Science.gov

Sample records for exogenous reactive oxygen

  1. [Response of reactive oxygen metabolism in melon chloroplasts to short-term salinity-alkalinity stress regulated by exogenous γ-aminobutyric acid].

    PubMed

    Xiang, Li-xia; Hu, Li-pan; Hu, Xiao-hui; Pan, Xiong-bo; Ren, Wen-qi

    2015-12-01

    The regulatory effect of exogenous γ-aminobutyric acid (GABA) on metabolism of reactive oxygen species (ROS) in melon chloroplasts under short-term salinity-alkalinity stress were investigated in melon variety 'Jinhui No. 1', which was cultured with deep flow hydroponics. The result showed that under salinity-alkalinity stress, the photosynthetic pigment content, MDA content, superoxide anion (O₂·) production rate and hydrogen peroxide (H₂O₂) content in chloroplast increased significantly, the contents of antioxidants ascorbic acid (AsA) and glutathione (GSH) increased, and the activities of H⁺-ATPase and H⁺-PPiase were inhibited obviously. With exogenous GABA application, the accumulations of O₂·, MDA and H₂O₂ induced by salinity-alkalinity stress were inhibited. Exogenous GABA alleviated the increase of photosynthetic pigment content, improved the activity of SOD, enzymes of AsA-GSH cycle, total AsA and total GSH while decreased the AsA/DHA ratio and GSH/GSSH ratio. Foliar GABA could enhance the H⁺-ATPase and H⁺-PPiase activities. Our results suggested that the exogenous GABA could accelerate the ROS metabolism in chloroplast, promote the recycle of AsA-GSH, and maintain the permeability of cell membrane to improve the ability of melon chloroplast against salinity-alkalinity stress. PMID:27112014

  2. Exogenous spermine ameliorates high glucose-induced cardiomyocytic apoptosis via decreasing reactive oxygen species accumulation through inhibiting p38/JNK and JAK2 pathways.

    PubMed

    He, Yuqin; Yang, Jinxia; Li, Hongzhu; Shao, Hongjiang; Wei, Can; Wang, Yuehong; Li, Meixiu; Xu, Changqing

    2015-01-01

    Reactive oxygen species (ROS) generation has been suggested to play a vital role in the initiation and progression of diabetic cardiomyopathy, a major complication of diabetes mellitus. Recent studies reveal that spermine possesses proliferative, antiaging and antioxidative properties. Thus, we hypothesized that spermine could decrease apoptosis via suppressing ROS accumulation induced by high glucose (HG) in cardiomyocytes. Cultured neonatal rat ventricle cardiomyocytes were treated with normal glucose (NG) (5 mM) or HG (25 mM) in the presence or absence of spermine for 48 h. The cell activity, apoptosis, ROS production, T-SOD and GSH activities, MDA content and GSSG level were assessed. The results showed that HG induced lipid peroxidation and the increase of intracellular ROS formation and apoptosis in primary cardiomyocytes. Spermine could obviously improve the above-mentioned changes. Western blot analysis revealed that spermine markedly inhibited HG-induced the phosphorylation of p38/JNK MAPKs and JAK2. Moreover, spermine had better antioxidative and anti-apoptotic effects than N-acetyl-L-cysteine (NAC). Taken together, the present data suggested that spermine could suppress ROS accumulation to decrease cardiomyocytes apoptosis in HG condition, which may be attributed to the inhibition of p38/JNK and JAK2 activation and its natural antioxidative property. Our findings may highlight a new therapeutic intervention for the prevention of diabetic cardiomyopathy. PMID:26884823

  3. Exogenous spermine ameliorates high glucose-induced cardiomyocytic apoptosis via decreasing reactive oxygen species accumulation through inhibiting p38/JNK and JAK2 pathways

    PubMed Central

    He, Yuqin; Yang, Jinxia; Li, Hongzhu; Shao, Hongjiang; Wei, Can; Wang, Yuehong; Li, Meixiu; Xu, Changqing

    2015-01-01

    Reactive oxygen species (ROS) generation has been suggested to play a vital role in the initiation and progression of diabetic cardiomyopathy, a major complication of diabetes mellitus. Recent studies reveal that spermine possesses proliferative, antiaging and antioxidative properties. Thus, we hypothesized that spermine could decrease apoptosis via suppressing ROS accumulation induced by high glucose (HG) in cardiomyocytes. Cultured neonatal rat ventricle cardiomyocytes were treated with normal glucose (NG) (5 mM) or HG (25 mM) in the presence or absence of spermine for 48 h. The cell activity, apoptosis, ROS production, T-SOD and GSH activities, MDA content and GSSG level were assessed. The results showed that HG induced lipid peroxidation and the increase of intracellular ROS formation and apoptosis in primary cardiomyocytes. Spermine could obviously improve the above-mentioned changes. Western blot analysis revealed that spermine markedly inhibited HG-induced the phosphorylation of p38/JNK MAPKs and JAK2. Moreover, spermine had better antioxidative and anti-apoptotic effects than N-acetyl-L-cysteine (NAC). Taken together, the present data suggested that spermine could suppress ROS accumulation to decrease cardiomyocytes apoptosis in HG condition, which may be attributed to the inhibition of p38/JNK and JAK2 activation and its natural antioxidative property. Our findings may highlight a new therapeutic intervention for the prevention of diabetic cardiomyopathy. PMID:26884823

  4. Fluoranthene fumigation and exogenous scavenging of reactive oxygen intermediates (ROI) in evergreen Japanese red pine seedlings (Pinus densiflora Sieb. et. Zucc.).

    PubMed

    Oguntimehin, Ilemobayo; Sakugawa, Hiroshi

    2008-06-01

    Generation of reactive oxygen intermediates (ROI) such as O(2)(-), H(2)O(2), and *OH is known to be a major mechanism of damage in biological systems. This study investigated and compared effectiveness of scavenging ROI generated in fluoranthene (FLU) pre-fumigated Japanese red pine seedlings. Three kinds of eco-physiological assessments were used to express the impact of the different fumigants used inside the green house. Gas exchange measurements showed negative changes induced by 10 microM FLU on Japanese pine seedlings during a 10 d exposure period whilst no negative change was found during a 5 d exposure period. Moreover, during a 14 d FLU exposure incorporating ROI scavengers, results revealed that chlorophyll fluorescence, needle chemical contents and needle dry mass per unit area of the seedlings were affected. The negative effects of FLU on the conifer were dependent on both the dose and period of FLU fumigation. Peroxidase (PERO), superoxide dismutase (SOD) and mannitol (MANN) were all effective scavengers of ROI. MANN scavenged *OH, the most lethal of the ROI. For practicable use, MANN is more economical, and may be the best ROI scavenger among the three considered. It can be concluded that efficient scavenging of ROI in biological systems is important to mitigate the negative effects of FLU on Japanese red pine trees. PMID:18442844

  5. Therapeutic reactive oxygen generation.

    PubMed

    Scharff, Peter; Ritter, Uwe; Matyshevska, Olga P; Prylutska, Svitlana V; Grynyuk, Iryna I; Golub, Alexandr A; Prylutskyy, Yuriy I; Burlaka, Anatoliy P

    2008-01-01

    An increase of the intracellular reactive oxygen species (ROS) concentration leads to the development of oxidative stress and, thus, to the damage of cell components. The cause-and-effect relations between these processes have not been fully established yet. The ability of photo excited supramolecular composites containing fullerenes C60 immobilized at nanosilica particles to generate reactive oxygen species (ROS) in cells of two types (rat thymocytes, and transformed cells of ascite Erlich carcinoma, EAC, and leucosis L1210) is demonstrated. The damaging effect of photo excited C60-composites are shown, which appeared to be selective and manifested in transformed cells, but not in thymocytes. It has been shown that after the irradiation of aqueous solutions or cell suspensions in the presence of fullerene C60, the generation of reactive oxygen species is observed. It has been shown that the influence of photo excited fullerene C60 on metabolic processes depends on the composition of C60-containing complex and on the type of the cells. The damaging effects of photo excited fullerene C60-containing composites were demonstrated to be selective. The data presented suggest that the application of fullerene C60-containing composites for the selective activation of ROS-dependent death program in certain types of tumor cells is very promising. PMID:18564617

  6. Exogenous Nitric Oxide (NO) Interferes with Lead (Pb)-Induced Toxicity by Detoxifying Reactive Oxygen Species in Hydroponically Grown Wheat (Triticum aestivum) Roots

    PubMed Central

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy R.; Mahajan, Priyanka; Kohli, Ravinder Kumar; Rishi, Valbha

    2015-01-01

    Nitric Oxide (NO) is a bioactive signaling molecule that mediates a variety of biotic and abiotic stresses. The present study investigated the role of NO (as SNP [sodium nitroprusside]) in ameliorating lead (Pb)-toxicity in Triticum aestivum (wheat) roots. Pb (50 and 250 μM) alone and in combination with SNP (100 μM) was given to hydroponically grown wheat roots for a period of 0–8 h. NO supplementation reduced the accumulation of oxidative stress markers (malondialdehyde, conjugated dienes, hydroxyl ions and superoxide anion) and decreased the antioxidant enzyme activity in wheat roots particularly up to 6 h, thereby suggesting its role as an antioxidant. NO ameliorated Pb-induced membrane damage in wheat roots as evidenced by decreased ion-leakage and in situ histochemical localization. Pb-exposure significantly decreased in vivo NO level. The study concludes that exogenous NO partially ameliorates Pb-toxicity, but could not restore the plant growth on prolonged Pb-exposure. PMID:26402793

  7. Differential effects of Bcl-2 and caspases on mitochondrial permeabilization during endogenous or exogenous reactive oxygen species-induced cell death: a comparative study of H₂O₂, paraquat, t-BHP, etoposide and TNF-α-induced cell death.

    PubMed

    Rincheval, Vincent; Bergeaud, Marie; Mathieu, Lise; Leroy, Jacqueline; Guillaume, Arnaud; Mignotte, Bernard; Le Floch, Nathalie; Vayssière, Jean-Luc

    2012-08-01

    In this study, we have compared several features of cell death triggered by classical inducers of apoptotic pathways (etoposide and tumour necrosis factor (TNF)-α) versus exogenous reactive oxygen species (ROS; hydrogen peroxide (H₂O₂), tert-butyl hydroperoxide (t-BHP)) or a ROS generator (paraquat). Our aim was to characterize relationships that exist between ROS, mitochondrial perturbations, Bcl-2 and caspases, depending on source and identity of ROS. First, we have found that these five inducers trigger oxidative stress, mitochondrial membrane permeabilization (MMP), cytochrome c (cyt c) release from mitochondria and cell death. In each case, cell death could be inhibited by several antioxidants, showing that it is primarily ROS dependent. Second, we have highlighted that during etoposide or TNF-α treatments, intracellular ROS level, MMP and cell death are all regulated by caspases and Bcl-2, with caspases acting early in the process. Third, we have demonstrated that H₂O₂-induced cell death shares many of these characteristics with etoposide and TNF-α, whereas t-BHP induces both caspase-dependent and caspase-independent cell death. Surprisingly, paraquat-induced cell death, which harbours some characteristics of apoptosis such as cyt c release and caspase-3 activation, is not modulated by Bcl-2 and caspase inhibitors, suggesting that paraquat also triggers non-apoptotic cell death signals. On the one hand, these results show that endogenous or exogenous ROS can trigger multiple cell death pathways with Bcl-2 and caspases acting differentially. On the other hand, they suggest that H₂O₂ could be an important mediator of etoposide and TNF-α-dependent cell death since these inducers trigger similar phenotypes. PMID:22491967

  8. Reactive Oxygen Species and Cellular Oxygen Sensing

    PubMed Central

    Cash, Timothy P; Pan, Yi; Simon, M. Celeste

    2008-01-01

    Many organisms activate adaptive transcriptional programs to help them cope with decreased oxygen levels, or hypoxia, in their environment. These responses are triggered by various oxygen sensing systems in bacteria, yeast and metazoans. In metazoans, the hypoxia inducible factors (HIFs) mediate the adaptive transcriptional response to hypoxia by upregulating genes involved in maintaining bioenergetic homeostasis. The HIFs in turn are regulated by HIF-specific prolyl hydroxlase activity, which is sensitive to cellular oxygen levels and other factors such as tricarboxylic acid cycle metabolites and reactive oxygen species (ROS). Establishing a role for ROS in cellular oxygen sensing has been challenging since ROS are intrinsically unstable and difficult to measure. However, recent advances in fluorescence energy transfer resonance (FRET)-based methods for measuring ROS are alleviating some of the previous difficulties associated with dyes and luminescent chemicals. In addition, new genetic models have demonstrated that functional mitochondrial electron transport and associated ROS production during hypoxia are required for HIF stabilization in mammalian cells. Current efforts are directed at how ROS mediate prolyl hydroxylase activity and hypoxic HIF stabilization. Progress in understanding this process has been enhanced by the development of the FRET-based ROS probe, an vivo prolyl hydroxylase reporter and various genetic models harboring mutations in components of the mitochondrial electron transport chain. PMID:17893032

  9. Reactive oxygen species in periodontitis

    PubMed Central

    Dahiya, Parveen; Kamal, Reet; Gupta, Rajan; Bhardwaj, Rohit; Chaudhary, Karun; Kaur, Simerpreet

    2013-01-01

    Recent epidemiological studies reveal that more than two-third of the world's population suffers from one of the chronic forms of periodontal disease. The primary etiological agent of this inflammatory disease is a polymicrobial complex, predominantly Gram negative anaerobic or facultative bacteria within the sub-gingival biofilm. These bacterial species initiate the production of various cytokines such as interleukin-8 and TNF-α, further causing an increase in number and activity of polymorphonucleocytes (PMN) along with these cytokines, PMNs also produce reactive oxygen species (ROS) superoxide via the respiratory burst mechanism as the part of the defence response to infection. ROS just like the interleukins have deleterious effects on tissue cells when produced in excess. To counter the harmful effects of ROS, human body has its own defence mechanisms to eliminate them as soon as they are formed. The aim of this review is to focus on the role of different free radicals, ROS, and antioxidants in the pathophysiology of periodontal tissue destruction. PMID:24174716

  10. Reactive oxygen species in cancer

    PubMed Central

    Liou, Geou-Yarh; Storz, Peter

    2013-01-01

    Elevated rates of reactive oxygen species (ROS) have been detected in almost all cancers, where they promote many aspects of tumor development and progression. However, tumor cells also express increased levels of antioxidant proteins to detoxify from ROS, suggesting that a delicate balance of intracellular ROS levels is required for cancer cell function. Further, the radical generated, the location of its generation, as well as the local concentration is important for the cellular functions of ROS in cancer. A challenge for novel therapeutic strategies will be the fine tuning of intracellular ROS signaling to effectively deprive cells from ROS-induced tumor promoting events, towards tipping the balance to ROS-induced apoptotic signaling. Alternatively, therapeutic antioxidants may prevent early events in tumor development, where ROS are important. However, to effectively target cancer cells specific ROS-sensing signaling pathways that mediate the diverse stress-regulated cellular functions need to be identified. This review discusses the generation of ROS within tumor cells, their detoxification, their cellular effects, as well as the major signaling cascades they utilize, but also provides an outlook on their modulation in therapeutics. PMID:20370557

  11. Reactive Oxygen Species in Cardiovascular Disease

    PubMed Central

    Sugamura, Koichi; Keaney, John F.

    2011-01-01

    Based on the ‘free-radical theory’ of disease, researchers have been trying to elucidate the role of oxidative stress from free radicals in cardiovascular disease. Considerable data indicate that ROS and oxidative stress are important features of cardiovascular diseases including atherosclerosis, hypertension, and congestive heart failure. However, blanket strategies with antioxidants to ameliorate cardiovascular disease have not generally yielded favorable results. However, our understanding or reactive oxygen species has evolved to the point that we now realize these species have important roles in physiology as well as pathophysiology. Thus, it is overly simplistic to assume a general antioxidant strategy will yield specific effects on cardiovascular disease. Indeed, there are several sources of reactive oxygen species that are known to be active in the cardiovascular system. This review will address our understanding of reactive oxygen species sources in cardiovascular disease and both animal and human data defining how reactive oxygen species contribute to physiology and pathology. PMID:21627987

  12. Release of elicitors from rice blast spores under the action of reactive oxygen species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of reactive oxygen species (ROS) on secretion of hypothesized elicitors from spores of rice blast causal fungus Magnaporthe grisea were studied. For spore exposure to exogenous ROS, they were germinated for 5 h in 50 µM H2O2 followed by addition of catalase E.C. 1.11.1.6 (to decompose pe...

  13. The role of reactive oxygen species in PDT efficacy

    NASA Astrophysics Data System (ADS)

    Price, Michael; Okan-Mensah, Nakaiya; Santiago, Ann Marie; Kessel, David

    2009-02-01

    While the first reactive oxygen species (ROS) formed during photodynamic therapy (PDT) is singlet molecular oxygen (1O2), other ROS are formed downstream including superoxide anion radical (•CO2 -), hydrogen peroxide (H2O2) and hydroxyl radical (•OH). In this study, we examined the role of H2O2 in the phototoxic response to PDT in murine leukemia L388 cells. Inhibition of catalase activity, a major pathway to H2O2 detoxification, led to enhanced apoptosis and cell death. Addition of exogenous catalase offered protection from phototoxicity as did chelation of Fe+2, a co-factor in •OH production from H2O2. These results indicate the H2O2 formed during PDT plays a role in PDT efficacy.

  14. Investigations into the differential reactivity of endogenous and exogenous mercury species in coastal sediments.

    PubMed

    Bouchet, S; Rodriguez-Gonzalez, P; Bridou, R; Monperrus, M; Tessier, E; Anschutz, P; Guyoneaud, R; Amouroux, D

    2013-03-01

    Stable isotopic tracer methodologies now allow the evaluation of the reactivity of the endogenous (ambient) and exogenous (added) Hg to further predict the potential effect of Hg inputs in ecosystems. The differential reactivity of endogenous and exogenous Hg was compared in superficial sediments collected in a coastal lagoon (Arcachon Bay) and in an estuary (Adour River) from the Bay of Biscay (SW France). All Hg species (gaseous, aqueous, and solid fraction) and ancillary data were measured during time course slurry experiments under variable redox conditions. The average endogenous methylation yield was higher in the estuarine (1.2 %) than in the lagoonal sediment (0.5 %), although both methylation and demethylation rates were higher in the lagoonal sediment in relation with a higher sulfate-reducing activity. Demethylation was overall more consistent than methylation in both sediments. The endogenous and exogenous Hg behaviors were always correlated but the exogenous inorganic Hg (IHg) partitioning into water was 2.0-4.3 times higher than the endogenous one. Its methylation was just slightly higher (1.4) in the estuarine sediment while the difference in the lagoonal sediment was much larger (3.6). The relative endogenous and exogenous methylation yields were not correlated to IHg partitioning, demonstrating that the bioavailable species distributions were different for the two IHg pools. In both sediments, the exogenous IHg partitioning equaled the endogenous one within a week, while its higher methylation lasted for months. Such results provide an original assessment approach to compare coastal sediment response to Hg inputs. PMID:22821341

  15. Rosacea, Reactive Oxygen Species, and Azelaic Acid

    PubMed Central

    2009-01-01

    Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea. PMID:20967185

  16. Formation and Detoxification of Reactive Oxygen Species

    ERIC Educational Resources Information Center

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

  17. Formation and Detoxification of Reactive Oxygen Species

    ERIC Educational Resources Information Center

    Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

    2004-01-01

    A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also

  18. Bis(μ-oxo) dicopper(III) species of the simplest peralkylated diamine: enhanced reactivity toward exogenous substrates.

    PubMed

    Kang, Peng; Bobyr, Elena; Dustman, John; Hodgson, Keith O; Hedman, Britt; Solomon, Edward I; Stack, T Daniel P

    2010-12-01

    N,N,N',N'-tetramethylethylenediamine (TMED), the simplest and most extensively used peralkylated diamine ligand, is conspicuously absent from those known to form a bis(μ-oxo)dicopper(III) (O) species, [(TMED)(2)Cu(III)(2)(μ(2)-O)(2)](2+), upon oxygenation of its Cu(I) complex. Presented here is the characterization of this O species and its reactivity toward exogenous substrates. Its formation is complicated both by the instability of the [(TMED)Cu(I)](1+) precursor and by competitive formation of a presumed mixed-valent trinuclear [(TMED)(3)Cu(III)Cu(II)(2)(μ(3)-O)(2)](3+) (T) species. Under most reaction conditions, the T species dominates, yet, the O species can be formed preferentially (>80%) upon oxygenation of acetone solutions, if the copper concentration is low (<2 mM) and [(TMED)Cu(I)](1+) is prepared immediately before use. The experimental data of this simplest O species provide a benchmark by which to evaluate density functional theory (DFT) computational methods for geometry optimization and spectroscopic predictions. The enhanced thermal stability of [(TMED)(2)Cu(III)(2)(μ(2)-O)(2)](2+) and its limited steric demands compared to other O species allows more efficient oxidation of exogenous substrates, including benzyl alcohol to benzaldehyde (80% yield), highlighting the importance of ligand structure to not only enhance the oxidant stability but also maintain accessibility to the nascent metal/O(2) oxidant. PMID:21028910

  19. Mitochondrial formation of reactive oxygen species

    PubMed Central

    Turrens, Julio F

    2003-01-01

    The reduction of oxygen to water proceeds via one electron at a time. In the mitochondrial respiratory chain, Complex IV (cytochrome oxidase) retains all partially reduced intermediates until full reduction is achieved. Other redox centres in the electron transport chain, however, may leak electrons to oxygen, partially reducing this molecule to superoxide anion (O2−•). Even though O2−• is not a strong oxidant, it is a precursor of most other reactive oxygen species, and it also becomes involved in the propagation of oxidative chain reactions. Despite the presence of various antioxidant defences, the mitochondrion appears to be the main intracellular source of these oxidants. This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments. We also discuss various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants. PMID:14561818

  20. Superoxide Dismutases and Reactive Oxygen Species

    SciTech Connect

    Cabelli, D.E.

    2011-01-01

    The 'free radical theory' of aging was introduced over a half-century ago. In this theory, much of the deleterious effects of aging were attributed to the cumulative buildup of damage from reactive oxygen species. When discussing reactive oxygen species (ROS) in aerobic systems, both superoxide radicals (O{sub 2}{sup -}) and superoxide dismutases (SODs) are considered to play prominent roles. O{sub 2}{sup -} is formed by attachment of the electron to oxygen (O{sub 2}) that is present in tens to hundreds of micromolar concentration in vivo. SODs are enzymes that serve to eliminate O{sub 2}{sup -} by rapidly converting it to O{sub 2} and hydrogen peroxide (H{sub 2}O{sub 2}). Both the radical and the enzyme will be discussed with the focus on the systems that are present in humans.

  1. Signal transduction by reactive oxygen species

    PubMed Central

    2011-01-01

    Although historically viewed as purely harmful, recent evidence suggests that reactive oxygen species (ROS) function as important physiological regulators of intracellular signaling pathways. The specific effects of ROS are modulated in large part through the covalent modification of specific cysteine residues found within redox-sensitive target proteins. Oxidation of these specific and reactive cysteine residues in turn can lead to the reversible modification of enzymatic activity. Emerging evidence suggests that ROS regulate diverse physiological parameters ranging from the response to growth factor stimulation to the generation of the inflammatory response, and that dysregulated ROS signaling may contribute to a host of human diseases. PMID:21746850

  2. Reactive oxygen species formed in organic lithium-oxygen batteries.

    PubMed

    Schwager, Patrick; Dongmo, Saustin; Fenske, Daniela; Wittstock, Gunther

    2016-04-20

    Li-oxygen batteries with organic electrolytes are of general interest because of their theoretically high gravimetric energy density. Among the great challenges for this storage technology is the generation of reactive oxygen species such as superoxides and peroxides that may react with the organic solvent molecules and other cell components. The generation of such species has been assumed to occur during the charging reaction. Here we show that superoxide is formed also during the discharge reaction in lithium ion-containing dimethyl sulfoxide electrolytes and is released into the solution. This is shown independently by fluorescence microscopy after reaction with the selective reagent 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and by local detection using a microelectrode of a scanning electrochemcial microscope positioned in a defined distance of 10 to 90 μm above the gas diffusion electrode. PMID:26911793

  3. Signaling Functions of Reactive Oxygen Species†

    PubMed Central

    Forman, Henry Jay; Maiorino, Matilde; Ursini, Fulvio

    2014-01-01

    We review signaling by reactive oxygen species, which is emerging as a major physiological process. However, among the reactive oxygen species, H2O2 best fulfills the requirements of being a second messenger. Its enzymatic production and degradation, along with the requirements for the oxidation of thiols by H2O2, provide the specificity for time and place that are required in signaling. Both thermodynamic and kinetic considerations suggest that among possible oxidation states of cysteine, formation of sulfenic acid derivatives or disulfides can be relevant as thiol redox switches in signaling. In this work, the general constraints that are required for protein thiol oxidation by H2O2 to be fast enough to be relevant for signaling are discussed in light of the mechanism of oxidation of the catalytic cysteine or selenocysteine in thiol peroxidases. While the nonenzymatic reaction between thiol and H2O2 is, in most cases, too slow to be relevant in signaling, the enzymatic catalysis of thiol oxidation by these peroxidases provides a potential mechanism for redox signaling. PMID:20050630

  4. Senescence, Stress, and Reactive Oxygen Species

    PubMed Central

    Jajic, Ivan; Sarna, Tadeusz; Strzalka, Kazimierz

    2015-01-01

    Generation of reactive oxygen species (ROS) is one of the earliest responses of plant cells to various biotic and abiotic stresses. ROS are capable of inducing cellular damage by oxidation of proteins, inactivation of enzymes, alterations in the gene expression, and decomposition of biomembranes. On the other hand, they also have a signaling role and changes in production of ROS can act as signals that change the transcription of genes that favor the acclimation of plants to abiotic stresses. Among the ROS, it is believed that H2O2 causes the largest changes in the levels of gene expression in plants. A wide range of plant responses has been found to be triggered by H2O2 such as acclimation to drought, photooxidative stress, and induction of senescence. Our knowledge on signaling roles of singlet oxygen (1O2) has been limited by its short lifetime, but recent experiments with a flu mutant demonstrated that singlet oxygen does not act primarily as a toxin but rather as a signal that activates several stress-response pathways. In this review we summarize the latest progress on the signaling roles of ROS during senescence and abiotic stresses and we give a short overview of the methods that can be used for their assessment. PMID:27135335

  5. REACTIVE OXYGEN SPECIES AND COLORECTAL CANCER

    PubMed Central

    Sreevalsan, Sandeep; Safe, Stephen

    2013-01-01

    Several agents used for treatment of colon and other cancers induce reactive oxygen species (ROS) and this plays an important role in their anticancer activities. In addition to the well-known proapoptotic effects of ROS inducers, these compounds also decrease expression of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and several pro-oncogenic Spregulated genes important for cancer cell proliferation, survival and metastasis. The mechanism of these responses involve ROS-dependent downregulation of microRNA-27a (miR-27a) or miR-20a (and paralogs) and induction of two Sp-repressors, ZBTB10 and ZBTB4 respectively. This pathway significantly contributes to the anticancer activity of ROS inducers and should be considered in development of drug combinations for cancer chemotherapy. PMID:25584043

  6. Reactive Oxygen Species in Health and Disease

    PubMed Central

    Alfadda, Assim A.; Sallam, Reem M.

    2012-01-01

    During the past decades, it became obvious that reactive oxygen species (ROS) exert a multitude of biological effects covering a wide spectrum that ranges from physiological regulatory functions to damaging alterations participating in the pathogenesis of increasing number of diseases. This review summarizes the key roles played by the ROS in both health and disease. ROS are metabolic products arising from various cells; two cellular organelles are intimately involved in their production and metabolism, namely, the endoplasmic reticulum and the mitochondria. Updates on research that tremendously aided in confirming the fundamental roles of both organelles in redox regulation will be discussed as well. Although not comprehensive, this review will provide brief perspective on some of the current research conducted in this area for better understanding of the ROS actions in various conditions of health and disease. PMID:22927725

  7. Downregulation of Reactive Oxygen Species in Apoptosis

    PubMed Central

    Jeong, Chul-Ho; Joo, Sang Hoon

    2016-01-01

    Generation of reactive oxygen species (ROS) by diverse anti-cancer drugs or phytochemicals has been closely related with the induction of apoptosis in cancers. Also, the downregulation of ROS by these chemicals has been found to block initiation of carcinogenesis. Therefore, modulation of ROS by phytochemicals emerges as a crucial mechanism to regulate apoptosis in cancer prevention or therapy. This review summarizes the current understanding of the selected chemical compounds and related cellular components that modulate ROS during apoptotic process. Metformin, quercetin, curcumin, vitamin C, and other compounds have been shown to downregulate ROS in the cellular apoptotic process, and some of them even induce apoptosis in cancer cells. The cellular components mediating the downregulation of ROS include nuclear factor erythroid 2-related factor 2 antioxidant signaling pathway, thioredoxin, catalase, glutathione, heme oxygenase-1, and uncoupling proteins. The present review provides information on the relationship between these compounds and the cellular components in modulating ROS in apoptotic cancer cells. PMID:27051644

  8. Reactive oxygen species and the Antarctic macroalgal wound response.

    PubMed

    McDowell, Ruth E; Amsler, Charles D; Dickinson, Dale A; McClintock, James B; Baker, Bill J

    2014-02-01

    Reactive oxygen species (ROS) are commonly produced by algal, vascular plant, and animal cells involved in the innate immune response as cellular signals promoting defense and healing and/or as a direct defense against invading pathogens. The production of reactive species in macroalgae upon injury, however, is largely uncharacterized. In this study, we surveyed 13 species of macroalgae from the Western Antarctic Peninsula and show that the release of strong oxidants is common after macroalgal wounding. Most species released strong oxidants within 1 min of wounding and/or showed cellular accumulation of strong oxidants over an hour post-wounding. Exogenous catalase was used to show that hydrogen peroxide was a component of immediate oxidant release in one of five species, but was not responsible for the entire oxidative wound response as is common in vascular plants. The other component(s) of the oxidant cocktail released upon wounding are unknown. We were unable to detect protein nitration in extracts of four oxidant-producing species flash frozen 30 s after wounding, but a role for reactive nitrogen species such as peroxynitrite cannot be completely ruled out. Two species showed evidence for the production of a catalase-activated oxidant, a mechanism previously known only from the laboratory and from the synthetic drug isoniazid used to kill the human pathogen Mycobacterium tuberculosis. The rhodophyte Palmaria decipiens, which released strong oxidants after wounding, also produced strong oxidants upon grazing by a sympatric amphipod, suggesting that oxidants are involved in the response to grazing. PMID:26988009

  9. Reactive oxygen species and anti-proteinases.

    PubMed

    Siddiqui, Tooba; Zia, Mohammad Khalid; Ali, Syed Saqib; Rehman, Ahmed Abdur; Ahsan, Haseeb; Khan, Fahim Halim

    2016-02-01

    Reactive oxygen species (ROS) cause damage to macromolecules such as proteins, lipids and DNA and alters their structure and function. When generated outside the cell, ROS can induce damage to anti-proteinases. Anti-proteinases are proteins that are involved in the control and regulation of proteolytic enzymes. The damage caused to anti-proteinase barrier disturbs the proteinase-anti-proteinases balance and uncontrolled proteolysis at the site of injury promotes tissue damage. Studies have shown that ROS damages anti-proteinase shield of the body by inactivating key members such as alpha-2-macroglobulin, alpha-1-antitrypsin. Hypochlorous acid inactivates α-1-antitrypsin by oxidizing a critical reactive methionine residue. Superoxide and hypochlorous acid are physiological inactivators of alpha-2-macroglobulin. The damage to anti-proteinase barrier induced by ROS is a hallmark of diseases such as atherosclerosis, emphysema and rheumatoid arthritis. Thus, understanding the behaviour of ROS-induced damage to anti-proteinases may helps us in development of strategies that could control these inflammatory reactions and diseases. PMID:26699123

  10. Production and Consumption of Reactive Oxygen Species by Fullerenes

    EPA Science Inventory

    Reactive oxygen species (ROS) are one of the most important intermediates in chemical, photochemical, and biological processes. To understand the environmental exposure and toxicity of fullerenes better, the production and consumption of ROS (singlet oxygen, superoxide, hydrogen ...

  11. Influence of reactive oxygen species on the sterilization of microbes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of reactive oxygen species on living cells, including various microbes, is discussed. A sterilization experiment with bacterial endospores reveals that an argoneoxygen plasma jet very effectively kills endospores of Bacillus atrophaeus (ATCC 9372), thereby indicating that oxygen radic...

  12. Reactive Oxygen Species and the Cardiovascular System

    PubMed Central

    Taverne, Yannick J. H. J.; Bogers, Ad J. J. C.; Duncker, Dirk J.; Merkus, Daphne

    2013-01-01

    Ever since the discovery of free radicals, many hypotheses on the deleterious actions of reactive oxygen species (ROS) have been proposed. However, increasing evidence advocates the necessity of ROS for cellular homeostasis. ROS are generated as inherent by-products of aerobic metabolism and are tightly controlled by antioxidants. Conversely, when produced in excess or when antioxidants are depleted, ROS can inflict damage to lipids, proteins, and DNA. Such a state of oxidative stress is associated with many pathological conditions and closely correlated to oxygen consumption. Although the deleterious effects of ROS can potentially be reduced by restoring the imbalance between production and clearance of ROS through administration of antioxidants (AOs), the dosage and type of AOs should be tailored to the location and nature of oxidative stress. This paper describes several pathways of ROS signaling in cellular homeostasis. Further, we review the function of ROS in cardiovascular pathology and the effects of AOs on cardiovascular outcomes with emphasis on the so-called oxidative paradox. PMID:23738043

  13. Endophytic Bacterium-Triggered Reactive Oxygen Species Directly Increase Oxygenous Sesquiterpenoid Content and Diversity in Atractylodes lancea.

    PubMed

    Zhou, Jia-Yu; Yuan, Jie; Li, Xia; Ning, Yi-Fan; Dai, Chuan-Chao

    2015-01-01

    Oxygenous terpenoids are active components of many medicinal plants. However, current studies that have focused on enzymatic oxidation reactions cannot comprehensively clarify the mechanisms of oxygenous terpenoid synthesis and diversity. This study shows that an endophytic bacterium can trigger the generation of reactive oxygen species (ROS) that directly increase oxygenous sesquiterpenoid content and diversity in Atractylodes lancea. A. lancea is a famous but endangered Chinese medicinal plant that contains abundant oxygenous sesquiterpenoids. Geo-authentic A. lancea produces a wider range and a greater abundance of oxygenous sesquiterpenoids than the cultivated herb. Our previous studies have shown the mechanisms behind endophytic promotion of the production of sesquiterpenoid hydrocarbon scaffolds; however, how endophytes promote the formation of oxygenous sesquiterpenoids and their diversity is unclear. After colonization by Pseudomonas fluorescens ALEB7B, oxidative burst and oxygenous sesquiterpenoid accumulation in A. lancea occur synchronously. Treatment with exogenous hydrogen peroxide (H2O2) or singlet oxygen induces oxidative burst and promotes oxygenous sesquiterpenoid accumulation in planta. Conversely, pretreatment of plantlets with the ROS scavenger ascorbic acid significantly inhibits the oxidative burst and oxygenous sesquiterpenoid accumulation induced by P. fluorescens ALEB7B. Further in vitro oxidation experiments show that several oxygenous sesquiterpenoids can be obtained from direct oxidation caused by H2O2 or singlet oxygen. In summary, this study demonstrates that endophytic bacterium-triggered ROS can directly oxidize oxygen-free sesquiterpenoids and increase the oxygenous sesquiterpenoid content and diversity in A. lancea, providing a novel explanation of the mechanisms of oxygenous terpenoid synthesis in planta and an essential complementarity to enzymatic oxidation reactions. PMID:26712554

  14. REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING

    PubMed Central

    Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

    2014-01-01

    The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension. PMID:23897679

  15. Reactive oxygen species and redox compartmentalization

    PubMed Central

    Kaludercic, Nina; Deshwal, Soni; Di Lisa, Fabio

    2014-01-01

    Reactive oxygen species (ROS) formation and signaling are of major importance and regulate a number of processes in physiological conditions. A disruption in redox status regulation, however, has been associated with numerous pathological conditions. In recent years it has become increasingly clear that oxidative and reductive modifications are confined in a spatio-temporal manner. This makes ROS signaling similar to that of Ca2+ or other second messengers. Some subcellular compartments are more oxidizing (such as lysosomes or peroxisomes) whereas others are more reducing (mitochondria, nuclei). Moreover, although more reducing, mitochondria are especially susceptible to oxidation, most likely due to the high number of exposed thiols present in that compartment. Recent advances in the development of redox probes allow specific measurement of defined ROS in different cellular compartments in intact living cells or organisms. The availability of these tools now allows simultaneous spatio-temporal measurements and correlation between ROS generation and organelle and/or cellular function. The study of ROS compartmentalization and microdomains will help elucidate their role in physiology and disease. Here we will examine redox probes currently available and how ROS generation may vary between subcellular compartments. Furthermore, we will discuss ROS compartmentalization in physiological and pathological conditions focusing our attention on mitochondria, since their vulnerability to oxidative stress is likely at the basis of several diseases. PMID:25161621

  16. Arsenic, reactive oxygen, and endothelial dysfunction.

    PubMed

    Ellinsworth, David C

    2015-06-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and predisposes to cardiovascular disease states, such as hypertension, atherosclerosis, and microvascular disease. The most sensitive target of arsenic toxicity in the vasculature is the endothelium, and incubation of these cells with low concentrations of arsenite, a naturally occurring and highly toxic inorganic form of arsenic, rapidly induces reactive oxygen species (ROS) formation via activation of a specific NADPH oxidase (Nox2). Arsenite also induces ROS accumulation in vascular smooth muscle cells, but this is relatively delayed because, depending on the vessel from which they originate, these cells often lack Nox2 and/or its essential regulatory cytosolic subunits. The net effect of such activity is attenuation of endothelium-dependent conduit artery dilation via superoxide anion-mediated scavenging of nitric oxide (NO) and inhibition and downregulation of endothelial NO synthase, events that are temporally matched to the accumulation of oxidants across the vessel wall. By contrast, ROS induced by the more toxic organic trivalent arsenic metabolites (monomethylarsonous and dimethylarsinous acids) may originate from sources other than Nox2. As such, the mechanisms through which vascular oxidative stress develops in vivo under continuous exposure to all three of these potent arsenicals are unknown. This review is a comprehensive analysis of the mechanisms that mediate arsenic effects associated with Nox2 activation, ROS activity, and endothelial dysfunction, and also considers future avenues of research into what is a relatively poorly understood topic with major implications for human health. PMID:25788710

  17. Reactive oxygen species enhance insulin sensitivity

    PubMed Central

    Loh, Kim; Deng, Haiyang; Fukushima, Atsushi; Cai, Xiaochu; Boivin, Benoit; Galic, Sandra; Bruce, Clinton; Shields, Benjamin J.; Skiba, Beata; Ooms, Lisa M.; Stepto, Nigel; Wu, Ben; Mitchell, Christina A.; Tonks, Nicholas K.; Watt, Matthew J.; Febbraio, Mark A.; Crack, Peter J.; Andrikopoulos, Sofianos; Tiganis, Tony

    2010-01-01

    SUMMARY Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione peroxidase 1 (Gpx1), were protected from high fat diet-induced insulin resistance. The increased insulin sensitivity in Gpx1−/− mice was attributed to insulin-induced phosphatidylinositol-3-kinase/Akt signaling and glucose uptake in muscle and could be reversed by the anti-oxidant N-acetylcysteine. Increased insulin signaling correlated with enhanced oxidation of the PTP family member PTEN, which terminates signals generated by phosphatidylinositol-3-kinase. These studies provide causal evidence for the enhancement of insulin signaling by ROS in vivo. PMID:19808019

  18. Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation

    PubMed Central

    Le, Nhat-Tu; Corsetti, James P.; Dehoff-Sparks, Janet L.; Sparks, Charles E.; Fujiwara, Keigi; Abe, Jun-ichi

    2012-01-01

    Although the exact mechanism through which NADPH oxidases (Nox's) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events. PMID:22991685

  19. Skin, Reactive Oxygen Species, and Circadian Clocks

    PubMed Central

    Ndiaye, Mary A.; Nihal, Minakshi; Wood, Gary S.

    2014-01-01

    Abstract Significance: Skin, a complex organ and the body's first line of defense against environmental insults, plays a critical role in maintaining homeostasis in an organism. This balance is maintained through a complex network of cellular machinery and signaling events, including those regulating oxidative stress and circadian rhythms. These regulatory mechanisms have developed integral systems to protect skin cells and to signal to the rest of the body in the event of internal and environmental stresses. Recent Advances: Interestingly, several signaling pathways and many bioactive molecules have been found to be involved and even important in the regulation of oxidative stress and circadian rhythms, especially in the skin. It is becoming increasingly evident that these two regulatory systems may, in fact, be interconnected in the regulation of homeostasis. Important examples of molecules that connect the two systems include serotonin, melatonin, vitamin D, and vitamin A. Critical Issues: Excessive reactive oxygen species and/or dysregulation of antioxidant system and circadian rhythms can cause critical errors in maintaining proper barrier function and skin health, as well as overall homeostasis. Unfortunately, the modern lifestyle seems to contribute to increasing alterations in redox balance and circadian rhythms, thereby posing a critical problem for normal functioning of the living system. Future Directions: Since the oxidative stress and circadian rhythm systems seem to have areas of overlap, future research needs to be focused on defining the interactions between these two important systems. This may be especially important in the skin where both systems play critical roles in protecting the whole body. Antioxid. Redox Signal. 20, 2982–2996. PMID:24111846

  20. Reactive Oxygen Species in Combustion Aerosols

    NASA Astrophysics Data System (ADS)

    Balasubramanian, R.; See, S.

    2007-12-01

    Research on airborne particulate matter (PM) has received increased concern in recent years after it was identified as a major component of the air pollution mix that is strongly associated with premature mortality and morbidity. Particular attention has been paid to understanding the potential health impacts of fine particles (PM2.5), which primarily originate from combustion sources. One group of particulate-bound chemical components of health concern is reactive oxygen species (ROS), which include molecules such as hydrogen peroxide (H2O2), ions such as hypochlorite ion (OCl-), free radicals such as hydroxyl radical (·OH) and superoxide anion (·O2-) which is both an ion and a radical. However, the formation of ROS in PM is not clearly understood yet. Furthermore, the concentration of ROS in combustion particles of different origin has not been quantified. The primary objective of this work is to study the effect of transition metals on the production of ROS in PM2.5 by determining the concentrations of ROS and metals. Both soluble and total metals were measured to evaluate their respective associations with ROS. PM2.5 samples were collected from several outdoor and indoor combustion sources, including those emitted from on-road vehicles, food cooking, incense sticks, and cigarette smoke. PM2.5 samples were also collected from the background air in both the ambient outdoor and indoor environments to assess the levels of particulate-bound transition metals and ROS with no combustion activities in the vicinity of sampling locations. Results obtained from this comprehensive study on particulate-bound ROS will be presented and discussed.

  1. Taurine Bromamine: Reactivity of an Endogenous and Exogenous Anti-Inflammatory and Antimicrobial Amino Acid Derivative.

    PubMed

    De Carvalho Bertozo, Luiza; Morgon, Nelson Henrique; De Souza, Aguinaldo Robinson; Ximenes, Valdecir Farias

    2016-01-01

    Taurine bromamine (Tau-NHBr) is produced by the reaction between hypobromous acid (HOBr) and the amino acid taurine. There are increasing number of applications of Tau-NHBr as an anti-inflammatory and microbicidal drug for topical usage. Here, we performed a comprehensive study of the chemical reactivity of Tau-NHBr with endogenous and non-endogenous compounds. Tau-NHBr reactivity was compared with HOBr, hypochlorous acid (HOCl) and taurine chloramine (Tau-NHCl). The second-order rate constants (k₂) for the reactions between Tau-NHBr and tryptophan (7.7 × 10² M(-1)s(-1)), melatonin (7.3 × 10³ M(-1)s(-1)), serotonin (2.9 × 10³ M(-1)s(-1)), dansylglycine (9.5 × 10¹ M(-1)s(-1)), tetramethylbenzidine (6.4 × 10² M(-1)s(-1)) and H₂O₂ (3.9 × M(-1)s(-1)) were obtained. Tau-NHBr demonstrated the following selectivity regarding its reactivity with free amino acids: tryptophan > cysteine ~ methionine > tyrosine. The reactivity of Tau-NHBr was strongly affected by the pH of the medium (for instance with dansylglycine: pH 5.0, 1.1 × 10⁴ M(-1)s(-1), pH 7.0, 9.5 × 10 M(-1)s(-1) and pH 9.0, 1.7 × 10 M(-1)s(-1)), a property that is related to the formation of the dibromamine form at acidic pH (Tau-NBr₂). The formation of singlet oxygen was observed in the reaction between Tau-NHBr and H₂O₂. Tau-NHBr was also able to react with linoleic acid, but with low efficiency compared with HOBr and HOCl. Compared with HOBr, Tau-NHBr was not able to react with nucleosides. In conclusion, the following reactivity sequence was established: HOBr > HOCl > Tau-NHBr > Tau-NHCl. These findings can be very helpful for researchers interested in biological applications of taurine haloamines. PMID:27110829

  2. Highly reactive oxygen species: detection, formation, and possible functions.

    PubMed

    Freinbichler, Wolfhardt; Colivicchi, Maria A; Stefanini, Chiara; Bianchi, Loria; Ballini, Chiara; Misini, Bashkim; Weinberger, Peter; Linert, Wolfgang; Varešlija, Damir; Tipton, Keith F; Della Corte, Laura

    2011-06-01

    The so-called reactive oxygen species (ROS) are defined as oxygen-containing species that are more reactive than O(2) itself, which include hydrogen peroxide and superoxide. Although these are quite stable, they may be converted in the presence of transition metal ions, such as Fe(II), to the highly reactive oxygen species (hROS). hROS may exist as free hydroxyl radicals (HO·), as bound ("crypto") radicals or as Fe(IV)-oxo (ferryl) species and the somewhat less reactive, non-radical species, singlet oxygen. This review outlines the processes by which hROS may be formed, their damaging potential, and the evidence that they might have signaling functions. Since our understanding of the formation and actions of hROS depends on reliable procedures for their detection, particular attention is given to procedures for hROS detection and quantitation and their applicability to in vivo studies. PMID:21533983

  3. Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity

    NASA Technical Reports Server (NTRS)

    Koontz, Steven; Leger, Lubert; Albyn, Keith; Cross, Jon

    1990-01-01

    Experimental results are presented which indicate that low fluxes of vacuum UV (VUV) radiation exert a pronounced influence on the atomic oxygen reactivity of such fluorocarbon and fluorocarbon spacecraft materials as the FEP Teflon and PCTFE that are under consideration for the Space Station Freedom. With simultaneous exposure to VUV fluxes comparable to those experienced in LEO, the reactivity of these materials becomes comparable to that of Kapton; VUV radiation has also been shown to increase the reactivity of Kapton with thermal-energy oxygen atoms.

  4. Oxygen Reactivity of a Carbon Fiber Composite

    SciTech Connect

    Marshall, Theron Devol; Pawelko, Robert James; Anderl, Robert Andrew; Smolik, Galen Richard

    2002-09-01

    Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar21 vol% O2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000 C and a 100 standard cubic centimeters per minute (sccm) ArO2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000 C and a 1000 sccm ArO2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.

  5. Comparison of two strategies for detection of reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Gao, Weidong; Zhou, Yuanshu; Gu, Yueqing

    2014-09-01

    Photodynamic therapy (PDT) is a clinically approved treatment that was applied to oncology , dermatology, and ophthalmology. Reactive oxygen species (ROS) play a important role in the efficacy of PDT. Online monitoring of reactive oxygen species is the key to understand effect of PDT treatment. We used Fluorescence probes DPBF and luminescent probe luminal to measure the ROS in cells. And we revaluate the relationship between the amount of light and cell survival. There is strongly correlated between the amount of light and cell kill.

  6. Reactive oxygen species production by catechol stabilized copper nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Ahmed, Ishtiaq; Fruk, Ljiljana

    2013-11-01

    Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants.Stable Cu nanoparticles (NPs) prepared using catechol containing dopamine-based linkers could generate reactive oxygen species (ROS) that can activate peroxidase enzymes and catalyze the degradation of fluorescent dye pollutants. Electronic supplementary information (ESI) available: Details of the synthesis of dopamine linkers and Cu NPs, peroxidase activity tests, H2O2 calibration and degradation tests for resorufin, RB and MB. See DOI: 10.1039/c3nr03563h

  7. Role of reactive oxygen species in myocardial remodeling.

    PubMed

    Zhang, Min; Shah, Ajay M

    2007-03-01

    Adverse cardiac remodeling is a fundamental process in the progression to chronic heart failure. Although the mechanisms underlying cardiac remodeling are multi-factorial, a significant body of evidence points to the crucial roles of increased reactive oxygen species. This article reviews recent advances in delineating the different sources of production for reactive oxygen species (namely mitochondria, xanthine oxidase, uncoupled nitric oxide synthases, and NADPH oxidases) that may be involved in cardiac remodeling and the aspects of the remodeling process that they affect. These data could suggest new ways of targeting redox pathways for the prevention and treatment of adverse cardiac remodeling. PMID:17386182

  8. [Reactive oxygen species, stress and cell death in plants].

    PubMed

    Parent, Claire; Capelli, Nicolas; Dat, James

    2008-04-01

    Plants are constantly exposed to changes in environmental conditions. During periods of stress, the cellular redox homeostasis is altered as a result of reactive oxygen species accumulation. The change in redox is responsible for the symptoms commonly observed during periods of stress and reflects the phytotoxic nature of oxygen radical accumulation. However, oxygen radicals have recently been identified as key actors in the response to stress and their role as secondary messengers is now clearly established. The identification of their role in gene regulation has allowed one to identify them as key regulators in the induction and execution of programmed cell death typically observed during developmental processes as well as during stress responses. This review presents recent advances in the characterisation of the role of reactive oxygen species in plants. PMID:18355747

  9. BIOMONITORING OF REACTIVE OXYGEN SPECIES IN BIOLOGICAL FLUIDS

    EPA Science Inventory

    Elevated levels of reactive oxygen species (ROS) are associated with several disease processes in humans, including cancer, asthma, diabetes, and cardiac disease. We have explored whether ROS can be measured directly in human fluids, and their value as a biomarker of exposure an...

  10. A role for reactive oxygen species in postharvest biocontrol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) play an important role in plant defense responses against pathogens. There is evidence that microbial biocontrol agents also induce a transient production of ROS in a host plant which triggers local and systemic defense responses. In this study, we explored the abilit...

  11. Adipose dysfunction, interaction of reactive oxygen species, and inflammation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This American Society for Nutrition sponsored symposium summary contains information about the symposium focus and the general content of speaker presentation. The focus of the symposium was to delineate the significance of obesity-associated reactive oxygen species (ROS), inflammation, and adipose ...

  12. Role of reactive oxygen species in low level light therapy

    NASA Astrophysics Data System (ADS)

    Chen, Aaron Chi-Hao; Huang, Ying-Ying; Arany, Praveen R.; Hamblin, Michael R.

    2009-02-01

    This review will focus on the role of reactive oxygen species in the cellular and tissue effects of low level light therapy (LLLT). Coincidentally with the increase in electron transport and in ATP, there has also been observed by intracellular fluorescent probes and electron spin resonance an increase in intracellular reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, singlet oxygen and hydroxyl radical. ROS scavengers, antioxidants and ROS quenchers block many LLLT processes. It has been proposed that light between 400-500- nm may produce ROS by a photosensitization process involving flavins, while longer wavelengths may directly produce ROS from the mitochondria. Several redox-sensitive transcription factors are known such as NF-kB and AP1, that are able to initiate transcription of genes involved in protective responses to oxidative stress. It may be the case that LLLT can be pro-oxidant in the short-term, but anti-oxidant in the long-term.

  13. Engineering Pyranose 2-Oxidase for Modified Oxygen Reactivity

    PubMed Central

    Brugger, Dagmar; Krondorfer, Iris; Shelswell, Christopher; Huber-Dittes, Benjamin; Haltrich, Dietmar; Peterbauer, Clemens K.

    2014-01-01

    Pyranose 2-oxidase (POx), a member of the GMC family of flavoproteins, catalyzes the regioselective oxidation of aldopyranoses at position C2 to the corresponding 2-ketoaldoses. During the first half-reaction, FAD is reduced to FADH2 and reoxidized in the second half-reaction by reducing molecular oxygen to H2O2. Alternative electron acceptors including quinones, radicals or chelated metal ions show significant and in some cases even higher activity. While oxygen as cheap and abundantly available electron acceptor is favored for many processes, reduced oxygen reactivity is desirable for some applications such as in biosensors/biofuel cells because of reduced oxidative damages to the biocatalyst from concomitant H2O2 production as well as reduced electron “leakage” to oxygen. The reactivity of flavoproteins with oxygen is of considerable scientific interest, and the determinants of oxygen activation and reactivity are the subject of numerous studies. We applied site-saturation mutagenesis on a set of eleven amino acids around the active site based on the crystal structure of the enzyme. Using microtiter plate screening assays with peroxidase/2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) and 2,6-dichlorophenolindophenol, variants of POx with decreased oxidase activity and maintained dehydrogenase activity were identified. Variants T166R, Q448H, L545C, L547R and N593C were characterized with respect to their apparent steady-state constants with oxygen and the alternative electron acceptors DCPIP, 1,4-benzoquinone and ferricenium ion, and the effect of the mutations was rationalized based on structural properties. PMID:25296188

  14. Generation of reactive oxygen species by leukocytes of Prochilodus lineatus.

    PubMed

    de Faria, Marcos Tucunduva; Cury-Boaventura, Maria Fernanda; Lopes, Lucia Rossetti; da Silva, José Roberto Machado Cunha

    2014-04-01

    Prochilodus lineatus (curimbatá), from the Procholodontidae family, is a Brazilian freshwater fish, which is important commercially, nutritionally and ecologically. It is encountered in the Rio da Prata Bay in Southern South America. Studies on the immune system of this fish are scarce, but the physiological mechanisms of the species are analogous to those of other vertebrates. Thus, this work discusses the present study, which correlates P. lineatus leukocytes and the generation of reactive oxygen species after modulatory stimuli. Leukocytes were characterized by light and electron transmission microscopy and investigated by the generation of H2O2 and O2 (-), using phenol red, flow-cytometry and electron transmission histochemistry. The study determined that monocytes and neutrophils are the main cells responsible for generating O2 after stimulation with phorbol myristate acetate. Superoxide dismutase successfully inhibited the generation of reactive oxygen species in neutrophils and monocytes, but stimulated generation when in association with phorbol myristate acetate. Fish leukocyte samples from P. lineatus showed cross-reactivity with antibodies directed against human NADPH-oxidase antibody subunits (p47(phox) and p67(phox)). Thus, catalase enhanced the presence of p47(phox). Neutrophil mitochondria were shown to be generators of H2O2 (charged by cerium precipitate), being enlarged and changing their format. The present study contributes to a better understanding of the respiratory burst pathways in this species and suggests mitochondria as the organelle responsible for generation of reactive oxygen species. PMID:24068363

  15. Mitochondria and Reactive Oxygen Species: Physiology and Pathophysiology

    PubMed Central

    Bolisetty, Subhashini; Jaimes, Edgar A.

    2013-01-01

    The air that we breathe contains nearly 21% oxygen, most of which is utilized by mitochondria during respiration. While we cannot live without it, it was perceived as a bane to aerobic organisms due to the generation of reactive oxygen and nitrogen metabolites by mitochondria and other cellular compartments. However, this dogma was challenged when these species were demonstrated to modulate cellular responses through altering signaling pathways. In fact, since this discovery of a dichotomous role of reactive species in immune function and signal transduction, research in this field grew at an exponential pace and the pursuit for mechanisms involved began. Due to a significant number of review articles present on the reactive species mediated cell death, we have focused on emerging novel pathways such as autophagy, signaling and maintenance of the mitochondrial network. Despite its role in several processes, increased reactive species generation has been associated with the origin and pathogenesis of a plethora of diseases. While it is tempting to speculate that anti-oxidant therapy would protect against these disorders, growing evidence suggests that this may not be true. This further supports our belief that these reactive species play a fundamental role in maintenance of cellular and tissue homeostasis. PMID:23528859

  16. Mechanisms that Regulate Production of Reactive Oxygen Species by Cytochrome P450

    SciTech Connect

    Zangar, Richard C.; Davydov, Dmitri R.; Verma, Seema

    2004-09-15

    Mammalian cytochromes P450 (P450) are a family of heme-thiolate enzymes involved in the oxidative metabolism of a variety of endogenous and exogenous lipophilic compounds. Poor coupling of the P450 catalytic cycle results in continuous production of reactive oxygen species (ROS), which affect signaling pathways and other cellular functions. P450 generation of ROS is tightly controlled by regulation of gene transcription, as well as by modulation of interactions between protein constituents of the monooxygenase that affects its activity, coupling and stability. Malfunction of these mechanisms may result in a burst of ROS production, which can cause lipid peroxidation and oxidative stress. In turn, oxidative stress downregulates P450 levels by a variety of feedback mechanisms. This review provides an overview of recent advances in our understanding of these feedback mechanisms that serve to limit P450 production of ROS. Some of the more likely physiological and cellular effects of P450 generation of ROS are also discussed.

  17. Reactive oxygen species generation and signaling in plants

    PubMed Central

    Tripathy, Baishnab Charan; Oelmüller, Ralf

    2012-01-01

    The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS. PMID:23072988

  18. Probing the reactivity of singlet oxygen with purines

    PubMed Central

    Dumont, Elise; Grüber, Raymond; Bignon, Emmanuelle; Morell, Christophe; Moreau, Yohann; Monari, Antonio; Ravanat, Jean-Luc

    2016-01-01

    The reaction of singlet molecular oxygen with purine DNA bases is investigated by computational means. We support the formation of a transient endoperoxide for guanine and by classical molecular dynamics simulations we demonstrate that the formation of this adduct does not affect the B-helicity. We thus identify the guanine endoperoxide as a key intermediate, confirming a low-temperature nuclear magnetic resonance proof of its existence, and we delineate its degradation pathway, tracing back the preferential formation of 8-oxoguanine versus spiro-derivates in B-DNA. Finally, the latter oxidized 8-oxodGuo product exhibits an almost barrierless reaction profile, and hence is found, coherently with experience, to be much more reactive than guanine itself. On the contrary, in agreement with experimental observations, singlet-oxygen reactivity onto adenine is kinetically blocked by a higher energy transition state. PMID:26656495

  19. Probing the reactivity of singlet oxygen with purines.

    PubMed

    Dumont, Elise; Grüber, Raymond; Bignon, Emmanuelle; Morell, Christophe; Moreau, Yohann; Monari, Antonio; Ravanat, Jean-Luc

    2016-01-01

    The reaction of singlet molecular oxygen with purine DNA bases is investigated by computational means. We support the formation of a transient endoperoxide for guanine and by classical molecular dynamics simulations we demonstrate that the formation of this adduct does not affect the B-helicity. We thus identify the guanine endoperoxide as a key intermediate, confirming a low-temperature nuclear magnetic resonance proof of its existence, and we delineate its degradation pathway, tracing back the preferential formation of 8-oxoguanine versus spiro-derivates in B-DNA. Finally, the latter oxidized 8-oxodGuo product exhibits an almost barrierless reaction profile, and hence is found, coherently with experience, to be much more reactive than guanine itself. On the contrary, in agreement with experimental observations, singlet-oxygen reactivity onto adenine is kinetically blocked by a higher energy transition state. PMID:26656495

  20. HIV-1, Reactive Oxygen Species and Vascular Complications

    PubMed Central

    Porter, Kristi M.; Sutliff, Roy L.

    2012-01-01

    Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529

  1. Unusual Reactivity of the Martian Soil: Oxygen Release Upon Humidification

    NASA Technical Reports Server (NTRS)

    Yen, A. S.

    2002-01-01

    Recent lab results show that oxygen evolves from superoxide-coated mineral grains upon exposure to water vapor. This observation is additional support of the hypothesis that UV-generated O2 is responsible for the reactivity of the martian soil. Discussion of current NASA research opportunities, status of various programs within the Solar System Exploration Division, and employment opportunities within NASA Headquarters to support these programs. Additional information is contained in the original extended abstract.

  2. Reactive Oxygen Species (ROS) generation by lunar simulants

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Rickman, Douglas; Schoonen, Martin A.

    2016-05-01

    The current interest in human exploration of the Moon and past experiences of Apollo astronauts has rekindled interest into the possible harmful effects of lunar dust on human health. In comparison to the Apollo-era explorations, human explorers may be weeks on the Moon, which will raise the risk of inhalation exposure. The mineralogical composition of lunar dust is well documented, but its effects on human health are not fully understood. With the aim of understanding the reactivity of dusts that may be encountered on geologically different lunar terrains, we have studied Reactive Oxygen Species (ROS) generation by a suite of lunar simulants of different mineralogical-chemical composition dispersed in water and Simulated Lung Fluid (SLF). To further explore the reactivity of simulants under lunar environmental conditions, we compared the reactivity of simulants both in air and inert atmosphere. As the impact of micrometeorites with consequent shock-induced stresses is a major environmental factor on the Moon, we also studied the effect of mechanical stress on samples. Mechanical stress was induced by hand crushing the samples both in air and inert atmosphere. The reactivity of samples after crushing was analyzed for a period of up to nine days. Hydrogen peroxide (H2O2) in water and SLF was analyzed by an in situ electrochemical probe and hydroxyl radical (•OH) by Electron Spin Resonance (ESR) spectroscopy and Adenine probe. Out of all simulants, CSM-CL-S was found to be the most reactive simulant followed by OB-1 and then JSC-1A simulant. The overall reactivity of samples in the inert atmosphere was higher than in air. Fresh crushed samples showed a higher level of reactivity than uncrushed samples. Simulant samples treated to create agglutination, including the formation of zero-valent iron, showed less reactivity than untreated simulants. ROS generation in SLF is initially slower than in deionized water (DI), but the ROS formation is sustained for as long as 7.5 h. By contrast ROS is formed rapidly within 30 min when simulants are dispersed in DI, but then the concentration either stabilizes or decreases over time. The results indicate that mechanical stress and the absence of molecular oxygen and water, which are important environmental characteristics of the lunar environment, can lead to enhanced production of ROS in general. However, compositional difference among simulants is the most important factor in governing the production of ROS. Simulants with glass content in excess of 40 wt% appear to produce as much as of order of magnitude more ROS than simulants with lower glass content.

  3. Reactive oxygen species: Reactions and detection from photosynthetic tissues.

    PubMed

    Mattila, Heta; Khorobrykh, Sergey; Havurinne, Vesa; Tyystjärvi, Esa

    2015-11-01

    Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed. PMID:26498710

  4. Properties of reactive oxygen species by quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N3 - N4, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  5. Properties of reactive oxygen species by quantum Monte Carlo.

    PubMed

    Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo

    2014-07-01

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles. PMID:25005287

  6. Properties of reactive oxygen species by quantum Monte Carlo

    SciTech Connect

    Zen, Andrea; Trout, Bernhardt L.; Guidoni, Leonardo

    2014-07-07

    The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N{sup 3} − N{sup 4}, where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles.

  7. DNA Damage-induced Reactive Oxygen Species (ROS) Stress Response in Saccharomyces cerevisiae

    PubMed Central

    Rowe, Lori A.; Degtyareva, Natalya; Doetsch, Paul W.

    2008-01-01

    Cells are exposed to both endogenous and exogenous sources of reactive oxygen species (ROS). At high levels, ROS can lead to impaired physiological function through cellular damage of DNA, proteins, lipids, and other macromolecules, which can lead to certain human pathologies including cancers, neurodegenerative disorders, and cardiovascular disease, as well as aging. We have employed Saccharomyces cerevisiae as a model system to examine the levels and types of ROS that are produced in response to DNA damage in isogenic strains with different DNA repair capacities. We find that when DNA damage is introduced into cells from exogenous or endogenous sources there is an increase in the amount of intracellular ROS which is not directly related to cell death. We have examined the spectrum of ROS in order to elucidate its role in the cellular response to DNA damage. As an independent verification of the DNA damage-induced ROS response, we show that a major activator of the oxidative stress response, Yap1, relocalizes to the nucleus following exposure to the DNA alkylating agent methyl methanesulfonate. Our results indicate that the DNA damage-induced increase in intracellular ROS levels is a generalized stress response that is likely to function in various signaling pathways. PMID:18708137

  8. Applications of Electron Spin Resonance Spectrometry for Reactive Oxygen Species and Reactive Nitrogen Species Research

    PubMed Central

    Kohno, Masahiro

    2010-01-01

    Electron spin resonance (ESR) spectroscopy has been widely applied in the research of biological free radicals for quantitative and qualitative analyses of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The ESR spin-trapping method was developed in the early 1970s and enabled the analysis of short-lived free radicals. This method is now widely used as one of the most powerful tools for free radical studies. In this report, some of the studies that applied ESR for the measurement of ROS and RNS during oxidative stress are discussed. PMID:20664724

  9. Mechanisms of group A Streptococcus resistance to reactive oxygen species

    PubMed Central

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N.

    2015-01-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  10. Mechanisms of group A Streptococcus resistance to reactive oxygen species.

    PubMed

    Henningham, Anna; Döhrmann, Simon; Nizet, Victor; Cole, Jason N

    2015-07-01

    Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the 'top 10' causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•(-)), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. PMID:25670736

  11. Control of root growth and development by reactive oxygen species.

    PubMed

    Tsukagoshi, Hironaka

    2016-02-01

    Reactive oxygen species (ROS) are relatively simple molecules that exist within cells growing in aerobic conditions. ROS were originally associated with oxidative stress and seen as highly reactive molecules that are injurious to many cell components. More recently, however, the function of ROS as signal molecules in many plant cellular processes has become more evident. One of the most important functions of ROS is their role as a plant growth regulator. For example, ROS are key molecules in regulating plant root development, and as such, are comparable to plant hormones. In this review, the molecular mechanisms of ROS that are mainly associated with plant root growth are discussed. The molecular links between root growth regulation by ROS and other signals will also be briefly discussed. PMID:26724502

  12. Evidence for reactive oxygen species inducing mutations in mammalian cells.

    PubMed Central

    Hsie, A W; Recio, L; Katz, D S; Lee, C Q; Wagner, M; Schenley, R L

    1986-01-01

    We have studied the mutagenicity (by selecting for mutants resistant to 6-thioguanine) and cytotoxicity (by determining cellular cloning efficiency) of physical and chemical agents in Chinese hamster ovary (CHO) cells, clone CHO-K1-BH4 (K1-BH4), and its radiation-hypersensitive transformant, AS52. AS52 cells contain a single functional copy of a bacterial gene, the xanthine/guanine phosphoribosyltransferase (gpt) gene instead of its mammalian equivalent, the hypoxanthine/guanine phosphoribosyltransferase (hprt) gene. We found that x-ray and neutron irradiations are equally toxic to both cell types; however, these physical agents are approximately equal to 10 times more mutagenic to AS52 cells than to K1-BH4 cells. Our earlier studies using Southern blot analysis showed that x-irradiation produces mostly or exclusively deletion mutations in both cell types. If reactive oxygen species mediate the mutagenic effects of radiations and chemicals, then radiomimetic compounds such as streptonigrin and bleomycin, which exert their biological effects via reactive oxygen species, and oxidizing compounds such as potassium superoxide and hydrogen peroxide should elicit a similar differential mutagenic response in both cell types. On the other hand, agents such as ethyl methanesulfonate, ICR 191, and UV light, which do not produce reactive oxygen species, should not elicit differential mutagenicity. Our results fulfill such predictions. The apparent hypermutability of AS52 cells probably results from a higher recovery of multilocus deletion mutants in AS52 cells than in K1-BH4 cells, rather than a higher yield of induced mutants. PMID:2432598

  13. Manganese Neurotoxicity and the Role of Reactive Oxygen Species

    PubMed Central

    Martinez-Finley, Ebany J.; Gavin, Claire E; Aschner, Michael; Gunter, Thomas E.

    2013-01-01

    Manganese (Mn) is an essential dietary nutrient but excess or accumulations can be toxic. Disease states, like manganism, are associated with overexposure or accumulation of Mn and are due to the production of reactive oxygen species, free radicals and toxic metabolites, alteration of mitochondrial function and ATP production and depletion of cellular antioxidant defense mechanisms. This review focuses on all of the preceding mechanisms and the scientific studies that support them as well as provides an overview of the absorption, distribution, and excretion of Mn and the stability and transport of Mn compounds in the body. PMID:23395780

  14. Redox Processes in Neurodegenerative Disease Involving Reactive Oxygen Species

    PubMed Central

    Kovacic, Peter; Somanathan, Ratnasamy

    2012-01-01

    Much attention has been devoted to neurodegenerative diseases involving redox processes. This review comprises an update involving redox processes reported in the considerable literature in recent years. The mechanism involves reactive oxygen species and oxidative stress, usually in the brain. There are many examples including Parkinson’s, Huntington’s, Alzheimer’s, prions, Down’s syndrome, ataxia, multiple sclerosis, Creutzfeldt-Jacob disease, amyotrophic lateral sclerosis, schizophrenia, and Tardive Dyskinesia. Evidence indicates a protective role for antioxidants, which may have clinical implications. A multifaceted approach to mode of action appears reasonable. PMID:23730253

  15. Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy

    PubMed Central

    Eshaq, Randa S.; Wright, William S.; Harris, Norman R.

    2014-01-01

    Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C. PMID:24936440

  16. Regulation of Endothelial Function by Mitochondrial Reactive Oxygen Species

    PubMed Central

    Widlansky, Michael E.

    2011-01-01

    Abstract Mitochondria are well known for their central roles in ATP production, calcium homeostasis, and heme and steroid biosynthesis. However, mitochondrial reactive oxygen species (ROS), including superoxide and hydrogen peroxide, once thought to be toxic byproducts of mitochondrial physiologic activities, have recently been recognized as important cell-signaling molecules in the vascular endothelium, where their production, conversion, and destruction are highly regulated. Mitochondrial reactive oxygen species appear to regulate important vascular homeostatic functions under basal conditions in a variety of vascular beds, where, in particular, they contribute to endothelium-dependent vasodilation. On exposure to cardiovascular risk factors, endothelial mitochondria produce excessive ROS in concert with other cellular ROS sources. Mitochondrial ROS, in this setting, act as important signaling molecules activating prothrombotic and proinflammatory pathways in the vascular endothelium, a process that initially manifests itself as endothelial dysfunction and, if persistent, may lead to the development of atherosclerotic plaques. This review concentrates on emerging appreciation of the importance of mitochondrial ROS as cell-signaling molecules in the vascular endothelium under both physiologic and pathophysiologic conditions. Future potential avenues of research in this field also are discussed. Antioxid. Redox Signal. 15, 1517–1530. PMID:21194353

  17. Mitochondria: Much ado about nothing? How dangerous is reactive oxygen species production??

    PubMed Central

    Holzerov, Elika; Prokisch, Holger

    2015-01-01

    For more than 50 years, reactive oxygen species have been considered as harmful agents, which can attack proteins, lipids or nucleic acids. In order to deal with reactive oxygen species, there is a sophisticated system developed in mitochondria to prevent possible damage. Indeed, increased reactive oxygen species levels contribute to pathomechanisms in several human diseases, either by its impaired defense system or increased production of reactive oxygen species. However, in the last two decades, the importance of reactive oxygen species in many cellular signaling pathways has been unraveled. Homeostatic levels were shown to be necessary for correct differentiation during embryonic expansion of stem cells. Although the mechanism is still not fully understood, we cannot only regard reactive oxygen species as a toxic by-product of mitochondrial respiration anymore. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies. PMID:25666559

  18. Protein reactivity with singlet oxygen: Influence of the solvent exposure of the reactive amino acid residues.

    PubMed

    Sjöberg, Béatrice; Foley, Sarah; Staicu, Angela; Pascu, Alexandru; Pascu, Mihail; Enescu, Mironel

    2016-06-01

    The singlet oxygen quenching rate constants were measured for three model proteins, bovine serum albumin, β-lactoglobulin and lysozyme. The results were analyzed by comparing them with the corresponding singlet oxygen quenching rate constants for a series of tripeptides with the basic formula GlyAAGly where the central amino acid (AA) was the oxidizable amino acid, tryptophan, tyrosine, methionine and histidine. It was found that the reaction rate constant in proteins can be satisfactorily modelled by the sum of the individual contributions of the oxidizable AA residues corrected for the solvent accessible surface area (SASA) effects. The best results were obtained when the SASA of the AA residues were determined by averaging over molecular dynamics simulated trajectories of the proteins. The limits of this geometrical correction of the AA residue reactivity are also discussed. PMID:27045278

  19. Reactive Oxygen Species and Dopamine Receptor Function in Essential Hypertension

    PubMed Central

    Zeng, Chunyu; Villar, Van Anthony M.; Yu, Peiying; Zhou, Lin; Jose, Pedro A.

    2013-01-01

    Essential hypertension is a major risk factor for stroke, myocardial infarction, and heart and kidney failure. Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones and humoral factors. However, the mechanisms leading to impaired dopamine receptor function in hypertension states are not clear. Compelling experimental evidence indicates a role of reactive oxygen species (ROS) in hypertension, and there are increasing pieces of evidence showing that in conditions associated with oxidative stress, which is present in hypertensive states, dopamine receptor effects, such as natriuresis, diuresis, and vasodilation, are impaired. The goal of this review is to present experimental evidence that has led to the conclusion that decreased dopamine receptor function increases ROS activity and vice versa. Decreased dopamine receptor function and increased ROS production, working in concert or independent of each other, contribute to the pathogenesis of essential hypertension. PMID:19330604

  20. The Role of Reactive Oxygen Species in Microvascular Remodeling

    PubMed Central

    Staiculescu, Marius C.; Foote, Christopher; Meininger, Gerald A.; Martinez-Lemus, Luis A.

    2014-01-01

    The microcirculation is a portion of the vascular circulatory system that consists of resistance arteries, arterioles, capillaries and venules. It is the place where gases and nutrients are exchanged between blood and tissues. In addition the microcirculation is the major contributor to blood flow resistance and consequently to regulation of blood pressure. Therefore, structural remodeling of this section of the vascular tree has profound implications on cardiovascular pathophysiology. This review is focused on the role that reactive oxygen species (ROS) play on changing the structural characteristics of vessels within the microcirculation. Particular attention is given to the resistance arteries and the functional pathways that are affected by ROS in these vessels and subsequently induce vascular remodeling. The primary sources of ROS in the microcirculation are identified and the effects of ROS on other microcirculatory remodeling phenomena such as rarefaction and collateralization are briefly reviewed. PMID:25535075

  1. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology

    PubMed Central

    Cave, Alison; Grieve, David; Johar, Sofian; Zhang, Min; Shah, Ajay M

    2005-01-01

    Chronic heart failure, secondary to left ventricular hypertrophy or myocardial infarction, is a condition with increasing morbidity and mortality. Although the mechanisms underlying the development and progression of this condition remain a subject of intense interest, there is now growing evidence that redox-sensitive pathways play an important role. This article focuses on the involvement of reactive oxygen species derived from a family of superoxide-generating enzymes, termed NADPH oxidases (NOXs), in the pathophysiology of ventricular hypertrophy, the accompanying interstitial fibrosis and subsequent heart failure. In particular, the apparent ability of the different NADPH oxidase isoforms to define the response of a cell to a range of physiological and pathophysiological stimuli is reviewed. If confirmed, these data would suggest that independently targeting different members of the NOX family may hold the potential for therapeutic intervention in the treatment of cardiac disease. PMID:16321803

  2. Reactive oxygen species, essential molecules, during plant-pathogen interactions.

    PubMed

    Camejo, Daymi; Guzmán-Cedeño, Ángel; Moreno, Alexander

    2016-06-01

    Reactive oxygen species (ROS) are continually generated as a consequence of the normal metabolism in aerobic organisms. Accumulation and release of ROS into cell take place in response to a wide variety of adverse environmental conditions including salt, temperature, cold stresses and pathogen attack, among others. In plants, peroxidases class III, NADPH oxidase (NOX) locates in cell wall and plasma membrane, respectively, may be mainly enzymatic systems involving ROS generation. It is well documented that ROS play a dual role into cells, acting as important signal transduction molecules and as toxic molecules with strong oxidant power, however some aspects related to its function during plant-pathogen interactions remain unclear. This review focuses on the principal enzymatic systems involving ROS generation addressing the role of ROS as signal molecules during plant-pathogen interactions. We described how the chloroplasts, mitochondria and peroxisomes perceive the external stimuli as pathogen invasion, and trigger resistance response using ROS as signal molecule. PMID:26950921

  3. Reactive oxygen species as signaling molecules in neutrophil chemotaxis

    PubMed Central

    Hattori, Hidenori; Subramanian, Kulandayan K; Sakai, Jiro

    2010-01-01

    Neutrophil chemotaxis is a critical component in innate immunity. Recently, using a small-molecule functional screening, we identified NADPHoxidase- dependent Reactive Oxygen Species (ROS) as key regulators of neutrophil chemotactic migration. Neutrophils depleted of ROS form more frequent multiple pseudopodia and lost their directionality as they migrate up a chemoattractant concentration gradient. Here, we further studied the role of ROS in neutrophil chemotaxis and found that multiple pseudopodia formation induced by NADPH inhibitor diphenyleneiodonium chloride (DPI) was more prominent in relatively shallow chemoattractant gradient. It was reported that, in shallow chemoattractant gradients, new pseudopods are usually generated when existing ones bifurcate. Directional sensing is mediated by maintaining the most accurate existing pseudopod, and destroying pseudopods facing the wrong direction by actin depolymerization. We propose that NADPH-mediated ROS production may be critical for disruption of misoriented pseudopods in chemotaxing neutrophils. Thus, inhibition of ROS production will lead to formation of multiple pseudopodia. PMID:20714413

  4. Reactive oxygen species as signaling molecules in neutrophil chemotaxis.

    PubMed

    Hattori, Hidenori; Subramanian, Kulandayan K; Sakai, Jiro; Luo, Hongbo R

    2010-05-01

    Neutrophil chemotaxis is a critical component in innate immunity. Recently, using a small-molecule functional screening, we identified NADPHoxidase- dependent Reactive Oxygen Species (ROS) as key regulators of neutrophil chemotactic migration. Neutrophils depleted of ROS form more frequent multiple pseudopodia and lost their directionality as they migrate up a chemoattractant concentration gradient. Here, we further studied the role of ROS in neutrophil chemotaxis and found that multiple pseudopodia formation induced by NADPH inhibitor diphenyleneiodonium chloride (DPI) was more prominent in relatively shallow chemoattractant gradient. It was reported that, in shallow chemoattractant gradients, new pseudopods are usually generated when existing ones bifurcate. Directional sensing is mediated by maintaining the most accurate existing pseudopod, and destroying pseudopods facing the wrong direction by actin depolymerization. We propose that NADPH-mediated ROS production may be critical for disruption of misoriented pseudopods in chemotaxing neutrophils. Thus, inhibition of ROS production will lead to formation of multiple pseudopodia. PMID:20714413

  5. Reactive Oxygen Species, Apoptosis, and Mitochondrial Dysfunction in Hearing Loss

    PubMed Central

    Fujimoto, Chisato

    2015-01-01

    Reactive oxygen species (ROS) production is involved in several apoptotic and necrotic cell death pathways in auditory tissues. These pathways are the major causes of most types of sensorineural hearing loss, including age-related hearing loss, hereditary hearing loss, ototoxic drug-induced hearing loss, and noise-induced hearing loss. ROS production can be triggered by dysfunctional mitochondrial oxidative phosphorylation and increases or decreases in ROS-related enzymes. Although apoptotic cell death pathways are mostly activated by ROS production, there are other pathways involved in hearing loss that do not depend on ROS production. Further studies of other pathways, such as endoplasmic reticulum stress and necrotic cell death, are required. PMID:25874222

  6. Reactive Oxygen Species in Normal and Tumor Stem Cells

    PubMed Central

    Zhou, Daohong; Shao, Lijian; Spitz, Douglas R.

    2014-01-01

    Reactive oxygen species (ROS) play an important role in determining the fate of normal stem cells. Low levels of ROS are required for stem cells to maintain quiescence and self-renewal. Increases in ROS production cause stem cell proliferation/differentiation, senescence, and apoptosis in a dose-dependent manner, leading to their exhaustion. Therefore, the production of ROS in stem cells is tightly regulated to ensure that they have the ability to maintain tissue homeostasis and repair damaged tissues for the life span of an organism. In this chapter, we discuss how the production of ROS in normal stem cells is regulated by various intrinsic and extrinsic factors and how the fate of these cells is altered by the dysregulation of ROS production under various pathological conditions. In addition, the implications of the aberrant production of ROS by tumor stem cells for tumor progression and treatment are also discussed. PMID:24974178

  7. Mechanisms of nanotoxicity: generation of reactive oxygen species.

    PubMed

    Fu, Peter P; Xia, Qingsu; Hwang, Huey-Min; Ray, Paresh C; Yu, Hongtao

    2014-03-01

    Nanotechnology is a rapidly developing field in the 21(st) century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS). Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium. PMID:24673904

  8. Reactive oxygen species-targeted therapeutic interventions for atrial fibrillation

    PubMed Central

    Sovari, Ali A.; Dudley, Samuel C.

    2012-01-01

    Atrial fibrillation (AF) is the most common arrhythmia that requires medical attention, and its incidence is increasing. Current ion channel blockade therapies and catheter ablation have significant limitations in treatment of AF, mainly because they do not address the underlying pathophysiology of the disease. Oxidative stress has been implicated as a major underlying pathology that promotes AF; however, conventional antioxidants have not shown impressive therapeutic effects. A more careful design of antioxidant therapies and better selection of patients likely are required to treat effectively AF with antioxidant agents. Current evidence suggest inhibition of prominent cardiac sources of reactive oxygen species (ROS) such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and targeting subcellular compartments with the highest levels of ROS may prove to be effective therapies for AF. Increased serum markers of oxidative stress may be an important guide in selecting the AF patients who will most likely respond to antioxidant therapy. PMID:22934062

  9. Reactive oxygen species and the bacterial response to lethal stress

    PubMed Central

    Zhao, Xilin; Drlica, Karl

    2014-01-01

    Bacteria are killed by a variety of lethal stressors, some of which promote a cascade of reactive oxygen species (ROS). Perturbations expected to alter ROS accumulation affect the lethal action of diverse antibacterials, leading to the hypothesis that killing by these agents can involve ROS-mediated self-destruction. Recent challenges to the hypothesis are considered, particularly with respect to complexities in assays that distinguish primary damage from the cellular response to that damage. Also considered are bifunctional factors that are protective at low stress levels but destructive at high levels. These considerations, plus new data, support an involvement of ROS in the lethal action of some antimicrobials and raise important questions concerning consumption of antioxidant dietary supplements during antimicrobial chemotherapy. PMID:25078317

  10. Reactive oxygen species production and discontinuous gas exchange in insects

    PubMed Central

    Boardman, Leigh; Terblanche, John S.; Hetz, Stefan K.; Marais, Elrike; Chown, Steven L.

    2012-01-01

    While biochemical mechanisms are typically used by animals to reduce oxidative damage, insects are suspected to employ a higher organizational level, discontinuous gas exchange mechanism to do so. Using a combination of real-time, flow-through respirometry and live-cell fluorescence microscopy, we show that spiracular control associated with the discontinuous gas exchange cycle (DGC) in Samia cynthia pupae is related to reactive oxygen species (ROS). Hyperoxia fails to increase mean ROS production, although minima are elevated above normoxic levels. Furthermore, a negative relationship between mean and mean ROS production indicates that higher ROS production is generally associated with lower . Our results, therefore, suggest a possible signalling role for ROS in DGC, rather than supporting the idea that DGC acts to reduce oxidative damage by regulating ROS production. PMID:21865257

  11. Reactive Oxygen Species in Inflammation and Tissue Injury

    PubMed Central

    Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167. PMID:23991888

  12. Reactive oxygen species: their relation to pneumoconiosis and carcinogenesis.

    PubMed

    Vallyathan, V; Shi, X; Castranova, V

    1998-10-01

    Occupational exposures to mineral particles cause pneumoconiosis and other diseases, including cancer. Recent studies have suggested that reactive oxygen species (ROS) may play a key role in the mechanisms of disease initiation and progression following exposure to these particles. ROS-induced primary stimuli result in the increased secretion of proinflammatory cytokines and other mediators, promoting events that appear to be important in the progression of cell injury and pulmonary disease. We have provided evidence supporting the hypothesis that inhalation of insoluble particles such as asbestos, agricultural dusts, coal, crystalline silica, and inorganic dust can be involved in facilitating multiple pathways for persistent generation of ROS, which may lead to a continuum of inflammation leading to progression of disease. This article briefly summarizes some of the recent findings from our laboratories with emphasis on the molecular events by which ROS are involved in promoting pneumoconiosis and carcinogenesis. PMID:9788890

  13. Cell signaling by reactive nitrogen and oxygen species in atherosclerosis

    NASA Technical Reports Server (NTRS)

    Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

    2000-01-01

    The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

  14. Updates of reactive oxygen species in melanoma etiology and progression

    PubMed Central

    Liu-Smith, Feng; Dellinger, Ryan; Meyskens, Frank L.

    2014-01-01

    Reactive oxygen species (ROS) play crucial roles in all aspects of melanoma development, however, the source of ROS is not well defined. In this review we summarize recent advancement in this rapidly developing field. The cellular ROS pool in melanocytes can be derived from mitochondria, melanosomes, NADPH oxidase (NOX) family enzymes, and uncoupling of nitric oxide synthase (NOS). Current evidence suggests that Nox1, Nox4 and Nox5 are expressed in melanocytic lineage. While there is no difference in Nox1 expression levels in primary and metastatic melanoma tissues, Nox4 expression is significantly higher in a subset of metastatic melanoma tumors as compared to the primary tumors; suggesting distinct and specific signals and effects for NOX family enzymes in melanoma. Targeting these NOX enzymes using specific NOX inhibitors may be effective for a subset of certain tumors. ROS also play important roles in BRAF inhibitor induced drug resistance; hence identification and blockade of the source of this ROS may be an effective way to enhance efficacy and overcome resistance. Furthermore, ROS from different sources may interact with each other and interact with reactive nitrogen species (RNS) and drive the melanomagenesis process at all stages of disease. Further understanding ROS and RNS in melanoma etiology and progression is necessary for developing new prevention and therapeutic approaches. PMID:24780245

  15. Photosensitizing Nanoparticles and The Modulation of Reactive Oxygen Species generation

    NASA Astrophysics Data System (ADS)

    Tada, Dayane; Baptista, Mauricio

    2015-05-01

    The association of PhotoSensitizer (PS) molecules with nanoparticles (NPs) forming photosensitizing NPs, has emerged as a therapeutic strategy to improve PS tumor targeting, to protect PS from deactivation reactions and to enhance both PS solubility and circulation time. Since association with NPs usually alters PS photophysical and photochemical properties, photosensitizing NPs are an important tool to modulate reactive oxygen species (ROS) generation. Depending on the design of the photosensitizing NP, i.e., type of PS, the NP material and the method applied for the construction of the photosensitizing NP, the deactivation routes of the excited state can be controlled, allowing the generation of either singlet oxygen or other ROS. Controlling the type of generated ROS is desirable not only in biomedical applications, as in Photodynamic Therapy where the type of ROS affects therapeutic efficiency, but also in other technological relevant fields like energy conversion, where the electron and energy transfer processes are necessary to increase the efficiency of photoconversion cells. The current review highlights some of the recent developments in the design of Photosensitizing NPs aimed at modulating the primary photochemical events after light absorption.

  16. A case of mistaken identity: are reactive oxygen species actually reactive sulfide species?

    PubMed

    DeLeon, Eric R; Gao, Yan; Huang, Evelyn; Arif, Maaz; Arora, Nitin; Divietro, Alexander; Patel, Shivali; Olson, Kenneth R

    2016-04-01

    Stepwise one-electron reduction of oxygen to water produces reactive oxygen species (ROS) that are chemically and biochemically similar to reactive sulfide species (RSS) derived from one-electron oxidations of hydrogen sulfide to elemental sulfur. Both ROS and RSS are endogenously generated and signal via protein thiols. Given the similarities between ROS and RSS, we wondered whether extant methods for measuring the former would also detect the latter. Here, we compared ROS to RSS sensitivity of five common ROS methods: redox-sensitive green fluorescent protein (roGFP), 2', 7'-dihydrodichlorofluorescein, MitoSox Red, Amplex Red, and amperometric electrodes. All methods detected RSS and were as, or more, sensitive to RSS than to ROS. roGFP, arguably the "gold standard" for ROS measurement, was more than 200-fold more sensitive to the mixed polysulfide H2Sn(n= 1-8) than to H2O2 These findings suggest that RSS may be far more prevalent in intracellular signaling than previously appreciated and that the contribution of ROS may be overestimated. This conclusion is further supported by the observation that estimated daily sulfur metabolism and ROS production are approximately equal and the fact that both RSS and antioxidant mechanisms have been present since the origin of life, nearly 4 billion years ago, long before the rise in environmental oxygen 600 million years ago. Although ROS are assumed to be the most biologically relevant oxidants, our results question this paradigm. We also anticipate our findings will direct attention toward development of novel and clinically relevant anti-(RSS)-oxidants. PMID:26764057

  17. Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species

    PubMed Central

    Serena, Elena; Figallo, Elisa; Tandon, Nina; Cannizzaro, Christopher; Gerecht, Sharon; Elvassore, Nicola; Vunjak-Novakovic, Gordana

    2009-01-01

    Exogenous electric fields have been implied in cardiac differentiation of mouse embryonic stem cells and the generation of reactive oxygen species (ROS). In this work, we explored the effects of electrical field stimulation on ROS generation and cardiogenesis in embryoid bodies (EBs) derived from human embryonic stem cells (hESC, line H13), using a custom-built electrical-stimulation bioreactor. Electrical properties of the bioreactor system were characterized by electrochemical impedance spectroscopy (EIS) and analysis of electrical currents. The effects of the electrode material (stainless steel, titanium-nitride coated titanium, titanium), length of stimulus (1 s and 90 s) and age of EBs at the onset of electrical stimulation (4 and 8 days) were investigated with respect to ROS generation. The amplitude of the applied electrical field was 1 V/mm. The highest rate of ROS generation was observed for stainless steel electrodes, for signal duration of 90 s, and 4-days old EBs. Notably, comparable ROS generation was achieved by incubation of EBs with 1 nM H2O2. Cardiac differentiation in these EBs was evidenced by spontaneous contractions, expression of Troponin T, and its sarcomeric organization. These results imply that electrical stimulation plays a role in cardiac differentiation of hESCs, through mechanisms associated with the intracellular generation of ROS. PMID:19720058

  18. Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium.

    PubMed

    Kim, Sujin; Kim, Min-Ji; Park, Do Yang; Chung, Hyo Jin; Kim, Chang-Hoon; Yoon, Joo-Heon; Kim, Hyun Jik

    2015-07-01

    The innate immune system of the nasal epithelium serves as a first line of defense against invading respiratory viruses including influenza A virus (IAV). Recently, it was verified that interferon (IFN)-related immune responses play a critical role in local antiviral innate immunity. Reactive oxygen species (ROS) generation by exogenous pathogens has also been demonstrated in respiratory epithelial cells and modulation of ROS has been reported to be important for respiratory virus-induced innate immune mechanisms. Passage-2 normal human nasal epithelial (NHNE) cells were inoculated with IAV (WS/33, H1N1) to assess the sources of IAV-induced ROS and the relationship between ROS and IFN-related innate immune responses. Both STAT1 and STAT2 phosphorylation and the mRNA levels of IFN-stimulated genes, including Mx1, 2,5-OAS1, IFIT1, and CXCL10, were induced after IAV infection up to three days post infection. Similarly, we observed that mitochondrial ROS generation increased maximally at 2 days after IAV infection. After suppression of mitochondrial ROS generation, IAV-induced phosphorylation of STAT and mRNA levels of IFN-stimulated genes were attenuated and actually, viral titers of IAV were significantly higher in cases with scavenging ROS. Our findings suggest that mitochondrial ROS might be responsible for controlling IAV infection and may be potential sources of ROS generation, which is required to initiate an innate immune response in NHNE cells. PMID:25930096

  19. Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species.

    PubMed

    Serena, Elena; Figallo, Elisa; Tandon, Nina; Cannizzaro, Christopher; Gerecht, Sharon; Elvassore, Nicola; Vunjak-Novakovic, Gordana

    2009-12-10

    Exogenous electric fields have been implied in cardiac differentiation of mouse embryonic stem cells and the generation of reactive oxygen species (ROS). In this work, we explored the effects of electrical field stimulation on ROS generation and cardiogenesis in embryoid bodies (EBs) derived from human embryonic stem cells (hESC, line H13), using a custom-built electrical stimulation bioreactor. Electrical properties of the bioreactor system were characterized by electrochemical impedance spectroscopy (EIS) and analysis of electrical currents. The effects of the electrode material (stainless steel, titanium-nitride-coated titanium, titanium), length of stimulus (1 and 90 s) and age of EBs at the onset of electrical stimulation (4 and 8 days) were investigated with respect to ROS generation. The amplitude of the applied electrical field was 1 V/mm. The highest rate of ROS generation was observed for stainless steel electrodes, for signal duration of 90 s and for 4-day-old EBs. Notably, comparable ROS generation was achieved by incubation of EBs with 1 nM H(2)O(2). Cardiac differentiation in these EBs was evidenced by spontaneous contractions, expression of troponin T and its sarcomeric organization. These results imply that electrical stimulation plays a role in cardiac differentiation of hESCs, through mechanisms associated with the intracellular generation of ROS. PMID:19720058

  20. Enzymatic Production of Extracellular Reactive Oxygen Species by Marine Microorganisms

    NASA Astrophysics Data System (ADS)

    Diaz, J. M.; Andeer, P. F.; Hansel, C. M.

    2014-12-01

    Reactive oxygen species (ROS) serve as intermediates in a myriad of biogeochemically important processes, including cell signaling pathways, cellular oxidative stress responses, and the transformation of both nutrient and toxic metals such as iron and mercury. Abiotic reactions involving the photo-oxidation of organic matter were once considered the only important sources of ROS in the environment. However, the recent discovery of substantial biological ROS production in marine systems has fundamentally shifted this paradigm. Within the last few decades, marine phytoplankton, including diatoms of the genus Thalassiosira, were discovered to produce ample extracellular quantities of the ROS superoxide. Even more recently, we discovered widespread production of extracellular superoxide by phylogenetically and ecologically diverse heterotrophic bacteria at environmentally significant levels (up to 20 amol cell-1 hr-1), which has introduced the revolutionary potential for substantial "dark" cycling of ROS. Despite the profound biogeochemical importance of extracellular biogenic ROS, the cellular mechanisms underlying the production of this ROS have remained elusive. Through the development of a gel-based assay to identify extracellular ROS-producing proteins, we have recently found that enzymes typically involved in antioxidant activity also produce superoxide when molecular oxygen is the only available electron acceptor. For example, large (~3600 amino acids) heme peroxidases are involved in extracellular superoxide production by a bacterium within the widespread Roseobacter clade. In Thalassiosira spp., extracellular superoxide is produced by flavoproteins such as glutathione reductase and ferredoxin NADP+ reductase. Thus, extracellular ROS production may occur via secreted and/or cell surface enzymes that modulate between producing and degrading ROS depending on prevailing geochemical and/or ecological conditions.

  1. Zinc oxide nanoparticles induce renal toxicity through reactive oxygen species.

    PubMed

    Xiao, Lu; Liu, Chunhua; Chen, Xiaoniao; Yang, Zhuo

    2016-04-01

    Nanoparticles of zinc oxide (ZnO NPs) are applied in many fields nowadays. Consequently, concerns have been raised about its potential harmful effects. The present study focuses on its toxic effect on podocytes and rats. In vitro study, podocytes were treated with different concentrations of ZnO NPs (10, 50 and 100 μg/ml), the viability of cells was decreased as time prolonged according to MTT assay. Meantime, flow cytometry analysis indicated that ZnO NPs induced intracellular accumulation of reactive oxygen species (ROS) and apoptosis. The measurement of superoxide dismutase (SOD) and malondialdehyde (MDA) showed that ZnO NPs decreased SOD level and increased MDA level. Interestingly, pretreatment with N-mercaptopropionyl-glycine, known as a type of ROS scavenger, could inhibit podocyte apoptosis induced by ZnO NPs. Meantime, a loss of nephrin can be detected, which may result in a direct damage to slit diaphragms. In vivo study, adult male Wistar rats were administrated with 3mg/kg/day ZnO NPs for 5 days, body weight and kidney index were significantly reduced. In addition, ZnO NPs decreased the activity of catalase and SOD in kidney cortex in vivo. It could be concluded that ZnO NPs present toxic effect on podocytes and Wistar rats, which was related with oxidative stress. PMID:26860595

  2. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases.

    PubMed

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  3. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer.

    PubMed

    Zhang, Lun; Li, Jiahui; Zong, Liang; Chen, Xin; Chen, Ke; Jiang, Zhengdong; Nan, Ligang; Li, Xuqi; Li, Wei; Shan, Tao; Ma, Qingyong; Ma, Zhenhua

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy. PMID:26881012

  4. Are reactive oxygen species always detrimental to pathogens?

    PubMed

    Paiva, Claudia N; Bozza, Marcelo T

    2014-02-20

    Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses. PMID:23992156

  5. Reactive oxygen species in cancer, too much or too little?

    PubMed

    Lu, Fuxiong

    2007-01-01

    It is widely accepted that increased levels of reactive oxygen species (ROS) contribute to carcinogenesis. However, this claim has not been confirmed by experiments. On the contrary, a growing number of studies clearly demonstrate that ROS are normal cellular signals and induce cell differentiation and apoptosis, the opposite processes to cancer, which is dedifferentiated. Thus, it is hypothesized here that decreased levels of ROS may lead to cancer development, which is supported by following observations: (1) the fast-growing tumor produces ROS at a rate only one-third of the rate found with the control liver mitochondria; (2) the reduction in tumor mitochondrial content indicates low level of ROS production; (3) the low levels of manganese superoxide dismutase in tumor mitochondria also indicate decreased production of ROS, because the enzyme activity is induced by ROS; (4) lipid peroxidation capacity was decreased in human colon carcinomas and Yoshida hepatomas; (5) low levels of lipid peroxidation de-inhibit glucose-6-phosphate dehydrogenase, whose activity is always increased in a variety of cancers without exception. Clarification of real role of ROS in cancer may shed light on the understanding of how impairment of mitochondria leads to malignant transformation of normal cells, and offer new types of strategies for cancer prevention and therapy. PMID:17509774

  6. Reactive oxygen species in cancer, too much or too little?

    TOXLINE Toxicology Bibliographic Information

    Lu F

    2007-01-01

    It is widely accepted that increased levels of reactive oxygen species (ROS) contribute to carcinogenesis. However, this claim has not been confirmed by experiments. On the contrary, a growing number of studies clearly demonstrate that ROS are normal cellular signals and induce cell differentiation and apoptosis, the opposite processes to cancer, which is dedifferentiated. Thus, it is hypothesized here that decreased levels of ROS may lead to cancer development, which is supported by following observations: (1) the fast-growing tumor produces ROS at a rate only one-third of the rate found with the control liver mitochondria; (2) the reduction in tumor mitochondrial content indicates low level of ROS production; (3) the low levels of manganese superoxide dismutase in tumor mitochondria also indicate decreased production of ROS, because the enzyme activity is induced by ROS; (4) lipid peroxidation capacity was decreased in human colon carcinomas and Yoshida hepatomas; (5) low levels of lipid peroxidation de-inhibit glucose-6-phosphate dehydrogenase, whose activity is always increased in a variety of cancers without exception. Clarification of real role of ROS in cancer may shed light on the understanding of how impairment of mitochondria leads to malignant transformation of normal cells, and offer new types of strategies for cancer prevention and therapy.

  7. Mitochondrial signaling in the vascular endothelium: beyond reactive oxygen species.

    PubMed

    Kadlec, Andrew O; Beyer, Andreas M; Ait-Aissa, Karima; Gutterman, David D

    2016-05-01

    Traditionally, the mitochondria have been viewed as the cell's powerhouse, producing energy in the form of ATP. As a byproduct of ATP formation, the mitochondrial electron transport chain produces substantial amounts of reactive oxygen species (ROS). First thought to be toxic, recent literature indicates an important signaling function for mitochondria-derived ROS, especially in relation to cardiovascular disease pathogenesis. This has spawned an evolution to a more contemporary view of mitochondrial function as a dynamic organelle involved in key regulatory and cell survival processes. Beyond ROS, recent studies have identified a host of mitochondria-linked factors that influence the cellular and extracellular environments, including mitochondria-derived peptides, mitochondria-localized proteins, and the mitochondrial genome itself. Interestingly, many of these factors help orchestrate ROS homeostasis and ROS-related signaling. The paradigm defining the role of mitochondria in the vasculature needs to be updated yet again to include these key signaling factors, which serves as the focus of the current review. In describing these novel signaling factors, we pay specific attention to their influence on endothelial homeostasis. Therapies targeting these pathways are discussed, as are emerging research directions. PMID:26992928

  8. Mitochondrial reactive oxygen species in cell death signaling.

    PubMed

    Fleury, Christophe; Mignotte, Bernard; Vayssière, Jean-Luc

    2002-01-01

    During apoptosis, mitochondrial membrane permeability (MMP) increases and the release into the cytosol of pro-apoptotic factors (procaspases, caspase activators and caspase-independent factors such as apoptosis-inducing factor (AIF)) leads to the apoptotic phenotype. Apart from this pivotal role of mitochondria during the execution phase of apoptosis (documented in other reviews of this issue), it appears that reactive oxygen species (ROS) produced by the mitochondria can be involved in cell death. These toxic compounds are normally detoxified by the cells, failing which oxidative stress occurs. However, ROS are not only dangerous molecules for the cell, but they also display a physiological role, as mediators in signal transduction pathways. ROS participate in early and late steps of the regulation of apoptosis, according to different possible molecular mechanisms. In agreement with this role of ROS in apoptosis signaling, inhibition of apoptosis by anti-apoptotic Bcl-2 and Bcl-x(L) is associated with a protection against ROS and/or a shift of the cellular redox potential to a more reduced state. Furthermore, the fact that active forms of cell death in yeast and plants also involve ROS suggests the existence of an ancestral redox-sensitive death signaling pathway that has been independent of caspases and Bcl-2. PMID:12022944

  9. Tamoxifen reduces fat mass by boosting reactive oxygen species

    PubMed Central

    Liu, L; Zou, P; Zheng, L; Linarelli, L E; Amarell, S; Passaro, A; Liu, D; Cheng, Z

    2015-01-01

    As the pandemic of obesity is growing, a variety of animal models have been generated to study the mechanisms underlying the increased adiposity and development of metabolic disorders. Tamoxifen (Tam) is widely used to activate Cre recombinase that spatiotemporally controls target gene expression and regulates adiposity in laboratory animals. However, a critical question remains as to whether Tam itself affects adiposity and possibly confounds the functional study of target genes in adipose tissue. Here we administered Tam to Cre-absent forkhead box O1 (FoxO1) floxed mice (f-FoxO1) and insulin receptor substrate Irs1/Irs2 double floxed mice (df-Irs) and found that Tam induced approximately 30% reduction (P<0.05) in fat mass with insignificant change in body weight. Mechanistically, Tam promoted reactive oxygen species (ROS) production, apoptosis and autophagy, which was associated with downregulation of adipogenic regulator peroxisome proliferator-activated receptor gamma and dedifferentiation of mature adipocytes. However, normalization of ROS potently suppressed Tam-induced apoptosis, autophagy and adipocyte dedifferentiation, suggesting that ROS may account, at least in part, for the changes. Importantly, Tam-induced ROS production and fat mass reduction lasted for 4–5 weeks in the f-FoxO1 and df-Irs mice. Our data suggest that Tam reduces fat mass via boosting ROS, thus making a recovery period crucial for posttreatment study. PMID:25569103

  10. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases

    PubMed Central

    He, Feng; Zuo, Li

    2015-01-01

    Cardiovascular disease (CVD), a major cause of mortality in the world, has been extensively studied over the past decade. However, the exact mechanism underlying its pathogenesis has not been fully elucidated. Reactive oxygen species (ROS) play a pivotal role in the progression of CVD. Particularly, ROS are commonly engaged in developing typical characteristics of atherosclerosis, one of the dominant CVDs. This review will discuss the involvement of ROS in atherosclerosis, specifically their effect on inflammation, disturbed blood flow and arterial wall remodeling. Pharmacological interventions target ROS in order to alleviate oxidative stress and CVD symptoms, yet results are varied due to the paradoxical role of ROS in CVD. Lack of effectiveness in clinical trials suggests that understanding the exact role of ROS in the pathophysiology of CVD and developing novel treatments, such as antioxidant gene therapy and nanotechnology-related antioxidant delivery, could provide a therapeutic advance in treating CVDs. While genetic therapies focusing on specific antioxidant expression seem promising in CVD treatments, multiple technological challenges exist precluding its immediate clinical applications. PMID:26610475

  11. Redox Roles of Reactive Oxygen Species in Cardiovascular Diseases.

    PubMed

    He, Feng; Zuo, Li

    2015-01-01

    Cardiovascular disease (CVD), a major cause of mortality in the world, has been extensively studied over the past decade. However, the exact mechanism underlying its pathogenesis has not been fully elucidated. Reactive oxygen species (ROS) play a pivotal role in the progression of CVD. Particularly, ROS are commonly engaged in developing typical characteristics of atherosclerosis, one of the dominant CVDs. This review will discuss the involvement of ROS in atherosclerosis, specifically their effect on inflammation, disturbed blood flow and arterial wall remodeling. Pharmacological interventions target ROS in order to alleviate oxidative stress and CVD symptoms, yet results are varied due to the paradoxical role of ROS in CVD. Lack of effectiveness in clinical trials suggests that understanding the exact role of ROS in the pathophysiology of CVD and developing novel treatments, such as antioxidant gene therapy and nanotechnology-related antioxidant delivery, could provide a therapeutic advance in treating CVDs. While genetic therapies focusing on specific antioxidant expression seem promising in CVD treatments, multiple technological challenges exist precluding its immediate clinical applications. PMID:26610475

  12. Simvastatin inhibits osteoclast differentiation by scavenging reactive oxygen species

    PubMed Central

    Moon, Ho-Jin; Kim, Sung Eun; Yun, Young Pil; Hwang, Yu-Shik; Bang, Jae Beum

    2011-01-01

    Osteoclasts, together with osteoblasts, control the amount of bone tissue and regulate bone remodeling. Osteoclast differentiation is an important factor related to the pathogenesis of bone-loss related diseases. Reactive oxygen species (ROS) acts as a signal mediator in osteoclast differentiation. Simvastatin, which inhibits 3-hydroxy-3-methylglutaryl coenzyme A, is a hypolipidemic drug which is known to affect bone metabolism and suppresses osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In this study, we analyzed whether simvastatin can inhibit RANKL-induced osteoclastogenesis through suppression of the subsequently formed ROS and investigated whether simvastatin can inhibit H2O2-induced signaling pathways in osteoclast differentiation. We found that simvastatin decreased expression of tartrate-resistant acid phosphatase (TRAP), a genetic marker of osteoclast differentiation, and inhibited intracellular ROS generation in RAW 264.7 cell lines. ROS generation activated NF-κB, protein kinases B (AKT), mitogen-activated protein kinases signaling pathways such as c-JUN N-terminal kinases, p38 MAP kinases as well as extracellular signal-regulated kinase. Simvastatin was found to suppress these H2O2-induced signaling pathways in osteoclastogenesis. Together, these results indicate that simvastatin acts as an osteoclastogenesis inhibitor through suppression of ROS-mediated signaling pathways. This indicates that simvastatin has potential usefulness for osteoporosis and pathological bone resorption. PMID:21832867

  13. Correlation between Mitochondrial Reactive Oxygen and Severity of Atherosclerosis

    PubMed Central

    Dorighello, Gabriel G.; Paim, Bruno A.; Kiihl, Samara F.; Ferreira, Mônica S.; Catharino, Rodrigo R.; Vercesi, Anibal E.; Oliveira, Helena C. F.

    2016-01-01

    Atherosclerosis has been associated with mitochondria dysfunction and damage. Our group demonstrated previously that hypercholesterolemic mice present increased mitochondrial reactive oxygen (mtROS) generation in several tissues and low NADPH/NADP+ ratio. Here, we investigated whether spontaneous atherosclerosis in these mice could be modulated by treatments that replenish or spare mitochondrial NADPH, named citrate supplementation, cholesterol synthesis inhibition, or both treatments simultaneously. Robust statistical analyses in pooled group data were performed in order to explain the variation of atherosclerosis lesion areas as related to the classic atherosclerosis risk factors such as plasma lipids, obesity, and oxidative stress, including liver mtROS. Using three distinct statistical tools (univariate correlation, adjusted correlation, and multiple regression) with increasing levels of stringency, we identified a novel significant association and a model that reliably predicts the extent of atherosclerosis due to variations in mtROS. Thus, results show that atherosclerosis lesion area is positively and independently correlated with liver mtROS production rates. Based on these findings, we propose that modulation of mitochondrial redox state influences the atherosclerosis extent. PMID:26635912

  14. Reactive oxygen metabolites produced by the carcinogenic fibrous mineral erionite

    SciTech Connect

    Urano, Naoko; Yano, Eiji ); Evans, P.H. )

    1991-02-01

    Erionite, a fibrous mineral and the causative agent of the endemic outbreak of mesothelioma in Turkey, has been shown to generate reactive oxygen metabolites (ROM) from polymorphonuclear leukocytes (PMN). In order to investigate the mechanism of the production of ROM by erionite from PMN, a luminol-dependent chemiluminescence (CL) method was utilized. Human peripheral blood PMN were incubated with 50-800 {mu}g/ml of erionite. PMN CL was produced immediately after the addition of erionite; the maximal CL production was reached within 2 to 6 minutes and the CL response increased with the dose of erionite. Superoxide dismutase, catalase, and dimethyl sulfoxide were utilized as scavengers of O{sub 2}, H{sub 2}O{sub 2}, and OH, respectively. These scavengers inhibited the production of erionite-stimulated PMN CL dose dependently, thus indicating the production of O{sub 2}{sup {minus}}, H{sub 2}O{sub 2}, and OH by erionite-stimulated PMN. The less phagocytically active cells, namely, mononuclear cells and erythrocytes, produced CL immediately after the addition of erionite or phorbol myristate acetate and displayed a significant delay period after the addition of zymosan. Therefore, the direct interaction between the cell surface membrane and erionite would appear to be more important than phagocytosis, per se, for the production of ROM by erionite.

  15. Reactive oxygen species and mitochondria: A nexus of cellular homeostasis

    PubMed Central

    Dan Dunn, Joe; Alvarez, Luis AJ; Zhang, Xuezhi; Soldati, Thierry

    2015-01-01

    Reactive oxygen species (ROS) are integral components of multiple cellular pathways even though excessive or inappropriately localized ROS damage cells. ROS function as anti-microbial effector molecules and as signaling molecules that regulate such processes as NF-kB transcriptional activity, the production of DNA-based neutrophil extracellular traps (NETs), and autophagy. The main sources of cellular ROS are mitochondria and NADPH oxidases (NOXs). In contrast to NOX-generated ROS, ROS produced in the mitochondria (mtROS) were initially considered to be unwanted by-products of oxidative metabolism. Increasing evidence indicates that mtROS have been incorporated into signaling pathways including those regulating immune responses and autophagy. As metabolic hubs, mitochondria facilitate crosstalk between the metabolic state of the cell with these pathways. Mitochondria and ROS are thus a nexus of multiple pathways that determine the response of cells to disruptions in cellular homeostasis such as infection, sterile damage, and metabolic imbalance. In this review, we discuss the roles of mitochondria in the generation of ROS-derived anti-microbial effectors, the interplay of mitochondria and ROS with autophagy and the formation of DNA extracellular traps, and activation of the NLRP3 inflammasome by ROS and mitochondria. PMID:26432659

  16. Pharmacological modulation of reactive oxygen species in cancer treatment.

    PubMed

    Ribas, Judit; Mattiolo, Paolo; Boix, Jacint

    2015-01-01

    Aerobic metabolism of mammalian cells leads to the generation of reactive oxygen species (ROS). To cope with this toxicity, evolution provided cells with effective antioxidant systems like glutathione. Current anticancer therapies focus on the cancer dependence on oncogenes and non-oncogenes. Tumors trigger mechanisms to circumvent the oncogenic stress and to escape cell death. In this context we have studied 2-phenylethinesulfoxamine (PES), which disables the cell protective mechanisms to confront the proteotoxicity of damaged and unfolded proteins. Proteotoxic stress is increased in tumor cells, thus providing an explanation for the anticancer selectivity of PES. In addition, we have found that PES induces a severe oxidative stress and the activation of p53. The reduction of the cell content in glutathione by means of L-buthionine-sulfoximine (BSO) synergizes with PES. In conclusion, we have found that ROS constitutes a central element in a series of positive feed-back loops in the cell. ROS, p53, proteotoxicity, autophagy and mitochondrial dynamics are interconnected with the mechanisms leading to cell death, either apoptotic or necrotic. This network of interactions provides multiple targets for drug discovery and development in cancer. PMID:25395102

  17. Reactive oxygen species delay control of lymphocytic choriomeningitis virus

    PubMed Central

    Lang, P A; Xu, H C; Grusdat, M; McIlwain, D R; Pandyra, A A; Harris, I S; Shaabani, N; Honke, N; Kumar Maney, S; Lang, E; Pozdeev, V I; Recher, M; Odermatt, B; Brenner, D; Häussinger, D; Ohashi, P S; Hengartner, H; Zinkernagel, R M; Mak, T W; Lang, K S

    2013-01-01

    Cluster of differentiation (CD)8+ T cells are like a double edged sword during chronic viral infections because they not only promote virus elimination but also induce virus-mediated immunopathology. Elevated levels of reactive oxygen species (ROS) have been reported during virus infections. However, the role of ROS in T-cell-mediated immunopathology remains unclear. Here we used the murine lymphocytic choriomeningitis virus to explore the role of ROS during the processes of virus elimination and induction of immunopathology. We found that virus infection led to elevated levels of ROS producing granulocytes and macrophages in virus-infected liver and spleen tissues that were triggered by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Lack of the regulatory subunit p47phox of the NADPH oxidase diminished ROS production in these cells. While CD8+ T cells exhibited ROS production that was independent of NADPH oxidase expression, survival and T-cell function was elevated in p47phox-deficient (Ncf1−/−) mice. In the absence of p47phox, enhanced T-cell immunity promoted virus elimination and blunted corresponding immunopathology. In conclusion, we find that NADPH-mediated production of ROS critically impairs the immune response, impacting elimination of virus and outcome of liver cell damage. PMID:23328631

  18. Reactive Oxygen Species and Targeted Therapy for Pancreatic Cancer

    PubMed Central

    2016-01-01

    Pancreatic cancer is the fourth leading cause of cancer-related death in the United States. Reactive oxygen species (ROS) are generally increased in pancreatic cancer cells compared with normal cells. ROS plays a vital role in various cellular biological activities including proliferation, growth, apoptosis, and invasion. Besides, ROS participates in tumor microenvironment orchestration. The role of ROS is a doubled-edged sword in pancreatic cancer. The dual roles of ROS depend on the concentration. ROS facilitates carcinogenesis and cancer progression with mild-to-moderate elevated levels, while excessive ROS damages cancer cells dramatically and leads to cell death. Based on the recent knowledge, either promoting ROS generation to increase the concentration of ROS with extremely high levels or enhancing ROS scavenging ability to decrease ROS levels may benefit the treatment of pancreatic cancer. However, when faced with oxidative stress, the antioxidant programs of cancer cells have been activated to help cancer cells to survive in the adverse condition. Furthermore, ROS signaling and antioxidant programs play the vital roles in the progression of pancreatic cancer and in the response to cancer treatment. Eventually, it may be the novel target for various strategies and drugs to modulate ROS levels in pancreatic cancer therapy. PMID:26881012

  19. Reactive oxygen species: players in the cardiovascular effects of testosterone.

    PubMed

    Tostes, Rita C; Carneiro, Fernando S; Carvalho, Maria Helena C; Reckelhoff, Jane F

    2016-01-01

    Androgens are essential for the development and maintenance of male reproductive tissues and sexual function and for overall health and well being. Testosterone, the predominant and most important androgen, not only affects the male reproductive system, but also influences the activity of many other organs. In the cardiovascular system, the actions of testosterone are still controversial, its effects ranging from protective to deleterious. While early studies showed that testosterone replacement therapy exerted beneficial effects on cardiovascular disease, some recent safety studies point to a positive association between endogenous and supraphysiological levels of androgens/testosterone and cardiovascular disease risk. Among the possible mechanisms involved in the actions of testosterone on the cardiovascular system, indirect actions (changes in the lipid profile, insulin sensitivity, and hemostatic mechanisms, modulation of the sympathetic nervous system and renin-angiotensin-aldosterone system), as well as direct actions (modulatory effects on proinflammatory enzymes, on the generation of reactive oxygen species, nitric oxide bioavailability, and on vasoconstrictor signaling pathways) have been reported. This mini-review focuses on evidence indicating that testosterone has prooxidative actions that may contribute to its deleterious actions in the cardiovascular system. The controversial effects of testosterone on ROS generation and oxidant status, both prooxidant and antioxidant, in the cardiovascular system and in cells and tissues of other systems are reviewed. PMID:26538238

  20. Roles of Reactive Oxygen and Nitrogen Species in Pain

    PubMed Central

    Salvemini, Daniela; Little, Joshua W.; Doyle, Timothy; Neumann, William L.

    2011-01-01

    Peroxynitrite (PN, ONOO−) and its reactive oxygen precursor superoxide (SO, O2·−), are critically important in the development of pain of several etiologies including in the development of pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable progress has been made in terms of understanding the relative contribution of SO, PN, and nitroxidative stress in pain signaling at the molecular and biochemical levels. Aggressive research in this area is poised to provide the pharmacological basis for development of novel non-narcotic analgesics that are based upon the unique ability to selectively eliminate SO and/or PN. As we have a better understanding of the role of SO and PN in pathophysiological settings, targeting PN may be a better therapeutic strategy than targeting SO. This is due to the fact that unlike PN, which has no currently known beneficial role, SO may play a significant role in learning and memory [1]. Thus, the best approach may be to spare SO while directly targeting its downstream product, PN. Over the last 15 years, our team has spearheaded research concerning the roles of SO/PN in pain and these results are currently leading to the development of solid therapeutic strategies in this important area. PMID:21277369

  1. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    SciTech Connect

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  2. Reactive Oxygen Species and the Brain in Sleep Apnea

    PubMed Central

    Wang, Yang; Zhang, Shelley XL; Gozal, David

    2010-01-01

    Rodents exposed to intermittent hypoxia (IH), a model of obstructive sleep apnea (OSA), manifest impaired learning and memory and somnolence. Increased levels of reactive oxygen species (ROS), oxidative tissue damage, and apoptotic neuronal cell death are associated with the presence of IH-induced CNS dysfunction. Furthermore, treatment with antioxidants or overexpression of antioxidant enzymes is neuroprotective during IH. These findings mimic clinical cases of OSA and suggest that ROS may play a key causal role in OSA-induced neuropathology. Controlled production of ROS occurs in multiple subcellular compartments of normal cells and de-regulation of such processes may result in excessive ROS production. The mitochondrial electron transport chain, especially complexes I and III, and the NADPH oxidase in the cellular membrane are the two main sources of ROS in brain cells, although other systems, including xanthine oxidase, phospholipase A2, lipoxygenase, cyclooxygenase, and cytochrome P450, may all play a role. The initial evidence for NADPH oxidase and mitochondrial involvement in IH-induced ROS production and neuronal injury unquestionably warrants future research efforts. PMID:20833273

  3. Reactive oxygen species a double-edged sword for mesothelioma

    PubMed Central

    Catalani, Simona; Galati, Rossella

    2015-01-01

    It is well known that oxidative stress can lead to chronic inflammation which, in turn, could mediate most chronic diseases including cancer. Oxidants have been implicated in the activity of crocidolite and amosite, the most powerful types of asbestos associated to the occurrence of mesothelioma. Currently rates of mesothelioma are rising and estimates indicate that the incidence of mesothelioma will peak within the next 10–15 years in the western world, while in Japan the peak is predicted not to occur until 40 years from now. Although the use of asbestos has been banned in many countries around the world, production of and the potentially hazardous exposure to asbestos is still present with locally high incidences of mesothelioma. Today a new man-made material, carbon nanotubes, has arisen as a concern; carbon nanotubes may display ‘asbestos-like’ pathogenicity with mesothelioma induction potential. Carbon nanotubes resulted in the greatest reactive oxygen species generation. How oxidative stress activates inflammatory pathways leading to the transformation of a normal cell to a tumor cell, to tumor cell survival, proliferation, invasion, angiogenesis, chemoresistance, and radioresistance, is the aim of this review. PMID:26078352

  4. REACTIVE OXYGEN SPECIES, CELLULAR REDOX SYSTEMS AND APOPTOSIS

    PubMed Central

    Circu, Magdalena L.; Aw, Tak Yee

    2010-01-01

    Reactive oxygen species (ROS) are products of normal metabolism and xenobiotic exposure, and depending on concentrations, ROS can be beneficial or harmful to cells and tissues. At physiological low levels, ROS function as redox messengers in intracellular signaling and regulation while excess ROS induce oxidative modification of cellular macromolecules, inhibit protein function and promote cell death. Additionally, various redox systems, such as the glutathione, thioredoxin, and pyridine nucleotide redox couples, participate in cell signaling and modulation of cell function, including apoptotic cell death. Cell apoptosis is initiated by extracellular and intracellular signals via two main pathways, the death receptor- or mitochondria-mediated pathways. Various pathologies can result from oxidative stress induced apoptotic signaling that is consequent to ROS increases and/or antioxidant decreases, disruption of intracellular redox homeostasis, and irreversible oxidative modifications of lipid, protein or DNA. In the current review, we focused on several key aspects of ROS and redox mechanisms in apoptotic signaling, and highlighted the gaps in knowledge and potential avenues for further investigation. A full understanding of redox control of apoptotic initiation and execution could underpin the development of therapeutic interventions targeted at oxidative stress associated disorders. PMID:20045723

  5. Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Transcription

    NASA Astrophysics Data System (ADS)

    Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T.

    1998-09-01

    Transcriptional activation of erythropoietin, glycolytic enzymes, and vascular endothelial growth factor occurs during hypoxia or in response to cobalt chloride (CoCl2) in Hep3B cells. However, neither the mechanism of cellular O2 sensing nor that of cobalt is fully understood. We tested whether mitochondria act as O2 sensors during hypoxia and whether hypoxia and cobalt activate transcription by increasing generation of reactive oxygen species (ROS). Results show (i) wild-type Hep3B cells increase ROS generation during hypoxia (1.5% O2) or CoCl2 incubation, (ii) Hep3B cells depleted of mitochondrial DNA (ρ 0 cells) fail to respire, fail to activate mRNA for erythropoietin, glycolytic enzymes, or vascular endothelial growth factor during hypoxia, and fail to increase ROS generation during hypoxia; (iii) ρ 0 cells increase ROS generation in response to CoCl2 and retain the ability to induce expression of these genes; and (iv) the antioxidants pyrrolidine dithiocarbamate and ebselen abolish transcriptional activation of these genes during hypoxia or CoCl2 in wild-type cells, and abolish the response to CoCl2 in ρ 0 cells. Thus, hypoxia activates transcription via a mitochondria-dependent signaling process involving increased ROS, whereas CoCl2 activates transcription by stimulating ROS generation via a mitochondria-independent mechanism.

  6. Hemodynamic Regulation of Reactive Oxygen Species: Implications for Vascular Diseases

    PubMed Central

    Raaz, Uwe; Toh, Ryuji; Maegdefessel, Lars; Adam, Matti; Nakagami, Futoshi; Emrich, Fabian C.; Spin, Joshua M.

    2014-01-01

    Abstract Significance: Arterial blood vessels functionally and structurally adapt to altering hemodynamic forces in order to accommodate changing needs and to provide stress homeostasis. This ability is achieved at the cellular level by converting mechanical stimulation into biochemical signals (i.e., mechanotransduction). Physiological mechanical stress helps maintain vascular structure and function, whereas pathologic or aberrant stress may impair cellular mechano-signaling, and initiate or augment cellular processes that drive disease. Recent Advances: Reactive oxygen species (ROS) may represent an intriguing class of mechanically regulated second messengers. Chronically enhanced ROS generation may be induced by adverse mechanical stresses, and is associated with a multitude of vascular diseases. Although a causal relationship has clearly been demonstrated in large numbers of animal studies, an effective ROS-modulating therapy still remains to be established by clinical studies. Critical Issues and Future Directions: This review article focuses on the role of various mechanical forces (in the form of laminar shear stress, oscillatory shear stress, or cyclic stretch) as modulators of ROS-driven signaling, and their subsequent effects on vascular biology and homeostasis, as well as on specific diseases such as arteriosclerosis, hypertension, and abdominal aortic aneurysms. Specifically, it highlights the significance of the various NADPH oxidase (NOX) isoforms as critical ROS generators in the vasculature. Directed targeting of defined components in the complex network of ROS (mechano-)signaling may represent a key for successful translation of experimental findings into clinical practice. Antioxid. Redox Signal. 20, 914–928. PMID:23879326

  7. Are Reactive Oxygen Species Always Detrimental to Pathogens?

    PubMed Central

    Bozza, Marcelo T.

    2014-01-01

    Abstract Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses. Antioxid. Redox Signal. 20, 1000–1037. PMID:23992156

  8. Quantitative assessment of reactive oxygen sonochemically generated by cavitation bubbles

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Miyashita, Takuya; Taguchi, Kei; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-07-01

    Acoustic cavitation bubbles can induce not only a thermal bioeffect but also a chemical bioeffect. When cavitation bubbles collapse and oscillate violently, they produce reactive oxygen species (ROS) that cause irreversible changes to the tissue. A sonosensitizer can promote such ROS generation. A treatment method using a sonosensitizer is called sonodynamic treatment. Rose bengal (RB) is one of the sonosensitizers whose in vivo and in vitro studies have been reported. In sonodynamic treatment, it is important to produce ROS at a high efficiency. For the efficient generation of ROS, a triggered high-intensity focused ultrasound (HIFU) sequence has been proposed. In this study, cavitation bubbles were generated in a chamber where RB solution was sealed, and a high-speed camera captured the behavior of these cavitation bubbles. The amount of ROS was also quantified by a potassium iodide (KI) method and compared with high-speed camera pictures to investigate the effectiveness of the triggered HIFU sequence. As a result, ROS could be obtained efficiently by this sequence.

  9. Plasmodium berghei resists killing by reactive oxygen species.

    PubMed

    Sobolewski, Peter; Gramaglia, Irene; Frangos, John A; Intaglietta, Marcos; van der Heyde, Henri

    2005-10-01

    Reactive oxygen species (ROS) are widely believed to kill malarial parasites. C57BL/6 mice injected with P. berghei inocula incubated with supraphysiological doses of NO (< or =150 microM) or with peroxynitrite (220 microM), however, exhibited parasitemia similar to that seen with those given control inocula, and there was no difference in disease development. Only treatment of inocula with NO doses nearing saturation (> or =1.2 mM) resulted in no detectable parasitemia in the recipients; flow cytometric analysis with a vital dye (hydroethidine) indicated that 1.5 mM NO lysed the erythrocytes rather than killing the parasites. The hemoglobin level in the inocula was about 8 muM; the hemoglobin was mainly oxyhemoglobin (oxyHb) (96%), which was converted to methemoglobin (>95%) after treatment with 150 microM NO. The concentrations of 150 microM of NO and 220 microM of peroxynitrite were far in excess of the hemoglobin concentration (approximately 8 microM), and yet no parasite killing was detected. We therefore conclude that hemoglobin protects Plasmodium parasites from ROS, but the parasite likely possesses intrinsic defense mechanisms against ROS. PMID:16177347

  10. Methods for Detection of Mitochondrial and Cellular Reactive Oxygen Species

    PubMed Central

    Harrison, David G.

    2014-01-01

    Abstract Significance: Mitochondrial and cellular reactive oxygen species (ROS) play important roles in both physiological and pathological processes. Different ROS, such as superoxide (O2•−), hydrogen peroxide, and peroxynitrite (ONOO•−), stimulate distinct cell-signaling pathways and lead to diverse outcomes depending on their amount and subcellular localization. A variety of methods have been developed for ROS detection; however, many of these methods are not specific, do not allow subcellular localization, and can produce artifacts. In this review, we will critically analyze ROS detection and present advantages and the shortcomings of several available methods. Recent Advances: In the past decade, a number of new fluorescent probes, electron-spin resonance approaches, and immunoassays have been developed. These new state-of-the-art methods provide improved selectivity and subcellular resolution for ROS detection. Critical Issues: Although new methods for HPLC superoxide detection, application of fluorescent boronate-containing probes, use of cell-targeted hydroxylamine spin probes, and immunospin trapping have been available for several years, there has been lack of translation of these into biomedical research, limiting their widespread use. Future Directions: Additional studies to translate these new technologies from the test tube to physiological applications are needed and could lead to a wider application of these approaches to study mitochondrial and cellular ROS. Antioxid. Redox Signal. 20, 372–382. PMID:22978713

  11. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?

    PubMed Central

    Görlach, Agnes; Dimova, Elitsa Y.; Petry, Andreas; Martínez-Ruiz, Antonio; Hernansanz-Agustín, Pablo; Rolo, Anabela P.; Palmeira, Carlos M.; Kietzmann, Thomas

    2015-01-01

    Within the last twenty years the view on reactive oxygen species (ROS) has changed; they are no longer only considered to be harmful but also necessary for cellular communication and homeostasis in different organisms ranging from bacteria to mammals. In the latter, ROS were shown to modulate diverse physiological processes including the regulation of growth factor signaling, the hypoxic response, inflammation and the immune response. During the last 60–100 years the life style, at least in the Western world, has changed enormously. This became obvious with an increase in caloric intake, decreased energy expenditure as well as the appearance of alcoholism and smoking; These changes were shown to contribute to generation of ROS which are, at least in part, associated with the occurrence of several chronic diseases like adiposity, atherosclerosis, type II diabetes, and cancer. In this review we discuss aspects and problems on the role of intracellular ROS formation and nutrition with the link to diseases and their problematic therapeutical issues. PMID:26339717

  12. Reactive oxygen species, nutrition, hypoxia and diseases: Problems solved?

    PubMed

    Görlach, Agnes; Dimova, Elitsa Y; Petry, Andreas; Martínez-Ruiz, Antonio; Hernansanz-Agustín, Pablo; Rolo, Anabela P; Palmeira, Carlos M; Kietzmann, Thomas

    2015-12-01

    Within the last twenty years the view on reactive oxygen species (ROS) has changed; they are no longer only considered to be harmful but also necessary for cellular communication and homeostasis in different organisms ranging from bacteria to mammals. In the latter, ROS were shown to modulate diverse physiological processes including the regulation of growth factor signaling, the hypoxic response, inflammation and the immune response. During the last 60-100 years the life style, at least in the Western world, has changed enormously. This became obvious with an increase in caloric intake, decreased energy expenditure as well as the appearance of alcoholism and smoking; These changes were shown to contribute to generation of ROS which are, at least in part, associated with the occurrence of several chronic diseases like adiposity, atherosclerosis, type II diabetes, and cancer. In this review we discuss aspects and problems on the role of intracellular ROS formation and nutrition with the link to diseases and their problematic therapeutical issues. PMID:26339717

  13. Role of Reactive Oxygen Species in Neonatal Pulmonary Vascular Disease

    PubMed Central

    Steinhorn, Robin H.

    2014-01-01

    Abstract Significance: Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. Recent Advances: PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. Critical Issues: General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. Future Directions: Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease. Antioxid. Redox Signal. 21, 1926–1942. PMID:24350610

  14. Reactive Oxygen Species, Apoptosis, Antimicrobial Peptides and Human Inflammatory Diseases

    PubMed Central

    Oyinloye, Babatunji Emmanuel; Adenowo, Abiola Fatimah; Kappo, Abidemi Paul

    2015-01-01

    Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance. PMID:25850012

  15. NSAIDs and Cardiovascular Diseases: Role of Reactive Oxygen Species

    PubMed Central

    Ghosh, Rajeshwary; Alajbegovic, Azra; Gomes, Aldrin V.

    2015-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly used drugs worldwide. NSAIDs are used for a variety of conditions including pain, rheumatoid arthritis, and musculoskeletal disorders. The beneficial effects of NSAIDs in reducing or relieving pain are well established, and other benefits such as reducing inflammation and anticancer effects are also documented. The undesirable side effects of NSAIDs include ulcers, internal bleeding, kidney failure, and increased risk of heart attack and stroke. Some of these side effects may be due to the oxidative stress induced by NSAIDs in different tissues. NSAIDs have been shown to induce reactive oxygen species (ROS) in different cell types including cardiac and cardiovascular related cells. Increases in ROS result in increased levels of oxidized proteins which alters key intracellular signaling pathways. One of these key pathways is apoptosis which causes cell death when significantly activated. This review discusses the relationship between NSAIDs and cardiovascular diseases (CVD) and the role of NSAID-induced ROS in CVD. PMID:26457127

  16. Generation of Reactive Oxygen Species from Silicon Nanowires

    PubMed Central

    Leonard, Stephen S; Cohen, Guy M; Kenyon, Allison J; Schwegler-Berry, Diane; Fix, Natalie R; Bangsaruntip, Sarunya; Roberts, Jenny R

    2014-01-01

    Processing and synthesis of purified nanomaterials of diverse composition, size, and properties is an evolving process. Studies have demonstrated that some nanomaterials have potential toxic effects and have led to toxicity research focusing on nanotoxicology. About two million workers will be employed in the field of nanotechnology over the next 10 years. The unknown effects of nanomaterials create a need for research and development of techniques to identify possible toxicity. Through a cooperative effort between National Institute for Occupational Safety and Health and IBM to address possible occupational exposures, silicon-based nanowires (SiNWs) were obtained for our study. These SiNWs are anisotropic filamentary crystals of silicon, synthesized by the vapor–liquid–solid method and used in bio-sensors, gas sensors, and field effect transistors. Reactive oxygen species (ROS) can be generated when organisms are exposed to a material causing cellular responses, such as lipid peroxidation, H2O2 production, and DNA damage. SiNWs were assessed using three different in vitro environments (H2O2, RAW 264.7 cells, and rat alveolar macrophages) for ROS generation and possible toxicity identification. We used electron spin resonance, analysis of lipid peroxidation, measurement of H2O2 production, and the comet assay to assess generation of ROS from SiNW and define possible mechanisms. Our results demonstrate that SiNWs do not appear to be significant generators of free radicals. PMID:25452695

  17. Reactive oxygen species: their relation to pneumoconiosis and carcinogenesis.

    PubMed Central

    Vallyathan, V; Shi, X; Castranova, V

    1998-01-01

    Occupational exposures to mineral particles cause pneumoconiosis and other diseases, including cancer. Recent studies have suggested that reactive oxygen species (ROS) may play a key role in the mechanisms of disease initiation and progression following exposure to these particles. ROS-induced primary stimuli result in the increased secretion of proinflammatory cytokines and other mediators, promoting events that appear to be important in the progression of cell injury and pulmonary disease. We have provided evidence supporting the hypothesis that inhalation of insoluble particles such as asbestos, agricultural dusts, coal, crystalline silica, and inorganic dust can be involved in facilitating multiple pathways for persistent generation of ROS, which may lead to a continuum of inflammation leading to progression of disease. This article briefly summarizes some of the recent findings from our laboratories with emphasis on the molecular events by which ROS are involved in promoting pneumoconiosis and carcinogenesis. Images Figure 1 Figure 2 Figure 3 Figure 5 Figure 6 Figure 7 Figure 8 PMID:9788890

  18. Reactive Oxygen Species Alter Autocrine and Paracrine Signaling

    SciTech Connect

    Zangar, Richard C.; Bollinger, Nikki; Weber, Thomas J.; Tan, Ruimin; Markillie, Lye Meng; Karin, Norman J.

    2011-12-01

    Cytochrome P450 (P450) 3A4 (CYP3A4) is the most abundant P450 protein in human liver and intestine and is highly inducible by a variety of drugs and other compounds. The P450 catalytic cycle is known to uncouple and release reactive oxygen species (ROS), but the effects of ROS from P450 and other enzymes in the endo-plasmic reticulum have been poorly studied from the perspective of effects on cell biology. In this study, we expressed low levels of CYP3A4 in HepG2 cells, a human hepatocarcinoma cell line, and examined effects on intracellular levels of ROS and on the secretion of a variety of growth factors that are important in extracellular communication. Using the redox-sensitive dye RedoxSensor red, we demonstrate that CYP3A4 expression increases levels of ROS in viable cells. A customELISA microarray platform was employed to demonstrate that expression of CYP3A4 increased secretion of amphiregulin, intracellular adhesion molecule 1, matrix metalloprotease 2, platelet-derived growth factor (PDGF), and vascular endothelial growth factor, but suppressed secretion of CD14. The antioxidant N-acetylcysteine suppressed all P450-dependent changes in protein secretion except for CD14. Quantitative RT-PCR demonstrated that changes in protein secretion were consistently associated with corresponding changes in gene expression. Inhibition of the NF-{kappa}B pathway blocked P450 effects on PDGF secretion. CYP3A4 expression also altered protein secretion in human mammary epithelial cells and C10 mouse lung cells. Overall, these results suggest that increased ROS production in the endoplasmic reticulum alters the secretion of proteins that have key roles in paracrine and autocrine signaling.

  19. Role of Reactive Oxygen Species-Mediated Signaling in Aging

    PubMed Central

    Labunskyy, Vyacheslav M.

    2013-01-01

    Abstract Significance: Redox biology is a rapidly developing area of research due to the recent evidence for general importance of redox control for numerous cellular functions under both physiological and pathophysiological conditions. Understanding of redox homeostasis is particularly relevant to the understanding of the aging process. The link between reactive oxygen species (ROS) and accumulation of age-associated oxidative damage to macromolecules is well established, but remains controversial and applies only to a subset of experimental models. In addition, recent studies show that ROS may function as signaling molecules and that dysregulation of this process may also be linked to aging. Recent Advances: Many protein factors and pathways that control ROS production and scavenging, as well as those that regulate cellular redox homeostasis, have been identified. However, much less is known about the mechanisms by which redox signaling pathways influence longevity. In this review, we discuss recent advances in the understanding of the molecular basis for the role of redox signaling in aging. Critical Issues: Recent studies allowed identification of previously uncharacterized redox components and revealed complexity of redox signaling pathways. It would be important to identify functions of these components and elucidate how distinct redox pathways are integrated with each other to maintain homeostatic balance. Future Directions: Further characterization of processes that coordinate redox signaling, redox homeostasis, and stress response pathways should allow researchers to dissect how their dysregulation contributes to aging and pathogenesis of various age-related diseases, such as diabetes, cancer and neurodegeneration. Antioxid. Redox Signal. 19, 1362–1372. PMID:22901002

  20. Respiration in adipocytes is inhibited by reactive oxygen species.

    PubMed

    Wang, Tong; Si, Yaguang; Shirihai, Orian S; Si, Huiqing; Schultz, Vera; Corkey, Richard F; Hu, Liping; Deeney, Jude T; Guo, Wen; Corkey, Barbara E

    2010-08-01

    It is a desirable goal to stimulate fuel oxidation in adipocytes and shift the balance toward less fuel storage and more burning. To understand this regulatory process, respiration was measured in primary rat adipocytes, mitochondria, and fat-fed mice. Maximum O(2) consumption, in vitro, was determined with a chemical uncoupler of oxidative phosphorylation (carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)). The adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio was measured by luminescence. Mitochondria were localized by confocal microscopy with MitoTracker Green and their membrane potential (Delta psi(M)) measured using tetramethylrhodamine ethyl ester perchlorate (TMRE). The effect of N-acetylcysteine (NAC) on respiration and body composition in vivo was assessed in mice. Addition of FCCP collapsed Delta psi(M) and decreased the ATP/ADP ratio. However, we demonstrated the same rate of adipocyte O(2) consumption in the absence or presence of fuels and FCCP. Respiration was only stimulated when reactive oxygen species (ROS) were scavenged by pyruvate or NAC: other fuels or fuel combinations had little effect. Importantly, the ROS scavenging role of pyruvate was not affected by rotenone, an inhibitor of mitochondrial complex I. In addition, mice that consumed NAC exhibited increased O(2) consumption and decreased body fat in vivo. These studies suggest for the first time that adipocyte O(2) consumption may be inhibited by ROS, because pyruvate and NAC stimulated respiration. ROS inhibition of O(2) consumption may explain the difficulty to identify effective strategies to increase fat burning in adipocytes. Stimulating fuel oxidation in adipocytes by decreasing ROS may provide a novel means to shift the balance from fuel storage to fuel burning. PMID:20035277

  1. Reactive Oxygen Species Regulate Nucleostemin Oligomerization and Protein Degradation*

    PubMed Central

    Huang, Min; Whang, Patrick; Chodaparambil, Jayanth V.; Pollyea, Daniel A.; Kusler, Brenda; Xu, Liwen; Felsher, Dean W.; Mitchell, Beverly S.

    2011-01-01

    Nucleostemin (NS) is a nucleolar-nucleoplasmic shuttle protein that regulates cell proliferation, binds p53 and Mdm2, and is highly expressed in tumor cells. We have identified NS as a target of oxidative regulation in transformed hematopoietic cells. NS oligomerization occurs in HL-60 leukemic cells and Raji B lymphoblasts that express high levels of c-Myc and have high intrinsic levels of reactive oxygen species (ROS); reducing agents dissociate NS into monomers and dimers. Exposure of U2OS osteosarcoma cells with low levels of intrinsic ROS to hydrogen peroxide (H2O2) induces thiol-reversible disulfide bond-mediated oligomerization of NS. Increased exposure to H2O2 impairs NS degradation, immobilizes the protein within the nucleolus, and results in detergent-insoluble NS. The regulation of NS by ROS was validated in a murine lymphoma tumor model in which c-Myc is overexpressed and in CD34+ cells from patients with chronic myelogenous leukemia in blast crisis. In both instances, increased ROS levels were associated with markedly increased expression of NS protein and thiol-reversible oligomerization. Site-directed mutagenesis of critical cysteine-containing regions of nucleostemin altered both its intracellular localization and its stability. MG132, a potent proteasome inhibitor and activator of ROS, markedly decreased degradation and increased nucleolar retention of NS mutants, whereas N-acetyl-l-cysteine largely prevented the effects of MG132. These results indicate that NS is a highly redox-sensitive protein. Increased intracellular ROS levels, such as those that result from oncogenic transformation in hematopoietic malignancies, regulate the ability of NS to oligomerize, prevent its degradation, and may alter its ability to regulate cell proliferation. PMID:21242306

  2. Are mitochondrial reactive oxygen species required for autophagy?

    SciTech Connect

    Jiang, Jianfei; Maeda, Akihiro; Ji, Jing; Baty, Catherine J.; Watkins, Simon C.; Greenberger, Joel S.; Kagan, Valerian E.

    2011-08-19

    Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

  3. Reactive Oxygen Production Induced by the Gut Microbiota: Pharmacotherapeutic Implications

    PubMed Central

    Jones, R.M.; Mercante, J.W.; Neish, A.S.

    2014-01-01

    The resident prokaryotic microbiota of the mammalian intestine influences diverse homeostatic functions, including regulation of cellular growth, maintenance of barrier function, and modulation of immune responses. However, it is unknown how commensal prokaryotic organisms mechanistically influence eukaryotic signaling networks. Recent data has demonstrated that gut epithelia contacted by enteric commensal bacteria rapidly generate reactive oxygen species (ROS). While the induced generation of ROS via stimulation of formyl peptide receptors is a cardinal feature of the cellular response of phagocytes to pathogenic or commensal bacteria, evidence is accumulating that ROS are also similarly elicited in other cell types, including intestinal epithelia, in response to microbial signals. Additionally, ROS have been shown to serve as critical second messengers in multiple signal transduction pathways stimulated by proinflammatory cytokines and growth factors. This physiologically-generated ROS is known to participate in cellular signaling via the rapid and transient oxidative inactivation of a defined class of sensor proteins bearing oxidant-sensitive thiol groups. These proteins include tyrosine phosphatases that serve as regulators of MAP kinase pathways, cytoskeletal dynamics, as well as components involved in control of ubiquitination-mediated NF-κB activation. Consistently, microbial-elicited ROS has been shown to mediate increased cellular proliferation and motility and to modulate innate immune signaling. These results demonstrate how enteric microbiota influence regulatory networks of the mammalian intestinal epithelia. We hypothesize that many of the known effects of the normal microbiota on intestinal physiology, and potential beneficial effects of candidate probiotic bacteria, may be at least partially mediated by this ROS-dependent mechanism. PMID:22360484

  4. Reactive Oxygen Species Mediated Activation of a Dormant Singlet Oxygen Photosensitizer: From Autocatalytic Singlet Oxygen Amplification to Chemicontrolled Photodynamic Therapy.

    PubMed

    Durantini, Andrés M; Greene, Lana E; Lincoln, Richard; Martínez, Sol R; Cosa, Gonzalo

    2016-02-01

    Here we show the design, preparation, and characterization of a dormant singlet oxygen ((1)O2) photosensitizer that is activated upon its reaction with reactive oxygen species (ROS), including (1)O2 itself, in what constitutes an autocatalytic process. The compound is based on a two segment photosensitizer-trap molecule where the photosensitizer segment consists of a Br-substituted boron-dipyrromethene (BODIPY) dye. The trap segment consists of the chromanol ring of α-tocopherol, the most potent naturally occurring lipid soluble antioxidant. Time-resolved absorption, fluorescence, and (1)O2 phosphorescence studies together with fluorescence and (1)O2 phosphorescence emission quantum yields collected on Br2B-PMHC and related bromo and iodo-substituted BODIPY dyes show that the trap segment provides a total of three layers of intramolecular suppression of (1)O2 production. Oxidation of the trap segment with ROS restores the sensitizing properties of the photosensitizer segment resulting in ∼40-fold enhancement in (1)O2 production. The juxtaposed antioxidant (chromanol) and prooxidant (Br-BODIPY) antagonistic chemical activities of the two-segment compound enable the autocatalytic, and in general ROS-mediated, activation of (1)O2 sensitization providing a chemical cue for the spatiotemporal control of (1)O2.The usefulness of this approach to selectively photoactivate the production of singlet oxygen in ROS stressed vs regular cells was successfully tested via the photodynamic inactivation of a ROS stressed Gram negative Escherichia coli strain. PMID:26789198

  5. Quantitative assessment of reactive oxygen species generation by cavitation incepted efficiently using nonlinear propagation effect

    NASA Astrophysics Data System (ADS)

    Yasuda, Jun; Yoshizawa, Shin; Umemura, Shin-ichiro

    2015-10-01

    Sonodynamic treatment is a treatment method that uses chemical bio-effect of cavitation bubbles. Reactive oxygen species that can kill cancerous tissue is induced by such chemical effect of cavitation bubbles and it is important to generate them efficiently for effective sonodynamic treatment. Cavitation cloud can be formed by an effect of nonlinear propagation and focus and in this study, it was experimentally investigated if cavitation cloud was useful for efficient generation of reactive oxygen species. As a result, it was demonstrated that cavitation cloud would be useful for efficient generation of reactive oxygen species.

  6. Manipulation of environmental oxygen modifies reactive oxygen and nitrogen species generation during myogenesis

    PubMed Central

    McCormick, Rachel; Pearson, Timothy; Vasilaki, Aphrodite

    2016-01-01

    Regulated changes in reactive oxygen and nitrogen species (RONS) activities are important in maintaining the normal sequence and development of myogenesis. Both excessive formation and reduction in RONS have been shown to affect muscle differentiation in a negative way. Cultured cells are typically grown in 20% O2 but this is not an appropriate physiological concentration for a number of cell types, including skeletal muscle. The aim was to examine the generation of RONS in cultured skeletal muscle cells under a physiological oxygen concentration condition (6% O2) and determine the effect on muscle myogenesis. Primary mouse satellite cells were grown in 20% or 6% O2 environments and RONS activity was measured at different stages of myogenesis by real-time fluorescent microscopy using fluorescent probes with different specificities i.e. dihydroethidium (DHE), 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate (DAF-FM DA) and 5-(and-6)-chloromethyl-2′,7′ -dichlorodihydrofluorescein diacetate (CM-DCFH-DA). Data demonstrate that satellite cell proliferation increased when cells were grown in 6% O2 compared with 20% O2. Myoblasts grown in 20% O2 showed an increase in DCF fluorescence and DHE oxidation compared with myoblasts grown at 6% O2. Myotubes grown in 20% O2 also showed an increase in DCF and DAF-FM fluorescence and DHE oxidation compared with myotubes grown in 6% O2. The catalase and MnSOD contents were also increased in myoblasts and myotubes that were maintained in 20% O2 compared with myoblasts and myotubes grown in 6% O2. These data indicate that intracellular RONS activities in myoblasts and myotubes at rest are influenced by changes in environmental oxygen concentration and that the increased ROS may influence myogenesis in a negative manner. PMID:26827127

  7. Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy

    PubMed Central

    Gupta, Subash C.; Hevia, David; Patchva, Sridevi; Park, Byoungduck; Koh, Wonil

    2012-01-01

    Abstract Significance: Extensive research during the last quarter century has revealed that reactive oxygen species (ROS) produced in the body, primarily by the mitochondria, play a major role in various cell-signaling pathways. Most risk factors associated with chronic diseases (e.g., cancer), such as stress, tobacco, environmental pollutants, radiation, viral infection, diet, and bacterial infection, interact with cells through the generation of ROS. Recent Advances: ROS, in turn, activate various transcription factors (e.g., nuclear factor kappa-light-chain-enhancer of activated B cells [NF-κB], activator protein-1, hypoxia-inducible factor-1α, and signal transducer and activator of transcription 3), resulting in the expression of proteins that control inflammation, cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Paradoxically, ROS also control the expression of various tumor suppressor genes (p53, Rb, and PTEN). Similarly, γ-radiation and various chemotherapeutic agents used to treat cancer mediate their effects through the production of ROS. Interestingly, ROS have also been implicated in the chemopreventive and anti-tumor action of nutraceuticals derived from fruits, vegetables, spices, and other natural products used in traditional medicine. Critical Issues: These statements suggest both “upside” (cancer-suppressing) and “downside” (cancer-promoting) actions of the ROS. Thus, similar to tumor necrosis factor-α, inflammation, and NF-κB, ROS act as a double-edged sword. This paradox provides a great challenge for researchers whose aim is to exploit ROS stress for the development of cancer therapies. Future Directions: The various mechanisms by which ROS mediate paradoxical effects are discussed in this article. The outstanding questions and future directions raised by our current understanding are discussed. Antioxid. Redox Signal. 16, 1295–1322. PMID:22117137

  8. Laser irradiation of mouse spermatozoa enhances in-vitro fertilization and Ca2+ uptake via reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Cohen, Natalie; Lubart, Rachel; Rubinstein, Sara; Breitbart, Haim

    1996-11-01

    630 nm He-Ne laser irradiation was found to have a profound influence on Ca2+ uptake in mouse spermatozoa and the fertilizing potential of these cells. Laser irradiation affected mainly the mitochondrial Ca2+ transport mechanisms. Furthermore, the effect of light was found to be Ca2+-dependent. We demonstrate that reactive oxygen species (ROS) are involved in the cascade of biochemical events evoked by laser irradiation. A causal association between laser irradiation, ROS generation, and sperm function was indicated by studies with ROS scavengers, superoxide dismutase (SOD) and catalase, and exogenous hydrogen peroxide. SOD treatment resulted in increased Ca2+ uptake and in enhanced fertilization rate. Catalase treatment impaired the light-induced stimulation in Ca2+ uptake and fertilization rate. Exogenous hydrogen peroxide was found to enhance Ca2+ uptake in mouse spermatozoa and the fertilizing capability of these cells in a dose-dependent manner. These results suggest that the effect of 630 nm He-Ne laser irradiation is mediated through the generation of hydrogen peroxide by the spermatozoa and that this effect plays a significant role in the augmentation of the sperm cells' capability to fertilize metaphase II-arrested eggs in-vitro.

  9. Reactive oxygen species, inflammation and calcium oxalate nephrolithiasis

    PubMed Central

    2014-01-01

    Calcium oxalate (CaOx) kidney stones are formed attached to Randall’s plaques (RPs) or Randall’s plugs. Mechanisms involved in the formation and growth are poorly understood. It is our hypothesis that stone formation is a form of pathological biomineralization or ectopic calcification. Pathological calcification and plaque formation in the body is triggered by reactive oxygen species (ROS) and the development of oxidative stress (OS). This review explores clinical and experimental data in support of ROS involvement in the formation of CaOx kidney stones. Under normal conditions the production of ROS is tightly controlled, increasing when and where needed. Results of clinical and experimental studies show that renal epithelial exposure to high oxalate and crystals of CaOx/calcium phosphate (CaP) generates excess ROS, causing injury and inflammation. Major markers of OS and inflammation are detectable in urine of stone patients as well as rats with experimentally induced CaOx nephrolithiasis. Antioxidant treatments reduce crystal and oxalate induced injury in tissue culture and animal models. Significantly lower serum levels of antioxidants, alpha-carotene, beta-carotene and beta-cryptoxanthine have been found in individuals with a history of kidney stones. A diet rich in antioxidants has been shown to reduce stone episodes. ROS regulate crystal formation, growth and retention through the timely production of crystallization modulators. In the presence of abnormal calcium, citrate, oxalate, and/or phosphate, however, there is an overproduction of ROS and a decrease in the antioxidant capacity resulting in OS, renal injury and inflammation. Cellular degradation products in the urine promote crystallization in the tubular lumen at a faster rate thus blocking the tubule and plugging the tubular openings at the papillary tips forming Randall’s plugs. Renal epithelial cells lining the loops of Henle/collecting ducts may become osteogenic, producing membrane vesicles at the basal side. In addition endothelial cells lining the blood vessels may also become osteogenic producing membrane vesicles. Calcification of the vesicles gives rise to RPs. The growth of the RP’s is sustained by mineralization of collagen laid down as result of inflammation and fibrosis. PMID:25383321

  10. Sitagliptin attenuates sympathetic innervation via modulating reactive oxygen species and interstitial adenosine in infarcted rat hearts

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Yang, Chen-Chia; Lin, Shinn-Zong; Chang, Nen-Chung

    2015-01-01

    We investigated whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, attenuates arrhythmias through inhibiting nerve growth factor (NGF) expression in post-infarcted normoglycemic rats, focusing on adenosine and reactive oxygen species production. DPP-4 bound adenosine deaminase has been shown to catalyse extracellular adenosine to inosine. DPP-4 inhibitors increased adenosine levels by inhibiting the complex formation. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline or sitagliptin in in vivo and ex vivo studies. Post-infarction was associated with increased oxidative stress, as measured by myocardial superoxide, nitrotyrosine and dihydroethidium fluorescent staining. Measurement of myocardial norepinephrine levels revealed a significant elevation in vehicle-treated infarcted rats compared with sham. Compared with vehicle, infarcted rats treated with sitagliptin significantly increased interstitial adenosine levels and attenuated oxidative stress. Sympathetic hyperinnervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Ex vivo studies showed a similar effect of erythro-9-(2-hydroxy-3-nonyl) adenine (an adenosine deaminase inhibitor) to sitagliptin on attenuated levels of superoxide and NGF. Furthermore, the beneficial effects of sitagliptin on superoxide anion production and NGF levels can be reversed by 8-cyclopentyl-1,3-dipropulxanthine (adenosine A1 receptor antagonist) and exogenous hypoxanthine. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation via adenosine A1 receptor and xanthine oxidase-dependent pathways, which converge through the attenuated formation of superoxide in the non-diabetic infarcted rats. PMID:25388908

  11. The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species

    PubMed Central

    Smith, Basil A.; Neal, Corey L.; Chetram, Mahandranauth; Vo, BaoHan; Mezencev, Roman; Hinton, Cimona

    2013-01-01

    Camalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation. As models, we utilized LNCaP and its aggressive subline, C4-2, as well as ARCaP cells stably transfected with empty vector (Neo) control or constitutively active Snail cDNA that represents an epithelial to mesenchymal transition (EMT) model and displays increased cell migration and tumorigenicity. We confirmed previous studies showing that C4-2 and ARCaP-Snail cells express more ROS than LNCaP and ARCaP-Neo, respectively. Camalexin increased ROS, decreased cell proliferation, and increased apoptosis more significantly in C4-2 and ARCaP-Snail cells as compared to LNCaP and ARCaP-Neo cells, respectively, while normal prostate epithelial cells (PrEC) were unaffected. Increased caspase-3/7 activity and increased cleaved PARP protein shown by Western blot analysis was suggestive of increased apoptosis. The ROS scavenger N-acetyl cysteine (NAC) antagonized the effects of camalexin, whereas the addition of exogenous hydrogen peroxide potentiated the effects of camalexin, showing that camalexin is mediating its effects through ROS. In conclusion, camalexin is more potent in aggressive prostate cancer cells that express high ROS levels, and this phytoalexin has a strong potential as a novel therapeutic agent for the treatment of especially metastatic prostate cancer. PMID:23179315

  12. Cytotoxic and Antitumor Activity of Sulforaphane: The Role of Reactive Oxygen Species

    PubMed Central

    Sestili, Piero; Fimognari, Carmela

    2015-01-01

    According to recent estimates, cancer continues to remain the second leading cause of death and is becoming the leading one in old age. Failure and high systemic toxicity of conventional cancer therapies have accelerated the identification and development of innovative preventive as well as therapeutic strategies to contrast cancer-associated morbidity and mortality. In recent years, increasing body of in vitro and in vivo studies has underscored the cancer preventive and therapeutic efficacy of the isothiocyanate sulforaphane. In this review article, we highlight that sulforaphane cytotoxicity derives from complex, concurring, and multiple mechanisms, among which the generation of reactive oxygen species has been identified as playing a central role in promoting apoptosis and autophagy of target cells. We also discuss the site and the mechanism of reactive oxygen species' formation by sulforaphane, the toxicological relevance of sulforaphane-formed reactive oxygen species, and the death pathways triggered by sulforaphane-derived reactive oxygen species. PMID:26185755

  13. COMPARATIVE ANALYSIS OF REACTIVE OXYGEN SPECIES IN HUMAN PLASMA AND BLOOD

    EPA Science Inventory

    Reactive oxygen species (ROS) are commonly associated with diseased states (including asthma, cardiovascular disease, cancer) infections, and exposure to various toxicants in humans. It is of interest in epidemiology studies to characterize the association of oxidative stress in...

  14. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    EPA Science Inventory

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  15. Balancing the generation and elimination of reactive oxygen species

    USGS Publications Warehouse

    Rodriguez, Rusty; Redman, Regina

    2005-01-01

    Fossil records suggest that bacteria developed the ability to photosynthesize ≈3,500 million years ago (mya), initiating a very slow accumulation of atmospheric oxygen (1). Recent geochemical models suggest that atmospheric oxygen did not accumulate to levels conducive for aerobic life until 500–1,000 mya (2, 3). The oxygenation of Earth's atmosphere resulted in the emergence of aerobic organisms followed by a great diversification of biological species and the eventual evolution of humans.

  16. Reactivity of pyruvic acid and its derivatives towards reactive oxygen species.

    PubMed

    Kładna, Aleksandra; Marchlewicz, Mariola; Piechowska, Teresa; Kruk, Irena; Aboul-Enein, Hassan Y

    2015-11-01

    Pyruvic acid and its derivatives occurring in most biological systems are known to exhibit several pharmacological properties, such as anti-inflammatory, neuroprotective or anticancer, many of which are suggested to originate from their antioxidant and free radical scavenger activity. The therapeutic potential of these compounds is a matter of particular interest, due to their mechanisms of action, particularly their possible antioxidant behaviour. Here, we report the results of a study of the effect of pyruvic acid (PA), ethyl pyruvate (EP) and sodium pyruvate (SP) on reactions generating reactive oxygen species (ROS), such as superoxide anion radicals, hydroxyl radicals and singlet oxygen, and their total antioxidant capacity. Chemiluminescence (CL) and spectrophotometry techniques were employed. The pyruvate analogues studied were found to inhibit the CL signal arising from superoxide anion radicals in a dose-dependent manner with IC50 = 0.0197 ± 0.002 mM for EP and IC50 = 69.2 ± 5.2 mM for PA. These compounds exhibited a dose-dependent decrease in the CL signal of the luminol + H2O2 system over the range 0.5-10 mM with IC50 values of 1.71 ± 0.12 mM for PA, 3.85 ± 0.21 mM for EP and 22.91 ± 1.21 mM for SP. Furthermore, these compounds also inhibited hydroxyl radical-dependent deoxyribose degradation in a dose-dependent manner over the range 0.5-200 mM, with IC50 values of 33.2 ± 0.3 mM for SP, 116.1 ± 6.2 mM for EP and 168.2 ± 6.2 mM for PA. All the examined compounds also showed antioxidant capacity when estimated using the ferric-ferrozine assay. The results suggest that the antioxidant activities of pyruvate derivatives may reflect a direct effect on scavenging ROS and, in part, be responsible for their pharmacological actions. PMID:25754627

  17. Nanoparticle Inhalation Impairs Coronary Microvascular Reactivity via a Local Reactive Oxygen Species-Dependent Mechanism

    PubMed Central

    LeBlanc, A. J.; Moseley, A. M.; Chen, B. T.; Frazer, D.; Castranova, V.

    2010-01-01

    We have shown that nanoparticle inhalation impairs endothelium-dependent vasodilation in coronary arterioles. It is unknown whether local reactive oxygen species (ROS) contribute to this effect. Rats were exposed to TiO2 nanoparticles via inhalation to produce a pulmonary deposition of 10 µg. Coronary arterioles were isolated from the left anterior descending artery distribution, and responses to acetylcholine, arachidonic acid, and U46619 were assessed. Contributions of nitric oxide synthase and prostaglandin were assessed via competitive inhibition with NG-Monomethyl-L-Arginine (L-NMMA) and indomethacin. Microvascular wall ROS were quantified via dihydroethidium (DHE) fluorescence. Coronary arterioles from rats exposed to nano-TiO2 exhibited an attenuated vasodilator response to ACh, and this coincided with a 45% increase in DHE fluorescence. Coincubation with 2,2,6,6-tetramethylpiperidine-N-oxyl and catalase ameliorated impairments in ACh-induced vasodilation from nanoparticle exposed rats. Incubation with either L-NMMA or indomethacin significantly attenuated Ach-induced vasodilation in sham-control rats, but had no effect in rats exposed to nano-TiO2. Arachidonic acid induced vasoconstriction in coronary arterioles from rats exposed to nano-TiO2, but dilated arterioles from sham-control rats. These results suggest that nanoparticle exposure significantly impairs endothelium-dependent vasoreactivity in coronary arterioles, and this may be due in large part to increases in microvascular ROS. Furthermore, altered prostanoid formation may also contribute to this dysfunction. Such disturbances in coronary microvascular function may contribute to the cardiac events associated with exposure to particles in this size range. PMID:20033351

  18. Oxygen Pathway Modeling Estimates High Reactive Oxygen Species Production above the Highest Permanent Human Habitation

    PubMed Central

    Cano, Isaac; Selivanov, Vitaly; Gomez-Cabrero, David; Tegnr, Jesper; Roca, Josep; Wagner, Peter D.; Cascante, Marta

    2014-01-01

    The production of reactive oxygen species (ROS) from the inner mitochondrial membrane is one of many fundamental processes governing the balance between health and disease. It is well known that ROS are necessary signaling molecules in gene expression, yet when expressed at high levels, ROS may cause oxidative stress and cell damage. Both hypoxia and hyperoxia may alter ROS production by changing mitochondrial Po2 (). Because depends on the balance between O2 transport and utilization, we formulated an integrative mathematical model of O2 transport and utilization in skeletal muscle to predict conditions to cause abnormally high ROS generation. Simulations using data from healthy subjects during maximal exercise at sea level reveal little mitochondrial ROS production. However, altitude triggers high mitochondrial ROS production in muscle regions with high metabolic capacity but limited O2 delivery. This altitude roughly coincides with the highest location of permanent human habitation. Above 25,000 ft., more than 90% of exercising muscle is predicted to produce abnormally high levels of ROS, corresponding to the death zone in mountaineering. PMID:25375931

  19. Reactivity of molecularly chemisorbed oxygen on a Au/TiO2 model catalyst.

    PubMed

    Stiehl, James D; Gong, Jinlong; Ojifinni, Rotimi A; Kim, Tae S; McClure, Sean M; Mullins, C Buddie

    2006-10-19

    We present results of an investigation into the reactivity of molecularly chemisorbed oxygen with CO on a Au/TiO2 model catalyst at 77 K. We previously discovered that exposing the model catalyst sample to a radio-frequency-generated plasma jet of oxygen results in co-population of both atomically and molecularly chemisorbed oxygen species on the sample. We tested the reactivity of the molecularly chemisorbed oxygen by comparing the CO2 produced from a sample populated with both species to the CO2 produced from a sample that has been cleared of molecularly chemisorbed oxygen employing collision-induced desorption. Samples that are populated with both species consistently result in greater CO2 produced than samples with only atomic oxygen. We interpret this result to indicate that molecularly chemisorbed oxygen on the sample can directly participate in the CO oxidation reaction. The reactivity of molecularly chemisorbed oxygen has been investigated for five different gold coverages (0.5, 0.75, 1, 1.25, and 2 ML), and we observe that there is a greater fractional difference in the CO2 produced (difference between sample populated with both molecularly and atomically adsorbed oxygen and sample populated solely with atomically adsorbed oxygen) for the 1 ML Au coverage than for the other coverages for equivalent oxygen plasma-jet exposures. However, it is not possible to unambiguously conclude that this observation is directly related to a particle size effect on the chemistry since the absolute O(2,a) and O(a) content on the various surfaces is different for all the coverages studied because of the plasma-jet technique that we employed for populating the surfaces with oxygen. Unfortunately, this precludes a direct comparison of the reactivity of molecular oxygen in the carbon monoxide oxidation reaction as a function of gold coverage and hence particle size. PMID:17034215

  20. Correlation between pH dependence of O2 evolution and sensitivity of Mn cations in the oxygen-evolving complex to exogenous reductants.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Rubin, Andrei B

    2015-08-01

    Effects of pH, Ca(2+), and Cl(-) ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous reductants hydroquinone (H2Q) and H2O2 were studied. Two of 4 Mn cations are released by H2Q and H2O2 at pHs 5.7, 6.5, and 7.5, and their extraction does not depend on the presence of Ca(2+) and Cl(-) ions. One of Mn cations ("resistant" Mn cation) cannot be extracted by H2Q and H2O2 at any pH. Extraction of 4th Mn ion ("flexible" Mn cation) is sensitive to pH, Ca(2+), and Cl(-). This Mn cation is released by reductants at pH 6.5 but not at pHs 5.7 and 7.5. A pH dependence curve of the oxygen-evolving activity in PSII(-Ca) membranes (in the presence of exogenous Ca(2+)) has a bell-shaped form with the maximum at pH 6.5. Thus, the increase in the resistance of flexible Mn cation in OEC to the action of reductants at acidic and alkaline pHs coincides with the decrease in oxygen evolution activity at these pHs. Exogenous Ca(2+) protects the extraction of flexible Mn cation at pH 6.5. High concentration of Cl(-) anions (100 mM) shifts the pH optimum of oxygen evolution to alkaline region (around pH 7.5), while the pH of flexible Mn extraction is also shifted to alkaline pH. This result suggests that flexible Mn cation plays a key role in the water-splitting reaction. The obtained results also demonstrate that only one Mn cation in Mn4 cluster is under strong control of calcium. The change in the flexible Mn cation resistance to exogenous reductants in the presence of Ca(2+) suggests that Ca(2+) can control the redox potential of this cation. PMID:25975707

  1. Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation.

    PubMed

    Tahara, Erich B; Navarete, Felipe D T; Kowaltowski, Alicia J

    2009-05-01

    Reactive oxygen species are a by-product of mitochondrial oxidative phosphorylation, derived from a small quantity of superoxide radicals generated during electron transport. We conducted a comprehensive and quantitative study of oxygen consumption, inner membrane potentials, and H(2)O(2) release in mitochondria isolated from rat brain, heart, kidney, liver, and skeletal muscle, using various respiratory substrates (alpha-ketoglutarate, glutamate, succinate, glycerol phosphate, and palmitoyl carnitine). The locations and properties of reactive oxygen species formation were determined using oxidative phosphorylation and the respiratory chain modulators oligomycin, rotenone, myxothiazol, and antimycin A and the uncoupler CCCP. We found that in mitochondria isolated from most tissues incubated under physiologically relevant conditions, reactive oxygen release accounts for 0.1-0.2% of O(2) consumed. Our findings support an important participation of flavoenzymes and complex III and a substantial role for reverse electron transport to complex I as reactive oxygen species sources. Our results also indicate that succinate is an important substrate for isolated mitochondrial reactive oxygen production in brain, heart, kidney, and skeletal muscle, whereas fatty acids generate significant quantities of oxidants in kidney and liver. Finally, we found that increasing respiratory rates is an effective way to prevent mitochondrial oxidant release under many, but not all, conditions. Altogether, our data uncover and quantify many tissue-, substrate-, and site-specific characteristics of mitochondrial ROS release. PMID:19245829

  2. Lycopene cyclase paralog CruP protects against reactive oxygen species in oxygenic photosynthetic organisms.

    PubMed

    Bradbury, Louis M T; Shumskaya, Maria; Tzfadia, Oren; Wu, Shi-Biao; Kennelly, Edward J; Wurtzel, Eleanore T

    2012-07-01

    In photosynthetic organisms, carotenoids serve essential roles in photosynthesis and photoprotection. A previous report designated CruP as a secondary lycopene cyclase involved in carotenoid biosynthesis [Maresca J, et al. (2007) Proc Natl Acad Sci USA 104:11784-11789]. However, we found that cruP KO or cruP overexpression plants do not exhibit correspondingly reduced or increased production of cyclized carotenoids, which would be expected if CruP was a lycopene cyclase. Instead, we show that CruP aids in preventing accumulation of reactive oxygen species (ROS), thereby reducing accumulation of β-carotene-5,6-epoxide, a ROS-catalyzed autoxidation product, and inhibiting accumulation of anthocyanins, which are known chemical indicators of ROS. Plants with a nonfunctional cruP accumulate substantially higher levels of ROS and β-carotene-5,6-epoxide in green tissues. Plants overexpressing cruP show reduced levels of ROS, β-carotene-5,6-epoxide, and anthocyanins. The observed up-regulation of cruP transcripts under photoinhibitory and lipid peroxidation-inducing conditions, such as high light stress, cold stress, anoxia, and low levels of CO(2), fits with a role for CruP in mitigating the effects of ROS. Phylogenetic distribution of CruP in prokaryotes showed that the gene is only present in cyanobacteria that live in habitats characterized by large variation in temperature and inorganic carbon availability. Therefore, CruP represents a unique target for developing resilient plants and algae needed to supply food and biofuels in the face of global climate change. PMID:22706644

  3. Oxygen reactivity of mammalian sulfite oxidase provides a concept for the treatment of sulfite oxidase deficiency.

    PubMed

    Belaidi, Abdel A; Röper, Juliane; Arjune, Sita; Krizowski, Sabina; Trifunovic, Aleksandra; Schwarz, Guenter

    2015-07-15

    Mammalian sulfite oxidase (SO) is a dimeric enzyme consisting of a molybdenum cofactor- (Moco) and haem-containing domain and catalyses the oxidation of toxic sulfite to sulfate. Following sulfite oxidation, electrons are passed from Moco via the haem cofactor to cytochrome c, the terminal electron acceptor. In contrast, plant SO (PSO) lacks the haem domain and electrons shuttle from Moco to molecular oxygen. Given the high similarity between plant and mammalian SO Moco domains, factors that determine the reactivity of PSO towards oxygen, remained unknown. In the present study, we generated mammalian haem-deficient and truncated SO variants and demonstrated their oxygen reactivity by hydrogen peroxide formation and oxygen-consumption studies. We found that intramolecular electron transfer between Moco and haem showed an inverse correlation to SO oxygen reactivity. Haem-deficient SO variants exhibited oxygen-dependent sulfite oxidation similar to PSO, which was confirmed further using haem-deficient human SO in a cell-based assay. This finding suggests the possibility to use oxygen-reactive SO variants in sulfite detoxification, as the loss of SO activity is causing severe neurodegeneration. Therefore we evaluated the potential use of PEG attachment (PEGylation) as a modification method for future enzyme substitution therapies using oxygen-reactive SO variants, which might use blood-dissolved oxygen as the electron acceptor. PEGylation has been shown to increase the half-life of other therapeutic proteins. PEGylation resulted in the modification of up to eight surface-exposed lysine residues of SO, an increased conformational stability and similar kinetic properties compared with wild-type SO. PMID:26171830

  4. Zinc wave during the treatment of hypoxia is required for initial reactive oxygen species activation in mitochondria

    PubMed Central

    Slepchenko, Kira G; Lu, Qiping; Li, Yang V

    2016-01-01

    Mitochondrial reactive oxygen species (ROS) are known to accumulate during chemical hypoxia, causing adverse effects on cell function and survival. Recent studies show important role zinc accumulation plays in dysfunction associated with hypoxia. It is well known that ROS accumulation also plays a major role in cellular damage by hypoxia. In this study, fluorescent imaging and pharmacological methods were used in live HeLa cells to determine role of zinc in initial ROS accumulation in mitochondria during chemical hypoxia (oxygen glucose depravation with 4 mM sodium dithionite). Accumulation of both was observed as a very rapid phenomenon with initial rapid zinc increase (zinc wave) within 60 seconds of hypoxia onset and ROS increase within 4.5 minutes. Zinc chelation with TPEN removed the initial zinc wave which in turn abolished ROS accumulation. Influx of exogenous zinc induced rapid ROS accumulation. Inhibition of NADPH oxidase with apocynin, a NADPH oxidase inhibitor, showed significant and prolonged reduction in zinc induced ROS accumulation. We proposed a novel mechanism of intracellular zinc increase that activates NADPH oxidase which in turn triggers mitochondrial ROS production. PMID:27186322

  5. Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion.

    PubMed

    Gray, Joshua P; Heart, Emma

    2010-05-01

    Insulin secretion from pancreatic beta cells is a process dependent on metabolism. While oxidative stress is a well-known inducer of beta cell toxicity and impairs insulin secretion, recent studies suggest that low levels of metabolically-derived reactive oxygen intermediates (ROI) also play a positive role in insulin secretion. Glucose metabolism is directly correlated with ROI production, particularly in beta cells in which glucose uptake is proportional to the extracellular concentration of glucose. Low levels of exogenously added ROI or quinones, which stimulate ROI production, positively affect insulin secretion, while antioxidants block insulin secretion, suggesting that ROI activate unidentified redox-sensitive signal transduction components within these cells. The mitochondria are one source of ROI: increased metabolic flux increases mitochondrial membrane potential resulting in electron leakage and adventitious ROI production. A second source of ROI are cytosolic and plasma membrane oxidoreductases which oxidize NAD(P)H and directly produce ROI through the reduction of molecular oxygen. The mechanism of ROI-mediated potentiation of insulin secretion remains an important topic for future study. PMID:20397883

  6. Frequency effects on the production of reactive oxygen species in atmospheric radio frequency helium-oxygen discharges

    SciTech Connect

    Zhang, Yuantao T.; He Jin

    2013-01-15

    Several experimental and computational studies have shown that increasing frequency can effectively enhance the discharge stability in atmospheric radio-frequency (rf) discharges, but the frequency effects on the reactivity of rf discharges, represented by the densities of reactive oxygen species (ROS), are still far from fully understood. In this paper, a one-dimensional fluid model with 17 species and 65 reactions taken into account is used to explore the influences of the driving frequency on the production and destruction of ROS in atmospheric rf helium-oxygen discharges. From the computational results, with an increase in the frequency the densities of ROS decrease always at a constant power density, however, in the relatively higher frequency discharges the densities of ROS can be effectively improved by increasing the input power density with an expanded oxygen admixture range, while the discharges operate in the {alpha} mode, and the numerical data also show the optimal oxygen admixture for ground state atomic oxygen, at which the peak atomic oxygen density can be obtained, increases with the driving frequency.

  7. Impact reactivity of materials at very high oxygen pressure

    NASA Technical Reports Server (NTRS)

    Connor, H. W.; Minchey, J. G.; Crowder, R.; Davidson, R.

    1983-01-01

    The requirements for impact testing of materials in an oxygen atmosphere at pressures from 82.7 MPa (12,000 psi) to 172 MPa (25,000 psi) were evaluated. The impact tester system was evaluated for potential pressure increases from 69 MPa (10,000 psi) to 82.7 MPa (12,000 psi). The low pressure oxygen and nitrogen systems, the impact tower, the impact test cell, and the high pressure oxygen system were evaluated individually. Although the structural integrity of the impact test cell and the compressor were sufficient for operation at 82.7 MPa (12,000 psi), studies revealed possible material incompatibility at that pressure and above. It was recommended that if a component should be replaced for 82.7 MPa (12,000 psi) operation the replacement should meet the final objectives of 172 MPa (25,000 psi). Recommended changes in the system include; use of Monel 400 for pressures above 82.7 MPa (12,000 psi), use of bellows to replace the seal in the impact tester, use of a sapphire window attached to a fiber optic for event sensing, and use of a three diaphragm compressor.

  8. Reactive oxygen species do not cause arsine-induced hemoglobin damage

    SciTech Connect

    Hatlelid, K.M.; Carter, D.E.

    1997-04-11

    Previous work suggested that arsine- (AsH{sub 3}-) induced hemoglobin (HbO{sub 2}) damage may lead to hemolysis (Hatlelid et al., 1996). The purpose of the work presented here was to determine whether reactive oxygen species are formed by AsH{sub 3} in solution, in hemoglobin solutions, or in intact red blood cells, and, if so, to determine whether these species are responsible for the observed hemoglobin damage. Hydrogen peroxide (H{sub 2}O{sub 2}) was detected in aqueous solutions containing AsH{sub 3} and HbO{sub 2} or AsH{sub 3} alone but not in intact red blood cells or lysates. Additionally, high-activity catalase (19,200 U/ml) or glutathione peroxidase (68 U/ml) added to solutions of HbO{sub 2} and AsH{sub 3} had only a minor protective effect against AsH{sub 3}-induced damage. Further, the differences between the visible spectra of AsH{sub 3}-treated HbO{sub 2} and H{sub 2}O{sub 2}-treated HbO{sub 2} indicate that two different degradative processes occur. The presence of superoxide anion (O{sub 2}{sup {minus}}) was measured by O{sub 2}{sup {minus}} -dependent reduction of nitro blue tetrazolium (NBT). The results were negative for O{sub 2}{sup {minus}}. Exogenous superoxide dismutase (100 {mu}g/ml) did not affect AsH{sub 3}-induced HbO{sub 2} spectral changes, nor did the hydroxyl radical scavengers, mannitol, and DMSO (20mM each). The general antioxidants ascorbate ({le} 10 mM) and glutathione ({le}1 mM) also had no effect. These results indicate that the superoxide anion and the hydroxyl radical (OH) are not involved in the mechanism of AsH{sub 3}-induced HbO{sub 2} damage. The results also indicate that although AsH{sub 3} contributes to H{sub 2}O{sub 2} production in vitro, cellular defenses are adequate to detoxify the amount formed. An alternative mechanism by which an arsenic species is the hemolytic agent is proposed. 16 refs., 4 figs., 2 tabs.

  9. Scavenging of reactive oxygen species by a glycolipid fraction of Mycobacterium avium serovar 2.

    PubMed

    Scherer, T A; Lauredo, I T; Abraham, W M

    1997-01-01

    Previous experiments indicated that MIF-A3, a peptidoglycolipid extracted from Mycobacterium avium serovar 2 (Mycobacterium paratuberculosis 18), inhibits the killing of Candida albicans by activated bovine peripheral blood-derived macrophages and murine thioglycollate-elicited peritoneal macrophages in vitro. Subsequent in vitro data from our laboratory indicated that this reduction in killing may be related to the ability of MIF-A3 to scavenge reactive oxygen species (ROS). In this study we examined this hypothesis directly by determining if MIF-A3 reduced exogenous H2O2-induced candidacidal activity. When Candida albicans was incubated with H2O2 (4 mM) alone, colony-forming units/ml x 10(4) (CFU/ml) were 0.4 +/- 0.1 (mean +/- SE, n = 4) as compared to 11.3 +/- 2.0 CFU/ml in control (untreated) cultures (p < .05). The addition of catalase at concentrations > or = 6.8 U/ml, completely blocked the fungicidal effect of H2O2. However, reducing the amount of catalase from 6.8 U/ml to 3.4 U/ml resulted in a loss of scavenging activity, which was associated with a 50% increase in H2O2-mediated killing. Substituting MIF-A3 (400 micrograms/ml) for catalase, also reduced H2O2-induced fungicidal activity. In the absence of MIF-A3, H2O2 reduced Candida albicans to less than 10(3) CFU/ml. However, in the presence of MIF-A3 the CFU/ml of Candida albicans increased 7.5-fold. Based on concentration-response curves of H2O2 inhibition vs. increasing amounts of catalase we determined that the relative inhibitory capacity of the MIF-A3 (400 micrograms/ml) was approximately 1.0 U/ml "catalase equivalents." These findings provide direct evidence that MIF-A3 can scavenge H2O2, and reduce H2O2-induced killing of Candida albicans. PMID:8981049

  10. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis1[W

    PubMed Central

    Xie, Yanjie; Mao, Yu; Zhang, Wei; Lai, Diwen; Wang, Qingya; Shen, Wenbiao

    2014-01-01

    The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, reactive oxygen species (ROS), nitric oxide (NO), and the guard cell outward-rectifying K+ channel (GORK). ABA elicited a rapid and sustained H2 release and production in Arabidopsis. Exogenous hydrogen-rich water (HRW) effectively led to an increase of intracellular H2 production, a reduction in the stomatal aperture, and enhanced drought tolerance. Subsequent results revealed that HRW stimulated significant inductions of NO and ROS synthesis associated with stomatal closure in the wild type, which were individually abolished in the nitric reductase mutant nitrate reductase1/2 (nia1/2) or the NADPH oxidase-deficient mutant rbohF (for respiratory burst oxidase homolog). Furthermore, we demonstrate that the HRW-promoted NO generation is dependent on ROS production. The rbohF mutant had impaired NO synthesis and stomatal closure in response to HRW, while these changes were rescued by exogenous application of NO. In addition, both HRW and hydrogen peroxide failed to induce NO production or stomatal closure in the nia1/2 mutant, while HRW-promoted ROS accumulation was not impaired. In the GORK-null mutant, stomatal closure induced by ABA, HRW, NO, or hydrogen peroxide was partially suppressed. Together, these results define a main branch of H2-regulated stomatal movement involved in the ABA signaling cascade in which RbohF-dependent ROS and nitric reductase-associated NO production, and subsequent GORK activation, were causally involved. PMID:24733882

  11. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis.

    PubMed

    Xie, Yanjie; Mao, Yu; Zhang, Wei; Lai, Diwen; Wang, Qingya; Shen, Wenbiao

    2014-04-14

    The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, reactive oxygen species (ROS), nitric oxide (NO), and the guard cell outward-rectifying K(+) channel (GORK). ABA elicited a rapid and sustained H2 release and production in Arabidopsis. Exogenous hydrogen-rich water (HRW) effectively led to an increase of intracellular H2 production, a reduction in the stomatal aperture, and enhanced drought tolerance. Subsequent results revealed that HRW stimulated significant inductions of NO and ROS synthesis associated with stomatal closure in the wild type, which were individually abolished in the nitric reductase mutant nitrate reductase1/2 (nia1/2) or the NADPH oxidase-deficient mutant rbohF (for respiratory burst oxidase homolog). Furthermore, we demonstrate that the HRW-promoted NO generation is dependent on ROS production. The rbohF mutant had impaired NO synthesis and stomatal closure in response to HRW, while these changes were rescued by exogenous application of NO. In addition, both HRW and hydrogen peroxide failed to induce NO production or stomatal closure in the nia1/2 mutant, while HRW-promoted ROS accumulation was not impaired. In the GORK-null mutant, stomatal closure induced by ABA, HRW, NO, or hydrogen peroxide was partially suppressed. Together, these results define a main branch of H2-regulated stomatal movement involved in the ABA signaling cascade in which RbohF-dependent ROS and nitric reductase-associated NO production, and subsequent GORK activation, were causally involved. PMID:24733882

  12. Fusogenic Reactive Oxygen Species Triggered Charge-Reversal Vector for Effective Gene Delivery.

    PubMed

    Liu, Xin; Xiang, Jiajia; Zhu, Dingcheng; Jiang, Liming; Zhou, Zhuxian; Tang, Jianbin; Liu, Xiangrui; Huang, Yongzhuo; Shen, Youqing

    2016-03-01

    A novel fusogenic lipidic polyplex (FLPP) vector is designed to fuse with cell membranes, mimicking viropexis, and eject the polyplex into the cytosol, where the cationic polymer is subsequently oxidized by intracellular reactive oxygen species and converts to being negatively charged, efficiently releasing the DNA. The vector delivering suicide gene achieves significantly better inhibition of tumor growth than doxorubicin. PMID:26663349

  13. Redundant Catalases Detoxify Phagocyte Reactive Oxygen and Facilitate Histoplasma capsulatum Pathogenesis

    PubMed Central

    Holbrook, Eric D.; Smolnycki, Katherine A.; Youseff, Brian H.

    2013-01-01

    Histoplasma capsulatum is a respiratory pathogen that infects phagocytic cells. The mechanisms allowing Histoplasma to overcome toxic reactive oxygen molecules produced by the innate immune system are an integral part of Histoplasma's ability to survive during infection. To probe the contribution of Histoplasma catalases in oxidative stress defense, we created and analyzed the virulence defects of mutants lacking CatB and CatP, which are responsible for extracellular and intracellular catalase activities, respectively. Both CatB and CatP protected Histoplasma from peroxide challenge in vitro and from antimicrobial reactive oxygen produced by human neutrophils and activated macrophages. Optimal protection required both catalases, as the survival of a double mutant lacking both CatB and CatP was lower than that of single-catalase-deficient cells. Although CatB contributed to reactive oxygen species defenses in vitro, CatB was dispensable for lung infection and extrapulmonary dissemination in vivo. Loss of CatB from a strain also lacking superoxide dismutase (Sod3) did not further reduce the survival of Histoplasma yeasts. Nevertheless, some catalase function was required for pathogenesis since simultaneous loss of both CatB and CatP attenuated Histoplasma virulence in vivo. These results demonstrate that Histoplasma's dual catalases comprise a system that enables Histoplasma to efficiently overcome the reactive oxygen produced by the innate immune system. PMID:23589579

  14. NADPH Oxidase- and Mitochondria-derived Reactive Oxygen Species in Proinflammatory Microglial Activation: A Bipartisan Affair?

    PubMed Central

    Bordt, Evan A.; Polster, Brian M.

    2014-01-01

    Microglia are the resident immune cells of the brain and play major roles in central nervous system development, maintenance, and disease. Brain insults cause microglia to proliferate, migrate, and transform into one or more activated states. Classical M1 activation triggers the production of proinflammatory factors such as tumor necrosis factor- α (TNF-α), interleukin-1β (IL-1β), nitric oxide (NO), and reactive oxygen species which, in excess, can exacerbate brain injury. The mechanisms underlying microglial activation are not fully understood, yet reactive oxygen species are increasingly implicated as mediators of microglial activation. In this review, we highlight studies linking reactive oxygen species, in particular hydrogen peroxide derived from NADPH oxidase-generated superoxide, to the classical activation of microglia. In addition, we critically evaluate controversial evidence suggesting a specific role for mitochondrial reactive oxygen species in the activation of the NLRP3 inflammasome, a multiprotein complex that mediates the production of IL-1β and IL-18. Finally, the limitations of common techniques used to implicate mitochondrial ROS in microglial and inflammasome activation, such as the use of the mitochondrially-targeted ROS indicator MitoSOX and the mitochondrially-targeted antioxidant MitoTEMPO, are also discussed. PMID:25091898

  15. Reactive Oxygen Species Are Involved in Plant Defense against a Gall Midge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) play a major role in plant defense against pathogens, but evidence for their role in defense against insects is still preliminary and inconsistent. In this study, we examined the potential role of ROS in defense of wheat and rice against Hessian fly (Mayetiola destruct...

  16. Mitochondrial function and reactive oxygen species action in relation to boar motility.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow cytometric assays of viable boar sperm were developed to measure reactive oxygen species (ROS) formation (oxidization of hydroethidine to ethidium), membrane lipid peroxidation (oxidation of lipophilic probe C11-BODIPY581/591), and mitochondrial inner transmembrane potential (aggregation of mit...

  17. Mitochondrial function and reactive oxygen species action in relation to boar motility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flow cytometric assays were developed for reactive oxygen species (ROS) formation (ROS-induced oxidization of hydroethidine to ethidium), membrane lipid peroxidation (C11-BODIPY-581/591 oxidation), and mitochondrial transmembrane potential (MMP) (MMP-induced JC-1 aggregation, red fluorescence) in vi...

  18. Effects of reactive oxygen species action on sperm function in spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reactive oxygen species (ROS) formation and lipid peroxidation have been recognized as problems for sperm survival and fertility. The precise roles and detection of superoxide (SO), hydrogen peroxide (HP), and membrane lipid peroxidation have been problematic because of the low specificity and sens...

  19. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  20. ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    EPA Science Inventory

    ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES

    Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). Rece...

  1. Flaxseed oil increases aortic reactivity to phenylephrine through reactive oxygen species and the cyclooxygenase-2 pathway in rats

    PubMed Central

    2014-01-01

    Background Flaxseed oil has the highest concentration of omega-3 α-linolenic acid, which has been associated with cardiovascular benefit. However, the mechanism underlying the vascular effects induced through flaxseed oil is not well known. Thus, in the present study, we investigated the effects of flaxseed oil on vascular function in isolated rat aortic rings. Methods Wistar rats were treated daily with flaxseed oil or a control (mineral oil) intramuscular (i.m.) for fifteen days. Isolated aortic segments were used to evaluate cyclooxygenase-2 (COX-2) protein expression, superoxide anion levels and vascular reactivity experiments. Results Flaxseed oil treatment increased the vasoconstrictor response of aortic rings to phenylephrine. Endothelium removal increased the response to phenylephrine in aortic segments isolated from both groups, but the effect was smaller in the treated group. L-NAME incubation similarly increased the phenylephrine response in segments from both groups. The TXA2 synthase inhibitor furegrelate, the selective COX-2 inhibitor NS 398, the TP receptor antagonist SQ 29.548, the reactive oxygen species (ROS) scavenger apocynin, the superoxide anion scavengers tiron and the phospholipase A2 inhibitor dexamethasone partially reversed the flaxseed oil-induced increase in reactivity to phenylephrine. Conclusions These findings suggest that flaxseed oil treatment increased vascular reactivity to phenylephrine through an increase in ROS production and COX-2-derived TXA2 production. The results obtained in the present study provide new insight into the effects of flaxseed oil treatment (i.m.) on vascular function. PMID:24993607

  2. Chemistry and biology of reactive oxygen species in signaling or stress responses

    PubMed Central

    dickinson, Bryan C; Chang, Christopher J

    2012-01-01

    Reactive oxygen species (ROS) are a family of molecules that are continuously generated, transformed and consumed in all living organisms as a consequence of aerobic life. The traditional view of these reactive oxygen metabolites is one of oxidative stress and damage that leads to decline of tissue and organ systems in aging and disease. However, emerging data show that ROS produced in certain situations can also contribute to physiology and increased fitness. This Perspective provides a focused discussion on what factors lead ROS molecules to become signal and/or stress agents, highlighting how increasing knowledge of the underlying chemistry of ROS can lead to advances in understanding their disparate contributions to biology. An important facet of this emerging area at the chemistry-biology interface is the development of new tools to study these small molecules and their reactivity in complex biological systems. PMID:21769097

  3. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings.

    PubMed

    Guérin, P; El Mouatassim, S; Ménézo, Y

    2001-01-01

    Oxidative stress is involved in the aetiology of defective embryo development. Reactive oxygen species (ROS) may originate from embryo metabolism and/or embryo surroundings. Embryo metabolism generates ROS via several enzymatic mechanisms. The relative contribution of each source seems different depending on the species, the stage of development, and the culture conditions. Several exogenous factors and culture conditions can enhance the production of ROS by embryos. ROS can alter most types of cellular molecules, and also induce development block and retardation. Multiple mechanisms of embryo protection against ROS exist, and these have complementary actions. External protection, present in follicular and tubal fluids, mainly comprises non-enzymatic antioxidants such as hypotaurine, taurine and ascorbic acid. Internal protection mainly comprises antioxidant enzymes: superoxide dismutase, glutathione peroxidase and gamma-glutamylcysteine synthetase. Transcripts encoding for these enzymes are present in the oocyte, embryo and oviduct. It may be important that these transcripts are stored during oocyte maturation in order to allow the embryo to acquire the aptitude to develop. It is now common to add antioxidant compounds to culture media. Nevertheless, maintaining the pro-oxidant-antioxidant equilibrium in embryos through such supplementation is a complex problem. Further studies are necessary to limit oxidative stress during embryo culture. PMID:11284661

  4. Reactive Oxygen Species-mediated Immunity against Leishmania mexicana and Serratia marcescens in the Phlebotomine Sand Fly Lutzomyia longipalpis*

    PubMed Central

    Diaz-Albiter, Hector; Sant'Anna, Mauricio R. V.; Genta, Fernando A.; Dillon, Rod J.

    2012-01-01

    Phlebotomine sand flies are the vectors of medically important Leishmania. The Leishmania protozoa reside in the sand fly gut, but the nature of the immune response to the presence of Leishmania is unknown. Reactive oxygen species (ROS) are a major component of insect innate immune pathways regulating gut-microbe homeostasis. Here we show that the concentration of ROS increased in sand fly midguts after they fed on the insect pathogen Serratia marcescens but not after feeding on the Leishmania that uses the sand fly as a vector. Moreover, the Leishmania is sensitive to ROS either by oral administration of ROS to the infected fly or by silencing a gene that expresses a sand fly ROS-scavenging enzyme. Finally, the treatment of sand flies with an exogenous ROS scavenger (uric acid) altered the gut microbial homeostasis, led to an increased commensal gut microbiota, and reduced insect survival after oral infection with S. marcescens. Our study demonstrates a differential response of the sand fly ROS system to gut microbiota, an insect pathogen, and the Leishmania that utilize the sand fly as a vehicle for transmission between mammalian hosts. PMID:22645126

  5. The Relevance of Nrf2 Pathway and Autophagy in Pancreatic Cancer Cells upon Stimulation of Reactive Oxygen Species

    PubMed Central

    2016-01-01

    Nrf2 (NF-E2-related factor 2) pathway and autophagy both can respond to oxidative stress to promote cancer cells to survive in the tumor microenvironment. We, therefore, explored the relevance between Nrf2 pathway and autophagy in pancreatic cancer cells upon stimulation of reactive oxygen species (ROS). Pancreatic cancer cells were cultured under controlled ROS stressing condition or basal condition. Different inhibitors were used to prevent autophagy at particular stages. Nrf2 siRNA was used to inhibit Nrf2 pathway activation. Ad-mRFP-GFP-LC3 infection was used to monitor autophagic flux. The result shows that a small amount of exogenous hydrogen peroxide (H2O2) can significantly improve the level of intracellular ROS. Moreover, our findings indicate that ROS promotes the activation of both Nrf2 pathway and autophagy in pancreatic cancer cells. Moreover, our data demonstrate that suppression of autophagic activity at particular stages results in an increased promotion of Nrf2 pathway activation upon ROS stimulation. Furthermore, we found that silencing of Nrf2 promotes autophagy upon ROS stimulation. In addition, Nrf2 interference effectively promotes autophagic flux upon ROS stimulation. In summary, our findings suggest that Nrf2 pathway and autophagy have a negative interaction with each other upon ROS stimulation. PMID:26682003

  6. Aequorin-based luminescence imaging reveals differential calcium signalling responses to salt and reactive oxygen species in rice roots.

    PubMed

    Zhang, Yanyan; Wang, Yifeng; Taylor, Jemma L; Jiang, Zhonghao; Zhang, Shu; Mei, Fengling; Wu, Yunrong; Wu, Ping; Ni, Jun

    2015-05-01

    It is well established that both salt and reactive oxygen species (ROS) stresses are able to increase the concentration of cytosolic free Ca(2+) ([Ca(2+)]i), which is caused by the flux of calcium (Ca(2+)). However, the differences between these two processes are largely unknown. Here, we introduced recombinant aequorin into rice (Oryza sativa) and examined the change in [Ca(2+)]i in response to salt and ROS stresses. The transgenic rice harbouring aequorin showed strong luminescence in roots when treated with exogenous Ca(2+). Considering the histological differences in roots between rice and Arabidopsis, we reappraised the discharging solution, and suggested that the percentage of ethanol should be 25%. Different concentrations of NaCl induced immediate [Ca(2+)]i spikes with the same durations and phases. In contrast, H₂O₂ induced delayed [Ca(2+)]i spikes with different peaks according to the concentrations of H₂O₂. According to the Ca(2+) inhibitor research, we also showed that the sources of Ca(2+) induced by NaCl and H₂O₂ are different. Furthermore, we evaluated the contribution of [Ca(2+)]i responses in the NaCl- and H₂O₂-induced gene expressions respectively, and present a Ca(2+)- and H₂O₂-mediated molecular signalling model for the initial response to NaCl in rice. PMID:25754405

  7. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    PubMed Central

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-01

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidising reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are sparse, meaning there is a dearth in the understanding of such oxidants. In this study, a monoanionic NiII-bicarbonate complex was found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (~95%). Electronic absorption, electronic paramagnetic resonance and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = ½), square planar NiIII-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-ditertbutylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. PMID:25612563

  8. Reactive Ion Etching of Polymers in Oxygen Based Plasmas: a Study of Etch Mechanisms.

    NASA Astrophysics Data System (ADS)

    Graham, Sandra Wolterman

    The reactive ion etching of polymers has been studied in oxygen-based plasmas in an effort to understand the contributions of various mechanisms to the etching of these materials. Of the four active etch mechanisms; surface damage promoted etching, chemical sputtering, chemically enhanced physical sputtering, and direct reactive ion etching; the emphasis of this work has been on determining the relative contribution of direct reactive ion etching to the overall etching process. The etching of photoresist, polyimide, and amorphous carbon in O_2-CF_4 plasmas was studied in an asymmetrical reactive ion etcher at pressures ranging from 5 to 100 mtorr. Etch yield, ion flux, and oxygen atom concentration data were collected. The fit of this data to a linear model proposed by Joubert et al. (J. Appl. Phys., 65, 1989, 5096) was compared to the fit of the data to a nonlinear model proposed by the author. The linear model accounts for contribution due to three of the four etch mechanisms, but does not include contributions due to direct reactive ion etching. The nonlinear model accounts for contributions due to all four etch mechanisms. Experimental results indicate that the nonlinear model provides a better fit to the data than does the linear model. The relative contribution of direct reactive ion etching to the etching of photoresist ranges from 27% to 81% as the pressure decreases from 100 to 5 mtorr. Similar results are obtained for polyimide and amorphous carbon.

  9. Developing mononuclear copper-active-oxygen complexes relevant to reactive intermediates of biological oxidation reactions.

    PubMed

    Itoh, Shinobu

    2015-07-21

    Active-oxygen species generated on a copper complex play vital roles in several biological and chemical oxidation reactions. Recent attention has been focused on the reactive intermediates generated at the mononuclear copper active sites of copper monooxygenases such as dopamine β-monooxygenase (DβM), tyramine β-monooxygenase (TβM), peptidylglycine-α-hydroxylating monooxygenase (PHM), and polysaccharide monooxygenases (PMO). In a simple model system, reaction of O2 and a reduced copper(I) complex affords a mononuclear copper(II)-superoxide complex or a copper(III)-peroxide complex, and subsequent H(•) or e(-)/H(+) transfer, which gives a copper(II)-hydroperoxide complex. A more reactive species such as a copper(II)-oxyl radical type species could be generated via O-O bond cleavage of the peroxide complex. However, little had been explored about the chemical properties and reactivity of the mononuclear copper-active-oxygen complexes due to the lack of appropriate model compounds. Thus, a great deal of effort has recently been made to develop efficient ligands that can stabilize such reactive active-oxygen complexes in synthetic modeling studies. In this Account, I describe our recent achievements of the development of a mononuclear copper(II)-(end-on)superoxide complex using a simple tridentate ligand consisting of an eight-membered cyclic diamine with a pyridylethyl donor group. The superoxide complex exhibits a similar structure (four-coordinate tetrahedral geometry) and reactivity (aliphatic hydroxylation) to those of a proposed reactive intermediate of copper monooxygenases. Systematic studies based on the crystal structures of copper(I) and copper(II) complexes of the related tridentate supporting ligands have indicated that the rigid eight-membered cyclic diamine framework is crucial for controlling the geometry and the redox potential, which are prerequisites for the generation of such a unique mononuclear copper(II)-(end-on)superoxide complex. Reactivity of a mononuclear copper(II)-alkylperoxide complex has also been examined to get insights into the intrinsic reactivity of copper(II)-peroxide species, which is usually considered as a sluggish oxidant or just a precursor of copper-oxyl radical type reactive species. However, our studies have unambiguously demonstrated that copper(II)-alkylperoxide complex can be a direct oxidant for C-H bond activation of organic substrates, when the C-H bond activation is coupled with O-O bond cleavage (concerted mechanism). The reactivity studies of these mononuclear copper(II) active-oxygen species (superoxide and alkylperoxide) will provide significantly important insights into the catalytic mechanism of copper monooxygenases as well as copper-catalyzed oxidation reactions in synthetic organic chemistry. PMID:26086527

  10. Reactive Oxygen Species on the Early Earth and Survival of Bacteria

    NASA Technical Reports Server (NTRS)

    Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

    2011-01-01

    An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

  11. The Interplay of Light and Oxygen in the Reactive Oxygen Stress Response of Chlamydomonas reinhardtii Dissected by Quantitative Mass Spectrometry*

    PubMed Central

    Barth, Johannes; Bergner, Sonja Verena; Jaeger, Daniel; Niehues, Anna; Schulze, Stefan; Scholz, Martin; Fufezan, Christian

    2014-01-01

    Light and oxygen are factors that are very much entangled in the reactive oxygen species (ROS) stress response network in plants, algae and cyanobacteria. The first obligatory step in understanding the ROS network is to separate these responses. In this study, a LC-MS/MS based quantitative proteomic approach was used to dissect the responses of Chlamydomonas reinhardtii to ROS, light and oxygen employing an interlinked experimental setup. Application of novel bioinformatics tools allow high quality retention time alignment to be performed on all LC-MS/MS runs increasing confidence in protein quantification, overall sequence coverage and coverage of all treatments measured. Finally advanced hierarchical clustering yielded 30 communities of co-regulated proteins permitting separation of ROS related effects from pure light effects (induction and repression). A community termed redoxII was identified that shows additive effects of light and oxygen with light as the first obligatory step. Another community termed 4-down was identified that shows repression as an effect of light but only in the absence of oxygen indicating ROS regulation, for example, possibly via product feedback inhibition because no ROS damage is occurring. In summary the data demonstrate the importance of separating light, O2 and ROS responses to define marker genes for ROS responses. As revealed in this study, an excellent candidate is DHAR with strong ROS dependent induction profiles. PMID:24482124

  12. Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue

    NASA Astrophysics Data System (ADS)

    Gaur, Nishtha; Szili, Endre J.; Oh, Jun-Seok; Hong, Sung-Ha; Michelmore, Andrew; Graves, David B.; Hatta, Akimitsu; Short, Robert D.

    2015-09-01

    The influence of protein and molecular, ground state oxygen (O2) on the plasma generation, and transport of reactive oxygen and nitrogen species (RONS) in tissue are investigated. A tissue target, comprising a 1 mm thick gelatin film (a surrogate for real tissue), is placed on top of a 96-well plate; each well is filled with phosphate buffered saline (PBS, pH 7.4) containing one fluorescent or colorimetric reporter that is specific for one of three RONS (i.e., H2O2, NO2-, or OH•) or a broad spectrum reactive oxygen species reporter (2,7-dichlorodihydrofluorescein). A helium cold atmospheric plasma (CAP) jet contacts the top of the gelatin surface, and the concentrations of RONS generated in PBS are measured on a microplate reader. The data show that H2O2, NO2-, or OH• are generated in PBS underneath the target. Independently, measurements are made of the O2 concentration in the PBS with and without the gelatin target. Adding bovine serum albumin protein to the PBS or gelatin shows that protein either raises or inhibits RONS depending upon the O2 concentration. Our results are discussed in the context of plasma-soft tissue interactions that are important in the development of CAP technology for medicine, biology, and food manufacturing.

  13. Mechanisms of nitric oxide crosstalk with reactive oxygen species scavenging enzymes during abiotic stress tolerance in plants.

    PubMed

    Arora, Dhara; Jain, Prachi; Singh, Neha; Kaur, Harmeet; Bhatla, Satish C

    2016-01-01

    Nitric oxide (NO) acts in a concentration and redox-dependent manner to counteract oxidative stress either by directly acting as an antioxidant through scavenging reactive oxygen species (ROS), such as superoxide anions (O(2)(-)*), to form peroxynitrite (ONOO(-)) or by acting as a signaling molecule, thereby altering gene expression. NO can interact with different metal centres in proteins, such as heme-iron, zinc-sulfur clusters, iron-sulfur clusters, and copper, resulting in the formation of a stable metal-nitrosyl complex or production of varied biochemical signals, which ultimately leads to modification of protein structure/function. The thiols (ferrous iron-thiol complex and nitrosothiols) are also involved in the metabolism and mobilization of NO. Thiols bind to NO and transport it to the site of action whereas nitrosothiols release NO after intercellular diffusion and uptake into the target cells. S-nitrosoglutathione (GSNO) also has the ability to transnitrosylate proteins. It is an NO˙ reservoir and a long-distance signaling molecule. Tyrosine nitration of proteins has been suggested as a biomarker of nitrosative stress as it can lead to either activation or inhibition of target proteins. The exact molecular mechanism(s) by which exogenous and endogenously generated NO (or reactive nitrogen species) modulate the induction of various genes affecting redox homeostasis, are being extensively investigated currently by various research groups. Present review provides an in-depth analysis of the mechanisms by which NO interacts with and modulates the activity of various ROS scavenging enzymes, particularly accompanying ROS generation in plants in response to varied abiotic stress. PMID:26554526

  14. Oxygen-sulfur exchange and the gas-phase reactivity of cobalt sulfide cluster anions with molecular oxygen.

    PubMed

    Jia, Mei-Ye; Luo, Zhixun; He, Sheng-Gui; Ge, Mao-Fa

    2014-09-18

    We present here a study of gas-phase reactivity of cobalt sulfide cluster anions Co(m)S(n)(-) with molecular oxygen. Nascent Co(m)S(n)(-) clusters were prepared via a laser ablation source and reacted with oxygen in a fast flow reactor under thermal collision conditions. We chose (18)O2 in place of (16)O2 to avoid mass degeneration with sulfur, and a time-of-flight (TOF) mass spectrometer was used to detect the cluster distributions in the absence and presence of the reactant. It was found that oxygen-sulfur exchange occurs in the reactions for those with specific compositions (CoS)(n)(-) and (CoS)(n)S(-) (n = 2-5) according to a consistent pathway, "Co(m)S(n)(-) + (18)O2 → Co(m)S(n-1)(18)O(-) + S(18)O". Typically, for "Co2S2(-) + (18)O2" we have calculated the reaction coordinates by employing the density functional theory (DFT), where both the oxygen-sulfur exchange and SO molecule release are thermodynamically and kinetically favorable. It is noteworthy that the reaction with molecular oxygen (triplet ground state) needs to overcome a spin excitation as well as a large O-O activation energy. This study sheds light on the activation of molecular oxygen by cobalt sulfides on one hand and also provides insight into the regeneration mechanism of cobalt oxides from the counterpart sulfides in the presence of oxygen gas on the other hand. PMID:24588651

  15. UNCOUPLING PROTEIN DOWNREGULATION IN DOXORUBICIN INDUCED HEART FAILURE IMPROVES MITOCHONDRIAL COUPLING BUT INCREASES REACTIVE OXYGEN SPECIES GENERATION

    PubMed Central

    Bugger, Heiko; Guzman, Cinthia; Zechner, Christoph; Palmeri, Monica; Russell, Kerry S.; Russell, Raymond R.

    2010-01-01

    PURPOSE Doxorubicin-based chemotherapy is limited by the development of dose-dependent left ventricular dysfunction and congestive heart failure caused by reactive oxygen species (ROS). Uncoupling proteins (UCP) can inhibit mitochondrial ROS production as well as decrease myocyte damage from exogenous ROS. Prior studies have shown that cardiac UCP2 and UCP3 mRNA expression is decreased with acute doxorubicin treatment. However, the expression of UCP protein in hearts with doxorubicin cardiotoxicity and the resultant changes in mitochondrial function and oxidant stress have not been determined. METHODS Heart failure was induced in Sprague-Dawley rats with intraperitoneal injections of doxorubicin (2 mg/kg t.i.w., total dose: 18 mg/kg). Mitochondria were isolated from mice receiving doxorubicin or saline injections for determination of UCP2 and UCP3 expression. In addition, mitochondrial respiration, ATP synthesis and ROS production were determined. RESULTS Doxorubicin-induced heart failure was associated with significant decreases in UCP2 and UCP3 protein expression compared to nonfailing hearts (p<0.05). While the rates of state 3 and state 4 respiration and ATP synthesis were lower in mitochondria isolated from failing hearts, the respiratory control ratio was 15% higher (p<0.05) and the ratio of ATP production to oxygen consumption was 25% higher (p<0.05) in mitochondria from failing hearts, indicating greater coupling between citric acid cycle flux and mitochondrial ATP synthesis. However, the decrease in UCP expression was associated with 50% greater mitochondrial ROS generation (p<0.05). CONCLUSIONS Downregulation of myocardial UCP2 and UCP3 in the setting of doxorubicin-induced heart failure is associated with improved efficiency of ATP synthesis, which might compensate for abnormal energy metabolism. However, this beneficial effect is counterbalanced by greater oxidant stress. PMID:20809120

  16. Molecular Oxygen and Reactive Oxygen Species in Bread-making Processes: Scarce, but Nevertheless Important.

    PubMed

    Decamps, Karolien; Joye, Iris J; De Vos, Dirk E; Courtin, Christophe M; Delcour, Jan A

    2016-04-01

    In bread making, O2 is consumed by flour constituents, yeast, and, optionally, some additives optimizing dough processing and/or product quality. It plays a major role especially in the oxidation/reduction phenomena in dough, impacting gluten network structure. The O2 level is about 7.2 mmol/kg dough, of which a significant part stems from wheat flour. We speculate that O2 is quickly lost to the atmosphere during flour hydration. Later, when the gluten network structure develops, some O2 is incorporated in dough through mixing-in of air. O2 is consumed by yeast respiration and in a number of reactions catalyzed by a wide range of enzymes present or added. About 60% of the O2 consumption in yeastless dough is ascribed to oxidation of fatty acids by wheat lipoxygenase activity. In yeasted dough, about 70% of the O2 in dough is consumed by yeast and wheat lipoxygenase. This would leave only about 30% for other reactions. The severe competition between endogenous (and added) O2-consuming systems impacts the gluten network. Moreover, the scarce literature data available suggest that exogenous oxidative enzymes but not those in flour may promote crosslinking of arabinoxylan in yeastless dough. In any case, dough turns anaerobic during the first minutes of fermentation. PMID:26055405

  17. Production of reactive oxygen species in decoupled, Ca(2+)-depleted PSII and their use in assigning a function to chloride on both sides of PSII.

    PubMed

    Semin, Boris K; Davletshina, Lira N; Timofeev, Kirill N; Ivanov, Il'ya I; Rubin, Andrei B; Seibert, Michael

    2013-11-01

    Extraction of Ca(2+) from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as "the decoupling effect" (Semin et al. Photosynth Res 98:235-249, 2008). Extraction of Cl(-) from Ca(2+)-depleted membranes (PSII[-Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O 2 (·-) , as possible products of water oxidation in PSII(-Ca) membranes was examined. During the investigation of O 2 (·-) production in PSII(-Ca) samples, we found that (i) O 2 (·-) is formed on the acceptor side of PSII due to the reduction of O2; (ii) depletion of Cl(-) does not inhibit water oxidation, but (iii) Cl(-) depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl(-) under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O2, thereby increasing the rate of O 2 (·-) generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl(-) anions are not involved in the oxidation of water to H2O2 in decoupled PSII(-Ca) membranes. These results also indicate that Cl(-) anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H(+) ions into the lumenal space. PMID:23794169

  18. Reactive oxygen species, lipid peroxidation and enzymatic defence systems in human spermatozoa.

    PubMed

    Griveau, J F; Dumont, E; Renard, P; Callegari, J P; Le Lannou, D

    1995-01-01

    The reactive oxygen species, hydrogen peroxide (H2O2) and superoxide anion (O2o-), were generated with a xanthine-xanthine oxidase system and their effect on human sperm function was studied. The action of reactive oxygen species on selected human spermatozoa resulted in a decreased capacity for ionophore-induced acrosome reaction, a decrease in sperm motility, an increase in the concentration of lipid hydroperoxides and a loss of membrane polyunsaturated fatty acids. H2O2 was the key intermediate of the deleterious effects exerted by the xanthine and xanthine oxidase. Among these parameters, the acrosome reaction appeared most susceptible to the reactive oxygen species generated by the xanthine-xanthine oxidase system, and was decreased without sperm motility being affected. Treatment with H2O2 was shown to inactivate several enzymatic activities involved in the antioxidant defence of spermatozoa: glutathione peroxidase, superoxide dismutase and glucose-6-phosphate dehydrogenase. H2O2 and O2o- were shown to be involved in the lipid alterations triggered by the xanthine-xanthine oxidase system. Singlet oxygen is proposed to intervene in the lipoperoxidation process. The inefficacy of mannitol in protecting spermatozoa suggests that hydroxyl radicals were not produced in the extracellular medium. PMID:7707295

  19. Reactive oxygen species produced upon photoexcitation of sunscreens containing titanium dioxide (an EPR study).

    PubMed

    Brezová, Vlasta; Gabcová, Sona; Dvoranová, Dana; Stasko, Andrej

    2005-05-13

    Commercial sunscreen products containing titanium dioxide were irradiated with lambda>300 nm and the formation of oxygen- (.OH, O2.-/.OOH) and carbon-centered radicals was monitored by EPR spectroscopy and spin trapping technique using 5,5-dimethyl-1-pyrroline N-oxide, alpha-phenyl-N-tert-butylnitrone (PBN), alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone as spin traps, and free nitroxide radical 4-hydroxy-2,2,6,6-tetramethylpiperidine N-oxyl. The photoinduced production of singlet oxygen was shown by 4-hydroxy-2,2,6,6-piperidine. The generation of reactive oxygen radical species upon irradiation of sunscreens significantly depends on their composition, as the additives present (antioxidants, radical-scavengers, solvents) can transform the reactive radicals formed to less harmful products. The continuous in situ irradiation of titanium dioxide powder, recommended for cosmetic application, investigated in different solvents (water, dimethyl sulfoxide, isopropyl myristate) resulted in the generation of oxygen-centered reactive radical species (superoxide anion radical, hydroxyl and alkoxyl radicals). PMID:15878117

  20. Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Species†

    PubMed Central

    Yuan, Hengjie; Houck, Katie L.; Tian, Ye; Bharadwaj, Uddalak; Hull, Ken; Zhou, Zhou; Zhou, Mingzhao; Wu, Xiaoping; Tweardy, David J.; Romo, Daniel; Fu, Xiaoyun; Zhang, Yanjun; Zhang, Jianning; Dong, Jing-fei

    2015-01-01

    Background Piperlongumine (PL) is a compound isolated from the piper longum plant. It possesses anti-cancer activities through blocking the transcription factor STAT3 and by inducing reactive oxygen species (ROS) in cancer, but not normal cells. It also inhibits platelet aggregation induced by collagen, but the underlying mechanism is not known. Objective We conducted in vitro experiments to test the hypothesis that PL regulates a non-transcriptional activity of STAT3 to specifically reduce the reactivity of human platelets to collagen. Results PL dose-dependently blocked collagen-induced platelet aggregation, calcium influx, CD62p expression and thrombus formation on collagen with a maximal inhibition at 100 μM. It reduced platelet microvesiculation induced by collagen. PL blocked the activation of JAK2 and STAT3 in collagen-stimulated platelets. This inhibitory effect was significantly reduced in platelets pretreated with a STAT3 inhibitor. Although PL induced ROS production in platelets; quenching ROS using excessive reducing agents: 20 μM GSH and 0.5 mM L-Cysteine, did not block the inhibitory effects. The NADPH oxidase inhibitor Apocynin also had no effect. Conclusions PL inhibited collagen-induced platelet reactivity by targeting the JAK2-STAT3 pathway. We also provide experimental evidence that PL and collagen induce different oxidants that have differential effects on platelets. Studying these differential effects may uncover new mechanisms of regulating platelet functions by oxidants in redox signals. PMID:26645674

  1. Neuroprotection by genipin against reactive oxygen and reactive nitrogen species-mediated injury in organotypic hippocampal slice cultures.

    PubMed

    Hughes, Rebecca H; Silva, Victoria A; Ahmed, Ijaz; Shreiber, David I; Morrison, Barclay

    2014-01-16

    Genipin, the multipotent ingredient in Gardenia jasmenoides fruit extract (GFE), may be an effective candidate for treatment following stroke or traumatic brain injury (TBI). Secondary injury includes damage mediated by reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can alter the biological function of key cellular structures and eventually lead to cell death. In this work, we studied the neuroprotective potential of genipin against damage stemming from ROS and RNS production in organotypic hippocampal slice cultures (OHSC), as well as its potential as a direct free radical scavenger. A 50 µM dose of genipin provided significant protection against tert-butyl hydroperoxide (tBHP), a damaging organic peroxide. This dosage of genipin significantly reduced cell death at 48 h compared to vehicle control (0.1% DMSO) when administered 0, 1, 6, and 24 h after addition of tBHP. Similarly, genipin significantly reduced cell death at 48 h when administered 0, 1, 2, and 6h after addition of rotenone, which generates reactive oxygen species via a more physiologically relevant mechanism. Furthermore, genipin significantly reduced both cell death and nitrite levels at 24 h caused by S-nitroso-N-acetylpenicillamine (SNAP), a direct nitric oxide (NO) donor, and successfully quenched 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), a stable free radical, suggesting that genipin may act as a direct free radical scavenger. Our encouraging findings suggest that genipin should be tested in animal models of CNS injury with a significant component of ROS- and RNS-mediated damage, such as TBI and stroke, to assess its in vivo efficacy. PMID:24275198

  2. Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species

    NASA Technical Reports Server (NTRS)

    Hei, T. K.; Liu, S. X.; Waldren, C.

    1998-01-01

    Arsenite, the trivalent form of arsenic present in the environment, is a known human carcinogen that lacked mutagenic activity in bacterial and standard mammalian cell mutation assays. We show herein that when evaluated in an assay (AL cell assay), in which both intragenic and multilocus mutations are detectable, that arsenite is in fact a strong dose-dependent mutagen and that it induces mostly large deletion mutations. Cotreatment of cells with the oxygen radical scavenger dimethyl sulfoxide significantly reduces the mutagenicity of arsenite. Thus, the carcinogenicity of arsenite can be explained at least in part by it being a mutagen that depends on reactive oxygen species for its activity.

  3. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    SciTech Connect

    Vitelaru, Catalin; National Institute for Optoelectronics, Magurele-Bucharest, RO 077125 ; Lundin, Daniel; Division of Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology, Stockholm, SE-100 44 ; Brenning, Nils; Minea, Tiberiu

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  4. Oxidases and reactive oxygen species during hematopoiesis: a focus on megakaryocytes

    PubMed Central

    Eliades, Alexia; Matsuura, Shinobu; Ravid, Katya

    2012-01-01

    Reactive oxygen species (ROS), generated as a result of various reactions, control an array of cellular processes. The role of ROS during megakaryocyte (MK) development has been a subject of interest and research. The bone marrow niche is the major site of MK differentiation and maturation. In this environment, a gradient of oxygen tension, from normoxia to hypoxia results in different levels of ROS, impacting cellular physiology. This article provides an overview of major sources of ROS, their implication in different signaling pathways, and their effect on cellular physiology, with a focus on megakaryopoiesis. The importance of ROS-generating oxidases in MK biology and pathology, including myelofibrosis, is also described. PMID:22331622

  5. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    NASA Astrophysics Data System (ADS)

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-10-01

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O2 gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  6. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    NASA Astrophysics Data System (ADS)

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-09-01

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O2 gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  7. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species

    PubMed Central

    Asghar, Waseem; Velasco, Vanessa; Kingsley, James L.; Shoukat, Muhammad S.; Shafiee, Hadi; Anchan, Raymond M.; Mutter, George L.; Tüzel, Erkan; Demirci, Utkan

    2014-01-01

    Fertilization and reproduction are central to the survival and propagation of a species. Couples who cannot reproduce naturally have to undergo in vitro clinical procedures. An integral part of these clinical procedures includes isolation of healthy sperm from raw semen. Existing sperm sorting methods are not efficient and isolate sperm having high DNA fragmentation and reactive oxygen species, and suffer from multiple manual steps and variations between embryologists. Inspired by in vivo natural sperm sorting mechanisms where vaginal mucus becomes less viscous to form microchannels to guide sperm towards egg, we present a chip that efficiently sorts healthy, motile and morphologically normal sperm without centrifugation. Higher percentage of sorted sperm show significantly lesser reactive oxygen species and DNA fragmentation than the conventional swim-up method. The presented chip is an easy-to-use high throughput sperm sorter that provides standardized sperm sorting assay with less reliance on embryologist’s skills, facilitating reliable operational steps. PMID:24753434

  8. Biochemical changes in rat testis induced in vitro by reactive oxygen species.

    PubMed

    Nechifor, Marina Tamara; Constantin, Carolina; Manda, Gina; Neagu, Monica; Dinu, Diana

    2006-01-01

    We report the effects of reactive oxygen species generated by ultraviolet-A radiation on some biochemical parameters specific for oxidative stress, in rat testis homogenates. Results show an increase in lipid peroxidation products under ultraviolet-A exposure, and suggest that the involved mechanism is typical for a radical-mediated chain reaction. The amount of SH groups also increases during irradiation, probably as a consequence of conformational changes in proteins. Electrophoresis results revealed protein pattern changes mainly in the low molecular weight domain. The catalytic activities of alkaline phosphatase and gamma-glutamil transpeptidase are modified under the oxidative conditions generated by reactive oxygen species. The changes of the enzymatic activities are UVA exposure time-dependent, suggesting that conformational modifications are responsible for enzymatic activities enhancement. PMID:18389730

  9. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis

    NASA Astrophysics Data System (ADS)

    Duan, Qiaohong; Kita, Daniel; Johnson, Eric A.; Aggarwal, Mini; Gates, Laura; Wu, Hen-Ming; Cheung, Alice Y.

    2014-01-01

    In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca2+-dependent process involving Ca2+ channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants.

  10. Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols

    PubMed Central

    Hyman, Lynne M.; Franz, Katherine J.

    2013-01-01

    Oxidative stress is a common feature shared by many diseases, including neurodegenerative diseases. Factors that contribute to cellular oxidative stress include elevated levels of reactive oxygen species, diminished availability of detoxifying thiols, and the misregulation of metal ions (both redox-active iron and copper as well as non-redox active calcium and zinc). Deciphering how each of these components interacts to contribute to oxidative stress presents an interesting challenge. Fluorescent sensors can be powerful tools for detecting specific analytes within a complicated cellular environment. Reviewed here are several classes of small molecule fluorescent sensors designed to detect several molecular participants of oxidative stress. We focus our review on describing the design, function and application of probes to detect metal cations, reactive oxygen species, and intracellular thiol-containing compounds. In addition, we highlight the intricacies and complications that are often faced in sensor design and implementation. PMID:23440254

  11. Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis.

    PubMed

    Duan, Qiaohong; Kita, Daniel; Johnson, Eric A; Aggarwal, Mini; Gates, Laura; Wu, Hen-Ming; Cheung, Alice Y

    2014-01-01

    In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca(2+)-dependent process involving Ca(2+) channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants. PMID:24451849

  12. Regulation of signal transduction by reactive oxygen species in the cardiovascular system

    PubMed Central

    Brown, David I.; Griendling, Kathy K.

    2015-01-01

    Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species in normal physiological signaling has been elucidated. Signaling pathways modulated by reactive oxygen species (ROS) are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here we review the current literature regarding ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress. PMID:25634975

  13. Annato extract and ?-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats

    PubMed Central

    Rossoni-Jnior, Joamyr Victor; Arajo, Glaucy Rodrigues; Pdua, Bruno da Cruz; Chaves, Mriam Martins; Pedrosa, Maria Lcia; Silva, Marcelo Eustquio; Costa, Daniela Caldeira

    2012-01-01

    Annatto has been identified as carotenoids that have antioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the bodys defense mechanisms to destroy invading pathogens. Reactive oxygen species/reactive nitrogen species are excessively produced by active peripheral neutrophils, and may damage essential cellular components, which in turn can cause vascular complications in diabetes. The present study was undertaken to evaluate the possible protective effects of annatto on the reactive oxygen species and nitric oxide (NO) inhibition in neutrophils from alloxan-induced diabetic rats. Adult female rats were divided into six groups based on receiving either a standard diet with or without supplementation of annatto extract or beta carotene. All animals were sacrificed 30 days after treatment and the neutrophils were isolated using two gradients of different densities. The reactive oxygen species and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Our results show that neutrophils from diabetic animals produce significantly more reactive oxygen species and NO than their respective controls and that supplementation with beta carotene and annatto is able to modulate the production of these species. Annatto extract may have therapeutic potential for modulation of the balance reactive oxygen species/NO induced by diabetes. PMID:22573917

  14. Biocompatible reactive oxygen species (ROS)-responsive nanoparticles as superior drug delivery vehicles.

    PubMed

    Zhang, Dinglin; Wei, Yanling; Chen, Kai; Zhang, Xiangjun; Xu, Xiaoqiu; Shi, Qing; Han, Songling; Chen, Xin; Gong, Hao; Li, Xiaohui; Zhang, Jianxiang

    2015-01-01

    A novel reactive oxygen species (ROS)-responsive nanoplatform can be successfully manufactured from a ROS-triggerable β-cyclodextrin material. Extensive in vitro and in vivo studies validate that this nanoscaled system may serve as a new drug delivery vehicle with well-defined ROS-sensitivity and superior biocompatibility. This nanocarrier can be used for ROS-triggered transport of diverse therapeutics and imaging agents. PMID:25147049

  15. In vitro scavenging capacity of annatto seed extracts against reactive oxygen and nitrogen species.

    PubMed

    Chist, Renan Campos; Mercadante, Adriana Zerlotti; Gomes, Ana; Fernandes, Eduarda; Lima, Jos Lus Fontes da Costa; Bragagnolo, Neura

    2011-07-15

    Bixa orellana L. (annatto), from Bixaceae family, is a native plant of tropical America, which accumulates several carotenoids (including bixin and norbixin), terpenoids, tocotrienols and flavonoids with potential antioxidant activity. In the present study, the in vitro scavenging capacity of annatto seed extracts against reactive oxygen species (ROS) and reactive nitrogen species (RNS) was evaluated and compared to the bixin standard. Annatto extracts were obtained using solvents with different polarities and their phenolic compounds and bixin levels were determined by high performance liquid chromatography coupled to diode array detector. All annatto extracts were able to scavenge all the reactive species tested at the low ?g/mL range, with the exception of superoxide radical. The ethanol:ethyl acetate and ethyl acetate extracts of annatto seeds, which presented the highest levels of hypolaetin and bixin, respectively, were the extracts with the highest antioxidant capacity, although bixin standard presented the lowest IC(50) values. PMID:23140681

  16. Evidence for photochemical production of reactive oxygen species in desert soils.

    PubMed

    Georgiou, Christos D; Sun, Henry J; McKay, Christopher P; Grintzalis, Konstantinos; Papapostolou, Ioannis; Zisimopoulos, Dimitrios; Panagiotidis, Konstantinos; Zhang, Gaosen; Koutsopoulou, Eleni; Christidis, George E; Margiolaki, Irene

    2015-01-01

    The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars. PMID:25960012

  17. [Effects of allelochemical dibutyl phthalate on Gymnodinium breve reactive oxygen species].

    PubMed

    Bie, Cong-Cong; Li, Feng-Min; Li, Yuan-Yuan; Wang, Zhen-Yu

    2012-02-01

    The purpose of this study was to investigate the mechanism of inhibitory action of dibutyl phthalate (DBP) on red tide algae Gymnodinium breve. Reactive oxygen species (ROS) level, contents of *OH and H2O2, and O2*(-) production rate were investigated, and also for the effects of electron transfer inhibitors on the ROS induction of DBP. The results showed that DBP triggered the synthesis of reactive oxygen species ROS, and with the increase of concentration of DBP, *OH and H2O2 contents in cells accumulated, as for the 3 mg x L(-1) DBP treated algae cultures, OH showed a peak of 33 U x mL(-1) at 48 h, which was about 2. 4 times higher than that in the controlled, and H2O2 contents was about 250 nmol x (10(7) cells)(-1) at 72 h, which was about 5 times higher and also was the highest during the whole culture. Rotenone (an inhibitor of complex I in the mitochondria electron transport chain) decreased the DBP induced ROS production, and dicumarol (an inhibitor of the redox enzyme system in the plasma membrane) stimulated the DBP induced ROS production. Taken all together, the results demonstrated DBP induced over production of reactive oxygen species in G. breve, which is the main inhibitory mechanism, and mitochondria and plasma membrane seem to be the main target site of DBP. These conclusions were of scientific meaning on uncovering the inhibitory mechanism of allelochemical on algae. PMID:22509579

  18. Generation of reactive oxygen species and radiation response in lymphocytes and tumor cells.

    PubMed

    Shankar, Bhavani; Kumar, S Santosh; Sainis, K B

    2003-10-01

    Several types of lymphoid and myeloid tumor cells are known to be relatively resistant to radiation-induced apoptosis compared to normal lymphocytes. The intracellular generation of reactive oxygen species was measured in irradiated spleen cells from C57BL/6 and BALB/c mice and murine tumor cells (EL-4 and P388) by flow cytometry using dichlorodihydrofluoresceindiacetate and dihydrorhodamine 123 as fluorescent probes. The amount of reactive oxygen species generated per cell was low in the tumor cells compared to spleen cells exposed to 1 to 10 Gy of gamma radiation. This could be due to the higher total antioxidant levels in tumor cells compared to normal cells. Further, the changes in mitochondrial membrane potential and cytoplasmic Ca2+ content were appreciable in lymphocytes even at a dose of 1 Gy. In EL-4 cells, no such changes were observed at any of the doses used. About 65% of spleen cells underwent apoptosis 24 h after 1 Gy irradiation. However, under the same conditions, EL-4 and P388 cells failed to undergo apoptosis, but they accumulated in G2/M phase. Thus the intrinsic radioresistance of tumor cells may be due to a decreased generation of reactive oxygen species after irradiation and down-regulation of the subsequent events leading to apoptosis. PMID:12968927

  19. Tissue injury by reactive oxygen species and the protective effects of flavonoids.

    PubMed

    de Groot, H; Rauen, U

    1998-01-01

    Reactive oxygen species contribute decisively to a great variety of diseases. Flavonoids are benzo-gamma-pyrone derivatives of plant origin found in various fruits and vegetables but also in tea and in red wine. Some of the flavonoids, such as quercetin and silibinin, can effectively protect cells and tissues against the deleterious effects of reactive oxygen species. Their antioxidant activity results from scavenging of free radicals and other oxidizing intermediates, from the chelation of iron or copper ions and from inhibition of oxidases. For their free radical scavenging properties, scavenging of lipid- and protein-derived radicals is presumably of special importance. A non-radical reactive oxygen species effectively trapped by flavonoids is hypochlorous acid. In general, the antioxidative properties of flavonoids are favoured by a high degree of OH substitution. On the other hand, inhibition of enzymatic functions other than oxidases, e.g., inhibition of lipoxygenase and thus prevention of the formation of leukotrienes, may also participate in the cell and tissue protective properties of flavonoids. PMID:9646056

  20. Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces

    SciTech Connect

    Nilekar, Anand U.; Mavrikakis, Manos

    2008-07-15

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The catalytic activity of platinum monolayers supported on close-packed transition metal surfaces (Au(111), Pt(111), Pd(111) and Ir(111)) is investigated for the oxygen reduction reaction (ORR) by generating free energy diagrams and performing Sabatier analysis based on periodic, self-consistent density functional theory (DFT) calculations. Three different ORR mechanisms, involving direct or hydrogen assisted activation of O₂, are considered. At the ORR equilibrium potential of 1.23 V, the reactivity of all surfaces is shown to be limited by the rate of OH removal from the surface. At a cell potential of 0.80 V, the ORR reactivity of different surfaces is dictated by the strength of oxygen adsorption, with OH removal via hydrogenation and O–O bond scission in either O₂, O₂H or H₂O₂ being the rate-limiting steps for surfaces with stronger and weaker oxygen binding, respectively. Among the surfaces studied, Pt monolayer on a Pd(111) substrate shows the highest reactivity and is more active than Pt(111). These results are in excellent agreement with our earlier experimental and theoretical work, which was based on a simpler model for the ORR.

  1. Neuroprotection of taurine against reactive oxygen species is associated with inhibiting NADPH oxidases.

    PubMed

    Han, Zhou; Gao, Li-Yan; Lin, Yu-Hui; Chang, Lei; Wu, Hai-Yin; Luo, Chun-Xia; Zhu, Dong-Ya

    2016-04-15

    It is well established that taurine shows potent protection against glutamate-induced injury to neurons in stroke. The neuroprotection may result from multiple mechanisms. Increasing evidences suggest that NADPH oxidases (Nox), the primary source of superoxide induced by N-methyl-d-aspartate (NMDA) receptor activation, are involved in the process of oxidative stress. We found that 100μM NMDA induced oxidative stress by increasing the reactive oxygen species level, which contributed to the cell death, in vitro. Neuron cultures pretreated with 25mM taurine showed lower percentage of death cells and declined reactive oxygen species level. Moreover, taurine attenuated Nox2/Nox4 protein expression and enzyme activity and declined intracellular calcium intensity during NMDA-induced neuron injury. Additionally, taurine also showed neuroprotection against H2O2-induced injury, accompanying with Nox inhibition. So, we suppose that protection of taurine against reactive oxygen species during NMDA-induced neuron injury is associated with Nox inhibition, probably in a calcium-dependent manner. PMID:26945820

  2. Reactive oxygen species (ROS) mediates non-freezing cold injury of rat sciatic nerve

    PubMed Central

    Geng, Zhiwei; Tong, Xiaoyan; Jia, Hongjuan

    2015-01-01

    Non-freezing cold injury is an injury characterized by neuropathy, developing when patients expose to cold environments. Reactive oxygen species (ROS) has been shown as a contributing factor for the non-freezing cold nerve injury. However, the detailed connections between non-freezing cold nerve injury and ROS have not been described. In order to investigate the relationship between non-freezing cold nerve injury and reactive oxygen species, we study the effects of two cooling methods-the continuous cooling and the intermittent cooling with warming intervals-on rat sciatic nerves. Specifically, we assess the morphological changes and ROS production of the sciatic nerves underwent different cooling treatments. Our data shows both types of cooling methods cause nerve injury and ROS production. However, despite of identical cooling degree and duration, the sciatic nerves processed by intermittent cooling with warming intervals present more ROS production, severer reperfusion injury and pathological destructions than the sciatic nerves processed by continuous cooling. This result indicates reactive oxygen species, as a product of reperfusion, facilitates non-freezing cold nerve injury. PMID:26629065

  3. Inhibition of astrocyte glutamate uptake by reactive oxygen species: role of antioxidant enzymes.

    PubMed Central

    Sorg, O.; Horn, T. F.; Yu, N.; Gruol, D. L.; Bloom, F. E.

    1997-01-01

    BACKGROUND: The recent literature suggests that free radicals and reactive oxygen species may account for many pathologies, including those of the nervous system. MATERIALS AND METHODS: The influence of various reactive oxygen species on the rate of glutamate uptake by astrocytes was investigated on monolayers of primary cultures of mouse cortical astrocytes. RESULTS: Hydrogen peroxide and peroxynitrite inhibited glutamate uptake in a concentration-dependent manner. Addition of copper ions and ascorbate increased the potency and the efficacy of the hydrogen peroxide effect, supporting the potential neurotoxicity of the hydroxyl radical. The free radical scavenger dimethylthiourea effectively eliminated the inhibitory potential of a mixture containing hydrogen peroxide, copper sulphate, and ascorbate on the rate of glutamate transport into astrocytes. The inhibitory effect of hydrogen peroxide on glutamate uptake was not altered by the inhibition of glutathione peroxidase, whereas the inhibition of catalase by sodium azide clearly potentiated this effect. Superoxide and nitric oxide had no effect by themselves on the rate of glutamate uptake by astrocytes. The absence of an effect of nitric oxide is not due to an inability of astrocytes to respond to this substance, since the same cultures did respond to nitric oxide with a sustained increase in cytoplasmic free calcium. CONCLUSION: These results confirm that reactive oxygen species have a potential neurotoxicity by means of impairing glutamate transport into astrocytes, and they suggest that preventing the accumulation of hydrogen peroxide in the extracellular space of the brain, especially during conditions that favor hydroxyl radical formation, could be therapeutic. PMID:9260155

  4. Antimicrobial strategies centered around reactive oxygen species - bactericidal antibiotics, photodynamic therapy and beyond

    PubMed Central

    Vatansever, Fatma; de Melo, Wanessa C.M.A.; Avci, Pinar; Vecchio, Daniela; Sadasivam, Magesh; Gupta, Asheesh; Chandran, Rakkiyappan; Karimi, Mahdi; Parizotto, Nivaldo A; Yin, Rui; Tegos, George P; Hamblin, Michael R

    2013-01-01

    Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction of molecular oxygen. Four major ROS are recognized comprising: superoxide (O2•−), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen (1O2), but they display very different kinetics and levels of activity. The effects of O2•− and H2O2 are less acute than those of •OH and 1O2, since the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and non-enzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or 1O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics, and non-pharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma and medicinal honey. A brief final section covers, reactive nitrogen species, and related therapeutics, such as acidified nitrite and nitric oxide releasing nanoparticles. PMID:23802986

  5. Antioxidants protect against reactive oxygen species associated with adriamycin-treated cardiomyocytes.

    PubMed

    DeAtley, S M; Aksenov, M Y; Aksenova, M V; Harris, B; Hadley, R; Cole Harper, P; Carney, J M; Butterfield, D A

    1999-02-01

    Adriamycin (ADM) is a broad-spectrum antineoplastic antibiotic used to treat cancer patients. However, the usefulness of this drug is presently limited by the development of a dose-dependent cardiotoxicity. A current hypothesis for the ADM-induced cardiotoxicity is the production of reactive oxygen radicals by the drug. We utilized the fluorescent indicator 2',7'-dichlorodihydrofluorescein diacetate (DCFH/DA), in which fluorescence appears if reactive oxygen species (ROS) are present, to investigate the ability of ADM to generate reactive oxygen species and the potential protective effect of antioxidants in a cultured cardiomyocyte model. All three of the antioxidants (alpha-phenyl-tert-butyl nitrone (PBN), trolox, and 5-aminosalicylic acid (5-ASA)) tested in our ADM-treated myocytes provided protection against the oxidative stress induced by the drug. These findings suggest that antioxidants modulate ADM-induced oxidative stress, and they are discussed in terms of a possible therapeutic strategy in the prevention of cardiotoxicity resulting from ADM administration. PMID:10211937

  6. Photochemical transformation of carboxylated multiwalled carbon nanotubes: role of reactive oxygen species.

    PubMed

    Qu, Xiaolei; Alvarez, Pedro J J; Li, Qilin

    2013-12-17

    The study investigated the photochemical transformation of carboxylated multiwalled carbon nanotubes (COOH-MWCNTs), an important environmental process affecting their physicochemical characteristics and hence fate and transport. UVA irradiation removed carboxyl groups from COOH-MWCNT surface while creating other oxygen-containing functional groups with an overall decrease in total surface oxygen content. This was attributed to reactions with photogenerated reactive oxygen species (ROS). COOH-MWCNTs generated singlet oxygen ((1)O2) and hydroxyl radical ((•)OH) under UVA light, which exhibited different reactivity toward the COOH-MWCNT surface. Inhibition experiments that isolate the effects of (•)OH and (1)O2 as well as experiments using externally generated (•)OH and (1)O2 separately revealed that (•)OH played an important role in the photochemical transformation of COOH-MWCNTs under UVA irradiation. The Raman spectroscopy and surface functional group analysis results suggested that (•)OH initially reacted with the surface carboxylated carbonaceous fragments, resulting in their degradation or exfoliation. Further reaction between (•)OH and the graphitic sidewall led to formation of defects including functional groups and vacancies. These reactions reduced the surface potential and colloidal stability of COOH-MWCNTs, and are expected to reduce their mobility in aquatic systems. PMID:24255932

  7. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy

    PubMed Central

    Cheng, Yuhao; Cheng, Hao; Jiang, Chenxiao; Qiu, Xuefeng; Wang, Kaikai; Huan, Wei; Yuan, Ahu; Wu, Jinhui; Hu, Yiqiao

    2015-01-01

    Photodynamic therapy (PDT) kills cancer cells by converting tumour oxygen into reactive singlet oxygen (1O2) using a photosensitizer. However, pre-existing hypoxia in tumours and oxygen consumption during PDT can result in an inadequate oxygen supply, which in turn hampers photodynamic efficacy. Here to overcome this problem, we create oxygen self-enriching photodynamic therapy (Oxy-PDT) by loading a photosensitizer into perfluorocarbon nanodroplets. Because of the higher oxygen capacity and longer 1O2 lifetime of perfluorocarbon, the photodynamic effect of the loaded photosensitizer is significantly enhanced, as demonstrated by the accelerated generation of 1O2 and elevated cytotoxicity. Following direct injection into tumours, in vivo studies reveal tumour growth inhibition in the Oxy-PDT-treated mice. In addition, a single-dose intravenous injection of Oxy-PDT into tumour-bearing mice significantly inhibits tumour growth, whereas traditional PDT has no effect. Oxy-PDT may enable the enhancement of existing clinical PDT and future PDT design. PMID:26525216

  8. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.

    PubMed

    Cheng, Yuhao; Cheng, Hao; Jiang, Chenxiao; Qiu, Xuefeng; Wang, Kaikai; Huan, Wei; Yuan, Ahu; Wu, Jinhui; Hu, Yiqiao

    2015-01-01

    Photodynamic therapy (PDT) kills cancer cells by converting tumour oxygen into reactive singlet oxygen ((1)O2) using a photosensitizer. However, pre-existing hypoxia in tumours and oxygen consumption during PDT can result in an inadequate oxygen supply, which in turn hampers photodynamic efficacy. Here to overcome this problem, we create oxygen self-enriching photodynamic therapy (Oxy-PDT) by loading a photosensitizer into perfluorocarbon nanodroplets. Because of the higher oxygen capacity and longer (1)O2 lifetime of perfluorocarbon, the photodynamic effect of the loaded photosensitizer is significantly enhanced, as demonstrated by the accelerated generation of (1)O2 and elevated cytotoxicity. Following direct injection into tumours, in vivo studies reveal tumour growth inhibition in the Oxy-PDT-treated mice. In addition, a single-dose intravenous injection of Oxy-PDT into tumour-bearing mice significantly inhibits tumour growth, whereas traditional PDT has no effect. Oxy-PDT may enable the enhancement of existing clinical PDT and future PDT design. PMID:26525216

  9. Effect of oxygen deficiency on the photoresponse and reactivity of mixed phase titania thin films

    SciTech Connect

    DeSario, Paul A.; Chen Le; Graham, Michael E.; Gray, Kimberly A.

    2011-05-15

    Nonstoichiometric mixed phased titania nanocomposites (TiO{sub 2-x}) were deposited by reactive direct current magnetron sputtering. The authors explored the role of nonstoichiometry (as defined by oxygen deficiency in synthesis) in mixed phase titania thin films and its effects on the photoresponse and photocatalytic performance for CO{sub 2} reduction to methane under UV and visible light. Oxygen partial pressure was varied during film deposition, yielding different levels of oxygen deficiency in the films. Optimized nonstoichiometric films showed a strong redshift. The authors have identified an optimum set of synthesis conditions for TiO{sub 2-x} films that produce a relative maximum in photocatalytically produced methane under both UV and visible light.

  10. The Contribution of Reactive Oxygen Species to the Photobleaching of Organic Fluorophores†

    PubMed Central

    Zhou, Zhou; Blanchard, Scott C.

    2013-01-01

    Photo-excitation of fluorophores commonly used for biological imaging applications generates reactive oxygen species (ROS) which can cause bleaching of the fluorophore and damage to the biological system under investigation. In this study we show that singlet oxygen contributes relatively little to Cy5 and ATTO 647N photobleaching at low concentrations in aqueous solution. We also show that Cy5 generates significantly less ROS when covalently linked to the protective agents, cyclooctatetraene (COT), nitrobenzyl alcohol (NBA), or Trolox. Such fluorophores exhibit enhanced photostability both in bulk solutions and in single-molecule fluorescence measurements. While the fluorophores ATTO 647N and ATTO 655 showed greater photostability than Cy5 and the protective-agent linked Cy5 derivatives investigated here, both of ATTO 647N and ATTO 655 generated singlet oxygen and hydroxyl radicals at relatively rapid rates, suggesting that they may be substantially more phototoxic than Cy5 and its derivatives. PMID:24188468

  11. Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons.

    PubMed

    Dean, Jay B; Mulkey, Daniel K; Henderson, Richard A; Potter, Stephanie J; Putnam, Robert W

    2004-02-01

    Hyperoxia is a popular model of oxidative stress. However, hyperoxic gas mixtures are routinely used for chemical denervation of peripheral O2 receptors in in vivo studies of respiratory control. The underlying assumption whenever using hyperoxia is that there are no direct effects of molecular O2 and reactive O2 species (ROS) on brain stem function. In addition, control superfusates used routinely for in vitro studies of neurons in brain slices are, in fact, hyperoxic. Again, the assumption is that there are no direct effects of O2 and ROS on neuronal activity. Research contradicts this assumption by demonstrating that O2 has central effects on the brain stem respiratory centers and several effects on neurons in respiratory control areas; these need to be considered whenever hyperoxia is used. This mini-review summarizes the long-recognized, but seldom acknowledged, paradox of respiratory control known as hyperoxic hyperventilation. Several proposed mechanisms are discussed, including the recent hypothesis that hyperoxic hyperventilation is initiated by increased production of ROS during hyperoxia, which directly stimulates central CO2 chemoreceptors in the solitary complex. Hyperoxic hyperventilation may provide clues into the fundamental role of redox signaling and ROS in central control of breathing; moreover, oxidative stress may play a role in respiratory control dysfunction. The practical implications of brain stem O2 and ROS sensitivity are also considered relative to the present uses of hyperoxia in respiratory control research in humans, animals, and brain stem tissues. Recommendations for future research are also proposed. PMID:14715688

  12. Long-chain bases and their phosphorylated derivatives differentially regulate cryptogein-induced production of reactive oxygen species in tobacco (Nicotiana tabacum) BY-2 cells.

    PubMed

    Coursol, Sylvie; Fromentin, Jérôme; Noirot, Elodie; Brière, Christian; Robert, Franck; Morel, Johanne; Liang, Yun-Kuan; Lherminier, Jeannine; Simon-Plas, Françoise

    2015-02-01

    The proteinaceous elicitor cryptogein triggers defence reactions in Nicotiana tabacum (tobacco) through a signalling cascade, including the early production of reactive oxygen species (ROS) by the plasma membrane (PM)-located tobacco respiratory burst oxidase homologue D (NtRbohD). Sphingolipid long-chain bases (LCBs) are emerging as potent positive regulators of plant defence-related mechanisms. This led us to question whether both LCBs and their phosphorylated derivatives (LCB-Ps) are involved in the early signalling process triggered by cryptogein in tobacco BY-2 cells. Here, we showed that cryptogein-induced ROS production was inhibited by LCB kinase (LCBK) inhibitors. Additionally, Arabidopsis thaliana sphingosine kinase 1 and exogenously supplied LCB-Ps increased cryptogein-induced ROS production, whereas exogenously supplied LCBs had a strong opposite effect, which was not driven by a reduction in cellular viability. Immunogold-electron microscopy assay also revealed that LCB-Ps are present in the PM, which fits well with the presence of a high LCBK activity associated with this fraction. Our data demonstrate that LCBs and LCB-Ps differentially regulate cryptogein-induced ROS production in tobacco BY-2 cells, and support a model in which a cooperative synergism between LCBK/LCB-Ps and NtRbohD/ROS in the cryptogein signalling pathway is likely at the PM in tobacco BY-2 cells. PMID:25303640

  13. [Reactive oxygen forms and Ca ions as possible intermediaries under the induction of heat resistance of plant cells by jasmonic acid].

    PubMed

    Karpets, Iu V; Kolupaev, Iu E; Iastreb, T O; Oboznyĭ, A I; Shvidenko, N V; Lugovaia, A A; Vaĭner, A A

    2013-01-01

    The participation of reactive oxygen species (ROS) and calcium ions in realization of influence of exogenous jasmonic acid (JA) on the heat resistance of wheat coleoptiles has been investigated. Influence of 1 microM JA caused the transitional intensifying of generation of superoxide anion-radical (O2*-) and hydrogen peroxide in coleoptiles with the maximum within 15-30 minutes after the treatment beginning. Within the first hour after the beginning of coleoptiles treatment with JA the increase of superoxide dismutase (SOD) activity was noted. Later on (within 5-24 hours after the treatment beginning) there was the lowering of ROS generation by coleoptiles of experimental variant, and the SOD activity approached the control value. Intensifying of generation of superoxide radical induced by JA was suppressed by the antioxidant ionol and was partially levelled by imidazole (inhibitor of NADPH-oxidase), EGTA (chelator of extracellular calcium) and lanthanum chloride (calcium channels blocker). Pretreatment of coleoptiles with the ionol, imidazole, EGTA and LaC3l3 also partially removed the effect of increase of their resistance to the damaging heating caused by exogenous JA. It is supposed that the ROS generated with participation NADPH-oxidase, which activity depends on the receipt of calcium ions from extracellular space in the cytosol, are involved in realization of physiological effects of JA. PMID:23937049

  14. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation.

    PubMed

    Kvietys, Peter R; Granger, D Neil

    2012-02-01

    Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653

  15. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation

    PubMed Central

    Kvietys, Peter R.; Granger, D. Neil

    2012-01-01

    Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653

  16. Reactive Oxygen Species Homeostasis and Virulence of the Fungal Pathogen Cryptococcus neoformans Requires an Intact Proline Catabolism Pathway

    PubMed Central

    Lee, I. Russel; Lui, Edmund Y. L.; Chow, Eve W. L.; Arras, Samantha D. M.; Morrow, Carl A.; Fraser, James A.

    2013-01-01

    Degradation of the multifunctional amino acid proline is associated with mitochondrial oxidative respiration. The two-step oxidation of proline is catalyzed by proline oxidase and Δ1-pyrroline-5-carboxylate (P5C) dehydrogenase, which produce P5C and glutamate, respectively. In animal and plant cells, impairment of P5C dehydrogenase activity results in P5C-proline cycling when exogenous proline is supplied via the actions of proline oxidase and P5C reductase (the enzyme that converts P5C to proline). This proline is oxidized by the proline oxidase-FAD complex that delivers electrons to the electron transport chain and to O2, leading to mitochondrial reactive oxygen species (ROS) overproduction. Coupled activity of proline oxidase and P5C dehydrogenase is therefore important for maintaining ROS homeostasis. In the genome of the fungal pathogen Cryptococcus neoformans, there are two paralogs (PUT1 and PUT5) that encode proline oxidases and a single ortholog (PUT2) that encodes P5C dehydrogenase. Transcription of all three catabolic genes is inducible by the presence of proline. However, through the creation of deletion mutants, only Put5 and Put2 were found to be required for proline utilization. The put2Δ mutant also generates excessive mitochondrial superoxide when exposed to proline. Intracellular accumulation of ROS is a critical feature of cell death; consistent with this fact, the put2Δ mutant exhibits a slight, general growth defect. Furthermore, Put2 is required for optimal production of the major cryptococcal virulence factors. During murine infection, the put2Δ mutant was discovered to be avirulent; this is the first report highlighting the importance of P5C dehydrogenase in enabling pathogenesis of a microorganism. PMID:23564202

  17. The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia

    PubMed Central

    Pasdois, Philippe; Parker, Joanne E.; Griffiths, Elinor J.; Halestrap, Andrew P.

    2011-01-01

    Oxidized cytochrome c is a powerful superoxide scavenger within the mitochondrial IMS (intermembrane space), but the importance of this role in situ has not been well explored. In the present study, we investigated this with particular emphasis on whether loss of cytochrome c from mitochondria during heart ischaemia may mediate the increased production of ROS (reactive oxygen species) during subsequent reperfusion that induces mPTP (mitochondrial permeability transition pore) opening. Mitochondrial cytochrome c depletion was induced in vitro with digitonin or by 30 min ischaemia of the perfused rat heart. Control and cytochrome c-deficient mitochondria were incubated with mixed respiratory substrates and an ADP-regenerating system (State 3.5) to mimic physiological conditions. This contrasts with most published studies performed with a single substrate and without significant ATP turnover. Cytochrome c-deficient mitochondria produced more H2O2 than control mitochondria, and exogenous cytochrome c addition reversed this increase. In the presence of increasing [KCN] rates of H2O2 production by both pre-ischaemic and end-ischaemic mitochondria correlated with the oxidized cytochrome c content, but not with rates of respiration or NAD(P)H autofluorescence. Cytochrome c loss during ischaemia was not mediated by mPTP opening (cyclosporine-A insensitive), neither was it associated with changes in mitochondrial Bax, Bad, Bak or Bid. However, bound HK2 (hexokinase 2) and Bcl-xL were decreased in end-ischaemic mitochondria. We conclude that cytochrome c loss during ischaemia, caused by outer membrane permeabilization, is a major determinant of H2O2 production by mitochondria under pathophysiological conditions. We further suggest that in hypoxia, production of H2O2 to activate signalling pathways may be also mediated by decreased oxidized cytochrome c and less superoxide scavenging. PMID:21410437

  18. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination.

    PubMed

    Zhang, Yu; Chen, Bingxian; Xu, Zhenjiang; Shi, Zhaowan; Chen, Shanli; Huang, Xi; Chen, Jianxun; Wang, Xiaofeng

    2014-07-01

    Endosperm cap (CAP) weakening and embryo elongation growth are prerequisites for the completion of lettuce seed germination. Although it has been proposed that the cell wall loosening underlying these processes results from an enzymatic mechanism, it is still unclear which enzymes are involved. Here it is shown that reactive oxygen species (ROS), which are non-enzymatic factors, may be involved in the two processes. In Guasihong lettuce seeds imbibed in water, O2·(-) and H2O2 accumulated and peroxidase activity increased in the CAP, whereas its puncture force decreased. In addition, in the radicle, the increase in embryo growth potential was accompanied by accumulation of O2·(-) and an increase in peroxidase activity. Imbibing seeds in 0.3% sodium dichloroisocyanurate (SDIC) reduced endosperm viability and the levels of O2·(-), H2O2, and peroxidase activity in the CAP, whereas the decrease in its puncture force was inhibited. However, in the embryo, SDIC did not affect the accumulation of O2·(-), peroxidase activity, and the embryo growth potential. As a result, SDIC caused atypical germination, in which the endosperm ruptured at the boundary between the CAP and lateral endosperm. ROS scavengers and ROS generation inhibitors inhibited the CAP weakening and also decreased the embryo growth potential, thus decreasing the percentage of seed germination. Exogenous ROS and ROS generation inducers increased the percentage of CAP rupture to some extent, and the addition of H2O2 to 0.3% SDIC enabled some seeds to undergo typical germination. PMID:24744430

  19. A Permeable Cuticle Is Associated with the Release of Reactive Oxygen Species and Induction of Innate Immunity

    PubMed Central

    L'Haridon, Floriane; Besson-Bard, Angélique; Binda, Matteo; Serrano, Mario; Abou-Mansour, Eliane; Balet, Francine; Schoonbeek, Henk-Jan; Hess, Stephane; Mir, Ricardo; Léon, José; Lamotte, Olivier; Métraux, Jean-Pierre

    2011-01-01

    Wounded leaves of Arabidopsis thaliana show transient immunity to Botrytis cinerea, the causal agent of grey mould. Using a fluorescent probe, histological staining and a luminol assay, we now show that reactive oxygen species (ROS), including H2O2 and O2−, are produced within minutes after wounding. ROS are formed in the absence of the enzymes Atrboh D and F and can be prevented by diphenylene iodonium (DPI) or catalase. H2O2 was shown to protect plants upon exogenous application. ROS accumulation and resistance to B. cinerea were abolished when wounded leaves were incubated under dry conditions, an effect that was found to depend on abscisic acid (ABA). Accordingly, ABA biosynthesis mutants (aba2 and aba3) were still fully resistant under dry conditions even without wounding. Under dry conditions, wounded plants contained higher ABA levels and displayed enhanced expression of ABA-dependent and ABA-reporter genes. Mutants impaired in cutin synthesis such as bdg and lacs2.3 are already known to display a high level of resistance to B. cinerea and were found to produce ROS even when leaves were not wounded. An increased permeability of the cuticle and enhanced ROS production were detected in aba2 and aba3 mutants as described for bdg and lacs2.3. Moreover, leaf surfaces treated with cutinase produced ROS and became more protected to B. cinerea. Thus, increased permeability of the cuticle is strongly linked with ROS formation and resistance to B. cinerea. The amount of oxalic acid, an inhibitor of ROS secreted by B. cinerea could be reduced using plants over expressing a fungal oxalate decarboxylase of Trametes versicolor. Infection of such plants resulted in a faster ROS accumulation and resistance to B. cinerea than that observed in untransformed controls, demonstrating the importance of fungal suppression of ROS formation by oxalic acid. Thus, changes in the diffusive properties of the cuticle are linked with the induction ROS and attending innate defenses. PMID:21829351

  20. Pleiotrophin-induced endothelial cell migration is regulated by xanthine oxidase-mediated generation of reactive oxygen species.

    PubMed

    Tsirmoula, Sotiria; Lamprou, Margarita; Hatziapostolou, Maria; Kieffer, Nelly; Papadimitriou, Evangelia

    2015-03-01

    Pleiotrophin (PTN) is a heparin-binding growth factor that induces cell migration through binding to its receptor protein tyrosine phosphatase beta/zeta (RPTPβ/ζ) and integrin alpha v beta 3 (ανβ3). In the present work, we studied the effect of PTN on the generation of reactive oxygen species (ROS) in human endothelial cells and the involvement of ROS in PTN-induced cell migration. Exogenous PTN significantly increased ROS levels in a concentration and time-dependent manner in both human endothelial and prostate cancer cells, while knockdown of endogenous PTN expression in prostate cancer cells significantly down-regulated ROS production. Suppression of RPTPβ/ζ through genetic and pharmacological approaches, or inhibition of c-src kinase activity abolished PTN-induced ROS generation. A synthetic peptide that blocks PTN-ανβ3 interaction abolished PTN-induced ROS generation, suggesting that ανβ3 is also involved. The latter was confirmed in CHO cells that do not express β3 or over-express wild-type β3 or mutant β3Y773F/Y785F. PTN increased ROS generation in cells expressing wild-type β3 but not in cells not expressing or expressing mutant β3. Phosphoinositide 3-kinase (PI3K) or Erk1/2 inhibition suppressed PTN-induced ROS production, suggesting that ROS production lays down-stream of PI3K or Erk1/2 activation by PTN. Finally, ROS scavenging and xanthine oxidase inhibition completely abolished both PTN-induced ROS generation and cell migration, while NADPH oxidase inhibition had no effect. Collectively, these data suggest that xanthine oxidase-mediated ROS production is required for PTN-induced cell migration through the cell membrane functional complex of ανβ3 and RPTPβ/ζ and activation of c-src, PI3K and ERK1/2 kinases. PMID:25582077

  1. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    EPA Science Inventory

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  2. Evaluation of carotenoids and reactive oxygen species in human skin after UV irradiation: a critical comparison between in vivo and ex vivo investigations.

    PubMed

    Meinke, Martina C; Müller, Robert; Bechtel, Anne; Haag, Stefan F; Darvin, Maxim E; Lohan, Silke B; Ismaeel, Fakher; Lademann, Jürgen

    2015-03-01

    UV irradiation is one of the most harmful exogenous factors for the human skin. In addition to the development of erythema, free radicals, that is reactive oxygen species (ROS), are induced under its influence and promote the development of oxidative stress in the skin. Several techniques are available for determining the effect of UV irradiation. Resonance Raman spectroscopy (RRS) measures the reduction of the carotenoid concentration, while electron paramagnetic resonance (EPR) spectroscopy enables the analysis of the production of free radicals. Depending on the method, the skin parameters are analysed in vivo or ex vivo. This study provides a critical comparison between in vivo and ex vivo investigations on the ROS formation and carotenoid depletion caused by UV irradiation in human skin. The oxygen content of tissue was also determined. It was shown that the antioxidant status measured in the skin samples in vivo and ex vivo was different. The depletion in the carotenoid concentration in vivo exceeded the value determined ex vivo by a factor of about 1.5, and the radical formation after UV irradiation was significantly greater in vivo by a factor of 3.5 than that measured in excised human skin, which can be explained by the lack of oxygen ex vivo. PMID:25431109

  3. Exogenous Ochronosis.

    PubMed

    Bhattar, Prachi A; Zawar, Vijay P; Godse, Kiran V; Patil, Sharmila P; Nadkarni, Nitin J; Gautam, Manjyot M

    2015-01-01

    Exogenous ochronosis (EO) is a cutaneous disorder characterized by blue-black pigmentation resulting as a complication of long-term application of skin-lightening creams containing hydroquinone but may also occur due to topical contact with phenol or resorcinol in dark-skinned individuals. It can also occur following the use of systemic antimalarials such as quinine. EO is clinically and histologically similar to its endogenous counterpart viz., alkaptonuria, which, however, exhibits systemic effects and is an inherited disorder. Dermoscopy and in vivo skin reflectance confocal microscopy are noninvasive in vivo diagnostic tools. It is very difficult to treat EO, a cosmetically disfiguring and troubling disorder with disappointing treatment options. PMID:26677264

  4. Exogenous Ochronosis

    PubMed Central

    Bhattar, Prachi A; Zawar, Vijay P; Godse, Kiran V; Patil, Sharmila P; Nadkarni, Nitin J; Gautam, Manjyot M

    2015-01-01

    Exogenous ochronosis (EO) is a cutaneous disorder characterized by blue-black pigmentation resulting as a complication of long-term application of skin-lightening creams containing hydroquinone but may also occur due to topical contact with phenol or resorcinol in dark-skinned individuals. It can also occur following the use of systemic antimalarials such as quinine. EO is clinically and histologically similar to its endogenous counterpart viz., alkaptonuria, which, however, exhibits systemic effects and is an inherited disorder. Dermoscopy and in vivo skin reflectance confocal microscopy are noninvasive in vivo diagnostic tools. It is very difficult to treat EO, a cosmetically disfiguring and troubling disorder with disappointing treatment options. PMID:26677264

  5. Characterization and reactivity of a terminal nickel(III)-oxygen adduct.

    PubMed

    Pirovano, Paolo; Farquhar, Erik R; Swart, Marcel; Fitzpatrick, Anthony J; Morgan, Grace G; McDonald, Aidan R

    2015-02-23

    High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively. PMID:25612563

  6. Characterization and Reactivity of a Terminal Nickel(III)-Oxygen Adduct

    SciTech Connect

    Pirovano, Paolo; Farquhar, Erik R.; Swart, Marcel; Fitzpatrick, Anthony J.; Morgan, Grace G.; McDonald, Aidan R.

    2015-01-22

    Here, high-valent terminal metal–oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel–oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic NiII-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S=1/2), square planar NiIIIoxygen adduct. Moreover, this rare example of a high-valent terminal nickel–oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.

  7. The behaviour of negative oxygen ions in the afterglow of a reactive HiPIMS discharge

    NASA Astrophysics Data System (ADS)

    Bowes, M.; Bradley, J. W.

    2014-07-01

    Using a single Langmuir probe, the temporal evolution of the oxygen negative ion, n-, and electron, ne, densities in the afterglow of a reactive HiPIMS discharge operating in argon-oxygen gas mixtures have been determined. The magnetron was equipped with a titanium target and operated in ‘poisoned’ mode at a frequency of 100 Hz with a pulse width of 100 µs for a range of oxygen partial pressures, {p_{O_{2}}}/{p_{total}} = 0.0{{-}}0.5 . In the initial afterglow, the density of the principle negative ion in the discharge (O-) was of the order of 1016 m-3 for all conditions. The O- concentration was found to decay slowly with characteristic decay times between 585 µs and 1.2 ms over the oxygen partial pressure range. Electron densities were observed to fall more rapidly, resulting in long-lived highly electronegative afterglow plasmas where the ratio, α = n-/ne, was found to reach values up to 672 (±100) for the highest O2 partial pressure. By comparing results to a simple plasma-chemical model, we speculate that with increased {p_{O_{2}}}/{p_{total}} ratio, more O- ions are formed in the afterglow via dissociative electron attachment to highly excited metastable oxygen molecules, with the latter being formed during the active phase of the discharge. After approximately 2.5 ms into the off-time, the afterglow degenerates into an ion-ion plasma and negative ions are free to impinge upon the chamber walls and grounded substrates with flux densities of the order of 1018 m-2 s-1, which is around 10% of the positive ion flux measured during the on-time. This illustrates the potential importance of the long afterglow in reactive HiPIMS, which can act as a steady source of low energy O- ions to a growing thin film at the substrate during periods of reduced positive ion bombardment.

  8. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation

    NASA Astrophysics Data System (ADS)

    Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M.; Nadeau, Jay L.

    2011-06-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  9. Mitochondrial production of reactive oxygen species: role of complex I and quinone analogues.

    PubMed

    Fato, Romana; Bergamini, Christian; Leoni, Serena; Lenaz, Giorgio

    2008-01-01

    Mitochondrial reactive oxygen species (ROS) are mainly produced by the respiratory chain enzymes. The sites for ROS production in mitochondrial respiratory chain are normally ascribed to the activity of Complex I and III. The presence of specific inhibitors modulates reactive oxygen species production in Complex I: inhibitors such as rotenone induce a strong ROS increase, while inhibitors such as stigmatellin prevent it. We have investigated the effect of hydrophilic quinones on Complex I ROS production in presence of different inhibitors. Some short chain quinones are Complex I inhibitors (CoQ2, idebenone and its derivatives), while CoQ1, decylubiquinone~ (DB) and duroquinone (DQ) are good electron acceptors from Complex I. Our results show that the ability of short chain quinones to induce an oxidative stress depends on the site of interaction with Complex I and on their physical-chemical characteristics. We can conclude that hydrophilic quinones may enhance oxidative stress by interaction with the electron escape sites on Complex I while more hydrophobic quinones can be reduced only at the physiological quinone reducing site without reacting with molecular oxygen. PMID:19096098

  10. The interdependence of the reactive species of oxygen, nitrogen, and carbon.

    PubMed

    Bild, Walther; Ciobica, Alin; Padurariu, Manuela; Bild, Veronica

    2013-03-01

    This mini-review tries to summarize the main interdependences between the free radicals of oxygen, nitrogen, and carbon. Also, the main metabolic pathways for these radical species are described, as well as how these affect their interaction and functional implications. Emphasis is made on the metabolic disturbances induced by stressing aggressions that produce radical species. In this way, cellular oxidative imbalances created by the superiority of reactive oxygen species over the antioxidant systems produce both activation of nitroxide synthases and the oxidation of terminal nitrogen from L-arginine, as well as the metabolization of heme until carbon monoxide by nitric oxide-activated hemoxygenase. Also, multiple cellular protein and nucleoprotein alterations determined by these three kinds of radical species are completed by the involvement of hydrogen sulfide, which results from the degradation of L-cysteine by cistationine-γ-lyase. In this way, sufficient experimental data tend to demonstrate the involvement of hydrogen sulfide and other thiol derivatives in the interrelations between oxygen, nitrogen, and carbon, which results in a true radical cascade. Thus, oxidative stress, together with nitrosative and carbonilic stress, may constitute a central point where other factors of vulnerability meet, and their interactions could have an important impact in many modern diseases. Considering that the actions of reactive species can be most of the time corrected, future studies need to establish the therapeutical importance of various agents which modulate oxidative, nitrosative, or carbonilic stress. PMID:22456998

  11. Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation.

    SciTech Connect

    Chibli, H.; Carlini, L.; Park, S.; Dimitrijevic, N. M.; Nadeau, J. L.

    2011-01-01

    Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

  12. Source identification of reactive hydrocarbons and oxygenated VOCs in the summertime in Beijing.

    PubMed

    Liu, Ying; Shao, Min; Kuster, William C; Goldan, Paul D; Li, Xiaohua; Lu, Sihua; de Gouw, Joost A

    2009-01-01

    It is important to identify the sources of reactive volatile organic compounds (VOCs) in Beijing for effective ground-level ozone abatement. In this paper, semihourly measurements of hydrocarbons and oxygenated VOCs (OVOCs) were taken at an urban site in Beijing in August2005. C2-C5 alkenes, isoprene, and C1-C3 aldehydes were determined as "key reactive species" by their OH loss rates. Principal component analysis (PCA) was used to define the major sources of reactive species and to classify the dominant air mass types at the sampling site. Vehicle exhaust was the largest contributor to reactive alkenes. More aged air masses with enriched OVOCs traveled mainly from the east or southeast of Beijing. The OVOC sources were estimated by a least-squares fit approach and included primary emissions, secondary sources, and background. Approximately half of the C1-C3 aldehydes were attributed to secondary sources, while regional background accounted for 21-23% of the mixing ratios of aldehydes. Primary anthropogenic emissions were comparable to biogenic contributions (10-16%). PMID:19209587

  13. Elevated Cytoplasmic Free Zinc and Increased Reactive Oxygen Species Generation in the Context of Brain Injury.

    PubMed

    Stork, Christian J; Li, Yang V

    2016-01-01

    Intracellular zinc release and the generation of reactive oxygen species (ROS) have been reported to be common ingredients in numerous toxic signaling mechanisms in neurons. A key source for intracellular zinc release is its liberation from metallothionein-III (MT-III). MT-III binds and regulates intracellular zinc levels under physiological conditions, but the zinc-binding thiols readily react with certain ROS and reactive nitrogen species (RNS) to result in intracellular zinc liberation. Liberated zinc induces ROS and RNS generation by multiple mechanisms, including the induction of mitochondrial ROS production, and also promotes ROS formation outside the mitochondria by interaction with the enzymes NADPH oxidase and 12-lipoxygenase. Of particular relevance to neuronal injury in the context of ischemia and prolonged seizures, the positive feedback cycle between ROS/RNS generation and increasing zinc liberation will be examined. PMID:26463973

  14. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    SciTech Connect

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  15. Functional implications of mitochondrial reactive oxygen species generated by oncogenic viruses

    PubMed Central

    Choi, Young Bong; Harhaj, Edward William

    2014-01-01

    Between 15–20% of human cancers are associated with infection by oncogenic viruses. Oncogenic viruses, including HPV, HBV, HCV and HTLV-1, target mitochondria to influence cell proliferation and survival. Oncogenic viral gene products also trigger the production of reactive oxygen species which can elicit oxidative DNA damage and potentiate oncogenic host signaling pathways. Viral oncogenes may also subvert mitochondria quality control mechanisms such as mitophagy and metabolic adaptation pathways to promote virus replication. Here, we will review recent progress on viral regulation of mitophagy and metabolic adaptation and their roles in viral oncogenesis. PMID:25580106

  16. Different tobacco retrotransposons are specifically modulated by the elicitor cryptogein and reactive oxygen species.

    PubMed

    Anca, Iulia-Andra; Fromentin, Jérôme; Bui, Quynh Trang; Mhiri, Corinne; Grandbastien, Marie-Angèle; Simon-Plas, Françoise

    2014-10-15

    Interactions of plant retrotransposons with different steps of biotic and abiotic stress-associated signaling cascades are still poorly understood. We perform here a finely tuned comparison of four tobacco retrotransposons (Tnt1, Tnt2, Queenti, and Tto1) responses to the plant elicitor cryptogein. We demonstrate that basal transcript levels in cell suspensions and plant leaves as well as the activation during the steps of defense signaling events are specific to each retrotransposon. Using antisense NtrbohD lines, we show that NtrbohD-dependent reactive oxygen species (ROS) production might act as negative regulator of retrotransposon activation. PMID:25128785

  17. Induced reactive oxygen species improve enzyme production from Aspergillus niger cultivation.

    PubMed

    Sahoo, Susmita; Rao, K Krishnamurthy; Suraishkumar, G K

    2003-05-01

    Intracellular reactive oxygen species (iROS) induction by HOCl was used as a novel strategy to improve enzyme productivities in Aspergillus niger growing in a bioreactor. With induced iROS, the specific intracellular activities of alpha-amylase, protease, catalase, and glucose oxidase were increased by about 170%, 250%, 320%, and 260%, respectively. The optimum specific iROS level for achieving maximum cell concentration and enzyme production was about 15 mmol g cell-1. The type of iROS inducing the enzyme production was identified to be a derivative of the superoxide radical. PMID:12882014

  18. Redox state, reactive oxygen species and adaptive growth in colonial hydroids.

    PubMed

    Blackstone, N W

    2001-06-01

    Colonial metazoans often encrust surfaces over which the food supply varies in time or space. In such an environment, adaptive colony development entails adjusting the timing and spacing of feeding structures and gastrovascular connections to correspond to this variable food supply. To investigate the possibility of such adaptive growth, within-colony differential feeding experiments were carried out using the hydroid Podocoryna carnea. Indeed, such colonies strongly exhibited adaptive growth, developing dense arrays of polyps (feeding structures) and gastrovascular connections in areas that were fed relative to areas that were starved, and this effect became more consistent over time. To investigate mechanisms of signaling between the food supply and colony development, measurements were taken of metabolic parameters that have been implicated in signal transduction in other systems, particularly redox state and levels of reactive oxygen species. Utilizing fluorescence microscopy of P. carnea cells in vivo, simultaneous measurements of redox state [using NAD(P)H] and hydrogen peroxide (using 2',7'-dichlorofluorescin diacetate) were taken. Both measures focused on polyp epitheliomuscular cells, since these exhibit the greatest metabolic activity. Colonies 3-5h after feeding were relatively oxidized, with low levels of peroxide, while colonies 24h after feeding were relatively reduced, with high levels of peroxide. The functional role of polyps in feeding and generating gastrovascular flow probably produced this dichotomy. Polyps 3-5h after feeding contract maximally, and this metabolic demand probably shifts the redox state in the direction of oxidation and diminishes levels of reactive oxygen species. In contrast, 24h after feeding, polyps are quiescent, and this lack of metabolic demand probably shifts the redox state in the direction of reduction and increases levels of reactive oxygen species. Within-colony differential feeding experiments were carried out on colonies 24h after the usual, colony-wide feeding. At this time, a single polyp was fed, and this polyp was compared with an otherwise similar polyp from the same colony. A pattern similar to the whole-colony experiments was obtained: the just-fed polyp, as it begins contracting shortly after feeding, appears to be relatively oxidized, with low levels of peroxide compared with the polyp that was not fed. These data are consistent with the hypothesis that adaptive colony development in response to a variable food supply is mediated by redox state or reactive oxygen species or both, although alternative hypotheses are also discussed. PMID:11441027

  19. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species

    PubMed Central

    Nathan, Carl; Cunningham-Bussel, Amy

    2014-01-01

    Reactive oxygen species (ROS) react preferentially with certain atoms to modulate functions ranging from cell homeostasis to cell death. Molecular actions include both inhibition and activation of proteins, mutagenesis of DNA and activation of gene transcription. Cellular actions include promotion or suppression of inflammation, immunity and carcinogenesis. ROS help the host to compete against microorganisms and are also involved in intermicrobial competition. ROS chemistry and their pleiotropy make them difficult to localize, to quantify and to manipulate — challenges we must overcome to translate ROS biology into medical advances. PMID:23618831

  20. Generation of reactive oxygen species by interaction between antioxidants used as food additive and metal ions.

    PubMed

    Iwasaki, Yusuke; Oda, Momoko; Tsukuda, Yuri; Nagamori, Yuki; Nakazawa, Hiroyuki; Ito, Rie; Saito, Koichi

    2014-01-01

    Food additives, such as preservatives, sweeteners, coloring agents, and flavoring agents, are widely used in food manufacturing. However, their combined effects on the human body are not known. The purpose of this study was to examine whether combinations of antioxidants and metal ions generate reactive oxygen species (ROS) under in vitro conditions using electron spin resonance (ESR). Among the metal ions examined, only iron and copper generated ROS in the presence of antioxidants. Moreover, certain phenolic antioxidants having pro-oxidant activity induced DNA oxidation and degradation via the generation of high levels of ROS in the presence of copper ion, resulting in complete degradation of DNA in vitro. PMID:25212818

  1. Activity of artichoke leaf extract on reactive oxygen species in human leukocytes.

    PubMed

    Pérez-García, F; Adzet, T; Cañigueral, S

    2000-11-01

    Artichoke leaf extract was studied in human leukocytes for activity against oxidative stress using flow cytometry and dichlorofluorescin diacetate as a fluorescence probe. It produces a concentration-dependent inhibition of oxidative stress when cells are stimulated with agents that generate reactive oxygen species (ROS): hydrogen peroxide, phorbol-12-myristate-13-acetate (PMA), and N-formyl-methionyl-leucyl-phenylalanine (FMLP). Cynarin, caffeic acid, chlorogenic acid, and luteolin, constituents of artichoke leaf extract, also show a concentration-dependent inhibitory activity in the above models, contributing to the antioxidant activity of the extract in human neutrophils. PMID:11200096

  2. Electron Paramagnetic Resonance (EPR) Spectroscopy to Detect Reactive Oxygen Species in Staphylococcus aureus

    PubMed Central

    Thomas, Vinai Chittezham; Chaudhari, Sujata S.; Jones, Jocelyn; Zimmerman, Matthew C.

    2016-01-01

    Under aerobic conditions, Staphylococcus aureus (S. aureus) primarily metabolizes glucose to acetic acid. Although normally S. aureus is able to re-utilize acetate as a carbon source following glucose exhaustion, significantly high levels of acetate in the culture media may not only be growth inhibitory but also potentiates cell death in stationary phase cultures by a mechanism dependent on cytoplasmic acidification. One consequence of acetic acid toxicity is the production of reactive oxygen species (ROS). The present protocol describes the detection of ROS in S. aureus undergoing cell death by electron paramagnetic resonance (EPR) spectroscopy. Using 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) as a cell permeable spin probe, we demonstrate the detection of various oxygen radicals generated by bacteria. Although standardized for S. aureus, the methods described here should be easily adapted for other bacterial species. This protocol is adapted from Thomas et al. (2014) and Thomas et al. (2010).

  3. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review.

    PubMed

    Slimen, Imen Belhadj; Najar, Taha; Ghram, Abdeljelil; Dabbebi, Hajer; Ben Mrad, Moncef; Abdrabbah, Manef

    2014-11-01

    In recent years there has been enormous interest in researching oxidative stress. Reactive oxygen species (ROS) are derived from the metabolism of oxygen as by-products of cell respiration, and are continuously produced in all aerobic organisms. Oxidative stress occurs as a consequence of an imbalance between ROS production and the available antioxidant defence against them. Nowadays, a variety of diseases and degenerative processes such as cancer, Alzheimer's and autoimmune diseases are mediated by oxidative stress. Heat stress was suggested to be an environmental factor responsible for stimulating ROS production because of similarities in responses observed following heat stress compared with that occurring following exposure to oxidative stress. This manuscript describes the main mitochondrial sources of ROS and the antioxidant defences involved to prevent oxidative damage in all the mitochondrial compartments. It also deals with discussions concerning the cytotoxic effect of heat stress, mitochondrial heat-induced alterations, as well as heat shock protein (HSP) expression as a defence mechanism. PMID:25354680

  4. Reaction mechanism of melatonin oxidation by reactive oxygen species in vitro.

    PubMed

    Bonnefont-Rousselot, Dominique; Collin, Fabrice; Jore, Daniel; Gardès-Albert, Monique

    2011-04-01

    Melatonin (N-acetyl-5-hydroxytryptamine) is a pineal hormone widely known for its antioxidant properties, both in vivo and by direct capture of free radicals in vitro. Although some metabolites and oxidation products of melatonin have been identified, the molecular mechanism by which melatonin exerts its antioxidant properties has not been totally unravelled. This study investigated the reaction mechanism of oxidation of melatonin by radio-induced reactive oxygen species, generated by gamma radiolysis of water for aqueous solutions of melatonin (from 20 to 200 μm), in the presence or absence of molecular oxygen. The hydroxyl radical was found to be the unique species able to initiate the oxidation process, leading to three main products, e.g. N(1)-acetyl-N(2)-formyl-5-methoxykynurenin (AFMK), N(1)-acetyl-5-methoxykynurenin (AMK) and hydroxymelatonin (HO-MLT). The generation of AFMK and HO-MLT strongly depended on the presence of molecular oxygen in solution: AFMK was the major product in aerated solutions (84%), whereas HO-MLT was favoured in the absence of oxygen (86%). Concentrations of AMK remained quite low, and AMK was proposed to result from a chemical hydrolysis of AFMK in solution. A K-value of 1.1 × 10(-4) was calculated for this equilibrium. Both hydrogen peroxide and superoxide dismutase had no effect on the radio-induced oxidation of melatonin, in good accordance for the second case with the poor reactivity of the superoxide anion towards melatonin. Finally, a reaction mechanism was proposed for the oxidation of melatonin in vitro. PMID:21244479

  5. Photochemistry of Dissolved Black Carbon Released from Biochar: Reactive Oxygen Species Generation and Phototransformation.

    PubMed

    Fu, Heyun; Liu, Huiting; Mao, Jingdong; Chu, Wenying; Li, Qilin; Alvarez, Pedro J J; Qu, Xiaolei; Zhu, Dongqiang

    2016-02-01

    Dissolved black carbon (BC) released from biochar can be one of the more photoactive components in the dissolved organic matter (DOM) pool. Dissolved BC was mainly composed of aliphatics and aromatics substituted by aromatic C-O and carboxyl/ester/quinone moieties as determined by solid-state nuclear magnetic resonance. It underwent 56% loss of absorbance at 254 nm, almost complete loss of fluorescence, and 30% mineralization during a 169 h simulated sunlight exposure. Photoreactions preferentially targeted aromatic and methyl moieties, generating CH2/CH/C and carboxyl/ester/quinone functional groups. During irradiation, dissolved BC generated reactive oxygen species (ROS) including singlet oxygen and superoxide. The apparent quantum yield of singlet oxygen was 4.07 ± 0.19%, 2-3 fold higher than many well-studied DOM. Carbonyl-containing structures other than aromatic ketones were involved in the singlet oxygen sensitization. The generation of superoxide apparently depended on electron transfer reactions mediated by silica minerals in dissolved BC, in which phenolic structures served as electron donors. Self-generated ROS played an important role in the phototransformation. Photobleaching of dissolved BC decreased its ability to further generate ROS due to lower light absorption. These findings have significant implications on the environmental fate of dissolved BC and that of priority pollutants. PMID:26717492

  6. Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress.

    PubMed

    Airaki, Morad; Leterrier, Marina; Mateos, Rosa M; Valderrama, Raquel; Chaki, Mounira; Barroso, Juan B; Del Río, Luis A; Palma, José M; Corpas, Francisco J

    2012-02-01

    Low temperature is an environmental stress that affects crop production and quality and regulates the expression of many genes, and the level of a number of proteins and metabolites. Using leaves from pepper (Capsicum annum L.) plants exposed to low temperature (8 °C) for different time periods (1 to 3 d), several key components of the metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were analysed. After 24 h of exposure at 8 °C, pepper plants exhibited visible symptoms characterized by flaccidity of stems and leaves. This was accompanied by significant changes in the metabolism of RNS and ROS with an increase of both protein tyrosine nitration (NO(2) -Tyr) and lipid peroxidation, indicating that low temperature induces nitrosative and oxidative stress. During the second and third days at low temperature, pepper plants underwent cold acclimation by adjusting their antioxidant metabolism and reverting the observed nitrosative and oxidative stress. In this process, the levels of the soluble non-enzymatic antioxidants ascorbate and glutathione, and the activity of the main NADPH-generating dehydrogenases were significantly induced. This suggests that ascorbate, glutathione and the NADPH-generating dehydrogenases have a role in the process of cold acclimation through their effect on the redox state of the cell. PMID:21414013

  7. Optimizing Pulse Waveforms in Plasma Jets for Reactive Oxygen Species (ROS) Production

    NASA Astrophysics Data System (ADS)

    Norberg, Seth; Babaeva, Natalia Yu.; Kushner, Mark J.

    2012-10-01

    Reactive oxygen species (ROS) are desired in numerous applications from the destruction of harmful proteins and bacteria for sterilization in the medical field to taking advantage of the metastable characteristics of O2(^1?) to transfer energy to other species. Advances in atmospheric pressure plasma jets in recent years show the possibility of using this application as a source of reactive oxygen species. In this paper, we report on results from a computational investigation of atmospheric pressure plasma jets in a dielectric barrier discharge (DBD) configuration. The computer model used in this study, nonPDPSIM, solves transport equations for charged and neutral species, Poisson's equation for the electric potential, the electron energy conservation equation for the electron temperature, and Navier-Stokes equations for the neutral gas flow. A Monte Carlo simulation is used to track sheath accelerated secondary electrons emitted from surfaces and the energy of ions incident onto surfaces. Rate coefficients and transport coefficients for the bulk plasma are obtained from local solutions of Boltzmann's equation for the electron energy distribution. Radiation transport is addressed using a Green's function approach. Various waveforms for the voltage source were examined in analogy to spiker-sustainer systems used at lower gas pressures.

  8. Reactive Oxygen Species in the Paraventricular Nucleus of the Hypothalamus Alter Sympathetic Activity During Metabolic Syndrome.

    PubMed

    Cruz, Josiane C; Flôr, Atalia F L; França-Silva, Maria S; Balarini, Camille M; Braga, Valdir A

    2015-01-01

    The paraventricular nucleus of the hypothalamus (PVN) contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II), which activates AT1 receptors in the circumventricular organs (OCVs), mainly in the subfornical organ (SFO). Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS), leading to increases in sympathetic nerve activity (SNA). Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS): dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin, and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS. PMID:26779026

  9. Feline mesenchymal stem cells and supernatant inhibit reactive oxygen species production in cultured feline neutrophils.

    PubMed

    Mumaw, Jennifer L; Schmiedt, Chad W; Breidling, Sarah; Sigmund, Alex; Norton, Natalie A; Thoreson, Merrilee; Peroni, John F; Hurley, David J

    2015-12-01

    Feline bone marrow-derived MSCs (BMMSCs), adipose-derived MSCs (AMSCs) and fibroblasts (FBs) were isolated and cultured. Tri-lineage differentiation assays and flow cytometry were used to characterize MSCs. Neutrophils (NPs) were isolated from whole blood and the NPs production of reactive oxygen reactive oxygen species (ROS) was measured. NPs were cultured alone, with MSC culture supernatant (SN), BMMSCs or AMSCs. NPs incubated with BMMSCs had significantly lower ROS production than NPs incubated with AMSCs (p=0.0006) or FB (p<0.0001); NPs ROS production significantly decreased with increasing BMMSC cell number (p=0.0023) and significantly increased with NPs were incubated with FB compared to BMMSC (p=0.0003). Both BMMSC SN and AMSC SN had statistically significantly lower ROS production than FB SN when incubated with NPs (both p<0.0001). ROS production was significantly reduced with increased fractions of SN from BMMSCs (p=0.0467) and AMSCs (p=0.0017). PMID:26679797

  10. Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots.

    PubMed

    Alvarez, Maricel; Huygens, Dries; Fernandez, Carlos; Gacitúa, Yessy; Olivares, Erick; Saavedra, Isabel; Alberdi, Miren; Valenzuela, Eduardo

    2009-08-01

    Infection with ectomycorrhizal fungi can increase the ability of plants to resist drought stress through morphophysiological and biochemical mechanisms. However, the metabolism of antioxidative enzyme activities in the ectomycorrhizal symbiosis remains poorly understood. This study investigated biomass production, reactive oxygen metabolism (hydrogen peroxide and malondialdehyde concentration) and antioxidant enzyme activity (superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase) in pure cultures of the ectomycorrhizal fungi Descolea antartica Sing. and Pisolithus tinctorius (Pers.) Coker & Couch, and non-mycorrhizal and mycorrhizal roots of Nothofagus dombeyi (Mirb.) roots under well-watered conditions and drought conditions (DC). The studied ectomycorrhizal fungi regulated their antioxidative enzyme metabolism differentially in response to drought, resulting in cellular damage in D. antartica but not in P. tinctorius. Ectomycorrhizal inoculation and water treatment had a significant effect on all parameters studied, including relative water content of the plant. As such, N. dombeyi plants in symbiosis experienced a lower oxidative stress effect than non-mycorrhizal plants under DC. Additionally, ectomycorrhizal N. dombeyi roots showed a greater antioxidant enzyme activity relative to non-mycorrhizal roots, an effect which was further expressed under DC. The association between the non-specific P. tinctorius and N. dombeyi had a more effective reactive oxygen species (ROS) metabolism than the specific D. antartica-N. dombeyi symbiosis. We conclude that the combination of effective ROS prevention and ROS detoxification by ectomycorrhizal plants resulted in reduced cellular damage and increased plant growth relative to non-mycorrhizal plants under drought. PMID:19483186

  11. Reactive oxygen species as universal constraints in life-history evolution

    PubMed Central

    Dowling, Damian K.; Simmons, Leigh W.

    2009-01-01

    Evolutionary theory is firmly grounded on the existence of trade-offs between life-history traits, and recent interest has centred on the physiological mechanisms underlying such trade-offs. Several branches of evolutionary biology, particularly those focusing on ageing, immunological and sexual selection theory, have implicated reactive oxygen species (ROS) as profound evolutionary players. ROS are a highly reactive group of oxygen-containing molecules, generated as common by-products of vital oxidative enzyme complexes. Both animals and plants appear to intentionally harness ROS for use as molecular messengers to fulfil a wide range of essential biological processes. However, at high levels, ROS are known to exert very damaging effects through oxidative stress. For these reasons, ROS have been suggested to be important mediators of the cost of reproduction, and of trade-offs between metabolic rate and lifespan, and between immunity, sexual ornamentation and sperm quality. In this review, we integrate the above suggestions into one life-history framework, and review the evidence in support of the contention that ROS production will constitute a primary and universal constraint in life-history evolution. PMID:19324792

  12. Reactive Oxygen Species in the Paraventricular Nucleus of the Hypothalamus Alter Sympathetic Activity During Metabolic Syndrome

    PubMed Central

    Cruz, Josiane C.; Flôr, Atalia F. L.; França-Silva, Maria S.; Balarini, Camille M.; Braga, Valdir A.

    2015-01-01

    The paraventricular nucleus of the hypothalamus (PVN) contains heterogeneous populations of neurons involved in autonomic and neuroendocrine regulation. The PVN plays an important role in the sympathoexcitatory response to increasing circulating levels of angiotensin II (Ang-II), which activates AT1 receptors in the circumventricular organs (OCVs), mainly in the subfornical organ (SFO). Circulating Ang-II induces a de novo synthesis of Ang-II in SFO neurons projecting to pre-autonomic PVN neurons. Activation of AT1 receptors induces intracellular increases in reactive oxygen species (ROS), leading to increases in sympathetic nerve activity (SNA). Chronic sympathetic nerve activation promotes a series of metabolic disorders that characterizes the metabolic syndrome (MetS): dyslipidemia, hyperinsulinemia, glucose intolerance, hyperleptinemia and elevated plasma hormone levels, such as noradrenaline, glucocorticoids, leptin, insulin, and Ang-II. This review will discuss the contribution of our laboratory and others regarding the sympathoexcitation caused by peripheral Ang-II-induced reactive oxygen species along the subfornical organ and paraventricular nucleus of the hypothalamus. We hypothesize that this mechanism could be involved in metabolic disorders underlying MetS. PMID:26779026

  13. Electron Spin Resonance Spectroscopy for Studying the Generation and Scavenging of Reactive Oxygen Species by Nanomaterials

    NASA Astrophysics Data System (ADS)

    Yin, Jun-Jie; Zhao, Baozhong; Xia, Qingsu; Fu, Peter P.

    2013-09-01

    One fundamental mechanism widely described for nanotoxicity involves oxidative damage due to generation of free radicals and other reactive oxygen species. Indeed, the ability of nanoscale materials to facilitate the transfer of electrons, and thereby promote oxidative damage or in some instances provide antioxidant protection, may be a fundamental property of these materials. Any assessment of a nanoscale material's safety must therefore consider the potential for toxicity arising from oxidative damage. Therefore, rapid and predictive methods are needed to assess oxidative damage elicited by nanoscale materials. The use of electron spin resonance (ESR) to study free radical related bioactivity of nanomaterials has several advantages for free radical determination and identification. Specifically it can directly assess antioxidant quenching or prooxidant generation of relevant free radicals and reactive oxygen species. In this chapter, we have reported some nonclassical behaviors of the electron spin relaxation properties of unpaired electrons in different fullerenes and the investigation of anti/prooxidant activity by various types of nanomaterials using ESR. In addition, we have reviewed the mechanisms of free radical formation photosensitized by different nanomaterials. This chapter also included the use of spin labels, spin traps and ESR oximetry to systematically examine the enzymatic mimetic activities of nanomaterials.

  14. Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation

    SciTech Connect

    Meeran, Syed M.; Katiyar, Suchitra; Katiyar, Santosh K.

    2008-05-15

    Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.

  15. Controlling Reactive Oxygen and Nitrogen Species (RONS) Production by Atmospheric Pressure Plasma Jets Using Gas Shields

    NASA Astrophysics Data System (ADS)

    Norberg, Seth; Schmidt-Bleker, Ansgar; Winter, Jorn; Reuter, Stephan; Johnsen, Eric; Kushner, Mark J.

    2013-09-01

    Atmospheric pressure plasma jets are a source of reactive oxygen and nitrogen species (RONS) for many applications, including plasma medicine. A current challenge is to deliver RONS to surfaces in a controllable manner. One such control strategy is using gas shields around the plasma jet to minimize the generation of less desired RONS by preventing ambient gases from interacting with the plasma jet effluent. In this paper, we report on results of a computational investigation of the production of RONS from plasma jets into ambient air consisting of helium seeded with either N2 or O2 surrounded by a flowing gas shield and the flux of those species to a treated surface. The model used in this study, nonPDPSIM, solves transport equations for charged and neutral species, Poisson's equation, the electron energy equation for the electron temperature, and Navier-Stokes equations for the neutral gas flow. The shield gas has significant effects on unwanted RONS in the effluent of the plasma jet. N2 shield gas will minimize hydroxide and other reactive oxygen species in the effluent and to the surface. Similarly, O2 shield gas can reduce the production of nitric oxide and prevent the formation of other nitrogen compounds on the surface. Comparisons will be made to experimental measurements of optical emission from plasma jets using gas shields. Work supported by DOE Fusion Energy Science, NSF, BMBF.

  16. Gastric toxicity and mucosal ulceration induced by oxygen-derived reactive species: protection by melatonin.

    PubMed

    Bandyopadhyay, D; Biswas, K; Bhattacharyya, M; Reiter, R J; Banerjee, R K

    2001-09-01

    Uncontrolled hydrochloric acid secretion and ulceration of the stomach mucosa due to various factors are serious global problems. Although the mechanism of acid secretion from the parietal cell is now well understood, the processes involved in gastric ulceration are still not clear. Among various causes of gastric ulceration, lesions caused by stress, alcohol consumption, Helicobacter pylori infection and due to use of nonsteroidal antiinflammatory drugs have been shown to be mediated largely through the generation of reactive oxygen species, especially the hydroxyl radical. A number of excellent drugs have proven useful in controlling hyperacidity and ulceration but their long-term use is associated with disturbing side-effects. Hence, the search is still on to find a compound possessing antisecretory, antiulcer and antioxidant properties which will serve as a therapeutic agent to reduce gastric hyperacidity and ulcers. This article describes the role of reactive oxygen species in gastric ulceration, drugs controlling them with their merits and demerits and, the role of melatonin, a pineal secretory product, in protecting against gastric lesions. In experimental studies, melatonin has been shown to be effective in reducing mucosal breakdown and ulcer formation in a wide variety of situations. Additionally, the low toxicity of melatonin supports further investigation of this molecule as a gastroprotective agent. Finally, we include a commentary on how melatonin research with respect to gastric pathophysiology can move forward with a view of eventually using this indole as a therapeutic agent to control gastric ulceration in humans. PMID:11899094

  17. Involvement of reactive oxygen species in gastric ulceration: protection by melatonin.

    PubMed

    Bandyopadhyay, Debashis; Biswas, Kaushik; Bhattacharyya, Mrinalini; Reiter, Russel J; Banerjee, Ranajit K

    2002-06-01

    Uncontrolled hydrochloric acid secretion and ulceration in the stomach due to various factors are serious global problems today. Although the mechanism of acid secretion from the parietal cell is now fairly known, the mechanism of gastric ulceration is still not clear today. Among various causes of gastric ulceration, lesions caused by stress, alcohol consumption, Helicobacter pylori infection and use of nonsteroidal antiinflammatory drugs have been shown to be mediated largely through the generation of reactive oxygen species especially hydroxyl radical (*OH). A number of excellent drugs have been proved useful in controlling hyperacidity and ulceration but their long term uses are not devoid of disturbing side-effects. Hence, the search is still on to find out a compound possessing antisecretory, antiulcer and antioxidant properties which will serve as a powerful therapeutic agent to cure gastric hyperacidity and ulcer. This article describes the role of reactive oxygen species in gastric ulceration, drugs controlling them with their merits and demerits and, the role of melatonin, a pineal hormone in protecting the gastric lesions with a final commentary on how melatonin research with respect to gastric pathophysiology can be taken forward with a view to projecting this indole as a promising therapeutic agent to control gastric ulceration in humans. PMID:12587717

  18. The Role of Reactive Oxygen Species in Mesenchymal Stem Cell Adipogenic and Osteogenic Differentiation: A Review

    PubMed Central

    Atashi, Fatemeh; Modarressi, Ali

    2015-01-01

    Mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering and regenerative medicine. The multipotent stem cell component of MSC isolates is able to differentiate into derivatives of the mesodermal lineage including adipocytes, osteocytes, chondrocytes, and myocytes. Many common pathways have been described in the regulation of adipogenesis and osteogenesis. However, stimulation of osteogenesis appears to suppress adipogenesis and vice-versa. Increasing evidence implicates a tight regulation of these processes by reactive oxygen species (ROS). ROS are short-lived oxygen-containing molecules that display high chemical reactivity toward DNA, RNA, proteins, and lipids. Mitochondrial complexes I and III, and the NADPH oxidase isoform NOX4 are major sources of ROS production during MSC differentiation. ROS are thought to interact with several pathways that affect the transcription machinery required for MSC differentiation including the Wnt, Hedgehog, and FOXO signaling cascades. On the other hand, elevated levels of ROS, defined as oxidative stress, lead to arrest of the MSC cell cycle and apoptosis. Tightly regulated levels of ROS are therefore critical for MSC terminal differentiation, although the precise sources, localization, levels and the exact species of ROS implicated remain to be determined. This review provides a detailed overview of the influence of ROS on adipogenic and osteogenic differentiation in MSCs. PMID:25603196

  19. Role of mitochondrial reactive oxygen species in age-related inflammatory activation of endothelium

    PubMed Central

    Zinovkin, Roman A.; Romaschenko, Valeria P.; Galkin, Ivan I.; Zakharova, Vlada V.; Pletjushkina, Olga Yu.; Chernyak, Boris V.; Popova, Ekaterina N.

    2014-01-01

    Vascular aging is accompanied by increases in circulatory proinflammatory cytokines leading to inflammatory endothelial response implicated in early atherogenesis. To study the possible role of mitochondria-derived reactive oxygen species (ROS) in this phenomenon, we applied the effective mitochondria-targeted antioxidant SkQ1, the conjugate of plastoquinone with dodecyltriphenylphosphonium. Eight months treatment of (CBAxC57BL/6) F1 mice with SkQ1 did not prevent age-related elevation of the major proinflammatory cytokines TNF and IL-6 in serum, but completely abrogated the increase in adhesion molecule ICAM1 expression in aortas of 24-month-old animals. In endothelial cell culture, SkQ1 also attenuated TNF-induced increase in ICAM1, VCAM, and E-selectin expression and secretion of IL-6 and IL-8, and prevented neutrophil adhesion to the endothelial monolayer. Using specific inhibitors to transcription factor NF-κB and stress-kinases p38 and JNK, we demonstrated that TNF-induced ICAM1 expression depends mainly on NF-κB activity and, to a lesser extent, on p38. SkQ1 had no effect on p38 phosphorylation (activation) but significantly reduced NF-κB activation by inhibiting phosphorylation and proteolytic cleavage of the inhibitory subunit IκBα. The data indicate an important role of mitochondrial reactive oxygen species in regulation of the NF-κB pathway and corresponding age-related inflammatory activation of endothelium. PMID:25239871

  20. Extensive Dark Biological Production of Reactive Oxygen Species in Brackish and Freshwater Ponds.

    PubMed

    Zhang, Tong; Hansel, Colleen M; Voelker, Bettina M; Lamborg, Carl H

    2016-03-15

    Within natural waters, photodependent processes are generally considered the predominant source of reactive oxygen species (ROS), a suite of biogeochemically important molecules. However, recent discoveries of dark particle-associated ROS production in aquatic environments and extracellular ROS production by various microorganisms point to biological activity as a significant source of ROS in the absence of light. Thus, the objective of this study was to explore the occurrence of dark biological production of the ROS superoxide (O2(-)) and hydrogen peroxide (H2O2) in brackish and freshwater ponds. Here we show that the ROS superoxide and hydrogen peroxide were present in dark waters at comparable concentrations as in sunlit waters. This suggests that, at least for the short-lived superoxide species, light-independent processes were an important control on ROS levels in these natural waters. Indeed, we demonstrated that dark biological production of ROS extensively occurred in brackish and freshwater environments, with greater dark ROS production rates generally observed in the aphotic relative to the photic zone. Filtering and formaldehyde inhibition confirmed the biological nature of a majority of this dark ROS production, which likely involved phytoplankton, particle-associated heterotrophic bacteria, and NADH-oxidizing enzymes. We conclude that biological ROS production is widespread, including regions devoid of light, thereby expanding the relevance of these reactive molecules to all regions of our oxygenated global habit. PMID:26854358

  1. Candida albicans biofilms do not trigger reactive oxygen species and evade neutrophil killing.

    PubMed

    Xie, Zhihong; Thompson, Angela; Sobue, Takanori; Kashleva, Helena; Xu, Hongbin; Vasilakos, John; Dongari-Bagtzoglou, Anna

    2012-12-15

    Neutrophils are found within Candida albicans biofilms in vivo and could play a crucial role in clearing the pathogen from biofilms forming on catheters and mucosal surfaces. Our goal was to compare the antimicrobial activity of neutrophils against developing and mature C. albicans biofilms and identify biofilm-specific properties mediating resistance to immune cells. Antibiofilm activity was measured with the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)2H-tetrazolium-5-carboxanilide assay and a molecular Candida viability assay. Reactive oxygen species generation was assessed by measuring fluorescence of 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate, acetyl ester in preloaded neutrophils. We found that mature biofilms were resistant to leukocytic killing and did not trigger reactive oxygen species, even though neutrophils retained their viability and functional activation potential. Beta-glucans found in the extracellular matrix negatively affected antibiofilm activities. We conclude that these polymers act as a decoy mechanism to prevent neutrophil activation and that this represents an important innate immune evasion mechanism of C. albicans biofilms. PMID:23033146

  2. Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice.

    PubMed

    Huang, Luping; Belousova, Tatiana; Chen, Minyi; DiMattia, Gabriel; Liu, Dajun; Sheikh-Hamad, David

    2012-10-01

    Reactive oxygen species, endothelial dysfunction, inflammation, and mitogen-activated protein kinases have important roles in the pathogenesis of ischemia/reperfusion kidney injury. Stanniocalcin-1 (STC1) suppresses superoxide generation in many systems through the induction of mitochondrial uncoupling proteins and blocks the cytokine-induced rise in endothelial permeability. Here we tested whether transgenic overexpression of STC1 protects from bilateral ischemia/reperfusion kidney injury. This injury in wild-type mice caused a halving of the creatinine clearance; severe tubular vacuolization and cast formation; increased infiltration of macrophages and T cells; higher vascular permeability; greater production of superoxide and hydrogen peroxide; and higher ratio of activated extracellular regulated kinase/activated Jun-N-terminal kinase and p38, all compared to sham-treated controls. Mice transgenic for human STC1 expression, however, had resistance to equivalent ischemia/reperfusion injury indicated as no significant change from controls in any of these parameters. Tubular epithelial cells in transgenic mice expressed higher mitochondrial uncoupling protein 2 and lower superoxide generation. Pre-treatment of transgenic mice with paraquat, a generator of reactive oxygen species, before injury restored the susceptibility to ischemia/reperfusion kidney injury, suggesting that STC1 protects by an anti-oxidant mechanism. Thus, STC1 may be a therapeutic target for ischemia/reperfusion kidney injury. PMID:22695329

  3. Apogossypolone targets mitochondria and light enhances its anticancer activity by stimulating generation of singlet oxygen and reactive oxygen species

    PubMed Central

    Hu, Zhe-Yu; Wang, Jing; Cheng, Gang; Zhu, Xiao-Feng; Huang, Peng; Yang, Dajun; Zeng, Yi-Xin

    2011-01-01

    Apogossypolone (ApoG2), a novel derivative of gossypol, has been shown to be a potent inhibitor of antiapoptotic Bcl-2 family proteins and to have antitumor activity in multiple types of cancer cells. Recent reports suggest that gossypol stimulates the generation of cellular reactive oxygen species (ROS) in leukemia and colorectal carcinoma cells; however, gossypol-mediated cell death in leukemia cells was reported to be ROS-independent. This study was conducted to clarify the effect of ApoG2-induced ROS on mitochondria and cell viability, and to further evaluate its utility as a treatment for nasopharyngeal carcinoma (NPC). We tested the photocytotoxicity of ApoG2 to the poorly differentiated NPC cell line CNE-2 using the ROS-generating TL/10 illumination system. The rapid ApoG2-induced cell death was partially reversed by the antioxidant N-acetyl-L-cysteine (NAC), but the ApoG2-induced reduction of mitochondrial membrane potential (MMP) was not reversed by NAC. In the presence of TL/10 illumination, ApoG2 generated massive amounts of singlet oxygen and was more effective in inhibiting cell growth than in the absence of illumination. We also determined the influence of light on the anti-proliferative activity of ApoG2 using a CNE-2–xenograft mouse model. ApoG2 under TL/10 illumination healed tumor wounds and suppressed tumor growth more effectively than ApoG2 treatment alone. These results indicate that the ApoG2-induced CNE-2 cell death is partly ROS-dependent. ApoG2 may be used with photodynamic therapy (PDT) to treat NPC. PMID:21192843

  4. Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5.

    PubMed

    Smeets, Pieter J; Hadt, Ryan G; Woertink, Julia S; Vanelderen, Pieter; Schoonheydt, Robert A; Sels, Bert F; Solomon, Edward I

    2010-10-27

    The reactive oxidizing species in the selective oxidation of methane to methanol in oxygen activated Cu-ZSM-5 was recently defined to be a bent mono(μ-oxo)dicopper(II) species, [Cu(2)O](2+). In this communication we report the formation of an O(2)-precursor of this reactive site with an associated absorption band at 29,000 cm(-1). Laser excitation into this absorption feature yields a resonance Raman (rR) spectrum characterized by (18)O(2) isotope sensitive and insensitive vibrations, νO-O and νCu-Cu, at 736 (Δ(18)O(2) = 41 cm(-1)) and 269 cm(-1), respectively. These define the precursor to be a μ-(η(2):η(2)) peroxo dicopper(II) species, [Cu(2)(O(2))](2+). rR experiments in combination with UV-vis absorption data show that this [Cu(2)(O(2))](2+) species transforms directly into the [Cu(2)O](2+) reactive site. Spectator Cu(+) sites in the zeolite ion-exchange sites provide the two electrons required to break the peroxo bond in the precursor. O(2)-TPD experiments with (18)O(2) show the incorporation of the second (18)O atom into the zeolite lattice in the transformation of [Cu(2)(O(2))](2+) into [Cu(2)O](2+). This study defines the mechanism of oxo-active site formation in Cu-ZSM-5. PMID:20923156

  5. Flavonoids in Microheterogeneous Media, Relationship between Their Relative Location and Their Reactivity towards Singlet Oxygen

    PubMed Central

    Günther, Germán; Berríos, Eduardo; Pizarro, Nancy; Valdés, Karina; Montero, Guillermo; Arriagada, Francisco; Morales, Javier

    2015-01-01

    In this work, the relationship between the molecular structure of three flavonoids (kaempferol, quercetin and morin), their relative location in microheterogeneous media (liposomes and erythrocyte membranes) and their reactivity against singlet oxygen was studied. The changes observed in membrane fluidity induced by the presence of these flavonoids and the influence of their lipophilicity/hydrophilicity on the antioxidant activity in lipid membranes were evaluated by means of fluorescent probes such as Laurdan and diphenylhexatriene (DPH). The small differences observed for the value of generalized polarization of Laurdan (GP) curves in function of the concentration of flavonoids, indicate that these three compounds promote similar alterations in liposomes and erythrocyte membranes. In addition, these compounds do not produce changes in fluorescence anisotropy of DPH, discarding their location in deeper regions of the lipid bilayer. The determined chemical reactivity sequence is similar in all the studied media (kaempferol < quercetin < morin). Morin is approximately 10 times more reactive than quercetin and 20 to 30 times greater than kaempferol, depending on the medium. PMID:26098745

  6. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets

    PubMed Central

    Ramel, Fanny; Sulmon, Cécile; Bogard, Matthieu; Couée, Ivan; Gouesbet, Gwenola

    2009-01-01

    Background Besides being essential for plant structure and metabolism, soluble carbohydrates play important roles in stress responses. Sucrose has been shown to confer to Arabidopsis seedlings a high level of tolerance to the herbicide atrazine, which causes reactive oxygen species (ROS) production and oxidative stress. The effects of atrazine and of exogenous sucrose on ROS patterns and ROS-scavenging systems were studied. Simultaneous analysis of ROS contents, expression of ROS-related genes and activities of ROS-scavenging enzymes gave an integrative view of physiological state and detoxifying potential under conditions of sensitivity or tolerance. Results Toxicity of atrazine could be related to inefficient activation of singlet oxygen (1O2) quenching pathways leading to 1O2 accumulation. Atrazine treatment also increased hydrogen peroxide (H2O2) content, while reducing gene expressions and enzymatic activities related to two major H2O2-detoxification pathways. Conversely, sucrose-protected plantlets in the presence of atrazine exhibited efficient 1O2 quenching, low 1O2 accumulation and active H2O2-detoxifying systems. Conclusion In conclusion, sucrose protection was in part due to activation of specific ROS scavenging systems with consequent reduction of oxidative damages. Importance of ROS combination and potential interferences of sucrose, xenobiotic and ROS signalling pathways are discussed. PMID:19284649

  7. Detection of irradiation induced reactive oxygen species production in live cells

    NASA Astrophysics Data System (ADS)

    Gao, Bo; Zhu, Debin

    2006-09-01

    Reactive oxygen species (ROS) is thought to play an important role in cell signaling of apoptosis, necrosis, and proliferation. Light irradiation increases mitochondrial reactive oxygen species (ROS) production and mediates its intracellular signaling by adjusting the redox potential in tumor cells. Mitochondria are the main source of ROS in the living cell. Superoxide anions (0 II - are likely the first ROS generated in the mitochondria following radiation damage, and then convert to hydrogen peroxide (H II0 II), hydroxyl radical (•OH), and singlet oxygen (10 II), etc. Conventional methods for research ROS production in mitochondria mostly use isolated mitochondria rather than mitochondria in living cells. In this study, a highly selective probe to detect mitochondrial 0 II - in live cells, MitoSOX TM Red, was applied to quantify the mitochondrial ROS production in human lung adenocarcinoma cells (ASTC-a-1) with laser scanning microscope (LSM) after ultraviolet C (UVC) and He-Ne laser irradiation. Dichiorodihydrofluoresein diacetate (DCFHDA), a common used fluorescent probe for ROS detection without specificity, were used as a comparison to image the ROS production. The fluorescent image of MItoSOX TM Red counterstained with MitoTracker Deep Red 633, a mitochondria selective probe, shows that the mitochondrial ROS production increases distinctly after UVC and He-Ne laser irradiation. DCFH-DA diffuses labeling throughout the cell though its fluorescence increases markedly too. In conclusion, the fluorescent method with MitoSOX TM Red reagent is proved to be a promising technique to research the role of ROS in radiation induced apoptosis.

  8. Oxygen Interstitial Defects in Sc2O3 Thin Films Deposited with Reactive Ion Beam Sputtering

    NASA Astrophysics Data System (ADS)

    Schiltz, Drew; Langston, Peter; Krous, Erik; Patel, Dinesh; Markosyan, Ashot; Route, Rodger; Menoni, Carmen; Colorado State University Team; Stanford University Team

    2014-03-01

    Numerous defects may develop when depositing amorphous thin films with reactive ion beam sputtering, including interstitials and vacancies. In many cases, these defects limit the functionality of the film, degrading both the mechanical and optical properties. This study aims to investigate the nature of oxygen interstitial point defects in scandium oxide thin films and characterize the effect on composition, optical absorption and mechanical stress. The films are deposited with argon ion beam sputtering of a scandium metal target. The density of defects is correlated with the oxygen partial pressure, revealing an optimal condition where defects are minimized. Furthermore, the defect density also demonstrates a direct correlation with the main ion beam accelerating voltage. The native oxygen defects behave as shallow levels, with binding energies in the 1-2 eV range. Work supported by the DoD Office of Naval Research and the High Energy Laser Program of the DoD Joint Technology Office. National Science Foundation Engineering Research Center for Extreme Ultraviolet Science and Technology, Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO 80523, USA.

  9. Inhibition of respiration extends C. elegans’ lifespan via reactive oxygen species that increase HIF-1 activity

    PubMed Central

    Lee, Seung-Jae; Hwang, Ara B.; Kenyon, Cynthia

    2011-01-01

    Summary A mild inhibition of mitochondrial respiration extends the lifespan of many organisms, including yeast, worms, flies and mice [1–10], but the underlying mechanism is unknown. One environmental condition that reduces rates of respiration is hypoxia (low oxygen). Thus it is possible that mechanisms that sense oxygen play a role in the longevity response to reduced respiration. The hypoxia-inducible factor HIF-1 is a highly-conserved transcription factor that activates genes that promote survival during hypoxia [11–12]. In this study, we show that inhibiting respiration in C. elegans can promote longevity by activating HIF-1. Through genome-wide screening, we found that RNAi knockdown of many genes encoding respiratory-chain components induced hif-1-dependent transcription. Moreover, HIF-1 was required for the extended lifespans of clk-1 and isp-1 mutants, which have reduced rates of respiration [1, 4, 13]. Inhibiting respiration appears to activate HIF-1 by elevating the level of reactive oxygen species (ROS). We found that ROS is increased in respiration mutants, and that mild increases in ROS can stimulate HIF-1 to activate gene expression and promote longevity. In this way, HIF-1 appears to link respiratory stress in the mitochondria to a nuclear transcriptional response that promotes longevity. PMID:21093262

  10. [Microcirculatory hemodynamics in oral tissues with reference to neurogenic response and reactive oxygen species interaction].

    PubMed

    Okabe, E; Todoki, K

    1999-04-01

    The primary purpose of the microcirculation is to transport nutrients and oxygen and to remove metabolic waste products from tissues. It is also well known that the fundamental mechanism for vascular control is the local regulation of the basal vascular tone, which is reinforced by blood pressure and counteracted by tissue metabolites. Thus, the well-being of the tissue depends on the circulatory transport process, which is governed by many functional parameters of the microcirculation such as blood flow, blood volume, intravascular and extravascular pressures, and capillary permeability. Inflammatory reactions in oral tissues can be initiated by many different insults to the tissues, and the reaction itself can be expressed in various ways. In addition, the tissues seem to have many "backup" systems, so that any one response can be produced in several ways, which is important for a reaction that has a survival value. A recent concept is that repeated stimulation of sensitive teeth may induce pulpal changes; this could occur through induction of neurogenic inflammation and alteration of pulpal blood flow. One possibility is that production of reactive oxygen species, as well as release of the sensory neuropeptides, at sites of inflammation contributes to alterations in local blood flow. In addition to the part played by the neurogenic mediators, nitric oxide participation and its interaction with oxygen-derived free radicals in oral tissue hemodynamics are also discussed. PMID:10412160

  11. Reactive oxygen species are partially involved in the bacteriocidal action of hypochlorous acid.

    PubMed

    Dukan, S; Belkin, S; Touati, D

    1999-07-15

    Hypochlorous acid (HOCl) is probably the most widely used disinfectant worldwide and has an important role in inflammatory reaction and in human resistance to infection. However, the nature and mechanisms of its bactericidal activity are still poorly understood. Bacteria challenged aerobically with HOCl concentrations ranging from 9.5 to 76 microM exhibit higher ability to form colonies anaerobically than aerobically. Conversely, aerobic plating greatly increased lethality after an anaerobic HOCl challenge, although anaerobic survival did not depend on whether HOCl exposure was aerobic or anaerobic. Even a short transient exposure to air after anaerobic HOCl challenge reduced anaerobic survival, indicative of immediate deleterious effects of oxygen. Exposure to HOCl can cause lethal DNA damage as judged by the fact that recA sensitivity to HOCl was oxygen dependent. Antioxidant defenses such as reduced glutathione and glucose-6-phosphate dehydrogenase were depleted or inactivated at 10 microM HOCl, while other activities, such as superoxide dismutase, dropped only above 57 microM HOCl. Cumulative deficiencies in superoxide dismutase and glucose-6-phosphate dehydrogenase rendered strains hypersensitive to HOCl. This indicates that part of HOCl toxicity on Escherichia coli is mediated by reactive oxygen species during recovery. PMID:10395749

  12. Gas-Phase Fragmentation of Aluminum Oxide Nitrate Anions Driven by Reactive Oxygen Radical Ligands.

    PubMed

    Lightcap, Johnny; Hester, Thomas H; Kamena, Kurt; Albury, Rachael M; Pruitt, Carrie Jo M; Goebbert, Daniel J

    2016-03-10

    Gas-phase metal nitrate anions are known to yield a variety of interesting metal oxides upon fragmentation. The aluminum nitrate anion complexes, Al(NO3)4(-) and AlO(NO3)3(-) were generated by electrospray ionization and studied with collision-induced dissociation and energy-resolved mass spectrometry. Four different decomposition processes were observed, the loss of NO3(-), NO3(), NO2(), and O2. The oxygen radical ligand in AlO(NO3)3(-) is highly reactive and drives the formation of AlO(NO3)2(-) upon loss of NO3(), AlO2(NO3)2(-) upon NO2() loss, or Al(NO2)(NO3)2(-) upon abstraction of an oxygen atom from a neighboring nitrate ligand followed by loss of O2. The AlO2(NO3)2(-) fragment also undergoes elimination of O2. The mechanism for O2 elimination requires oxygen atom abstraction from a nitrate ligand in both AlO(NO3)3(-) and AlO2(NO3)2(-), revealing the hidden complexity in the fragmentation of these clusters. PMID:26919711

  13. Copper elevated embryonic hemoglobin through reactive oxygen species during zebrafish erythrogenesis.

    PubMed

    Zhou, Xin-Ying; Zhang, Ting; Ren, Long; Wu, Jun-Jie; Wang, Weimin; Liu, Jing-Xia

    2016-06-01

    Copper, as an essential trace mineral, can cause diseases such as childhood leukemia at excess levels, but has been applied in anemia therapy for a long time. However, few reports have studied its role during hematopoiesis at the molecular level in an animal model. In this study, by microarray, qRT-PCR, whole-mount in situ hybridization and O-dianisidine staining detections, we revealed the increased expression of hemoglobin in copper-exposed embryos. Secondly, we found that copper-exposed embryos exhibited high levels of reactive oxygen species (ROS), and genes in oxygen binding and oxygen transporting were up-regulated in the embryos. Finally, we found that ROS scavengers NAC, GSH, and DMTU not only inhibited in vivo ROS levels induced by copper, but also significantly decreased high expression of hemoglobin back to almost normal levels in copper exposed embryos, and also helped with copper elimination from the embryos. Our data first demonstrated that ROS mediated copper induced hemoglobin expression in vertebrates, partly revealing the underlying molecular mechanism of copper therapy for anemia. Moreover, we revealed that copper homeostasis was broken by its induced ROS and ROS helped with copper overloading in the body, which could be applied as a novel therapy target for copper-caused diseases. PMID:26991749

  14. Reactive Oxygen Species and Induction of Lignin Peroxidase in Phanerochaete chrysosporium

    PubMed Central

    Belinky, Paula A.; Flikshtein, Nufar; Lechenko, Sergey; Gepstein, Shimon; Dosoretz, Carlos G.

    2003-01-01

    We studied oxidative stress in lignin peroxidase (LIP)-producing cultures (cultures flushed with pure O2) of Phanerochaete chrysosporium by comparing levels of reactive oxygen species (ROS), cumulative oxidative damage, and antioxidant enzymes with those found in non-LIP-producing cultures (cultures grown with free exchange of atmospheric air [control cultures]). A significant increase in the intracellular peroxide concentration and the degree of oxidative damage to macromolecules, e.g., DNA, lipids, and proteins, was observed when the fungus was exposed to pure O2 gas. The specific activities of manganese superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase and the consumption of glutathione were all higher in cultures exposed to pure O2 (oxygenated cultures) than in cultures grown with atmospheric air. Significantly higher gene expression of the LIP-H2 isozyme occurred in the oxygenated cultures. A hydroxyl radical scavenger, dimethyl sulfoxide (50 mM), added to the culture every 12 h, completely abolished LIP expression at the mRNA and protein levels. This effect was confirmed by in situ generation of hydroxyl radicals via the Fenton reaction, which significantly enhanced LIP expression. The level of intracellular cyclic AMP (cAMP) was correlated with the starvation conditions regardless of the oxygenation regimen applied, and similar cAMP levels were obtained at high O2 concentrations and in cultures grown with atmospheric air. These results suggest that even though cAMP is a prerequisite for LIP expression, high levels of ROS, preferentially hydroxyl radicals, are required to trigger LIP synthesis. Thus, the induction of LIP expression by O2 is at least partially mediated by the intracellular ROS. PMID:14602606

  15. Cytoplasmic Alkalization Precedes Reactive Oxygen Species Production during Methyl Jasmonate- and Abscisic Acid-Induced Stomatal Closure1

    PubMed Central

    Suhita, Dontamala; Raghavendra, Agepati S.; Kwak, June M.; Vavasseur, Alain

    2004-01-01

    Signaling events during abscisic acid (ABA) or methyl jasmonate (MJ)-induced stomatal closure were examined in Arabidopsis wild type, ABA-insensitive (ost1-2), and MJ-insensitive mutants (jar1-1) in order to examine a crosstalk between ABA and MJ signal transduction. Some of the experiments were performed on epidermal strips of Pisum sativum. Stomata of jar1-1 mutant plants are insensitive to MJ but are able to close in response to ABA. However, their sensitivity to ABA is less than that of wild-type plants. Reciprocally, the stomata of ost1-2 are insensitive to ABA but are able to close in response to MJ to a lesser extent compared to wild-type plants. Both MJ and ABA promote H2O2 production in wild-type guard cells, while exogenous application of diphenylene iodonium (DPI) chloride, an inhibitor of NAD(P)H oxidases, results in the suppression of ABA- and MJ-induced stomatal closure. ABA elevates H2O2 production in wild-type and jar1-1 guard cells but not in ost1-2, whereas MJ induces H2O2 production in both wild-type and ost1-2 guard cells, but not in jar1-1. MJ-induced stomatal closing is suppressed in the NAD(P)H oxidase double mutant atrbohD/F and in the outward potassium channel mutant gork1. Furthermore, MJ induces alkalization in guard cell cytosol, and MJ-induced stomatal closing is inhibited by butyrate. Analyses of the kinetics of cytosolic pH changes and reactive oxygen species (ROS) production show that the alkalization of cytoplasm precedes ROS production during the stomatal response to both ABA and MJ. Our results further indicate that JAR1, as OST1, functions upstream of ROS produced by NAD(P)H oxidases and that the cytoplasmic alkalization precedes ROS production during MJ or ABA signal transduction in guard cells. PMID:15064385

  16. UVB dependence of quantum dot reactive oxygen species generation in common skin cell models

    PubMed Central

    MORTENSEN, LUKE J.; FAULKNOR, RENEA; RAVICHANDRAN, SUPRIYA; ZHENG, HONG; DELOUISE, LISA A.

    2015-01-01

    Studies have shown that UVB can slightly increase the penetration of nanoparticles through skin and significantly alter skin cell biology, thus it is important to understand if and how UVB may impact subsequent nanoparticle skin cell interactions. The research presented herein evaluates the effect of UVB on quantum dot (QD) uptake and reactive oxygen species (ROS) generation in primary keratinocytes, primary melanocytes, and related cell lines. QD exposure induced cell type dependent ROS responses increased by pre-exposing cells to UVB and correlated with the level of QD uptake. Our results suggest that keratinocytes may be at greater risk for QD induced ROS generation than melanocytes, and raise awareness about the differential cellular effects that topically applied nanomaterials may have on UVB exposed skin. PMID:26485933

  17. Superhydrophilic TiO{sub 2} surfaces generated by reactive oxygen treatment

    SciTech Connect

    Ishida, Nobuyuki; Fujita, Daisuke

    2012-09-15

    The authors show that superhydrophilic TiO{sub 2} can be obtained without irradiation of the surface with ultraviolet (UV) light and concomitant excitation of electron-hole pairs. The authors demonstrate that the treatment of TiO{sub 2} surfaces with reactive oxygen species generated by air plasma removes the surface organic contaminants, leading to almost 0 Degree-Sign contact-angle wetting of the surface. The superhydrophilicity can be explained by the positive spreading coefficient calculated using the effective surface tensions. Our results point toward UV-light irradiation as an indirect cause of the superhydrophilicity of TiO{sub 2} and support the hypothesis that this property arises from a self-cleaning effect based on the photo-oxidation and decomposition of organic contaminants at the surface.

  18. Early Increase of Reactive Oxygen Species in Pea Seedling Roots Under Hypergravity

    NASA Astrophysics Data System (ADS)

    Jadko, Sergiy; Syvash, Alexander; Klymchuk, Dmytro

    Early increase of intensity of peroxidation and formation of reactive oxygen species (ROS) in plant cells take place under various impacts. The ROS can act as second messengers in mechanism of cell responses (Mittler et al 2006; Jadko et al 2007). Early stages of ROS content (chemiluminescence, ChL) in pea root cells under 3, 5, 10 and 15g during centrifugation have been investigated. After 30 min of centrifugation, especially under 10 and 15g, the intensity of ChL increased and was higher on 40-50% comparing to controls. Than the ChL slowly decreased and reached the controls in 1 hour. The changes of the ChL depend on both the dose and the duration of centrifugation. The role of ROS in mechanism of cell response to hypergravity is discussed.

  19. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Goodarzi, M.; Moosavi-Movahedi, A. A.; Habibi-Rezaei, M.; Shourian, M.; Ghourchian, H.; Ahmad, F.; Farhadi, M.; Saboury, A. A.; Sheibani, N.

    2014-09-01

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes.

  20. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor.

    PubMed

    Rawson, Frankie J; Hicks, Jacqueline; Dodd, Nicholas; Abate, Wondwossen; Garrett, David J; Yip, Nga; Fejer, Gyorgy; Downard, Alison J; Baronian, Kim H R; Jackson, Simon K; Mendes, Paula M

    2015-10-28

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular "pulse" of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  1. Fast, Ultrasensitive Detection of Reactive Oxygen Species Using a Carbon Nanotube Based-Electrocatalytic Intracellular Sensor

    PubMed Central

    2015-01-01

    Herein, we report a highly sensitive electrocatalytic sensor-cell construct that can electrochemically communicate with the internal environment of immune cells (e.g., macrophages) via the selective monitoring of a particular reactive oxygen species (ROS), hydrogen peroxide. The sensor, which is based on vertically aligned single-walled carbon nanotubes functionalized with an osmium electrocatalyst, enabled the unprecedented detection of a local intracellular “pulse” of ROS on a short second time scale in response to bacterial endotoxin (lipopolysaccharide-LPS) stimulation. Our studies have shown that this initial pulse of ROS is dependent on NADPH oxidase (NOX) and toll like receptor 4 (TLR4). The results suggest that bacteria can induce a rapid intracellular pulse of ROS in macrophages that initiates the classical innate immune response of these cells to infection. PMID:26438964

  2. Wolbachia Do Not Induce Reactive Oxygen Species-Dependent Immune Pathway Activation in Aedes albopictus

    PubMed Central

    Molloy, Jennifer C.; Sinkins, Steven P.

    2015-01-01

    Aedes albopictus is a major vector of dengue (DENV) and chikungunya (CHIKV) viruses, causing millions of infections annually. It naturally carries, at high frequency, the intracellular inherited bacterial endosymbiont Wolbachia strains wAlbA and wAlbB; transinfection with the higher-density Wolbachia strain wMel from Drosophila melanogaster led to transmission blocking of both arboviruses. The hypothesis that reactive oxygen species (ROS)-induced immune activation plays a role in arbovirus inhibition in this species was examined. In contrast to previous observations in Ae. aegypti, elevation of ROS levels was not observed in either cell lines or mosquito lines carrying the wild-type Wolbachia or higher-density Drosophila Wolbachia strains. There was also no upregulation of genes controlling innate immune pathways or with antioxidant/ROS-producing functions. These data suggest that ROS-mediated immune activation is not an important component of the viral transmission-blocking phenotype in this species. PMID:26287231

  3. Wolbachia Do Not Induce Reactive Oxygen Species-Dependent Immune Pathway Activation in Aedes albopictus.

    PubMed

    Molloy, Jennifer C; Sinkins, Steven P

    2015-08-01

    Aedes albopictus is a major vector of dengue (DENV) and chikungunya (CHIKV) viruses, causing millions of infections annually. It naturally carries, at high frequency, the intracellular inherited bacterial endosymbiont Wolbachia strains wAlbA and wAlbB; transinfection with the higher-density Wolbachia strain wMel from Drosophila melanogaster led to transmission blocking of both arboviruses. The hypothesis that reactive oxygen species (ROS)-induced immune activation plays a role in arbovirus inhibition in this species was examined. In contrast to previous observations in Ae. aegypti, elevation of ROS levels was not observed in either cell lines or mosquito lines carrying the wild-type Wolbachia or higher-density Drosophila Wolbachia strains. There was also no upregulation of genes controlling innate immune pathways or with antioxidant/ROS-producing functions. These data suggest that ROS-mediated immune activation is not an important component of the viral transmission-blocking phenotype in this species. PMID:26287231

  4. Reactive oxygen species production in single cells following laser irradiation (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Duquette, Michelle L.; Kim, Justine; Shi, Linda Z.; Berns, Michael W.

    2015-08-01

    Region specific DNA breaks can be created in single cells using laser light that damages DNA but does not directly generate reactive oxygen species (ROS). We have examined the cellular response to directly generated DNA breaks in single cells. Using a combination of ROS specific dyes and oxidase inhibitors we have found that the oxidase and chromatin remodeling protein Lysine demethylase I (LSD1) generates detectable ROS as a byproduct of its chromatin remodeling activity during the initial DNA damage response. ROS is produced at detectable amounts primarily within the first 3 minutes post irradiation. LSD1 activity has been previously associated with transcriptional regulation therefore these findings have implications for regulation of gene expression following DNA damage particularly in cells with altered redox states.

  5. Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 k

    NASA Technical Reports Server (NTRS)

    Mcgee, H. A., Jr.

    1973-01-01

    The synthesis of unusual compounds by techniques employing cryogenic cooling to retard their very extreme reactivity was investigated. Examples of such species that were studied are diimide (N2H2), cyclobutadiene (C4H4), cyclopropanone (C3H4O), oxirene (C2H2O), and many others. Special purpose cryogenically cooled inlet arrangements were designed such that the analyses incurred no warm-up of the cold, and frequently explosively unstable, compounds. Controlled energy electron impact techniques were used to measure critical potentials and to develop the molecular energetics and thermodynamics of these molecules and to gain some insight into their kinetic characteristics as well. Three and four carbon strained ring molecules were studied. Several reactions of oxygen and hydrogen atoms with simple molecules of H, N, C, and O in hard quench configurations were studied. And the quench stabilization of BH3 was explored as a model system in cryochemistry.

  6. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species

    PubMed Central

    Jones, Rheinallt M; Luo, Liping; Ardita, Courtney S; Richardson, Arena N; Kwon, Young Man; Mercante, Jeffrey W; Alam, Ashfaqul; Gates, Cymone L; Wu, Huixia; Swanson, Phillip A; Lambeth, J David; Denning, Patricia W; Neish, Andrew S

    2013-01-01

    The resident prokaryotic microbiota of the metazoan gut elicits profound effects on the growth and development of the intestine. However, the molecular mechanisms of symbiotic prokaryoticeukaryotic cross-talk in the gut are largely unknown. It is increasingly recognized that physiologically generated reactive oxygen species (ROS) function as signalling secondary messengers that influence cellular proliferation and differentiation in a variety of biological systems. Here, we report that commensal bacteria, particularly members of the genus Lactobacillus, can stimulate NADPH oxidase 1 (Nox1)-dependent ROS generation and consequent cellular proliferation in intestinal stem cells upon initial ingestion into the murine or Drosophila intestine. Our data identify and highlight a highly conserved mechanism that symbiotic microorganisms utilize in eukaryotic growth and development. Additionally, the work suggests that specific redox-mediated functions may be assigned to specific bacterial taxa and may contribute to the identification of microbes with probiotic potential. PMID:24141879

  7. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression

    PubMed Central

    Herrera-Vásquez, Ariel; Salinas, Paula; Holuigue, Loreto

    2015-01-01

    It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress. PMID:25852720

  8. Salicylic acid and reactive oxygen species interplay in the transcriptional control of defense genes expression.

    PubMed

    Herrera-Vásquez, Ariel; Salinas, Paula; Holuigue, Loreto

    2015-01-01

    It is well established that salicylic acid (SA) plays a critical role in the transcriptional reprograming that occurs during the plant defense response against biotic and abiotic stress. In the course of the defense response, the transcription of different sets of defense genes is controlled in a spatio-temporal manner via SA-mediated mechanisms. Interestingly, different lines of evidence indicate that SA interplays with reactive oxygen species (ROS) and glutathione (GSH) in stressed plants. In this review we focus on the evidence that links SA, ROS, and GSH signals to the transcriptional control of defense genes. We discuss how redox modifications of regulators and co-regulators involved in SA-mediated transcriptional responses control the temporal patterns of gene expression in response to stress. Finally, we examine how these redox sensors are coordinated with the dynamics of cellular redox changes occurring in the defense response to biotic and abiotic stress. PMID:25852720

  9. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis

    PubMed Central

    Liu, Rui-Ming; Desai, Leena P.

    2015-01-01

    Transforming growth factor beta (TGF-β) is the most potent pro-fibrogenic cytokine and its expression is increased in almost all of fibrotic diseases. Although signaling through Smad pathway is believed to play a central role in TGF-β's fibrogenesis, emerging evidence indicates that reactive oxygen species (ROS) modulate TGF-β's signaling through different pathways including Smad pathway. TGF-β1 increases ROS production and suppresses antioxidant enzymes, leading to a redox imbalance. ROS, in turn, induce/activate TGF-β1 and mediate many of TGF-β's fibrogenic effects, forming a vicious cycle (see graphic flow chart on the right). Here, we review the current knowledge on the feed-forward mechanisms between TGF-β1 and ROS in the development of fibrosis. Therapeutics targeting TGF-β-induced and ROS-dependent cellular signaling represents a novel approach in the treatment of fibrotic disorders. PMID:26496488

  10. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD.

    PubMed

    Liu, Yukun; He, Chengzhong

    2016-05-01

    Reactive oxygen species (ROS) are constantly produced in plants, as the metabolic by-products or as the signaling components in stress responses. High levels of ROS are harmful to plants. In contrast, ROS play important roles in plant physiology, including abiotic and biotic tolerance, development, and cellular signaling. Therefore, ROS production needs to be tightly regulated to balance their function. Respiratory burst oxidase homologue (RBOH) proteins, also known as plant nicotinamide adenine dinucleotide phosphate oxidases, are well studied enzymatic ROS-generating systems in plants. The regulatory mechanisms of RBOH-dependent ROS production in stress responses have been intensively studied. This has greatly advanced our knowledge of the mechanisms that regulate plant ROS production. This review attempts to integrate the regulatory mechanisms of RBOHD-dependent ROS production by discussing the recent advance. AtRBOHD-dependent ROS production could provide a valuable reference for studying ROS production in plant stress responses. PMID:26883222

  11. Regulatory mechanisms of nitric oxide and reactive oxygen species generation and their role in plant immunity.

    PubMed

    Yoshioka, Hirofumi; Mase, Keisuke; Yoshioka, Miki; Kobayashi, Michie; Asai, Shuta

    2011-08-01

    Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in diverse physiological processes, such as programmed cell death, development, cell elongation and hormonal signaling, in plants. Much attention has been paid to the regulation of plant innate immunity by these signal molecules. Recent studies provide evidence that an NADPH oxidase, respiratory burst oxidase homolog, is responsible for pathogen-responsive ROS burst. However, we still do not know about NO-producing enzymes, except for nitrate reductase, although many studies suggest the existence of NO synthase-like activity responsible for NO burst in plants. Here, we introduce regulatory mechanisms of NO and ROS bursts by mitogen-activated protein kinase cascades, calcium-dependent protein kinase or riboflavin and its derivatives, flavin mononucleotide and flavin adenine dinucleotide, and we discuss the roles of the bursts in defense responses against plant pathogens. PMID:21195205

  12. Signaling Networks Involving Reactive Oxygen Species and Ca2+ in Plants

    NASA Astrophysics Data System (ADS)

    Kuchitsu, Kazuyuki

    2013-01-01

    Although plants never evolved central information processing organs such as brains, plants have evolved distributed information processing systems and are able to sense various environmental changes and reorganize their body plan coordinately without moving. Recent molecular biological studies revealed molecular bases for elementary processes of signal transduction in plants. Though reactive oxygen species (ROS) are highly toxic substances produced through aerobic respiration and photosynthesis, plants possess ROS-producing enzymes whose activity is highly regulated by binding of Ca2+. In turn, Ca2+- permeable channel proteins activated by ROS are shown to be localized to the cell membrane. These two components are proposed to constitute a positive feedback loop to amplify cellular signals. Such molecular physiological studies should be important steps to understand information processing systems in plants and future application for technology related to environmental, energy and food sciences.

  13. Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria

    SciTech Connect

    Puranam, Kasturi L.; Wu, Guanghong; Strittmatter, Warren J.; Burke, James R. . E-mail: james.burke@duke.edu

    2006-03-10

    Huntington's disease results from expansion of the polyglutamine (PolyQ) domain in the huntingtin protein. Although the cellular mechanism by which pathologic-length PolyQ protein causes neurodegeneration is unclear, mitochondria appear central in pathogenesis. We demonstrate in isolated mitochondria that pathologic-length PolyQ protein directly inhibits ADP-dependent (state 3) mitochondrial respiration. Inhibition of mitochondrial respiration by PolyQ protein is not due to reduction in the activities of electron transport chain complexes, mitochondrial ATP synthase, or the adenine nucleotide translocase. We show that pathologic-length PolyQ protein increases the production of reactive oxygen species in isolated mitochondria. Impairment of state 3 mitochondrial respiration by PolyQ protein is reversed by addition of the antioxidants N-acetyl-L-cysteine or cytochrome c. We propose a model in which pathologic-length PolyQ protein directly inhibits mitochondrial function by inducing oxidative stress.

  14. Mitochondria and reactive oxygen and nitrogen species in neurological disorders and stroke: Therapeutic implications.

    PubMed

    Bolaños, Juan P; Moro, Maria A; Lizasoain, Ignacio; Almeida, Angeles

    2009-11-30

    Mitochondria represent both the main source and target of reactive oxygen and nitrogen species (RONS). In view of the large energy expenditure made by neurons during neurotransmission, an intact mitochondrial function is of paramount importance for the correct function of the brain. Accordingly, the search of therapeutic strategies against situations in which there is an abnormal brain function, such as neurological disorders and stroke, should be focused towards mitochondria. Here, we have reviewed the normal and abnormal mitochondrial bioenergetics and dynamics, highlighting the relevance that, for these processes in the brain RONS exert. Evidence suggests that disruption of mitochondrial bioenergetics and dynamics may have a critical role in the pathogenesis of these brain diseases. Drug therapies directed toward providing safer mitochondria are currently under both pre- and clinical investigations. PMID:19716390

  15. PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

    PubMed Central

    Birket, Matthew J.; Casini, Simona; Kosmidis, Georgios; Elliott, David A.; Gerencser, Akos A.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G.; Elefanty, Andrew G.; Stanley, Ed G.; Mummery, Christine L.

    2013-01-01

    Summary Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1α knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease. PMID:24371810

  16. The Role of Heme and Reactive Oxygen Species in Proliferation and Survival of Trypanosoma cruzi

    PubMed Central

    Paes, Marcia Cristina; Cosentino-Gomes, Daniela; de Souza, Cíntia Fernandes; Nogueira, Natália Pereira de Almeida; Meyer-Fernandes, José Roberto

    2011-01-01

    Trypanosoma cruzi, the protozoan responsible for Chagas disease, has a complex life cycle comprehending two distinct hosts and a series of morphological and functional transformations. Hemoglobin degradation inside the insect vector releases high amounts of heme, and this molecule is known to exert a number of physiological functions. Moreover, the absence of its complete biosynthetic pathway in T. cruzi indicates heme as an essential molecule for this trypanosomatid survival. Within the hosts, T. cruzi has to cope with sudden environmental changes especially in the redox status and heme is able to increase the basal production of reactive oxygen species (ROS) which can be also produced as byproducts of the parasite aerobic metabolism. In this regard, ROS sensing is likely to be an important mechanism for the adaptation and interaction of these organisms with their hosts. In this paper we discuss the main features of heme and ROS susceptibility in T. cruzi biology. PMID:22007287

  17. Reactive oxygen species production and antioxidant enzyme activity during epididymal sperm maturation in Corynorhinus mexicanus bats.

    PubMed

    Edith, Arenas-Ríos; Adolfo, Rosado García; Edith, Cortés-Barberena; Mina, Königsberg; Marcela, Arteaga-Silva; Ahiezer, Rodríguez-Tobón; Gisela, Fuentes-Mascorro; Angel, León-Galván Miguel

    2016-03-01

    Prolonged sperm storage in the epididymis of Corynorhinus mexicanus bats after testicular regression has been associated with epididymal sperm maturation in the caudal region, although the precise factors linked with this phenomenon are unknown. The aim of this work is to determine the role of reactive oxygen species (ROS) and changes in antioxidant enzymatic activity occurring in the spermatozoa and epididymal fluid over time, in sperm maturation and storage in the caput, corpus and cauda of the bat epididymis. Our data showed that an increment in ROS production coincided with an increase in superoxide dismutase (SOD) activity in epididymal fluid and with a decrease in glutathione peroxidase (GPX) activity in the spermatozoa in at different time points and epididymal regions. The increase in ROS production was not associated with oxidative damage measured by lipid peroxidation. The results of the current study suggest the existence of a shift in the redox balance, which might be associated with sperm maturation and storage. PMID:26952757

  18. Role of Reactive Oxygen Species in Pathogenesis of Radiocontrast-Induced Nephropathy

    PubMed Central

    Pisani, Antonio; Faga, Teresa; Ashour, Michael; Di Nuzzi, Antonella; Mancini, Aldo

    2013-01-01

    In vitro and in vivo studies have demonstrated enhanced hypoxia and formation of reactive oxygen species (ROS) in the kidney following the administration of iodinated contrast media, which play a relevant role in the development of contrast media-induced nephropathy. Many studies indeed support this possibility, suggesting a protective effect of ROS scavenging or reduced ROS formation with the administration of N-acetylcysteine and bicarbonate infusion, respectively. Furthermore, most risk factors, predisposing to contrast-induced nephropathy, are prone to enhanced renal parenchymal hypoxia and ROS formation. In this review, the association of renal hypoxia and ROS-mediated injury is outlined. Generated during contrast-induced renal parenchymal hypoxia, ROS may exert direct tubular and vascular endothelial injury and might further intensify renal parenchymal hypoxia by virtue of endothelial dysfunction and dysregulation of tubular transport. Preventive strategies conceivably should include inhibition of ROS generation or ROS scavenging. PMID:24459673

  19. Pseudomonas syringae enhances herbivory by suppressing the reactive oxygen burst in Arabidopsis.

    PubMed

    Groen, Simon C; Humphrey, Parris T; Chevasco, Daniela; Ausubel, Frederick M; Pierce, Naomi E; Whiteman, Noah K

    2016-01-01

    Plant-herbivore interactions have evolved in the presence of plant-colonizing microbes. These microbes can have important third-party effects on herbivore ecology, as exemplified by drosophilid flies that evolved from ancestors feeding on plant-associated microbes. Leaf-mining flies in the genus Scaptomyza, which is nested within the paraphyletic genus Drosophila, show strong associations with bacteria in the genus Pseudomonas, including Pseudomonas syringae. Adult females are capable of vectoring these bacteria between plants and larvae show a preference for feeding on P. syringae-infected leaves. Here we show that Scaptomyza flava larvae can also vector P. syringae to and from feeding sites, and that they not only feed more, but also develop faster on plants previously infected with P. syringae. Our genetic and physiological data show that P. syringae enhances S. flava feeding on infected plants at least in part by suppressing anti-herbivore defenses mediated by reactive oxygen species. PMID:26205072

  20. Status epilepticus results in persistent overproduction of reactive oxygen species, inhibition of which is neuroprotective.

    PubMed

    Williams, S; Hamil, N; Abramov, A Y; Walker, M C; Kovac, S

    2015-09-10

    Epilepsy and seizure activity result in the generation of reactive oxygen species (ROS), which contribute to seizure-induced neuronal damage. Recent in vitro evidence indicates that NADPH oxidase contributes significantly to seizure-induced ROS. We further tested this in rat glio-neuronal cultures and in ex vivo chronic epileptic rat brain tissue using live cell-imaging techniques. Here, we show that ROS are upregulated in chronic epilepsy and that ROS production contributes to cell death, which is seen after status epilepticus (SE) and chronic seizures. Inhibition of ROS production by AEBSF, a NADPH oxidase inhibitor, markedly reduced seizure-induced cell death in the perforant path model of epilepsy. These findings demonstrate a critical role for ROS, generated by NADPH oxidase, contributing to seizure-induced cell death. These findings point to NADPH oxidase inhibition as a novel treatment strategy to prevent brain injury in SE and chronic epilepsy. PMID:26162241

  1. Zinc Induces Apoptosis of Human Melanoma Cells, Increasing Reactive Oxygen Species, p53 and FAS Ligand.

    PubMed

    Provinciali, Mauro; Pierpaoli, Elisa; Bartozzi, Beatrice; Bernardini, Giovanni

    2015-10-01

    The aim of this study was to examine the in vitro effect of zinc on the apoptosis of human melanoma cells, by studying the zinc-dependent modulation of intracellular levels of reactive oxygen species (ROS) and of p53 and FAS ligand proteins. We showed that zinc concentrations ranging from 33.7 μM to 75 μM Zn(2+) induced apoptosis in the human melanoma cell line WM 266-4. This apoptosis was associated with an increased production of intracellular ROS, and of p53 and FAS ligand protein. Treatment of tumor cells with the antioxidant N-acetylcysteine was able to prevent Zn(2+)-induced apoptosis, as well as the increase of p53 and FAS ligand protein induced by zinc. Zinc induces apoptosis in melanoma cells by increasing ROS and this effect may be mediated by the ROS-dependent induction of p53 and FAS/FAS ligand. PMID:26408691

  2. High osmotic pressure increases reactive oxygen species generation in rabbit corneal epithelial cells by endoplasmic reticulum

    PubMed Central

    Wang, Peng; Sheng, Minjie; Li, Bing; Jiang, Yaping; Chen, Yihui

    2016-01-01

    Tear high osmotic pressure (HOP) has been recognized as the core mechanism underlying ocular surface inflammation, injury and symptoms and is closely associated with many ocular surface diseases, especially dry eye. The endoplasmic reticulum (ER) is a multi-functional organelle responsible for protein synthesis, folding and transport, biological synthesis of lipids, vesicle transport and intracellular calcium storage. Accumulation of unfolded proteins and imbalance of calcium ion in the ER would induce ER stress and protective unfolded protein response (UPR). Many studies have demonstrated that ER stress can induce cell apoptosis. However, the association between tear HOP and ER stress has not been studied systematically. In the present study, rabbit corneal epithelial cells were treated with HOP and results showed that the production of reactive oxygen species increased markedly, which further activated the ER signaling pathway and ultimately induced cell apoptosis. These findings shed new lights on the pathogenesis and clinical treatment of dry eye and other ocular surface diseases. PMID:27158374

  3. Respiratory protein-generated reactive oxygen species as an antimicrobial strategy.

    PubMed

    Jiang, Naxin; Tan, Nguan Soon; Ho, Bow; Ding, Jeak Ling

    2007-10-01

    The evolution of the host-pathogen relationship comprises a series of invasive-defensive tactics elicited by both participants. The stereotype is that the antimicrobial immune response requires multistep processes. Little is known about the primordial immunosurveillance system, which probably has components that directly link sensors and effectors. Here we found that the respiratory proteins of both the horseshoe crab and human were directly activated by microbial proteases and were enhanced by pathogen-associated molecular patterns, resulting in the production of more reactive oxygen species. Hemolytic virulent pathogens, which produce proteases as invasive factors, are more susceptible to this killing mechanism. This 'shortcut' antimicrobial strategy represents a fundamental and universal mode of immunosurveillance, which has been in existence since before the split of protostomes and deuterostomes and still persists today. PMID:17721536

  4. Atrial fibrillation in the elderly: the potential contribution of reactive oxygen species

    PubMed Central

    Schillinger, Kurt J.; Patel, Vickas V.

    2012-01-01

    Atrial fibrillation (AF) is the most commonly encountered cardiac arrhythmia, and is a significant source of healthcare expenditures throughout the world. It is an arrhythmia with a very clearly defined predisposition for individuals of advanced age, and this fact has led to intense study of the mechanistic links between aging and AF. By promoting oxidative damage to multiple subcellular and cellular structures, reactive oxygen species (ROS) have been shown to induce the intra- and extra-cellular changes necessary to promote the pathogenesis of AF. In addition, the generation and accumulation of ROS have been intimately linked to the cellular processes which underlie aging. This review begins with an overview of AF pathophysiology, and introduces the critical structures which, when damaged, predispose an otherwise healthy atrium to AF. The available evidence that ROS can lead to damage of these critical structures is then reviewed. Finally, the evidence linking the process of aging to the pathogenesis of AF is discussed. PMID:23341843

  5. Mold elicits atopic dermatitis by reactive oxygen species: Epidemiology and mechanism studies.

    PubMed

    Kim, Ha-Jung; Lee, Eun; Lee, Seung-Hwa; Kang, Mi-Jin; Hong, Soo-Jong

    2015-12-01

    Mold has been implicated in the development of atopic dermatitis (AD); however, the underlying mechanisms remain unknown. The aim of the study was to investigate the effects of mold exposure in early life through epidemiologic and mechanistic studies in vivo and in vitro. Exposure to visible mold inside the home during the first year of life was associated with an increased risk for current AD by two population-based cross-sectional human studies. Children with the AG+GG genotype of GSTP1 showed increased risk for current AD when exposed to mold. In the mouse model, treatment with patulin induced and aggravated clinically significant AD and Th2-related inflammation of the affected mouse skin. Additionally, reactive oxygen species (ROS) were released in the mouse skin as well by human keratinocytes. In conclusions, mold exposure increases the risk for AD related to ROS generation mediated by Th2-promoting inflammatory cytokines. PMID:26205459

  6. Reactive oxygen species generated from skeletal muscles are required for gecko tail regeneration

    PubMed Central

    Zhang, Qing; Wang, Yingjie; Man, Lili; Zhu, Ziwen; Bai, Xue; Wei, Sumei; Liu, Yan; Liu, Mei; Wang, Xiaochuan; Gu, Xiaosong; Wang, Yongjun

    2016-01-01

    Reactive oxygen species (ROS) participate in various physiological and pathological functions following generation from different types of cells. Here we explore ROS functions on spontaneous tail regeneration using gecko model. ROS were mainly produced in the skeletal muscle after tail amputation, showing a temporal increase as the regeneration proceeded. Inhibition of the ROS production influenced the formation of autophagy in the skeletal muscles, and as a consequence, the length of the regenerating tail. Transcriptome analysis has shown that NADPH oxidase (NOX2) and the subunits (p40phox and p47phox) are involved in the ROS production. ROS promoted the formation of autophagy through regulation of both ULK and MAPK activities. Our results suggest that ROS produced by skeletal muscles are required for the successful gecko tail regeneration. PMID:26853930

  7. Generation of reactive oxygen species by lethal attacks from competing microbes

    PubMed Central

    Dong, Tao G.; Dong, Shiqi; Catalano, Christy; Moore, Richard; Liang, Xiaoye; Mekalanos, John J.

    2015-01-01

    Whether antibiotics induce the production of reactive oxygen species (ROS) that contribute to cell death is an important yet controversial topic. Here, we report that lethal attacks from bacterial and viral species also result in ROS production in target cells. Using soxS as an ROS reporter, we found soxS was highly induced in Escherichia coli exposed to various forms of attacks mediated by the type VI secretion system (T6SS), P1vir phage, and polymyxin B. Using a fluorescence ROS probe, we found enhanced ROS levels correlate with induced soxS in E. coli expressing a toxic T6SS antibacterial effector and in E. coli treated with P1vir phage or polymyxin B. We conclude that both contact-dependent and contact-independent interactions with aggressive competing bacterial species and viruses can induce production of ROS in E. coli target cells. PMID:25646446

  8. Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer's disease: the NF-κB connection.

    PubMed

    Kaur, Upinder; Banerjee, Priyanjalee; Bir, Aritri; Sinha, Maitrayee; Biswas, Atanu; Chakrabarti, Sasanka

    2015-01-01

    Oxidative stress and inflammatory response are important elements of Alzheimer's disease (AD) pathogenesis, but the role of redox signaling cascade and its cross-talk with inflammatory mediators have not been elucidated in details in this disorder. The review summarizes the facts about redox-signaling cascade in the cells operating through an array of kinases, phosphatases and transcription factors and their downstream components. The biology of NF-κB and its activation by reactive oxygen species (ROS) and proinflammatory cytokines in the pathogenesis of AD have been specially highlighted citing evidence both from post-mortem studies in AD brain and experimental research in animal or cell-based models of AD. The possibility of identifying new disease-modifying drugs for AD targeting NF-κBsignaling cascade has been discussed in the end. PMID:25620241

  9. Propofol scavenges reactive oxygen species and inhibits the protein nitration induced by activated polymorphonuclear neutrophils.

    TOXLINE Toxicology Bibliographic Information

    Thiry JC; Hans P; Deby-Dupont G; Mouythis-Mickalad A; Bonhomme V; Lamy M

    2004-09-19

    Activated polymorphonuclear neutrophils may damage tissues through the release of biochemical mediators. Among them, peroxynitrite is responsible for hydroxylation reactions and nitration of proteins, or is metabolised into nitrate. We investigated the effect of propofol on the production of reactive oxygen species, the nitration of proteins and the formation of nitrate by activated human polymorphonuclear neutrophils. Propofol dose-dependently inhibited chemiluminescence, nitration of proteins and nitrate production in a concentration range from 10(-3) to 10(-6) mM. A significant correlation was observed between the logarithm of propofol concentration and the intensity of chemiluminescence (r2=0.90), the nitration of proteins (r2=0.67) and the production of nitrate (r2=0.79). Those results are consistent with the scavenging effect of propofol on peroxynitrite and could confer a protective property to propofol in pathological situations involving polymorphonuclear neutrophils activation.

  10. Propofol scavenges reactive oxygen species and inhibits the protein nitration induced by activated polymorphonuclear neutrophils.

    PubMed

    Thiry, Jean-Christophe; Hans, Pol; Deby-Dupont, Ginette; Mouythis-Mickalad, Ange; Bonhomme, Vincent; Lamy, Maurice

    2004-09-19

    Activated polymorphonuclear neutrophils may damage tissues through the release of biochemical mediators. Among them, peroxynitrite is responsible for hydroxylation reactions and nitration of proteins, or is metabolised into nitrate. We investigated the effect of propofol on the production of reactive oxygen species, the nitration of proteins and the formation of nitrate by activated human polymorphonuclear neutrophils. Propofol dose-dependently inhibited chemiluminescence, nitration of proteins and nitrate production in a concentration range from 10(-3) to 10(-6) mM. A significant correlation was observed between the logarithm of propofol concentration and the intensity of chemiluminescence (r2=0.90), the nitration of proteins (r2=0.67) and the production of nitrate (r2=0.79). Those results are consistent with the scavenging effect of propofol on peroxynitrite and could confer a protective property to propofol in pathological situations involving polymorphonuclear neutrophils activation. PMID:15363948

  11. Current Progress in Reactive Oxygen Species (ROS)-Responsive Materials for Biomedical Applications

    PubMed Central

    Lee, Sue Hyun; Gupta, Mukesh K.; Bang, Jae Beum; Bae, Hojae

    2013-01-01

    Recently, significant progress has been made in developing “stimuli-sensitive” biomaterials as a new therapeutic approach to interact with dynamic physiological conditions. Reactive oxygen species (ROS) production has been implicated in important pathophysiological events, such as atherosclerosis, aging, and cancer. ROS are often overproduced locally in diseased cells and tissues, and they individually and synchronously contribute to many of the abnormalities associated with local pathogenesis. Therefore, the advantages of developing ROS-responsive materials extend beyond site-specific targeting of therapeutic delivery, and potentially include navigating, sensing, and repairing the cellular damages via programmed changes in material properties. Here we review the mechanism and development of biomaterials with ROS-induced solubility switch or degradation, as well as their performance and potential for future biomedical applications. PMID:25136729

  12. Juglone induces cell death of Acanthamoeba through increased production of reactive oxygen species.

    PubMed

    Jha, Bijay Kumar; Jung, Hui-Jung; Seo, Incheol; Suh, Seong-Il; Suh, Min-Ho; Baek, Won-Ki

    2015-12-01

    Juglone (5-hydroxy-1,4-naphthoquinone) is a major chemical constituent of Juglans mandshruica Maxim. Recent studies have demonstrated that juglone exhibits anti-cancer, anti-bacterial, anti-viral, and anti-parasitic properties. However, its effect against Acanthamoeba has not been defined yet. The aim of this study was to investigate the effect of juglone on Acanthamoeba. We demonstrate that juglone significantly inhibits the growth of Acanthamoeba castellanii at 3-5 μM concentrations. Juglone increased the production of reactive oxygen species (ROS) and caused cell death of A. castellanii. Inhibition of ROS by antioxidant N-acetyl-l-cysteine (NAC) restored the cell viability. Furthermore, our results show that juglone increased the uptake of mitochondrial specific dye. Collectively, these results indicate that ROS played a significant role in the juglone-induced cell death of Acanthamoeba. PMID:26358271

  13. Curcumin mitigates the fibrillation of human serum albumin and diminishes the formation of reactive oxygen species.

    PubMed

    Mazaheri, Mansooreh; Moosavi-Movahedi, Ali Akbar; Saboury, Ali Akbar; Rezaei, Mehran Habibi; Shourian, Mostafa; Farhadi, Mohammad; Sheibani, Nader

    2015-01-01

    The formation of amyloid fibrils are thought to contribute to pathogenesis of many amyloids associated human diseases. Here the impact of curcumin on amyloid formation of human serum albumin (HSA) was studied. Incubation of HSA at 68°C under physiologic pH led to amyloid fibril formation. Thioflavin T (ThT) fluorescence was used for determination of amyloid fibril formation. Atomic force microscopy experiments indicated different fibril structure of HSA incubated with or without curcumin. The monitoring of the changes in reactive oxygen species (ROS) levels upon incubation of curcumin with HSA showed a significant decrease in ROS levels. Similar experiments were also carried out in the presence of aflatoxin M1 (AFM1) and lead (Pb) ions. Our results indicated that AFM1 and Pb ions promote the fibrillation of HSA and accelerate ROS production, which were inhibited in the presence of curcumin. Thus, curcumin mitigates protein fibrillation activity and diminishes ROS generation. PMID:25666039

  14. The Role of Mitochondria in Reactive Oxygen Species Metabolism and Signaling

    PubMed Central

    Starkov, Anatoly A.

    2010-01-01

    Oxidative stress is considered a major contributor to the etiology of both “normal” senescence and severe pathologies with serious public health implications. Several cellular sources, including mitochondria, are known to produce significant amounts of reactive oxygen species (ROS) that may contribute to intracellular oxidative stress. Mitochondria possess at least 10 known sites that are capable of generating ROS, but they also feature a sophisticated multilayered ROS defense system that is much less studied. This review summarizes the current knowledge about major components involved in mitochondrial ROS metabolism and factors that regulate ROS generation and removal at the level of mitochondria. An integrative systemic approach is applied to analysis of mitochondrial ROS metabolism, which is “dissected” into ROS generation, ROS emission, and ROS scavenging. The in vitro ROS-producing capacity of several mitochondrial sites is compared in the metabolic context and the role of mitochondria in ROS-dependent intracellular signaling is discussed. PMID:19076429

  15. Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission

    NASA Astrophysics Data System (ADS)

    Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

    2014-01-01

    Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits α3-containing GABAA receptors into synapses with no discernible effect on resident α1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited α3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

  16. Reactive oxygen species (ROS) is not a promotor of taxol-induced cytoplasmic vacuolization

    NASA Astrophysics Data System (ADS)

    Sun, Qingrui; Chen, Tongsheng

    2009-02-01

    we have previously reported that taxol, a potent anticancer agent, induces caspase-independent cell death and cytoplasmic vacuolization in human lung adenocarcinoma (ASTC-a-1) cells. However, the mechanisms of taxol-induced cytoplasmic vacuolization are poorly understood. Reactive oxygen species (ROS) has been reported to be involved in the taxol-induced cell death. Here, we employed confocal fluorescence microscopy imaging to explore the role of ROS in taxol-induced cytoplasmic vacuolization. We found that ROS inhibition by addition of N-acetycysteine (NAC), a total ROS scavenger, did not suppress these vacuolization but instead increased vacuolization. Take together, our results showed that ROS is not a promotor of the taxol-induced cytoplasmic vacuolization.

  17. High fluence laser irradiation induces reactive oxygen species generation in human lung adenocarcinoma cells

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Xing, Da; Chen, Tong-Sheng

    2006-09-01

    Low-power laser irradiation (LPLI) has been used for therapies such as curing spinal cord injury, healing wound et al. Yet, the mechanism of LPLI remains unclear. Our previous study showed that low fluences laser irradiation induces human lung adenocarcinoma cells (ASTC-a-1) proliferation, but high fluences induced apoptosis and caspase-3 activation. In order to study the mechanism of apoptosis induced by high fluences LPLI further, we have measured the dynamics of generation of reactive oxygen species (ROS) using H IIDCFDA fluorescence probes during this process. ASTC-a-1 cells apoptosis was induced by He-Ne laser irradiation at high fluence of 120J/cm2. A confocal laser scanning microscope was used to perform fluorescence imaging. The results demonstrated that high fluence LPLI induced the increase of mitochondria ROS. Our studies contribute to clarify the biological mechanism of high fluence LPLI-induced cell apoptosis.

  18. Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells.

    PubMed

    Du, Juan; Daniels, David H; Asbury, Carla; Venkataraman, Sujatha; Liu, Jingru; Spitz, Douglas R; Oberley, Larry W; Cullen, Joseph J

    2006-12-01

    Dicumarol is a naturally occurring anticoagulant derived from coumarin that induces cytotoxicity and oxidative stress in human pancreatic cancer cells (Cullen, J. J., Hinkhouse, M. M., Grady, M., Gaut, A. W., Liu, J., Zhang, Y., Weydert, C. J. D., Domann, F. E., and Oberley, L. W. (2003) Cancer Res. 63, 5513-5520). Although dicumarol has been used as an inhibitor of the two-electron reductase NAD(P)H:quinone oxidoreductase (NQO1), dicumarol is also thought to affect quinone-mediated electron transfer reactions in the mitochondria, leading to the production of superoxide (O2*-) and hydrogen peroxide (H(2)O(2)). We hypothesized that mitochondrial production of reactive oxygen species mediates the increased susceptibility of pancreatic cancer cells to dicumarol-induced metabolic oxidative stress. Dicumarol decreased clonogenic survival equally in both MDA-MB-468 NQO1(-) and MDA-MB-468 NQO1+ breast cancer cells. Dicumarol decreased clonogenic survival in the transformed fibroblast cell line IMRSV-90 compared with the IMR-90 cell line. Dicumarol, with the addition of mitochondrial electron transport chain blockers, decreased clonogenic cell survival in human pancreatic cancer cells and increased superoxide levels. Dicumarol with the mitochondrial electron transport chain blocker antimycin A decreased clonogenic survival and increased superoxide levels in cells with functional mitochondria but had little effect on cancer cells without functional mitochondria. Overexpression of manganese superoxide dismutase and mitochondrial-targeted catalase with adenoviral vectors reversed the dicumarol-induced cytotoxicity and reversed fluorescence of the oxidation-sensitive probe. We conclude mitochondrial production of reactive oxygen species mediates the increased susceptibility of cancer cells to dicumarol-induced cytotoxicity. PMID:17040906

  19. Protective effects of myricitrin against osteoporosis via reducing reactive oxygen species and bone-resorbing cytokines

    SciTech Connect

    Huang, Qiang; Gao, Bo; Wang, Long; Hu, Ya-Qian; Lu, Wei-Guang; Yang, Liu; Luo, Zhuo-Jing; Liu, Jian

    2014-11-01

    Oxidative stress is a crucial pathogenic factor in the development of osteoporosis. Myricitrin, isolated from Myrica cerifera, is a potent antioxidant. We hypothesized that myricitrin possessed protective effects against osteoporosis by partially reducing reactive oxygen species (ROS) and bone-resorbing cytokines in osteoblastic MC3T3-E1 cells and human bone marrow stromal cells (hBMSCs). We investigated myricitrin on osteogenic differentiation under oxidative stress. Hydrogen peroxide (H{sub 2}O{sub 2}) was used to establish an oxidative cell injury model. Our results revealed that myricitrin significantly improved some osteogenic markers in these cells. Myricitrin decreased lipid production and reduced peroxisome proliferator-activated receptor gamma-2 (PPARγ2) expression in hBMSCs. Moreover, myricitrin reduced the expression of receptor activator of nuclear factor kappa-B ligand (RANKL) and IL-6 and partially suppressed ROS production. In vivo, we established a murine ovariectomized (OVX) osteoporosis model. Our results demonstrated that myricitrin supplementation reduced serum malondialdehyde (MDA) activity and increased reduced glutathione (GSH) activity. Importantly, it ameliorated the micro-architecture of trabecular bones in the 4th lumbar vertebrae (L4) and distal femur. Taken together, these results indicated that the protective effects of myricitrin against osteoporosis are linked to a reduction in ROS and bone-resorbing cytokines, suggesting that myricitrin may be useful in bone metabolism diseases, particularly osteoporosis. - Highlights: • Myricitrin protects MC3T3-E1 cells and hBMSCs from oxidative stress. • It is accompanied by a decrease in oxidative stress and bone-resorbing cytokines. • Myricitrin decreases serum reactive oxygen species to some degree. • Myricitrin partly reverses ovariectomy effects in vivo. • Myricitrin may represent a beneficial anti-osteoporosis treatment method.

  20. Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2013-02-01

    In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O2, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species.

  1. Preventing UV induced cell damage by scavenging reactive oxygen species with enzyme-mimic Au-Pt nanocomposites.

    PubMed

    Xiong, Bin; Xu, Ruili; Zhou, Rui; He, Yan; Yeung, Edward S

    2014-03-01

    We have prepared enzyme-mimic Au-Pt nanocomposites (NCs) for catalyzing the decomposition of reactive oxygen species. After surface modification, the Au-Pt NCs can be readily internalized and retained by human skin cells and also can effectively reduce cellular oxidative stress. We have demonstrated that the active and biocompatible Au-Pt nanocomposites can be applied for preventing cell damages by scavenging cellular reactive oxygen species induced by ultraviolet irradiation, indicating potential uses for the prevention and therapy of ROS-mediated diseases. PMID:24468368

  2. The development and in vitro characterisation of an intracellular nanosensor responsive to reactive oxygen species.

    PubMed

    Henderson, James R; Fulton, David A; McNeil, Calum J; Manning, Philip

    2009-08-15

    Advances in sensor technologies have enhanced our understanding of the roles played by reactive oxygen species (ROS) in a number of physiological and pathological processes. However, high inter-reactivity and short life spans has made real-time monitoring of ROS in cellular systems challenging. Fluorescent dyes capable of intracellular ROS measurements have been reported. However, these dyes are known to be intrinsically cytotoxic and thus can potentially significantly alter cellular metabolism and adversely influence in vitro data. Reported here is the development and in vitro application of a novel ROS responsive nanosensor, based on PEBBLE (Probes Encapsulated By Biologically Localised Embedding) technology. The ROS sensitive fluorescent probe dihydrorhodamine 123 (DHR 123) was employed as the sensing element of the PEBBLE through entrapment within a porous, bio-inert polyacrylamide nanostructure enabling passive monitoring of free radical flux within the intracellular environment. Successful delivery of the nanosensors into NR8383 rat alveolar macrophage cells via phagocytosis was achieved. Stimulation of PEBBLE loaded NR8383 cells with phorbol-12-myristate-13-acetate (PMA) enabled real time monitoring of ROS generation within the cell without affecting cellular viability. These data suggest that PEBBLE nanosensors could offer significant advantages over existing technologies used in monitoring the intracellular environment. PMID:19553099

  3. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction

    PubMed Central

    Weidinger, Adelheid; Kozlov, Andrey V.

    2015-01-01

    In the past, reactive oxygen and nitrogen species (RONS) were shown to cause oxidative damage to biomolecules, contributing to the development of a variety of diseases. However, recent evidence has suggested that intracellular RONS are an important component of intracellular signaling cascades. The aim of this review was to consolidate old and new ideas on the chemical, physiological and pathological role of RONS for a better understanding of their properties and specific activities. Critical consideration of the literature reveals that deleterious effects do not appear if only one primary species (superoxide radical, nitric oxide) is present in a biological system, even at high concentrations. The prerequisite of deleterious effects is the formation of highly reactive secondary species (hydroxyl radical, peroxynitrite), emerging exclusively upon reaction with another primary species or a transition metal. The secondary species are toxic, not well controlled, causing irreversible damage to all classes of biomolecules. In contrast, primary RONS are well controlled (superoxide dismutase, catalase), and their reactions with biomolecules are reversible, making them ideal for physiological/pathophysiological intracellular signaling. We assume that whether RONS have a signal transducing or damaging effect is primarily defined by their quality, being primary or secondary RONS, and only secondly by their quantity. PMID:25884116

  4. Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle

    PubMed Central

    Powers, Scott K; Talbert, Erin E; Adhihetty, Peter J

    2011-01-01

    Abstract It is well established that contracting skeletal muscles produce free radicals. Given that radicals are known to play a prominent role in the pathogenesis of several diseases, the 1980s–90s dogma was that contraction-induced radical production was detrimental to muscle because of oxidative damage to macromolecules within the fibre. In contrast to this early outlook, it is now clear that both reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in cell signalling pathways involved in muscle adaptation to exercise and the remodelling that occurs in skeletal muscle during periods of prolonged inactivity. This review will highlight two important redox sensitive signalling pathways that contribute to ROS and RNS-induced skeletal muscle adaptation to endurance exercise. We begin with a historical overview of radical production in skeletal muscles followed by a discussion of the intracellular sites for ROS and RNS production in muscle fibres. We will then provide a synopsis of the redox-sensitive NF-κB and PGC-1α signalling pathways that contribute to skeletal muscle adaptation in response to exercise training. We will conclude with a discussion of unanswered questions in redox signalling in skeletal muscle in the hope of promoting additional research interest in this field. PMID:21224240

  5. Sulfiredoxin inhibitor induces preferential death of cancer cells through reactive oxygen species-mediated mitochondrial damage.

    PubMed

    Kim, Hojin; Lee, Gong-Rak; Kim, Jiwon; Baek, Jin Young; Jo, You-Jin; Hong, Seong-Eun; Kim, Sung Hoon; Lee, Jiae; Lee, Hye In; Park, Song-Kyu; Kim, Hwan Mook; Lee, Hwa Jeong; Chang, Tong-Shin; Rhee, Sue Goo; Lee, Ju-Seog; Jeong, Woojin

    2016-02-01

    Recent studies have shown that many types of cancer cells have increased levels of reactive oxygen species (ROS) and enhance antioxidant capacity as an adaptation to intrinsic oxidative stress, suggesting that cancer cells are more vulnerable to oxidative insults and are more dependent on antioxidant systems compared with normal cells. Thus, disruption of redox homeostasis caused by a decline in antioxidant capacity may provide a method for the selective death of cancer cells. Here we show that ROS-mediated selective death of tumor cells can be caused by inhibiting sulfiredoxin (Srx), which reduces hyperoxidized peroxiredoxins, leading to their reactivation. Srx inhibitor increased the accumulation of sulfinic peroxiredoxins and ROS, which led to oxidative mitochondrial damage and caspase activation, resulting in the death of A549 human lung adenocarcinoma cells. Srx depletion also inhibited the growth of A549 cells like Srx inhibition, and the cytotoxic effects of Srx inhibitor were considerably reversed by Srx overexpression or antioxidants such as N-acetyl cysteine and butylated hydroxyanisol. Moreover, Srx inhibitor rendered tumorigenic ovarian cells more susceptible to ROS-mediated death compared with nontumorigenic cells and significantly suppressed the growth of A549 xenografts without acute toxicity. Our results suggest that Srx might serve as a novel therapeutic target for cancer treatment based on ROS-mediated cell death. PMID:26721593

  6. Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species.

    PubMed

    Cat, Bahar; Stuhlmann, Dominik; Steinbrenner, Holger; Alili, Lirija; Holtkötter, Olaf; Sies, Helmut; Brenneisen, Peter

    2006-07-01

    Myofibroblasts, pivotal for tumor progression, populate the microecosystem of reactive stroma. Using an in vitro tumor-stroma model of skin carcinogenesis, we report here that tumor-cell-derived transforming growth factor beta1 (TGFbeta1) initiates reactive oxygen species-dependent expression of alpha-smooth muscle actin, a biomarker for myofibroblastic cells belonging to a group of late-responsive genes. Moreover, protein kinase C (PKC) is involved in lipid hydroperoxide-triggered molecular events underlying transdifferentiation of fibroblasts to myofibroblasts (mesenchymal-mesenchymal transition, MMT). In contrast to fibroblasts, myofibroblasts secrete large amounts of hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF) and interleukin-6 (IL-6), resulting in a significant increase in the invasive capacity of tumor cells. The thiol N-acetyl-L-cysteine, the micronutrient selenite as well as selenoprotein P and the lipid peroxidation inhibitors alpha-tocopherol and butylated hydroxytoluene significantly lower both the number of TGFbeta1-initiated myofibroblasts and the secretion of HGF, VEGF and IL-6, correlating with a diminished invasive capacity of tumor cells. This novel concept of stromal therapy, namely the protection of stromal cells against the dominating influence of tumor cells in tumor-stroma interaction by antioxidants and micronutrients, may form the basis for prevention of MMT in strategies for chemoprevention of tumor invasion. PMID:16757516

  7. A novel biointerface that suppresses cell morphological changes by scavenging excess reactive oxygen species.

    PubMed

    Ikeda, Yutaka; Yoshinari, Tomoki; Nagasaki, Yukio

    2015-09-01

    During cell cultivation on conventional culture dishes, various events results in strong stresses that lead to the production of bioactive species such as reactive oxygen species (ROS) and nitric oxide. These reactive species cause variable damage to cells and stimulate cellular responses. Here, we report the design of a novel biocompatible surface that decreases stress by not only morphologically modifying the dish surface by using poly(ethylene glycol) tethered chains, but also actively scavenging oxidative stress by using our novel nitroxide radical-containing polymer. A block copolymer, poly(ethylene glycol)-b-poly[(2,2,6,6-tetramethylpiperidine-N-oxyl)aminomethylstyrene] (PEG-b-PMNT) was used to coat the surface of a dish. Differentiation of undifferentiated human leukemia (HL-60) cells was found to be suppressed on the polymer-coated dish. Notably, HL-60 cell cultivation caused apoptosis under high-density conditions, while spontaneous apoptosis was suppressed in cells plated on the PEG-b-PMNT-modified surface, because a healthy mitochondrial membrane potential was maintained. In contrast, low molecular weight antioxidants did not have apparent effects on the maintenance of mitochondria. We attribute this to the lack of cellular internalization of our immobilized polymer and selective scavenging of excessive ROS generated outside of cells. These results demonstrate the utility of our novel biocompatible material for actively scavenging ROS and thus maintaining cellular morphology. PMID:25691268

  8. Novel interactions of mitochondria and reactive oxygen/nitrogen species in alcohol mediated liver disease

    PubMed Central

    Mantena, Sudheer K; King, Adrienne L; Andringa, Kelly K; Landar, Aimee; Darley-Usmar, Victor; Bailey, Shannon M

    2007-01-01

    Mitochondrial dysfunction is known to be a contributing factor to a number of diseases including chronic alcohol induced liver injury. While there is a detailed understanding of the metabolic pathways and proteins of the liver mitochondrion, little is known regarding how changes in the mitochondrial proteome may contribute to the development of hepatic pathologies. Emerging evidence indicates that reactive oxygen and nitrogen species disrupt mitochondrial function through post-translational modifications to the mitochondrial proteome. Indeed, various new affinity labeling reagents are available to test the hypothesis that post-translational modification of proteins by reactive species contributes to mitochondrial dysfunction and alcoholic fatty liver disease. Specialized proteomic techniques are also now available, which allow for identification of defects in the assembly of multi-protein complexes in mitochondria and the resolution of the highly hydrophobic proteins of the inner membrane. In this review knowledge gained from the study of changes to the mitochondrial proteome in alcoholic hepatotoxicity will be described and placed into a mechanistic framework to increase understanding of the role of mitochondrial dysfunction in liver disease. PMID:17854139

  9. Hydrogen sulfide signaling: interactions with nitric oxide and reactive oxygen species.

    PubMed

    Hancock, John T; Whiteman, Matthew

    2016-02-01

    Signaling in cells involving reactive compounds is well established. Reactive oxygen species (ROS) and nitric oxide (NO) are known to be extremely influential in the control of a range of physiological responses in many organisms, from animals to plants. Often, their generation is triggered in reaction to stress, and it is common for ROS and NO metabolism to interact to give a coordinated response. Recently, hydrogen sulfide (H2 S) has also been found to be an important signaling molecule, being shown to be involved in vascular tone in animals. Of relevance to respiration, in plants, H2 S has been shown to affect stomatal apertures and the transpiration stream, while, in animals, H2 S has been shown to be a source of electrons for ATP synthesis in mitochondria. However, in signaling, H2 S does not work in isolation, and it is likely that it will interact with both ROS and NO. This may occur at a variety of levels, from influencing the generation of such molecules, interacting directly, or competing for control of downstream signaling events. A full understanding of the impact of this toxic molecule in the control of cells requires all these factors to be taken into account. PMID:25782612

  10. Inelastic and reactive scattering of hyperthermal atomic oxygen from amorphous carbon

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Brinza, David E.; Liang, Ranty H.

    1991-01-01

    The reaction of hyperthermal oxygen atoms with an amorphous carbon-13 surface was studied using a modified universal crossed molecular beams apparatus. Time-of-flight distributions of inelastically scattered O-atoms and reactively scattered CO-13 and CO2-13 were measured with a rotatable mass spectrometer detector. Two inelastic scattering channels were observed, corresponding to a direct inelastic process in which the scattered O-atoms retain 20 to 30 percent of their initial kinetic energy and to a trapping desorption process whereby O-atoms emerge from the surface at thermal velocities. Reactive scattering data imply the formation of two kinds of CO products, slow products whose translational energies are determined by the surface temperature and hyperthermal (Approx. 3 eV) products with translational energies comprising roughly 30 percent of the total available energy (E sub avl), where E sub avl is the sum of the collision energy and the reaction exothermicity. Angular data show that the hyperthermal CO is scattered preferentially in the specular direction. CO2 product was also observed, but at much lower intensities than CO and with only thermal velocities.

  11. Reactive oxygen species differentially affect T cell receptor-signaling pathways.

    PubMed

    Cemerski, Saso; Cantagrel, Alain; Van Meerwijk, Joost P M; Romagnoli, Paola

    2002-05-31

    Oxidative stress plays an important role in the induction of T lymphocyte hyporesponsiveness observed in several human pathologies including cancer, rheumatoid arthritis, leprosy, and AIDS. To investigate the molecular basis of oxidative stress-induced T cell hyporesponsiveness, we have developed an in vitro system in which T lymphocytes are rendered hyporesponsive by co-culture with oxygen radical-producing activated neutrophils. We have observed a direct correlation between the level of T cell hyporesponsiveness induced and the concentration of reactive oxygen species produced. Moreover, induction of T cell hyporesponsiveness is blocked by addition of N-acetyl cysteine, Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, and catalase, confirming the critical role of oxidative stress in this system. The pattern of tyrosine-phosphorylated proteins was profoundly altered in hyporesponsive as compared with normal T cells. In hyporesponsive T cells, T cell receptor (TCR) ligation no longer induced phospholipase C-gamma1 activation and caused reduced Ca(2+) flux. In contrast, despite increased levels of ERK1/2 phosphorylation, TCR-dependent activation of mitogen-activated protein kinase ERK1/2 was unaltered in hyporesponsive T lymphocytes. A late TCR-signaling event such as caspase 3 activation was as well unaffected in hyporesponsive T lymphocytes. Our data indicate that TCR-signaling pathways are differentially affected by physiological levels of oxidative stress and would suggest that although "hyporesponsive" T cells have lost certain effector functions, they may have maintained or gained others. PMID:11916964

  12. Development of micellar reactive oxygen species assay for photosafety evaluation of poorly water-soluble chemicals.

    PubMed

    Seto, Yoshiki; Kato, Masashi; Yamada, Shizuo; Onoue, Satomi

    2013-09-01

    A reactive oxygen species (ROS) assay was previously developed for photosafety assessment; however, the phototoxic potential of some chemicals cannot be evaluated because of their limited aqueous solubility. The present study was undertaken to develop a new micellar ROS (mROS) assay system for poorly water-soluble chemicals using a micellar solution of 0.5% (v/v) Tween 20 for solubility enhancement. In repeated mROS assay, intra- and inter-day precisions (coefficient of variation) were found to be below 11%, and the Z'-factors for singlet oxygen and superoxide suggested a large separation band between positive and negative standards. The ROS and mROS assays were applied to 65 phototoxins and 18 non-phototoxic compounds for comparative purposes. Of all 83 chemicals, 25 were unevaluable in the ROS assay due to poor solubility, but only 2 were in the mROS assay. Upon mROS assay on these model chemicals, the individual specificity was 76.5%, and the positive and negative predictivities were found to be 93.9% and 86.7%, respectively. The mROS assay provided 2 false negative predictions, although negative predictivity for the ROS assay was found to be 100%. Considering the pros and cons of these assays, strategic combined use of the ROS and mROS assays might be efficacious for reliable photosafety assessment with high applicability and predictivity. PMID:23727251

  13. Mutagenicity induced by UVC in Escherichia coli cells: reactive oxygen species involvement.

    PubMed

    Silva-Júnior, A C T; Asad, L M B O; Felzenszwalb, I; Asad, N R

    2011-01-01

    We previously demonstrated that reactive oxygen species (ROS) could be involved in the DNA damage induced by ultraviolet-C (UVC). In this study, we evaluated singlet oxygen ((1)O(2)) involvement in UVC-induced mutagenesis in Escherichia coli cells. First, we found that treatment with sodium azide, an (1)O(2) chelator, protected cells against UVC-induced lethality. The survival assay showed that the fpg mutant was more resistant to UVC lethality than the wild-type strain. The rifampicin mutagenesis assay showed that UVC mutagenesis was inhibited five times more in cells treated with sodium azide, and stimulated 20% more fpg mutant. These results suggest that (1)O(2) plays a predominant role in UVC-induced mutagenesis. (1)O(2) generates a specific mutagenic lesion, 8-oxoG, which is repaired by Fpg protein. This lesion was measured by GC-TA reversion in the CC104 strain, its fpg mutant (BH540), and both CC104 and BH540 transformed with the plasmid pFPG (overexpression of Fpg protein). This assay showed that mutagenesis was induced 2.5-fold in the GC-TA strain and 7-fold in the fpg mutant, while the fpg mutant transformed with pFPG was similar to GC-TA strain. This suggests that UVC can also cause ROS-mediated mutagenesis and that the Fpg protein may be involved in this repair. PMID:22005338

  14. Nitric Oxide and Reactive Oxygen Species in the Pathogenesis of Preeclampsia

    PubMed Central

    Matsubara, Keiichi; Higaki, Takashi; Matsubara, Yuko; Nawa, Akihiro

    2015-01-01

    Preeclampsia (PE) is characterized by disturbed extravillous trophoblast migration toward uterine spiral arteries leading to increased uteroplacental vascular resistance and by vascular dysfunction resulting in reduced systemic vasodilatory properties. Its pathogenesis is mediated by an altered bioavailability of nitric oxide (NO) and tissue damage caused by increased levels of reactive oxygen species (ROS). Furthermore, superoxide (O2?) rapidly inactivates NO and forms peroxynitrite (ONOO?). It is known that ONOO? accumulates in the placental tissues and injures the placental function in PE. In addition, ROS could stimulate platelet adhesion and aggregation leading to intravascular coagulopathy. ROS-induced coagulopathy causes placental infarction and impairs the uteroplacental blood flow in PE. The disorders could lead to the reduction of oxygen and nutrients required for normal fetal development resulting in fetal growth restriction. On the other hand, several antioxidants scavenge ROS and protect tissues against oxidative damage. Placental antioxidants including catalase, superoxide dismutase (SOD), and glutathione peroxidase (GPx) protect the vasculature from ROS and maintain the vascular function. However, placental ischemia in PE decreases the antioxidant activity resulting in further elevated oxidative stress, which leads to the appearance of the pathological conditions of PE including hypertension and proteinuria. Oxidative stress is defined as an imbalance between ROS and antioxidant activity. This review provides new insights about roles of oxidative stress in the pathophysiology of PE. PMID:25739077

  15. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    PubMed

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. PMID:24771559

  16. Bistability of Mitochondrial Respiration Underlies Paradoxical Reactive Oxygen Species Generation Induced by Anoxia

    PubMed Central

    Selivanov, Vitaly A.; Votyakova, Tatyana V.; Zeak, Jennifer A.; Trucco, Massimo; Roca, Josep; Cascante, Marta

    2009-01-01

    Increased production of reactive oxygen species (ROS) in mitochondria underlies major systemic diseases, and this clinical problem stimulates a great scientific interest in the mechanism of ROS generation. However, the mechanism of hypoxia-induced change in ROS production is not fully understood. To mathematically analyze this mechanism in details, taking into consideration all the possible redox states formed in the process of electron transport, even for respiratory complex III, a system of hundreds of differential equations must be constructed. Aimed to facilitate such tasks, we developed a new methodology of modeling, which resides in the automated construction of large sets of differential equations. The detailed modeling of electron transport in mitochondria allowed for the identification of two steady state modes of operation (bistability) of respiratory complex III at the same microenvironmental conditions. Various perturbations could induce the transition of respiratory chain from one steady state to another. While normally complex III is in a low ROS producing mode, temporal anoxia could switch it to a high ROS producing state, which persists after the return to normal oxygen supply. This prediction, which we qualitatively validated experimentally, explains the mechanism of anoxia-induced cell damage. Recognition of bistability of complex III operation may enable novel therapeutic strategies for oxidative stress and our method of modeling could be widely used in systems biology studies. PMID:20041200

  17. Reactive oxygen species inhibit the succinate oxidation-supported generation of membrane potential in wheat mitochondria.

    PubMed

    Pastore, Donato; Laus, Maura Nicoletta; Di Fonzo, Natale; Passarella, Salvatore

    2002-04-10

    In order to gain a first insight into the effects of reactive oxygen species (ROS) on plant mitochondria, we studied the effect of the ROS producing system consisting of xanthine plus xanthine oxidase on the rate of membrane potential (DeltaPsi) generation due to either succinate or NADH addition to durum wheat mitochondria as monitored by safranin fluorescence. We show that the early ROS production inhibits the succinate-dependent, but not the NADH-dependent, DeltaPsi generation and oxygen uptake. This inhibition appears to depend on the impairment of mitochondrial permeability to succinate. It does not involve mitochondrial thiol groups sensitive to either mersalyl or N-ethylmaleimide and might involve both protein residues and/or membrane lipids, as suggested by the mixed nature. We propose that, during oxidative stress, early generation of ROS can affect plant mitochondria by impairing metabolite transport, thus preventing further substrate oxidation, DeltaPsi generation and consequent large-scale ROS production. PMID:11959094

  18. Reactive oxygen species initiate a metabolic collapse in hippocampal slices: potential trigger of cortical spreading depression

    PubMed Central

    Malkov, Anton; Ivanov, Anton I; Popova, Irina; Mukhtarov, Marat; Gubkina, Olena; Waseem, Tatsiana; Bregestovski, Piotr; Zilberter, Yuri

    2014-01-01

    Excessive accumulation of reactive oxygen species (ROS) underlies oxidative damage. We find that in hippocampal slices, decreased activity of glucose-based antioxidant system induces a massive, abrupt, and detrimental change in cellular functions. We call this phenomenon metabolic collapse (MC). This collapse manifested in long-lasting silencing of synaptic transmission, abnormal oxidation of NAD(P)H and FADH2 associated with immense oxygen consumption, and massive neuronal depolarization. MC occurred without any preceding deficiency in neuronal energy supply or disturbances of ionic homeostasis and spread throughout the hippocampus. It was associated with a preceding accumulation of ROS and was largely prevented by application of an efficient antioxidant Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl). The consequences of MC resemble cortical spreading depression (CSD), a wave of neuronal depolarization that occurs in migraine, brain trauma, and stroke, the cellular initiation mechanisms of which are poorly understood. We suggest that ROS accumulation might also be the primary trigger of CSD. Indeed, we found that Tempol strongly reduced occurrence of CSD in vivo, suggesting that ROS accumulation may be a key mechanism of CSD initiation. PMID:25027308

  19. [Detection of intracellular reactive oxygen species by flow cytometry in Pichia pastoris fermentation].

    PubMed

    Xiao, An-Feng; Zhou, Xiang-Shan; Zhou, Li; Zhang, Yuan-Xing

    2006-03-01

    In Pichia pastoris fermentation, methanol was oxidized into carbon oxide and produced a byproduct H2 O2, one of the partially reduced forms of molecular oxygen known as reactive oxygen species (ROS) . ROS are highly damaging towards cellular constituents. Flow cytometry (FCM) is an excellent method that permits the rapid, optical analysis of individual cells and has many advantages over conventional cytometry. However, its use in detecting intracellular ROS levels during Pichia fermentation was rarely reported. In our work, by means of flow cytometry, two fluorescent dye 2', 7'-dichlorofluorescin diacetate (DCFH-DA) and propidium iodide (PI) were used to detect ROS. The effect of intracellular ROS on Pichia pastoris cells during fermentation was studied through the comparison between DCFH-DA/PI double-stained cells and PI single-stained cells. In this study, the loss of cell viability during fermentation was correlated with the accumulation of ROS. At the glycerol batch and fed-batch phase, little ROS was accumulated intracellularly and cell viability reached almost 100%. At the early methanol fed-batch phase, intracellular ROS accumulation took place but 98.5% cells still kept viable. At the later methanol fed-batch phase, 94.0% cells accumulated high ROS. As a result, some cells lost their viability because of the damage of ROS. 25.4% dead cells accumulated high ROS in the total 29.1% dead cells. PMID:16607956

  20. Association of Reactive Oxygen Species Levels and Radioresistance in Cancer Stem Cells

    PubMed Central

    Diehn, Maximilian; Cho, Robert W.; Lobo, Neethan A.; Kalisky, Tomer; Dorie, Mary Jo; Kulp, Angela N.; Qian, Dalong; Lam, Jessica S.; Ailles, Laurie E.; Wong, Manzhi; Joshua, Benzion; Kaplan, Michael J.; Wapnir, Irene; Dirbas, Fred; Somlo, George; Garberoglio, Carlos; Paz, Benjamin; Shen, Jeannie; Lau, Sean K.; Quake, Stephen R.; Brown, J. Martin; Weissman, Irving L.; Clarke, Michael F.

    2009-01-01

    Metabolism of oxygen, while central to life, also produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease, and aging. It has recently been shown that central nervous system stem cells1, 2 and hematopoietic stem cells and early progenitors3-6 contain lower levels of ROS than their more mature progeny and that these differences appear to be critical for maintaining stem cell function. We hypothesized that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Congruently, subsets of CSCs in some human and murine breast tumors contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing radiation-induced cell killing7, 8, CSCs in these tumors develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacologic depletion of ROS scavengers in CSCs significantly decreases their clonogenicity and results in radiosensitization. These results indicate that, similar to normal tissue stem cells, subsets of CSCs in some tumors contain lower ROS levels and enhanced ROS defenses compared to their non-tumorigenic progeny, which may contribute to tumor radioresistance. PMID:19194462

  1. Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity.

    PubMed

    Park, Hee-Jin; Kim, Jee Yeon; Kim, Jaeeun; Lee, Joon-Hee; Hahn, Ji-Sook; Gu, Man Bock; Yoon, Jeyong

    2009-03-01

    Silver ions have been widely used as disinfectants that inhibit bacterial growth by inhibiting the essential enzymatic functions of the microorganism via interaction with the thiol-group of l-cysteine. However, silver-ion-mediated perturbation of the bacterial respiratory chain has raised the possibility of reactive oxygen species (ROS) generation. We used bacterial reporter strains specifically responding to superoxide radicals and found that silver-ion-mediated ROS-generation affected bactericidal activity. Almost half the log reduction in Escherichia coli and Staphylococcus aureus populations (model strains for gram negative and positive bacteria, respectively) caused by silver-ion disinfection was attributed to ROS-mediated bactericidal activity. The major form of ROS generated was the superoxide-radical; H(2)O(2) was not induced. Furthermore, silver ions strongly enhanced paraquat-induced oxidative stress, indicating close correlation and synergism between the conventional and ROS-mediated silver toxicity. Our results suggest that further studies in silver-based disinfection systems should consider the oxygen concentration and ROS reaction. PMID:19073336

  2. Peroxisome proliferation in Foraminifera inhabiting the chemocline: an adaptation to reactive oxygen species exposure?

    PubMed

    Bernhard, Joan M; Bowser, Samuel S

    2008-01-01

    Certain foraminiferal species are abundant within the chemocline of marine sediments. Ultrastructurally, most of these species possess numerous peroxisomes complexed with the endoplasmic reticulum (ER); mitochondria are often interspersed among these complexes. In the Santa Barbara Basin, pore-water bathing Foraminifera and co-occurring sulfur-oxidizing microbial mats had micromolar levels of hydrogen peroxide (H(2)O(2)), a reactive oxygen species that can be detrimental to biological membranes. Experimental results indicate that adenosine triphosphate concentrations are significantly higher in Foraminifera incubated in 16 microM H(2)O(2) than in specimens incubated in the absence of H(2)O(2). New ultrastructural and experimental observations, together with published results, lead us to propose that foraminiferans can utilize oxygen derived from the breakdown of environmentally and metabolically produced H(2)O(2). Such a capability could explain foraminiferal adaptation to certain chemically inhospitable environments; it would also force us to reassess the role of protists in biogeochemistry, especially with respect to hydrogen and iron. The ecology of these protists also appears to be tightly linked to the sulfur cycle. Finally, given that some Foraminifera bearing peroxisome-ER complexes belong to evolutionarily basal groups, an early acquisition of the capability to use environmental H(2)O(2) could have facilitated diversification of foraminiferans during the Neoproterozoic. PMID:18460150

  3. Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy.

    PubMed

    Pearson, Jennifer N; Rowley, Shane; Liang, Li-Ping; White, Andrew M; Day, Brian J; Patel, Manisha

    2015-10-01

    Cognitive dysfunction is an important comorbidity of temporal lobe epilepsy (TLE). However, no targeted therapies are available and the mechanisms underlying cognitive impairment, specifically deficits in learning and memory associated with TLE remain unknown. Oxidative stress is known to occur in the pathogenesis of TLE but its functional role remains to be determined. Here, we demonstrate that oxidative stress and resultant processes contribute to cognitive decline associated with epileptogenesis. Using a synthetic catalytic antioxidant, we show that pharmacological removal of reactive oxygen species (ROS) prevents 1) oxidative stress, 2) deficits in mitochondrial oxygen consumption rates, 3) hippocampal neuronal loss and 4) cognitive dysfunction without altering the intensity of the initial status epilepticus (SE) or epilepsy development in a rat model of SE-induced TLE. Moreover, the effects of the catalytic antioxidant on cognition persisted beyond the treatment period suggestive of disease-modification. The data implicate oxidative stress as a novel mechanism by which cognitive dysfunction can arise during epileptogenesis and suggest a potential disease-modifying therapeutic approach to target it. PMID:26184893

  4. Action of reactive oxygen species in the antifungal mechanism of gemini-pyridinium salts against yeast.

    PubMed

    Shirai, Akihiro; Ueta, Shouko; Maseda, Hideaki; Kourai, Hiroki; Omasa, Takeshi

    2012-06-01

    We previously found that the gemini quaternary salt (gemini-QUAT) containing two pyridinium residues per molecule, 3,3'- (2,7-dioxaoctane) bis (1-decylpyridinium bromide) (3DOBP-4,10) , exerted fungicidal activity against Saccharomyces cerevisiae and caused respiration inhibition and the cytoplasmic leakage of ATP, magnesium, and potassium ions. Here, we investigated how the gemini-QUAT, 3DOBP-4,10, exerts more powerful antimicrobial activity than the mono-QUAT N-cetylpyridinium chloride (CPC) and examined the association between reactive oxygen species (ROS) and the antimicrobial mechanism. Antifungal assays showed that the activity of 3DOBP-4,10 against two yeasts, S. cerevisiae and Candida albicans, was significantly elevated under aerobic conditions, and largely reduced under anaerobic conditions (nitrogen atmosphere) . Adding radical scavengers such as superoxide dismutase, catalase and potassium iodide (KI) also decreased the fungicidal activity of 3DOBP-4,10 but negligibly affected that of CPC. We measured survival under static conditions and found that the rapid fungicidal profile of 3DOBP-4,10 was lost, whereas that of CPC was slightly affected in the presence of KI. Our results suggest that 3DOBP-4,10 exerts powerful antimicrobial activity by penetrating the cell wall and membrane, which then allows oxygen to enter the cells, where it participates in the generation of intracellular ROS. The activity could thus be attributable to a synergic antimicrobial combination of the disruption of organelle membranes by the QUAT and oxidative stress imposed by ROS. PMID:22790843

  5. Oxidation of nickel surfaces through the energetic impacts of oxygen molecules: Reactive molecular dynamics simulations.

    PubMed

    Amiri, Negar; Behnejad, Hassan

    2016-04-14

    Molecular dynamics approach accompanied by reactive force field is used to study the characteristics of the oxide growth process on Ni(100) and Ni(111) surfaces at the temperatures of 300, 600, and 900 K and 5 eV as the energy of the O2 impacts. The exposure of Ni surfaces to the high-energy O2 impacts indicates that the primary oxide nuclei can be formed on any impact site. The results of kinetic studies clarify that the oxide growth kinetics cannot be accurately explained with the island growth model and increasing the surface temperature raises failure of the model. Under the present conditions, the growth kinetics is found to obey a Langmuir growth model. Increasing the surface temperature from 300 to 900 K results in ∼18.75% and ∼23% more oxygen consumption by (100) and (111) surfaces of Ni, respectively. The structure of nickel oxide (NiO) film formed after 200 successive O2 impacts per surface super-cell is investigated utilizing radial distribution functions and oxygen density profiles. These calculations demonstrate that the structure of the formed NiO film is amorphous. Moreover, the charge profiles in Ni/NiO system are illustrated and discussed. PMID:27083743

  6. Hypoxia-Dependent Reactive Oxygen Species Signaling in the Pulmonary Circulation: Focus on Ion Channels

    PubMed Central

    Veit, Florian; Pak, Oleg; Brandes, Ralf P.

    2015-01-01

    Abstract Significance: An acute lack of oxygen in the lung causes hypoxic pulmonary vasoconstriction, which optimizes gas exchange. In contrast, chronic hypoxia triggers a pathological vascular remodeling causing pulmonary hypertension, and ischemia can cause vascular damage culminating in lung edema. Recent Advances: Regulation of ion channel expression and gating by cellular redox state is a widely accepted mechanism; however, it remains a matter of debate whether an increase or a decrease in reactive oxygen species (ROS) occurs under hypoxic conditions. Ion channel redox regulation has been described in detail for some ion channels, such as Kv channels or TRPC6. However, in general, information on ion channel redox regulation remains scant. Critical Issues and Future Directions: In addition to the debate of increased versus decreased ROS production during hypoxia, we aim here at describing and deciphering why different oxidants, under different conditions, can cause both activation and inhibition of channel activity. While the upstream pathways affecting channel gating are often well described, we need a better understanding of redox protein modifications to be able to determine the complexity of ion channel redox regulation. Against this background, we summarize the current knowledge on hypoxia-induced ROS-mediated ion channel signaling in the pulmonary circulation. Antioxid. Redox Signal. 22, 537–552 PMID:25545236

  7. Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory

    PubMed Central

    Klann, Eric

    2011-01-01

    Abstract The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function. Antioxid. Redox Signal. 14, 2013–2054. PMID:20649473

  8. Oxidative Stress in the Developing Rat Brain due to Production of Reactive Oxygen and Nitrogen Species

    PubMed Central

    Wilhelm, Jiří; Vytášek, Richard; Uhlík, Jiří; Vajner, Luděk

    2016-01-01

    Oxidative stress after birth led us to localize reactive oxygen and nitrogen species (RONS) production in the developing rat brain. Brains were assessed a day prenatally and on postnatal days 1, 2, 4, 8, 14, 30, and 60. Oxidation of dihydroethidium detected superoxide; 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate revealed hydrogen peroxide; immunohistochemical proof of nitrotyrosine and carboxyethyllysine detected peroxynitrite formation and lipid peroxidation, respectively. Blue autofluorescence detected protein oxidation. The foetuses showed moderate RONS production, which changed cyclically during further development. The periods and sites of peak production of individual RONS differed, suggesting independent generation. On day 1, neuronal/glial RONS production decreased indicating that increased oxygen concentration after birth did not cause oxidative stress. Dramatic changes in the amount and the sites of RONS production occurred on day 4. Nitrotyrosine detection reached its maximum. Day 14 represented other vast alterations in RONS generation. Superoxide production in arachnoidal membrane reached its peak. From this day on, the internal elastic laminae of blood vessels revealed the blue autofluorescence. The adult animals produced moderate levels of superoxide; all other markers reached their minimum. There was a strong correlation between detection of nitrotyrosine and carboxyethyllysine probably caused by lipid peroxidation initiated with RONS. PMID:27190574

  9. Prussian Blue Nanoparticles as Multienzyme Mimetics and Reactive Oxygen Species Scavengers.

    PubMed

    Zhang, Wei; Hu, Sunling; Yin, Jun-Jie; He, Weiwei; Lu, Wei; Ma, Ming; Gu, Ning; Zhang, Yu

    2016-05-11

    The generation of reactive oxygen species (ROS) is an important mechanism of nanomaterial toxicity. We found that Prussian blue nanoparticles (PBNPs) can effectively scavenge ROS via multienzyme-like activity including peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) activity. Instead of producing hydroxyl radicals (•OH) through the Fenton reaction, PBNPs were shown to be POD mimetics that can inhibit •OH generation. We theorized for the first time that the multienzyme-like activities of PBNPs were likely caused by the abundant redox potentials of their different forms, making them efficient electron transporters. To study the ROS scavenging ability of PBNPs, a series of in vitro ROS-generating models was established using chemicals, UV irradiation, oxidized low-density lipoprotein, high glucose contents, and oxygen glucose deprivation and reperfusion. To demonstrate the ROS scavenging ability of PBNPs, an in vivo inflammation model was established using lipoproteins in Institute for Cancer Research (ICR) mice. The results indicated that PBNPs hold great potential for inhibiting or relieving injury induced by ROS in these pathological processes. PMID:26918394

  10. Oxidative Folding: Cellular Strategies for Dealing with the Resultant Equimolar Production of Reactive Oxygen Species

    PubMed Central

    Shimizu, Yuichiro

    2009-01-01

    Abstract All eukaryotic cells possess an endoplasmic reticulum (ER), which is the site for synthesizing proteins that populate the cell surface or extracellular space. The environment of the ER is oxidizing, which supports the formation of intra- and interchain disulfide bonds that serve to stabilize the folding and assembly of nascent proteins. Recent experimental data reveal that the formation of disulfide bonds does not occur spontaneously but results from the enzymatic transfer of disulfide bonds through a number of intermediate proteins, with molecular oxygen serving as the terminal electron acceptor. Thus, each disulfide bond that forms during oxidative folding should produce a single reactive oxygen species (ROS). Dedicated secretory tissues like the pancreas and plasma cells have been estimated to form up to 3–6 million disulfide bonds per minute, which would be expected to result in the production of the same number of molecules of ROS. Although the methods used to deal with this amount of oxidative stress are not well understood, recent research suggests that different types of cells use distinct strategies and that the unfolded protein response (UPR) is a critical component of the defense. Antioxid. Redox Signal. 11, 2317–2331. PMID:19243234

  11. Reactive oxygen species initiate a metabolic collapse in hippocampal slices: potential trigger of cortical spreading depression.

    PubMed

    Malkov, Anton; Ivanov, Anton I; Popova, Irina; Mukhtarov, Marat; Gubkina, Olena; Waseem, Tatsiana; Bregestovski, Piotr; Zilberter, Yuri

    2014-09-01

    Excessive accumulation of reactive oxygen species (ROS) underlies oxidative damage. We find that in hippocampal slices, decreased activity of glucose-based antioxidant system induces a massive, abrupt, and detrimental change in cellular functions. We call this phenomenon metabolic collapse (MC). This collapse manifested in long-lasting silencing of synaptic transmission, abnormal oxidation of NAD(P)H and FADH2 associated with immense oxygen consumption, and massive neuronal depolarization. MC occurred without any preceding deficiency in neuronal energy supply or disturbances of ionic homeostasis and spread throughout the hippocampus. It was associated with a preceding accumulation of ROS and was largely prevented by application of an efficient antioxidant Tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl). The consequences of MC resemble cortical spreading depression (CSD), a wave of neuronal depolarization that occurs in migraine, brain trauma, and stroke, the cellular initiation mechanisms of which are poorly understood. We suggest that ROS accumulation might also be the primary trigger of CSD. Indeed, we found that Tempol strongly reduced occurrence of CSD in vivo, suggesting that ROS accumulation may be a key mechanism of CSD initiation. PMID:25027308

  12. Ultraviolet Irradiation-Dependent Fluorescence Enhancement of Hemoglobin Catalyzed by Reactive Oxygen Species

    PubMed Central

    Pan, Leiting; Wang, Xiaoxu; Yang, Shuying; Wu, Xian; Lee, Imshik; Zhang, Xinzheng; Rupp, Romano A.; Xu, Jingjun

    2012-01-01

    Ultraviolet (UV) light has a potent effect on biological organisms. Hemoglobin, an oxygen-transport protein, plays an irreplaceable role in sustaining life of all vertebrates. In this study we scrutinize the effects of ultraviolet irradiation (UVI) as well as visible irradiation on the fluorescence characteristics of bovine hemoglobin (BHb) in vitro. Data show that UVI results in fluorescence enhancement of BHb in a dose-dependant manner. Furthermore, UVI-induced fluorescence enhancement is significantly increased when BHb is pretreated with hydrogen peroxide (H2O2), a type of reactive oxygen species (ROS). Meanwhile, The water-soluble antioxidant vitamin C suppresses this UVI-induced fluorescence enhancement. In contrast, green light irradiation does not lead to fluorescence enhancement of BHb no matter whether H2O2 is acting on the BHb solution or not. Taken together, these results indicate that catalysis of ROS and UVI-dependent irradiation play two key roles in the process of UVI-induced fluorescence enhancement of BHb. PMID:22952902

  13. Scavenging of reactive oxygen species by some nonsteroidal anti-inflammatory drugs and fenofibrate.

    PubMed

    Kładna, Aleksandra; Aboul-Enein, Hassan Y; Kruk, Irena; Lichszteld, Krzysztof; Michalska, Teresa

    2006-06-01

    Ketoprofen and tolmetin are widely used nonsteroidal anti-inflammatory drugs, whereas fenofibrate belongs to a family of hypolipidemic drugs used in the prevention of cardiovascular diseases. The aim of this study was to assess effect of these drugs on reactions generating reactive oxygen species (ROS). The following generators of ROS were used: 18-crown-6/KO(2) dissolved in DMSO as a source of superoxide radical (O(.-)(2), the Fenton-like reaction (Cu/H(2)O(2)) for hydroxyl radical (HO(.)), 2,2'-azobis (2-amidino-propane) dichloride (AAPH) as peroxyl radical (ROO(.)) generator, and a mixture of alkaline aqueous H(2)O(2) and acetonitrile for singlet oxygen ((1)O(2)). Measurements were done using chemiluminescence, fluorescence, and spin-trapping with 2,2,6,6-tetramethylpiperidine combined with electron spin resonance spectroscopy (ESR), and a deoxyribose assay based on the spectrophotometry. The results obtained demonstrated that all tested drugs were active against O(.-)(2). There was a clear ranking of drug inhibition effects on chemiluminescence from the O(.-)(2) system: ketoprofen > tolmetin > fenofibrate. The examined compounds inhibited the HO(.)-dependent deoxyribose degradation and scavenged the ROO(.) concentration dependently with an order of potencies similar to that of the superoxide radical system. Hence, these results indicate that the studied drugs show broad ROS scavenging property and, as a consequence, might decrease tissue damage due to the ROS and thus to contribute to anti-inflammatory therapy. PMID:16245331

  14. Growth properties and reactivity of oxygen phases on platinum (111) and palladiium (111)

    NASA Astrophysics Data System (ADS)

    Devarajan, Sunil Poondi

    Oxidation reactions of Pt and Pd under lean burn or oxygen rich conditions are crucial to heterogeneous catalysis systems used in oxidation of hydrocarbons, fabrication of specialty chemicals, power generation through catalytic oxidation, fuel cells and most significantly pollution control through remediation of industrial and automotive exhaust. In spite of their tremendous appeal and widespread use in many important applications, knowledge used to formulate catalytic systems based on the transition metals has chiefly been derived from empirical data, because of their low reactivity towards molecular oxygen under experimental conditions of Ultra High Vacuum (UHV). Thanks to recent advances in surface science techniques, path breaking research through innovative experimental methods coupled with a renewed vigor towards computational ab-initio simulations, have opened avenues for fundamental understanding of this important class of reactions. We utilized strong oxidizing agents like nitrogen di-oxide and atomic oxygen beams to grow oxygen phases on platinum and palladium single crystals and studied their characteristics using various surface analytic techniques. Our STM work on Pt(111), ends a long standing debate on whether the oxygen atoms continue filling up fcc hollow sites or start filling up hcp hollow sites beyond the well understood 0.25 ML coverage. We also present evidence to demonstrate formation of a Pt oxide chain compound which appears as protrusions on the surface and arrange themselves into a well networked superstructure during initial oxidation. Our work on Pd(111) using TPRS, reveals for the first time that C-H bond cleavage of propane occurs on a PdO(101) thin film at temperatures below 200 K under UHV conditions. It is also observed that the hydrogen, and propyl fragments resulting from the bond cleavage react with the thin film oxide to undergo complete oxidation releasing H2O and CO2 at higher temperatures. The C-H bond cleavage occurs only because of the formation of a strongly bound molecular state, which in turn is facilitated by the unique local bonding environment of the PdO(101) surface.

  15. Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo

    PubMed Central

    Salin, Karine; Auer, Sonya K.; Rudolf, Agata M.; Anderson, Graeme J.; Cairns, Andrew G.; Mullen, William; Hartley, Richard C.; Selman, Colin; Metcalfe, Neil B.

    2015-01-01

    There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2. PMID:26382073

  16. Photoirradiation of dehydropyrrolizidine alkaloids--formation of reactive oxygen species and induction of lipid peroxidation.

    PubMed

    Zhao, Yuewei; Xia, Qingsu; Yin, Jun Jie; Lin, Ge; Fu, Peter P

    2011-09-10

    Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and are probably the most common poisonous plants affecting livestock, wildlife, and human. PAs require metabolic activation to generate pyrrolic metabolites (dehydro-PAs) that bind cellular protein and DNA, leading to hepatotoxicity and genotoxicity, including tumorigenicity. In this study we report that UVA photoirradiation of a series of dehydro-PAs, e.g., dehydromonocrotaline, dehydroriddelliine, dehydroretrorsine, dehydrosenecionine, dehydroseneciphylline, dehydrolasiocarpine, dehydroheliotrine, and dehydroretronecine (DHR) at 0-70 J/cm2 in the presence of a lipid, methyl linoleate, resulted in lipid peroxidation in a light dose-responsive manner. When irradiated in the presence of sodium azide, the level of lipid peroxidation decreased; lipid peroxidation was enhanced when methanol was replaced by deuterated methanol. These results suggest that singlet oxygen is a photo-induced product. When irradiated in the presence of superoxide dismutase, the level of lipid peroxidation decreased, indicating that lipid peroxidation is also mediated by superoxide. Electron spin resonance (ESR) spin trapping studies confirmed that both singlet oxygen and superoxide anion radical were formed during photoirradiation. These results indicate that UVA photoirradiation of dehydro-PAs generates reactive oxygen species (ROS) that mediated the initiation of lipid peroxidation. UVA irradiation of the parent PAs and other PA metabolites, including PA N-oxides, under similar experimental conditions did not produce lipid peroxidation. It is known that PAs induce skin cancer and are secondary (hepatogenous) photosensitization agents. Our results suggest that dehydro-PAs are the active metabolites responsible for skin cancer formation and PA-induced secondary photosensitization. PMID:21723383

  17. Individuals with higher metabolic rates have lower levels of reactive oxygen species in vivo.

    PubMed

    Salin, Karine; Auer, Sonya K; Rudolf, Agata M; Anderson, Graeme J; Cairns, Andrew G; Mullen, William; Hartley, Richard C; Selman, Colin; Metcalfe, Neil B

    2015-09-01

    There is increasing interest in the effect of energy metabolism on oxidative stress, but much ambiguity over the relationship between the rate of oxygen consumption and the generation of reactive oxygen species (ROS). Production of ROS (such as hydrogen peroxide, H2O2) in the mitochondria is primarily inferred indirectly from measurements in vitro, which may not reflect actual ROS production in living animals. Here, we measured in vivo H2O2 content using the recently developed MitoB probe that becomes concentrated in the mitochondria of living organisms, where it is converted by H2O2 into an alternative form termed MitoP; the ratio of MitoP/MitoB indicates the level of mitochondrial H2O2 in vivo. Using the brown trout Salmo trutta, we tested whether this measurement of in vivo H2O2 content over a 24 h-period was related to interindividual variation in standard metabolic rate (SMR). We showed that the H2O2 content varied up to 26-fold among fish of the same age and under identical environmental conditions and nutritional states. Interindividual variation in H2O2 content was unrelated to mitochondrial density but was significantly associated with SMR: fish with a higher mass-independent SMR had a lower level of H2O2. The mechanism underlying this observed relationship between SMR and in vivo H2O2 content requires further investigation, but may implicate mitochondrial uncoupling which can simultaneously increase SMR but reduce ROS production. To our knowledge, this is the first study in living organisms to show that individuals with higher oxygen consumption rates can actually have lower levels of H2O2. PMID:26382073

  18. Mitochondrial Respiration Deficits Driven by Reactive Oxygen Species in Experimental Temporal Lobe Epilepsy

    PubMed Central

    Rowley, Shane; Liang, Li-Ping; Fulton, Ruth; Shimizu, Takahiko; Day, Brian; Patel, Manisha

    2015-01-01

    Metabolic alterations have been implicated in the etiology of temporal lobe epilepsy (TLE), but whether or not they have a functional impact on cellular energy producing pathways (glycolysis and/or oxidative phosphorylation) is unknown. The goal of this study was to determine if alterations in cellular bioenergetics occur using real-time analysis of mitochondrial oxygen consumption and glycolytic rates in an animal model of TLE. We hypothesized that increased steady-state levels of reactive oxygen species (ROS) initiated by epileptogenic injury result in impaired mitochondrial respiration. We established methodology for assessment of bioenergetic parameters in isolated synaptosomes from the hippocampus of Sprague-Dawley rats at various times in the kainate (KA) model of TLE. Deficits in indices of mitochondrial respiration were observed at time points corresponding with the acute and chronic phases of epileptogenesis. We asked if mitochondrial bioenergetic dysfunction occurred as a result of increased mitochondrial ROS and if it could be attenuated in the KA model by pharmacologically scavenging ROS. Increased steady-state ROS in mice with forebrain-specific conditional deletion of manganese superoxide dismutase (Sod2fl/flNEXCre/Cre) in mice resulted in profound deficits in mitochondrial oxygen consumption. Pharmacological scavenging of ROS with a catalytic antioxidant restored mitochondrial respiration deficits in the KA model of TLE. Together, these results demonstrate that mitochondrial respiration deficits occur in experimental TLE and ROS mechanistically contribute to these deficits. Furthermore, this study provides novel methodology for assessing cellular metabolism during the entire time course of disease development. PMID:25600213

  19. Reperfusion injury and reactive oxygen species: The evolution of a concept☆

    PubMed Central

    Granger, D. Neil; Kvietys, Peter R.

    2015-01-01

    Reperfusion injury, the paradoxical tissue response that is manifested by blood flow-deprived and oxygen-starved organs following the restoration of blood flow and tissue oxygenation, has been a focus of basic and clinical research for over 4-decades. While a variety of molecular mechanisms have been proposed to explain this phenomenon, excess production of reactive oxygen species (ROS) continues to receive much attention as a critical factor in the genesis of reperfusion injury. As a consequence, considerable effort has been devoted to identifying the dominant cellular and enzymatic sources of excess ROS production following ischemia-reperfusion (I/R). Of the potential ROS sources described to date, xanthine oxidase, NADPH oxidase (Nox), mitochondria, and uncoupled nitric oxide synthase have gained a status as the most likely contributors to reperfusion-induced oxidative stress and represent priority targets for therapeutic intervention against reperfusion-induced organ dysfunction and tissue damage. Although all four enzymatic sources are present in most tissues and are likely to play some role in reperfusion injury, priority and emphasis has been given to specific ROS sources that are enriched in certain tissues, such as xanthine oxidase in the gastrointestinal tract and mitochondria in the metabolically active heart and brain. The possibility that multiple ROS sources contribute to reperfusion injury in most tissues is supported by evidence demonstrating that redox-signaling enables ROS produced by one enzymatic source (e.g., Nox) to activate and enhance ROS production by a second source (e.g., mitochondria). This review provides a synopsis of the evidence implicating ROS in reperfusion injury, the clinical implications of this phenomenon, and summarizes current understanding of the four most frequently invoked enzymatic sources of ROS production in post-ischemic tissue. PMID:26484802

  20. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  1. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    SciTech Connect

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-05-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors.

  2. Effect of reactive oxygen species (ROS) generating system for control of airborne microorganisms in meat processing environment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in a meat processing environment was determined. Serratia marcescens and lactic acid bacteria (Lactococcus lactis subsp. lactis and Lactobacillus plantarum) were used to artificiall...

  3. Role of NADPH oxidases and reactive oxygen species in regulation of bone turnover and the skeletal toxicity of alcohol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies with genetically modified mice and dietary antioxidants have suggested an important role for superoxide derived from NADPH oxidase (NOX) enzymes and other reactive oxygen species (ROS) such as hydrogen peroxide in regulation of normal bone turnover during development and also in the r...

  4. Using fluorescence-activated flow cytometry to determine reactive oxygen species formation and membrane lipid peroxidation in viable boar spermatozoa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence-activated flow cytometry analyses were developed for determination of reactive oxygen species (ROS) formation and membrane lipid peroxidation in live spermatozoa loaded with, respectively, hydroethidine (HE) or the lipophilic probe 4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-d...

  5. Comparative In Vivo Effects of Hemoglobin-Based Oxygen Carriers (HBOC) with Varying Prooxidant and Physiological Reactivity

    PubMed Central

    Roman, Ioana; Sevastre, Bogdan; Hathazi, Denisa; Scurtu, Florina; Damian, Grigore; Silaghi-Dumitrescu, Radu

    2016-01-01

    A series of hemoglobin-based oxygen carrier candidates (HBOC), previously noted for their differences in prooxidative and physiological reactivity, were compared in terms of the negative effects displayed upon injection in Wistar rats. At the concentrations tested, antioxidant strategies based on albumin as well as based on rubrerythrin appear to offer observable physiological advantages. PMID:27097326

  6. Generation of Reactive Oxygen and Anti-Oxidant Species by Hydrodynamically-Stressed Suspensions of Morinda citrofolia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The generation of reactive oxygen species (ROS) by plant cell suspension cultures, in response to the imposition of both biotic and abiotic stress, is well-documented. This study investigated the generation of hydrogen peroxide by hydrodynamically-stressed cultures of Morinda citrifolia, over a 5-ho...

  7. Eicosanoids up-regulate production of reactive oxygen species by NADPH-dependent oxidase in Spodoptera exigua phagocytic hemocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eicosanoids mediate cellular immune responses in insects, including phagocytosis of invading microbes. Phagocytosis entails two major steps, the internalization of microbes and the subsequent killing of them via formation of reactive oxygen species (ROS). Here, we posed the hypothesis that eicosanoi...

  8. REACTIVE OXYGEN SPECIES IN WHOLE BLOOD, BLOOD PLASMA AND BREAST MILK: VALIDATION OF A POTENTIAL MARKER OF EXPOSURE AND EFFECT

    EPA Science Inventory

    Reactive oxygen species (ROS) are recognized to contribute to the pathobiology of many diseases. We have applied a simple chemiluminescent (CL) probe to detect ROS in various biological fluids (plasma, whole blood, urine and breast milk) in an environmental arsenic drinking wate...

  9. Evidence for Detrimental Cross Interactions between Reactive Oxygen and Nitrogen Species in Leber's Hereditary Optic Neuropathy Cells

    PubMed Central

    Santini, Paolo

    2016-01-01

    Here we have collected evidence suggesting that chronic changes in the NO homeostasis and the rise of reactive oxygen species bioavailability can contribute to cell dysfunction in Leber's hereditary optic neuropathy (LHON) patients. We report that peripheral blood mononuclear cells (PBMCs), derived from a female LHON patient with bilateral reduced vision and carrying the pathogenic mutation 11778/ND4, display increased levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), as revealed by flow cytometry, fluorometric measurements of nitrite/nitrate, and 3-nitrotyrosine immunodetection. Moreover, viability assays with the tetrazolium dye MTT showed that lymphoblasts from the same patient are more sensitive to prolonged NO exposure, leading to cell death. Taken together these findings suggest that oxidative and nitrosative stress cooperatively play an important role in driving LHON pathology when excess NO remains available over time in the cell environment. PMID:26881022

  10. Surface reactivity and oxygen migration in amorphous indium-gallium-zinc oxide films annealed in humid atmosphere

    SciTech Connect

    Watanabe, Ken; Lee, Dong-Hee; Materials and Structures Laboratory , Tokyo Institute of Technology, Mailbox R3-4, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 ; Sakaguchi, Isao; Haneda, Hajime; Nomura, Kenji; Kamiya, Toshio; Materials Research Center for Element Strategy , Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 ; Hosono, Hideo; Frontier Research Center, Tokyo Institute of Technology, Mailbox S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026; Materials Research Center for Element Strategy , Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026 ; Ohashi, Naoki; Materials Research Center for Element Strategy , Mailbox S2-13, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-0026

    2013-11-11

    An isotope tracer study, i.e., {sup 18}O/{sup 16}O exchange using {sup 18}O{sub 2} and H{sub 2}{sup 18}O, was performed to determine how post-deposition annealing (PDA) affected surface reactivity and oxygen diffusivity of amorphous indium–gallium–zinc oxide (a-IGZO) films. The oxygen tracer diffusivity was very high in the bulk even at low temperatures, e.g., 200 °C, regardless of PDA and exchange conditions. In contrast, the isotope exchange rate, dominated by surface reactivity, was much lower for {sup 18}O{sub 2} than for H{sub 2}{sup 18}O. PDA in a humid atmosphere at 400 °C further suppressed the reactivity of O{sub 2} at the a-IGZO film surface, which is attributable to –OH-terminated surface formation.

  11. Mechanical and photo-fragmentation processes for nanonization of melanin to improve its efficacy in protecting cells from reactive oxygen species stress

    SciTech Connect

    Liu, Yi-Cheng; Chen, Sih-Min; Liu, Jhong-Han; Hsu, Hsiang-Wei; Lin, Hoang-Yan; Chen, Szu-yuan

    2015-02-14

    It has been well established ex vivo that melanin has the ability of scavenging free radicals and reactive oxygen species (ROS), besides other functions. Therefore, we propose to utilize nanonized melanin as medication against acute oxidative stress. For this purpose, we developed and characterized two techniques based on mechanical stir and photo-fragmentation using femtosecond laser pulses, respectively, for disintegration of suspended melanin powder to produce nanometer-sized and water-dispersible melanin. This resolves a major obstacle in the medical and industrial applications of melanin. The viabilities of cultured retinal pigment epithelium (RPE) cells exposed to exogenous H{sub 2}O{sub 2} stress and treated with various conditions of melanin and irradiation were compared. It was found that melanin could be nanonized very effectively with the techniques, and nanonized melanin exhibited a much stronger effect than unprocessed melanin on raising the viability of cultured RPE cells under acute ROS stress. The effect was even more prominent without simultaneous light irradiation, promising for effective in vivo application to the whole body.

  12. Salicylic acid alleviates cadmium-induced stress responses through the inhibition of Cd-induced auxin-mediated reactive oxygen species production in barley root tips.

    PubMed

    Tamás, Ladislav; Mistrík, Igor; Alemayehu, Aster; Zelinová, Veronika; Bočová, Beáta; Huttová, Jana

    2014-09-22

    Auxin is a master regulator of root growth by modulating its development under the constantly changing environment. Recently, an antagonistic interaction was suggested between SA and IAA signaling. Therefore, the purpose of this work was to analyze and compare the effect of the indole-3-acetic acid (IAA) signaling inhibitor p-chlorophenoxyisobutyric acid (PCIB) and salicylic acid (SA) as a potential IAA signaling inhibitor on the root growth, enzyme activity and reactive oxygen species (ROS) production in Cd- and IAA-treated barley root tips. Exposure of plants to Cd resulted in a more than threefold increase of IAA content in the root apex even 3h after the treatment. In addition, exogenously applied IAA evoked root responses such as root growth inhibition and swelling, ROS generation and activation of lipoxygenase or glutathione peroxidase identical to those induced by Cd. Furthermore, both Cd- and IAA-induced stress responses were markedly reversed by PCIB or SA post-treatment. Similarly to PCIB, SA did not affect the IAA content of root tips, suggesting the action of SA on the IAA signaling pathway in barley roots. SA probably does not alleviate the Cd toxicity in roots, but rather prevents or partially inhibits the root defense response to the presence of Cd through the inhibition of Cd-induced IAA-mediated ROS generation in roots. PMID:25462072

  13. Mechanical and photo-fragmentation processes for nanonization of melanin to improve its efficacy in protecting cells from reactive oxygen species stress

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Cheng; Chen, Sih-Min; Liu, Jhong-Han; Hsu, Hsiang-Wei; Lin, Hoang-Yan; Chen, Szu-yuan

    2015-02-01

    It has been well established ex vivo that melanin has the ability of scavenging free radicals and reactive oxygen species (ROS), besides other functions. Therefore, we propose to utilize nanonized melanin as medication against acute oxidative stress. For this purpose, we developed and characterized two techniques based on mechanical stir and photo-fragmentation using femtosecond laser pulses, respectively, for disintegration of suspended melanin powder to produce nanometer-sized and water-dispersible melanin. This resolves a major obstacle in the medical and industrial applications of melanin. The viabilities of cultured retinal pigment epithelium (RPE) cells exposed to exogenous H2O2 stress and treated with various conditions of melanin and irradiation were compared. It was found that melanin could be nanonized very effectively with the techniques, and nanonized melanin exhibited a much stronger effect than unprocessed melanin on raising the viability of cultured RPE cells under acute ROS stress. The effect was even more prominent without simultaneous light irradiation, promising for effective in vivo application to the whole body.

  14. Abscisic acid and hydrogen peroxide induce a novel maize group C MAP kinase gene, ZmMPK7, which is responsible for the removal of reactive oxygen species.

    PubMed

    Zong, Xiao-juan; Li, Da-peng; Gu, Ling-kun; Li, De-quan; Liu, Li-xia; Hu, Xiao-li

    2009-02-01

    Mitogen-activated protein kinase (MAPK) cascades are involved in biotic and abiotic stress responses. In plants, MAPKs are classified into four groups, designated A-D. Information about group C MAPKs is limited, and, in particular, no data from maize are available. In this article, we isolated a novel group C MAPK gene, ZmMPK7, from Zea mays. Exogenous abscisic acid (ABA) and hydrogen peroxide (H(2)O(2)) induced calcium-dependant transcription of ZmMPK7. Induction of this gene in response to ABA was blocked by several reactive oxygen species (ROS) manipulators such as imidazole, Tiron, and dimethylthiourea (DMTU). This result indicates that endogenous H(2)O(2) may be required for ZmMPK7-mediated ABA signaling. Expression of ZmMPK7 in Nicotonia tobaccum caused less H(2)O(2) to accumulate and alleviated ROS-mediated injuries following submission of the plants to osmotic stress. The enhanced total peroxidase (POD) activity in transgenic tobacco plants may contribute to removal of ROS. Finally, we have shown that the ZmMPK7 protein localizes in the nucleus. These results broaden our knowledge regarding plant group C MAPK activity in response to stress signals. PMID:19002491

  15. Maize ABP9 enhances tolerance to multiple stresses in transgenic Arabidopsis by modulating ABA signaling and cellular levels of reactive oxygen species.

    PubMed

    Zhang, Xia; Wang, Lei; Meng, Hui; Wen, Hongtao; Fan, Yunliu; Zhao, Jun

    2011-03-01

    The phytohormone abscisic acid (ABA) and reactive oxygen species (ROS) play critical roles in mediating abiotic stress responses in plants. It is well known that ABA is involved in the modulation of ROS levels by regulating ROS-producing and ROS-scavenging genes, but the molecular mechanisms underlying this regulation are poorly understood. Here we show that the expression of maize ABP9 gene, which encodes a bZIP transcription factor capable of binding to the ABRE2 motif in the maize Cat1 promoter, is induced by ABA, H(2)O(2), drought and salt. Constitutive expression of ABP9 in transgenic Arabidopsis leads to remarkably enhanced tolerance to multiple stresses including drought, high salt, freezing temperature and oxidative stresses. ABP9 expressing Arabidopsis plants also exhibit increased sensitivity to exogenously applied ABA during seed germination, root growth and stomatal closure and improved water-conserving capacity. Moreover, constitutive expression of ABP9 causes reduced cellular levels of ROS, alleviated oxidative damage and reduced cell death, accompanied by elevated expression of many stress/ABA responsive genes including those for scavenging and regulating ROS. Taken together, these results suggest that ABP9 may play a pivotal role in plant tolerance to abiotic stresses by fine tuning ABA signaling and control of ROS accumulation. PMID:21327835

  16. Antibacterial activity of CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) generating reactive oxygen species.

    PubMed

    Culakova, Hana; Dzugasova, Vladimira; Gbelska, Yvetta; Subik, Julius

    2013-03-30

    CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) is an antifungal and chemosensitizing agent that induces oxidative stress in yeast and filamentous fungi and enhances the cytotoxic activity of 5-fluorocytosine and azole antimycotics. This study reports the effect of CTBT on bacterial cells. CTBT inhibited the growth of both Gram-positive and Gram-negative bacterial species. The action of CTBT was bactericidal. In Escherichia coli, CTBT induced an increased formation of reactive oxygen species (ROS), as determined with a ROS specific probe 2',7'-dichlorodihydrofluorescein diacetate. In zone inhibition assays, bacterial cells were more sensitive to CTBT compared with paraquat, menadione and hydrogen peroxide. The deletion of oxidative stress related genes resulted in increased susceptibility of E. coli mutant strains to CTBT treatment. Exogenous antioxidants such as ascorbic acid, cysteine and glutathione exhibited a protective effect against the growth inhibition induced by CTBT. CTBT may be a useful tool in the studies of ROS generation, oxidant sensing and oxidative stress response in different bacterial species. PMID:23176778

  17. Cadmium-Induced Hydrogen Sulfide Synthesis Is Involved in Cadmium Tolerance in Medicago sativa by Reestablishment of Reduced (Homo)glutathione and Reactive Oxygen Species Homeostases

    PubMed Central

    Cui, Weiti; Chen, Huiping; Zhu, Kaikai; Jin, Qijiang; Xie, Yanjie; Cui, Jin; Xia, Yan; Zhang, Jing; Shen, Wenbiao

    2014-01-01

    Until now, physiological mechanisms and downstream targets responsible for the cadmium (Cd) tolerance mediated by endogenous hydrogen sulfide (H2S) have been elusive. To address this gap, a combination of pharmacological, histochemical, biochemical and molecular approaches was applied. The perturbation of reduced (homo)glutathione homeostasis and increased H2S production as well as the activation of two H2S-synthetic enzymes activities, including L-cysteine desulfhydrase (LCD) and D-cysteine desulfhydrase (DCD), in alfalfa seedling roots were early responses to the exposure of Cd. The application of H2S donor sodium hydrosulfide (NaHS), not only mimicked intracellular H2S production triggered by Cd, but also alleviated Cd toxicity in a H2S-dependent fashion. By contrast, the inhibition of H2S production caused by the application of its synthetic inhibitor blocked NaHS-induced Cd tolerance, and destroyed reduced (homo)glutathione and reactive oxygen species (ROS) homeostases. Above mentioned inhibitory responses were further rescued by exogenously applied glutathione (GSH). Meanwhile, NaHS responses were sensitive to a (homo)glutathione synthetic inhibitor, but reversed by the cotreatment with GSH. The possible involvement of cyclic AMP (cAMP) signaling in NaHS responses was also suggested. In summary, LCD/DCD-mediated H2S might be an important signaling molecule in the enhancement of Cd toxicity in alfalfa seedlings mainly by governing reduced (homo)glutathione and ROS homeostases. PMID:25275379

  18. The Mechanisms Involved in Seed Dormancy Alleviation by Hydrogen Cyanide Unravel the Role of Reactive Oxygen Species as Key Factors of Cellular Signaling during Germination[C][W

    PubMed Central

    Oracz, Krystyna; El-Maarouf-Bouteau, Hayat; Kranner, Ilse; Bogatek, Renata; Corbineau, Françoise; Bailly, Christophe

    2009-01-01

    The physiological dormancy of sunflower (Helianthus annuus) embryos can be overcome during dry storage (after-ripening) or by applying exogenous ethylene or hydrogen cyanide (HCN) during imbibition. The aim of this work was to provide a comprehensive model, based on oxidative signaling by reactive oxygen species (ROS), for explaining the cellular mode of action of HCN in dormancy alleviation. Beneficial HCN effect on germination of dormant embryos is associated with a marked increase in hydrogen peroxide and superoxide anion generation in the embryonic axes. It is mimicked by the ROS-generating compounds methylviologen and menadione but suppressed by ROS scavengers. This increase results from an inhibition of catalase and superoxide dismutase activities and also involves activation of NADPH oxidase. However, it is not related to lipid reserve degradation or gluconeogenesis and not associated with marked changes in the cellular redox status controlled by the glutathione/glutathione disulfide couple. The expression of genes related to ROS production (NADPHox, POX, AO1, and AO2) and signaling (MAPK6, Ser/ThrPK, CaM, and PTP) is differentially affected by dormancy alleviation either during after-ripening or by HCN treatment, and the effect of cyanide on gene expression is likely to be mediated by ROS. It is also demonstrated that HCN and ROS both activate similarly ERF1, a component of the ethylene signaling pathway. We propose that ROS play a key role in the control of sunflower seed germination and are second messengers of cyanide in seed dormancy release. PMID:19329562

  19. The concept of reactive surface area applied to uncatalyzed and catalyzed carbon (char) gasification in carbon dioxide and oxygen

    SciTech Connect

    Lizzio, A.A.

    1990-01-01

    The virtues of, and/or problems with, utilizing the concepts of total and active surface area to explain the reactivity profiles were evaluated and discussed. An alternative approach, involving the concept of reactive surface area (RSA), was introduced and results based on the direct measurement of RSA were presented. Here, reactive surface area is defined as the concentration of carbon atoms on which the carbon-oxygen C(O) surface intermediate forms and subsequently decomposes to give gaseous products. The transient kinetics (TK) approach gave a direct measurement of RSA for chars gasified in CO{sub 2} and O{sub 2}. A temperature-programmed desorption technique was also used to determine the amount of reactive surface intermediate formed on these chars during gasification. A comparison of turnover frequencies for different chars gasified in 1 atm CO{sub 2} suggested that char gasification mat be a structure sensitive reaction. The concept of RSA was also used to achieve a better quantitative understanding of catalyzed char reactivity variations with conversion in CO{sub 2}. For a calcium-exchanged lignite char gasified in 1 atm CO{sub 2}, a poor correlation was found between RSA and reactivity, suggesting that in addition to the direct decomposition of the reactive C(O) intermediate, other processes, e.g., oxygen spillover, contributed to the transient evolution of CO. An extensive study of Saran char loaded with calcium, potassium or nickel by impregnation to incipient wetness (IW) or ion exchange (IE) was undertaken. An excellent correlation was found between reactivity and RSA variations with conversion for both IW and IE K-catalyzed chars, suggesting that TK indeed titrates the reactive K-O-C complexes formed during gasification in CO{sub 2}.

  20. Studies of Hematopoietic Cell Differentiation with a Ratiometric and Reversible Sensor of Mitochondrial Reactive Oxygen Species

    PubMed Central

    Kaur, Amandeep; Jankowska, Karolina; Pilgrim, Chelsea; Fraser, Stuart T.

    2016-01-01

    Abstract Aims: Chronic elevations in cellular redox state are known to result in the onset of various pathological conditions, but transient increases in reactive oxygen species (ROS)/reactive nitrogen species (RNS) are necessary for signal transduction and various physiological functions. There is a distinct lack of reversible fluorescent tools that can aid in studying and unraveling the roles of ROS/RNS in physiology and pathology by monitoring the variations in cellular ROS levels over time. In this work, we report the development of ratiometric fluorescent sensors that reversibly respond to changes in mitochondrial redox state. Results: Photophysical studies of the developed flavin–rhodamine redox sensors, flavin–rhodamine redox sensor 1 (FRR1) and flavin–rhodamine redox sensor 2 (FRR2), confirmed the reversible response of the probes upon reduction and re-oxidation over more than five cycles. The ratiometric output of FRR1 and FRR2 remained unaltered in the presence of other possible cellular interferants (metals and pH). Microscopy studies indicated clear mitochondrial localization of both probes, and FRR2 was shown to report the time-dependent increase of mitochondrial ROS levels after lipopolysaccharide stimulation in macrophages. Moreover, it was used to study the variations in mitochondrial redox state in mouse hematopoietic cells at different stages of embryonic development and maturation. Innovation: This study provides the first ratiometric and reversible probes for ROS, targeted to the mitochondria, which reveal variations in mitochondrial ROS levels at different stages of embryonic and adult blood cell production. Conclusions: Our results suggest that with their ratiometric and reversible outputs, FRR1 and FRR2 are valuable tools for the future study of oxidative stress and its implications in physiology and pathology. Antioxid. Redox Signal. 24, 667–679. PMID:26865422

  1. Measurement of Reactive Oxygen Species in the Culture Media Using Acridan Lumigen PS-3 Assay

    PubMed Central

    Uy, Benedict; McGlashan, Susan R.; Shaikh, Shamim B.

    2011-01-01

    Reactive oxygen species (ROS) are generated continuously during aerobic metabolism. ROS are highly reactive molecules and in excessive amounts, can lead to protein and DNA oxidation, protein cross-linking, and cell death. Cell-culture models provide a valuable tool in understanding the mechanisms that lead to cell death. Accumulation of ROS within cells and/or their release into the culture media are highly cell type-specific. The ability to estimate ROS levels in the culture media is an important step in understanding the mechanisms contributing to disease processes. In this paper, we describe the optimization of a simple method to estimate ROS levels in the culture media using the Acridan Lumigen PS-3 reagent provided in the Amersham ECL Plus kit (GE Healthcare, UK). We have shown that the Acridan Lumigen PS-3 assay generates ROS-specific chemiluminescence in fresh as well as media stored at ?20C, in as little as 1020 ?l of samples. The method was able to detect the dose (of stimulants)- and time (acute and chronic)-dependent changes in ROS levels in media collected from various cell types. Our results suggest that the kit reagents, PBS buffer, and various media did not contribute significantly to the overall chemiluminescence generated in the assay; however, we suggest that the unused medium specific for each cell type should be used as blanks and final readings of test samples normalized against these readings. As this method uses commonly available laboratory equipment and commercially available reagents, we believe this assay is convenient, economical, and specific in estimating ROS released extracellularly into the culture media. PMID:21966257

  2. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis

    PubMed Central

    Padgett, Lindsey E; Broniowska, Katarzyna A; Hansen, Polly A; Corbett, John A; Tse, Hubert M

    2013-01-01

    Type 1 diabetes (T1D) is a T cell–mediated autoimmune disease characterized by the destruction of insulin-secreting pancreatic β cells. In humans with T1D and in nonobese diabetic (NOD) mice (a murine model for human T1D), autoreactive T cells cause β-cell destruction, as transfer or deletion of these cells induces or prevents disease, respectively. CD4+ and CD8+ T cells use distinct effector mechanisms and act at different stages throughout T1D to fuel pancreatic β-cell destruction and disease pathogenesis. While these adaptive immune cells employ distinct mechanisms for β-cell destruction, one central means for enhancing their autoreactivity is by the secretion of proinflammatory cytokines, such as IFN-γ, TNF-α, and IL-1. In addition to their production by diabetogenic T cells, proinflammatory cytokines are induced by reactive oxygen species (ROS) via redox-dependent signaling pathways. Highly reactive molecules, proinflammatory cytokines are produced upon lymphocyte infiltration into pancreatic islets and induce disease pathogenicity by directly killing β cells, which characteristically possess low levels of antioxidant defense enzymes. In addition to β-cell destruction, proinflammatory cytokines are necessary for efficient adaptive immune maturation, and in the context of T1D they exacerbate autoimmunity by intensifying adaptive immune responses. The first half of this review discusses the mechanisms by which autoreactive T cells induce T1D pathogenesis and the importance of ROS for efficient adaptive immune activation, which, in the context of T1D, exacerbates autoimmunity. The second half provides a comprehensive and detailed analysis of (1) the mechanisms by which cytokines such as IL-1 and IFN-γ influence islet insulin secretion and apoptosis and (2) the key free radicals and transcription factors that control these processes. PMID:23323860

  3. Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells

    SciTech Connect

    Wan, Joanne; Winn, Louise M. . E-mail: winnl@queensu.ca

    2007-07-15

    Benzene is a known leukemogen that is metabolized to form reactive intermediates and reactive oxygen species (ROS). The c-Myb oncoprotein is a transcription factor that has a critical role in hematopoiesis. c-Myb transcript and protein have been overexpressed in a number of leukemias and cancers. Given c-Myb's role in hematopoiesis and leukemias, it is hypothesized that benzene interferes with the c-Myb signaling pathway and that this involves ROS. To investigate our hypothesis, we evaluated whether benzene, 1,4-benzoquinone, hydroquinone, phenol, and catechol generated ROS in chicken erythroblast HD3 cells, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (DCFDA) and dihydrorhodamine-123 (DHR-123), and whether the addition of 100 U/ml of the antioxidating enzyme superoxide dismutase (SOD) could prevent ROS generation. Reduced to oxidized glutathione ratios (GSH:GSSG) were also assessed as well as hydroquinone and benzoquinone's effects on c-Myb protein levels and activation of a transiently transfected reporter construct. Finally we attempted to abrogate benzene metabolite mediated increases in c-Myb activity with the use of SOD. We found that benzoquinone, hydroquinone, and catechol increased DCFDA fluorescence, increased DHR-123 fluorescence, decreased GSH:GSSG ratios, and increased reporter construct expression after 24 h of exposure. SOD was able to prevent DCFDA fluorescence and c-Myb activity caused by benzoquinone and hydroquinone only. These results are consistent with other studies, which suggest metabolite differences in benzene-mediated toxicity. More importantly, this study supports the hypothesis that benzene may mediate its toxicity through ROS-mediated alterations in the c-Myb signaling pathway.

  4. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production.

    PubMed

    Jing, Enxuan; Emanuelli, Brice; Hirschey, Matthew D; Boucher, Jeremie; Lee, Kevin Y; Lombard, David; Verdin, Eric M; Kahn, C Ronald

    2011-08-30

    Sirt3 is a member of the sirtuin family of protein deacetylases that is localized in mitochondria and regulates mitochondrial function. Sirt3 expression in skeletal muscle is decreased in models of type 1 and type 2 diabetes and regulated by feeding, fasting, and caloric restriction. Sirt3 knockout mice exhibit decreased oxygen consumption and develop oxidative stress in skeletal muscle, leading to JNK activation and impaired insulin signaling. This effect is mimicked by knockdown of Sirt3 in cultured myoblasts, which exhibit reduced mitochondrial oxidation, increased reactive oxygen species, activation of JNK, increased serine and decreased tyrosine phosphorylation of IRS-1, and decreased insulin signaling. Thus, Sirt3 plays an important role in diabetes through regulation of mitochondrial oxidation, reactive oxygen species production, and insulin resistance in skeletal muscle. PMID:21873205

  5. Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility

    PubMed Central

    Baker, Mark A; Aitken, R John

    2005-01-01

    Human spermatozoa generate low levels of reactive oxygen species in order to stimulate key events, such as tyrosine phosphorylation, associated with sperm capacitation. However, if the generation of these potentially pernicious oxygen metabolites becomes elevated for any reason, spermatozoa possess a limited capacity to protect themselves from oxidative stress. As a consequence, exposure of human spermatozoa to intrinsically- or extrinsically- generated reactive oxygen intermediates can result in a state of oxidative stress characterized by peroxidative damage to the sperm plasma membrane and DNA damage to the mitochondrial and nuclear genomes. Oxidative stress in the male germ line is associated with poor fertilization rates, impaired embryonic development, high levels of abortion and increased morbidity in the offspring, including childhood cancer. In this review, we consider the possible origins of oxidative damage to human spermatozoa and reflect on the important contribution such stress might make to the origins of genetic disease in our species. PMID:16313680

  6. Negative feedback regulation of reactive oxygen species on AT1 receptor gene expression

    PubMed Central

    Nickenig, Georg; Strehlow, Kerstin; Bäumer, Anselm T; Baudler, Stefanie; Waßmann, Sven; Sauer, Heinrich; Böhm, Michael

    2000-01-01

    Free radicals as well as the AT1 receptor are involved in the pathogenesis of cardiovascular disease. Both the intracellular mechanisms of AT1 receptor regulation and the effect of free radicals on AT1 receptor expression are currently unknown. This study investigates the role of free radicals in the modulation of AT1 receptor expression and in the angiotensin II-induced AT1 receptor regulation. AT1 receptor mRNA was assessed by Northern blotting and AT1 receptor density by radioligand binding assays, respectively, in vascular smooth muscle cells (VSMC). Free radical release was measured by confocal laser scanning microscopy. AT1 receptor mRNA transcription rate was determined by nuclear run-on assays and AT1 receptor mRNA half-life was measured under transcriptional blockade. Angiotensin II caused a time-dependent decrease of AT1 receptor mRNA expression in rat VSMC in culture (30±6% at 4 h with 100 nM angiotensin II). This was followed by a consistent decrease in AT1 receptor density. Angiotensin II caused release of reactive oxygen species in VSMC which was abolished by preincubation with 100 μM diphenylene iodonium (DPI). DPI inhibited partially the down-regulating effect of angiotensin II on the AT1 receptor. Incubation of VSMC with either hydrogen peroxide or xanthine/xanthine oxidase caused a dose-dependent decrease in AT1 receptor mRNA expression which was not mediated by a decreased rate of transcription but rather through destabilization of AT1 receptor mRNA. Experiments which included preincubation of VSMC with various intracellular inhibitors suggested that free radicals caused AT1 receptor downregulation through activation of p38-MAP kinase and intracellular release of calcium. However, angiotensin II-induced AT1 receptor expression was not inhibited by blockade of p38-MAP kinase activation or intracellular calcium release. Free radicals may at least in part mediate angiotensin II-induced AT1 receptor regulation through direct post-transcriptional effects on AT1 receptor mRNA expression which involves intracellular release of calcium and activation of p38-MAP kinase. These findings may help to clarify the intracellular mechanisms involved in AT1 receptor regulation and reveal a novel biological feature for reactive oxygen species. PMID:11030730

  7. The Pivotal Role of a Novel Biomarker of Reactive Oxygen Species in Chronic Kidney Disease

    PubMed Central

    Hirata, Yoshihiro; Yamamoto, Eiichiro; Tokitsu, Takanori; Fujisue, Koichiro; Kurokawa, Hirofumi; Sugamura, Koichi; Sakamoto, Kenji; Tsujita, Kenichi; Tanaka, Tomoko; Kaikita, Koichi; Hokimoto, Seiji; Sugiyama, Seigo; Ogawa, Hisao

    2015-01-01

    Abstract Risk stratification of chronic kidney disease (CKD) is clinically important because such patients are at high risk of cardiovascular events. Although reactive oxygen species (ROS) are reported to be closely associated with the pathophysiology of CKD, there are few useful ROS biomarkers known for CKD patients. Hence, our objectives in this study were to investigate whether serum derivatives of reactive oxygen metabolites (DROM), a novel biomarker of ROS, is involved in the pathophysiology of CKD (case-control study), and is a significant predictor of future cardiovascular events in CKD patients (follow-up study). Patients with suspected coronary artery disease (CAD) were enrolled and underwent coronary angiography. Patients with CKD (estimated glomerular filtration ratio <60 mL/min/1.73 m2 and/or proteinuria, n = 324) were compared with those without CKD (non-CKD). Serum DROM was measured at stable conditions. A case-control study of the 324 CKD patients and 263 non-CKD patients was conducted after matching risk factors, and a follow-up study of the 324 CKD patients was performed. CKD patients were divided into low- and high-DROM groups using their median value (348 unit; called the Carratelli unit [U.CARR]), and followed until the occurrence of cardiovascular events. DROM levels were significantly higher in risk factors-matched CKD patients than in risk factors-matched non-CKD patients (347.0 [301.8–391.8] U.CARR vs. 338.5 [299.8–384.3] U.CARR, P = 0.03). During mean 23 ± 14 months follow-up of 324 CKD patients, 83 cardiovascular events were recorded. Kaplan–Meier analysis demonstrated a higher probability of cardiovascular events in CKD patients with high DROM than in those with low DROM (P < 0.001, log-rank test). Multivariate Cox hazard analysis including significant predictors in simple Cox hazard analysis demonstrated that high DROM was a significant and independent predictor of cardiovascular events in CKD patients (hazard ratio: 1.76, 95% confidence interval: 1.10–2.82, P = 0.02). In conclusion, serum DROM values were significant and independent predictors of cardiovascular events in CKD patients, indicating that the measurements of DROM might provide clinical benefits for risk stratification of CKD patients. PMID:26107676

  8. WETTING AND REACTIVE AIR BRAZING OF BSCF FOR OXYGEN SEPARATION DEVICES

    SciTech Connect

    LaDouceur, Richard M.; Meier, Alan; Joshi, Vineet V.

    2014-10-13

    Reactive air brazes Ag-CuO and Ag-V2O5 were evaluated for brazing Ba0.5Sr0.5Co0.8Fe0.2O(3-δ) (BSCF). BSCF has been determined in previous work to have the highest potential mixed ionic/electronic conducting (MIEC) ceramic material based on the design and oxygen flux requirements of an oxy-fuel plant such as an integrated gasification combined cycle (IGCC) used to facilitate high-efficiency carbon capture. Apparent contact angles were observed for Ag-CuO and Ag-V2O5 mixtures at 1000 °C for isothermal hold times of 0, 10, 30, and 60 minutes. Wetting apparent contact angles (θ<90°) were obtained for 1%, 2%, and 5% Ag-CuO and Ag-V2O5 mixtures, with the apparent contact angles between 74° and 78° for all compositions and furnace dwell times. Preliminary microstructural analysis indicates that two different interfacial reactions are occurring: Ag-CuO interfacial microstructures revealed the same dissolution of copper oxide into the BSCF matrix to form copper-cobalt-oxygen rich dissolution products along the BSCF grain boundaries and Ag-V2O5 interfacial microstructures revealed the infiltration and replacement of cobalt and iron with vanadium and silver filling pores in the BSCF microstructure. The Ag-V2O5 interfacial reaction product layer was measured to be significantly thinner than the Ag-CuO reaction product layer. Using a fully articulated four point flexural bend test fixture, the flexural fracture strength for BSCF was determined to be 95 ± 33 MPa. The fracture strength will be used to ascertain the success of the reactive air braze alloys. Based on these results, brazes were fabricated and mechanically tested to begin to optimize the brazing parameters for this system. Ag-2.5% CuO braze alloy with a 2.5 minute thermal cycle achieved a hermetic seal with a joint flexural strength of 34 ± 15 MPa and Ag-1% V2O5 with a 30 minute thermal cycle had a joint flexural strength of 20 ± 15 MPa.

  9. Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate

    SciTech Connect

    Minissale, M. Congiu, E.; Dulieu, F.

    2014-02-21

    The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O{sub 2} and O{sub 3} produced via two pathways: O + O and O{sub 2} + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O{sub 2} + O reactions is ∼150 K/k{sub b}. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley–Rideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O{sub 3} formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O{sub 3} is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO{sub 2} and H{sub 2}O in the ices.

  10. Reactive oxygen species are involved in nickel inhibition of dna repair

    SciTech Connect

    Lynn, S.; Yew, F.H.; Chen, K.S.; Jan, K.Y.

    1997-06-01

    Nickel has been shown to inhibit DNA repair in a way that may play a role in its toxicity. Since nickel treatment increases cellular reactive oxygen species (ROS), we have investigated the involvement of ROS in nickel inhibition of DNA repair. Inhibition of glutathione synthesis or catalase activity increased the enhancing effect of nickel on the cytotoxicity of ultraviolet (UV) light. Inhibition of catalase and glutathione peroxidase activities also enhanced the retardation effect of nickel on the rejoining of DNA strand breaks accumulated by hydroxyurea plus cytosine-{beta}-D-arabinofuranoside in UV-irradiated cells. Since DNA polymerization and ligation are involved in the DNA-break rejoining, we have investigated the effect of ROS on these two steps in an extract of Chinese hamster ovary cells. Nickel inhibition of the incorporation of ({sup 3}H)dTTP into the DNase l-activated calf thymus DNA was stronger than the ligation of poly(dA){center_dot}oligo(dT), whereas H{sub 2}O{sub 2} was more potent in inhibiting DNA ligation than DNA polymerization. Nickel, in the presence of H{sub 2}O{sub 2}, exhibited a synergistic inhibition on both DNA polymerization and ligation and caused protein fragmentation. In addition, glutathione could completely recover the inhibition by nickel or H{sub 2}O{sub 2} alone but only partially recover the inhibition by nickel plus H{sub 2}O{sub 2}. Therefore, nickel may bind to DNA-repair enzymes and generate oxygen-free radicals to cause protein degradation in situ. This irreversible damage to the proteins involved in DNA repair, replication, recombination, and transcription could be important for the toxic effects of nickel. 60 refs., 6 figs., 4 tabs.

  11. Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity.

    PubMed

    Raghunathan, Vijay Krishna; Devey, Michael; Hawkins, Sue; Hails, Lauren; Davis, Sean A; Mann, Stephen; Chang, Isaac T; Ingham, Eileen; Malhas, Ashraf; Vaux, David J; Lane, Jon D; Case, Charles P

    2013-05-01

    Patients with cobalt chrome (CoCr) metal-on-metal (MOM) implants may be exposed to a wide size range of metallic nanoparticles as a result of wear. In this study we have characterised the biological responses of human fibroblasts to two types of synthetically derived CoCr particles [(a) from a tribometer (30 nm) and (b) thermal plasma technology (20, 35, and 80 nm)] in vitro, testing their dependence on nanoparticle size or the generation of oxygen free radicals, or both. Metal ions were released from the surface of nanoparticles, particularly from larger (80 nm) particles generated by thermal plasma technology. Exposure of fibroblasts to these nanoparticles triggered rapid (2 h) generation of reactive oxygen species (ROS) that could be eliminated by inhibition of NADPH oxidase, suggesting that it was mediated by phagocytosis of the particles. The exposure also caused a more prolonged, MitoQ sensitive production of ROS (24 h), suggesting involvement of mitochondria. Consequently, we recorded elevated levels of aneuploidy, chromosome clumping, fragmentation of mitochondria and damage to the cytoskeleton particularly to the microtubule network. Exposure to the nanoparticles resulted in misshapen nuclei, disruption of mature lamin B1 and increased nucleoplasmic bridges, which could be prevented by MitoQ. In addition, increased numbers of micronuclei were observed and these were only partly prevented by MitoQ, and the incidence of micronuclei and ion release from the nanoparticles were positively correlated with nanoparticle size, although the cytogenetic changes, modifications in nuclear shape and the amount of ROS were not. These results suggest that cells exhibit diverse mitochondrial ROS-dependent and independent responses to CoCr particles, and that nanoparticle size and the amount of metal ion released are influential. PMID:23433773

  12. Oxidative DNA adducts after Cu(2+)-mediated activation of dihydroxy PCBs: role of reactive oxygen species.

    PubMed

    Spencer, Wendy A; Lehmler, Hans-Joachim; Robertson, Larry W; Gupta, Ramesh C

    2009-05-15

    Polychlorinated biphenyls (PCBs) are toxic industrial chemicals, complete carcinogens, and efficacious tumor promoters. However, the mechanism(s) of PCB-mediated carcinogenicity remains largely undefined. One likely pathway by which these agents may play a role in carcinogenesis is the generation of oxidative DNA damage by redox cycling of dihydroxylated PCB metabolites. We have now employed a new (32)P-postlabeling system to examine novel oxidative DNA lesions induced by Cu(2+)-mediated activation of PCB metabolites. (32)P postlabeling of DNA incubated with various PCB metabolites resulted in over a dozen novel polar oxidative DNA adducts that were chromatographically similar for all active agents. The most potent metabolites tested were the hydroquinones (hydroxyl groups arranged para to each other), yielding polar oxidative adduct levels ranging from 55 to 142 adducts/10(6) nucleotides. PCB catechols, or ortho-dihydroxy metabolites, were up to 40% less active than their corresponding hydroquinone congeners, whereas monohydroxylated and quinone metabolites did not produce detectable oxidative damage over that of vehicle. With the exception of 2,4,5-Cl-2',5'-dihydroxybiphenyl, this oxidative DNA damage seemed to be inversely related to chlorine content: no chlorine approximately mono->di->trichlorinated metabolites. Importantly, copper, but not iron, was essential for activation of the PCB metabolites to these polar oxidative DNA adducts, because in its absence or in the presence of the Cu(+)-specific scavenger bathocuproine, no adducts were detected. Intervention studies with known reactive oxygen species (ROS) modifiers suggested that H(2)O(2), singlet oxygen, hydroxyl radical, and superoxide may also be involved in this PCB-mediated oxidative DNA damage. These data indicate a mechanistic role for several ROS, in addition to copper, in PCB-induced DNA damage and provide further support for oxidative DNA damage in PCB-mediated carcinogenesis. PMID:19233261

  13. Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate.

    PubMed

    Minissale, M; Congiu, E; Dulieu, F

    2014-02-21

    The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O2 and O3 produced via two pathways: O + O and O2 + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O2 + O reactions is ∼150 K/kb. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley-Rideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O3 formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O3 is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO2 and H2O in the ices. PMID:24559358

  14. Enhanced reactive oxygen species metabolism of air space cells in hypersensitivity pneumonitis

    SciTech Connect

    Calhoun, W.J. )

    1991-06-01

    Reactive oxygen species (ROS) are produced by phagocytic cells as part of host defense mechanisms, but these same products released by air space cells have been shown to contribute to pulmonary inflammation in interstitial lung diseases and likely represent a general mechanism of lung injury. However, the possible contribution of these compounds to lung inflammation in hypersensitivity pneumonitis (HP) has yet to be reported. We performed 11 bronchoalveolar lavage (BAL) studies in six patients with HP and compared the results with results from studies in 21 healthy normal volunteers. In patients with HP, spontaneous and stimulated measures of ROS metabolism by air space cells were significantly higher than those seen in normal volunteers. When alveolar macrophages were purified by depleting neutrophils and eosinophils on density gradients of Percoll (specific gravity 1.075 gm/ml), ROS metabolism remained elevated when compared with that in cells obtained from healthy controls, confirming that alveolar macrophage ROS metabolism is enhanced in patients with HP. Further, we found significant elevations in BAL total protein, lymphocytes, eosinophils, and neutrophils in patients with HP when they were compared with normal volunteers, with an increased proportion of BAL T lymphocytes expressing CD8 and natural killer surface antigens, consistent with previous work. Lavage samples from patients with HP with clinically active disease had higher proportions of BAL eosinophils and concentrations of total protein, lower forced expiratory volume in 1 second, lower forced vital capacity, and lower arterial oxygen tensions, and higher indices of ROS metabolism than samples from patients with HP with inactive disease. HP is associated with evidence of air space inflammation, to which alveolar macrophage-derived ROS may contribute.

  15. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ.

    PubMed

    Brueckl, Corinna; Kaestle, Stephanie; Kerem, Alexander; Habazettl, Helmut; Krombach, Fritz; Kuppe, Hermann; Kuebler, Wolfgang M

    2006-04-01

    Lung capillary endothelial cells (ECs) are a critical target of oxygen toxicity and play a central role in the pathogenesis of hyperoxic lung injury. To determine mechanisms and time course of EC activation in normobaric hyperoxia, we measured endothelial concentration of reactive oxygen species (ROS) and cytosolic calcium ([Ca(2+)](i)) by in situ imaging of 2',7'-dichlorofluorescein (DCF) and fura 2 fluorescence, respectively, and translocation of the small GTPase Rac1 by immunofluorescence in isolated perfused rat lungs. Endothelial DCF fluorescence and [Ca(2+)](i) increased continuously yet reversibly during a 90-min interval of hyperoxic ventilation with 70% O(2), demonstrating progressive ROS generation and second messenger signaling. ROS formation increased exponentially with higher O(2) concentrations. ROS and [Ca(2+)](i) responses were blocked by the mitochondrial complex I inhibitor rotenone, whereas inhibitors of NAD(P)H oxidase and the intracellular Ca(2+) chelator BAPTA predominantly attenuated the late phase of the hyperoxia-induced DCF fluorescence increase after > 30 min. Rac1 translocation in lung capillary ECs was barely detectable at normoxia but was prominent after 60 min of hyperoxia and could be blocked by rotenone and BAPTA. We conclude that hyperoxia induces ROS formation in lung capillary ECs, which initially originates from the mitochondrial electron transport chain but subsequently involves activation of NAD(P)H oxidase by endothelial [Ca(2+)](i) signaling and Rac1 activation. Our findings demonstrate rapid activation of ECs by hyperoxia in situ and identify mechanisms that may be relevant in the initiation of hyperoxic lung injury. PMID:16357365

  16. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells

    PubMed Central

    Pereboeva, Larisa; Hubbard, Meredith; Goldman, Frederick D.; Westin, Erik R.

    2016-01-01

    Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients’ cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism whereby telomerase deficiency and subsequent shortened telomeres initiate a DDR and create a pro-oxidant environment, especially in cells carrying the TINF2 mutations. Finally, the ameliorative effects of antioxidants in vitro suggest this could translate to therapeutic benefits in DC patients. PMID:26859482

  17. Robust DNA Damage Response and Elevated Reactive Oxygen Species in TINF2-Mutated Dyskeratosis Congenita Cells.

    PubMed

    Pereboeva, Larisa; Hubbard, Meredith; Goldman, Frederick D; Westin, Erik R

    2016-01-01

    Dyskeratosis Congenita (DC) is an inherited multisystem premature aging disorder with characteristic skin and mucosal findings as well as a predisposition to cancer and bone marrow failure. DC arises due to gene mutations associated with the telomerase complex or telomere maintenance, resulting in critically shortened telomeres. The pathogenesis of DC, as well as several congenital bone marrow failure (BMF) syndromes, converges on the DNA damage response (DDR) pathway and subsequent elevation of reactive oxygen species (ROS). Historically, DC patients have had poor outcomes following bone marrow transplantation (BMT), perhaps as a consequence of an underlying DNA hypersensitivity to cytotoxic agents. Previously, we demonstrated an activated DDR and increased ROS, augmented by chemotherapy and radiation, in somatic cells isolated from DC patients with a mutation in the RNA component of telomerase, TERC. The current study was undertaken to determine whether previous findings related to ROS and DDR in TERC patients' cells could be extended to other DC mutations. Of particular interest was whether an antioxidant approach could counter increased ROS and decrease DC pathologies. To test this, we examined lymphocytes from DC patients from different DC mutations (TERT, TINF2, and TERC) for the presence of an active DDR and increased ROS. All DC mutations led to increased steady-state p53 (2-fold to 10-fold) and ROS (1.5-fold to 2-fold). Upon exposure to ionizing radiation (XRT), DC cells increased in both DDR and ROS to a significant degree. Exposing DC cells to hydrogen peroxide also revealed that DC cells maintain a significant oxidant burden compared to controls (1.5-fold to 3-fold). DC cell culture supplemented with N-acetylcysteine, or alternatively grown in low oxygen, afforded significant proliferative benefits (proliferation: maximum 2-fold increase; NAC: 5-fold p53 decrease; low oxygen: maximum 3.5-fold p53 decrease). Together, our data supports a mechanism whereby telomerase deficiency and subsequent shortened telomeres initiate a DDR and create a pro-oxidant environment, especially in cells carrying the TINF2 mutations. Finally, the ameliorative effects of antioxidants in vitro suggest this could translate to therapeutic benefits in DC patients. PMID:26859482

  18. Rapid and transient stimulation of intracellular reactive oxygen species by melatonin in normal and tumor leukocytes

    SciTech Connect

    Radogna, Flavia; Paternoster, Laura; De Nicola, Milena; Cerella, Claudia; Ammendola, Sergio; Bedini, Annalida; Tarzia, Giorgio; Aquilano, Katia; Ciriolo, Maria; Ghibelli, Lina

    2009-08-15

    Melatonin is a modified tryptophan with potent biological activity, exerted by stimulation of specific plasma membrane (MT1/MT2) receptors, by lower affinity intracellular enzymatic targets (quinone reductase, calmodulin), or through its strong anti-oxidant ability. Scattered studies also report a perplexing pro-oxidant activity, showing that melatonin is able to stimulate production of intracellular reactive oxygen species (ROS). Here we show that on U937 human monocytes melatonin promotes intracellular ROS in a fast (< 1 min) and transient (up to 5-6 h) way. Melatonin equally elicits its pro-radical effect on a set of normal or tumor leukocytes; intriguingly, ROS production does not lead to oxidative stress, as shown by absence of protein carbonylation, maintenance of free thiols, preservation of viability and regular proliferation rate. ROS production is independent from MT1/MT2 receptor interaction, since a) requires micromolar (as opposed to nanomolar) doses of melatonin; b) is not contrasted by the specific MT1/MT2 antagonist luzindole; c) is not mimicked by a set of MT1/MT2 high affinity melatonin analogues. Instead, chlorpromazine, the calmodulin inhibitor shown to prevent melatonin-calmodulin interaction, also prevents melatonin pro-radical effect, suggesting that the low affinity binding to calmodulin (in the micromolar range) may promote ROS production.

  19. Correlation between cell migration and reactive oxygen species under electric field stimulation.

    PubMed

    Wu, Shang-Ying; Hou, Hsien-San; Sun, Yung-Shin; Cheng, Ji-Yen; Lo, Kai-Yin

    2015-09-01

    Cell migration is an essential process involved in the development and maintenance of multicellular organisms. Electric fields (EFs) are one of the many physical and chemical factors known to affect cell migration, a phenomenon termed electrotaxis or galvanotaxis. In this paper, a microfluidics chip was developed to study the migration of cells under different electrical and chemical stimuli. This chip is capable of providing four different strengths of EFs in combination with two different chemicals via one simple set of agar salt bridges and Ag/AgCl electrodes. NIH 3T3 fibroblasts were seeded inside this chip to study their migration and reactive oxygen species (ROS) production in response to different EF strengths and the presence of β-lapachone. We found that both the EF and β-lapachone level increased the cell migration rate and the production of ROS in an EF-strength-dependent manner. A strong linear correlation between the cell migration rate and the amount of intracellular ROS suggests that ROS are an intermediate product by which EF and β-lapachone enhance cell migration. Moreover, an anti-oxidant, α-tocopherol, was found to quench the production of ROS, resulting in a decrease in the migration rate. PMID:26487906

  20. IGF-I enhances cellular senescence via the reactive oxygen species-p53 pathway.

    PubMed

    Handayaningsih, Anastasia-Evi; Takahashi, Michiko; Fukuoka, Hidenori; Iguchi, Genzo; Nishizawa, Hitoshi; Yamamoto, Masaaki; Suda, Kentaro; Takahashi, Yutaka

    2012-08-24

    Cellular senescence is characterized by growth arrest, enlarged and flattened cell morphology, the expression of senescence-associated β-galactosidase (SA-β-gal), and by activation of tumor suppressor networks. Insulin-like growth factor-I (IGF-I) plays a critical role in cellular growth, proliferation, tumorigenesis, and regulation of aging. In the present study, we show that IGF-I enhances cellular senescence in mouse, rat, and human primary cells in the confluent state. IGF-I induced expression of a DNA damage marker, γH2AX, the increased levels of p53 and p21 proteins, and activated SA-β-gal. In the confluent state, an altered downstream signaling of IGF-I receptor was observed. Treatment with a reactive oxygen species (ROS) scavenger, N-acetylcystein (NAC) significantly suppressed induction of these markers, indicating that ROS are involved in the induction of cellular senescence by IGF-I. In p53-null mouse embryonic fibroblasts, the IGF-I-induced augmentation of SA-β-gal and p21 was inhibited, demonstrating that p53 is required for cellular senescence induced by IGF-I. Thus, these data reveal a novel pathway whereby IGF-I enhances cellular senescence in the ROS and p53-dependent manner and may explain the underlying mechanisms of IGF-I involvement in tumorigenesis and in regulation of aging. PMID:22877754

  1. A novel nematode effector suppresses plant immunity by activating host reactive oxygen species-scavenging system.

    PubMed

    Lin, Borong; Zhuo, Kan; Chen, Shiyan; Hu, Lili; Sun, Longhua; Wang, Xiaohong; Zhang, Lian-Hui; Liao, Jinling

    2016-02-01

    Evidence is emerging that plant-parasitic nematodes can secrete effectors to interfere with the host immune response, but it remains unknown how these effectors can conquer host immune responses. Here, we depict a novel effector, MjTTL5, that could suppress plant immune response. Immunolocalization and transcriptional analyses showed that MjTTL5 is expressed specifically within the subventral gland of Meloidogyne javanica and up-regulated in the early parasitic stage of the nematode. Transgenic Arabidopsis lines expressing MjTTL5 were significantly more susceptible to M. javanica infection than wild-type plants, and vice versa, in planta silencing of MjTTL5 substantially increased plant resistance to M. javanica. Yeast two-hybrid, coimmunoprecipitation and bimolecular fluorescent complementation assays showed that MjTTL5 interacts specifically with Arabidopsis ferredoxin : thioredoxin reductase catalytic subunit (AtFTRc), a key component of host antioxidant system. The expression of AtFTRc is induced by the infection of M. javanica. Interaction between AtFTRc and MjTTL could drastically increase host reactive oxygen species-scavenging activity, and result in suppression of plant basal defenses and attenuation of host resistance to the nematode infection. Our results demonstrate that the host ferredoxin : thioredoxin system can be exploited cunningly by M. javanica, revealing a novel mechanism utilized by plant-parasitic nematodes to subjugate plant innate immunity and thereby promoting parasitism. PMID:26484653

  2. Reactive oxygen species induced by shear stress mediate cell death in Bacillus subtilis.

    PubMed

    Sahoo, Susmita; Rao, K Krishnamurthy; Suraishkumar, G K

    2006-05-01

    Exposure of Bacillus subtilis to a shear rate of 1,482/s leads to a rapid loss of cell viability after 10 h of growth. Biochemical and molecular evidences provided below strongly suggest that cell death under high shear results from an apoptosis-like process similar to that described in eukaryotes, with activation of a caspase-3-like protease (C(3)LP) followed by DNA fragmentation. Shear stress leads to an increase in specific intracellular reactive oxygen species (siROS), possibly through activation of NADH oxidase (NOX). The formation of siROS precedes the activation of C(3)LP and DNA fragmentation, thus establishing siROS as the molecular link between shear stress and apoptosis-like cell death. A model is proposed in which NOX is viewed as being strategically placed on the plasma membrane of B. subtilis that senses and converts a mechanical force arising from shear stress into a chemical signal leading to activation of C(3)LP, DNA fragmentation, and thus, apoptosis-like cell death. PMID:16570320

  3. Spontaneous generation of reactive oxygen species and effect on motility and fertilizability of sea urchin spermatozoa.

    PubMed

    Kazama, Makoto; Sato, Taizo; Hino, Akiya

    2014-05-01

    We investigated the generation of reactive oxygen species (ROS) by spermatozoa in two species of sea urchin. ROS generation was accompanied by the initiation of motility and respiration and influenced the motility and fertilizability of spermatozoa. The sea urchin performs external fertilization in aerobic seawater. Sperm motility was initiated after spawning through Na+/H+ exchange. ROS generation was dependent on the respiration and sperm concentration and its generation was first observed at initiation of motility, via activation of respiration through ATP/ADP transport. The ROS generation rate increased at higher dilution ratios of spermatozoa, in a manner that was synchronous with the respiratory rate. This phenomenon resembled the previously defined 'sperm dilution effect' on respiration. The loss of motility and fertilizability was induced not only by treatment with hydrogen peroxide but also by sperm dilution. Storage of spermatozoa with a higher dilution ratio also accelerated the decrease in fertilizability. Thus, optimum sea urchin fertilizability is maintained by storage of undiluted spermatozoa on ice, in order to minimize oxidative stress and to maximize longevity. PMID:23174027

  4. Neuroprotection by Polynitrogen Manganese Complexes: Regulation of Reactive Oxygen Species-Related Pathways.

    PubMed

    Chen, Chunxia; Cao, Jing; Ma, Xiaoyan; Wang, Xiaobo; Chen, Qiuyun; Yan, Shihai; Zhao, Ningwei; Geng, Zhirong; Wang, Zhilin

    2016-01-01

    Cell death in the central nervous system causes neurologic diseases, in which reactive oxygen species (ROS) play a critical role by either inducing cellular oxidative stress or by increasing the cell tolerance against insult. Neurologic diseases may potentially be treated by regulating ROS levels in a certain range with small molecules. We studied preconditioning with two polynitrogen manganese complexes (1 and 2) to regulate intracellular ROS levels in the protection of both the differentiated rat pheochromocytoma cell line (PC12 cells) and neurons against H2O2-induced apoptosis. Pre-treatment with the two complexes attenuated the cell apoptosis caused by H2O2. And the ROS-related neuroprotective mechanisms were explored. Both complexes activate the hypoxia inducible factor-related pathways and increase the cell adaptation to oxidative stress. Pre-treatment with complex 1 eliminated intracellular ROS, which also activated antioxidase system, while short-term incubation of complex 2, generated low levels of ROS leading to cell survival. PMID:26857964

  5. Lycopene induces apoptosis in Candida albicans through reactive oxygen species production and mitochondrial dysfunction.

    PubMed

    Choi, Hyemin; Lee, Dong Gun

    2015-08-01

    Lycopene, a well-known carotenoid pigment found in tomatoes, has shown various biological functions. In our previous report, we showed that lycopene induces two apoptotic hallmarks, plasma membrane depolarization and G2/M cell cycle arrest, in Candida albicans. In this study, we investigated the ability of lycopene to induce apoptosis, and the mechanism by which it regulates apoptosis. FITC-Annexin V staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis, and 4',6-diamidino-2-phenylindole (DAPI) assay showed that lycopene exerted its antifungal activity during the early and late stages of apoptosis in C. albicans. During apoptosis, intracellular reactive oxygen species (ROS) were increased, and specifically the hydroxyl radicals contributed to the fungal cell death. Furthermore, lycopene treatment caused intracellular Ca(2+) overload and mitochondrial dysfunction, such as mitochondrial depolarization and cytochrome c release from the mitochondria to the cytoplasm. At last caspase activation was triggered. In summary, lycopene exerted its antifungal effects against C. albicans by inducing apoptosis via ROS production and mitochondrial dysfunction. PMID:26005097

  6. Ciclopirox induces autophagy through reactive oxygen species-mediated activation of JNK signaling pathway.

    PubMed

    Zhou, Hongyu; Shen, Tao; Shang, Chaowei; Luo, Yan; Liu, Lei; Yan, Juming; Li, Yan; Huang, Shile

    2014-10-30

    Ciclopirox olamine (CPX), a fungicide, has been demonstrated as a potential anticancer agent. However, the underlying anticancer mechanism is not well understood. Here, we found that CPX induced autophagy in human rhabdomyosarcoma (Rh30 and RD) cells. It appeared that CPX-induced autophagy was attributed to induction of reactive oxygen species (ROS), as N-acetyl-L-cysteine (NAC), a ROS scavenger and antioxidant, prevented this process. Furthermore, we observed that CPX induced activation of mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK) and p38 MAPK, which was also blocked by NAC. However, only inhibition of JNK (with SP600125) or expression of dominant negative c-Jun partially prevented CPX-induced autophagy, indicating that ROS-mediated activation of JNK signaling pathway contributed to CPX-induced autophagy. Of interest, inhibition of autophagy by chloroquine (CQ) enhanced CPX-induced cell death, indicating that CPX-induced autophagy plays a pro-survival role in human rhabdomyosarcoma cells. Our finding suggests that the combination with autophagy inhibitors may be a novel strategy in potentiating the anticancer activity of CPX for treatment of rhabdomyosarcoma. PMID:25294812

  7. Reactive Oxygen Species-Dependent Cell Signaling Regulates the Mosquito Immune Response to Plasmodium falciparum

    PubMed Central

    Surachetpong, Win; Pakpour, Nazzy; Cheung, Kong Wai

    2011-01-01

    Abstract Reactive oxygen species (ROS) have been implicated in direct killing of pathogens, increased tissue damage, and regulation of immune signaling pathways in mammalian cells. Available research suggests that analogous phenomena affect the establishment of Plasmodium infection in Anopheles mosquitoes. We have previously shown that provision of human insulin in a blood meal leads to increased ROS levels in Anopheles stephensi. Here, we demonstrate that provision of human insulin significantly increased parasite development in the same mosquito host in a manner that was not consistent with ROS-induced parasite killing or parasite escape through damaged tissue. Rather, our studies demonstrate that ROS are important mediators of both the mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling branches of the mosquito insulin signaling cascade. Further, ROS alone can directly activate these signaling pathways and this activation is growth factor specific. Our data, therefore, highlight a novel role for ROS as signaling mediators in the mosquito innate immune response to Plasmodium parasites. Antioxid. Redox Signal. 14, 943955. PMID:21126166

  8. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia.

    PubMed

    Parajuli, Bijay; Horiuchi, Hiroshi; Mizuno, Tetsuya; Takeuchi, Hideyuki; Suzumura, Akio

    2015-12-01

    The chemokine CCL11 (also known as eotaxin-1) is a potent eosinophil chemoattractant that mediates allergic diseases such as asthma, atopic dermatitis, and inflammatory bowel diseases. Previous studies demonstrated that concentrations of CCL11 are elevated in the sera and cerebrospinal fluids (CSF) of patients with neuroinflammatory disorders, including multiple sclerosis. Moreover, the levels of CCL11 in plasma and CSF increase with age, and CCL11 suppresses adult neurogenesis in the central nervous system (CNS), resulting in memory impairment. However, the precise source and function of CCL11 in the CNS are not fully understood. In this study, we found that activated astrocytes release CCL11, whereas microglia predominantly express the CCL11 receptor. CCL11 significantly promoted the migration of microglia, and induced microglial production of reactive oxygen species by upregulating nicotinamide adenine dinucleotide phosphate-oxidase 1 (NOX1), thereby promoting excitotoxic neuronal death. These effects were reversed by inhibition of NOX1. Our findings suggest that CCL11 released from activated astrocytes triggers oxidative stress via microglial NOX1 activation and potentiates glutamate-mediated neurotoxicity, which may be involved in the pathogenesis of various neurological disorders. PMID:26184677

  9. Amputation-induced reactive oxygen species are required for successful Xenopus tadpole tail regeneration.

    PubMed

    Love, Nick R; Chen, Yaoyao; Ishibashi, Shoko; Kritsiligkou, Paraskevi; Lea, Robert; Koh, Yvette; Gallop, Jennifer L; Dorey, Karel; Amaya, Enrique

    2013-02-01

    Understanding the molecular mechanisms that promote successful tissue regeneration is critical for continued advancements in regenerative medicine. Vertebrate amphibian tadpoles of the species Xenopus laevis and Xenopus tropicalis have remarkable abilities to regenerate their tails following amputation, through the coordinated activity of numerous growth factor signalling pathways, including the Wnt, Fgf, Bmp, Notch and TGF-β pathways. Little is known, however, about the events that act upstream of these signalling pathways following injury. Here, we show that Xenopus tadpole tail amputation induces a sustained production of reactive oxygen species (ROS) during tail regeneration. Lowering ROS levels, using pharmacological or genetic approaches, reduces the level of cell proliferation and impairs tail regeneration. Genetic rescue experiments restored both ROS production and the initiation of the regenerative response. Sustained increased ROS levels are required for Wnt/β-catenin signalling and the activation of one of its main downstream targets, fgf20 (ref. 7), which, in turn, is essential for proper tail regeneration. These findings demonstrate that injury-induced ROS production is an important regulator of tissue regeneration. PMID:23314862

  10. Ligation of Glycophorin A Generates Reactive Oxygen Species Leading to Decreased Red Blood Cell Function

    PubMed Central

    Khoory, Joseph; Estanislau, Jessica; Elkhal, Abdallah; Lazaar, Asmae; Melhorn, Mark I.; Brodsky, Abigail; Illigens, Ben; Hamachi, Itaru; Kurishita, Yasutaka; Ivanov, Alexander R.; Shevkoplyas, Sergey; Shapiro, Nathan I.; Ghiran, Ionita C.

    2016-01-01

    Acute, inflammatory conditions associated with dysregulated complement activation are characterized by significant increases in blood concentration of reactive oxygen species (ROS) and ATP. The mechanisms by which these molecules arise are not fully understood. In this study, using luminometric- and fluorescence-based methods, we show that ligation of glycophorin A (GPA) on human red blood cells (RBCs) results in a 2.1-fold, NADPH-oxidase-dependent increase in intracellular ROS that, in turn, trigger multiple downstream cascades leading to caspase-3 activation, ATP release, and increased band 3 phosphorylation. Functionally, using 2D microchannels to assess membrane deformability, GPS-ligated RBCs travel 33% slower than control RBCs, and lipid mobility was hindered by 10% using fluorescence recovery after photobleaching (FRAP). These outcomes were preventable by pretreating RBCs with cell-permeable ROS scavenger glutathione monoethyl ester (GSH-ME). Our results obtained in vitro using anti-GPA antibodies were validated using complement-altered RBCs isolated from control and septic patients. Our results suggest that during inflammatory conditions, circulating RBCs significantly contribute to capillary flow dysfunctions, and constitute an important but overlooked source of intravascular ROS and ATP, both critical mediators responsible for endothelial cell activation, microcirculation impairment, platelet activation, as well as long-term dysregulated adaptive and innate immune responses. PMID:26784696

  11. A small molecule that induces reactive oxygen species via cellular glutathione depletion.

    PubMed

    Kawamura, Tatsuro; Kondoh, Yasumitsu; Muroi, Makoto; Kawatani, Makoto; Osada, Hiroyuki

    2014-10-01

    Induction of excessive levels of reactive oxygen species (ROS) by small-molecule compounds has been considered a potentially effective therapeutic strategy against cancer cells, which are often subjected to chronic oxidative stress. However, to elucidate the mechanisms of action of bioactive compounds is generally a time-consuming process. We have recently identified NPD926, a small molecule that induces rapid cell death in cancer cells. Using a combination of two comprehensive and complementary approaches, proteomic profiling and affinity purification, together with the subsequent biochemical assays, we have elucidated the mechanism of action underlying NPD926-induced cell death: conjugation with glutathione mediated by GST, depletion of cellular glutathione and subsequent ROS generation. NPD926 preferentially induced effects in KRAS-transformed fibroblast cells, compared with their untransformed counterparts. Furthermore, NPD926 sensitized cells to inhibitors of system x(c)⁻, a cystine-glutamate antiporter considered to be a potential therapeutic target in cancers including cancer stem cells. These data show the effectiveness of a newly identified ROS inducer, which targets glutathione metabolism, in cancer treatment. PMID:25011393

  12. The bright side of reactive oxygen species: lifespan extension without cellular demise

    PubMed Central

    Maiese, Kenneth

    2016-01-01

    Oxidative stress and the generation of reactive oxygen species (ROS) can lead to mitochondrial dysfunction, DNA damage, protein misfolding, programmed cell death with apoptosis and autophagy, and the promotion of aging –dependent processes. Mitochondria control the processing of redox energy that yields adenosine triphosphate (ATP) through the oxidation of glucose, pyruvate, and nicotinamide adenine dinucleotide. Ultimately, the generation of ROS occurs with the aerobic production of ATP. Although reduced levels of ROS may lead to tolerance against metabolic, mechanical, and oxidative stressors and the generation of brief periods of ROS during ischemia-reperfusion models may limit cellular injury, under most circumstances ROS and mitochondrial dysfunction can lead to apoptotic caspase activation and autophagy induction that can result in cellular demise. Yet, new work suggests that ROS generation may have a positive impact through respiratory complex I reverse electron transport that can extend lifespan. Such mechanisms may bring new insight into clinically relevant disorders that are linked to cellular senescence and aging of the body’s system. Further investigation of the potential “bright side” of ROS and mitochondrial respiration is necessary to target specific pathways, such as the mechanistic target of rapamycin, nicotinamidases, sirtuins, mRNA decoupling and protein expression, and Wnt signaling, that can impact oxidative stress-ROS mechanisms to extend lifespan and eliminate disease onset. PMID:27200181

  13. Mitochondria are required for antigen-specific T cell activation through reactive oxygen species signaling

    PubMed Central

    Sena, Laura A.; Li, Sha; Jairaman, Amit; Prakriya, Murali; Ezponda, Teresa; Hildeman, David A.; Wang, Chyung-Ru; Schumacker, Paul T.; Licht, Jonathan D.; Perlman, Harris; Bryce, Paul J.; Chandel, Navdeep S.

    2013-01-01

    SUMMARY It is widely appreciated that T cells increase glycolytic flux during activation, however the role of mitochondrial flux is unclear. Here we have shown that mitochondrial metabolism, in the absence of glucose metabolism, was sufficient to support interleukin-2 (IL-2) induction. Furthermore, we used mice with reduced mitochondrial reactive oxygen species (mROS) production in T cells (T-Uqcrfs−/− mice) to show that mitochondria are required for T cell activation to produce mROS for activation of nuclear factor of activated T cells (NFAT) and subsequent IL-2 induction. These mice could not induce antigen-specific expansion of T cells in vivo, however Uqcrfs1−/− T cells retained the ability to proliferate in vivo under lymphopenic conditions. This suggests that Uqcrfs1−/− T cells were not lacking bioenergetically, but rather lacked specific ROS-dependent signaling events needed for antigen-specific expansion. Thus, mitochondrial metabolism is a critical component of T cell activation through production of complex III ROS. PMID:23415911

  14. Colloidal gold nanorings for improved photodynamic therapy through field-enhanced generation of reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Hu, Yue; Yang, Yamin; Wang, Hongjun; Du, Henry

    2013-02-01

    Au nanostructures that exhibit strong localized surface plasmon resonance (SPR) have excellent potential for photo-medicine, among a host of other applications. Here, we report the synthesis and use of colloidal gold nanorings (GNRs) with potential for enhanced photodynamic therapy of cancer. The GNRs were fabricated via galvanic replacement reaction of sacrificial Co nanoparticles in gold salt solution with low molecular weight (Mw = 2,500) poly(vinylpyrrolidone) (PVP) as a stabilizing agent. The size and the opening of the GNRs were controlled by the size of the starting Co particles and the concentration of the gold salt. UV-Vis absorption measurements indicated the tunability of the SPR of the GNRs from 560 nm to 780 nm. MTT assay showed that GNRs were non-toxic and biocompatible when incubated with breast cancer cells as well as the healthy counterpart cells. GNRs conjugated with 5-aminolevulinic acid (5-ALA) photosensitizer precursor led to elevated formation of reactive oxygen species and improved efficacy of photodynamic therapy of breast cancer cells under light irradiation compared to 5-ALA alone. These results can be attributed to significantly enhance localized electromagnetic field of the GNRs.

  15. Interplays between nitric oxide and reactive oxygen species in cryptogein signalling.

    PubMed

    Kulik, Anna; Noirot, Elodie; Grandperret, Vincent; Bourque, Stéphane; Fromentin, Jérôme; Salloignon, Pauline; Truntzer, Caroline; Dobrowolska, Grażyna; Simon-Plas, Françoise; Wendehenne, David

    2015-02-01

    Nitric oxide (NO) has many functions in plants. Here, we investigated its interplays with reactive oxygen species (ROS) in the defence responses triggered by the elicitin cryptogein. The production of NO induced by cryptogein in tobacco cells was partly regulated through a ROS-dependent pathway involving the NADPH oxidase NtRBOHD. In turn, NO down-regulated the level of H2O2. Both NO and ROS synthesis appeared to be under the control of type-2 histone deacetylases acting as negative regulators of cell death. Occurrence of an interplay between NO and ROS was further supported by the finding that cryptogein triggered a production of peroxynitrite (ONOO(-)). Next, we showed that ROS, but not NO, negatively regulate the intensity of activity of the cryptogein-induced protein kinase NtOSAK. Furthermore, using a DNA microarray approach, we identified 15 genes early induced by cryptogein via NO. A part of these genes was also modulated by ROS and encoded proteins showing sequence identity to ubiquitin ligases. Their expression appeared to be negatively regulated by ONOO(-), suggesting that ONOO(-) mitigates the effects of NO and ROS. Finally, we provided evidence that NO required NtRBOHD activity for inducing cell death, thus confirming previous assumption that ROS channel NO through cell death pathways. PMID:24506708

  16. The role of reactive oxygen species and autophagy in safingol-induced cell death

    PubMed Central

    Ling, L-U; Tan, K-B; Lin, H; Chiu, G N C

    2011-01-01

    Safingol is a sphingolipid with promising anticancer potential, which is currently in phase I clinical trial. Yet, the underlying mechanisms of its action remain largely unknown. We reported here that safingol-induced primarily accidental necrotic cell death in MDA-MB-231 and HT-29 cells, as shown by the increase in the percentage of cells stained positive for 7-aminoactinomycin , collapse of mitochondria membrane potential and depletion of intracellular ATP. Importantly, safingol treatment produced time- and concentration-dependent reactive oxygen species (ROS) generation. Autophagy was triggered following safingol treatment, as reflected by the formation of autophagosomes, acidic vacuoles, increased light chain 3-II and Atg biomarkers expression. Interestingly, scavenging ROS with N-acetyl--cysteine could prevent the autophagic features and reverse safingol-induced necrosis. Our data also suggested that autophagy was a cell repair mechanism, as suppression of autophagy by 3-methyladenine or bafilomycin A1 significantly augmented cell death on 2-5 μ safingol treatment. In addition, Bcl-xL and Bax might be involved in the regulation of safingol-induced autophagy. Finally, glucose uptake was shown to be inhibited by safingol treatment, which was associated with an increase in p-AMPK expression. Taken together, our data suggested that ROS was the mediator of safingol-induced cancer cell death, and autophagy is likely to be a mechanism triggered to repair damages from ROS generation on safingol treatment. PMID:21390063

  17. Effects of Sanionia uncinata extracts in protecting against and inducing DNA cleavage by reactive oxygen species.

    PubMed

    Fernandes, Andréia da Silva; Mazzei, José Luiz; de Alencar, Alexandre Santos; Evangelista, Heitor; Felzenszwalb, Israel

    2011-01-01

    When mosses are exposed to increased quantities of ultraviolet (UV) radiation, they produce more secondary metabolites. Antarctica moss Sanionia uncinata (Hedw.) Loeske has presented high carotenoid contents in response to an increase in UVB radiation. This moss has been recommended as a potential source of antioxidants. In the present work, the protective and enhancing effects of aqueous (AE) and hydroalcoholic (HE) extracts of S. uncinata on the cleavage of supercoiled DNA were evaluated through topological modifications, quantified by densitometry after agarose gel electrophoresis. Total phenolic contents reached 5.89 mg/g. Our data demonstrated that the extract does not induce DNA cleavage. Furthermore, both extracts showed antioxidant activity that protected the DNA against cleavage induced by (i) O(2)(•-), 89% (AE) and 94% (HE) (P<0.05), and (ii) (.)OH, 17% (AE) and 18% (HE). However, the extracts intensified cleavage induced by Fenton-like reactions: (i) Cu(2+)/H(2)O(2), 94% (AE) and 100% (HE) (P<0.05), and (ii) SnCl(2), 62% (AE) and 56% (HE). DNA damages seem to follow different ways: (i) in the presence of Fenton-like reactions could be via reactive oxygen species generation and (ii) with HE/Cu(2+) could have also been triggered by other mechanisms. PMID:22005340

  18. Hemoglobin fructation promotes heme degradation through the generation of endogenous reactive oxygen species.

    PubMed

    Goodarzi, M; Moosavi-Movahedi, A A; Habibi-Rezaei, M; Shourian, M; Ghourchian, H; Ahmad, F; Farhadi, M; Saboury, A A; Sheibani, N

    2014-09-15

    Protein glycation is a cascade of nonenzymatic reactions between reducing sugars and amino groups of proteins. It is referred to as fructation when the reducing monosaccharide is fructose. Some potential mechanisms have been suggested for the generation of reactive oxygen species (ROS) by protein glycation reactions in the presence of glucose. In this state, glucose autoxidation, ketoamine, and oxidative advance glycation end products (AGEs) formation are considered as major sources of ROS and perhaps heme degradation during hemoglobin glycation. However, whether fructose mediated glycation produces ROS and heme degradation is unknown. Here we report that ROS (H2O2) production occurred during hemoglobin fructation in vitro using chemiluminescence methods. The enhanced heme exposure and degradation were determined using UV-Vis and fluorescence spectrophotometry. Following accumulation of ROS, heme degradation products were accumulated reaching a plateau along with the detected ROS. Thus, fructose may make a significant contribution to the production of ROS, glycation of proteins, and heme degradation during diabetes. PMID:24813286

  19. Myomir dysregulation and reactive oxygen species in aged human satellite cells.

    PubMed

    Di Filippo, Ester Sara; Mancinelli, Rosa; Pietrangelo, Tiziana; La Rovere, Rita Maria Laura; Quattrocelli, Mattia; Sampaolesi, Maurilio; Fulle, Stefania

    2016-04-29

    Satellite cells that reside on the myofibre surface are crucial for the muscle homeostasis and regeneration. Aging goes along with a less effective regeneration of skeletal muscle tissue mainly due to the decreased myogenic capability of satellite cells. This phenomenon impedes proper maintenance and contributes to the age-associated decline in muscle mass, known as sarcopenia. The myogenic potential impairment does not depend on a reduced myogenic cell number, but mainly on their difficulty to complete a differentiation program. The unbalanced production of reactive oxygen species in elderly people could be responsible for skeletal muscle impairments. microRNAs are conserved post-transcriptional regulators implicated in numerous biological processes including adult myogenesis. Here, we measure the ROS level and analyze myomiR (miR-1, miR-133b and miR-206) expression in human myogenic precursors obtained from Vastus lateralis of elderly and young subjects to provide the molecular signature responsible for the differentiation impairment of elderly activated satellite cells. PMID:26975470

  20. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials

    PubMed Central

    Garza, Kristine M; Soto, Karla F; Murr, Lawrence E

    2008-01-01

    We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots – along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20–80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations of polycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production. PMID:18488419

  1. Reactions of reactive oxygen species (ROS) with curcumin analogues: Structure-activity relationship.

    PubMed

    Singh, Umang; Barik, Atanu; Singh, Beena G; Priyadarsini, K Indira

    2011-03-01

    Three curcumin analogues viz., bisdemethoxy curcumin, monodemethoxy curcumin, and dimethoxycurcumin that differ at the phenolic substitution were synthesized. These compounds have been subjected for free radical reactions with DPPH radicals, superoxide radicals (O(2)(•-)), singlet oxygen ((1)O(2)) and peroxyl radicals (CCl(3)O(2)(•)) and the bimolecular rate constants were determined. The DPPH radical reactions were followed by stopped-flow spectrometer, (1)O(2) reactions by transient luminescence spectrometer, and CCl(3)O(2)(•) reactions using pulse radiolysis technique. The rate constants indicate that the presence of o-methoxy phenolic OH increases its reactivity with DPPH and CCl(3)O(2)(•), while for molecules lacking phenolic OH, this reaction is very sluggish. Reaction of O(2)(•-) and (1)O(2) with curcumin analogues takes place preferably at β-diketone moiety. The studies thus suggested that both phenolic OH and the β-diketone moiety of curcumin are involved in neutralizing the free radicals and their relative scavenging ability depends on the nature of the free radicals. PMID:21034358

  2. Nutritional Countermeasures Targeting Reactive Oxygen Species in Cancer: From Mechanisms to Biomarkers and Clinical Evidence

    PubMed Central

    Samoylenko, Anatoly; Hossain, Jubayer Al; Mennerich, Daniela; Kellokumpu, Sakari; Hiltunen, Jukka Kalervo

    2013-01-01

    Abstract Reactive oxygen species (ROS) exert various biological effects and contribute to signaling events during physiological and pathological processes. Enhanced levels of ROS are highly associated with different tumors, a Western lifestyle, and a nutritional regime. The supplementation of food with traditional antioxidants was shown to be protective against cancer in a number of studies both in vitro and in vivo. However, recent large-scale human trials in well-nourished populations did not confirm the beneficial role of antioxidants in cancer, whereas there is a well-established connection between longevity of several human populations and increased amount of antioxidants in their diets. Although our knowledge about ROS generators, ROS scavengers, and ROS signaling has improved, the knowledge about the direct link between nutrition, ROS levels, and cancer is limited. These limitations are partly due to lack of standardized reliable ROS measurement methods, easily usable biomarkers, knowledge of ROS action in cellular compartments, and individual genetic predispositions. The current review summarizes ROS formation due to nutrition with respect to macronutrients and antioxidant micronutrients in the context of cancer and discusses signaling mechanisms, used biomarkers, and its limitations along with large-scale human trials. Antioxid. Redox Signal. 19, 2157–2196. PMID:23458328

  3. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    SciTech Connect

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  4. Mechanism of Action of Phenethylisothiocyanate and Other Reactive Oxygen Species-Inducing Anticancer Agents

    PubMed Central

    Jutooru, Indira; Guthrie, Aaron S.; Chadalapaka, Gayathri; Pathi, Satya; Kim, KyoungHyun; Burghardt, Robert; Jin, Un-Ho

    2014-01-01

    Reactive oxygen species (ROS)-inducing anticancer agents such as phenethylisothiocyanate (PEITC) activate stress pathways for killing cancer cells. Here we demonstrate that PEITC-induced ROS decreased expression of microRNA 27a (miR-27a)/miR-20a:miR-17-5p and induced miR-regulated ZBTB10/ZBTB4 and ZBTB34 transcriptional repressors, which, in turn, downregulate specificity protein (Sp) transcription factors (TFs) Sp1, Sp3, and Sp4 in pancreatic cancer cells. Decreased expression of miR-27a/miR-20a:miR-17-5p by PEITC-induced ROS is a key step in triggering the miR-ZBTB Sp cascade leading to downregulation of Sp TFs, and this is due to ROS-dependent epigenetic effects associated with genome-wide shifts in repressor complexes, resulting in decreased expression of Myc and the Myc-regulated miRs. Knockdown of Sp1 alone by RNA interference also induced apoptosis and decreased pancreatic cancer cell growth and invasion, indicating that downregulation of Sp transcription factors is an important common mechanism of action for PEITC and other ROS-inducing anticancer agents. PMID:24732804

  5. Reactive Oxygen Species as Additional Determinants for Cytotoxicity of Clostridium difficile Toxins A and B

    PubMed Central

    Frädrich, Claudia; Beer, Lara-Antonia; Gerhard, Ralf

    2016-01-01

    Clostridium difficile infections can induce mild to severe diarrhoea and the often associated characteristic pseudomembranous colitis. Two protein toxins, the large glucosyltransferases TcdA and TcdB, are the main pathogenicity factors that can induce all clinical symptoms in animal models. The classical molecular mode of action of these homologous toxins is the inhibition of Rho GTPases by mono-glucosylation. Rho-inhibition leads to breakdown of the actin cytoskeleton, induces stress-activated and pro-inflammatory signaling and eventually results in apoptosis of the affected cells. An increasing number of reports, however, have documented further qualities of TcdA and TcdB, including the production of reactive oxygen species (ROS) by target cells. This review summarizes observations dealing with the production of ROS induced by TcdA and TcdB, dissects pathways that contribute to this phenomenon and speculates about ROS in mediating pathogenesis. In conclusion, ROS have to be considered as a discrete, glucosyltransferase-independent quality of at least TcdB, triggered by different mechanisms. PMID:26797634

  6. Prevention of cytotoxicity of nickel by quercetin: the role of reactive oxygen species and histone acetylation.

    PubMed

    Chen, Jie; Han, Jia; Wang, Jianmin

    2013-05-01

    Excessive exposure to nickel may cause health effects on the blood, lung, nose, kidney, reproductive system, skin and the unborn child. In the present study, we found that Ni²⁺ exposure led to a time- and dose-dependent proliferation arrest and death in human leukemia HL-60 cells. In the presence of 1 mM Ni²⁺, reactive oxygen species (ROS) generation (indicated by the level of malondialdehyde) increased to 323% and histone acetylation decreased to 32%. Interestingly, quercetin (QU) dose dependently prevented Ni²⁺-induced cell proliferation arrest and death from 0 to 80 μM but showed similar activity of scavenging ROS at the concentrations of 20, 40 and 80 µM. When the effect of QU on histone acetylation was studied, QU significantly prevented Ni²⁺-induced histone hypoacetylation at 40 or 80 µM. Moreover, increase in histone acetylation by trichostatin A could also significantly enhance the protection effect of QU at 10 or 20 µM but not at higher concentrations. Thus, our results further confirmed the critical role of ROS and histone hypoacetylation in the cytotoxicity of Ni²⁺ exposure and proved that QU is a potentially useful native dietary compound to efficiently prevent Ni²⁺-caused cytotoxicity through both diminishing ROS generation and increasing histone acetylation. PMID:22294440

  7. Identification and biological activities of a new antiangiogenic small molecule that suppresses mitochondrial reactive oxygen species

    SciTech Connect

    Kim, Ki Hyun; Park, Ju Yeol; Jung, Hye Jin; Kwon, Ho Jeong

    2011-01-07

    Research highlights: {yields} YCG063 was screened as a new angiogenesis inhibitor which suppresses mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library. {yields} The compound inhibited in vitro and in vivo angiogenesis in a dose-dependent manner. {yields} This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions. -- Abstract: Mitochondrial reactive oxygen species (ROS) are associated with multiple cellular functions such as cell proliferation, differentiation, and apoptosis. In particular, high levels of mitochondrial ROS in hypoxic cells regulate many angiogenesis-related diseases, including cancer and ischemic disorders. Here we report a new angiogenesis inhibitor, YCG063, which suppressed mitochondrial ROS generation in a phenotypic cell-based screening of a small molecule-focused library with an ArrayScan HCS reader. YCG063 suppressed mitochondrial ROS generation under a hypoxic condition in a dose-dependent manner, leading to the inhibition of in vitro angiogenic tube formation and chemoinvasion as well as in vivo angiogenesis of the chorioallantoic membrane (CAM) at non-toxic doses. In addition, YCG063 decreased the expression levels of HIF-1{alpha} and its target gene, VEGF. Collectively, a new antiangiogenic small molecule that suppresses mitochondrial ROS was identified. This new small molecule tool will provide a basis for a better understanding of angiogenesis driven under hypoxic conditions.

  8. Iron- and ferritin-dependent reactive oxygen species distribution: impact on Arabidopsis root system architecture.

    PubMed

    Reyt, Guilhem; Boudouf, Soukaina; Boucherez, Jossia; Gaymard, Frédéric; Briat, Jean-Francois

    2015-03-01

    Iron (Fe) homeostasis is integrated with the production of reactive oxygen species (ROS), and distribution at the root tip participates in the control of root growth. Excess Fe increases ferritin abundance, enabling the storage of Fe, which contributes to protection of plants against Fe-induced oxidative stress. AtFer1 and AtFer3 are the two ferritin genes expressed in the meristematic zone, pericycle and endodermis of the Arabidopsis thaliana root, and it is in these regions that we observe Fe stained dots. This staining disappears in the triple fer1-3-4 ferritin mutant. Fe excess decreases primary root length in the same way in wild-type and in fer1-3-4 mutant. In contrast, the Fe-mediated decrease of lateral root (LR) length and density is enhanced in fer1-3-4 plants due to a defect in LR emergence. We observe that this interaction between excess Fe, ferritin, and root system architecture (RSA) is in part mediated by the H2O2/O2·- balance between the root cell proliferation and differentiation zones regulated by the UPB1 transcription factor. Meristem size is also decreased in response to Fe excess in ferritin mutant plants, implicating cell cycle arrest mediated by the ROS-activated SMR5/SMR7 cyclin-dependent kinase inhibitors pathway in the interaction between Fe and RSA. PMID:25624148

  9. Autophagy protein Ulk1 promotes mitochondrial apoptosis through reactive oxygen species.

    PubMed

    Mukhopadhyay, Subhadip; Das, Durgesh Nandini; Panda, Prashanta Kumar; Sinha, Niharika; Naik, Prajna Paramita; Bissoyi, Akalabya; Pramanik, Krishna; Bhutia, Sujit Kumar

    2015-12-01

    Regardless of rapid progression in the field of autophagy, it remains a challenging task to understand the cross talk with apoptosis. In this study, we overexpressed Ulk1 in HeLa cells and evaluated the apoptosis-inducing potential of the Ulk1 gene in the presence of cisplatin. The gain of function of Ulk1 gene showed a decline in cell viability and colony formation in HeLa cells. The Ulk1-overexpressing cells showed higher apoptotic attributes by an increase in the percentage of annexin V, escalated expression of Bax/Bcl2 ratio, and caspase-9, -3/7 activities. Further, reactive oxygen species (ROS) generation was found to be much higher in HeLa-Ulk1 than in the mock group. Scavenging the ROS by N-acetyl-L-cysteine increased cell viability and colony number as well as mitochondrial membrane potential (MMP). Our data showed that Ulk1 on entering into mitochondria inhibits the manganese dismutase activity and intensifies the mitochondrial superoxide level. The Ulk1-triggered autophagy (particularly mitophagy) resulted in a fall in ATP; thus the nonmitophagic mitochondria overwork the electron-transport cycle to replenish energy demand and are inadvertently involved in ROS overproduction that led to apoptosis. In this present investigation, our results decipher a previously unrecognized perspective of apoptosis induction by a key autophagy protein Ulk1 that may contribute to identification of its tumor-suppressor properties through dissecting the connection among cellular bioenergetics, ROS, and MMP. PMID:26409225

  10. Facile endothelial cell micropatterning induced by reactive oxygen species on polydimethylsiloxane substrates.

    PubMed

    Choi, Jong Seob; Kim, Do Hyun; Seo, Tae Seok

    2016-04-01

    Sophisticated cell pattern provides unique cellular assay platform for studying cell to cell interaction, cellular differentiation and signaling, high-throughput cell response to chemicals. In this study, we demonstrated reactive oxygen species (ROS) mediated endothelial cell micropatterning on a polydimethylsiloxane (PDMS) substrate. The exposure of UV/O radiation led to the formation of ROS on the surface of PDMS, which could selectively prevent adhesion of endothelial cells. The degree of ROS amount was monitored according to the UV/O irradiation time, and at least 36 μM of ROS resulted in the precise cellular micropattern on the PDMS. The presence of ROS affected not only cellular detachment from the substrate, but also endothelial cell morphology such as cell spreading area, confluence, nuclear area and nuclear inverse aspect ratio. In addition, we could observe that the actin cytoskeleton of cells was also constricted due to ROS, thereby minimizing the focal adhesion area of vinculin. Compared with previously reported methods which use chemical treatment or nano/microstructure on the substrate, the proposed methodology is quite simple, accurate, and harmless to the patterned endothelial cells. PMID:26852296

  11. Mucosal reactive oxygen species decrease virulence by disrupting Campylobacter jejuni phosphotyrosine signaling.

    PubMed

    Corcionivoschi, Nicolae; Alvarez, Luis A J; Sharp, Thomas H; Strengert, Monika; Alemka, Abofu; Mantell, Judith; Verkade, Paul; Knaus, Ulla G; Bourke, Billy

    2012-07-19

    Reactive oxygen species (ROS) play key roles in mucosal defense, yet how they are induced and the consequences for pathogens are unclear. We report that ROS generated by epithelial NADPH oxidases (Nox1/Duox2) during Campylobacter jejuni infection impair bacterial capsule formation and virulence by altering bacterial signal transduction. Upon C. jejuni invasion, ROS released from the intestinal mucosa inhibit the bacterial phosphotyrosine network that is regulated by the outer-membrane tyrosine kinase Cjtk (Cj1170/OMP50). ROS-mediated Cjtk inactivation results in an overall decrease in the phosphorylation of C. jejuni outer-membrane/periplasmic proteins, including UDP-GlcNAc/Glc 4-epimerase (Gne), an enzyme required for N-glycosylation and capsule formation. Cjtk positively regulates Gne by phosphorylating an active site tyrosine, while loss of Cjtk or ROS treatment inhibits Gne activity, causing altered polysaccharide synthesis. Thus, epithelial NADPH oxidases are an early antibacterial defense system in the intestinal mucosa that modifies virulence by disrupting bacterial signaling. PMID:22817987

  12. Ambient Fine Particulate Matter Induces Apoptosis of Endothelial Progenitor Cells Through Reactive Oxygen Species Formation

    PubMed Central

    Cui, Yuqi; Xie, Xiaoyun; Jia, Fengpeng; He, Jianfeng; Li, Zhihong; Fu, Minghuan; Hao, Hong; Liu, Ying; Liu, Jason Z.; Cowan, Peter J.; Zhu, Hua; Sun, Qinghua; Liu, Zhenguo

    2015-01-01

    Background/Aims Bone marrow (BM)-derived endothelial progenitor cells (EPCs) play a critical role in angiogenesis and vascular repair. Some environmental insults, like fine particulate matter (PM) exposure, significantly impair cardiovascular functions. However, the mechanisms for PM-induced adverse effects on cardiovascular system remain largely unknown. The present research was to study the detrimental effects of PM on EPCs and explore the potential mechanisms. Methods PM was intranasal-distilled into male C57BL/6 mice for one month. Flow cytometry was used to measure the number of EPCs, apoptosis level of circulating EPCs and intracellular reactive oxygen species (ROS) formation. Serum TNF-α and IL-1β were measured using ELISA. To determine the role of PM-induced ROS in EPC apoptosis, PM was co-administrated with the antioxidant N-acetylcysteine (NAC) in wild type mice or used in a triple transgenic mouse line (TG) with overexpression of antioxidant enzyme network (AON) composed of superoxide dismutase (SOD)1, SOD3, and glutathione peroxidase (Gpx-1) with decreased in vivo ROS production. Results PM treatment significantly decreased circulating EPC population, promoted apoptosis of EPCs in association with increased ROS production and serum TNF-α and IL-1β levels, which could be effectively reversed by either NAC treatment or overexpression of AON. Conclusion PM exposure significantly decreased circulating EPCs population due to increased apoptosis via ROS formation in mice. PMID:25591776

  13. Mitohormesis: Promoting Health and Lifespan by Increased Levels of Reactive Oxygen Species (ROS)

    PubMed Central

    Ristow, Michael; Schmeisser, Kathrin

    2014-01-01

    Increasing evidence indicates that reactive oxygen species (ROS), consisting of superoxide, hydrogen peroxide, and multiple others, do not only cause oxidative stress, but rather may function as signaling molecules that promote health by preventing or delaying a number of chronic diseases, and ultimately extend lifespan. While high levels of ROS are generally accepted to cause cellular damage and to promote aging, low levels of these may rather improve systemic defense mechanisms by inducing an adaptive response. This concept has been named mitochondrial hormesis or mitohormesis. We here evaluate and summarize more than 500 publications from current literature regarding such ROS-mediated low-dose signaling events, including calorie restriction, hypoxia, temperature stress, and physical activity, as well as signaling events downstream of insulin/IGF-1 receptors, AMP-dependent kinase (AMPK), target-of-rapamycin (TOR), and lastly sirtuins to culminate in control of proteostasis, unfolded protein response (UPR), stem cell maintenance and stress resistance. Additionally, consequences of interfering with such ROS signals by pharmacological or natural compounds are being discussed, concluding that particularly antioxidants are useless or even harmful. PMID:24910588

  14. Unilateral nephrectomy elongates primary cilia in the remaining kidney via reactive oxygen species.

    PubMed

    Han, Sang Jun; Jang, Hee-Seong; Kim, Jee In; Lipschutz, Joshua H; Park, Kwon Moo

    2016-01-01

    The length of primary cilia is associated with normal cell and organ function. In the kidney, the change of functional cilia length/mass is associated with various diseases such as ischemia/reperfusion injury, polycystic kidney disease, and congenital solitary kidney. Here, we investigate whether renal mass reduction affects primary cilia length and function. To induce renal mass reduction, mice were subjected to unilateral nephrectomy (UNx). UNx increased kidney weight and superoxide formation in the remaining kidney. Primary cilia were elongated in proximal tubule cells, collecting duct cells and parietal cells of the remaining kidney. Mn(III) Tetrakis (1-methyl-4-pyridyl) porphyrin (MnTMPyP), an antioxidant, reduced superoxide formation in UNx-mice and prevented the elongation of primary cilia. UNx increased the expression of phosphorylated ERK, p21, and exocyst complex members Sec8 and Sec10, in the remaining kidney, and these increases were prevented by MnTMPyP. In MDCK, a kidney tubular epithelial cell line, cells, low concentrations of H2O2 treatment elongated primary cilia. This H2O2-induced elongation of primary cilia was also prevented by MnTMPyP treatment. Taken together, these data demonstrate that kidney compensation, induced by a reduction of renal mass, results in primary cilia elongation, and this elongation is associated with an increased production of reactive oxygen species (ROS). PMID:26923764

  15. High cell density attenuates reactive oxygen species: implications for in vitro assays.

    PubMed

    Kim, Dennis P; Yahav, Jonathan; Sperandeo, Michael; Maloney, Lauren; McTigue, Monica; Lin, Fubao; Clark, Richard A F

    2012-01-01

    In vitro cell-based assays are an essential and universally used step in elucidation of biological processes as well as in drug development. However, results obtained depend on the validity of protocols used. This statement certainly pertains to in vitro assays of oxidative stress. The holy grail of in vitro models is reliability and predictability of outcomes that relate to a single variable like addition of hydrogen peroxide or xanthine oxidase. Without such validated outcomes, comparison of results among different laboratories is not possible. Achieving this goal requires a thorough understanding of the complex interplay between the cells, their environment, and the experimental assays. Furthermore, as this knowledge is attained, it must be disseminated and used to update and standardize existing protocols. Here, we confirm and extend the effect of pyruvate and cell density on in vitro oxidative stress assays. Cell viability was assessed using a colorimetric assay measuring the reduction of a tetrazolium salt (XTT) into a colored formazan dye. Extracellular hydrogen peroxide concentrations were measured using the foxp3 assay. We confirmed a previously reported finding that pyruvate, a common ingredient in cell culture media, acts as an extracellular scavenger of reactive oxygen species. We also demonstrated that cell density directly correlates with resistance to oxidative stress in tissue culture. It is theorized that the protective effect due to cell density predominantly relates to intracellular factors such as reduced glutathione and extracellular factors such as catalase. PMID:22107255

  16. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species

    PubMed Central

    Lee, Mi Jin; Lee, Seung Jun; Yun, Su Jin; Jang, Ji-Young; Kang, Hangoo; Kim, Kyongmin; Choi, In-Hong; Park, Sun

    2016-01-01

    The silver nanoparticle (AgNP) is a candidate for anticancer therapy because of its effects on cell survival and signaling. Although numerous reports are available regarding their effect on cell death, the effect of AgNPs on metabolism is not well understood. In this study, we investigated the effect of AgNPs on glucose metabolism in hepatoma cell lines. Lactate release from both HepG2 and Huh7 cells was reduced with 5 nm AgNPs as early as 1 hour after treatment, when cell death did not occur. Treatment with 5 nm AgNPs decreased glucose consumption in HepG2 cells but not in Huh7 cells. Treatment with 5 nm AgNPs reduced nuclear factor erythroid 2-like 2 expression in both cell types without affecting its activation at the early time points after AgNPs’ treatment. Increased reactive oxygen species (ROS) production was detected 1 hour after 5 nm AgNPs’ treatment, and lactate release was restored in the presence of an ROS scavenger. Our results suggest that 5 nm AgNPs affect glucose metabolism by producing ROS. PMID:26730190

  17. Reactive oxygen species as important determinants of medullary flow, sodium excretion, and hypertension

    PubMed Central

    Abe, Michiaki; Mori, Takefumi; O'Connor, Paul M.; Ohsaki, Yusuke; Zheleznova, Nadezhda N.

    2014-01-01

    The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na+ reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension. PMID:25354941

  18. Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production.

    PubMed

    Ye, Junli; Jiang, Zhongxin; Chen, Xuehong; Liu, Mengyang; Li, Jing; Liu, Na

    2016-01-15

    Reactive oxygen species (ROS) are believed to be mediators of excessive microglial activation, yet the resources and mechanism are not fully understood. Here we stimulated murine microglial BV-2 cells and primary microglial cells with different inhibitors of electron transport chain (ETC), rotenone, thenoyltrifluoroacetone (TTFA), antimycin A, and NaN3 to induce mitochondrial ROS production and we observed the role of mitochondrial ROS in microglial activation. Our results showed that ETC inhibitors resulted in significant changes in cell viability, microglial morphology, cell cycle arrest and mitochondrial ROS production in a dose-dependent manner in both primary cultural microglia and BV-2 cell lines. Moreover, ETC inhibitors, especially rotenone and antimycin A stimulated secretion of interleukin 1β (IL-1β), interleukin 6 (IL-6), interleukin 12 (IL-12) and tumor necrosis factor α (TNF-α) by microglia with marked activation of mitogen-activated proteinkinases (MAPKs) and nuclear factor κB (NF-κB), which could be blocked by specific inhibitors of MAPK and NF-κB and mitochondrial antioxidants, Mito-TEMPO. Taken together, our results demonstrated that inhibition of mitochondrial respiratory chain in microglia led to production of mitochondrial ROS and therefore may activate MAPK/NF-кB dependent inflammatory cytokines release in microglia, which indicated that mitochondrial-derived ROS were contributed to microglial activation. PMID:26511505

  19. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson's disease.

    PubMed

    Zuo, Li; Motherwell, Michael S

    2013-12-10

    The exact pathogenesis of Parkinson's disease (PD) is still unknown and proper mechanisms that correspond to the disease remain unidentified. It is understood that PD is age-related; as age increases, the chance of onset responds accordingly. Although there are no current means of curing PD, the understanding of reactive oxygen species (ROS) provides significant insight to possible treatments. Complex I deficiencies of the respiratory chain account for the majority of unfavorable neural apoptosis generation in PD. Dopaminergic neurons are severely damaged as a result of the deficiency. Symptoms such as inhibited cognitive ability and loss of smooth motor function are the results of such impairment. The genetic mutations of Parkinson's related proteins such as PINK1 and LRRK2 contribute to mitochondrial dysfunction which precedes ROS formation. Various pathways are inhibited by these mutations, and inevitably causing neural cell damage. Antioxidants are known to negate the damaging effects of free radical overexpression. This paper expands on the specific impact of mitochondrial genetic change and production of free radicals as well as its correlation to the neurodegeneration in Parkinson's disease. PMID:23954870

  20. THE ROLE OF REACTIVE OXYGEN SPECIES IN TUMOR CELLS APOPTOSIS INDUCED BY LANDOMYCIN A.

    PubMed

    Lehka, L V; Panchuk, R R; Berger, W; Rohr, Ju; Stoika, R S

    2015-01-01

    Landomycin A (LA) is a new antitumor antibiotic of angucycline group, possessing high antitumor activity against cancer cells of different origin, which induces early apoptosis in target cells. It was shown that under LA action the level of reactive oxygen species (ROS) in human T-leukemia cells had increased 5.6 times in comparison to control already at the 1st hour after the addition of studied antibiotic to the culture medium. At the 6th hour after incubation of cells with LA the nucleosomal DNA cleavage, chromatin condensation and nucleus fragmentation were observed, indicating apoptotic cell death. Catalase (scavenger of hydrogen peroxide), mannitol (scavenger of hydroxyl radicals) and superoxide dismutase (scavenger of superoxide radicals) reduced the level of ROS production under LA, suggesting the generation of H2O2, OH* and O2- radicals, respectively. It was revealed that catalase and mannitol effectively inhibited LA-mediated tumor cell death, increasing 2.5 times the percentage of alive cells in comparison to LA. However, superoxide dismutase had no significant inhibitory effect on cytotoxic activity of LA, indicating the minor role of superoxide anions in the implementation of antitumor activity of this antibiotic. Combination of catalase, mannitol and superoxide dismutase with LA increased 4-fold the percentage of alive cells in comparison to the action of LA. Dynamics of ROS formation confirms that the increase of ROS is a very rapid process, but at the same time it is not a direct consequence of apoptosis triggering, mediated by mitochondria. PMID:26717598

  1. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma.

    PubMed

    Ahn, Hak Jun; Kim, Kang Il; Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH-, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells. PMID:24465942

  2. Generation of Reactive Oxygen Species via NOXa Is Important for Development and Pathogenicity of Mycosphaerella graminicola.

    PubMed

    Choi, Yoon-E; Lee, Changsu; Goodwin, Stephen B

    2016-03-01

    The ascomycete fungus Mycosphaerella graminicola (synonym Zymoseptoria tritici) is an important pathogen of wheat causing economically significant losses. The primary nutritional mode of this fungus is thought to be hemibiotrophic. This pathogenic lifestyle is associated with an early biotrophic stage of nutrient uptake followed by a necrotrophic stage aided possibly by production of a toxin or reactive oxygen species (ROS). In many other fungi, the genes CREA and AREA are important during the biotrophic stage of infection, while the NOXa gene product is important during necrotrophic growth. To test the hypothesis that these genes are important for pathogenicity of M. graminicola, we employed an over-expression strategy for the selected target genes CREA, AREA, and NOXa, which might function as regulators of nutrient acquisition or ROS generation. Increased expressions of CREA, AREA, and NOXa in M. graminicola were confirmed via quantitative real-time PCR and strains were subsequently assayed for pathogenicity. Among them, the NOXa over-expression strain, NO2, resulted in significantly increased virulence. Moreover, instead of the usual filamentous growth, we observed a predominance of yeast-like growth of NO2 which was correlated with ROS production. Our data indicate that ROS generation via NOXa is important to pathogenicity as well as development in M. graminicola. PMID:27103853

  3. Susceptibility of brown adipocytes to pro-inflammatory cytokine toxicity and reactive oxygen species

    PubMed Central

    Rebiger, Lars; Lenzen, Sigurd; Mehmeti, Ilir

    2016-01-01

    Brown adipose tissue (BAT) cells have a very high oxidative capacity. On the other hand, in obesity and obesity-related diabetes, levels of pro-inflammatory cytokines are elevated, which might promote BAT dysfunction and consequently impair carbohydrate metabolism and thereby exacerbate cellular dysfunction and promote diabetes progression. Therefore, the antioxidative enzyme status of a brown adipocyte cell line and its susceptibility towards pro-inflammatory cytokines, which participate in the pathogenesis of diabetes, and reactive oxygen species (ROS) were analysed. Mature brown adipocytes exhibited significantly higher levels of expression of mitochondrially and peroxisomally located antioxidative enzymes compared with non-differentiated brown adipocytes. Pro-inflammatory cytokines induced a significant decrease in the viability of differentiated brown adipocytes, which was accompanied by a massive ROS production and down-regulation of BAT-specific markers, such as uncoupling protein 1 (UCP-1) and β-Klotho. Taken together, the results strongly indicate that pro-inflammatory cytokines cause brown adipocyte dysfunction and death through suppression of BAT-specific proteins, especially of UCP-1 and β-Klotho, and consequently increased oxidative stress. PMID:26795216

  4. Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds

    PubMed Central

    2012-01-01

    Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-amino-pyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone and that of 2,2′-bipyridyl-6-carbothioamide. Experiments on generation of oxidative stress and the influence of biologically relevant reductants (glutathione, ascorbic acid) on the anticancer activity of the copper complexes revealed that reductant-dependent redox cycling occurred mainly outside the cells, leading to generation and dismutation of superoxide radicals resulting in cytotoxic amounts of H2O2. However, without extracellular reductants only weak intracellular ROS generation was observed at IC50 levels, suggesting that cellular thiols are not involved in copper-complex-induced oxidative stress. Taken together, thiol-induced intracellular ROS generation might contribute to the anticancer activity of copper thiosemicarbazone complexes but is not the determining factor. PMID:22189939

  5. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production

    PubMed Central

    Patel, Khushbu K; Miyoshi, Hiroyuki; Beatty, Wandy L; Head, Richard D; Malvin, Nicole P; Cadwell, Ken; Guan, Jun-Lin; Saitoh, Tatsuya; Akira, Shizuo; Seglen, Per O; Dinauer, Mary C; Virgin, Herbert W; Stappenbeck, Thaddeus S

    2013-01-01

    Delivery of granule contents to epithelial surfaces by secretory cells is a critical physiologic process. In the intestine, goblet cells secrete mucus that is required for homeostasis. Autophagy proteins are required for secretion in some cases, though the mechanism and cell biological basis for this requirement remain unknown. We found that in colonic goblet cells, proteins involved in initiation and elongation of autophagosomes were required for efficient mucus secretion. The autophagy protein LC3 localized to intracellular multi-vesicular vacuoles that were consistent with a fusion of autophagosomes and endosomes. Using cultured intestinal epithelial cells, we found that NADPH oxidases localized to and enhanced the formation of these LC3-positive vacuoles. Both autophagy proteins and endosome formation were required for maximal production of reactive oxygen species (ROS) derived from NADPH oxidases. Importantly, generation of ROS was critical to control mucin granule accumulation in colonic goblet cells. Thus, autophagy proteins can control secretory function through ROS, which is in part generated by LC3-positive vacuole-associated NADPH oxidases. These findings provide a novel mechanism by which autophagy proteins can control secretion. PMID:24185898

  6. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance.

    PubMed

    Xia, Xiao-Jian; Zhou, Yan-Hong; Shi, Kai; Zhou, Jie; Foyer, Christine H; Yu, Jing-Quan

    2015-05-01

    As a consequence of a sessile lifestyle, plants are continuously exposed to changing environmental conditions and often life-threatening stresses caused by exposure to excessive light, extremes of temperature, limiting nutrient or water availability, and pathogen/insect attack. The flexible coordination of plant growth and development is necessary to optimize vigour and fitness in a changing environment through rapid and appropriate responses to such stresses. The concept that reactive oxygen species (ROS) are versatile signalling molecules in plants that contribute to stress acclimation is well established. This review provides an overview of our current knowledge of how ROS production and signalling are integrated with the action of auxin, brassinosteroids, gibberellins, abscisic acid, ethylene, strigolactones, salicylic acid, and jasmonic acid in the coordinate regulation of plant growth and stress tolerance. We consider the local and systemic crosstalk between ROS and hormonal signalling pathways and identify multiple points of reciprocal control, as well as providing insights into the integration nodes that involve Ca(2+)-dependent processes and mitogen-activated protein kinase phosphorylation cascades. PMID:25788732

  7. Reactive oxygen intermediates cause rapid release of the interleukin-1 decoy receptor from human myelomonocytic cells.

    PubMed

    Sambo, P; Fadlon, E J; Sironi, M; Matteucci, C; Introna, M; Mantovani, A; Colotta, F

    1996-03-01

    Free radicals play an important role in inflammation. We found that reactive oxygen intermediates (ROI) inhibit interleukin-1beta (IL-1beta) binding on human myelomonocytes. Production of superoxide anion (O2-) by Xanthine (X) and Xanthine-Oxidase (XO) or NADPH caused a reduction (48% +/- 15% in 25 experiments) in the IL-1beta binding of polymorphonuclear cells (PMN) and monocytes that was inhibited by superoxide dismutase (SOD). Hydrogen peroxide (H2O2) was only active on monocytes and this effect was prevented by catalase. O2(-)-induced loss of IL-1beta binding on PMN reached half maximum at 5 minutes and peaked after 30 minutes. The reduction of IL-1beta binding was due to reduction of IL-1beta receptors (R) on PMN surface without any change in affinity. ROI-induced reduction of surface IL-1R was not caused by receptor internalization, but rather by the release of a soluble form (45 kD) of the type II decoy R. The action of ROI on IL-1 binding was selective because major histocompatibility complex class I, CD18 and CD16 were unaffected. The O2(-)-induced release of IL-1 decoy R was not affected by protein synthesis inhibitors, but was partially blocked by protease inhibitors. Release of the IL-1 type II decoy R might represent one mechanism by which ROI antagonize and limit the proinflammatory effects of IL-1. PMID:8634411

  8. Ethylene Response Factor 6 Is a Regulator of Reactive Oxygen Species Signaling in Arabidopsis

    PubMed Central

    Sewelam, Nasser; Kazan, Kemal; Thomas-Hall, Skye R.; Kidd, Brendan N.; Manners, John M.; Schenk, Peer M.

    2013-01-01

    Reactive oxygen species (ROS) are produced in plant cells in response to diverse biotic and abiotic stresses as well as during normal growth and development. Although a large number of transcription factor (TF) genes are up- or down-regulated by ROS, currently very little is known about the functions of these TFs during oxidative stress. In this work, we examined the role of ERF6 (ETHYLENE RESPONSE FACTOR6), an AP2/ERF domain-containing TF, during oxidative stress responses in Arabidopsis. Mutant analyses showed that NADPH oxidase (RbohD) and calcium signaling are required for ROS-responsive expression of ERF6. erf6 insertion mutant plants showed reduced growth and increased H2O2 and anthocyanin levels. Expression analyses of selected ROS-responsive genes during oxidative stress identified several differentially expressed genes in the erf6 mutant. In particular, a number of ROS responsive genes, such as ZAT12, HSFs, WRKYs, MAPKs, RBOHs, DHAR1, APX4, and CAT1 were more strongly induced by H2O2 in erf6 plants than in wild-type. In contrast, MDAR3, CAT3, VTC2 and EX1 showed reduced expression levels in the erf6 mutant. Taken together, our results indicate that ERF6 plays an important role as a positive antioxidant regulator during plant growth and in response to biotic and abiotic stresses. PMID:23940555

  9. Arabidopsis CAP1-mediated ammonium sensing required reactive oxygen species in plant cell growth.

    PubMed

    Bai, Ling; Zhou, Yun; Ma, Xiaonan; Gao, Lijie; Song, Chun-Peng

    2014-06-18

    [Ca (2+)]cyt-associated protein kinase (CAP) gene 1 is a receptor-like kinase that belongs to CrRLK1L (Catharanthus roseus Receptor like kinase) subfamily. CAP1 has been identified as a novel modulator of NH 4(+) in the tonoplast, which regulates root hair growth by maintaining the cytoplasmic Ca (2+) gradients. Different expression pattern of tonoplast intrinsic protein (TIP2;3) in the CAP1 knock out mutant and wild type on Murashige and Skoog (MS) medium suggested that CAP1 influences transport activity to regulate the compartmentalization of NH 4(+) into vacuole. Lower expression level of Oxidative Signal-Inducible1(OXI1) in the cap1-1 root and the abnormal reactive oxygen species (ROS) gradient in root hair of cap1-1 on MS medium indicated that ROS signaling involve in CAP1-regulated root hair growth. Wild-type-like ROS distribution pattern in the cap1-1 root hair can be reestablished in seedlings grown on NH 4(+) deficient medium, which indicated that CAP1 functions as a sensor for NH 4(+) signaling in maintaining tip-focused ROS gradient in root hairs polar growth. PMID:24940875

  10. Targeting Cancer Cells with Reactive Oxygen and Nitrogen Species Generated by Atmospheric-Pressure Air Plasma

    PubMed Central

    Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH−, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells. PMID:24465942

  11. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe.

    PubMed

    Sedeek, Mona; Nasrallah, Rania; Touyz, Rhian M; Hébert, Richard L

    2013-10-01

    Reactive oxygen species (ROS) play an important role in normal cellular physiology. They regulate different biologic processes such as cell defense, hormone synthesis and signaling, activation of G protein-coupled receptors, and ion channels and kinases/phosphatases. ROS are also important regulators of transcription factors and gene expression. On the other hand, in pathologic conditions, a surplus of ROS in tissue results in oxidative stress with various injurious consequences such as inflammation and fibrosis. NADPH oxidases are one of the many sources of ROS in biologic systems, and there are seven isoforms (Nox1-5, Duox1, Duox2). Nox4 is the predominant form in the kidney, although Nox2 is also expressed. Nox4 has been implicated in the basal production of ROS in the kidney and in pathologic conditions such as diabetic nephropathy and CKD; upregulation of Nox4 may be important in renal oxidative stress and kidney injury. Although there is growing evidence indicating the involvement of NADPH oxidase in renal pathology, there is a paucity of information on the role of NADPH oxidase in the regulation of normal renal function. Here we provide an update on the role of NADPH oxidases and ROS in renal physiology and pathology. PMID:23970124

  12. Oleoyl-Lysophosphatidylcholine Limits Endothelial Nitric Oxide Bioavailability by Induction of Reactive Oxygen Species

    PubMed Central

    Kozina, Andrijana; Opresnik, Stefan; Wong, Michael Sze Ka; Hallström, Seth; Graier, Wolfgang F.; Malli, Roland; Schröder, Katrin; Schmidt, Kurt; Frank, Saša

    2014-01-01

    Previously we reported modulation of endothelial prostacyclin and interleukin-8 production, cyclooxygenase-2 expression and vasorelaxation by oleoyl- lysophosphatidylcholine (LPC 18:1). In the present study, we examined the impact of this LPC on nitric oxide (NO) bioavailability in vascular endothelial EA.hy926 cells. Basal NO formation in these cells was decreased by LPC 18:1. This was accompanied with a partial disruption of the active endothelial nitric oxide synthase (eNOS)- dimer, leading to eNOS uncoupling and increased formation of reactive oxygen species (ROS). The LPC 18:1-induced ROS formation was attenuated by the superoxide scavenger Tiron, as well as by the pharmacological inhibitors of eNOS, NADPH oxidases, flavin-containing enzymes and superoxide dismutase (SOD). Intracellular ROS-formation was most prominent in mitochondria, less pronounced in cytosol and undetectable in endoplasmic reticulum. Importantly, Tiron completely prevented the LPC 18:1-induced decrease in NO bioavailability in EA.hy926 cells. The importance of the discovered findings for more in vivo like situations was analyzed by organ bath experiments in mouse aortic rings. LPC 18:1 attenuated the acetylcholine-induced, endothelium dependent vasorelaxation and massively decreased NO bioavailability. We conclude that LPC 18:1 induces eNOS uncoupling and unspecific superoxide production. This results in NO scavenging by ROS, a limited endothelial NO bioavailability and impaired vascular function. PMID:25419657

  13. Hydrolase stabilization via entanglement in poly(propylene sulfide) nanoparticles: stability towards reactive oxygen species

    NASA Astrophysics Data System (ADS)

    Allen, Brett L.; Johnson, Jermaine D.; Walker, Jeremy P.

    2012-07-01

    In the advancement of green syntheses and sustainable reactions, enzymatic biocatalysis offers extremely high reaction rates and selectivity that goes far beyond the reach of chemical catalysts; however, these enzymes suffer from typical environmental constraints, e.g. operational temperature, pH and tolerance to oxidative environments. A common hydrolase enzyme, diisopropylfluorophosphatase (DFPase, EC 3.1.8.2), has demonstrated a pronounced efficacy for the hydrolysis of a variety of substrates for potential toxin remediation, but suffers from the aforementioned limitations. As a means to enhance DFPase’s stability in oxidative environments, enzymatic covalent immobilization within the polymeric matrix of poly(propylene sulfide) (PPS) nanoparticles was performed. By modifying the enzyme’s exposed lysine residues via thiolation, DFPase is utilized as a comonomer/crosslinker in a mild emulsion polymerization. The resultant polymeric polysulfide shell acts as a ‘sacrificial barrier’ by first oxidizing to polysulfoxides and polysulfones, rendering DFPase in an active state. DFPase-PPS nanoparticles thus retain activity upon exposure to as high as 50 parts per million (ppm) of hypochlorous acid (HOCl), while native DFPase is observed as inactive at 500 parts per billion (ppb). This trend is also confirmed by enzyme-generated (chloroperoxidase (CPO), EC 1.11.1.10) reactive oxygen species (ROS) including both HOCl (3 ppm) and ClO2 (100 ppm).

  14. Reactive oxygen species involved in CT26 immunogenic cell death induced by Clostridium difficile toxin B.

    PubMed

    Sun, Chunli; Wang, Haiying; Mao, Shuang; Liu, Ji; Li, Shan; Wang, Jufang

    2015-04-01

    Immunogenic cell death (ICD) is a new concept appeared in recent years. Despite growing interests of research on ICD, the circumstances that trigger immune responses against dying tumor cells remain largely unknown. It was demonstrated that recombinant Clostridium difficile toxin B (rTcdB) can induce ICD in intoxicated cells, but its mechanism remains unclear. This work aims at exploring whether reactive oxygen species (ROS) involved in rTcdB induced ICD using the chemical agent N-acetyl cysteine (NAC), diphenylene iodonium (DPI) and Antimycin A (Anti.A). The results suggested that ROS involved in rTcdB induced apoptosis and autophagy. DPI and Anti.A successfully inhibited the antitumor immune effect induced by rTcdB. As ICD is determined by a variety of factors, rTcdB is a potential tool for further exploring the circumstances that trigger ICD, which may offer us a good choice for designing the new chemotherapeutic drugs with immunogenic properties. PMID:25721381

  15. Mitochondrial Respiratory Supercomplex Association Limits Production of Reactive Oxygen Species from Complex I

    PubMed Central

    Maranzana, Evelina; Barbero, Giovanna; Falasca, Anna Ida; Lenaz, Giorgio

    2013-01-01

    Abstract Aims: The mitochondrial respiratory chain is recognized today to be arranged in supramolecular assemblies (supercomplexes). Besides conferring a kinetic advantage (substrate channeling) and being required for the assembly and stability of Complex I, indirect considerations support the view that supercomplexes may also prevent excessive formation of reactive oxygen species (ROS) from the respiratory chain. In the present study, we have directly addressed this issue by testing the ROS generation by Complex I in two experimental systems in which the supramolecular organization of the respiratory assemblies is impaired by: (i) treatment either of bovine heart mitochondria or liposome-reconstituted supercomplex I-III with dodecyl maltoside; (ii) reconstitution of Complexes I and III at high phospholipids to protein ratio. Results: The results of our investigation provide experimental evidence that the production of ROS is strongly increased in either model, supporting the view that disruption or prevention of the association between Complex I and Complex III by different means enhances the generation of superoxide from Complex I. Innovation: Dissociation of supercomplexes may link oxidative stress and energy failure in a vicious circle. Conclusion: Our findings support a central role of mitochondrial supramolecular structure in the development of the aging process and in the etiology and pathogenesis of most major chronic diseases. Antioxid. Redox Signal. 19, 1469–1480. PMID:23581604

  16. Age-dependent action of reactive oxygen species on transmitter release in mammalian neuromuscular junctions.

    PubMed

    Shakirzyanova, Anastasia; Valeeva, Guzel; Giniatullin, Arthur; Naumenko, Nikolay; Fulle, Stefania; Akulov, Anton; Atalay, Mustafa; Nikolsky, Eugeny; Giniatullin, Rashid

    2016-02-01

    Reactive oxygen species (ROS) are implicated in aging, but the neurobiological mechanisms of ROS action are not fully understood. Using electrophysiological techniques and biochemical assays, we studied the age-dependent effect of hydrogen peroxide (H2O2) on acetylcholine release in rat diaphragm neuromuscular junctions. H2O2 significantly inhibited both spontaneous (measured as frequency of miniature end-plate potentials) and evoked (amplitude of end-plate potentials) transmitter release in adult rats. The inhibitory effect of H2O2 was much stronger in old rats, whereas in newborns tested during the first postnatal week, H2O2 did not affect spontaneous release from nerve endings and potentiated end-plate potentials. Proteinkinase C activation or intracellular Ca(2+) elevation restored redox sensitivity of miniature end-plate potentials in newborns. The resistance of neonates to H2O2 inhibition was associated with higher catalase and glutathione peroxidase activities in skeletal muscle. In contrast, the activities of these enzymes were downregulated in old rats. Our data indicate that the vulnerability of transmitter release to oxidative damage strongly correlates with aging and might be used as an early indicator of senescence. PMID:26827645

  17. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    SciTech Connect

    Yan, Wei; He, Hao Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-24

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca{sup 2+} release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  18. Controllable generation of reactive oxygen species by femtosecond-laser irradiation

    NASA Astrophysics Data System (ADS)

    Yan, Wei; He, Hao; Wang, Yintao; Wang, Yisen; Hu, Minglie; Wang, Chingyue

    2014-02-01

    Femtosecond lasers have been advancing Biophotonics research in the past two decades with multiphoton microscopy, microsurgery, and photodynamic therapy. Nevertheless, laser irradiation is identified to bring photodamage to cells via reactive oxygen species (ROS) generation with unclear mechanism. Meanwhile, currently in biological researches, there is no effective method to provide controllable ROS production precisely, which originally is leaked from mitochondria during respiration and plays a key role in a lot of important cellular processes and cellular signaling pathways. In this study, we show the process of how the tightly focused femtosecond-laser induces ROS generation solely in mitochondria at the very beginning and then release to cytosol if the stimulus is intense enough. At certain weak power levels, the laser pulses induce merely moderate Ca2+ release but this is necessary for the laser to generate ROS in mitochondria. Cellular original ROS are also involved with a small contribution. When the power is above a threshold, ROS are then released to cytosol, indicating photodamage overwhelming cellular repair ability. The mechanisms in those two cases are quite different. Those results clarify parts of the mechanism in laser-induced ROS generation. Hence, it is possible to further this optical scheme to provide controllable ROS generation for ROS-related biological researches including mitochondrial diseases and aging.

  19. TOR complex 2-Ypk1 signaling regulates actin polarization via reactive oxygen species.

    PubMed

    Niles, Brad J; Powers, Ted

    2014-12-01

    The evolutionarily conserved mTOR complex 2 (mTORC2) signaling pathway is an important regulator of actin cytoskeletal architecture and, as such, is a candidate target for preventing cancer cell motility and invasion. Remarkably, the precise mechanism(s) by which mTORC2 regulates the actin cytoskeleton have remained elusive. Here we show that in budding yeast, TORC2 and its downstream kinase Ypk1 regulate actin polarization by controlling reactive oxygen species (ROS) accumulation. Specifically, we find that TORC2-Ypk1 regulates actin polarization both by vacuole-related ROS, controlled by the phospholipid flippase kinase Fpk1 and sphingolipids, and by mitochondria-mediated ROS, controlled by the PKA subunit Tpk3. In addition, we find that the protein kinase C (Pkc1)/MAPK cascade, a well-established regulator of actin, acts downstream of Ypk1 to regulate ROS, in part by promoting degradation of the oxidative stress responsive repressor, cyclin C. Furthermore, we show that Ypk1 regulates Pkc1 activity through proper localization of Rom2 at the plasma membrane, which is also dependent on Fpk1 and sphingolipids. Together these findings demonstrate important links between TORC2/Ypk1 signaling, Fpk1, sphingolipids, Pkc1, and ROS as regulators of actin and suggest that ROS may play an important role in mTORC2-dependent dysregulation of the actin cytoskeleton in cancer cells. PMID:25253719

  20. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation

    PubMed Central

    Jin, Huan; Yin, Shutao; Song, Xinhua; Zhang, Enxiang; Fan, Lihong; Hu, Hongbo

    2016-01-01

    Patulin is a major mycotoxin found in fungal contaminated fruits and their derivative products. Previous studies showed that patulin was able to induce increase of reactive oxygen species (ROS) generation and oxidative stress was suggested to play a pivotal role in patulin-induced multiple toxic signaling. The objective of the present study was to investigate the functional role of p53 in patulin-induced oxidative stress. Our study demonstrated that higher levels of ROS generation and DNA damage were induced in wild-type p53 cell lines than that found in either knockdown or knockout p53 cell lines in response to patulin exposure, suggesting p53 activation contributed to patulin-induced ROS generation. Mechanistically, we revealed that the pro-oxidant role of p53 in response to patulin was attributed to its ability to suppress catalase activity through up-regulation of PIG3. Moreover, these in vitro findings were further validated in the p53 wild-type/knockout mouse model. To the best of our knowledge, this is the first report addressing the functional role of p53 in patulin-induced oxidative stress. The findings of the present study provided novel insights into understanding mechanisms behind oxidative stress in response to patulin exposure. PMID:27071452

  1. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation.

    PubMed

    Jin, Huan; Yin, Shutao; Song, Xinhua; Zhang, Enxiang; Fan, Lihong; Hu, Hongbo

    2016-01-01

    Patulin is a major mycotoxin found in fungal contaminated fruits and their derivative products. Previous studies showed that patulin was able to induce increase of reactive oxygen species (ROS) generation and oxidative stress was suggested to play a pivotal role in patulin-induced multiple toxic signaling. The objective of the present study was to investigate the functional role of p53 in patulin-induced oxidative stress. Our study demonstrated that higher levels of ROS generation and DNA damage were induced in wild-type p53 cell lines than that found in either knockdown or knockout p53 cell lines in response to patulin exposure, suggesting p53 activation contributed to patulin-induced ROS generation. Mechanistically, we revealed that the pro-oxidant role of p53 in response to patulin was attributed to its ability to suppress catalase activity through up-regulation of PIG3. Moreover, these in vitro findings were further validated in the p53 wild-type/knockout mouse model. To the best of our knowledge, this is the first report addressing the functional role of p53 in patulin-induced oxidative stress. The findings of the present study provided novel insights into understanding mechanisms behind oxidative stress in response to patulin exposure. PMID:27071452

  2. Reactive oxygen species, abscisic acid and ethylene interact to regulate sunflower seed germination.

    PubMed

    El-Maarouf-Bouteau, Hayat; Sajjad, Yasar; Bazin, Jérémie; Langlade, Nicolas; Cristescu, Simona M; Balzergue, Sandrine; Baudouin, Emmanuel; Bailly, Christophe

    2015-02-01

    Sunflower (Helianthus annuus L.) seed dormancy is regulated by reactive oxygen species (ROS) and can be alleviated by incubating dormant embryos in the presence of methylviologen (MV), a ROS-generating compound. Ethylene alleviates sunflower seed dormancy whereas abscisic acid (ABA) represses germination. The purposes of this study were to identify the molecular basis of ROS effect on seed germination and to investigate their possible relationship with hormone signalling pathways. Ethylene treatment provoked ROS generation in embryonic axis whereas ABA had no effect on their production. The beneficial effect of ethylene on germination was lowered in the presence of antioxidant compounds, and MV suppressed the inhibitory effect of ABA. MV treatment did not alter significantly ethylene nor ABA production during seed imbibition. Microarray analysis showed that MV treatment triggered differential expression of 120 probe sets (59 more abundant and 61 less abundant genes), and most of the identified transcripts were related to cell signalling components. Many transcripts less represented in MV-treated seeds were involved in ABA signalling, thus suggesting an interaction between ROS and ABA signalling pathways at the transcriptional level. Altogether, these results shed new light on the crosstalk between ROS and plant hormones in seed germination. PMID:24811898

  3. Metabolic regulation of the ultradian oscillator Hes1 by reactive oxygen species.

    PubMed

    Ventre, Simona; Indrieri, Alessia; Fracassi, Chiara; Franco, Brunella; Conte, Ivan; Cardone, Luca; di Bernardo, Diego

    2015-05-22

    Ultradian oscillators are cyclically expressed genes with a period of less than 24h, found in the major signalling pathways. The Notch effector hairy and enhancer of split Hes genes are ultradian oscillators. The physiological signals that synchronise and entrain Hes oscillators remain poorly understood. We investigated whether cellular metabolism modulates Hes1 cyclic expression. We demonstrated that, in mouse myoblasts (C2C12), Hes1 oscillation depends on reactive oxygen species (ROS), which are generated by the mitochondria electron transport chain and by NADPH oxidases NOXs. In vitro, the regulation of Hes1 by ROS occurs via the calcium-mediated signalling. The modulation of Hes1 by ROS was relevant in vivo, since perturbing ROS homeostasis was sufficient to alter Medaka (Oryzias latipes) somitogenesis, a process that is dependent on Hes1 ultradian oscillation during embryo development. Moreover, in a Medaka model for human microphthalmia with linear skin lesions syndrome, in which mitochondrial ROS homeostasis was impaired, we documented important somitogenesis defects and the deregulation of Hes homologues genes involved in somitogenesis. Notably, both molecular and developmental defects were rescued by antioxidant treatments. Our studies provide the first evidence of a coupling between cellular redox metabolism and an ultradian biological oscillator with important pathophysiological implication for somitogenesis. PMID:25796437

  4. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus).

    PubMed

    Du, Sherry N N; Mahalingam, Sajeni; Borowiec, Brittney G; Scott, Graham R

    2016-04-15

    Many fish encounter hypoxia in their native environment, but the role of mitochondrial physiology in hypoxia acclimation and hypoxia tolerance is poorly understood. We investigated the effects of hypoxia acclimation on mitochondrial respiration, O2kinetics, emission of reactive oxygen species (ROS), and antioxidant capacity in the estuarine killifish ( ITALIC! Fundulus heteroclitus). Killifish were acclimated to normoxia, constant hypoxia (5 kPa O2) or intermittent diel cycles of nocturnal hypoxia (12 h:12 h normoxia:hypoxia) for 28-33 days and mitochondria were isolated from liver. Neither pattern of hypoxia acclimation affected the respiratory capacities for oxidative phosphorylation or electron transport, leak respiration, coupling control or phosphorylation efficiency. Hypoxia acclimation also had no effect on mitochondrial O2kinetics, but ITALIC! P50(the O2tension at which hypoxia inhibits respiration by 50%) was lower in the leak state than during maximal respiration, and killifish mitochondria endured anoxia-reoxygenation without any impact on mitochondrial respiration. However, both patterns of hypoxia acclimation reduced the rate of ROS emission from mitochondria when compared at a common O2tension. Hypoxia acclimation also increased the levels of protein carbonyls and the activities of superoxide dismutase and catalase in liver tissue (the latter only occurred in constant hypoxia). Our results suggest that hypoxia acclimation is associated with changes in mitochondrial physiology that decrease ROS production and may help improve hypoxia tolerance. PMID:26896545

  5. Effect of reactive oxygen species on the biosynthesis and structure of newly synthesized proteoglycans.

    PubMed

    Panasyuk, A; Frati, E; Ribault, D; Mitrovic, D

    1994-02-01

    The effect of reactive oxygen species (ROS) generated by a xanthine oxidase hypoxanthine system (mainly H2O2) on proteoglycan (PG) metabolism and structure was investigated in vitro, using cell monolayers of cultured rabbit articular chondrocytes and purified resident and newly synthesized proteoglycans. It was shown that ROS generated in this system frequently stimulate (at low concentrations), and consistently inhibit (at higher concentrations), the incorporation of 35SO4 and 3H-glucosamine into PG molecules synthesized by cultured chondrocytes. The inhibition of isotopes' incorporation at higher enzyme concentrations was suppressed completely by heating xanthine oxidase and allopurinol with superoxide dismutase (SOD) and catalase. ROS at high concentration also inhibited 3H-uridine incorporation but had no effect on 35SO4 and 3H-uridine uptake by the cells. They also alter hyaluronan (HA) and PG monomers by fragmenting the core protein moiety and destroying the hyaluronic acid binding region. Altered PG monomers do not interact with HA to form complexes, but fragmented HA still retain a significant PG monomer-binding capacity. PG-HA complexes are easily and irreversibly destroyed by ROS. These results suggest that ROS may at low fluxes stimulate PG-synthesis under physiological conditions and alter cartilage metabolism and structure in conditions where they are overproduced, such as in rheumatoid arthritis, and in hemochromatosis and other iron storage diseases. PMID:8005511

  6. Ethylene response factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis.

    PubMed

    Sewelam, Nasser; Kazan, Kemal; Thomas-Hall, Skye R; Kidd, Brendan N; Manners, John M; Schenk, Peer M

    2013-01-01

    Reactive oxygen species (ROS) are produced in plant cells in response to diverse biotic and abiotic stresses as well as during normal growth and development. Although a large number of transcription factor (TF) genes are up- or down-regulated by ROS, currently very little is known about the functions of these TFs during oxidative stress. In this work, we examined the role of ERF6 (ETHYLENE RESPONSE FACTOR6), an AP2/ERF domain-containing TF, during oxidative stress responses in Arabidopsis. Mutant analyses showed that NADPH oxidase (RbohD) and calcium signaling are required for ROS-responsive expression of ERF6. erf6 insertion mutant plants showed reduced growth and increased H2O2 and anthocyanin levels. Expression analyses of selected ROS-responsive genes during oxidative stress identified several differentially expressed genes in the erf6 mutant. In particular, a number of ROS responsive genes, such as ZAT12, HSFs, WRKYs, MAPKs, RBOHs, DHAR1, APX4, and CAT1 were more strongly induced by H2O2 in erf6 plants than in wild-type. In contrast, MDAR3, CAT3, VTC2 and EX1 showed reduced expression levels in the erf6 mutant. Taken together, our results indicate that ERF6 plays an important role as a positive antioxidant regulator during plant growth and in response to biotic and abiotic stresses. PMID:23940555

  7. Reactive oxygen species in plasma against E. coli cells survival rate

    NASA Astrophysics Data System (ADS)

    Zhou, Ren-Wu; Zhang, Xian-Hui; Zong, Zi-Chao; Li, Jun-Xiong; Yang, Zhou-Bin; Liu, Dong-Ping; Yang, Si-Ze

    2015-08-01

    In this paper, we report on the contrastive analysis of inactivation efficiency of E. coli cells in solution with different disinfection methods. Compared with the hydrogen peroxide solution and the ozone gas, the atmospheric-pressure He plasma can completely kill the E. coli cells in the shortest time. The inactivation efficiency of E. coli cells in solution can be well described by using the chemical reaction rate model. X-ray photoelectron spectroscopy (XPS) analysis shows that the C-O or C=O content of the inactivated E. coli cell surface by plasma is predominantly increased, indicating the quantity of oxygen-containing species in plasma is more than those of two other methods, and then the C-C or C-H bonds can be broken, leading to the etching of organic compounds. Analysis also indicates that plasma-generated species can play a crucial role in the inactivation process by their direct reactions or the decompositions of reactive species, such as ozone into OH radicals in water, then reacting with E. coli cells. Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2014J01025), the National Natural Science Foundation of China (Grant No. 11275261), and the Funds from the Fujian Provincial Key Laboratory for Plasma and Magnetic Resonance, China.

  8. Peroxisomes contribute to reactive oxygen species homeostasis and cell division induction in Arabidopsis protoplasts.

    PubMed

    Tiew, Terence W-Y; Sheahan, Michael B; Rose, Ray J

    2015-01-01

    The ability to induce Arabidopsis protoplasts to dedifferentiate and divide provides a convenient system to analyze organelle dynamics in plant cells acquiring totipotency. Using peroxisome-targeted fluorescent proteins, we show that during protoplast culture, peroxisomes undergo massive proliferation and disperse uniformly around the cell before cell division. Peroxisome dispersion is influenced by the cytoskeleton, ensuring unbiased segregation during cell division. Considering their role in oxidative metabolism, we also investigated how peroxisomes influence homeostasis of reactive oxygen species (ROS). Protoplast isolation induces an oxidative burst, with mitochondria the likely major ROS producers. Subsequently ROS levels in protoplast cultures decline, correlating with the increase in peroxisomes, suggesting that peroxisome proliferation may also aid restoration of ROS homeostasis. Transcriptional profiling showed up-regulation of several peroxisome-localized antioxidant enzymes, most notably catalase (CAT). Analysis of antioxidant levels, CAT activity and CAT isoform 3 mutants (cat3) indicate that peroxisome-localized CAT plays a major role in restoring ROS homeostasis. Furthermore, protoplast cultures of pex11a, a peroxisome division mutant, and cat3 mutants show reduced induction of cell division. Taken together, the data indicate that peroxisome proliferation and CAT contribute to ROS homeostasis and subsequent protoplast division induction. PMID:26379686

  9. Reactive oxygen species and their role in plant defence and cell wall metabolism.

    PubMed

    O'Brien, Jose A; Daudi, Arsalan; Butt, Vernon S; Bolwell, G Paul

    2012-09-01

    Harnessing the toxic properties of reactive oxygen species (ROS) to fight off invading pathogens can be considered a major evolutionary success story. All aerobic organisms have evolved the ability to regulate the levels of these toxic intermediates, whereas some have evolved elaborate signalling pathways to dramatically increase the levels of ROS and use them as weapons in mounting a defence response, a process commonly referred to as the oxidative burst. The balance between steady state levels of ROS and the exponential increase in these levels during the oxidative burst has begun to shed light on complex signalling networks mediated by these molecules. Here, we discuss the different sources of ROS that are present in plant cells and review their role in the oxidative burst. We further describe two well-studied ROS generating systems, the NADPH oxidase and apoplastic peroxidase proteins, and their role as the primary producers of ROS during pathogen invasion. We then discuss what is known about the metabolic and proteomic fluxes that occur in plant cells during the oxidative burst and after pathogen recognition, and try to highlight underlying biochemical processes that may provide more insight on the complex regulation of ROS in plants. PMID:22767200

  10. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, Helen N; Eyles, Chris J; Bennett, Mark H; Smith, J Andrew C; Preston, Gail M

    2013-09-01

    The metal hyperaccumulator plant Noccaea caerulescens is protected from disease by the accumulation of high concentrations of metals in its aerial tissues, which are toxic to many pathogens. As these metals can lead to the production of damaging reactive oxygen species (ROS), metal hyperaccumulator plants have developed highly effective ROS tolerance mechanisms, which might quench ROS-based signals. We therefore investigated whether metal accumulation alters defence signalling via ROS in this plant. We studied the effect of zinc (Zn) accumulation by N. caerulescens on pathogen-induced ROS production, salicylic acid accumulation and downstream defence responses, such as callose deposition and pathogenesis-related (PR) gene expression, to the bacterial pathogen Pseudomonas syringae pv. maculicola. The accumulation of Zn caused increased superoxide production in N. caerulescens, but inoculation with P. syringae did not elicit the defensive oxidative burst typical of most plants. Defences dependent on signalling through ROS (callose and PR gene expression) were also modified or absent in N. caerulescens, whereas salicylic acid production in response to infection was retained. These observations suggest that metal hyperaccumulation is incompatible with defence signalling through ROS and that, as metal hyperaccumulation became effective as a form of elemental defence, normal defence responses became progressively uncoupled from ROS signalling in N. caerulescens. PMID:23758201

  11. Arabidopsis CAP1-mediated ammonium sensing required reactive oxygen species in plant cell growth

    PubMed Central

    Bai, Ling; Zhou, Yun; Ma, Xiaonan; Gao, Lijie; Song, Chun-Peng

    2014-01-01

    [Ca2+]cyt-associated protein kinase (CAP) gene 1 is a receptor-like kinase that belongs to CrRLK1L (Catharanthus roseus Receptor like kinase) subfamily. CAP1 has been identified as a novel modulator of NH4+ in the tonoplast, which regulates root hair growth by maintaining the cytoplasmic Ca2+ gradients. Different expression pattern of tonoplast intrinsic protein (TIP2;3) in the CAP1 knock out mutant and wild type on Murashige and Skoog (MS) medium suggested that CAP1 influences transport activity to regulate the compartmentalization of NH4+ into vacuole. Lower expression level of Oxidative Signal-Inducible1(OXI1) in the cap1-1 root and the abnormal reactive oxygen species (ROS) gradient in root hair of cap1-1 on MS medium indicated that ROS signaling involve in CAP1-regulated root hair growth. Wild-type-like ROS distribution pattern in the cap1-1 root hair can be reestablished in seedlings grown on NH4+ deficient medium, which indicated that CAP1 functions as a sensor for NH4+ signaling in maintaining tip-focused ROS gradient in root hairs polar growth. PMID:25763633

  12. Extracellular production of reactive oxygen species during seed germination and early seedling growth in Pisum sativum.

    PubMed

    Kranner, Ilse; Roach, Thomas; Beckett, Richard P; Whitaker, Claire; Minibayeva, Farida V

    2010-07-01

    Extracellularly produced reactive oxygen species (ROS) play key roles in plant development, but their significance for seed germination and seedling establishment is poorly understood. Here we report on the characteristics of extracellular ROS production during seed germination and early seedling development in Pisum sativum. Extracellular superoxide (O2(.-)) and hydrogen peroxide (H2O2) production and the activity of extracellular peroxidases (ECPOX) were determined spectrophotometrically, and O2(.-) was identified by electron paramagnetic resonance. Cell wall fractionation of cotyledons, seed coats and radicles was used in conjunction with polyacrylamide gel electrophoresis to investigate substrate specificity and molecular masses of O2(.-)-producing enzymes, and the forces that bind them to the cell wall. Seed imbibition was accompanied by an immediate, transient burst of redox activity that involved O2(.-) and other substances capable of oxidizing epinephrine, and also H2O2. At the final stages of germination, coinciding with radicle elongation, a second increase in O2(.-) but not H2O2 production occurred and was correlated with an increase in extracellular ECPOX activity. Electrophoretic analyses of cell wall fractions demonstrated the presence of enzymes capable of O2(.-) production. The significance of extracellular ROS production during seed germination and early seedling development, and also during seed aging, is discussed. PMID:20303611

  13. Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets.

    PubMed

    Graciano, Maria Fernanda Rodrigues; Valle, Maíra M R; Kowluru, Anjan; Curi, Rui; Carpinelli, Angelo R

    2011-01-01

    Free fatty acids regulate insulin secretion through metabolic and intracellular signaling mechanisms such as induction of malonyl-CoA/long-chain CoA pathway, production of lipids, GPRs (G protein-coupled receptors) activation and the modulation of calcium currents. Fatty acids (FA) are also important inducers of ROS (reactive oxygen species) production in β-cells. Production of ROS for short periods is associated with an increase in GSIS (glucose-stimulated insulin secretion), but excessive or sustained production of ROS is negatively correlated with the insulin secretory process. Several mechanisms for FA modulation of ROS production by pancreatic β-cells have been proposed, such as the control of mitochondrial complexes and electron transport, induction of uncoupling proteins, NADPH oxidase activation, interaction with the renin-angiotensin system, and modulation of the antioxidant defense system. The major sites of superoxide production within mitochondria derive from complexes I and III. The amphiphilic nature of FA favors their incorporation into mitochondrial membranes, altering the membrane fluidity and facilitating the electron leak. The extra-mitochondrial ROS production induced by FA through the NADPH oxidase complex is also an important source of these species in β-cells. PMID:21750413

  14. Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers

    PubMed Central

    2013-01-01

    There are multiple sources of reactive oxygen species (ROS) in the cell. As a major site of ROS production, mitochondria have drawn considerable interest because it was recently discovered that mitochondrial ROS (mtROS) directly stimulate the production of proinflammatory cytokines and pathological conditions as diverse as malignancies, autoim