or lipoxygenase metabolite because (i) inhibitors of these enzymes did not block the response, (ii) fatty acids that are not substrates for the enzymes had the same effect as arachidonic acid, and (iii) metabolites of arachidonic acid did not inhibit the channel. Inhibition occurred only when fatty acids were added to the cytosolic surface of the membrane patch. Unsaturated fatty acids were more potent than saturated fatty acids. Arachidonic acid inhibited Cl^- channels from both normal and cystic fibrosis cells. These results suggest that fatty acids directly inhibit apical membrane Cl^- channels in airway epithelial cells.

  19. Protein kinase C promotes arachidonate mobilization through enhancement of CoA-independent transacylase activity in platelets.

    PubMed Central

    Breton, M; Colard, O

    1991-01-01

    A role for protein kinase C in arachidonate mobilization was demonstrated. Treatment of rat platelets with phorbol myristate acetate (PMA) or the diacylglycerol 1-oleoyl-2-acetylglycerol increased the transfer rate of arachidonate (AA) from phosphatidylcholine to phosphatidylethanolamine and stimulated AA release. The transfer dose-dependently induced by PMA was inhibited by staurosporine. Ether phospholipids were the acceptors of AA in these stimulated transfer reactions. Membrane-bound protein kinase C activity was enhanced by PMA, and this increase was inhibited by staurosporine. AA transfer between phospholipids is due to the action of polyunsaturated-fatty-acid-specific transacylases. For this purpose, transacylase activities were assayed in cell-free systems from PMA-treated platelets. We observed that the CoA-independent transacylase activity was modulated in parallel to AA transfer as a function of PMA concentration. Taken together, the data show that protein kinase C activation might promote the mobilization of AA in platelets through the enhancement of CoA-independent transacylase activity. PMID:1741761

  20. Selective incorporation of docosahexaenoic acid into lysobisphosphatidic acid in cultured THP-1 macrophages.

    PubMed

    Besson, Nelly; Hullin-Matsuda, Francoise; Makino, Asami; Murate, Motohide; Lagarde, Michel; Pageaux, Jean-Francois; Kobayashi, Toshihide; Delton-Vandenbroucke, Isabelle

    2006-02-01

    Lysobisphosphatidic acid (LBPA) is highly accumulated in specific domains of the late endosome and is involved in the biogenesis and function of this organelle. Little is known about the biosynthesis and metabolism of this lipid. We examined its FA composition and the incorporation of exogenous FA into LBPA in the human monocytic leukemia cell line THP-1. The LBPA FA composition in THP-1 cells exhibits an elevated amount of oleic acid (18:1n-9) and enrichment of PUFA, especially DHA (22:6n-3). DHA supplemented to the medium was efficiently incorporated into LBPA. In contrast, arachidonic acid (20:4n-6) was hardly esterified to LBPA under the same experimental conditions. The turnover of DHA in LBPA was similar to that in other phospholipids. Specific incorporation of DHA into LBPA was also observed in baby hamster kidney fibroblasts, although LBPA in these cells contains very low endogenous levels of DHA in normal growth conditions. Our resuIts, together with published observations, suggest that the specific incorporation of DHA into LBPA is a common phenomenon in mammalian cells. The physiological significance of DHA-enriched LBPA is discussed. PMID:17707985