Science.gov

Sample records for exogenous reactive oxygen

  1. Biological importance of reactive oxygen species in relation to difficulties of treating pathologies involving oxidative stress by exogenous antioxidants.

    PubMed

    Jurnek, Ivo; Nikitovic, Dragana; Kouretas, Dimitrios; Hayes, A Wallace; Tsatsakis, Aristidis M

    2013-11-01

    Findings about involvement of reactive oxygen species (ROS) not only in defense processes, but also in a number of pathologies, stimulated discussion about their role in etiopathogenesis of various diseases. Yet questions regarding the role of ROS in tissue injury, whether ROS may serve as a common cause of different disorders or whether their uncontrolled production is just a manifestation of the processes involved, remain unexplained. Dogmatically, increased ROS formation is considered to be responsible for development of the so-called free-radical diseases. The present review discusses importance of ROS in various biological processes, including origin of life, evolution, genome plasticity, maintaining homeostasis and organism protection. This may be a reason why no significant benefit was found when exogenous antioxidants were used to treat free-radical diseases, even though their causality was primarily attributed to ROS. Here, we postulate that ROS unlikely play a causal role in tissue damage, but may readily be involved in signaling processes and as such in mediating tissue healing rather than injuring. This concept is thus in a contradiction to traditional understanding of ROS as deleterious agents. Nonetheless, under conditions of failing autoregulation, ROS may attack integral cellular components, cause cell death and deteriorate the evolving injury. PMID:24025685

  2. Fluoranthene fumigation and exogenous scavenging of reactive oxygen intermediates (ROI) in evergreen Japanese red pine seedlings (Pinus densiflora Sieb. et. Zucc.).

    PubMed

    Oguntimehin, Ilemobayo; Sakugawa, Hiroshi

    2008-06-01

    Generation of reactive oxygen intermediates (ROI) such as O(2)(-), H(2)O(2), and *OH is known to be a major mechanism of damage in biological systems. This study investigated and compared effectiveness of scavenging ROI generated in fluoranthene (FLU) pre-fumigated Japanese red pine seedlings. Three kinds of eco-physiological assessments were used to express the impact of the different fumigants used inside the green house. Gas exchange measurements showed negative changes induced by 10 microM FLU on Japanese pine seedlings during a 10 d exposure period whilst no negative change was found during a 5 d exposure period. Moreover, during a 14 d FLU exposure incorporating ROI scavengers, results revealed that chlorophyll fluorescence, needle chemical contents and needle dry mass per unit area of the seedlings were affected. The negative effects of FLU on the conifer were dependent on both the dose and period of FLU fumigation. Peroxidase (PERO), superoxide dismutase (SOD) and mannitol (MANN) were all effective scavengers of ROI. MANN scavenged *OH, the most lethal of the ROI. For practicable use, MANN is more economical, and may be the best ROI scavenger among the three considered. It can be concluded that efficient scavenging of ROI in biological systems is important to mitigate the negative effects of FLU on Japanese red pine trees. PMID:18442844

  3. Exogenous spermine ameliorates high glucose-induced cardiomyocytic apoptosis via decreasing reactive oxygen species accumulation through inhibiting p38/JNK and JAK2 pathways

    PubMed Central

    He, Yuqin; Yang, Jinxia; Li, Hongzhu; Shao, Hongjiang; Wei, Can; Wang, Yuehong; Li, Meixiu; Xu, Changqing

    2015-01-01

    Reactive oxygen species (ROS) generation has been suggested to play a vital role in the initiation and progression of diabetic cardiomyopathy, a major complication of diabetes mellitus. Recent studies reveal that spermine possesses proliferative, antiaging and antioxidative properties. Thus, we hypothesized that spermine could decrease apoptosis via suppressing ROS accumulation induced by high glucose (HG) in cardiomyocytes. Cultured neonatal rat ventricle cardiomyocytes were treated with normal glucose (NG) (5 mM) or HG (25 mM) in the presence or absence of spermine for 48 h. The cell activity, apoptosis, ROS production, T-SOD and GSH activities, MDA content and GSSG level were assessed. The results showed that HG induced lipid peroxidation and the increase of intracellular ROS formation and apoptosis in primary cardiomyocytes. Spermine could obviously improve the above-mentioned changes. Western blot analysis revealed that spermine markedly inhibited HG-induced the phosphorylation of p38/JNK MAPKs and JAK2. Moreover, spermine had better antioxidative and anti-apoptotic effects than N-acetyl-L-cysteine (NAC). Taken together, the present data suggested that spermine could suppress ROS accumulation to decrease cardiomyocytes apoptosis in HG condition, which may be attributed to the inhibition of p38/JNK and JAK2 activation and its natural antioxidative property. Our findings may highlight a new therapeutic intervention for the prevention of diabetic cardiomyopathy. PMID:26884823

  4. Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots

    PubMed Central

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy R.; Mahajan, Priyanka; Kohli, Ravinder Kumar; Rishi, Valbha

    2015-01-01

    Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0–8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure. PMID:26402793

  5. Reactive oxygen species in periodontitis

    PubMed Central

    Dahiya, Parveen; Kamal, Reet; Gupta, Rajan; Bhardwaj, Rohit; Chaudhary, Karun; Kaur, Simerpreet

    2013-01-01

    Recent epidemiological studies reveal that more than two-third of the world's population suffers from one of the chronic forms of periodontal disease. The primary etiological agent of this inflammatory disease is a polymicrobial complex, predominantly Gram negative anaerobic or facultative bacteria within the sub-gingival biofilm. These bacterial species initiate the production of various cytokines such as interleukin-8 and TNF-α, further causing an increase in number and activity of polymorphonucleocytes (PMN) along with these cytokines, PMNs also produce reactive oxygen species (ROS) superoxide via the respiratory burst mechanism as the part of the defence response to infection. ROS just like the interleukins have deleterious effects on tissue cells when produced in excess. To counter the harmful effects of ROS, human body has its own defence mechanisms to eliminate them as soon as they are formed. The aim of this review is to focus on the role of different free radicals, ROS, and antioxidants in the pathophysiology of periodontal tissue destruction. PMID:24174716

  6. Reactive oxygen species in cancer

    PubMed Central

    Liou, Geou-Yarh; Storz, Peter

    2013-01-01

    Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumor development and progression. However, tumor cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells from ROS-induced tumor promoting events, towards tipping the balance to ROS-induced apoptotic signaling. Alternatively, therapeutic antioxidants may prevent early events in tumor development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signaling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumor cells, their detoxification, their cellular effects, as well as the major signaling cascades they utilize, but also provides an outlook on their modulation in therapeutics. PMID:20370557

  7. Reactive Oxygen Species in Cardiovascular Disease

    PubMed Central

    Sugamura, Koichi; Keaney, John F.

    2011-01-01

    Based on the ‘free-radical theory’ of disease, researchers have been trying to elucidate the role of oxidative stress from free radicals in cardiovascular disease. Considerable data indicate that ROS and oxidative stress are important features of cardiovascular diseases including atherosclerosis, hypertension, and congestive heart failure. However, blanket strategies with antioxidants to ameliorate cardiovascular disease have not generally yielded favorable results. However, our understanding or reactive oxygen species has evolved to the point that we now realize these species have important roles in physiology as well as pathophysiology. Thus, it is overly simplistic to assume a general antioxidant strategy will yield specific effects on cardiovascular disease. Indeed, there are several sources of reactive oxygen species that are known to be active in the cardiovascular system. This review will address our understanding of reactive oxygen species sources in cardiovascular disease and both animal and human data defining how reactive oxygen species contribute to physiology and pathology. PMID:21627987

  8. Release of elicitors from rice blast spores under the action of reactive oxygen species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of reactive oxygen species (ROS) on secretion of hypothesized elicitors from spores of rice blast causal fungus Magnaporthe grisea were studied. For spore exposure to exogenous ROS, they were germinated for 5 h in 50 µM H2O2 followed by addition of catalase E.C. 1.11.1.6 (to decompose pe...

  9. The role of reactive oxygen species in PDT efficacy

    NASA Astrophysics Data System (ADS)

    Price, Michael; Okan-Mensah, Nakaiya; Santiago, Ann Marie; Kessel, David

    2009-02-01

    While the first reactive oxygen species (ROS) formed during photodynamic therapy (PDT) is singlet molecular oxygen (1O2), other ROS are formed downstream including superoxide anion radical (CO2 -), hydrogen peroxide (H2O2) and hydroxyl radical (OH). In this study, we examined the role of H2O2 in the phototoxic response to PDT in murine leukemia L388 cells. Inhibition of catalase activity, a major pathway to H2O2 detoxification, led to enhanced apoptosis and cell death. Addition of exogenous catalase offered protection from phototoxicity as did chelation of Fe+2, a co-factor in OH production from H2O2. These results indicate the H2O2 formed during PDT plays a role in PDT efficacy.

  10. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  11. Bis(?-oxo) dicopper(III) species of the simplest peralkylated diamine: enhanced reactivity toward exogenous substrates.

    PubMed

    Kang, Peng; Bobyr, Elena; Dustman, John; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I; Stack, T Daniel P

    2010-12-01

    N,N,N',N'-tetramethylethylenediamine (TMED), the simplest and most extensively used peralkylated diamine ligand, is conspicuously absent from those known to form a bis(?-oxo)dicopper(III) (O) species, [(TMED)(2)Cu(III)(2)(?(2)-O)(2)](2+), upon oxygenation of its Cu(I) complex. Presented here is the characterization of this O species and its reactivity toward exogenous substrates. Its formation is complicated both by the instability of the [(TMED)Cu(I)](1+) precursor and by competitive formation of a presumed mixed-valent trinuclear [(TMED)(3)Cu(III)Cu(II)(2)(?(3)-O)(2)](3+) (T) species. Under most reaction conditions, the T species dominates, yet, the O species can be formed preferentially (>80%) upon oxygenation of acetone solutions, if the copper concentration is low (<2 mM) and [(TMED)Cu(I)](1+) is prepared immediately before use. The experimental data of this simplest O species provide a benchmark by which to evaluate density functional theory (DFT) computational methods for geometry optimization and spectroscopic predictions. The enhanced thermal stability of [(TMED)(2)Cu(III)(2)(?(2)-O)(2)](2+) and its limited steric demands compared to other O species allows more efficient oxidation of exogenous substrates, including benzyl alcohol to benzaldehyde (80% yield), highlighting the importance of ligand structure to not only enhance the oxidant stability but also maintain accessibility to the nascent metal/O(2) oxidant. PMID:21028910

  12. Formation and Detoxification of Reactive Oxygen Species

    ERIC Educational Resources Information Center

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also

  13. Formation and Detoxification of Reactive Oxygen Species

    ERIC Educational Resources Information Center

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

  14. Superoxide Dismutases and Reactive Oxygen Species

    SciTech Connect

    Cabelli, D.E.

    2011-01-01

    The 'free radical theory' of aging was introduced over a half-century ago. In this theory, much of the deleterious effects of aging were attributed to the cumulative buildup of damage from reactive oxygen species. When discussing reactive oxygen species (ROS) in aerobic systems, both superoxide radicals (O{sub 2}{sup -}) and superoxide dismutases (SODs) are considered to play prominent roles. O{sub 2}{sup -} is formed by attachment of the electron to oxygen (O{sub 2}) that is present in tens to hundreds of micromolar concentration in vivo. SODs are enzymes that serve to eliminate O{sub 2}{sup -} by rapidly converting it to O{sub 2} and hydrogen peroxide (H{sub 2}O{sub 2}). Both the radical and the enzyme will be discussed with the focus on the systems that are present in humans.

  15. REACTIVE OXYGEN SPECIES: IMPACT ON SKELETAL MUSCLE

    PubMed Central

    Powers, Scott K.; Ji, Li Li; Kavazis, Andreas N.; Jackson, Malcolm J.

    2014-01-01

    It is well established that contracting muscles produce both reactive oxygen and nitrogen species. Although the sources of oxidant production during exercise continue to be debated, growing evidence suggests that mitochondria are not the dominant source. Regardless of the sources of oxidants in contracting muscles, intense and prolonged exercise can result in oxidative damage to both proteins and lipids in the contracting myocytes. Further, oxidants regulate numerous cell signaling pathways and modulate the expression of many genes. This oxidant-mediated change in gene expression involves changes at transcriptional, mRNA stability, and signal transduction levels. Furthermore, numerous products associated with oxidant-modulated genes have been identified and include antioxidant enzymes, stress proteins, and mitochondrial electron transport proteins. Interestingly, low and physiological levels of reactive oxygen species are required for normal force production in skeletal muscle, but high levels of reactive oxygen species result in contractile dysfunction and fatigue. Ongoing research continues to explore the redox-sensitive targets in muscle that are responsible for both redox-regulation of muscle adaptation and oxidant-mediated muscle fatigue. PMID:23737208

  16. Signaling Functions of Reactive Oxygen Species†

    PubMed Central

    Forman, Henry Jay; Maiorino, Matilde; Ursini, Fulvio

    2014-01-01

    We review signaling by reactive oxygen species, which is emerging as a major physiological process. However, among the reactive oxygen species, H2O2 best fulfills the requirements of being a second messenger. Its enzymatic production and degradation, along with the requirements for the oxidation of thiols by H2O2, provide the specificity for time and place that are required in signaling. Both thermodynamic and kinetic considerations suggest that among possible oxidation states of cysteine, formation of sulfenic acid derivatives or disulfides can be relevant as thiol redox switches in signaling. In this work, the general constraints that are required for protein thiol oxidation by H2O2 to be fast enough to be relevant for signaling are discussed in light of the mechanism of oxidation of the catalytic cysteine or selenocysteine in thiol peroxidases. While the nonenzymatic reaction between thiol and H2O2 is, in most cases, too slow to be relevant in signaling, the enzymatic catalysis of thiol oxidation by these peroxidases provides a potential mechanism for redox signaling. PMID:20050630

  17. Reactive Oxygen Species in Health and Disease

    PubMed Central

    Alfadda, Assim A.; Sallam, Reem M.

    2012-01-01

    During the past decades, it became obvious that reactive oxygen species (ROS) exert a multitude of biological effects covering a wide spectrum that ranges from physiological regulatory functions to damaging alterations participating in the pathogenesis of increasing number of diseases. This review summarizes the key roles played by the ROS in both health and disease. ROS are metabolic products arising from various cells; two cellular organelles are intimately involved in their production and metabolism, namely, the endoplasmic reticulum and the mitochondria. Updates on research that tremendously aided in confirming the fundamental roles of both organelles in redox regulation will be discussed as well. Although not comprehensive, this review will provide brief perspective on some of the current research conducted in this area for better understanding of the ROS actions in various conditions of health and disease. PMID:22927725

  18. REACTIVE OXYGEN SPECIES AND COLORECTAL CANCER

    PubMed Central

    Sreevalsan, Sandeep; Safe, Stephen

    2013-01-01

    Several agents used for treatment of colon and other cancers induce reactive oxygen species (ROS) and this plays an important role in their anticancer activities. In addition to the well-known proapoptotic effects of ROS inducers, these compounds also decrease expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and several pro-oncogenic Spregulated genes important for cancer cell proliferation, survival and metastasis. The mechanism of these responses involve ROS-dependent downregulation of microRNA-27a (miR-27a) or miR-20a (and paralogs) and induction of two Sp-repressors, ZBTB10 and ZBTB4 respectively. This pathway significantly contributes to the anticancer activity of ROS inducers and should be considered in development of drug combinations for cancer chemotherapy. PMID:25584043

  19. Reactive oxygen species and anti-proteinases.

    PubMed

    Siddiqui, Tooba; Zia, Mohammad Khalid; Ali, Syed Saqib; Rehman, Ahmed Abdur; Ahsan, Haseeb; Khan, Fahim Halim

    2016-02-01

    Reactive oxygen species (ROS) cause damage to macromolecules such as proteins, lipids and DNA and alters their structure and function. When generated outside the cell, ROS can induce damage to anti-proteinases. Anti-proteinases are proteins that are involved in the control and regulation of proteolytic enzymes. The damage caused to anti-proteinase barrier disturbs the proteinase-anti-proteinases balance and uncontrolled proteolysis at the site of injury promotes tissue damage. Studies have shown that ROS damages anti-proteinase shield of the body by inactivating key members such as alpha-2-macroglobulin, alpha-1-antitrypsin. Hypochlorous acid inactivates α-1-antitrypsin by oxidizing a critical reactive methionine residue. Superoxide and hypochlorous acid are physiological inactivators of alpha-2-macroglobulin. The damage to anti-proteinase barrier induced by ROS is a hallmark of diseases such as atherosclerosis, emphysema and rheumatoid arthritis. Thus, understanding the behaviour of ROS-induced damage to anti-proteinases may helps us in development of strategies that could control these inflammatory reactions and diseases. PMID:26699123

  20. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  1. Influence of reactive oxygen species on the sterilization of microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...

  2. Reactive Oxygen Species and the Cardiovascular System

    PubMed Central

    Taverne, Yannick J. H. J.; Bogers, Ad J. J. C.; Duncker, Dirk J.; Merkus, Daphne

    2013-01-01

    Ever since the discovery of free radicals, many hypotheses on the deleterious actions of reactive oxygen species (ROS) have been proposed. However, increasing evidence advocates the necessity of ROS for cellular homeostasis. ROS are generated as inherent by-products of aerobic metabolism and are tightly controlled by antioxidants. Conversely, when produced in excess or when antioxidants are depleted, ROS can inflict damage to lipids, proteins, and DNA. Such a state of oxidative stress is associated with many pathological conditions and closely correlated to oxygen consumption. Although the deleterious effects of ROS can potentially be reduced by restoring the imbalance between production and clearance of ROS through administration of antioxidants (AOs), the dosage and type of AOs should be tailored to the location and nature of oxidative stress. This paper describes several pathways of ROS signaling in cellular homeostasis. Further, we review the function of ROS in cardiovascular pathology and the effects of AOs on cardiovascular outcomes with emphasis on the so-called oxidative paradox. PMID:23738043

  3. [Reactive oxygen forms and luminescence of intact microspore cells].

    PubMed

    Roshchina, V V; Miller, A V; Safronova, V G; Karnaukhov, V N

    2003-01-01

    The participation of reactive oxygen species (ROS) in luminescence (chemiluminescence and autofluorescence induced by ultraviolet light of 360-380 nm) was analyzed. Microspores, the pollen (male gametophyte) of Hippeastrum hybridum, Philadelphus grandiflorus, and Betula verrucosa and vegetative microspores of the spore-breeding plant Equisetum arvense served as models. It was found that the addition of the chemiluminescent probe lucigenin, which luminesces in the presence of superoxide anionradicals, leads to intensive chemiluminescence of microspores. No emission was observed in the absence of lucigenin and in the presence of the dye luminol as a chemiluminescent probe. The emission decreased significantly if superoxide dismutase, an enzyme of the superoxide anionradical dismutation during which this radical disappeared, was added before the dye addition. The autofluorescence intensity of microspores decreased in the presence of both superoxide dismutase and peroxidase, an enzyme destroying hydrogen peroxide and organic peroxides. The most significant effect was noted after the addition of peroxidase, which indicates a greater contribution of peroxides to this type of emission. The fumigation with ozone, which increases the amount of ROS on the cell surface, enhanced the intensity of the chemiluminescence of microspores with lucigenin, but decreased the intensity of the autofluorescence of microspores. Exogenous peroxides (hydrogen peroxide and tert-butylhydroperoxide) stimulated the autofluorescence of pollen and vegetative spores in a concentration-dependent manner. It was shown that the formation of ROS contributes to the luminescence of plant microspores, which reflects their functional state. PMID:12723352

  4. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  5. Mitochondrial reactive oxygen species production and elimination.

    PubMed

    Nickel, Alexander; Kohlhaas, Michael; Maack, Christoph

    2014-08-01

    Reactive oxygen species (ROS) play an important role in cardiovascular diseases, and one important source for ROS are mitochondria. Emission of ROS from mitochondria is the net result of ROS production at the electron transport chain (ETC) and their elimination by antioxidative enzymes. Both of these processes are highly dependent on the mitochondrial redox state, which is dynamically altered under different physiological and pathological conditions. The concept of "redox-optimized ROS balance" integrates these aspects and implies that oxidative stress occurs when the optimal equilibrium of an intermediate redox state is disturbed towards either strong oxidation or reduction. Furthermore, mitochondria integrate ROS signals from other cellular sources, presumably through a process termed "ROS-induced ROS release" that involves mitochondrial ion channels. Here, we attempt to integrate these recent advances in our understanding of the control of mitochondrial ROS emission and develop a concept of how in heart failure, defects in ion handling can lead to mitochondrial oxidative stress. This article is part of a Special Issue entitled "Redox Signalling in the Cardiovascular System". PMID:24657720

  6. Reactive oxygen species enhance insulin sensitivity

    PubMed Central

    Loh, Kim; Deng, Haiyang; Fukushima, Atsushi; Cai, Xiaochu; Boivin, Benoit; Galic, Sandra; Bruce, Clinton; Shields, Benjamin J.; Skiba, Beata; Ooms, Lisa M.; Stepto, Nigel; Wu, Ben; Mitchell, Christina A.; Tonks, Nicholas K.; Watt, Matthew J.; Febbraio, Mark A.; Crack, Peter J.; Andrikopoulos, Sofianos; Tiganis, Tony

    2010-01-01

    SUMMARY Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione peroxidase 1 (Gpx1), were protected from high fat diet-induced insulin resistance. The increased insulin sensitivity in Gpx1−/− mice was attributed to insulin-induced phosphatidylinositol-3-kinase/Akt signaling and glucose uptake in muscle and could be reversed by the anti-oxidant N-acetylcysteine. Increased insulin signaling correlated with enhanced oxidation of the PTP family member PTEN, which terminates signals generated by phosphatidylinositol-3-kinase. These studies provide causal evidence for the enhancement of insulin signaling by ROS in vivo. PMID:19808019

  7. Reactive oxygen species and redox compartmentalization

    PubMed Central

    Kaludercic, Nina; Deshwal, Soni; Di Lisa, Fabio

    2014-01-01

    Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca2+ or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases. PMID:25161621

  8. Cardiac mitochondria and reactive oxygen species generation.

    PubMed

    Chen, Yeong-Renn; Zweier, Jay L

    2014-01-31

    Mitochondrial reactive oxygen species (ROS) have emerged as an important mechanism of disease and redox signaling in the cardiovascular system. Under basal or pathological conditions, electron leakage for ROS production is primarily mediated by the electron transport chain and the proton motive force consisting of a membrane potential (??) and a proton gradient (?pH). Several factors controlling ROS production in the mitochondria include flavin mononucleotide and flavin mononucleotide-binding domain of complex I, ubisemiquinone and quinone-binding domain of complex I, flavin adenine nucleotide-binding moiety and quinone-binding pocket of complex II, and unstable semiquinone mediated by the Q cycle of complex III. In mitochondrial complex I, specific cysteinyl redox domains modulate ROS production from the flavin mononucleotide moiety and iron-sulfur clusters. In the cardiovascular system, mitochondrial ROS have been linked to mediating the physiological effects of metabolic dilation and preconditioning-like mitochondrial ATP-sensitive potassium channel activation. Furthermore, oxidative post-translational modification by glutathione in complex I and complex II has been shown to affect enzymatic catalysis, protein-protein interactions, and enzyme-mediated ROS production. Conditions associated with oxidative or nitrosative stress, such as myocardial ischemia and reperfusion, increase mitochondrial ROS production via oxidative injury of complexes I and II and superoxide anion radical-induced hydroxyl radical production by aconitase. Further insight into cellular mechanisms by which specific redox post-translational modifications regulate ROS production in the mitochondria will enrich our understanding of redox signal transduction and identify new therapeutic targets for cardiovascular diseases in which oxidative stress perturbs normal redox signaling. PMID:24481843

  9. Skin, Reactive Oxygen Species, and Circadian Clocks

    PubMed Central

    Ndiaye, Mary A.; Nihal, Minakshi; Wood, Gary S.

    2014-01-01

    Abstract Significance: Skin, a complex organ and the body's first line of defense against environmental insults, plays a critical role in maintaining homeostasis in an organism. This balance is maintained through a complex network of cellular machinery and signaling events, including those regulating oxidative stress and circadian rhythms. These regulatory mechanisms have developed integral systems to protect skin cells and to signal to the rest of the body in the event of internal and environmental stresses. Recent Advances: Interestingly, several signaling pathways and many bioactive molecules have been found to be involved and even important in the regulation of oxidative stress and circadian rhythms, especially in the skin. It is becoming increasingly evident that these two regulatory systems may, in fact, be interconnected in the regulation of homeostasis. Important examples of molecules that connect the two systems include serotonin, melatonin, vitamin D, and vitamin A. Critical Issues: Excessive reactive oxygen species and/or dysregulation of antioxidant system and circadian rhythms can cause critical errors in maintaining proper barrier function and skin health, as well as overall homeostasis. Unfortunately, the modern lifestyle seems to contribute to increasing alterations in redox balance and circadian rhythms, thereby posing a critical problem for normal functioning of the living system. Future Directions: Since the oxidative stress and circadian rhythm systems seem to have areas of overlap, future research needs to be focused on defining the interactions between these two important systems. This may be especially important in the skin where both systems play critical roles in protecting the whole body. Antioxid. Redox Signal. 20, 2982–2996. PMID:24111846

  10. Oxygen Reactivity of a Carbon Fiber Composite

    SciTech Connect

    Marshall, Theron Devol; Pawelko, Robert James; Anderl, Robert Andrew; Smolik, Galen Richard

    2002-09-01

    Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar21 vol% O2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000 C and a 100 standard cubic centimeters per minute (sccm) ArO2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000 C and a 1000 sccm ArO2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.

  11. Unravelling the Biological Roles of Reactive Oxygen Species

    PubMed Central

    Murphy, Michael P.; Holmgren, Arne; Larsson, Nils-Gran; Halliwell, Barry; Chang, Christopher J.; Kalyanaraman, Balaraman; Rhee, Sue Goo; Thornalley, Paul J.; Partridge, Linda; Gems, David; Nystrm, Thomas; Belousov, Vsevolod; Schumacker, Paul T.; Winterbourn, Christine C.

    2015-01-01

    Summary Reactive oxygen species are not only harmful agents that cause oxidative damage in pathologies, they also have important roles as regulatory agents in a range of biological phenomena. The relatively recent development of this more nuanced view presents a challenge to the biomedical research community on how best to assess the significance of reactive oxygen species and oxidative damage in biological systems. Considerable progress is being made in addressing these issues and here we survey some recent developments for those contemplating research in this area. PMID:21459321

  12. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling. PMID:17386182

  13. Comparison of two strategies for detection of reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Gao, Weidong; Zhou, Yuanshu; Gu, Yueqing

    2014-09-01

    Photodynamic therapy (PDT) is a clinically approved treatment that was applied to oncology , dermatology, and ophthalmology. Reactive oxygen species (ROS) play a important role in the efficacy of PDT. Online monitoring of reactive oxygen species is the key to understand effect of PDT treatment. We used Fluorescence probes DPBF and luminescent probe luminal to measure the ROS in cells. And we revaluate the relationship between the amount of light and cell survival. There is strongly correlated between the amount of light and cell kill.

  14. [Reactive oxygen species, stress and cell death in plants].

    PubMed

    Parent, Claire; Capelli, Nicolas; Dat, James

    2008-04-01

    Plants are constantly exposed to changes in environmental conditions. During periods of stress, the cellular redox homeostasis is altered as a result of reactive oxygen species accumulation. The change in redox is responsible for the symptoms commonly observed during periods of stress and reflects the phytotoxic nature of oxygen radical accumulation. However, oxygen radicals have recently been identified as key actors in the response to stress and their role as secondary messengers is now clearly established. The identification of their role in gene regulation has allowed one to identify them as key regulators in the induction and execution of programmed cell death typically observed during developmental processes as well as during stress responses. This review presents recent advances in the characterisation of the role of reactive oxygen species in plants. PMID:18355747

  15. Investigation of the reactivity of organic materials in liquid oxygen

    NASA Technical Reports Server (NTRS)

    Chamberlain, D.; Irwin, K.; Kirshen, N.; Mill, T.; Stringham, R.

    1970-01-01

    Measurements of impact-ignition sensitivity and studies of the relative reactivity of t-butoxy and t-butyl peroxy radicals toward a variety of organic compounds reveal improved methods of selection of materials for safe use in a liquid oxygen environment.

  16. A role for reactive oxygen species in postharvest biocontrol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) play an important role in plant defense responses against pathogens. There is evidence that microbial biocontrol agents also induce a transient production of ROS in a host plant which triggers local and systemic defense responses. In this study, we explored the abilit...

  17. BIOMONITORING OF REACTIVE OXYGEN SPECIES IN BIOLOGICAL FLUIDS

    EPA Science Inventory

    Elevated levels of reactive oxygen species (ROS) are associated with several disease processes in humans, including cancer, asthma, diabetes, and cardiac disease. We have explored whether ROS can be measured directly in human fluids, and their value as a biomarker of exposure an...

  18. Adipose dysfunction, interaction of reactive oxygen species, and inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This American Society for Nutrition sponsored symposium summary contains information about the symposium focus and the general content of speaker presentation. The focus of the symposium was to delineate the significance of obesity-associated reactive oxygen species (ROS), inflammation, and adipose ...

  19. Contribution of reactive oxygen species to UV-B-induced damage in bacteria.

    PubMed

    Santos, Ana L; Gomes, Newton C M; Henriques, Isabel; Almeida, Adelaide; Correia, Antnio; Cunha, ngela

    2012-12-01

    The present work aimed to identify the reactive oxygen species (ROS) produced during UV-B exposure and their biochemical targets, in a set of bacterial isolates displaying different UV susceptibilities. For that, specific exogenous ROS scavengers (catalase/CAT, superoxide dismutase/SOD, sodium azide and mannitol) were used. Biological effects were assessed from total bacterial number, colony counts and heterotrophic activity (glucose uptake and respiration). DNA strand breakage, ROS generation, oxidative damage to proteins and lipids were used as markers of oxidative stress. Sodium azide conferred a statistically significant protection in terms of lipid oxidation and cell survival, suggesting that singlet oxygen might play an important role in UV-B induced cell inactivation. Mannitol exerted a significant protection against DNA strand breakage and protein carbonylation, assigning hydroxyl radicals to DNA and protein damage. The addition of exogenous CAT and SOD significantly protected the capacity for glucose uptake and respiration, suggesting that superoxide and H(2)O(2) are involved in the impairment of activity during UV-B exposure. The observation that amendment with ROS scavengers can sometimes also exert a pro-oxidant effect suggests that the intracellular oxidant status of the cell ultimately determines the efficiency of antioxidant defenses. PMID:23026387

  20. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    PubMed Central

    Bolisetty, Subhashini; Jaimes, Edgar A.

    2013-01-01

    The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis. PMID:23528859

  1. Reactive oxygen and oxidative stress tolerance in plant pathogenic Pseudomonas.

    PubMed

    Fones, Helen; Preston, Gail M

    2012-02-01

    Reactive oxygen species (ROS) are a key feature of plant (and animal) defences against invading pathogens. As a result, plant pathogens must be able to either prevent their production or tolerate high concentrations of these highly reactive chemicals. In this review, we focus on plant pathogenic bacteria of the genus Pseudomonas and the ways in which they overcome the challenges posed by ROS. We also explore the ways in which pseudomonads may exploit plant ROS generation for their own purposes and even produce ROS directly as part of their infection mechanisms. PMID:22092667

  2. Exogenous Superoxide Dismutase Mimetic Without Scavenging H2O2 Causes Photoreceptor Damage in a Rat Model for Oxygen-Induced Retinopathy

    PubMed Central

    Jivabhai Patel, Shamin; Bany-Mohammed, Fayez; McNally, Lois; Valencia, Gloria B.; Lazzaro, Douglas R.; Aranda, Jacob V.; Beharry, Kay D.

    2015-01-01

    Purpose. Frequent, brief intermittent episodes of hypoxia (IH) during hyperoxia increase reactive oxygen species in the immature retina with compromised antioxidant systems, thus leading to oxygen-induced retinopathy (OIR). We examined the hypothesis that early exposure to a mimetic of superoxide dismutase (SOD), the first line of defense against oxidative stress, will decrease IH-induced reactive oxygen species (ROS) and prevent severe OIR in our rat model. Methods. To test this hypothesis, newborn rats (P0) were exposed to IH consisting of alternating cycles of 50% O2 with brief hypoxia (12% O2) until P14 during which they were treated with a single daily intraperitoneal (IP) dose of MnTBAP (a SOD mimetic) at 1.0, 5.0, or 10.0 mg/kg on P0, P1, and P2. A saline-treated group served as vehicle controls. Groups were analyzed following IH at P14 or allowed to recover in room air (RA) until P21. Control littermates were raised in RA with all conditions identical except for inspired O2. Ocular assessment of OIR severity, oxidative stress, angiogenesis, antioxidant activity, and oxidative phosphorylation (OXPHOS) were conducted at P14 and P21. Results. Collectively, the data show increased oxidative stress and angiogenesis with MnTBAP, which was associated with photoreceptor damage, retinal characteristics consistent with severe OIR, and changes in genes regulating OXPHOS. Conclusions. In the setting of IH, the use of exogenous SOD mimetics must be combined with H2O2 scavengers in order to prevent photoreceptor damage and severe OIR. PMID:25670494

  3. Experimental systems to assess the effects of reactive oxygen species in plant tissues

    PubMed Central

    Flgge, Ulf-Ingo

    2008-01-01

    Reactive oxygen species (ROS) are continuously produced in several organelles during aerobic metabolism. Furthermore, a wide range of environmental stresses such as chilling, salinity, drought and high light, lead to an elevated production of ROS. ROS can react with biomolecules and cause oxidative damage and even necrosis. Antioxidants and antioxidant-enzymes function to interrupt the cascades of uncontrolled oxidation. On the other hand, ROS influence the expression of genes playing a central role in many signaling pathways. Tools like the exogenous application of oxidative stress-causing agents and the in planta production of ROS in mutants altered in ROS metabolism are increasingly used to assess specific and common responses toward different types of ROS signals. The major challenge is the identification of ROS sensors and signaling components to finally elucidate the molecular mechanisms of oxidative stress response in plants. PMID:19513194

  4. Experimental systems to assess the effects of reactive oxygen species in plant tissues.

    PubMed

    Maurino, Vernica G; Flgge, Ulf-Ingo

    2008-11-01

    Reactive oxygen species (ROS) are continuously produced in several organelles during aerobic metabolism. Furthermore, a wide range of environmental stresses such as chilling, salinity, drought and high light, lead to an elevated production of ROS. ROS can react with biomolecules and cause oxidative damage and even necrosis. Antioxidants and antioxidant-enzymes function to interrupt the cascades of uncontrolled oxidation. On the other hand, ROS influence the expression of genes playing a central role in many signaling pathways. Tools like the exogenous application of oxidative stress-causing agents and the in planta production of ROS in mutants altered in ROS metabolism are increasingly used to assess specific and common responses toward different types of ROS signals. The major challenge is the identification of ROS sensors and signaling components to finally elucidate the molecular mechanisms of oxidative stress response in plants. PMID:19513194

  5. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  6. Probing the reactivity of singlet oxygen with purines

    PubMed Central

    Dumont, Elise; Grüber, Raymond; Bignon, Emmanuelle; Morell, Christophe; Moreau, Yohann; Monari, Antonio; Ravanat, Jean-Luc

    2016-01-01

    The reaction of singlet molecular oxygen with purine DNA bases is investigated by computational means. We support the formation of a transient endoperoxide for guanine and by classical molecular dynamics simulations we demonstrate that the formation of this adduct does not affect the B-helicity. We thus identify the guanine endoperoxide as a key intermediate, confirming a low-temperature nuclear magnetic resonance proof of its existence, and we delineate its degradation pathway, tracing back the preferential formation of 8-oxoguanine versus spiro-derivates in B-DNA. Finally, the latter oxidized 8-oxodGuo product exhibits an almost barrierless reaction profile, and hence is found, coherently with experience, to be much more reactive than guanine itself. On the contrary, in agreement with experimental observations, singlet-oxygen reactivity onto adenine is kinetically blocked by a higher energy transition state. PMID:26656495

  7. Probing the reactivity of singlet oxygen with purines.

    PubMed

    Dumont, Elise; Grüber, Raymond; Bignon, Emmanuelle; Morell, Christophe; Moreau, Yohann; Monari, Antonio; Ravanat, Jean-Luc

    2016-01-01

    The reaction of singlet molecular oxygen with purine DNA bases is investigated by computational means. We support the formation of a transient endoperoxide for guanine and by classical molecular dynamics simulations we demonstrate that the formation of this adduct does not affect the B-helicity. We thus identify the guanine endoperoxide as a key intermediate, confirming a low-temperature nuclear magnetic resonance proof of its existence, and we delineate its degradation pathway, tracing back the preferential formation of 8-oxoguanine versus spiro-derivates in B-DNA. Finally, the latter oxidized 8-oxodGuo product exhibits an almost barrierless reaction profile, and hence is found, coherently with experience, to be much more reactive than guanine itself. On the contrary, in agreement with experimental observations, singlet-oxygen reactivity onto adenine is kinetically blocked by a higher energy transition state. PMID:26656495

  8. Role of reactive oxygen species in cell signalling pathways.

    PubMed

    Hancock, J T; Desikan, R; Neill, S J

    2001-05-01

    Reactive oxygen species (ROS) were originally thought to only be released by phagocytic cells during their role in host defence. It is now clear that ROS have a cell signalling role in many biological systems, both in animals and in plants. ROS induce programmed cell death or necrosis, induce or suppress the expression of many genes, and activate cell signalling cascades, such as those involving mitogen-activated protein kinases. PMID:11356180

  9. Unusual Reactivity of the Martian Soil: Oxygen Release Upon Humidification

    NASA Technical Reports Server (NTRS)

    Yen, A. S.

    2002-01-01

    Recent lab results show that oxygen evolves from superoxide-coated mineral grains upon exposure to water vapor. This observation is additional support of the hypothesis that UV-generated O2 is responsible for the reactivity of the martian soil. Discussion of current NASA research opportunities, status of various programs within the Solar System Exploration Division, and employment opportunities within NASA Headquarters to support these programs. Additional information is contained in the original extended abstract.

  10. Susceptibility of cloned K+ channels to reactive oxygen species.

    PubMed Central

    Duprat, F; Guillemare, E; Romey, G; Fink, M; Lesage, F; Lazdunski, M; Honore, E

    1995-01-01

    Free radical-induced oxidant stress has been implicated in a number of physiological and pathophysiological states including ischemia and reperfusion-induced dysrhythmia in the heart, apoptosis of T lymphocytes, phagocytosis, and neurodegeneration. We have studied the effects of oxidant stress on the native K+ channel from T lymphocytes and on K+ channels cloned from cardiac, brain, and T-lymphocyte cells and expressed in Xenopus oocytes. The activity of three Shaker K+ channels (Kv1.3, Kv1.4, and Kv1.5), one Shaw channel (Kv3.4), and one inward rectifier K+ channel (IRK3) was drastically inhibited by photoactivation of rose bengal, a classical generator of reactive oxygen species. Other channel types (such as Shaker K+ channel Kv1.2, Shab channels Kv2.1 and Kv2.2, Shal channel Kv4.1, inward rectifiers IRK1 and ROMK1, and hIsK) were completely resistant to this treatment. On the other hand tert-butyl hydroperoxide, another generator of reactive oxygen species, removed the fast inactivation processes of Kv1.4 and Kv3.4 but did not alter other channels. Xanthine/xanthine oxidase system had no effect on all channels studied. Thus, we show that different types of K+ channels are differently modified by reactive oxygen species, an observation that might be of importance in disease states. PMID:8524851

  11. Reactive oxygen species: Reactions and detection from photosynthetic tissues.

    PubMed

    Mattila, Heta; Khorobrykh, Sergey; Havurinne, Vesa; Tyystjärvi, Esa

    2015-11-01

    Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed. PMID:26498710

  12. DNA Damage-induced Reactive Oxygen Species (ROS) Stress Response in Saccharomyces cerevisiae

    PubMed Central

    Rowe, Lori A.; Degtyareva, Natalya; Doetsch, Paul W.

    2008-01-01

    Cells are exposed to both endogenous and exogenous sources of reactive oxygen species (ROS). At high levels, ROS can lead to impaired physiological function through cellular damage of DNA, proteins, lipids, and other macromolecules, which can lead to certain human pathologies including cancers, neurodegenerative disorders, and cardiovascular disease, as well as aging. We have employed Saccharomyces cerevisiae as a model system to examine the levels and types of ROS that are produced in response to DNA damage in isogenic strains with different DNA repair capacities. We find that when DNA damage is introduced into cells from exogenous or endogenous sources there is an increase in the amount of intracellular ROS which is not directly related to cell death. We have examined the spectrum of ROS in order to elucidate its role in the cellular response to DNA damage. As an independent verification of the DNA damage-induced ROS response, we show that a major activator of the oxidative stress response, Yap1, relocalizes to the nucleus following exposure to the DNA alkylating agent methyl methanesulfonate. Our results indicate that the DNA damage-induced increase in intracellular ROS levels is a generalized stress response that is likely to function in various signaling pathways. PMID:18708137

  13. Properties of reactive oxygen species by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3 - N4, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  14. Properties of reactive oxygen species by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles. PMID:25005287

  15. Properties of reactive oxygen species by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} − N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  16. Applications of Electron Spin Resonance Spectrometry for Reactive Oxygen Species and Reactive Nitrogen Species Research

    PubMed Central

    Kohno, Masahiro

    2010-01-01

    Electron spin resonance (ESR) spectroscopy has been widely applied in the research of biological free radicals for quantitative and qualitative analyses of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ESR spin-trapping method was developed in the early 1970s and enabled the analysis of short-lived free radicals. This method is now widely used as one of the most powerful tools for free radical studies. In this report, some of the studies that applied ESR for the measurement of ROS and RNS during oxidative stress are discussed. PMID:20664724

  17. Sulfur, oxygen, and nitrogen mustards: stability and reactivity.

    PubMed

    Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

    2012-11-28

    Mustard gas, bis(?-chloroethyl) sulfide (HD), is highly toxic and harmful to humans and the environment. It comprises one class of chemical warfare agents (CWAs) that was used in both World Wars I and II. The three basic analogues or surrogates are: the monochloro derivative, known as the half mustard, 2-chloroethyl ethyl sulfide (CEES); an oxygen analogue, bis(?-chloroethyl) ether (BCEE); and several nitrogen analogues based on the 2,2'-dichlorodiethylamine framework (e.g., HN1, HN2, and HN3). The origin of their toxicity is considered to be from the formation of three-membered heterocyclic ions, a reaction that is especially accelerated in aqueous solution. The reaction of these cyclic ion intermediates with a number of important biological species such as DNA, RNA and proteins causes cell toxicity and is responsible for the deleterious effects of the mustards. While a number of studies have been performed over the last century to determine the chemistry of these compounds, early studies suffered from a lack of more sophisticated NMR and X-ray techniques. It is now well-established that the sulfur and nitrogen mustards are highly reactive in water, while the oxygen analog is much more stable. In this study, we review and summarize results from previous studies, and add results of our own studies of the reactivity of these mustards toward various nonaqueous solvents and nucleophiles. In this manner a more comprehensive evaluation of the stability and reactivity of these related mustard compounds is achieved. PMID:23070251

  18. Svf1 inhibits reactive oxygen species generation and promotes survival under conditions of oxidative stress in Saccharomyces cerevisiae.

    PubMed

    Brace, Jennifer L; Vanderweele, David J; Rudin, Charles M

    2005-06-01

    Aberrant regulation of apoptosis, or programmed cell death, contributes to the aetiology of several diseases, including cancers, immunodeficiencies and neurodegenerative illnesses. We hypothesized that key features of mammalian cell death regulation may be conserved in single celled organisms such as the budding yeast Saccharomyces cerevisiae. We previously identified the yeast gene SVF1 in a screen for mutations that could be functionally complemented by exogenous expression of the human anti-apoptotic gene Bcl-x(L). Anti-apoptotic Bcl-2 family members have been shown to promote redox stability through upregulation of antioxidant pathways in mammalian cells. Here we demonstrate that the Svf1 protein is required for yeast survival under conditions of oxidative stress, including cold stress. Cells lacking SVF1 are hypersensitive to conditions associated with increased reactive oxygen species (ROS) generation and to direct chemical precursors of ROS, and demonstrate increased levels of ROS under these conditions. Hypersensitivity to oxidative stress can be reversed by treatment with the antioxidant N-acetylcysteine or expression of exogenous SVF1, although exogenous expression of Bcl-x(L) did not protect cells from cold stress. Exogenous SVF1 expression in mammalian cells confers resistance to H(2)O(2) exposure. Our data are consistent with previous observations suggesting a key role of oxidative stress response in mammalian apoptotic regulation and validate the use of S. cerevisiae as a model for studying programmed cell death. PMID:16034825

  19. Mechanisms of group A Streptococcus resistance to reactive oxygen species

    PubMed Central

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.

    2015-01-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  20. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    PubMed

    Henningham, Anna; Dhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2(-)), hydroxyl radicals (OH) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  1. Control of root growth and development by reactive oxygen species.

    PubMed

    Tsukagoshi, Hironaka

    2016-02-01

    Reactive oxygen species (ROS) are relatively simple molecules that exist within cells growing in aerobic conditions. ROS were originally associated with oxidative stress and seen as highly reactive molecules that are injurious to many cell components. More recently, however, the function of ROS as signal molecules in many plant cellular processes has become more evident. One of the most important functions of ROS is their role as a plant growth regulator. For example, ROS are key molecules in regulating plant root development, and as such, are comparable to plant hormones. In this review, the molecular mechanisms of ROS that are mainly associated with plant root growth are discussed. The molecular links between root growth regulation by ROS and other signals will also be briefly discussed. PMID:26724502

  2. Evidence for reactive oxygen species inducing mutations in mammalian cells.

    PubMed Central

    Hsie, A W; Recio, L; Katz, D S; Lee, C Q; Wagner, M; Schenley, R L

    1986-01-01

    We have studied the mutagenicity (by selecting for mutants resistant to 6-thioguanine) and cytotoxicity (by determining cellular cloning efficiency) of physical and chemical agents in Chinese hamster ovary (CHO) cells, clone CHO-K1-BH4 (K1-BH4), and its radiation-hypersensitive transformant, AS52. AS52 cells contain a single functional copy of a bacterial gene, the xanthine/guanine phosphoribosyltransferase (gpt) gene instead of its mammalian equivalent, the hypoxanthine/guanine phosphoribosyltransferase (hprt) gene. We found that x-ray and neutron irradiations are equally toxic to both cell types; however, these physical agents are approximately equal to 10 times more mutagenic to AS52 cells than to K1-BH4 cells. Our earlier studies using Southern blot analysis showed that x-irradiation produces mostly or exclusively deletion mutations in both cell types. If reactive oxygen species mediate the mutagenic effects of radiations and chemicals, then radiomimetic compounds such as streptonigrin and bleomycin, which exert their biological effects via reactive oxygen species, and oxidizing compounds such as potassium superoxide and hydrogen peroxide should elicit a similar differential mutagenic response in both cell types. On the other hand, agents such as ethyl methanesulfonate, ICR 191, and UV light, which do not produce reactive oxygen species, should not elicit differential mutagenicity. Our results fulfill such predictions. The apparent hypermutability of AS52 cells probably results from a higher recovery of multilocus deletion mutants in AS52 cells than in K1-BH4 cells, rather than a higher yield of induced mutants. PMID:2432598

  3. Reactive Oxygen Species Driven Angiogenesis by Inorganic Nanorods

    PubMed Central

    Patra, Chitta Ranjan; Kim, Jong Ho; Pramanik, Kallal; dUscio, Livius V.; Patra, Sujata; Pal, Krishnendu; Ramchandran, Ramani; Strano, Michael S; Mukhopadhyay, Debabrata

    2011-01-01

    The exact mechanism of angiogenesis by europium hydroxide nanorods was unclear. In this study we have showed that formation of reactive oxygen species (H2O2 and O2?) are involved in redox signaling pathways during angiogenesis, important for cardiovascular and ischemic diseases. Here we used single-walled carbon nanotube (SWNT) sensor array to measure the single-molecule efflux of H2O2 and a HPLC method for the determination of O2? from endothelial cells in response to pro-angiogenic factors. Additionally, ROS-mediated angiogenesis using inorganic nanorods was observed in transgenic (fli1a:EGFP) zebrafish embryos. PMID:21967244

  4. Nitric oxide and reactive oxygen species in plant biotic interactions.

    PubMed

    Scheler, Claudia; Durner, Jrg; Astier, Jeremy

    2013-08-01

    Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plants. Recent progress has been made in defining their role during plant biotic interactions. Over the last decade, their function in disease resistance has been highlighted and focused a lot of investigations. Moreover, NO and ROS have recently emerged as important players of defense responses after herbivore attacks. Besides their role in plant adaptive response development, NO and ROS have been demonstrated to be involved in symbiotic interactions between plants and microorganisms. Here we review recent data concerning these three sides of NO and ROS functions in plant biotic interactions. PMID:23880111

  5. Manganese Neurotoxicity and the Role of Reactive Oxygen Species

    PubMed Central

    Martinez-Finley, Ebany J.; Gavin, Claire E; Aschner, Michael; Gunter, Thomas E.

    2013-01-01

    Manganese (Mn) is an essential dietary nutrient but excess or accumulations can be toxic. Disease states, like manganism, are associated with overexposure or accumulation of Mn and are due to the production of reactive oxygen species, free radicals and toxic metabolites, alteration of mitochondrial function and ATP production and depletion of cellular antioxidant defense mechanisms. This review focuses on all of the preceding mechanisms and the scientific studies that support them as well as provides an overview of the absorption, distribution, and excretion of Mn and the stability and transport of Mn compounds in the body. PMID:23395780

  6. Redox Processes in Neurodegenerative Disease Involving Reactive Oxygen Species

    PubMed Central

    Kovacic, Peter; Somanathan, Ratnasamy

    2012-01-01

    Much attention has been devoted to neurodegenerative diseases involving redox processes. This review comprises an update involving redox processes reported in the considerable literature in recent years. The mechanism involves reactive oxygen species and oxidative stress, usually in the brain. There are many examples including Parkinson’s, Huntington’s, Alzheimer’s, prions, Down’s syndrome, ataxia, multiple sclerosis, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis, schizophrenia, and Tardive Dyskinesia. Evidence indicates a protective role for antioxidants, which may have clinical implications. A multifaceted approach to mode of action appears reasonable. PMID:23730253

  7. Cellular Reactive Oxygen Species Inhibit MPYS Induction of IFN?

    PubMed Central

    Jin, Lei; Lenz, Laurel L.; Cambier, John C.

    2010-01-01

    Many inflammatory diseases, as well as infections, are accompanied by elevation in cellular levels of Reactive Oxygen Species (ROS). Here we report that MPYS, a.k.a. STING, which was recently shown to mediate activation of IFN? expression during infection, is a ROS sensor. ROS induce intermolecular disulfide bonds formation in MPYS homodimer and inhibit MPYS IFN? stimulatory activity. Cys-64, -148, -292, -309 and the potential C88xxC91 redox motif in MPYS are indispensable for IFN? stimulation and IRF3 activation. Thus, our results identify a novel mechanism for ROS regulation of IFN? stimulation. PMID:21170271

  8. Reactive oxygen species produced from chromate pigments and ascorbate.

    PubMed Central

    Lefebvre, Y; Pezerat, H

    1994-01-01

    The reactions of various chromate pigments and ascorbate were investigated by an ESR spin trapping technique. Production of Cr(V) was detected directly and productions of very electrophilic reactive oxygen species (ROS) was detected via the oxidation of formate. We demonstrated previously that both dissolved oxygen and Cr (V) were essential in the production of ROS in this system, and that ROS production was inhibited by catalase. We studied here the effect of solubility of different chromate pigments: sodium, calcium, strontium, basic zinc, basic lead supported on silica, and lead and barium chromates on the production of ROS in buffered medium and cell culture medium (Dublecco's Modified Eagle medium + fetal calf serum). Sodium, calcium, basic zinc, and basic lead chromates were active in the production of ROS in presence of cell culture medium, whereas lead and barium chromates were inactive. PMID:7843106

  9. The role of reactive oxygen and nitrogen species in airway epithelial gene expression.

    PubMed Central

    Martin, L D; Krunkosky, T M; Voynow, J A; Adler, K B

    1998-01-01

    The body first encounters deleterious inhaled substances, such as allergens, industrial particles, pollutants, and infectious agents, at the airway epithelium. When this occurs, the epithelium and its resident inflammatory cells respond defensively by increasing production of cytokines, mucus, and reactive oxygen and nitrogen species (ROS/RNS). As inflammation in the airway increases, additional infiltrating cells increase the level of these products. Recent interest has focused on ROS/RNS as potential modulators of the expression of inflammation-associated genes important to the pathogenesis of various respiratory diseases. ROS/RNS appear to play a variety of roles that lead to changes in expression of genes such as interleukin-6 and intercellular adhesion molecule 1. By controlling this regulation, the reactive species can serve as exogenous stimuli, as intercellular signaling molecules, and as modulators of the redox state in epithelial cells. Unraveling the molecular mechanisms affected by ROS/RNS acting in these capacities should aid in the understanding of how stimulated defense mechanisms within the airway can lead to disease. Images Figure 1 PMID:9788898

  10. In situ reactive oxygen species production for tertiary wastewater treatment.

    PubMed

    Guitaya, La; Drogui, Patrick; Blais, Jean Franois

    2015-05-01

    The goal of this research was to develop a new approach for tertiary water treatment, particularly disinfection and removal of refractory organic compounds, without adding any chemical. Hydrogen peroxide can indeed be produced from dissolved oxygen owing to electrochemical processes. Using various current intensities (1.0 to 4.0 A), it was possible to in situ produce relatively high concentration of H2O2 with a specific production rate of 0.05??10(-5) M/min/A. Likewise, by using ultraviolet-visible absorption spectroscopy method, it was shown that other reactive oxygen species (ROS) including HO(*) radical and O3 could be simultaneously formed during electrolysis. The ROS concentration passed from 0.45??10(-5) M after 20 min of electrolysis to a concentration of 2.87??10(-5) M after 100 min of electrolysis. The disinfection and the organic matter removal were relatively high during the tertiary treatment of municipal and domestic wastewaters. More than 90 % of organic compounds (chemical oxygen demand) can be removed, whereas 99 % of faecal coliform abatement can be reached. Likewise, the process was also effective in removing turbidity (more than 90 % of turbidity was removed) so that the effluent became more and more transparent. PMID:25483973

  11. Fullerol-sensitized production of reactive oxygen species in aqueous solution.

    PubMed

    Pickering, K D; Wiesner, M R

    2005-03-01

    The relative production rate of reactive oxygen in aqueous solution sensitized by fullerol (a polyhydroxylated, water-soluble form of the fullerene C60) was measured and compared to known reactive oxygen sensitizers using an oxygen consumption method. The solutions were irradiated by polychromatic visible and ultraviolet light. Reactive oxygen species were generated under both visible and ultraviolet light sources. The greatest rates of oxygen consumption were observed at acidic pH. We show for the first time evidence of both singlet oxygen and superoxide production by fullerol under both UV and polychromatic light sources. PMID:15787378

  12. Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production??

    PubMed Central

    Holzerov, Elika; Prokisch, Holger

    2015-01-01

    For more than 50 years, reactive oxygen species have been considered as harmful agents, which can attack proteins, lipids or nucleic acids. In order to deal with reactive oxygen species, there is a sophisticated system developed in mitochondria to prevent possible damage. Indeed, increased reactive oxygen species levels contribute to pathomechanisms in several human diseases, either by its impaired defense system or increased production of reactive oxygen species. However, in the last two decades, the importance of reactive oxygen species in many cellular signaling pathways has been unraveled. Homeostatic levels were shown to be necessary for correct differentiation during embryonic expansion of stem cells. Although the mechanism is still not fully understood, we cannot only regard reactive oxygen species as a toxic by-product of mitochondrial respiration anymore. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. PMID:25666559

  13. Reactive oxygen species-targeted therapeutic interventions for atrial fibrillation

    PubMed Central

    Sovari, Ali A.; Dudley, Samuel C.

    2012-01-01

    Atrial fibrillation (AF) is the most common arrhythmia that requires medical attention, and its incidence is increasing. Current ion channel blockade therapies and catheter ablation have significant limitations in treatment of AF, mainly because they do not address the underlying pathophysiology of the disease. Oxidative stress has been implicated as a major underlying pathology that promotes AF; however, conventional antioxidants have not shown impressive therapeutic effects. A more careful design of antioxidant therapies and better selection of patients likely are required to treat effectively AF with antioxidant agents. Current evidence suggest inhibition of prominent cardiac sources of reactive oxygen species (ROS) such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and targeting subcellular compartments with the highest levels of ROS may prove to be effective therapies for AF. Increased serum markers of oxidative stress may be an important guide in selecting the AF patients who will most likely respond to antioxidant therapy. PMID:22934062

  14. The Role of Reactive Oxygen Species in Microvascular Remodeling

    PubMed Central

    Staiculescu, Marius C.; Foote, Christopher; Meininger, Gerald A.; Martinez-Lemus, Luis A.

    2014-01-01

    The microcirculation is a portion of the vascular circulatory system that consists of resistance arteries, arterioles, capillaries and venules. It is the place where gases and nutrients are exchanged between blood and tissues. In addition the microcirculation is the major contributor to blood flow resistance and consequently to regulation of blood pressure. Therefore, structural remodeling of this section of the vascular tree has profound implications on cardiovascular pathophysiology. This review is focused on the role that reactive oxygen species (ROS) play on changing the structural characteristics of vessels within the microcirculation. Particular attention is given to the resistance arteries and the functional pathways that are affected by ROS in these vessels and subsequently induce vascular remodeling. The primary sources of ROS in the microcirculation are identified and the effects of ROS on other microcirculatory remodeling phenomena such as rarefaction and collateralization are briefly reviewed. PMID:25535075

  15. Reactive Oxygen Species in Normal and Tumor Stem Cells

    PubMed Central

    Zhou, Daohong; Shao, Lijian; Spitz, Douglas R.

    2014-01-01

    Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed. PMID:24974178

  16. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  17. Reactive oxygen species and the bacterial response to lethal stress

    PubMed Central

    Zhao, Xilin; Drlica, Karl

    2014-01-01

    Bacteria are killed by a variety of lethal stressors, some of which promote a cascade of reactive oxygen species (ROS). Perturbations expected to alter ROS accumulation affect the lethal action of diverse antibacterials, leading to the hypothesis that killing by these agents can involve ROS-mediated self-destruction. Recent challenges to the hypothesis are considered, particularly with respect to complexities in assays that distinguish primary damage from the cellular response to that damage. Also considered are bifunctional factors that are protective at low stress levels but destructive at high levels. These considerations, plus new data, support an involvement of ROS in the lethal action of some antimicrobials and raise important questions concerning consumption of antioxidant dietary supplements during antimicrobial chemotherapy. PMID:25078317

  18. Reactive oxygen species and plant resistance to fungal pathogens.

    PubMed

    Lehmann, Silke; Serrano, Mario; L'Haridon, Floriane; Tjamos, Sotirios E; Metraux, Jean-Pierre

    2015-04-01

    Reactive oxygen species (ROS) have been studied for their role in plant development as well as in plant immunity. ROS were consistently observed to accumulate in the plant after the perception of pathogens and microbes and over the years, ROS were postulated to be an integral part of the defence response of the plant. In this article we will focus on recent findings about ROS involved in the interaction of plants with pathogenic fungi. We will describe the ways to detect ROS, their modes of action and their importance in relation to resistance to fungal pathogens. In addition we include some results from works focussing on the fungal interactor and from studies investigating roots during pathogen attack. PMID:25264341

  19. Bioreductively Activated Reactive Oxygen Species (ROS) Generators as MRSA Inhibitors.

    PubMed

    Khodade, Vinayak S; Sharath Chandra, Mallojjala; Banerjee, Ankita; Lahiri, Surobhi; Pulipeta, Mallikarjuna; Rangarajan, Radha; Chakrapani, Harinath

    2014-07-10

    The number of cases of drug resistant Staphylococcus aureus infections is on the rise globally and new strategies to identify drug candidates with novel mechanisms of action are in urgent need. Here, we report the synthesis and evaluation of a series of benzo[b]phenanthridine-5,7,12(6H)-triones, which were designed based on redox-active natural products. We find that the in vitro inhibitory activity of 6-(prop-2-ynyl)benzo[b]phenanthridine-5,7,12(6H)-trione (1f) against methicillin-resistant Staphylococcus aureus (MRSA), including a panel of patient-derived strains, is comparable or better than vancomycin. We show that the lead compound generates reactive oxygen species (ROS) in the cell, contributing to its antibacterial activity. PMID:25050164

  20. Reactive Oxygen Species and Dopamine Receptor Function in Essential Hypertension

    PubMed Central

    Zeng, Chunyu; Villar, Van Anthony M.; Yu, Peiying; Zhou, Lin; Jose, Pedro A.

    2013-01-01

    Essential hypertension is a major risk factor for stroke, myocardial infarction, and heart and kidney failure. Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones and humoral factors. However, the mechanisms leading to impaired dopamine receptor function in hypertension states are not clear. Compelling experimental evidence indicates a role of reactive oxygen species (ROS) in hypertension, and there are increasing pieces of evidence showing that in conditions associated with oxidative stress, which is present in hypertensive states, dopamine receptor effects, such as natriuresis, diuresis, and vasodilation, are impaired. The goal of this review is to present experimental evidence that has led to the conclusion that decreased dopamine receptor function increases ROS activity and vice versa. Decreased dopamine receptor function and increased ROS production, working in concert or independent of each other, contribute to the pathogenesis of essential hypertension. PMID:19330604

  1. Reactive Oxygen Species, Apoptosis, and Mitochondrial Dysfunction in Hearing Loss

    PubMed Central

    Fujimoto, Chisato

    2015-01-01

    Reactive oxygen species (ROS) production is involved in several apoptotic and necrotic cell death pathways in auditory tissues. These pathways are the major causes of most types of sensorineural hearing loss, including age-related hearing loss, hereditary hearing loss, ototoxic drug-induced hearing loss, and noise-induced hearing loss. ROS production can be triggered by dysfunctional mitochondrial oxidative phosphorylation and increases or decreases in ROS-related enzymes. Although apoptotic cell death pathways are mostly activated by ROS production, there are other pathways involved in hearing loss that do not depend on ROS production. Further studies of other pathways, such as endoplasmic reticulum stress and necrotic cell death, are required. PMID:25874222

  2. Reactive Oxygen Species in Inflammation and Tissue Injury

    PubMed Central

    Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. PMID:23991888

  3. Reactive oxygen species, ageing and the hormesis police.

    PubMed

    Ludovico, Paula; Burhans, William C

    2014-02-01

    For more than 50years, the free radical theory served as the paradigm guiding most investigations of ageing. However, recent studies in a variety of organisms have identified conceptual and practical limitations to this theory. Some of these limitations are related to the recent discovery that caloric restriction and other experimental manipulations promote longevity by inducing hormesis effects in association with increased reactive oxygen species (ROS). The beneficial role of ROS in lifespan extension is consistent with the essential role of these molecules in cell signalling. However, the identity of specific forms of ROS that promote longevity remains unclear. In this article, we argue that in several model systems, hydrogen peroxide plays a crucial role in the induction of hormesis. PMID:23965186

  4. Reactive oxygen species are involved in regulation of pollen wall cytomechanics.

    PubMed

    Smirnova, A V; Matveyeva, N P; Yermakov, I P

    2014-01-01

    Production and scavenging of reactive oxygen species (ROS) in somatic plant cells is developmentally regulated and plays an important role in the modification of cell wall mechanical properties. Here we show that H2O2 and the hydroxyl radical (()OH) can regulate germination of tobacco pollen by modifying the mechanical properties of the pollen intine (inner layer of the pollen wall). Pollen germination was affected by addition of exogenous H2O2, ()OH, and by antioxidants scavenging endogenous ROS: superoxide dismutase, superoxide dismutase/catalase mimic Mn-5,10,15,20-tetrakis(1-methyl-4-pyridyl)21H, 23H-porphin, or a spin-trap ?-(4-pyridyl-1-oxide)-N-tert-butylnitrone, which eliminates ()OH. The inhibiting concentrations of exogenous H2O2 and ()OH did not decrease pollen viability, but influenced the mechanical properties of the wall. The latter were estimated by studying the resistance of pollen to hypo-osmotic shock. ()OH caused excess loosening of the intine all over the surface of the pollen grain, disrupting polar growth induction. In contrast, H2O2, as well as partial removal of endogenous ()OH, over-tightened the wall, impeding pollen tube emergence. Feruloyl esterase (FAE) was used as a tool to examine whether H2O2-inducible inter-polymer cross-linking is involved in the intine tightening. FAE treatment caused loosening of the intine and stimulated pollen germination and pollen tube growth, revealing ferulate cross-links in the intine. Taken together, the data suggest that pollen intine properties can be regulated differentially by ROS. ()OH is involved in local loosening of the intine in the germination pore region, while H2O2 is necessary for intine strengthening in the rest of the wall through oxidative coupling of feruloyl polysaccharides. PMID:23574420

  5. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    NASA Technical Reports Server (NTRS)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  6. Updates of reactive oxygen species in melanoma etiology and progression

    PubMed Central

    Liu-Smith, Feng; Dellinger, Ryan; Meyskens, Frank L.

    2014-01-01

    Reactive oxygen species (ROS) play crucial roles in all aspects of melanoma development, however, the source of ROS is not well defined. In this review we summarize recent advancement in this rapidly developing field. The cellular ROS pool in melanocytes can be derived from mitochondria, melanosomes, NADPH oxidase (NOX) family enzymes, and uncoupling of nitric oxide synthase (NOS). Current evidence suggests that Nox1, Nox4 and Nox5 are expressed in melanocytic lineage. While there is no difference in Nox1 expression levels in primary and metastatic melanoma tissues, Nox4 expression is significantly higher in a subset of metastatic melanoma tumors as compared to the primary tumors; suggesting distinct and specific signals and effects for NOX family enzymes in melanoma. Targeting these NOX enzymes using specific NOX inhibitors may be effective for a subset of certain tumors. ROS also play important roles in BRAF inhibitor induced drug resistance; hence identification and blockade of the source of this ROS may be an effective way to enhance efficacy and overcome resistance. Furthermore, ROS from different sources may interact with each other and interact with reactive nitrogen species (RNS) and drive the melanomagenesis process at all stages of disease. Further understanding ROS and RNS in melanoma etiology and progression is necessary for developing new prevention and therapeutic approaches. PMID:24780245

  7. Reactive oxygen species mediate growth and death in submerged plants

    PubMed Central

    Steffens, Bianka; Steffen-Heins, Anja; Sauter, Margret

    2013-01-01

    Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS. PMID:23761805

  8. Photosensitizing Nanoparticles and The Modulation of Reactive Oxygen Species generation

    NASA Astrophysics Data System (ADS)

    Tada, Dayane; Baptista, Mauricio

    2015-05-01

    The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate reactive oxygen species (ROS) generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other ROS. Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption.

  9. Oxygenation of zinc dialkyldithiocarbamate complexes: isolation, characterization, and reactivity of the stoichiometric oxygenates.

    PubMed

    Brayton, Daniel F; Tanabe, Kristine; Khiterer, Mariya; Kolahi, Kian; Ziller, Joseph; Greaves, John; Farmer, Patrick J

    2006-07-24

    S-oxygenation of dithiocarbamate (DTC) complexes has been implicated in their function as industrial anti-oxidants, as well as in their use as pesticides and most recently in their cumulative toxicity, but little is known of the species generated. Several S-oxygenated derivatives of N,N-disubstituted DTCs have been synthesized, characterized by a variety of methods, and their structure and reactivity examined. Low-temperature reaction of bis(N,N-diethyldithiocarbamato)zinc(II), Zn(deDTC)2 1, with oxygenating reagents (hydrogen peroxide, m-chloroperbenzoic acid, urea hydrogen peroxide) yields mono-oxygenated DTC complexes (N,N-peroxydiethyldithiocarbamato)(N,N-diethyldithiocarbamato)zin(II), Zn(O-deDTC)(deDTC), 2 and bis(N,N-peroxydiethyldithiocarbamato)zinc(II), Zn(O-deDTC)2, 3. The tetraoxygenated derivative bis(N,N-diethylthiocarbamoylsulfinato)zinc(II), Zn(O(2)-deDTC)2, 4, was cleanly obtained by initial reaction of the DTC salts with stoichiometric oxidant prior to complexation with Zn(II). X-ray crystallographic analysis of 2, 3, and 4 show that the peroxydithiocarbamate ligands are S,O-bound. Similar derivatives were obtained from the homoleptic dimethyl and pyrollidine DTC Zn complexes. These oxygenated species display unique 1H and 13C NMR variable-temperature spectra, as the symmetry of DTC ligand is broken upon oxygenation; total line shape analysis (TLSA) was used to compare the energetic parameters for rotation about the C-N bond in several derivatives. Compounds 2, 3, and 4 were deoxygenated by alkyl phosphine, regenerating the parent dithiocarbamate 1. The peroxydithiocarbamate complexes were susceptible to base-catalyzed hydrolytic decomposition, giving ligand-based products indicative of S-oxidation and S-extrusion. PMID:16842015

  10. Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium.

    PubMed

    Kim, Sujin; Kim, Min-Ji; Park, Do Yang; Chung, Hyo Jin; Kim, Chang-Hoon; Yoon, Joo-Heon; Kim, Hyun Jik

    2015-07-01

    The innate immune system of the nasal epithelium serves as a first line of defense against invading respiratory viruses including influenza A virus (IAV). Recently, it was verified that interferon (IFN)-related immune responses play a critical role in local antiviral innate immunity. Reactive oxygen species (ROS) generation by exogenous pathogens has also been demonstrated in respiratory epithelial cells and modulation of ROS has been reported to be important for respiratory virus-induced innate immune mechanisms. Passage-2 normal human nasal epithelial (NHNE) cells were inoculated with IAV (WS/33, H1N1) to assess the sources of IAV-induced ROS and the relationship between ROS and IFN-related innate immune responses. Both STAT1 and STAT2 phosphorylation and the mRNA levels of IFN-stimulated genes, including Mx1, 2,5-OAS1, IFIT1, and CXCL10, were induced after IAV infection up to three days post infection. Similarly, we observed that mitochondrial ROS generation increased maximally at 2 days after IAV infection. After suppression of mitochondrial ROS generation, IAV-induced phosphorylation of STAT and mRNA levels of IFN-stimulated genes were attenuated and actually, viral titers of IAV were significantly higher in cases with scavenging ROS. Our findings suggest that mitochondrial ROS might be responsible for controlling IAV infection and may be potential sources of ROS generation, which is required to initiate an innate immune response in NHNE cells. PMID:25930096

  11. Reactive oxygen species modulate the barrier function of the human glomerular endothelial glycocalyx.

    PubMed

    Singh, Anurag; Ramnath, Raina D; Foster, Rebecca R; Wylie, Emma C; Fridn, Vincent; Dasgupta, Ishita; Haraldsson, Borje; Welsh, Gavin I; Mathieson, Peter W; Satchell, Simon C

    2013-01-01

    Reactive oxygen species (ROS) play a key role in the pathogenesis of proteinuria in glomerular diseases like diabetic nephropathy. Glomerular endothelial cell (GEnC) glycocalyx covers the luminal aspect of the glomerular capillary wall and makes an important contribution to the glomerular barrier. ROS are known to depolymerise glycosaminoglycan (GAG) chains of proteoglycans, which are crucial for the barrier function of GEnC glycocalyx. The aim of this study is to investigate the direct effects of ROS on the structure and function of GEnC glycocalyx using conditionally immortalised human GEnC. ROS were generated by exogenous hydrogen peroxide. Biosynthesis and cleavage of GAG chains was analyzed by radiolabelling (S(35) and (3)H-glucosamine). GAG chains were quantified on GEnC surface and in the cell supernatant using liquid chromatography and immunofluorescence techniques. Barrier properties were estimated by measuring trans-endothelial passage of albumin. ROS caused a significant loss of WGA lectin and heparan sulphate staining from the surface of GEnC. This lead to an increase in trans-endothelial albumin passage. The latter could be inhibited by catalase and superoxide dismutase. The effect of ROS on GEnC was not mediated via the GAG biosynthetic pathway. Quantification of radiolabelled GAG fractions in the supernatant confirmed that ROS directly caused shedding of HS GAG. This finding is clinically relevant and suggests a mechanism by which ROS may cause proteinuria in clinical conditions associated with high oxidative stress. PMID:23457483

  12. Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species.

    PubMed

    Choi, Kyungsun; Kim, Jinho; Kim, Gyung W; Choi, Chulhee

    2009-11-01

    Oxidative stress is deeply involved in various brain diseases, including neurodegenerative diseases, stroke, and ischemia/reperfusion injury. Mitochondria are thought to be the target and source of oxidative stress. We investigated the role of mitochondria in oxidative stress-induced necrotic neuronal cell death in a neuroblastoma cell line and a mouse model of middle cerebral artery occlusion. The exogenous administration of hydrogen peroxide was used to study the role of oxidative stress on neuronal cell survival and mitochondrial function in vitro. Hydrogen peroxide induced non-apoptotic neuronal cell death in a c-Jun N-terminal kinase- and poly(ADP-ribosyl) polymerase-dependent manner. Unexpectedly, hydrogen peroxide treatment induced transient hyperpolarization of the mitochondrial membrane potential and a subsequent delayed burst of endogenous reactive oxygen species (ROS). The inhibition of mitochondrial hyperpolarization by diphenylene iodonium or rotenone, potent inhibitors of mitochondrial respiratory chain complex I, resulted in reduced ROS production and subsequent neuronal cell death in vitro and in vivo. The inhibition of mitochondrial hyperpolarization can protect neuronal cells from oxidative stress-induced necrotic cell death, suggesting a novel method of therapeutic intervention in oxidative stress-induced neurological disease. PMID:19807658

  13. Mitochondrial reactive oxygen species promote epidermal differentiation and hair follicle development.

    PubMed

    Hamanaka, Robert B; Glasauer, Andrea; Hoover, Paul; Yang, Shuangni; Blatt, Hanz; Mullen, Andrew R; Getsios, Spiro; Gottardi, Cara J; DeBerardinis, Ralph J; Lavker, Robert M; Chandel, Navdeep S

    2013-02-01

    Proper regulation of keratinocyte differentiation within the epidermis and follicular epithelium is essential for maintenance of epidermal barrier function and hair growth. The signaling intermediates that regulate the morphological and genetic changes associated with epidermal and follicular differentiation remain poorly understood. We tested the hypothesis that reactive oxygen species (ROS) generated by mitochondria are an important regulator of epidermal differentiation by generating mice with a keratinocyte-specific deficiency in mitochondrial transcription factor A (TFAM), which is required for the transcription of mitochondrial genes encoding electron transport chain subunits. Ablation of TFAM in keratinocytes impaired epidermal differentiation and hair follicle growth and resulted in death 2 weeks after birth. TFAM-deficient keratinocytes failed to generate mitochondria-derived ROS, a deficiency that prevented the transmission of Notch and ?-catenin signals essential for epidermal differentiation and hair follicle development, respectively. In vitro keratinocyte differentiation was inhibited in the presence of antioxidants, and the decreased differentiation marker abundance in TFAM-deficient keratinocytes was partly rescued by application of exogenous hydrogen peroxide. These findings indicate that mitochondria-generated ROS are critical mediators of cellular differentiation and tissue morphogenesis. PMID:23386745

  14. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    NASA Astrophysics Data System (ADS)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  15. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis

    PubMed Central

    Dan Dunn, Joe; Alvarez, Luis AJ; Zhang, Xuezhi; Soldati, Thierry

    2015-01-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. PMID:26432659

  16. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?

    PubMed Central

    Görlach, Agnes; Dimova, Elitsa Y.; Petry, Andreas; Martínez-Ruiz, Antonio; Hernansanz-Agustín, Pablo; Rolo, Anabela P.; Palmeira, Carlos M.; Kietzmann, Thomas

    2015-01-01

    Within the last twenty years the view on reactive oxygen species (ROS) has changed; they are no longer only considered to be harmful but also necessary for cellular communication and homeostasis in different organisms ranging from bacteria to mammals. In the latter, ROS were shown to modulate diverse physiological processes including the regulation of growth factor signaling, the hypoxic response, inflammation and the immune response. During the last 60–100 years the life style, at least in the Western world, has changed enormously. This became obvious with an increase in caloric intake, decreased energy expenditure as well as the appearance of alcoholism and smoking; These changes were shown to contribute to generation of ROS which are, at least in part, associated with the occurrence of several chronic diseases like adiposity, atherosclerosis, type II diabetes, and cancer. In this review we discuss aspects and problems on the role of intracellular ROS formation and nutrition with the link to diseases and their problematic therapeutical issues. PMID:26339717

  17. Reactive oxygen species cause endothelial dysfunction in chronic flow overload.

    PubMed

    Lu, X; Guo, X; Wassall, C D; Kemple, M D; Unthank, J L; Kassab, G S

    2011-02-01

    Although elevation of shear stress increases production of vascular reactive oxygen species (ROS), the role of ROS in chronic flow overload (CFO) has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. In six swine, CFO in carotid arteries was induced by contralateral ligation for 1 wk. In an additional group, six swine received apocynin (NADPH oxidase blocker and anti-oxidant) treatment in conjunction with CFO for 1 wk. The blood flow in carotid arteries increased from 189.2 25.3 ml/min (control) to 369.6 61.9 ml/min (CFO), and the arterial diameter increased by 8.6%. The expressions of endothelial nitric oxide synthase (eNOS), p22/p47(phox), and NOX2/NOX4 were upregulated. ROS production increased threefold in response to CFO. The endothelium-dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. Although the process of CFO remodeling to restore the wall shear stress has been thought of as a physiological response, the present data implicate NADPH oxidase-produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO. PMID:21127212

  18. Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species.

    PubMed

    Xiao, Lu; Liu, Chunhua; Chen, Xiaoniao; Yang, Zhuo

    2016-04-01

    Nanoparticles of zinc oxide (ZnO NPs) are applied in many fields nowadays. Consequently, concerns have been raised about its potential harmful effects. The present study focuses on its toxic effect on podocytes and rats. In vitro study, podocytes were treated with different concentrations of ZnO NPs (10, 50 and 100 μg/ml), the viability of cells was decreased as time prolonged according to MTT assay. Meantime, flow cytometry analysis indicated that ZnO NPs induced intracellular accumulation of reactive oxygen species (ROS) and apoptosis. The measurement of superoxide dismutase (SOD) and malondialdehyde (MDA) showed that ZnO NPs decreased SOD level and increased MDA level. Interestingly, pretreatment with N-mercaptopropionyl-glycine, known as a type of ROS scavenger, could inhibit podocyte apoptosis induced by ZnO NPs. Meantime, a loss of nephrin can be detected, which may result in a direct damage to slit diaphragms. In vivo study, adult male Wistar rats were administrated with 3mg/kg/day ZnO NPs for 5 days, body weight and kidney index were significantly reduced. In addition, ZnO NPs decreased the activity of catalase and SOD in kidney cortex in vivo. It could be concluded that ZnO NPs present toxic effect on podocytes and Wistar rats, which was related with oxidative stress. PMID:26860595

  19. Reactive oxygen species, cellular redox systems, and apoptosis.

    PubMed

    Circu, Magdalena L; Aw, Tak Yee

    2010-03-15

    Reactive oxygen species (ROS) are products of normal metabolism and xenobiotic exposure, and depending on their concentration, ROS can be beneficial or harmful to cells and tissues. At physiological low levels, ROS function as "redox messengers" in intracellular signaling and regulation, whereas excess ROS induce oxidative modification of cellular macromolecules, inhibit protein function, and promote cell death. Additionally, various redox systems, such as the glutathione, thioredoxin, and pyridine nucleotide redox couples, participate in cell signaling and modulation of cell function, including apoptotic cell death. Cell apoptosis is initiated by extracellular and intracellular signals via two main pathways, the death receptor- and the mitochondria-mediated pathways. Various pathologies can result from oxidative stress-induced apoptotic signaling that is consequent to ROS increases and/or antioxidant decreases, disruption of intracellular redox homeostasis, and irreversible oxidative modifications of lipid, protein, or DNA. In this review, we focus on several key aspects of ROS and redox mechanisms in apoptotic signaling and highlight the gaps in knowledge and potential avenues for further investigation. A full understanding of the redox control of apoptotic initiation and execution could underpin the development of therapeutic interventions targeted at oxidative stress-associated disorders. PMID:20045723

  20. Are reactive oxygen species always detrimental to pathogens?

    PubMed

    Paiva, Claudia N; Bozza, Marcelo T

    2014-02-20

    Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses. PMID:23992156

  1. Are reactive oxygen species still the basis for diabetic complications?

    PubMed

    Di Marco, Elyse; Jha, Jay C; Sharma, Arpeeta; Wilkinson-Berka, Jennifer L; Jandeleit-Dahm, Karin A; de Haan, Judy B

    2015-07-01

    Despite the wealth of pre-clinical support for a role for reactive oxygen and nitrogen species (ROS/RNS) in the aetiology of diabetic complications, enthusiasm for antioxidant therapeutic approaches has been dampened by less favourable outcomes in large clinical trials. This has necessitated a re-evaluation of pre-clinical evidence and a more rational approach to antioxidant therapy. The present review considers current evidence, from both pre-clinical and clinical studies, to address the benefits of antioxidant therapy. The main focus of the present review is on the effects of direct targeting of ROS-producing enzymes, the bolstering of antioxidant defences and mechanisms to improve nitric oxide availability. Current evidence suggests that a more nuanced approach to antioxidant therapy is more likely to yield positive reductions in end-organ injury, with considerations required for the types of ROS/RNS involved, the timing and dosage of antioxidant therapy, and the selective targeting of cell populations. This is likely to influence future strategies to lessen the burden of diabetic complications such as diabetes-associated atherosclerosis, diabetic nephropathy and diabetic retinopathy. PMID:25927680

  2. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer

    PubMed Central

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy. PMID:26881012

  3. Interactions between mitochondrial reactive oxygen species and cellular glucose metabolism.

    PubMed

    Liemburg-Apers, Dania C; Willems, Peter H G M; Koopman, Werner J H; Grefte, Sander

    2015-08-01

    Mitochondrial reactive oxygen species (ROS) production and detoxification are tightly balanced. Shifting this balance enables ROS to activate intracellular signaling and/or induce cellular damage and cell death. Increased mitochondrial ROS production is observed in a number of pathological conditions characterized by mitochondrial dysfunction. One important hallmark of these diseases is enhanced glycolytic activity and low or impaired oxidative phosphorylation. This suggests that ROS is involved in glycolysis (dys)regulation and vice versa. Here we focus on the bidirectional link between ROS and the regulation of glucose metabolism. To this end, we provide a basic introduction into mitochondrial energy metabolism, ROS generation and redox homeostasis. Next, we discuss the interactions between cellular glucose metabolism and ROS. ROS-stimulated cellular glucose uptake can stimulate both ROS production and scavenging. When glucose-stimulated ROS production, leading to further glucose uptake, is not adequately counterbalanced by (glucose-stimulated) ROS scavenging systems, a toxic cycle is triggered, ultimately leading to cell death. Here we inventoried the various cellular regulatory mechanisms and negative feedback loops that prevent this cycle from occurring. It is concluded that more insight in these processes is required to understand why they are (un)able to prevent excessive ROS production during various pathological conditions in humans. PMID:26047665

  4. NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species

    PubMed Central

    Ghosh, Rajeshwary; Alajbegovic, Azra; Gomes, Aldrin V.

    2015-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD. PMID:26457127

  5. Selective degeneration of oligodendrocytes mediated by reactive oxygen species.

    PubMed

    Griot, C; Vandevelde, M; Richard, A; Peterhans, E; Stocker, R

    1990-01-01

    The mechanism underlying demyelination in inflammatory canine distemper encephalitis is uncertain. Macrophages and their secretory products are thought to play an important effector role in this lesion. Recently, we have shown that anti-canine distemper virus antibodies, known to occur in chronic inflammatory lesions, stimulate macrophages leading to the secretion of reactive oxygen species (ROS). To investigate whether ROS could be involved in demyelination, dog glial cell cultures were exposed to xanthine/xanthine oxidase (X/XO), a system capable of generating O2-. This treatment resulted in a specific time-dependent degeneration and loss of oligodendrocytes, the myelin producing cells of the central nervous system. Initial degeneration was not associated with a decrease in viability of oligodendrocytes as judged by trypan blue and propidium iodide exclusion. Astrocytes and brain macrophages were not affected morphologically by this treatment. Further, an evaluation of the effect of several ROS scavengers, transition metal chelators and inhibitors of poly (ADP-ribose) polymerase suggests that a metal dependent formation of .OH or a similar highly oxidizing species could be responsible for the observed selective damage to oligodendrocytes. PMID:1965721

  6. Tamoxifen reduces fat mass by boosting reactive oxygen species

    PubMed Central

    Liu, L; Zou, P; Zheng, L; Linarelli, L E; Amarell, S; Passaro, A; Liu, D; Cheng, Z

    2015-01-01

    As the pandemic of obesity is growing, a variety of animal models have been generated to study the mechanisms underlying the increased adiposity and development of metabolic disorders. Tamoxifen (Tam) is widely used to activate Cre recombinase that spatiotemporally controls target gene expression and regulates adiposity in laboratory animals. However, a critical question remains as to whether Tam itself affects adiposity and possibly confounds the functional study of target genes in adipose tissue. Here we administered Tam to Cre-absent forkhead box O1 (FoxO1) floxed mice (f-FoxO1) and insulin receptor substrate Irs1/Irs2 double floxed mice (df-Irs) and found that Tam induced approximately 30% reduction (P<0.05) in fat mass with insignificant change in body weight. Mechanistically, Tam promoted reactive oxygen species (ROS) production, apoptosis and autophagy, which was associated with downregulation of adipogenic regulator peroxisome proliferator-activated receptor gamma and dedifferentiation of mature adipocytes. However, normalization of ROS potently suppressed Tam-induced apoptosis, autophagy and adipocyte dedifferentiation, suggesting that ROS may account, at least in part, for the changes. Importantly, Tam-induced ROS production and fat mass reduction lasted for 45 weeks in the f-FoxO1 and df-Irs mice. Our data suggest that Tam reduces fat mass via boosting ROS, thus making a recovery period crucial for posttreatment study. PMID:25569103

  7. Are Reactive Oxygen Species Always Detrimental to Pathogens?

    PubMed Central

    Bozza, Marcelo T.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses. Antioxid. Redox Signal. 20, 1000–1037. PMID:23992156

  8. Reactive oxygen species delay control of lymphocytic choriomeningitis virus

    PubMed Central

    Lang, P A; Xu, H C; Grusdat, M; McIlwain, D R; Pandyra, A A; Harris, I S; Shaabani, N; Honke, N; Kumar Maney, S; Lang, E; Pozdeev, V I; Recher, M; Odermatt, B; Brenner, D; Hussinger, D; Ohashi, P S; Hengartner, H; Zinkernagel, R M; Mak, T W; Lang, K S

    2013-01-01

    Cluster of differentiation (CD)8+ T cells are like a double edged sword during chronic viral infections because they not only promote virus elimination but also induce virus-mediated immunopathology. Elevated levels of reactive oxygen species (ROS) have been reported during virus infections. However, the role of ROS in T-cell-mediated immunopathology remains unclear. Here we used the murine lymphocytic choriomeningitis virus to explore the role of ROS during the processes of virus elimination and induction of immunopathology. We found that virus infection led to elevated levels of ROS producing granulocytes and macrophages in virus-infected liver and spleen tissues that were triggered by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Lack of the regulatory subunit p47phox of the NADPH oxidase diminished ROS production in these cells. While CD8+ T cells exhibited ROS production that was independent of NADPH oxidase expression, survival and T-cell function was elevated in p47phox-deficient (Ncf1?/?) mice. In the absence of p47phox, enhanced T-cell immunity promoted virus elimination and blunted corresponding immunopathology. In conclusion, we find that NADPH-mediated production of ROS critically impairs the immune response, impacting elimination of virus and outcome of liver cell damage. PMID:23328631

  9. Mitochondrial reactive oxygen species in cell death signaling.

    PubMed

    Fleury, Christophe; Mignotte, Bernard; Vayssire, Jean-Luc

    2002-01-01

    During apoptosis, mitochondrial membrane permeability (MMP) increases and the release into the cytosol of pro-apoptotic factors (procaspases, caspase activators and caspase-independent factors such as apoptosis-inducing factor (AIF)) leads to the apoptotic phenotype. Apart from this pivotal role of mitochondria during the execution phase of apoptosis (documented in other reviews of this issue), it appears that reactive oxygen species (ROS) produced by the mitochondria can be involved in cell death. These toxic compounds are normally detoxified by the cells, failing which oxidative stress occurs. However, ROS are not only dangerous molecules for the cell, but they also display a physiological role, as mediators in signal transduction pathways. ROS participate in early and late steps of the regulation of apoptosis, according to different possible molecular mechanisms. In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and Bcl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state. Furthermore, the fact that active forms of cell death in yeast and plants also involve ROS suggests the existence of an ancestral redox-sensitive death signaling pathway that has been independent of caspases and Bcl-2. PMID:12022944

  10. Kinetic analysis of phagosomal production of reactive oxygen species.

    PubMed

    Tlili, Asma; Dupr-Crochet, Sophie; Erard, Marie; Nsse, Oliver

    2011-02-01

    Phagocytes produce large quantities of reactive oxygen species for pathogen killing; however, the kinetics and amplitude of ROS production on the level of individual phagosomes are poorly understood. This is mainly due to the lack of appropriate methods for quantitative ROS detection with microscopic resolution. We covalently attached the ROS-sensitive dye dichlorodihydrofluorescein (DCFH(2)) to yeast particles and investigated their fluorescence due to oxidation in vitro and in live phagocytes. In vitro, the dye was oxidized by H(2)O(2) plus horseradish peroxidase but also by HOCl. The latter produced a previously unrecognized oxidation product with red-shifted excitation and emission spectra and a characteristic difference in the shape of the excitation spectrum near 480 nm. Millimolar HOCl bleached the DCFH(2) oxidation products. Inside phagosomes, DCFH(2)-labeled yeast were oxidized for several minutes in a strictly NADPH oxidase-dependent manner as shown by video microscopy. Inhibition of the NADPH oxidase rapidly stopped the fluorescence increase of the particles. At least two characteristic kinetics of oxidation were distinguished and the variability of DCFH(2) oxidation in phagosomes was much larger than the variability upon oxidation in vitro. We conclude that DCFH(2)-yeast is a valuable tool to investigate the kinetics and amplitude of ROS production in individual phagosomes. PMID:21111807

  11. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?

    PubMed

    Grlach, Agnes; Dimova, Elitsa Y; Petry, Andreas; Martnez-Ruiz, Antonio; Hernansanz-Agustn, Pablo; Rolo, Anabela P; Palmeira, Carlos M; Kietzmann, Thomas

    2015-12-01

    Within the last twenty years the view on reactive oxygen species (ROS) has changed; they are no longer only considered to be harmful but also necessary for cellular communication and homeostasis in different organisms ranging from bacteria to mammals. In the latter, ROS were shown to modulate diverse physiological processes including the regulation of growth factor signaling, the hypoxic response, inflammation and the immune response. During the last 60-100 years the life style, at least in the Western world, has changed enormously. This became obvious with an increase in caloric intake, decreased energy expenditure as well as the appearance of alcoholism and smoking; These changes were shown to contribute to generation of ROS which are, at least in part, associated with the occurrence of several chronic diseases like adiposity, atherosclerosis, type II diabetes, and cancer. In this review we discuss aspects and problems on the role of intracellular ROS formation and nutrition with the link to diseases and their problematic therapeutical issues. PMID:26339717

  12. Mitochondrial signaling in the vascular endothelium: beyond reactive oxygen species.

    PubMed

    Kadlec, Andrew O; Beyer, Andreas M; Ait-Aissa, Karima; Gutterman, David D

    2016-05-01

    Traditionally, the mitochondria have been viewed as the cell's powerhouse, producing energy in the form of ATP. As a byproduct of ATP formation, the mitochondrial electron transport chain produces substantial amounts of reactive oxygen species (ROS). First thought to be toxic, recent literature indicates an important signaling function for mitochondria-derived ROS, especially in relation to cardiovascular disease pathogenesis. This has spawned an evolution to a more contemporary view of mitochondrial function as a dynamic organelle involved in key regulatory and cell survival processes. Beyond ROS, recent studies have identified a host of mitochondria-linked factors that influence the cellular and extracellular environments, including mitochondria-derived peptides, mitochondria-localized proteins, and the mitochondrial genome itself. Interestingly, many of these factors help orchestrate ROS homeostasis and ROS-related signaling. The paradigm defining the role of mitochondria in the vasculature needs to be updated yet again to include these key signaling factors, which serves as the focus of the current review. In describing these novel signaling factors, we pay specific attention to their influence on endothelial homeostasis. Therapies targeting these pathways are discussed, as are emerging research directions. PMID:26992928

  13. Simvastatin inhibits osteoclast differentiation by scavenging reactive oxygen species

    PubMed Central

    Moon, Ho-Jin; Kim, Sung Eun; Yun, Young Pil; Hwang, Yu-Shik; Bang, Jae Beum

    2011-01-01

    Osteoclasts, together with osteoblasts, control the amount of bone tissue and regulate bone remodeling. Osteoclast differentiation is an important factor related to the pathogenesis of bone-loss related diseases. Reactive oxygen species (ROS) acts as a signal mediator in osteoclast differentiation. Simvastatin, which inhibits 3-hydroxy-3-methylglutaryl coenzyme A, is a hypolipidemic drug which is known to affect bone metabolism and suppresses osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In this study, we analyzed whether simvastatin can inhibit RANKL-induced osteoclastogenesis through suppression of the subsequently formed ROS and investigated whether simvastatin can inhibit H2O2-induced signaling pathways in osteoclast differentiation. We found that simvastatin decreased expression of tartrate-resistant acid phosphatase (TRAP), a genetic marker of osteoclast differentiation, and inhibited intracellular ROS generation in RAW 264.7 cell lines. ROS generation activated NF-κB, protein kinases B (AKT), mitogen-activated protein kinases signaling pathways such as c-JUN N-terminal kinases, p38 MAP kinases as well as extracellular signal-regulated kinase. Simvastatin was found to suppress these H2O2-induced signaling pathways in osteoclastogenesis. Together, these results indicate that simvastatin acts as an osteoclastogenesis inhibitor through suppression of ROS-mediated signaling pathways. This indicates that simvastatin has potential usefulness for osteoporosis and pathological bone resorption. PMID:21832867

  14. Reactive Oxygen Species and the Brain in Sleep Apnea

    PubMed Central

    Wang, Yang; Zhang, Shelley XL; Gozal, David

    2010-01-01

    Rodents exposed to intermittent hypoxia (IH), a model of obstructive sleep apnea (OSA), manifest impaired learning and memory and somnolence. Increased levels of reactive oxygen species (ROS), oxidative tissue damage, and apoptotic neuronal cell death are associated with the presence of IH-induced CNS dysfunction. Furthermore, treatment with antioxidants or overexpression of antioxidant enzymes is neuroprotective during IH. These findings mimic clinical cases of OSA and suggest that ROS may play a key causal role in OSA-induced neuropathology. Controlled production of ROS occurs in multiple subcellular compartments of normal cells and de-regulation of such processes may result in excessive ROS production. The mitochondrial electron transport chain, especially complexes I and III, and the NADPH oxidase in the cellular membrane are the two main sources of ROS in brain cells, although other systems, including xanthine oxidase, phospholipase A2, lipoxygenase, cyclooxygenase, and cytochrome P450, may all play a role. The initial evidence for NADPH oxidase and mitochondrial involvement in IH-induced ROS production and neuronal injury unquestionably warrants future research efforts. PMID:20833273

  15. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species

    PubMed Central

    Harrison, David G.

    2014-01-01

    Abstract Significance: Mitochondrial and cellular reactive oxygen species (ROS) play important roles in both physiological and pathological processes. Different ROS, such as superoxide (O2?), hydrogen peroxide, and peroxynitrite (ONOO?), stimulate distinct cell-signaling pathways and lead to diverse outcomes depending on their amount and subcellular localization. A variety of methods have been developed for ROS detection; however, many of these methods are not specific, do not allow subcellular localization, and can produce artifacts. In this review, we will critically analyze ROS detection and present advantages and the shortcomings of several available methods. Recent Advances: In the past decade, a number of new fluorescent probes, electron-spin resonance approaches, and immunoassays have been developed. These new state-of-the-art methods provide improved selectivity and subcellular resolution for ROS detection. Critical Issues: Although new methods for HPLC superoxide detection, application of fluorescent boronate-containing probes, use of cell-targeted hydroxylamine spin probes, and immunospin trapping have been available for several years, there has been lack of translation of these into biomedical research, limiting their widespread use. Future Directions: Additional studies to translate these new technologies from the test tube to physiological applications are needed and could lead to a wider application of these approaches to study mitochondrial and cellular ROS. Antioxid. Redox Signal. 20, 372382. PMID:22978713

  16. Reactive oxygen intermediates, nitrite and IFN-? in Indian visceral leishmaniasis

    PubMed Central

    Kumar, R; Pai, K; Sundar, S

    2001-01-01

    Reactive oxygen intermediates (ROI), nitrite and interferon-gamma (IFN-?) production were investigated at different times during treatment in 10 patients with visceral leishmaniasis (VL). Hydrogen peroxide (H2O2), superoxide (O2?) and IFN-? production by cultured monocytes from patients with active VL were significantly lower compared with the healthy controls. In contrast, nitrite levels in the supernatants from monocyte cultures of VL patients were comparable to healthy controls and increased significantly during antileishmanial therapy. On day 20 of treatment, a significant increase in the release of H2O2, O2? and IFN-? was observed. However, at follow-up, 4 months after the end of treatment, the production of H2O2, O2?, IFN-? and nitrite had declined significantly. Thus, the impairment in hydrogen peroxide and superoxide production suggests that down-regulation of these mediators may be involved in the reduced killing of parasites by monocytes of active VL patients. Furthermore, the monocytes regained respiratory burst activity as the antileishmanial therapy progressed, suggesting that an immune-based mechanism is involved in successful drug therapy. PMID:11422203

  17. Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Transcription

    NASA Astrophysics Data System (ADS)

    Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T.

    1998-09-01

    Transcriptional activation of erythropoietin, glycolytic enzymes, and vascular endothelial growth factor occurs during hypoxia or in response to cobalt chloride (CoCl2) in Hep3B cells. However, neither the mechanism of cellular O2 sensing nor that of cobalt is fully understood. We tested whether mitochondria act as O2 sensors during hypoxia and whether hypoxia and cobalt activate transcription by increasing generation of reactive oxygen species (ROS). Results show (i) wild-type Hep3B cells increase ROS generation during hypoxia (1.5% O2) or CoCl2 incubation, (ii) Hep3B cells depleted of mitochondrial DNA (? 0 cells) fail to respire, fail to activate mRNA for erythropoietin, glycolytic enzymes, or vascular endothelial growth factor during hypoxia, and fail to increase ROS generation during hypoxia; (iii) ? 0 cells increase ROS generation in response to CoCl2 and retain the ability to induce expression of these genes; and (iv) the antioxidants pyrrolidine dithiocarbamate and ebselen abolish transcriptional activation of these genes during hypoxia or CoCl2 in wild-type cells, and abolish the response to CoCl2 in ? 0 cells. Thus, hypoxia activates transcription via a mitochondria-dependent signaling process involving increased ROS, whereas CoCl2 activates transcription by stimulating ROS generation via a mitochondria-independent mechanism.

  18. Role of GLUT1 in regulation of reactive oxygen species.

    PubMed

    Andrisse, Stanley; Koehler, Rikki M; Chen, Joseph E; Patel, Gaytri D; Vallurupalli, Vivek R; Ratliff, Benjamin A; Warren, Daniel E; Fisher, Jonathan S

    2014-01-01

    In skeletal muscle cells, GLUT1 is responsible for a large portion of basal uptake of glucose and dehydroascorbic acid, both of which play roles in antioxidant defense. We hypothesized that conditions that would decrease GLUT1-mediated transport would cause increased reactive oxygen species (ROS) levels in L6 myoblasts, while conditions that would increase GLUT1-mediated transport would result in decreased ROS levels. We found that the GLUT1 inhibitors fasentin and phloretin increased the ROS levels induced by antimycin A and the superoxide generator pyrogallol. However, indinavir, which inhibits GLUT4 but not GLUT1, had no effect on ROS levels. Ataxia telangiectasia mutated (ATM) inhibitors and activators, previously shown to inhibit and augment GLUT1-mediated transport, increased and decreased ROS levels, respectively. Mutation of an ATM target site on GLUT1 (GLUT1-S490A) increased ROS levels and prevented the ROS-lowering effect of the ATM activator doxorubicin. In contrast, expression of GLUT1-S490D lowered ROS levels during challenge with pyrogallol, prevented an increase in ROS when ATM was inhibited, and prevented the pyrogallol-induced decrease in insulin signaling and insulin-stimulated glucose transport. Taken together, the data suggest that GLUT1 plays a role in regulation of ROS and could contribute to maintenance of insulin action in the presence of ROS. PMID:25101238

  19. Role of GLUT1 in regulation of reactive oxygen species

    PubMed Central

    Andrisse, Stanley; Koehler, Rikki M.; Chen, Joseph E.; Patel, Gaytri D.; Vallurupalli, Vivek R.; Ratliff, Benjamin A.; Warren, Daniel E.; Fisher, Jonathan S.

    2014-01-01

    In skeletal muscle cells, GLUT1 is responsible for a large portion of basal uptake of glucose and dehydroascorbic acid, both of which play roles in antioxidant defense. We hypothesized that conditions that would decrease GLUT1-mediated transport would cause increased reactive oxygen species (ROS) levels in L6 myoblasts, while conditions that would increase GLUT1-mediated transport would result in decreased ROS levels. We found that the GLUT1 inhibitors fasentin and phloretin increased the ROS levels induced by antimycin A and the superoxide generator pyrogallol. However, indinavir, which inhibits GLUT4 but not GLUT1, had no effect on ROS levels. Ataxia telangiectasia mutated (ATM) inhibitors and activators, previously shown to inhibit and augment GLUT1-mediated transport, increased and decreased ROS levels, respectively. Mutation of an ATM target site on GLUT1 (GLUT1-S490A) increased ROS levels and prevented the ROS-lowering effect of the ATM activator doxorubicin. In contrast, expression of GLUT1-S490D lowered ROS levels during challenge with pyrogallol, prevented an increase in ROS when ATM was inhibited, and prevented the pyrogallol-induced decrease in insulin signaling and insulin-stimulated glucose transport. Taken together, the data suggest that GLUT1 plays a role in regulation of ROS and could contribute to maintenance of insulin action in the presence of ROS. PMID:25101238

  20. Reactive oxygen species: their relation to pneumoconiosis and carcinogenesis.

    PubMed Central

    Vallyathan, V; Shi, X; Castranova, V

    1998-01-01

    Occupational exposures to mineral particles cause pneumoconiosis and other diseases, including cancer. Recent studies have suggested that reactive oxygen species (ROS) may play a key role in the mechanisms of disease initiation and progression following exposure to these particles. ROS-induced primary stimuli result in the increased secretion of proinflammatory cytokines and other mediators, promoting events that appear to be important in the progression of cell injury and pulmonary disease. We have provided evidence supporting the hypothesis that inhalation of insoluble particles such as asbestos, agricultural dusts, coal, crystalline silica, and inorganic dust can be involved in facilitating multiple pathways for persistent generation of ROS, which may lead to a continuum of inflammation leading to progression of disease. This article briefly summarizes some of the recent findings from our laboratories with emphasis on the molecular events by which ROS are involved in promoting pneumoconiosis and carcinogenesis. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9788890

  1. Generation of reactive oxygen species from silicon nanowires.

    PubMed

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor-liquid-solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals. PMID:25452695

  2. Pharmacological modulation of reactive oxygen species in cancer treatment.

    PubMed

    Ribas, Judit; Mattiolo, Paolo; Boix, Jacint

    2015-01-01

    Aerobic metabolism of mammalian cells leads to the generation of reactive oxygen species (ROS). To cope with this toxicity, evolution provided cells with effective antioxidant systems like glutathione. Current anticancer therapies focus on the cancer dependence on oncogenes and non-oncogenes. Tumors trigger mechanisms to circumvent the oncogenic stress and to escape cell death. In this context we have studied 2-phenylethinesulfoxamine (PES), which disables the cell protective mechanisms to confront the proteotoxicity of damaged and unfolded proteins. Proteotoxic stress is increased in tumor cells, thus providing an explanation for the anticancer selectivity of PES. In addition, we have found that PES induces a severe oxidative stress and the activation of p53. The reduction of the cell content in glutathione by means of L-buthionine-sulfoximine (BSO) synergizes with PES. In conclusion, we have found that ROS constitutes a central element in a series of positive feed-back loops in the cell. ROS, p53, proteotoxicity, autophagy and mitochondrial dynamics are interconnected with the mechanisms leading to cell death, either apoptotic or necrotic. This network of interactions provides multiple targets for drug discovery and development in cancer. PMID:25395102

  3. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis.

    PubMed

    Dan Dunn, Joe; Alvarez, Luis Aj; Zhang, Xuezhi; Soldati, Thierry

    2015-12-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. PMID:26432659

  4. Reactive oxygen metabolites produced by the carcinogenic fibrous mineral erionite

    SciTech Connect

    Urano, Naoko; Yano, Eiji ); Evans, P.H. )

    1991-02-01

    Erionite, a fibrous mineral and the causative agent of the endemic outbreak of mesothelioma in Turkey, has been shown to generate reactive oxygen metabolites (ROM) from polymorphonuclear leukocytes (PMN). In order to investigate the mechanism of the production of ROM by erionite from PMN, a luminol-dependent chemiluminescence (CL) method was utilized. Human peripheral blood PMN were incubated with 50-800 {mu}g/ml of erionite. PMN CL was produced immediately after the addition of erionite; the maximal CL production was reached within 2 to 6 minutes and the CL response increased with the dose of erionite. Superoxide dismutase, catalase, and dimethyl sulfoxide were utilized as scavengers of O{sub 2}, H{sub 2}O{sub 2}, and OH, respectively. These scavengers inhibited the production of erionite-stimulated PMN CL dose dependently, thus indicating the production of O{sub 2}{sup {minus}}, H{sub 2}O{sub 2}, and OH by erionite-stimulated PMN. The less phagocytically active cells, namely, mononuclear cells and erythrocytes, produced CL immediately after the addition of erionite or phorbol myristate acetate and displayed a significant delay period after the addition of zymosan. Therefore, the direct interaction between the cell surface membrane and erionite would appear to be more important than phagocytosis, per se, for the production of ROM by erionite.

  5. Reactive oxygen generated by Nox1 triggers the angiogenic switch

    PubMed Central

    Arbiser, Jack L.; Petros, John; Klafter, Robert; Govindajaran, Baskaran; McLaughlin, Elizabeth R.; Brown, Lawrence F.; Cohen, Cynthia; Moses, Marsha; Kilroy, Susan; Arnold, Rebecca S.; Lambeth, J. David

    2002-01-01

    The reactive oxygen-generating enzyme Nox1 transforms NIH 3T3 cells, rendering them highly tumorigenic and, as shown herein, also increases tumorigenicity of DU-145 prostate epithelial cells. Although Nox1 modestly stimulates cell division in both fibroblasts and epithelial cells, an increased mitogenic rate alone did not account fully for the marked tumorigenicity. Herein, we show that Nox1 is a potent trigger of the angiogenic switch, increasing the vascularity of tumors and inducing molecular markers of angiogenesis. Vascular endothelial growth factor (VEGF) mRNA becomes markedly up-regulated by Nox1 both in cultured cells and in tumors, and VEGF receptors (VEGFR1 and VEGFR2) are highly induced in vascular cells in Nox1-expressing tumors. Matrix metalloproteinase activity, another marker of the angiogenic switch, also is induced by Nox1. Nox1 induction of VEGF is eliminated by coexpression of catalase, indicating that hydrogen peroxide signals part of the switch to the angiogenic phenotype. PMID:11805326

  6. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    SciTech Connect

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  7. Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling

    PubMed Central

    2014-01-01

    Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling. PMID:24898702

  8. Reactive oxygen species a double-edged sword for mesothelioma

    PubMed Central

    Catalani, Simona; Galati, Rossella

    2015-01-01

    It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10–15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display ‘asbestos-like’ pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review. PMID:26078352

  9. Plant responses to water stress: role of reactive oxygen species.

    PubMed

    Kar, Rup Kumar

    2011-11-01

    Responses of plants to water stress may be assigned as either injurious change or tolerance index. One of the primary and cardinal changes in response to drought stress is the generation of reactive oxygen species (ROS), which is being considered as the cause of cellular damage. However, recently a signaling role of such ROS in triggering the ROS scavenging system that may confer protection or tolerance against stress is emerging. Such scavenging system consists of antioxidant enzymes like SOD, catalase and peroxidases, and antioxidant compounds like ascorbate, reduced glutathione; a balance between ROS generation and scavenging ultimately determines the oxidative load. As revealed in case of defence against pathogen, signaling via ROS is initiated by NADPH oxidase-catalyzed superoxide generation in the apoplastic space (cell wall) followed by conversion to hydrogen peroxide by the activity of cell wall-localized SOD. Wall peroxidase may also play role in ROS generation for signaling. Hydrogen peroxide may use Ca2+ and MAPK pathway as downstream signaling cascade. Plant hormones associated with stress responses like ABA and ethylene play their role possibly via a cross talk with ROS towards stress tolerance, thus projecting a dual role of ROS under drought stress. PMID:22057331

  10. Reactive oxygen species during plant-microorganism early interactions.

    PubMed

    Nanda, Amrit K; Andrio, Emilie; Marino, Daniel; Pauly, Nicolas; Dunand, Christophe

    2010-02-01

    Reactive Oxygen Species (ROS) are continuously produced as a result of aerobic metabolism or in response to biotic and abiotic stresses. ROS are not only toxic by-products of aerobic metabolism, but are also signalling molecules involved in several developmental processes in all organisms. Previous studies have clearly shown that an oxidative burst often takes place at the site of attempted invasion during the early stages of most plant-pathogen interactions. Moreover, a second ROS production can be observed during certain types of plant-pathogen interactions, which triggers hypersensitive cell death (HR). This second ROS wave seems absent during symbiotic interactions. This difference between these two responses is thought to play an important signalling role leading to the establishment of plant defense. In order to cope with the deleterious effects of ROS, plants are fitted with a large panel of enzymatic and non-enzymatic antioxidant mechanisms. Thus, increasing numbers of publications report the characterisation of ROS producing and scavenging systems from plants and from microorganisms during interactions. In this review, we present the current knowledge on the ROS signals and their role during plant-microorganism interactions. PMID:20377681

  11. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer.

    PubMed

    Zhang, Lun; Li, Jiahui; Zong, Liang; Chen, Xin; Chen, Ke; Jiang, Zhengdong; Nan, Ligang; Li, Xuqi; Li, Wei; Shan, Tao; Ma, Qingyong; Ma, Zhenhua

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy. PMID:26881012

  12. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases

    PubMed Central

    He, Feng; Zuo, Li

    2015-01-01

    Cardiovascular disease (CVD), a major cause of mortality in the world, has been extensively studied over the past decade. However, the exact mechanism underlying its pathogenesis has not been fully elucidated. Reactive oxygen species (ROS) play a pivotal role in the progression of CVD. Particularly, ROS are commonly engaged in developing typical characteristics of atherosclerosis, one of the dominant CVDs. This review will discuss the involvement of ROS in atherosclerosis, specifically their effect on inflammation, disturbed blood flow and arterial wall remodeling. Pharmacological interventions target ROS in order to alleviate oxidative stress and CVD symptoms, yet results are varied due to the paradoxical role of ROS in CVD. Lack of effectiveness in clinical trials suggests that understanding the exact role of ROS in the pathophysiology of CVD and developing novel treatments, such as antioxidant gene therapy and nanotechnology-related antioxidant delivery, could provide a therapeutic advance in treating CVDs. While genetic therapies focusing on specific antioxidant expression seem promising in CVD treatments, multiple technological challenges exist precluding its immediate clinical applications. PMID:26610475

  13. Role of Reactive Oxygen Species in Neonatal Pulmonary Vascular Disease

    PubMed Central

    Steinhorn, Robin H.

    2014-01-01

    Abstract Significance: Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. Recent Advances: PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. Critical Issues: General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. Future Directions: Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease. Antioxid. Redox Signal. 21, 19261942. PMID:24350610

  14. Correlation between Mitochondrial Reactive Oxygen and Severity of Atherosclerosis

    PubMed Central

    Dorighello, Gabriel G.; Paim, Bruno A.; Kiihl, Samara F.; Ferreira, Mônica S.; Catharino, Rodrigo R.; Vercesi, Anibal E.; Oliveira, Helena C. F.

    2016-01-01

    Atherosclerosis has been associated with mitochondria dysfunction and damage. Our group demonstrated previously that hypercholesterolemic mice present increased mitochondrial reactive oxygen (mtROS) generation in several tissues and low NADPH/NADP+ ratio. Here, we investigated whether spontaneous atherosclerosis in these mice could be modulated by treatments that replenish or spare mitochondrial NADPH, named citrate supplementation, cholesterol synthesis inhibition, or both treatments simultaneously. Robust statistical analyses in pooled group data were performed in order to explain the variation of atherosclerosis lesion areas as related to the classic atherosclerosis risk factors such as plasma lipids, obesity, and oxidative stress, including liver mtROS. Using three distinct statistical tools (univariate correlation, adjusted correlation, and multiple regression) with increasing levels of stringency, we identified a novel significant association and a model that reliably predicts the extent of atherosclerosis due to variations in mtROS. Thus, results show that atherosclerosis lesion area is positively and independently correlated with liver mtROS production rates. Based on these findings, we propose that modulation of mitochondrial redox state influences the atherosclerosis extent. PMID:26635912

  15. REACTIVE OXYGEN SPECIES, CELLULAR REDOX SYSTEMS AND APOPTOSIS

    PubMed Central

    Circu, Magdalena L.; Aw, Tak Yee

    2010-01-01

    Reactive oxygen species (ROS) are products of normal metabolism and xenobiotic exposure, and depending on concentrations, ROS can be beneficial or harmful to cells and tissues. At physiological low levels, ROS function as redox messengers in intracellular signaling and regulation while excess ROS induce oxidative modification of cellular macromolecules, inhibit protein function and promote cell death. Additionally, various redox systems, such as the glutathione, thioredoxin, and pyridine nucleotide redox couples, participate in cell signaling and modulation of cell function, including apoptotic cell death. Cell apoptosis is initiated by extracellular and intracellular signals via two main pathways, the death receptor- or mitochondria-mediated pathways. Various pathologies can result from oxidative stress induced apoptotic signaling that is consequent to ROS increases and/or antioxidant decreases, disruption of intracellular redox homeostasis, and irreversible oxidative modifications of lipid, protein or DNA. In the current review, we focused on several key aspects of ROS and redox mechanisms in apoptotic signaling, and highlighted the gaps in knowledge and potential avenues for further investigation. A full understanding of redox control of apoptotic initiation and execution could underpin the development of therapeutic interventions targeted at oxidative stress associated disorders. PMID:20045723

  16. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases

    PubMed Central

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  17. Correlation between Mitochondrial Reactive Oxygen and Severity of Atherosclerosis.

    PubMed

    Dorighello, Gabriel G; Paim, Bruno A; Kiihl, Samara F; Ferreira, Mnica S; Catharino, Rodrigo R; Vercesi, Anibal E; Oliveira, Helena C F

    2016-01-01

    Atherosclerosis has been associated with mitochondria dysfunction and damage. Our group demonstrated previously that hypercholesterolemic mice present increased mitochondrial reactive oxygen (mtROS) generation in several tissues and low NADPH/NADP+ ratio. Here, we investigated whether spontaneous atherosclerosis in these mice could be modulated by treatments that replenish or spare mitochondrial NADPH, named citrate supplementation, cholesterol synthesis inhibition, or both treatments simultaneously. Robust statistical analyses in pooled group data were performed in order to explain the variation of atherosclerosis lesion areas as related to the classic atherosclerosis risk factors such as plasma lipids, obesity, and oxidative stress, including liver mtROS. Using three distinct statistical tools (univariate correlation, adjusted correlation, and multiple regression) with increasing levels of stringency, we identified a novel significant association and a model that reliably predicts the extent of atherosclerosis due to variations in mtROS. Thus, results show that atherosclerosis lesion area is positively and independently correlated with liver mtROS production rates. Based on these findings, we propose that modulation of mitochondrial redox state influences the atherosclerosis extent. PMID:26635912

  18. Generation of Reactive Oxygen Species from Silicon Nanowires

    PubMed Central

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor–liquid–solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals. PMID:25452695

  19. Reactive oxygen species: players in the cardiovascular effects of testosterone.

    PubMed

    Tostes, Rita C; Carneiro, Fernando S; Carvalho, Maria Helena C; Reckelhoff, Jane F

    2016-01-01

    Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed. PMID:26538238

  20. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Miyashita, Takuya; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    Acoustic cavitation bubbles can induce not only a thermal bioeffect but also a chemical bioeffect. When cavitation bubbles collapse and oscillate violently, they produce reactive oxygen species (ROS) that cause irreversible changes to the tissue. A sonosensitizer can promote such ROS generation. A treatment method using a sonosensitizer is called sonodynamic treatment. Rose bengal (RB) is one of the sonosensitizers whose in vivo and in vitro studies have been reported. In sonodynamic treatment, it is important to produce ROS at a high efficiency. For the efficient generation of ROS, a triggered high-intensity focused ultrasound (HIFU) sequence has been proposed. In this study, cavitation bubbles were generated in a chamber where RB solution was sealed, and a high-speed camera captured the behavior of these cavitation bubbles. The amount of ROS was also quantified by a potassium iodide (KI) method and compared with high-speed camera pictures to investigate the effectiveness of the triggered HIFU sequence. As a result, ROS could be obtained efficiently by this sequence.

  1. Accumulation of reactive oxygen species in arbuscular mycorrhizal roots.

    PubMed

    Fester, T; Hause, G

    2005-07-01

    We investigated the accumulation of reactive oxygen species (ROS) in arbuscular mycorrhizal (AM) roots from Medicago truncatula, Zea mays and Nicotiana tabacum using three independent staining techniques. Colonized root cortical cells and the symbiotic fungal partner were observed to be involved in the production of ROS. Extraradical hyphae and spores from Glomus intraradices accumulated small levels of ROS within their cell wall and produced ROS within the cytoplasm in response to stress. Within AM roots, we observed a certain correlation of arbuscular senescence and H2O2 accumulation after staining by diaminobenzidine (DAB) and a more general accumulation of ROS close to fungal structures when using dihydrorhodamine 123 (DHR 123) for staining. According to electron microscopical analysis of AM roots from Z. mays after staining by CeCl3, intracellular accumulation of H2O2 was observed in the plant cytoplasm close to intact and collapsing fungal structures, whereas intercellular H2O2 was located on the surface of fungal hyphae. These characteristics of ROS accumulation in AM roots suggest similarities to ROS accumulation during the senescence of legume root nodules. PMID:15875223

  2. Reactive oxygen species a double-edged sword for mesothelioma.

    PubMed

    Benedetti, Serena; Nuvoli, Barbara; Catalani, Simona; Galati, Rossella

    2015-07-10

    It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10-15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display 'asbestos-like' pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review. PMID:26078352

  3. Participation of oxygen and role of exogenous and endogenous sensitizers in the photoinactivation of Escherichia coli by photosynthetically active radiation, UV-A and UV-B.

    PubMed

    Muela, A; Garca-Bringas, J M; Seco, C; Arana, I; Barcina, I

    2002-11-01

    We studied the mechanisms by which photosynthetically active radiation (PAR) and ultraviolet (UV-A and UV-B) radiation damage Escherichia coli suspended in water. The roles played by oxygen and exogenous and endogenous sensitizers were analyzed by monitoring changes in the physiological state of irradiated cells. Impairment of the cellular functions was more severe in the case of UV radiations. Radiation caused cellular damage in the absence of oxygen. PAR, UV-A, and UV-B radiation induced photobiological and photodynamic reactions mediated by endogenous sensitizers, which significantly shortened the T90 (time needed to reduce a cellular parameter by 90%) based on the growth ability of the cells. In addition, when exogenous sensitizers were present, the photodynamic reactions also had a negative effect on the operation of the electron transport chains. The presence of oxygen might enhance photoinactivation, affecting both the growth ability and the electron transport chains. Endogenous sensitizers were responsible for the noxious action of oxygen. The presence of dissolved organic material played a protective role against the oxygen by absorbing the incident radiation, thereby reducing the energy that reached the endogenous sensitizers. PMID:12375094

  4. Mitochondrial reactive oxygen species: which ROS signals cardioprotection?

    PubMed Central

    Jaburek, Martin; Jacobs, Jeremy P.; Garlid, Keith D.

    2013-01-01

    Mitochondria are the major effectors of cardioprotection by procedures that open the mitochondrial ATP-sensitive potassium channel (mitoKATP), including ischemic and pharmacological preconditioning. MitoKATP opening leads to increased reactive oxygen species (ROS), which then activate a mitoKATP-associated PKC?, which phosphorylates mitoKATP and leaves it in a persistent open state (Costa AD, Garlid KD. Am J Physiol Heart Circ Physiol 295, H874H882, 2008). The ROS responsible for this effect is not known. The present study focuses on superoxide (O2?), hydrogen peroxide (H2O2), and hydroxyl radical (HO?), each of which has been proposed as the signaling ROS. Feedback activation of mitoKATP provides an ideal setting for studying endogenous ROS signaling. Respiring rat heart mitochondria were preincubated with ATP and diazoxide, together with an agent being tested for interference with this process, either by scavenging ROS or by blocking ROS transformations. The mitochondria were then assayed to determine whether or not the persistent phosphorylated open state was achieved. Dimethylsulfoxide (DMSO), dimethylformamide (DMF), deferoxamine, Trolox, and bromoenol lactone each interfered with formation of the ROS-dependent open state. Catalase did not interfere with this step. We also found that DMF blocked cardioprotection by both ischemic preconditioning and diazoxide. The lack of a catalase effect and the inhibitory effects of agents acting downstream of HO? excludes H2O2 as the endogenous signaling ROS. Taken together, the results support the conclusion that the ROS message is carried by a downstream product of HO? and that it is probably a product of phospholipid oxidation. PMID:23913710

  5. HIF and reactive oxygen species regulate oxidative phosphorylation in cancer.

    PubMed

    Hervouet, Eric; Czkov, Alena; Demont, Jocelyne; Vojtskov, Alena; Pecina, Petr; Franssen-van Hal, Nicole L W; Keijer, Jaap; Simonnet, Hlne; Ivnek, Robert; Kmoch, Stanislav; Godinot, Catherine; Houstek, Josef

    2008-08-01

    A decrease in oxidative phosphorylation (OXPHOS) is characteristic of many cancer types and, in particular, of clear cell renal carcinoma (CCRC) deficient in von Hippel-Lindau (vhl) gene. In the absence of functional pVHL, hypoxia-inducible factor (HIF) 1-alpha and HIF2-alpha subunits are stabilized, which induces the transcription of many genes including those involved in glycolysis and reactive oxygen species (ROS) metabolism. Transfection of these cells with vhl is known to restore HIF-alpha subunit degradation and to reduce glycolytic genes transcription. We show that such transfection with vhl of 786-0 CCRC (which are devoid of HIF1-alpha) also increased the content of respiratory chain subunits. However, the levels of most transcripts encoding OXPHOS subunits were not modified. Inhibition of HIF2-alpha synthesis by RNA interference in pVHL-deficient 786-0 CCRC also restored respiratory chain subunit content and clearly demonstrated a key role of HIF in OXPHOS regulation. In agreement with these observations, stabilization of HIF-alpha subunit by CoCl(2) decreased respiratory chain subunit levels in CCRC cells expressing pVHL. In addition, HIF stimulated ROS production and mitochondrial manganese superoxide dismutase content. OXPHOS subunit content was also decreased by added H(2)O(2.) Interestingly, desferrioxamine (DFO) that also stabilized HIF did not decrease respiratory chain subunit level. While CoCl(2) significantly stimulates ROS production, DFO is known to prevent hydroxyl radical production by inhibiting Fenton reactions. This indicates that the HIF-induced decrease in OXPHOS is at least in part mediated by hydroxyl radical production. PMID:18515279

  6. Reactive Oxygen Production Induced by the Gut Microbiota: Pharmacotherapeutic Implications

    PubMed Central

    Jones, R.M.; Mercante, J.W.; Neish, A.S.

    2014-01-01

    The resident prokaryotic microbiota of the mammalian intestine influences diverse homeostatic functions, including regulation of cellular growth, maintenance of barrier function, and modulation of immune responses. However, it is unknown how commensal prokaryotic organisms mechanistically influence eukaryotic signaling networks. Recent data has demonstrated that gut epithelia contacted by enteric commensal bacteria rapidly generate reactive oxygen species (ROS). While the induced generation of ROS via stimulation of formyl peptide receptors is a cardinal feature of the cellular response of phagocytes to pathogenic or commensal bacteria, evidence is accumulating that ROS are also similarly elicited in other cell types, including intestinal epithelia, in response to microbial signals. Additionally, ROS have been shown to serve as critical second messengers in multiple signal transduction pathways stimulated by proinflammatory cytokines and growth factors. This physiologically-generated ROS is known to participate in cellular signaling via the rapid and transient oxidative inactivation of a defined class of sensor proteins bearing oxidant-sensitive thiol groups. These proteins include tyrosine phosphatases that serve as regulators of MAP kinase pathways, cytoskeletal dynamics, as well as components involved in control of ubiquitination-mediated NF-κB activation. Consistently, microbial-elicited ROS has been shown to mediate increased cellular proliferation and motility and to modulate innate immune signaling. These results demonstrate how enteric microbiota influence regulatory networks of the mammalian intestinal epithelia. We hypothesize that many of the known effects of the normal microbiota on intestinal physiology, and potential beneficial effects of candidate probiotic bacteria, may be at least partially mediated by this ROS-dependent mechanism. PMID:22360484

  7. Are mitochondrial reactive oxygen species required for autophagy?

    SciTech Connect

    Jiang, Jianfei; Maeda, Akihiro; Ji, Jing; Baty, Catherine J.; Watkins, Simon C.; Greenberger, Joel S.; Kagan, Valerian E.

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  8. Reactive Oxygen Species Alter Autocrine and Paracrine Signaling

    SciTech Connect

    Zangar, Richard C.; Bollinger, Nikki; Weber, Thomas J.; Tan, Ruimin; Markillie, Lye Meng; Karin, Norman J.

    2011-12-01

    Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endo-plasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a variety of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A customELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-{kappa}B pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling.

  9. Reactive Oxygen Species Mediated Activation of a Dormant Singlet Oxygen Photosensitizer: From Autocatalytic Singlet Oxygen Amplification to Chemicontrolled Photodynamic Therapy.

    PubMed

    Durantini, Andrés M; Greene, Lana E; Lincoln, Richard; Martínez, Sol R; Cosa, Gonzalo

    2016-02-01

    Here we show the design, preparation, and characterization of a dormant singlet oxygen ((1)O2) photosensitizer that is activated upon its reaction with reactive oxygen species (ROS), including (1)O2 itself, in what constitutes an autocatalytic process. The compound is based on a two segment photosensitizer-trap molecule where the photosensitizer segment consists of a Br-substituted boron-dipyrromethene (BODIPY) dye. The trap segment consists of the chromanol ring of α-tocopherol, the most potent naturally occurring lipid soluble antioxidant. Time-resolved absorption, fluorescence, and (1)O2 phosphorescence studies together with fluorescence and (1)O2 phosphorescence emission quantum yields collected on Br2B-PMHC and related bromo and iodo-substituted BODIPY dyes show that the trap segment provides a total of three layers of intramolecular suppression of (1)O2 production. Oxidation of the trap segment with ROS restores the sensitizing properties of the photosensitizer segment resulting in ∼40-fold enhancement in (1)O2 production. The juxtaposed antioxidant (chromanol) and prooxidant (Br-BODIPY) antagonistic chemical activities of the two-segment compound enable the autocatalytic, and in general ROS-mediated, activation of (1)O2 sensitization providing a chemical cue for the spatiotemporal control of (1)O2.The usefulness of this approach to selectively photoactivate the production of singlet oxygen in ROS stressed vs regular cells was successfully tested via the photodynamic inactivation of a ROS stressed Gram negative Escherichia coli strain. PMID:26789198

  10. Quantitative assessment of reactive oxygen species generation by cavitation incepted efficiently using nonlinear propagation effect

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-10-01

    Sonodynamic treatment is a treatment method that uses chemical bio-effect of cavitation bubbles. Reactive oxygen species that can kill cancerous tissue is induced by such chemical effect of cavitation bubbles and it is important to generate them efficiently for effective sonodynamic treatment. Cavitation cloud can be formed by an effect of nonlinear propagation and focus and in this study, it was experimentally investigated if cavitation cloud was useful for efficient generation of reactive oxygen species. As a result, it was demonstrated that cavitation cloud would be useful for efficient generation of reactive oxygen species.

  11. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis

    PubMed Central

    McCormick, Rachel; Pearson, Timothy; Vasilaki, Aphrodite

    2016-01-01

    Regulated changes in reactive oxygen and nitrogen species (RONS) activities are important in maintaining the normal sequence and development of myogenesis. Both excessive formation and reduction in RONS have been shown to affect muscle differentiation in a negative way. Cultured cells are typically grown in 20% O2 but this is not an appropriate physiological concentration for a number of cell types, including skeletal muscle. The aim was to examine the generation of RONS in cultured skeletal muscle cells under a physiological oxygen concentration condition (6% O2) and determine the effect on muscle myogenesis. Primary mouse satellite cells were grown in 20% or 6% O2 environments and RONS activity was measured at different stages of myogenesis by real-time fluorescent microscopy using fluorescent probes with different specificities i.e. dihydroethidium (DHE), 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA) and 5-(and-6)-chloromethyl-2′,7′ -dichlorodihydrofluorescein diacetate (CM-DCFH-DA). Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner. PMID:26827127

  12. Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy

    PubMed Central

    Gupta, Subash C.; Hevia, David; Patchva, Sridevi; Park, Byoungduck; Koh, Wonil

    2012-01-01

    Abstract Significance: Extensive research during the last quarter century has revealed that reactive oxygen species (ROS) produced in the body, primarily by the mitochondria, play a major role in various cell-signaling pathways. Most risk factors associated with chronic diseases (e.g., cancer), such as stress, tobacco, environmental pollutants, radiation, viral infection, diet, and bacterial infection, interact with cells through the generation of ROS. Recent Advances: ROS, in turn, activate various transcription factors (e.g., nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], activator protein-1, hypoxia-inducible factor-1α, and signal transducer and activator of transcription 3), resulting in the expression of proteins that control inflammation, cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Paradoxically, ROS also control the expression of various tumor suppressor genes (p53, Rb, and PTEN). Similarly, γ-radiation and various chemotherapeutic agents used to treat cancer mediate their effects through the production of ROS. Interestingly, ROS have also been implicated in the chemopreventive and anti-tumor action of nutraceuticals derived from fruits, vegetables, spices, and other natural products used in traditional medicine. Critical Issues: These statements suggest both “upside” (cancer-suppressing) and “downside” (cancer-promoting) actions of the ROS. Thus, similar to tumor necrosis factor-α, inflammation, and NF-κB, ROS act as a double-edged sword. This paradox provides a great challenge for researchers whose aim is to exploit ROS stress for the development of cancer therapies. Future Directions: The various mechanisms by which ROS mediate paradoxical effects are discussed in this article. The outstanding questions and future directions raised by our current understanding are discussed. Antioxid. Redox Signal. 16, 1295–1322. PMID:22117137

  13. Laser irradiation of mouse spermatozoa enhances in-vitro fertilization and Ca2+ uptake via reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Cohen, Natalie; Lubart, Rachel; Rubinstein, Sara; Breitbart, Haim

    1996-11-01

    630 nm He-Ne laser irradiation was found to have a profound influence on Ca2+ uptake in mouse spermatozoa and the fertilizing potential of these cells. Laser irradiation affected mainly the mitochondrial Ca2+ transport mechanisms. Furthermore, the effect of light was found to be Ca2+-dependent. We demonstrate that reactive oxygen species (ROS) are involved in the cascade of biochemical events evoked by laser irradiation. A causal association between laser irradiation, ROS generation, and sperm function was indicated by studies with ROS scavengers, superoxide dismutase (SOD) and catalase, and exogenous hydrogen peroxide. SOD treatment resulted in increased Ca2+ uptake and in enhanced fertilization rate. Catalase treatment impaired the light-induced stimulation in Ca2+ uptake and fertilization rate. Exogenous hydrogen peroxide was found to enhance Ca2+ uptake in mouse spermatozoa and the fertilizing capability of these cells in a dose-dependent manner. These results suggest that the effect of 630 nm He-Ne laser irradiation is mediated through the generation of hydrogen peroxide by the spermatozoa and that this effect plays a significant role in the augmentation of the sperm cells' capability to fertilize metaphase II-arrested eggs in-vitro.

  14. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis.

    PubMed

    Khan, Saeed R

    2014-09-01

    Calcium oxalate (CaOx) kidney stones are formed attached to Randall's plaques (RPs) or Randall's plugs. Mechanisms involved in the formation and growth are poorly understood. It is our hypothesis that stone formation is a form of pathological biomineralization or ectopic calcification. Pathological calcification and plaque formation in the body is triggered by reactive oxygen species (ROS) and the development of oxidative stress (OS). This review explores clinical and experimental data in support of ROS involvement in the formation of CaOx kidney stones. Under normal conditions the production of ROS is tightly controlled, increasing when and where needed. Results of clinical and experimental studies show that renal epithelial exposure to high oxalate and crystals of CaOx/calcium phosphate (CaP) generates excess ROS, causing injury and inflammation. Major markers of OS and inflammation are detectable in urine of stone patients as well as rats with experimentally induced CaOx nephrolithiasis. Antioxidant treatments reduce crystal and oxalate induced injury in tissue culture and animal models. Significantly lower serum levels of antioxidants, alpha-carotene, beta-carotene and beta-cryptoxanthine have been found in individuals with a history of kidney stones. A diet rich in antioxidants has been shown to reduce stone episodes. ROS regulate crystal formation, growth and retention through the timely production of crystallization modulators. In the presence of abnormal calcium, citrate, oxalate, and/or phosphate, however, there is an overproduction of ROS and a decrease in the antioxidant capacity resulting in OS, renal injury and inflammation. Cellular degradation products in the urine promote crystallization in the tubular lumen at a faster rate thus blocking the tubule and plugging the tubular openings at the papillary tips forming Randall's plugs. Renal epithelial cells lining the loops of Henle/collecting ducts may become osteogenic, producing membrane vesicles at the basal side. In addition endothelial cells lining the blood vessels may also become osteogenic producing membrane vesicles. Calcification of the vesicles gives rise to RPs. The growth of the RP's is sustained by mineralization of collagen laid down as result of inflammation and fibrosis. PMID:25383321

  15. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis

    PubMed Central

    2014-01-01

    Calcium oxalate (CaOx) kidney stones are formed attached to Randall’s plaques (RPs) or Randall’s plugs. Mechanisms involved in the formation and growth are poorly understood. It is our hypothesis that stone formation is a form of pathological biomineralization or ectopic calcification. Pathological calcification and plaque formation in the body is triggered by reactive oxygen species (ROS) and the development of oxidative stress (OS). This review explores clinical and experimental data in support of ROS involvement in the formation of CaOx kidney stones. Under normal conditions the production of ROS is tightly controlled, increasing when and where needed. Results of clinical and experimental studies show that renal epithelial exposure to high oxalate and crystals of CaOx/calcium phosphate (CaP) generates excess ROS, causing injury and inflammation. Major markers of OS and inflammation are detectable in urine of stone patients as well as rats with experimentally induced CaOx nephrolithiasis. Antioxidant treatments reduce crystal and oxalate induced injury in tissue culture and animal models. Significantly lower serum levels of antioxidants, alpha-carotene, beta-carotene and beta-cryptoxanthine have been found in individuals with a history of kidney stones. A diet rich in antioxidants has been shown to reduce stone episodes. ROS regulate crystal formation, growth and retention through the timely production of crystallization modulators. In the presence of abnormal calcium, citrate, oxalate, and/or phosphate, however, there is an overproduction of ROS and a decrease in the antioxidant capacity resulting in OS, renal injury and inflammation. Cellular degradation products in the urine promote crystallization in the tubular lumen at a faster rate thus blocking the tubule and plugging the tubular openings at the papillary tips forming Randall’s plugs. Renal epithelial cells lining the loops of Henle/collecting ducts may become osteogenic, producing membrane vesicles at the basal side. In addition endothelial cells lining the blood vessels may also become osteogenic producing membrane vesicles. Calcification of the vesicles gives rise to RPs. The growth of the RP’s is sustained by mineralization of collagen laid down as result of inflammation and fibrosis. PMID:25383321

  16. The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species

    PubMed Central

    Smith, Basil A.; Neal, Corey L.; Chetram, Mahandranauth; Vo, BaoHan; Mezencev, Roman; Hinton, Cimona

    2013-01-01

    Camalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation. As models, we utilized LNCaP and its aggressive subline, C4-2, as well as ARCaP cells stably transfected with empty vector (Neo) control or constitutively active Snail cDNA that represents an epithelial to mesenchymal transition (EMT) model and displays increased cell migration and tumorigenicity. We confirmed previous studies showing that C4-2 and ARCaP-Snail cells express more ROS than LNCaP and ARCaP-Neo, respectively. Camalexin increased ROS, decreased cell proliferation, and increased apoptosis more significantly in C4-2 and ARCaP-Snail cells as compared to LNCaP and ARCaP-Neo cells, respectively, while normal prostate epithelial cells (PrEC) were unaffected. Increased caspase-3/7 activity and increased cleaved PARP protein shown by Western blot analysis was suggestive of increased apoptosis. The ROS scavenger N-acetyl cysteine (NAC) antagonized the effects of camalexin, whereas the addition of exogenous hydrogen peroxide potentiated the effects of camalexin, showing that camalexin is mediating its effects through ROS. In conclusion, camalexin is more potent in aggressive prostate cancer cells that express high ROS levels, and this phytoalexin has a strong potential as a novel therapeutic agent for the treatment of especially metastatic prostate cancer. PMID:23179315

  17. The control of reactive oxygen species influences porcine oocyte in vitro maturation.

    PubMed

    Alvarez, G M; Morado, S A; Soto, M P; Dalvit, G C; Cetica, P D

    2015-04-01

    The aim of this study was to examine the effect of varying intracellular reactive oxygen species (ROS) levels during oocyte in vitro maturation with enzymatic ROS production systems (xanthine + xanthine oxidase or xanthine + xanthine oxidase + catalase), scavenger systems (catalase or superoxide dismutase + catalase) or cysteine on porcine oocyte maturation. Oocyte ROS levels showed an increase when H2O2 or O2?(-) production systems were added to the culture medium (p < 0.05). On the other hand, the presence of ROS scavengers in the maturation medium did not modify oocyte ROS levels compared with the control after 48 h of maturation, but the addition of cysteine induced a decrease in oocyte ROS levels (p < 0.05). The ROS production systems used in this work did not modified the percentage of oocyte nuclear maturation, but increased the decondensation of sperm head (p < 0.05) and decreased the pronuclear formation (p < 0.05). In turn, the addition of O2?(-) and H2O2 scavenging systems during in vitro maturation did not modify the percentage of oocytes reaching metaphase II nor the oocytes with decondensed sperm head or pronuclei after fertilization. However, both parameters increased in the presence of cysteine (p < 0.05). The exogenous generation of O2?(-) and H2O2 during oocyte in vitro maturation would not affect nuclear maturation or later sperm penetration, but most of the spermatozoa cannot progress to form the pronuclei after fusion with the oocyte. The decrease in endogenous ROS levels by the addition of cysteine would improve pronuclear formation after sperm penetration. PMID:25522082

  18. Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes.

    PubMed

    Jou, Mei-Jie

    2008-01-01

    Astrocytes, in addition to passively supporting neurons, have recently been shown to be actively involved in synaptic transmission and neurovascular coupling in the central nervous system (CNS). This review summarizes briefly our previous observations using fluorescent probes coupled with laser scanning digital imaging microscopy to visualize spatio-temporal alteration of mitochondrial reactive oxygen species (mROS) generation in intact astrocytes. mROS formation is enhanced by exogenous oxidants exposure, Ca2+ stress and endogenous pathological defect of mitochondrial respiratory complexes. In addition, mROS formation can be specifically stimulated by visible light or visible laser irradiation and can be augmented further by photodynamic coupling with photosensitizers, particularly with mitochondria-targeted photosensitizers. "Severe" oxidative insult often results in massive and homogeneous augmentation of mROS formation which causes cessation of mitochondrial movement, pathological fission and irreversible swelling of mitochondria and eventually apoptosis or necrosis of cells. Mitochondria-targeted antioxidants and protectors such as MitoQ, melatonin and nanoparticle C(60) effectively prevent "severe" mROS generation. Intriguingly, "minor" oxidative insults enhance heterogeneity of mROS and mitochondrial dynamics. "Minor" mROS formation-induced fission and fusion of mitochondria relocates mitochondrial network to form a mitochondria free gap, i.e., "firewall", which may play a crucial role in mROS-mediated protective "preconditioning" by preventing propagation of mROS during oxidative insults. These mROS-targeted strategies for either enhancement or prevention of mitochondrial oxidative stress in astrocytes may provide new insights for future development of therapeutic interventions in the treatment of cancer such as astrocytomas and gliomas and astrocyte-associated neurodegeneration, mitochondrial diseases and aging. PMID:18692534

  19. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-01-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. PMID:25388908

  20. Cytotoxic and Antitumor Activity of Sulforaphane: The Role of Reactive Oxygen Species

    PubMed Central

    Sestili, Piero; Fimognari, Carmela

    2015-01-01

    According to recent estimates, cancer continues to remain the second leading cause of death and is becoming the leading one in old age. Failure and high systemic toxicity of conventional cancer therapies have accelerated the identification and development of innovative preventive as well as therapeutic strategies to contrast cancer-associated morbidity and mortality. In recent years, increasing body of in vitro and in vivo studies has underscored the cancer preventive and therapeutic efficacy of the isothiocyanate sulforaphane. In this review article, we highlight that sulforaphane cytotoxicity derives from complex, concurring, and multiple mechanisms, among which the generation of reactive oxygen species has been identified as playing a central role in promoting apoptosis and autophagy of target cells. We also discuss the site and the mechanism of reactive oxygen species' formation by sulforaphane, the toxicological relevance of sulforaphane-formed reactive oxygen species, and the death pathways triggered by sulforaphane-derived reactive oxygen species. PMID:26185755

  1. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    EPA Science Inventory

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  2. COMPARATIVE ANALYSIS OF REACTIVE OXYGEN SPECIES IN HUMAN PLASMA AND BLOOD

    EPA Science Inventory

    Reactive oxygen species (ROS) are commonly associated with diseased states (including asthma, cardiovascular disease, cancer) infections, and exposure to various toxicants in humans. It is of interest in epidemiology studies to characterize the association of oxidative stress in...

  3. Reactivity of pyruvic acid and its derivatives towards reactive oxygen species.

    PubMed

    Kładna, Aleksandra; Marchlewicz, Mariola; Piechowska, Teresa; Kruk, Irena; Aboul-Enein, Hassan Y

    2015-11-01

    Pyruvic acid and its derivatives occurring in most biological systems are known to exhibit several pharmacological properties, such as anti-inflammatory, neuroprotective or anticancer, many of which are suggested to originate from their antioxidant and free radical scavenger activity. The therapeutic potential of these compounds is a matter of particular interest, due to their mechanisms of action, particularly their possible antioxidant behaviour. Here, we report the results of a study of the effect of pyruvic acid (PA), ethyl pyruvate (EP) and sodium pyruvate (SP) on reactions generating reactive oxygen species (ROS), such as superoxide anion radicals, hydroxyl radicals and singlet oxygen, and their total antioxidant capacity. Chemiluminescence (CL) and spectrophotometry techniques were employed. The pyruvate analogues studied were found to inhibit the CL signal arising from superoxide anion radicals in a dose-dependent manner with IC50 = 0.0197 ± 0.002 mM for EP and IC50 = 69.2 ± 5.2 mM for PA. These compounds exhibited a dose-dependent decrease in the CL signal of the luminol + H2O2 system over the range 0.5-10 mM with IC50 values of 1.71 ± 0.12 mM for PA, 3.85 ± 0.21 mM for EP and 22.91 ± 1.21 mM for SP. Furthermore, these compounds also inhibited hydroxyl radical-dependent deoxyribose degradation in a dose-dependent manner over the range 0.5-200 mM, with IC50 values of 33.2 ± 0.3 mM for SP, 116.1 ± 6.2 mM for EP and 168.2 ± 6.2 mM for PA. All the examined compounds also showed antioxidant capacity when estimated using the ferric-ferrozine assay. The results suggest that the antioxidant activities of pyruvate derivatives may reflect a direct effect on scavenging ROS and, in part, be responsible for their pharmacological actions. PMID:25754627

  4. Oxygen Pathway Modeling Estimates High Reactive Oxygen Species Production above the Highest Permanent Human Habitation

    PubMed Central

    Cano, Isaac; Selivanov, Vitaly; Gomez-Cabrero, David; Tegnr, Jesper; Roca, Josep; Wagner, Peter D.; Cascante, Marta

    2014-01-01

    The production of reactive oxygen species (ROS) from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (). Because depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the death zone in mountaineering. PMID:25375931

  5. Participation of reactive oxygen species in phototoxicity induced by quinolone antibacterial agents.

    PubMed

    Umezawa, N; Arakane, K; Ryu, A; Mashiko, S; Hirobe, M; Nagano, T

    1997-06-15

    To elucidate the mechanism of phototoxicity induced as a side effect by some of the new quinolone antibiotics, we studied sparfloxacin (SPFX), lomefloxacin, enoxacin, ofloxacin, and ciprofloxacin. We first examined the photosensitized formation of reactive oxygen species such as singlet oxygen (1O2) and superoxide anion (O2-) mediated by the new quinolones. Although a large number of studies have been reported, there is no direct evidence that these drugs generate reactive oxygen species. We employed a near-infrared emission spectrometer to detect 1O2-specific emission (1268 nm), and the nitroblue tetrazolium reduction method to detect O2-. All the quinolones investigated in this study were found to produce 1O2. Four drugs, but not SPFX, produced O2-. We also examined photodynamic DNA strand-breaking activity as a possible mechanism to explain the participation of reactive oxygen species in the phototoxicity of the drugs. All the drugs exhibited photodynamic DNA strand-breaking activity. The inhibitory effect of scavengers of reactive oxygen species indicated that the main active species was 1O2. The DNA strand-breaking activity was correlated not with the 1O2-forming ability, but with the affinity of the drugs for DNA. This result may be due to the short lifetime of 1O2. These data suggested that the phototoxicity of the new quinolones was related to DNA damage caused by reactive oxygen species, especially 1O2. PMID:9186488

  6. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms.

    PubMed

    Bradbury, Louis M T; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J; Wurtzel, Eleanore T

    2012-07-01

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change. PMID:22706644

  7. Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion.

    PubMed

    Gray, Joshua P; Heart, Emma

    2010-05-01

    Insulin secretion from pancreatic beta cells is a process dependent on metabolism. While oxidative stress is a well-known inducer of beta cell toxicity and impairs insulin secretion, recent studies suggest that low levels of metabolically-derived reactive oxygen intermediates (ROI) also play a positive role in insulin secretion. Glucose metabolism is directly correlated with ROI production, particularly in beta cells in which glucose uptake is proportional to the extracellular concentration of glucose. Low levels of exogenously added ROI or quinones, which stimulate ROI production, positively affect insulin secretion, while antioxidants block insulin secretion, suggesting that ROI activate unidentified redox-sensitive signal transduction components within these cells. The mitochondria are one source of ROI: increased metabolic flux increases mitochondrial membrane potential resulting in electron leakage and adventitious ROI production. A second source of ROI are cytosolic and plasma membrane oxidoreductases which oxidize NAD(P)H and directly produce ROI through the reduction of molecular oxygen. The mechanism of ROI-mediated potentiation of insulin secretion remains an important topic for future study. PMID:20397883

  8. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency.

    PubMed

    Belaidi, Abdel A; Rper, Juliane; Arjune, Sita; Krizowski, Sabina; Trifunovic, Aleksandra; Schwarz, Guenter

    2015-07-15

    Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO. PMID:26171830

  9. Frequency effects on the production of reactive oxygen species in atmospheric radio frequency helium-oxygen discharges

    SciTech Connect

    Zhang, Yuantao T.; He Jin

    2013-01-15

    Several experimental and computational studies have shown that increasing frequency can effectively enhance the discharge stability in atmospheric radio-frequency (rf) discharges, but the frequency effects on the reactivity of rf discharges, represented by the densities of reactive oxygen species (ROS), are still far from fully understood. In this paper, a one-dimensional fluid model with 17 species and 65 reactions taken into account is used to explore the influences of the driving frequency on the production and destruction of ROS in atmospheric rf helium-oxygen discharges. From the computational results, with an increase in the frequency the densities of ROS decrease always at a constant power density, however, in the relatively higher frequency discharges the densities of ROS can be effectively improved by increasing the input power density with an expanded oxygen admixture range, while the discharges operate in the {alpha} mode, and the numerical data also show the optimal oxygen admixture for ground state atomic oxygen, at which the peak atomic oxygen density can be obtained, increases with the driving frequency.

  10. Reactivity of graphene and hexagonal boron nitride in-plane heterostructures with oxygen: a DFT study.

    PubMed

    Nguyen, Manh-Thuong

    2014-08-01

    A density-functional study has been undertaken to investigate the chemical properties of in-plane heterostructures of graphene and hexagonal boron nitride. The interactions of armchair and zigzag linking edges with oxygen are looked at in detail. The results of the calculations indicate that the linking edges are highly reactive to oxygen atoms and predict that oxygen molecules can accordingly be adsorbed dissociatively. Furthermore, because oxygen atoms cooperatively interact with the heterostructures, the process can lead to opening of the linking edges, thus splitting the two materials. PMID:24862336

  11. Impact reactivity of materials at very high oxygen pressure

    NASA Technical Reports Server (NTRS)

    Connor, H. W.; Minchey, J. G.; Crowder, R.; Davidson, R.

    1983-01-01

    The requirements for impact testing of materials in an oxygen atmosphere at pressures from 82.7 MPa (12,000 psi) to 172 MPa (25,000 psi) were evaluated. The impact tester system was evaluated for potential pressure increases from 69 MPa (10,000 psi) to 82.7 MPa (12,000 psi). The low pressure oxygen and nitrogen systems, the impact tower, the impact test cell, and the high pressure oxygen system were evaluated individually. Although the structural integrity of the impact test cell and the compressor were sufficient for operation at 82.7 MPa (12,000 psi), studies revealed possible material incompatibility at that pressure and above. It was recommended that if a component should be replaced for 82.7 MPa (12,000 psi) operation the replacement should meet the final objectives of 172 MPa (25,000 psi). Recommended changes in the system include; use of Monel 400 for pressures above 82.7 MPa (12,000 psi), use of bellows to replace the seal in the impact tester, use of a sapphire window attached to a fiber optic for event sensing, and use of a three diaphragm compressor.

  12. Reactive oxygen species do not cause arsine-induced hemoglobin damage

    SciTech Connect

    Hatlelid, K.M.; Carter, D.E.

    1997-04-11

    Previous work suggested that arsine- (AsH{sub 3}-) induced hemoglobin (HbO{sub 2}) damage may lead to hemolysis (Hatlelid et al., 1996). The purpose of the work presented here was to determine whether reactive oxygen species are formed by AsH{sub 3} in solution, in hemoglobin solutions, or in intact red blood cells, and, if so, to determine whether these species are responsible for the observed hemoglobin damage. Hydrogen peroxide (H{sub 2}O{sub 2}) was detected in aqueous solutions containing AsH{sub 3} and HbO{sub 2} or AsH{sub 3} alone but not in intact red blood cells or lysates. Additionally, high-activity catalase (19,200 U/ml) or glutathione peroxidase (68 U/ml) added to solutions of HbO{sub 2} and AsH{sub 3} had only a minor protective effect against AsH{sub 3}-induced damage. Further, the differences between the visible spectra of AsH{sub 3}-treated HbO{sub 2} and H{sub 2}O{sub 2}-treated HbO{sub 2} indicate that two different degradative processes occur. The presence of superoxide anion (O{sub 2}{sup {minus}}) was measured by O{sub 2}{sup {minus}} -dependent reduction of nitro blue tetrazolium (NBT). The results were negative for O{sub 2}{sup {minus}}. Exogenous superoxide dismutase (100 {mu}g/ml) did not affect AsH{sub 3}-induced HbO{sub 2} spectral changes, nor did the hydroxyl radical scavengers, mannitol, and DMSO (20mM each). The general antioxidants ascorbate ({le} 10 mM) and glutathione ({le}1 mM) also had no effect. These results indicate that the superoxide anion and the hydroxyl radical (OH) are not involved in the mechanism of AsH{sub 3}-induced HbO{sub 2} damage. The results also indicate that although AsH{sub 3} contributes to H{sub 2}O{sub 2} production in vitro, cellular defenses are adequate to detoxify the amount formed. An alternative mechanism by which an arsenic species is the hemolytic agent is proposed. 16 refs., 4 figs., 2 tabs.

  13. [Effects of water and light interaction on reactive oxygen metabolism in ginger leaves].

    PubMed

    Zhang, Yong-Zheng; Li, Hai-Dong; Li, Xiu; Xiao, Jing; Xu, Kun

    2013-12-01

    To explore the relationship between water supply in roots, light intensity on leaves and reactive oxygen metabolism, the effects of various treatments including natural light plus normal watering (T1), 50% shading plus normal watering (T2), natural light plus PEG-6000 simulated drought (T3), 50% shading plus simulated drought (T4) on reactive oxygen level and antioxidant enzyme activity in ginger leaves were studied. The results showed that, 6 days after treatment, the O2* production rate and H2O2 and MDA contents remarkably increased in ginger leaves at midday. Treatment T3 showed the greatest increment, followed by T4, T1 and T2 in order. In addition, the activities of SOD and POD in all treatments and CAT in T3 and T4 noticeably decreased, while CAT in T1 and T2 exhibited a high activity at midday. Throughout the whole treatment, reactive oxygen level and antioxidant enzyme activities of ginger leaves in T1 and T2 remained stable, with a higher activity in T1 than in T2. However, the reactive oxygen level kept increasing in leaves exposed to treatments T3 and T4. Meanwhile, the activities of antioxidant enzymes increased firstly and then decreased. Taken together, this study demonstrated that drought stress, especially drought plus light stress, led to an increased accumulation of reactive oxygen in ginger leaves, while shading was conducive to maintaining high activity of protective enzymes, and therefore to reducing reactive oxygen level and alleviate drought-induced injury. PMID:24697065

  14. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis1[W

    PubMed Central

    Xie, Yanjie; Mao, Yu; Zhang, Wei; Lai, Diwen; Wang, Qingya; Shen, Wenbiao

    2014-01-01

    The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, reactive oxygen species (ROS), nitric oxide (NO), and the guard cell outward-rectifying K+ channel (GORK). ABA elicited a rapid and sustained H2 release and production in Arabidopsis. Exogenous hydrogen-rich water (HRW) effectively led to an increase of intracellular H2 production, a reduction in the stomatal aperture, and enhanced drought tolerance. Subsequent results revealed that HRW stimulated significant inductions of NO and ROS synthesis associated with stomatal closure in the wild type, which were individually abolished in the nitric reductase mutant nitrate reductase1/2 (nia1/2) or the NADPH oxidase-deficient mutant rbohF (for respiratory burst oxidase homolog). Furthermore, we demonstrate that the HRW-promoted NO generation is dependent on ROS production. The rbohF mutant had impaired NO synthesis and stomatal closure in response to HRW, while these changes were rescued by exogenous application of NO. In addition, both HRW and hydrogen peroxide failed to induce NO production or stomatal closure in the nia1/2 mutant, while HRW-promoted ROS accumulation was not impaired. In the GORK-null mutant, stomatal closure induced by ABA, HRW, NO, or hydrogen peroxide was partially suppressed. Together, these results define a main branch of H2-regulated stomatal movement involved in the ABA signaling cascade in which RbohF-dependent ROS and nitric reductase-associated NO production, and subsequent GORK activation, were causally involved. PMID:24733882

  15. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis.

    PubMed

    Xie, Yanjie; Mao, Yu; Zhang, Wei; Lai, Diwen; Wang, Qingya; Shen, Wenbiao

    2014-04-14

    The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, reactive oxygen species (ROS), nitric oxide (NO), and the guard cell outward-rectifying K(+) channel (GORK). ABA elicited a rapid and sustained H2 release and production in Arabidopsis. Exogenous hydrogen-rich water (HRW) effectively led to an increase of intracellular H2 production, a reduction in the stomatal aperture, and enhanced drought tolerance. Subsequent results revealed that HRW stimulated significant inductions of NO and ROS synthesis associated with stomatal closure in the wild type, which were individually abolished in the nitric reductase mutant nitrate reductase1/2 (nia1/2) or the NADPH oxidase-deficient mutant rbohF (for respiratory burst oxidase homolog). Furthermore, we demonstrate that the HRW-promoted NO generation is dependent on ROS production. The rbohF mutant had impaired NO synthesis and stomatal closure in response to HRW, while these changes were rescued by exogenous application of NO. In addition, both HRW and hydrogen peroxide failed to induce NO production or stomatal closure in the nia1/2 mutant, while HRW-promoted ROS accumulation was not impaired. In the GORK-null mutant, stomatal closure induced by ABA, HRW, NO, or hydrogen peroxide was partially suppressed. Together, these results define a main branch of H2-regulated stomatal movement involved in the ABA signaling cascade in which RbohF-dependent ROS and nitric reductase-associated NO production, and subsequent GORK activation, were causally involved. PMID:24733882

  16. Humic acid effect on catalase activity and the generation of reactive oxygen species in corn (Zea mays).

    PubMed

    Cordeiro, Flvio Couto; Santa-Catarina, Claudete; Silveira, Vanildo; de Souza, Sonia Regina

    2011-01-01

    Humic acids (HAs) have positive effects on plant physiology, but the molecular mechanisms underlying these events are only partially understood. The induction of root growth and emission of lateral roots (LRs) promoted by exogenous auxin is a natural phenomenon. Exogenous auxins are also associated with HA. Gas nitric oxide (NO) is a secondary messenger produced endogenously in plants. It is associated with metabolic events dependent on auxin. With the application of auxin, NO production is significantly increased, resulting in positive effects on plant physiology. Thus it is possible to evaluate the beneficial effects of the application of HA as an effect of auxin. To investigate the effects of HA the parameters of root growth, Zea mays was studied by evaluating the application of 3 mM C L? of HA extracted from Oxisol and 100 M SNP (sodium nitroprusside) and the NO donor, subject to two N-NO??, high dose (5.0 mM N-NO??) and low dose (5.0 mM N-NO??). Treatments with HA and NO were positively increased, regardless of the N-NO?? taken, as assessed by fresh weight and dry root, issue of LRs. The effects were more pronounced in the treatment with a lower dose of N-NO??. Detection of reactive oxygen species (ROS) in vivo and catalase activity were evaluated; these tests were associated with root growth. Under application of the bioactive substances tested, detection of ROS and catalase activity increased, especially in treatments with lower doses of N-NO??. The results of this experiment indicate that the effects of HA are dependent on ROS generation, which act as a messenger that induces root growth and the emission of LRs. PMID:21228492

  17. Are mitochondria a permanent source of reactive oxygen species?

    PubMed

    Staniek, K; Nohl, H

    2000-11-20

    The observation that in isolated mitochondria electrons may leak out of the respiratory chain to form superoxide radicals (O(2)(radical-)) has prompted the assumption that O(2)(radical-) formation is a compulsory by-product of respiration. Since mitochondrial O(2)(radical-) formation under homeostatic conditions could not be demonstrated in situ so far, conclusions drawn from isolated mitochondria must be considered with precaution. The present study reveals a link between electron deviation from the respiratory chain to oxygen and the coupling state in the presence of antimycin A. Another important factor is the analytical system applied for the detection of activated oxygen species. Due to the presence of superoxide dismutase in mitochondria, O(2)(radical-) release cannot be realistically determined in intact mitochondria. We therefore followed the release of the stable dismutation product H(2)O(2) by comparing most frequently used H(2)O(2) detection methods. The possible interaction of the detection systems with the respiratory chain was avoided by a recently developed method, which was compared with conventional methods. Irrespective of the methods applied, the substrates used for respiration and the state of respiration established, intact mitochondria could not be made to release H(2)O(2) from dismutating O(2)(radical-). Although regular mitochondrial respiration is unlikely to supply single electrons for O(2)(radical-) formation our study does not exclude the possibility of the respiratory chain becoming a radical source under certain conditions. PMID:11106768

  18. THE THEORIES OF AGING: REACTIVE OXYGEN SPECIES AND WHAT ELSE?

    PubMed

    Avantaggiato, A; Bertuzzi, G; Pascali, M; Candotto, V; Carinci, F

    2015-01-01

    This manuscript is a short review on the theories of aging, focusing mainly on the balance between the nutrient and the oxygen intake necessary for energy metabolism and the processes for neutralizing the negative consequences of energy production. The first section entitled ?Why? provides brief historical details regarding the main group of aging theories, firstly the evolutionary theories and secondly the theories of aging related to humans, cells and biomolecules are discussed. The second section entitled ?Where? includes brief summaries of the many cellular levels at which aging damage can occur: replicative senescence with its genetic and epigenetic implications, cytoplasmic accumulation, mitochondrial respiratory chain dysfunction, peroxisome and membrane activity. In the third section entitled ?How? the linking mechanisms between the caloric restriction and the antioxidant intake on lifespan and aging in experimental models are discussed. The role of ROS is evaluated in relation to the mitochondria, the AMPK activated sirtuins, the hormesis, the target of rapamicin and the balance autophagy/apoptosis. PMID:26511196

  19. Study of the reactivity of silica supported tantalum catalysts with oxygen followed by in situ HEROS.

    PubMed

    B?achucki, Wojciech; Szlachetko, Jakub; Kayser, Yves; Dousse, Jean-Claude; Hoszowska, Joanna; Fernandes, Daniel L A; S, Jacinto

    2015-07-28

    We report on the reactivity of grafted tantalum organometallic catalysts with molecular oxygen. The changes in the local Ta electronic structure were followed by in situ high-energy resolution off-resonant spectroscopy (HEROS). The results revealed agglomeration and formation of Ta dimers, which cannot be reversed. The process occurs independently of starting grafted complex. PMID:26105785

  20. Effects of reactive oxygen species action on sperm function in spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) formation and lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic because of the low specificity and sens...

  1. NADPH Oxidase- and Mitochondria-derived Reactive Oxygen Species in Proinflammatory Microglial Activation: A Bipartisan Affair?

    PubMed Central

    Bordt, Evan A.; Polster, Brian M.

    2014-01-01

    Microglia are the resident immune cells of the brain and play major roles in central nervous system development, maintenance, and disease. Brain insults cause microglia to proliferate, migrate, and transform into one or more activated states. Classical M1 activation triggers the production of proinflammatory factors such as tumor necrosis factor- ? (TNF-?), interleukin-1? (IL-1?), nitric oxide (NO), and reactive oxygen species which, in excess, can exacerbate brain injury. The mechanisms underlying microglial activation are not fully understood, yet reactive oxygen species are increasingly implicated as mediators of microglial activation. In this review, we highlight studies linking reactive oxygen species, in particular hydrogen peroxide derived from NADPH oxidase-generated superoxide, to the classical activation of microglia. In addition, we critically evaluate controversial evidence suggesting a specific role for mitochondrial reactive oxygen species in the activation of the NLRP3 inflammasome, a multiprotein complex that mediates the production of IL-1? and IL-18. Finally, the limitations of common techniques used to implicate mitochondrial ROS in microglial and inflammasome activation, such as the use of the mitochondrially-targeted ROS indicator MitoSOX and the mitochondrially-targeted antioxidant MitoTEMPO, are also discussed. PMID:25091898

  2. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  3. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). Rece...

  4. Mitochondrial function and reactive oxygen species action in relation to boar motility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow cytometric assays were developed for reactive oxygen species (ROS) formation (ROS-induced oxidization of hydroethidine to ethidium), membrane lipid peroxidation (C11-BODIPY-581/591 oxidation), and mitochondrial transmembrane potential (MMP) (MMP-induced JC-1 aggregation, red fluorescence) in vi...

  5. Mitochondrial function and reactive oxygen species action in relation to boar motility.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow cytometric assays of viable boar sperm were developed to measure reactive oxygen species (ROS) formation (oxidization of hydroethidine to ethidium), membrane lipid peroxidation (oxidation of lipophilic probe C11-BODIPY581/591), and mitochondrial inner transmembrane potential (aggregation of mit...

  6. Reactive Oxygen Species Are Involved in Plant Defense against a Gall Midge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) play a major role in plant defense against pathogens, but evidence for their role in defense against insects is still preliminary and inconsistent. In this study, we examined the potential role of ROS in defense of wheat and rice against Hessian fly (Mayetiola destruct...

  7. Fusogenic Reactive Oxygen Species Triggered Charge-Reversal Vector for Effective Gene Delivery.

    PubMed

    Liu, Xin; Xiang, Jiajia; Zhu, Dingcheng; Jiang, Liming; Zhou, Zhuxian; Tang, Jianbin; Liu, Xiangrui; Huang, Yongzhuo; Shen, Youqing

    2016-03-01

    A novel fusogenic lipidic polyplex (FLPP) vector is designed to fuse with cell membranes, mimicking viropexis, and eject the polyplex into the cytosol, where the cationic polymer is subsequently oxidized by intracellular reactive oxygen species and converts to being negatively charged, efficiently releasing the DNA. The vector delivering suicide gene achieves significantly better inhibition of tumor growth than doxorubicin. PMID:26663349

  8. Redundant Catalases Detoxify Phagocyte Reactive Oxygen and Facilitate Histoplasma capsulatum Pathogenesis

    PubMed Central

    Holbrook, Eric D.; Smolnycki, Katherine A.; Youseff, Brian H.

    2013-01-01

    Histoplasma capsulatum is a respiratory pathogen that infects phagocytic cells. The mechanisms allowing Histoplasma to overcome toxic reactive oxygen molecules produced by the innate immune system are an integral part of Histoplasma's ability to survive during infection. To probe the contribution of Histoplasma catalases in oxidative stress defense, we created and analyzed the virulence defects of mutants lacking CatB and CatP, which are responsible for extracellular and intracellular catalase activities, respectively. Both CatB and CatP protected Histoplasma from peroxide challenge in vitro and from antimicrobial reactive oxygen produced by human neutrophils and activated macrophages. Optimal protection required both catalases, as the survival of a double mutant lacking both CatB and CatP was lower than that of single-catalase-deficient cells. Although CatB contributed to reactive oxygen species defenses in vitro, CatB was dispensable for lung infection and extrapulmonary dissemination in vivo. Loss of CatB from a strain also lacking superoxide dismutase (Sod3) did not further reduce the survival of Histoplasma yeasts. Nevertheless, some catalase function was required for pathogenesis since simultaneous loss of both CatB and CatP attenuated Histoplasma virulence in vivo. These results demonstrate that Histoplasma's dual catalases comprise a system that enables Histoplasma to efficiently overcome the reactive oxygen produced by the innate immune system. PMID:23589579

  9. Flaxseed oil increases aortic reactivity to phenylephrine through reactive oxygen species and the cyclooxygenase-2 pathway in rats

    PubMed Central

    2014-01-01

    Background Flaxseed oil has the highest concentration of omega-3 α-linolenic acid, which has been associated with cardiovascular benefit. However, the mechanism underlying the vascular effects induced through flaxseed oil is not well known. Thus, in the present study, we investigated the effects of flaxseed oil on vascular function in isolated rat aortic rings. Methods Wistar rats were treated daily with flaxseed oil or a control (mineral oil) intramuscular (i.m.) for fifteen days. Isolated aortic segments were used to evaluate cyclooxygenase-2 (COX-2) protein expression, superoxide anion levels and vascular reactivity experiments. Results Flaxseed oil treatment increased the vasoconstrictor response of aortic rings to phenylephrine. Endothelium removal increased the response to phenylephrine in aortic segments isolated from both groups, but the effect was smaller in the treated group. L-NAME incubation similarly increased the phenylephrine response in segments from both groups. The TXA2 synthase inhibitor furegrelate, the selective COX-2 inhibitor NS 398, the TP receptor antagonist SQ 29.548, the reactive oxygen species (ROS) scavenger apocynin, the superoxide anion scavengers tiron and the phospholipase A2 inhibitor dexamethasone partially reversed the flaxseed oil-induced increase in reactivity to phenylephrine. Conclusions These findings suggest that flaxseed oil treatment increased vascular reactivity to phenylephrine through an increase in ROS production and COX-2-derived TXA2 production. The results obtained in the present study provide new insight into the effects of flaxseed oil treatment (i.m.) on vascular function. PMID:24993607

  10. Two-dimensional imaging of spontaneous ultra-weak photon emission from the human skin: role of reactive oxygen species.

    PubMed

    Prasad, Ankush; Pospiil, Pavel

    2011-11-01

    In the human skin, reactive oxygen species (ROS) produced continuously during oxidative metabolic processes (cellular respiration, oxidative burst) are essential for various cellular processes such as defense against infection, cellular signaling and apoptosis. On the other hand, when the formation of ROS exceeds a capacity of the non-enzymatic and the enzymatic antioxidant defense system, ROS cause the damage to the human skin known to initiate premature skin aging and skin cancer. In this study, two-dimensional spontaneous ultra-weak photon emission from the human skin has been measured using a highly sensitive charged coupled device (CCD) camera. It is demonstrated here that two-dimensional ultra-weak photon emission from the human skin increases with the topical application of exogenous ROS in the following order: hydrogen peroxide (H?O?) < superoxide anion radical (O??) < hydroxyl radical (HO). We propose here that the two-dimensional ultra-weak photon emission can be used as a non-invasive tool for the spatial and temporal monitoring of oxidative stress in the human skin. PMID:22012922

  11. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination

    PubMed Central

    Zhang, Yu; Chen, Bingxian; Xu, Zhenjiang; Shi, Zhaowan; Chen, Shanli; Huang, Xi; Chen, Jianxun; Wang, Xiaofeng

    2014-01-01

    Endosperm cap (CAP) weakening and embryo elongation growth are prerequisites for the completion of lettuce seed germination. Although it has been proposed that the cell wall loosening underlying these processes results from an enzymatic mechanism, it is still unclear which enzymes are involved. Here it is shown that reactive oxygen species (ROS), which are non-enzymatic factors, may be involved in the two processes. In Guasihong lettuce seeds imbibed in water, O2 and H2O2 accumulated and peroxidase activity increased in the CAP, whereas its puncture force decreased. In addition, in the radicle, the increase in embryo growth potential was accompanied by accumulation of O2 and an increase in peroxidase activity. Imbibing seeds in 0.3% sodium dichloroisocyanurate (SDIC) reduced endosperm viability and the levels of O2, H2O2, and peroxidase activity in the CAP, whereas the decrease in its puncture force was inhibited. However, in the embryo, SDIC did not affect the accumulation of O2, peroxidase activity, and the embryo growth potential. As a result, SDIC caused atypical germination, in which the endosperm ruptured at the boundary between the CAP and lateral endosperm. ROS scavengers and ROS generation inhibitors inhibited the CAP weakening and also decreased the embryo growth potential, thus decreasing the percentage of seed germination. Exogenous ROS and ROS generation inducers increased the percentage of CAP rupture to some extent, and the addition of H2O2 to 0.3% SDIC enabled some seeds to undergo typical germination. PMID:24744430

  12. The Relevance of Nrf2 Pathway and Autophagy in Pancreatic Cancer Cells upon Stimulation of Reactive Oxygen Species

    PubMed Central

    2016-01-01

    Nrf2 (NF-E2-related factor 2) pathway and autophagy both can respond to oxidative stress to promote cancer cells to survive in the tumor microenvironment. We, therefore, explored the relevance between Nrf2 pathway and autophagy in pancreatic cancer cells upon stimulation of reactive oxygen species (ROS). Pancreatic cancer cells were cultured under controlled ROS stressing condition or basal condition. Different inhibitors were used to prevent autophagy at particular stages. Nrf2 siRNA was used to inhibit Nrf2 pathway activation. Ad-mRFP-GFP-LC3 infection was used to monitor autophagic flux. The result shows that a small amount of exogenous hydrogen peroxide (H2O2) can significantly improve the level of intracellular ROS. Moreover, our findings indicate that ROS promotes the activation of both Nrf2 pathway and autophagy in pancreatic cancer cells. Moreover, our data demonstrate that suppression of autophagic activity at particular stages results in an increased promotion of Nrf2 pathway activation upon ROS stimulation. Furthermore, we found that silencing of Nrf2 promotes autophagy upon ROS stimulation. In addition, Nrf2 interference effectively promotes autophagic flux upon ROS stimulation. In summary, our findings suggest that Nrf2 pathway and autophagy have a negative interaction with each other upon ROS stimulation. PMID:26682003

  13. The Relevance of Nrf2 Pathway and Autophagy in Pancreatic Cancer Cells upon Stimulation of Reactive Oxygen Species.

    PubMed

    Zhang, Lun; Li, Jiahui; Ma, Jiguang; Chen, Xin; Chen, Ke; Jiang, Zhengdong; Zong, Liang; Yu, Shuo; Li, Xuqi; Xu, Qinhong; Lei, Jianjun; Duan, Wanxing; Li, Wei; Shan, Tao; Ma, Qingyong; Shen, Xin

    2016-01-01

    Nrf2 (NF-E2-related factor 2) pathway and autophagy both can respond to oxidative stress to promote cancer cells to survive in the tumor microenvironment. We, therefore, explored the relevance between Nrf2 pathway and autophagy in pancreatic cancer cells upon stimulation of reactive oxygen species (ROS). Pancreatic cancer cells were cultured under controlled ROS stressing condition or basal condition. Different inhibitors were used to prevent autophagy at particular stages. Nrf2 siRNA was used to inhibit Nrf2 pathway activation. Ad-mRFP-GFP-LC3 infection was used to monitor autophagic flux. The result shows that a small amount of exogenous hydrogen peroxide (H2O2) can significantly improve the level of intracellular ROS. Moreover, our findings indicate that ROS promotes the activation of both Nrf2 pathway and autophagy in pancreatic cancer cells. Moreover, our data demonstrate that suppression of autophagic activity at particular stages results in an increased promotion of Nrf2 pathway activation upon ROS stimulation. Furthermore, we found that silencing of Nrf2 promotes autophagy upon ROS stimulation. In addition, Nrf2 interference effectively promotes autophagic flux upon ROS stimulation. In summary, our findings suggest that Nrf2 pathway and autophagy have a negative interaction with each other upon ROS stimulation. PMID:26682003

  14. Increased resistin may suppress reactive oxygen species production and inflammasome activation in type 2 diabetic patients with pulmonary tuberculosis infection.

    PubMed

    Chao, Wen-Cheng; Yen, Chia-Liang; Wu, Ying-Hsun; Chen, Shin-Yi; Hsieh, Cheng-Yuan; Chang, Tsung-Chain; Ou, Horng-Yih; Shieh, Chi-Chang

    2015-03-01

    Although it has been known for decades that patients with type 2 diabetes mellitus (DM) are more susceptible to severe tuberculosis (TB) infection, the underlying immunological mechanisms remain unclear. Resistin, a protein produced by immune cells in humans, causes insulin resistance and has been implicated in inhibiting reactive oxygen species (ROS) production in leukocytes. Recent studies suggested that IL-1? production in patients with Mycobacteria tuberculosis infection correlates with inflammasome activation which may be regulated by ROS production in the immune cells. By investigating the level of resistin in different patient groups, we found that serum resistin levels were significantly higher in severe TB and DM-only groups when compared with mild TB cases and healthy controls. Moreover, elevation of serum resistin correlated with impairment of ROS production of neutrophils in patients with both DM and TB. In human macrophages, exogenous resistin inhibits the production of ROS which are important in the mycobacterium-induced inflammasome activation. Moreover, macrophages with defective ROS production had poor IL-1? production and ineffective control of mycobacteria growth. Our results suggest that increased resistin in severe TB and DM patients may suppress the mycobacterium-induced inflammasome activation through inhibiting ROS production by leukocytes. PMID:25528597

  15. Dynamic activation of Src induced by low-power laser irradiation in living cells mediated by reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Zhang, Juntao; Gao, Xuejuan; Xing, Da; Liu, Lei

    2007-11-01

    Low-power laser irradiation (LPLI) leads to photochemical reaction and then activates intracellular several signaling pathway. Reactive oxygen species (ROS) are considered to be the primary messengers produced by LPLI. Here, we studied the signaling pathway mediated by ROS upon the stimulation of LPLI. Src tyrosine kinases are well-known targets of ROS and can be activated by oxidative events. Using a Src reporter based on fluorescence resonance energy transfer (FRET) technique, we visualized the dynamic Src activation in Hela cells immediately after LPLI. Moreover, Src activity was enhanced by increasing the duration of LPLI. In addition, our results suggested that ROS were key mediators of Src activation, as ROS scavenger, vitamin C decreased and exogenous H IIO II increased the activity of Src. Meanwhile, G6983 loading did not block the effect of LPLI. CCK-8 experiments proved that cell vitality was prominently improved by LPLI with all the doses we applied in our experiments ranging from 3 to 25J/cm2. The results indicated that LPLI/ROS/Src pathway may be involved in the LPLI biostimulation effects.

  16. Effects of shear stresses and antioxidant concentrations on the production of reactive oxygen species in lung cancer cells

    PubMed Central

    Lo, Kai-Yin; Zhu, Yun; Tsai, Hsieh-Fu; Sun, Yung-Shin

    2013-01-01

    Reactive oxygen species (ROS) are known to be a key factor in the development of cancer, and many exogenous sources are supposed to be related to the formation of ROS. In this paper, a microfluidic chip was developed for studying the production of ROS in lung cancer cells under different chemical and physical stimuli. This chip has two unique features: (1) five relative concentrations of 0, 1/8, 1/2, 7/8, and 1 are achieved in the culture regions; (2) a shear stress gradient is produced inside each of the five culture areas. Lung cancer cells were seeded inside this biocompatible chip for investigating their response to different concentrations of H2O2, a chemical stimulus known to increase the production of ROS. Then the effect of shear stress, a physical stimulus, on lung cancer cells was examined, showing that the production of ROS was increased in response to a larger shear stress. Finally, two antioxidants, ?-tocopherol and ferulic acid, were used to study their effects on reducing ROS. It was found that high-dose ?-tocopherol was not able to effectively eliminate the ROS produced inside cells. This counter effect was not observed in cells cultured in a traditional chamber slide, where no shear stress was present. This result suggests that the current microfluidic chip provides an in vitro platform best mimicking the physiological condition where cells are under circulating conditions. PMID:24396542

  17. Aequorin-based luminescence imaging reveals differential calcium signalling responses to salt and reactive oxygen species in rice roots.

    PubMed

    Zhang, Yanyan; Wang, Yifeng; Taylor, Jemma L; Jiang, Zhonghao; Zhang, Shu; Mei, Fengling; Wu, Yunrong; Wu, Ping; Ni, Jun

    2015-05-01

    It is well established that both salt and reactive oxygen species (ROS) stresses are able to increase the concentration of cytosolic free Ca(2+) ([Ca(2+)]i), which is caused by the flux of calcium (Ca(2+)). However, the differences between these two processes are largely unknown. Here, we introduced recombinant aequorin into rice (Oryza sativa) and examined the change in [Ca(2+)]i in response to salt and ROS stresses. The transgenic rice harbouring aequorin showed strong luminescence in roots when treated with exogenous Ca(2+). Considering the histological differences in roots between rice and Arabidopsis, we reappraised the discharging solution, and suggested that the percentage of ethanol should be 25%. Different concentrations of NaCl induced immediate [Ca(2+)]i spikes with the same durations and phases. In contrast, H?O? induced delayed [Ca(2+)]i spikes with different peaks according to the concentrations of H?O?. According to the Ca(2+) inhibitor research, we also showed that the sources of Ca(2+) induced by NaCl and H?O? are different. Furthermore, we evaluated the contribution of [Ca(2+)]i responses in the NaCl- and H?O?-induced gene expressions respectively, and present a Ca(2+)- and H?O?-mediated molecular signalling model for the initial response to NaCl in rice. PMID:25754405

  18. Reactive Oxygen Species-mediated Immunity against Leishmania mexicana and Serratia marcescens in the Phlebotomine Sand Fly Lutzomyia longipalpis*

    PubMed Central

    Diaz-Albiter, Hector; Sant'Anna, Mauricio R. V.; Genta, Fernando A.; Dillon, Rod J.

    2012-01-01

    Phlebotomine sand flies are the vectors of medically important Leishmania. The Leishmania protozoa reside in the sand fly gut, but the nature of the immune response to the presence of Leishmania is unknown. Reactive oxygen species (ROS) are a major component of insect innate immune pathways regulating gut-microbe homeostasis. Here we show that the concentration of ROS increased in sand fly midguts after they fed on the insect pathogen Serratia marcescens but not after feeding on the Leishmania that uses the sand fly as a vector. Moreover, the Leishmania is sensitive to ROS either by oral administration of ROS to the infected fly or by silencing a gene that expresses a sand fly ROS-scavenging enzyme. Finally, the treatment of sand flies with an exogenous ROS scavenger (uric acid) altered the gut microbial homeostasis, led to an increased commensal gut microbiota, and reduced insect survival after oral infection with S. marcescens. Our study demonstrates a differential response of the sand fly ROS system to gut microbiota, an insect pathogen, and the Leishmania that utilize the sand fly as a vehicle for transmission between mammalian hosts. PMID:22645126

  19. Echinoderm reactive oxygen species (ROS) production measured by peroxidase, luminol-enhanced chemiluminescence (PLCL) as an immunotoxicological tool.

    PubMed

    Coteur, G; Danis, B; Dubois, P

    2005-01-01

    The importance of reactive oxygen species (ROS) production in invertebrate immunity prompted the use of this response in immunotoxicological studies in several taxa including marine organisms. In this chapter, we review the effects of environmental factors and contaminants such as heavy metals and polychlorinated biphenyls (PCBs) on the production of ROS by the main immune effector cells of echinoderms, the so-called amoebocytes. ROS production was measured by the peroxidase, luminol-enhanced chemiluminescence (PLCL) method. This method was found to predominantly reflect the production of superoxide anions and peroxides, among which hydrogen peroxide and peroxynitrite are the main species detected. Exogenous factors such as water temperature and salinity can influence this immune response in echinoderms. However, gender, handling stress and parasitism by a castrating ciliate apparently did not affect it. The impact of metals on ROS production differed greatly according to the duration and routes of exposure; in vitro and short-term in vivo exposures to metals caused an inhibition of this immune response, while the opposite effect was observed in a long-term in vivo exposure study. On the other hand, PCBs systematically had a stimulatory effect on ROS production independent of the echinoderm species or exposure routes. From the study of complex field contaminations, it appeared that contaminants released in the environment, such as metals, modulate starfish amoebocyte ROS production. This impact potentially represents a threat to the sustainability of natural populations of echinoderms and thereby to the stability of benthic ecosystems. PMID:17152694

  20. Chemistry and biology of reactive oxygen species in signaling or stress responses

    PubMed Central

    dickinson, Bryan C; Chang, Christopher J

    2012-01-01

    Reactive oxygen species (ROS) are a family of molecules that are continuously generated, transformed and consumed in all living organisms as a consequence of aerobic life. The traditional view of these reactive oxygen metabolites is one of oxidative stress and damage that leads to decline of tissue and organ systems in aging and disease. However, emerging data show that ROS produced in certain situations can also contribute to physiology and increased fitness. This Perspective provides a focused discussion on what factors lead ROS molecules to become signal and/or stress agents, highlighting how increasing knowledge of the underlying chemistry of ROS can lead to advances in understanding their disparate contributions to biology. An important facet of this emerging area at the chemistry-biology interface is the development of new tools to study these small molecules and their reactivity in complex biological systems. PMID:21769097

  1. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    PubMed Central

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-01

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidising reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are sparse, meaning there is a dearth in the understanding of such oxidants. In this study, a monoanionic NiII-bicarbonate complex was found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (~95%). Electronic absorption, electronic paramagnetic resonance and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = ½), square planar NiIII-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-ditertbutylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. PMID:25612563

  2. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    PubMed

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex. Reactivity of a mononuclear copper(II)-alkylperoxide complex has also been examined to get insights into the intrinsic reactivity of copper(II)-peroxide species, which is usually considered as a sluggish oxidant or just a precursor of copper-oxyl radical type reactive species. However, our studies have unambiguously demonstrated that copper(II)-alkylperoxide complex can be a direct oxidant for C-H bond activation of organic substrates, when the C-H bond activation is coupled with O-O bond cleavage (concerted mechanism). The reactivity studies of these mononuclear copper(II) active-oxygen species (superoxide and alkylperoxide) will provide significantly important insights into the catalytic mechanism of copper monooxygenases as well as copper-catalyzed oxidation reactions in synthetic organic chemistry. PMID:26086527

  3. Reactive Oxygen Species Regulate Neutrophil Recruitment and Survival in Pneumococcal Pneumonia

    PubMed Central

    Marriott, Helen M.; Jackson, Laura E.; Wilkinson, Thomas S.; Simpson, A. John; Mitchell, Tim J.; Buttle, David J.; Cross, Simon S.; Ince, Paul G.; Hellewell, Paul G.; Whyte, Moira K. B.; Dockrell, David H.

    2008-01-01

    Rationale: The role of NADPH oxidase activation in pneumonia is complex because reactive oxygen species contribute to both microbial killing and regulation of the acute pulmonary infiltrate. The relative importance of each role remains poorly defined in community-acquired pneumonia. Objectives: We evaluated the contribution of NADPH oxidasederived reactive oxygen species to the pathogenesis of pneumococcal pneumonia, addressing both the contribution to microbial killing and regulation of the inflammatory response. Methods: Mice deficient in the gp91 phox component of the phagocyte NADPH oxidase were studied after pneumococcal challenge. Measurements and Main Results: gp91 phox ?/? mice demonstrated no defect in microbial clearance as compared with wild-type C57BL/6 mice. A significant increase in bacterial clearance from the lungs of gp91 phox ?/? mice was associated with increased numbers of neutrophils in the lung, lower rates of neutrophil apoptosis, and enhanced activation. Marked alterations in pulmonary cytokine/chemokine expression were also noted in the lungs of gp91 phox ?/? mice, characterized by elevated levels of tumor necrosis factor-?, KC, macrophage inflammatory protein-2, monocyte chemotactic protein-1, and IL-6. The greater numbers of neutrophils in gp91 phox ?/? mice were not associated with increased lung injury. Levels of neutrophil elastase in bronchoalveolar lavage were not decreased in gp91 phox ?/? mice. Conclusions: During pneumococcal pneumonia, NADPH oxidasederived reactive oxygen species are redundant for host defense but limit neutrophil recruitment and survival. Decreased NADPH oxidasedependent reactive oxygen species production is well tolerated and improves disease outcome during pneumococcal pneumonia by removing neutrophils from the tight constraints of reactive oxygen speciesmediated regulation. PMID:18202350

  4. [Neuro-degenerative diseases: role of reactive oxygen species and of apoptosis].

    PubMed

    Follzou, J Y; Emerit, J; Bricaire, F

    1999-10-01

    NEURON DEATH: Major progress in our understanding of the pathophysiology of neurodegenerative diseases has greatly benefited from the convergence between work devoted to reactive oxygen species (including nitric oxide) and programmed cell death, or apoptosis, and exitotoxicity. LATERAL AMYOTROPHIC SCLEROSIS: The discovery of a mutation in the copper-zinc superoxide dismutase gene in patients with lateral amyotrophic sclerosis has made it possible to analyze the events leading to neuron death in transgenic mice. An overload of reactive oxygen species accelerates apoptosis and oxidative stress is implicated in excitotoxicity which is a hyperstimulation of excitatory amino acides (glutamate, aspartate) producing neuron death. OTHER CHRONIC CONDITIONS: Based on evidence from the mouse model, apoptosis, excitotoxicity and oxygenated free radicals could play a causal role in other neurodegenerative diseases including HIV-related encephalopathy, Parkinsons disease and Alzheimers disease. PMID:10544701

  5. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    NASA Technical Reports Server (NTRS)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  6. The Interplay of Light and Oxygen in the Reactive Oxygen Stress Response of Chlamydomonas reinhardtii Dissected by Quantitative Mass Spectrometry*

    PubMed Central

    Barth, Johannes; Bergner, Sonja Verena; Jaeger, Daniel; Niehues, Anna; Schulze, Stefan; Scholz, Martin; Fufezan, Christian

    2014-01-01

    Light and oxygen are factors that are very much entangled in the reactive oxygen species (ROS) stress response network in plants, algae and cyanobacteria. The first obligatory step in understanding the ROS network is to separate these responses. In this study, a LC-MS/MS based quantitative proteomic approach was used to dissect the responses of Chlamydomonas reinhardtii to ROS, light and oxygen employing an interlinked experimental setup. Application of novel bioinformatics tools allow high quality retention time alignment to be performed on all LC-MS/MS runs increasing confidence in protein quantification, overall sequence coverage and coverage of all treatments measured. Finally advanced hierarchical clustering yielded 30 communities of co-regulated proteins permitting separation of ROS related effects from pure light effects (induction and repression). A community termed redoxII was identified that shows additive effects of light and oxygen with light as the first obligatory step. Another community termed 4-down was identified that shows repression as an effect of light but only in the absence of oxygen indicating ROS regulation, for example, possibly via product feedback inhibition because no ROS damage is occurring. In summary the data demonstrate the importance of separating light, O2 and ROS responses to define marker genes for ROS responses. As revealed in this study, an excellent candidate is DHAR with strong ROS dependent induction profiles. PMID:24482124

  7. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants.

    PubMed

    Arora, Dhara; Jain, Prachi; Singh, Neha; Kaur, Harmeet; Bhatla, Satish C

    2016-03-01

    Nitric oxide (NO) acts in a concentration and redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging reactive oxygen species (ROS), such as superoxide anions (O2(-)*), to form peroxynitrite (ONOO(-)) or by acting as a signaling molecule, thereby altering gene expression. NO can interact with different metal centres in proteins, such as heme-iron, zinc-sulfur clusters, iron-sulfur clusters, and copper, resulting in the formation of a stable metal-nitrosyl complex or production of varied biochemical signals, which ultimately leads to modification of protein structure/function. The thiols (ferrous iron-thiol complex and nitrosothiols) are also involved in the metabolism and mobilization of NO. Thiols bind to NO and transport it to the site of action whereas nitrosothiols release NO after intercellular diffusion and uptake into the target cells. S-nitrosoglutathione (GSNO) also has the ability to transnitrosylate proteins. It is an NO˙ reservoir and a long-distance signaling molecule. Tyrosine nitration of proteins has been suggested as a biomarker of nitrosative stress as it can lead to either activation or inhibition of target proteins. The exact molecular mechanism(s) by which exogenous and endogenously generated NO (or reactive nitrogen species) modulate the induction of various genes affecting redox homeostasis, are being extensively investigated currently by various research groups. Present review provides an in-depth analysis of the mechanisms by which NO interacts with and modulates the activity of various ROS scavenging enzymes, particularly accompanying ROS generation in plants in response to varied abiotic stress. PMID:26554526

  8. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    NASA Astrophysics Data System (ADS)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  9. Oxygen-sulfur exchange and the gas-phase reactivity of cobalt sulfide cluster anions with molecular oxygen.

    PubMed

    Jia, Mei-Ye; Luo, Zhixun; He, Sheng-Gui; Ge, Mao-Fa

    2014-09-18

    We present here a study of gas-phase reactivity of cobalt sulfide cluster anions Co(m)S(n)(-) with molecular oxygen. Nascent Co(m)S(n)(-) clusters were prepared via a laser ablation source and reacted with oxygen in a fast flow reactor under thermal collision conditions. We chose (18)O2 in place of (16)O2 to avoid mass degeneration with sulfur, and a time-of-flight (TOF) mass spectrometer was used to detect the cluster distributions in the absence and presence of the reactant. It was found that oxygen-sulfur exchange occurs in the reactions for those with specific compositions (CoS)(n)(-) and (CoS)(n)S(-) (n = 2-5) according to a consistent pathway, "Co(m)S(n)(-) + (18)O2 → Co(m)S(n-1)(18)O(-) + S(18)O". Typically, for "Co2S2(-) + (18)O2" we have calculated the reaction coordinates by employing the density functional theory (DFT), where both the oxygen-sulfur exchange and SO molecule release are thermodynamically and kinetically favorable. It is noteworthy that the reaction with molecular oxygen (triplet ground state) needs to overcome a spin excitation as well as a large O-O activation energy. This study sheds light on the activation of molecular oxygen by cobalt sulfides on one hand and also provides insight into the regeneration mechanism of cobalt oxides from the counterpart sulfides in the presence of oxygen gas on the other hand. PMID:24588651

  10. UNCOUPLING PROTEIN DOWNREGULATION IN DOXORUBICIN INDUCED HEART FAILURE IMPROVES MITOCHONDRIAL COUPLING BUT INCREASES REACTIVE OXYGEN SPECIES GENERATION

    PubMed Central

    Bugger, Heiko; Guzman, Cinthia; Zechner, Christoph; Palmeri, Monica; Russell, Kerry S.; Russell, Raymond R.

    2010-01-01

    PURPOSE Doxorubicin-based chemotherapy is limited by the development of dose-dependent left ventricular dysfunction and congestive heart failure caused by reactive oxygen species (ROS). Uncoupling proteins (UCP) can inhibit mitochondrial ROS production as well as decrease myocyte damage from exogenous ROS. Prior studies have shown that cardiac UCP2 and UCP3 mRNA expression is decreased with acute doxorubicin treatment. However, the expression of UCP protein in hearts with doxorubicin cardiotoxicity and the resultant changes in mitochondrial function and oxidant stress have not been determined. METHODS Heart failure was induced in Sprague-Dawley rats with intraperitoneal injections of doxorubicin (2 mg/kg t.i.w., total dose: 18 mg/kg). Mitochondria were isolated from mice receiving doxorubicin or saline injections for determination of UCP2 and UCP3 expression. In addition, mitochondrial respiration, ATP synthesis and ROS production were determined. RESULTS Doxorubicin-induced heart failure was associated with significant decreases in UCP2 and UCP3 protein expression compared to nonfailing hearts (p<0.05). While the rates of state 3 and state 4 respiration and ATP synthesis were lower in mitochondria isolated from failing hearts, the respiratory control ratio was 15% higher (p<0.05) and the ratio of ATP production to oxygen consumption was 25% higher (p<0.05) in mitochondria from failing hearts, indicating greater coupling between citric acid cycle flux and mitochondrial ATP synthesis. However, the decrease in UCP expression was associated with 50% greater mitochondrial ROS generation (p<0.05). CONCLUSIONS Downregulation of myocardial UCP2 and UCP3 in the setting of doxorubicin-induced heart failure is associated with improved efficiency of ATP synthesis, which might compensate for abnormal energy metabolism. However, this beneficial effect is counterbalanced by greater oxidant stress. PMID:20809120

  11. Computational Investigation of Reactive to Non-reactive Capture of Carbon Dioxide by Oxygen-containing Lewis Bases

    SciTech Connect

    Teague, Craig M; Dai, Sheng; Jiang, Deen

    2010-01-01

    Recent work has shown that room temperature ionic liquid systems reactively absorb CO{sub 2} and offer distinct advantages over current CO{sub 2} capture technologies. Here we computationally evaluated CO{sub 2} interaction energies with a series of oxygen-containing Lewis base anions (including cyclohexanolate and phenolate and their respective derivatives). Our results show that the interaction energy can be tuned across a range from reactive to nonreactive (or physical) interactions. We evaluated different levels of theory as well as possible corrections to the interaction energy, and we explained our calculated trends on the basis of properties of the individual anions. We found that the interaction energy between CO{sub 2} and the Lewis bases examined here correlates most strongly with the atomic charge on the oxygen atom. This insight provides a useful handle to tune the anion-CO{sub 2} interaction energy for future experimental and computational studies of novel CO{sub 2} capture systems.

  12. Production of reactive oxygen species in decoupled, Ca(2+)-depleted PSII and their use in assigning a function to chloride on both sides of PSII.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Timofeev, Kirill N; Ivanov, Il'ya I; Rubin, Andrei B; Seibert, Michael

    2013-11-01

    Extraction of Ca(2+) from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as "the decoupling effect" (Semin et al. Photosynth Res 98:235-249, 2008). Extraction of Cl(-) from Ca(2+)-depleted membranes (PSII[-Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O 2 (·-) , as possible products of water oxidation in PSII(-Ca) membranes was examined. During the investigation of O 2 (·-) production in PSII(-Ca) samples, we found that (i) O 2 (·-) is formed on the acceptor side of PSII due to the reduction of O2; (ii) depletion of Cl(-) does not inhibit water oxidation, but (iii) Cl(-) depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl(-) under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O2, thereby increasing the rate of O 2 (·-) generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl(-) anions are not involved in the oxidation of water to H2O2 in decoupled PSII(-Ca) membranes. These results also indicate that Cl(-) anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H(+) ions into the lumenal space. PMID:23794169

  13. Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Species†

    PubMed Central

    Yuan, Hengjie; Houck, Katie L.; Tian, Ye; Bharadwaj, Uddalak; Hull, Ken; Zhou, Zhou; Zhou, Mingzhao; Wu, Xiaoping; Tweardy, David J.; Romo, Daniel; Fu, Xiaoyun; Zhang, Yanjun; Zhang, Jianning; Dong, Jing-fei

    2015-01-01

    Background Piperlongumine (PL) is a compound isolated from the piper longum plant. It possesses anti-cancer activities through blocking the transcription factor STAT3 and by inducing reactive oxygen species (ROS) in cancer, but not normal cells. It also inhibits platelet aggregation induced by collagen, but the underlying mechanism is not known. Objective We conducted in vitro experiments to test the hypothesis that PL regulates a non-transcriptional activity of STAT3 to specifically reduce the reactivity of human platelets to collagen. Results PL dose-dependently blocked collagen-induced platelet aggregation, calcium influx, CD62p expression and thrombus formation on collagen with a maximal inhibition at 100 μM. It reduced platelet microvesiculation induced by collagen. PL blocked the activation of JAK2 and STAT3 in collagen-stimulated platelets. This inhibitory effect was significantly reduced in platelets pretreated with a STAT3 inhibitor. Although PL induced ROS production in platelets; quenching ROS using excessive reducing agents: 20 μM GSH and 0.5 mM L-Cysteine, did not block the inhibitory effects. The NADPH oxidase inhibitor Apocynin also had no effect. Conclusions PL inhibited collagen-induced platelet reactivity by targeting the JAK2-STAT3 pathway. We also provide experimental evidence that PL and collagen induce different oxidants that have differential effects on platelets. Studying these differential effects may uncover new mechanisms of regulating platelet functions by oxidants in redox signals. PMID:26645674

  14. Neuroprotection by genipin against reactive oxygen and reactive nitrogen species-mediated injury in organotypic hippocampal slice cultures.

    PubMed

    Hughes, Rebecca H; Silva, Victoria A; Ahmed, Ijaz; Shreiber, David I; Morrison, Barclay

    2014-01-16

    Genipin, the multipotent ingredient in Gardenia jasmenoides fruit extract (GFE), may be an effective candidate for treatment following stroke or traumatic brain injury (TBI). Secondary injury includes damage mediated by reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can alter the biological function of key cellular structures and eventually lead to cell death. In this work, we studied the neuroprotective potential of genipin against damage stemming from ROS and RNS production in organotypic hippocampal slice cultures (OHSC), as well as its potential as a direct free radical scavenger. A 50 M dose of genipin provided significant protection against tert-butyl hydroperoxide (tBHP), a damaging organic peroxide. This dosage of genipin significantly reduced cell death at 48 h compared to vehicle control (0.1% DMSO) when administered 0, 1, 6, and 24 h after addition of tBHP. Similarly, genipin significantly reduced cell death at 48 h when administered 0, 1, 2, and 6h after addition of rotenone, which generates reactive oxygen species via a more physiologically relevant mechanism. Furthermore, genipin significantly reduced both cell death and nitrite levels at 24 h caused by S-nitroso-N-acetylpenicillamine (SNAP), a direct nitric oxide (NO) donor, and successfully quenched 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), a stable free radical, suggesting that genipin may act as a direct free radical scavenger. Our encouraging findings suggest that genipin should be tested in animal models of CNS injury with a significant component of ROS- and RNS-mediated damage, such as TBI and stroke, to assess its in vivo efficacy. PMID:24275198

  15. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    NASA Astrophysics Data System (ADS)

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-10-01

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O2 gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The ?s temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  16. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    NASA Astrophysics Data System (ADS)

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-09-01

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O2 gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The ?s temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  17. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    SciTech Connect

    Vitelaru, Catalin; National Institute for Optoelectronics, Magurele-Bucharest, RO 077125 ; Lundin, Daniel; Division of Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology, Stockholm, SE-100 44 ; Brenning, Nils; Minea, Tiberiu

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The ?s temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  18. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Liu, S. X.; Waldren, C.

    1998-01-01

    Arsenite, the trivalent form of arsenic present in the environment, is a known human carcinogen that lacked mutagenic activity in bacterial and standard mammalian cell mutation assays. We show herein that when evaluated in an assay (AL cell assay), in which both intragenic and multilocus mutations are detectable, that arsenite is in fact a strong dose-dependent mutagen and that it induces mostly large deletion mutations. Cotreatment of cells with the oxygen radical scavenger dimethyl sulfoxide significantly reduces the mutagenicity of arsenite. Thus, the carcinogenicity of arsenite can be explained at least in part by it being a mutagen that depends on reactive oxygen species for its activity.

  19. Regulation of signal transduction by reactive oxygen species in the cardiovascular system

    PubMed Central

    Brown, David I.; Griendling, Kathy K.

    2015-01-01

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species in normal physiological signaling has been elucidated. Signaling pathways modulated by reactive oxygen species (ROS) are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here we review the current literature regarding ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. PMID:25634975

  20. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Duan, Qiaohong; Kita, Daniel; Johnson, Eric A.; Aggarwal, Mini; Gates, Laura; Wu, Hen-Ming; Cheung, Alice Y.

    2014-01-01

    In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca2+-dependent process involving Ca2+ channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants.

  1. Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols

    PubMed Central

    Hyman, Lynne M.; Franz, Katherine J.

    2013-01-01

    Oxidative stress is a common feature shared by many diseases, including neurodegenerative diseases. Factors that contribute to cellular oxidative stress include elevated levels of reactive oxygen species, diminished availability of detoxifying thiols, and the misregulation of metal ions (both redox-active iron and copper as well as non-redox active calcium and zinc). Deciphering how each of these components interacts to contribute to oxidative stress presents an interesting challenge. Fluorescent sensors can be powerful tools for detecting specific analytes within a complicated cellular environment. Reviewed here are several classes of small molecule fluorescent sensors designed to detect several molecular participants of oxidative stress. We focus our review on describing the design, function and application of probes to detect metal cations, reactive oxygen species, and intracellular thiol-containing compounds. In addition, we highlight the intricacies and complications that are often faced in sensor design and implementation. PMID:23440254

  2. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species

    PubMed Central

    Asghar, Waseem; Velasco, Vanessa; Kingsley, James L.; Shoukat, Muhammad S.; Shafiee, Hadi; Anchan, Raymond M.; Mutter, George L.; Tzel, Erkan; Demirci, Utkan

    2014-01-01

    Fertilization and reproduction are central to the survival and propagation of a species. Couples who cannot reproduce naturally have to undergo in vitro clinical procedures. An integral part of these clinical procedures includes isolation of healthy sperm from raw semen. Existing sperm sorting methods are not efficient and isolate sperm having high DNA fragmentation and reactive oxygen species, and suffer from multiple manual steps and variations between embryologists. Inspired by in vivo natural sperm sorting mechanisms where vaginal mucus becomes less viscous to form microchannels to guide sperm towards egg, we present a chip that efficiently sorts healthy, motile and morphologically normal sperm without centrifugation. Higher percentage of sorted sperm show significantly lesser reactive oxygen species and DNA fragmentation than the conventional swim-up method. The presented chip is an easy-to-use high throughput sperm sorter that provides standardized sperm sorting assay with less reliance on embryologists skills, facilitating reliable operational steps. PMID:24753434

  3. Annato extract and ?-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats

    PubMed Central

    Rossoni-Jnior, Joamyr Victor; Arajo, Glaucy Rodrigues; Pdua, Bruno da Cruz; Chaves, Mriam Martins; Pedrosa, Maria Lcia; Silva, Marcelo Eustquio; Costa, Daniela Caldeira

    2012-01-01

    Annatto has been identified as carotenoids that have antioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the bodys defense mechanisms to destroy invading pathogens. Reactive oxygen species/reactive nitrogen species are excessively produced by active peripheral neutrophils, and may damage essential cellular components, which in turn can cause vascular complications in diabetes. The present study was undertaken to evaluate the possible protective effects of annatto on the reactive oxygen species and nitric oxide (NO) inhibition in neutrophils from alloxan-induced diabetic rats. Adult female rats were divided into six groups based on receiving either a standard diet with or without supplementation of annatto extract or beta carotene. All animals were sacrificed 30 days after treatment and the neutrophils were isolated using two gradients of different densities. The reactive oxygen species and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Our results show that neutrophils from diabetic animals produce significantly more reactive oxygen species and NO than their respective controls and that supplementation with beta carotene and annatto is able to modulate the production of these species. Annatto extract may have therapeutic potential for modulation of the balance reactive oxygen species/NO induced by diabetes. PMID:22573917

  4. Biocompatible reactive oxygen species (ROS)-responsive nanoparticles as superior drug delivery vehicles.

    PubMed

    Zhang, Dinglin; Wei, Yanling; Chen, Kai; Zhang, Xiangjun; Xu, Xiaoqiu; Shi, Qing; Han, Songling; Chen, Xin; Gong, Hao; Li, Xiaohui; Zhang, Jianxiang

    2015-01-01

    A novel reactive oxygen species (ROS)-responsive nanoplatform can be successfully manufactured from a ROS-triggerable ?-cyclodextrin material. Extensive in vitro and in vivo studies validate that this nanoscaled system may serve as a new drug delivery vehicle with well-defined ROS-sensitivity and superior biocompatibility. This nanocarrier can be used for ROS-triggered transport of diverse therapeutics and imaging agents. PMID:25147049

  5. In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species.

    PubMed

    Chist, Renan Campos; Mercadante, Adriana Zerlotti; Gomes, Ana; Fernandes, Eduarda; Lima, Jos Lus Fontes da Costa; Bragagnolo, Neura

    2011-07-15

    Bixa orellana L. (annatto), from Bixaceae family, is a native plant of tropical America, which accumulates several carotenoids (including bixin and norbixin), terpenoids, tocotrienols and flavonoids with potential antioxidant activity. In the present study, the in vitro scavenging capacity of annatto seed extracts against reactive oxygen species (ROS) and reactive nitrogen species (RNS) was evaluated and compared to the bixin standard. Annatto extracts were obtained using solvents with different polarities and their phenolic compounds and bixin levels were determined by high performance liquid chromatography coupled to diode array detector. All annatto extracts were able to scavenge all the reactive species tested at the low ?g/mL range, with the exception of superoxide radical. The ethanol:ethyl acetate and ethyl acetate extracts of annatto seeds, which presented the highest levels of hypolaetin and bixin, respectively, were the extracts with the highest antioxidant capacity, although bixin standard presented the lowest IC(50) values. PMID:23140681

  6. Evidence for photochemical production of reactive oxygen species in desert soils.

    PubMed

    Georgiou, Christos D; Sun, Henry J; McKay, Christopher P; Grintzalis, Konstantinos; Papapostolou, Ioannis; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Zhang, Gaosen; Koutsopoulou, Eleni; Christidis, George E; Margiolaki, Irene

    2015-01-01

    The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars. PMID:25960012

  7. Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.

    PubMed

    Li, Nianyu; Ragheb, Kathy; Lawler, Gretchen; Sturgis, Jennie; Rajwa, Bartek; Melendez, J Andres; Robinson, J Paul

    2003-03-01

    Inhibition of mitochondrial respiratory chain complex I by rotenone had been found to induce cell death in a variety of cells. However, the mechanism is still elusive. Because reactive oxygen species (ROS) play an important role in apoptosis and inhibition of mitochondrial respiratory chain complex I by rotenone was thought to be able to elevate mitochondrial ROS production, we investigated the relationship between rotenone-induced apoptosis and mitochondrial reactive oxygen species. Rotenone was able to induce mitochondrial complex I substrate-supported mitochondrial ROS production both in isolated mitochondria from HL-60 cells as well as in cultured cells. Rotenone-induced apoptosis was confirmed by DNA fragmentation, cytochrome c release, and caspase 3 activity. A quantitative correlation between rotenone-induced apoptosis and rotenone-induced mitochondrial ROS production was identified. Rotenone-induced apoptosis was inhibited by treatment with antioxidants (glutathione, N-acetylcysteine, and vitamin C). The role of rotenone-induced mitochondrial ROS in apoptosis was also confirmed by the finding that HT1080 cells overexpressing magnesium superoxide dismutase were more resistant to rotenone-induced apoptosis than control cells. These results suggest that rotenone is able to induce apoptosis via enhancing the amount of mitochondrial reactive oxygen species production. PMID:12496265

  8. Selective decreased de novo synthesis of glomerular proteoglycans under the influence of reactive oxygen species.

    PubMed Central

    Kashihara, N; Watanabe, Y; Makino, H; Wallner, E I; Kanwar, Y S

    1992-01-01

    The effect of reactive oxygen species on de novo synthesis of heparan sulfate proteoglycans (HSPGs) of the renal glomerulus was investigated in an organ perfusion system. Isolated kidneys were perfused for 7 hr with a medium containing [35S]sulfate to label sulfated proteoglycans or [35S]methionine to label total glomerular glycoproteins. For the generation of reactive oxygen species, xanthine and xanthine oxidase were included in the perfusion medium, and catalase and superoxide dismutase were used as scavenging agents. Proteoglycans were characterized by Sepharose CL-6B and DEAE-Sephacel chromatographies and SDS/PAGE analysis. The labeled glycoproteins were immunoprecipitated with anti-HSPG, anti-type IV collagen, and anti-laminin, and their specific radioactivities were determined. With exposure to reactive oxygen species, a drastic dose-dependent decrease in de novo synthesis of proteoglycans was seen, and that effect was reversible by catalase treatment. No alterations in the biochemical characteristics of proteoglycans were noted. Immunoprecipitation studies revealed a 16-fold decrease in the synthesis of nascent core peptide of HSPGs, while at comparable concentrations of xanthine and xanthine oxidase, synthesis of type IV collagen and laminin slightly decreased (approximately 15%). Morphologic studies revealed a 14-fold decrease in [35S]sulfate-associated autoradiographic grains overlying the glomerular basement membrane, a critical component of the ultrafiltration apparatus. Relevance of the selective decreased de novo synthesis of HSPGs of the glomerular basement membrane is discussed in terms of increased glomerular permeability to plasma proteins. Images PMID:1631123

  9. Reactive oxygen species (ROS) mediates non-freezing cold injury of rat sciatic nerve

    PubMed Central

    Geng, Zhiwei; Tong, Xiaoyan; Jia, Hongjuan

    2015-01-01

    Non-freezing cold injury is an injury characterized by neuropathy, developing when patients expose to cold environments. Reactive oxygen species (ROS) has been shown as a contributing factor for the non-freezing cold nerve injury. However, the detailed connections between non-freezing cold nerve injury and ROS have not been described. In order to investigate the relationship between non-freezing cold nerve injury and reactive oxygen species, we study the effects of two cooling methods-the continuous cooling and the intermittent cooling with warming intervals-on rat sciatic nerves. Specifically, we assess the morphological changes and ROS production of the sciatic nerves underwent different cooling treatments. Our data shows both types of cooling methods cause nerve injury and ROS production. However, despite of identical cooling degree and duration, the sciatic nerves processed by intermittent cooling with warming intervals present more ROS production, severer reperfusion injury and pathological destructions than the sciatic nerves processed by continuous cooling. This result indicates reactive oxygen species, as a product of reperfusion, facilitates non-freezing cold nerve injury. PMID:26629065

  10. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy and beyond

    PubMed Central

    Vatansever, Fatma; de Melo, Wanessa C.M.A.; Avci, Pinar; Vecchio, Daniela; Sadasivam, Magesh; Gupta, Asheesh; Chandran, Rakkiyappan; Karimi, Mahdi; Parizotto, Nivaldo A; Yin, Rui; Tegos, George P; Hamblin, Michael R

    2013-01-01

    Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction of molecular oxygen. Four major ROS are recognized comprising: superoxide (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2), but they display very different kinetics and levels of activity. The effects of O2•− and H2O2 are less acute than those of •OH and 1O2, since the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and non-enzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or 1O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics, and non-pharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma and medicinal honey. A brief final section covers, reactive nitrogen species, and related therapeutics, such as acidified nitrite and nitric oxide releasing nanoparticles. PMID:23802986

  11. [Effects of allelochemical dibutyl phthalate on Gymnodinium breve reactive oxygen species].

    PubMed

    Bie, Cong-Cong; Li, Feng-Min; Li, Yuan-Yuan; Wang, Zhen-Yu

    2012-02-01

    The purpose of this study was to investigate the mechanism of inhibitory action of dibutyl phthalate (DBP) on red tide algae Gymnodinium breve. Reactive oxygen species (ROS) level, contents of *OH and H2O2, and O2*(-) production rate were investigated, and also for the effects of electron transfer inhibitors on the ROS induction of DBP. The results showed that DBP triggered the synthesis of reactive oxygen species ROS, and with the increase of concentration of DBP, *OH and H2O2 contents in cells accumulated, as for the 3 mg x L(-1) DBP treated algae cultures, OH showed a peak of 33 U x mL(-1) at 48 h, which was about 2. 4 times higher than that in the controlled, and H2O2 contents was about 250 nmol x (10(7) cells)(-1) at 72 h, which was about 5 times higher and also was the highest during the whole culture. Rotenone (an inhibitor of complex I in the mitochondria electron transport chain) decreased the DBP induced ROS production, and dicumarol (an inhibitor of the redox enzyme system in the plasma membrane) stimulated the DBP induced ROS production. Taken all together, the results demonstrated DBP induced over production of reactive oxygen species in G. breve, which is the main inhibitory mechanism, and mitochondria and plasma membrane seem to be the main target site of DBP. These conclusions were of scientific meaning on uncovering the inhibitory mechanism of allelochemical on algae. PMID:22509579

  12. Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces

    SciTech Connect

    Nilekar, Anand U.; Mavrikakis, Manos

    2008-07-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The catalytic activity of platinum monolayers supported on close-packed transition metal surfaces (Au(111), Pt(111), Pd(111) and Ir(111)) is investigated for the oxygen reduction reaction (ORR) by generating free energy diagrams and performing Sabatier analysis based on periodic, self-consistent density functional theory (DFT) calculations. Three different ORR mechanisms, involving direct or hydrogen assisted activation of O₂, are considered. At the ORR equilibrium potential of 1.23 V, the reactivity of all surfaces is shown to be limited by the rate of OH removal from the surface. At a cell potential of 0.80 V, the ORR reactivity of different surfaces is dictated by the strength of oxygen adsorption, with OH removal via hydrogenation and O–O bond scission in either O₂, O₂H or H₂O₂ being the rate-limiting steps for surfaces with stronger and weaker oxygen binding, respectively. Among the surfaces studied, Pt monolayer on a Pd(111) substrate shows the highest reactivity and is more active than Pt(111). These results are in excellent agreement with our earlier experimental and theoretical work, which was based on a simpler model for the ORR.

  13. Tissue injury by reactive oxygen species and the protective effects of flavonoids.

    PubMed

    de Groot, H; Rauen, U

    1998-01-01

    Reactive oxygen species contribute decisively to a great variety of diseases. Flavonoids are benzo-gamma-pyrone derivatives of plant origin found in various fruits and vegetables but also in tea and in red wine. Some of the flavonoids, such as quercetin and silibinin, can effectively protect cells and tissues against the deleterious effects of reactive oxygen species. Their antioxidant activity results from scavenging of free radicals and other oxidizing intermediates, from the chelation of iron or copper ions and from inhibition of oxidases. For their free radical scavenging properties, scavenging of lipid- and protein-derived radicals is presumably of special importance. A non-radical reactive oxygen species effectively trapped by flavonoids is hypochlorous acid. In general, the antioxidative properties of flavonoids are favoured by a high degree of OH substitution. On the other hand, inhibition of enzymatic functions other than oxidases, e.g., inhibition of lipoxygenase and thus prevention of the formation of leukotrienes, may also participate in the cell and tissue protective properties of flavonoids. PMID:9646056

  14. Photochemical transformation of carboxylated multiwalled carbon nanotubes: role of reactive oxygen species.

    PubMed

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-12-17

    The study investigated the photochemical transformation of carboxylated multiwalled carbon nanotubes (COOH-MWCNTs), an important environmental process affecting their physicochemical characteristics and hence fate and transport. UVA irradiation removed carboxyl groups from COOH-MWCNT surface while creating other oxygen-containing functional groups with an overall decrease in total surface oxygen content. This was attributed to reactions with photogenerated reactive oxygen species (ROS). COOH-MWCNTs generated singlet oxygen ((1)O2) and hydroxyl radical ((•)OH) under UVA light, which exhibited different reactivity toward the COOH-MWCNT surface. Inhibition experiments that isolate the effects of (•)OH and (1)O2 as well as experiments using externally generated (•)OH and (1)O2 separately revealed that (•)OH played an important role in the photochemical transformation of COOH-MWCNTs under UVA irradiation. The Raman spectroscopy and surface functional group analysis results suggested that (•)OH initially reacted with the surface carboxylated carbonaceous fragments, resulting in their degradation or exfoliation. Further reaction between (•)OH and the graphitic sidewall led to formation of defects including functional groups and vacancies. These reactions reduced the surface potential and colloidal stability of COOH-MWCNTs, and are expected to reduce their mobility in aquatic systems. PMID:24255932

  15. Binding of oxygen on vacuum fractured pyrite surfaces: Reactivity of iron and sulfur surface sites

    NASA Astrophysics Data System (ADS)

    Berlich, A. G.; Nesbitt, H. W.; Bancroft, G. M.; Szargan, R.

    2013-05-01

    Synchrotron radiation excited photoelectron spectroscopy (SXPS) has been used to study the interaction of oxygen with vacuum fractured pyrite surfaces. Especially valence band spectra obtained with 30 eV photon energy were analyzed to provide a mechanism of the incipient steps of pyrite oxidation. These spectra are far more sensitive to the oxidation than sulfur or iron core level spectra. It is shown that oxygen is adsorbed on Fe(II) surface sites restoring the octahedral coordination of the Fe(II) sites. This process leads to the removal of two surface states in the valence band which are located at the low and high binding energy sides of the outer valence band, respectively. The existence of these surface states which have been proposed by calculations is experimentally proven. Furthermore, it is shown, that the sulfur sites are more reactive than expected. Sulfite like species are already formed after the lowest oxygen exposure of 10 L. This oxidation occurs at sulfur sites neighboring the Fe(II) surface sites. Oxidation of the S2 - surface sites which were considered as the most reactive species in former studies is second. No iron(III) oxides are formed during oxygen exposure, supporting the assumption that water plays an important role in the oxidation mechanism of pyrite surfaces.

  16. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.

    PubMed

    Cheng, Yuhao; Cheng, Hao; Jiang, Chenxiao; Qiu, Xuefeng; Wang, Kaikai; Huan, Wei; Yuan, Ahu; Wu, Jinhui; Hu, Yiqiao

    2015-01-01

    Photodynamic therapy (PDT) kills cancer cells by converting tumour oxygen into reactive singlet oxygen ((1)O2) using a photosensitizer. However, pre-existing hypoxia in tumours and oxygen consumption during PDT can result in an inadequate oxygen supply, which in turn hampers photodynamic efficacy. Here to overcome this problem, we create oxygen self-enriching photodynamic therapy (Oxy-PDT) by loading a photosensitizer into perfluorocarbon nanodroplets. Because of the higher oxygen capacity and longer (1)O2 lifetime of perfluorocarbon, the photodynamic effect of the loaded photosensitizer is significantly enhanced, as demonstrated by the accelerated generation of (1)O2 and elevated cytotoxicity. Following direct injection into tumours, in vivo studies reveal tumour growth inhibition in the Oxy-PDT-treated mice. In addition, a single-dose intravenous injection of Oxy-PDT into tumour-bearing mice significantly inhibits tumour growth, whereas traditional PDT has no effect. Oxy-PDT may enable the enhancement of existing clinical PDT and future PDT design. PMID:26525216

  17. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy

    PubMed Central

    Cheng, Yuhao; Cheng, Hao; Jiang, Chenxiao; Qiu, Xuefeng; Wang, Kaikai; Huan, Wei; Yuan, Ahu; Wu, Jinhui; Hu, Yiqiao

    2015-01-01

    Photodynamic therapy (PDT) kills cancer cells by converting tumour oxygen into reactive singlet oxygen (1O2) using a photosensitizer. However, pre-existing hypoxia in tumours and oxygen consumption during PDT can result in an inadequate oxygen supply, which in turn hampers photodynamic efficacy. Here to overcome this problem, we create oxygen self-enriching photodynamic therapy (Oxy-PDT) by loading a photosensitizer into perfluorocarbon nanodroplets. Because of the higher oxygen capacity and longer 1O2 lifetime of perfluorocarbon, the photodynamic effect of the loaded photosensitizer is significantly enhanced, as demonstrated by the accelerated generation of 1O2 and elevated cytotoxicity. Following direct injection into tumours, in vivo studies reveal tumour growth inhibition in the Oxy-PDT-treated mice. In addition, a single-dose intravenous injection of Oxy-PDT into tumour-bearing mice significantly inhibits tumour growth, whereas traditional PDT has no effect. Oxy-PDT may enable the enhancement of existing clinical PDT and future PDT design. PMID:26525216

  18. Effect of oxygen deficiency on the photoresponse and reactivity of mixed phase titania thin films

    SciTech Connect

    DeSario, Paul A.; Chen Le; Graham, Michael E.; Gray, Kimberly A.

    2011-05-15

    Nonstoichiometric mixed phased titania nanocomposites (TiO{sub 2-x}) were deposited by reactive direct current magnetron sputtering. The authors explored the role of nonstoichiometry (as defined by oxygen deficiency in synthesis) in mixed phase titania thin films and its effects on the photoresponse and photocatalytic performance for CO{sub 2} reduction to methane under UV and visible light. Oxygen partial pressure was varied during film deposition, yielding different levels of oxygen deficiency in the films. Optimized nonstoichiometric films showed a strong redshift. The authors have identified an optimum set of synthesis conditions for TiO{sub 2-x} films that produce a relative maximum in photocatalytically produced methane under both UV and visible light.

  19. The Contribution of Reactive Oxygen Species to the Photobleaching of Organic Fluorophores†

    PubMed Central

    Zhou, Zhou; Blanchard, Scott C.

    2013-01-01

    Photo-excitation of fluorophores commonly used for biological imaging applications generates reactive oxygen species (ROS) which can cause bleaching of the fluorophore and damage to the biological system under investigation. In this study we show that singlet oxygen contributes relatively little to Cy5 and ATTO 647N photobleaching at low concentrations in aqueous solution. We also show that Cy5 generates significantly less ROS when covalently linked to the protective agents, cyclooctatetraene (COT), nitrobenzyl alcohol (NBA), or Trolox. Such fluorophores exhibit enhanced photostability both in bulk solutions and in single-molecule fluorescence measurements. While the fluorophores ATTO 647N and ATTO 655 showed greater photostability than Cy5 and the protective-agent linked Cy5 derivatives investigated here, both of ATTO 647N and ATTO 655 generated singlet oxygen and hydroxyl radicals at relatively rapid rates, suggesting that they may be substantially more phototoxic than Cy5 and its derivatives. PMID:24188468

  20. Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons.

    PubMed

    Dean, Jay B; Mulkey, Daniel K; Henderson, Richard A; Potter, Stephanie J; Putnam, Robert W

    2004-02-01

    Hyperoxia is a popular model of oxidative stress. However, hyperoxic gas mixtures are routinely used for chemical denervation of peripheral O2 receptors in in vivo studies of respiratory control. The underlying assumption whenever using hyperoxia is that there are no direct effects of molecular O2 and reactive O2 species (ROS) on brain stem function. In addition, control superfusates used routinely for in vitro studies of neurons in brain slices are, in fact, hyperoxic. Again, the assumption is that there are no direct effects of O2 and ROS on neuronal activity. Research contradicts this assumption by demonstrating that O2 has central effects on the brain stem respiratory centers and several effects on neurons in respiratory control areas; these need to be considered whenever hyperoxia is used. This mini-review summarizes the long-recognized, but seldom acknowledged, paradox of respiratory control known as hyperoxic hyperventilation. Several proposed mechanisms are discussed, including the recent hypothesis that hyperoxic hyperventilation is initiated by increased production of ROS during hyperoxia, which directly stimulates central CO2 chemoreceptors in the solitary complex. Hyperoxic hyperventilation may provide clues into the fundamental role of redox signaling and ROS in central control of breathing; moreover, oxidative stress may play a role in respiratory control dysfunction. The practical implications of brain stem O2 and ROS sensitivity are also considered relative to the present uses of hyperoxia in respiratory control research in humans, animals, and brain stem tissues. Recommendations for future research are also proposed. PMID:14715688

  1. [Reactive oxygen forms and Ca ions as possible intermediaries under the induction of heat resistance of plant cells by jasmonic acid].

    PubMed

    Karpets, Iu V; Kolupaev, Iu E; Iastreb, T O; Oboznyĭ, A I; Shvidenko, N V; Lugovaia, A A; Vaĭner, A A

    2013-01-01

    The participation of reactive oxygen species (ROS) and calcium ions in realization of influence of exogenous jasmonic acid (JA) on the heat resistance of wheat coleoptiles has been investigated. Influence of 1 microM JA caused the transitional intensifying of generation of superoxide anion-radical (O2*-) and hydrogen peroxide in coleoptiles with the maximum within 15-30 minutes after the treatment beginning. Within the first hour after the beginning of coleoptiles treatment with JA the increase of superoxide dismutase (SOD) activity was noted. Later on (within 5-24 hours after the treatment beginning) there was the lowering of ROS generation by coleoptiles of experimental variant, and the SOD activity approached the control value. Intensifying of generation of superoxide radical induced by JA was suppressed by the antioxidant ionol and was partially levelled by imidazole (inhibitor of NADPH-oxidase), EGTA (chelator of extracellular calcium) and lanthanum chloride (calcium channels blocker). Pretreatment of coleoptiles with the ionol, imidazole, EGTA and LaC3l3 also partially removed the effect of increase of their resistance to the damaging heating caused by exogenous JA. It is supposed that the ROS generated with participation NADPH-oxidase, which activity depends on the receipt of calcium ions from extracellular space in the cytosol, are involved in realization of physiological effects of JA. PMID:23937049

  2. Exogenous Ochronosis.

    PubMed

    Bhattar, Prachi A; Zawar, Vijay P; Godse, Kiran V; Patil, Sharmila P; Nadkarni, Nitin J; Gautam, Manjyot M

    2015-01-01

    Exogenous ochronosis (EO) is a cutaneous disorder characterized by blue-black pigmentation resulting as a complication of long-term application of skin-lightening creams containing hydroquinone but may also occur due to topical contact with phenol or resorcinol in dark-skinned individuals. It can also occur following the use of systemic antimalarials such as quinine. EO is clinically and histologically similar to its endogenous counterpart viz., alkaptonuria, which, however, exhibits systemic effects and is an inherited disorder. Dermoscopy and in vivo skin reflectance confocal microscopy are noninvasive in vivo diagnostic tools. It is very difficult to treat EO, a cosmetically disfiguring and troubling disorder with disappointing treatment options. PMID:26677264

  3. Exogenous Ochronosis

    PubMed Central

    Bhattar, Prachi A; Zawar, Vijay P; Godse, Kiran V; Patil, Sharmila P; Nadkarni, Nitin J; Gautam, Manjyot M

    2015-01-01

    Exogenous ochronosis (EO) is a cutaneous disorder characterized by blue-black pigmentation resulting as a complication of long-term application of skin-lightening creams containing hydroquinone but may also occur due to topical contact with phenol or resorcinol in dark-skinned individuals. It can also occur following the use of systemic antimalarials such as quinine. EO is clinically and histologically similar to its endogenous counterpart viz., alkaptonuria, which, however, exhibits systemic effects and is an inherited disorder. Dermoscopy and in vivo skin reflectance confocal microscopy are noninvasive in vivo diagnostic tools. It is very difficult to treat EO, a cosmetically disfiguring and troubling disorder with disappointing treatment options. PMID:26677264

  4. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation.

    PubMed

    Kvietys, Peter R; Granger, D Neil

    2012-02-01

    Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653

  5. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation

    PubMed Central

    Kvietys, Peter R.; Granger, D. Neil

    2012-01-01

    Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653

  6. Pleiotrophin-induced endothelial cell migration is regulated by xanthine oxidase-mediated generation of reactive oxygen species.

    PubMed

    Tsirmoula, Sotiria; Lamprou, Margarita; Hatziapostolou, Maria; Kieffer, Nelly; Papadimitriou, Evangelia

    2015-03-01

    Pleiotrophin (PTN) is a heparin-binding growth factor that induces cell migration through binding to its receptor protein tyrosine phosphatase beta/zeta (RPTP?/?) and integrin alpha v beta 3 (???3). In the present work, we studied the effect of PTN on the generation of reactive oxygen species (ROS) in human endothelial cells and the involvement of ROS in PTN-induced cell migration. Exogenous PTN significantly increased ROS levels in a concentration and time-dependent manner in both human endothelial and prostate cancer cells, while knockdown of endogenous PTN expression in prostate cancer cells significantly down-regulated ROS production. Suppression of RPTP?/? through genetic and pharmacological approaches, or inhibition of c-src kinase activity abolished PTN-induced ROS generation. A synthetic peptide that blocks PTN-???3 interaction abolished PTN-induced ROS generation, suggesting that ???3 is also involved. The latter was confirmed in CHO cells that do not express ?3 or over-express wild-type ?3 or mutant ?3Y773F/Y785F. PTN increased ROS generation in cells expressing wild-type ?3 but not in cells not expressing or expressing mutant ?3. Phosphoinositide 3-kinase (PI3K) or Erk1/2 inhibition suppressed PTN-induced ROS production, suggesting that ROS production lays down-stream of PI3K or Erk1/2 activation by PTN. Finally, ROS scavenging and xanthine oxidase inhibition completely abolished both PTN-induced ROS generation and cell migration, while NADPH oxidase inhibition had no effect. Collectively, these data suggest that xanthine oxidase-mediated ROS production is required for PTN-induced cell migration through the cell membrane functional complex of ???3 and RPTP?/? and activation of c-src, PI3K and ERK1/2 kinases. PMID:25582077

  7. Connexin-43 prevents hematopoietic stem cell senescence through transfer of reactive oxygen species to bone marrow stromal cells

    PubMed Central

    Taniguchi Ishikawa, Eri; Gonzalez-Nieto, Daniel; Ghiaur, Gabriel; Dunn, Susan K.; Ficker, Ashley M.; Murali, Bhuvana; Madhu, Malav; Gutstein, David E.; Fishman, Glenn I.; Barrio, Luis C.; Cancelas, Jose A.

    2012-01-01

    Hematopoietic stem cell (HSC) aging has become a concern in chemotherapy of older patients. Humoral and paracrine signals from the bone marrow (BM) hematopoietic microenvironment (HM) control HSC activity during regenerative hematopoiesis. Connexin-43 (Cx43), a connexin constituent of gap junctions (GJs) is expressed in HSCs, down-regulated during differentiation, and postulated to be a self-renewal gene. Our studies, however, reveal that hematopoietic-specific Cx43 deficiency does not result in significant long-term competitive repopulation deficiency. Instead, hematopoietic Cx43 (H-Cx43) deficiency delays hematopoietic recovery after myeloablation with 5-fluorouracil (5-FU). 5-FU-treated H-Cx43-deficient HSC and progenitors (HSC/P) cells display decreased survival and fail to enter the cell cycle to proliferate. Cell cycle quiescence is associated with down-regulation of cyclin D1, up-regulation of the cyclin-dependent kinase inhibitors, p21cip1. and p16INK4a, and Forkhead transcriptional factor 1 (Foxo1), and activation of p38 mitogen-activated protein kinase (MAPK), indicating that H-Cx43-deficient HSCs are prone to senescence. The mechanism of increased senescence in H-Cx43-deficient HSC/P cells depends on their inability to transfer reactive oxygen species (ROS) to the HM, leading to accumulation of ROS within HSCs. In vivo antioxidant administration prevents the defective hematopoietic regeneration, as well as exogenous expression of Cx43 in HSC/P cells. Furthermore, ROS transfer from HSC/P cells to BM stromal cells is also rescued by reexpression of Cx43 in HSC/P. Finally, the deficiency of Cx43 in the HM phenocopies the hematopoietic defect in vivo. These results indicate that Cx43 exerts a protective role and regulates the HSC/P ROS content through ROS transfer to the HM, resulting in HSC protection during stress hematopoietic regeneration. PMID:22611193

  8. Roles of reactive oxygen species in methyl jasmonate and nitric oxide-induced tanshinone production in Salvia miltiorrhiza hairy roots.

    PubMed

    Liang, Zong-Suo; Yang, Dong-Feng; Liang, Xiao; Zhang, Yue-Jin; Liu, Yan; Liu, Feng-Hua

    2012-05-01

    Salvia miltiorrhiza is one of the most popular traditional Chinese medicinal plants for treatment of coronary heart disease. Tanshinones are the main biological active compounds in S. miltiorrhiza. In this study, effects of exogenous methyl jasmonate (MJ) and nitric oxide (NO) on tanshinone production in S. miltiorrhiza hairy roots were investigated and the roles of reactive oxygen species (ROS) in MJ and NO-induced tanshinone production were elucidated further. The results showed that contents of four tanshinone compounds were significantly increased by 100 ?M MJ when compared to the control. Application of 100 ?M sodium nitroprusside (SNP), a donor of NO, also resulted in a significant increase of tanshinone production. Expression of two key genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and 1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) was up-regulated by MJ and SNP. Generations of O(2)(-) and H(2)O(2) were triggered by MJ, but not by SNP. The increase of tanshinone production and up-regulation of HMGR and DXR expression induced by MJ were significantly inhibited by ROS scavengers, superoxide dismutase (SOD) and catalase (CAT). However, neither SOD nor CAT was able to suppress the SNP-induced increase of tanshinone production and expression of HMGR and DXR gene. In conclusion, tanshinone production was significantly stimulated by MJ and SNP. Of four tanshinone compounds, cryptotanshinone accumulation was most affected by MJ elicitation, while cryptotanshinone and tanshinone IIA accumulation was more affected by SNP elicitation. ROS mediated MJ-induced tanshinone production, but SNP-induced tanshinone production was ROS independent. PMID:22189441

  9. Reactive oxygen species are required for ?2 adrenergic receptor-?-arrestin interactions and signaling to ERK1/2.

    PubMed

    Singh, Monalisa; Moniri, Nader H

    2012-09-01

    The ?2-adrenergic receptor (?2AR) is the prototypical member of the heptahelical G protein-coupled receptor (GPCR) superfamily and is well-known to elicit biological effects through both G protein-dependent and G protein-independent signaling cascades. Agonism of ?2AR has been described to promote phosphorylation and activation of extracellular signal-regulated kinases (ERK1/2) via a G-protein/PKA pathway that transpires rapidly upon receptor agonism, as well as by a distinct ?-arrestin-mediated pathway that occurs at later time points. We have previously shown that ?2AR agonism promotes generation of intracellular reactive oxygen species (ROS) and that ?2AR-associated G protein signaling is dependent on ROS formation. It has also been suggested that ?2AR-mediated ROS generation occurs via recruitment of ?-arrestins. In this study, we confirm the effects of ?-arrestin on ?2AR-induced ROS generation, and investigate the ROS-dependency of ?-arrestin-linked ?2AR signaling. In HEK293 cells, both coimmunoprecipitation and BRET studies reveal that ROS are vital for the physical interaction of ?2AR with ?-arrestin partner proteins. Using phosphorylation of ERK1/2 as a functional endpoint to assess the role of ROS in ?2AR-?-arrestin signaling, our results show that inhibition of intracellular ROS abrogates both the ?-arrestin and G protein-mediated phosphorylation of ERK1/2 upon agonism of ?2AR. Importantly, both the G protein and ?-arrestin components were reversed upon exogenous administration of ROS, suggesting a critical role for oxidants in stabilization of ?2AR. Taken together, our data signify that ROS serve purposeful roles in stabilizing both G protein- and ?-arrestin-mediated ?2AR signaling in HEK293 cells. PMID:22728070

  10. A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity

    PubMed Central

    L'Haridon, Floriane; Besson-Bard, Anglique; Binda, Matteo; Serrano, Mario; Abou-Mansour, Eliane; Balet, Francine; Schoonbeek, Henk-Jan; Hess, Stephane; Mir, Ricardo; Lon, Jos; Lamotte, Olivier; Mtraux, Jean-Pierre

    2011-01-01

    Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including H2O2 and O2?, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI) or catalase. H2O2 was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending innate defenses. PMID:21829351

  11. The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia

    PubMed Central

    Pasdois, Philippe; Parker, Joanne E.; Griffiths, Elinor J.; Halestrap, Andrew P.

    2011-01-01

    Oxidized cytochrome c is a powerful superoxide scavenger within the mitochondrial IMS (intermembrane space), but the importance of this role in situ has not been well explored. In the present study, we investigated this with particular emphasis on whether loss of cytochrome c from mitochondria during heart ischaemia may mediate the increased production of ROS (reactive oxygen species) during subsequent reperfusion that induces mPTP (mitochondrial permeability transition pore) opening. Mitochondrial cytochrome c depletion was induced in vitro with digitonin or by 30 min ischaemia of the perfused rat heart. Control and cytochrome c-deficient mitochondria were incubated with mixed respiratory substrates and an ADP-regenerating system (State 3.5) to mimic physiological conditions. This contrasts with most published studies performed with a single substrate and without significant ATP turnover. Cytochrome c-deficient mitochondria produced more H2O2 than control mitochondria, and exogenous cytochrome c addition reversed this increase. In the presence of increasing [KCN] rates of H2O2 production by both pre-ischaemic and end-ischaemic mitochondria correlated with the oxidized cytochrome c content, but not with rates of respiration or NAD(P)H autofluorescence. Cytochrome c loss during ischaemia was not mediated by mPTP opening (cyclosporine-A insensitive), neither was it associated with changes in mitochondrial Bax, Bad, Bak or Bid. However, bound HK2 (hexokinase 2) and Bcl-xL were decreased in end-ischaemic mitochondria. We conclude that cytochrome c loss during ischaemia, caused by outer membrane permeabilization, is a major determinant of H2O2 production by mitochondria under pathophysiological conditions. We further suggest that in hypoxia, production of H2O2 to activate signalling pathways may be also mediated by decreased oxidized cytochrome c and less superoxide scavenging. PMID:21410437

  12. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    EPA Science Inventory

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  13. Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations.

    PubMed

    Meinke, Martina C; Müller, Robert; Bechtel, Anne; Haag, Stefan F; Darvin, Maxim E; Lohan, Silke B; Ismaeel, Fakher; Lademann, Jürgen

    2015-03-01

    UV irradiation is one of the most harmful exogenous factors for the human skin. In addition to the development of erythema, free radicals, that is reactive oxygen species (ROS), are induced under its influence and promote the development of oxidative stress in the skin. Several techniques are available for determining the effect of UV irradiation. Resonance Raman spectroscopy (RRS) measures the reduction of the carotenoid concentration, while electron paramagnetic resonance (EPR) spectroscopy enables the analysis of the production of free radicals. Depending on the method, the skin parameters are analysed in vivo or ex vivo. This study provides a critical comparison between in vivo and ex vivo investigations on the ROS formation and carotenoid depletion caused by UV irradiation in human skin. The oxygen content of tissue was also determined. It was shown that the antioxidant status measured in the skin samples in vivo and ex vivo was different. The depletion in the carotenoid concentration in vivo exceeded the value determined ex vivo by a factor of about 1.5, and the radical formation after UV irradiation was significantly greater in vivo by a factor of 3.5 than that measured in excised human skin, which can be explained by the lack of oxygen ex vivo. PMID:25431109

  14. Palladium-Based Nanomaterials: A Platform to Produce Reactive Oxygen Species for Catalyzing Oxidation Reactions.

    PubMed

    Long, Ran; Huang, Hao; Li, Yaping; Song, Li; Xiong, Yujie

    2015-11-01

    Oxidation reactions by molecular oxygen (O2 ) over palladium (Pd)-based nanomaterials are a series of processes crucial to the synthesis of fine chemicals. In the past decades, investigations of related catalytic materials have mainly been focused on the synthesis of Pd-based nanomaterials from the angle of tailoring their surface structures, compositions and supporting materials, in efforts to improve their activities in organic reactions. From the perspective of rational materials design, it is imperative to address the fundamental issues associated with catalyst performance, one of which should be oxygen activation by Pd-based nanomaterials. Here, the fundamentals that account for the transformation from O2 to reactive oxygen species over Pd, with a focus on singlet O2 and its analogue, are introduced. Methods for detecting and differentiating species are also presented to facilitate future fundamental research. Key factors for tuning the oxygen activation efficiencies of catalytic materials are then outlined, and recent developments in Pd-catalyzed oxygen-related organic reactions are summarized in alignment with each key factor. To close, we discuss the challenges and opportunities for photocatalysis research at this unique intersection as well as the potential impact on other research fields. PMID:26422795

  15. The behaviour of negative oxygen ions in the afterglow of a reactive HiPIMS discharge

    NASA Astrophysics Data System (ADS)

    Bowes, M.; Bradley, J. W.

    2014-07-01

    Using a single Langmuir probe, the temporal evolution of the oxygen negative ion, n-, and electron, ne, densities in the afterglow of a reactive HiPIMS discharge operating in argon-oxygen gas mixtures have been determined. The magnetron was equipped with a titanium target and operated in ‘poisoned’ mode at a frequency of 100 Hz with a pulse width of 100 µs for a range of oxygen partial pressures, {p_{O_{2}}}/{p_{total}} = 0.0{{-}}0.5 . In the initial afterglow, the density of the principle negative ion in the discharge (O-) was of the order of 1016 m-3 for all conditions. The O- concentration was found to decay slowly with characteristic decay times between 585 µs and 1.2 ms over the oxygen partial pressure range. Electron densities were observed to fall more rapidly, resulting in long-lived highly electronegative afterglow plasmas where the ratio, α = n-/ne, was found to reach values up to 672 (±100) for the highest O2 partial pressure. By comparing results to a simple plasma-chemical model, we speculate that with increased {p_{O_{2}}}/{p_{total}} ratio, more O- ions are formed in the afterglow via dissociative electron attachment to highly excited metastable oxygen molecules, with the latter being formed during the active phase of the discharge. After approximately 2.5 ms into the off-time, the afterglow degenerates into an ion-ion plasma and negative ions are free to impinge upon the chamber walls and grounded substrates with flux densities of the order of 1018 m-2 s-1, which is around 10% of the positive ion flux measured during the on-time. This illustrates the potential importance of the long afterglow in reactive HiPIMS, which can act as a steady source of low energy O- ions to a growing thin film at the substrate during periods of reduced positive ion bombardment.

  16. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M.; Nadeau, Jay L.

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  17. Binding of Reactive Oxygen Species at Fe?S Cubane Clusters.

    PubMed

    Bruska, Marta K; Stiebritz, Martin T; Reiher, Markus

    2015-12-21

    Reactive oxygen species (ROS) play an important role in the biochemistry of the cell and occur in degenerative processes as well as in signal transduction. Iron?sulfur proteins are particularly oxygen-sensitive and their inorganic cofactors frequently undergo ROS-induced decomposition reactions. As experimental knowledge about these processes is still incomplete we present here a quantum chemical study of the relative energetics for the binding of the most relevant ROS to [Fe4 S4 ] clusters. We find that cubane clusters with one uncoordinated Fe atom (as found, for instance, in aconitase) bind all oxygen derivatives considered, whereas activation of triplet O2 to singlet O2 is required for binding to valence-saturated iron centers in these clusters. The radicals NO and OH feature the most exothermic binding energies to Fe atoms. Direct sulfoxidation of coordinating cysteine residues is only possible by OH or H2 O2 as attacking agents. The thermodynamic picture of ROS binding to iron?sulfur clusters established here can serve as a starting point for studying reactivity-modulating effects of the cluster-embedding protein environment on ROS-induced decomposition of iron?sulfur proteins. PMID:26585994

  18. Fluorescence-based assay for reactive oxygen species: A protective role for creatinine

    SciTech Connect

    Glazer, A.N. )

    1988-06-01

    Attack by reactive oxygen species leads to a decay in phycoerythrin fluorescence emission. This phenomenon provides a versatile new assay for small molecules and macromolecules that can function as protective compounds. With 1-2 {times} 10{sup {minus}8} M phycoerythrin, under conditions where peroxyl radical generation is rate-limiting, the fluorescence decay follows apparent zero-order kinetics. On reaction with HO{center dot}, generated with the ascorbate-Cu{sup 2+} system, the fluorescence decays with apparent first-order kinetics. Examination of the major components of human urine in this assay confirms that at physiological concentrations, urate protects against both types of oxygen radicals. A novel finding is that creatinine protects efficiently by a chelation mechanism against radical damage in the ascorbate-Cu{sup 2+} system at creatinine, ascorbate, and Cu{sup 2+} concentrations comparable to those in normal urine. Urate and creatinine provide complementary modes of protection against reactive oxygen species in the urinary tract.

  19. Reactive lattice oxygen sites for C sub 4 -hydrocarbon selective oxidation over. beta. -VOPO sub 4

    SciTech Connect

    Lashier, M.E.; Schrader, G.L. )

    1991-03-01

    The role of lattice oxygen species in the catalytic oxidation of n-butene to maleic anhydride has been investigated using {beta}-VOPO{sub 4} labeled with {sup 18}O. The catalyst was prepared by stoichiometric reaction of (VO){sub 2}P{sub 2}O{sub 7} with {sup 18}O{sub 2} using solid state preparation techniques. The {beta}-VOPO{sub 7/2} {sup 18}O{sub 1/2} was characterized using laser Raman and Fourier transform infrared spectroscopies: preferential incorporation at P-O-V sites was observed. A pulse reactor was used to react n-butane, 1-butene, 1,3-butadiene, furan, {gamma}-butyrolactone, and maleic anhydride with the catalyst in the absence of gas-phase O{sub 2}. Incorporation of {sup 18}O into the products was monitored by mass spectrometry. Specific lattice oxygen sites could be associated with the reaction pathways for selective or nonselective oxidation. The results of this study also indicate that the initial interaction of n-butane with {beta}-VOPO{sub 4} is fundamentally different from the initial interaction of olefins or oxygenated species. The approach used in this research-referred to as Isotopic Reactive-Site Mapping-is a potentially powerful method for probing the reactive lattice sites of other selective oxidation catalysts.

  20. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    SciTech Connect

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L.

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  1. Source identification of reactive hydrocarbons and oxygenated VOCs in the summertime in Beijing.

    PubMed

    Liu, Ying; Shao, Min; Kuster, William C; Goldan, Paul D; Li, Xiaohua; Lu, Sihua; de Gouw, Joost A

    2009-01-01

    It is important to identify the sources of reactive volatile organic compounds (VOCs) in Beijing for effective ground-level ozone abatement. In this paper, semihourly measurements of hydrocarbons and oxygenated VOCs (OVOCs) were taken at an urban site in Beijing in August2005. C2-C5 alkenes, isoprene, and C1-C3 aldehydes were determined as "key reactive species" by their OH loss rates. Principal component analysis (PCA) was used to define the major sources of reactive species and to classify the dominant air mass types at the sampling site. Vehicle exhaust was the largest contributor to reactive alkenes. More aged air masses with enriched OVOCs traveled mainly from the east or southeast of Beijing. The OVOC sources were estimated by a least-squares fit approach and included primary emissions, secondary sources, and background. Approximately half of the C1-C3 aldehydes were attributed to secondary sources, while regional background accounted for 21-23% of the mixing ratios of aldehydes. Primary anthropogenic emissions were comparable to biogenic contributions (10-16%). PMID:19209587

  2. Elevated Cytoplasmic Free Zinc and Increased Reactive Oxygen Species Generation in the Context of Brain Injury.

    PubMed

    Stork, Christian J; Li, Yang V

    2016-01-01

    Intracellular zinc release and the generation of reactive oxygen species (ROS) have been reported to be common ingredients in numerous toxic signaling mechanisms in neurons. A key source for intracellular zinc release is its liberation from metallothionein-III (MT-III). MT-III binds and regulates intracellular zinc levels under physiological conditions, but the zinc-binding thiols readily react with certain ROS and reactive nitrogen species (RNS) to result in intracellular zinc liberation. Liberated zinc induces ROS and RNS generation by multiple mechanisms, including the induction of mitochondrial ROS production, and also promotes ROS formation outside the mitochondria by interaction with the enzymes NADPH oxidase and 12-lipoxygenase. Of particular relevance to neuronal injury in the context of ischemia and prolonged seizures, the positive feedback cycle between ROS/RNS generation and increasing zinc liberation will be examined. PMID:26463973

  3. Modulation of macrophage-mediated cytotoxicity by kerosene soot: Possible role of reactive oxygen species

    SciTech Connect

    Arif, J.M.; Khan, S.G.; Ashquin, M.; Rahman, Q. )

    1993-05-01

    The involvement of reactive oxygen species (ROS) in the cytotoxicity of soot on rat alveolar macrophages has been postulated. A single intratracheal injection of soot (5 mg) in corn oil significantly induced the macrophage population, hydrogen peroxide (H[sub 2]O[sub 2]) generation, thiobarbituric acid (TBA)-reactive substanced of lipid peroxidation, and the activities of extracellular acid phosphatase (AP) and lactate dehydrogenase (LDH) at 1, 4, 8, and 16 days of postinoculation. The activities of glutathione peroxidase (GPX) and catalase (CAT) were significantly inhibited at all the stages, while glutathione reductase (GR) and glucose-6-phosphate dehydrogenase (G6PD) showed a different pattern. These results show that soot is cytotoxic to alveolar macrophages and suggest that ROS may play a primary role in the cytotoxic process. 28 refs., 4 figs., 1 tab.

  4. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    SciTech Connect

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  5. NQO2 Is a Reactive Oxygen Species Generating Off-Target for Acetaminophen

    PubMed Central

    2014-01-01

    The analgesic and antipyretic compound acetaminophen (paracetamol) is one of the most used drugs worldwide. Acetaminophen overdose is also the most common cause for acute liver toxicity. Here we show that acetaminophen and many structurally related compounds bind quinone reductase 2 (NQO2) in vitro and in live cells, establishing NQO2 as a novel off-target. NQO2 modulates the levels of acetaminophen derived reactive oxygen species, more specifically superoxide anions, in cultured cells. In humans, NQO2 is highly expressed in liver and kidney, the main sites of acetaminophen toxicity. We suggest that NQO2 mediated superoxide production may function as a novel mechanism augmenting acetaminophen toxicity. PMID:25313982

  6. Reactive oxygen species and antioxidant enzymes activity of Anabaena sp. PCC 7120 (Cyanobacterium) under simulated microgravity

    NASA Astrophysics Data System (ADS)

    Li, Gen-bao; Liu, Yong-ding; Wang, Gao-hong; Song, Li-rong

    2004-12-01

    It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of gluathione, an intracellular antioxidant, decreased in comparison with the controlled samples. The results suggested that microgravity provided by clinostat might break the oxidative/antioxidative balance. It indicated a protective mechanism in algal cells, that the total antioxidant system activity increased, which might play an important role for algal cells to adapt the environmental stress of microgravity.

  7. Origin and Electronic Features of Reactive Oxygen Species at Hybrid Zirconia-Acetylacetonate Interfaces.

    PubMed

    Muoz-Garca, Ana B; Sannino, Filomena; Vitiello, Giuseppe; Pirozzi, Domenico; Minieri, Luciana; Aronne, Antonio; Pernice, Pasquale; Pavone, Michele; D'Errico, Gerardino

    2015-10-01

    The hybrid sol-gel zirconia-acetylacetonate amorphous material (HSGZ) shows high catalytic activity in oxidative degradation reactions without light or thermal pretreatment. This peculiar HSGZ ability derives from the generation of highly reactive oxygen radical species (ROS) upon exposure to air at room conditions. We disclose the origin of such unique feature by combining EPR and DRUV measurements with first-principles calculations. The organic ligand acetylacetonate (acac) plays a pivotal role in generating and stabilizing the superoxide radical species at the HSGZ-air interfaces. Our results lead the path toward further development of HSGZ and related hybrid materials for ROS-based energy and environmental applications. PMID:26394654

  8. Beyond oxidative stress: an immunologists guide to reactive oxygen species

    PubMed Central

    Nathan, Carl; Cunningham-Bussel, Amy

    2014-01-01

    Reactive oxygen species (ROS) react preferentially with certain atoms to modulate functions ranging from cell homeostasis to cell death. Molecular actions include both inhibition and activation of proteins, mutagenesis of DNA and activation of gene transcription. Cellular actions include promotion or suppression of inflammation, immunity and carcinogenesis. ROS help the host to compete against microorganisms and are also involved in intermicrobial competition. ROS chemistry and their pleiotropy make them difficult to localize, to quantify and to manipulate challenges we must overcome to translate ROS biology into medical advances. PMID:23618831

  9. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  10. Different tobacco retrotransposons are specifically modulated by the elicitor cryptogein and reactive oxygen species.

    PubMed

    Anca, Iulia-Andra; Fromentin, Jrme; Bui, Quynh Trang; Mhiri, Corinne; Grandbastien, Marie-Angle; Simon-Plas, Franoise

    2014-10-15

    Interactions of plant retrotransposons with different steps of biotic and abiotic stress-associated signaling cascades are still poorly understood. We perform here a finely tuned comparison of four tobacco retrotransposons (Tnt1, Tnt2, Queenti, and Tto1) responses to the plant elicitor cryptogein. We demonstrate that basal transcript levels in cell suspensions and plant leaves as well as the activation during the steps of defense signaling events are specific to each retrotransposon. Using antisense NtrbohD lines, we show that NtrbohD-dependent reactive oxygen species (ROS) production might act as negative regulator of retrotransposon activation. PMID:25128785

  11. Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro.

    PubMed

    Bonnefont-Rousselot, Dominique; Collin, Fabrice; Jore, Daniel; Gardès-Albert, Monique

    2011-04-01

    Melatonin (N-acetyl-5-hydroxytryptamine) is a pineal hormone widely known for its antioxidant properties, both in vivo and by direct capture of free radicals in vitro. Although some metabolites and oxidation products of melatonin have been identified, the molecular mechanism by which melatonin exerts its antioxidant properties has not been totally unravelled. This study investigated the reaction mechanism of oxidation of melatonin by radio-induced reactive oxygen species, generated by gamma radiolysis of water for aqueous solutions of melatonin (from 20 to 200 μm), in the presence or absence of molecular oxygen. The hydroxyl radical was found to be the unique species able to initiate the oxidation process, leading to three main products, e.g. N(1)-acetyl-N(2)-formyl-5-methoxykynurenin (AFMK), N(1)-acetyl-5-methoxykynurenin (AMK) and hydroxymelatonin (HO-MLT). The generation of AFMK and HO-MLT strongly depended on the presence of molecular oxygen in solution: AFMK was the major product in aerated solutions (84%), whereas HO-MLT was favoured in the absence of oxygen (86%). Concentrations of AMK remained quite low, and AMK was proposed to result from a chemical hydrolysis of AFMK in solution. A K-value of 1.1 × 10(-4) was calculated for this equilibrium. Both hydrogen peroxide and superoxide dismutase had no effect on the radio-induced oxidation of melatonin, in good accordance for the second case with the poor reactivity of the superoxide anion towards melatonin. Finally, a reaction mechanism was proposed for the oxidation of melatonin in vitro. PMID:21244479

  12. Photochemistry of Dissolved Black Carbon Released from Biochar: Reactive Oxygen Species Generation and Phototransformation.

    PubMed

    Fu, Heyun; Liu, Huiting; Mao, Jingdong; Chu, Wenying; Li, Qilin; Alvarez, Pedro J J; Qu, Xiaolei; Zhu, Dongqiang

    2016-02-01

    Dissolved black carbon (BC) released from biochar can be one of the more photoactive components in the dissolved organic matter (DOM) pool. Dissolved BC was mainly composed of aliphatics and aromatics substituted by aromatic C-O and carboxyl/ester/quinone moieties as determined by solid-state nuclear magnetic resonance. It underwent 56% loss of absorbance at 254 nm, almost complete loss of fluorescence, and 30% mineralization during a 169 h simulated sunlight exposure. Photoreactions preferentially targeted aromatic and methyl moieties, generating CH2/CH/C and carboxyl/ester/quinone functional groups. During irradiation, dissolved BC generated reactive oxygen species (ROS) including singlet oxygen and superoxide. The apparent quantum yield of singlet oxygen was 4.07 ± 0.19%, 2-3 fold higher than many well-studied DOM. Carbonyl-containing structures other than aromatic ketones were involved in the singlet oxygen sensitization. The generation of superoxide apparently depended on electron transfer reactions mediated by silica minerals in dissolved BC, in which phenolic structures served as electron donors. Self-generated ROS played an important role in the phototransformation. Photobleaching of dissolved BC decreased its ability to further generate ROS due to lower light absorption. These findings have significant implications on the environmental fate of dissolved BC and that of priority pollutants. PMID:26717492

  13. Single europium-doped nanoparticles measure temporal pattern of reactive oxygen species production inside cells.

    PubMed

    Casanova, Didier; Bouzigues, Cdric; Nguyn, Thanh-Lim; Ramodiharilafy, Rivo O; Bouzhir-Sima, Latifa; Gacoin, Thierry; Boilot, Jean-Pierre; Tharaux, Pierre-Louis; Alexandrou, Antigoni

    2009-09-01

    Low concentrations of reactive oxygen species, notably hydrogen peroxide (H(2)O(2)), mediate various signalling processes in the cell. Production of these signals is highly regulated and a suitable probe is needed to measure these events. Here, we show that a probe based on a single nanoparticle can quantitatively measure transient H(2)O(2) generation in living cells. The Y(0.6)Eu(0.4)VO(4) nanoparticles undergo photoreduction under laser irradiation but re-oxidize in the presence of oxidants, leading to a recovery in luminescence. Our probe can be regenerated and reliably detects intracellular H(2)O(2) with a 30-s temporal resolution and a dynamic range of 1-45 microM. The differences in the timing of intracellular H(2)O(2) production triggered by different signals were also measured using these nanoparticles. Although the probe is not selective towards H(2)O(2), in many signalling processes H(2)O(2) is, however, the dominant oxidant. In conjunction with appropriate controls, this probe is a powerful tool for unravelling pathways that involve reactive oxygen species. PMID:19734931

  14. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    SciTech Connect

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.

  15. Measurement of reactive oxygen metabolites produced by human monocyte-derived macrophages exposed to mineral dusts.

    PubMed Central

    Nyberg, P.; Klockars, M.

    1990-01-01

    The aim of the present work was to develop an in-vitro model for studying mineral dust-induced production of reactive oxygen metabolites by human macrophages. Monocytes isolated from human buffy coats were cultured in vitro for 1-6 days. Quartz particles induced both luminol- and lucigenin-dependent chemiluminescence (CL) by the adherent cells. However, the luminol response decreased form day to day, obviously due to a decrease in the myeloperoxidase (MPO) activity of the cells, whereas the lucigenin response showed no such MPO dependence. The luminol response was inhibited by superoxide dismutase (SOD), catalase, and the MPO-inhibitor azide, while the lucigenin response was inhibited by SOD and catalase but stimulated by azide. There was a positive correlation between the lucigenin responses and the results obtained with the established cytochrome c assay for superoxide, when opsonized zymosan was used as a stimulant. The effects of quartz, titanium dioxide, chrysotile asbestos, and wollastonite particles were investigated with the lucigenin assay. Quartz and chrysotile caused prominent light emission by 6-day-old macrophages, whereas titanium dioxide and wollastonite caused weak responses. We conclude that mineral dusts induce production of reactive oxygen metabolites by human monocyte-derived macrophages, and that the quantitative responses depend on both physical and physicochemical dust properties, the nature of which are still to be defined. PMID:2169299

  16. The Role of Reactive Oxygen Species in Mesenchymal Stem Cell Adipogenic and Osteogenic Differentiation: A Review

    PubMed Central

    Atashi, Fatemeh; Modarressi, Ali

    2015-01-01

    Mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering and regenerative medicine. The multipotent stem cell component of MSC isolates is able to differentiate into derivatives of the mesodermal lineage including adipocytes, osteocytes, chondrocytes, and myocytes. Many common pathways have been described in the regulation of adipogenesis and osteogenesis. However, stimulation of osteogenesis appears to suppress adipogenesis and vice-versa. Increasing evidence implicates a tight regulation of these processes by reactive oxygen species (ROS). ROS are short-lived oxygen-containing molecules that display high chemical reactivity toward DNA, RNA, proteins, and lipids. Mitochondrial complexes I and III, and the NADPH oxidase isoform NOX4 are major sources of ROS production during MSC differentiation. ROS are thought to interact with several pathways that affect the transcription machinery required for MSC differentiation including the Wnt, Hedgehog, and FOXO signaling cascades. On the other hand, elevated levels of ROS, defined as oxidative stress, lead to arrest of the MSC cell cycle and apoptosis. Tightly regulated levels of ROS are therefore critical for MSC terminal differentiation, although the precise sources, localization, levels and the exact species of ROS implicated remain to be determined. This review provides a detailed overview of the influence of ROS on adipogenic and osteogenic differentiation in MSCs. PMID:25603196

  17. Electron Spin Resonance Spectroscopy for Studying the Generation and Scavenging of Reactive Oxygen Species by Nanomaterials

    NASA Astrophysics Data System (ADS)

    Yin, Jun-Jie; Zhao, Baozhong; Xia, Qingsu; Fu, Peter P.

    2013-09-01

    One fundamental mechanism widely described for nanotoxicity involves oxidative damage due to generation of free radicals and other reactive oxygen species. Indeed, the ability of nanoscale materials to facilitate the transfer of electrons, and thereby promote oxidative damage or in some instances provide antioxidant protection, may be a fundamental property of these materials. Any assessment of a nanoscale material's safety must therefore consider the potential for toxicity arising from oxidative damage. Therefore, rapid and predictive methods are needed to assess oxidative damage elicited by nanoscale materials. The use of electron spin resonance (ESR) to study free radical related bioactivity of nanomaterials has several advantages for free radical determination and identification. Specifically it can directly assess antioxidant quenching or prooxidant generation of relevant free radicals and reactive oxygen species. In this chapter, we have reported some nonclassical behaviors of the electron spin relaxation properties of unpaired electrons in different fullerenes and the investigation of anti/prooxidant activity by various types of nanomaterials using ESR. In addition, we have reviewed the mechanisms of free radical formation photosensitized by different nanomaterials. This chapter also included the use of spin labels, spin traps and ESR oximetry to systematically examine the enzymatic mimetic activities of nanomaterials.

  18. Gastric toxicity and mucosal ulceration induced by oxygen-derived reactive species: protection by melatonin.

    PubMed

    Bandyopadhyay, D; Biswas, K; Bhattacharyya, M; Reiter, R J; Banerjee, R K

    2001-09-01

    Uncontrolled hydrochloric acid secretion and ulceration of the stomach mucosa due to various factors are serious global problems. Although the mechanism of acid secretion from the parietal cell is now well understood, the processes involved in gastric ulceration are still not clear. Among various causes of gastric ulceration, lesions caused by stress, alcohol consumption, Helicobacter pylori infection and due to use of nonsteroidal antiinflammatory drugs have been shown to be mediated largely through the generation of reactive oxygen species, especially the hydroxyl radical. A number of excellent drugs have proven useful in controlling hyperacidity and ulceration but their long-term use is associated with disturbing side-effects. Hence, the search is still on to find a compound possessing antisecretory, antiulcer and antioxidant properties which will serve as a therapeutic agent to reduce gastric hyperacidity and ulcers. This article describes the role of reactive oxygen species in gastric ulceration, drugs controlling them with their merits and demerits and, the role of melatonin, a pineal secretory product, in protecting against gastric lesions. In experimental studies, melatonin has been shown to be effective in reducing mucosal breakdown and ulcer formation in a wide variety of situations. Additionally, the low toxicity of melatonin supports further investigation of this molecule as a gastroprotective agent. Finally, we include a commentary on how melatonin research with respect to gastric pathophysiology can move forward with a view of eventually using this indole as a therapeutic agent to control gastric ulceration in humans. PMID:11899094

  19. Involvement of reactive oxygen species in gastric ulceration: protection by melatonin.

    PubMed

    Bandyopadhyay, Debashis; Biswas, Kaushik; Bhattacharyya, Mrinalini; Reiter, Russel J; Banerjee, Ranajit K

    2002-06-01

    Uncontrolled hydrochloric acid secretion and ulceration in the stomach due to various factors are serious global problems today. Although the mechanism of acid secretion from the parietal cell is now fairly known, the mechanism of gastric ulceration is still not clear today. Among various causes of gastric ulceration, lesions caused by stress, alcohol consumption, Helicobacter pylori infection and use of nonsteroidal antiinflammatory drugs have been shown to be mediated largely through the generation of reactive oxygen species especially hydroxyl radical (*OH). A number of excellent drugs have been proved useful in controlling hyperacidity and ulceration but their long term uses are not devoid of disturbing side-effects. Hence, the search is still on to find out a compound possessing antisecretory, antiulcer and antioxidant properties which will serve as a powerful therapeutic agent to cure gastric hyperacidity and ulcer. This article describes the role of reactive oxygen species in gastric ulceration, drugs controlling them with their merits and demerits and, the role of melatonin, a pineal hormone in protecting the gastric lesions with a final commentary on how melatonin research with respect to gastric pathophysiology can be taken forward with a view to projecting this indole as a promising therapeutic agent to control gastric ulceration in humans. PMID:12587717

  20. Novel Approach to Reactive Oxygen Species in Nontransfusion-Dependent Thalassemia

    PubMed Central

    Tyan, Paul I.; Radwan, Amr H.; Eid, Assaad; Haddad, Anthony G.; Wehbe, David; Taher, Ali T.

    2014-01-01

    The term Nontransfusion dependent thalassaemia (NTDT) was suggested to describe patients who had clinical manifestations that are too severe to be termed minor yet too mild to be termed major. Those patients are not entirely dependent on transfusions for survival. If left untreated, three main factors are responsible for the clinical sequelae of NTDT: ineffective erythropoiesis, chronic hemolytic anemia, and iron overload. Reactive oxygen species (ROS) generation in NTDT patients is caused by 2 major mechanisms. The first one is chronic hypoxia resulting from chronic anemia and ineffective erythropoiesis leading to mitochondrial damage and the second is iron overload also due to chronic anemia and tissue hypoxia leading to increase intestinal iron absorption in thalassemic patients. Oxidative damage by reactive oxygen species (generated by free globin chains and labile plasma iron) is believed to be one of the main contributors to cell injury, tissue damage, and hypercoagulability in patients with thalassemia. Independently increased ROS has been linked to a myriad of pathological outcomes such as leg ulcers, decreased wound healing, pulmonary hypertension, silent brain infarcts, and increased thrombosis to count a few. Interestingly many of those complications overlap with those found in NTDT patients. PMID:25121095

  1. Cytoplasmic localization and ubiquitination of p21{sup Cip1} by reactive oxygen species

    SciTech Connect

    Hwang, Chae Young; Kim, Ick Young; Kwon, Ki-Sun . E-mail: kwonks@kribb.re.kr

    2007-06-22

    Reactive oxygen species were previously shown to trigger p21{sup Cip1} protein degradation through a proteasome-dependent pathway, however the detailed mechanism of degradation remains to be elucidated. In this report, we showed that p21{sup Cip1} was degraded at an early phase after low dose H{sub 2}O{sub 2} treatment of a variety of cell types and that preincubation of cells with the antioxidant, N-acetylcysteine, prolonged p21{sup Cip1} half-life. A mutant p21{sup Cip1} in which all six lysines were changed to arginines was protected against H{sub 2}O{sub 2} treatment. Direct interaction between p21{sup Cip1} and Skp2 was elevated in the H{sub 2}O{sub 2}-treated cells. Disruption of the two nuclear export signal (NES) sequences in p21{sup Cip1}, or treatment with leptomycin B blocked H{sub 2}O{sub 2}-induced p21{sup Cip1} degradation. Altogether, these results demonstrate that reactive oxygen species induce p21{sup Cip1} degradation through an NES-, Skp2-, and ubiquitin-dependent pathway.

  2. Optimizing Pulse Waveforms in Plasma Jets for Reactive Oxygen Species (ROS) Production

    NASA Astrophysics Data System (ADS)

    Norberg, Seth; Babaeva, Natalia Yu.; Kushner, Mark J.

    2012-10-01

    Reactive oxygen species (ROS) are desired in numerous applications from the destruction of harmful proteins and bacteria for sterilization in the medical field to taking advantage of the metastable characteristics of O2(^1?) to transfer energy to other species. Advances in atmospheric pressure plasma jets in recent years show the possibility of using this application as a source of reactive oxygen species. In this paper, we report on results from a computational investigation of atmospheric pressure plasma jets in a dielectric barrier discharge (DBD) configuration. The computer model used in this study, nonPDPSIM, solves transport equations for charged and neutral species, Poisson's equation for the electric potential, the electron energy conservation equation for the electron temperature, and Navier-Stokes equations for the neutral gas flow. A Monte Carlo simulation is used to track sheath accelerated secondary electrons emitted from surfaces and the energy of ions incident onto surfaces. Rate coefficients and transport coefficients for the bulk plasma are obtained from local solutions of Boltzmann's equation for the electron energy distribution. Radiation transport is addressed using a Green's function approach. Various waveforms for the voltage source were examined in analogy to spiker-sustainer systems used at lower gas pressures.

  3. Feline mesenchymal stem cells and supernatant inhibit reactive oxygen species production in cultured feline neutrophils.

    PubMed

    Mumaw, Jennifer L; Schmiedt, Chad W; Breidling, Sarah; Sigmund, Alex; Norton, Natalie A; Thoreson, Merrilee; Peroni, John F; Hurley, David J

    2015-12-01

    Feline bone marrow-derived MSCs (BMMSCs), adipose-derived MSCs (AMSCs) and fibroblasts (FBs) were isolated and cultured. Tri-lineage differentiation assays and flow cytometry were used to characterize MSCs. Neutrophils (NPs) were isolated from whole blood and the NPs production of reactive oxygen reactive oxygen species (ROS) was measured. NPs were cultured alone, with MSC culture supernatant (SN), BMMSCs or AMSCs. NPs incubated with BMMSCs had significantly lower ROS production than NPs incubated with AMSCs (p=0.0006) or FB (p<0.0001); NPs ROS production significantly decreased with increasing BMMSC cell number (p=0.0023) and significantly increased with NPs were incubated with FB compared to BMMSC (p=0.0003). Both BMMSC SN and AMSC SN had statistically significantly lower ROS production than FB SN when incubated with NPs (both p<0.0001). ROS production was significantly reduced with increased fractions of SN from BMMSCs (p=0.0467) and AMSCs (p=0.0017). PMID:26679797

  4. Reactive Oxygen Species in the Paraventricular Nucleus of the Hypothalamus Alter Sympathetic Activity During Metabolic Syndrome

    PubMed Central

    Cruz, Josiane C.; Flôr, Atalia F. L.; França-Silva, Maria S.; Balarini, Camille M.; Braga, Valdir A.

    2015-01-01

    The paraventricular nucleus of the hypothalamus (PVN) contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II), which activates AT1 receptors in the circumventricular organs (OCVs), mainly in the subfornical organ (SFO). Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS), leading to increases in sympathetic nerve activity (SNA). Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS): dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin, and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS. PMID:26779026

  5. Reactive Oxygen Species in the Paraventricular Nucleus of the Hypothalamus Alter Sympathetic Activity During Metabolic Syndrome.

    PubMed

    Cruz, Josiane C; Flôr, Atalia F L; França-Silva, Maria S; Balarini, Camille M; Braga, Valdir A

    2015-01-01

    The paraventricular nucleus of the hypothalamus (PVN) contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II), which activates AT1 receptors in the circumventricular organs (OCVs), mainly in the subfornical organ (SFO). Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS), leading to increases in sympathetic nerve activity (SNA). Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS): dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin, and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS. PMID:26779026

  6. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacita, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought. PMID:19483186

  7. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5.

    PubMed

    Smeets, Pieter J; Hadt, Ryan G; Woertink, Julia S; Vanelderen, Pieter; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2010-10-27

    The reactive oxidizing species in the selective oxidation of methane to methanol in oxygen activated Cu-ZSM-5 was recently defined to be a bent mono(μ-oxo)dicopper(II) species, [Cu(2)O](2+). In this communication we report the formation of an O(2)-precursor of this reactive site with an associated absorption band at 29,000 cm(-1). Laser excitation into this absorption feature yields a resonance Raman (rR) spectrum characterized by (18)O(2) isotope sensitive and insensitive vibrations, νO-O and νCu-Cu, at 736 (Δ(18)O(2) = 41 cm(-1)) and 269 cm(-1), respectively. These define the precursor to be a μ-(η(2):η(2)) peroxo dicopper(II) species, [Cu(2)(O(2))](2+). rR experiments in combination with UV-vis absorption data show that this [Cu(2)(O(2))](2+) species transforms directly into the [Cu(2)O](2+) reactive site. Spectator Cu(+) sites in the zeolite ion-exchange sites provide the two electrons required to break the peroxo bond in the precursor. O(2)-TPD experiments with (18)O(2) show the incorporation of the second (18)O atom into the zeolite lattice in the transformation of [Cu(2)(O(2))](2+) into [Cu(2)O](2+). This study defines the mechanism of oxo-active site formation in Cu-ZSM-5. PMID:20923156

  8. Flavonoids in Microheterogeneous Media, Relationship between Their Relative Location and Their Reactivity towards Singlet Oxygen

    PubMed Central

    Gnther, Germn; Berros, Eduardo; Pizarro, Nancy; Valds, Karina; Montero, Guillermo; Arriagada, Francisco; Morales, Javier

    2015-01-01

    In this work, the relationship between the molecular structure of three flavonoids (kaempferol, quercetin and morin), their relative location in microheterogeneous media (liposomes and erythrocyte membranes) and their reactivity against singlet oxygen was studied. The changes observed in membrane fluidity induced by the presence of these flavonoids and the influence of their lipophilicity/hydrophilicity on the antioxidant activity in lipid membranes were evaluated by means of fluorescent probes such as Laurdan and diphenylhexatriene (DPH). The small differences observed for the value of generalized polarization of Laurdan (GP) curves in function of the concentration of flavonoids, indicate that these three compounds promote similar alterations in liposomes and erythrocyte membranes. In addition, these compounds do not produce changes in fluorescence anisotropy of DPH, discarding their location in deeper regions of the lipid bilayer. The determined chemical reactivity sequence is similar in all the studied media (kaempferol < quercetin < morin). Morin is approximately 10 times more reactive than quercetin and 20 to 30 times greater than kaempferol, depending on the medium. PMID:26098745

  9. Enhancement of reactive oxygen species and induction of apoptosis in streptozotocin-induced diabetic rats under hyperbaric oxygen exposure

    PubMed Central

    Matsunami, Tokio; Sato, Yukita; Hasegawa, Yuki; Ariga, Satomi; Kashimura, Haruka; Sato, Takuya; Yukawa, Masayoshi

    2011-01-01

    An important source of reactive oxygen species (ROS) production is nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which on activation induces superoxide production via oxidation in the mitochondria, inflammation and stress; such ROS are implicated in the pathogenesis of diabetic complications, including neuropathy. Hyperbaric oxygen (HBO) treatments are applied various diseases including diabetic patients with unhealing foot ulcers, however, and also increases the formation of ROS. In a previous study, we showed that a clinically recommended HBO treatment significantly enhanced oxidative stress of pancreatic tissue in the diabetic rats. However, no study has been undertaken with regard to the effects of HBO on the activity and gene expression of the NADPH oxidase complex and on apoptosis in the pancreas of diabetic animals. The purpose of this study was to investigate the effect of HBO exposure on gene expression of the NADPH complex, and pancreatic expression of genes related to apoptosis via the mitochondria, using the NADPH oxidase inhibitor apocynin. The mRNA expression of genes related to NADPH oxidase complex and apoptosis increased significantly (P < 0.05) in the pancreas of diabetic rats under HBO exposure. Similarly, activities of NADPH oxidase and caspase-3 changed in parallel with mRNA levels. These results suggest that oxidative stress caused by HBO exposure in diabetic animals induces further ROS production and apoptosis, potentially through the up-regulation of NADPH oxidase complex. Thus, this study can contribute to development of a better understanding of the molecular mechanisms of apoptosis via the mitochondria in diabetes, under HBO exposure. PMID:21487521

  10. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets

    PubMed Central

    Ramel, Fanny; Sulmon, Ccile; Bogard, Matthieu; Coue, Ivan; Gouesbet, Gwenola

    2009-01-01

    Background Besides being essential for plant structure and metabolism, soluble carbohydrates play important roles in stress responses. Sucrose has been shown to confer to Arabidopsis seedlings a high level of tolerance to the herbicide atrazine, which causes reactive oxygen species (ROS) production and oxidative stress. The effects of atrazine and of exogenous sucrose on ROS patterns and ROS-scavenging systems were studied. Simultaneous analysis of ROS contents, expression of ROS-related genes and activities of ROS-scavenging enzymes gave an integrative view of physiological state and detoxifying potential under conditions of sensitivity or tolerance. Results Toxicity of atrazine could be related to inefficient activation of singlet oxygen (1O2) quenching pathways leading to 1O2 accumulation. Atrazine treatment also increased hydrogen peroxide (H2O2) content, while reducing gene expressions and enzymatic activities related to two major H2O2-detoxification pathways. Conversely, sucrose-protected plantlets in the presence of atrazine exhibited efficient 1O2 quenching, low 1O2 accumulation and active H2O2-detoxifying systems. Conclusion In conclusion, sucrose protection was in part due to activation of specific ROS scavenging systems with consequent reduction of oxidative damages. Importance of ROS combination and potential interferences of sucrose, xenobiotic and ROS signalling pathways are discussed. PMID:19284649

  11. [Microcirculatory hemodynamics in oral tissues with reference to neurogenic response and reactive oxygen species interaction].

    PubMed

    Okabe, E; Todoki, K

    1999-04-01

    The primary purpose of the microcirculation is to transport nutrients and oxygen and to remove metabolic waste products from tissues. It is also well known that the fundamental mechanism for vascular control is the local regulation of the basal vascular tone, which is reinforced by blood pressure and counteracted by tissue metabolites. Thus, the well-being of the tissue depends on the circulatory transport process, which is governed by many functional parameters of the microcirculation such as blood flow, blood volume, intravascular and extravascular pressures, and capillary permeability. Inflammatory reactions in oral tissues can be initiated by many different insults to the tissues, and the reaction itself can be expressed in various ways. In addition, the tissues seem to have many "backup" systems, so that any one response can be produced in several ways, which is important for a reaction that has a survival value. A recent concept is that repeated stimulation of sensitive teeth may induce pulpal changes; this could occur through induction of neurogenic inflammation and alteration of pulpal blood flow. One possibility is that production of reactive oxygen species, as well as release of the sensory neuropeptides, at sites of inflammation contributes to alterations in local blood flow. In addition to the part played by the neurogenic mediators, nitric oxide participation and its interaction with oxygen-derived free radicals in oral tissue hemodynamics are also discussed. PMID:10412160

  12. Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water.

    PubMed

    Hotze, Ernest M; Labille, Jerome; Alvarez, Pedro; Wiesner, Mark R

    2008-06-01

    Buckminsterfullerene (C60) is a known photosensitizer that produces reactive oxygen species (ROS) in the presence of light; however, its properties in aqueous environments are still not well understood or modeled. In this study, production of both singlet oxygen and superoxide by UV photosensitization of colloidal aggregates of C60 in water was measured by two distinct methods: electron paramagnetic resonance (EPR) with a spin trapping compound, and spectrophotometric detection of the reduced form of the tetrazolium compound XTT. Both singlet oxygen and superoxide were generated by fullerol suspensions while neither was detected in the aqu/nC60 suspensions. A mechanistic framework for photosensitization that takes into account differences in C60 aggregate structure in water is proposed to explain these results. While theory developed for single molecules suggests that alterations to the C60 cage should reduce the quantum yield for the triplet state and associated ROS production, the failure to detect ROS production by aqu/nC60 is explained in part by a more dense aggregate structure compared with the hydroxylated C60. PMID:18589984

  13. Gas-Phase Fragmentation of Aluminum Oxide Nitrate Anions Driven by Reactive Oxygen Radical Ligands.

    PubMed

    Lightcap, Johnny; Hester, Thomas H; Kamena, Kurt; Albury, Rachael M; Pruitt, Carrie Jo M; Goebbert, Daniel J

    2016-03-10

    Gas-phase metal nitrate anions are known to yield a variety of interesting metal oxides upon fragmentation. The aluminum nitrate anion complexes, Al(NO3)4(-) and AlO(NO3)3(-) were generated by electrospray ionization and studied with collision-induced dissociation and energy-resolved mass spectrometry. Four different decomposition processes were observed, the loss of NO3(-), NO3(), NO2(), and O2. The oxygen radical ligand in AlO(NO3)3(-) is highly reactive and drives the formation of AlO(NO3)2(-) upon loss of NO3(), AlO2(NO3)2(-) upon NO2() loss, or Al(NO2)(NO3)2(-) upon abstraction of an oxygen atom from a neighboring nitrate ligand followed by loss of O2. The AlO2(NO3)2(-) fragment also undergoes elimination of O2. The mechanism for O2 elimination requires oxygen atom abstraction from a nitrate ligand in both AlO(NO3)3(-) and AlO2(NO3)2(-), revealing the hidden complexity in the fragmentation of these clusters. PMID:26919711

  14. Inhibition of respiration extends C. elegans’ lifespan via reactive oxygen species that increase HIF-1 activity

    PubMed Central

    Lee, Seung-Jae; Hwang, Ara B.; Kenyon, Cynthia

    2011-01-01

    Summary A mild inhibition of mitochondrial respiration extends the lifespan of many organisms, including yeast, worms, flies and mice [1–10], but the underlying mechanism is unknown. One environmental condition that reduces rates of respiration is hypoxia (low oxygen). Thus it is possible that mechanisms that sense oxygen play a role in the longevity response to reduced respiration. The hypoxia-inducible factor HIF-1 is a highly-conserved transcription factor that activates genes that promote survival during hypoxia [11–12]. In this study, we show that inhibiting respiration in C. elegans can promote longevity by activating HIF-1. Through genome-wide screening, we found that RNAi knockdown of many genes encoding respiratory-chain components induced hif-1-dependent transcription. Moreover, HIF-1 was required for the extended lifespans of clk-1 and isp-1 mutants, which have reduced rates of respiration [1, 4, 13]. Inhibiting respiration appears to activate HIF-1 by elevating the level of reactive oxygen species (ROS). We found that ROS is increased in respiration mutants, and that mild increases in ROS can stimulate HIF-1 to activate gene expression and promote longevity. In this way, HIF-1 appears to link respiratory stress in the mitochondria to a nuclear transcriptional response that promotes longevity. PMID:21093262

  15. Reactive oxygen species and nitric oxide in plant mitochondria: origin and redundant regulatory systems.

    PubMed

    Blokhina, Olga; Fagerstedt, Kurt V

    2010-04-01

    Plant mitochondria differ from their mammalian counterparts in many respects, which are due to the unique and variable surroundings of plant mitochondria. In green leaves, plant mitochondria are surrounded by ample respiratory substrates and abundant molecular oxygen, both resulting from active photosynthesis, while in roots and bulky rhizomes and fruit carbohydrates may be plenty, whereas oxygen levels are falling. Several enzymatic complexes in mitochondrial electron transport chain (ETC) are capable of reactive oxygen species (ROS) formation under physiological and pathological conditions. Inherently connected parameters such as the redox state of electron carriers in the ETC, ATP synthase activity and inner mitochondrial membrane potential, when affected by external stimuli, can give rise to ROS formation via complexes I and III, and by reverse electron transport (RET) from complex II. Superoxide radicals produced are quickly scavenged by superoxide dismutase (MnSOD), and the resulting H(2)O(2) is detoxified by peroxiredoxin-thioredoxin system or by the enzymes of ascorbate-glutathione cycle, found in the mitochondrial matrix. Arginine-dependent nitric oxide (NO)-releasing activity of enzymatic origin has been detected in plant mitochondria. The molecular identity of the enzyme is not clear but the involvement of mitochondria-localized enzymes responsible for arginine catabolism, arginase and ornithine aminotransferase has been shown in the regulation of NO efflux. Besides direct control by antioxidants, mitochondrial ROS production is tightly controlled by multiple redundant systems affecting inner membrane potential: NAD(P)H-dependent dehydrogenases, alternative oxidase (AOX), uncoupling proteins, ATP-sensitive K(+) channel and a number of matrix and intermembrane enzymes capable of direct electron donation to ETC. NO removal, on the other hand, takes place either by reactions with molecular oxygen or superoxide resulting in peroxynitrite, nitrite or nitrate ions or through interaction with non-symbiotic hemoglobins or glutathione. Mitochondrial ROS and NO production is tightly controlled by multiple redundant systems providing the regulatory mechanism for redox homeostasis and specific ROS/NO signaling. PMID:20059731

  16. Light effect and reactive oxygen species in the action of ciprofloxacin on Staphylococcus aureus.

    PubMed

    Becerra, Mara Cecilia; Sarmiento, Martn; Pez, Paulina Laura; Argello, Gustavo; Albesa, Ins

    2004-10-25

    Oxygen consumption by Staphylococcus aureus ATCC 29213 sensitive to ciprofloxacin was determined with an oxygen selective electrode. Increase in the O(2) consumption was observed with 0.45 micromL(-1) ciprofloxacin while higher concentrations gave rise to a reduction of O(2) consumption. Resistant S. aureus strain did not show increase of O(2) consumption in presence of ciprofloxacin. Nitro Blue Tetrazolium assay showed that production of reactive oxygen species (ROS) increased intracellularly in sensitive bacteria incubated with this antibiotic. The exposition to UV light (360 nm) augmented the intracellular oxidative stress of S. aureus and provoked increment of ROS in extracellular media. Generation of singlet oxygen O(2) ((1)Delta(g)) in S. aureus was measured by means of oxidation of methionine. The absorbance of methionine was monitored at 215 nm and a clear decrease was detected when sensitive S. aureus was stressed with ciprofloxacin. Sodium azide and 2,5-dimethylfuran were used to reinforce the evidence of O(2) ((1)Delta(g)) generation during oxidative stress. Assays with methionine and 2,5-dimethylfuran demonstrated that resistant S. aureus did not increase the production of O(2) ((1)Delta(g)) in the presence of antibiotic. DNA oxidation was investigated in presence of O(2) ((1)Delta(g)) generated by laser excitation of perinaphthenone and subsequent energy transfer. Deactivation of O(2) ((1)Delta(g)) by reaction with DNA of sensitive and resistant bacteria was observed. According to the results obtained, the effect of ciprofloxacin in S. aureus led to an increment of O(2) ((1)Delta(g)) generating oxidative stress in the bacteria. PMID:15488711

  17. RNA sequencing supports distinct reactive oxygen species-mediated pathways of apoptosis by high and low size mass fractions of Bay leaf (Lauris nobilis) in HT-29 cells.

    PubMed

    Rodd, Annabelle L; Ververis, Katherine; Sayakkarage, Dheeshana; Khan, Abdul W; Rafehi, Haloom; Ziemann, Mark; Loveridge, Shanon J; Lazarus, Ross; Kerr, Caroline; Lockett, Trevor; El-Osta, Assam; Karagiannis, Tom C; Bennett, Louise E

    2015-08-01

    Anti-proliferative and pro-apoptotic effects of Bay leaf (Laurus nobilis) in mammalian cancer and HT-29 adenocarcinoma cells have been previously attributed to effects of polyphenolic and essential oil chemical species. Recently, we demonstrated differentiated growth-regulating effects of high (HFBL) versus low molecular mass (LFBL) aqueous fractions of bay leaf and now confirm by comparative effects on gene expression, that HFBL and LFBL suppress HT-29 growth by distinct mechanisms. Induction of intra-cellular lesions including DNA strand breakage by extra-cellular HFBL, invoked the hypothesis that iron-mediated reactive oxygen species with capacity to penetrate cell membrane, were responsible for HFBL-mediated effects, supported by equivalent effects of HFBL in combination with ? radiation. Activities of HFBL and LFBL were interpreted to reflect differentiated responses to iron-mediated reactive oxygen species (ROS), occurring either outside or inside cells. In the presence of LFBL, apoptotic death was relatively delayed compared with HFBL. ROS production by LFBL mediated p53-dependent apoptosis and recovery was suppressed by promoting G1/S phase arrest and failure of cellular tight junctions. In comparison, intra-cellular anti-oxidant protection exerted by LFBL was absent for extra-cellular HFBL (likely polysaccharide-rich), which potentiated more rapid apoptosis by producing DNA double strand breaks. Differentiated effects on expression of genes regulating ROS defense and chromatic condensation by LFBL versus HFBL, were observed. The results support ferrous iron in cell culture systems and potentially in vivo, can invoke different extra-cellular versus intra-cellular ROS-mediated chemistries, that may be regulated by exogenous, including dietary species. PMID:26114728

  18. Cytoplasmic Alkalization Precedes Reactive Oxygen Species Production during Methyl Jasmonate- and Abscisic Acid-Induced Stomatal Closure1

    PubMed Central

    Suhita, Dontamala; Raghavendra, Agepati S.; Kwak, June M.; Vavasseur, Alain

    2004-01-01

    Signaling events during abscisic acid (ABA) or methyl jasmonate (MJ)-induced stomatal closure were examined in Arabidopsis wild type, ABA-insensitive (ost1-2), and MJ-insensitive mutants (jar1-1) in order to examine a crosstalk between ABA and MJ signal transduction. Some of the experiments were performed on epidermal strips of Pisum sativum. Stomata of jar1-1 mutant plants are insensitive to MJ but are able to close in response to ABA. However, their sensitivity to ABA is less than that of wild-type plants. Reciprocally, the stomata of ost1-2 are insensitive to ABA but are able to close in response to MJ to a lesser extent compared to wild-type plants. Both MJ and ABA promote H2O2 production in wild-type guard cells, while exogenous application of diphenylene iodonium (DPI) chloride, an inhibitor of NAD(P)H oxidases, results in the suppression of ABA- and MJ-induced stomatal closure. ABA elevates H2O2 production in wild-type and jar1-1 guard cells but not in ost1-2, whereas MJ induces H2O2 production in both wild-type and ost1-2 guard cells, but not in jar1-1. MJ-induced stomatal closing is suppressed in the NAD(P)H oxidase double mutant atrbohD/F and in the outward potassium channel mutant gork1. Furthermore, MJ induces alkalization in guard cell cytosol, and MJ-induced stomatal closing is inhibited by butyrate. Analyses of the kinetics of cytosolic pH changes and reactive oxygen species (ROS) production show that the alkalization of cytoplasm precedes ROS production during the stomatal response to both ABA and MJ. Our results further indicate that JAR1, as OST1, functions upstream of ROS produced by NAD(P)H oxidases and that the cytoplasmic alkalization precedes ROS production during MJ or ABA signal transduction in guard cells. PMID:15064385

  19. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor.

    PubMed

    Rawson, Frankie J; Hicks, Jacqueline; Dodd, Nicholas; Abate, Wondwossen; Garrett, David J; Yip, Nga; Fejer, Gyorgy; Downard, Alison J; Baronian, Kim H R; Jackson, Simon K; Mendes, Paula M

    2015-10-28

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular "pulse" of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  20. Mitochondrial reactive oxygen species and complex II levels are associated with the outcome of hepatocellular carcinoma

    PubMed Central

    WU, JIANHUA; ZHAO, FEI; ZHAO, YUFEI; GUO, ZHANJUN

    2015-01-01

    In the present study, two oxidative stress parameters, reactive oxygen species (ROS) and mitochondrial respiratory complex II, were evaluated in the mitochondria of hepatocellular carcinoma (HCC) cells to determine the association between these parameters and the carcinogenesis and clinical outcome of HCC. High levels of ROS and low levels of complex II were found to be associated with reduced post-operative survival in HCC patients using the log-rank test. Furthermore, multivariate analysis confirmed that the levels of ROS [relative risk (RR)=2.867; 95% confidence interval (CI), 1.0627.737; P=0.038] and complex II (RR=5.422; 95% CI, 1.27323.088; P=0.022) were independent predictors for the survival of patients with HCC. Therefore, the analysis of ROS and complex II levels may provide a useful research and therapeutic tool for the prediction of HCC prognosis and treatment. PMID:26622849

  1. Generation of reactive oxygen species by lethal attacks from competing microbes

    PubMed Central

    Dong, Tao G.; Dong, Shiqi; Catalano, Christy; Moore, Richard; Liang, Xiaoye; Mekalanos, John J.

    2015-01-01

    Whether antibiotics induce the production of reactive oxygen species (ROS) that contribute to cell death is an important yet controversial topic. Here, we report that lethal attacks from bacterial and viral species also result in ROS production in target cells. Using soxS as an ROS reporter, we found soxS was highly induced in Escherichia coli exposed to various forms of attacks mediated by the type VI secretion system (T6SS), P1vir phage, and polymyxin B. Using a fluorescence ROS probe, we found enhanced ROS levels correlate with induced soxS in E. coli expressing a toxic T6SS antibacterial effector and in E. coli treated with P1vir phage or polymyxin B. We conclude that both contact-dependent and contact-independent interactions with aggressive competing bacterial species and viruses can induce production of ROS in E. coli target cells. PMID:25646446

  2. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species

    PubMed Central

    Jones, Rheinallt M; Luo, Liping; Ardita, Courtney S; Richardson, Arena N; Kwon, Young Man; Mercante, Jeffrey W; Alam, Ashfaqul; Gates, Cymone L; Wu, Huixia; Swanson, Phillip A; Lambeth, J David; Denning, Patricia W; Neish, Andrew S

    2013-01-01

    The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryoticeukaryotic cross-talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)-dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox-mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential. PMID:24141879

  3. Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria

    SciTech Connect

    Puranam, Kasturi L.; Wu, Guanghong; Strittmatter, Warren J.; Burke, James R. . E-mail: james.burke@duke.edu

    2006-03-10

    Huntington's disease results from expansion of the polyglutamine (PolyQ) domain in the huntingtin protein. Although the cellular mechanism by which pathologic-length PolyQ protein causes neurodegeneration is unclear, mitochondria appear central in pathogenesis. We demonstrate in isolated mitochondria that pathologic-length PolyQ protein directly inhibits ADP-dependent (state 3) mitochondrial respiration. Inhibition of mitochondrial respiration by PolyQ protein is not due to reduction in the activities of electron transport chain complexes, mitochondrial ATP synthase, or the adenine nucleotide translocase. We show that pathologic-length PolyQ protein increases the production of reactive oxygen species in isolated mitochondria. Impairment of state 3 mitochondrial respiration by PolyQ protein is reversed by addition of the antioxidants N-acetyl-L-cysteine or cytochrome c. We propose a model in which pathologic-length PolyQ protein directly inhibits mitochondrial function by inducing oxidative stress.

  4. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration.

    PubMed

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40(phox) and p47(phox)) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  5. Superhydrophilic TiO{sub 2} surfaces generated by reactive oxygen treatment

    SciTech Connect

    Ishida, Nobuyuki; Fujita, Daisuke

    2012-09-15

    The authors show that superhydrophilic TiO{sub 2} can be obtained without irradiation of the surface with ultraviolet (UV) light and concomitant excitation of electron-hole pairs. The authors demonstrate that the treatment of TiO{sub 2} surfaces with reactive oxygen species generated by air plasma removes the surface organic contaminants, leading to almost 0 Degree-Sign contact-angle wetting of the surface. The superhydrophilicity can be explained by the positive spreading coefficient calculated using the effective surface tensions. Our results point toward UV-light irradiation as an indirect cause of the superhydrophilicity of TiO{sub 2} and support the hypothesis that this property arises from a self-cleaning effect based on the photo-oxidation and decomposition of organic contaminants at the surface.

  6. Reciprocal regulation of TGF-? and reactive oxygen species: A perverse cycle for fibrosis.

    PubMed

    Liu, Rui-Ming; Desai, Leena P

    2015-12-01

    Transforming growth factor beta (TGF-?) is the most potent pro-fibrogenic cytokine and its expression is increased in almost all of fibrotic diseases. Although signaling through Smad pathway is believed to play a central role in TGF-?'s fibrogenesis, emerging evidence indicates that reactive oxygen species (ROS) modulate TGF-?'s signaling through different pathways including Smad pathway. TGF-?1 increases ROS production and suppresses antioxidant enzymes, leading to a redox imbalance. ROS, in turn, induce/activate TGF-?1 and mediate many of TGF-?'s fibrogenic effects, forming a vicious cycle (see graphic flow chart on the right). Here, we review the current knowledge on the feed-forward mechanisms between TGF-?1 and ROS in the development of fibrosis. Therapeutics targeting TGF-?-induced and ROS-dependent cellular signaling represents a novel approach in the treatment of fibrotic disorders. PMID:26496488

  7. Reactive Oxygen Species Play an Important Role in the Bactericidal Activity of Quinolone Antibiotics.

    PubMed

    Kottur, Jithesh; Nair, Deepak T

    2016-02-01

    Recent studies posit that reactive oxygen species (ROS) contribute to the cell lethality of bactericidal antibiotics. However, this conjecture has been challenged and remains controversial. To resolve this controversy, we adopted a strategy that involves DNA polymerase?IV (PolIV). The nucleotide pool of the cell gets oxidized by ROS and PolIV incorporates the damaged nucleotides (especially 8oxodGTP) into the genome, which results in death of the bacteria. By using a combination of structural and biochemical tools coupled with growth assays, it was shown that selective perturbation of the 8oxodGTP incorporation activity of PolIV results in considerable enhancement of the survival of bacteria in the presence of the norfloxacin antibiotic. Our studies therefore indicate that ROS induced in bacteria by the presence of antibiotics in the environment contribute significantly to cell lethality. PMID:26757158

  8. Signaling Networks Involving Reactive Oxygen Species and Ca2+ in Plants

    NASA Astrophysics Data System (ADS)

    Kuchitsu, Kazuyuki

    2013-01-01

    Although plants never evolved central information processing organs such as brains, plants have evolved distributed information processing systems and are able to sense various environmental changes and reorganize their body plan coordinately without moving. Recent molecular biological studies revealed molecular bases for elementary processes of signal transduction in plants. Though reactive oxygen species (ROS) are highly toxic substances produced through aerobic respiration and photosynthesis, plants possess ROS-producing enzymes whose activity is highly regulated by binding of Ca2+. In turn, Ca2+- permeable channel proteins activated by ROS are shown to be localized to the cell membrane. These two components are proposed to constitute a positive feedback loop to amplify cellular signals. Such molecular physiological studies should be important steps to understand information processing systems in plants and future application for technology related to environmental, energy and food sciences.

  9. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration

    PubMed Central

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40phox and p47phox) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  10. Reactive oxygen species (ROS) is not a promotor of taxol-induced cytoplasmic vacuolization

    NASA Astrophysics Data System (ADS)

    Sun, Qingrui; Chen, Tongsheng

    2009-02-01

    we have previously reported that taxol, a potent anticancer agent, induces caspase-independent cell death and cytoplasmic vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. However, the mechanisms of taxol-induced cytoplasmic vacuolization are poorly understood. Reactive oxygen species (ROS) has been reported to be involved in the taxol-induced cell death. Here, we employed confocal fluorescence microscopy imaging to explore the role of ROS in taxol-induced cytoplasmic vacuolization. We found that ROS inhibition by addition of N-acetycysteine (NAC), a total ROS scavenger, did not suppress these vacuolization but instead increased vacuolization. Take together, our results showed that ROS is not a promotor of the taxol-induced cytoplasmic vacuolization.

  11. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  12. High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xing, Da; Chen, Tong-Sheng

    2006-09-01

    Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound et al. Yet, the mechanism of LPLI remains unclear. Our previous study showed that low fluences laser irradiation induces human lung adenocarcinoma cells (ASTC-a-1) proliferation, but high fluences induced apoptosis and caspase-3 activation. In order to study the mechanism of apoptosis induced by high fluences LPLI further, we have measured the dynamics of generation of reactive oxygen species (ROS) using H IIDCFDA fluorescence probes during this process. ASTC-a-1 cells apoptosis was induced by He-Ne laser irradiation at high fluence of 120J/cm2. A confocal laser scanning microscope was used to perform fluorescence imaging. The results demonstrated that high fluence LPLI induced the increase of mitochondria ROS. Our studies contribute to clarify the biological mechanism of high fluence LPLI-induced cell apoptosis.

  13. Reactive oxygen species in apoptosis induced by cisplatin: review of physiopathological mechanisms in animal models.

    PubMed

    Casares, Celia; Ramrez-Camacho, Rafael; Trinidad, Almudena; Roldn, Amaya; Jorge, Eduardo; Garca-Berrocal, Jos Ramn

    2012-12-01

    Cisplatin is a highly effective chemotherapeutic agent but displays significant ototoxic side effects. The most prominent change seen in the cochlea after cisplatin administration consists of loss of outer hair cells. Several mechanisms are believed to mediate cisplatin-induced apoptosis: binding of cisplatin to guanine bases on DNA and the formation of inter- and intra-strand chain cross-linking, generation of reactive oxygen species (ROS) with increased lipid peroxidation and Ca(2+) influx and, finally, inflammation mediated by cisplatin. The aim of the present review is to analyze the role of ROS in the mechanisms causing cisplatin-mediated apoptosis in the inner ear and the contribution of the different pathways involved, emphasizing the main strategies to blockade events leading to apoptosis of cochlear cells. PMID:22584749

  14. Reactive oxygen species and oxidative stress in osteoclastogenesis, skeletal aging and bone diseases.

    PubMed

    Callaway, Danielle A; Jiang, Jean X

    2015-07-01

    Osteoclasts are cells derived from bone marrow macrophages and are important in regulating bone resorption during bone homeostasis. Understanding what drives osteoclast differentiation and activity is important when studying diseases characterized by heightened bone resorption relative to formation, such as osteoporosis. In the last decade, studies have indicated that reactive oxygen species (ROS), including superoxide and hydrogen peroxide, are crucial components that regulate the differentiation process of osteoclasts. However, there are still many unanswered questions that remain. This review will examine the mechanisms by which ROS can be produced in osteoclasts as well as how it may affect osteoclast differentiation and activity through its actions on osteoclastogenesis signaling pathways. In addition, the contribution of ROS to the aging-associated disease of osteoporosis will be addressed and how targeting ROS may lead to the development of novel therapeutic treatment options. PMID:25804315

  15. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    NASA Technical Reports Server (NTRS)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  16. Development of a Sensitive Bioluminogenic Probe for Imaging Highly Reactive Oxygen Species in Living Rats.

    PubMed

    Kojima, Ryosuke; Takakura, Hideo; Kamiya, Mako; Kobayashi, Eiji; Komatsu, Toru; Ueno, Tasuku; Terai, Takuya; Hanaoka, Kenjiro; Nagano, Tetsuo; Urano, Yasuteru

    2015-12-01

    A sensitive bioluminogenic probe for highly reactive oxygen species (hROS), SO3 H-APL, was developed based on the concept of dual control of bioluminescence emission by means of bioluminescent enzyme-induced electron transfer (BioLeT) and modulation of cell-membrane permeability. This probe enables non-invasive visualization of physiologically relevant amounts of hROS generated deep inside the body of living rats for the first time. It is expected to serve as a practical analytical tool for investigating a wide range of biological functions of hROS in?vivo. The design concept should be applicable to other in?vivo bioluminogenic probes. PMID:26474404

  17. Reactive Oxygen Species and Autophagy Modulation in Non-Marine Drugs and Marine Drugs

    PubMed Central

    Farooqi, Ammad Ahmad; Fayyaz, Sundas; Hou, Ming-Feng; Li, Kun-Tzu; Tang, Jen-Yang; Chang, Hsueh-Wei

    2014-01-01

    It is becoming more understandable that an existing challenge for translational research is the development of pharmaceuticals that appropriately target reactive oxygen species (ROS)-mediated molecular networks in cancer cells. In line with this approach, there is an overwhelmingly increasing list of many non-marine drugs and marine drugs reported to be involved in inhibiting and suppressing cancer progression through ROS-mediated cell death. In this review, we describe the strategy of oxidative stress-based therapy and connect the ROS modulating effect to the regulation of apoptosis and autophagy. Finally, we focus on exploring the function and mechanism of cancer therapy by the autophagy modulators including inhibitors and inducers from non-marine drugs and marine drugs. PMID:25402829

  18. Atrial fibrillation in the elderly: the potential contribution of reactive oxygen species

    PubMed Central

    Schillinger, Kurt J.; Patel, Vickas V.

    2012-01-01

    Atrial fibrillation (AF) is the most commonly encountered cardiac arrhythmia, and is a significant source of healthcare expenditures throughout the world. It is an arrhythmia with a very clearly defined predisposition for individuals of advanced age, and this fact has led to intense study of the mechanistic links between aging and AF. By promoting oxidative damage to multiple subcellular and cellular structures, reactive oxygen species (ROS) have been shown to induce the intra- and extra-cellular changes necessary to promote the pathogenesis of AF. In addition, the generation and accumulation of ROS have been intimately linked to the cellular processes which underlie aging. This review begins with an overview of AF pathophysiology, and introduces the critical structures which, when damaged, predispose an otherwise healthy atrium to AF. The available evidence that ROS can lead to damage of these critical structures is then reviewed. Finally, the evidence linking the process of aging to the pathogenesis of AF is discussed. PMID:23341843

  19. Zinc Induces Apoptosis of Human Melanoma Cells, Increasing Reactive Oxygen Species, p53 and FAS Ligand.

    PubMed

    Provinciali, Mauro; Pierpaoli, Elisa; Bartozzi, Beatrice; Bernardini, Giovanni

    2015-10-01

    The aim of this study was to examine the in vitro effect of zinc on the apoptosis of human melanoma cells, by studying the zinc-dependent modulation of intracellular levels of reactive oxygen species (ROS) and of p53 and FAS ligand proteins. We showed that zinc concentrations ranging from 33.7 μM to 75 μM Zn(2+) induced apoptosis in the human melanoma cell line WM 266-4. This apoptosis was associated with an increased production of intracellular ROS, and of p53 and FAS ligand protein. Treatment of tumor cells with the antioxidant N-acetylcysteine was able to prevent Zn(2+)-induced apoptosis, as well as the increase of p53 and FAS ligand protein induced by zinc. Zinc induces apoptosis in melanoma cells by increasing ROS and this effect may be mediated by the ROS-dependent induction of p53 and FAS/FAS ligand. PMID:26408691

  20. Reactive oxygen species production in single cells following laser irradiation (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Duquette, Michelle L.; Kim, Justine; Shi, Linda Z.; Berns, Michael W.

    2015-08-01

    Region specific DNA breaks can be created in single cells using laser light that damages DNA but does not directly generate reactive oxygen species (ROS). We have examined the cellular response to directly generated DNA breaks in single cells. Using a combination of ROS specific dyes and oxidase inhibitors we have found that the oxidase and chromatin remodeling protein Lysine demethylase I (LSD1) generates detectable ROS as a byproduct of its chromatin remodeling activity during the initial DNA damage response. ROS is produced at detectable amounts primarily within the first 3 minutes post irradiation. LSD1 activity has been previously associated with transcriptional regulation therefore these findings have implications for regulation of gene expression following DNA damage particularly in cells with altered redox states.

  1. UVB dependence of quantum dot reactive oxygen species generation in common skin cell models

    PubMed Central

    MORTENSEN, LUKE J.; FAULKNOR, RENEA; RAVICHANDRAN, SUPRIYA; ZHENG, HONG; DELOUISE, LISA A.

    2015-01-01

    Studies have shown that UVB can slightly increase the penetration of nanoparticles through skin and significantly alter skin cell biology, thus it is important to understand if and how UVB may impact subsequent nanoparticle skin cell interactions. The research presented herein evaluates the effect of UVB on quantum dot (QD) uptake and reactive oxygen species (ROS) generation in primary keratinocytes, primary melanocytes, and related cell lines. QD exposure induced cell type dependent ROS responses increased by pre-exposing cells to UVB and correlated with the level of QD uptake. Our results suggest that keratinocytes may be at greater risk for QD induced ROS generation than melanocytes, and raise awareness about the differential cellular effects that topically applied nanomaterials may have on UVB exposed skin. PMID:26485933

  2. Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer's disease: the NF-κB connection.

    PubMed

    Kaur, Upinder; Banerjee, Priyanjalee; Bir, Aritri; Sinha, Maitrayee; Biswas, Atanu; Chakrabarti, Sasanka

    2015-01-01

    Oxidative stress and inflammatory response are important elements of Alzheimer's disease (AD) pathogenesis, but the role of redox signaling cascade and its cross-talk with inflammatory mediators have not been elucidated in details in this disorder. The review summarizes the facts about redox-signaling cascade in the cells operating through an array of kinases, phosphatases and transcription factors and their downstream components. The biology of NF-κB and its activation by reactive oxygen species (ROS) and proinflammatory cytokines in the pathogenesis of AD have been specially highlighted citing evidence both from post-mortem studies in AD brain and experimental research in animal or cell-based models of AD. The possibility of identifying new disease-modifying drugs for AD targeting NF-κBsignaling cascade has been discussed in the end. PMID:25620241

  3. Research on killing Escherichia Coli by reactive oxygen species based on strong ionization discharging plasma

    NASA Astrophysics Data System (ADS)

    Li, Y. J.; Tian, Y. P.; Li, R. H.; Gao, J. Y.; Cai, L. J.; Zhang, Z. T.

    2013-03-01

    Reactive oxygen species solution produced by strong ionization discharging plasma was used to kill Escherichia coli by spraying. Several effect factors such as pH value, solution temperature, spraying time and exposure time were observed in this study, and their effects on killing rate of Escherichia coli were discussed and analysed. Results show that the treating efficiency of ROS solution for Escherichia coli is higher in alkaline solution than that in acid solution. The killing rate of Escherichia coli increases while the spraying time and exposure time are longer and the temperature is lower. The effects of different factors on killing rate of Escherichia coli are as follows: spraying time > pH value > exposure time > solution temperature.

  4. Reactive oxygen species production by quercetin causes the death of Leishmania amazonensis intracellular amastigotes.

    PubMed

    Fonseca-Silva, Fernanda; Inacio, Job D F; Canto-Cavalheiro, Marilene M; Almeida-Amaral, Elmo E

    2013-08-23

    The present study reports the mechanism of the antileishmanial activity of quercetin against the intracellular amastigote form of Leishmania amazonensis. Treatment with 1 reduced the infection index in L. amazonensis-infected macrophages in a dose-dependent manner, with an IC?? value of 3.4 ?M and a selectivity index of 16.8, and additionally increased ROS generation also in a dose-dependent manner. Quercetin has been described as a pro-oxidant that induces the production of reactive oxygen species, which can cause cell death. Taken together, these results suggest that ROS production plays a role in the mechanism of action of 1 in the control of intracellular amastigotes of L. amazonensis. PMID:23876028

  5. Effects of Surface Chemistry on the Generation of Reactive Oxygen Species by Copper Nanoparticles

    PubMed Central

    Shi, Miao; Kwon, Hyun Soo; Peng, Zhenmeng; Elder, Alison; Yang, Hong

    2012-01-01

    Mercaptocarboxylic acids with different carbon chain lengths were used for stabilizing uniform 15 nm copper nanoparticles. The effects of surface chemistry such as ligand type and surface oxidation on the reactive oxygen species (ROS) generated by the copper nanoparticles were examined. Transmission electron microscopy (TEM), Powder X-ray diffraction (PXRD), UV-vis spectroscopy, and an acellular ROS assay show that ROS generation is closely related to the surface oxidation of copper nanoparticles. It was found that the copper nanoparticles with longer chain ligands had surfaces that were better protected from oxidation and a corresponding lower ROS generating capacity than did particles with shorter chain ligands. Conversely, the copper nanoparticles with greater surface oxidation also had higher ROS generating capacity. PMID:22390268

  6. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis

    PubMed Central

    Liu, Rui-Ming; Desai, Leena P.

    2015-01-01

    Transforming growth factor beta (TGF-β) is the most potent pro-fibrogenic cytokine and its expression is increased in almost all of fibrotic diseases. Although signaling through Smad pathway is believed to play a central role in TGF-β's fibrogenesis, emerging evidence indicates that reactive oxygen species (ROS) modulate TGF-β's signaling through different pathways including Smad pathway. TGF-β1 increases ROS production and suppresses antioxidant enzymes, leading to a redox imbalance. ROS, in turn, induce/activate TGF-β1 and mediate many of TGF-β's fibrogenic effects, forming a vicious cycle (see graphic flow chart on the right). Here, we review the current knowledge on the feed-forward mechanisms between TGF-β1 and ROS in the development of fibrosis. Therapeutics targeting TGF-β-induced and ROS-dependent cellular signaling represents a novel approach in the treatment of fibrotic disorders. PMID:26496488

  7. Reactive oxygen species production and antioxidant enzyme activity during epididymal sperm maturation in Corynorhinus mexicanus bats.

    PubMed

    Edith, Arenas-Ríos; Adolfo, Rosado García; Edith, Cortés-Barberena; Mina, Königsberg; Marcela, Arteaga-Silva; Ahiezer, Rodríguez-Tobón; Gisela, Fuentes-Mascorro; Angel, León-Galván Miguel

    2016-03-01

    Prolonged sperm storage in the epididymis of Corynorhinus mexicanus bats after testicular regression has been associated with epididymal sperm maturation in the caudal region, although the precise factors linked with this phenomenon are unknown. The aim of this work is to determine the role of reactive oxygen species (ROS) and changes in antioxidant enzymatic activity occurring in the spermatozoa and epididymal fluid over time, in sperm maturation and storage in the caput, corpus and cauda of the bat epididymis. Our data showed that an increment in ROS production coincided with an increase in superoxide dismutase (SOD) activity in epididymal fluid and with a decrease in glutathione peroxidase (GPX) activity in the spermatozoa in at different time points and epididymal regions. The increase in ROS production was not associated with oxidative damage measured by lipid peroxidation. The results of the current study suggest the existence of a shift in the redox balance, which might be associated with sperm maturation and storage. PMID:26952757

  8. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor

    PubMed Central

    2015-01-01

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular “pulse” of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  9. Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity.

    PubMed

    Yoshioka, Hirofumi; Mase, Keisuke; Yoshioka, Miki; Kobayashi, Michie; Asai, Shuta

    2011-08-01

    Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in diverse physiological processes, such as programmed cell death, development, cell elongation and hormonal signaling, in plants. Much attention has been paid to the regulation of plant innate immunity by these signal molecules. Recent studies provide evidence that an NADPH oxidase, respiratory burst oxidase homolog, is responsible for pathogen-responsive ROS burst. However, we still do not know about NO-producing enzymes, except for nitrate reductase, although many studies suggest the existence of NO synthase-like activity responsible for NO burst in plants. Here, we introduce regulatory mechanisms of NO and ROS bursts by mitogen-activated protein kinase cascades, calcium-dependent protein kinase or riboflavin and its derivatives, flavin mononucleotide and flavin adenine dinucleotide, and we discuss the roles of the bursts in defense responses against plant pathogens. PMID:21195205

  10. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death.

    PubMed

    Wang, Yiqin; Loake, Gary J; Chu, Chengcai

    2013-01-01

    In plants, programed cell death (PCD) is an important mechanism to regulate multiple aspects of growth and development, as well as to remove damaged or infected cells during responses to environmental stresses and pathogen attacks. Under biotic and abiotic stresses, plant cells exhibit a rapid synthesis of nitric oxide (NO) and a parallel accumulation of reactive oxygen species (ROS). Frequently, these responses trigger a PCD process leading to an intrinsic execution of plant cells. The accumulating evidence suggests that both NO and ROS play key roles in PCD. These redox active small molecules can trigger cell death either independently or synergistically. Here we summarize the recent progress on the cross-talk of NO and ROS signals in the hypersensitive response, leaf senescence, and other kinds of plant PCD caused by diverse cues. PMID:23967004

  11. Cross-talk of nitric oxide and reactive oxygen species in plant programed cell death

    PubMed Central

    Wang, Yiqin; Loake, Gary J.; Chu, Chengcai

    2013-01-01

    In plants, programed cell death (PCD) is an important mechanism to regulate multiple aspects of growth and development, as well as to remove damaged or infected cells during responses to environmental stresses and pathogen attacks. Under biotic and abiotic stresses, plant cells exhibit a rapid synthesis of nitric oxide (NO) and a parallel accumulation of reactive oxygen species (ROS). Frequently, these responses trigger a PCD process leading to an intrinsic execution of plant cells. The accumulating evidence suggests that both NO and ROS play key roles in PCD. These redox active small molecules can trigger cell death either independently or synergistically. Here we summarize the recent progress on the cross-talk of NO and ROS signals in the hypersensitive response, leaf senescence, and other kinds of plant PCD caused by diverse cues. PMID:23967004

  12. Determination of reactive oxygen species in salt-stressed plant tissues.

    PubMed

    Rodrguez, Andrs Alberto; Taleisnik, Edith L

    2012-01-01

    Reactive oxygen species (ROS) participate in signaling events that regulate ion channel activity and gene expression. However, excess ROS exert adverse effects that stem from their interaction with macromolecules. Thus, the assessment of the effects of salinity on ROS changes are central to understanding how plants respond and cope with this stress. ROS determination in salt-stressed plants poses specific challenges. On the one hand, salinity comprises osmotic and ion-specific effects which may, in turn, have different effects on ROS production. On the other hand, changes in ROS production may happen when tissues from salinized plants are subject to water potential (?) changes when incubated in non-isosmotic solutions. This chapter provides detailed accounts of methods for ROS detection in tissues from salt-stressed plants and includes suggestions for avoiding artifacts when dealing with such tissues. PMID:22895763

  13. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brains energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits ?3-containing GABAA receptors into synapses with no discernible effect on resident ?1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited ?3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  14. Ionized gas (plasma) delivery of reactive oxygen species (ROS) into artificial cells

    NASA Astrophysics Data System (ADS)

    Hong, Sung-Ha; Szili, Endre J.; Jenkins, A. Toby A.; Short, Robert D.

    2014-09-01

    This study was designed to enhance our understanding of how reactive oxygen species (ROS), generated ex situ by ionized gas (plasma), can affect the regulation of signalling processes within cells. A model system, comprising of a suspension of phospholipid vesicles (cell mimics) encapsulating a ROS reporter, was developed to study the plasma delivery of ROS into cells. For the first time it was shown that plasma unequivocally delivers ROS into cells over a sustained period and without compromising cell membrane integrity. An important consideration in cell and biological assays is the presence of serum, which significantly reduced the transfer efficiency of ROS into the vesicles. These results are key to understanding how plasma treatments can be tailored for specific medical or biotechnology applications. Further, the phospholipid vesicle ROS reporter system may find use in other studies involving the application of free radicals in biology and medicine.

  15. Wolbachia Do Not Induce Reactive Oxygen Species-Dependent Immune Pathway Activation in Aedes albopictus.

    PubMed

    Molloy, Jennifer C; Sinkins, Steven P

    2015-08-01

    Aedes albopictus is a major vector of dengue (DENV) and chikungunya (CHIKV) viruses, causing millions of infections annually. It naturally carries, at high frequency, the intracellular inherited bacterial endosymbiont Wolbachia strains wAlbA and wAlbB; transinfection with the higher-density Wolbachia strain wMel from Drosophila melanogaster led to transmission blocking of both arboviruses. The hypothesis that reactive oxygen species (ROS)-induced immune activation plays a role in arbovirus inhibition in this species was examined. In contrast to previous observations in Ae. aegypti, elevation of ROS levels was not observed in either cell lines or mosquito lines carrying the wild-type Wolbachia or higher-density Drosophila Wolbachia strains. There was also no upregulation of genes controlling innate immune pathways or with antioxidant/ROS-producing functions. These data suggest that ROS-mediated immune activation is not an important component of the viral transmission-blocking phenotype in this species. PMID:26287231

  16. PGC-1? and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

    PubMed Central

    Birket, MatthewJ.; Casini, Simona; Kosmidis, Georgios; Elliott, DavidA.; Gerencser, AkosA.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, PierG.; Elefanty, AndrewG.; Stanley, EdG.; Mummery, ChristineL.

    2013-01-01

    Summary Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1?, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1? knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease. PMID:24371810

  17. Early Increase of Reactive Oxygen Species in Pea Seedling Roots Under Hypergravity

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy; Syvash, Alexander; Klymchuk, Dmytro

    Early increase of intensity of peroxidation and formation of reactive oxygen species (ROS) in plant cells take place under various impacts. The ROS can act as second messengers in mechanism of cell responses (Mittler et al 2006; Jadko et al 2007). Early stages of ROS content (chemiluminescence, ChL) in pea root cells under 3, 5, 10 and 15g during centrifugation have been investigated. After 30 min of centrifugation, especially under 10 and 15g, the intensity of ChL increased and was higher on 40-50% comparing to controls. Than the ChL slowly decreased and reached the controls in 1 hour. The changes of the ChL depend on both the dose and the duration of centrifugation. The role of ROS in mechanism of cell response to hypergravity is discussed.

  18. Mold elicits atopic dermatitis by reactive oxygen species: Epidemiology and mechanism studies.

    PubMed

    Kim, Ha-Jung; Lee, Eun; Lee, Seung-Hwa; Kang, Mi-Jin; Hong, Soo-Jong

    2015-12-01

    Mold has been implicated in the development of atopic dermatitis (AD); however, the underlying mechanisms remain unknown. The aim of the study was to investigate the effects of mold exposure in early life through epidemiologic and mechanistic studies in vivo and in vitro. Exposure to visible mold inside the home during the first year of life was associated with an increased risk for current AD by two population-based cross-sectional human studies. Children with the AG+GG genotype of GSTP1 showed increased risk for current AD when exposed to mold. In the mouse model, treatment with patulin induced and aggravated clinically significant AD and Th2-related inflammation of the affected mouse skin. Additionally, reactive oxygen species (ROS) were released in the mouse skin as well by human keratinocytes. In conclusions, mold exposure increases the risk for AD related to ROS generation mediated by Th2-promoting inflammatory cytokines. PMID:26205459

  19. Wolbachia Do Not Induce Reactive Oxygen Species-Dependent Immune Pathway Activation in Aedes albopictus

    PubMed Central

    Molloy, Jennifer C.; Sinkins, Steven P.

    2015-01-01

    Aedes albopictus is a major vector of dengue (DENV) and chikungunya (CHIKV) viruses, causing millions of infections annually. It naturally carries, at high frequency, the intracellular inherited bacterial endosymbiont Wolbachia strains wAlbA and wAlbB; transinfection with the higher-density Wolbachia strain wMel from Drosophila melanogaster led to transmission blocking of both arboviruses. The hypothesis that reactive oxygen species (ROS)-induced immune activation plays a role in arbovirus inhibition in this species was examined. In contrast to previous observations in Ae. aegypti, elevation of ROS levels was not observed in either cell lines or mosquito lines carrying the wild-type Wolbachia or higher-density Drosophila Wolbachia strains. There was also no upregulation of genes controlling innate immune pathways or with antioxidant/ROS-producing functions. These data suggest that ROS-mediated immune activation is not an important component of the viral transmission-blocking phenotype in this species. PMID:26287231

  20. UVB Dependence of Quantum Dot Reactive Oxygen Species Generation in Common Skin Cell Models.

    PubMed

    Mortensen, Luke J; Faulknor, Renea; Ravichandran, Supriya; Zheng, Hong; DeLouise, Lisa A

    2015-09-01

    Studies have shown that UVB can slightly increase the penetration of nanoparticles through skin and significantly alter skin cell biology, thus it is important to understand if and how UVB may impact subsequent nanoparticle skin cell interactions. The research presented herein evaluates the effect of UVB on quantum dot (QD) uptake and reactive oxygen species (ROS) generation in primary keratinocytes, primary melanocytes, and related cell lines. QD exposure induced cell type dependent ROS responses increased by pre-exposing cells to UVB and correlated with the level of QD uptake. Our results suggest that keratinocytes may be at greater risk for QD induced ROS generation than melanocytes, and raise awareness about the differential cellular effects that topically applied nanomaterials may have on UVB exposed skin. PMID:26485933

  1. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings.

    PubMed

    Yan, Zhi-Qiang; Wang, Dan-Dan; Ding, Lan; Cui, Hai-Yan; Jin, Hui; Yang, Xiao-Yan; Yang, Jian-She; Qin, Bo

    2015-03-01

    Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants. PMID:25658194

  2. Regulation of the expression of soluble guanylyl cyclase by reactive oxygen species

    PubMed Central

    Gerassimou, C; Kotanidou, A; Zhou, Z; Simoes, D D C; Roussos, C; Papapetropoulos, A

    2007-01-01

    Background and purpose: Superoxide anions produced during vascular disease scavenge nitric oxide (NO), thereby reducing its biological activity. The aim of the present study was to investigate whether reactive oxygen species (ROS) have a direct effect on soluble guanylyl cyclase (sGC) subunit levels and function and to ascertain the mechanism(s) involved. Experimental approach: Rat aortic smooth muscle cells (RASM) or freshly isolated vessels were exposed to reactive oxygen species (ROS)-generating agents and sGC subunit expression was determined at the mRNA and/or protein level. cGMP accumulation was also determined in RASM exposed to ROS. Key results: Incubation of smooth muscle cells with H2O2, xanthine/xanthine oxidase (X/XO) or menadione sodium bisulphite (MSB) significantly decreased protein levels of ?1 and ?1 subunits of sGC and reduced SNP-induced cGMP formation. Similarly, sGC expression was reduced in freshly isolated vessels exposed to ROS-generating agents. The ROS-triggered inhibition of ?1 and ?1 levels was not blocked by proteasome inhibitors, suggesting that decreased sGC protein was not due to protein degradation through this pathway. Real time RT-PCR analysis demonstrated a 68% reduction in steady state mRNA levels for the ?1 subunit following exposure to H2O2. In addition, ?1 promoter-driven luciferase activity in RASM decreased by 60% after H2O2 treatment. Conclusion and implications: We conclude that oxidative stress triggers a decrease in sGC expression and activity that results from reduced sGC steady state mRNA levels. Altered sGC expression is expected to contribute to the changes in vascular tone and remodeling observed in diseases associated with ROS overproduction. PMID:17339839

  3. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines

    SciTech Connect

    Huang, Qiang; Gao, Bo; Wang, Long; Hu, Ya-Qian; Lu, Wei-Guang; Yang, Liu; Luo, Zhuo-Jing; Liu, Jian

    2014-11-01

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H{sub 2}O{sub 2}) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPARγ2) expression in hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. - Highlights: • Myricitrin protects MC3T3-E1 cells and hBMSCs from oxidative stress. • It is accompanied by a decrease in oxidative stress and bone-resorbing cytokines. • Myricitrin decreases serum reactive oxygen species to some degree. • Myricitrin partly reverses ovariectomy effects in vivo. • Myricitrin may represent a beneficial anti-osteoporosis treatment method.

  4. Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au-Pt nanocomposites.

    PubMed

    Xiong, Bin; Xu, Ruili; Zhou, Rui; He, Yan; Yeung, Edward S

    2014-03-01

    We have prepared enzyme-mimic Au-Pt nanocomposites (NCs) for catalyzing the decomposition of reactive oxygen species. After surface modification, the Au-Pt NCs can be readily internalized and retained by human skin cells and also can effectively reduce cellular oxidative stress. We have demonstrated that the active and biocompatible Au-Pt nanocomposites can be applied for preventing cell damages by scavenging cellular reactive oxygen species induced by ultraviolet irradiation, indicating potential uses for the prevention and therapy of ROS-mediated diseases. PMID:24468368

  5. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  6. The development and in vitro characterisation of an intracellular nanosensor responsive to reactive oxygen species.

    PubMed

    Henderson, James R; Fulton, David A; McNeil, Calum J; Manning, Philip

    2009-08-15

    Advances in sensor technologies have enhanced our understanding of the roles played by reactive oxygen species (ROS) in a number of physiological and pathological processes. However, high inter-reactivity and short life spans has made real-time monitoring of ROS in cellular systems challenging. Fluorescent dyes capable of intracellular ROS measurements have been reported. However, these dyes are known to be intrinsically cytotoxic and thus can potentially significantly alter cellular metabolism and adversely influence in vitro data. Reported here is the development and in vitro application of a novel ROS responsive nanosensor, based on PEBBLE (Probes Encapsulated By Biologically Localised Embedding) technology. The ROS sensitive fluorescent probe dihydrorhodamine 123 (DHR 123) was employed as the sensing element of the PEBBLE through entrapment within a porous, bio-inert polyacrylamide nanostructure enabling passive monitoring of free radical flux within the intracellular environment. Successful delivery of the nanosensors into NR8383 rat alveolar macrophage cells via phagocytosis was achieved. Stimulation of PEBBLE loaded NR8383 cells with phorbol-12-myristate-13-acetate (PMA) enabled real time monitoring of ROS generation within the cell without affecting cellular viability. These data suggest that PEBBLE nanosensors could offer significant advantages over existing technologies used in monitoring the intracellular environment. PMID:19553099

  7. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution.

    PubMed

    Chang, Seo Hyoung; Danilovic, Nemanja; Chang, Kee-Chul; Subbaraman, Ram; Paulikas, Arvydas P; Fong, Dillon D; Highland, Matthew J; Baldo, Peter M; Stamenkovic, Vojislav R; Freeland, John W; Eastman, Jeffrey A; Markovic, Nenad M

    2014-01-01

    In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru(4+) to unstable Ru(n>4+). This ordered(Ru(4+))-to-disordered(Ru(n>4+)) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects. PMID:24939393

  8. Novel interactions of mitochondria and reactive oxygen/nitrogen species in alcohol mediated liver disease

    PubMed Central

    Mantena, Sudheer K; King, Adrienne L; Andringa, Kelly K; Landar, Aimee; Darley-Usmar, Victor; Bailey, Shannon M

    2007-01-01

    Mitochondrial dysfunction is known to be a contributing factor to a number of diseases including chronic alcohol induced liver injury. While there is a detailed understanding of the metabolic pathways and proteins of the liver mitochondrion, little is known regarding how changes in the mitochondrial proteome may contribute to the development of hepatic pathologies. Emerging evidence indicates that reactive oxygen and nitrogen species disrupt mitochondrial function through post-translational modifications to the mitochondrial proteome. Indeed, various new affinity labeling reagents are available to test the hypothesis that post-translational modification of proteins by reactive species contributes to mitochondrial dysfunction and alcoholic fatty liver disease. Specialized proteomic techniques are also now available, which allow for identification of defects in the assembly of multi-protein complexes in mitochondria and the resolution of the highly hydrophobic proteins of the inner membrane. In this review knowledge gained from the study of changes to the mitochondrial proteome in alcoholic hepatotoxicity will be described and placed into a mechanistic framework to increase understanding of the role of mitochondrial dysfunction in liver disease. PMID:17854139

  9. Sulfiredoxin inhibitor induces preferential death of cancer cells through reactive oxygen species-mediated mitochondrial damage.

    PubMed

    Kim, Hojin; Lee, Gong-Rak; Kim, Jiwon; Baek, Jin Young; Jo, You-Jin; Hong, Seong-Eun; Kim, Sung Hoon; Lee, Jiae; Lee, Hye In; Park, Song-Kyu; Kim, Hwan Mook; Lee, Hwa Jeong; Chang, Tong-Shin; Rhee, Sue Goo; Lee, Ju-Seog; Jeong, Woojin

    2016-02-01

    Recent studies have shown that many types of cancer cells have increased levels of reactive oxygen species (ROS) and enhance antioxidant capacity as an adaptation to intrinsic oxidative stress, suggesting that cancer cells are more vulnerable to oxidative insults and are more dependent on antioxidant systems compared with normal cells. Thus, disruption of redox homeostasis caused by a decline in antioxidant capacity may provide a method for the selective death of cancer cells. Here we show that ROS-mediated selective death of tumor cells can be caused by inhibiting sulfiredoxin (Srx), which reduces hyperoxidized peroxiredoxins, leading to their reactivation. Srx inhibitor increased the accumulation of sulfinic peroxiredoxins and ROS, which led to oxidative mitochondrial damage and caspase activation, resulting in the death of A549 human lung adenocarcinoma cells. Srx depletion also inhibited the growth of A549 cells like Srx inhibition, and the cytotoxic effects of Srx inhibitor were considerably reversed by Srx overexpression or antioxidants such as N-acetyl cysteine and butylated hydroxyanisol. Moreover, Srx inhibitor rendered tumorigenic ovarian cells more susceptible to ROS-mediated death compared with nontumorigenic cells and significantly suppressed the growth of A549 xenografts without acute toxicity. Our results suggest that Srx might serve as a novel therapeutic target for cancer treatment based on ROS-mediated cell death. PMID:26721593

  10. A novel biointerface that suppresses cell morphological changes by scavenging excess reactive oxygen species.

    PubMed

    Ikeda, Yutaka; Yoshinari, Tomoki; Nagasaki, Yukio

    2015-09-01

    During cell cultivation on conventional culture dishes, various events results in strong stresses that lead to the production of bioactive species such as reactive oxygen species (ROS) and nitric oxide. These reactive species cause variable damage to cells and stimulate cellular responses. Here, we report the design of a novel biocompatible surface that decreases stress by not only morphologically modifying the dish surface by using poly(ethylene glycol) tethered chains, but also actively scavenging oxidative stress by using our novel nitroxide radical-containing polymer. A block copolymer, poly(ethylene glycol)-b-poly[(2,2,6,6-tetramethylpiperidine-N-oxyl)aminomethylstyrene] (PEG-b-PMNT) was used to coat the surface of a dish. Differentiation of undifferentiated human leukemia (HL-60) cells was found to be suppressed on the polymer-coated dish. Notably, HL-60 cell cultivation caused apoptosis under high-density conditions, while spontaneous apoptosis was suppressed in cells plated on the PEG-b-PMNT-modified surface, because a healthy mitochondrial membrane potential was maintained. In contrast, low molecular weight antioxidants did not have apparent effects on the maintenance of mitochondria. We attribute this to the lack of cellular internalization of our immobilized polymer and selective scavenging of excessive ROS generated outside of cells. These results demonstrate the utility of our novel biocompatible material for actively scavenging ROS and thus maintaining cellular morphology. PMID:25691268

  11. Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species.

    PubMed

    Cat, Bahar; Stuhlmann, Dominik; Steinbrenner, Holger; Alili, Lirija; Holtkötter, Olaf; Sies, Helmut; Brenneisen, Peter

    2006-07-01

    Myofibroblasts, pivotal for tumor progression, populate the microecosystem of reactive stroma. Using an in vitro tumor-stroma model of skin carcinogenesis, we report here that tumor-cell-derived transforming growth factor beta1 (TGFbeta1) initiates reactive oxygen species-dependent expression of alpha-smooth muscle actin, a biomarker for myofibroblastic cells belonging to a group of late-responsive genes. Moreover, protein kinase C (PKC) is involved in lipid hydroperoxide-triggered molecular events underlying transdifferentiation of fibroblasts to myofibroblasts (mesenchymal-mesenchymal transition, MMT). In contrast to fibroblasts, myofibroblasts secrete large amounts of hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6), resulting in a significant increase in the invasive capacity of tumor cells. The thiol N-acetyl-L-cysteine, the micronutrient selenite as well as selenoprotein P and the lipid peroxidation inhibitors alpha-tocopherol and butylated hydroxytoluene significantly lower both the number of TGFbeta1-initiated myofibroblasts and the secretion of HGF, VEGF and IL-6, correlating with a diminished invasive capacity of tumor cells. This novel concept of stromal therapy, namely the protection of stromal cells against the dominating influence of tumor cells in tumor-stroma interaction by antioxidants and micronutrients, may form the basis for prevention of MMT in strategies for chemoprevention of tumor invasion. PMID:16757516

  12. Carbocysteine lysine salt monohydrate (SCMC-LYS) is a selective scavenger of reactive oxygen intermediates (ROIs).

    PubMed

    Brandolini, Laura; Allegretti, Marcello; Berdini, Valerio; Cervellera, Maria Neve; Mascagni, Patrizia; Rinaldi, Matteo; Melillo, Gabriella; Ghezzi, Pietro; Mengozzi, Manuela; Bertini, Riccardo

    2003-01-01

    Carbocysteine lysine salt monohydrate (SCMC-Lys) is a well-known mucoactive drug whose therapeutic efficacy is commonly related to the ability of SCMC-Lys to replace fucomucins by sialomucins. The aim of this study was to determine if SCMC-Lys could exert an anti-oxidant action by scavenging reactive oxygen intermediates (ROIs). Our results show that SCMC-Lys proved effective as a selective scavenger of hypochlorous acid (HOCl) and hydroxyl radical (OH.), this effect being related to the reactivity of the SCMC tioether group. The scavenger activity of SCMC-Lys was observed in free cellular system as well as in activated human polymorphonuclear neutrophils (PMNs). SCMC-Lys scavenger activity on HOCl was paralleled by a powerful protection from HOCl-mediated inactivation of alpha1-antitripsin (alpha1-AT) inhibitor, the main serum protease inhibitor. Production of interleukin-(IL-)8, a major mediator of PMN recruitment in inflammatory diseases, is known to be mediated by intracellular OH. SCMC-Lys significantly reduced IL-8 production on stimulated human peripheral blood mononuclear cells (PBMCs) in the same range of concentrations affecting OH. activity. It is concluded that SCMC-Lys could exert, in addition to its mucoactive capacity, an anti-oxidant action, thus contributing to the therapeutic efficacy of SCMC-Lys. PMID:12799210

  13. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle

    PubMed Central

    Powers, Scott K; Talbert, Erin E; Adhihetty, Peter J

    2011-01-01

    Abstract It is well established that contracting skeletal muscles produce free radicals. Given that radicals are known to play a prominent role in the pathogenesis of several diseases, the 1980s–90s dogma was that contraction-induced radical production was detrimental to muscle because of oxidative damage to macromolecules within the fibre. In contrast to this early outlook, it is now clear that both reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in cell signalling pathways involved in muscle adaptation to exercise and the remodelling that occurs in skeletal muscle during periods of prolonged inactivity. This review will highlight two important redox sensitive signalling pathways that contribute to ROS and RNS-induced skeletal muscle adaptation to endurance exercise. We begin with a historical overview of radical production in skeletal muscles followed by a discussion of the intracellular sites for ROS and RNS production in muscle fibres. We will then provide a synopsis of the redox-sensitive NF-κB and PGC-1α signalling pathways that contribute to skeletal muscle adaptation in response to exercise training. We will conclude with a discussion of unanswered questions in redox signalling in skeletal muscle in the hope of promoting additional research interest in this field. PMID:21224240

  14. Inelastic and reactive scattering of hyperthermal atomic oxygen from amorphous carbon

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Brinza, David E.; Liang, Ranty H.

    1991-01-01

    The reaction of hyperthermal oxygen atoms with an amorphous carbon-13 surface was studied using a modified universal crossed molecular beams apparatus. Time-of-flight distributions of inelastically scattered O-atoms and reactively scattered CO-13 and CO2-13 were measured with a rotatable mass spectrometer detector. Two inelastic scattering channels were observed, corresponding to a direct inelastic process in which the scattered O-atoms retain 20 to 30 percent of their initial kinetic energy and to a trapping desorption process whereby O-atoms emerge from the surface at thermal velocities. Reactive scattering data imply the formation of two kinds of CO products, slow products whose translational energies are determined by the surface temperature and hyperthermal (Approx. 3 eV) products with translational energies comprising roughly 30 percent of the total available energy (E sub avl), where E sub avl is the sum of the collision energy and the reaction exothermicity. Angular data show that the hyperthermal CO is scattered preferentially in the specular direction. CO2 product was also observed, but at much lower intensities than CO and with only thermal velocities.

  15. Hypoxia-Dependent Reactive Oxygen Species Signaling in the Pulmonary Circulation: Focus on Ion Channels

    PubMed Central

    Veit, Florian; Pak, Oleg; Brandes, Ralf P.

    2015-01-01

    Abstract Significance: An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. Recent Advances: Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. Critical Issues and Future Directions: In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation. Antioxid. Redox Signal. 22, 537–552 PMID:25545236

  16. Reactive oxygen species and the bacteriostatic and bactericidal effects of isoconazole nitrate.

    PubMed

    Czaika, Viktor A; Siebenbrock, Jan; Czekalla, Frank; Zuberbier, Torsten; Sieber, Martin A

    2013-05-01

    Bacterial superinfections often occur in dermatomycoses, resulting in greatly inflamed or eczematous skin. The objective of this study was to evaluate the antibacterial efficacy of isoconazole nitrate (ISN), a broad-spectrum antimicrobial imidazole, commonly used to treat dermatomycoses. Several gram-positive bacteria minimal inhibitory concentrations (MICs) for ISN (ISN solution or ISN-containing creams: Travogen or corticosteroid-containing Travocort) and ampicillin were obtained using the broth-dilution method. Speed of onset of the bactericidal effect was determined with bacterial killing curves. Reactive oxygen species (ROS) were visualised by staining cells with singlet oxygen detector stain. Compared with ampicillin MICs, ISN MICs for Bacillus cereus, Staphylococcus haemolyticus and Staphylococcus hominis were lower and ISN MICs for Corynebacterium tuberculostearicum and Streptococcus salivarius were similar. Incubation with ISN led to a 50% kill rate for Staphylococcus aureus and methicillin-resistant strains (MRSA). Post-ISN incubation, 36% (30 min) and 90% (60 min) of S. aureus cells were positive for ROS. Isoconazole nitrate has a broad bacteriostatic and bactericidal action, also against a MRSA strain that was not reduced by the corticosteroid in the Travocort cream. Data suggest that the antibacterial effect of ISN may be ROS dependent. An antifungal agent with robust antibacterial activity can provide a therapeutic advantage in treating dermatomycoses with suspected bacterial superinfections. PMID:23574020

  17. The scavenging of reactive oxygen species and the potential for cell protection by functionalized fullerene materials.

    PubMed

    Yin, Jun-Jie; Lao, Fang; Fu, Peter P; Wamer, Wayne G; Zhao, Yuliang; Wang, Paul C; Qiu, Yang; Sun, Baoyun; Xing, Gengmei; Dong, Jinquan; Liang, Xing-Jie; Chen, Chunying

    2009-02-01

    We demonstrated that three different types of water-soluble fullerenes materials can intercept all of the major physiologically relevant ROS. C(60)(C(COOH)(2))(2), C(60)(OH)(22), and Gd@C(82)(OH)(22) can protect cells against H(2)O(2)-induced oxidative damage, stabilize the mitochondrial membrane potential and reduce intracellular ROS production with the following relative potencies: Gd@C(82)(OH)(22)> or =C(60)(OH)(22)>C(60)(C(COOH)(2))(2). Consistent with their cytoprotective abilities, these derivatives can scavenge the stable 2,2-diphenyl-1-picryhydrazyl radical (DPPH), and the reactive oxygen species (ROS) superoxide radical anion (O(2)(*-)), singlet oxygen, and hydroxyl radical (HO(*)), and can also efficiently inhibit lipid peroxidation in vitro. The observed differences in free radical-scavenging capabilities support the hypothesis that both chemical properties, such as surface chemistry induced differences in electron affinity, and physical properties, such as degree of aggregation, influence the biological and biomedical activities of functionalized fullerenes. This represents the first report that different types of fullerene derivatives can scavenge all physiologically relevant ROS. The role of oxidative stress and damage in the etiology and progression of many diseases suggests that these fullerene derivatives may be valuable in vivo cytoprotective and therapeutic agents. PMID:18986699

  18. Reactive oxygen species initiate a metabolic collapse in hippocampal slices: potential trigger of cortical spreading depression

    PubMed Central

    Malkov, Anton; Ivanov, Anton I; Popova, Irina; Mukhtarov, Marat; Gubkina, Olena; Waseem, Tatsiana; Bregestovski, Piotr; Zilberter, Yuri

    2014-01-01

    Excessive accumulation of reactive oxygen species (ROS) underlies oxidative damage. We find that in hippocampal slices, decreased activity of glucose-based antioxidant system induces a massive, abrupt, and detrimental change in cellular functions. We call this phenomenon metabolic collapse (MC). This collapse manifested in long-lasting silencing of synaptic transmission, abnormal oxidation of NAD(P)H and FADH2 associated with immense oxygen consumption, and massive neuronal depolarization. MC occurred without any preceding deficiency in neuronal energy supply or disturbances of ionic homeostasis and spread throughout the hippocampus. It was associated with a preceding accumulation of ROS and was largely prevented by application of an efficient antioxidant Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl). The consequences of MC resemble cortical spreading depression (CSD), a wave of neuronal depolarization that occurs in migraine, brain trauma, and stroke, the cellular initiation mechanisms of which are poorly understood. We suggest that ROS accumulation might also be the primary trigger of CSD. Indeed, we found that Tempol strongly reduced occurrence of CSD in vivo, suggesting that ROS accumulation may be a key mechanism of CSD initiation. PMID:25027308

  19. Mutagenicity induced by UVC in Escherichia coli cells: reactive oxygen species involvement.

    PubMed

    Silva-Júnior, A C T; Asad, L M B O; Felzenszwalb, I; Asad, N R

    2011-01-01

    We previously demonstrated that reactive oxygen species (ROS) could be involved in the DNA damage induced by ultraviolet-C (UVC). In this study, we evaluated singlet oxygen ((1)O(2)) involvement in UVC-induced mutagenesis in Escherichia coli cells. First, we found that treatment with sodium azide, an (1)O(2) chelator, protected cells against UVC-induced lethality. The survival assay showed that the fpg mutant was more resistant to UVC lethality than the wild-type strain. The rifampicin mutagenesis assay showed that UVC mutagenesis was inhibited five times more in cells treated with sodium azide, and stimulated 20% more fpg mutant. These results suggest that (1)O(2) plays a predominant role in UVC-induced mutagenesis. (1)O(2) generates a specific mutagenic lesion, 8-oxoG, which is repaired by Fpg protein. This lesion was measured by GC-TA reversion in the CC104 strain, its fpg mutant (BH540), and both CC104 and BH540 transformed with the plasmid pFPG (overexpression of Fpg protein). This assay showed that mutagenesis was induced 2.5-fold in the GC-TA strain and 7-fold in the fpg mutant, while the fpg mutant transformed with pFPG was similar to GC-TA strain. This suggests that UVC can also cause ROS-mediated mutagenesis and that the Fpg protein may be involved in this repair. PMID:22005338

  20. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity.

    PubMed

    Park, Hee-Jin; Kim, Jee Yeon; Kim, Jaeeun; Lee, Joon-Hee; Hahn, Ji-Sook; Gu, Man Bock; Yoon, Jeyong

    2009-03-01

    Silver ions have been widely used as disinfectants that inhibit bacterial growth by inhibiting the essential enzymatic functions of the microorganism via interaction with the thiol-group of l-cysteine. However, silver-ion-mediated perturbation of the bacterial respiratory chain has raised the possibility of reactive oxygen species (ROS) generation. We used bacterial reporter strains specifically responding to superoxide radicals and found that silver-ion-mediated ROS-generation affected bactericidal activity. Almost half the log reduction in Escherichia coli and Staphylococcus aureus populations (model strains for gram negative and positive bacteria, respectively) caused by silver-ion disinfection was attributed to ROS-mediated bactericidal activity. The major form of ROS generated was the superoxide-radical; H(2)O(2) was not induced. Furthermore, silver ions strongly enhanced paraquat-induced oxidative stress, indicating close correlation and synergism between the conventional and ROS-mediated silver toxicity. Our results suggest that further studies in silver-based disinfection systems should consider the oxygen concentration and ROS reaction. PMID:19073336

  1. Action of reactive oxygen species in the antifungal mechanism of gemini-pyridinium salts against yeast.

    PubMed

    Shirai, Akihiro; Ueta, Shouko; Maseda, Hideaki; Kourai, Hiroki; Omasa, Takeshi

    2012-06-01

    We previously found that the gemini quaternary salt (gemini-QUAT) containing two pyridinium residues per molecule, 3,3'- (2,7-dioxaoctane) bis (1-decylpyridinium bromide) (3DOBP-4,10) , exerted fungicidal activity against Saccharomyces cerevisiae and caused respiration inhibition and the cytoplasmic leakage of ATP, magnesium, and potassium ions. Here, we investigated how the gemini-QUAT, 3DOBP-4,10, exerts more powerful antimicrobial activity than the mono-QUAT N-cetylpyridinium chloride (CPC) and examined the association between reactive oxygen species (ROS) and the antimicrobial mechanism. Antifungal assays showed that the activity of 3DOBP-4,10 against two yeasts, S. cerevisiae and Candida albicans, was significantly elevated under aerobic conditions, and largely reduced under anaerobic conditions (nitrogen atmosphere) . Adding radical scavengers such as superoxide dismutase, catalase and potassium iodide (KI) also decreased the fungicidal activity of 3DOBP-4,10 but negligibly affected that of CPC. We measured survival under static conditions and found that the rapid fungicidal profile of 3DOBP-4,10 was lost, whereas that of CPC was slightly affected in the presence of KI. Our results suggest that 3DOBP-4,10 exerts powerful antimicrobial activity by penetrating the cell wall and membrane, which then allows oxygen to enter the cells, where it participates in the generation of intracellular ROS. The activity could thus be attributable to a synergic antimicrobial combination of the disruption of organelle membranes by the QUAT and oxidative stress imposed by ROS. PMID:22790843

  2. Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species.

    PubMed

    Pan, Leiting; Wang, Xiaoxu; Yang, Shuying; Wu, Xian; Lee, Imshik; Zhang, Xinzheng; Rupp, Romano A; Xu, Jingjun

    2012-01-01

    Ultraviolet (UV) light has a potent effect on biological organisms. Hemoglobin, an oxygen-transport protein, plays an irreplaceable role in sustaining life of all vertebrates. In this study we scrutinize the effects of ultraviolet irradiation (UVI) as well as visible irradiation on the fluorescence characteristics of bovine hemoglobin (BHb) in vitro. Data show that UVI results in fluorescence enhancement of BHb in a dose-dependent manner. Furthermore, UVI-induced fluorescence enhancement is significantly increased when BHb is pretreated with hydrogen peroxide (H(2)O(2)), a type of reactive oxygen species (ROS). Meanwhile, The water-soluble antioxidant vitamin C suppresses this UVI-induced fluorescence enhancement. In contrast, green light irradiation does not lead to fluorescence enhancement of BHb no matter whether H(2)O(2) is acting on the BHb solution or not. Taken together, these results indicate that catalysis of ROS and UVI-dependent irradiation play two key roles in the process of UVI-induced fluorescence enhancement of BHb. PMID:22952902

  3. Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia

    PubMed Central

    Matsubara, Keiichi; Higaki, Takashi; Matsubara, Yuko; Nawa, Akihiro

    2015-01-01

    Preeclampsia (PE) is characterized by disturbed extravillous trophoblast migration toward uterine spiral arteries leading to increased uteroplacental vascular resistance and by vascular dysfunction resulting in reduced systemic vasodilatory properties. Its pathogenesis is mediated by an altered bioavailability of nitric oxide (NO) and tissue damage caused by increased levels of reactive oxygen species (ROS). Furthermore, superoxide (O2?) rapidly inactivates NO and forms peroxynitrite (ONOO?). It is known that ONOO? accumulates in the placental tissues and injures the placental function in PE. In addition, ROS could stimulate platelet adhesion and aggregation leading to intravascular coagulopathy. ROS-induced coagulopathy causes placental infarction and impairs the uteroplacental blood flow in PE. The disorders could lead to the reduction of oxygen and nutrients required for normal fetal development resulting in fetal growth restriction. On the other hand, several antioxidants scavenge ROS and protect tissues against oxidative damage. Placental antioxidants including catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) protect the vasculature from ROS and maintain the vascular function. However, placental ischemia in PE decreases the antioxidant activity resulting in further elevated oxidative stress, which leads to the appearance of the pathological conditions of PE including hypertension and proteinuria. Oxidative stress is defined as an imbalance between ROS and antioxidant activity. This review provides new insights about roles of oxidative stress in the pathophysiology of PE. PMID:25739077

  4. Cellular thiols and reactive oxygen species in drug-induced apoptosis.

    PubMed

    Davis, W; Ronai, Z; Tew, K D

    2001-01-01

    In higher eukaryotes, reactive oxygen species (ROS) are generated during respiration in mitochondria in the course of reduction of molecular oxygen as well as by distinct enzyme systems. ROS have been implicated in the regulation of diverse cellular functions including defense against pathogens, intracellular signaling, transcriptional activation, proliferation, and apoptosis. The reduction-oxidation (redox) state of the cell is primarily a consequence of the precise balance between the levels of ROS and endogenous thiol buffers present in the cell, such as glutathione and thioredoxin, which protect cells from oxidative damage. Dramatic elevation of ROS, exceeding compensatory changes in the level of the endogenous thiol buffers, may result in the sustained activation of signaling pathways and expression of genes that induce apoptosis in affected cells. Many cytotoxic drugs function selectively to kill cancer cells by the abrogation of proliferative signals, leading to cell death, and numerous reports have demonstrated that ROS are generated following treatment with these drugs. In this review, we will summarize recent contributions to our understanding of the importance of cytotoxic drug-induced modulation of cellular redox status for signaling and transcription leading to activation of apoptotic effector mechanisms. PMID:11123355

  5. Peroxisome Proliferation in Foraminifera Inhabiting the Chemocline: An Adaptation to Reactive Oxygen Species Exposure?1

    PubMed Central

    BERNHARD, JOAN M.; BOWSER, SAMUEL S.

    2009-01-01

    Certain foraminiferal species are abundant within the chemocline of marine sediments. Ultrastructurally, most of these species possess numerous peroxisomes complexed with the endoplasmic reticulum; mitochondria are often interspersed among these complexes. In the Santa Barbara Basin, pore-water bathing Foraminifera and co-occurring sulfur-oxidizing microbial mats had micromolar levels of hydrogen peroxide, a reactive oxygen species that can be detrimental to biological membranes. Experimental results indicate that adenosine triphosphate concentrations are significantly higher in Foraminifera incubated in 16 ?M H2O2 than in specimens incubated in the absence of H2O2. New ultrastructural and experimental observations, together with published results, lead us to propose that foraminiferans can utilize oxygen derived from the breakdown of environmentally and metabolically produced H2O2. Such a capability could explain foraminiferal adaptation to certain chemically inhospitable environments; it would also force us to reassess the role of protists in biogeochemistry, especially with respect to hydrogen and iron. The ecology of these protists also appears to be tightly linked to the sulfur cycle. Finally, given that some Foraminifera bearing peroxisome-endoplasmic reticulum complexes belong to evolutionarily basal groups, an early acquisition of the capability to use environmental H2O2 could have facilitated diversification of foraminiferans during the Neoproterozoic. PMID:18460150

  6. Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia.

    PubMed

    Matsubara, Keiichi; Higaki, Takashi; Matsubara, Yuko; Nawa, Akihiro

    2015-01-01

    Preeclampsia (PE) is characterized by disturbed extravillous trophoblast migration toward uterine spiral arteries leading to increased uteroplacental vascular resistance and by vascular dysfunction resulting in reduced systemic vasodilatory properties. Its pathogenesis is mediated by an altered bioavailability of nitric oxide (NO) and tissue damage caused by increased levels of reactive oxygen species (ROS). Furthermore, superoxide (O2-) rapidly inactivates NO and forms peroxynitrite (ONOO-). It is known that ONOO- accumulates in the placental tissues and injures the placental function in PE. In addition, ROS could stimulate platelet adhesion and aggregation leading to intravascular coagulopathy. ROS-induced coagulopathy causes placental infarction and impairs the uteroplacental blood flow in PE. The disorders could lead to the reduction of oxygen and nutrients required for normal fetal development resulting in fetal growth restriction. On the other hand, several antioxidants scavenge ROS and protect tissues against oxidative damage. Placental antioxidants including catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) protect the vasculature from ROS and maintain the vascular function. However, placental ischemia in PE decreases the antioxidant activity resulting in further elevated oxidative stress, which leads to the appearance of the pathological conditions of PE including hypertension and proteinuria. Oxidative stress is defined as an imbalance between ROS and antioxidant activity. This review provides new insights about roles of oxidative stress in the pathophysiology of PE. PMID:25739077

  7. SENSORY PLASTICITY OF THE CAROTID BODY: ROLE OF REACTIVE OXYGEN SPECIES AND PHYSIOLOGICAL SIGNIFICANCE

    PubMed Central

    Prabhakar, Nanduri R.

    2011-01-01

    Recent studies have shown that acute intermittent hypoxia (IH) induces sensory plasticity of the carotid body manifested as sensory long-term facilitation (LTF), which requires prior conditioning with chronic IH and is mediated by reactive oxygen species (ROS). The purpose of this article is to provide a brief review of chronic IH-induced sensory LTF of the carotid body, sources of ROS, mechanisms underlying sensory LTF and its functional significance. Development of sensory LTF requires conditioning with several days of chronic IH. It is completely reversible following re-oxygenation, does not depend on the severity of hypoxia used for IH conditioning, not species specific and is selectively evoked by acute repetitive hypoxia but not by repetitive hypercapnia. Sensory LTF is not associated morphological changes in the carotid body and is expressed in chronic IH treated adult but not in neonatal rat carotid bodies. Chronic IH increases ROS levels in the carotid body involving 5-HT mediated activation of NADPH oxidase-2 (NOX2) and subsequent inhibition of the mitochondrial complex I. Sensory LTF can be prevented by inhibitors of 5-HT receptors, NOX inhibitors as well as by anti-oxidants. The signaling pathways mediating the sensory LTF are summarized in figure 2. It is suggested that sensory LTF contributes to the persistent sympathetic excitation under chronic IH. PMID:21621009

  8. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory

    PubMed Central

    Klann, Eric

    2011-01-01

    Abstract The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function. Antioxid. Redox Signal. 14, 2013–2054. PMID:20649473

  9. Peroxisome proliferation in Foraminifera inhabiting the chemocline: an adaptation to reactive oxygen species exposure?

    PubMed

    Bernhard, Joan M; Bowser, Samuel S

    2008-01-01

    Certain foraminiferal species are abundant within the chemocline of marine sediments. Ultrastructurally, most of these species possess numerous peroxisomes complexed with the endoplasmic reticulum (ER); mitochondria are often interspersed among these complexes. In the Santa Barbara Basin, pore-water bathing Foraminifera and co-occurring sulfur-oxidizing microbial mats had micromolar levels of hydrogen peroxide (H(2)O(2)), a reactive oxygen species that can be detrimental to biological membranes. Experimental results indicate that adenosine triphosphate concentrations are significantly higher in Foraminifera incubated in 16 microM H(2)O(2) than in specimens incubated in the absence of H(2)O(2). New ultrastructural and experimental observations, together with published results, lead us to propose that foraminiferans can utilize oxygen derived from the breakdown of environmentally and metabolically produced H(2)O(2). Such a capability could explain foraminiferal adaptation to certain chemically inhospitable environments; it would also force us to reassess the role of protists in biogeochemistry, especially with respect to hydrogen and iron. The ecology of these protists also appears to be tightly linked to the sulfur cycle. Finally, given that some Foraminifera bearing peroxisome-ER complexes belong to evolutionarily basal groups, an early acquisition of the capability to use environmental H(2)O(2) could have facilitated diversification of foraminiferans during the Neoproterozoic. PMID:18460150

  10. Bistability of Mitochondrial Respiration Underlies Paradoxical Reactive Oxygen Species Generation Induced by Anoxia

    PubMed Central

    Selivanov, Vitaly A.; Votyakova, Tatyana V.; Zeak, Jennifer A.; Trucco, Massimo; Roca, Josep; Cascante, Marta

    2009-01-01

    Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies. PMID:20041200

  11. Oxidative Folding: Cellular Strategies for Dealing with the Resultant Equimolar Production of Reactive Oxygen Species

    PubMed Central

    Shimizu, Yuichiro

    2009-01-01

    Abstract All eukaryotic cells possess an endoplasmic reticulum (ER), which is the site for synthesizing proteins that populate the cell surface or extracellular space. The environment of the ER is oxidizing, which supports the formation of intra- and interchain disulfide bonds that serve to stabilize the folding and assembly of nascent proteins. Recent experimental data reveal that the formation of disulfide bonds does not occur spontaneously but results from the enzymatic transfer of disulfide bonds through a number of intermediate proteins, with molecular oxygen serving as the terminal electron acceptor. Thus, each disulfide bond that forms during oxidative folding should produce a single reactive oxygen species (ROS). Dedicated secretory tissues like the pancreas and plasma cells have been estimated to form up to 3–6 million disulfide bonds per minute, which would be expected to result in the production of the same number of molecules of ROS. Although the methods used to deal with this amount of oxidative stress are not well understood, recent research suggests that different types of cells use distinct strategies and that the unfolded protein response (UPR) is a critical component of the defense. Antioxid. Redox Signal. 11, 2317–2331. PMID:19243234

  12. Mitochondrial Respiration Deficits Driven by Reactive Oxygen Species in Experimental Temporal Lobe Epilepsy

    PubMed Central

    Rowley, Shane; Liang, Li-Ping; Fulton, Ruth; Shimizu, Takahiko; Day, Brian; Patel, Manisha

    2015-01-01

    Metabolic alterations have been implicated in the etiology of temporal lobe epilepsy (TLE), but whether or not they have a functional impact on cellular energy producing pathways (glycolysis and/or oxidative phosphorylation) is unknown. The goal of this study was to determine if alterations in cellular bioenergetics occur using real-time analysis of mitochondrial oxygen consumption and glycolytic rates in an animal model of TLE. We hypothesized that increased steady-state levels of reactive oxygen species (ROS) initiated by epileptogenic injury result in impaired mitochondrial respiration. We established methodology for assessment of bioenergetic parameters in isolated synaptosomes from the hippocampus of Sprague-Dawley rats at various times in the kainate (KA) model of TLE. Deficits in indices of mitochondrial respiration were observed at time points corresponding with the acute and chronic phases of epileptogenesis. We asked if mitochondrial bioenergetic dysfunction occurred as a result of increased mitochondrial ROS and if it could be attenuated in the KA model by pharmacologically scavenging ROS. Increased steady-state ROS in mice with forebrain-specific conditional deletion of manganese superoxide dismutase (Sod2fl/flNEXCre/Cre) in mice resulted in profound deficits in mitochondrial oxygen consumption. Pharmacological scavenging of ROS with a catalytic antioxidant restored mitochondrial respiration deficits in the KA model of TLE. Together, these results demonstrate that mitochondrial respiration deficits occur in experimental TLE and ROS mechanistically contribute to these deficits. Furthermore, this study provides novel methodology for assessing cellular metabolism during the entire time course of disease development. PMID:25600213

  13. Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo.

    PubMed

    Salin, Karine; Auer, Sonya K; Rudolf, Agata M; Anderson, Graeme J; Cairns, Andrew G; Mullen, William; Hartley, Richard C; Selman, Colin; Metcalfe, Neil B

    2015-09-01

    There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2. PMID:26382073

  14. Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo

    PubMed Central

    Salin, Karine; Auer, Sonya K.; Rudolf, Agata M.; Anderson, Graeme J.; Cairns, Andrew G.; Mullen, William; Hartley, Richard C.; Selman, Colin; Metcalfe, Neil B.

    2015-01-01

    There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2. PMID:26382073

  15. Reactive oxygen species production by potato tuber mitochondria is modulated by mitochondrially bound hexokinase activity.

    PubMed

    Camacho-Pereira, Juliana; Meyer, Laudiene Evangelista; Machado, Lilia Bender; Oliveira, Marcus Fernandes; Galina, Antonio

    2009-02-01

    Potato tuber (Solanum tuberosum) mitochondria (PTM) have a mitochondrially bound hexokinase (HK) activity that exhibits a pronounced sensitivity to ADP inhibition. Here we investigated the role of mitochondrial HK activity in PTM reactive oxygen species generation. Mitochondrial HK has a 10-fold higher affinity for glucose (Glc) than for fructose (KMGlc=140 microM versus KMFrc=1,375 microM). Activation of PTM respiration by succinate led to an increase in hydrogen peroxide (H2O2) release that was abrogated by mitochondrial HK activation. Mitochondrial HK activity caused a decrease in the mitochondrial membrane potential and an increase in oxygen consumption by PTM. Inhibition of Glc phosphorylation by mannoheptulose or GlcNAc induced a rapid increase in H2O2 release. The blockage of H2O2 release sustained by Glc was reverted by oligomycin and atractyloside, indicating that ADP recycles through the adenine nucleotide translocator and F0F1ATP synthase is operative during the mitochondrial HK reaction. Inhibition of mitochondrial HK activity by 60% to 70% caused an increase of 50% in the maximal rate of H2O2 release. Inhibition in H2O2 release by mitochondrial HK activity was comparable to, or even more potent, than that observed for StUCP (S. tuberosum uncoupling protein) activity. The inhibition of H2O2 release in PTM was two orders of magnitude more selective for the ADP produced from the mitochondrial HK reaction than for that derived from soluble yeast (Saccharomyces cerevisiae) HK. Modulation of H2O2 release and oxygen consumption by Glc and mitochondrial HK inhibitors in potato tuber slices shows that hexoses and mitochondrial HK may act as a potent preventive antioxidant mechanism in potato tubers. PMID:19109413

  16. Reperfusion injury and reactive oxygen species: The evolution of a concept☆

    PubMed Central

    Granger, D. Neil; Kvietys, Peter R.

    2015-01-01

    Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. PMID:26484802

  17. Photoirradiation of dehydropyrrolizidine alkaloids--formation of reactive oxygen species and induction of lipid peroxidation.

    PubMed

    Zhao, Yuewei; Xia, Qingsu; Yin, Jun Jie; Lin, Ge; Fu, Peter P

    2011-09-10

    Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and human. PAs require metabolic activation to generate pyrrolic metabolites (dehydro-PAs) that bind cellular protein and DNA, leading to hepatotoxicity and genotoxicity, including tumorigenicity. In this study we report that UVA photoirradiation of a series of dehydro-PAs, e.g., dehydromonocrotaline, dehydroriddelliine, dehydroretrorsine, dehydrosenecionine, dehydroseneciphylline, dehydrolasiocarpine, dehydroheliotrine, and dehydroretronecine (DHR) at 0-70 J/cm2 in the presence of a lipid, methyl linoleate, resulted in lipid peroxidation in a light dose-responsive manner. When irradiated in the presence of sodium azide, the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a photo-induced product. When irradiated in the presence of superoxide dismutase, the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. Electron spin resonance (ESR) spin trapping studies confirmed that both singlet oxygen and superoxide anion radical were formed during photoirradiation. These results indicate that UVA photoirradiation of dehydro-PAs generates reactive oxygen species (ROS) that mediated the initiation of lipid peroxidation. UVA irradiation of the parent PAs and other PA metabolites, including PA N-oxides, under similar experimental conditions did not produce lipid peroxidation. It is known that PAs induce skin cancer and are secondary (hepatogenous) photosensitization agents. Our results suggest that dehydro-PAs are the active metabolites responsible for skin cancer formation and PA-induced secondary photosensitization. PMID:21723383

  18. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  19. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    SciTech Connect

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-05-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors.

  20. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence-activated flow cytometry analyses were developed for determination of reactive oxygen species (ROS) formation and membrane lipid peroxidation in live spermatozoa loaded with, respectively, hydroethidine (HE) or the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-d...

  1. Effect of reactive oxygen species (ROS) generating system for control of airborne microorganisms in meat processing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in a meat processing environment was determined. Serratia marcescens and lactic acid bacteria (Lactococcus lactis subsp. lactis and Lactobacillus plantarum) were used to artificiall...

  2. Crocetin reduces the oxidative stress induced reactive oxygen species in the stroke-prone spontaneously hypertensive rats (SHRSPs) brain.

    PubMed

    Yoshino, Fumihiko; Yoshida, Ayaka; Umigai, Naofumi; Kubo, Koya; Lee, Masaichi-Chang-Il

    2011-11-01

    Crocetin is a natural carotenoid compound of gardenia fruits and saffron, which has various effects in biological systems. In this study, we investigated the antioxidant effects of crocetin on reactive oxygen species such as hydroxyl radical using in vitro X-band electron spin resonance and spin trapping. Crocetin significantly inhibited hydroxyl radical generation compared with the control. Moreover, we performed electron spin resonance computed tomography ex vivo with the L-band electron spin resonance imaging system and determined the electron spin resonance signal decay rate in the isolated brain of stroke-prone spontaneously hypertensive rats, a high-oxidative stress model. Crocetin significantly reduced oxidative stress in the isolated brain by acting as a scavenger of reactive oxygen species, especially hydroxyl radical, as demonstrated by in vitro and ex vivo electron spin resonance analysis. The distribution of crocetin was also determined in the plasma and the brain of stroke-prone spontaneously hypertensive rats using high-performance liquid chromatography. After oral administration, crocetin was detected at high levels in the plasma and the brain. Our results suggest that crocetin may participate in the prevention of reactive oxygen species-induced disease due to a reduction of oxidative stress induced by reactive oxygen species in the brain. PMID:22128217

  3. REACTIVE OXYGEN SPECIES IN WHOLE BLOOD, BLOOD PLASMA AND BREAST MILK: VALIDATION OF A POTENTIAL MARKER OF EXPOSURE AND EFFECT

    EPA Science Inventory

    Reactive oxygen species (ROS) are recognized to contribute to the pathobiology of many diseases. We have applied a simple chemiluminescent (CL) probe to detect ROS in various biological fluids (plasma, whole blood, urine and breast milk) in an environmental arsenic drinking wate...

  4. Nutrient Acquisition and Generation of Reactive Oxygen Species Via CREA, AREA, and NOXa are Important in Pathogenicity in Mycosphaerella Graminicola

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mycosphaerella graminicola is an important wheat pathogen causing significant economic loss. M. graminicola is a hemibiotroph, indicating that a biotrophic stage with nutrient uptake and a necrotrophic stage associated with a possible toxin or reactive oxygen species (ROS) are important to pathogeni...

  5. Role of NADPH oxidases and reactive oxygen species in regulation of bone turnover and the skeletal toxicity of alcohol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies with genetically modified mice and dietary antioxidants have suggested an important role for superoxide derived from NADPH oxidase (NOX) enzymes and other reactive oxygen species (ROS) such as hydrogen peroxide in regulation of normal bone turnover during development and also in the r...

  6. Composition Directed Generation of Reactive Oxygen Species in Irradiated Mixed Metal Sulfides Correlated with Their Photocatalytic Activities.

    PubMed

    He, Weiwei; Jia, Huimin; Yang, Dongfang; Xiao, Pin; Fan, Xiaoli; Zheng, Zhi; Kim, Hyun-Kyung; Wamer, Wayne G; Yin, Jun-Jie

    2015-08-01

    The ability of nanostructures to facilitate the generation of reactive oxygen species and charge carriers underlies many of their chemical and biological activities. Elucidating which factors are essential and how these influence the production of various active intermediates is fundamental to understanding potential applications of these nanostructures, as well as potential risks. Using electron spin resonance spectroscopy coupled with spin trapping and spin labeling techniques, we assessed 3 mixed metal sulfides of varying compositions for their abilities to generate reactive oxygen species, photogenerate electrons, and consume oxygen during photoirradiation. We found these irradiated mixed metal sulfides exhibited composition dependent generation of ROS: ZnIn2S4 can generate ()OH, O2(-) and (1)O2; CdIn2S4 can produce O2(-) and (1)O2, while AgInS2 only produces O2(-). Our characterizations of the reactivity of the photogenerated electrons and consumption of dissolved oxygen, performed using spin labeling, showed the same trend in activity: ZnIn2S4 > CdIn2S4 > AgInS2. These intrinsic abilities to generate ROS and the reactivity of charge carriers correlated closely with the photocatalytic degradation and photoassisted antibacterial activities of these nanomaterials. PMID:26158231

  7. Generation of Reactive Oxygen and Anti-Oxidant Species by Hydrodynamically-Stressed Suspensions of Morinda citrofolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generation of reactive oxygen species (ROS) by plant cell suspension cultures, in response to the imposition of both biotic and abiotic stress, is well-documented. This study investigated the generation of hydrogen peroxide by hydrodynamically-stressed cultures of Morinda citrifolia, over a 5-ho...

  8. Post-translational activation of human phenylalanine 4-monooxygenase from an endobiotic to a xenobiotic enzyme by reactive oxygen and reactive nitrogen species.

    PubMed

    Antypa, A; Rebello, C; Biernacka, A; Krajewski, K; Cassam, J; Mitchell, S C; Steventon, G B

    2010-05-01

    An investigation into the post-translational activation of cDNA-expressed human phenylalanine 4-monooxygenase and human hepatic cytosolic fraction phenylalanine 4-monooxygenase activity with respect to both endobiotic metabolism and xenobiotic metabolism revealed that the reactive oxygen species (hydrogen peroxide and hydroxyl radical) and reactive nitrogen species (nitric oxide and peroxynitrite) could elicit the post-translational activation of the enzyme with respect to both of these biotransformation reactions. In virtually all instances, the K(m) values were decreased and the V(max) values were increased; the only exceptions observed being with hydrogen peroxide and L-phenylalanine. These effects were shown to occur at activator concentrations known to exist in physiological situations and, hence, suggest that reactive oxygen and reactive nitrogen species may cause, and may be involved with, the post-translational activation of phenylalanine 4-monooxygenase within the human body. This mechanism, in response to free-radical bursts, may enable the enzyme to expand its substrate range and to process certain xenobiotics as and when required. PMID:20230191

  9. Inhibition of ATP citrate lyase induces an anticancer effect via reactive oxygen species: AMPK as a predictive biomarker for therapeutic impact.

    PubMed

    Migita, Toshiro; Okabe, Sachiko; Ikeda, Kazutaka; Igarashi, Saori; Sugawara, Shoko; Tomida, Akihiro; Taguchi, Ryo; Soga, Tomoyoshi; Seimiya, Hiroyuki

    2013-05-01

    De novo lipogenesis is activated in most cancers. Inhibition of ATP citrate lyase (ACLY), the enzyme that catalyzes the first step of de novo lipogenesis, leads to growth suppression and apoptosis in a subset of human cancer cells. Herein, we found that ACLY depletion increases the level of intracellular reactive oxygen species (ROS), whereas addition of an antioxidant reduced ROS and attenuated the anticancer effect. ACLY depletion or exogenous hydrogen peroxide induces phosphorylation of AMP-activated protein kinase (p-AMPK), a crucial regulator of lipid metabolism, independently of energy status. Analysis of various cancer cell lines revealed that cancer cells with a higher susceptibility to ACLY depletion have lower levels of basal ROS and p-AMPK. Mitochondrial-deficient ?(0) cells retained high levels of ROS and p-AMPK and were resistant to ACLY depletion, whereas the replenishment of normal mitochondrial DNA reduced the levels of ROS and p-AMPK and restored the sensitivity to ACLY depletion, indicating that low basal levels of mitochondrial ROS are critical for the anticancer effect of ACLY depletion. Finally, p-AMPK levels were significantly correlated to the levels of oxidative DNA damage in colon cancer tissues, suggesting that p-AMPK reflects cellular ROS levels invitro and invivo. Together, these data suggest that ACLY inhibition exerts an anticancer effect via increased ROS, and p-AMPK could be a predictive biomarker for its therapeutic outcome. PMID:23506848

  10. Mechanical and photo-fragmentation processes for nanonization of melanin to improve its efficacy in protecting cells from reactive oxygen species stress

    SciTech Connect

    Liu, Yi-Cheng; Chen, Sih-Min; Liu, Jhong-Han; Hsu, Hsiang-Wei; Lin, Hoang-Yan; Chen, Szu-yuan

    2015-02-14

    It has been well established ex vivo that melanin has the ability of scavenging free radicals and reactive oxygen species (ROS), besides other functions. Therefore, we propose to utilize nanonized melanin as medication against acute oxidative stress. For this purpose, we developed and characterized two techniques based on mechanical stir and photo-fragmentation using femtosecond laser pulses, respectively, for disintegration of suspended melanin powder to produce nanometer-sized and water-dispersible melanin. This resolves a major obstacle in the medical and industrial applications of melanin. The viabilities of cultured retinal pigment epithelium (RPE) cells exposed to exogenous H{sub 2}O{sub 2} stress and treated with various conditions of melanin and irradiation were compared. It was found that melanin could be nanonized very effectively with the techniques, and nanonized melanin exhibited a much stronger effect than unprocessed melanin on raising the viability of cultured RPE cells under acute ROS stress. The effect was even more prominent without simultaneous light irradiation, promising for effective in vivo application to the whole body.

  11. Mechanical and photo-fragmentation processes for nanonization of melanin to improve its efficacy in protecting cells from reactive oxygen species stress

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Cheng; Chen, Sih-Min; Liu, Jhong-Han; Hsu, Hsiang-Wei; Lin, Hoang-Yan; Chen, Szu-yuan

    2015-02-01

    It has been well established ex vivo that melanin has the ability of scavenging free radicals and reactive oxygen species (ROS), besides other functions. Therefore, we propose to utilize nanonized melanin as medication against acute oxidative stress. For this purpose, we developed and characterized two techniques based on mechanical stir and photo-fragmentation using femtosecond laser pulses, respectively, for disintegration of suspended melanin powder to produce nanometer-sized and water-dispersible melanin. This resolves a major obstacle in the medical and industrial applications of melanin. The viabilities of cultured retinal pigment epithelium (RPE) cells exposed to exogenous H2O2 stress and treated with various conditions of melanin and irradiation were compared. It was found that melanin could be nanonized very effectively with the techniques, and nanonized melanin exhibited a much stronger effect than unprocessed melanin on raising the viability of cultured RPE cells under acute ROS stress. The effect was even more prominent without simultaneous light irradiation, promising for effective in vivo application to the whole body.

  12. Induction of phosphatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance.

    PubMed

    Leshem, Yehoram; Seri, Lior; Levine, Alex

    2007-07-01

    Salt imposes immediate problems for plant cells, such as osmotic stress, impaired ion homeostasis and sodium toxicity, followed by a secondary oxidative stress caused by generation of reactive oxygen species (ROS). Here, we analyzed the production of ROS during salt stress. We show that salt stress triggered plasma membrane internalization, resulting in the production of ROS within endosomes. The intracellular ROS were produced by NADPH oxidase in response to the ionic but not the osmotic stress. Both endocytosis and ROS production were suppressed in phosphatidylinositol (PtdIns) 3-kinase (PI3K) mutants, PI3K being a key regulator of vesicle trafficking in animals and plants, and by wortmannin, which is a specific inhibitor of PI3K and PI4K. Endocytosis and the production of ROS were rescued by supplementation of seedlings with exogenous PtdIns 3-phosphate (PtdIns3P), less with PtdIns4P, but not with PtdIns(4,5)P(2). Surprisingly, despite reduced oxidative stress, the mutants and the wortmannin-treated plants exhibited a phenotype overly sensitive to salt, as also resulted from treatment with diphenyleneiodonium, a suicide inhibitor of NADPH oxidase, suggesting a positive role for ROS in salt tolerance. In summary, our results show that salt stress responses, such as increased plasma membrane endocytosis and the intracellular production of ROS, are coordinated by phospholipid-regulated signaling pathways, and suggest that ROS act in the signal transduction of the salt tolerance response. PMID:17521408

  13. Cadmium-Induced Hydrogen Sulfide Synthesis Is Involved in Cadmium Tolerance in Medicago sativa by Reestablishment of Reduced (Homo)glutathione and Reactive Oxygen Species Homeostases

    PubMed Central

    Cui, Weiti; Chen, Huiping; Zhu, Kaikai; Jin, Qijiang; Xie, Yanjie; Cui, Jin; Xia, Yan; Zhang, Jing; Shen, Wenbiao

    2014-01-01

    Until now, physiological mechanisms and downstream targets responsible for the cadmium (Cd) tolerance mediated by endogenous hydrogen sulfide (H2S) have been elusive. To address this gap, a combination of pharmacological, histochemical, biochemical and molecular approaches was applied. The perturbation of reduced (homo)glutathione homeostasis and increased H2S production as well as the activation of two H2S-synthetic enzymes activities, including L-cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD), in alfalfa seedling roots were early responses to the exposure of Cd. The application of H2S donor sodium hydrosulfide (NaHS), not only mimicked intracellular H2S production triggered by Cd, but also alleviated Cd toxicity in a H2S-dependent fashion. By contrast, the inhibition of H2S production caused by the application of its synthetic inhibitor blocked NaHS-induced Cd tolerance, and destroyed reduced (homo)glutathione and reactive oxygen species (ROS) homeostases. Above mentioned inhibitory responses were further rescued by exogenously applied glutathione (GSH). Meanwhile, NaHS responses were sensitive to a (homo)glutathione synthetic inhibitor, but reversed by the cotreatment with GSH. The possible involvement of cyclic AMP (cAMP) signaling in NaHS responses was also suggested. In summary, LCD/DCD-mediated H2S might be an important signaling molecule in the enhancement of Cd toxicity in alfalfa seedlings mainly by governing reduced (homo)glutathione and ROS homeostases. PMID:25275379

  14. Photomediated Reactive Oxygen Species-Generable Nanoparticles for Triggered Release and Endo/Lysosomal Escape of Drug upon Attenuated Single Light Irradiation.

    PubMed

    Seo, Eun Ha; Lee, Chung-Sung; Na, Kun

    2015-12-01

    Nanoparticles with "smart" stimuli-responsive materials and multiple therapeutic strategies in a single delivery platform have emerged for highly efficient cancer therapy. Here, photomediated reactive oxygen species (ROS)-generable nanoparticles are designed that can trigger drug release and endo/lysosomal escape upon attenuated single light irradiation, simultaneously, for synergistic chemo-photodynamic ablation. In this study, the self-ROS-generable nanoparticles (SRNs) are prepared from the polymer based on polysaccharide, chlorin e6 as ROS generator and lipoic acid as ROS scavenger covalently conjugated pullulan with anticancer drug (doxorubicin, DOX) through self-assembly, and can disassemble via the ROS-mediated reduction of lipoyl group in response to low level exogenous single light switch. After cellular internalization in hepatic cancer through asialoglycoprotein receptor (ASGPR, as pullulan receptor)-mediated endocytosis, once irradiated, SRNs are able to produce ROS that can simultaneously induce drug release triggering and endo/lysosomal escape of DOX into cytoplasm as well as directly photodynamic therapy for highly efficient chemo-photodynamic cancer therapy. This promising delivery system, which has huge potential in biomedical applications, may be optimal for smart delivery platform. PMID:26449186

  15. Evidence for Detrimental Cross Interactions between Reactive Oxygen and Nitrogen Species in Leber's Hereditary Optic Neuropathy Cells

    PubMed Central

    Santini, Paolo

    2016-01-01

    Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species bioavailability can contribute to cell dysfunction in Leber's hereditary optic neuropathy (LHON) patients. We report that peripheral blood mononuclear cells (PBMCs), derived from a female LHON patient with bilateral reduced vision and carrying the pathogenic mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure, leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important role in driving LHON pathology when excess NO remains available over time in the cell environment. PMID:26881022

  16. Surface reactivity and oxygen migration in amorphous indium-gallium-zinc oxide films annealed in humid atmosphere

    SciTech Connect

    Watanabe, Ken; Lee, Dong-Hee; Materials and Structures Laboratory , Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 ; Sakaguchi, Isao; Haneda, Hajime; Nomura, Kenji; Kamiya, Toshio; Materials Research Center for Element Strategy , Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 ; Hosono, Hideo; Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026; Materials Research Center for Element Strategy , Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 ; Ohashi, Naoki; Materials Research Center for Element Strategy , Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026

    2013-11-11

    An isotope tracer study, i.e., {sup 18}O/{sup 16}O exchange using {sup 18}O{sub 2} and H{sub 2}{sup 18}O, was performed to determine how post-deposition annealing (PDA) affected surface reactivity and oxygen diffusivity of amorphous indium–gallium–zinc oxide (a-IGZO) films. The oxygen tracer diffusivity was very high in the bulk even at low temperatures, e.g., 200 °C, regardless of PDA and exchange conditions. In contrast, the isotope exchange rate, dominated by surface reactivity, was much lower for {sup 18}O{sub 2} than for H{sub 2}{sup 18}O. PDA in a humid atmosphere at 400 °C further suppressed the reactivity of O{sub 2} at the a-IGZO film surface, which is attributable to –OH-terminated surface formation.

  17. The concept of reactive surface area applied to uncatalyzed and catalyzed carbon (char) gasification in carbon dioxide and oxygen

    SciTech Connect

    Lizzio, A.A.

    1990-01-01

    The virtues of, and/or problems with, utilizing the concepts of total and active surface area to explain the reactivity profiles were evaluated and discussed. An alternative approach, involving the concept of reactive surface area (RSA), was introduced and results based on the direct measurement of RSA were presented. Here, reactive surface area is defined as the concentration of carbon atoms on which the carbon-oxygen C(O) surface intermediate forms and subsequently decomposes to give gaseous products. The transient kinetics (TK) approach gave a direct measurement of RSA for chars gasified in CO{sub 2} and O{sub 2}. A temperature-programmed desorption technique was also used to determine the amount of reactive surface intermediate formed on these chars during gasification. A comparison of turnover frequencies for different chars gasified in 1 atm CO{sub 2} suggested that char gasification mat be a structure sensitive reaction. The concept of RSA was also used to achieve a better quantitative understanding of catalyzed char reactivity variations with conversion in CO{sub 2}. For a calcium-exchanged lignite char gasified in 1 atm CO{sub 2}, a poor correlation was found between RSA and reactivity, suggesting that in addition to the direct decomposition of the reactive C(O) intermediate, other processes, e.g., oxygen spillover, contributed to the transient evolution of CO. An extensive study of Saran char loaded with calcium, potassium or nickel by impregnation to incipient wetness (IW) or ion exchange (IE) was undertaken. An excellent correlation was found between reactivity and RSA variations with conversion for both IW and IE K-catalyzed chars, suggesting that TK indeed titrates the reactive K-O-C complexes formed during gasification in CO{sub 2}.

  18. Measurement of Reactive Oxygen Species in the Culture Media Using Acridan Lumigen PS-3 Assay

    PubMed Central

    Uy, Benedict; McGlashan, Susan R.; Shaikh, Shamim B.

    2011-01-01

    Reactive oxygen species (ROS) are generated continuously during aerobic metabolism. ROS are highly reactive molecules and in excessive amounts, can lead to protein and DNA oxidation, protein cross-linking, and cell death. Cell-culture models provide a valuable tool in understanding the mechanisms that lead to cell death. Accumulation of ROS within cells and/or their release into the culture media are highly cell type-specific. The ability to estimate ROS levels in the culture media is an important step in understanding the mechanisms contributing to disease processes. In this paper, we describe the optimization of a simple method to estimate ROS levels in the culture media using the Acridan Lumigen PS-3 reagent provided in the Amersham ECL Plus kit (GE Healthcare, UK). We have shown that the Acridan Lumigen PS-3 assay generates ROS-specific chemiluminescence in fresh as well as media stored at ?20C, in as little as 1020 ?l of samples. The method was able to detect the dose (of stimulants)- and time (acute and chronic)-dependent changes in ROS levels in media collected from various cell types. Our results suggest that the kit reagents, PBS buffer, and various media did not contribute significantly to the overall chemiluminescence generated in the assay; however, we suggest that the unused medium specific for each cell type should be used as blanks and final readings of test samples normalized against these readings. As this method uses commonly available laboratory equipment and commercially available reagents, we believe this assay is convenient, economical, and specific in estimating ROS released extracellularly into the culture media. PMID:21966257

  19. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells

    SciTech Connect

    Wan, Joanne; Winn, Louise M. . E-mail: winnl@queensu.ca

    2007-07-15

    Benzene is a known leukemogen that is metabolized to form reactive intermediates and reactive oxygen species (ROS). The c-Myb oncoprotein is a transcription factor that has a critical role in hematopoiesis. c-Myb transcript and protein have been overexpressed in a number of leukemias and cancers. Given c-Myb's role in hematopoiesis and leukemias, it is hypothesized that benzene interferes with the c-Myb signaling pathway and that this involves ROS. To investigate our hypothesis, we evaluated whether benzene, 1,4-benzoquinone, hydroquinone, phenol, and catechol generated ROS in chicken erythroblast HD3 cells, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (DCFDA) and dihydrorhodamine-123 (DHR-123), and whether the addition of 100 U/ml of the antioxidating enzyme superoxide dismutase (SOD) could prevent ROS generation. Reduced to oxidized glutathione ratios (GSH:GSSG) were also assessed as well as hydroquinone and benzoquinone's effects on c-Myb protein levels and activation of a transiently transfected reporter construct. Finally we attempted to abrogate benzene metabolite mediated increases in c-Myb activity with the use of SOD. We found that benzoquinone, hydroquinone, and catechol increased DCFDA fluorescence, increased DHR-123 fluorescence, decreased GSH:GSSG ratios, and increased reporter construct expression after 24 h of exposure. SOD was able to prevent DCFDA fluorescence and c-Myb activity caused by benzoquinone and hydroquinone only. These results are consistent with other studies, which suggest metabolite differences in benzene-mediated toxicity. More importantly, this study supports the hypothesis that benzene may mediate its toxicity through ROS-mediated alterations in the c-Myb signaling pathway.

  20. The formation of reactive oxygen species catalyzed by neutral, aqueous extracts of NIST ambient particulate matter and diesel engine particles.

    PubMed

    Ball, J C; Straccia, A M; Young, W C; Aust, A E

    2000-11-01

    It is important to characterize the chemical properties of particulate matter in order to understand how low doses, inhaled by a susceptible population, might cause human health effects. The formation of reactive oxygen species catalyzed by neutral, aqueous extracts of two ambient particulate samples, National Institute of Standards & Technology (NIST) Standard Reference Materials (SRM) 1648 and 1649, and two diesel particulate samples, NIST SRM 1650 and SRM 2975, were measured. The formation of reactive oxygen species was estimated by measuring the formation of malondialdehyde from 2-deoxyribose in the presence of ascorbic acid; H2O2 was not added to this assay. SRM 1649, ambient particulate matter collected from Washington, DC, generated the most malondialdehyde, while SRM 2975, diesel particulate matter collected from a forklift, yielded the least amount. Desferrioxamine inhibited the formation of malondialdehyde from the particulate samples providing additional data to support the observation that transition metals were involved in the generation of reactive oxygen species. Six transition metal sulfates (iron sulfate, copper sulfate, vanadyl sulfate, cobalt sulfate, nickel sulfate, and zinc sulfate) were assayed for their ability to generate reactive oxygen species under the same conditions used for the particulate samples in order to facilitate comparisons between particles and these transition metals. The concentration of transition metals was measured in aqueous extracts of these particulate samples using ion-coupled plasma mass spectrometry (ICP-MS) analysis. There was qualitative agreement between the concentrations of Fe, Cu, and V and the amount of malondialdehyde produced from extracts of these particulate samples. These data suggest that transition metals can be dissolved from particles in neutral, aqueous solutions and that these metals are capable of catalyzing the formation of reactive oxygen species. PMID:11111334

  1. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production.

    PubMed

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D; Boucher, Jeremie; Lee, Kevin Y; Lombard, David; Verdin, Eric M; Kahn, C Ronald

    2011-08-30

    Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle. PMID:21873205

  2. Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility

    PubMed Central

    Baker, Mark A; Aitken, R John

    2005-01-01

    Human spermatozoa generate low levels of reactive oxygen species in order to stimulate key events, such as tyrosine phosphorylation, associated with sperm capacitation. However, if the generation of these potentially pernicious oxygen metabolites becomes elevated for any reason, spermatozoa possess a limited capacity to protect themselves from oxidative stress. As a consequence, exposure of human spermatozoa to intrinsically- or extrinsically- generated reactive oxygen intermediates can result in a state of oxidative stress characterized by peroxidative damage to the sperm plasma membrane and DNA damage to the mitochondrial and nuclear genomes. Oxidative stress in the male germ line is associated with poor fertilization rates, impaired embryonic development, high levels of abortion and increased morbidity in the offspring, including childhood cancer. In this review, we consider the possible origins of oxidative damage to human spermatozoa and reflect on the important contribution such stress might make to the origins of genetic disease in our species. PMID:16313680

  3. WETTING AND REACTIVE AIR BRAZING OF BSCF FOR OXYGEN SEPARATION DEVICES

    SciTech Connect

    LaDouceur, Richard M.; Meier, Alan; Joshi, Vineet V.

    2014-10-13

    Reactive air brazes Ag-CuO and Ag-V2O5 were evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF). BSCF has been determined in previous work to have the highest potential mixed ionic/electronic conducting (MIEC) ceramic material based on the design and oxygen flux requirements of an oxy-fuel plant such as an integrated gasification combined cycle (IGCC) used to facilitate high-efficiency carbon capture. Apparent contact angles were observed for Ag-CuO and Ag-V2O5 mixtures at 1000 °C for isothermal hold times of 0, 10, 30, and 60 minutes. Wetting apparent contact angles (θ<90°) were obtained for 1%, 2%, and 5% Ag-CuO and Ag-V2O5 mixtures, with the apparent contact angles between 74° and 78° for all compositions and furnace dwell times. Preliminary microstructural analysis indicates that two different interfacial reactions are occurring: Ag-CuO interfacial microstructures revealed the same dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries and Ag-V2O5 interfacial microstructures revealed the infiltration and replacement of cobalt and iron with vanadium and silver filling pores in the BSCF microstructure. The Ag-V2O5 interfacial reaction product layer was measured to be significantly thinner than the Ag-CuO reaction product layer. Using a fully articulated four point flexural bend test fixture, the flexural fracture strength for BSCF was determined to be 95 ± 33 MPa. The fracture strength will be used to ascertain the success of the reactive air braze alloys. Based on these results, brazes were fabricated and mechanically tested to begin to optimize the brazing parameters for this system. Ag-2.5% CuO braze alloy with a 2.5 minute thermal cycle achieved a hermetic seal with a joint flexural strength of 34 ± 15 MPa and Ag-1% V2O5 with a 30 minute thermal cycle had a joint flexural strength of 20 ± 15 MPa.

  4. The Pivotal Role of a Novel Biomarker of Reactive Oxygen Species in Chronic Kidney Disease

    PubMed Central

    Hirata, Yoshihiro; Yamamoto, Eiichiro; Tokitsu, Takanori; Fujisue, Koichiro; Kurokawa, Hirofumi; Sugamura, Koichi; Sakamoto, Kenji; Tsujita, Kenichi; Tanaka, Tomoko; Kaikita, Koichi; Hokimoto, Seiji; Sugiyama, Seigo; Ogawa, Hisao

    2015-01-01

    Abstract Risk stratification of chronic kidney disease (CKD) is clinically important because such patients are at high risk of cardiovascular events. Although reactive oxygen species (ROS) are reported to be closely associated with the pathophysiology of CKD, there are few useful ROS biomarkers known for CKD patients. Hence, our objectives in this study were to investigate whether serum derivatives of reactive oxygen metabolites (DROM), a novel biomarker of ROS, is involved in the pathophysiology of CKD (case-control study), and is a significant predictor of future cardiovascular events in CKD patients (follow-up study). Patients with suspected coronary artery disease (CAD) were enrolled and underwent coronary angiography. Patients with CKD (estimated glomerular filtration ratio <60 mL/min/1.73 m2 and/or proteinuria, n = 324) were compared with those without CKD (non-CKD). Serum DROM was measured at stable conditions. A case-control study of the 324 CKD patients and 263 non-CKD patients was conducted after matching risk factors, and a follow-up study of the 324 CKD patients was performed. CKD patients were divided into low- and high-DROM groups using their median value (348 unit; called the Carratelli unit [U.CARR]), and followed until the occurrence of cardiovascular events. DROM levels were significantly higher in risk factors-matched CKD patients than in risk factors-matched non-CKD patients (347.0 [301.8–391.8] U.CARR vs. 338.5 [299.8–384.3] U.CARR, P = 0.03). During mean 23 ± 14 months follow-up of 324 CKD patients, 83 cardiovascular events were recorded. Kaplan–Meier analysis demonstrated a higher probability of cardiovascular events in CKD patients with high DROM than in those with low DROM (P < 0.001, log-rank test). Multivariate Cox hazard analysis including significant predictors in simple Cox hazard analysis demonstrated that high DROM was a significant and independent predictor of cardiovascular events in CKD patients (hazard ratio: 1.76, 95% confidence interval: 1.10–2.82, P = 0.02). In conclusion, serum DROM values were significant and independent predictors of cardiovascular events in CKD patients, indicating that the measurements of DROM might provide clinical benefits for risk stratification of CKD patients. PMID:26107676

  5. Reactive oxygen species are involved in nickel inhibition of dna repair

    SciTech Connect

    Lynn, S.; Yew, F.H.; Chen, K.S.; Jan, K.Y.

    1997-06-01

    Nickel has been shown to inhibit DNA repair in a way that may play a role in its toxicity. Since nickel treatment increases cellular reactive oxygen species (ROS), we have investigated the involvement of ROS in nickel inhibition of DNA repair. Inhibition of glutathione synthesis or catalase activity increased the enhancing effect of nickel on the cytotoxicity of ultraviolet (UV) light. Inhibition of catalase and glutathione peroxidase activities also enhanced the retardation effect of nickel on the rejoining of DNA strand breaks accumulated by hydroxyurea plus cytosine-{beta}-D-arabinofuranoside in UV-irradiated cells. Since DNA polymerization and ligation are involved in the DNA-break rejoining, we have investigated the effect of ROS on these two steps in an extract of Chinese hamster ovary cells. Nickel inhibition of the incorporation of ({sup 3}H)dTTP into the DNase l-activated calf thymus DNA was stronger than the ligation of poly(dA){center_dot}oligo(dT), whereas H{sub 2}O{sub 2} was more potent in inhibiting DNA ligation than DNA polymerization. Nickel, in the presence of H{sub 2}O{sub 2}, exhibited a synergistic inhibition on both DNA polymerization and ligation and caused protein fragmentation. In addition, glutathione could completely recover the inhibition by nickel or H{sub 2}O{sub 2} alone but only partially recover the inhibition by nickel plus H{sub 2}O{sub 2}. Therefore, nickel may bind to DNA-repair enzymes and generate oxygen-free radicals to cause protein degradation in situ. This irreversible damage to the proteins involved in DNA repair, replication, recombination, and transcription could be important for the toxic effects of nickel. 60 refs., 6 figs., 4 tabs.

  6. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ.

    PubMed

    Brueckl, Corinna; Kaestle, Stephanie; Kerem, Alexander; Habazettl, Helmut; Krombach, Fritz; Kuppe, Hermann; Kuebler, Wolfgang M

    2006-04-01

    Lung capillary endothelial cells (ECs) are a critical target of oxygen toxicity and play a central role in the pathogenesis of hyperoxic lung injury. To determine mechanisms and time course of EC activation in normobaric hyperoxia, we measured endothelial concentration of reactive oxygen species (ROS) and cytosolic calcium ([Ca(2+)](i)) by in situ imaging of 2',7'-dichlorofluorescein (DCF) and fura 2 fluorescence, respectively, and translocation of the small GTPase Rac1 by immunofluorescence in isolated perfused rat lungs. Endothelial DCF fluorescence and [Ca(2+)](i) increased continuously yet reversibly during a 90-min interval of hyperoxic ventilation with 70% O(2), demonstrating progressive ROS generation and second messenger signaling. ROS formation increased exponentially with higher O(2) concentrations. ROS and [Ca(2+)](i) responses were blocked by the mitochondrial complex I inhibitor rotenone, whereas inhibitors of NAD(P)H oxidase and the intracellular Ca(2+) chelator BAPTA predominantly attenuated the late phase of the hyperoxia-induced DCF fluorescence increase after > 30 min. Rac1 translocation in lung capillary ECs was barely detectable at normoxia but was prominent after 60 min of hyperoxia and could be blocked by rotenone and BAPTA. We conclude that hyperoxia induces ROS formation in lung capillary ECs, which initially originates from the mitochondrial electron transport chain but subsequently involves activation of NAD(P)H oxidase by endothelial [Ca(2+)](i) signaling and Rac1 activation. Our findings demonstrate rapid activation of ECs by hyperoxia in situ and identify mechanisms that may be relevant in the initiation of hyperoxic lung injury. PMID:16357365

  7. Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate

    SciTech Connect

    Minissale, M. Congiu, E.; Dulieu, F.

    2014-02-21

    The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O{sub 2} and O{sub 3} produced via two pathways: O + O and O{sub 2} + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O{sub 2} + O reactions is ?150 K/k{sub b}. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the EleyRideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O{sub 3} formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O{sub 3} is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO{sub 2} and H{sub 2}O in the ices.

  8. Coronary endothelial dysfunction and mitochondrial reactive oxygen species in type 2 diabetic mice

    PubMed Central

    Cho, Young-Eun; Basu, Aninda; Dai, Anzhi; Heldak, Michael

    2013-01-01

    Endothelial cell (EC) dysfunction is implicated in cardiovascular diseases, including diabetes. The decrease in nitric oxide (NO) bioavailability is the hallmark of endothelial dysfunction, and it leads to attenuated vascular relaxation and atherosclerosis followed by a decrease in blood flow. In the heart, decreased coronary blood flow is responsible for insufficient oxygen supply to cardiomyocytes and, subsequently, increases the incidence of cardiac ischemia. In this study we investigate whether and how reactive oxygen species (ROS) in mitochondria contribute to coronary endothelial dysfunction in type 2 diabetic (T2D) mice. T2D was induced in mice by a high-fat diet combined with a single injection of low-dose streptozotocin. ACh-induced vascular relaxation was significantly attenuated in coronary arteries (CAs) from T2D mice compared with controls. The pharmacological approach reveals that NO-dependent, but not hyperpolarization- or prostacyclin-dependent, relaxation was decreased in CAs from T2D mice. Attenuated ACh-induced relaxation in CAs from T2D mice was restored toward control level by treatment with mitoTempol (a mitochondria-specific O2? scavenger). Coronary ECs isolated from T2D mice exhibited a significant increase in mitochondrial ROS concentration and decrease in SOD2 protein expression compared with coronary ECs isolated from control mice. Furthermore, protein ubiquitination of SOD2 was significantly increased in coronary ECs isolated from T2D mice. These results suggest that augmented SOD2 ubiquitination leads to the increase in mitochondrial ROS concentration in coronary ECs from T2D mice and attenuates coronary vascular relaxation in T2D mice. PMID:23986204

  9. Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity.

    PubMed

    Raghunathan, Vijay Krishna; Devey, Michael; Hawkins, Sue; Hails, Lauren; Davis, Sean A; Mann, Stephen; Chang, Isaac T; Ingham, Eileen; Malhas, Ashraf; Vaux, David J; Lane, Jon D; Case, Charles P

    2013-05-01

    Patients with cobalt chrome (CoCr) metal-on-metal (MOM) implants may be exposed to a wide size range of metallic nanoparticles as a result of wear. In this study we have characterised the biological responses of human fibroblasts to two types of synthetically derived CoCr particles [(a) from a tribometer (30 nm) and (b) thermal plasma technology (20, 35, and 80 nm)] in vitro, testing their dependence on nanoparticle size or the generation of oxygen free radicals, or both. Metal ions were released from the surface of nanoparticles, particularly from larger (80 nm) particles generated by thermal plasma technology. Exposure of fibroblasts to these nanoparticles triggered rapid (2 h) generation of reactive oxygen species (ROS) that could be eliminated by inhibition of NADPH oxidase, suggesting that it was mediated by phagocytosis of the particles. The exposure also caused a more prolonged, MitoQ sensitive production of ROS (24 h), suggesting involvement of mitochondria. Consequently, we recorded elevated levels of aneuploidy, chromosome clumping, fragmentation of mitochondria and damage to the cytoskeleton particularly to the microtubule network. Exposure to the nanoparticles resulted in misshapen nuclei, disruption of mature lamin B1 and increased nucleoplasmic bridges, which could be prevented by MitoQ. In addition, increased numbers of micronuclei were observed and these were only partly prevented by MitoQ, and the incidence of micronuclei and ion release from the nanoparticles were positively correlated with nanoparticle size, although the cytogenetic changes, modifications in nuclear shape and the amount of ROS were not. These results suggest that cells exhibit diverse mitochondrial ROS-dependent and independent responses to CoCr particles, and that nanoparticle size and the amount of metal ion released are influential. PMID:23433773

  10. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells

    PubMed Central

    Pereboeva, Larisa; Hubbard, Meredith; Goldman, Frederick D.; Westin, Erik R.

    2016-01-01

    Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients’ cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism whereby telomerase deficiency and subsequent shortened telomeres initiate a DDR and create a pro-oxidant environment, especially in cells carrying the TINF2 mutations. Finally, the ameliorative effects of antioxidants in vitro suggest this could translate to therapeutic benefits in DC patients. PMID:26859482

  11. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells.

    PubMed

    Pereboeva, Larisa; Hubbard, Meredith; Goldman, Frederick D; Westin, Erik R

    2016-01-01

    Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients' cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism whereby telomerase deficiency and subsequent shortened telomeres initiate a DDR and create a pro-oxidant environment, especially in cells carrying the TINF2 mutations. Finally, the ameliorative effects of antioxidants in vitro suggest this could translate to therapeutic benefits in DC patients. PMID:26859482

  12. Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species.

    PubMed

    Cho, Kyung-Jin; Seo, Ji-Min; Kim, Jae-Hong

    2011-07-01

    In mammalian cells, reactive oxygen species (ROS) are produced via a variety of cellular oxidative processes, including the activity of NADPH oxidases (NOX), the activity of xanthine oxidases, the metabolism of arachidonic acid (AA) by lipoxygenases (LOX) and cyclooxygenases (COX), and the mitochondrial respiratory chain. Although NOX-generated ROS are the best characterized examples of ROS in mammalian cells, ROS are also generated by the oxidative metabolism (e.g., via LOX and COX) of AA that is released from the membrane phospholipids via the activity of cytosolic phospholipase A(2) (cPLA(2)). Recently, growing evidence suggests that LOX- and COX-generated AA metabolites can induce ROS generation by stimulating NOX and that a potential signaling connection exits between the LOX/COX metabolites and NOX. In this review, we discuss the results of recent studies that report the generation of ROS by LOX metabolites, especially 5-LOX metabolites, via NOX stimulation. In particular, we have focused on the contribution of leukotriene B(4) (LTB(4)), a potent bioactive eicosanoid that is derived from 5-LOX, and its receptors, BLT1 and BLT2, to NOX stimulation through a signaling mechanism that leads to ROS generation. PMID:21424583

  13. Role of Reactive Oxygen Species and Redox in Regulating the Function of Transient Receptor Potential Channels

    PubMed Central

    Song, Michael Y.; Makino, Ayako

    2011-01-01

    Abstract Cellular redox status, regulated by production of reactive oxygen species (ROS), greatly contributes to the regulation of vascular smooth muscle cell contraction, migration, proliferation, and apoptosis by modulating the function of transient receptor potential (TRP) channels in the plasma membrane. ROS functionally interact with the channel protein via oxidizing the redox-sensitive residues, whereas nitric oxide (NO) regulates TRP channel function by cyclic GMP/protein kinase G-dependent and -independent pathways. Based on the structural differences among different TRP isoforms, the effects of ROS and NO are also different. In addition to regulating TRP channels in the plasma membrane, ROS and NO also modulate Ca2+ release channels (e.g., IP3 and ryanodine receptors) on the sarcoplasmic/endoplasmic reticulum membrane. This review aims at briefly describing (a) the role of TRP channels in receptor-operated and store-operated Ca2+ entry, and (b) the role of ROS and redox status in regulating the function and structure of TRP channels. Antioxid. Redox Signal. 15, 15491565. PMID:21126186

  14. Nutritional Countermeasures Targeting Reactive Oxygen Species in Cancer: From Mechanisms to Biomarkers and Clinical Evidence

    PubMed Central

    Samoylenko, Anatoly; Hossain, Jubayer Al; Mennerich, Daniela; Kellokumpu, Sakari; Hiltunen, Jukka Kalervo

    2013-01-01

    Abstract Reactive oxygen species (ROS) exert various biological effects and contribute to signaling events during physiological and pathological processes. Enhanced levels of ROS are highly associated with different tumors, a Western lifestyle, and a nutritional regime. The supplementation of food with traditional antioxidants was shown to be protective against cancer in a number of studies both in vitro and in vivo. However, recent large-scale human trials in well-nourished populations did not confirm the beneficial role of antioxidants in cancer, whereas there is a well-established connection between longevity of several human populations and increased amount of antioxidants in their diets. Although our knowledge about ROS generators, ROS scavengers, and ROS signaling has improved, the knowledge about the direct link between nutrition, ROS levels, and cancer is limited. These limitations are partly due to lack of standardized reliable ROS measurement methods, easily usable biomarkers, knowledge of ROS action in cellular compartments, and individual genetic predispositions. The current review summarizes ROS formation due to nutrition with respect to macronutrients and antioxidant micronutrients in the context of cancer and discusses signaling mechanisms, used biomarkers, and its limitations along with large-scale human trials. Antioxid. Redox Signal. 19, 2157–2196. PMID:23458328

  15. Chondrocyte cell death mediated by reactive oxygen species-dependent activation of PKC-?I

    PubMed Central

    DelCarlo, Marcello; Loeser, Richard F.

    2006-01-01

    Signals generated by the extracellular matrix (ECM) promote cell survival. We have shown that chondrocytes detached from their native ECM and plated without serum at low density on poly-l-lysine undergo significant cell death that is associated with the production of reactive oxygen species (ROS). No cell death or ROS production was observed when cells were plated on fibronectin under the same conditions. Cell death on poly-l-lysine could be completely inhibited with the addition of either antioxidants or inhibitors of specific protein kinase C (PKC) isoforms including PKC-?I. PKC-?I was noted to translocate from the cytosol to the particulate membrane after plating on poly-l-lysine, and this translocation was inhibited by the addition of an antioxidant. Time-course analyses implicated endogenous ROS production as a secondary messenger leading to PKC-?I activation and subsequent chondrocyte cell death. Cell survival on poly-l-lysine was significantly improved in the presence of oligomycin or DIDS, suggesting that ROS production occurred via complex V of the electron transport chain of the mitochondria and that ROS were released to the cytosol via voltage-dependent anion channels. Together, these results represent a novel mechanism by which ROS can initiate cell death through the activation of PKC-?I. PMID:16236825

  16. Extracellular Reactive Oxygen Species Drive Apoptosis-Induced Proliferation via Drosophila Macrophages.

    PubMed

    Fogarty, Caitlin E; Diwanji, Neha; Lindblad, Jillian L; Tare, Meghana; Amcheslavsky, Alla; Makhijani, Kalpana; Brckner, Katja; Fan, Yun; Bergmann, Andreas

    2016-03-01

    Apoptosis-induced proliferation (AiP) is a compensatory mechanism to maintain tissue size and morphology following unexpected cell loss during normal development, and may also be a contributing factor to cancer and drug resistance. In apoptotic cells, caspase-initiated signaling cascades lead to the downstream production of mitogenic factors and the proliferation of neighboring surviving cells. In epithelial cells of Drosophila imaginal discs, the Caspase-9 ortholog Dronc drives AiP via activation of Jun N-terminal kinase (JNK); however, the specific mechanisms of JNK activation remain unknown. Here we show that caspase-induced activation of JNK during AiP depends on an inflammatory response. This is mediated by extracellular reactive oxygen species (ROSs) generated by the NADPH oxidase Duox in epithelial disc cells. Extracellular ROSs activate Drosophila macrophages (hemocytes), which in turn trigger JNK activity in epithelial cells by signaling through the tumor necrosis factor (TNF) ortholog Eiger. We propose that in an immortalized ("undead") model of AiP, signaling back and forth between epithelial disc cells and hemocytes by extracellular ROSs and TNF/Eiger drives overgrowth of the disc epithelium. These data illustrate a bidirectional cell-cell communication pathway with implication for tissue repair, regeneration, and cancer. PMID:26898463

  17. Redox reactions in mammalian spermatogenesis and the potential targets of reactive oxygen species under oxidative stress

    PubMed Central

    Fujii, Junichi; Imai, Hirotaka

    2014-01-01

    Reduction-oxidation (Redox) reactions are ubiquitous mechanisms for vital activities in all organisms, and they play pivotal roles in the regulation of spermatogenesis as well. Here we focus on 3 redox-involved processes that have drawn much recent attention: the regulation of signal transduction by reactive oxygen species (ROS) such as hydrogen peroxide, oxidative protein folding in the endoplasmic reticulum (ER), and sulfoxidation of protamines during sperm chromatin condensation. The first 2 of these processes are emerging topics in cell biology and are applicable to most living cells, which includes spermatogenic cells. The roles of ROS in signal transduction have been elucidated in the last 2 decades and have received broad attention, most notably from the viewpoint of the proper control of mitotic signals. Redox processes in the ER are important because this is the organelle where secretory and membrane proteins are synthesized and proceed toward their functional structure, so that malfunction of the ER affects not only the involved cells but also the accepting cells of the secreted proteins in multicellular organisms. Sulfoxidation is the third of these processes, and the sulfoxidation of chromatin is a unique process in sperm maturation. During recent sulfoxidase research, GPX4 has emerged as a promising enzyme that plays essential roles in the production of fertile sperm, but the involvement of other redox proteins is also becoming evident. Because the molecules involved in the redox reactions are prone to oxidation, they can be sensitive to oxidative damage, which makes them potential targets for antioxidant therapy. PMID:26413390

  18. Insulin Regulates Glucose Consumption and Lactate Production through Reactive Oxygen Species and Pyruvate Kinase M2

    PubMed Central

    Li, Qi; Liu, Xue; Yin, Yu; Zheng, Ji-Tai; Jiang, Cheng-Fei; Wang, Jing; Shen, Hua; Li, Chong-Yong; Wang, Min; Liu, Ling-Zhi; Jiang, Bing-Hua

    2014-01-01

    Although insulin is known to regulate glucose metabolism and closely associate with liver cancer, the molecular mechanisms still remain to be elucidated. In this study, we attempt to understand the mechanism of insulin in promotion of liver cancer metabolism. We found that insulin increased pyruvate kinase M2 (PKM2) expression through reactive oxygen species (ROS) for regulating glucose consumption and lactate production, key process of glycolysis in hepatocellular carcinoma HepG2 and Bel7402 cells. Interestingly, insulin-induced ROS was found responsible for the suppression of miR-145 and miR-128, and forced expression of either miR-145 or miR-128 was sufficient to abolish insulin-induced PKM2 expression. Furthermore, the knockdown of PKM2 expression also inhibited cancer cell growth and insulin-induced glucose consumption and lactate production, suggesting that PKM2 is a functional downstream effecter of insulin. Taken together, this study would provide a new insight into the mechanism of insulin-induced glycolysis. PMID:24895527

  19. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species.

    PubMed

    Niles, Brad J; Powers, Ted

    2014-12-01

    The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells. PMID:25253719

  20. A luminol-based micro-flow-injection electrochemiluminescent system to determine reactive oxygen species.

    PubMed

    Chen, Ming; Wei, Xiuhua; Tu, Yifeng

    2011-09-15

    A flow injection analysis (FIA) system with electrochemiluminescent (ECL) detection has been established. Based on a specially designed flow-through ECL cell with a very simple structure, the system possesses rapid response and high sensitivity. With luminol as the ECL reagent, the response of hydrogen peroxide (H(2)O(2)) was investigated on the developed FIA-ECL system. After optimizing the experimental conditions, such as the electric parameters, the buffer condition and the flow rate, it was demonstrated that the developed FIA-ECL system works well for quantified assays. Compared with reported works, the present results indicate that the developed FIA-ECL system has the lowest limit of detection (S/N=3) of 3.010(-9) mol/L for H(2)O(2), which is equal to the level of chemiluminescence (CL). The developed system was successfully used to monitor the yield of reactive oxygen species (ROSs) in water vapour during the work of an ultrasonic humidifier with H(2)O(2) as index. And the amount of ROSs in some other real samples, including tap water, drinking water and river water was detected with recoveries from 92.0% to 106%. PMID:21807187

  1. Hyperthermia, dehydration, and osmotic stress: unconventional sources of exercise-induced reactive oxygen species.

    PubMed

    King, Michelle A; Clanton, Thomas L; Laitano, Orlando

    2016-01-15

    Evidence of increased reactive oxygen species (ROS) production is observed in the circulation during exercise in humans. This is exacerbated at elevated body temperatures and attenuated when normal exercise-induced body temperature elevations are suppressed. Why ROS production during exercise is temperature dependent is entirely unknown. This review covers the human exercise studies to date that provide evidence that oxidant and antioxidant changes observed in the blood during exercise are dependent on temperature and fluid balance. We then address possible mechanisms linking exercise with these variables that include shear stress, effects of hemoconcentration, and signaling pathways involving muscle osmoregulation. Since pathways of muscle osmoregulation are rarely discussed in this context, we provide a brief review of what is currently known and unknown about muscle osmoregulation and how it may be linked to oxidant production in exercise and hyperthermia. Both the circulation and the exercising muscle fibers become concentrated with osmolytes during exercise in the heat, resulting in a competition for available water across the muscle sarcolemma and other tissues. We conclude that though multiple mechanisms may be responsible for the changes in oxidant/antioxidant balance in the blood during exercise, a strong case can be made that a significant component of ROS produced during some forms of exercise reflect requirements of adapting to osmotic challenges, hyperthermia challenges, and loss of circulating fluid volume. PMID:26561649

  2. Glutamate mobilizes [Zn2+]i through Ca2+-dependent reactive oxygen species accumulation

    PubMed Central

    Dineley, Kirk E.; Devinney, Michael J.; Zeak, Jennifer A.; Rintoul, Gordon L.; Reynolds, Ian J.

    2013-01-01

    Liberation of zinc from intracellular stores contributes to oxidant-induced neuronal injury. However, little is known regarding how endogenous oxidant systems regulate intracellular free zinc ([Zn2+]i). Here we simultaneously imaged [Ca2+]i and [Zn2+]i to study acute [Zn2+]i changes in cultured rat forebrain neurons after glutamate receptor activation. Neurons were loaded with fura-2FF and FluoZin-3 to follow [Ca2+]i and [Zn2+]i, respectively. Neurons treated with glutamate (100 ?M) for ten minutes gave large Ca2+ responses that did not recover after termination of the glutamate stimulus. Glutamate also increased [Zn2+]i, however glutamate-induced [Zn2+]i changes were completely dependent on Ca2+ entry, appeared to arise entirely from internal stores, and were substantially reduced by co-application of the membrane-permeant chelator TPEN during the glutamate treatment. Pharmacological maneuvers revealed that a number of endogenous oxidant producing systems, including nitric oxide synthase, phospholipase A2, and mitochondria all contributed to glutamate-induced [Zn2+]i changes. We found no evidence that mitochondria buffered [Zn2+]i during acute glutamate receptor activation. We conclude that glutamate-induced [Zn2+]i transients are caused in part by [Ca2+]i -induced reactive oxygen species that arises from both cytosolic and mitochondrial sources. PMID:18624907

  3. Knockdown of GDCH gene reveals reactive oxygen species-induced leaf senescence in rice.

    PubMed

    Zhou, Qiying; Yu, Qian; Wang, Zhanqi; Pan, Yufang; Lv, Wentang; Zhu, Lili; Chen, Rongzhi; He, Guangcun

    2013-08-01

    Glycine decarboxylase complex (GDC) is a multi-protein complex, comprising P-, H-, T- and L-protein subunits, which plays a major role in photorespiration in plants. While structural analysis has demonstrated that the H subunit of GDC (GDCH) plays a pivotal role in GDC, research on the role of GDCH in biological processes in plants is seldom reported. Here, the function of GDCH, stresses resulting from GDCH-knockdown and the interactions of these stresses with other cellular processes were studied in rice plants. Under high CO(2), the OsGDCH RNA interference (OsGDCH-RNAi) plants grew normally, but under ambient CO(2), severely suppressed OsGDCH-RNAi plants (SSPs) were non-viable, which displayed a photorespiration-deficient phenotype. Under ambient CO(2), chlorophyll loss, protein degradation, lipid peroxidation and photosynthesis decline occurred in SSPs. Electron microscopy studies showed that chloroplast breakdown and autophagy took place in these plants. Reactive oxygen species (ROS), including O2(-) and H(2)O(2), accumulated and the antioxidant enzyme activities decreased in the leaves of SSPs under ambient CO(2). The expression of transcription factors and senescence-associated genes (SAGs), which was up-regulated in SSPs after transfer to ambient CO(2), was enhanced in wild-type plants treated with H(2)O(2). Evidences demonstrate ROS induce senescence in SSPs, and transcription factors OsWRKY72 may mediate the ROS-induced senescence. PMID:23421602

  4. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    SciTech Connect

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  5. Vibrio parahaemolyticus strengthens their virulence through modulation of cellular reactive oxygen species in vitro

    PubMed Central

    El-Malah, Shimaa S.; Yang, Zhenquan; Hu, Maozhi; Li, Qiuchun; Pan, Zhiming; Jiao, Xinan

    2014-01-01

    Vibrio parahaemolyticus (Vp) is one of the emergent food-borne pathogens that are commensally associated with various shellfish species throughout the world. It is strictly environmental and many strains are pathogenic to humans. The virulent strains cause distinct diseases, including wound infections, septicemia, and most commonly, acute gastroenteritis, which is acquired through the consumption of raw or undercooked seafood, especially shellfish. Vp has two type three secretion systems (T3SSs), which triggering its cytotoxicity and enterotoxicity via their effectors. To better understand the pathogenesis of Vp, we established a cell infection model in vitro using a non-phagocytic cell line. Caco-2 cells were infected with different strains of Vp (pandemic and non-pandemic strains) and several parameters of cytotoxicity were measured together with adhesion and invasion indices, which reflect the pathogen's virulence. Our results show that Vp adheres to cell monolayers and can invade non-phagocytic cells. It also survives and persists in non-phagocytic cells by modulating reactive oxygen species (ROS), allowing its replication, and resulting in complete cellular destruction. We conclude that the pathogenicity of Vp is based on its capacities for adhesion and invasion. Surprisingly's; enhanced of ROS resistance period could promote the survival of Vp inside the intestinal tract, facilitating tissue infection by repressing the host's oxidative stress response. PMID:25566508

  6. MITOCHONDRIA-DERIVED REACTIVE OXYGEN SPECIES MEDIATE CASPASE- DEPENDENT AND-INDEPENDENT NEURONAL DEATH

    PubMed Central

    McManus, Meagan J.; Murphy, Michael P.

    2014-01-01

    Mitochondrial dysfunction and oxidative stress are implicated in many neurodegenerative diseases. Mitochondria-targeted drugs that effectively decrease oxidative stress, protect mitochondrial energetics, and prevent neuronal loss may therefore lend therapeutic benefit to these currently incurable diseases. To investigate the efficacy of such drugs, we examined the effects of mitochondria-targeted antioxidants MitoQ10 and MitoE2 on neuronal death induced by neurotrophin deficiency. Our results indicate that MitoQ10 blocked apoptosis by preventing increased mitochondria-derived reactive oxygen species (ROS) and subsequent cytochrome c release, caspase activation, and mitochondrial damage in nerve growth factor (NGF)-deprived sympathetic neurons, while MitoE2 was largely ineffective. In this paradigm, the most proximal point of divergence was the ability of MitoQ10 to scavenge mitochondrial superoxide (O2?). MitoQ10 also prevented caspase-independent neuronal death in these cells demonstrating that the mitochondrial redox state significantly influences both apoptotic and nonapoptotic pathways leading to neuronal death. We suggest that mitochondria-targeted antioxidants may provide tools for delineating the role and significance of mitochondrial ROS in neuronal death and provide a new therapeutic approach for neurodegenerative conditions involving trophic factor deficits and multiple modes of cell death. PMID:25239010

  7. Accelerating neuronal aging in in vitro model brain disorders: a focus on reactive oxygen species

    PubMed Central

    Campos, Priscila Britto; Paulsen, Bruna S.; Rehen, Stevens K.

    2014-01-01

    In this review, we discuss insights gained through the use of stem cell preparations regarding the modeling of neurological diseases, the need for aging neurons derived from pluripotent stem cells to further advance the study of late-onset adult neurological diseases, and the extent to which mechanisms linked to the mismanagement of reactive oxygen species (ROS). The context of these issues can be revealed using the three disease states of Parkinsons (PD), Alzheimers (AD), and schizophrenia, as considerable insights have been gained into these conditions through the use of stem cells in terms of disease etiologies and the role of oxidative stress. The latter subject is a primary area of interest of our group. After discussing the molecular models of accelerated aging, we highlight the role of ROS for the three diseases explored here. Importantly, we do not seek to provide an extensive account of all genetic mutations for each of the three disorders discussed in this review, but we aim instead to provide a conceptual framework that could maximize the gains from merging the approaches of stem cell microsystems and the study of oxidative stress in disease in order to optimize therapeutics and determine new molecular targets against oxidative stress that spare stem cell proliferation and development. PMID:25386139

  8. Reactive Oxygen Species Production and Brugia pahangi Survivorship in Aedes polynesiensis with Artificial Wolbachia Infection Types

    PubMed Central

    Andrews, Elizabeth S.; Crain, Philip R.; Fu, Yuqing; Howe, Daniel K.; Dobson, Stephen L.

    2012-01-01

    Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF) throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated “MTB”) experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS) in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis. The results are discussed in relation to the interaction of Wolbachia with ROS production and antioxidant expression, iron homeostasis and the insect immune system. We discuss the potential applied use of the MTB strain for impacting Ae. polynesiensis populations and strategies for reducing LF incidence in the South Pacific. PMID:23236284

  9. Pseudomonas aeruginosa Pyocyanin Induces Neutrophil Death via Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase

    PubMed Central

    Managò, Antonella; Becker, Katrin Anne; Carpinteiro, Alexander; Wilker, Barbara; Soddemann, Matthias; Seitz, Aaron P.; Edwards, Michael J.; Grassmé, Heike

    2015-01-01

    Abstract Aims: Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. Results: Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. Innovation: These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. Conclusion: These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions. Antioxid. Redox Signal. 22, 1097–1110. PMID:25686490

  10. Inhibitory phlorotannins from the edible brown alga Ecklonia stolonifera on total reactive oxygen species (ROS) generation.

    PubMed

    Kang, Hye Sook; Chung, Hae Young; Kim, Ji Young; Son, Byeng Wha; Jung, Hyun Ah; Choi, Jae Sue

    2004-02-01

    Reactive oxygen species (ROS) play an important role in the pathogenesis of many human degenerative diseases such as cancer, aging, arteriosclerosis, and rheumatism. Much attention has been focused on the development of safe and effective antioxidants. To discover sources of antioxidative activity in marine algae, extracts from 17 kinds of seaweed were screened for their inhibitory effect on total ROS generation in kidney homogenate using 2',7'-dichlorofluorescein diacetate (DCFH-DA). ROS inhibition was seen in three species: Ulva pertusa, Symphyocladia latiuscula, and Ecklonia stolonifera. At a final concentration of 25 microg/mL, U. pertusa inhibited 85.65+/-20.28% of total ROS generation, S. latiscula caused 50.63+/-0.09% inhibitory, and the Ecklonia species was 44.30+/-7.33% inhibition. E. stolonifera Okamura (Laminariaceae), which belongs to the brown algae, has been further investigated because it is commonly used as a foodstuff in Korea. Five compounds, phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5), isolated from the ethyl acetate soluble fraction of the methanolic extract of E. stolonifera inhibited total ROS generation. PMID:15022722

  11. TOR complex 2Ypk1 signaling regulates actin polarization via reactive oxygen species

    PubMed Central

    Niles, Brad J.; Powers, Ted

    2014-01-01

    The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells. PMID:25253719

  12. Reactive oxygen species regulate the differentiation of acute promyelocytic leukemia cells through HMGB1-mediated autophagy.

    PubMed

    Yang, Liangchun; Chai, Wenwen; Wang, Yanping; Cao, Lizhi; Xie, Min; Yang, Minghua; Kang, Rui; Yu, Yan

    2015-01-01

    Acute promyelocytic leukemia (APL) results from a blockade of granulocyte differentiation during the promyelocytic stage. As a fusion protein of promyelocytic leukemia (PML) and retinoic acid receptor-? (RAR?), PML-RAR? oncoprotein is degraded through the differentiation of all-trans retinoic acid (ATRA)-induced cells. Here reactive oxygen species (ROS) and high-mobility group box 1 (HMGB1) were proven essential for the differentiation of APL cells. A down-regulation of ROS by ROS quencher (NAC) blocked the differentiation of APL cell line NB4 while an over-expression of ROS by superoxide dismutase-1 (SOD1) RNA interference (RNAi) increased cell differentiation. HMGB1 was vital for the differentiation of ROS-mediated NB4 cells and its up-regulation promoted ATRA-induced autophagy and the degradation of PML-RAR?. Furthermore, ATRA treatment elevated the levels of ROS, enhanced autophagic flux and thereby promoted cytosolic translocation of HMGB1. HMGB1 regulated the interactions between ubiquitin-binding adaptor protein p62/SQSTM and PML-RAR? so as to affect the degradation of PML-RAR? during ATRA-induced autophagy. Also a depletion of p62/SQSTM1 expression inhibited HMGB1-mediated PML-RAR? degradation and cell differentiation. The overall results suggested that HMGB1 is an essential regulator of ROS-induced cell differentiation. And it may become a potential drug target for therapeutic intervention of APL. PMID:25973309

  13. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation

    SciTech Connect

    Klein, Stefanie; Sommer, Anja; Distel, Luitpold V.R.; Neuhuber, Winfried; Kryschi, Carola

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Ultrasmall citrate-coated SPIONs with {gamma}Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} structure were prepared. Black-Right-Pointing-Pointer SPIONs uptaken by MCF-7 cells increase the ROS production for about 240%. Black-Right-Pointing-Pointer The SPION induced ROS production is due to released iron ions and catalytically active surfaces. Black-Right-Pointing-Pointer Released iron ions and SPION surfaces initiate the Fenton and Haber-Weiss reaction. Black-Right-Pointing-Pointer X-ray irradiation of internalized SPIONs leads to an increase of catalytically active surfaces. -- Abstract: Internalization of citrate-coated and uncoated superparamagnetic iron oxide nanoparticles by human breast cancer (MCF-7) cells was verified by transmission electron microscopy imaging. Cytotoxicity studies employing metabolic and trypan blue assays manifested their excellent biocompatibility. The production of reactive oxygen species in iron oxide nanoparticle loaded MCF-7 cells was explained to originate from both, the release of iron ions and their catalytically active surfaces. Both initiate the Fenton and Haber-Weiss reaction. Additional oxidative stress caused by X-ray irradiation of MCF-7 cells was attributed to the increase of catalytically active iron oxide nanoparticle surfaces.

  14. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species

    PubMed Central

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-01

    The successful treatment of bacterial infections is the achievement of a synergy between the host’s immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (MФ) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host’s immune defences and antibiotic interactions in microbial infections. PMID:26778774

  15. Restraining of reactive oxygen species promotes invasion of Listeria monocytogenes into glia cells.

    PubMed

    Li, Sen; Chen, Guowei; Wu, Man; Zhang, Jingchen; Wu, Shuyan

    2016-01-01

    Listeria monocytogenes is a foodborne pathogen that could cause severe infection in the central nervous system of humans and animals. However, the molecular mechanism of the pathogenesis is not fundamentally assessed. This study aimed to analyze the role of reactive oxygen species (ROS) in L. monocytogenes during its invasion into glia cells. The ROS level in L. monocytogenes was manipulated using NAD(P)H oxidase inhibitor diphenyleneiodonium chloride (DPI) and ROS scavenger N-acetyl cysteine (NAC). Results showed that the invasiveness of L. monocytogenes was elevated when ROS was downregulated by DPI and NAC treatment. Expression profiles of proinflammatory factors in glia cells were also examined because they play important roles in the functions of glia cells in the brain immune system. The expression levels of proinflammatory factors (tumor necrosis factor ? and interleukin-1?)in host glia cells were downregulated when invaded by L. monocytogenes with lower ROS level. This finding indicates that ROS may function as negative regulator during the invasion of L. monocytogenes in brain infection. PMID:26635415

  16. The angiotensin II-AT1 receptor stimulates reactive oxygen species within the cell nucleus

    SciTech Connect

    Pendergrass, Karl D.; Gwathmey, TanYa M.; Michalek, Ryan D.; Grayson, Jason M.; Chappell, Mark C.

    2009-06-26

    We and others have reported significant expression of the Ang II Type 1 receptor (AT1R) on renal nuclei; thus, the present study assessed the functional pathways and distribution of the intracellular AT1R on isolated nuclei. Ang II (1 nM) stimulated DCF fluorescence, an intranuclear indicator of reactive oxygen species (ROS), while the AT1R antagonist losartan or the NADPH oxidase (NOX) inhibitor DPI abolished the increase in ROS. Dual labeling of nuclei with antibodies against nucleoporin 62 (Nup62) and AT1R or the NADPH oxidase isoform NOX4 revealed complete overlap of the Nup62 and AT1R (99%) by flow cytometry, while NOX4 was present on 65% of nuclei. Treatment of nuclei with a PKC agonist increased ROS while the PKC inhibitor GF109203X or PI3 kinase inhibitor LY294002 abolished Ang II stimulation of ROS. We conclude that the Ang II-AT1R-PKC axis may directly influence nuclear function within the kidney through a redox sensitive pathway.

  17. Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production.

    PubMed

    Ye, Junli; Jiang, Zhongxin; Chen, Xuehong; Liu, Mengyang; Li, Jing; Liu, Na

    2016-01-15

    Reactive oxygen species (ROS) are believed to be mediators of excessive microglial activation, yet the resources and mechanism are not fully understood. Here we stimulated murine microglial BV-2 cells and primary microglial cells with different inhibitors of electron transport chain (ETC), rotenone, thenoyltrifluoroacetone (TTFA), antimycin A, and NaN3 to induce mitochondrial ROS production and we observed the role of mitochondrial ROS in microglial activation. Our results showed that ETC inhibitors resulted in significant changes in cell viability, microglial morphology, cell cycle arrest and mitochondrial ROS production in a dose-dependent manner in both primary cultural microglia and BV-2 cell lines. Moreover, ETC inhibitors, especially rotenone and antimycin A stimulated secretion of interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 12 (IL-12) and tumor necrosis factor α (TNF-α) by microglia with marked activation of mitogen-activated proteinkinases (MAPKs) and nuclear factor κB (NF-κB), which could be blocked by specific inhibitors of MAPK and NF-κB and mitochondrial antioxidants, Mito-TEMPO. Taken together, our results demonstrated that inhibition of mitochondrial respiratory chain in microglia led to production of mitochondrial ROS and therefore may activate MAPK/NF-кB dependent inflammatory cytokines release in microglia, which indicated that mitochondrial-derived ROS were contributed to microglial activation. PMID:26511505

  18. The role of reactive oxygen species in membrane potential changes in macrophages and astrocytes.

    PubMed

    Klyubin, I V; Kirpichnikova, K M; Ischenko, A M; Zhakhov, A V; Gamaley, I A

    2000-01-01

    Involvement of reactive oxygen species (ROS) in changes of the plasma membrane potential of mouse peritoneal macrophages and astrocytes (U118 cell line) under the action of different agents has been studied. Membrane potential was measured using the voltage-dependent fluorescent oxonol dye DiBAC4(3). Agonists which stimulate macrophages to release ROS (the fMLP peptide and platelet activating factor) caused prolonged hyperpolarization. Experiments with the fluorescent probe 2',7'-dichlorofluorescein diacetate have shown that astrocytes release ROS upon the action of C5a complement anaphylatoxin (but not C3a). The effect of C5a was accompanied with hyperpolarization of the astrocyte plasma membrane. Treatment of the cells with agents which do not induce ROS generation (C3a, lipopolysaccharide, interferon-gamma) depolarized the plasma membrane. Hyperpolarization of both cell types was significantly decreased in the presence of superoxide dismutase (but not catalase). Moreover, the O2- -generating system caused a marked hyperpolarization of both cell types. The data obtained suggest that O2- is involved in the macrophage and astrocyte hyperpolarization response. PMID:10926373

  19. Pregestational diabetes induces fetal coronary artery malformation via reactive oxygen species signaling.

    PubMed

    Moazzen, Hoda; Lu, Xiangru; Liu, Murong; Feng, Qingping

    2015-04-01

    Hypoplastic coronary artery disease is a congenital coronary artery malformation associated with a high risk of sudden cardiac death. However, the etiology and pathogenesis of hypoplastic coronary artery disease remain undefined. Pregestational diabetes increases reactive oxygen species (ROS) levels and the risk of congenital heart defects. We show that pregestational diabetes in mice induced by streptozotocin significantly increased 4-hydroxynonenal production and decreased coronary artery volume in fetal hearts. Pregestational diabetes also impaired epicardial epithelial-to-mesenchymal transition (EMT) as shown by analyses of the epicardium, epicardial-derived cells, and fate mapping. Additionally, the expression of hypoxia-inducible factor 1? (Hif-1?), Snail1, Slug, basic fibroblast growth factor (bFgf), and retinaldehyde dehydrogenase (Aldh1a2) was decreased and E-cadherin expression was increased in the hearts of fetuses of diabetic mothers. Of note, these abnormalities were all rescued by treatment with N-acetylcysteine (NAC) in diabetic females during gestation. Ex vivo analysis showed that high glucose levels inhibited epicardial EMT, which was reversed by NAC treatment. We conclude that pregestational diabetes in mice can cause coronary artery malformation through ROS signaling. This study may provide a rationale for further clinical studies to investigate whether pregestational diabetes could cause hypoplastic coronary artery disease in humans. PMID:25422104

  20. Reactive Oxygen Species as Additional Determinants for Cytotoxicity of Clostridium difficile Toxins A and B

    PubMed Central

    Frädrich, Claudia; Beer, Lara-Antonia; Gerhard, Ralf

    2016-01-01

    Clostridium difficile infections can induce mild to severe diarrhoea and the often associated characteristic pseudomembranous colitis. Two protein toxins, the large glucosyltransferases TcdA and TcdB, are the main pathogenicity factors that can induce all clinical symptoms in animal models. The classical molecular mode of action of these homologous toxins is the inhibition of Rho GTPases by mono-glucosylation. Rho-inhibition leads to breakdown of the actin cytoskeleton, induces stress-activated and pro-inflammatory signaling and eventually results in apoptosis of the affected cells. An increasing number of reports, however, have documented further qualities of TcdA and TcdB, including the production of reactive oxygen species (ROS) by target cells. This review summarizes observations dealing with the production of ROS induced by TcdA and TcdB, dissects pathways that contribute to this phenomenon and speculates about ROS in mediating pathogenesis. In conclusion, ROS have to be considered as a discrete, glucosyltransferase-independent quality of at least TcdB, triggered by different mechanisms. PMID:26797634

  1. Role of vascular reactive oxygen species in development of vascular abnormalities in diabetes.

    PubMed

    Son, Seok Man

    2007-09-01

    Macrovascular and microvascular diseases are currently the principal causes of morbidity and mortality in patients with diabetes. Oxidative stress has been postulated to be a major contributor to the pathogenesis of these events. There is considerable evidence that many biochemical pathways adversely affected by hyperglycemia and other substances that are found at elevated levels in diabetic patients are associated with the generation of reactive oxygen species, ultimately leading to increased oxidative stress in a variety of tissues. In the absence of an appropriate compensation by the endogenous antioxidant defense network, increased oxidative stress leads to the activation of stress-sensitive intracellular signaling pathways and the formation of gene products that cause cellular damage and contribute to the late complications of diabetes. It has recently been suggested that diabetic subjects with vascular complications may have a defective cellular antioxidant response against the oxidative stress generated by hyperglycemia. This raises the concept that antioxidant therapy may be of great interest in these patients. Although our understanding of how hyperglycemia-induced oxidative stress ultimately leads to tissue damage has advanced considerably in recent years, effective therapeutic strategies to prevent or delay the development of this damage remain limited. Thus, further investigations of therapeutic interventions to prevent or delay the progression of diabetic vascular complications are needed. PMID:17467110

  2. Ligation of Glycophorin A Generates Reactive Oxygen Species Leading to Decreased Red Blood Cell Function.

    PubMed

    Khoory, Joseph; Estanislau, Jessica; Elkhal, Abdallah; Lazaar, Asmae; Melhorn, Mark I; Brodsky, Abigail; Illigens, Ben; Hamachi, Itaru; Kurishita, Yasutaka; Ivanov, Alexander R; Shevkoplyas, Sergey; Shapiro, Nathan I; Ghiran, Ionita C

    2016-01-01

    Acute, inflammatory conditions associated with dysregulated complement activation are characterized by significant increases in blood concentration of reactive oxygen species (ROS) and ATP. The mechanisms by which these molecules arise are not fully understood. In this study, using luminometric- and fluorescence-based methods, we show that ligation of glycophorin A (GPA) on human red blood cells (RBCs) results in a 2.1-fold, NADPH-oxidase-dependent increase in intracellular ROS that, in turn, trigger multiple downstream cascades leading to caspase-3 activation, ATP release, and increased band 3 phosphorylation. Functionally, using 2D microchannels to assess membrane deformability, GPS-ligated RBCs travel 33% slower than control RBCs, and lipid mobility was hindered by 10% using fluorescence recovery after photobleaching (FRAP). These outcomes were preventable by pretreating RBCs with cell-permeable ROS scavenger glutathione monoethyl ester (GSH-ME). Our results obtained in vitro using anti-GPA antibodies were validated using complement-altered RBCs isolated from control and septic patients. Our results suggest that during inflammatory conditions, circulating RBCs significantly contribute to capillary flow dysfunctions, and constitute an important but overlooked source of intravascular ROS and ATP, both critical mediators responsible for endothelial cell activation, microcirculation impairment, platelet activation, as well as long-term dysregulated adaptive and innate immune responses. PMID:26784696

  3. Arabidopsis CAP1-mediated ammonium sensing required reactive oxygen species in plant cell growth

    PubMed Central

    Bai, Ling; Zhou, Yun; Ma, Xiaonan; Gao, Lijie; Song, Chun-Peng

    2014-01-01

    [Ca2+]cyt-associated protein kinase (CAP) gene 1 is a receptor-like kinase that belongs to CrRLK1L (Catharanthus roseus Receptor like kinase) subfamily. CAP1 has been identified as a novel modulator of NH4+ in the tonoplast, which regulates root hair growth by maintaining the cytoplasmic Ca2+ gradients. Different expression pattern of tonoplast intrinsic protein (TIP2;3) in the CAP1 knock out mutant and wild type on Murashige and Skoog (MS) medium suggested that CAP1 influences transport activity to regulate the compartmentalization of NH4+ into vacuole. Lower expression level of Oxidative Signal-Inducible1(OXI1) in the cap1-1 root and the abnormal reactive oxygen species (ROS) gradient in root hair of cap1-1 on MS medium indicated that ROS signaling involve in CAP1-regulated root hair growth. Wild-type-like ROS distribution pattern in the cap1-1 root hair can be reestablished in seedlings grown on NH4+ deficient medium, which indicated that CAP1 functions as a sensor for NH4+ signaling in maintaining tip-focused ROS gradient in root hairs polar growth. PMID:25763633

  4. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials.

    PubMed

    Garza, Kristine M; Soto, Karla F; Murr, Lawrence E

    2008-01-01

    We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots--along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20-80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations ofpolycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production. PMID:18488419

  5. Fosfomycin enhances phagocyte-mediated killing of Staphylococcus aureus by extracellular traps and reactive oxygen species.

    PubMed

    Shen, Fengge; Tang, Xudong; Cheng, Wei; Wang, Yang; Wang, Chao; Shi, Xiaochen; An, Yanan; Zhang, Qiaoli; Liu, Mingyuan; Liu, Bo; Yu, Lu

    2016-01-01

    The successful treatment of bacterial infections is the achievement of a synergy between the host's immune defences and antibiotics. Here, we examined whether fosfomycin (FOM) could improve the bactericidal effect of phagocytes, and investigated the potential mechanisms. FOM enhanced the phagocytosis and extra- or intracellular killing of S. aureus by phagocytes. And FOM enhanced the extracellular killing of S. aureus in macrophage (M?) and in neutrophils mediated by extracellular traps (ETs). ET production was related to NADPH oxidase-dependent reactive oxygen species (ROS). Additionally, FOM increased the intracellular killing of S. aureus in phagocytes, which was mediated by ROS through the oxidative burst process. Our results also showed that FOM alone induced S. aureus producing hydroxyl radicals in order to kill the bacterial cells in vitro. In a mouse peritonitis model, FOM treatment increased the bactericidal extra- and intracellular activity in vivo, and FOM strengthened ROS and ET production from peritoneal lavage fluid ex vivo. An IVIS imaging system assay further verified the observed in vivo bactericidal effect of the FOM treatment. This work may provide a deeper understanding of the role of the host's immune defences and antibiotic interactions in microbial infections. PMID:26778774

  6. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.

    PubMed

    Zuo, Li; Motherwell, Michael S

    2013-12-10

    The exact pathogenesis of Parkinson's disease (PD) is still unknown and proper mechanisms that correspond to the disease remain unidentified. It is understood that PD is age-related; as age increases, the chance of onset responds accordingly. Although there are no current means of curing PD, the understanding of reactive oxygen species (ROS) provides significant insight to possible treatments. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neural apoptosis generation in PD. Dopaminergic neurons are severely damaged as a result of the deficiency. Symptoms such as inhibited cognitive ability and loss of smooth motor function are the results of such impairment. The genetic mutations of Parkinson's related proteins such as PINK1 and LRRK2 contribute to mitochondrial dysfunction which precedes ROS formation. Various pathways are inhibited by these mutations, and inevitably causing neural cell damage. Antioxidants are known to negate the damaging effects of free radical overexpression. This paper expands on the specific impact of mitochondrial genetic change and production of free radicals as well as its correlation to the neurodegeneration in Parkinson's disease. PMID:23954870

  7. The control of root growth by reactive oxygen species in Salix nigra Marsh. seedlings.

    PubMed

    Causin, Humberto F; Roqueiro, Gonzalo; Petrillo, Ezequiel; Linez, Vernica; Pena, Liliana B; Marchetti, Cintia F; Gallego, Susana M; Maldonado, Sara I

    2012-02-01

    The production of reactive oxygen species (ROS) in specific regions of Salix seedlings roots seems essential for the normal growth of this organ. We examined the role of different ROS in the control of root development in Salix nigra seedlings, and explored possible mechanisms involved in the regulation of ROS generation and action. Root growth was not significantly affected by OH quenchers, while it was either partially or completely inhibited in the presence of H?O? or O?? scavengers, respectively. O?? production was elevated in the root apex, particularly in the subapical meristem and protodermal zones. Apical O?? generation activity was correlated to a high level of either Cu/Zn superoxide dismutase protein as well as carbonylated proteins. While NADPH-oxidase (NOX) was probably the main source of O?? generation, the existence of other sources should not be discarded. O?? production was also high in root hairs during budding, but it markedly decreased when the hair began to actively elongate. Root hair formation increased in the presence of H?O? scavengers, and was suppressed when H?O? or peroxidase inhibitors were supplied. The negative effect of H?O? was partially counteracted by a MAPKK inhibitor. Possible mechanisms of action of the different ROS in comparison with other plant model systems are discussed. PMID:22195594

  8. Detection of reactive oxygen species in mainstream cigarette smoke by a fluorescent probe

    NASA Astrophysics Data System (ADS)

    Liu, Li; Xu, Shi-jie; Li, Song-zhan

    2009-07-01

    A mass of reactive oxygen species(ROS) are produced in the process of smoking. Superfluous ROS can induce the oxidative stress in organism, which will cause irreversible damage to cells. Fluorescent probe is taken as a marker of oxidative stress in biology and has been applied to ROS detection in the field of biology and chemistry for high sensitivity, high simplicity of data collection and high resolution. As one type of fluorescent probe, dihydrorhodamine 6G (dR6G) will be oxidized to the fluorescent rhodamine 6G, which could be used to detect ROS in mainstream cigarette smoke. We investigated the action mechanism of ROS on dR6G, built up the standard curve of R6G fluorescence intensity with its content, achieved the variation pattern of R6G fluorescence intensity with ROS content in mainstream cigarette smoke and detected the contents of ROS from the 4 types of cigarettes purchased in market. The result shows that the amount of ROS has close relationship with the types of tobacco and cigarette production technology. Compared with other detecting methods such as electronic spin resonance(ESR), chromatography and mass spectrometry, this detection method by the fluorescent probe has higher efficiency and sensitivity and will have wide applications in the ROS detection field.

  9. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines.

    PubMed

    Huang, Qiang; Gao, Bo; Wang, Long; Hu, Ya-Qian; Lu, Wei-Guang; Yang, Liu; Luo, Zhuo-Jing; Liu, Jian

    2014-11-01

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H2O2) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPAR?2) expression in hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. PMID:25130202

  10. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling.

    PubMed

    Corcionivoschi, Nicolae; Alvarez, Luis A J; Sharp, Thomas H; Strengert, Monika; Alemka, Abofu; Mantell, Judith; Verkade, Paul; Knaus, Ulla G; Bourke, Billy

    2012-07-19

    Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer-membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer-membrane/periplasmic proteins, including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling. PMID:22817987

  11. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling

    PubMed Central

    Corcionivoschi, Nicolae; Alvarez, Luis A.; Sharp, Thomas H.; Strengert, Monika; Alemka, Abofu; Mantell, Judith; Verkade, Paul; Knaus, Ulla G.; Bourke, Billy

    2013-01-01

    Summary Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer membrane / periplasmic proteins including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling. PMID:22817987

  12. Saccharomyces cerevisiae Hsp31p, a stress response protein conferring protection against reactive oxygen species.

    PubMed

    Skoneczna, Adrianna; Micia?kiewicz, Arkadiusz; Skoneczny, Marek

    2007-05-01

    The Saccharomyces cerevisiae HSP31 (YDR533c) gene encodes a protein that belongs to the DJ-1/PfpI family and its function is unknown. Homologs to Hsp31p polypeptide can be found in organisms from all systematic groups of eukaryotes and prokaryotes, and the functions of the vast majority of them are also hypothetical. One of the homologs is human protein DJ-1. Various amino acid substitutions within this protein correlate with early onset hereditary Parkinson's disease. The deletion of the HSP31 gene displays no apparent phenotype under standard growth conditions, but a thorough functional analysis of S. cerevisiae revealed that its absence makes the cells sensitive to a subset of reactive oxygen species (ROS) generators. HSP31 is induced under conditions of oxidative stress in a YAP1-dependent manner. Similar to other stress response genes, it is also induced in the postdiauxic phase of growth and this induction is YAP1-independent. The patterns of sensitivities to various ROS generators of the hsp31Delta strain and the strain with the deletion of SOD1, another gene defending the cell against ROS, are different. We postulate that Hsp31p protects the cell against oxidative stress and complements other stress protection systems within the cell. PMID:17395014

  13. High cell density attenuates reactive oxygen species: implications for in vitro assays.

    PubMed

    Kim, Dennis P; Yahav, Jonathan; Sperandeo, Michael; Maloney, Lauren; McTigue, Monica; Lin, Fubao; Clark, Richard A F

    2012-01-01

    In vitro cell-based assays are an essential and universally used step in elucidation of biological processes as well as in drug development. However, results obtained depend on the validity of protocols used. This statement certainly pertains to in vitro assays of oxidative stress. The holy grail of in vitro models is reliability and predictability of outcomes that relate to a single variable like addition of hydrogen peroxide or xanthine oxidase. Without such validated outcomes, comparison of results among different laboratories is not possible. Achieving this goal requires a thorough understanding of the complex interplay between the cells, their environment, and the experimental assays. Furthermore, as this knowledge is attained, it must be disseminated and used to update and standardize existing protocols. Here, we confirm and extend the effect of pyruvate and cell density on in vitro oxidative stress assays. Cell viability was assessed using a colorimetric assay measuring the reduction of a tetrazolium salt (XTT) into a colored formazan dye. Extracellular hydrogen peroxide concentrations were measured using the foxp3 assay. We confirmed a previously reported finding that pyruvate, a common ingredient in cell culture media, acts as an extracellular scavenger of reactive oxygen species. We also demonstrated that cell density directly correlates with resistance to oxidative stress in tissue culture. It is theorized that the protective effect due to cell density predominantly relates to intracellular factors such as reduced glutathione and extracellular factors such as catalase. PMID:22107255

  14. Baicalin scavenges reactive oxygen species and protects human keratinocytes against UVC-induced cytotoxicity.

    PubMed

    Wang, Shou-Cheng; Chen, Sue-Fung; Lee, Yi-Min; Chuang, Chin-Liang; Bau, Da-Tian; Lin, Song-Shei

    2013-01-01

    Long-term exposure to solar ultraviolet (UV) radiation can cause multiple skin disorders, including skin cancer. Protection against UV-induced damage is, therefore, a worldwide concern. Baicalin, a major component of traditional Chinese medicine Scutellaria baicalensis, has been reported to have antioxidant and cytostatic effects on normal epithelial and normal peripheral blood and myeloid cells. In the current study, we examined whether baicalin could also effectively protect human keratinocytes from damaging short-wave UVC irradiation. Baicalin-scavenged reactive oxygen species increased within 2 h after UVC radiation. Baicalin also abrogated UVC-induced apoptosis. In addition, we identified the major products after UVC radiation with T4 UV endonuclease, finding that baicalin prevented cyclobutane pyrimidine dimer formation induced by UVC. Furthermore, baicalin also prevented formation of oxidative adducts induced by UVC. Our results demonstrated the utility of baicalin in assessing the potential contribution of traditional Chinese medicinal agents in therapy of UVC-induced genomic damage to skin and suggest potential application of these agents as pharmaceuticals in prevention of solar-induced skin damage. PMID:24292572

  15. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly.

    PubMed

    Kim, Yoon Sik; Seo, Hyun Wook; Jung, Guhung

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. PMID:25576869

  16. Reactive Oxygen Species in the Signaling and Adaptation of Multicellular Microbial Communities

    PubMed Central

    ?p, Michal; Vchov, Libue; Palkov, Zdena

    2012-01-01

    One of the universal traits of microorganisms is their ability to form multicellular structures, the cells of which differentiate and communicate via various signaling molecules. Reactive oxygen species (ROS), and hydrogen peroxide in particular, have recently become well-established signaling molecules in higher eukaryotes, but still little is known about the regulatory functions of ROS in microbial structures. Here we summarize current knowledge on the possible roles of ROS during the development of colonies and biofilms, representatives of microbial multicellularity. In Saccharomyces cerevisiae colonies, ROS are predicted to participate in regulatory events involved in the induction of ammonia signaling and later on in programmed cell death in the colony center. While the latter process seems to be induced by the total ROS, the former event is likely to be regulated by ROS-homeostasis, possibly H2O2-homeostasis between the cytosol and mitochondria. In Candida albicans biofilms, the predicted signaling role of ROS is linked with quorum sensing molecule farnesol that significantly affects biofilm formation. In bacterial biofilms, ROS induce genetic variability, promote cell death in specific biofilm regions, and possibly regulate biofilm development. Thus, the number of examples suggesting ROS as signaling molecules and effectors in the development of microbial multicellularity is rapidly increasing. PMID:22829965

  17. Candida albicans Induces Arginine Biosynthetic Genes in Response to Host-Derived Reactive Oxygen Species

    PubMed Central

    Jimnez-Lpez, Claudia; Collette, John R.; Brothers, Kimberly M.; Shepardson, Kelly M.; Cramer, Robert A.; Wheeler, Robert T.

    2013-01-01

    The interaction of Candida albicans with phagocytes of the host's innate immune system is highly dynamic, and its outcome directly impacts the progression of infection. While the switch to hyphal growth within the macrophage is the most obvious physiological response, much of the genetic response reflects nutrient starvation: translational repression and induction of alternative carbon metabolism. Changes in amino acid metabolism are not seen, with the striking exception of arginine biosynthesis, which is upregulated in its entirety during coculture with macrophages. Using single-cell reporters, we showed here that arginine biosynthetic genes are induced specifically in phagocytosed cells. This induction is lower in magnitude than during arginine starvation in vitro and is driven not by an arginine deficiency within the phagocyte but instead by exposure to reactive oxygen species (ROS). Curiously, these genes are induced in a narrow window of sublethal ROS concentrations. C. albicans cells phagocytosed by primary macrophages deficient in the gp91phox subunit of the phagocyte oxidase do not express the ARG pathway, indicating that the induction is dependent on the phagocyte oxidative burst. C. albicans arg pathway mutants are retarded in germ tube and hypha formation within macrophages but are not notably more sensitive to ROS. We also find that the ARG pathway is regulated not by the general amino acid control response but by transcriptional regulators similar to the Saccharomyces cerevisiae ArgR complex. In summary, phagocytosis induces this single amino acid biosynthetic pathway in an ROS-dependent manner. PMID:23143683

  18. Oxidases and Peroxidases in Cardiovascular and Lung Disease: New Concepts in Reactive Oxygen Species Signaling

    PubMed Central

    Ghouleh, Imad Al; Khoo, Nicholas K.H.; Knaus, Ulla G.; Griendling, Kathy K.; Touyz, Rhian M.; Thannickal, Victor J.; Barchowsky, Aaron; Nauseef, William M.; Kelley, Eric E.; Bauer, Phillip M.; Darley-Usmar, Victor; Shiva, Sruti; Cifuentes-Pagano, Eugenia; Freeman, Bruce A.; Gladwin, Mark T.; Pagano, Patrick J.

    2011-01-01

    Reactive oxygen species (ROS) are involved in numerous physiological and pathophysiological responses. Increasing evidence implicates ROS as signaling molecules involved in the propagation of cellular pathways. The NADPH oxidase (Nox) family of enzymes is a major source of ROS in the cell and has been related to the progression of many diseases and even in environmental toxicity. The complexity of this familys effects on cellular processes stems from the fact that there are 7 members, each with unique tissue distribution, cellular localization and expression. Nox proteins also differ in activation mechanisms and the major ROS detected as their product. To add to this complexity, mounting evidence suggests that other cellular oxidases or their products may be involved in Nox regulation. The overall redox and metabolic status of the cell, specifically the mitochondria, also has implications on ROS signaling. Signaling of such molecules as electrophillic fatty acids has impact on many redox sensitive pathologies, and thus, as anti-inflammatory molecules, contributes to the complexity of ROS regulation. The following review is based on the proceedings of a recent international Oxidase Signaling Symposium at the University of Pittsburghs Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, and encompasses further interaction and discussion among the presenters. PMID:21722728

  19. Effects of Sanionia uncinata extracts in protecting against and inducing DNA cleavage by reactive oxygen species.

    PubMed

    Fernandes, Andréia da Silva; Mazzei, José Luiz; de Alencar, Alexandre Santos; Evangelista, Heitor; Felzenszwalb, Israel

    2011-01-01

    When mosses are exposed to increased quantities of ultraviolet (UV) radiation, they produce more secondary metabolites. Antarctica moss Sanionia uncinata (Hedw.) Loeske has presented high carotenoid contents in response to an increase in UVB radiation. This moss has been recommended as a potential source of antioxidants. In the present work, the protective and enhancing effects of aqueous (AE) and hydroalcoholic (HE) extracts of S. uncinata on the cleavage of supercoiled DNA were evaluated through topological modifications, quantified by densitometry after agarose gel electrophoresis. Total phenolic contents reached 5.89 mg/g. Our data demonstrated that the extract does not induce DNA cleavage. Furthermore, both extracts showed antioxidant activity that protected the DNA against cleavage induced by (i) O(2)(•-), 89% (AE) and 94% (HE) (P<0.05), and (ii) (.)OH, 17% (AE) and 18% (HE). However, the extracts intensified cleavage induced by Fenton-like reactions: (i) Cu(2+)/H(2)O(2), 94% (AE) and 100% (HE) (P<0.05), and (ii) SnCl(2), 62% (AE) and 56% (HE). DNA damages seem to follow different ways: (i) in the presence of Fenton-like reactions could be via reactive oxygen species generation and (ii) with HE/Cu(2+) could have also been triggered by other mechanisms. PMID:22005340

  20. Molecular Characterization of Reactive Oxygen Species in Myocardial Ischemia-Reperfusion Injury

    PubMed Central

    Zhou, Tingyang; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Myocardial ischemia-reperfusion (I/R) injury is experienced by individuals suffering from cardiovascular diseases such as coronary heart diseases and subsequently undergoing reperfusion treatments in order to manage the conditions. The occlusion of blood flow to the tissue, termed ischemia, can be especially detrimental to the heart due to its high energy demand. Several cellular alterations have been observed upon the onset of ischemia. The danger created by cardiac ischemia is somewhat paradoxical in that a return of blood to the tissue can result in further damage. Reactive oxygen species (ROS) have been studied intensively to reveal their role in myocardial I/R injury. Under normal conditions, ROS function as a mediator in many cell signaling pathways. However, stressful environments significantly induce the generation of ROS which causes the level to exceed body's antioxidant defense system. Such altered redox homeostasis is implicated in myocardial I/R injury. Despite the detrimental effects from ROS, low levels of ROS have been shown to exert a protective effect in the ischemic preconditioning. In this review, we will summarize the detrimental role of ROS in myocardial I/R injury, the protective mechanism induced by ROS, and potential treatments for ROS-related myocardial injury. PMID:26509170

  1. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    SciTech Connect

    Yan, Wei; He, Hao Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  2. Autophagy induction upon reactive oxygen species in Cd-stressed Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Zhang, WeiNa; Chen, WenLi

    2010-02-01

    Autophagy is a protein degradation process in which cells recycle cytoplasmic contents when subjected to environmental stress conditions or during certain stages of development. Upon the induction of autophagy, a double membrane autophagosome forms around cytoplasmic components and delivers them to the vacuole for degradation. In plants, autophagy has been shown previously to be induced during abiotic stresses including oxidative stress. Cd, as a toxicity heavy metal, resulted in the production of reactive oxygen species (ROS). In this paper, we demonstrated that ROS contributed to the induction of autophagy in Cd-stressed Arabidopsis thaliana. However, pre-incubation with ascorbic acid (AsA, antioxidant molecule) and catalase (CAT, a H2O2-specific scavenger) decreased the ROS production and the number of autolysosomal-like structures. Together our results indicated that the oxidative condition was essential for autophagy, as treatment with AsA and CAT abolished the formation of autophagosomes, and ROS may function as signal molecules to induce autophagy in abiotic stress.

  3. Global Plant Stress Signaling: Reactive Oxygen Species at the Cross-Road.

    PubMed

    Sewelam, Nasser; Kazan, Kemal; Schenk, Peer M

    2016-01-01

    Current technologies have changed biology into a data-intensive field and significantly increased our understanding of signal transduction pathways in plants. However, global defense signaling networks in plants have not been established yet. Considering the apparent intricate nature of signaling mechanisms in plants (due to their sessile nature), studying the points at which different signaling pathways converge, rather than the branches, represents a good start to unravel global plant signaling networks. In this regard, growing evidence shows that the generation of reactive oxygen species (ROS) is one of the most common plant responses to different stresses, representing a point at which various signaling pathways come together. In this review, the complex nature of plant stress signaling networks will be discussed. An emphasis on different signaling players with a specific attention to ROS as the primary source of the signaling battery in plants will be presented. The interactions between ROS and other signaling components, e.g., calcium, redox homeostasis, membranes, G-proteins, MAPKs, plant hormones, and transcription factors will be assessed. A better understanding of the vital roles ROS are playing in plant signaling would help innovate new strategies to improve plant productivity under the circumstances of the increasing severity of environmental conditions and the high demand of food and energy worldwide. PMID:26941757

  4. Importance of soluble metals and reactive oxygen species for cytokine release induced by mineral particles.

    PubMed

    Hetland, R B; Myhre, O; Lg, M; Hongve, D; Schwarze, P E; Refsnes, M

    2001-08-28

    The mechanisms for particle-induced health effects are not well understood, but inflammation seems to be of importance. Previously, we have shown that stone quarry particles with various mineral and metal content differed widely in potency to induce inflammatory cytokines (IL-6, IL-8 and TNF-alpha) in different types of lung cells. In this study we investigated if the observed cytokine responses were associated with the soluble or insoluble components of the stone particles and if there was a relationship between the differential cytokine release and generation of reactive oxygen species (ROS). Exposure of the human alveolar cell line A549 to the different particle leachates (pH 7.4 and 4.0) did not induce corresponding differential increases in the IL-8 release as observed with whole particles. Increase in ROS production, measured as dichlorofluorescein-fluorescence, was only demonstrated after exposure of A549 cells to the pH 4.0 extract from basalt. Furthermore, generation of ROS was found in neutrophils but not in A549 cells and primary macrophages after exposure to suspensions of the solid particles. However, no obvious differences in potency among the different particles were demonstrated. In summary, other mechanisms than particle-induced ROS formation seem to be responsible for the differential induction of IL-8. Furthermore, our findings indicate that the differential ability to induce IL-8 release in lung cells is attributed to the solid components of the stone particles. PMID:11522371

  5. Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds

    PubMed Central

    2012-01-01

    Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-amino-pyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone and that of 2,2′-bipyridyl-6-carbothioamide. Experiments on generation of oxidative stress and the influence of biologically relevant reductants (glutathione, ascorbic acid) on the anticancer activity of the copper complexes revealed that reductant-dependent redox cycling occurred mainly outside the cells, leading to generation and dismutation of superoxide radicals resulting in cytotoxic amounts of H2O2. However, without extracellular reductants only weak intracellular ROS generation was observed at IC50 levels, suggesting that cellular thiols are not involved in copper-complex-induced oxidative stress. Taken together, thiol-induced intracellular ROS generation might contribute to the anticancer activity of copper thiosemicarbazone complexes but is not the determining factor. PMID:22189939

  6. Heterogeneous assembled nanocomplexes for ratiometric detection of highly reactive oxygen species in vitro and in vivo.

    PubMed

    Ju, Enguo; Liu, Zhen; Du, Yingda; Tao, Yu; Ren, Jinsong; Qu, Xiaogang

    2014-06-24

    Probes for detecting highly reactive oxygen species (hROS) are critical to both understanding the etiology of the disease and optimizing therapeutic interventions. However, problems such as low stability due to autoxidation and photobleaching and unsuitability for biological application in vitro and in vivo, as well as the high cost and complex procedure in synthesis and modification, largely limit their application. In this work, binary heterogeneous nanocomplexes (termed as C-dots-AuNC) constructed from gold clusters and carbon dots were reported. The fabrication takes full advantages of the inherent active groups on the surface of the nanoparticles to avoid tedious modification and chemical synthetic processes. Additionally, the assembly endowed C-dots-AuNC with improved performance such as the fluorescence enhancement of AuNCs and stability of C-dots to hROS. Moreover, the dual-emission property allows sensitive imaging and monitoring of the hROS signaling in living cells with high contrast. Importantly, with high physiological stability and excellent biocompatibility, C-dots-AuNC allows for the detection of hROS in the model of local ear inflammation. PMID:24873414

  7. Development of nitroxide radicals-containing polymer for scavenging reactive oxygen species from cigarette smoke

    NASA Astrophysics Data System (ADS)

    Yoshitomi, Toru; Kuramochi, Kazuhiro; Binh Vong, Long; Nagasaki, Yukio

    2014-06-01

    We developed a nitroxide radicals-containing polymer (NRP), which is composed of poly(4-methylstyrene) possessing nitroxide radicals as a side chain via amine linkage, to scavenge reactive oxygen species (ROS) from cigarette smoke. In this study, the NRP was coated onto cigarette filters and its ROS-scavenging activity from streaming cigarette smoke was evaluated. The intensity of electron spin resonance signals of the NRP in the filter decreased after exposure to cigarette smoke, indicating consumption of nitroxide radicals. To evaluate the ROS-scavenging activity of the NRP-coated filter, the amount of peroxy radicals in an extract of cigarette smoke was measured using UV-visible spectrophotometry and 1,1-diphenyl-2-picrylhydrazyl (DPPH). The absorbance of DPPH at 517 nm decreased with exposure to cigarette smoke. When NRP-coated filters were used, the decrease in the absorbance of DPPH was prevented. In contrast, both poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters, which have no nitroxide radical, did not show any effect, indicating that the nitroxide radicals in the NRP scavenge the ROS in cigarette smoke. As a result, the extract of cigarette smoke passed through the NRP-coated filter has a lower cellular toxicity than smoke passed through poly[4-(cyclohexylamino)methylstyrene]- and poly(acrylic acid)-coated filters. Accordingly, NRP is a promising material for ROS scavenging from cigarette smoke.

  8. Reactive Oxygen Species-Dependent Cell Signaling Regulates the Mosquito Immune Response to Plasmodium falciparum

    PubMed Central

    Surachetpong, Win; Pakpour, Nazzy; Cheung, Kong Wai

    2011-01-01

    Abstract Reactive oxygen species (ROS) have been implicated in direct killing of pathogens, increased tissue damage, and regulation of immune signaling pathways in mammalian cells. Available research suggests that analogous phenomena affect the establishment of Plasmodium infection in Anopheles mosquitoes. We have previously shown that provision of human insulin in a blood meal leads to increased ROS levels in Anopheles stephensi. Here, we demonstrate that provision of human insulin significantly increased parasite development in the same mosquito host in a manner that was not consistent with ROS-induced parasite killing or parasite escape through damaged tissue. Rather, our studies demonstrate that ROS are important mediators of both the mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling branches of the mosquito insulin signaling cascade. Further, ROS alone can directly activate these signaling pathways and this activation is growth factor specific. Our data, therefore, highlight a novel role for ROS as signaling mediators in the mosquito innate immune response to Plasmodium parasites. Antioxid. Redox Signal. 14, 943955. PMID:21126166

  9. Quorum sensing circuit and reactive oxygen species resistance in Deinococcus sp.

    PubMed

    Fernandez-Bunster, G; Gonzalez, C; Barros, J; Martinez, M

    2012-12-01

    Genus Deinococcus is characterized by an increased resistance toward reactive oxygen species (ROS). The chromosome of five strains belonging to this genus has been sequenced and the presence of a luxS-like gene was deduced from their genome sequences. The aim of this study was to assess if a complete QS circuit is present in Deinococcus sp. and if this QS is associated with ROS. Primers for searching luxS-like gene and the putative receptor gene, namely ai2R, were designed. AI-2 signal production was evaluated by luminescence analysis using Vibrio harveyi BB170 as reporter strain. AI-2 signal was also evaluated by competitive assays using cinnamaldehyde, ascorbic acid, and 3-mercaptopropionic acid as interfering molecules. Potassium tellurite and metronidazole were used as oxidative stressors. A luxS-like gene as well as an ai2R gene was detected in strain UDEC-P1 by PCR. Cell-free supernatant of strain UDEC-P1 culture induced luminescence in V. harveyi BB170, and this property was inhibited with the three interfering molecules. The oxidative stressors metronidazole and potassium tellurite decreased Deinococcus sp. viability, but increased luminescence of the reporter strain. The results demonstrate that both a functional luxS-like gene and a putative receptor for AI-2 signal are present in Deinococcus sp. strain UDEC-P1. This finding also suggests that a complete QS circuit is present in this genus, which could be related to oxidative stress. PMID:22965623

  10. Direct measurement of reactive oxygen species in leukocytes during hemodialysis therapy

    PubMed Central

    Okano, Kazuhiro; Kimura, Kazuo; Tanaka, Yoichiro; Tsuchiya, Ken; Akiba, Takashi; Nitta, Kosaku

    2015-01-01

    Objectives: Both chronic kidney disease (CKD) and hemodialysis (HD) are reported to elevate oxidative stress. Available evidence for oxidative stress is indirect measurement of oxidative stress as accumulation of byproducts by reactive oxygen species (ROS). We aimed to examine the effect of CKD and HD on ROS levels in circulating leukocytes and to compare those with conventional oxidative stress marker, F2-isoprostane, in HD patients. Methods: Using flowcytometry techniques, ROS levels in circulating leukocytes can be directly measured in 16 HD patients and 12 healthy volunteers. We also measured circulating F2-isoprostanes levels in both groups. Results: HD patients demonstrated a significant increase in serum levels of F2-isoprostanes. The direct measurement of ROS levels in leukocytes showed increase in HD patients compared to the control; 1.91-fold in polymorphonuclear leukocytes (PMN), 1.06-fold in lymphocytes, and 1.35-fold in monocytes. Significant difference between the two groups could be observed only in PMN. The ROS levels in all three fractions of leukocytes showed negative correlations with serum F2-isoprostane levels but the ROS levels only in PMN showed significant correlation (r2 = 0.774, P = 0.001). Conclusions: Our results indicate that direct measurement of the ROS levels in circulating leukocytes by flowcytometry is a useful method to examine oxidative stress during HD procedure. The ROS levels in circulating leukocytes showed negative correlation with serum F2-isoprostane levels. PMID:26885025

  11. Long-lived Indy induces reduced mitochondrial reactive oxygen species production and oxidative damage.

    PubMed

    Neretti, Nicola; Wang, Pei-Yu; Brodsky, Alexander S; Nyguyen, Hieu H; White, Kevin P; Rogina, Blanka; Helfand, Stephen L

    2009-02-17

    Decreased Indy activity extends lifespan in D. melanogaster without significant reduction in fecundity, metabolic rate, or locomotion. To understand the underlying mechanisms leading to lifespan extension in this mutant strain, we compared the genome-wide gene expression changes in the head and thorax of adult Indy mutant with control flies over the course of their lifespan. A signature enrichment analysis of metabolic and signaling pathways revealed that expression levels of genes in the oxidative phosphorylation pathway are significantly lower in Indy starting at day 20. We confirmed experimentally that complexes I and III of the electron transport chain have lower enzyme activity in Indy long-lived flies by Day 20 and predicted that reactive oxygen species (ROS) production in mitochondria could be reduced. Consistently, we found that both ROS production and protein damage are reduced in Indy with respect to control. However, we did not detect significant differences in total ATP, a phenotype that could be explained by our finding of a higher mitochondrial density in Indy mutants. Thus, one potential mechanism by which Indy mutants extend life span could be through an alteration in mitochondrial physiology leading to an increased efficiency in the ATP/ROS ratio. PMID:19164521

  12. Effect of stobadine on opsonized zymosan stimulated generation of reactive oxygen species in human blood cells.

    PubMed

    Pecivov, J; Macickov, T; Cz, M; Nosl, R; Loje, A

    2004-01-01

    To predict more precisely the effect of stobadine, a pyridoindole antioxidant agent, in the whole organism, we studied its effect on opsonized zymosan-stimulated free radical generation in whole blood, on superoxide generation in the mixture of PMNL : platelets (1:50), as well as on superoxide generation and myeloperoxidase release in isolated PMNL. Without stimulation, stobadine had no effect on reactive oxygen species (ROS) generation and myeloperoxidase release. Stobadine in a concentration of 10 or 100 micromol/l significantly decreased luminol-enhanced chemiluminescence in opsonized zymosan-stimulated whole blood. In concentrations of 10 and 100 micromol/l, it reduced myeloperoxidase release from isolated neutrophils. Stobadine significantly decreased superoxide generation in isolated neutrophils in 100 micromol/l concentration. Its effect was much less pronounced in the mixture of neutrophils and platelets in the ratio close to physiological conditions (1:50). Our results suggest that stobadine might exert a beneficial effect in diseases or states where superfluous ROS generation could be deleterious. PMID:14984320

  13. Regulation of reactive oxygen species generation under drought conditions in Arabidopsis

    PubMed Central

    Lee, Sangmin; Park, Chung-Mo

    2012-01-01

    Reactive oxygen species (ROS) are produced when plants are exposed to environmental stresses, such as drought and heat conditions. Oxidative stress imposed by ROS under drought conditions profoundly affects plant growth and development. However, ROS production and scavenging mechanisms under adverse environmental conditions are largely unknown. We have recently reported that a NAM/ATAF1/2/CUC2 (NAC) transcription factor NTL4 is required for generation of ROS under drought conditions in Arabidopsis. 35S:4?C transgenic plants overexpressing a truncated NTL4 form (4?C) lacking the C?terminal transmembrane (TM) motif were hypersensitive to drought stress, and ROS accumulated to a high level in the transgenic plants. In contrast, NTL4-deficient ntl4 mutants were less sensitive to drought stress and contained reduced levels of ROS. Furthermore, the plasma membrane-associated NTL4 transcription factor is proteolytically activated by treatments with drought and abscisic acid (ABA) and nuclear-localized, where it induces expression of NADPH oxidase genes involved in ROS biosynthesis. Notably, the 35S:4?C transgenic plants showed accelerated leaf senescence and cell death under drought conditions. Taken together, these observations indicate that NTL4 regulation of ROS generation underlies the drought-induced leaf senescence. PMID:22580707

  14. Oleoyl-Lysophosphatidylcholine Limits Endothelial Nitric Oxide Bioavailability by Induction of Reactive Oxygen Species

    PubMed Central

    Kozina, Andrijana; Opresnik, Stefan; Wong, Michael Sze Ka; Hallström, Seth; Graier, Wolfgang F.; Malli, Roland; Schröder, Katrin; Schmidt, Kurt; Frank, Saša

    2014-01-01

    Previously we reported modulation of endothelial prostacyclin and interleukin-8 production, cyclooxygenase-2 expression and vasorelaxation by oleoyl- lysophosphatidylcholine (LPC 18:1). In the present study, we examined the impact of this LPC on nitric oxide (NO) bioavailability in vascular endothelial EA.hy926 cells. Basal NO formation in these cells was decreased by LPC 18:1. This was accompanied with a partial disruption of the active endothelial nitric oxide synthase (eNOS)- dimer, leading to eNOS uncoupling and increased formation of reactive oxygen species (ROS). The LPC 18:1-induced ROS formation was attenuated by the superoxide scavenger Tiron, as well as by the pharmacological inhibitors of eNOS, NADPH oxidases, flavin-containing enzymes and superoxide dismutase (SOD). Intracellular ROS-formation was most prominent in mitochondria, less pronounced in cytosol and undetectable in endoplasmic reticulum. Importantly, Tiron completely prevented the LPC 18:1-induced decrease in NO bioavailability in EA.hy926 cells. The importance of the discovered findings for more in vivo like situations was analyzed by organ bath experiments in mouse aortic rings. LPC 18:1 attenuated the acetylcholine-induced, endothelium dependent vasorelaxation and massively decreased NO bioavailability. We conclude that LPC 18:1 induces eNOS uncoupling and unspecific superoxide production. This results in NO scavenging by ROS, a limited endothelial NO bioavailability and impaired vascular function. PMID:25419657

  15. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.

    PubMed

    Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D

    2012-07-01

    Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises <10% of UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin. PMID:22318388

  16. Ligation of Glycophorin A Generates Reactive Oxygen Species Leading to Decreased Red Blood Cell Function

    PubMed Central

    Khoory, Joseph; Estanislau, Jessica; Elkhal, Abdallah; Lazaar, Asmae; Melhorn, Mark I.; Brodsky, Abigail; Illigens, Ben; Hamachi, Itaru; Kurishita, Yasutaka; Ivanov, Alexander R.; Shevkoplyas, Sergey; Shapiro, Nathan I.; Ghiran, Ionita C.

    2016-01-01

    Acute, inflammatory conditions associated with dysregulated complement activation are characterized by significant increases in blood concentration of reactive oxygen species (ROS) and ATP. The mechanisms by which these molecules arise are not fully understood. In this study, using luminometric- and fluorescence-based methods, we show that ligation of glycophorin A (GPA) on human red blood cells (RBCs) results in a 2.1-fold, NADPH-oxidase-dependent increase in intracellular ROS that, in turn, trigger multiple downstream cascades leading to caspase-3 activation, ATP release, and increased band 3 phosphorylation. Functionally, using 2D microchannels to assess membrane deformability, GPS-ligated RBCs travel 33% slower than control RBCs, and lipid mobility was hindered by 10% using fluorescence recovery after photobleaching (FRAP). These outcomes were preventable by pretreating RBCs with cell-permeable ROS scavenger glutathione monoethyl ester (GSH-ME). Our results obtained in vitro using anti-GPA antibodies were validated using complement-altered RBCs isolated from control and septic patients. Our results suggest that during inflammatory conditions, circulating RBCs significantly contribute to capillary flow dysfunctions, and constitute an important but overlooked source of intravascular ROS and ATP, both critical mediators responsible for endothelial cell activation, microcirculation impairment, platelet activation, as well as long-term dysregulated adaptive and innate immune responses. PMID:26784696

  17. Catalase eliminates reactive oxygen species and influences the intestinal microbiota of shrimp.

    PubMed

    Yang, Hui-Ting; Yang, Ming-Chong; Sun, Jie-Jie; Guo, Fang; Lan, Jiang-Feng; Wang, Xian-Wei; Zhao, Xiao-Fan; Wang, Jin-Xing

    2015-11-01

    Intestinal innate immune response is an important defense mechanism of animals and humans against external pathogens. The mechanism of microbiota homeostasis in host intestines has been well studied in mammals and Drosophila. The reactive oxygen species (ROS) and antimicrobial peptides have been reported to play important roles in homeostasis. However, how to maintain the microbiota homeostasis in crustacean intestine needs to be elucidated. In this study, we identified a novel catalase (MjCAT) involved in ROS elimination in kuruma shrimp, Marsupenaeus japonicus. MjCAT mRNA was widely distributed in hemocytes, heart, hepatopancreas, gills, stomach, and intestine. After the shrimp were challenged with pathogenic bacteria via oral infection, the expression level of MjCAT was upregulated, and the enzyme activity was increased in the intestine. ROS level was also increased in the intestine at early time after oral infection and recovered rapidly. When MjCAT was knocked down by RNA interference (RNAi), high ROS level maintained longer time, and the number of bacteria number was declined in the shrimp intestinal lumen than those in the control group, but the survival rate of the MjCAT-RNAi shrimp was declined. Further study demonstrated that the intestinal villi protruded from epithelial lining of the intestinal wall were damaged by the high ROS level in MjCAT-knockdown shrimp. These results suggested that MjCAT participated in the intestinal host-microbe homeostasis by regulating ROS level. PMID:26314524

  18. Age-dependent action of reactive oxygen species on transmitter release in mammalian neuromuscular junctions.

    PubMed

    Shakirzyanova, Anastasia; Valeeva, Guzel; Giniatullin, Arthur; Naumenko, Nikolay; Fulle, Stefania; Akulov, Anton; Atalay, Mustafa; Nikolsky, Eugeny; Giniatullin, Rashid

    2016-02-01

    Reactive oxygen species (ROS) are implicated in aging, but the neurobiological mechanisms of ROS action are not fully understood. Using electrophysiological techniques and biochemical assays, we studied the age-dependent effect of hydrogen peroxide (H2O2) on acetylcholine release in rat diaphragm neuromuscular junctions. H2O2 significantly inhibited both spontaneous (measured as frequency of miniature end-plate potentials) and evoked (amplitude of end-plate potentials) transmitter release in adult rats. The inhibitory effect of H2O2 was much stronger in old rats, whereas in newborns tested during the first postnatal week, H2O2 did not affect spontaneous release from nerve endings and potentiated end-plate potentials. Proteinkinase C activation or intracellular Ca(2+) elevation restored redox sensitivity of miniature end-plate potentials in newborns. The resistance of neonates to H2O2 inhibition was associated with higher catalase and glutathione peroxidase activities in skeletal muscle. In contrast, the activities of these enzymes were downregulated in old rats. Our data indicate that the vulnerability of transmitter release to oxidative damage strongly correlates with aging and might be used as an early indicator of senescence. PMID:26827645

  19. H2S cytotoxicity mechanism involves reactive oxygen species formation and mitochondrial depolarisation.

    PubMed

    Eghbal, Mohammad A; Pennefather, Peter S; O'Brien, Peter J

    2004-10-15

    A number of scavengers of reactive oxygen species (ROS) were found to be protective against cell death induced by hydrogen sulfide (H2S) in isolated hepatocytes. The H2O2 scavengers alpha-ketoglutarate and pyruvate, which also act as energy substrate metabolites, were more protective against H2S toxicity than lactate which is only an energy substrate metabolite. All of these results suggest that H2S toxicity is dependent on ROS production. We measured ROS formation directly in hepatocytes using the fluorogenic dichlorofluorescin method. H2S-induced ROS formation was dose dependent and pyruvate inhibited this ROS production. Non-toxic concentrations of H2S enhanced the cytotoxicity of H2O2 generated by glucose/glucose oxidase, which was inhibited by CYP450 inibitors. Furthermore, hepatocyte ROS formation induced by H2S was decreased by CYP450 inhibitors cimetidine and benzylimidazole. These results suggest that CYP450-dependant metabolism of H2S is responsible for inducing ROS production. H2S-induced cytotoxicity was preceded by mitochondrial depolarization as measured by rhodamine 123 fluorescence. Mitochondrial depolarization induced by H2S was prevented by zinc, methionine and pyruvate all of which decreased H2S-induced cell death. Treatment of H2S poisoning may benefit from interventions aimed at minimizing ROS-induced damage and reducing mitochondrial damage. PMID:15363583

  20. Modulation of reactive oxygen species by Rac1 or catalase prevents asbestos-induced pulmonary fibrosis

    PubMed Central

    Murthy, Shubha; Adamcakova-Dodd, Andrea; Perry, Sarah S.; Tephly, Linda A.; Keller, Richard M.; Metwali, Nervana; Meyerholz, David K.; Wang, Yongqiang; Glogauer, Michael; Thorne, Peter S.

    2009-01-01

    The release of reactive oxygen species (ROS) and cytokines by alveolar macrophages has been demonstrated in asbestos-induced pulmonary fibrosis, but the mechanism linking alveolar macrophages to the pathogenesis is not known. The GTPase Rac1 is a second messenger that plays an important role in host defense. In this study, we demonstrate that Rac1 null mice are protected from asbestos-induced pulmonary fibrosis, as determined by histological and biochemical analysis. We hypothesized that Rac1 induced pulmonary fibrosis via generation of ROS. Asbestos increased TNF-? and ROS in a Rac1-dependent manner. TNF-? was elevated only 1 day after exposure, whereas ROS generation progressively increased in bronchoalveolar lavage cells obtained from wild-type (WT) mice. To determine whether ROS generation contributed to pulmonary fibrosis, we overexpressed catalase in WT monocytes and observed a decrease in ROS generation in vitro. More importantly, administration of catalase to WT mice attenuated the development of fibrosis in vivo. For the first time, these results demonstrate that Rac1 plays a crucial role in asbestos-induced pulmonary fibrosis. Moreover, it suggests that a simple intervention may be useful to prevent progression of the disease. PMID:19684199

  1. Fluorescent approach to quantitation of reactive oxygen species in mainstream cigarette smoke.

    PubMed

    Ou, Boxin; Huang, Dejian

    2006-05-01

    A novel approach to monitoring of mainstream smoke reactive oxygen species (ROS) has been developed and applied to the quantitation of smoke oxidants. Redox-active fluorescent probe dihydrorhodamine 6G (DHR-6G) was selected as the molecular probe because it is sensitive to typical smoke ROS. The experimental system couples an automatic cigarette smoke machine fiber-optic fluorometer for real-time monitoring of the reaction progress between cigarette smoke and DHR-6G. Quantitation was achieved based on the amount of rhodamine 6G, which is the sole product from DHR-6G oxidation. With the optimization of the trapping efficiency, we detected 391 nmol of ROS/cigarette in the mainstream CS for a standard cigarette 2R4F under standard Federal Trade Commission smoking protocol. Applying this method, we quantified the ROS of selected cigarettes and found that the cigarettes made of burley tobacco have much ( approximately 10 times) higher ROS content in the smoke than that in the tobacco made of bright tobacco. The smokeless cigarette, Eclipse, has comparable ROS with cigarettes made of bright tobacco. PMID:16642999

  2. Hyperthermia induces apoptosis through endoplasmic reticulum and reactive oxygen species in human osteosarcoma cells.

    PubMed

    Hou, Chun-Han; Lin, Feng-Ling; Hou, Sheng-Mon; Liu, Ju-Fang

    2014-01-01

    Osteosarcoma (OS) is a relatively rare form of cancer, but OS is the most commonly diagnosed bone cancer in children and adolescents. Chemotherapy has side effects and induces drug resistance in OS. Since an effective adjuvant therapy was insufficient for treating OS, researching novel and adequate remedies is critical. Hyperthermia can induce cell death in various cancer cells, and thus, in this study, we investigated the anticancer method of hyperthermia in human OS (U-2 OS) cells. Treatment at 43 C for 60 min induced apoptosis in human OS cell lines, but not in primary bone cells. Furthermore, hyperthermia was associated with increases of intracellular reactive oxygen species (ROS) and caspase-3 activation in U-2 OS cells. Mitochondrial dysfunction was followed by the release of cytochrome c from the mitochondria, and was accompanied by decreased anti-apoptotic Bcl-2 and Bcl-xL, and increased pro-apoptotic proteins Bak and Bax. Hyperthermia triggered endoplasmic reticulum (ER) stress, which was characterized by changes in cytosolic calcium levels, as well as increased calpain expression and activity. In addition, cells treated with calcium chelator (BAPTA-AM) blocked hyperthermia-induced cell apoptosis in U-2 OS cells. In conclusion, hyperthermia induced cell apoptosis substantially via the ROS, ER stress, mitochondria, and caspase pathways. Thus, hyperthermia may be a novel anticancer method for treating OS. PMID:25268613

  3. Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis.

    PubMed

    Lim, Chuan Bian; Prle, Cecilia M; Baltic, Svetlana; Arthur, Peter G; Creaney, Jenette; Watkins, D Neil; Thompson, Philip J; Mutsaers, Steven E

    2015-01-30

    Gli transcription factors of the Hedgehog (Hh) pathway have been reported to be drivers of malignant mesothelioma (MMe) cell survival. The Gli inhibitor GANT61 induces apoptosis in various cancer cell models, and has been associated directly with Gli inhibition. However various chemotherapeutics can induce cell death through generation of reactive oxygen species (ROS) but whether ROS mediates GANT61-induced apoptosis is unknown. In this study human MMe cells were treated with GANT61 and the mechanisms regulating cell death investigated. Exposure of MMe cells to GANT61 led to G1 phase arrest and apoptosis, which involved ROS but not its purported targets, GLI1 or GLI2. GANT61 triggered ROS generation and quenching of ROS protected MMe cells from GANT61-induced apoptosis. Furthermore, we demonstrated that mitochondria are important in mediating GANT61 effects: (1) ROS production and apoptosis were blocked by mitochondrial inhibitor rotenone; (2) GANT61 promoted superoxide formation in mitochondria; and (3) mitochondrial DNA-deficient LO68 cells failed to induce superoxide, and were more resistant to apoptosis induced by GANT61 than wild-type cells. Our data demonstrate for the first time that GANT61 induces apoptosis by promoting mitochondrial superoxide generation independent of Gli inhibition, and highlights the therapeutic potential of mitochondrial ROS-mediated anticancer drugs in MMe. PMID:25544756

  4. ACROLEIN ACTIVATES MATRIX METALLOPROTEINASES BY INCREASING REACTIVE OXYGEN SPECIES IN MACROPHAGES

    PubMed Central

    O’Toole, Timothy E.; Zheng, Yu-Ting; Hellmann, Jason; Conklin, Daniel J.; Barski, Oleg; Bhatnagar, Aruni

    2009-01-01

    Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+]i), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+]I with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+]I, leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure. PMID:19371603

  5. Metabolism of reactive oxygen species in cytoplasmic male sterility of rice by marking upmost pulvinus interval.

    PubMed

    Li, Jianxin; Dai, Ximei; Li, Linyu; Jiao, Zhen; Huang, Qunce

    2015-02-01

    Reactive oxygen species (ROS) and malondialdehyde (MDA) in plant cell are thought to be important inducible factors of cell apoptosis if excessively accumulated in cells. To elucidate the metabolic mechanism of MDA production and scavenging in the cytoplasmic male-sterile (CMS) rice, CMS line and maintainer were employed for studying the relationship at different developmental stages by marking upmost pulvinus interval method of experiment. The results showed that the panicles and leaves of the CMS line had a noticeable higher MDA content than those of maintainer line at all five stages that had been investigated (p < 0.05). MDA content in the CMS line in the flag leaves of auricle in the distance 0 mm stage (the meiosis stage) was the highest of the five stages. The increase of MDA contents in sterile panicles and leaves had inducible effects on the enzymic activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). However, at the abortion peak stage, MDA was excessively accumulated and antioxidant enzymic activity reduced significantly, resulting in the generation and scavenging of MDA out of balance. PMID:25380642

  6. Cryptococcus neoformans capsule protects cell from oxygen reactive species generated by antimicrobial photodynamic inactivation

    NASA Astrophysics Data System (ADS)

    Prates, Renato Araujo; Hamblin, Michael R.; Kato, Ilka T.; Fuchs, Beth; Mylonakis, Eleytherios; Simões Ribeiro, Martha; Tegos, George

    2011-03-01

    Antimicrobial photodynamic inactivation (APDI) is based on the utilization of substances that can photosensitize biological tissues and are capable of being activated in the presence of light. Cryptococcus neoformans is an yeast surrounded by a capsule composed primarily of glucoronoxylomannan that plays an important role in its virulence. This yeast causes infection on skin, lungs and brain that can be associated with neurological sequelae and neurosurgical interventions, and its conventional treatment requires prolonged antifungal therapy, which presents important adverse effects. The aim of this study was to evaluate the protective effect of Cryptococcus neoformans capsule against reactive oxygen species generated by APDI. Cryptococcus neoformans KN99α, which is a strain able to produce capsule, and CAP59 that does not present capsule production were submitted to APDI using methylene blue (MB), rose bengal (RB), and pL-ce6 as photosensitizers (PS). Then microbial inactivation was evaluated by counting colony form units following APDI and confocal laser scanning microscopy (CLSM) illustrated localization as well as the preferential accumulation of PS into the fungal cells. C. neoformans KN99α was more resistant to APDI than CAP59 for all PSs tested. CLSM showed incorporation of MB and RB into the cytoplasm and a preferential uptake in mitochondria. A nuclear accumulation of MB was also observed. Contrarily, pL-ce6 appears accumulated in cell wall and cell membrane and minimal florescence was observed inside the fungal cells. In conclusion, the ability of C. neoformans to form capsule enhances survival following APDI.

  7. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    PubMed

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jrmie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination. PMID:24811898

  8. A Computational Model of Reactive Oxygen Species and Redox Balance in Cardiac Mitochondria

    PubMed Central

    Gauthier, LauraD.; Greenstein, JosephL.; Cortassa, Sonia; ORourke, Brian; Winslow, RaimondL.

    2013-01-01

    Elevated levels of reactive oxygen species (ROS) play a critical role in cardiac myocyte signaling in both healthy and diseased cells. Mitochondria represent the predominant cellular source of ROS, specifically the activity of complexes I and III. The model presented here explores the modulation of electron transport chain ROS production for state 3 and state 4 respiration and the role of substrates and respiratory inhibitors. Model simulations show that ROS production from complex III increases exponentially with membrane potential (??m) when in state 4. Complex I ROS release in the model can occur in the presence of NADH and succinate (reverse electron flow), leading to a highly reduced ubiquinone pool, displaying the highest ROS production flux in state 4. In the presence of ample ROS scavenging, total ROS production is moderate in state 3 and increases substantially under state 4 conditions. The ROS production model was extended by combining it with a minimal model of ROS scavenging. When the mitochondrial redox status was oxidized by increasing the proton permeability of the inner mitochondrial membrane, simulations with the combined model show that ROS levels initially decline as production drops off with decreasing ??m and then increase as scavenging capacity is exhausted. Hence, this mechanistic model of ROS production demonstrates how ROS levels are controlled by mitochondrial redox balance. PMID:23972856

  9. Seminal reactive oxygen species-antioxidant relationship in fertile males with and without varicocele.

    PubMed

    Mostafa, T; Anis, T; Imam, H; El-Nashar, A R; Osman, I A

    2009-04-01

    The aim of this study was to assess seminal reactive oxygen species (ROS)-antioxidants relationship in fertile and infertile men with and without varicocele. One hundred and seventy six males were studied; fertile healthy volunteers (n = 45), fertile men with varicocele (n = 45), infertile oligoasthenozoospermia (OA, n = 44) without varicocele and infertile OA with varicocele (n = 42). In their seminal plasma, two ROS parameters (malondialdehyde, hydrogen peroxide) and five antioxidants (superoxide dismutase, catalase, glutathione peroxidase, vitaminE, vitaminC) were estimated. Compared with fertile healthy men, in all other studied groups, estimated seminal ROS were significantly higher and estimated antioxidants were significantly lower. Infertile men with varicocele showed the same relationship as infertile men without varicocele. Sperm concentration, total sperm motility as well as sperm normal forms were negatively correlated with seminal malondialdehyde and were positively correlated with vitaminC. It is concluded that varicocele has an oxidative stress (OS) in fertile normozoospermic bearing conditions. This may allow understanding that, within men with varicocele, there is a threshold value of OS over which male fertility may be impaired. PMID:19260850

  10. Metabolic regulation of the ultradian oscillator Hes1 by reactive oxygen species.

    PubMed

    Ventre, Simona; Indrieri, Alessia; Fracassi, Chiara; Franco, Brunella; Conte, Ivan; Cardone, Luca; di Bernardo, Diego

    2015-05-22

    Ultradian oscillators are cyclically expressed genes with a period of less than 24h, found in the major signalling pathways. The Notch effector hairy and enhancer of split Hes genes are ultradian oscillators. The physiological signals that synchronise and entrain Hes oscillators remain poorly understood. We investigated whether cellular metabolism modulates Hes1 cyclic expression. We demonstrated that, in mouse myoblasts (C2C12), Hes1 oscillation depends on reactive oxygen species (ROS), which are generated by the mitochondria electron transport chain and by NADPH oxidases NOXs. In vitro, the regulation of Hes1 by ROS occurs via the calcium-mediated signalling. The modulation of Hes1 by ROS was relevant in vivo, since perturbing ROS homeostasis was sufficient to alter Medaka (Oryzias latipes) somitogenesis, a process that is dependent on Hes1 ultradian oscillation during embryo development. Moreover, in a Medaka model for human microphthalmia with linear skin lesions syndrome, in which mitochondrial ROS homeostasis was impaired, we documented important somitogenesis defects and the deregulation of Hes homologues genes involved in somitogenesis. Notably, both molecular and developmental defects were rescued by antioxidant treatments. Our studies provide the first evidence of a coupling between cellular redox metabolism and an ultradian biological oscillator with important pathophysiological implication for somitogenesis. PMID:25796437

  11. Autophagy protein Ulk1 promotes mitochondrial apoptosis through reactive oxygen species.

    PubMed

    Mukhopadhyay, Subhadip; Das, Durgesh Nandini; Panda, Prashanta Kumar; Sinha, Niharika; Naik, Prajna Paramita; Bissoyi, Akalabya; Pramanik, Krishna; Bhutia, Sujit Kumar

    2015-12-01

    Regardless of rapid progression in the field of autophagy, it remains a challenging task to understand the cross talk with apoptosis. In this study, we overexpressed Ulk1 in HeLa cells and evaluated the apoptosis-inducing potential of the Ulk1 gene in the presence of cisplatin. The gain of function of Ulk1 gene showed a decline in cell viability and colony formation in HeLa cells. The Ulk1-overexpressing cells showed higher apoptotic attributes by an increase in the percentage of annexin V, escalated expression of Bax/Bcl2 ratio, and caspase-9, -3/7 activities. Further, reactive oxygen species (ROS) generation was found to be much higher in HeLa-Ulk1 than in the mock group. Scavenging the ROS by N-acetyl-L-cysteine increased cell viability and colony number as well as mitochondrial membrane potential (MMP). Our data showed that Ulk1 on entering into mitochondria inhibits the manganese dismutase activity and intensifies the mitochondrial superoxide level. The Ulk1-triggered autophagy (particularly mitophagy) resulted in a fall in ATP; thus the nonmitophagic mitochondria overwork the electron-transport cycle to replenish energy demand and are inadvertently involved in ROS overproduction that led to apoptosis. In this present investigation, our results decipher a previously unrecognized perspective of apoptosis induction by a key autophagy protein Ulk1 that may contribute to identification of its tumor-suppressor properties through dissecting the connection among cellular bioenergetics, ROS, and MMP. PMID:26409225

  12. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species.

    PubMed

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs' treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs' treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  13. Inhibition of ERK Oscillations by Ionizing Radiation and Reactive Oxygen Species

    SciTech Connect

    Shankaran, Harish; Chrisler, William B.; Sontag, Ryan L.; Weber, Thomas J.

    2010-12-28

    The shuttling of activated protein kinases between the cytoplasm and nucleus is an essential feature of normal growth factor signaling cascades. Here we demonstrate that transforming growth factor alpha (TGF?) induces oscillations in extracellular signal regulated kinase (ERK) cytoplasmic-nuclear translocations in human keratinocytes. TGF?-dependent ERK oscillations mediated through the epidermal growth factor receptor (EGFR) are inhibited by low dose X-irradiation (10?cGy) and low concentrations of hydrogen peroxide (0.323.26?M H2O2) used as a model reactive oxygen species (ROS). A fluorescent indicator dye (H2-DCFDA) was used to measure cellular ROS levels following X-irradiation, 12-O-tetradecanoyl phorbol-13-acetate (TPA) and H2O2. X-irradiation did not generate significant ROS production while 0.32?M H2O2 and TPA induced significant increases in ROS levels with H2O2? >?TPA. TPA alone induced transactivation of the EGFR but did not induce ERK oscillations. TPA as a cotreatment did not inhibit TGF?-stimulated ERK oscillations but qualitatively altered TGF?-dependent ERK oscillation characteristics (amplitude, time-period). Collectively, these observations demonstrate that TGF?-induced ERK oscillations are inhibited by ionizing radiation/ROS and perturbed by epigenetic carcinogen in human keratinocytes. 2010 Wiley-Liss, Inc.

  14. Toxic effects of chlortetracycline on maize growth, reactive oxygen species generation and the antioxidant response.

    PubMed

    Wen, Bei; Liu, Yu; Wang, Peng; Wu, Tong; Zhang, Shuzhen; Shan, Xiaoquan; Lu, Jingfen

    2012-01-01

    The toxicity of chlortetracycline (CTC) on maize (Zea mays L.) growth and reactive oxygen species (ROS) generation was studied. The root and shoot lengths and fresh weights of maize seedlings were inhibited by CTC treatment (p < 0.05). Root length was more sensitive than other parameters with the EC10 value of 0.064 mg/L. The spin trapping technique followed by electron paramagnetic resonance (EPR) analysis was used to quantify the ROS production. The ROS generated in maize roots after exposure to CTC was identified as hydroxyl radical (*OH). The EPR signal intensity correlated positively with the logarithm of CTC concentrations exposed (p < 0.05). The dynamic changes of malondialdehyde (MDA) contents and the antioxidative enzyme activities in maize roots were also determined. As compared to the control group, CTC was found to significantly increase MDA content. Treatment of maize roots with the *OH scavenger sodium benzoate (SB) reduced the MDA content and enhanced the antioxidative enzyme activities. The results demonstrated the harmfulness of CTC at high dose to maize in the early developmental stage, and clarified that the inducement of *OH is one of the mechanisms of CTC toxicity. PMID:23505878

  15. Genotoxicity and reactive oxygen species production induced by magnetite nanoparticles in mammalian cells.

    PubMed

    Kawanishi, Masanobu; Ogo, Sayaka; Ikemoto, Miho; Totsuka, Yukari; Ishino, Kousuke; Wakabayashi, Keiji; Yagi, Takashi

    2013-01-01

    We examined the genotoxicity of magnetite nanoparticles (primary particle size: 10 nm) on human A549 and Chinese hamster ovary (CHO) AA8 cells. Six hours' treatment with the particles dose-dependently increased the frequency of micronuclei (MN) in the A549 and CHO AA8 cells up to 5.2% and 5.0% at a dose of 200 g/ml (34 g/cm), respectively. In A549 cells, treatment with the nano-particles (2 g/ml) for 1 hr induced H2AX phosphorylation, which is suggestive of DNA double strand breaks (DSB). Treating CHO AA8 cells with 2 g/ml (0.34 g/cm) magnetite for 1 hour resulted in a five times higher frequency of sister chromatid exchange (SCE) than the control level. We detected reactive oxygen species (ROS) in CHO cells treated with the particles. These findings indicate that magnetite nano-particles induce ROS in mammalian cells, leading to the direct or indirect induction of DSB, followed by clastogenic events including MN and SCE. PMID:23719928

  16. Involvement of reactive oxygen species in the cytotoxic effect of acid-electrolyzed water.

    PubMed

    Mokudai, Takayuki; Kanno, Taro; Niwano, Yoshimi

    2015-02-01

    Acid-electrolyzed water (AEW) is commonly used as a disinfectant in the agricultural and medical fields. Although several studies have been conducted to examine its toxicity in vitro and in vivo, the cytotoxic mechanism of AEW has never been verified. The purpose of the present study was to elucidate the underlying mechanism by which AEW exerts its in vitro cytotoxic effect. Mouse fibroblasts treated with AEW experienced dilution rate-dependent cytotoxic effects in the 100% confluent phase as well as in the mitotic phase. The levels of intracellular reactive oxygen species (ROS) increased significantly in fully-confluent cells treated with undiluted and four times diluted AEW. In both of these treatments, cytotoxicity was also observed. It is thus concluded that the in vitro cytotoxicity of AEW is attributable to increased intracellular ROS. Additionally, the ROS responsible for these effects appears to be, at least in part, hydroxyl radical because the increase in intracellular ROS was attenuated by post-treatment with dimethyl sulfoxide, a hydroxyl radical scavenger, and with the antioxidant polyphenol, proanthocyanidin. PMID:25560392

  17. Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway.

    PubMed

    Wang, Liping; Tian, Zhufang; Yang, Qi; Li, Heng; Guan, Haixia; Shi, Bingyin; Hou, Peng; Ji, Meiju

    2015-09-22

    Sulforaphane (SFN), a natural compound derived from broccoli/broccoli sprouts, has been demonstrated to be used as an antitumor agent in different types of cancers. However, its antitumor effect in thyroid cancer remains largely unknown. The aim of the study was to investigate the therapeutic potential of SFN for thyroid cancer and explore the mechanisms underlying antitumor effects of SFN by in vitro and in vivo studies. Our data demonstrated that SFN significantly inhibited thyroid cancer cell proliferation in a dose- and time-dependent manner, induced G2/M phase cell cycle arrest and apoptosis, and inhibited thyroid cancer cell migration and invasion by suppressing epithelial-mesenchymal transition (EMT) process and expression of Slug, Twist, MMP-2 and -9. Mechanically, SFN inhibited thyroid cancer cell growth and invasiveness through repressing phosphorylation of Akt, enhancing p21 expression by the activation of Erk and p38 signaling cascades, and promoting mitochondrial-mediated apoptosis via reactive oxygen species (ROS)-dependent pathway. Growth of xenograft tumors derived from thyroid cancer cell line FTC133 in nude mice was also significantly inhibited by SFN. Importantly, we did not find significant effect of SFN on body weight and liver function of mice. Collectively, we for the first time demonstrate that SFN is a potentially effective antitumor agent for thyroid cancer. PMID:26312762

  18. Identification and biological activities of a new antiangiogenic small molecule that suppresses mitochondrial reactive oxygen species

    SciTech Connect

    Kim, Ki Hyun; Park, Ju Yeol; Jung, Hye Jin; Kwon, Ho Jeong

    2011-01-07

    Research highlights: {yields} YCG063 was screened as a new angiogenesis inhibitor which suppresses mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library. {yields} The compound inhibited in vitro and in vivo angiogenesis in a dose-dependent manner. {yields} This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions. -- Abstract: Mitochondrial reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In particular, high levels of mitochondrial ROS in hypoxic cells regulate many angiogenesis-related diseases, including cancer and ischemic disorders. Here we report a new angiogenesis inhibitor, YCG063, which suppressed mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library with an ArrayScan HCS reader. YCG063 suppressed mitochondrial ROS generation under a hypoxic condition in a dose-dependent manner, leading to the inhibition of in vitro angiogenic tube formation and chemoinvasion as well as in vivo angiogenesis of the chorioallantoic membrane (CAM) at non-toxic doses. In addition, YCG063 decreased the expression levels of HIF-1{alpha} and its target gene, VEGF. Collectively, a new antiangiogenic small molecule that suppresses mitochondrial ROS was identified. This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions.

  19. Low Po? conditions induce reactive oxygen species formation during contractions in single skeletal muscle fibers.

    PubMed

    Zuo, Li; Shiah, Amy; Roberts, William J; Chien, Michael T; Wagner, Peter D; Hogan, Michael C

    2013-06-01

    Contractions in whole skeletal muscle during hypoxia are known to generate reactive oxygen species (ROS); however, identification of real-time ROS formation within isolated single skeletal muscle fibers has been challenging. Consequently, there is no convincing evidence showing increased ROS production in intact contracting fibers under low Po? conditions. Therefore, we hypothesized that intracellular ROS generation in single contracting skeletal myofibers increases during low Po? compare