Note: This page contains sample records for the topic exogenous reactive oxygen from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Regulation of exogenous spermidine on the reactive oxygen species level and polyamine metabolism in Alternanthera philoxeroides (Mart.) Griseb under copper stress  

Microsoft Academic Search

Effects of exogenous spermidine (Spd) on the reactive oxygen species level and polyamine metabolism against copper (Cu) stress\\u000a in Alternanthera philoxeroides (Mart.) Griseb leaves were investigated. Cu treatment induced a marked accumulation of Cu and enhanced contents of malondialdehyde\\u000a (MDA), hydrogen peroxide (H2O2) and the generation rate of O2\\u000a ·?. It also significantly increased putrescine (Put) levels but lowered spermidine

Xiaoying Xu; Guoxin Shi; Chunxia Ding; Ye Xu; Juan Zhao; Haiyan Yang; Qiuhong Pan

2011-01-01

2

Protective effect of silymarin on erythrocyte haemolysate against benzo(a)pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress.  

PubMed

The present study was carried out to evaluate the in vitro antioxidant properties and protective effects of silymarin (milk thistle) in human erythrocyte haemolysates against benzo(a)pyrene [B(a)P], a potent carcinogenic chemical. Protective effect of silymarin was assessed in vitro by monitoring the antioxidant enzymes and malondialdehyde in three groups of haemolysates-(I) vehicle control (II) B(a)P incubated group and (III) B(a)P co incubated with silymarin. The effects of silymarin on lipid peroxidation (LPO) and antioxidant enzymes [superoxide dismutase; SOD, catalase; CAT, glutathione peroxidase; GPx, glutathione reductase; GR and glutathione-S-transferases; GST] were assessed on haemolysates. It was observed that specific activity of antioxidant enzymes were significantly decreased and the malondialdehyde levels were elevated when haemolysates were incubated with B(a)P. The protective effect of silymarin is elucidated by the significant reversal of the antioxidant enzymes and reduction in the levels of malondialdehyde. In addition, haemolysates were incubated with B(a)P for 45 min and the B(a)P metabolite, 3-hydroxy benzo(a)pyrene (3-OH-B(a)P) was detected using HPLC. An increased level of the metabolite was detected in group II. Whereas, when haemolysates were co-incubated with silymarin, the reactive metabolite 3-OH-B(a)P was not detectable which further confirms the protective role of silymarin. Generation of 3-OH-B(a)P in group II implicates the possibility of reactive oxygen species (O2- and H2O2) production in haemolysates during cytochrome P4501A1 (CYP1A1) mediated Phase-I-metabolism. Hence, we incubated the haemolysates with exogenous reactive oxygen species H2O2 and assessed the protective role of silymarin against H2O2. From the results of our study, it was suggested that silymarin possess substantial protective effect and free radical scavenging mechanism against environmental contaminants induced oxidative stress damages. PMID:17481694

Kiruthiga, P V; Shafreen, R Beema; Pandian, S Karutha; Arun, S; Govindu, S; Devi, K Pandima

2007-07-01

3

Responses of reactive oxygen metabolism and quality in mango fruit to exogenous oxalic acid or salicylic acid under chilling temperature stress  

Microsoft Academic Search

After being immersed in water, oxalic acid (OA) or salicylic acid (SA) aqueous solutions, mango (Mangifera indica L. cv. Zill) fruit were stored at 14? Co r at 5? C with shelf life to determine the effects of exogenous OA or SA on reactive oxygenmetabolism,qualityandchillinginjury(CI)ofthefruit.MangoCIcould be reduced by OA and SA treatments. Compared with that in control, accompanied with alleviated

Zhan-Sheng Ding; Shi-Ping Tiana; Xiao-Lin Zheng; Zhong-Wei Zhou; Yong Xu

2007-01-01

4

Differential effects of Bcl-2 and caspases on mitochondrial permeabilization during endogenous or exogenous reactive oxygen species-induced cell death: a comparative study of H?O?, paraquat, t-BHP, etoposide and TNF-?-induced cell death.  

PubMed

In this study, we have compared several features of cell death triggered by classical inducers of apoptotic pathways (etoposide and tumour necrosis factor (TNF)-?) versus exogenous reactive oxygen species (ROS; hydrogen peroxide (H?O?), tert-butyl hydroperoxide (t-BHP)) or a ROS generator (paraquat). Our aim was to characterize relationships that exist between ROS, mitochondrial perturbations, Bcl-2 and caspases, depending on source and identity of ROS. First, we have found that these five inducers trigger oxidative stress, mitochondrial membrane permeabilization (MMP), cytochrome c (cyt c) release from mitochondria and cell death. In each case, cell death could be inhibited by several antioxidants, showing that it is primarily ROS dependent. Second, we have highlighted that during etoposide or TNF-? treatments, intracellular ROS level, MMP and cell death are all regulated by caspases and Bcl-2, with caspases acting early in the process. Third, we have demonstrated that H?O?-induced cell death shares many of these characteristics with etoposide and TNF-?, whereas t-BHP induces both caspase-dependent and caspase-independent cell death. Surprisingly, paraquat-induced cell death, which harbours some characteristics of apoptosis such as cyt c release and caspase-3 activation, is not modulated by Bcl-2 and caspase inhibitors, suggesting that paraquat also triggers non-apoptotic cell death signals. On the one hand, these results show that endogenous or exogenous ROS can trigger multiple cell death pathways with Bcl-2 and caspases acting differentially. On the other hand, they suggest that H?O? could be an important mediator of etoposide and TNF-?-dependent cell death since these inducers trigger similar phenotypes. PMID:22491967

Rincheval, Vincent; Bergeaud, Marie; Mathieu, Lise; Leroy, Jacqueline; Guillaume, Arnaud; Mignotte, Bernard; Le Floch, Nathalie; Vayssière, Jean-Luc

2012-08-01

5

Measuring mitochondrial reactive oxygen species  

Microsoft Academic Search

This article examines recent methods for measuring reactive oxygen species produced in isolated mitochondria and within live cells, with particular emphasis on the detection of hydrogen peroxide. Protocols for reliable measurements of mitochondrial hydrogen peroxide are presented, while the advantages and pitfalls of these and other methods are discussed. New developments in the detection of lipid peroxidation are outlined. Advice

Mauro Degli Esposti

2002-01-01

6

Reactive Oxygen Species and Cellular Oxygen Sensing  

PubMed Central

Many organisms activate adaptive transcriptional programs to help them cope with decreased oxygen levels, or hypoxia, in their environment. These responses are triggered by various oxygen sensing systems in bacteria, yeast and metazoans. In metazoans, the hypoxia inducible factors (HIFs) mediate the adaptive transcriptional response to hypoxia by upregulating genes involved in maintaining bioenergetic homeostasis. The HIFs in turn are regulated by HIF-specific prolyl hydroxlase activity, which is sensitive to cellular oxygen levels and other factors such as tricarboxylic acid cycle metabolites and reactive oxygen species (ROS). Establishing a role for ROS in cellular oxygen sensing has been challenging since ROS are intrinsically unstable and difficult to measure. However, recent advances in fluorescence energy transfer resonance (FRET)-based methods for measuring ROS are alleviating some of the previous difficulties associated with dyes and luminescent chemicals. In addition, new genetic models have demonstrated that functional mitochondrial electron transport and associated ROS production during hypoxia are required for HIF stabilization in mammalian cells. Current efforts are directed at how ROS mediate prolyl hydroxylase activity and hypoxic HIF stabilization. Progress in understanding this process has been enhanced by the development of the FRET-based ROS probe, an vivo prolyl hydroxylase reporter and various genetic models harboring mutations in components of the mitochondrial electron transport chain.

Cash, Timothy P; Pan, Yi; Simon, M. Celeste

2008-01-01

7

Catalase and Superoxide Dismutase Conjugated with Platelet-Endothelial Cell Adhesion Molecule Antibody Distinctly Alleviate Abnormal Endothelial Permeability Caused by Exogenous Reactive Oxygen Species and Vascular Endothelial Growth Factor  

PubMed Central

Reactive oxygen species (ROS) superoxide anion (O2?) and hydrogen peroxide (H2O2) produced by activated leukocytes and endothelial cells in sites of inflammation or ischemia cause endothelial barrier dysfunction that may lead to tissue edema. Antioxidant enzymes (AOEs) catalase and superoxide dismutase (SOD) conjugated with antibodies to platelet-endothelial cell adhesion molecule-1 (PECAM-1) specifically bind to endothelium, quench the corresponding ROS, and alleviate vascular oxidative stress and inflammation. In the present work, we studied the effects of anti-PECAM/catalase and anti-PECAM/SOD conjugates on the abnormal permeability manifested by transendothelial electrical resistance decline, increased fluorescein isothiocyanate-dextran influx, and redistribution of vascular endothelial-cadherin in human umbilical vein endothelial cell (HUVEC) monolayers. Anti-PECAM/catalase protected HUVEC monolayers against H2O2-induced endothelial barrier dysfunction. Polyethylene glycol-conjugated catalase exerted orders of magnitude lower endothelial uptake and no protective effect, similarly to IgG/catalase. Anti-PECAM/catalase, but not anti-PECAM/SOD, alleviated endothelial hyperpermeability caused by exposure to hypoxanthine/xanthine oxidase, implicating primarily H2O2 in the disruption of the endothelial barrier in this model. Thrombin-induced endothelial permeability was not affected by treatment with anti-PECAM/AOEs or the NADPH oxidase inhibitor apocynin or overexpression of AOEs, indicating that the endogenous ROS play no key role in thrombin-mediated endothelial barrier dysfunction. In contrast, anti-PECAM/SOD, but not anti-PECAM/catalase, inhibited a vascular endothelial growth factor (VEGF)-induced increase in endothelial permeability, identifying a key role of endogenous O2? in the VEGF-mediated regulation of endothelial barrier function. Therefore, AOEs targeted to endothelial cells provide versatile molecular tools for testing the roles of specific ROS in vascular pathology and may be translated into remedies for these ROS-induced abnormalities.

Han, Jingyan; Shuvaev, Vladimir V.

2011-01-01

8

Reactive Oxygen Species in Cancer Stem Cells  

PubMed Central

Abstract Significance: Reactive oxygen species (ROS), byproducts of aerobic metabolism, are increased in many types of cancer cells. Increased endogenous ROS lead to adaptive changes and may play pivotal roles in tumorigenesis, metastasis, and resistance to radiation and chemotherapy. In contrast, the ROS generated by xenobiotics disturb the redox balance and may selectively kill cancer cells but spare normal cells. Recent Advances: Cancer stem cells (CSCs) are integral parts of pathophysiological mechanisms of tumor progression, metastasis, and chemo/radio resistance. Currently, intracellular ROS in CSCs is an active field of research. Critical Issues: Normal stem cells such as hematopoietic stem cells reside in niches characterized by hypoxia and low ROS, both of which are critical for maintaining the potential for self-renewal and stemness. However, the roles of ROS in CSCs remain poorly understood. Future Directions: Based on the regulation of ROS levels in normal stem cells and CSCs, future research may evaluate the potential therapeutic application of ROS elevation by exogenous xenobiotics to eliminate CSCs. Antioxid. Redox Signal. 16, 1215–1228.

Shi, Xiaoke; Zhang, Yan; Zheng, Junheng

2012-01-01

9

Reactive oxygen species in periodontitis  

PubMed Central

Recent epidemiological studies reveal that more than two-third of the world's population suffers from one of the chronic forms of periodontal disease. The primary etiological agent of this inflammatory disease is a polymicrobial complex, predominantly Gram negative anaerobic or facultative bacteria within the sub-gingival biofilm. These bacterial species initiate the production of various cytokines such as interleukin-8 and TNF-?, further causing an increase in number and activity of polymorphonucleocytes (PMN) along with these cytokines, PMNs also produce reactive oxygen species (ROS) superoxide via the respiratory burst mechanism as the part of the defence response to infection. ROS just like the interleukins have deleterious effects on tissue cells when produced in excess. To counter the harmful effects of ROS, human body has its own defence mechanisms to eliminate them as soon as they are formed. The aim of this review is to focus on the role of different free radicals, ROS, and antioxidants in the pathophysiology of periodontal tissue destruction.

Dahiya, Parveen; Kamal, Reet; Gupta, Rajan; Bhardwaj, Rohit; Chaudhary, Karun; Kaur, Simerpreet

2013-01-01

10

[Hemoglobin--source of reactive oxygen species].  

PubMed

Erythrocytes are especially vulnerable to reactive oxygen species because of their direct role in oxygen transport. Moreover, hemoglobin contains iron ions (Fe²?), which catalyze both the Fenton reaction and lipid peroxidation. Reactive oxygen species in erythrocytes are also generated through nonenzymatic and enzymatic processes of heme degradation. The nonenzymatic process of heme degradation is initiated by e.g. hydrogen peroxide, whereas the process of enzymatic degradation is under the influence of heme oxygenase. In both cases biliverdin, carbon monoxide (CO) and iron ions (Fe²?) are generated. These products of heme degradation can initialize the oxidative processes within erythrocytes, but at low concentrations exhibit cytoprotective properties. PMID:23619220

Zapora, Ewa; Jarocka, Iwona

2013-01-01

11

Role of redox potential and reactive oxygen species in stress signaling  

Microsoft Academic Search

Stress-activated signaling cascades are affected by altered redox potential. Key contributors to altered redox potential are reactive oxygen species (ROS) which are formed, in most cases, by exogenous genotoxic agents including irradiation, inflammatory cytokines and chemical carcinogens. ROS and altered redox potential can be considered as the primary intracellular changes which regulate protein kinases, thereby serving as an important cellular

Victor Adler; Zhimin Yin; Kenneth D Tew; Ze'ev Ronai

1999-01-01

12

[Reactive oxygen species and bone marrow hematopoietic stem cell senescence].  

PubMed

Reactive oxygen species (ROS) are bioactive oxygen molecules produced after exposure to exogenous oxidants or endogenously through cellular aerobic metabolism. Hematopoietic stem cells (HSC) are multipotent, self-renewing stem cells residing in hematopoietic tissues. Recent studies show that an abnormal increase in ROS production is associated closely with HSC senescence. Many signaling molecules such as FoxOs, ATM, mTOR, TSC1, Bmi1 and AKT play a significant role in ROS-induced HSC senescence. The roles of p53-p21 and p16-Rb pathways can induce hematopoietic dysfunction and lead to ROS-induced HSC senescence. This review summarizes the recent progress of studies on ROS-induced HSC senescence, and further elaborates the potential signaling molecules and pathways, aiming to provide a new target and thread for clinical treatment. PMID:23257465

Chai, Xiao; Zhao, Ming-Feng

2012-12-01

13

Rosacea, Reactive Oxygen Species, and Azelaic Acid  

PubMed Central

Rosacea is a common skin condition thought to be primarily an inflammatory disorder. Neutrophils, in particular, have been implicated in the inflammation associated with rosacea and mediate many of their effects through the release of reactive oxygen species. Recently, the role of reactive oxygen species in the pathophysiology of rosacea has been recognized. Many effective agents for rosacea, including topical azelaic acid and topical metronidazole, have anti-inflammatory properties. in-vitro models have demonstrated the potent antioxidant effects of azelaic acid, providing a potential mechanistic explanation for its efficacy in the treatment of rosacea.

2009-01-01

14

Reactive oxygen species in phagocytic leukocytes  

PubMed Central

Phagocytic leukocytes consume oxygen and generate reactive oxygen species in response to appropriate stimuli. The phagocyte NADPH oxidase, a multiprotein complex, existing in the dissociated state in resting cells becomes assembled into the functional oxidase complex upon stimulation and then generates superoxide anions. Biochemical aspects of the NADPH oxidase are briefly discussed in this review; however, the major focus relates to the contributions of various modes of microscopy to our understanding of the NADPH oxidase and the cell biology of phagocytic leukocytes.

2008-01-01

15

The Bis(?-oxo) Dicopper(III) Species of the Simplest Peralkylated Diamine: Enhanced Reactivity towards Exogenous Substrates  

PubMed Central

N,N,N?,N?-tetramethylethylenediamine (TMED), the simplest and most extensively used peralkylated diamine ligand, is conspicuously absent from those known to form a bis(?–oxo)dicopper(III) (O) species, [(TMED)2Cu(III)2O2]2+, upon oxygenation of its Cu(I) complex. Presented here is the characterization of this O species and its reactivity towards exogenous substrates. Its formation is complicated both by the instability of the [(TMED)Cu(I)]1+ precursor and by competitive formation of a presumed mixed-valent trinuclear [(TMED)3Cu3(?3-O)2]3+ (T) species. Under most reaction conditions, the T species dominates, yet, the O species can be formed preferentially (> 80%) upon oxygenation of acetone solutions, if the copper concentration is low (< 2 mM) and [(TMED)Cu(I)]1+ is prepared immediately before use. The experimental data of this simplest O species provides a benchmark by which to evaluate DFT computational methods for geometry optimization and spectroscopic predictions. The enhanced thermal stability of [(TMED)2Cu(III)2O2]2+ and its limited steric demands compared to other O species allows more efficient oxidation of exogenous substrates, including benzyl alcohol to benzaldehyde (80% yield), highlighting the importance of ligand structure to not only enhance the oxidant stability but also maintain accessibility to the nascent metal/O2 oxidant.

Kang, Peng; Bobyr, Elena; Dustman, John; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.; Stack, T. Daniel P.

2010-01-01

16

Formation and Detoxification of Reactive Oxygen Species  

ERIC Educational Resources Information Center

A model of reactive oxygen species metabolism is proposed as a laboratory exercise for students. The superoxide ion in this model is generated during the reaction of oxidation of xanthine, catalyzed by xanthine oxidase. The effect of catalase, superoxide dismutase, and allopurinol on superoxide ion generation and removal in this system is also…

Kuciel, Radoslawa; Mazurkiewicz, Aleksandra

2004-01-01

17

Mitochondrial formation of reactive oxygen species  

PubMed Central

The reduction of oxygen to water proceeds via one electron at a time. In the mitochondrial respiratory chain, Complex IV (cytochrome oxidase) retains all partially reduced intermediates until full reduction is achieved. Other redox centres in the electron transport chain, however, may leak electrons to oxygen, partially reducing this molecule to superoxide anion (O2?•). Even though O2?• is not a strong oxidant, it is a precursor of most other reactive oxygen species, and it also becomes involved in the propagation of oxidative chain reactions. Despite the presence of various antioxidant defences, the mitochondrion appears to be the main intracellular source of these oxidants. This review describes the main mitochondrial sources of reactive species and the antioxidant defences that evolved to prevent oxidative damage in all the mitochondrial compartments. We also discuss various physiological and pathological scenarios resulting from an increased steady state concentration of mitochondrial oxidants.

Turrens, Julio F

2003-01-01

18

Antimicrobial Actions of Reactive Oxygen Species  

PubMed Central

ABSTRACT Everything should be as simple as it can be, but not simpler.—Attributed to Albert Einstein (1) Reactive oxygen species (ROS) are produced by host phagocytes and exert antimicrobial actions against a broad range of pathogens. The observable antimicrobial actions of ROS are highly dependent on experimental conditions. This perspective reviews recent controversies regarding ROS in Salmonella-phagocyte interactions and attempts to reconcile conflicting observations from different laboratories.

Fang, Ferric C.

2011-01-01

19

Carbon Monoxide, Reactive Oxygen Signaling, and Oxidative Stress  

PubMed Central

The ubiquitous gas, carbon monoxide (CO), is of substantial biological importance, but apart from its affinity for reduced transition metals, particularly heme-iron, it is surprisingly non-reactive—as is the ferrous-carbonyl—in living systems. CO does form strong complexes with heme proteins for which molecular O2 is the preferred ligand and to which are attributed diverse physiological, adaptive, and toxic effects. Lately, it has become apparent that both exogenous and endogenous CO produced by heme oxygenase engender a pro-oxidant milieu in aerobic mammalian cells which initiates signaling related to reactive oxygen species (ROS) generation. ROS signaling contingent on CO can be segregated by CO concentration-time effects on cellular function, by the location of heme proteins, e.g. mitochondrial or non-mitochondrial sites, or by specific oxidation-reduction (redox) reactions. The fundamental responses to CO involve overt physiological regulatory events, such as activation of redox-sensitive transcription factors or stress-activated kinases, which institute compensatory expression of anti-oxidant enzymes and other adaptations to oxidative stress. In contrast, responses originating from highly elevated or protracted CO exposures tend to be non-specific, produce untoward biological oxidations, and interfere with homeostasis. This brief overview provides a conceptual framework for understanding CO biology in terms of this physiological-pathological hierarchy.

Piantadosi, Claude A.

2008-01-01

20

Reactive Oxygen Species in Health and Disease  

PubMed Central

During the past decades, it became obvious that reactive oxygen species (ROS) exert a multitude of biological effects covering a wide spectrum that ranges from physiological regulatory functions to damaging alterations participating in the pathogenesis of increasing number of diseases. This review summarizes the key roles played by the ROS in both health and disease. ROS are metabolic products arising from various cells; two cellular organelles are intimately involved in their production and metabolism, namely, the endoplasmic reticulum and the mitochondria. Updates on research that tremendously aided in confirming the fundamental roles of both organelles in redox regulation will be discussed as well. Although not comprehensive, this review will provide brief perspective on some of the current research conducted in this area for better understanding of the ROS actions in various conditions of health and disease.

Alfadda, Assim A.; Sallam, Reem M.

2012-01-01

21

Reactive Oxygen Species and Tumor Metastasis  

PubMed Central

The migration and invasion of cancer cells are the first steps in metastasis. Through a series of cellular responses, including cytoskeletal reorganization and degradation of the extracellular matrix, cancer cells are able to separate from the primary tumor and metastasize to distant locations in the body. In cancer cells, reactive oxygen species (ROS) play important roles in the migration and invasion of cells. Stimulation of cell surface receptors with growth factors and integrin assembly generates ROS, which relay signals from the cell surface to important signaling proteins. ROS then act within cells to promote migration and invasion. In this review, we collect recent evidence pointing towards the involvement of ROS in tumor metastasis and discuss the roles of ROS at different stages during the process of cancer cell migration, invasion and epithelial-mesenchymal transition.

Lee, Doo Jae; Kang, Sang Won

2013-01-01

22

Reactive oxygen species enhance insulin sensitivity  

PubMed Central

SUMMARY Chronic reactive oxygen species (ROS) production by mitochondria may contribute to the development of insulin resistance, a primary feature of type 2 diabetes. In recent years it has become apparent that ROS generation in response to physiological stimuli such as insulin may also facilitate signaling by reversibly oxidizing and inhibiting protein tyrosine phosphatases (PTPs). Here we report that mice lacking one of the key enzymes involved in the elimination of physiological ROS, glutathione peroxidase 1 (Gpx1), were protected from high fat diet-induced insulin resistance. The increased insulin sensitivity in Gpx1?/? mice was attributed to insulin-induced phosphatidylinositol-3-kinase/Akt signaling and glucose uptake in muscle and could be reversed by the anti-oxidant N-acetylcysteine. Increased insulin signaling correlated with enhanced oxidation of the PTP family member PTEN, which terminates signals generated by phosphatidylinositol-3-kinase. These studies provide causal evidence for the enhancement of insulin signaling by ROS in vivo.

Loh, Kim; Deng, Haiyang; Fukushima, Atsushi; Cai, Xiaochu; Boivin, Benoit; Galic, Sandra; Bruce, Clinton; Shields, Benjamin J.; Skiba, Beata; Ooms, Lisa M.; Stepto, Nigel; Wu, Ben; Mitchell, Christina A.; Tonks, Nicholas K.; Watt, Matthew J.; Febbraio, Mark A.; Crack, Peter J.; Andrikopoulos, Sofianos; Tiganis, Tony

2010-01-01

23

Reactive oxygen species in experimental ischemic flow-through venous flaps and effects of antioxidants on reactive oxygen species and flap survival.  

PubMed

We made an experimental study on rabbit ears using an ischemic flow-through venous flap model to determine the changes in levels of reactive oxygen species (ROS) in venous flaps and effects of exogenous antioxidants on endogenous antioxidant superoxide dismutase (SOD) and ROS indicator malonyldialdehyde (MDA) levels and on flap survival. Mean SOD level significantly decreased and the MDA level significantly increased after the flap elevation according to basal levels of untreated flaps. The mean flap survival rates in the exogenous SOD or glutathione (GSH)-treated groups were significantly increased with respect to the untreated group. The SOD level was increased significantly and the MDA level was decreased significantly in the SOD- or GSH-treated groups relative to the control group after the flap elevation. These results have suggested that ROS may have an important role in ischemic flow-through venous flap pathogenesis and additionally, antioxidants could enhance the rate of flap survival. PMID:17522491

Ozyazgan, Irfan; Tuncer, Ali; Yazici, Cevad; Günay, Galip K

2007-06-01

24

Reactive Oxygen Species and the Cardiovascular System  

PubMed Central

Ever since the discovery of free radicals, many hypotheses on the deleterious actions of reactive oxygen species (ROS) have been proposed. However, increasing evidence advocates the necessity of ROS for cellular homeostasis. ROS are generated as inherent by-products of aerobic metabolism and are tightly controlled by antioxidants. Conversely, when produced in excess or when antioxidants are depleted, ROS can inflict damage to lipids, proteins, and DNA. Such a state of oxidative stress is associated with many pathological conditions and closely correlated to oxygen consumption. Although the deleterious effects of ROS can potentially be reduced by restoring the imbalance between production and clearance of ROS through administration of antioxidants (AOs), the dosage and type of AOs should be tailored to the location and nature of oxidative stress. This paper describes several pathways of ROS signaling in cellular homeostasis. Further, we review the function of ROS in cardiovascular pathology and the effects of AOs on cardiovascular outcomes with emphasis on the so-called oxidative paradox.

Taverne, Yannick J. H. J.; Bogers, Ad J. J. C.; Duncker, Dirk J.; Merkus, Daphne

2013-01-01

25

REACTIVE OXYGEN SPECIES IN PULMONARY VASCULAR REMODELING  

PubMed Central

The pathogenesis of pulmonary hypertension is a complex multifactorial process that involves the remodeling of pulmonary arteries. This remodeling process encompasses concentric medial thickening of small arterioles, neomuscularization of previously nonmuscular capillary-like vessels, and structural wall changes in larger pulmonary arteries. The pulmonary arterial muscularization is characterized by vascular smooth muscle cell (SMC) hyperplasia and hypertrophy. In addition, in uncontrolled pulmonary hypertension, the clonal expansion of apoptosis-resistant endothelial cells leads to the formation of plexiform lesions. Based upon a large number of studies in animal models, the three major stimuli that drive the vascular remodeling process are inflammation, shear stress and hypoxia. Although, the precise mechanisms by which these stimuli impair pulmonary vascular function and structure are unknown, reactive oxygen species (ROS)-mediated oxidative damage appears to play an important role. ROS are highly reactive due to their unpaired valence shell electron. Oxidative damage occurs when the production of ROS exceeds the quenching capacity of the anti-oxidant mechanisms of the cell. ROS can be produced from complexes in the cell membrane (nicotinamide adenine dinucleotide phosphate-oxidase), cellular organelles (peroxisomes and mitochondria), and in the cytoplasm (xanthine oxidase). Furthermore, low levels of tetrahydrobiopterin (BH4) and L-arginine the rate limiting co-factor and substrate for endothelial nitric oxide synthase (eNOS), can cause the uncoupling of eNOS, resulting in decreased NO production and increased ROS production. This review will focus on the ROS generation systems, scavenger antioxidants, and oxidative stress associated alterations in vascular remodeling in pulmonary hypertension.

Aggarwal, Saurabh; Gross, Christine M.; Sharma, Shruti; Fineman, Jeffrey R.; Black, Stephen M.

2014-01-01

26

Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation  

PubMed Central

Although the exact mechanism through which NADPH oxidases (Nox's) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events.

Le, Nhat-Tu; Corsetti, James P.; Dehoff-Sparks, Janet L.; Sparks, Charles E.; Fujiwara, Keigi; Abe, Jun-ichi

2012-01-01

27

Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation.  

PubMed

Although the exact mechanism through which NADPH oxidases (Nox's) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events. PMID:22991685

Le, Nhat-Tu; Corsetti, James P; Dehoff-Sparks, Janet L; Sparks, Charles E; Fujiwara, Keigi; Abe, Jun-Ichi

2012-01-01

28

Reactive Oxygen Species in Skeletal Muscle Signaling  

PubMed Central

Generation of reactive oxygen species (ROS) is a ubiquitous phenomenon in eukaryotic cells' life. Up to the 1990s of the past century, ROS have been solely considered as toxic species resulting in oxidative stress, pathogenesis and aging. However, there is now clear evidence that ROS are not merely toxic species but also—within certain concentrations—useful signaling molecules regulating physiological processes. During intense skeletal muscle contractile activity myotubes' mitochondria generate high ROS flows: this renders skeletal muscle a tissue where ROS hold a particular relevance. According to their hormetic nature, in muscles ROS may trigger different signaling pathways leading to diverging responses, from adaptation to cell death. Whether a “positive” or “negative” response will prevail depends on many variables such as, among others, the site of ROS production, the persistence of ROS flow or target cells' antioxidant status. In this light, a specific threshold of physiological ROS concentrations above which ROS exert negative, toxic effects is hard to determine, and the concept of “physiologically compatible” levels of ROS would better fit with such a dynamic scenario. In this review these concepts will be discussed along with the most relevant signaling pathways triggered and/or affected by ROS in skeletal muscle.

Barbieri, Elena; Sestili, Piero

2012-01-01

29

Indoor particulate reactive oxygen species concentrations.  

PubMed

Despite the fact that precursors to reactive oxygen species (ROS) are prevalent indoors, the concentration of ROS inside buildings is unknown. ROS on PM2.5 was measured inside and outside twelve residential buildings and eleven institutional and retail buildings. The mean (±s.d.) concentration of ROS on PM2.5 inside homes (1.37±1.2nmoles/m(3)) was not significantly different from the outdoor concentration (1.41±1.0nmoles/m(3)). Similarly, the indoor and outdoor concentrations of ROS on PM2.5 at institutional buildings (1.16±0.38nmoles/m(3) indoors and 1.68±1.3nmoles/m(3) outdoors) and retail stores (1.09±0.93nmoles/m(3) indoors and 1.12±1.1nmoles/m(3) outdoors) were not significantly different and were comparable to those in residential buildings. The indoor concentration of particulate ROS cannot be predicted based on the measurement of other common indoor pollutants, indicating that it is important to separately assess the concentration of particulate ROS in air quality studies. Daytime indoor occupational and residential exposure to particulate ROS dominates daytime outdoor exposure to particulate ROS. These findings highlight the need for further study of ROS in indoor microenvironments. PMID:24742727

Khurshid, Shahana S; Siegel, Jeffrey A; Kinney, Kerry A

2014-07-01

30

Skin, reactive oxygen species, and circadian clocks.  

PubMed

Abstract Significance: Skin, a complex organ and the body's first line of defense against environmental insults, plays a critical role in maintaining homeostasis in an organism. This balance is maintained through a complex network of cellular machinery and signaling events, including those regulating oxidative stress and circadian rhythms. These regulatory mechanisms have developed integral systems to protect skin cells and to signal to the rest of the body in the event of internal and environmental stresses. Recent Advances: Interestingly, several signaling pathways and many bioactive molecules have been found to be involved and even important in the regulation of oxidative stress and circadian rhythms, especially in the skin. It is becoming increasingly evident that these two regulatory systems may, in fact, be interconnected in the regulation of homeostasis. Important examples of molecules that connect the two systems include serotonin, melatonin, vitamin D, and vitamin A. Critical Issues: Excessive reactive oxygen species and/or dysregulation of antioxidant system and circadian rhythms can cause critical errors in maintaining proper barrier function and skin health, as well as overall homeostasis. Unfortunately, the modern lifestyle seems to contribute to increasing alterations in redox balance and circadian rhythms, thereby posing a critical problem for normal functioning of the living system. Future Directions: Since the oxidative stress and circadian rhythm systems seem to have areas of overlap, future research needs to be focused on defining the interactions between these two important systems. This may be especially important in the skin where both systems play critical roles in protecting the whole body. Antioxid. Redox Signal. 20, 2982-2996. PMID:24111846

Ndiaye, Mary A; Nihal, Minakshi; Wood, Gary S; Ahmad, Nihal

2014-06-20

31

Mitochondrial Structure and Reactive Oxygen Species in Mammary Oncogenesis.  

National Technical Information Service (NTIS)

Oxidative stress may play a role in human oncogenesis, including breast cancer. The mitochondria are most common sources of reactive oxygen species (ROS) responsible for most oxidative stress. This project evaluates the role of mitochondrial abnormalities...

Y. C. Lau

2007-01-01

32

[Reactive oxygen and nitrogen species in inflammatory process].  

PubMed

Reactive oxygen species (ROS) are generated in every cell during normal oxidation. The most important ROS include: superoxide anion (O2*-), hydroxyl radical (OH*), hydroperoxyl radical (HO2*), hydrogen peroxide (H2O2) and singlet oxygen ((1)O2*-). Reactive oxygen species can react with key cellular structures and molecules altering their biological function. Similarly reactive nitrogen species (RNS) such as nitric oxide (NO) or peroxinitrite anion (ONOO-) have physiological activity or reacts with different types of molecules to form toxic products. ROS and RNS are important in process of energy generation, lipids peroxidation, protein and DNA oxidation, nitration, nitrosation or nitrosylation and catecholamine response. Reactive oxygen/nitrogen species are neutralized by enzymatic activity or natural antioxidants that stop the initial formation of radicals. Overproduction of ROS or RNS results in "oxidative" or "nitrosative" stress which contributes to variety of pathological processes typical for different cancer, neurodegenerative, viral, toxic or inflammatory diseases. PMID:18044345

Rutkowski, Ryszard; Pancewicz, S?awomir A; Rutkowski, Krzysztof; Rutkowska, Joanna

2007-08-01

33

Production of Reactive Oxygen Species by Polyhalogenated Cyclic Hydrocarbons (PCH).  

National Technical Information Service (NTIS)

The results of this research strongly support the hypothesis that polyhalogenated cyclic hydrocarbons (PCH) induce production of reactive oxygen species which may contribute to many of the toxic manifestations associated with these xenobiotics. A non-inva...

S. J. Stohs

1992-01-01

34

Mitochondrial Structure and Reactive Oxygen Species in Mammary Oncogenesis.  

National Technical Information Service (NTIS)

Oxidative stress may play a role in human oncogenesis, including breast cancer. The mitochondria are most common sources of reactive oxygen species (ROS) responsible for most oxidative stress. This project evaluates the role of mitochondrial abnormalities...

Y. C. Lau

2006-01-01

35

Mitochondrial Structure and Reactive Oxygen Species in Mammary Oncogenesis.  

National Technical Information Service (NTIS)

Oxidative stress may play a role in human oncogenesis, including breast cancer. The mitochondria are most frequent sources of reactive oxygen species (ROS) responsible for most oxidative stress. This project evaluates the role of mitochondrial abnormaliti...

Y. C. Lau

2004-01-01

36

Mitochondrial Structure and Reactive Oxygen Species in Mammary Oncogenesis.  

National Technical Information Service (NTIS)

Oxidative stress may play a role in human oncogenesis, including breast cancer. The mitochondria are most common sources of reactive oxygen species (ROS) responsible for most oxidative stress. This project evaluates the role of mitochondrial abnormalities...

Y. C. Lau

2005-01-01

37

Reactive oxygen species in vascular biology: implications in hypertension  

Microsoft Academic Search

Reactive oxygen species (ROS), including superoxide (·O 2 ?), hydrogen peroxide (H 2O 2), and hydroxyl anion (OH-), and reactive nitrogen species, such as nitric oxide (NO) and peroxynitrite (ONOO ?), are biologically important O 2 derivatives that are increasingly recognized to be important in vascular biology through their oxidation\\/reduction (redox) potential. All vascular cell types (endothelial cells, vascular smooth

R. M. Touyz; E. L. Schiffrin

2004-01-01

38

Vacuum ultraviolet radiation/atomic oxygen synergism in materials reactivity  

NASA Technical Reports Server (NTRS)

Experimental results are presented which indicate that low fluxes of vacuum UV (VUV) radiation exert a pronounced influence on the atomic oxygen reactivity of such fluorocarbon and fluorocarbon spacecraft materials as the FEP Teflon and PCTFE that are under consideration for the Space Station Freedom. With simultaneous exposure to VUV fluxes comparable to those experienced in LEO, the reactivity of these materials becomes comparable to that of Kapton; VUV radiation has also been shown to increase the reactivity of Kapton with thermal-energy oxygen atoms.

Koontz, Steven; Leger, Lubert; Albyn, Keith; Cross, Jon

1990-01-01

39

TLR 9 Activation in Dendritic Cells Enhances Salmonella Killing and Antigen Presentation via Involvement of the Reactive Oxygen Species  

PubMed Central

Synthetic CpG containing oligodeoxynucleotide Toll like receptor-9 agonist (CpG DNA) activates innate immunity and can stimulate antigen presentation against numerous intracellular pathogens. It was observed that Salmonella Typhimurium growth can be inhibited by the CpG DNA treatment in the murine dendritic cells. This inhibitory effect was mediated by an increased reactive oxygen species production. In addition, it was noted that CpG DNA treatment of dendritic cells during Salmonella infection leads to an increased antigen presentation. Further this increased antigen presentation was dependent on the enhanced reactive oxygen species production elicited by Toll like receptor-9 activation. With the help of an exogenous antigen it was shown that Salmonella antigen could also be cross-presented in a better way by CpG induction. These data collectively indicate that CpG DNA enhance the ability of murine dendritic cells to contain the growth of virulent Salmonella through reactive oxygen species dependent killing.

Lahiri, Amit; Vani, Janakiraman; Shaila, M. S.; Chakravortty, Dipshikha

2010-01-01

40

Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets  

Microsoft Academic Search

ABSTRACT: BACKGROUND: Besides being essential for plant structure and metabolism, soluble carbohydrates play important roles in stress responses. Sucrose has been shown to confer to Arabidopsis seedlings a high level of tolerance to the herbicide atrazine, which causes reactive oxygen species (ROS) production and oxidative stress. The effects of atrazine and of exogenous sucrose on ROS patterns and ROS-scavenging systems

Fanny Ramel; Cécile Sulmon; Matthieu Bogard; Ivan Couée; Gwenola Gouesbet

2009-01-01

41

Role of reactive oxygen species in cell toxicity.  

PubMed

Several types of compound exert their cytotoxicity by generating reactive oxygen species, notably the superoxide anion radical. These include quinoid and nitroaromatic compounds serving as redox cyclers, i.e. producing superoxide at the expense of NADPH and oxygen catalyzed by cellular reductases. In specialized cell-types employed in defense such as granulocytes, eosinophils and macrophages, myeloperoxidase, NADPH oxidase and nitric oxide synthase have been identified as major sources of reactive oxygen species in cell toxicity. These include hypochlorite, singlet oxygen, superoxide, nitric oxide and hydrogen peroxide. The interaction of superoxide and nitric oxide generates further oxidants such as peroxynitrite. Lumino-amplified chemiluminescence generated by Kupffer cells is partially sensitive to inhibitors of NO synthase. Superoxide dismutase has been found to catalyze a novel reaction, the reversible conversion of nitric oxide to the nitroxyl anion, the latter being viewed as another form of EDRF. In the defense against oxidative damage, there are enzymatic and nonenzymatic antioxidants. Regarding compounds used pharmacologically, we have been interested in ebselen, a seleno-organic compound exhibiting GSH peroxidase activity, which protects against reactive oxygen species generated, for example, at reoxygenation following a period of hypoxia. Further, we have studied lipoate and dihydrolipoate as antioxidant redox system and as singlet oxygen quencher, e.g. protecting against damage of deoxyguanosines in plasmid DNA generated by singlet oxygen. PMID:1335181

Sies, H; de Groot, H

1992-12-01

42

Oxygen Reactivity of a Carbon Fiber Composite  

SciTech Connect

Carbon Fiber Composites (CFCs) are often suggested as armor material for the first wall of a fusion plasma chamber due to carbon's low atomic number, high thermal conductivity, and high melting point. However, carbon is chemically reactive in air and will react with ingress air during a Loss of Vacuum Accident and release tritium fuel that has been retained in the carbon. Tritium mobilization and carbon monoxide generation via CFC oxidation are both safety concerns. This paper discusses chemical reactivity experiments that were performed using the state-of-the-art 3-dimensional NB31 CFC produced by SNECMA and a laminar reaction gas of Ar–21 vol% O2. Oxidation reaction rates were measured for CFC temperatures of 525, 600, 700, 800, 900, and 1000 °C and a 100 standard cubic centimeters per minute (sccm) Ar–O2 flow rate. Experiments were also performed at CFC temperatures of 700 and 1000 °C and a 1000 sccm Ar–O2 flow rate. Mass spectral analyses of the exhaust reaction gas suggested that carbon monoxide was the primary reaction at the CFC surface and carbon dioxide was readily produced in the exiting reaction gas. The measured reaction rates compare well with the literature and were used to produce a CFC oxidation curve that is recommended for use in fusion safety analyses.

Marshall, Theron Devol; Pawelko, Robert James; Anderl, Robert Andrew; Smolik, Galen Richard

2002-09-01

43

Biochemical Studies on Hemoglobin Modified with Reactive Oxygen Species (ROS)  

Microsoft Academic Search

Hemoglobin is the iron-containing oxygen transporting metalloprotein in the red cells of blood in mammals and other animals.\\u000a Hemoprotein-mediated oxidative stress is thought to play a major role in pathophysiology of cerebral hemorrhage, blast pressure\\u000a injury, crush injury, myocardial ischemia reperfusion injury. Hemoglobin undergoes oxidation–reduction reactions that lead\\u000a to both generation and consumption of highly reactive oxygen and nitrogen species.

Tejinder Pal Khaket; Rizwan Ahmad

2011-01-01

44

Direct detection of reactive oxygen species ex vivo  

Microsoft Academic Search

Direct detection of reactive oxygen species ex vivo. Oxidative stress is thought to play an important role in the initiation and progression of renal, cardiovascular, neoplastic, and neurodegenerative diseases. It is also widely believed that oxidative stress is a main cause of aging. Although considerable progress has been made in the understanding of the sources and actions of oxidative stress,

Ralf P. Brandes; MARIANO JANISZEWSKI

2005-01-01

45

Reactive oxygen species as agents of wood decay by fungi  

Microsoft Academic Search

Although many wood decay basidiomycetes secrete oxidative and hydrolytic enzymes that participate in lignocellulose biodedgradation, it is generally recognized now that these enzymes cannot penetrate sound wood, and that fungi must employ smaller agents to initiate decay. Reactive oxygen species (ROS) are likely candidates, and evidence is accumulating that some wood decay fungi produce these oxidants. For example, we have

Kenneth E. Hammel; Alexander N. Kapich; Kenneth A. Jensen; Zachary C. Ryan

2002-01-01

46

The mystery of reactive oxygen species derived from cell respiration  

Microsoft Academic Search

Mitochondrial respiration is considered to provide reactive oxygen species (ROS) as byproduct of regular electron transfer. Objections were raised since results ob- tained with isolated mitochondria are commonly transferred to activities of mito- chondria in the living cell. High electrogenic membrane potential was reported to trigger formation of mitochondrial ROS involving complex I and III. Suggested bioenergetic parameters, starting ROS

Hans Nohl; Lars Gille; Katrin Staniek

2004-01-01

47

BIOMONITORING OF REACTIVE OXYGEN SPECIES IN BIOLOGICAL FLUIDS  

EPA Science Inventory

Elevated levels of reactive oxygen species (ROS) are associated with several disease processes in humans, including cancer, asthma, diabetes, and cardiac disease. We have explored whether ROS can be measured directly in human fluids, and their value as a biomarker of exposure an...

48

Crosstalk of reactive oxygen species and NF-?B signaling  

Microsoft Academic Search

NF-?B proteins are a family of transcription factors that are of central importance in inflammation and immunity. NF-?B also plays important roles in other processes, including development, cell growth and survival, and proliferation, and is involved in many pathological conditions. Reactive Oxygen Species (ROS) are created by a variety of cellular processes as part of cellular signaling events. While certain

Michael J Morgan; Zheng-gang Liu

2011-01-01

49

Modulation of Vascular Smooth Muscle Signaling by Reactive Oxygen Species  

NSDL National Science Digital Library

Modulation of signaling in vascular cells by reactive oxygen species (ROS) affects many aspects of cellular function, including growth, migration, and contraction. NADPH oxidases, important sources of ROS, regulate many growth-specific and migration-related signaling pathways. Identifying the precise intracellular targets of ROS enhances understanding of their role in cardiovascular physiology and pathophysiology.

Alicia N. Lyle (Emory University Department of Medicine, Division of Cardiology); PhD Kathy K. Griendling (Emory University Department of Medicine, Division of Cardiology)

2006-08-01

50

Use of spectroscopic probes for detection of reactive oxygen species  

Microsoft Academic Search

The detection and quantitation of reactive oxygen species (ROS) receives a great deal of interest because of their importance in a wide range of physiological and pathogenic events. Probe-assisted spectroscopy (electron spin resonance, spectrophotometry, fluorescence and luminescence) is the main tool for this application. This review discusses the properties of spectroscopic probes most commonly used for ROS detection and highlights

Grzegorz Bartosz

2006-01-01

51

Mitochondrial reactive oxygen species reduce insulin secretion by pancreatic ?-cells  

Microsoft Academic Search

Pancreatic ?-cells exposed to hyperglycemia produce reactive oxygen species (ROS). Because ?-cells are sensitive to oxidative stress, excessive ROS may cause dysfunction of ?-cells. Here we demonstrate that mitochondrial ROS suppress glucose-induced insulin secretion (GIIS) from ?-cells. Intracellular ROS increased 15min after exposure to high glucose and this effect was blunted by inhibitors of the mitochondrial function. GIIS was also

Koji Sakai; Kazuya Matsumoto; Takeshi Nishikawa; Mihoshi Suefuji; Kazuhiko Nakamaru; Yoshiaki Hirashima; Junji Kawashima; Tetsuya Shirotani; Kenshi Ichinose; Michael Brownlee; Eiichi Araki

2003-01-01

52

Investigation of the reactivity of organic materials in liquid oxygen  

NASA Technical Reports Server (NTRS)

Measurements of impact-ignition sensitivity and studies of the relative reactivity of t-butoxy and t-butyl peroxy radicals toward a variety of organic compounds reveal improved methods of selection of materials for safe use in a liquid oxygen environment.

Chamberlain, D.; Irwin, K.; Kirshen, N.; Mill, T.; Stringham, R.

1970-01-01

53

Microplasma generation of reactive oxygen species for biological applications  

Microsoft Academic Search

Summary form only given. Reactive oxygen species (ROS) seem to play an important role in several biological systems, and could generate oxidative damage to a variety of biological targets. Fundamental studies examining the cellular components targeted by different ROS generated in low-temperature plasmas are, thus, quite interesting and very promising for biomedical applications. Among other cellular targets, DNA is of

J. S. Sousa; G. Bauville; B. Lacour; V. Puech; M. Touzeau; J. Ravanat

2010-01-01

54

Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation.  

PubMed

Reactive oxygen species (ROS) are involved in biochemical processes such as redox signaling, aging, carcinogenesis and neurodegeneration. Although biomembranes are targets for reactive oxygen species attack, little is known about the role of their specific interactions. Here, molecular dynamics simulations were employed to determine the distribution, mobility and residence times of various reactive oxygen species at the membrane-water interface. Simulations showed that molecular oxygen (O2) accumulated at the membrane interior. The applicability of this result to singlet oxygen ((1)O2) was discussed. Conversely, superoxide (O2(-)) radicals and hydrogen peroxide (H2O2) remained at the aqueous phase. Both hydroxyl (HO) and hydroperoxyl (HO2) radicals were able to penetrate deep into the lipid headgroups region. Due to membrane fluidity and disorder, these radicals had access to potential peroxidation sites along the lipid hydrocarbon chains, without having to overcome the permeation free energy barrier. Strikingly, HO2 radicals were an order of magnitude more concentrated in the headgroups region than in water, implying a large shift in the acid-base equilibrium between HO2 and O2(-). In comparison with O2, both HO and HO2 radicals had lower lateral mobility at the membrane. Simulations revealed that there were intermittent interruptions in the H-bond network around the HO radicals at the headgroups region. This effect is expected to be unfavorable for the H-transfer mechanism involved in HO diffusion. The implications for lipid peroxidation and for the effectiveness of membrane antioxidants were evaluated. PMID:24095673

Cordeiro, Rodrigo M

2014-01-01

55

Role of reactive oxygen species in low level light therapy  

NASA Astrophysics Data System (ADS)

This review will focus on the role of reactive oxygen species in the cellular and tissue effects of low level light therapy (LLLT). Coincidentally with the increase in electron transport and in ATP, there has also been observed by intracellular fluorescent probes and electron spin resonance an increase in intracellular reactive oxygen species (ROS) such as superoxide, hydrogen peroxide, singlet oxygen and hydroxyl radical. ROS scavengers, antioxidants and ROS quenchers block many LLLT processes. It has been proposed that light between 400-500- nm may produce ROS by a photosensitization process involving flavins, while longer wavelengths may directly produce ROS from the mitochondria. Several redox-sensitive transcription factors are known such as NF-kB and AP1, that are able to initiate transcription of genes involved in protective responses to oxidative stress. It may be the case that LLLT can be pro-oxidant in the short-term, but anti-oxidant in the long-term.

Chen, Aaron Chi-Hao; Huang, Ying-Ying; Arany, Praveen R.; Hamblin, Michael R.

2009-02-01

56

Role of reactive nitrogen and reactive oxygen species against MPTP neurotoxicity in mice  

Microsoft Academic Search

There is growing evidence indicating that reactive nitrogen species (RNS) and reactive oxygen species (ROS) are a major contributor\\u000a to the pathogenesis and progression of Parkinson’s disease. Here we investigated whether edaravone (free radical scavenger),\\u000a minocycline (inducible nitric oxide synthase, iNOS inhibitor), 7-nitroindazole (neuronal NOS, nNOS inhibitor), fluvastatin\\u000a (endothelial NOS, eNOS activator) and pitavastatin (eNOS activator) can protect against MPTP

Hironori Yokoyama; Sho Takagi; Yu Watanabe; Hiroyuki Kato; Tsutomu Araki

2008-01-01

57

The reactivity of chicken liver xanthine dehydrogenase with molecular oxygen.  

PubMed

The reaction of 6-electron reduced chicken liver xanthine dehydrogenase (XDH) with molecular oxygen was studied using both stopped flow and steady-state turnover techniques at pH 7.8, 4 degrees C. Oxidation of fully reduced XDH proceeded via four phases, three of which were detected with the stopped flow spectrophotometer. The fastest phase was second order in oxygen (1900 M-1 s-1), resulted in the appearance of flavin semiquinone and yielded no superoxide. The next phase was also second order in oxygen (260 M-1 s-1), involved the loss of flavin semiquinone and yielded, on average, 1 mol of superoxide/mol of XDH oxidized. The last 2 electron equivalents were located in the iron-sulfur centers. They were released one equivalent at a time in the form of superoxide. Steady-state kinetics were found to be critically dependent on temperature and oxygen concentration. When these factors were carefully controlled, both the xanthine-oxygen and NADH-oxygen reductase reactions gave linear Lineweaver-Burk plots. The xanthine-oxygen data yielded a turnover number of 43 min-1, which was 42% of that for xanthine-NAD turnover. During turnover, with xanthine and O2, 40-44% of the electron equivalents introduced by xanthine appeared as superoxide. Reduced pyridine nucleotides, NAD and 3-aminopyridine adenine dinucleotide, dramatically reduced the formation of superoxide at levels which did not seriously inhibit oxygen reactivity. PMID:2914919

Nishino, T; Nishino, T; Schopfer, L M; Massey, V

1989-02-15

58

Reactive oxygen species generation and signaling in plants  

PubMed Central

The introduction of molecular oxygen into the atmosphere was accompanied by the generation of reactive oxygen species (ROS) as side products of many biochemical reactions. ROS are permanently generated in plastids, peroxisomes, mitochiondria, the cytosol and the apoplast. Imbalance between ROS generation and safe detoxification generates oxidative stress and the accumulating ROS are harmful for the plants. On the other hand, specific ROS function as signaling molecules and activate signal transduction processes in response to various stresses. Here, we summarize the generation of ROS in the different cellular compartments and the signaling processes which are induced by ROS.

Tripathy, Baishnab Charan; Oelmuller, Ralf

2012-01-01

59

HIV-1, Reactive Oxygen Species and Vascular Complications  

PubMed Central

Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease.

Porter, Kristi M.; Sutliff, Roy L.

2012-01-01

60

Early Elevation of Cochlear Reactive Oxygen Species following Noise Exposure  

Microsoft Academic Search

Reactive oxygen species (ROS) have been implicated in a growing number of neurological disease states, from acute traumatic injury to neurodegenerative conditions such as Alzheimer’s disease. Considerable evidence suggests that ROS also mediate ototoxicant- and noise-induced cochlear injury, although most of this evidence is indirect. To obtain real-time assessment of noise-induced cochlear ROS production in vivo, we adapted a technique

Kevin K. Ohlemiller; James S. Wright; Laura L. Dugan

1999-01-01

61

REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction  

Microsoft Academic Search

? Abstract Several reactive oxygen,species (ROS) are continuously,produced,in plants as byproducts,of aerobic metabolism. Depending,on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and,nonenzymatic,mechanisms.,Whereas,plants are surfeited with mechanisms,to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully,generate ROS as signaling molecules,to control various processes including pathogen

Klaus Apel; Heribert Hirt

2004-01-01

62

Reactive Oxygen Species, Oxidative Stress and Plant Ion Channels  

Microsoft Academic Search

\\u000a Reactive oxygen species (ROS) are important toxic and regulatory agents in plants. They are produced in response to a number\\u000a of stimuli, including major biotic and abiotic stresses. Disruption of respiratory and photosynthetic electron transport chains,\\u000a as well as activation of NADPH oxidases (NOXs) and peroxidases, is a major reason for ROS generation and accumulation during\\u000a stress conditions. ROS production

Vadim Demidchik

63

Production of Ozone and Reactive Oxygen Species After Welding  

Microsoft Academic Search

Many toxic substances including heavy metals, ozone, carbon monoxide, carbon dioxide, and nitrogen oxides are generated during\\u000a welding. Ozone (O3) is a strong oxidant that generates reactive oxygen species (ROS) in tissue, and ambient ROS exposure associated with particles\\u000a has been determined to cause DNA damage. Ozone is produced within 30 seconds during welding. However, the length of time that

H. H. Liu; Y. C. Wu; H. L. Chen

2007-01-01

64

VASECTOMY REVERSAL ASSOCIATED WITH INCREASED REACTIVE OXYGEN SPECIES PRODUCTION BY SEMINAL FLUID LEUKOCYTES AND SPERM  

Microsoft Academic Search

PurposeReactive oxygen species, which are primarily produced by leukocytes, are generally detrimental to sperm. High reactive oxygen species levels are found in men with abnormal sperm function. Since men often have poor sperm characteristics and infertility after vasectomy reversal, fertile men to determine if reactive oxygen species were elevated in the former group.

ROBERT H. SHAPIRO; CHARLES H. MULLER; GREGORY CHEN; RICHARD E. BERGER

1998-01-01

65

Properties of reactive oxygen species by quantum Monte Carlo.  

PubMed

The electronic properties of the oxygen molecule, in its singlet and triplet states, and of many small oxygen-containing radicals and anions have important roles in different fields of chemistry, biology, and atmospheric science. Nevertheless, the electronic structure of such species is a challenge for ab initio computational approaches because of the difficulties to correctly describe the statical and dynamical correlation effects in presence of one or more unpaired electrons. Only the highest-level quantum chemical approaches can yield reliable characterizations of their molecular properties, such as binding energies, equilibrium structures, molecular vibrations, charge distribution, and polarizabilities. In this work we use the variational Monte Carlo (VMC) and the lattice regularized Monte Carlo (LRDMC) methods to investigate the equilibrium geometries and molecular properties of oxygen and oxygen reactive species. Quantum Monte Carlo methods are used in combination with the Jastrow Antisymmetrized Geminal Power (JAGP) wave function ansatz, which has been recently shown to effectively describe the statical and dynamical correlation of different molecular systems. In particular, we have studied the oxygen molecule, the superoxide anion, the nitric oxide radical and anion, the hydroxyl and hydroperoxyl radicals and their corresponding anions, and the hydrotrioxyl radical. Overall, the methodology was able to correctly describe the geometrical and electronic properties of these systems, through compact but fully-optimised basis sets and with a computational cost which scales as N(3) - N(4), where N is the number of electrons. This work is therefore opening the way to the accurate study of the energetics and of the reactivity of large and complex oxygen species by first principles. PMID:25005287

Zen, Andrea; Trout, Bernhardt L; Guidoni, Leonardo

2014-07-01

66

Neuroprotective Effects of Reactive Oxygen Species Mediated by BDNF-Independent Activation of TrkB  

PubMed Central

Reactive oxygen species (ROS) have diverse biological consequences in the mammalian CNS, but the molecular targets mediating these pleiotropic effects are incompletely understood. Like ROS, the neurotrophin receptor, TrkB receptor tyrosine kinase, has diverse effects in the developing and mature mammalian brain. Our discovery that zinc can transactivate TrkB, together with the finding that ROS can trigger zinc release from cytosolic zinc binding proteins, led us to hypothesize that ROS can transactivate TrkB in CNS neurons by a zinc-dependent mechanism. We found that both exogenous H2O2 and endogenous ROS activate TrkB signaling by a Src family kinase-dependent but brain-derived neurotrophic factor-independent mechanism in cultured rat cortical neurons. Exogenous H2O2 enhances cytosolic zinc content in a metallothionein-3 (MT-3)-requiring manner. Both exogenous H2O2 and endogenous ROS mediated transactivation of TrkB requires intracellular zinc and MT-3. The ROS-triggered transactivation of TrkB exerts neuroprotective effects, because inhibition of TrkB kinase activity or uncoupling Shc signaling from TrkB exacerbates neuronal cell death induced by H2O2. Thus, we propose a molecular signaling event whereby ROS induce release of zinc from cytosolic MT-3, the increased cytosolic zinc transactivates TrkB, and the enhanced Shc signaling downstream from TrkB promotes prosurvival effects. We suggest that such neuroprotective effects mediated by ROS are operative in diverse acute and chronic neurological disorders.

Huang, Yang Zhong; McNamara, James O.

2012-01-01

67

Sulfur, oxygen, and nitrogen mustards: stability and reactivity.  

PubMed

Mustard gas, bis(?-chloroethyl) sulfide (HD), is highly toxic and harmful to humans and the environment. It comprises one class of chemical warfare agents (CWAs) that was used in both World Wars I and II. The three basic analogues or surrogates are: the monochloro derivative, known as the half mustard, 2-chloroethyl ethyl sulfide (CEES); an oxygen analogue, bis(?-chloroethyl) ether (BCEE); and several nitrogen analogues based on the 2,2'-dichlorodiethylamine framework (e.g., HN1, HN2, and HN3). The origin of their toxicity is considered to be from the formation of three-membered heterocyclic ions, a reaction that is especially accelerated in aqueous solution. The reaction of these cyclic ion intermediates with a number of important biological species such as DNA, RNA and proteins causes cell toxicity and is responsible for the deleterious effects of the mustards. While a number of studies have been performed over the last century to determine the chemistry of these compounds, early studies suffered from a lack of more sophisticated NMR and X-ray techniques. It is now well-established that the sulfur and nitrogen mustards are highly reactive in water, while the oxygen analog is much more stable. In this study, we review and summarize results from previous studies, and add results of our own studies of the reactivity of these mustards toward various nonaqueous solvents and nucleophiles. In this manner a more comprehensive evaluation of the stability and reactivity of these related mustard compounds is achieved. PMID:23070251

Wang, Qi-Qiang; Begum, Rowshan Ara; Day, Victor W; Bowman-James, Kristin

2012-11-28

68

Enzymatic Defenses of the Mouse Heart Against Reactive Oxygen Metabolites  

PubMed Central

The endogenous defenses of the mouse heart against reactive oxygen metabolites were investigated. The activities of three enzymes capable of detoxifying activated oxygen were determined in both the heart and liver; cardiac muscle contains 150 times less catalase and nearly four times less superoxide dismutase than liver. Glutathione peroxidase activities were, however, similar to the two tissues. Assay of glutathione peroxidase in the heart after 6 wk of selenium depletion with both hydrogen peroxide and cumene hydroperoxide as substrates revealed a >80% drop in enzyme activity and gave no indication that murine cardiac tissue contains nonselenium-dependent glutathione peroxidase. The selenium-deficient state, which was characterized by markedly decreased cardiac glutathione peroxidase levels, led to significantly enhanced doxorubicin toxicity at a dose of 15 mg/kg i.p. Doxorubicin administration in selenium-sufficient animals resulted in a dose-dependent decrease in cardiac glutathione peroxidase activity; the decrease in enzyme activity lasted 72 h after 15 mg/kg i.p. In contrast, cardiac superoxide dismutase and hepatic superoxide dismutase and glutathione peroxidase were unaffected by this dose of doxorubicin. These results suggest that the major pathway in cardiac tissue for detoxification of reactive oxygen metabolites is via the concerted action of superoxide dismutase and selenium-dependent glutathione peroxidase. The latter enzyme may be depleted by a selenium-deficient diet or doxorubicin treatment, leaving the heart with limited mechanisms for disposing of hydrogen peroxide or lipid peroxides.

Doroshow, James H.; Locker, Gershon Y.; Myers, C. E.

1980-01-01

69

Hypoxia-mediated degradation of Na,K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system.  

PubMed

We set out to determine whether cellular hypoxia, via mitochondrial reactive oxygen species, promotes Na,K-ATPase degradation via the ubiquitin-conjugating system. Cells exposed to 1.5% O2 had a decrease in Na,K-ATPase activity and oxygen consumption. The total cell pool of alpha1 Na,K-ATPase protein decreased on exposure to 1.5% O2 for 30 hours, whereas the plasma membrane Na,K-ATPase was 50% degraded after 2 hours of hypoxia, which was prevented by lysosome and proteasome inhibitors. When Chinese hamster ovary cells that exhibit a temperature-sensitive defect in E1 ubiquitin conjugation enzyme were incubated at 40 degrees C and 1.5% O2, the degradation of the alpha1 Na,K-ATPase was prevented. Exogenous reactive oxygen species increased the plasma membrane Na,K-ATPase degradation, whereas, in mitochondrial DNA deficient rho(0) cells and in cells transfected with small interfering RNA against Rieske iron sulfur protein, the hypoxia-mediated Na,K-ATPase degradation was prevented. The catalase/superoxide dismutase (SOD) mimetic (EUK-134) and glutathione peroxidase overexpression prevented the hypoxia-mediated Na,K-ATPase degradation and overexpression of SOD1, but not SOD2, partially inhibited the Na+ pump degradation. Accordingly, we provide evidence that during hypoxia, mitochondrial reactive oxygen species are necessary to degrade the plasma membrane Na,K-ATPase via the ubiquitin-conjugating system. PMID:16614303

Comellas, Alejandro P; Dada, Laura A; Lecuona, Emilia; Pesce, Liuska M; Chandel, Navdeep S; Quesada, Nancy; Budinger, G R Scott; Strous, Ger J; Ciechanover, Aaron; Sznajder, Jacob I

2006-05-26

70

Evidence for reactive oxygen species inducing mutations in mammalian cells.  

PubMed Central

We have studied the mutagenicity (by selecting for mutants resistant to 6-thioguanine) and cytotoxicity (by determining cellular cloning efficiency) of physical and chemical agents in Chinese hamster ovary (CHO) cells, clone CHO-K1-BH4 (K1-BH4), and its radiation-hypersensitive transformant, AS52. AS52 cells contain a single functional copy of a bacterial gene, the xanthine/guanine phosphoribosyltransferase (gpt) gene instead of its mammalian equivalent, the hypoxanthine/guanine phosphoribosyltransferase (hprt) gene. We found that x-ray and neutron irradiations are equally toxic to both cell types; however, these physical agents are approximately equal to 10 times more mutagenic to AS52 cells than to K1-BH4 cells. Our earlier studies using Southern blot analysis showed that x-irradiation produces mostly or exclusively deletion mutations in both cell types. If reactive oxygen species mediate the mutagenic effects of radiations and chemicals, then radiomimetic compounds such as streptonigrin and bleomycin, which exert their biological effects via reactive oxygen species, and oxidizing compounds such as potassium superoxide and hydrogen peroxide should elicit a similar differential mutagenic response in both cell types. On the other hand, agents such as ethyl methanesulfonate, ICR 191, and UV light, which do not produce reactive oxygen species, should not elicit differential mutagenicity. Our results fulfill such predictions. The apparent hypermutability of AS52 cells probably results from a higher recovery of multilocus deletion mutants in AS52 cells than in K1-BH4 cells, rather than a higher yield of induced mutants.

Hsie, A W; Recio, L; Katz, D S; Lee, C Q; Wagner, M; Schenley, R L

1986-01-01

71

Regulation of Reactive Oxygen Species Generation in Cell Signaling  

PubMed Central

Reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide (H2O2) are thought to be byproducts of aerobic respiration with damaging effects on DNA, protein, and lipid. A growing body of evidence indicates, however, that ROS are involved in the maintenance of redox homeostasis and various cellular signaling pathways. ROS are generated from diverse sources including mitochondrial respiratory chain, enzymatic activation of cytochrome p450, and NADPH oxidases further suggesting involvement in a complex array of cellular processes. This review summarizes the production and function of ROS. In particular, how cytosolic and membrane proteins regulate ROS generation for intracellular redox signaling will be detailed.

Bae, Yun Soo; Oh, Hyunjin; Rhee, Sue Goo; Yoo, Young Do

2011-01-01

72

Reactive Oxygen Species in Vascular Formation and Development  

PubMed Central

Reactive oxygen species (ROS) are derived from the metabolism of oxygen and are traditionally viewed as toxic byproducts that cause damage to biomolecules. It is now becoming widely acknowledged that ROS are key modulators in a variety of biological processes and pathological states. ROS mediate key signaling transduction pathways by reversible oxidation of certain signaling components and are involved in the signaling of growth factors, G-protein-coupled receptors, Notch, and Wnt and its downstream cascades including MAPK, JAK-STAT, NF-?B, and PI3K/AKT. Vascular formation and development is one of the most important events during embryogenesis and is vital for postnasal tissue repair. In this paper, we will discuss how ROS regulate different steps in vascular development, including smooth muscle cell differentiation, angiogenesis, endothelial progenitor cells recruitment, and vascular cell migration.

Zhou, Yijiang; Yan, Hui; Guo, Meiqun; Zhu, Jianhua; Xiao, Qingzhong; Zhang, Li

2013-01-01

73

Reactive oxygen species produced from chromate pigments and ascorbate.  

PubMed Central

The reactions of various chromate pigments and ascorbate were investigated by an ESR spin trapping technique. Production of Cr(V) was detected directly and productions of very electrophilic reactive oxygen species (ROS) was detected via the oxidation of formate. We demonstrated previously that both dissolved oxygen and Cr (V) were essential in the production of ROS in this system, and that ROS production was inhibited by catalase. We studied here the effect of solubility of different chromate pigments: sodium, calcium, strontium, basic zinc, basic lead supported on silica, and lead and barium chromates on the production of ROS in buffered medium and cell culture medium (Dublecco's Modified Eagle medium + fetal calf serum). Sodium, calcium, basic zinc, and basic lead chromates were active in the production of ROS in presence of cell culture medium, whereas lead and barium chromates were inactive.

Lefebvre, Y; Pezerat, H

1994-01-01

74

Oxygen delivery, consumption, and conversion to reactive oxygen species in experimental models of diabetic retinopathy  

PubMed Central

Retinal tissue receives its supply of oxygen from two sources – the retinal and choroidal circulations. Decreases in retinal blood flow occur in the early stages of diabetes, with the eventual development of hypoxia thought to contribute to pathological neovascularization. Oxygen consumption in the retina has been found to decrease in diabetes, possibly due to either a reduction in neuronal metabolism or to cell death. Diabetes also enhances the rate of conversion of oxygen to superoxide in the retina, with experimental evidence suggesting that mitochondrial superoxide not only drives the overall production of reactive oxygen species, but also initiates several pathways leading to retinopathy, including the increased activity of the polyol and hexosamine pathways, increased production of advanced glycation end products and expression of their receptors, and activation of protein kinase C.

Eshaq, Randa S.; Wright, William S.; Harris, Norman R.

2014-01-01

75

Biochemical studies on hemoglobin modified with reactive oxygen species (ROS).  

PubMed

Hemoglobin is the iron-containing oxygen transporting metalloprotein in the red cells of blood in mammals and other animals. Hemoprotein-mediated oxidative stress is thought to play a major role in pathophysiology of cerebral hemorrhage, blast pressure injury, crush injury, myocardial ischemia reperfusion injury. Hemoglobin undergoes oxidation-reduction reactions that lead to both generation and consumption of highly reactive oxygen and nitrogen species. In the present study, hemoglobin molecule was treated with hydrogen peroxide and the modification so incurred was analyzed by UV spectra, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and detection of carbonyl content. Our observations suggest that carbonyl content increases with increase in concentration of hydrogen peroxide. Production of hydroxyl radical was assessed by using benzoate degradation analysis. Our results was in tandem with the fact that hemoglobin on treatment with hydrogen peroxide rapidly generates free-radical species that can degrade benzoate to thiobarbituric acid reactive material which on reacting with thiobarbituric acid gives color. The increase in absorbance of ROS-modified hemoglobin at 532 nm shows the increase in benzoate degradation, which is a parameter of hydroxyl radical formation with increase in concentration of hydrogen peroxide. Modified hemoglobin was treated with catalase, mannitol, thiourea, glutathion, sodium benzoate and their effect were detected by spectroscopy and SDS-PAGE (12%). Substantial scavenging effect of aforementioned antioxidants reiterates the formation of hydroxyl radical. Catalase shows the maximum scavenging effect followed by thiourea and mannitol. PMID:21416337

Khaket, Tejinder Pal; Ahmad, Rizwan

2011-08-01

76

Regulation of Endothelial Function by Mitochondrial Reactive Oxygen Species  

PubMed Central

Abstract Mitochondria are well known for their central roles in ATP production, calcium homeostasis, and heme and steroid biosynthesis. However, mitochondrial reactive oxygen species (ROS), including superoxide and hydrogen peroxide, once thought to be toxic byproducts of mitochondrial physiologic activities, have recently been recognized as important cell-signaling molecules in the vascular endothelium, where their production, conversion, and destruction are highly regulated. Mitochondrial reactive oxygen species appear to regulate important vascular homeostatic functions under basal conditions in a variety of vascular beds, where, in particular, they contribute to endothelium-dependent vasodilation. On exposure to cardiovascular risk factors, endothelial mitochondria produce excessive ROS in concert with other cellular ROS sources. Mitochondrial ROS, in this setting, act as important signaling molecules activating prothrombotic and proinflammatory pathways in the vascular endothelium, a process that initially manifests itself as endothelial dysfunction and, if persistent, may lead to the development of atherosclerotic plaques. This review concentrates on emerging appreciation of the importance of mitochondrial ROS as cell-signaling molecules in the vascular endothelium under both physiologic and pathophysiologic conditions. Future potential avenues of research in this field also are discussed. Antioxid. Redox Signal. 15, 1517–1530.

Widlansky, Michael E.

2011-01-01

77

Selective production of reactive and nonreactive oxygen atoms on Pd(001) by rotationally aligned oxygen molecules.  

PubMed

Sticking together: The occupation of different sites by oxygen atoms that are produced by the dissociation of O(2) on Pd(100) is determined by the initial rotational alignment of the parent molecules. The atom locations are characterized by different chemical reactivities in the reaction with CO to form CO(2) (see picture), which are followed by synchrotron radiation (SR) experiments with a supersonic molecular beam (SMB). PMID:19479918

Vattuone, Luca; Gerbi, Andrea; Cappelletti, David; Pirani, Fernando; Gunnella, Roberto; Savio, Letizia; Rocca, Mario

2009-01-01

78

Adhesion and reactivity in the copper-alumina system: influence of oxygen and silver  

Microsoft Academic Search

Strong metal-ceramic bonds require thermodynamic adhesion with the formation of new phases at the interface when the system is reactive, or without the formation of new phases when the system is non-reactive. The copper-alumina system can be reactive or non-reactive depending on the oxygen content in the atmosphere and\\/or in the copper. The non-reactive\\/reactive transition was determined and corresponded to

A. Kara-Slimane; B. Mbongo; D. Tréheux

1999-01-01

79

Fumarate reductase is a major contributor to the generation of reactive oxygen species in the anaerobe Bacteroides fragilis  

PubMed Central

Despite the detrimental role that endogenously generated reactive oxygen species (ROS) may play in bacteria exposed to aerobic environments, very few sources of ROS have been identified in vivo. Such studies are often precluded by the presence of efficient ROS-scavenging pathways, like those found in the aerotolerant anaerobe Bacteroides fragilis. Here we demonstrate that deletion of the genes encoding catalase (Kat), alkylhydroperoxide reductase (AhpC) and thioredoxin-dependent peroxidase (Tpx) strongly inhibits H2O2 detoxification in B. fragilis, thereby allowing for the quantification of ROS production. Exogenous fumarate significantly reduced H2O2 production in a ?ahpC?kat?tpx B. fragilis strain, as did deletion of fumarate reductase subunit c (frdC). Deletion of frdC also increased the aerotolerance of a strain lacking superoxide dismutase, indicating that fumarate reductase is a major contributor to ROS formation in B. fragilis exposed to oxygen.

Meehan, Brian M.

2012-01-01

80

Reactive oxygen species mediate endothelium-dependent relaxations in tetrahydrobiopterin-deficient mice.  

PubMed

(6R)-5,6,7,8-Tetrahydro-biopterin (H(4)B) is essential for the catalytic activity of all NO synthases. The hyperphenylalaninemic mouse mutant (hph-1) displays 90% deficiency of the GTP cyclohydrolase I, the rate-limiting enzyme in H(4)B synthesis. A relative shortage of H(4)B may shift the balance between endothelial NO synthase (eNOS)-catalyzed generation of NO and reactive oxygen species. Therefore, the hph-1 mouse represents a unique model to assess the effect of chronic H(4)B deficiency on endothelial function. Aortas from 8-week-old hph-1 and wild-type mice (C57BLxCBA) were compared. H(4)B levels were determined by high-performance liquid chromatography and NO synthase activity by [(3)H]citrulline assay in homogenized tissue. Superoxide production by the chemiluminescence method was measured. Isometric tension was continuously recorded. The intracellular levels of H(4)B as well as constitutive NO synthase activity were significantly lower in hph-1 compared with wild-type mice. Systolic blood pressure was increased in hph-1 mice. However, endothelium-dependent relaxations to acetylcholine were present in both groups and abolished by inhibition of NO synthase with N(G)-nitro-L-arginine methyl ester as well. Only in hph-1 mice were the relaxations inhibited by catalase and enhanced by superoxide dismutase. After incubation with exogenous H(4)B, the differences between the 2 groups disappeared. Our findings demonstrate that H(4)B deficiency leads to eNOS dysfunction with the formation of reactive oxygen species, which become mediators of endothelium-dependent relaxations. A decreased availability of H(4)B may favor an impaired activity of eNOS and thus contribute to the development of vascular diseases. PMID:11304463

Cosentino, F; Barker, J E; Brand, M P; Heales, S J; Werner, E R; Tippins, J R; West, N; Channon, K M; Volpe, M; Lüscher, T F

2001-04-01

81

Reactive oxygen species are involved in regulation of pollen wall cytomechanics.  

PubMed

Production and scavenging of reactive oxygen species (ROS) in somatic plant cells is developmentally regulated and plays an important role in the modification of cell wall mechanical properties. Here we show that H2 O2 and the hydroxyl radical ((•) OH) can regulate germination of tobacco pollen by modifying the mechanical properties of the pollen intine (inner layer of the pollen wall). Pollen germination was affected by addition of exogenous H2 O2 , (•) OH, and by antioxidants scavenging endogenous ROS: superoxide dismutase, superoxide dismutase/catalase mimic Mn-5,10,15,20-tetrakis(1-methyl-4-pyridyl)21H, 23H-porphin, or a spin-trap ?-(4-pyridyl-1-oxide)-N-tert-butylnitrone, which eliminates (•) OH. The inhibiting concentrations of exogenous H2 O2 and (•) OH did not decrease pollen viability, but influenced the mechanical properties of the wall. The latter were estimated by studying the resistance of pollen to hypo-osmotic shock. (•) OH caused excess loosening of the intine all over the surface of the pollen grain, disrupting polar growth induction. In contrast, H2 O2 , as well as partial removal of endogenous (•) OH, over-tightened the wall, impeding pollen tube emergence. Feruloyl esterase (FAE) was used as a tool to examine whether H2 O2 -inducible inter-polymer cross-linking is involved in the intine tightening. FAE treatment caused loosening of the intine and stimulated pollen germination and pollen tube growth, revealing ferulate cross-links in the intine. Taken together, the data suggest that pollen intine properties can be regulated differentially by ROS. (•) OH is involved in local loosening of the intine in the germination pore region, while H2 O2 is necessary for intine strengthening in the rest of the wall through oxidative coupling of feruloyl polysaccharides. PMID:23574420

Smirnova, A V; Matveyeva, N P; Yermakov, I P

2013-04-10

82

Mitochondrial Reactive Oxygen Species Modulate Mosquito Susceptibility to Plasmodium Infection  

PubMed Central

Background Mitochondria perform multiple roles in cell biology, acting as the site of aerobic energy-transducing pathways and as an important source of reactive oxygen species (ROS) that modulate redox metabolism. Methodology/Principal Findings We demonstrate that a novel member of the mitochondrial transporter protein family, Anopheles gambiae mitochondrial carrier 1 (AgMC1), is required to maintain mitochondrial membrane potential in mosquito midgut cells and modulates epithelial responses to Plasmodium infection. AgMC1 silencing reduces mitochondrial membrane potential, resulting in increased proton-leak and uncoupling of oxidative phosphorylation. These metabolic changes reduce midgut ROS generation and increase A. gambiae susceptibility to Plasmodium infection. Conclusion We provide direct experimental evidence indicating that ROS derived from mitochondria can modulate mosquito epithelial responses to Plasmodium infection.

Oliveira, Giselle A.; Andersen, John F.; Oliveira, Marcus F.; Oliveira, Pedro L.; Barillas-Mury, Carolina

2012-01-01

83

The role of reactive oxygen species in ocular malignancy.  

PubMed

Increased production of reactive oxygen species (ROS) is an attribute of malignant cells and is linked to the development of many of the characteristics considered "hallmarks of cancer (Hanahan and Weinberg, Cell 144(5), 2011, 646-674)." Among these are sustained proliferative signaling, induction of new vascular growth, promotion of invasion, and metastatic potential. Maintaining the balance between the beneficial biological functions of ROS and the dysregulation seen in human disease such as cancer, presents a daunting conundrum in the future of oncology research. ROS involvement is pervasive throughout the process of tumorigenesis and subsequent cancer growth, yet the response to both pro- and antioxidant based therapy is varied. We will review the ROS species in the pathogenesis of primary ocular malignancy with consideration of potential targets for therapeutic intervention. PMID:24664755

Klump, Kathryn E; McGinnis, James F

2014-01-01

84

Mechanisms of nanotoxicity: generation of reactive oxygen species.  

PubMed

Nanotechnology is a rapidly developing field in the 21(st) century, and the commercial use of nanomaterials for novel applications is increasing exponentially. To date, the scientific basis for the cytotoxicity and genotoxicity of most manufactured nanomaterials are not understood. The mechanisms underlying the toxicity of nanomaterials have recently been studied intensively. An important mechanism of nanotoxicity is the generation of reactive oxygen species (ROS). Overproduction of ROS can induce oxidative stress, resulting in cells failing to maintain normal physiological redox-regulated functions. This in turn leads to DNA damage, unregulated cell signaling, change in cell motility, cytotoxicity, apoptosis, and cancer initiation. There are critical determinants that can affect the generation of ROS. These critical determinants, discussed briefly here, include: size, shape, particle surface, surface positive charges, surface-containing groups, particle dissolution, metal ion release from nanometals and nanometal oxides, UV light activation, aggregation, mode of interaction with cells, inflammation, and pH of the medium. PMID:24673904

Fu, Peter P; Xia, Qingsu; Hwang, Huey-Min; Ray, Paresh C; Yu, Hongtao

2014-03-01

85

Reactive Oxygen Species in Inflammation and Tissue Injury  

PubMed Central

Abstract Reactive oxygen species (ROS) are key signaling molecules that play an important role in the progression of inflammatory disorders. An enhanced ROS generation by polymorphonuclear neutrophils (PMNs) at the site of inflammation causes endothelial dysfunction and tissue injury. The vascular endothelium plays an important role in passage of macromolecules and inflammatory cells from the blood to tissue. Under the inflammatory conditions, oxidative stress produced by PMNs leads to the opening of inter-endothelial junctions and promotes the migration of inflammatory cells across the endothelial barrier. The migrated inflammatory cells not only help in the clearance of pathogens and foreign particles but also lead to tissue injury. The current review compiles the past and current research in the area of inflammation with particular emphasis on oxidative stress-mediated signaling mechanisms that are involved in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167.

Mittal, Manish; Siddiqui, Mohammad Rizwan; Tran, Khiem; Reddy, Sekhar P.

2014-01-01

86

Diabetic peripheral neuropathy: role of reactive oxygen and nitrogen species.  

PubMed

The prevalence of diabetes has reached epidemic proportions. There are two forms of diabetes: type 1 diabetes mellitus is due to auto-immune-mediated destruction of pancreatic ?-cells resulting in absolute insulin deficiency and type 2 diabetes mellitus is due to reduced insulin secretion and or insulin resistance. Both forms of diabetes are characterized by chronic hyperglycemia, leading to the development of diabetic peripheral neuropathy (DPN) and microvascular pathology. DPN is characterized by enhanced or reduced thermal, chemical, and mechanical pain sensitivities. In the long-term, DPN results in peripheral nerve damage and accounts for a substantial number of non-traumatic lower-limb amputations. This review will address the mechanisms, especially the role of reactive oxygen and nitrogen species in the development and progression of DPN. PMID:23722999

Premkumar, Louis S; Pabbidi, Reddy M

2013-11-01

87

Programmed cell death in barley aleurone cells is not directly stimulated by reactive oxygen species produced in response to gibberellin.  

PubMed

The cereal aleurone layer is a secretory tissue that produces enzymes to hydrolyze the starchy endosperm during germination. We recently demonstrated that reactive oxygen species (ROS), produced in response to gibberellins (GA), promoted GAMyb expression, which induces ?-amylase expression in barley aleurone cells. On the other hand, ROS levels increase during programmed cell death (PCD) in barley aleurone cells, and GAMyb is involved in PCD of these cells. In this study, we investigated whether the ROS produced in response to GA regulate PCD directly by using mutants of Slender1 (SLN1), a DELLA protein that negatively regulates GA signaling. The wild-type, the sln1c mutant (which exhibits gibberellin-type signaling even in the absence of GA), and the Sln1d mutant (which is gibberellin-insensitive with respect to ?-amylase production) all produced ROS in response to GA, suggesting that ROS production in aleurone cells in response to GA is independent of GA signaling through this DELLA protein. Exogenous GA promoted PCD in the wild-type. PCD in sln1c was induced even without exogenous GA (and so without induction of ROS), whereas PCD in Sln1d was not induced in the presence of exogenous GA, even though the ROS content increased significantly in response to GA. These results suggest that PCD in barley aleurone cells is not directly stimulated by ROS produced in response to GA but is regulated by GA signaling through DELLA protein. PMID:24709153

Aoki, Nozomi; Ishibashi, Yushi; Kai, Kyohei; Tomokiyo, Reisa; Yuasa, Takashi; Iwaya-Inoue, Mari

2014-05-01

88

Production and detection of reactive oxygen species (ROS) in cancers.  

PubMed

Reactive oxygen species include a number of molecules that damage DNA and RNA and oxidize proteins and lipids (lipid peroxydation). These reactive molecules contain an oxygen and include H(2;)O(2;) (hydrogen peroxide), NO (nitric oxide), O(2;)(-) (oxide anion), peroxynitrite (ONOO(-)), hydrochlorous acid (HOCl), and hydroxyl radical (OH(-)). Oxidative species are produced not only under pathological situations (cancers, ischemic/reperfusion, neurologic and cardiovascular pathologies, infectious diseases, inflammatory diseases, autoimmune diseases , etc…) but also during physiological (non-pathological) situations such as cellular metabolism. Indeed, ROS play important roles in many cellular signaling pathways (proliferation, cell activation, migration etc..). ROS can be detrimental (it is then referred to as "oxidative and nitrosative stress") when produced in high amounts in the intracellular compartments and cells generally respond to ROS by upregulating antioxidants such as superoxide dismutase (SOD) and catalase (CAT), glutathione peroxidase (GPx) and glutathione (GSH) that protects them by converting dangerous free radicals to harmless molecules (i.e. water). Vitamins C and E have also been described as ROS scavengers (antioxidants). Free radicals are beneficial in low amounts. Macrophage and neutrophils-mediated immune responses involve the production and release of NO, which inhibits viruses, pathogens and tumor proliferation. NO also reacts with other ROS and thus, also has a role as a detoxifier (ROS scavenger). Finally NO acts on vessels to regulate blood flow which is important for the adaptation of muscle to prolonged exercise. Several publications have also demonstrated that ROS are involved in insulin sensitivity. Numerous methods to evaluate ROS production are available. In this article we propose several simple, fast, and affordable assays; these assays have been validated by many publications and are routinely used to detect ROS or its effects in mammalian cells. While some of these assays detect multiple ROS, others detect only a single ROS. PMID:22127014

Wu, Danli; Yotnda, Patricia

2011-01-01

89

Plasma-generated reactive oxygen species for biomedical applications  

NASA Astrophysics Data System (ADS)

To get a better insight into the effects of reactive oxygen species (ROS) on cellular components, fundamental studies are essential to determine the nature and concentration of plasma-generated ROS, and the chemistry induced in biological liquids by those ROS. In this context, we have measured the absolute density of the main ROS created in three different atmospheric pressure plasma sources: two geometrically distinct RF-driven microplasma jets (?-APPJ [1] and kinpen [2]), and an array of microcathode sustained discharges [3]. Optical diagnostics of the plasma volumes and effluent regions have been performed: UV absorption for O3 and IR emission for O2(a^1?) [4]. High concentrations of both ROS have been obtained (10^14--10^17cm-3). The effect of different parameters, such as gas flows and mixtures and power coupled to the plasmas, has been studied. For plasma biomedicine, the determination of the reactive species present in plasma-treated liquids is of great importance. In this work, we focused on the measurement of the concentration of H2O2 and NOX radicals, generated in physiological solutions like NaCl and PBS.[4pt] [1] N. Knake et al., J. Phys. D: App. Phys. 41, 194006 (2008)[0pt] [2] K.D. Weltmann et al., Pure Appl. Chem. 82, 1223 (2010)[0pt] [3] J.S. Sousa et al., Appl. Phys. Lett. 97, 141502 (2010)[0pt] [4] J.S. Sousa et al., Appl. Phys. Lett. 93, 011502 (2008)

Sousa, J. S.; Hammer, M. U.; Winter, J.; Tresp, H.; Duennbier, M.; Iseni, S.; Martin, V.; Puech, V.; Weltmann, K. D.; Reuter, S.

2012-10-01

90

Cell signaling by reactive nitrogen and oxygen species in atherosclerosis  

NASA Technical Reports Server (NTRS)

The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.

Patel, R. P.; Moellering, D.; Murphy-Ullrich, J.; Jo, H.; Beckman, J. S.; Darley-Usmar, V. M.

2000-01-01

91

SINGLET OXYGEN RESISTANT 1 links reactive electrophile signaling to singlet oxygen acclimation in Chlamydomonas reinhardtii.  

PubMed

Acclimation of Chlamydomonas reinhardtii cells to low levels of singlet oxygen, produced either by photoreactive chemicals or high light treatment, induces a specific genetic response that strongly increases the tolerance of the algae to subsequent exposure to normally lethal singlet oxygen-producing conditions. The genetic response includes the increased expression of various oxidative stress response and detoxification genes, like the glutathione peroxidase homologous gene GPXH/GPX5 and the ?-class glutathione-S-transferase gene GSTS1. To identify components involved in the signal transduction and activation of the singlet oxygen-mediated response, a mutant selection was performed. This selection led to the isolation of the singlet oxygen resistant 1 (sor1) mutant, which is more tolerant to singlet oxygen-producing chemicals and shows a constitutively higher expression of GPXH and GSTS1. Map-based cloning revealed that the SOR1 gene encodes a basic leucine zipper transcription factor, which controls its own expression and the expression of a large number of oxidative stress response and detoxification genes. In the promoter region of many of these genes, a highly conserved 8-bp palindromic sequence element was found to be enriched. This element was essential for GSTS1 induction by increased levels of lipophilic reactive electrophile species (RES), suggesting that it functions as an electrophile response element (ERE). Furthermore, GSTS1 overexpression in sor1 requires the ERE, although it is unknown whether it occurs through direct binding of SOR1 to the ERE. RES can be formed after singlet oxygen-induced lipid peroxidation, indicating that RES-stimulated and SOR1-mediated responses of detoxification genes are part of the singlet oxygen-induced acclimation process in C. reinhardtii. PMID:22529359

Fischer, Beat B; Ledford, Heidi K; Wakao, Setsuko; Huang, ShihYau Grace; Casero, David; Pellegrini, Matteo; Merchant, Sabeeha S; Koller, Andreas; Eggen, Rik I L; Niyogi, Krishna K

2012-05-15

92

Different proxies for the reactivity of aquatic sediments towards oxygen: A model assessment  

Microsoft Academic Search

Information on benthic carbon mineralization rates is often derived from the analysis of oxygen microprofiles in sediments. To enable a direct comparison of different sediment environments, it is often desirable to characterize sediments by a single proxy that expresses their “reactivity” towards oxygen. For this, there are three commonly used proxies: the oxygen penetration depth (OPD), the oxygen flux at

Johan Van Frausum; Jack J. Middelburg; Karline Soetaert; Filip J. R. Meysman

2010-01-01

93

Reactive oxygen species mediate growth and death in submerged plants  

PubMed Central

Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS) act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism, and non-enzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical, and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR) spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS.

Steffens, Bianka; Steffen-Heins, Anja; Sauter, Margret

2013-01-01

94

Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species.  

PubMed

Exogenous electric fields have been implied in cardiac differentiation of mouse embryonic stem cells and the generation of reactive oxygen species (ROS). In this work, we explored the effects of electrical field stimulation on ROS generation and cardiogenesis in embryoid bodies (EBs) derived from human embryonic stem cells (hESC, line H13), using a custom-built electrical stimulation bioreactor. Electrical properties of the bioreactor system were characterized by electrochemical impedance spectroscopy (EIS) and analysis of electrical currents. The effects of the electrode material (stainless steel, titanium-nitride-coated titanium, titanium), length of stimulus (1 and 90 s) and age of EBs at the onset of electrical stimulation (4 and 8 days) were investigated with respect to ROS generation. The amplitude of the applied electrical field was 1 V/mm. The highest rate of ROS generation was observed for stainless steel electrodes, for signal duration of 90 s and for 4-day-old EBs. Notably, comparable ROS generation was achieved by incubation of EBs with 1 nM H(2)O(2). Cardiac differentiation in these EBs was evidenced by spontaneous contractions, expression of troponin T and its sarcomeric organization. These results imply that electrical stimulation plays a role in cardiac differentiation of hESCs, through mechanisms associated with the intracellular generation of ROS. PMID:19720058

Serena, Elena; Figallo, Elisa; Tandon, Nina; Cannizzaro, Christopher; Gerecht, Sharon; Elvassore, Nicola; Vunjak-Novakovic, Gordana

2009-12-10

95

p38? inhibits liver fibrogenesis and consequent hepatocarcinogenesis by curtailing accumulation of reactive oxygen species  

PubMed Central

Most hepatocellular carcinomas (HCCs) develop in the context of severe liver fibrosis and cirrhosis caused by chronic liver inflammation, which also results in accumulation of reactive oxygen species (ROS). In this study, we examined whether the stress activated protein kinase p38? (Mapk14) controls ROS metabolism and development of fibrosis and cancer in mice given thioacetamide (TAA) to induce chronic liver injury. Liver-specific p38? ablation was found to enhance ROS accumulation, which appears to be exerted through the reduced expression of anti-oxidant protein heat shock protein (HSP) 25 (Hspb1), a mouse homologue of HSP27. Its re-expression in p38?-deficient liver prevents ROS accumulation and TAA-induced fibrosis. p38?-deficiency increased expression of SOX2, a marker for cancer stem cells, and the liver oncoproteins c-Jun (Jun) and Gankyrin (Psmd10) and led to enhanced TAA-induced hepatocarcinogenesis. The up-regulation of SOX2 and c-Jun was prevented by administration of the antioxidant butylated hydroxyanisole. Intriguingly, the risk of human HCC recurrence is positively correlated with ROS accumulation in liver. Thus, p38? and its target HSP25/HSP27 appear to play a conserved and critical hepatoprotective function by curtailing ROS accumulation in liver parenchymal cells engaged in oxidative metabolism of exogenous chemicals. Augmented oxidative stress of liver parenchymal cells may explain the close relationship between liver fibrosis and hepatocarcinogenesis.

Sakurai, Toshiharu; Kudo, Masatoshi; Umemura, Atsushi; He, Guobin; Elsharkawy, Ahmed M.; Seki, Ekihiro; Karin, Michael

2012-01-01

96

Mitochondrial Reactive Oxygen Species Promote Epidermal Differentiation and Hair Follicle Development  

PubMed Central

Proper regulation of keratinocyte differentiation within the epidermis and follicular epithelium is essential for maintenance of epidermal barrier function and hair growth. The signaling intermediates that regulate the morphological and genetic changes associated with epidermal and follicular differentiation remain poorly understood. We tested the hypothesis that reactive oxygen species (ROS) generated by mitochondria are an important regulator of epidermal differentiation by generating mice with a keratinocyte-specific deficiency in mitochondrial transcription factor A (TFAM), which is required for the transcription of mitochondrial genes encoding electron transport chain subunits. Ablation of TFAM in keratinocytes impaired epidermal differentiation and hair follicle growth and resulted in death 2 weeks after birth. TFAM-deficient keratinocytes failed to generate mitochondria-derived ROS, a deficiency that prevented the transmission of Notch and ?-catenin signals essential for epidermal differentiation and hair follicle development, respectively. In vitro keratinocyte differentiation was inhibited in the presence of antioxidants, and the decreased differentiation marker abundance in TFAM-deficient keratinocytes was partly rescued by application of exogenous hydrogen peroxide. These findings indicate that mitochondria-generated ROS are critical mediators of cellular differentiation and tissue morphogenesis.

Hamanaka, Robert B.; Glasauer, Andrea; Hoover, Paul; Yang, Shuangni; Blatt, Hanz; Mullen, Andrew R.; Getsios, Spiro; Gottardi, Cara J.; DeBerardinis, Ralph J.; Lavker, Robert M.; Chandel, Navdeep S.

2014-01-01

97

The potential of Asparagus-P to inactivate reactive oxygen radicals.  

PubMed

Asparagus-P is a traditional herbal medicinal product consisting of a combination of asparagus roots and parsley leaves in equal shares. It is used to support aquaretic kidney function. The present study was undertaken to shed light on the antioxidative effects of both main ingredients and their combination as in Asparagus-P. For that purpose, differentiated promyelocytic HL60 cells (functional neutrophils) capable of generating superoxide radicals upon stimulation, were used. Parsley leaves and, hence, also Asparagus-P had a marked dose-dependent antioxidant effect, whereas asparagus roots had only a minor efficacy in this respect. In conclusion, Asparagus-P does not only support kidney function, but is also able to inactivate reactive oxygen radicals which might occur by a metabolic or exogenous overload (oxidative stress) or in the course of inflammatory processes. This antioxidant efficacy is primarily related to the content of parsley leaves; asparagus roots seem to enhance this efficacy by promoting the potential of parsley leaves, thus generating a synergistic effect in the combination product Asparagus-P. PMID:18236449

Dartsch, Peter C

2008-02-01

98

Reactive oxygen species mediate lysophosphatidic acid induced signaling in ovarian cancer cells.  

PubMed

Lysophosphatidic acid (LPA) is produced by tumor cells and is present in the ascites fluid of ovarian cancer patients. To determine the role of endogenous LPA in the ovarian cancer cell line SKOV3, we treated cells with the LPA receptor antagonist VPC32183 and found that it inhibited cell growth and induced apoptosis. Exogenous LPA further stimulated ERK and Akt phosphorylation and NF-?B activity. To determine if reactive oxygen species (ROS), which have been implicated as second messengers in cell signaling, were also involved in LPA signaling, we treated cells with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), and antioxidants N-acetyl cysteine, EUK-134 and curcumin, and showed that all blocked LPA-dependent NF-?B activity and cell proliferation. DPI and EUK-134 also inhibited Akt and ERK phosphorylation. LPA was shown to stimulate dichlorofluorescein fluorescence, though not in the presence of DPI, apocynin (an inhibitor of NADPH oxidase), VPC32183, or PEG-catalase. Akt phosphorylation was also inhibited by PEG-catalase and apocynin. These data indicate that NADPH oxidase is a major source of ROS and H(2)O(2) is critical for LPA-mediated signaling. Thus, LPA acts as a growth factor and prevents apoptosis in SKOV3 cells by signaling through redox-dependent activation of ERK, Akt, and NF-?B-dependent signaling pathways. PMID:20934509

Saunders, Jerry A; Rogers, LeAnn C; Klomsiri, Chananat; Poole, Leslie B; Daniel, Larry W

2010-12-15

99

Reactive Oxygen Species Mediate Lysophosphatidic Acid Induced Signaling in Ovarian Cancer Cells  

PubMed Central

Lysophosphatidic acid (LPA) is produced by tumor cells and is present in the ascites fluid of ovarian cancer patients. To determine the role of endogenous LPA in the ovarian cancer cell line SKOV3, we treated cells with the LPA receptor antagonist VPC32183 and found that it inhibited cell growth and induced apoptosis. Exogenous LPA further stimulated ERK and Akt phosphorylation and NF-?B activity. To determine if reactive oxygen species (ROS), which have been implicated as second messengers in cell signaling, were also involved in LPA signaling, we treated cells with the NADPH oxidase inhibitor diphenyleneiodonium (DPI), and antioxidants N-acetyl cysteine, EUK-134 and curcumin, and showed that all blocked LPA-dependent NF-?B activity and cell proliferation. DPI and EUK-134 also inhibited Akt and ERK phosphorylation. LPA was shown to stimulate dichlorofluorescein fluorescence, though not in the presence of DPI, apocynin (a specific inhibitor of NADPH oxidase), VPC32183, or PEG-catalase. Akt phosphorylation was also inhibited by PEG-catalase and apocynin. These data indicate that NADPH oxidase is a major source of ROS and H2O2 is critical for LPA-mediated signaling. Thus, LPA acts as a growth factor and prevents apoptosis in SKOV3 cells by signaling through redox-dependent activation of ERK, Akt, and NF-?B-dependent signaling pathways.

Saunders, Jerry A.; Rogers, LeAnn C.; Klomsiri, Chananat; Poole, Leslie B.; Daniel, Larry W.

2010-01-01

100

Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species.  

PubMed

Oxidative stress is deeply involved in various brain diseases, including neurodegenerative diseases, stroke, and ischemia/reperfusion injury. Mitochondria are thought to be the target and source of oxidative stress. We investigated the role of mitochondria in oxidative stress-induced necrotic neuronal cell death in a neuroblastoma cell line and a mouse model of middle cerebral artery occlusion. The exogenous administration of hydrogen peroxide was used to study the role of oxidative stress on neuronal cell survival and mitochondrial function in vitro. Hydrogen peroxide induced non-apoptotic neuronal cell death in a c-Jun N-terminal kinase- and poly(ADP-ribosyl) polymerase-dependent manner. Unexpectedly, hydrogen peroxide treatment induced transient hyperpolarization of the mitochondrial membrane potential and a subsequent delayed burst of endogenous reactive oxygen species (ROS). The inhibition of mitochondrial hyperpolarization by diphenylene iodonium or rotenone, potent inhibitors of mitochondrial respiratory chain complex I, resulted in reduced ROS production and subsequent neuronal cell death in vitro and in vivo. The inhibition of mitochondrial hyperpolarization can protect neuronal cells from oxidative stress-induced necrotic cell death, suggesting a novel method of therapeutic intervention in oxidative stress-induced neurological disease. PMID:19807658

Choi, Kyungsun; Kim, Jinho; Kim, Gyung W; Choi, Chulhee

2009-11-01

101

Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species  

PubMed Central

Exogenous electric fields have been implied in cardiac differentiation of mouse embryonic stem cells and the generation of reactive oxygen species (ROS). In this work, we explored the effects of electrical field stimulation on ROS generation and cardiogenesis in embryoid bodies (EBs) derived from human embryonic stem cells (hESC, line H13), using a custom-built electrical-stimulation bioreactor. Electrical properties of the bioreactor system were characterized by electrochemical impedance spectroscopy (EIS) and analysis of electrical currents. The effects of the electrode material (stainless steel, titanium-nitride coated titanium, titanium), length of stimulus (1 s and 90 s) and age of EBs at the onset of electrical stimulation (4 and 8 days) were investigated with respect to ROS generation. The amplitude of the applied electrical field was 1 V/mm. The highest rate of ROS generation was observed for stainless steel electrodes, for signal duration of 90 s, and 4-days old EBs. Notably, comparable ROS generation was achieved by incubation of EBs with 1 nM H2O2. Cardiac differentiation in these EBs was evidenced by spontaneous contractions, expression of Troponin T, and its sarcomeric organization. These results imply that electrical stimulation plays a role in cardiac differentiation of hESCs, through mechanisms associated with the intracellular generation of ROS.

Serena, Elena; Figallo, Elisa; Tandon, Nina; Cannizzaro, Christopher; Gerecht, Sharon; Elvassore, Nicola; Vunjak-Novakovic, Gordana

2009-01-01

102

Role of Reactive Oxygen Metabolites in Crocidolite Asbestos Toxicity to Mouse Macrophages1  

Microsoft Academic Search

Crocidolite asbestos is toxic to macrophages in vitro. We hypothesize that this toxicity is mediated by the generation of reactive oxygen metabolites. Elicited mouse peritoneal macrophages were found to release reactive oxygen metabolites upon incubation with Crocidoliteasbestos in vitro. Crocidolite toxicity to both primary cultures of mouse peritoneal macrophages and P388Di cells, a mouse macrophage-like cell line, could be prevented

Lee A. Goodglick; Agnes B. Kane

103

Chemistry and biology of reactive oxygen species in signaling or stress responses  

Microsoft Academic Search

Reactive oxygen species (ROS) are a family of molecules that are continuously generated, transformed and consumed in all living organisms as a consequence of aerobic life. The traditional view of these reactive oxygen metabolites is one of oxidative stress and damage that leads to decline of tissue and organ systems in aging and disease. However, emerging data show that ROS

Bryan C Dickinson; Christopher J Chang

2011-01-01

104

Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters.  

PubMed

Pathogens in sunlit surface waters can be damaged directly by UVB light. Indirect inactivation by reactive oxygen species (ROS) generated by sunlight interacting with external sensitizer molecules may also be important, but this mechanism has not been conclusively demonstrated. To better understand the role of ROS, we investigated the inactivation of MS2 coliphage, a commonly used surrogate for human enteric viruses, in water samples irradiated with a solar simulator and containing different types of sensitizers: waste stabilization pond (WSP) constituents, Fluka humic acid (FHA), and Suwannee River humic acid (SRHA). Inactivation of MS2 by the indirect mechanism was significant for all three sensitizers, and the efficiency of the sensitizers at inactivating MS2 was FHA > SRHA > WSP. Both dissolved and particulate fractions in the WSP water contributed to inactivation. In the WSP water, the indirect process was quantitatively more importantthan direct damage by UVB light, due to the rapid attenuation of UVB compared to the longer wavelengths that may initiate the indirect mechanism. Singlet oxygen (1O2) was the most important ROS involved in the inactivation of MS2. The addition of histidine, a 1O2 quencher, decreased inactivation, whereas inactivation rate constants increased in solutions of D20. Selective quenchers for other ROS showed little or no protective effect. Inactivation in WSP water was a function of the steady-state 102 concentration and could be described by a second-order rate expression. PMID:17265947

Kohn, Tamar; Nelson, Kara L

2007-01-01

105

Participation of Oxygen and Role of Exogenous and Endogenous Sensitizers in the Photoinactivation of Escherichia coli by Photosynthetically Active Radiation, UVA and UV-B  

Microsoft Academic Search

  We studied the mechanisms by which photosynthetically active radiation (PAR) and ultraviolet (UV-A and UV-B) radiation damage\\u000a Escherichia coli suspended in water. The roles played by oxygen and exogenous and endogenous sensitizers were analyzed by\\u000a monitoring changes in the physiological state of irradiated cells. Impairment of the cellular functions was more severe in\\u000a the case of UV radiations. Radiation caused

A. Muela; J. M. García-Bringas; C. Seco; I. Arana; I. Barcina

2002-01-01

106

REACTIVE OXYGEN AND NITROGEN SPECIES IN PULMONARY HYPERTENSION  

PubMed Central

Pulmonary vascular disease can be defined as either a disease affecting the pulmonary capillaries and pulmonary arterioles, termed pulmonary arterial hypertension, or as a disease affecting the left ventricle, called pulmonary venous hypertension. Pulmonary arterial hypertension (PAH) is a disorder of the pulmonary circulation characterized by endothelial dysfunction, as well as intimal and smooth muscle proliferation. Progressive increases in pulmonary vascular resistance and pressure impair the performance of the right ventricle, resulting in declining cardiac output, reduced exercise capacity, right heart failure, and ultimately death. While the primary and heritable forms of the disease are thought to affect over 5,000 patients in the U.S., the disease can occur secondary to congenital heart disease, most advanced lung diseases, and many systemic diseases. Multiple studies implicate oxidative stress in the development of PAH. Further, this oxidative stress has been shown to be associated with alterations in reactive oxygen species (ROS), reactive nitrogen species (RNS) and nitric oxide (NO) signaling pathways, whereby bioavailable NO is decreased and ROS and RNS production are increased. Many canonical ROS and NO signaling pathways are simultaneously disrupted in PAH, with increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and xanthine oxidoreductase, uncoupling of endothelial NO synthase (eNOS), and reduction in mitochondrial number, as well as impaired mitochondrial function. Upstream dysregulation of ROS/NO redox homeostasis impairs vascular tone and contributes to the pathological activation of anti-apoptotic and mitogenic pathways, leading to cell proliferation and obliteration of the vasculature. This manuscript will review the available data regarding the role of oxidative and nitrosative stress and endothelial dysfunction in the pathophysiology of pulmonary hypertension, and provide a description of targeted therapies for this disease.

Tabima, Diana M.; Frizzell, Sheila; Gladwin, Mark T.

2013-01-01

107

Effect of reactive oxygen and carbonyl species on crucial cellular antioxidant enzymes  

Microsoft Academic Search

Numerous reactive oxygen species (ROS) and reactive carbonyl species (RCS) issuing from lipid and sugar oxidation are known to damage a large number of proteins leading to enzyme inhibition and alteration of cellular functions. Whereas studies in literature only focus on the reactivity of one or two of these compounds, we aimed at comparing in the same conditions of incubations

Jean-François Lesgards; Cyrielle Gauthier; Juan Iovanna; Nicolas Vidal; Alain Dolla; Pierre Stocker

2011-01-01

108

Effects of Exogenous Surfactant and Recombinant Human Copper-Zinc Superoxide Dismutase on Oxygen-Dependent Antimicrobial Defenses  

Microsoft Academic Search

The use of human recombinant CuZn superoxide dismutase (rhSOD) in addition to exogenous surfactant has been studied as a therapeutic strategy to prevent acute and chronic lung injury in premature infants with blood monocytes (MO). However, scavenging of superoxide by rhSOD may compromise bacterial killing by phagocytes. In the present study, we investigated the interaction of exogenous surfactant and rhSOD

Hervé Walti; Armelle Nicolas-Robin; Marc V. Assous; Barbara S. Polla; Maria Bachelet; Jonathan M. Davis

2002-01-01

109

Geochemical production of reactive oxygen species from biogeochemically reduced fe.  

PubMed

The photochemical reduction of Fe(III) complexes to Fe(II) is a well-known initiation step for the production of reactive oxygen species (ROS) in sunlit waters. Here we show a geochemical mechanism for the same in dark environments based on the tidally driven, episodic movement of anoxic groundwaters through oxidized, Fe(III) rich sediments. Sediment samples were collected from the top 5 cm of sediment in a saline tidal creek in the estuary at Murrell's Inlet, South Carolina and characterized with respect to total Fe, acid volatile sulfides, and organic carbon content. These sediments were air-dried, resuspended in aerated solution, then exposed to aqueous sulfide at a range of concentrations chosen to replicate the conditions characteristic of a tidal cycle, beginning with low tide. No detectable ROS production occurred from this process in the dark until sulfide was added. Sulfide addition resulted in the rapid production of hydrogen peroxide, with maximum concentrations of 3.85 ?M. The mechanism of hydrogen peroxide production was tested using a simplified three factor representation of the system based on hydrogen sulfide, Fe(II) and Fe(III). The resulting predictive model for maximum hydrogen peroxide agreed with measured hydrogen peroxide in field-derived samples at the 95% level of confidence, although with a persistent negative bias suggesting a minor undiscovered peroxide source in sediments. PMID:24597860

Murphy, Sarah A; Solomon, Benson M; Meng, Shengnan; Copeland, Justin M; Shaw, Timothy J; Ferry, John L

2014-04-01

110

Roles of reactive oxygen and nitrogen species in pain.  

PubMed

Peroxynitrite (PN; ONOO?) and its reactive oxygen precursor superoxide (SO; O?•?) are critically important in the development of pain of several etiologies including pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable progress has been made in terms of understanding the relative contributions of SO, PN, and nitroxidative stress in pain signaling at the molecular and biochemical levels. Aggressive research in this area is poised to provide the pharmacological basis for development of novel nonnarcotic analgesics that are based upon the unique ability to selectively eliminate SO and/or PN. As we have a better understanding of the roles of SO and PN in pathophysiological settings, targeting PN may be a better therapeutic strategy than targeting SO. This is because, unlike PN, which has no currently known beneficial role, SO may play a significant role in learning and memory. Thus, the best approach may be to spare SO while directly targeting its downstream product, PN. Over the past 15 years, our team has spearheaded research concerning the roles of SO and PN in pain and these results are currently leading to the development of solid therapeutic strategies in this important area. PMID:21277369

Salvemini, Daniela; Little, Joshua W; Doyle, Timothy; Neumann, William L

2011-09-01

111

Mitochondrial Reactive Oxygen Species Regulate Transforming Growth Factor-? Signaling  

PubMed Central

TGF-? signaling is required for normal tissue repair; however, excessive TGF-? signaling can lead to robust profibrotic gene expression in fibroblasts, resulting in tissue fibrosis. TGF-? binds to cell-surface receptors, resulting in the phosphorylation of the Smad family of transcription factors to initiate gene expression. TGF-? also initiates Smad-independent pathways, which augment gene expression. Here, we report that mitochondrial reactive oxygen species (ROS) generated at complex III are required for TGF-?-induced gene expression in primary normal human lung fibroblasts. TGF-?-induced ROS could be detected in both the mitochondrial matrix and cytosol. Mitochondrially targeted antioxidants markedly attenuated TGF-?-induced gene expression without affecting Smad phosphorylation or nuclear translocation. Genetically disrupting mitochondrial complex III-generated ROS production attenuated TGF-?-induced profibrotic gene expression. Furthermore, inhibiting mitochondrial ROS generation attenuated NOX4 (NADPH oxidase 4) expression, which is required for TGF-? induced myofibroblast differentiation. Lung fibroblasts from patients with pulmonary fibrosis generated more mitochondrial ROS than normal human lung fibroblasts, and mitochondrially targeted antioxidants attenuated profibrotic gene expression in both normal and fibrotic lung fibroblasts. Collectively, our results indicate that mitochondrial ROS are essential for normal TGF-?-mediated gene expression and that targeting mitochondrial ROS might be beneficial in diseases associated with excessive fibrosis.

Jain, Manu; Rivera, Stephanie; Monclus, Elena A.; Synenki, Lauren; Zirk, Aaron; Eisenbart, James; Feghali-Bostwick, Carol; Mutlu, Gokhan M.; Budinger, G. R. Scott; Chandel, Navdeep S.

2013-01-01

112

Obesity Increases Cerebrocortical Reactive Oxygen Species And Impairs Brain Function  

PubMed Central

Nearly two-thirds of the population in the United States is overweight or obese, and this unprecedented level of obesity will undoubtedly have a profound impact on overall health, although little is currently known about the effects of obesity on the brain. The objective of the current study was to investigate cerebral oxidative stress and cognitive decline in the context of diet-induced obesity (DIO). We demonstrate for the first time that DIO induces higher levels of reactive oxygen species (ROS) in the brain, and promotes cognitive impairment. Importantly, we also demonstrate for the first time in these studies that both body weight and adiposity are tightly correlated with the level of ROS. Interestingly, ROS were not correlated with cognitive decline in this model. Alterations in the antioxidant/detoxification Nrf2 pathway, superoxide dismutase, and catalase were not significantly altered in response to DIO. A significant impairment in glutathione peroxidase was observed in response to DIO. Taken together, these data demonstrate for the first time that DIO increases the level of total and individual ROS in the brain, and highlight a direct relationship between the amount of adiposity and the level of oxidative stress within the brain. These data have important implications for understanding the negative effects of obesity on the brain, and are vital to understanding the role of oxidative stress in mediating the effects of obesity on the brain.

Freeman, Linnea R.; Zhang, Le; Nair, Anand; Dasuri, Kalavathi; Francis, Joseph; Fernandez-Kim, Sun-Ok; Bruce-Keller, Annadora J.; Keller, Jeffrey N.

2014-01-01

113

Role of mitochondrial reactive oxygen species in osteoclast differentiation.  

PubMed

Previously we showed that hypoxia-induced mitochondrial respiratory stress in RAW 264.7 macrophages and other cells caused activation of retrograde signaling (also known as mitochondrial respiratory stress signaling) and the appearance of tartrate-resistant acid phosphatase (TRAP)-positive cells. In the present study, we used N-acetyl cysteine and ascorbate (general antioxidants) and MitoQ, a mitochondria-specific antioxidant, to investigate the role of intracellular reactive oxygen species (ROS) in osteoclast differentiation. Our results show that hypoxia-mediated mitochondrial dysfunction, as tested by disruption of mitochondrial transmembrane potential, was suppressed by MitoQ as well as by the other antioxidants. These agents also suppressed the activation of mitochondrial retrograde signaling. Interestingly, in terms of molar concentrations, MitoQ was more than 1000-fold more effective than general antioxidants in suppressing the receptor activator of nuclear factor-B ligand-induced differentiation of RAW 264.7 cells into multinucleated and TRAP-positive osteoclasts. We propose that mitochondrial function and intramitochondrial ROS play important roles in osteoclastogenesis. PMID:20392243

Srinivasan, Satish; Koenigstein, Alexander; Joseph, Joy; Sun, Li; Kalyanaraman, B; Zaidi, Mone; Avadhani, Narayan G

2010-03-01

114

Reactive Oxygen Species and Antioxidants in Pulmonary Hypertension  

PubMed Central

Abstract Significance: Pulmonary hypertension is a devastating disorder without any available treatment strategies that satisfactorily promote the survival of patients. The identification of new therapeutic strategies to treat patients with pulmonary hypertension is warranted. Recent Advances: Human studies have provided evidence that there is increased oxidative stress (lipid peroxidation, protein oxidation, DNA oxidation, and the depletion of small-molecule antioxidants) in patients with pulmonary hypertension. A variety of compounds with antioxidant properties have been shown to have beneficial therapeutic effects in animal models of pulmonary hypertension, possibly supporting the hypothesis that reactive oxygen species (ROS) are involved in the progression of pulmonary hypertension. Thus, understanding the molecular mechanisms of ROS actions could contribute to the development of optimal, antioxidant-based therapy for human pulmonary hypertension. One such mechanism includes action as a second messenger during cell-signaling events, leading to the growth of pulmonary vascular cells and right ventricular cells. Critical Issues: The molecular mechanisms behind promotion of cell signaling for pulmonary vascular cell growth and right ventricular hypertrophy by ROS are not well understood. Evidence suggests that iron-catalyzed protein carbonylation may be involved. Future Directions: Understanding precise mechanisms of ROS actions should be useful for designing preclinical animal experiments and human clinical trials of the use of antioxidants and/or other redox compounds in the treatment of pulmonary hypertension. Antioxid. Redox Signal. 18, 1789–1796.

Wong, Chi-Ming; Bansal, Geetanjali; Pavlickova, Ludmila; Marcocci, Lucia

2013-01-01

115

Reactive Oxygen Species (Ros-Induced) Ros Release  

PubMed Central

We sought to understand the relationship between reactive oxygen species (ROS) and the mitochondrial permeability transition (MPT) in cardiac myocytes based on the observation of increased ROS production at sites of spontaneously deenergized mitochondria. We devised a new model enabling incremental ROS accumulation in individual mitochondria in isolated cardiac myocytes via photoactivation of tetramethylrhodamine derivatives, which also served to report the mitochondrial transmembrane potential, ??. This ROS accumulation reproducibly triggered abrupt (and sometimes reversible) mitochondrial depolarization. This phenomenon was ascribed to MPT induction because (a) bongkrekic acid prevented it and (b) mitochondria became permeable for calcein (?620 daltons) concurrently with depolarization. These photodynamically produced “triggering” ROS caused the MPT induction, as the ROS scavenger Trolox prevented it. The time required for triggering ROS to induce the MPT was dependent on intrinsic cellular ROS-scavenging redox mechanisms, particularly glutathione. MPT induction caused by triggering ROS coincided with a burst of mitochondrial ROS generation, as measured by dichlorofluorescein fluorescence, which we have termed mitochondrial “ROS-induced ROS release” (RIRR). This MPT induction/RIRR phenomenon in cardiac myocytes often occurred synchronously and reversibly among long chains of adjacent mitochondria demonstrating apparent cooperativity. The observed link between MPT and RIRR could be a fundamental phenomenon in mitochondrial and cell biology.

Zorov, Dmitry B.; Filburn, Charles R.; Klotz, Lars-Oliver; Zweier, Jay L.; Sollott, Steven J.

2000-01-01

116

Electrophysiology of Reactive Oxygen Production in Signaling Endosomes  

PubMed Central

Abstract Endosome trafficking and function require acidification by the vacuolar ATPase (V-ATPase). Electrogenic proton (H+) transport reduces the pH and creates a net positive charge in the endosomal lumen. Concomitant chloride (Cl?) influx has been proposed to occur via ClC Cl?/H+ exchangers. This maintains charge balance and drives Cl? accumulation, which may itself be critical to endosome function. Production of reactive oxygen species (ROS) in response to cytokines occurs within specialized endosomes that form in response to receptor occupation. ROS production requires an NADPH oxidase (Nox) and the ClC-3 Cl?/H+ exchanger. Like the V-ATPase, Nox activity is highly electrogenic, but separates charge with an opposite polarity (lumen negative). Here we review established paradigms of early endosomal ion transport focusing on the relation between the V-ATPase and ClC proteins. Electrophysiologic constraints on Nox-mediated vesicular ROS production are then considered. The potential for ClC-3 to participate in charge neutralization of both proton (V-ATPase) and electron (Nox) transport is discussed. It is proposed that uncompensated charge separation generated by Nox enzymatic activity could be used to drive secondary transport into negatively charged vesicles. Further experimentation will be necessary to establish firmly the biochemistry and functional implications of endosomal ROS production. Antioxid. Redox Signal. 11, 1335–1347.

Moreland, Jessica G.; Miller, Francis J.

2009-01-01

117

Roles of Reactive Oxygen Species in the Spermatogenesis Regulation  

PubMed Central

Spermatogenesis is a complex process of male germ cells proliferation and maturation from diploid spermatogonia, through meiosis, to mature haploid spermatozoa. The process involves dynamic interactions between the developing germ cells and their supporting Sertoli cells. The gonadal tissue, with abundance of highly unsaturated fatty acids, high rates of cell division, and variety of testis enzymes results very vulnerable to the overexpression of reactive oxygen species (ROS). In order to address this risk, testis has developed a sophisticated array of antioxidant systems comprising both enzymes and free radical scavengers. This chapter sets out the major pathways of testis generation, the metabolism of ROS, and highlights the transcriptional regulation by steroid receptors of antioxidant stress enzymes and their functional implications. It also deals with of the advantages of the system biology for an antioxidant under steroid control, the major selenoprotein expressed by germ cells in the testis, the phospholipid hydroperoxide glutathione peroxidase (PHGPx/GPx4) having multiple functions and representing the pivotal link between selenium, sperm quality, and species preservation.

Guerriero, Giulia; Trocchia, Samantha; Abdel-Gawad, Fagr K.; Ciarcia, Gaetano

2014-01-01

118

Phosphate enhances reactive oxygen species production and suppresses osteoblastic differentiation.  

PubMed

Phosphate has been shown to work as a signaling molecule in several cells including endothelial cells and chondrocytes. However, it is largely unknown how phosphate affects osteoblastic cells. In the present study, we investigated the effects of phosphate on reactive oxygen species (ROS) production and osteoblastic differentiation in murine osteoblastic MC3T3-E1 cells. Phosphate increased production of ROS in MC3T3-E1 cells and the inhibitors of sodium-phosphate cotransporter and NADPH oxidase suppressed ROS production by phosphate. Silencing Nox1 and Nox4 also inhibited the increase of ROS by phosphate. Phosphate also decreased alkaline phosphatase activity induced by bone morphogenetic protein 2 and this inhibition was abrogated by an inhibitor of NADPH oxidase. Furthermore, phosphate decreased the expression of osteoblastic marker genes in MC3T3-E1 cells. These results indicate that phosphate suppresses osteoblastic differentiation at least in part by enhancing ROS production in MC3T3-E1 cells. PMID:24052209

Okamoto, Takaaki; Taguchi, Manabu; Osaki, Tomoko; Fukumoto, Seiji; Fujita, Toshiro

2014-07-01

119

Are Reactive Oxygen Species Always Detrimental to Pathogens?  

PubMed Central

Abstract Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses. Antioxid. Redox Signal. 20, 1000–1037.

Bozza, Marcelo T.

2014-01-01

120

Scavenging of reactive oxygen species in mitochondria induces myofibroblast differentiation.  

PubMed

The goal of this study was to investigate the possible role of reactive oxygen species (ROS) in signaling, in modulation of the cytoskeleton, and in differentiation of fibroblasts. For this purpose, we have applied a novel mitochondria-targeted antioxidant: plastoquinone conjugated with decyltriphenylphosphonium (SkQ1). This antioxidant at nanomolar concentration prevented ROS accumulation and cell death induced by H(2)O(2) in fibroblasts. We found that scavenging of ROS produced by mitochondria activated the Rho/ROCK/LIMK signaling pathway that was followed by phosphorylation of cofilin and stabilization of actin stress fibers. The mitochondria-targeted antioxidant induced differentiation of human subcutaneous fibroblasts to myofibroblasts as revealed by expression of fibronectin isoform (EDA-FN) and smooth muscle actin (?-SMA). This effect was shown to be mediated by transforming growth factor ?1 (TGF?1), which was activated by matrix metalloprotease 9 (MMP9) in the culture medium. Scavenging of ROS stimulated secretion of MMP9 rather than its processing. The same effect was achieved by the nontargeted antioxidant Trolox at higher concentration, but the thiol antioxidant N-acetylcysteine (NAC) inhibited MMP activity and was not able to induce myofibroblast differentiation. The myofibroblast phenotype was supported due to autocrine TGF?1-dependent stimulation after removal of SkQ1. It is concluded that ROS scavenging in mitochondria induces TGF?1-dependent myofibroblast differentiation. PMID:20446771

Popova, Ekaterina N; Pletjushkina, Olga Y; Dugina, Vera B; Domnina, Lidia V; Ivanova, Olga Y; Izyumov, Denis S; Skulachev, Vladimir P; Chernyak, Boris V

2010-11-01

121

UV activates growth factor receptors via reactive oxygen intermediates  

PubMed Central

Exposure of mammalian cells to UV irradiation induces rapid and transient expression of early growth response-1 gene (Egr-1) encoding a transcription factor that plays a role in cell survival. These signals from the irradiated cell surface are likely to involve more than one pathway, and we show here that an essential pathway involves activation of several growth factor receptors by reactive oxygen intermediates (ROI). UVC irradiation causes the tyrosine phosphorylation of EGF receptor (EGFR) in mouse NIH 3T3 fibroblasts and HC11 mouse mammary cells. EGFR activation by irradiation of cells is abrogated by suramin, by antioxidants, and by the presence of a dominant negative EGFR. UV induces the formation of complexes between activated EGFR and SOS, Grb2, PLC gamma, and SHC that can be precipitated with antibodies to EGFR. The activation of EGFR by UV is mimicked by H2O2, suggesting that ROI may function upstream of EGFR activation. Our observations support the hypothesis that ROI and growth factor receptors operate in the early steps of the UV signal that lead to the enhanced expression and activity of Egr-1.

1996-01-01

122

Reactive oxygen species delay control of lymphocytic choriomeningitis virus  

PubMed Central

Cluster of differentiation (CD)8+ T cells are like a double edged sword during chronic viral infections because they not only promote virus elimination but also induce virus-mediated immunopathology. Elevated levels of reactive oxygen species (ROS) have been reported during virus infections. However, the role of ROS in T-cell-mediated immunopathology remains unclear. Here we used the murine lymphocytic choriomeningitis virus to explore the role of ROS during the processes of virus elimination and induction of immunopathology. We found that virus infection led to elevated levels of ROS producing granulocytes and macrophages in virus-infected liver and spleen tissues that were triggered by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Lack of the regulatory subunit p47phox of the NADPH oxidase diminished ROS production in these cells. While CD8+ T cells exhibited ROS production that was independent of NADPH oxidase expression, survival and T-cell function was elevated in p47phox-deficient (Ncf1?/?) mice. In the absence of p47phox, enhanced T-cell immunity promoted virus elimination and blunted corresponding immunopathology. In conclusion, we find that NADPH-mediated production of ROS critically impairs the immune response, impacting elimination of virus and outcome of liver cell damage.

Lang, P A; Xu, H C; Grusdat, M; McIlwain, D R; Pandyra, A A; Harris, I S; Shaabani, N; Honke, N; Kumar Maney, S; Lang, E; Pozdeev, V I; Recher, M; Odermatt, B; Brenner, D; Haussinger, D; Ohashi, P S; Hengartner, H; Zinkernagel, R M; Mak, T W; Lang, K S

2013-01-01

123

Reactive oxygen species-mediated therapeutic control of bladder cancer.  

PubMed

Urinary bladder cancer is the fifth most common cancer in the US and the most costly cancer to manage because it requires life-long surveillance to monitor for recurrence and advanced progression. Urothelial carcinomas account for more than 90% of urinary bladder cancer cases. Transurethral resection and intravesical chemotherapy or immunotherapy are effective short-term treatments of urothelial carcinoma, but long-term management has not yet been optimized. Recent therapeutic strategies emphasize the targeted interference with aberrantly-regulated signaling modulators that result from genomic alterations. However, targeted therapeutic agents might not distinguish cancer cells from their normal counterparts, resulting in undesirable adverse effects. Thus, a new approach for the treatment of urothelial carcinoma has been suggested that differentially augments cancer-associated events, leading to selective death of cancer cells but not normal cells. Many aberrantly-regulated signaling modulators are associated with the elevation of reactive oxygen species (ROS), and an increasing number of studies report agents with the ability to induce ROS in cancer cells. Accordingly, therapeutic augmentation of ROS to a lethal level in cancer cells only would induce selective death of tumor cells but not normal cells, leading to a highly effective chemotherapy strategy for urothelial carcinoma. PMID:21971316

Wang, Hwa-Chain R; Choudhary, Shambhunath

2011-11-01

124

Reactive oxygen species cause endothelial dysfunction in chronic flow overload  

PubMed Central

Although elevation of shear stress increases production of vascular reactive oxygen species (ROS), the role of ROS in chronic flow overload (CFO) has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. In six swine, CFO in carotid arteries was induced by contralateral ligation for 1 wk. In an additional group, six swine received apocynin (NADPH oxidase blocker and anti-oxidant) treatment in conjunction with CFO for 1 wk. The blood flow in carotid arteries increased from 189.2 ± 25.3 ml/min (control) to 369.6 ± 61.9 ml/min (CFO), and the arterial diameter increased by 8.6%. The expressions of endothelial nitric oxide synthase (eNOS), p22/p47phox, and NOX2/NOX4 were upregulated. ROS production increased threefold in response to CFO. The endothelium-dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. Although the process of CFO remodeling to restore the wall shear stress has been thought of as a physiological response, the present data implicate NADPH oxidase-produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO.

Lu, X.; Guo, X.; Wassall, C. D.; Kemple, M. D.; Unthank, J. L.

2011-01-01

125

How reactive oxygen species and proline face stress together.  

PubMed

Reactive oxygen species (ROS) are continuously generated as a consequence of plant metabolic processes due to incomplete reduction of O2. Previously considered to be only toxic by-products of metabolism, ROS are now known to act as second messengers in intracellular signalling cascades to trigger tolerance of various abiotic and biotic stresses. The accumulation of proline is frequently observed during the exposure of plants to adverse environmental conditions. Interestingly proline metabolism may also contribute to ROS formation in mitochondria, which play notably a role in hypersensitive response in plants, life-span extension in worms and tumor suppression in animals. Here we review current knowledge about the regulation of proline metabolism in response to environmental constraints and highlight the key role of ROS in the regulation of this metabolism. The impact of proline on ROS generation is also investigated. Deciphering and integrating these relationships at the whole plant level will bring new perspectives on how plants adapt to environmental stresses. PMID:24813727

Ben Rejeb, Kilani; Abdelly, Chedly; Savouré, Arnould

2014-07-01

126

Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Transcription  

NASA Astrophysics Data System (ADS)

Transcriptional activation of erythropoietin, glycolytic enzymes, and vascular endothelial growth factor occurs during hypoxia or in response to cobalt chloride (CoCl2) in Hep3B cells. However, neither the mechanism of cellular O2 sensing nor that of cobalt is fully understood. We tested whether mitochondria act as O2 sensors during hypoxia and whether hypoxia and cobalt activate transcription by increasing generation of reactive oxygen species (ROS). Results show (i) wild-type Hep3B cells increase ROS generation during hypoxia (1.5% O2) or CoCl2 incubation, (ii) Hep3B cells depleted of mitochondrial DNA (? 0 cells) fail to respire, fail to activate mRNA for erythropoietin, glycolytic enzymes, or vascular endothelial growth factor during hypoxia, and fail to increase ROS generation during hypoxia; (iii) ? 0 cells increase ROS generation in response to CoCl2 and retain the ability to induce expression of these genes; and (iv) the antioxidants pyrrolidine dithiocarbamate and ebselen abolish transcriptional activation of these genes during hypoxia or CoCl2 in wild-type cells, and abolish the response to CoCl2 in ? 0 cells. Thus, hypoxia activates transcription via a mitochondria-dependent signaling process involving increased ROS, whereas CoCl2 activates transcription by stimulating ROS generation via a mitochondria-independent mechanism.

Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T.

1998-09-01

127

Reactive Oxygen Species Regulate Protrusion Efficiency by Controlling Actin Dynamics  

PubMed Central

Productive protrusions allowing motile cells to sense and migrate toward a chemotactic gradient of reactive oxygen species (ROS) require a tight control of the actin cytoskeleton. However, the mechanisms of how ROS affect cell protrusion and actin dynamics are not well elucidated yet. We show here that ROS induce the formation of a persistent protrusion. In migrating epithelial cells, protrusion of the leading edge requires the precise regulation of the lamellipodium and lamella F-actin networks. Using fluorescent speckle microscopy, we showed that, upon ROS stimulation, the F-actin retrograde flow is enhanced in the lamellipodium. This event coincides with an increase of cofilin activity, free barbed ends formation, Arp2/3 recruitment, and ERK activity at the cell edge. In addition, we observed an acceleration of the F-actin flow in the lamella of ROS-stimulated cells, which correlates with an enhancement of the cell contractility. Thus, this study demonstrates that ROS modulate both the lamellipodium and the lamella networks to control protrusion efficiency.

Taulet, Nicolas; Delorme-Walker, Violaine D.; DerMardirossian, Celine

2012-01-01

128

Salicylic acid signaling inhibits apoplastic reactive oxygen species signaling  

PubMed Central

Background Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin. Results In this study, we report an antagonistic interaction between SA signaling and apoplastic ROS signaling. Treatment with ozone (O3) leads to a ROS burst in the apoplast and induces extensive changes in gene expression and elevation of defense hormones. However, Arabidopsis thaliana dnd1 (defense no death1) exhibited an attenuated response to O3. In addition, the dnd1 mutant displayed constitutive expression of defense genes and spontaneous cell death. To determine the exact process which blocks the apoplastic ROS signaling, double and triple mutants involved in various signaling pathway were generated in dnd1 background. Simultaneous elimination of SA-dependent and SA-independent signaling components from dnd1 restored its responsiveness to O3. Conversely, pre-treatment of plants with SA or using mutants that constitutively activate SA signaling led to an attenuation of changes in gene expression elicited by O3. Conclusions Based upon these findings, we conclude that plants are able to prioritize the response between ROS and SA via an antagonistic action of SA and SA signaling on apoplastic ROS signaling.

2014-01-01

129

Proteins Needed to Activate a Transcriptional Response to the Reactive Oxygen Species Singlet Oxygen  

PubMed Central

ABSTRACT Singlet oxygen (1O2) is a reactive oxygen species generated by energy transfer from one or more excited donors to molecular oxygen. Many biomolecules are prone to oxidation by 1O2, and cells have evolved systems to protect themselves from damage caused by this compound. One way that the photosynthetic bacterium Rhodobacter sphaeroides protects itself from 1O2 is by inducing a transcriptional response controlled by ChrR, an anti-? factor which releases an alternative sigma factor, ?E, in the presence of 1O2. Here we report that induction of ?E-dependent gene transcription is decreased in the presence of 1O2 when two conserved genes in the ?E regulon are deleted, including one encoding a cyclopropane fatty acid synthase homologue (RSP2144) or one encoding a protein of unknown function (RSP1091). Thus, we conclude that RSP2144 and RSP1091 are each necessary to increase ?E activity in the presence of 1O2. In addition, we found that unlike in wild-type cells, where ChrR is rapidly degraded when 1O2 is generated, turnover of this anti-? factor is slowed when cells lacking RSP2144, RSP1091, or both of these proteins are exposed to 1O2. Further, we demonstrate that the organic hydroperoxide tert-butyl hydroperoxide promotes ChrR turnover in both wild-type cells and mutants lacking RSP2144 or RSP1091, suggesting differences in the ways different types of oxidants increase ?E activity.

Nam, Tae-Wook; Ziegelhoffer, Eva C.; Lemke, Rachelle A. S.; Donohue, Timothy J.

2013-01-01

130

Reactive Oxygen Species Production by the Spermatozoa of Patients With Idiopathic Infertility: Relationship to Seminal Plasma Antioxidants  

Microsoft Academic Search

PurposeWe attempted to determine reactive oxygen species production by the spermatozoa of patients with idiopathic infertility and healthy donors, and observe whether increased production was due to decreased seminal plasma reactive oxygen species scavengers.

Ilter Alkan; Ferruh Simsek; Goncagul Haklar; Ertan Kervancioglu; Hakan Ozveri; Suha Yalcin; Atif Akdas

1997-01-01

131

The connection of monocytes and reactive oxygen species in pain.  

PubMed

The interplay of specific leukocyte subpopulations, resident cells and proalgesic mediators results in pain in inflammation. Proalgesic mediators like reactive oxygen species (ROS) and downstream products elicit pain by stimulation of transient receptor potential (TRP) channels. The contribution of leukocyte subpopulations however is less clear. Local injection of neutrophilic chemokines elicits neutrophil recruitment but no hyperalgesia in rats. In meta-analyses the monocytic chemoattractant, CCL2 (monocyte chemoattractant protein-1; MCP-1), was identified as an important factor in the pathophysiology of human and animal pain. In this study, intraplantar injection of CCL2 elicited thermal and mechanical pain in Wistar but not in Dark Agouti (DA) rats, which lack p47(phox), a part of the NADPH oxidase complex. Inflammatory hyperalgesia after complete Freund's adjuvant (CFA) as well as capsaicin-induced hyperalgesia and capsaicin-induced current flow in dorsal root ganglion neurons in DA were comparable to Wistar rats. Macrophages from DA expressed lower levels of CCR2 and thereby migrated less towards CCL2 and formed limited amounts of ROS in vitro and 4-hydroxynonenal (4-HNE) in the tissue in response to CCL2 compared to Wistar rats. Local adoptive transfer of peritoneal macrophages from Wistar but not from DA rats reconstituted CCL2-triggered hyperalgesia in leukocyte-depleted DA and Wistar rats. A pharmacological stimulator of ROS production (phytol) restored CCL2-induced hyperalgesia in vivo in DA rats. In Wistar rats, CCL2-induced hyperalgesia was completely blocked by superoxide dismutase (SOD), catalase or tempol. Likewise, inhibition of NADPH oxidase by apocynin reduced CCL2-elicited hyperalgesia but not CFA-induced inflammatory hyperalgesia. In summary, we provide a link between CCL2, CCR2 expression on macrophages, NADPH oxidase, ROS and the development CCL2-triggered hyperalgesia, which is different from CFA-induced hyperalgesia. The study further supports the impact of CCL2 and ROS as potential targets in pain therapy. PMID:23658840

Hackel, Dagmar; Pflücke, Diana; Neumann, Annick; Viebahn, Johannes; Mousa, Shaaban; Wischmeyer, Erhard; Roewer, Norbert; Brack, Alexander; Rittner, Heike Lydia

2013-01-01

132

The Connection of Monocytes and Reactive Oxygen Species in Pain  

PubMed Central

The interplay of specific leukocyte subpopulations, resident cells and proalgesic mediators results in pain in inflammation. Proalgesic mediators like reactive oxygen species (ROS) and downstream products elicit pain by stimulation of transient receptor potential (TRP) channels. The contribution of leukocyte subpopulations however is less clear. Local injection of neutrophilic chemokines elicits neutrophil recruitment but no hyperalgesia in rats. In meta-analyses the monocytic chemoattractant, CCL2 (monocyte chemoattractant protein-1; MCP-1), was identified as an important factor in the pathophysiology of human and animal pain. In this study, intraplantar injection of CCL2 elicited thermal and mechanical pain in Wistar but not in Dark Agouti (DA) rats, which lack p47phox, a part of the NADPH oxidase complex. Inflammatory hyperalgesia after complete Freund's adjuvant (CFA) as well as capsaicin-induced hyperalgesia and capsaicin-induced current flow in dorsal root ganglion neurons in DA were comparable to Wistar rats. Macrophages from DA expressed lower levels of CCR2 and thereby migrated less towards CCL2 and formed limited amounts of ROS in vitro and 4-hydroxynonenal (4-HNE) in the tissue in response to CCL2 compared to Wistar rats. Local adoptive transfer of peritoneal macrophages from Wistar but not from DA rats reconstituted CCL2-triggered hyperalgesia in leukocyte-depleted DA and Wistar rats. A pharmacological stimulator of ROS production (phytol) restored CCL2-induced hyperalgesia in vivo in DA rats. In Wistar rats, CCL2-induced hyperalgesia was completely blocked by superoxide dismutase (SOD), catalase or tempol. Likewise, inhibition of NADPH oxidase by apocynin reduced CCL2-elicited hyperalgesia but not CFA-induced inflammatory hyperalgesia. In summary, we provide a link between CCL2, CCR2 expression on macrophages, NADPH oxidase, ROS and the development CCL2-triggered hyperalgesia, which is different from CFA-induced hyperalgesia. The study further supports the impact of CCL2 and ROS as potential targets in pain therapy.

Hackel, Dagmar; Pflucke, Diana; Neumann, Annick; Viebahn, Johannes; Mousa, Shaaban; Wischmeyer, Erhard; Roewer, Norbert; Brack, Alexander; Rittner, Heike Lydia

2013-01-01

133

Respiration in adipocytes is inhibited by reactive oxygen species.  

PubMed

It is a desirable goal to stimulate fuel oxidation in adipocytes and shift the balance toward less fuel storage and more burning. To understand this regulatory process, respiration was measured in primary rat adipocytes, mitochondria, and fat-fed mice. Maximum O(2) consumption, in vitro, was determined with a chemical uncoupler of oxidative phosphorylation (carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)). The adenosine triphosphate/adenosine diphosphate (ATP/ADP) ratio was measured by luminescence. Mitochondria were localized by confocal microscopy with MitoTracker Green and their membrane potential (Delta psi(M)) measured using tetramethylrhodamine ethyl ester perchlorate (TMRE). The effect of N-acetylcysteine (NAC) on respiration and body composition in vivo was assessed in mice. Addition of FCCP collapsed Delta psi(M) and decreased the ATP/ADP ratio. However, we demonstrated the same rate of adipocyte O(2) consumption in the absence or presence of fuels and FCCP. Respiration was only stimulated when reactive oxygen species (ROS) were scavenged by pyruvate or NAC: other fuels or fuel combinations had little effect. Importantly, the ROS scavenging role of pyruvate was not affected by rotenone, an inhibitor of mitochondrial complex I. In addition, mice that consumed NAC exhibited increased O(2) consumption and decreased body fat in vivo. These studies suggest for the first time that adipocyte O(2) consumption may be inhibited by ROS, because pyruvate and NAC stimulated respiration. ROS inhibition of O(2) consumption may explain the difficulty to identify effective strategies to increase fat burning in adipocytes. Stimulating fuel oxidation in adipocytes by decreasing ROS may provide a novel means to shift the balance from fuel storage to fuel burning. PMID:20035277

Wang, Tong; Si, Yaguang; Shirihai, Orian S; Si, Huiqing; Schultz, Vera; Corkey, Richard F; Hu, Liping; Deeney, Jude T; Guo, Wen; Corkey, Barbara E

2010-08-01

134

Reactive oxygen species in bovine oocyte maturation in vitro.  

PubMed

The role of reactive oxygen species (ROS) in the in vitro maturation (IVM) of oocytes remains controversial. The aim of the present study was to determine possible fluctuations in ROS production during bovine oocyte IVM in the presence of different modulators of ROS generation. Cumulus-oocyte complexes were cultured in medium 199 (control) in the absence or presence of 0.6 mM cysteine, 1 mM 1-choro-2,4-dinitro benzene (CDNB), 2 microM diphenyliodonium, 0.5 mM N-nitro-L-arginine methyl ester or 10 microM sodium nitroprusside (SNP) at 39 degrees C, in 5% CO2 in humidified air for 22 h. In addition, the respiratory chain effectors potassium cyanide (KCN; 1 mM) and carbonyl cyanide m-chlorophenylhydrazone (0.42 microM) were used. Meiotic maturation was determined by the presence of MII. ROS production was evaluated in denuded oocytes at different time points as the ratio of 2',7'-dichlorodihydrofluorescein diacetate (DCHF-DA) to fluorescein diacetate (FDA). ROS levels, expressed as DCHF-DA:FDA, fluctuated throughout the 22 h of maturation depending on the treatment applied. At 12 h incubation in the presence of KCN and SNP, ROS levels were increased, whereas ROS levels after 12 h in the presence of cysteine were reduced (P<0.05). Both CDNB and SNP impaired meiotic progression. The higher metabolic activity demand during bovine oocyte maturation coincides with a concomitant reduction in ROS generation. These results suggest that 12 h would be a critical point for bovine oocyte IVM because it is closely related to the production of ROS at this time. PMID:19383267

Morado, Sergio A; Cetica, Pablo D; Beconi, Martha T; Dalvit, Gabriel C

2009-01-01

135

Are mitochondrial reactive oxygen species required for autophagy?  

SciTech Connect

Highlights: {yields} Autophageal and apoptotic pathways were dissected in cytochrome c deficient cells. {yields} Staurosporine (STS)-induced autophagy was not accompanied by ROS generation. {yields} Autophagy was detectable in mitochondrial DNA deficient {rho}{sup 0} cells. {yields} Mitochondrial ROS are not required for the STS-induced autophagy in HeLa cells. -- Abstract: Reactive oxygen species (ROS) are said to participate in the autophagy signaling. Supporting evidence is obscured by interference of autophagy and apoptosis, whereby the latter heavily relies on ROS signaling. To dissect autophagy from apoptosis we knocked down expression of cytochrome c, the key component of mitochondria-dependent apoptosis, in HeLa cells using shRNA. In cytochrome c deficient HeLa1.2 cells, electron transport was compromised due to the lack of electron shuttle between mitochondrial respiratory complexes III and IV. A rapid and robust LC3-I/II conversion and mitochondria degradation were observed in HeLa1.2 cells treated with staurosporine (STS). Neither generation of superoxide nor accumulation of H{sub 2}O{sub 2} was detected in STS-treated HeLa1.2 cells. A membrane permeable antioxidant, PEG-SOD, plus catalase exerted no effect on STS-induced LC3-I/II conversion and mitochondria degradation. Further, STS caused autophagy in mitochondria DNA-deficient {rho}{sup o} HeLa1.2 cells in which both electron transport and ROS generation were completely disrupted. Counter to the widespread view, we conclude that mitochondrial ROS are not required for the induction of autophagy.

Jiang, Jianfei, E-mail: jjf73@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States)] [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Maeda, Akihiro; Ji, Jing [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States)] [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States); Baty, Catherine J.; Watkins, Simon C. [Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh (United States)] [Center for Biologic Imaging, Department of Cell Biology and Physiology, University of Pittsburgh (United States); Greenberger, Joel S. [Department of Radiation Oncology, University of Pittsburgh (United States)] [Department of Radiation Oncology, University of Pittsburgh (United States); Kagan, Valerian E., E-mail: kagan@pitt.edu [Center for Free Radical and Antioxidant Health, Department of Environmental and Occupational Health, University of Pittsburgh (United States)

2011-08-19

136

A simple chemiluminescence assay for the determination of reactive oxygen species produced by human neutrophils.  

PubMed

We show that phagocyte production of reactive oxygen species can be measured using a microtitre plate based chemiluminescence blotting technique. The production of reactive oxygen species is determined by their ability to catalyze the oxidation of luminol or isoluminol, resulting in light emission which is recorded on a photographic film. The method permits the determination of NADPH oxidase activity from as few as 9000 cells. It could be used to detect NADPH oxidase defects in neutrophils (e.g. from patients suffering from chronic granulomatous disease), and to screen pharmaceuticals with scavenging activity for reactive oxygen species. PMID:8699014

Liu, L; Dahlgren, C; Elwing, H; Lundqvist, H

1996-06-10

137

Reactive oxygen species-driven transcription in Arabidopsis under oxygen deprivation.  

PubMed

Reactive oxygen species (ROS) play an important role as triggers of gene expression during biotic and abiotic stresses, among which is low oxygen (O(2)). Previous studies have shown that ROS regulation under low O(2) is driven by a RHO-like GTPase that allows tight control of hydrogen peroxide (H(2)O(2)) production. H(2)O(2) is thought to regulate the expression of heat shock proteins, in a mechanism that is common to both O(2) deprivation and to heat stress. In this work, we used publicly available Arabidopsis (Arabidopsis thaliana) microarray datasets related to ROS and O(2) deprivation to define transcriptome convergence pattern. Our results show that although Arabidopsis response to anoxic and hypoxic treatments share a common core of genes related to the anaerobic metabolism, they differ in terms of ROS-related gene response. We propose that H(2)O(2) production under O(2) deprivation is a trait present in a very early phase of anoxia, and that ROS are needed for the regulation of a set of genes belonging to the heat shock protein and ROS-mediated groups. This mechanism, likely not regulated via the N-end rule pathway for O(2) sensing, is probably mediated by a NADPH oxidase and it is involved in plant tolerance to the stress. PMID:22415514

Pucciariello, Chiara; Parlanti, Sandro; Banti, Valeria; Novi, Giacomo; Perata, Pierdomenico

2012-05-01

138

Laser irradiation of mouse spermatozoa enhances in-vitro fertilization and Ca2+ uptake via reactive oxygen species  

NASA Astrophysics Data System (ADS)

630 nm He-Ne laser irradiation was found to have a profound influence on Ca2+ uptake in mouse spermatozoa and the fertilizing potential of these cells. Laser irradiation affected mainly the mitochondrial Ca2+ transport mechanisms. Furthermore, the effect of light was found to be Ca2+-dependent. We demonstrate that reactive oxygen species (ROS) are involved in the cascade of biochemical events evoked by laser irradiation. A causal association between laser irradiation, ROS generation, and sperm function was indicated by studies with ROS scavengers, superoxide dismutase (SOD) and catalase, and exogenous hydrogen peroxide. SOD treatment resulted in increased Ca2+ uptake and in enhanced fertilization rate. Catalase treatment impaired the light-induced stimulation in Ca2+ uptake and fertilization rate. Exogenous hydrogen peroxide was found to enhance Ca2+ uptake in mouse spermatozoa and the fertilizing capability of these cells in a dose-dependent manner. These results suggest that the effect of 630 nm He-Ne laser irradiation is mediated through the generation of hydrogen peroxide by the spermatozoa and that this effect plays a significant role in the augmentation of the sperm cells' capability to fertilize metaphase II-arrested eggs in-vitro.

Cohen, Natalie; Lubart, Rachel; Rubinstein, Sara; Breitbart, Haim

1996-11-01

139

Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy  

PubMed Central

Abstract Significance: Extensive research during the last quarter century has revealed that reactive oxygen species (ROS) produced in the body, primarily by the mitochondria, play a major role in various cell-signaling pathways. Most risk factors associated with chronic diseases (e.g., cancer), such as stress, tobacco, environmental pollutants, radiation, viral infection, diet, and bacterial infection, interact with cells through the generation of ROS. Recent Advances: ROS, in turn, activate various transcription factors (e.g., nuclear factor kappa-light-chain-enhancer of activated B cells [NF-?B], activator protein-1, hypoxia-inducible factor-1?, and signal transducer and activator of transcription 3), resulting in the expression of proteins that control inflammation, cellular transformation, tumor cell survival, tumor cell proliferation and invasion, angiogenesis, and metastasis. Paradoxically, ROS also control the expression of various tumor suppressor genes (p53, Rb, and PTEN). Similarly, ?-radiation and various chemotherapeutic agents used to treat cancer mediate their effects through the production of ROS. Interestingly, ROS have also been implicated in the chemopreventive and anti-tumor action of nutraceuticals derived from fruits, vegetables, spices, and other natural products used in traditional medicine. Critical Issues: These statements suggest both “upside” (cancer-suppressing) and “downside” (cancer-promoting) actions of the ROS. Thus, similar to tumor necrosis factor-?, inflammation, and NF-?B, ROS act as a double-edged sword. This paradox provides a great challenge for researchers whose aim is to exploit ROS stress for the development of cancer therapies. Future Directions: The various mechanisms by which ROS mediate paradoxical effects are discussed in this article. The outstanding questions and future directions raised by our current understanding are discussed. Antioxid. Redox Signal. 16, 1295–1322.

Gupta, Subash C.; Hevia, David; Patchva, Sridevi; Park, Byoungduck; Koh, Wonil

2012-01-01

140

Reactive Oxygen Species Enhance TLR10 Expression in the Human Monocytic Cell Line THP-1  

PubMed Central

We investigated TLR10 expression in human monocytes, THP-1 cells, cultured in hypoxia (3% O2). Levels of both TLR10 mRNA and protein in THP-1 cells cultured in hypoxia were significantly higher than those cultured in normoxia (20% O2). We examined intracellular reactive oxygen species (ROS) content in hypoxic cells, and TLR10 expression in cells treated with hydrogen peroxide (H2O2), to determine whether the increase in TLR10 expression observed with hypoxia was due to an increase in intracellular ROS levels. We found that the level of intracellular ROS in cells subject to hypoxia was significantly higher than in normoxia. Experiments with ROS synthesis inhibitors revealed that hypoxia induced ROS production is mainly due to NADPH oxidase activity. TLR10 mRNA expression was increased by treatment with H2O2 at concentrations ranging from 50 to 250 ?M. We screened the TLR10 promoter and found putative binding sites for transcription factors (TFs), such as NF-?B, NF-AT and AP-1. Next, we examined TF activities using a luciferase reporter assay. Activities of NF-?B, NF-AT and AP-1 in the cells treated with H2O2 were significantly higher than in untreated cells. The experiment with TF inhibitors revealed that ROS-induced upregulation of TLR10 expression is mainly due to NF-?B activation. Overall, our results suggest that hypoxia or ROS increase TLR10 expression in human monocytes and the transcriptional activities of NF-?B are involved in this process. Therefore, it is suggested that ROS produced by various exogenous stimuli may play a crucial role in the regulation of expression and function of TLR10 as second messengers.

Kim, Donghee; Kim, Yeon Ju; Koh, Hyun Sook; Jang, Tae Yang; Park, Hyo Eun; Kim, Jae Young

2010-01-01

141

Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes.  

PubMed

Astrocytes, in addition to passively supporting neurons, have recently been shown to be actively involved in synaptic transmission and neurovascular coupling in the central nervous system (CNS). This review summarizes briefly our previous observations using fluorescent probes coupled with laser scanning digital imaging microscopy to visualize spatio-temporal alteration of mitochondrial reactive oxygen species (mROS) generation in intact astrocytes. mROS formation is enhanced by exogenous oxidants exposure, Ca2+ stress and endogenous pathological defect of mitochondrial respiratory complexes. In addition, mROS formation can be specifically stimulated by visible light or visible laser irradiation and can be augmented further by photodynamic coupling with photosensitizers, particularly with mitochondria-targeted photosensitizers. "Severe" oxidative insult often results in massive and homogeneous augmentation of mROS formation which causes cessation of mitochondrial movement, pathological fission and irreversible swelling of mitochondria and eventually apoptosis or necrosis of cells. Mitochondria-targeted antioxidants and protectors such as MitoQ, melatonin and nanoparticle C(60) effectively prevent "severe" mROS generation. Intriguingly, "minor" oxidative insults enhance heterogeneity of mROS and mitochondrial dynamics. "Minor" mROS formation-induced fission and fusion of mitochondria relocates mitochondrial network to form a mitochondria free gap, i.e., "firewall", which may play a crucial role in mROS-mediated protective "preconditioning" by preventing propagation of mROS during oxidative insults. These mROS-targeted strategies for either enhancement or prevention of mitochondrial oxidative stress in astrocytes may provide new insights for future development of therapeutic interventions in the treatment of cancer such as astrocytomas and gliomas and astrocyte-associated neurodegeneration, mitochondrial diseases and aging. PMID:18692534

Jou, Mei-Jie

2008-01-01

142

The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species  

PubMed Central

Camalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation. As models, we utilized LNCaP and its aggressive subline, C4-2, as well as ARCaP cells stably transfected with empty vector (Neo) control or constitutively active Snail cDNA that represents an epithelial to mesenchymal transition (EMT) model and displays increased cell migration and tumorigenicity. We confirmed previous studies showing that C4-2 and ARCaP-Snail cells express more ROS than LNCaP and ARCaP-Neo, respectively. Camalexin increased ROS, decreased cell proliferation, and increased apoptosis more significantly in C4-2 and ARCaP-Snail cells as compared to LNCaP and ARCaP-Neo cells, respectively, while normal prostate epithelial cells (PrEC) were unaffected. Increased caspase-3/7 activity and increased cleaved PARP protein shown by Western blot analysis was suggestive of increased apoptosis. The ROS scavenger N-acetyl cysteine (NAC) antagonized the effects of camalexin, whereas the addition of exogenous hydrogen peroxide potentiated the effects of camalexin, showing that camalexin is mediating its effects through ROS. In conclusion, camalexin is more potent in aggressive prostate cancer cells that express high ROS levels, and this phytoalexin has a strong potential as a novel therapeutic agent for the treatment of especially metastatic prostate cancer.

Smith, Basil A.; Neal, Corey L.; Chetram, Mahandranauth; Vo, BaoHan; Mezencev, Roman; Hinton, Cimona

2013-01-01

143

The phytoalexin camalexin mediates cytotoxicity towards aggressive prostate cancer cells via reactive oxygen species.  

PubMed

Camalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation. As models, we utilized LNCaP and its aggressive subline, C4-2, as well as ARCaP cells stably transfected with empty vector (Neo) control or constitutively active Snail cDNA that represents an epithelial to mesenchymal transition (EMT) model and displays increased cell migration and tumorigenicity. We confirmed previous studies showing that C4-2 and ARCaP-Snail cells express more ROS than LNCaP and ARCaP-Neo, respectively. Camalexin increased ROS, decreased cell proliferation, and increased apoptosis more significantly in C4-2 and ARCaP-Snail cells as compared to LNCaP and ARCaP-Neo cells, respectively, while normal prostate epithelial cells (PrEC) were unaffected. Increased caspase-3/7 activity and increased cleaved PARP protein shown by Western blot analysis was suggestive of increased apoptosis. The ROS scavenger N-acetyl cysteine (NAC) antagonized the effects of camalexin, whereas the addition of exogenous hydrogen peroxide potentiated the effects of camalexin, showing that camalexin is mediating its effects through ROS. In conclusion, camalexin is more potent in aggressive prostate cancer cells that express high ROS levels, and this phytoalexin has a strong potential as a novel therapeutic agent for the treatment of especially metastatic prostate cancer. PMID:23179315

Smith, Basil A; Neal, Corey L; Chetram, Mahandranauth; Vo, BaoHan; Mezencev, Roman; Hinton, Cimona; Odero-Marah, Valerie A

2013-07-01

144

Formation of reactive oxygen species at increased contraction frequency in rat cardiomyocytes  

Microsoft Academic Search

Objective: Reactive oxygen species (ROS) play an ambivalent role in cardiomyocytes: low concentrations are involved in cellular signaling, while higher concentrations contribute to cellular injury. We studied ROS formation during increases in contraction frequency in isolated cardiomyocytes.

Frank R. Heinzel; Yukun Luo; Giuliano Dodoni; Kerstin Boengler; Frank Petrat; Fabio Di Lisa; Herbert de Groot; Rainer Schulz; Gerd Heusch

2006-01-01

145

ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES  

EPA Science Inventory

ARSENIC SPECIES CAUSE RELEASE OF IRON FROM FERRITIN GENERATING REACTIVE OXYGEN SPECIES Arsenic-associated cancer (lung, bladder, skin, liver, kidney) remains a significant world- wide public health problem (e.g., Taiwan, Chile, Bangladesh, India, China and Thailand). Rece...

146

COMPARATIVE ANALYSIS OF REACTIVE OXYGEN SPECIES IN HUMAN PLASMA AND BLOOD  

EPA Science Inventory

Reactive oxygen species (ROS) are commonly associated with diseased states (including asthma, cardiovascular disease, cancer) infections, and exposure to various toxicants in humans. It is of interest in epidemiology studies to characterize the association of oxidative stress in...

147

Different reactivity of the various platinum oxides and chemisorbed oxygen in CO oxidation on Pt(111).  

PubMed

We have used X-ray photoelectron spectroscopy and polarization-resolved O K-edge X-ray absorption spectroscopy to investigate the reactivity of various oxygen covered Pt(111) surfaces, which emerge under high temperature and pressure conditions, toward CO. We find that the reactivity of the O/Pt(111) system decreases monotonically with increasing oxygen coverage. Of the three surface oxygen phases, viz., chemisorbed oxygen (O(ad)), a PtO-like surface oxide, and ?-PtO2 trilayers, Oad exhibits the highest reactivity toward CO, whereas ?-PtO2 trilayers exhibit the lowest. Pt(111) surfaces fully terminated by ?-PtO2 trilayers are inert to CO. Here it is proposed that the reactive phase is either O(ad) or PtO-like surface oxide phase on bare non-CO poisoned Pt regions with PtO2 as majority spectator species. PMID:24708067

Miller, Daniel; Sanchez Casalongue, Hernan; Bluhm, Hendrik; Ogasawara, Hirohito; Nilsson, Anders; Kaya, Sarp

2014-04-30

148

KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species  

PubMed Central

KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1?/? cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1?/? cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45?, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions.

Goitre, Luca; Balzac, Fiorella; Degani, Simona; Degan, Paolo; Marchi, Saverio; Pinton, Paolo; Retta, Saverio Francesco

2010-01-01

149

Reactive oxygen species in choline deficiency induced carcinogenesis and nitrone inhibition  

Microsoft Academic Search

Reactive oxygen species and free radical processes have been considered important in cancer development for many years. Much research demonstrates that the choline-deficiency induced hepatocarcinogenesis model prominently involves reactive oxygen species. We present a summary of results obtained in our original studies of this model over the last 4 years. We have shown that ?-phenyl-tert-butyl nitrone (PBN) and some of

Robert A. Floyd; Yashige Kotake; Kenneth Hensley; Dai Nakae; Yoichi Konishi

2002-01-01

150

Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose  

Microsoft Academic Search

Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose.BackgroundOxidative stress is one of the important mediators of vascular complications in diabetes including nephropathy. High glucose (HG) generates reactive oxygen species (ROS) as a result of glucose auto-oxidation, metabolism, and formation of advanced glycosylation end products. The concept of ROS-induced tissue injury has recently been revised

Hunjoo Ha; Hi Bahl Lee

2000-01-01

151

Mitochondrial reactive oxygen production is dependent on the aromatic hydrocarbon receptor  

Microsoft Academic Search

2,3,7,8-Tetrachlorodibenzo-p-dioxin (dioxin; TCDD) is a pervasive environmental contaminant that induces hepatic and extrahepatic oxidative stress. We have previously shown that dioxin increases mitochondrial respiration-dependent reactive oxygen production. In the present study we examined the dependence of mitochondrial reactive oxygen production on the aromatic hydrocarbon receptor (AHR), cytochrome P450 1A1 (CYP1A1), and cytochrome P450 1A2 (CYP1A2), proteins believed to be important

Albert P Senft; Timothy P Dalton; Daniel W Nebert; Mary Beth Genter; Alvaro Puga; Richard J Hutchinson; J. Kevin Kerzee; Shigeyuki Uno; Howard G Shertzer

2002-01-01

152

Bcl2 Inhibition of Neural Death: Decreased Generation of Reactive Oxygen Species  

Microsoft Academic Search

The proto-oncogene bcl-2 inhibits apoptotic and necrotic neural cell death. Expression of Bcl-2 in the GT1-7 neural cell line prevented death as a result of glutathione depletion. Intracellular reactive oxygen species and lipid peroxides rose rapidly in control cells depleted of glutathione, whereas cells expressing Bcl-2 displayed a blunted increase and complete survival. Modulation of the increase in reactive oxygen

Darci J. Kane; Theodore A. Sarafian; Rein Anton; Hejin Hahn; Edith Butler Gralla; Joan Selverstone Valentine; Tonis Ord; Dale E. Bredesen

1993-01-01

153

Role of reactive oxygen species in apoptosis: implications for cancer therapy  

Microsoft Academic Search

Reactive oxygen species are widely generated in biological systems. Consequently humans have evolved antioxidant defence systems that limit their production. Intracellular production of active oxygen species such as –OH, O2? and H2O2 is associated with the arrest of cell proliferation. Similarly, generation of oxidative stress in response to various external stimuli has been implicated in the activation of transcription factors

José M Matés; Francisca M Sánchez-Jiménez

2000-01-01

154

Participation of Reactive Oxygen Species in Phototoxicity Induced by Quinolone Antibacterial Agents  

Microsoft Academic Search

To elucidate the mechanism of phototoxicity induced as a side effect by some of the new quinolone antibiotics, we studied sparfloxacin (SPFX), lomefloxacin, enoxacin, ofloxacin, and ciprofloxacin. We first examined the photosensitized formation of reactive oxygen species such as singlet oxygen (1O2) and superoxide anion (O?2) mediated by the new quinolones. Although a large number of studies have been reported,

Naoki Umezawa; Kumi Arakane; Akemi Ryu; Shinro Mashiko; Masaaki Hirobe; Tetsuo Nagano

1997-01-01

155

Usurping the mitochondrial supremacy: extramitochondrial sources of reactive oxygen intermediates and their role in beta cell metabolism and insulin secretion.  

PubMed

Insulin secretion from pancreatic beta cells is a process dependent on metabolism. While oxidative stress is a well-known inducer of beta cell toxicity and impairs insulin secretion, recent studies suggest that low levels of metabolically-derived reactive oxygen intermediates (ROI) also play a positive role in insulin secretion. Glucose metabolism is directly correlated with ROI production, particularly in beta cells in which glucose uptake is proportional to the extracellular concentration of glucose. Low levels of exogenously added ROI or quinones, which stimulate ROI production, positively affect insulin secretion, while antioxidants block insulin secretion, suggesting that ROI activate unidentified redox-sensitive signal transduction components within these cells. The mitochondria are one source of ROI: increased metabolic flux increases mitochondrial membrane potential resulting in electron leakage and adventitious ROI production. A second source of ROI are cytosolic and plasma membrane oxidoreductases which oxidize NAD(P)H and directly produce ROI through the reduction of molecular oxygen. The mechanism of ROI-mediated potentiation of insulin secretion remains an important topic for future study. PMID:20397883

Gray, Joshua P; Heart, Emma

2010-05-01

156

Low Temperature Reactivity of Chars Towards Oxygen: Appendix E2.  

National Technical Information Service (NTIS)

For only the very low burnoff chars is there observed unusually low reactivity, even when corrected for surface area. Thus, the similarities of the different materials are again noted, when compared at the same burnoff. From these and other data, we are d...

M. Wojtowicz J. Calo W. Lilly E. Suuberg

1987-01-01

157

Reactive Oxygen Species Hydrogen Peroxide Mediates Kaposi's Sarcoma-Associated Herpesvirus Reactivation from Latency  

Microsoft Academic Search

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the host following an acute infection. Reactivation from latency contributes to the development of KSHV-induced malignancies, which include Kaposi's sarcoma (KS), the most common cancer in untreated AIDS patients, primary effusion lymphoma and multicentric Castleman's disease. However, the physiological cues that trigger KSHV reactivation remain unclear. Here, we show that the

Fengchun Ye; Fuchun Zhou; Roble G. Bedolla; Tiffany Jones; Xiufen Lei; Tao Kang; Moraima Guadalupe; Shou-Jiang Gao

2011-01-01

158

MEASUREMENT OF REACTIVE OXYGEN SPECIES AFTER PHOTODYNAMIC THERAPY IN VITRO  

Microsoft Academic Search

A b s t r a c t Photodynamic therapy (PDT) is an emerging modality for the treatment of neoplastic and non- neoplastic diseases. It is based on the use of a sensitiser, which is localised in target tissue, light, and molecular oxygen. Sensitisers are activated with the appropriate wavelength of light and then are excited to the long-lived triplet

159

Differential protein expression in Colletotrichum acutatum: changes associated with reactive oxygen species and nitrogen starvation implicated in pathogenicity on strawberry.  

PubMed

The cellular outcome of changes in nitrogen availability in the context of development and early stages of pathogenicity was studied by quantitative analysis of two-dimensional gel electrophoresis of Colletotrichum acutatum infecting strawberry. Significant alterations occurred in the abundance of proteins synthesized during appressorium formation under nitrogen-limiting conditions compared with a complete nutrient supply. Proteins that were up- or down-regulated were involved in energy metabolism, nitrogen and amino acid metabolism, protein synthesis and degradation, response to stress and reactive oxygen scavenging. Members belonging to the reactive oxygen species (ROS) scavenger machinery, superoxide dismutase and glutathione peroxidase, were up-regulated at the appressorium formation stage, as well as under nitrogen-limiting conditions relative to growth with a complete nutrient supply, whereas abundance of bifunctional catalase was up-regulated predominantly at the appressorium formation stage. Fungal ROS were detected within germinating conidia during host pre-penetration, penetration and colonization stages, accompanied by plant ROS, which were abundant in the apoplastic space. Application of exogenous antioxidants quenched ROS production and reduced the frequency of appressorium formation. Up-regulation in metabolic activity was detected during appressorium formation and nutrient deficiency compared with growth under complete nutrient supply. Enhanced levels of proteins related to the glyoxylate cycle and lipid metabolism (malate dehydrogenase, formate dehydrogenase and acetyl-CoA acetyltransferase) were observed at the appressorium formation stage, in contrast to down-regulation of isocitrate dehydrogenase. The present study demonstrates that appressoria formation processes, occurring under nutritional deprivation, are accompanied by metabolic shifts, and that ROS production is an early fungal response that may modulate initial stages of pathogen development. PMID:18705850

Brown, Sigal Horowitz; Yarden, Oded; Gollop, Natan; Chen, Songbi; Zveibil, Aida; Belausov, Eduard; Freeman, Stanley

2008-03-01

160

NADPH Oxidase 1 and Its Derived Reactive Oxygen Species Mediated Tissue Injury and Repair  

PubMed Central

Reactive oxygen species are mostly viewed to cause oxidative damage to various cells and induce organ dysfunction after ischemia-reperfusion injury. However, they are also considered as crucial molecules for cellular signal transduction in biology. NADPH oxidase, whose only function is reactive oxygen species production, has been extensively investigated in many cell types especially phagocytes. The deficiency of NADPH oxidase extends the process of inflammation and delays tissue repair, which causes chronic granulomatous disease in patients. NADPH oxidase 1, one member of the NADPH oxidase family, is not only constitutively expressed in a variety of tissues, but also induced to increase expression in both mRNA and protein levels under many circumstances. NADPH oxidase 1 and its derived reactive oxygen species are suggested to be able to regulate inflammation reaction, cell proliferation and migration, and extracellular matrix synthesis, which contribute to the processes of tissue injury and repair.

Fu, Xiu-Jun; Peng, Ying-Bo; Hu, Yi-Ping; Shi, You-Zhen; Yao, Min; Zhang, Xiong

2014-01-01

161

Antioxidants from grape seeds protect hair against reactive oxygen species  

Microsoft Academic Search

Summary Oxygen based radicals are predominantly generated in the water phase. Therefore, it is very important to use not only lipophilic antioxidants but also water-soluble radical scavengers in cosmetic formula- tions. Vitamin C, glutathion and different enzymes are natural water-soluble antioxidants. Unfortunately, most of them are not stable in cosmetic formulations. We studied a new water-soluble antioxidant based on procyanidins

F. Zülli; E. Belser; M. Neuenschwander; R. Muggli

162

Peripartum Cardiomyopathy: Role of STAT3 and Reactive Oxygen Species  

Microsoft Academic Search

\\u000a Enhanced oxidative stress related to high metabolic turnover and elevated tissue oxygen requirements are the characteristic\\u000a physiological state in pregnancy. In women with noneventful pregnancy and peripartum periods, this process appears to be paralleled\\u000a by an increase in systemic antioxidant capacity. While these biochemical changes may not have pathophysiological consequences\\u000a in healthy women, they may sensitize women with additional risk

Denise Hilfiker-Kleiner; Arash Haghikia; Andres Hilfiker

163

Flavocytochrome b2: reactivity of its flavin with molecular oxygen.  

PubMed

Flavocytochrome b2, a flavohemoprotein, catalyzes the oxidation of lactate at the expense of the physiological acceptor cytochrome c in the yeast mitochondrial intermembrane space. The mechanism of electron transfer from the substrate to monoelectronic acceptors via FMN and heme b2 has been intensively studied over the years. Each prosthetic group is bound to a separate domain, N-terminal for the heme, C-terminal for the flavin. Each domain belongs to a distinct evolutionary family. In particular, the flavodehydrogenase domain is homologous to a number of well-characterized l-2-hydroxy acid-oxidizing enzymes. Among these, some are oxidases for which the oxidative half-reaction produces hydrogen peroxide at the expense of oxygen. For bacterial mandelate dehydrogenase and flavocytochrome b2, in contrast, the oxidative half-reaction requires monoelectronic acceptors. Several crystal structures indicate an identical fold and a highly conserved active site among family members. All these enzymes form anionic semiquinones and bind sulfite, properties generally associated with oxidases, whereas electron transferases are expected to form neutral semiquinones and to yield superoxide anion. Thus, flavocytochrome b2 is a highly unusual dehydrogenase-electron transferase, and one may wonder how its flavin reacts with oxygen. In this work, we show that the separately engineered flavodehydrogenase domain produces superoxide anion in its slow reaction with oxygen. This reaction apparently also takes place in the holoenzyme when oxygen is the sole electron acceptor, because the heme domain autoxidation is also slow; this is not unexpected, in view of the heme domain mobility relative to the tetrameric flavodehydrogenase core (Xia, Z. X., and Mathews, F. S. (1990) J. Mol. Biol. 212, 837-863). Nevertheless, this reaction is so slow that it cannot compete with the normal electron flow in the presence of monoelectronic acceptors, such as ferricyanide and cytochrome c. An inspection of the available structures of family members does not provide a rationale for the difference between the oxidases and the electron transferases. PMID:17956127

Boubacar, A Kader Ould; Pethe, Stéphanie; Mahy, Jean-Pierre; Lederer, Florence

2007-11-13

164

The reactivity of ?-oxoaldehyde with reactive oxygen species in diabetes complications  

PubMed Central

The reactions of three ?-oxoaldehydes (methylglyoxal, glyoxal, and pyruvic acid) with hydroxyl radicals generated by sonolysis of water were investigated using an electron spin resonance (electron paramagnetic resonance) spin-trapping method, and their reaction kinetics were investigated. It is apparent from our experimental results that methylglyoxal exhibits the highest reactivity of the three ?-oxoaldehydes. These ?-oxoaldehydes can react with hydroxyl radicals faster than other well-known antioxidants can. The reactivity of hydroxyl radicals is higher than that of hydrogen peroxides.

Matsumura, Yuriko; Iwasawa, Atsuo; Kobayashi, Toshihiro; Kamachi, Toshiaki; Ozawa, Toshihiko; Kohno, Masahiro

2013-01-01

165

Reactive oxygen species do not cause arsine-induced hemoglobin damage  

SciTech Connect

Previous work suggested that arsine- (AsH{sub 3}-) induced hemoglobin (HbO{sub 2}) damage may lead to hemolysis (Hatlelid et al., 1996). The purpose of the work presented here was to determine whether reactive oxygen species are formed by AsH{sub 3} in solution, in hemoglobin solutions, or in intact red blood cells, and, if so, to determine whether these species are responsible for the observed hemoglobin damage. Hydrogen peroxide (H{sub 2}O{sub 2}) was detected in aqueous solutions containing AsH{sub 3} and HbO{sub 2} or AsH{sub 3} alone but not in intact red blood cells or lysates. Additionally, high-activity catalase (19,200 U/ml) or glutathione peroxidase (68 U/ml) added to solutions of HbO{sub 2} and AsH{sub 3} had only a minor protective effect against AsH{sub 3}-induced damage. Further, the differences between the visible spectra of AsH{sub 3}-treated HbO{sub 2} and H{sub 2}O{sub 2}-treated HbO{sub 2} indicate that two different degradative processes occur. The presence of superoxide anion (O{sub 2}{sup {minus}}) was measured by O{sub 2}{sup {minus}} -dependent reduction of nitro blue tetrazolium (NBT). The results were negative for O{sub 2}{sup {minus}}. Exogenous superoxide dismutase (100 {mu}g/ml) did not affect AsH{sub 3}-induced HbO{sub 2} spectral changes, nor did the hydroxyl radical scavengers, mannitol, and DMSO (20mM each). The general antioxidants ascorbate ({le} 10 mM) and glutathione ({le}1 mM) also had no effect. These results indicate that the superoxide anion and the hydroxyl radical (OH) are not involved in the mechanism of AsH{sub 3}-induced HbO{sub 2} damage. The results also indicate that although AsH{sub 3} contributes to H{sub 2}O{sub 2} production in vitro, cellular defenses are adequate to detoxify the amount formed. An alternative mechanism by which an arsenic species is the hemolytic agent is proposed. 16 refs., 4 figs., 2 tabs.

Hatlelid, K.M.; Carter, D.E. [Univ. of Arizona, AZ (United States)

1997-04-11

166

Reactivity and oxygen diffusion property of resistive barriers for Bi2223\\/Ag tapes  

Microsoft Academic Search

Reactivity of several oxide materials (OM) with BSCCO powder and oxygen diffusion through OM layer has been tested at temperature ?840 °C in air. The OM (e.g.: BaZrO3, SrCO3, MgO and ZrO2) showing the low or no reactivity with BSCCO have been mixed (10 wt.%) with precursor powder and used for single-core tapes. Bi-2223\\/Ag\\/OM\\/Ag single-core tapes with oxide barriers made

P. Kovác; I Hušek

2002-01-01

167

Novel morphological features of developing white matter pericytes and rapid scavenging of reactive oxygen species in the neighbouring endothelia.  

PubMed

Capillary endothelia and pericytes form a close morphological arrangement allowing pericytes to regulate capillary blood flow, in addition to contributing to vascular development and support. Vascular changes associated with oxidative stress are implicated in important pathologies in developing whiter matter, but little is known about the vascular unit in white matter of the appropriate age or how it responds to oxidative stress. We show that the ultrastructural arrangement of post-natal day 10 (P10) capillaries involves the apposition of pericyte somata to the capillary inner basement membrane and penetration of pericyte processes onto the abluminal surface where they form close connections with endothelial cells. Some pericytes have an unusual stellate morphology, extending processes radially from the vessel. Reactive oxygen species (ROS) were monitored with the ROS-sensitive dye 2',7'-dichlorofluorescin (DCF) in the endothelial cells. Exposure to exogenous ROS (100 ?m H(2) O(2) or xanthine/xanthine oxidase), evoked an elevation in intracellular ROS that declined to baseline during the ongoing challenge. A second challenge failed to evoke an intracellular ROS rise unless the nerve was rested for > 4 h or exposed to very high levels of exogenous ROS. Exposure to a first ROS challenge prior to loading with DCF also prevented the intracellular ROS rise from a second challenge, proving that dye washout during exposure to ROS is not responsible for the loss of a second response. Perfusion with 30 ?m extracellular Ca(2+) or the voltage-gated Ca(2+) antagonist diltiazem partially prevented this rapid scavenging of intracellular ROS, but blocking either catalase or glutathione peroxidase did not. The phenomenon was present over a range of post-natal ages and may contribute to the high ROS-tolerance of endothelial cells and act to limit the release of harmful ROS onto neighbouring pericytes. PMID:21480891

Quimby, Samuel; Fern, Robert

2011-07-01

168

Novel morphological features of developing white matter pericytes and rapid scavenging of reactive oxygen species in the neighbouring endothelia  

PubMed Central

Capillary endothelia and pericytes form a close morphological arrangement allowing pericytes to regulate capillary blood flow, in addition to contributing to vascular development and support. Vascular changes associated with oxidative stress are implicated in important pathologies in developing whiter matter, but little is known about the vascular unit in white matter of the appropriate age or how it responds to oxidative stress. We show that the ultrastructural arrangement of post-natal day 10 (P10) capillaries involves the apposition of pericyte somata to the capillary inner basement membrane and penetration of pericyte processes onto the abluminal surface where they form close connections with endothelial cells. Some pericytes have an unusual stellate morphology, extending processes radially from the vessel. Reactive oxygen species (ROS) were monitored with the ROS-sensitive dye 2’,7’-dichlorofluorescin (DCF) in the endothelial cells. Exposure to exogenous ROS (100 ?m H2O2 or xanthine/xanthine oxidase), evoked an elevation in intracellular ROS that declined to baseline during the ongoing challenge. A second challenge failed to evoke an intracellular ROS rise unless the nerve was rested for > 4 h or exposed to very high levels of exogenous ROS. Exposure to a first ROS challenge prior to loading with DCF also prevented the intracellular ROS rise from a second challenge, proving that dye washout during exposure to ROS is not responsible for the loss of a second response. Perfusion with 30 ?m extracellular Ca2+ or the voltage-gated Ca2+ antagonist diltiazem partially prevented this rapid scavenging of intracellular ROS, but blocking either catalase or glutathione peroxidase did not. The phenomenon was present over a range of post-natal ages and may contribute to the high ROS-tolerance of endothelial cells and act to limit the release of harmful ROS onto neighbouring pericytes.

Quimby, Samuel; Fern, Robert

2011-01-01

169

Oxygen therapy does not increase production and damage induced by reactive oxygen species in focal cerebral ischemia.  

PubMed

Oxygen therapy with hyperbaric oxygen (HBO) or normobaric hyperoxia (NBO) improves outcome in experimental cerebral ischemia. However, an increased formation of reactive oxygen species (ROS) may be an undesirable side effect of oxygen therapy. We investigated the effect of both oxygen therapies on ROS production and adverse effects in murine focal ischemia. 25min after 90min filament-induced middle cerebral artery occlusion (MCAO), mice breathed either air, 100% O2 (NBO), or 100% O2 at 3 ata (HBO) for 60min. ROS were depicted on tissue sections after preischemic injection of hydroethidine, a marker of in vivo superoxide production. Moreover, infarct sizes were quantified in experiments using peroxybutinitrite (PBN) in mice treated with HBO. Effects of oxygen therapy were also tested in superoxide 2 knock-out mice. Both NBO and HBO significantly reduced superoxide radicals compared to air. Application of PBN had no additional protective effect when combined with HBO. Infarct volumes did not differ among SOD2 knock-out mice receiving air (34.0±19.6mm(3)), NBO (35.4±14.3mm(3)) or HBO (33.4±12.2mm(3)). In conclusion, brief episodes of oxygen therapy do not appear to promote damage inflicted by ROS in experimental stroke. PMID:24909618

Sun, Li; Wolferts, Guido; Veltkamp, Roland

2014-08-01

170

TCDD as a biological response modifier for Mitomycin C: Oxygen tension affects enzyme activation, reactive oxygen species and cell death  

Microsoft Academic Search

TCDD was assessed as a biological response modifier for increasing MMC cytotoxicity through aryl hydrocarbon receptor (AhR) activation and increasing levels of bioreductive enzymes. Human MCF-7 cells were exposed to TCDD, MMC and combinations thereof under aerobic or hypoxic conditions. Cytotoxicity, enzyme activities (NQO1, XO, XDH, CYPR, CYP1A, GST and UGT) and intracellular reactive oxygen species (ROS) were subsequently measured.

Abby C. Collier; Karen L. Pritsos; Chris A. Pritsos

2006-01-01

171

Molecular Cell Biology: Are Reactive Oxygen Species Regulators of Leaf Senescence?  

Microsoft Academic Search

Senescence processes can influence many important agricultural traits; however, our knowledge concerning regulatory mechanisms\\u000a controlling senescence is still limited. Free radicals are thought to play an essential role in senescence, especially those\\u000a derived from oxygen. In addition to their deleterious functions, they might serve as signalling molecules. The critical balance\\u000a between production and scavenging of reactive oxygen species (ROS), which

Ulrike Zentgraf; Vera Hemleben

172

The effect of thymol and its derivatives on reactions generating reactive oxygen species  

Microsoft Academic Search

The effects of thymol (TOH), thymoquinone (TQ) and dithymoquinone (TQ2) on the reactions generating reactive oxygen species (ROS) such as superoxide anion radical (O?2), hydroxyl radical (HO) and singlet oxygen (1O2) were tested using the chemiluminescence (CL) and spectrophotometry methods. All tested compounds acted as scavengers of various ROS. The rate constant of 1O2-dimols quenching by thymol was calculated.

Irena Kruk; Teresa Michalska; Krzysztof Lichszteld; Aleksandra K?adna; Hasan Y. Aboul-Enein

2000-01-01

173

Genotoxicity of volatile and secondary reactive oxygen species generated by photosensitization  

SciTech Connect

Reactive oxygen species were generated in the gas phase by photosensitization involving illumination of Rose Bengal. Depending on whether the chromophore is dry or solubilized, this system produces either energy-transfer reactions leading to generation of singlet oxygen specifically, or a combination of energy-transfer and electron-transfer reactions, providing both singlet oxygen and reduced forms of oxygen, such as superoxide anion and hydrogen peroxide. In neither case were the reactive species mutagenic in strain TA104 of Salmonella typhimurium, which had been previously shown to be reverted by oxygen species generated by the hypoxanthine-xanthine oxidase system in aqueous medium. However, mixed oxygen species induced an increased lethality in a variety of DNA repair-deficient Escherichia coli strains. This genotoxic effect, mainly reparable by the uvrA and recA mechanisms, was efficiently prevented by the thiol N-acetyl-L-cysteine. Singlet oxygen itself failed to exert direct genotoxic effects, although secondary reactants produced by its reaction with cell components enhanced lethality in some repair-deficient bacteria. Distance-dependence analyses provided measurements of the lifetimes of the oxygen species generated in the gas phase. 35 refs., 7 figs., 2 tabs.

Camoirano, A.; De Flora, S.; Dahl, T.A. (Univ. of Genoa (Italy) Tufts Univ. Veterinary, Boston, MA (United States))

1993-01-01

174

Involvement of reactive oxygen species in aflatoxin B 1-induced cell injury in cultured rat hepatocytes  

Microsoft Academic Search

The role of reactive oxygen species (ROS) in AFB1-induced cell injury was investigated using cultured rat hepatocytes. Malonaldehyde (MDA) generation and lactate dehydrogenase (LDH) release were determined as indices of lipid peroxidation and cell injury, respectively. Exposure to AFB1 for up to 72 h resulted in significantly elevated levels of LDH being released into the medium as well as the

Han-Ming Shen; Choon-Nam Ong; Chen-Yang Shi

1995-01-01

175

Vascular Smooth Muscle Modulates Endothelial Control of Vasoreactivity via Reactive Oxygen Species Production through Myoendothelial Communications  

Microsoft Academic Search

BackgroundEndothelial control of vascular smooth muscle plays a major role in the resulting vasoreactivity implicated in physiological or pathological circulatory processes. However, a comprehensive understanding of endothelial (EC)\\/smooth muscle cells (SMC) crosstalk is far from complete. Here, we have examined the role of gap junctions and reactive oxygen species (ROS) in this crosstalk and we demonstrate an active contribution of

Marie Billaud; Roger Marthan; Jean-Pierre Savineau; Christelle Guibert; Neeraj Vij

2009-01-01

176

Effects of reactive oxygen species on cellular wall disassembly of banana fruit during ripening  

Microsoft Academic Search

Fruit softening is generally attributed to cell wall disassembly. Experiments were conducted to investigate effects of various reactive oxygen species (ROS) on in vitro cellular wall disassembly of harvested banana fruit. The alcohol-extracted insoluble residue (AEIR) was obtained from the pulp tissues of banana fruit at various ripening stages and then used to examine the disassembly of cellular wall polysaccharides

Guiping Cheng; Xuewu Duan; John Shi; Wangjin Lu; Yunbo Luo; Weibo Jiang; Yueming Jiang

2008-01-01

177

Reactive Oxygen Species and Root Hairs in Arabidopsis Root Response to Nitrogen, Phosphorus and Potassium Deficiency  

Microsoft Academic Search

; Plant root sensing and adaptation to changes in the nutrient status of soils is vital for long-term productivity and growth. Reactive oxygen species (ROS) have been shown to play a role in root response to potassium depriva- tion. To determine the role of ROS in plant response to nitrogen and phosphorus deficiency, studies were con- ducted using wild-type Arabidopsis

Ryoung Shin; R. Howard Berg; Daniel P. Schachtman

2005-01-01

178

Determination of reactive oxygen species in single human erythrocytes using microfluidic chip electrophoresis  

Microsoft Academic Search

Reactive oxygen species (ROS) are known to not only mediate the damage of cellular constituents but also to regulate cellular signaling. Analysis of ROS is essential if we wish to understand the mechanisms of cellular alterations. In this paper, a microfluidic chip-based approach to the determination of ROS in single erythrocyte was developed by using a simple crossed-channel glass chip

Yue Sun; Xue-Feng Yin; Yun-Yang Ling; Zhao-Lun Fang

2005-01-01

179

Effect of resveratrol, a natural polyphenolic compound, on reactive oxygen species and prostaglandin production  

Microsoft Academic Search

Resveratrol is a natural molecule with antioxidant action. Moreover, resveratrol is also considered to be a molecule with anti-inflammatory action, an effect attributed to suppression of prostaglandin (PG) biosynthesis. The aim of the present study was to investigate the effects of resveratrol, a polyphenol present in most red wines, on reactive oxygen species formation as well as on arachidonic acid

Javier Martinez; Juan J Moreno

2000-01-01

180

Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses  

Microsoft Academic Search

Scavenging or quenching of the reactive oxygen species (ROS) involved in oxidative stress has been the subject of many recent studies. Resveratrol, found in various natural food products, has been linked to decreased coronary artery disease and preventing cancer development. The present study measured the effect of resveratrol on several different systems involving the hydroxyl, superoxide, metal\\/enzymatic-induced, and cellular generated

Stephen S Leonard; Chang Xia; Bin-Hua Jiang; Beth Stinefelt; Hillar Klandorf; Gabriel K Harris; Xianglin Shi

2003-01-01

181

Reactive species in atmospheric pressure helium-oxygen plasmas with humid air impurities  

NASA Astrophysics Data System (ADS)

In most applications helium-based plasma jets operate in an open air environment. The presence of humid-air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in rf driven atmospheric-pressure helium-oxygen mixture plasmas (helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0 to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively- and negatively-charged ions (and its clusters). Effects of the air impurity containing water humidity on electronegativity and chemical activity are clarified with particular emphasis on reactive oxygen species.

Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

2012-10-01

182

Increased NAD(P)H Oxidase and Reactive Oxygen Species in Coronary Arteries After Balloon Injury  

Microsoft Academic Search

Reactive oxygen species (ROS), produced by cellular constituents of the arterial wall, provide a signaling mechanism involved in vascular remodeling. Because adventitial fibroblasts are actively involved in coronary remodeling, we examined whether the changes in the redox state affect their phenotypic characteristics. To this end, superoxide anion production and NAD(P)H oxidase activity were measured in porcine coronary arteries in vivo,

Yi Shi; Rodica Niculescu; Dian Wang; Sachin Patel; Kelly L. Davenpeck; Andrew Zalewski

183

Role of reactive oxygen species in organophosphate insecticide phosalone toxicity in erythrocytes in vitro  

Microsoft Academic Search

Reactive oxygen species (ROS) caused by organophosphates may be involved in the toxicity of various pesticides. Therefore, in this study we aimed to investigate how an organophosphate insecticide, phosalone, affects lipid peroxidation (LPO) and the antioxidant defence system in vitro. For this purpose, the effects of various doses of phosalone on LPO and the activities of superoxide dismutase (SOD), glutathione

I Altuntas; N Delibas; D. K Doguc; S Ozmen; F Gultekin

2003-01-01

184

Regulation of Gene Expression in the Nervous System by Reactive Oxygen and Nitrogen Species  

Microsoft Academic Search

Reactive oxygen and nitrogen species function as direct and indirect modulators of gene expression through their interactions with transcription factors and also key enzymes in receptor-activated signalling pathways. This regulatory role may become displaced under certain circumstances such as aging, autoimmune responses and viral infection, leading to the pathological outcome associated with inflammatory and degenerative diseases in the CNS.

Jean E. Merrill; Sean P. Murphy

1997-01-01

185

Detection of reactive oxygen species in isolated, perfused lungs by electron spin resonance spectroscopy  

Microsoft Academic Search

BACKGROUND: The sources and measurement of reactive oxygen species (ROS) in intact organs are largely unresolved. This may be related to methodological problems associated with the techniques currently employed for ROS detection. Electron spin resonance (ESR) with spin trapping is a specific method for ROS detection, and may address some these technical problems. METHODS: We have established a protocol for

Norbert Weissmann; Nermin Kuzkaya; Beate Fuchs; Vedat Tiyerili; Rolf U Schäfer; Hartwig Schütte; Hossein A Ghofrani; Ralph T Schermuly; Christian Schudt; Akylbek Sydykov; Bakytbek Egemnazarow; Werner Seeger; Friedrich Grimminger

2005-01-01

186

Levels of mitochondrial reactive oxygen species increase in rat neuropathic spinal dorsal horn neurons  

Microsoft Academic Search

Reactive oxygen species (ROS) are toxic agents that may be involved in various neurodegenerative diseases. Recent studies indicate that ROS are also involved in persistent pain through a spinal mechanism. Since the major source of ROS in neurons is mitochondria, mitochondrial ROS generation was examined in dorsal horn neurons of neuropathic rats. Neuropathic rats were produced by L5 spinal nerve

Eun-Sung Park; Xiu Gao; Jin Mo Chung; Kyungsoon Chung

2006-01-01

187

Mitochondrial Reactive Oxygen Species Trigger Calcium Increases During Hypoxia in Pulmonary Arterial Myocytes  

Microsoft Academic Search

We hypothesized that mitochondria function as the O2 sensors underlying hypoxic pulmonary vasoconstriction by releasing reactive oxygen species (ROS) from complex III of the electron transport chain (ETC). We have previously found that antioxidants or inhibition of the proximal region of the ETC attenuates hypoxic pulmonary vasoconstriction in rat lungs and blocks hypoxia-induced contraction of isolated pulmonary arterial (PA) myocytes.

Gregory B. Waypa; Jeremy D. Marks; Mathew M. Mack; Chan Boriboun; Paul T. Mungai; Paul T. Schumacker

2009-01-01

188

Induction of microglial reactive oxygen species production by the organochlorinated pesticide dieldrin  

Microsoft Academic Search

Exposure to pesticides has been speculated to contribute to the development of sporadic Parkinson's disease (PD) characterized by a progressive degeneration of the nigrostriatal dopaminergic pathway. Activation of brain microglia that produce various neurotoxic factors including cytokines and reactive oxygen species (ROS) has been increasingly associated with dopaminergic neurodegeneration induced by various toxicants. Dieldrin, a highly persistent organochlorinated pesticide found

Haoyu Mao; Xi Fang; Katon M. Floyd; Jeanette E. Polcz; Ping Zhang; Bin Liu

2007-01-01

189

Controlling Tumor Growth by Modulating Endogenous Production of Reactive Oxygen Species  

Microsoft Academic Search

Paradoxically, reactive oxygen species (ROS) can promote normal cellular proliferation and carcinogenesis, and can also induce apoptosis of tumor cells. In this report, we study the contribution of ROS to various cellular signals depending on the nature and the level of ROS produced. In nontransformed NIH 3T3 cells, ROS are at low levels and originate from NADPH oxidase. Hydrogen peroxide

Alexis Laurent; Carole Nicco; Christiane Chereau; Claire Goulvestre; Jerome Alexandre; Arnaud Alves; Eva Levy; Francois Goldwasser; Yves Panis; Olivier Soubrane; Bernard Weill; Frederic Batteux

2005-01-01

190

Cooperation between Reactive Oxygen and Nitrogen Intermediates in Killing of Rhodococcus equi by Activated Macrophages  

Microsoft Academic Search

Rhodococcus equi is a facultative intracellular bacterium of macrophages which can infect immunocompro- mised humans and young horses. In the present study, we examine the mechanism of host defense against R. equi by using a murine model. We show that bacterial killing is dependent upon the presence of gamma interferon (IFN-g), which activates macrophages to produce reactive nitrogen and oxygen

PATRICIA A. DARRAH; MARY K. HONDALUS; QUIPING CHEN; HARRY ISCHIROPOULOS; DAVID M. MOSSER

2000-01-01

191

Reactive Oxygen Species—Induced Apoptosis and Necrosis in Bovine Corneal Endothelial Cells  

Microsoft Academic Search

PURPOSE. The loss of corneal endothelial cells associated with aging and possibly other causes has been speculated to be related to exposure to reactive oxygen species (ROS). The current study was conducted to investigate, by use of photosensitizers, the underlying mechanisms involved in the death of bovine corneal endothelial cells (BCENs) caused by ROS. METHODS. BCEN cells in primary culture

Kyung-Sun Cho; Eunjoo H. Lee; Jun-Sub Choi; Choun-Ki Joo

1999-01-01

192

Helicobacter pylori stimulates antral mucosal reactive oxygen metabolite production in vivo  

Microsoft Academic Search

To determine if reactive oxygen metabolites have a pathogenic role in Helicobacter pylori (H pylori) related gastroduodenal disease, this study measured their production in antral mucosal biopsy specimens. Two related chemiluminescence techniques were used comparing H pylori positive (n = 105) and negative patients (n = 64) with a similar spectrum of macroscopic disease. After chemiluminescence assays, biopsy specimens were

G. R. Davies; N. J. Simmonds; T. R. J. Stevens; M. T. Sheaff; N. Banatvala; I. F. Laurenson; D. R. Blake; D. S. Rampton

1994-01-01

193

Roles of Reactive Oxygen Species: Signaling and Regulation of Cellular Functions  

Microsoft Academic Search

Reactive oxygen species (ROS) are the side products (H2O2•? and O2•) of general metabolism and are also produced specifically by the NADPH oxidase system in most cell types. Cells have a very efficient antioxidant defense to counteract the toxic effect of ROS. The physiological significance of ROS is that ROS at low concentrations are able to mediate cellular functions through

I. A. Gamaley; I. V. Klyubin

1999-01-01

194

Redundant catalases detoxify phagocyte reactive oxygen and facilitate Histoplasma capsulatum pathogenesis.  

PubMed

Histoplasma capsulatum is a respiratory pathogen that infects phagocytic cells. The mechanisms allowing Histoplasma to overcome toxic reactive oxygen molecules produced by the innate immune system are an integral part of Histoplasma's ability to survive during infection. To probe the contribution of Histoplasma catalases in oxidative stress defense, we created and analyzed the virulence defects of mutants lacking CatB and CatP, which are responsible for extracellular and intracellular catalase activities, respectively. Both CatB and CatP protected Histoplasma from peroxide challenge in vitro and from antimicrobial reactive oxygen produced by human neutrophils and activated macrophages. Optimal protection required both catalases, as the survival of a double mutant lacking both CatB and CatP was lower than that of single-catalase-deficient cells. Although CatB contributed to reactive oxygen species defenses in vitro, CatB was dispensable for lung infection and extrapulmonary dissemination in vivo. Loss of CatB from a strain also lacking superoxide dismutase (Sod3) did not further reduce the survival of Histoplasma yeasts. Nevertheless, some catalase function was required for pathogenesis since simultaneous loss of both CatB and CatP attenuated Histoplasma virulence in vivo. These results demonstrate that Histoplasma's dual catalases comprise a system that enables Histoplasma to efficiently overcome the reactive oxygen produced by the innate immune system. PMID:23589579

Holbrook, Eric D; Smolnycki, Katherine A; Youseff, Brian H; Rappleye, Chad A

2013-07-01

195

Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination  

PubMed Central

Endosperm cap (CAP) weakening and embryo elongation growth are prerequisites for the completion of lettuce seed germination. Although it has been proposed that the cell wall loosening underlying these processes results from an enzymatic mechanism, it is still unclear which enzymes are involved. Here it is shown that reactive oxygen species (ROS), which are non-enzymatic factors, may be involved in the two processes. In Guasihong lettuce seeds imbibed in water, O2·– and H2O2 accumulated and peroxidase activity increased in the CAP, whereas its puncture force decreased. In addition, in the radicle, the increase in embryo growth potential was accompanied by accumulation of O2·– and an increase in peroxidase activity. Imbibing seeds in 0.3% sodium dichloroisocyanurate (SDIC) reduced endosperm viability and the levels of O2·–, H2O2, and peroxidase activity in the CAP, whereas the decrease in its puncture force was inhibited. However, in the embryo, SDIC did not affect the accumulation of O2·–, peroxidase activity, and the embryo growth potential. As a result, SDIC caused atypical germination, in which the endosperm ruptured at the boundary between the CAP and lateral endosperm. ROS scavengers and ROS generation inhibitors inhibited the CAP weakening and also decreased the embryo growth potential, thus decreasing the percentage of seed germination. Exogenous ROS and ROS generation inducers increased the percentage of CAP rupture to some extent, and the addition of H2O2 to 0.3% SDIC enabled some seeds to undergo typical germination.

Zhang, Yu; Chen, Bingxian; Xu, Zhenjiang; Shi, Zhaowan; Chen, Shanli; Huang, Xi; Chen, Jianxun; Wang, Xiaofeng

2014-01-01

196

MLK3 Is Part of a Feedback Mechanism That Regulates Different Cellular Responses to Reactive Oxygen Species.  

PubMed

Reactive oxygen species (ROS) influence diverse cellular processes, including proliferation and apoptosis. Both endogenous and exogenous ROS activate signaling through mitogen-activated proteins kinase (MAPK) pathways, including those involving extracellular signal-regulated kinases (ERKs) or c-Jun N-terminal kinases (JNKs). Whereas low concentrations of ROS generally stimulate proliferation, high concentrations result in cell death. We found that low concentrations of ROS induced activating phosphorylation of ERKs, whereas high concentrations of ROS induced activating phosphorylation of JNKs. Mixed lineage kinase 3 (MLK3, also known as MAP3K11) directly phosphorylates JNKs and may control activation of ERKs. Mathematical modeling of MAPK networks revealed a positive feedback loop involving MLK3 that determined the relative phosphorylation of ERKs and JNKs by ROS. Cells exposed to an MLK3 inhibitor or cells in which MLK3 was knocked down showed increased activation of ERKs and decreased activation of JNKs and were resistant to cell death when exposed to high concentrations of ROS. Thus, the data indicated that MLK3 is a critical factor controlling the activity of kinase networks that control the cellular responses to different concentrations of ROS. PMID:24894995

Lee, Ho-Sung; Hwang, Chae Young; Shin, Sung-Young; Kwon, Ki-Sun; Cho, Kwang-Hyun

2014-01-01

197

Reactive oxygen species stimulates epithelial mesenchymal transition in normal human epidermal keratinocytes via TGF-beta secretion.  

PubMed

Epithelial to mesenchymal transition (EMT) plays an important role in tumor progression, and is an early step in carcinogenesis. Although reactive oxygen species (ROS) are known to be implicated in EMT in many tumor cell types, its exact role in EMT initiation in normal human cells, especially epidermal keratinocytes (NHEKs), remains unknown. To clarify whether ROS induce EMT in NHEKs, and to establish how ROS regulate EMT, we examined the effect of hydrogen peroxide (H(2)O(2)) on the expression of molecules involved in EMT and cell morphology in NHEKs. H(2)O(2) altered the expression of EMT biomarkers, including downregulation of epithelial cadherin and upregulation of ?-smooth muscle actin, through a transcriptional modulator, Snail1. H(2)O(2) also induced epithelial to fibroblast-like morphological changes, together with upregulation of EMT biomarkers, and promoted phosphorylation of ERK1/2 and JNK in a time-dependent manner. Interestingly, H(2)O(2) stimulated the expression and secretion of TGF-?1 in NHEKs. Exogenous TGF-?1 also induced the expression of EMT biomarkers. In contrast, neutralizing antibody anti-TGF-?1 antibody or inhibitor of TGF-? receptor type I suppressed the expression of EMT biomarkers. Our results suggest that ROS stimulated TGF-?1 secretion and MAPK activation, resulting in EMT initiation in NHEKs. PMID:22664326

Fukawa, Teruhisa; Kajiya, Hiroshi; Ozeki, Satoru; Ikebe, Tetsuro; Okabe, Koji

2012-09-10

198

TAK1 signaling maintains intestinal integrity by preventing accumulation of reactive oxygen species in the intestinal epithelium  

PubMed Central

The intestinal epithelium is constantly exposed to inducers of reactive oxygen species (ROS) such as commensal microorganisms. Levels of ROS are normally maintained at non-toxic levels, but dysregulation of ROS is involved in intestinal inflammatory diseases. Here we report that TGF?-activated kinase 1 (TAK1) is a key regulator of ROS in the intestinal epithelium. tak1 gene deletion in the mouse intestinal epithelium caused tissue damage involving enterocyte apoptosis, disruption of tight junctions and inflammation. Disruption of TNF signaling, which is a major intestinal damage inducer, rescued the inflammatory conditions but not apoptosis or disruption of tight junctions in the TAK1-deficient intestinal epithelium, suggesting that TNF is not a primary inducer of the damage noted in TAK1-deficient intestinal epithelium. We found that TAK1 deficiency resulted in reduced expression of several antioxidant responsive genes and reduced the protein level of a key antioxidant transcription factor NF-E2-related factor 2 (Nrf2), which resulted in accumulation of ROS. Exogenous antioxidant treatment could reduce apoptosis and disruption of tight junctions in the TAK1-deficient intestinal epithelium. Thus, TAK1 signaling regulates ROS through Nrf2, which is important for intestinal epithelial integrity.

Kajino-Sakamoto, Rie; Omori, Emily; Nighot, Prashant K.; Blikslager, Anthony T.; Matsumoto, Kunihiro; Ninomiya-Tsuji, Jun

2011-01-01

199

Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination.  

PubMed

Endosperm cap (CAP) weakening and embryo elongation growth are prerequisites for the completion of lettuce seed germination. Although it has been proposed that the cell wall loosening underlying these processes results from an enzymatic mechanism, it is still unclear which enzymes are involved. Here it is shown that reactive oxygen species (ROS), which are non-enzymatic factors, may be involved in the two processes. In Guasihong lettuce seeds imbibed in water, O2·(-) and H2O2 accumulated and peroxidase activity increased in the CAP, whereas its puncture force decreased. In addition, in the radicle, the increase in embryo growth potential was accompanied by accumulation of O2·(-) and an increase in peroxidase activity. Imbibing seeds in 0.3% sodium dichloroisocyanurate (SDIC) reduced endosperm viability and the levels of O2·(-), H2O2, and peroxidase activity in the CAP, whereas the decrease in its puncture force was inhibited. However, in the embryo, SDIC did not affect the accumulation of O2·(-), peroxidase activity, and the embryo growth potential. As a result, SDIC caused atypical germination, in which the endosperm ruptured at the boundary between the CAP and lateral endosperm. ROS scavengers and ROS generation inhibitors inhibited the CAP weakening and also decreased the embryo growth potential, thus decreasing the percentage of seed germination. Exogenous ROS and ROS generation inducers increased the percentage of CAP rupture to some extent, and the addition of H2O2 to 0.3% SDIC enabled some seeds to undergo typical germination. PMID:24744430

Zhang, Yu; Chen, Bingxian; Xu, Zhenjiang; Shi, Zhaowan; Chen, Shanli; Huang, Xi; Chen, Jianxun; Wang, Xiaofeng

2014-07-01

200

Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds  

PubMed Central

The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis.

Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

2012-01-01

201

Induction of apoptosis in human multiple myeloma cell lines by ebselen via enhancing the endogenous reactive oxygen species production.  

PubMed

Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ??m changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway. PMID:24587987

Zhang, Liang; Zhou, Liwei; Du, Jia; Li, Mengxia; Qian, Chengyuan; Cheng, Yi; Peng, Yang; Xie, Jiayin; Wang, Dong

2014-01-01

202

Induction of Apoptosis in Human Multiple Myeloma Cell Lines by Ebselen via Enhancing the Endogenous Reactive Oxygen Species Production  

PubMed Central

Ebselen a selenoorganic compound showing glutathione peroxidase like activity is an anti-inflammatory and antioxidative agent. Its cytoprotective activity has been investigated in recent years. However, experimental evidence also shows that ebselen causes cell death in several cancer cell types whose mechanism has not yet been elucidated. In this study, we examined the effect of ebselen on multiple myeloma (MM) cell lines in vitro. The results showed that ebselen significantly enhanced the production of reactive oxygen species (ROS) accompanied by cell viability decrease and apoptosis rate increase. Further studies revealed that ebselen can induce Bax redistribution from the cytosol to mitochondria leading to mitochondrial membrane potential ??m changes and cytochrome C release from the mitochondria to cytosol. Furtherly, we found that exogenous addition of N-acetyl cysteine (NAC) completely diminished the cell damage induced by ebselen. This result suggests that relatively high concentration of ebselen can induce MM cells apoptosis in culture by enhancing the production of endogenous ROS and triggering mitochondria mediated apoptotic pathway.

Du, Jia; Li, Mengxia; Qian, Chengyuan; Cheng, Yi; Peng, Yang; Xie, Jiayin; Wang, Dong

2014-01-01

203

Reactive Oxygen Species on the Early Earth and Survival of Bacteria  

NASA Technical Reports Server (NTRS)

An oxygen-rich atmosphere appears to have been a prerequisite for complex, multicellular life to evolve on Earth and possibly elsewhere in the Universe. However it remains unclear how free oxygen first became available on the early Earth. A potentially important, and as yet poorly constrained pathway, is the production of oxygen through the weathering of rocks and release into the near-surface environment. Reactive Oxygen Species (ROS), as precursors to molecular oxygen, are a key step in this process, and may have had a decisive impact on the evolution of life, present and past. ROS are generated from minerals in igneous rocks during hydrolysis of peroxy defects, which consist of pairs of oxygen anions oxidized to the valence state -1 and during (bio) transformations of iron sulphide minerals. ROS are produced and consumed by intracellular and extracellular reactions of Fe, Mn, C, N, and S species. We propose that, despite an overall reducing or neutral oxidation state of the macroenvironment and the absence of free O2 in the atmosphere, organisms on the early Earth had to cope with ROS in their microenvironments. They were thus under evolutionary pressure to develop enzymatic and other defences against the potentially dangerous, even lethal effects of oxygen and its derived ROS. Conversely it appears that microorganisms learned to take advantage of the enormous reactive potential and energy gain provided by nascent oxygen. We investigate how oxygen might be released through weathering. We test microorganisms in contact with rock surfaces and iron sulphides. We model bacteria such as Deionococcus radiodurans and Desulfotomaculum, Moorella and Bacillus species for their ability to grow or survive in the presence of ROS. We examine how early Life might have adapted to oxygen.

Balk, Melikea; Mason, Paul; Stams, Alfons J. M.; Smidt, Hauke; Freund, Friedemann; Rothschild, Lynn

2011-01-01

204

Cell death from antibiotics without the involvement of reactive oxygen species  

PubMed Central

Recent observations have suggested that classic antibiotics kill bacteria by stimulating the formation of reactive oxygen species. If true, this notion might guide new strategies to improve antibiotic efficacy. In this study the model was directly tested. Contrary to the hypothesis, antibiotic treatment did not accelerate the formation of hydrogen peroxide in Escherichia coli and did not elevate intracellular free iron, an essential reactant for the production of lethal damage. Lethality persisted in the absence of oxygen, and DNA repair mutants were not hypersensitive, undermining the idea that toxicity arose from oxidative DNA lesions. We conclude that these antibiotic exposures did not produce reactive oxygen species and that lethality more likely resulted from the direct inhibition of cell-wall assembly, protein synthesis, and DNA replication.

Liu, Yuanyuan; Imlay, James A.

2013-01-01

205

Deoxyamphimedine, a pyridoacridine alkaloid, damages DNA via the production of reactive oxygen species.  

PubMed

Marine pyridoacridines are a class of aromatic chemicals that share an 11H-pyrido[4,3,2-mn]acridine skeleton. Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, fungicidal and bactericidal properties, production of reactive oxygen species (ROS) and topoisomerase inhibition. These activities are often dependent on slight modifications to the pyridoacridine skeleton. Here we demonstrate that while structurally similar to neoamphimedine and amphimedine, the biological activity of deoxyamphimedine differs greatly. Deoxyamphimedine damages DNA in vitro independent of topoisomerase enzymes through the generation of reactive oxygen species. Its activity was decreased in low oxygen, with the removal of a reducing agent and in the presence of anti-oxidants. Deoxyamphimedine also showed enhanced toxicity in cells sensitive to single or double strand DNA breaks, consistent with the in vitro activity. PMID:19597581

Marshall, Kathryn M; Andjelic, Cynthia D; Tasdemir, Deniz; Concepción, Gisela P; Ireland, Chris M; Barrows, Louis R

2009-01-01

206

Deoxyamphimedine, a Pyridoacridine Alkaloid, Damages DNA via the Production of Reactive Oxygen Species  

PubMed Central

Marine pyridoacridines are a class of aromatic chemicals that share an 11H-pyrido[4,3,2-mn]acridine skeleton. Pyridoacridine alkaloids display diverse biological activities including cytotoxicity, fungicidal and bactericidal properties, production of reactive oxygen species (ROS) and topoisomerase inhibition. These activities are often dependent on slight modifications to the pyridoacridine skeleton. Here we demonstrate that while structurally similar to neoamphimedine and amphimedine, the biological activity of deoxyamphimedine differs greatly. Deoxyamphimedine damages DNA in vitro independent of topoisomerase enzymes through the generation of reactive oxygen species. Its activity was decreased in low oxygen, with the removal of a reducing agent and in the presence of anti-oxidants. Deoxyamphimedine also showed enhanced toxicity in cells sensitive to single or double strand DNA breaks, consistent with the in vitro activity.

Marshall, Kathryn M.; Andjelic, Cynthia D.; Tasdemir, Deniz; Concepcion, Gisela P.; Ireland, Chris M.; Barrows, Louis R.

2009-01-01

207

Radiation induces aerobic glycolysis through reactive oxygen species  

PubMed Central

Background and purpose Although radiation induced reoxygenation has been thought to increase radiosensitivity, we have shown that its associated oxidative stress can have radioprotective effects, including stabilization of the transcription factor hypoxia inducible factor 1 (HIF-1). HIF-1 is known to regulate many of the glycolytic enzymes, thereby promoting aerobic glycolysis, which is known to promote treatment resistance. Thus, we hypothesized that reoxygenation after radiation would increase glycolysis. We previously showed that blockade of oxidative stress using a superoxide dismutase (SOD) mimic during reoxygenation can downregulate HIF-1 activity. Here we tested whether concurrent use of this drug with radiotherapy would reduce the switch to a glycolytic phenotype. Materials and methods 40 mice with skin fold window chambers implanted with 4T1 mammary carcinomas were randomized into (1) no treatment, (2) radiation alone, (3) SOD mimic alone, and (4) SOD mimic with concurrent radiation. All mice were imaged on the ninth day following tumor implantation (30 h following radiation treatment) following injection of a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Hemoglobin saturation was measured by using hyperspectral imaging to quantify oxygenation state. Results Mice treated with radiation showed significantly higher 2-NBDG fluorescence compared to controls (p = 0.007). Hemoglobin saturation analysis demonstrated reoxygenation following radiation, coinciding with the observed increase in glycolysis. The concurrent use of the SOD mimic with radiation demonstrated a significant reduction in 2-NBDG fluorescence compared to effects seen after radiation alone, while having no effect on reoxygenation. Conclusions Radiation induces an increase in tumor glucose demand approximately 30 h following therapy during reoxygenation. The use of an SOD mimic can prevent the increase in aerobic glycolysis when used concurrently with radiation, without preventing reoxygenation.

Zhong, Jim; Rajaram, Narasimhan; Brizel, David M.; Frees, Amy E.; Ramanujam, Nirmala; Batinic-Haberle, Ines; Dewhirst, Mark W.

2013-01-01

208

The interplay of light and oxygen in the reactive oxygen stress response of Chlamydomonas reinhardtii dissected by quantitative mass spectrometry.  

PubMed

Light and oxygen are factors that are very much entangled in the reactive oxygen species (ROS) stress response network in plants, algae and cyanobacteria. The first obligatory step in understanding the ROS network is to separate these responses. In this study, a LC-MS/MS based quantitative proteomic approach was used to dissect the responses of Chlamydomonas reinhardtii to ROS, light and oxygen employing an interlinked experimental setup. Application of novel bioinformatics tools allow high quality retention time alignment to be performed on all LC-MS/MS runs increasing confidence in protein quantification, overall sequence coverage and coverage of all treatments measured. Finally advanced hierarchical clustering yielded 30 communities of co-regulated proteins permitting separation of ROS related effects from pure light effects (induction and repression). A community termed redox(II) was identified that shows additive effects of light and oxygen with light as the first obligatory step. Another community termed 4-down was identified that shows repression as an effect of light but only in the absence of oxygen indicating ROS regulation, for example, possibly via product feedback inhibition because no ROS damage is occurring. In summary the data demonstrate the importance of separating light, O? and ROS responses to define marker genes for ROS responses. As revealed in this study, an excellent candidate is DHAR with strong ROS dependent induction profiles. PMID:24482124

Barth, Johannes; Bergner, Sonja Verena; Jaeger, Daniel; Niehues, Anna; Schulze, Stefan; Scholz, Martin; Fufezan, Christian

2014-04-01

209

Production of reactive oxygen species in decoupled, Ca(2+)-depleted PSII and their use in assigning a function to chloride on both sides of PSII.  

PubMed

Extraction of Ca(2+) from the oxygen-evolving complex of photosystem II (PSII) in the absence of a chelator inhibits O2 evolution without significant inhibition of the light-dependent reduction of the exogenous electron acceptor, 2,6-dichlorophenolindophenol (DCPIP) on the reducing side of PSII. The phenomenon is known as "the decoupling effect" (Semin et al. Photosynth Res 98:235-249, 2008). Extraction of Cl(-) from Ca(2+)-depleted membranes (PSII[-Ca]) suppresses the reduction of DCPIP. In the current study we investigated the nature of the oxidized substrate and the nature of the product(s) of the substrate oxidation. After elimination of all other possible donors, water was identified as the substrate. Generation of reactive oxygen species HO, H2O2, and O 2 (·-) , as possible products of water oxidation in PSII(-Ca) membranes was examined. During the investigation of O 2 (·-) production in PSII(-Ca) samples, we found that (i) O 2 (·-) is formed on the acceptor side of PSII due to the reduction of O2; (ii) depletion of Cl(-) does not inhibit water oxidation, but (iii) Cl(-) depletion does decrease the efficiency of the reduction of exogenous electron acceptors. In the absence of Cl(-) under aerobic conditions, electron transport is diverted from reducing exogenous acceptors to reducing O2, thereby increasing the rate of O 2 (·-) generation. From these observations we conclude that the product of water oxidation is H2O2 and that Cl(-) anions are not involved in the oxidation of water to H2O2 in decoupled PSII(-Ca) membranes. These results also indicate that Cl(-) anions are not directly involved in water oxidation by the Mn cluster in the native PSII membranes, but possibly provide access for H2O molecules to the Mn4CaO5 cluster and/or facilitate the release of H(+) ions into the lumenal space. PMID:23794169

Semin, Boris K; Davletshina, Lira N; Timofeev, Kirill N; Ivanov, Il'ya I; Rubin, Andrei B; Seibert, Michael

2013-11-01

210

Role of reactive oxygen and nitrogen species in the vascular responses to inflammation  

PubMed Central

Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation.

Kvietys, Peter R.; Granger, D. Neil

2012-01-01

211

Effect of support on reactivity and selectivity of Ni-based oxygen carriers for chemical-looping combustion  

Microsoft Academic Search

Different Ni-based oxygen carriers were prepared by dry impregnation using ?-Al2O3 as support. The reactivity, selectivity during methane combustion, attrition rate and agglomeration behavior of the oxygen carriers were measured and analyzed in a thermogravimetric analyzer and in a batch fluidized bed during multi-cycle reduction–oxidation tests.Ni-based oxygen carriers prepared on ?-Al2O3 showed low reactivity and low methane combustion selectivity to

Pilar Gayán; Luis F. de Diego; Francisco García-Labiano; Juan Adánez; Alberto Abad; Cristina Dueso

2008-01-01

212

Prooxidant action of rosmarinic acid: transition metal-dependent generation of reactive oxygen species.  

PubMed

Rosmarinic acid and its constituent caffeic acid produced reactive oxygen species in the presence of transition metals. Complex of rosmarinic acid or caffeic acid with iron inactivated aconitase the most sensitive enzyme to oxidative stress. The inactivation of aconitase was iron-dependent, and prevented by TEMPOL, a scavenger of reactive oxygen species, suggesting that the rosmarinic acid/iron-mediated generation of superoxide anion is responsible for the inactivation of aconitase. Direct spectrophotometric determination of hydrogen peroxide and superoxide anion confirmed the rosmarinic acid/iron-dependent production of reactive oxygen species. Treatment of DNA from plasmid pBR322 and calf thymus with rosmarinic acid plus copper caused strand scission and formed 8-hydroxy-2'-deoxyguanosine in DNA. Rosmarinic acid and caffeic acid showed a potent activity that reduces transition metals. These results suggest that transition metals reduced by rosmarinic acid can form superoxide radical by one electron reduction of oxygen molecule: superoxide radical in turn converts to hydrogen peroxide and hydroxyl radical causing the formation of DNA base adduct. Cytotoxicity of rosmarinic acid may be related to the prooxidant action resulting from metal-reducing activity. PMID:17267171

Murakami, Keiko; Haneda, Miyako; Qiao, Shanlou; Naruse, Makoto; Yoshino, Masataka

2007-06-01

213

Mitochondrial reactive oxygen species are required for hypoxia-induced degradation of keratin intermediate filaments.  

PubMed

Hypoxia can cause stress and structural changes to the epithelial cytoskeleton. The intermediate filament (IF) network is known to reorganize in response to stress. We examined whether rats exposed to hypoxia had altered keratin IF expression in their alveolar epithelial type II (ATII) cells. There was a significant decrease in keratin protein levels in hypoxic ATII cells compared with those in ATII cells isolated from normoxic rats. To define the mechanisms regulating this process we studied changes to the keratin IF network in A549 cells (an alveolar epithelial cell line) exposed to 1.5% oxygen. We observed a time-dependent disassembly-degradation of keratin 8 and 18 proteins, which was associated with an increase in reactive oxygen species (ROS). Hypoxia-treated A549 cells deficient in mitochondrial DNA or A549 cells treated with a small interfering RNA against the Rieske iron-sulfur protein of mitochondrial complex III did not have increased levels of ROS nor was the keratin IF network disassembled and degraded. The superoxide dismutase (SOD)/catalase mimetic (EUK-134) prevented the hypoxia-mediated keratin IF degradation as did the overexpression of SOD1 but not of SOD2. Accordingly, we provide evidence that hypoxia promotes the disassembly and degradation of the keratin IF network via mitochondrial complex III-generated reactive oxygen species.-Na, N., Chandel, N. S., Litvan, J., Ridge, K. M. Mitochondrial reactive oxygen species are required for hypoxia-induced degradation of keratin intermediate filaments. PMID:19897662

Na, Ni; Chandel, Navdeep S; Litvan, Juan; Ridge, Karen M

2010-03-01

214

Application of exogenous mixture of glutathione and stable isotope labeled glutathione for trapping reactive metabolites in cryopreserved human hepatocytes. Detection of the glutathione conjugates using high resolution accurate mass spectrometry.  

PubMed

Metabolites (including reactive metabolites) of troglitazone were generated by incubation with cryopreserved human hepatocytes and trapped in the presence of an exogenous mixture of unlabeled and stable isotope labeled (SIL: [1,2-(13)C, (15)N]-glycine) glutathione (GSH/SIL-GSH). The incubation samples were analyzed using liquid chromatography-high resolution accurate mass spectrometry (LC-HRAMS) implemented on a LTQ Orbitrap mass spectrometer. The GSH conjugates of the reactive metabolites were detected via a characteristic mono-isotopic pattern (peaks separated by 3.0037u). Analysis of the incubation samples led to detection of a number of previously described GSH conjugates, as well as two novel methylated GSH conjugates, which were partially characterized based on accurate mass measurements and MS/MS data. The addition of exogenous GSH led to an increase in the apparent level of detected GSH conjugates. Kinetic isotopic measurements showed that the rates of incorporation of exogenous GSH are conjugate-specific. In conclusion, this approach, based on the use of a mixture of GSH/SIL-GSH, allows facile capture and detection of reactive metabolites in human hepatocytes. Moreover, the data suggest that routine addition of glutathione to the assay medium may be advisable for experiments with cryopreserved hepatocytes. PMID:23747843

Mezine, Igor; Bode, Chris; Raughley, Bethany; Bhoopathy, Sid; Roberts, Kenneth J; Owen, Albert J; Hidalgo, Ismael J

2013-08-25

215

Characterization and re-activation of oxygen sensors for use in liquid lead-bismuth  

NASA Astrophysics Data System (ADS)

Control of oxygen concentration in liquid lead-bismuth is one of the most important tasks to develop accelerator driven systems. In order to improve the reliability of oxygen sensors, re-activation treatments were investigated as well as characterization of oxygen sensors for use in liquid lead-bismuth. The oxygen sensor with a solid electrolyte of yttria-stabilized zirconia and a Pt/gas reference electrode showed almost the same electromotive force values in gas and liquid lead-bismuth, respectively, as the theoretical ones at temperatures above 400 °C or 450 °C. After long-term use of 6500 h, the outputs of the sensor became incorrect in liquid lead-bismuth. The state of the sensor that indicated incorrect outputs could not be recovered by cleaning with a nitric acid. However, it was found that the oxygen sensor became a correct sensor indicating theoretical values in liquid lead-bismuth after re-activation by the Pt-treatment of the outer surface of the sensor.

Kurata, Yuji; Abe, Yuji; Futakawa, Masatoshi; Oigawa, Hiroyuki

2010-03-01

216

Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics  

SciTech Connect

The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The ?s temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

Vitelaru, Catalin [Laboratoire the Physique de Gaz et Plasmas, UMR 8578 CNRS, Université Paris-Sud, Orsay Cedex 91405 (France) [Laboratoire the Physique de Gaz et Plasmas, UMR 8578 CNRS, Université Paris-Sud, Orsay Cedex 91405 (France); National Institute for Optoelectronics, Magurele-Bucharest, RO 077125 (Romania); Lundin, Daniel [Laboratoire the Physique de Gaz et Plasmas, UMR 8578 CNRS, Université Paris-Sud, Orsay Cedex 91405 (France) [Laboratoire the Physique de Gaz et Plasmas, UMR 8578 CNRS, Université Paris-Sud, Orsay Cedex 91405 (France); Division of Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology, Stockholm, SE-100 44 (Sweden); Brenning, Nils [Division of Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology, Stockholm, SE-100 44 (Sweden)] [Division of Space and Plasma Physics, School of Electrical Engineering, Royal Institute of Technology, Stockholm, SE-100 44 (Sweden); Minea, Tiberiu [Laboratoire the Physique de Gaz et Plasmas, UMR 8578 CNRS, Université Paris-Sud, Orsay Cedex 91405 (France)] [Laboratoire the Physique de Gaz et Plasmas, UMR 8578 CNRS, Université Paris-Sud, Orsay Cedex 91405 (France)

2013-09-02

217

Annato extract and ?-carotene modulate the production of reactive oxygen species/nitric oxide in neutrophils from diabetic rats  

PubMed Central

Annatto has been identified as carotenoids that have antioxidative effects. It is well known that one of the key elements in the development of diabetic complications is oxidative stress. The immune system is especially vulnerable to oxidative damage because many immune cells, such as neutrophils, produce reactive oxygen species and reactive nitrogen species as part of the body’s defense mechanisms to destroy invading pathogens. Reactive oxygen species/reactive nitrogen species are excessively produced by active peripheral neutrophils, and may damage essential cellular components, which in turn can cause vascular complications in diabetes. The present study was undertaken to evaluate the possible protective effects of annatto on the reactive oxygen species and nitric oxide (NO) inhibition in neutrophils from alloxan-induced diabetic rats. Adult female rats were divided into six groups based on receiving either a standard diet with or without supplementation of annatto extract or beta carotene. All animals were sacrificed 30 days after treatment and the neutrophils were isolated using two gradients of different densities. The reactive oxygen species and NO were quantified by a chemiluminescence and spectrophotometric assays, respectively. Our results show that neutrophils from diabetic animals produce significantly more reactive oxygen species and NO than their respective controls and that supplementation with beta carotene and annatto is able to modulate the production of these species. Annatto extract may have therapeutic potential for modulation of the balance reactive oxygen species/NO induced by diabetes.

Rossoni-Junior, Joamyr Victor; Araujo, Glaucy Rodrigues; Padua, Bruno da Cruz; Chaves, Miriam Martins; Pedrosa, Maria Lucia; Silva, Marcelo Eustaquio; Costa, Daniela Caldeira

2012-01-01

218

The glomerulosclerosis gene Mpv17 encodes a peroxisomal protein producing reactive oxygen species.  

PubMed

The mutant mouse strain Mpv17 carries a retroviral insert in its genome which inactivates the Mpv17 gene. At a young age these mice develop glomerulosclerosis and nephrotic syndrome which resembles human disease. We show here that the Mpv17 gene product is highly conserved and encodes a peroxisomal protein. Loss of the Mpv17 protein does not impair peroxisome biogenesis but instead leads to a reduced ability to produce reactive oxygen species (ROS). In turn, overproduction of the Mpv17 gene in transfected cells results in dramatically enhanced levels of intracellular ROS indicating a direct involvement of Mpv17 in ROS production. These data reveal a role for the Mpv17 protein in peroxisomal reactive oxygen metabolism and establish a novel link between peroxisomal ROS production and glomerulosclerosis. PMID:7957077

Zwacka, R M; Reuter, A; Pfaff, E; Moll, J; Gorgas, K; Karasawa, M; Weiher, H

1994-11-01

219

The glomerulosclerosis gene Mpv17 encodes a peroxisomal protein producing reactive oxygen species.  

PubMed Central

The mutant mouse strain Mpv17 carries a retroviral insert in its genome which inactivates the Mpv17 gene. At a young age these mice develop glomerulosclerosis and nephrotic syndrome which resembles human disease. We show here that the Mpv17 gene product is highly conserved and encodes a peroxisomal protein. Loss of the Mpv17 protein does not impair peroxisome biogenesis but instead leads to a reduced ability to produce reactive oxygen species (ROS). In turn, overproduction of the Mpv17 gene in transfected cells results in dramatically enhanced levels of intracellular ROS indicating a direct involvement of Mpv17 in ROS production. These data reveal a role for the Mpv17 protein in peroxisomal reactive oxygen metabolism and establish a novel link between peroxisomal ROS production and glomerulosclerosis. Images

Zwacka, R M; Reuter, A; Pfaff, E; Moll, J; Gorgas, K; Karasawa, M; Weiher, H

1994-01-01

220

Small-molecule screen identifies reactive oxygen species as key regulators of neutrophil chemotaxis  

PubMed Central

Neutrophil chemotaxis plays an essential role in innate immunity, but the underlying cellular mechanism is still not fully characterized. Here, using a small-molecule functional screening, we identified NADPH oxidase–dependent reactive oxygen species as key regulators of neutrophil chemotactic migration. Neutrophils with pharmacologically inhibited oxidase, or isolated from chronic granulomatous disease (CGD) patients and mice, formed more frequent multiple pseudopodia and lost their directionality as they migrated up a chemoattractant concentration gradient. Knocking down NADPH oxidase in differentiated neutrophil-like HL60 cells also led to defective chemotaxis. Consistent with the in vitro results, adoptively transferred CGD murine neutrophils showed impaired in vivo recruitment to sites of inflammation. Together, these results present a physiological role for reactive oxygen species in regulating neutrophil functions and shed light on the pathogenesis of CGD.

Hattori, Hidenori; Subramanian, Kulandayan K.; Sakai, Jiro; Jia, Yonghui; Li, Yitang; Porter, Timothy F.; Loison, Fabien; Sarraj, Bara; Kasorn, Anongnard; Jo, Hakryul; Blanchard, Catlyn; Zirkle, Dorothy; McDonald, Douglas; Pai, Sung-Yun; Serhan, Charles N.; Luo, Hongbo R.

2010-01-01

221

DNA Oxidation by Reactive Oxygen Species Produced by Atmospheric Pressure Microplasmas  

NASA Astrophysics Data System (ADS)

Arrays of microcathode sustained discharges (MCSD's) have been ­developed for the production of high fluxes of singlet delta oxygen (SDO) and ozone (O3) at atmospheric pressure. SDO and O3 densities higher than 1017 and 1016 cm-3, respectively, have been efficiently produced and transported over distances longer than 50 cm. These arrays of MCSD's have been optimized to supply well-quantified and tunable fluxes of either SDO or O3. This plasma source has been found to be very useful for examining the reactivity of these reactive oxygen species with biological components. Preliminary results indicate that both SDO and O3 are able to oxidize DNA, originating great damages in DNA such as single- and double-strand breaks and base oxidation. It has been observed that while all bases of DNA are almost indifferently and quite effectively oxidized by O3, SDO reacts mainly with guanine.

Sousa, Joao Santos; Girard, Pierre-Marie; Sage, Evelyne; Ravanat, Jean-Luc; Puech, Vincent

222

Probing oxidative stress: Small molecule fluorescent sensors of metal ions, reactive oxygen species, and thiols  

PubMed Central

Oxidative stress is a common feature shared by many diseases, including neurodegenerative diseases. Factors that contribute to cellular oxidative stress include elevated levels of reactive oxygen species, diminished availability of detoxifying thiols, and the misregulation of metal ions (both redox-active iron and copper as well as non-redox active calcium and zinc). Deciphering how each of these components interacts to contribute to oxidative stress presents an interesting challenge. Fluorescent sensors can be powerful tools for detecting specific analytes within a complicated cellular environment. Reviewed here are several classes of small molecule fluorescent sensors designed to detect several molecular participants of oxidative stress. We focus our review on describing the design, function and application of probes to detect metal cations, reactive oxygen species, and intracellular thiol-containing compounds. In addition, we highlight the intricacies and complications that are often faced in sensor design and implementation.

Hyman, Lynne M.; Franz, Katherine J.

2013-01-01

223

Reactive oxygen species mediate pollen tube rupture to release sperm for fertilization in Arabidopsis.  

PubMed

In flowering plants, sperm are transported inside pollen tubes to the female gametophyte for fertilization. The female gametophyte induces rupture of the penetrating pollen tube, resulting in sperm release and rendering them available for fertilization. Here we utilize the Arabidopsis FERONIA (FER) receptor kinase mutants, whose female gametophytes fail to induce pollen tube rupture, to decipher the molecular mechanism of this critical male-female interactive step. We show that FER controls the production of high levels of reactive oxygen species at the entrance to the female gametophyte to induce pollen tube rupture and sperm release. Pollen tube growth assays in vitro and in the pistil demonstrate that hydroxyl free radicals are likely the most reactive oxygen molecules, and they induce pollen tube rupture in a Ca(2+)-dependent process involving Ca(2+) channel activation. Our results provide evidence for a RHO GTPase-based signalling mechanism to mediate sperm release for fertilization in plants. PMID:24451849

Duan, Qiaohong; Kita, Daniel; Johnson, Eric A; Aggarwal, Mini; Gates, Laura; Wu, Hen-Ming; Cheung, Alice Y

2014-01-01

224

Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B 1  

Microsoft Academic Search

Accumulating evidence demonstrates that oxidative damage is one of the underlying mechanisms to the cytotoxicity and carcinogenicity of AFB1. The main objective of this study is to show that AFB, increases reactive oxygen species (ROS) formation in hepatocytes. The ROS level was detected using a fluorescence probe, 2?,7?-dichlorofluorescin diacetate (DCFH-DA), which could be converted to highly fluorescent dichlorofluorescein (DCF) with

Han-Ming Shen; Chen-Yang Shi; Yi Shen; Choon-Nam Ong

1996-01-01

225

PhénobarbitalEnhances the Formation of Reactive Oxygen in Neoplastic Rat Liver Nodules1  

Microsoft Academic Search

The effect of treatment of rats with the liver monooxygenase inducer phénobarbital on the formation of reactive oxygen in neoplastic liver nodules and the surrounding normal tissue was investigated. Liver nodules were induced by treatment of rats with diethylnitrosamine (single i.p. injection of 0.15 ¿tmol\\/kg body weight on day 1 after birth) followed by chronic administration of phénobarbital-sodium (PB; 0.05%

Werner Scholz; Werner Kun; Michael Schwarz

226

Differential production of reactive oxygen species by subsets of human spermatozoa at different stages of maturation  

Microsoft Academic Search

BACKGROUND: Reactive oxygen species (ROS)-mediated damage to human spermatozoa has been implicated in the pathogenesis of male infertility. Although ROS production by human spermatozoa has been extensively studied, the cell-to-cell variation in ROS production by spermatozoa at different stages of maturation has never been investigated. METHODS: In this study, we determined ROS production by subsets of human spermatozoa at different

E. Gil-Guzman; M. Ollero; M. C. Lopez; R. K. Sharma; J. G. Alvarez; A. J. Thomas; A. Agarwal

2001-01-01

227

Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity  

Microsoft Academic Search

Silver ions have been widely used as disinfectants that inhibit bacterial growth by inhibiting the essential enzymatic functions of the microorganism via interaction with the thiol-group of l-cysteine. However, silver-ion-mediated perturbation of the bacterial respiratory chain has raised the possibility of reactive oxygen species (ROS) generation. We used bacterial reporter strains specifically responding to superoxide radicals and found that silver-ion-mediated

Hee-Jin Park; Jee Yeon Kim; Jaeeun Kim; Joon-Hee Lee; Ji-Sook Hahn; Man Bock Gu; Jeyong Yoon

2009-01-01

228

Inhibitory phlorotannins from the edible brown alga ecklonia stolonifera on total reactive oxygen species (ROS) generation  

Microsoft Academic Search

Reactive oxygen species (ROS) play an important role in the pathogenesis of many human degenerative diseases such as cancer,\\u000a aging, arteriosclerosis, and rheumatism. Much attention has been focused on the development of safe and effective antioxidants.\\u000a To discover sources of antioxidative activity in marine algae, extracts from 17 kinds of seaweed were screened for their inhibitory\\u000a effect on total ROS

Hye Sook Kang; Hae Young Chung; Ji Young Kim; Byeng Wha Son; Hyun Ah Jung; Jae Sue Choi

2004-01-01

229

Modification of reactive oxygen species scavenging capacity of chloroplasts through plastid transformation  

Microsoft Academic Search

Reactive oxygen species (ROS), including superoxide anions, hydrogen peroxide and hydroxyl radicals are generated through\\u000a normal biochemical processes, but their production is increased by abiotic stresses. The prospects for enhancing ROS scavenging,\\u000a and hence stress tolerance, by direct gene expression in a vulnerable cell compartment, the chloroplast, have been explored\\u000a in tobacco. Several plastid transformants were generated which contained either

Miranda Poage; Bénédicte Le Martret; Marcel A. K. Jansen; Gregory D. Nugent; Philip J. Dix

2011-01-01

230

Reactive Oxygen Species in Molecular Pathways Controlling Aging in the Filamentous Fungus Podospora anserina  

Microsoft Academic Search

\\u000a To generate ATP via different types of respiration, the impact of reactive oxygen species (ROS) as by-products generated at\\u000a the inner mitochondrial membrane is well analyzed and documented. Moreover, other pathways of ROS generation seem to be of\\u000a relevance, but they are currently less explored. It now seems that ROS not only play a key role in the age-related damaging

Heinz D. Osiewacz; Christian Q. Scheckhuber

231

Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance?  

Microsoft Academic Search

Reactive oxygen intermediates (ROIs) such as hydrogen peroxide (H2O2) and the superoxide anion radical (O2·m) accumulate in many plants during attack by microbial pathogens. Despite a huge number of studies, the complete picture of the role of ROIs in the host-pathogen interaction is not yet fully understood. This situation is reflected by the controversially discussed question as to whether ROIs

Ralph Hückelhoven; Karl-Heinz Kogel

2003-01-01

232

The antioxidant action of Polypodium leucotomos extract and kojic acid: reactions with reactive oxygen species  

Microsoft Academic Search

Two natural products Polypodium leucotomos extract (PL) and kojic acid (KA) were tested for their ability to scavenge reactive oxygen species ( OH, O2 -, H2O2, 1O2) in phosphate buffer. Hydroxyl radicals were generated by the Fenton reaction, and the rate constants of scavenging were 1.6 x 109 M-1 s-1 for KA and 1.0 x 109 M-1 s-1 for PL,

A. J. Gomes; C. N. Lunardi; S. Gonzalez; A. C. Tedesco

2001-01-01

233

Role of hyaluronan and CD44 in reactive oxygen species-induced mucus hypersecretion  

Microsoft Academic Search

Mucus hypersecretion is an important manifestation in patients with chronic inflammatory airway diseases. Mucin 5AC (MUC5AC)\\u000a is a major component of airway mucus. MUC5AC expression is regulated by epidermal growth factor receptor (EGFR) which can\\u000a be activated by reactive oxygen species (ROS). Hyaluronan (HA), a linear glycosaminoglycan with molecular weights ranging\\u000a from 2 × 105 to 1 × 107, is expressed in airway epithelium

Hongmei Yu; Qi Li; Xiangdong Zhou; Victor P. Kolosov; Juliy M. Perelman

2011-01-01

234

Epidermal growth factor rescues trophoblast apoptosis induced by reactive oxygen species  

Microsoft Academic Search

Pre-eclampsia and intrauterine growth restriction are associated with increased apoptosis of placental villous trophoblast.\\u000a This may result from placental hypoperfusion, leading to the generation of reactive oxygen species (ROS). Apoptosis can be\\u000a induced in villous trophoblast following exposure to oxidative stress. Epidermal growth factor (EGF) reduces trophoblast apoptosis\\u000a resulting from exposure to hypoxia. We hypothesised that exposure to hydrogen peroxide,

Sarah J. Moll; Carolyn J. P. Jones; Ian P. Crocker; Philip N. Baker; Alexander E. P. Heazell

2007-01-01

235

Effect of Brazilian green propolis on the production of reactive oxygen species by stimulated neutrophils  

Microsoft Academic Search

The activity of a crude ethanol extract of green propolis and its fractions obtained by partition with hexane, chloroform and n-butanol was assessed on luminol- and lucigenin- enhanced chemiluminescence (CL) produced by rabbit neutrophils (PMNs) stimulated with particles of serum-opsonized zymosan (OZ). The total production of reactive oxygen species (ROS) by PMNs was measured by the luminol-enhanced CL (LumCL) assay

L. M. C Simões; L. E Gregório; A. A Da Silva Filho; M. L de Souza; A. E. C. S Azzolini; J. K Bastos; Y. M Lucisano-Valim

2004-01-01

236

Concentration of reactive oxygen species (ROS) in mainstream and sidestream cigarette smoke  

Microsoft Academic Search

Reactive Oxygen Species (ROS) have been related to adverse health effects in recent years. Previous studies have reported ROS concentrations in mainstream smoke, but the reports have shown considerable variability and conclusions. There have been no prior measurements on sidestream smoke. In this study, the amounts of gas-phase and particle-bound ROS in tobacco smoke were determined using 2,7-dichlorodihydrofluorescein diacetate (DCFH)

Jiayuan Zhao; Philip K. Hopke

2011-01-01

237

Concentration of Reactive Oxygen Species (ROS) in Mainstream and Sidestream Cigarette Smoke  

Microsoft Academic Search

Reactive oxygen species (ROS) have been related to adverse health effects in recent years. Previous studies have reported ROS concentrations in mainstream smoke, but the reports have shown considerable variability and conclusions. There have been no prior measurements on sidestream smoke. In this study, the amounts of gas-phase and particle-bound ROS in tobacco smoke were determined using 2?,7?-dichlorodihydrofluorescin diacetate (DCFH-DA)

Jiayuan Zhao; Philip K. Hopke

2012-01-01

238

Upregulation of Endothelial and Inducible Nitric Oxide Synthase Expression by Reactive Oxygen Species  

Microsoft Academic Search

BackgroundThe effect of reactive oxygen species (ROS) on nitric oxide synthase (NOS) expression remains uncertain. This study explored the effect of increased ROS activity on NOS expression in vitro in human coronary artery endothelial cells (HCAECs) grown in culture and in intact animals.MethodsEndothelial NOS (eNOS) expression and nuclear factor ?B (NF?B) activation were determined in HCAECs grown in culture and

Junhui Zhen; Hua Lu; Xiu Q Wang; Nosratola D Vaziri; Xin J Zhou

2008-01-01

239

Effect of heavy metal ions on the release of reactive oxygen intermediates by bovine alveolar macrophages  

Microsoft Academic Search

Short-term incubations of bovine alveolar macrophages (BAM) with metal-containing dusts induce the release of reactive oxygen intermediates (ROI). Incubations of BAM (90 min) with dissolved metal compounds (0.1–100 ?M) combined with quartz dusts were performed to investigate the effects of single elements on BAM stimulation. As(III), as well as the calcium antagonists, Ni(II) and Ce(III), inhibited the secretion of Superoxide

Thomas Schlüter; Ingeborg Berg; Martina Dörger; Günther Gercken

1995-01-01

240

Diphenyleneiodonium, an NAD(P)H Oxidase Inhibitor, also Potently Inhibits Mitochondrial Reactive Oxygen Species Production  

Microsoft Academic Search

Diphenyleneiodonium (DPI) has frequently been used to inhibit reactive oxygen species (ROS) production mediated by flavoenzymes, particularly NAD(P)H oxidase. This study was undertaken to examine if DPI could also inhibit production of superoxide and H2O2by mitochondria, the major source of cellular ROS. Detection of mitochondrial superoxide by lucigenin-derived chemiluminescence (CL) with unstimulated monocytes\\/macrophages showed that DPI at concentrations that inhibit

Yunbo Li; Michael A. Trush

1998-01-01

241

Protein Kinase D Mediates Mitochondrion-to-Nucleus Signaling and Detoxification from Mitochondrial Reactive Oxygen Species  

Microsoft Academic Search

Efficient elimination of mitochondrial reactive oxygen species (mROS) correlates with increased cellular survival and organism life span. Detoxification of mitochondrial ROS is regulated by induction of the nuclear SOD2 gene, which encodes the manganese-dependent superoxide dismutase (MnSOD). However, the mecha- nisms by which mitochondrial oxidative stress activates cellular signaling pathways leading to induction of nuclear genes are not known. Here

Peter Storz; Heike Doppler; Alex Toker

2005-01-01

242

Differential Reactivity of [beta]-Carotene Isomers from Dunaliella bardawil Toward Oxygen Radicals.  

PubMed Central

Dunaliella bardawil accumulates massive amounts of [beta]-carotene in two isoforms, a 9-cis and an all-trans stereoisomer, when grown under high irradiance, as a means to protect the cells against photoinhibition (A. Ben-Amotz, A. Shaish, M. Avron [1989] Plant Physiol 91: 1040-1043). The purpose of this work has been to find out if the mechanism of protection involves scavenging of reactive oxygen species. For this purpose high- and low-[beta]-carotene-containing cells were compared with respect to their sensitivity to several external oxidants [H2O2, methyl viologen, rose bengal, and 2,2[prime]-azobis(2-amidinopropane)HCl]. All oxidants induce a light-stimulated degradation of [beta]-carotene and of chlorophyll. The degradation of [beta]-carotene precedes that of chlorophyll, indicating that it is more reactive toward oxidants. The 9-cis [beta]-carotene is degraded faster than the all-trans stereoisomer when exposed to oxidants, both in intact cells and in isolated [beta]-carotene globules, indicating that it is a more effective scavenger of reactive oxygen species. Comparison of the sensitivity to different oxidants, between high- and low-[beta]-carotene-containing cells, reveals similar rates of chlorophyll and [beta]-carotene degradation in the two populations. Survival tests toward H2O2 and rose bengal show that high-[beta]-carotene cells have a similar sensitivity toward H2O2 but are more resistant toward rose bengal, a photoactivated generator of singlet oxygen, possibly due to masking of the latter by [beta]-carotene. These results suggest that the protection mechanism of massively accumulated [beta]-carotene in Dunaliella against photoinhibition is not due to scavenging of reactive oxygen species.

Jimenez, C.; Pick, U.

1993-01-01

243

Cellular mechanisms and treatment of diabetes vascular complications converge on reactive oxygen species  

Microsoft Academic Search

High glucose activates a myriad of signaling and gene expression pathways in non-insulin-dependent target cells causing diabetes\\u000a complications. One of the earliest responses to high glucose by vascular cells is the generation of reactive oxygen species\\u000a (ROS) that act directly on intracellular proteins and DNA, or indirectly as second messengers, transforming these cells into\\u000a disease phenotypes. ROS are produced by

Catharine I. Whiteside

2005-01-01

244

Enhancement of NADP-malic enzyme in transgenic rice induced the accumulation of reactive oxygen species  

Microsoft Academic Search

It had been demonstrated that the photosynthetic photodamage, such as photoinhibition and photooxidation, was enhanced in\\u000a transgenic rice plants overexpressing NADP-malic enzyme (ME). However, its physiological base has not been investigated. In\\u000a order to elucidate the physiological elements contributed to the enhancement of photodamage in NADP-ME transgenic rice plants,\\u000a some physiological indices related to reactive oxygen species (ROS) accumulation were

Wei Chi

2006-01-01

245

Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues  

Microsoft Academic Search

.   Many environmental conditions subject plants to oxidative stress, in which reactive oxygen species (ROS) are overproduced.\\u000a These ROS act as transduction signals in plant defense responses, but also cause effects that result in cellular damage. Since\\u000a nitric oxide (NO) is a bioactive molecule able to scavenge ROS, we analyzed its effect on some cytotoxic processes produced\\u000a by ROS in

María Verónica Beligni; Lorenzo Lamattina

1999-01-01

246

Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond.  

PubMed

Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles. PMID:23802986

Vatansever, Fatma; de Melo, Wanessa C M A; Avci, Pinar; Vecchio, Daniela; Sadasivam, Magesh; Gupta, Asheesh; Chandran, Rakkiyappan; Karimi, Mahdi; Parizotto, Nivaldo A; Yin, Rui; Tegos, George P; Hamblin, Michael R

2013-11-01

247

Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces  

SciTech Connect

The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The catalytic activity of platinum monolayers supported on close-packed transition metal surfaces (Au(111), Pt(111), Pd(111) and Ir(111)) is investigated for the oxygen reduction reaction (ORR) by generating free energy diagrams and performing Sabatier analysis based on periodic, self-consistent density functional theory (DFT) calculations. Three different ORR mechanisms, involving direct or hydrogen assisted activation of O?, are considered. At the ORR equilibrium potential of 1.23 V, the reactivity of all surfaces is shown to be limited by the rate of OH removal from the surface. At a cell potential of 0.80 V, the ORR reactivity of different surfaces is dictated by the strength of oxygen adsorption, with OH removal via hydrogenation and O–O bond scission in either O?, O?H or H?O? being the rate-limiting steps for surfaces with stronger and weaker oxygen binding, respectively. Among the surfaces studied, Pt monolayer on a Pd(111) substrate shows the highest reactivity and is more active than Pt(111). These results are in excellent agreement with our earlier experimental and theoretical work, which was based on a simpler model for the ORR.

Nilekar, Anand U.; Mavrikakis, Manos

2008-07-15

248

Binding of oxygen on vacuum fractured pyrite surfaces: Reactivity of iron and sulfur surface sites  

NASA Astrophysics Data System (ADS)

Synchrotron radiation excited photoelectron spectroscopy (SXPS) has been used to study the interaction of oxygen with vacuum fractured pyrite surfaces. Especially valence band spectra obtained with 30 eV photon energy were analyzed to provide a mechanism of the incipient steps of pyrite oxidation. These spectra are far more sensitive to the oxidation than sulfur or iron core level spectra. It is shown that oxygen is adsorbed on Fe(II) surface sites restoring the octahedral coordination of the Fe(II) sites. This process leads to the removal of two surface states in the valence band which are located at the low and high binding energy sides of the outer valence band, respectively. The existence of these surface states which have been proposed by calculations is experimentally proven. Furthermore, it is shown, that the sulfur sites are more reactive than expected. Sulfite like species are already formed after the lowest oxygen exposure of 10 L. This oxidation occurs at sulfur sites neighboring the Fe(II) surface sites. Oxidation of the S2 - surface sites which were considered as the most reactive species in former studies is second. No iron(III) oxides are formed during oxygen exposure, supporting the assumption that water plays an important role in the oxidation mechanism of pyrite surfaces.

Berlich, A. G.; Nesbitt, H. W.; Bancroft, G. M.; Szargan, R.

2013-05-01

249

TCDD as a biological response modifier for Mitomycin C: oxygen tension affects enzyme activation, reactive oxygen species and cell death.  

PubMed

TCDD was assessed as a biological response modifier for increasing MMC cytotoxicity through aryl hydrocarbon receptor (AhR) activation and increasing levels of bioreductive enzymes. Human MCF-7 cells were exposed to TCDD, MMC and combinations thereof under aerobic or hypoxic conditions. Cytotoxicity, enzyme activities (NQO1, XO, XDH, CYPR, CYP1A, GST and UGT) and intracellular reactive oxygen species (ROS) were subsequently measured. Under aerobic conditions, TCDD alone had no significant toxicity but combinations of TCDD and MMC significantly increased cell death. LD50 values were: MMC alone, 0.89 +/- 0.04 microM; TCDD co-treatment, 0.26 +/- 0.007 microM (P = 0.008 vs. MMC alone) and TCDD pre-treatment, 0.04 +/- 0.01 microM (P = 0.003 vs. MMC alone). Under hypoxia, TCDD itself caused significant cell death, likely due to increased ROS, but no combinations of MMC/TCDD altered the LD50 of MMC. Significant changes in enzyme activities were caused by TCDD under aerobic but not hypoxic conditions while MMC decreased the activity of its activating enzymes regardless of oxygen tension. Greater toxicity of MMC/TCDD combinations in aerobic culture, were most likely mediated by increased levels of bioreductive enzymes caused through AhR activation. Data presented herein also demonstrate that low oxygen tension decreases AhR activation and signaling and increases the inherent toxicity of TCDD. PMID:16226770

Collier, Abby C; Pritsos, Karen L; Pritsos, Chris A

2006-02-23

250

[Reactive oxygen forms and Ca ions as possible intermediaries under the induction of heat resistance of plant cells by jasmonic acid].  

PubMed

The participation of reactive oxygen species (ROS) and calcium ions in realization of influence of exogenous jasmonic acid (JA) on the heat resistance of wheat coleoptiles has been investigated. Influence of 1 microM JA caused the transitional intensifying of generation of superoxide anion-radical (O2*-) and hydrogen peroxide in coleoptiles with the maximum within 15-30 minutes after the treatment beginning. Within the first hour after the beginning of coleoptiles treatment with JA the increase of superoxide dismutase (SOD) activity was noted. Later on (within 5-24 hours after the treatment beginning) there was the lowering of ROS generation by coleoptiles of experimental variant, and the SOD activity approached the control value. Intensifying of generation of superoxide radical induced by JA was suppressed by the antioxidant ionol and was partially levelled by imidazole (inhibitor of NADPH-oxidase), EGTA (chelator of extracellular calcium) and lanthanum chloride (calcium channels blocker). Pretreatment of coleoptiles with the ionol, imidazole, EGTA and LaC3l3 also partially removed the effect of increase of their resistance to the damaging heating caused by exogenous JA. It is supposed that the ROS generated with participation NADPH-oxidase, which activity depends on the receipt of calcium ions from extracellular space in the cytosol, are involved in realization of physiological effects of JA. PMID:23937049

Karpets, Iu V; Kolupaev, Iu E; Iastreb, T O; Obozny?, A I; Shvidenko, N V; Lugovaia, A A; Va?ner, A A

2013-01-01

251

Fabricating TiO2 Photocatalysts by rf Reactive Magnetron Sputtering at Varied Oxygen Partial Pressures  

NASA Astrophysics Data System (ADS)

Titanium dioxide (TiO2) thin films were fabricated onto non-alkali glass substrates by rf reactive magnetron sputtering at room temperature using Ti-metal target at varied oxygen partial pressure [O2/(Ar + O2)]. The sputtering deposition was performed under an rf power of 200 W. The target to substrate distance was kept at 80 mm, and the total gas pressure was 10 mTorr after 2 h of deposition. It was found that the crystalline structure, surface morphology, and photocatalytic activities of the TiO2 thin films were affected by the oxygen partial pressure during deposition. The XRD patterns exhibited a broad-hump shape indicating the amorphous structure of TiO2 thin films. The thin films deposited at a relatively high value of oxygen partial pressure (70%) had a good photo-induced decomposition of methylene blue (MB), photo-induced hydrophilicity, and had a small grain size.

Lin, W. S.; Kao, L. M.; Li, W. P.; Hsu, C. Y.; Hou, K. H.

2011-08-01

252

Ligand-Enhanced Reactive Oxidant Generation by Nanoparticulate Zero-Valent Iron and Oxygen  

PubMed Central

The reaction of zero-valent iron or ferrous iron with oxygen produces reactive oxidants capable of oxidizing organic compounds. However, the oxidant yield in the absence of ligands is too low for practical applications. The addition of oxalate, nitrilotriacetic acid (NTA), or ethylenediaminetetraacetic acid (EDTA) to oxygen-containing solutions of nanoparticulate zero-valent iron (nZVI) significantly increases oxidant yield, with yields approaching their theoretical maxima near neutral pH. These ligands improve oxidant production by limiting iron precipitation and by accelerating the rates of key reactions, including ferrous iron oxidation by oxygen and hydrogen peroxide. Product yields indicate that the oxic nZVI system produces hydroxyl radical (OH·) over the entire pH range in the presence of oxalate and NTA. In the presence of EDTA, probe compound oxidation is attributed to OH· under acidic conditions and a mixture of OH· and ferryl ion (Fe[IV]) at circumneutral pH.

Keenan, Christina R.; Sedlak, David L.

2009-01-01

253

Effect of oxygen deficiency on the photoresponse and reactivity of mixed phase titania thin films  

SciTech Connect

Nonstoichiometric mixed phased titania nanocomposites (TiO{sub 2-x}) were deposited by reactive direct current magnetron sputtering. The authors explored the role of nonstoichiometry (as defined by oxygen deficiency in synthesis) in mixed phase titania thin films and its effects on the photoresponse and photocatalytic performance for CO{sub 2} reduction to methane under UV and visible light. Oxygen partial pressure was varied during film deposition, yielding different levels of oxygen deficiency in the films. Optimized nonstoichiometric films showed a strong redshift. The authors have identified an optimum set of synthesis conditions for TiO{sub 2-x} films that produce a relative maximum in photocatalytically produced methane under both UV and visible light.

DeSario, Paul A.; Chen Le; Graham, Michael E.; Gray, Kimberly A. [Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States); Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208 (United States); Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208 (United States)

2011-05-15

254

Green Tea Polyphenols Potentiate the Action of Nerve Growth Factor to Induce Neuritogenesis: Possible Role of Reactive Oxygen Species  

PubMed Central

Exogenously administered nerve growth factor (NGF) repairs injured axons, but it does not cross the blood-brain barrier. Thus, agents that could potentiate the neuritogenic ability of endogenous NGF would be of great utility in treating neurological injuries. Using the PC12 cell model, here we show that unfractionated green tea polyphenols (GTPP) at low concentrations (0.1 ?g/ml) potentiate the ability of low concentrations of NGF (2 ng/ml) to induce neuritogenesis at a level comparable to that induced by optimally high concentrations of NGF (50 ng/ml) alone. In our experiments, GTPP by itself did not induce neuritogenesis or increase immunofluorescent staining for ?-tubulin III; however, it increased expression of mRNA and proteins for the neuronal markers neurofilament-L and GAP-43. Among the polyphenols present in GTPP, epigallocatechin-3-gallate (EGCG) alone appreciably potentiated NGF-induced neurite outgrowth. Although other polyphenols present in GTPP, particularly epigallocatechin and epicatechin, lack this activity, they synergistically promoted this action of EGCG. GTPP also induced an activation of extracellular signal-regulated kinases (ERKs). PD98059, an inhibitor of the ERK pathway, blocked the expression of GAP-43. K252a, an inhibitor of TrkA-associated tyrosine kinase, partially blocked the expression of these genes and ERK activation. Antioxidants, catalase (cell-permeable form) and N-acetylcysteine (both L and D-forms) inhibited these events and abolished GTPP potentiation of NGF-induced neuritogenesis. Taken together, these results show for the first time that GTPP potentiates NGF-induced neuritogenesis likely through the involvement of sublethal levels of reactive oxygen species and suggest that unfractionated GTPP is more effective in this respect than its fractionated polyphenols.

Gundimeda, Usha; McNeill, Thomas H.; Schiffman, Jason E.; Hinton, David R.; Gopalakrishna, Rayudu

2010-01-01

255

Reactive Oxygen Species Homeostasis and Virulence of the Fungal Pathogen Cryptococcus neoformans Requires an Intact Proline Catabolism Pathway  

PubMed Central

Degradation of the multifunctional amino acid proline is associated with mitochondrial oxidative respiration. The two-step oxidation of proline is catalyzed by proline oxidase and ?1-pyrroline-5-carboxylate (P5C) dehydrogenase, which produce P5C and glutamate, respectively. In animal and plant cells, impairment of P5C dehydrogenase activity results in P5C-proline cycling when exogenous proline is supplied via the actions of proline oxidase and P5C reductase (the enzyme that converts P5C to proline). This proline is oxidized by the proline oxidase-FAD complex that delivers electrons to the electron transport chain and to O2, leading to mitochondrial reactive oxygen species (ROS) overproduction. Coupled activity of proline oxidase and P5C dehydrogenase is therefore important for maintaining ROS homeostasis. In the genome of the fungal pathogen Cryptococcus neoformans, there are two paralogs (PUT1 and PUT5) that encode proline oxidases and a single ortholog (PUT2) that encodes P5C dehydrogenase. Transcription of all three catabolic genes is inducible by the presence of proline. However, through the creation of deletion mutants, only Put5 and Put2 were found to be required for proline utilization. The put2? mutant also generates excessive mitochondrial superoxide when exposed to proline. Intracellular accumulation of ROS is a critical feature of cell death; consistent with this fact, the put2? mutant exhibits a slight, general growth defect. Furthermore, Put2 is required for optimal production of the major cryptococcal virulence factors. During murine infection, the put2? mutant was discovered to be avirulent; this is the first report highlighting the importance of P5C dehydrogenase in enabling pathogenesis of a microorganism.

Lee, I. Russel; Lui, Edmund Y. L.; Chow, Eve W. L.; Arras, Samantha D. M.; Morrow, Carl A.; Fraser, James A.

2013-01-01

256

DeoxyArbutin and its derivatives inhibit tyrosinase activity and melanin synthesis without inducing reactive oxygen species or apoptosis.  

PubMed

Safety is a major concern in developing commercial skin-lightening agents. Here, we report the modulating effects of deoxyArbutin (dA) and its second-generation derivatives - deoxyFuran (dF), 2-fluorodeoxyArbutin (fdA), and thiodeoxyArbutin (tdA) - on tyrosinase, and consequently, on melanization. Results demonstrate that dA and its derivatives inhibit tyrosine hydroxylase and dopa oxidase activity of tyrosinase. The inhibition is dose-dependent, thereby inhibiting melanin synthesis in intact melanocytes, when used at concentrations that retain 95% viability of the treated cells in culture. Herein we demonstrate that dA, and its second-generation derivatives dF, fdA, and tdA, exhibit dose-dependent reductions in melanocyte cell number, primarily due to inhibition of proliferation rather than initiation of apoptosis as exemplified by hydroquinone (HQ), ie, cytostatic as opposed to cytotoxic. Human and murine melanocytes with functional mutations in either tyrosinase or tyrosinase-related protein 1 (Tyrp1) are less sensitive to the cytostatic effects of dA and its derivatives. Minimal amounts of reactive oxygen species (ROS) were generated upon treatment with dA and its derivatives, in contrast to a dramatic amount of ROS induced by HQ. This increase in ROS subsequently induced the expression of the endogenous antioxidant catalase in treated melanocytes. Treatment with exogenous antioxidants provided protection for melanocytes treated with HQ, but not dA and its derivatives, suggesting that HQ exerts more oxidative stress. These studies demonstrate that dA and its derivatives are relatively safe tyrosinase inhibitors for skin lightening or for ameliorating hyperpigmented lesions. PMID:23134995

Chawla, Smita; Kvalnes, Kalla; deLong, Mitchell A; Wickett, Randall; Manga, Prashiela; Boissy, Raymond E

2012-10-01

257

MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.  

EPA Science Inventory

Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

258

Mechanisms and Modifications of Pulmonary and Systemic Epithelia Function and Structure by Reactive Oxygen Species and Proteases.  

National Technical Information Service (NTIS)

A number of pathologic conditions including battlefield injuries, skin burns, decreased organ perfusion, sepsis and hemorrhagic shock, result in the release of reactive oxygen species (ROS) in the circulation. In addition, activated neutrophils, aggregati...

S. Matalon

1991-01-01

259

Involvement of reactive oxygen species in angiotensin II-induced endothelin-1 gene expression in rat cardiac fibroblasts  

Microsoft Academic Search

ObjectivesThe aim of this study was to investigate the effects of angiotensin II (Ang II) on fibroblast proliferation and endothelin-1 (ET-1) gene induction, focusing especially on reactive oxygen species (ROS)-mediated signaling in cardiac fibroblasts.

Tzu-Hurng Cheng; Pao-Yun Cheng; Neng-Lang Shih; Iuan-Bor Chen; Danny Ling Wang; Jin-Jer Chen

2003-01-01

260

Effects of diabetes, insulin and antioxidants on NO synthase abundance and NO interaction with reactive oxygen species  

Microsoft Academic Search

Effects of diabetes, insulin and antioxidants on NO synthase abundance and NO interaction with reactive oxygen species.BackgroundEarlier studies have provided evidence for increased production of reactive oxygen species (ROS) and altered nitric oxide (NO) metabolism in diabetes. This study was intended to explore the effect of type I diabetes and its treatment with insulin alone or insulin plus antioxidant-fortified diet

Ja-Ryong Koo; Nosratola D Vaziri

2003-01-01

261

The anti-inflammatory effect of honokiol on neutrophils: mechanisms in the inhibition of reactive oxygen species production  

Microsoft Academic Search

Reactive oxygen species produced by neutrophils contribute to the pathogenesis of focal cerebral ischemia\\/reperfusion injury and signal the inflammatory response. We have previously shown that honokiol, an active principle extracted from Magnolia officinalis, has a protective effect against focal cerebral ischemia\\/reperfusion injury in rats that paralleled a reduction in reactive oxygen species production by neutrophils. To elucidate the underlying mechanism(s)

Kuo-Tong Liou; Yuh-Chiang Shen; Chieh-Fu Chen; Cheng-Ming Tsao; Shen-Kou Tsai

2003-01-01

262

Reactivity of lithium containing amorphous hydrogenated carbon films towards oxygen: an in situ photoelectron spectroscopy study  

NASA Astrophysics Data System (ADS)

Amorphous hydrogenated carbon coatings (a-C:H) containing different amounts of lithium have been prepared by a modified radio frequency-plasma assisted chemical vapour deposition (rf-PACVD) technique. They have been characterized in situ by X-ray (XPS) and ultraviolet photoelectron spectroscopy (UPS). The samples have been exposed to molecular oxygen as well as an oxygen plasma in order to obtain information about the reactivity of the coatings. The effect of the oxygen plasma on pure a-C:H is found to be a mere etching, the structure of the surface itself remaining essentially unchanged. In contrast, a transition from the carbidic carbon-lithium phase to a metal-carbonate like configuration, i.e. Li 2CO 3 or LiHCO 3, occurs in the lithium containing samples. These differences result in a much larger oxygen uptake at the surface of the lithium containing samples as compared to the pure a-C:H. Furthermore the rate of etching by the oxygen plasma is substantially lower for the lithium containing films.

Thiele, J.-U.; Oelhafen, P.

1995-04-01

263

Enzyme defense against reactive oxygen derivatives. II. Erythrocytes and tumor cells.  

PubMed

The enzymatic destruction of oxidizing products produced during metabolic reduction of oxygen in the cell (such as singlet oxygen, H2O2 and OH radical) involves the concerted action of superoxide dismutase-which removes O-2 and yields H2O2-and H2O2 removing enzymes such as catalase and glutathione peroxidase. A difference in distribution or ratio of these enzymes in various tissues may result in a different reactivity of oxygen radicals. It was found that in red blood cells superoxide dismutase and catalase are extracted in the same fraction as hemoglobin, while glutathione peroxidase appears to be "loosely" bound to the cellular structure. This suggests that in red blood cells catalase acts in series with superoxide dismutase against bursts of oxygen radicals formed from oxyhemoglobin, while glutathione & peroxidase may protect the cell membrane against low concentrations of H2O2. On the other hand, catalase activity is absent in various types of ascites tumor cells, while glutathione peroxidase and superoxide dismutase are found in the cytoplasm. However, the peroxidase/dismutase ratio is lower than in liver cells, and this may provide an explanation for the higher susceptibility of tumor cells to treatments likely to involve oxygen radicals. PMID:814406

Bozzi, A; Mavelli, I; Finazzi, A; Strom, R; Wolf, A M; Mondovi, B; Rotilio, G

1976-01-31

264

The behaviour of negative oxygen ions in the afterglow of a reactive HiPIMS discharge  

NASA Astrophysics Data System (ADS)

Using a single Langmuir probe, the temporal evolution of the oxygen negative ion, n?, and electron, ne, densities in the afterglow of a reactive HiPIMS discharge operating in argon–oxygen gas mixtures have been determined. The magnetron was equipped with a titanium target and operated in ‘poisoned’ mode at a frequency of 100 Hz with a pulse width of 100 µs for a range of oxygen partial pressures, {p_{O_{2}}}/{p_{total}} = 0.0{{-}}0.5 . In the initial afterglow, the density of the principle negative ion in the discharge (O?) was of the order of 1016 m?3 for all conditions. The O? concentration was found to decay slowly with characteristic decay times between 585 µs and 1.2 ms over the oxygen partial pressure range. Electron densities were observed to fall more rapidly, resulting in long-lived highly electronegative afterglow plasmas where the ratio, ? = n?/ne, was found to reach values up to 672 (±100) for the highest O2 partial pressure. By comparing results to a simple plasma-chemical model, we speculate that with increased {p_{O_{2}}}/{p_{total}} ratio, more O? ions are formed in the afterglow via dissociative electron attachment to highly excited metastable oxygen molecules, with the latter being formed during the active phase of the discharge. After approximately 2.5 ms into the off-time, the afterglow degenerates into an ion–ion plasma and negative ions are free to impinge upon the chamber walls and grounded substrates with flux densities of the order of 1018 m?2 s?1, which is around 10% of the positive ion flux measured during the on-time. This illustrates the potential importance of the long afterglow in reactive HiPIMS, which can act as a steady source of low energy O? ions to a growing thin film at the substrate during periods of reduced positive ion bombardment.

Bowes, M.; Bradley, J. W.

2014-07-01

265

Mutagenicity and cytotoxicity of reactive oxygen and nitrogen species in the MN11 murine tumor cell line  

Microsoft Academic Search

There is increasing evidence that endogenously generated reactive oxygen (ROS) and reactive nitrogen (RNS) species at sites of inflammation and in tumors may be genotoxic. We have developed a murine tumor model (MN-11) in which mutations at the hypoxanthine phosphoribosyltransferase (HPRT) locus, arising both in vitro and in vivo, can be detected. In the present report, we describe an in

Jagdeep K Sandhu; H. Chaim Birnboim

1997-01-01

266

Reactive lattice oxygen sites for C sub 4 -hydrocarbon selective oxidation over. beta. -VOPO sub 4  

SciTech Connect

The role of lattice oxygen species in the catalytic oxidation of n-butene to maleic anhydride has been investigated using {beta}-VOPO{sub 4} labeled with {sup 18}O. The catalyst was prepared by stoichiometric reaction of (VO){sub 2}P{sub 2}O{sub 7} with {sup 18}O{sub 2} using solid state preparation techniques. The {beta}-VOPO{sub 7/2} {sup 18}O{sub 1/2} was characterized using laser Raman and Fourier transform infrared spectroscopies: preferential incorporation at P-O-V sites was observed. A pulse reactor was used to react n-butane, 1-butene, 1,3-butadiene, furan, {gamma}-butyrolactone, and maleic anhydride with the catalyst in the absence of gas-phase O{sub 2}. Incorporation of {sup 18}O into the products was monitored by mass spectrometry. Specific lattice oxygen sites could be associated with the reaction pathways for selective or nonselective oxidation. The results of this study also indicate that the initial interaction of n-butane with {beta}-VOPO{sub 4} is fundamentally different from the initial interaction of olefins or oxygenated species. The approach used in this research-referred to as Isotopic Reactive-Site Mapping-is a potentially powerful method for probing the reactive lattice sites of other selective oxidation catalysts.

Lashier, M.E.; Schrader, G.L. (Iowa State Univ., Ames (USA))

1991-03-01

267

Deconvoluting the role of reactive oxygen species and autophagy in human diseases.  

PubMed

Reactive oxygen species (ROS), chemically reactive molecules containing oxygen, can form as a natural byproduct of the normal metabolism of oxygen and also have their crucial roles in cell homeostasis. Of note, the major intracellular sources including mitochondria, endoplasmic reticulum (ER), peroxisomes and the NADPH oxidase (NOX) complex have been identified in cell membranes to produce ROS. Interestingly, autophagy, an evolutionarily conserved lysosomal degradation process in which a cell degrades long-lived proteins and damaged organelles, has recently been well-characterized to be regulated by different types of ROS. Accumulating evidence has demonstrated that ROS-modulated autophagy has numerous links to a number of pathological processes, including cancer, ageing, neurodegenerative diseases, type-II diabetes, cardiovascular diseases, muscular disorders, hepatic encephalopathy and immunity diseases. In this review, we focus on summarizing the molecular mechanisms of ROS-regulated autophagy and their relevance to diverse diseases, which would shed new light on more ROS modulators as potential therapeutic drugs for fighting human diseases. PMID:23872397

Wen, Xin; Wu, Jinming; Wang, Fengtian; Liu, Bo; Huang, Canhua; Wei, Yuquan

2013-12-01

268

Cytotoxicity of InP/ZnS quantum dots related to reactive oxygen species generation  

NASA Astrophysics Data System (ADS)

Indium phosphide (InP) quantum dots (QDs) have emerged as a presumably less hazardous alternative to cadmium-based particles, but their cytotoxicity has not been well examined. Although their constituent elements are of very low toxicity to cells in culture, they nonetheless exhibit phototoxicity related to generation of reactive oxygen species by excited electrons and/or holes interacting with water and molecular oxygen. Using spin-trap electron paramagnetic resonance (EPR) spectroscopy and reporter assays, we find a considerable amount of superoxide and a small amount of hydroxyl radical formed under visible illumination of biocompatible InP QDs with a single ZnS shell, comparable to what is seen with CdTe. A double thickness shell reduces the reactive oxygen species concentration approximately two-fold. Survival assays in five cell lines correspondingly indicate a distinct reduction in toxicity with the double-shell InP QDs. Toxicity varies significantly across cell lines according to the efficiency of uptake, being overall significantly less than what is seen with CdTe or CdSe/ZnS. This indicates that InP QDs are a useful alternative to cadmium-containing QDs, while remaining capable of electron-transfer processes that may be undesirable or which may be exploited for photosensitization applications.

Chibli, Hicham; Carlini, Lina; Park, Soonhyang; Dimitrijevic, Nada M.; Nadeau, Jay L.

2011-06-01

269

Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand.  

PubMed

Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of "on demand" reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently "on demand". PMID:23154601

Baumann, Patric; Balasubramanian, Vimalkumar; Onaca-Fischer, Ozana; Sienkiewicz, Andrzej; Palivan, Cornelia G

2013-01-01

270

Fluorescence-based assay for reactive oxygen species: A protective role for creatinine  

SciTech Connect

Attack by reactive oxygen species leads to a decay in phycoerythrin fluorescence emission. This phenomenon provides a versatile new assay for small molecules and macromolecules that can function as protective compounds. With 1-2 {times} 10{sup {minus}8} M phycoerythrin, under conditions where peroxyl radical generation is rate-limiting, the fluorescence decay follows apparent zero-order kinetics. On reaction with HO{center dot}, generated with the ascorbate-Cu{sup 2+} system, the fluorescence decays with apparent first-order kinetics. Examination of the major components of human urine in this assay confirms that at physiological concentrations, urate protects against both types of oxygen radicals. A novel finding is that creatinine protects efficiently by a chelation mechanism against radical damage in the ascorbate-Cu{sup 2+} system at creatinine, ascorbate, and Cu{sup 2+} concentrations comparable to those in normal urine. Urate and creatinine provide complementary modes of protection against reactive oxygen species in the urinary tract.

Glazer, A.N. (Univ. of California, Berkeley (USA))

1988-06-01

271

Optical mapping of myocardial reactive oxygen species production throughout the reperfusion of global ischemia  

NASA Astrophysics Data System (ADS)

Reactive oxygen species (ROS) are short-lived, highly reactive chemical entities that play significant roles in all levels of biology. However, their measurement requires destructive preparation, thereby limiting the continuous measurement of ROS in a living tissue. We develop an optical mapping system to visualize ROS production in an isolated and perfused rat heart. By staining the heart with dihydroethidium (DHE), a 532-nm laser beam is directed to the epicardial surface, where we collect the red fluorescence (>600 nm) for semiquantitative analysis. With this system, ROS production as well as ventricular pressure and ECG in isolated perfused rat hearts are monitored throughout the reperfusion of global ischemia. Ischemia would decrease myocardial ROS production, while reperfusion would immediately result in sustained ROS overproduction. Optical mapping would provide information regarding the spatial distribution and temporal evolution of myocardial ROS production, which would enhance knowledge of the role of free radicals in cardiovascular biology.

Lu, Long-sheng; Liu, Yen-Bin; Sun, Chia-Wei; Lin, Lung-Chun; Su, Ming-jia; Wu, Chau-Chung

2006-03-01

272

Proximal ligand control of heme iron coordination structure and reactivity with hydrogen peroxide: investigations of the myoglobin cavity mutant H93G with unnatural oxygen donor proximal ligands.  

PubMed

The role of the proximal heme iron ligand in activation of hydrogen peroxide and control of spin state and coordination number in heme proteins is not yet well understood. Although there are several examples of amino acid sidechains with oxygen atoms which can act as potential heme iron ligands, the occurrence of protein-derived oxygen donor ligation in natural protein systems is quite rare. The sperm whale myoglobin cavity mutant H93G Mb (D. Barrick, Biochemistry 33 (1994) 6546) has its proximal histidine ligand replaced by glycine, a mutation which leaves an open cavity capable of accommodation of a variety of unnatural potential proximal ligands. This provides a convenient system for studying ligand-protein interactions. Molecular modeling of the proximal cavity in the active site of H93G Mb indicates that the cavity is of sufficient size to accommodate benzoate and phenolate in conformations that allow their oxygen atoms to come within binding distance of the heme iron. In addition, benzoate may occupy the cavity in an orientation which allows one carboxylate oxygen atom to ligate to the heme iron while the other carboxylate oxygen is within hydrogen bonding distance of serine 92. The ferric phenolate and benzoate complexes have been prepared and characterized by UV-visible and MCD spectroscopies. The benzoate adduct shows characteristics of a six-coordinate high-spin complex. To our knowledge, this is the first known example of a six-coordinate high-spin heme complex with an anionic oxygen donor proximal ligand. The benzoate ligand is displaced at alkaline pH and upon reaction with hydrogen peroxide. The phenolate adduct of H93G Mb is a five-coordinate high-spin complex whose UV-visible and MCD spectra are distinct from those of the histidine 93 to tyrosine (H93Y Mb) mutant of sperm whale myoglobin. The phenolate adduct is stable at alkaline pH and exhibits a reduced reactivity with hydrogen peroxide relative to that of both native ferric myoglobin, and the exogenous ligand-free derivative of ferric H93G Mb. These observations indicate that the identity of the proximal oxygen donor ligand has an important influence on both the heme iron coordination number and the reactivity of the complex with hydrogen peroxide. PMID:11051562

Roach, M P; Puspita, W J; Watanabe, Y

2000-08-31

273

A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1?  

Microsoft Academic Search

Exposure to limiting oxygen in cells and tissues induce the stabilization and transcriptional activation of the hypoxia-inducible factor 1 alpha (HIF-1?) protein, a key regulator of the hypoxic response. Reactive oxygen species (ROS) generation has been implicated in the stabilization of HIF-1? during this response, but this is still a matter of some debate. In this study we utilize a

Alejandra Sanjuán-Pla; Ana M. Cervera; Nadezda Apostolova; Remedios Garcia-Bou; Víctor M. Víctor; Michael P. Murphy; Kenneth J. McCreath

2005-01-01

274

Lens Proteins Block the Copper-Mediated Formation of Reactive Oxygen Species during Glycation Reactions in Vitro  

Microsoft Academic Search

The formation of advanced glycation endproducts (AGEs) from glucose in vitro requires both oxygen and a transition metal ion, usually copper. These elements combine to produce reactive oxygen species (ROS) which degrade glucose to AGE-forming compounds. We measured the ability of Cu(2+) to accelerate ROS formation, and the effect of added lens proteins on these reactions. Increasing levels of Cu(2+)

B. J. Ortwerth; Hongying L. James

1999-01-01

275

Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species  

PubMed Central

The mechanisms by which replicating influenza viruses decrease the expression and function of amiloride-sensitive epithelial sodium channels (ENaCs) have not been elucidated. We show that expression of M2, a transmembrane influenza protein, decreases ENaC membrane levels and amiloride-sensitive currents in both Xenopus oocytes, injected with human ?-, ?-, and ?-ENaCs, and human airway cells (H441 and A549), which express native ENaCs. Deletion of a 10-aa region within the M2 C terminus prevented 70% of this effect. The M2 ENaC down-regulation occurred at normal pH and was prevented by MG-132, a proteasome and lysosome inhibitor. M2 had no effect on Liddle ENaCs, which have decreased affinity for Nedd4-2. H441 and A549 cells transfected with M2 showed higher levels of reactive oxygen species, as shown by the activation of redox-sensitive dyes. Pretreatment with glutathione ester, which increases intracellular reduced thiol concentrations, or protein kinase C (PKC) inhibitors prevented the deleterious effects of M2 on ENaCs. The data suggest that M2 protein increases steady-state concentrations of reactive oxygen intermediates that simulate PKC and decrease ENaCs by enhancing endocytosis and its subsequent destruction by the proteasome. These novel findings suggest a mechanism for the influenza-induced rhinorrhea and life-threatening alveolar edema in humans.—Lazrak, A., Iles, K. E., Liu, G. Noah, D. L., Noah, J. W., Matalon, S. Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species.

Lazrak, Ahmed; Iles, Karen E.; Liu, Gang; Noah, Diana L.; Noah, James W.; Matalon, Sadis

2009-01-01

276

Characterizing semen parameters and their association with reactive oxygen species in infertile men  

PubMed Central

Background A routine semen analysis is a first step in the laboratory evaluation of the infertile male. In addition, other tests such as measurement of reactive oxygen species can provide additional information regarding the etiology of male infertility. The objective of this study was to investigate the association of semen parameters with reactive oxygen species (ROS) in two groups: healthy donors of unproven and proven fertility and infertile men. In addition, we sought to establish an ROS cutoff value in seminal plasma at which a patient may be predicted to be infertile. Methods Seminal ejaculates from 318 infertile patients and 56 donors, including those with proven fertility were examined for semen parameters and ROS levels. Correlations were determined between traditional semen parameters and levels of ROS among the study participants. ROS levels were measured using chemiluminescence assay. Receiver operating characteristic curves were obtained to calculate a cutoff value for these tests. Results Proven Donors (n?=?28) and Proven Donors within the past 2 years (n?=?16) showed significantly better semen parameters than All Patients group (n?=?318). Significantly lower ROS levels were seen in the two Proven Donor groups compared with All Patients. The cutoff value of ROS in Proven Donors was determined to be 91.9 RLU/s with a specificity of 68.8% and a sensitivity of 93.8%. Conclusions Infertile men, irrespective of their clinical diagnoses, have reduced semen parameters and elevated ROS levels compared to proven fertile men who have established a pregnancy recently or in the past. Reactive oxygen species are negatively correlated with traditional semen parameters such as concentration, motility and morphology. Measuring ROS levels in the seminal ejaculates provides clinically-relevant information to clinicians.

2014-01-01

277

Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO2+/-x  

NASA Astrophysics Data System (ADS)

We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO2+/-x grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert

2012-12-01

278

Reactive oxygen species and nitric oxide mediate plasticity of neuronal calcium signaling  

NASA Astrophysics Data System (ADS)

Reactive oxygen species (ROS) and nitric oxide (NO) are important participants in signal transduction that could provide the cellular basis for activity-dependent regulation of neuronal excitability. In young rat cortical brain slices and undifferentiated PC12 cells, paired application of depolarization/agonist stimulation and oxidation induces long-lasting potentiation of subsequent Ca2+ signaling that is reversed by hypoxia. This potentiation critically depends on NO production and involves cellular ROS utilization. The ability to develop the Ca2+ signal potentiation is regulated by the developmental stage of nerve tissue, decreasing markedly in adult rat cortical neurons and differentiated PC12 cells.

Yermolaieva, Olena; Brot, Nathan; Weissbach, Herbert; Heinemann, Stefan H.; Hoshi, Toshinori

2000-01-01

279

p66Shc, mitochondria, and the generation of reactive oxygen species.  

PubMed

Reactive oxygen species (ROS), mainly originated from mitochondrial respiration, are critical inducers of oxidative damage and involved in tissue dysfunction. It is not clear, however, whether oxidative stress is the result of an active gene program or it is the by-product of physiological processes. Recent findings demonstrate that ROS are produced by mitochondria in a controlled way through specialized enzymes, including p66Shc, and take part in cellular process aimed to ensure adaptation and fitness. Therefore, genes generating specifically ROS are selected determinants of life span in response to different environmental conditions. PMID:23849861

Trinei, Mirella; Migliaccio, Enrica; Bernardi, Paolo; Paolucci, Francesco; Pelicci, Piergiuseppe; Giorgio, Marco

2013-01-01

280

The Determination and Analysis of Site-Specific Rates of Mitochondrial Reactive Oxygen Species Production  

PubMed Central

Mitochondrial reactive oxygen species (ROS) are widely implicated in physiological and pathological pathways. We propose that it is critical to understand the specific sites of mitochondrial ROS production and their mechanisms of action. Mitochondria possess at least eight distinct sites of ROS production in the electron transport chain and matrix compartment. In this chapter, we describe the nature of the mitochondrial ROS-producing machinery and the relative capacities of each site. We provide detailed methods for the measurement of H2O2 release and the conditions under which maximal rates from each site can be achieved in intact skeletal muscle mitochondria.

Quinlan, Casey L.; Perevoschikova, Irina V.; Goncalves, Renata L.S.; Hey-Mogensen, Martin; Brand, Martin D.

2014-01-01

281

Calcium and Mitochondrial Reactive Oxygen Species Generation: How to Read the Facts  

PubMed Central

A number of recent discoveries indicate that abnormal Ca2+ signaling, oxidative stress, and mitochondrial dysfunction are involved in the neuronal damage in Alzheimer’s disease. However, the literature on the interactions between these factors is controversial especially in the interpretation of the cause-effect relationship between mitochondrial damage induced by Ca2+ overload and the production of reactive oxygen species (ROS). In this review, we survey the experimental observations on the Ca2+-induced mitochondrial ROS production, explain the sources of controversy in interpreting these results, and discuss the different molecular mechanisms underlying the effect of Ca2+ on the ROS emission by brain mitochondria.

Adam-Vizi, Vera; Starkov, Anatoly A.

2011-01-01

282

Practical use of chemical probes for reactive oxygen species produced in biological systems by ?-irradiation  

NASA Astrophysics Data System (ADS)

Application of chemical probes, for detection of reactive oxygen species (ROS), was tested during ?-irradiation. The ethanol/?-(4-pyridyl-1-oxide)- N- tert-butylnitrone (4-POBN) and 3,3'-diaminobenzidine (DAB) were structurally stable enough to detect rad OH and H 2O 2, increasingly generated by ?-irradiation up to 1000 Gy. Interestingly, the production rate of H 2O 2, but not rad OH, during ?-irradiation, was significantly different between in vitro systems of lettuce and spinach. These results suggest that 4-POBN and DAB could be utilized as a semi-quantitative probe to quantify rad OH and H 2O 2, produced by ?-irradiation up to 1000 Gy.

Lee, Min Hee; Moon, Yu Ran; Chung, Byung Yeoup; Kim, Jae-Sung; Lee, Kang-Soo; Cho, Jae-Young; Kim, Jin-Hong

2009-05-01

283

Molecular Crosstalk between Integrins and Cadherins: Do Reactive Oxygen Species Set the Talk?  

PubMed Central

The coordinate modulation of the cellular functions of cadherins and integrins plays an essential role in fundamental physiological and pathological processes, including morphogenesis, tissue differentiation and renewal, wound healing, immune surveillance, inflammatory response, tumor progression, and metastasis. However, the molecular mechanisms underlying the fine-tuned functional communication between cadherins and integrins are still elusive. This paper focuses on recent findings towards the involvement of reactive oxygen species (ROS) in the regulation of cell adhesion and signal transduction functions of integrins and cadherins, pointing to ROS as emerging strong candidates for modulating the molecular crosstalk between cell-matrix and cell-cell adhesion receptors.

Goitre, Luca; Pergolizzi, Barbara; Ferro, Elisa; Trabalzini, Lorenza; Retta, Saverio Francesco

2012-01-01

284

Mitochondrial reactive oxygen species generation in obese non-diabetic and type 2 diabetic participants  

Microsoft Academic Search

Aims\\/hypothesis  The aim of this study was to measure mitochondrial reactive oxygen species (ROS) production directly from skeletal muscle\\u000a biopsies obtained from obese insulin-resistant non-diabetic and type 2 diabetic participants.\\u000a \\u000a \\u000a \\u000a Methods  Ten lean healthy, ten obese non-diabetic and ten type 2 diabetic participants received a euglycaemic–hyperinsulinaemic clamp\\u000a to measure whole body insulin sensitivity. Mitochondria were isolated from skeletal muscle biopsies, and mitochondrial

M. A. Abdul-Ghani; R. Jani; A. Chavez; M. Molina-Carrion; D. Tripathy; R. A. DeFronzo

2009-01-01

285

Induced reactive oxygen species improve enzyme production from Aspergillus niger cultivation.  

PubMed

Intracellular reactive oxygen species (iROS) induction by HOCl was used as a novel strategy to improve enzyme productivities in Aspergillus niger growing in a bioreactor. With induced iROS, the specific intracellular activities of alpha-amylase, protease, catalase, and glucose oxidase were increased by about 170%, 250%, 320%, and 260%, respectively. The optimum specific iROS level for achieving maximum cell concentration and enzyme production was about 15 mmol g cell-1. The type of iROS inducing the enzyme production was identified to be a derivative of the superoxide radical. PMID:12882014

Sahoo, Susmita; Rao, K Krishnamurthy; Suraishkumar, G K

2003-05-01

286

Non-canonical ?-catenin degradation mediates reactive oxygen species-induced epidermal cell death  

PubMed Central

?-catenin is constantly degraded through the ubiquitin-proteasomal pathway. We here report that a different type of ?-catenin degradation is causally involved in epidermal cell death. We observed that reactive oxygen species (ROS) caused ?-catenin degradation in the epidermal cells through a caspase-dependent mechanism, which results in disruption of cell adhesion. Disruption of cell adhesion increased ROS and activated caspases. Upregulation of the intact ?-catenin blocked ROS accumulation and caspase activation. These results indicate that a feed-forward loop consisting of ROS, caspases activation and ?-catenin degradation induces epidermal cell death.

Omori, Emily; Matsumoto, Kunihiro; Ninomiya-Tsuji, Jun

2011-01-01

287

Evolving Concepts of Oxidative Stress and Reactive Oxygen Species in Cardiovascular Disease  

PubMed Central

Cardiovascular disease continues to be a substantial health-care burden, despite recent treatment advances. Oxidative stress has long been regarded as a key pathophysiological mediator that ultimately leads to CVD including atherosclerosis, hypertension and heart failure. Over the past decade, emerging evidence has shifted our understanding of reactive oxygen species (ROS) from its harmful role to being signaling molecules. Here, we reviewed recent advances in our understanding of ROS that mediate the complex process of cardiovascular diseases, with a focus on major ROS signaling and sources such as mitochondria and NADPH oxidases.

Chen, Kai; Keaney, John F.

2013-01-01

288

Role of Reactive Oxygen Species in the Progression of Type 2 Diabetes and Atherosclerosis  

PubMed Central

Type 2 diabetes is the most prevalent and serious metabolic disease all over the world, and its hallmarks are pancreatic ?-cell dysfunction and insulin resistance. Under diabetic conditions, chronic hyperglycemia and subsequent augmentation of reactive oxygen species (ROS) deteriorate ?-cell function and increase insulin resistance which leads to the aggravation of type 2 diabetes. In addition, chronic hyperglycemia and ROS are also involved in the development of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that ROS play an important role in the development of type 2 diabetes and atherosclerosis.

Kaneto, Hideaki; Katakami, Naoto; Matsuhisa, Munehide; Matsuoka, Taka-aki

2010-01-01

289

Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis.  

PubMed

Type 2 diabetes is the most prevalent and serious metabolic disease all over the world, and its hallmarks are pancreatic beta-cell dysfunction and insulin resistance. Under diabetic conditions, chronic hyperglycemia and subsequent augmentation of reactive oxygen species (ROS) deteriorate beta-cell function and increase insulin resistance which leads to the aggravation of type 2 diabetes. In addition, chronic hyperglycemia and ROS are also involved in the development of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that ROS play an important role in the development of type 2 diabetes and atherosclerosis. PMID:20182627

Kaneto, Hideaki; Katakami, Naoto; Matsuhisa, Munehide; Matsuoka, Taka-aki

2010-01-01

290

Damaged DNA Binding Protein 2 in Reactive Oxygen Species (ROS) Regulation and Premature Senescence  

PubMed Central

Premature senescence induced by DNA damage or oncogene is a critical mechanism of tumor suppression. Reactive oxygen species (ROS) have been implicated in the induction of premature senescence response. Several pathological disorders such as cancer, aging and age related neurological abnormalities have been linked to ROS deregulation. Here, we discuss how Damaged DNA binding Protein-2 (DDB2), a nucleotide excision repair protein, plays an important role in ROS regulation by epigenetically repressing the antioxidant genes MnSOD and Catalase. We further revisit a model in which DDB2 plays an instrumental role in DNA damage induced ROS accumulation, ROS induced premature senescence and inhibition of skin tumorigenesis.

Roy, Nilotpal; Bagchi, Srilata; Raychaudhuri, Pradip

2012-01-01

291

Property variations of direct-current reactive magnetron sputtered copper oxide thin films deposited at different oxygen partial pressures  

Microsoft Academic Search

Cuprous oxide (Cu2O) and cupric oxide (CuO) thin films were deposited on glass substrates at different oxygen partial pressures by direct-current reactive magnetron sputtering of pure copper target in a mixture of argon and oxygen gases. Oxygen partial pressure was found to be a crucial parameter in controlling the phases and, thus, the physical properties of the deposited copper oxide

Hsin-Chun Lu; Chun-Lung Chu; Chi-You Lai; Yu-Hsiang Wang

2009-01-01

292

Chilling-enhanced photooxidation: The production, action and study of reactive oxygen species produced during chilling in the light  

Microsoft Academic Search

Chilling-enhanced photooxidation is the light- and oxygen-dependent bleaching of photosynthetic pigments that occurs upon the exposure of chilling-sensitive plants to temperatures below approximately 10 °C. The oxidants responsible for the bleaching are the reactive oxygen species (ROS) singlet oxygen (1O2), superoxide anion radical (O2?,hydrogen peroxide (H2O2), the hydroxyl radical (OH·), and the monodehydroascorbate radical (MDA) which are generated by a

Robert R. Wise

1995-01-01

293

Visualization of mitochondrial membrane potential and reactive oxygen species via double staining.  

PubMed

Quantitative and qualitative analysis of both generated reactive oxygen species (ROS) and mitochondrial membrane potential cannot be detected simultaneously. We here introduce a simple, new double staining method. We have successfully used this for several years utilizing cerium for ROS detection and JC-1 staining to assess the mitochondrial membrane potential. The resultant signals on laser confocal images can be localized in the same cells and can easily quantify them. We used a confocal microscope along with our new, combined staining method to both visualize mitochondrial membrane potential (DeltaPsim) and imaged ROS. These were quantified by JC-1 staining and by cerium ions with reflectance in a method modified in our laboratory. To test this double labeling technique we used PC 12 cells subjected to 1 h hypoxia and 24h re-oxygenization. We are able to produce a quantitative analysis of red/green signals of JC-1 that reflected the energy state of the cells. Cerium reflectance correlates with the amount of ROS release in the same cells. Significant differences have been calculated after hypoxia and re-oxygenation in both modality of the cell staining. The red/green ratio was 18.2+/-9.3 (n=30) in normoxic cells versus 1.65+/-0.9 (n=30) in the hypoxia/re-oxygenation group (p<0.05). In the same randomly selected cells the average cerium reflectance signal intensity was 2.5+/-1.2 (n=30) in the control group while 5.8+/-3.1 (n=30) in the hypoxia/re-oxygenation group (p<0.05). This assay, by characterizing hypoxic injury and re-oxygenization induced ROS production, offers a qualitative and quantitative method to detect the consequences of oxidative stress in experimental conditions and to detect different cell protective strategies. PMID:16530963

Szilágyi, Géza; Simon, László; Koska, Péter; Telek, Géza; Nagy, Zoltán

2006-05-22

294

A comparative kinetic and mechanistic study between tetrahydrozoline and naphazoline toward photogenerated reactive oxygen species.  

PubMed

Kinetic and mechanistic aspects of the vitamin B2 (riboflavin [Rf])-sensitized photo-oxidation of the imidazoline derivates (IDs) naphazoline (NPZ) and tetrahydrozoline (THZ) were investigated in aqueous solution. The process appears as important on biomedical grounds, considering that the vitamin is endogenously present in humans, and IDs are active components of ocular medicaments of topical application. Under aerobic visible light irradiation, a complex picture of competitive interactions between sensitizer, substrates and dissolved oxygen takes place: the singlet and triplet ((3)Rf*) excited states of Rf are quenched by the IDs: with IDs concentrations ca. 5.0 mM and 0.02 mM Rf, (3)Rf* is quenched by IDs, in a competitive fashion with dissolved ground state oxygen. Additionally, the reactive oxygen species: O(2)((1)Delta(g)), O(2)(*-), HO(*) and H(2)O(2), generated from (3)Rf* and Rf(*-), were detected with the employment of time-resolved methods or specific scavengers. Oxygen uptake experiments indicate that, for NPZ, only H(2)O(2) was involved in the photo-oxidation. In the case of THZ, O(2)(*-), HO(*) and H(2)O(2) were detected, whereas only HO(*) was unambiguously identified as THZ oxidative agents. Upon direct UV light irradiation NPZ and THZ generate O(2)((1)Delta(g)), with quantum yields of 0.2 (literature value, employed as a reference) and 0.08, respectively, in acetonitrile. PMID:19709378

Criado, Susana; García, Norman A

2010-01-01

295

Detecting, visualizing and quantitating the generation of reactive oxygen species in an amoeba model system.  

PubMed

Reactive oxygen species (ROS) comprise a range of reactive and short-lived, oxygen-containing molecules, which are dynamically interconverted or eliminated either catalytically or spontaneously. Due to the short life spans of most ROS and the diversity of their sources and subcellular localizations, a complete picture can be obtained only by careful measurements using a combination of protocols. Here, we present a set of three different protocols using OxyBurst Green (OBG)-coated beads, or dihydroethidium (DHE) and Amplex UltraRed (AUR), to monitor qualitatively and quantitatively various ROS in professional phagocytes such as Dictyostelium. We optimised the beads coating procedures and used OBG-coated beads and live microscopy to dynamically visualize intraphagosomal ROS generation at the single cell level. We identified lipopolysaccharide (LPS) from E. coli as a potent stimulator for ROS generation in Dictyostelium. In addition, we developed real time, medium-throughput assays using DHE and AUR to quantitatively measure intracellular superoxide and extracellular H2O2 production, respectively. PMID:24300479

Zhang, Xuezhi; Soldati, Thierry

2013-01-01

296

Berberine-induced apoptosis in human prostate cancer cells is initiated by reactive oxygen species generation  

SciTech Connect

Phytochemicals show promise as potential chemopreventive or chemotherapeutic agents against various cancers. Here we report the chemotherapeutic effects of berberine, a phytochemical, on human prostate cancer cells. The treatment of human prostate cancer cells (PC-3) with berberine induced dose-dependent apoptosis but this effect of berberine was not seen in non-neoplastic human prostate epithelial cells (PWR-1E). Berberine-induced apoptosis was associated with the disruption of the mitochondrial membrane potential, release of apoptogenic molecules (cytochrome c and Smac/DIABLO) from mitochondria and cleavage of caspase-9,-3 and PARP proteins. This effect of berberine on prostate cancer cells was initiated by the generation of reactive oxygen species (ROS) irrespective of their androgen responsiveness, and the generation of ROS was through the increased induction of xanthine oxidase. Treatment of cells with allopurinol, an inhibitor of xanthine oxidase, inhibited berberine-induced oxidative stress in cancer cells. Berberine-induced apoptosis was blocked in the presence of antioxidant, N-acetylcysteine, through the prevention of disruption of mitochondrial membrane potential and subsequently release of cytochrome c and Smac/DIABLO. In conclusion, the present study reveals that the berberine-mediated cell death of human prostate cancer cells is regulated by reactive oxygen species, and therefore suggests that berberine may be considered for further studies as a promising therapeutic candidate for prostate cancer.

Meeran, Syed M.; Katiyar, Suchitra [Department of Dermatology, University of Alabama at Birmingham (United States); Katiyar, Santosh K. [Department of Dermatology, University of Alabama at Birmingham (United States); Department of Environmental Health Sciences, University of Alabama at Birmingham (United States); Clinical Nutrition Research Center, University of Alabama at Birmingham (United States); Comprehensive Cancer Center, University of Alabama at Birmingham (United States); Birmingham VA Medical Center, Birmingham, AL, 35294 (United States)], E-mail: skatiyar@uab.edu

2008-05-15

297

Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots.  

PubMed

Cadmium (Cd) is a non-essential heavy metal that may be toxic or even lethal to plants as it can be easily taken up by the roots and loaded into the xylem to the leaves. Using soybean roots (Glycine max?L.) DM 4800, we have analysed various parameters related to reactive oxygen metabolism and nitric oxide (NO) during a 6 day Cd exposure. A rise in H2 O2 and NO, and to a lesser extent O2 (·-) content was observed after 6?h exposure with a concomitant increase in lipid peroxidation and carbonyl group content. Both oxidative markers were significantly reduced after 24?h. A second, higher wave of O2 (·-) production was also observed after 72?h of exposure followed by a reduction until the end of the treatment. NOX and glicolate oxidase activity might be involved in the initial Cd-induced reactive oxygen species (ROS) production and it appears that other sources may also participate. The analysis of antioxidative enzymes showed an increase in glutathione-S-transferase activity and in transcript levels and activity of enzymes involved in the ascorbate-glutathione cycle and the NADPH-generating enzymes. These results suggest that soybean is able to respond rapidly to oxidative stress imposed by Cd by improving the availability of NADPH necessary for the ascorbate-glutathione cycle. PMID:24433233

Pérez-Chaca, María Verónica; Rodríguez-Serrano, María; Molina, Alicia S; Pedranzani, Hilda E; Zirulnik, Fanny; Sandalio, Luisa M; Romero-Puertas, María C

2014-07-01

298

Reactive oxygen species exacerbate autoimmune hemolytic anemia in New Zealand Black mice.  

PubMed

Elevated reactive oxygen species (ROS) and oxidative damage occur in the red blood cells (RBCs) of SOD1-deficient C57BL/6 mice. This leads to autoimmune responses against RBCs in aged mice that are similar to autoimmune hemolytic anemia (AIHA). We examined whether a SOD1 deficiency and/or the human SOD1 transgene (hSOD1) would affect phenotypes of AIHA-prone New Zealand Black (NZB) mice by establishing three congenic strains: those lacking SOD1, those expressing hSOD1 under a GATA-1 promoter, and those lacking mouse SOD1 but expressing hSOD1. Levels of intracellular ROS and oxidative stress markers increased, and the severity of the AIHA phenotype was aggravated by a SOD1 deficiency. In contrast, the transgenic expression of hSOD1 in an erythroid cell-specific manner averted most of the AIHA phenotype evident in the SOD1-deficient mice and also ameliorated the AIHA phenotype in the mice possessing intrinsic SOD1. These data suggest that oxidative stress in RBCs may be an underlying mechanism for autoimmune responses in NZB mice. These results were consistent with the hypothetical role of reactive oxygen species in triggering the autoimmune reaction in RBCs and may provide a novel approach to mitigating the progression of AIHA by reducing oxidative stress. PMID:24095725

Konno, Tasuku; Otsuki, Noriyuki; Kurahashi, Toshihiro; Kibe, Noriko; Tsunoda, Satoshi; Iuchi, Yoshihito; Fujii, Junichi

2013-12-01

299

Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons.  

PubMed

Substance P (SP) is a prominent neuromodulator, which is produced and released by peripheral damage-sensing (nociceptive) neurons; these neurons also express SP receptors. However, the mechanisms of peripheral SP signaling are poorly understood. We report a signaling pathway of SP in nociceptive neurons: Acting predominantly through NK1 receptors and G(i/o) proteins, SP stimulates increased release of reactive oxygen species from the mitochondrial electron transport chain. Reactive oxygen species, functioning as second messengers, induce oxidative modification and augment M-type potassium channels, thereby suppressing excitability. This signaling cascade requires activation of phospholipase C but is largely uncoupled from the inositol 1,4,5-trisphosphate sensitive Ca(2+) stores. In rats SP causes sensitization of TRPV1 and produces thermal hyperalgesia. However, the lack of coupling between SP signaling and inositol 1,4,5-trisphosphate sensitive Ca(2+) stores, together with the augmenting effect on M channels, renders the SP pathway ineffective to excite nociceptors acutely and produce spontaneous pain. Our study describes a mechanism for neurokinin signaling in sensory neurons and provides evidence that spontaneous pain and hyperalgesia can have distinct underlying mechanisms within a single nociceptive neuron. PMID:22586118

Linley, John E; Ooi, Lezanne; Pettinger, Louisa; Kirton, Hannah; Boyle, John P; Peers, Chris; Gamper, Nikita

2012-06-12

300

Hypoxia-Induced Reactive Oxygen Species Cause Chromosomal Abnormalities in Endothelial Cells in the Tumor Microenvironment  

PubMed Central

There is much evidence that hypoxia in the tumor microenvironment enhances tumor progression. In an earlier study, we reported abnormal phenotypes of tumor-associated endothelial cells such as those resistant to chemotherapy and chromosomal instability. Here we investigated the role of hypoxia in the acquisition of chromosomal abnormalities in endothelial cells. Tumor-associated endothelial cells isolated from human tumor xenografts showed chromosomal abnormalities, >30% of which were aneuploidy. Aneuploidy of the tumor-associated endothelial cells was also shown by simultaneous in-situ hybridization for chromosome 17 and by immunohistochemistry with anti-CD31 antibody for endothelial staining. The aneuploid cells were surrounded by a pimonidazole-positive area, indicating hypoxia. Human microvascular endothelial cells expressed hypoxia-inducible factor 1 and vascular endothelial growth factor A in response to either hypoxia or hypoxia-reoxygenation, and in these conditions, they acquired aneuploidy in 7 days. Induction of aneuploidy was inhibited by either inhibition of vascular endothelial growth factor signaling with vascular endothelial growth factor receptor 2 inhibitor or by inhibition of reactive oxygen species by N-acetyl-L-cysteine. These results indicate that hypoxia induces chromosomal abnormalities in endothelial cells through the induction of reactive oxygen species and excess signaling of vascular endothelial growth factor in the tumor microenvironment.

Hida, Yasuhiro; Maishi, Nako; Towfik, Alam Mohammad; Inoue, Nobuo; Shindoh, Masanobu; Hida, Kyoko

2013-01-01

301

Leishmania major: Reactive oxygen species and interferon gamma induction by soluble lipophosphoglycan of stationary phase promastigotes.  

PubMed

Protozoan parasites of the genus Leishmania cause a number of important human diseases. One of the key determinants of parasite infectivity and survival is membrane glycoconjugate lipophosphoglycan (mLPG). In addition, it has been shown that mLPG could be used as a transmission blocking vaccine. Since culture supernatant of parasite promastigotes is a good source of LPG, we attempted to compare the immunological properties of culture supernatant and membrane LPG prepared from stationary phase promastigotes of Leishmania major. The purity of supernatant LPG (sLPG) and membrane LPG (mLPG) was determined by thin layer chromatography. The effect of sLPG and mLPG on the production of reactive oxygen species (ROS) was studied using PBMCs isolated from healthy individuals. In addition, induction of IL-12, IFN-gamma and IL-10 secretion in the presence of sLPG and mLPG was investigated. Reactive oxygen species in addition to IL-10 and IL-12 were induced by both sLPG and mLPG. However, IFN-gamma production was promoted only in response to sLPG suggesting its ability to promote Th1 response and implication in vaccine design. PMID:16759653

Kavoosi, Gholamreza; Ardestani, Sussan K; Kariminia, Amina; Abolhassani, Mohssen; Turco, Salvatore J

2006-12-01

302

Khat (Catha edulis) generates reactive oxygen species and promotes hepatic cell apoptosis via MAPK activation.  

PubMed

A number of studies have suggested an association between khat (Catha edulis) chewing and acute liver lesions or chronic liver disease. However, little is known about the effects of khat on hepatic cells. In the current study, we investigated the mechanism behind khat-induced apoptosis in the L02 human hepatic cell line. We used cell growth inhibition assay, flow cytometry and Hoechst 33258 staining to measure hepatocyte apoptosis induced by khat. Western blot analysis was used to detect the expression levels of caspase-8 and -9, as well as those of Bax and Bcl-2. We also measured reactive oxygen species production. The results indicated that khat induced significant hepatocyte apoptosis in L02 cells. We found that khat activated caspase-8 and -9, upregulated Bax protein expression and downregulated Bcl-2 expression levels, which resulted in the coordination of apoptotic signals. Khat-induced hepatocyte apoptosis is primarily regulated through the sustained activation of the c-Jun NH2-terminal kinase (JNK) pathway and only partially via the extracellular signal-regulated kinase (ERK) cascade. Furthermore, the khat-induced reactive oxygen species (ROS) production and the activation of the ROS scavenger, N-acetyl-L-cysteine (NAC), attenuated the khat-induced activation of JNK and ERK. Our results demonstrate that khat triggers the generation of intracellular ROS and sequentially induces the sustainable activation of JNK, which in turn results in a decrease in cell viability and an increase in cell apoptosis. PMID:23708648

Abid, Morad Dirhem Naji; Chen, Juan; Xiang, Min; Zhou, Jie; Chen, Xiaoping; Gong, Feili

2013-08-01

303

Measurement of reactive oxygen metabolites produced by human monocyte-derived macrophages exposed to mineral dusts.  

PubMed Central

The aim of the present work was to develop an in-vitro model for studying mineral dust-induced production of reactive oxygen metabolites by human macrophages. Monocytes isolated from human buffy coats were cultured in vitro for 1-6 days. Quartz particles induced both luminol- and lucigenin-dependent chemiluminescence (CL) by the adherent cells. However, the luminol response decreased form day to day, obviously due to a decrease in the myeloperoxidase (MPO) activity of the cells, whereas the lucigenin response showed no such MPO dependence. The luminol response was inhibited by superoxide dismutase (SOD), catalase, and the MPO-inhibitor azide, while the lucigenin response was inhibited by SOD and catalase but stimulated by azide. There was a positive correlation between the lucigenin responses and the results obtained with the established cytochrome c assay for superoxide, when opsonized zymosan was used as a stimulant. The effects of quartz, titanium dioxide, chrysotile asbestos, and wollastonite particles were investigated with the lucigenin assay. Quartz and chrysotile caused prominent light emission by 6-day-old macrophages, whereas titanium dioxide and wollastonite caused weak responses. We conclude that mineral dusts induce production of reactive oxygen metabolites by human monocyte-derived macrophages, and that the quantitative responses depend on both physical and physicochemical dust properties, the nature of which are still to be defined.

Nyberg, P.; Klockars, M.

1990-01-01

304

Optimizing Pulse Waveforms in Plasma Jets for Reactive Oxygen Species (ROS) Production  

NASA Astrophysics Data System (ADS)

Reactive oxygen species (ROS) are desired in numerous applications from the destruction of harmful proteins and bacteria for sterilization in the medical field to taking advantage of the metastable characteristics of O2(^1?) to transfer energy to other species. Advances in atmospheric pressure plasma jets in recent years show the possibility of using this application as a source of reactive oxygen species. In this paper, we report on results from a computational investigation of atmospheric pressure plasma jets in a dielectric barrier discharge (DBD) configuration. The computer model used in this study, nonPDPSIM, solves transport equations for charged and neutral species, Poisson's equation for the electric potential, the electron energy conservation equation for the electron temperature, and Navier-Stokes equations for the neutral gas flow. A Monte Carlo simulation is used to track sheath accelerated secondary electrons emitted from surfaces and the energy of ions incident onto surfaces. Rate coefficients and transport coefficients for the bulk plasma are obtained from local solutions of Boltzmann's equation for the electron energy distribution. Radiation transport is addressed using a Green's function approach. Various waveforms for the voltage source were examined in analogy to spiker-sustainer systems used at lower gas pressures.

Norberg, Seth; Babaeva, Natalia Yu.; Kushner, Mark J.

2012-10-01

305

Iron toxicity in organotypic cultures of hippocampal slices: role of reactive oxygen species.  

PubMed

Free iron has been assumed to potentiate oxygen toxicity by generating reactive oxygen species (ROS) via the iron-catalyzed Haber-Weiss reaction, leading to oxidative stress. ROS-mediated iron cytotoxicity may trigger apoptotic cell death. In the present study, we used iron treatment of organotypic cultures of hippocampal slices to study potential mechanisms involved in iron-induced neuronal damage. Exposure of mature hippocampal slices to ferrous sulfate resulted in concentration- and time-dependent cell death. After iron treatment, markers of ROS formation and lipid peroxidation, i.e. intensity of dichlorofluorescein (DCF) fluorescence and levels of thiobarbiturate reactive substances (TBARS), were significantly increased. Levels of cytochrome c were increased while levels of pro-caspase-9 and pro-caspase-3 were decreased in cytosolic fractions of iron-treated hippocampal slice cultures. Treatment of cultured slices with a synthetic catalytic ROS scavenger, EUK-134, provided between 50 and 70% protection against various parameters of cell damage and markers of oxidative stress. In addition, inhibition of caspase-3 activity by Ac-DEVDcho partially protected cells from iron toxicity. The combination of EUK-134 and Ac-DEVDcho resulted in an almost complete blockade of iron-induced damage. These results indicate that iron elicits cellular damage predominantly by oxidative stress, and that ROS-mediated iron toxicity may involve cytochrome c- and caspase-3-dependent apoptotic pathways. PMID:12675926

Liu, Ruolan; Liu, Wei; Doctrow, Susan R; Baudry, Michel

2003-04-01

306

Production of Reactive Oxygen Species from Dissolved Organic Matter Photolysis in Ice  

NASA Astrophysics Data System (ADS)

Dissolved natural organic matter (DOM) is a ubiquitous component of natural waters and an important photosensitizer. A variety of reactive oxygen species (ROS) are known to be produced from DOM photolysis including singlet oxygen, hydroxyl radical, peroxyl radical, etc. Recently, it has been determined that organic material is one of the largest contributors to sunlight absorption in snowpack, however DOM photochemistry in snow/ice has received little attention in the literature. The production of ROS from DOM photolysis in snow/ice could play an important role in snowpack photochemical processes, degradation of pollutants in snowpack, and generation of volatile organic compounds emitted from snowpack. We have investigated ROS production from DOM in frozen aqueous solutions, using commercially available humic and fulvic acids. Here we will discuss the rates of ROS production in both liquid and frozen systems, differences in reactivity amongst the DOM sources studied (Suwannee River Humic Acid, Suwannee River Fulvic Acid, and Pony Lake Fulvic Acid), and the potential implications for snowpack photochemical processes.

Fede, A.; Grannas, A. M.

2012-12-01

307

Overexpression of stanniocalcin-1 inhibits reactive oxygen species and renal ischemia/reperfusion injury in mice  

PubMed Central

Reactive oxygen species, endothelial dysfunction, inflammation, and mitogen-activated protein kinases have important roles in the pathogenesis of ischemia/reperfusion kidney injury. Stanniocalcin-1 (STC1) suppresses superoxide generation in many systems through induction of mitochondrial uncoupling proteins and blocks the cytokine-induced rise in endothelial permeability. Here we tested whether transgenic overexpression of STC1 protects from bilateral ischemia/reperfusion kidney injury. This injury in wild type mice caused a halving of the creatinine clearance; severe tubular vacuolization and cast formation; increased infiltration of macrophages and T cells; higher vascular permeability; greater production of superoxide and hydrogen peroxide; and higher ratio of activated ERK/activated JNK and p38, all compared to sham-treated controls. Mice transgenic for human STC1 expression, however, had resistance to equivalent ischemia/reperfusion injury indicated as no significant change from controls in any of these parameters. Tubular epithelial cells in transgenic mice expressed higher mitochondrial uncoupling protein 2 and lower superoxide generation. Pre-treatment of transgenic mice with paraquat, a generator of reactive oxygen species, before injury restored the susceptibility to ischemia/reperfusion kidney injury, suggesting that STC1 protects by an anti-oxidant mechanism. Thus, STC1 may be a therapeutic target for ischemia/reperfusion kidney injury.

Huang, Luping; Belousova, Tatiana; Chen, Minyi; DiMattia, Gabriel; Liu, Dajun; Sheikh-Hamad, David

2012-01-01

308

SUMO1 Negatively Regulates Reactive Oxygen Species Production From NADPH Oxidases  

PubMed Central

Objective Increased protein SUMOylation provides protection from cellular stress including oxidative stress, but the mechanisms involved are incompletely understood. The NADPH oxidases (Nox) are a primary source of reactive oxygen species (ROS) and oxidative stress and thus our goal was to determine whether SUMO regulates NADPH oxidase activity. Methods and Results Increased expression of SUMO1 potently inhibited the activity of Nox1-5. In contrast, inhibition of endogenous SUMOylation with siRNA to SUMO1 or UBC9 or with the inhibitor, anacardic acid, increased ROS production from HEK-Nox5 cells, human vascular smooth muscle cells and neutrophils. The suppression of ROS production was unique to SUMO1, required a C-terminal di-glycine and the SUMO-specific conjugating enzyme, UBC9. SUMO1 did not modify intracellular calcium or Nox5 phosphorylation but reduced ROS output in an isolated enzyme assay suggesting direct effects of SUMOylation on enzyme activity. However, we could not detect the presence of SUMO1-conjugation on Nox5 using a variety of approaches. Moreover the mutation of over 17 predicted and conserved lysine residues on Nox5 did not alter the inhibitory actions of SUMO1. Conclusion Together, these results suggest that SUMO is an important regulatory mechanism that indirectly represses the production of reactive oxygen species to ameliorate cellular stress.

Pandey, D; Chen, F; Patel, A; Wang, CY; Dimitropoulou, C.; Patel, V.S; Rudic, R.D.; Stepp, DW; Fulton, DJR.

2012-01-01

309

Diabetes mellitus increases reactive oxygen species production in the thyroid of male rats.  

PubMed

Diabetes mellitus (DM) disrupts the pituitary-thyroid axis and leads to a higher prevalence of thyroid disease. However, the role of reactive oxygen species in DM thyroid disease pathogenesis is unknown. Dual oxidases (DUOX) is responsible for H(2)O(2) production, which is a cosubstrate for thyroperoxidase, but the accumulation of H(2)O(2) also causes cellular deleterious effects. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) is another member of the nicotinamide adenine dinucleotide phosphate oxidase family expressed in the thyroid. Therefore, we aimed to evaluate the thyroid DUOX activity and expression in DM rats in addition to NOX4 expression. In the thyroids of the DM rats, we found increased H(2)O(2) generation due to higher DUOX protein content and DUOX1, DUOX2, and NOX4 mRNA expressions. In rat thyroid PCCL3 cells, both TSH and insulin decreased DUOX activity and DUOX1 mRNA levels, an effect partially reversed by protein kinase A inhibition. Most antioxidant enzymes remained unchanged or decreased in the thyroid of DM rats, whereas only glutathione peroxidase 3 was increased. DUOX1 and NOX4 expression and H(2)O(2) production were significantly higher in cells cultivated with high glucose, which was reversed by protein kinase C inhibition. We conclude that thyroid reactive oxygen species is elevated in experimental rat DM, which is a consequence of low-serum TSH and insulin but is also related to hyperglycemia per se. PMID:23407453

Santos, Maria C S; Louzada, Ruy A N; Souza, Elaine C L; Fortunato, Rodrigo S; Vasconcelos, Andressa L; Souza, Kléber L A; Castro, João P S W; Carvalho, Denise P; Ferreira, Andrea C F

2013-03-01

310

Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets  

PubMed Central

Background Besides being essential for plant structure and metabolism, soluble carbohydrates play important roles in stress responses. Sucrose has been shown to confer to Arabidopsis seedlings a high level of tolerance to the herbicide atrazine, which causes reactive oxygen species (ROS) production and oxidative stress. The effects of atrazine and of exogenous sucrose on ROS patterns and ROS-scavenging systems were studied. Simultaneous analysis of ROS contents, expression of ROS-related genes and activities of ROS-scavenging enzymes gave an integrative view of physiological state and detoxifying potential under conditions of sensitivity or tolerance. Results Toxicity of atrazine could be related to inefficient activation of singlet oxygen (1O2) quenching pathways leading to 1O2 accumulation. Atrazine treatment also increased hydrogen peroxide (H2O2) content, while reducing gene expressions and enzymatic activities related to two major H2O2-detoxification pathways. Conversely, sucrose-protected plantlets in the presence of atrazine exhibited efficient 1O2 quenching, low 1O2 accumulation and active H2O2-detoxifying systems. Conclusion In conclusion, sucrose protection was in part due to activation of specific ROS scavenging systems with consequent reduction of oxidative damages. Importance of ROS combination and potential interferences of sucrose, xenobiotic and ROS signalling pathways are discussed.

Ramel, Fanny; Sulmon, Cecile; Bogard, Matthieu; Couee, Ivan; Gouesbet, Gwenola

2009-01-01

311

Apogossypolone targets mitochondria and light enhances its anticancer activity by stimulating generation of singlet oxygen and reactive oxygen species  

PubMed Central

Apogossypolone (ApoG2), a novel derivative of gossypol, has been shown to be a potent inhibitor of antiapoptotic Bcl-2 family proteins and to have antitumor activity in multiple types of cancer cells. Recent reports suggest that gossypol stimulates the generation of cellular reactive oxygen species (ROS) in leukemia and colorectal carcinoma cells; however, gossypol-mediated cell death in leukemia cells was reported to be ROS-independent. This study was conducted to clarify the effect of ApoG2-induced ROS on mitochondria and cell viability, and to further evaluate its utility as a treatment for nasopharyngeal carcinoma (NPC). We tested the photocytotoxicity of ApoG2 to the poorly differentiated NPC cell line CNE-2 using the ROS-generating TL/10 illumination system. The rapid ApoG2-induced cell death was partially reversed by the antioxidant N-acetyl-L-cysteine (NAC), but the ApoG2-induced reduction of mitochondrial membrane potential (MMP) was not reversed by NAC. In the presence of TL/10 illumination, ApoG2 generated massive amounts of singlet oxygen and was more effective in inhibiting cell growth than in the absence of illumination. We also determined the influence of light on the anti-proliferative activity of ApoG2 using a CNE-2–xenograft mouse model. ApoG2 under TL/10 illumination healed tumor wounds and suppressed tumor growth more effectively than ApoG2 treatment alone. These results indicate that the ApoG2-induced CNE-2 cell death is partly ROS-dependent. ApoG2 may be used with photodynamic therapy (PDT) to treat NPC.

Hu, Zhe-Yu; Wang, Jing; Cheng, Gang; Zhu, Xiao-Feng; Huang, Peng; Yang, Dajun; Zeng, Yi-Xin

2011-01-01

312

Nonmetal Haptens Induce ATP Release from Keratinocytes through Opening of Pannexin Hemichannels by Reactive Oxygen Species.  

PubMed

Although extracellular adenosine 5'-triphosphate (eATP) has a crucial role in the sensitization phase of contact hypersensitivity (CHS), the mechanism by which hapten causes keratinocyte cell death and ATP release is unknown. We examined the time course of cell death, reactive oxygen species (ROS) production, and ATP release in HaCaT cells and in normal human keratinocytes after exposure to nonmetal haptens, NiCl2, or irritants. Both haptens and irritants caused cell death of keratinocytes but with different time courses. N-acetylcysteine (NAC) significantly reduced only nonmetal hapten-induced cell death as assessed by propidium iodide exclusion. We examined the effects of antioxidants and pannexin (Panx) inhibitors on cell death, ROS production, and ATP release by chemical-treated HaCaT cells. Nonmetal hapten-induced cell death, but not NiCl2- or irritant-related cell death, was dependent on reactivity to thiol residues in the cells. NAC reduced cell death and ATP release, whereas antioxidants and Panx inhibitors did not inhibit cell death but significantly attenuated ATP release. Panx1 small interfering RNA (siRNA) also suppressed ATP release from hapten-exposed HaCaT cells. Intraperitoneal injection of a Panx1 inhibitor attenuated murine CHS. These findings suggest that nonmetal hapten reactivity to thiol residues causes membrane disruption of keratinocytes and ROS production that leads to ATP release through opening of Panx hemichannels. PMID:24531690

Onami, Kaoru; Kimura, Yutaka; Ito, Yumiko; Yamauchi, Takeshi; Yamasaki, Kenshi; Aiba, Setsuya

2014-07-01

313

Effect of reactive oxygen and carbonyl species on crucial cellular antioxidant enzymes.  

PubMed

Numerous reactive oxygen species (ROS) and reactive carbonyl species (RCS) issuing from lipid and sugar oxidation are known to damage a large number of proteins leading to enzyme inhibition and alteration of cellular functions. Whereas studies in literature only focus on the reactivity of one or two of these compounds, we aimed at comparing in the same conditions of incubations (4 and 24h at 37°C) the effects of both various RCS (4-hydroxynonenal, 4-hydroxyhexenal, acrolein, methylglyoxal, glyoxal, malondialdehyde) and ROS (H?O?, AAPH) on the activity of key enzymes involved in cellular oxidative stress: superoxide dismutase (Cu,Zn-SOD), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH). This was realized both in vitro on purified proteins and MIAPaCa-2 cells. Incubation of these enzymes with RCS resulted in a significant time- and concentration-dependent inhibition for both pure enzymes and in cell lysates. Among all RCS and ROS, hydroxynonenal (HNE) was observed as the most toxic for all studied enzymes except for SOD and is followed by hydrogen peroxide. At 100?M, HNE resulted in a 50% reduction of GPx, 56% of GST, 65% of G6PDH, and only 10% of Cu,Zn-SOD. Meanwhile it seems that concentrations used in our study are closer to biological conditions for ROS than for RCS. H?O? and AAPH-induced peroxyl radicals may be probably more toxic towards the studied enzymes in vivo. PMID:21216240

Lesgards, Jean-François; Gauthier, Cyrielle; Iovanna, Juan; Vidal, Nicolas; Dolla, Alain; Stocker, Pierre

2011-03-15

314

Light-responsive polymer nanoreactors: a source of reactive oxygen species on demand  

NASA Astrophysics Data System (ADS)

Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of ``on demand'' reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently ``on demand''.Various domains present the challenges of responding to stimuli in a specific manner, with the desired sensitivity or functionality, and only when required. Stimuli-responsive systems that are appropriately designed can effectively meet these challenges. Here, we introduce nanoreactors that encapsulate photosensitizer-protein conjugates in polymer vesicles as a source of ``on demand'' reactive oxygen species. Vesicles made of poly(2-methyloxazoline)-poly(dimethylsiloxane)-poly(2-methyloxazoline) successfully encapsulated the photosensitizer Rose Bengal-bovine serum albumin conjugate (RB-BSA) during a self-assembly process, as demonstrated by UV-Vis spectroscopy. A combination of light scattering and transmission electron microscopy indicated that the nanoreactors are stable over time. They serve a dual role: protecting the photosensitizer in the inner cavity and producing in situ reactive oxygen species (ROS) upon irradiation with appropriate electromagnetic radiation. Illumination with appropriate wavelength light allows us to switch on/off and to control the production of ROS. Because of the oxygen-permeable nature of the polymer membrane of vesicles, ROS escape into the environment around vesicles, as established by electron paramagnetic resonance. The light-sensitive nanoreactor is taken up by HeLa cells in a Trojan horse fashion: it is nontoxic and, when irradiated with the appropriate laser light, produces ROS that induce cell death in a precise area corresponding to the irradiation zone. These nanoreactors can be used in theranostic approaches because they can be detected via the fluorescent photosensitizer signal and simultaneously produce ROS efficiently ``on demand''. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32380j

Baumann, Patric; Balasubramanian, Vimalkumar; Onaca-Fischer, Ozana; Sienkiewicz, Andrzej; Palivan, Cornelia G.

2012-12-01

315

Exogenous melatonin affects photosynthesis in characeae Chara australis  

PubMed Central

Melatonin was found in the fresh water characeae Chara australis. The concentrations (~4 ?g/g of tissue) were similar in photosynthesizing cells, independent of their position on the plant and rhizoids (roots) without chloroplasts. Exogenous melatonin, added at 10 ?M to the artificial pond water, increased quantum yield of photochemistry of photosystem II by 34%. The increased efficiency appears to be due to the amount of open reaction centers of photosystem II, rather than increased efficiency of each reaction center. More open reaction centers reflect better functionality of all photosynthetic transport chain constituents. We suggest that melatonin protection against reactive oxygen species covers not only chlorophyll, but also photosynthetic proteins in general.

Lazar, Dusan; Murch, Susan J.; Beilby, Mary J.; Al Khazaaly, Sabah

2013-01-01

316

Protective effect of flavonoids against reactive oxygen species production in sickle cell anemia patients treated with hydroxyurea  

PubMed Central

Objective The aim of this study was to evaluate the protective effects of quercetin, rutin, hesperidin and myricetin against reactive oxygen species production with the oxidizing action of tert-butylhydroperoxide in erythrocytes from normal subjects and sickle cell anemia carriers treated with hydroxyurea. Methods Detection of intracellular reactive oxygen species was carried out using a liposoluble probe, 2',7'-dichlorfluorescein-diacetate (DCFH-DA). A 10% erythrocyte suspension was incubated with flavonoids (quercetin, rutin, hesperidin or myricetin; 30, 50, and 100 µmol/L), and then incubated with tert-butylhydroperoxide (75 µmol/L). Untreated samples were used as controls. Results Red blood cell exposure to tert-butylhydroperoxide resulted in significant increases in the generation of intracellular reactive oxygen species compared to basal levels. Reactive oxygen species production was significantly inhibited when red blood cells were pre-incubated with flavonoids, both in normal individuals and in patients with sickle cell anemia. Quercetin and rutin had the highest antioxidant activity, followed by myricetin and hesperidin. CONCLUSION: Flavonoids, in particular quercetin and rutin, showed better antioxidant effects against damage caused by excess reactive oxygen species characteristic of sickle cell anemia. Results obtained with patients under treatment with hydroxyurea suggest an additional protective effect when associated with the use of flavonoids.

Henneberg, Railson; Otuki, Michel Fleith; Furman, Aline Emmer Ferreira; Hermann, Priscila; do Nascimento, Aguinaldo Jose; Leonart, Maria Suely Soares

2013-01-01

317

Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disorders. An overview.  

PubMed

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are formed under physiological conditions in the human body and are removed by cellular antioxidant defense system. During oxidative stress their increased formation leads to tissue damage and cell death. This process may be especially important in the central nervous system (CNS) which is vulnerable to ROS and RNS damage as the result of the brain high O(2) consumption, high lipid content and the relatively low antioxidant defenses in brain, compared with other tissues. Recently there has been an increased number of reports suggesting the involvement of free radicals and their non-radical derivatives in a variety of pathological events and multistage disorders including neurotoxicity, apoptotic death of neurons and neural disorders: Alzheimer's (AD), Parkinson's disease (PD) and schizophrenia. Taking into consideration the basic molecular chemistry of ROS and RNS, their overall generation and location, in order to control or suppress their action it is essential to understand the fundamental aspects of this problem. In this presentation we review and summarize the basics of all the recently known and important properties, mechanisms, molecular targets, possible involvement in cellular (neural) degeneration and apoptotic death and in pathogenesis of AD, PD and schizophrenia. The aim of this article is to provide an overview of our current knowledge of this problem and to inspire experimental strategies for the evaluation of optimum innovative therapeutic trials. Another purpose of this work is to shed some light on one of the most exciting recent advances in our understanding of the CNS: the realisation that RNS pathway is highly relevant to normal brain metabolism and to neurologic disorders as well. The interactions of RNS and ROS, their interconversions and the ratio of RNS/ROS could be an important neural tissue injury mechanism(s) involved into etiology and pathogenesis of AD, PD and schizophrenia. It might be possible to direct therapeutic efforts at oxidative events in the pathway of neuron degeneration and apoptotic death. From reviewed data, no single substance can be recommended for use in human studies. Some of the recent therapeutic strategies and neuroprotective trials need further development particularly those of antioxidants enhancement. Such an approach should also consider using combinations of radical(s) scavengers rather than a single substance. PMID:12835102

Metodiewa, D; Ko?ka, C

2000-02-01

318

Reactive oxygen and reactive nitrogen as signaling molecules for caspase 3 activation in acute cardiac transplant rejection.  

PubMed

Apoptosis is a significant factor in cardiac dysfunction and graft failure in cardiac rejection. In this study, we examined potential signaling molecules responsible for caspase 3 activation in a model of acute cardiac allograft rejection. The roles of reactive oxygen species (ROS) and nitric oxide (NO) were determined in untreated allografts and allograft recipients treated with either cyclosporine (CsA), alpha-phenyl-t-butylnitrone (PBN, a spin-trapping agent), vitamin C (VitC), Mn(III)tetrakis (1-methyl-4-pyridyl)porphyrin); MnTmPyP, a superoxide dismutase (SOD) mimetic), or L-(1-iminoethyl)lysine) (L-NIL), an inhibitor of inducible NO synthase (iNOS) enzyme activity. Graft tissue was taken for measuring superoxide radical production, Western blotting, and direct measurement of caspase 3 activity. Activation of caspase 3 in untreated allografts was revealed by the appearance of cleaved caspase 3 from pro-caspase 3 by Western blotting and functional caspase 3 catalytic activity. CsA or PBN inhibited iNOS expression and caspase 3 activity. VitC and MnTmPyP did not alter iNOS expression or decrease NO levels but did inhibit caspase 3 activity. In contrast, L-NIL completely inhibited the increase in NO production without altering iNOS expression and inhibited caspase 3 activity. The prevention of TUNEL staining by MnTmPyP and L-NIL confirmed downstream effects of superoxide and NO on apoptosis. These studies indicate that both superoxide and NO (precursors of peroxynitrite formation) play a significant role in caspase 3 activation in cardiac allograft rejection. PMID:18327972

Pieper, Galen M; Nilakantan, Vani; Nguyen, Thanh K; Hilton, Gail; Roza, Allan M; Johnson, Christopher P

2008-06-01

319

Reactive Oxygen Species Mediate Epstein-Barr Virus Reactivation by N-Methyl-N’-Nitro-N-Nitrosoguanidine  

PubMed Central

N-nitroso compounds (NOCs) and Epstein-Barr virus (EBV) reactivation have been suggested to play a role in the development of nasopharyngeal carcinoma (NPC). Although chemicals have been shown to be a risk factor contributing to the carcinogenesis of NPC, the underlying mechanism is not fully understood. We demonstrated recently that N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) enhances the genomic instability and tumorigenicity of NPC cells via induction of EBV reactivation. However, the mechanisms that trigger EBV reactivation from latency remain unclear. Here, we address the role of ROS in induction of EBV reactivation under MNNG treatment. EBV reactivation was induced in over 70% of EBV-positive NA cells and the promoter of Rta (Rp) was activated after MNNG treatment. Inhibitor experiments revealed ATM, p38 MAPK and JNK were activated by ROS and involved in MNNG-induced EBV reactivation. Significantly, ROS scavengers N-acetyl-L-cysteine (NAC), catalase and reduced glutathione inhibited EBV reactivation under MNNG and H2O2 treatment, suggesting ROS mediate EBV reactivation. The p53 was essential for EBV reactivation and the Rp activation by MNNG. Moreover, the p53 was phosphorylated, translocated into nucleus, and bound to Rp following ROS stimulation. The results suggest ROS play an important role in initiation of EBV reactivation by MNNG through a p53-dependent mechanism. Our findings demonstrate novel signaling mechanisms used by NOCs to induce EBV reactivation and provide a novel insight into NOCs link the EBV reactivation in the contribution to the development of NPC. Notably, this study indicates that antioxidants might be effective for inhibiting N-nitroso compound-induced EBV reactivation and therefore could be promising preventive and therapeutic agents for EBV reactivation-associated malignancies.

Huang, Sheng-Yen; Fang, Chih-Yeu; Wu, Chung-Chun; Tsai, Ching-Hwa; Lin, Su-Fang; Chen, Jen-Yang

2013-01-01

320

Light effect and reactive oxygen species in the action of ciprofloxacin on Staphylococcus aureus.  

PubMed

Oxygen consumption by Staphylococcus aureus ATCC 29213 sensitive to ciprofloxacin was determined with an oxygen selective electrode. Increase in the O(2) consumption was observed with 0.45 micromL(-1) ciprofloxacin while higher concentrations gave rise to a reduction of O(2) consumption. Resistant S. aureus strain did not show increase of O(2) consumption in presence of ciprofloxacin. Nitro Blue Tetrazolium assay showed that production of reactive oxygen species (ROS) increased intracellularly in sensitive bacteria incubated with this antibiotic. The exposition to UV light (360 nm) augmented the intracellular oxidative stress of S. aureus and provoked increment of ROS in extracellular media. Generation of singlet oxygen O(2) ((1)Delta(g)) in S. aureus was measured by means of oxidation of methionine. The absorbance of methionine was monitored at 215 nm and a clear decrease was detected when sensitive S. aureus was stressed with ciprofloxacin. Sodium azide and 2,5-dimethylfuran were used to reinforce the evidence of O(2) ((1)Delta(g)) generation during oxidative stress. Assays with methionine and 2,5-dimethylfuran demonstrated that resistant S. aureus did not increase the production of O(2) ((1)Delta(g)) in the presence of antibiotic. DNA oxidation was investigated in presence of O(2) ((1)Delta(g)) generated by laser excitation of perinaphthenone and subsequent energy transfer. Deactivation of O(2) ((1)Delta(g)) by reaction with DNA of sensitive and resistant bacteria was observed. According to the results obtained, the effect of ciprofloxacin in S. aureus led to an increment of O(2) ((1)Delta(g)) generating oxidative stress in the bacteria. PMID:15488711

Becerra, María Cecilia; Sarmiento, Martín; Páez, Paulina Laura; Argüello, Gustavo; Albesa, Inés

2004-10-25

321

Pro-metastatic signaling by c-Met through RAC-1 and reactive oxygen species (ROS).  

PubMed

Overexpression of the c-Met/hepatocyte growth factor receptor(HGF-R) proto-oncogene and abnormal generation of intracellular oxygen species (reactive oxygen species (ROS)) have been linked, by independent lines of evidence, to cell transformation and to malignant growth. By comparing two subpopulations of the B16 mouse melanoma (B16-F0 and B16-F10) endowed with different lung metastasis capacities (low and high, respectively) we found that both the expression/phosphorylation of c-Met and the steady-state levels of ROS positively correlated with metastatic growth. shRNA-mediated downregulation of c-Met in F10 cells led to a parallel decrease in the generation of oxygen species and in metastatic capacity, suggesting that oxidants may mediate the pro-metastatic activity of the HGF receptor. c-Met activation by a ligand elicits the formation of oxidant species through the oxidase-coupled small GTPase Rac-1, a relevant downstream target of the HGF-R. Moreover, cell treatment with the catalytic ROS scavengers EUK-134 and EUK-189 attenuates Met signaling to ERKs and inhibits the anchorage-independent growth of F10 cells, consistent with a critical role for oxygen species in HGF signaling and in aggressive cell behavior. Finally, genetic manipulation of the Rac-ROS cascade at different levels demonstrated its crucial role in the pro-metastatic activity of c-Met in vivo. Thus, we have outlined a novel cascade triggered by c-Met and mediated by ROS, linked to metastasis and potentially targetable by new antimetastatic, redox-based therapies. PMID:16462764

Ferraro, D; Corso, S; Fasano, E; Panieri, E; Santangelo, R; Borrello, S; Giordano, S; Pani, G; Galeotti, T

2006-06-22

322

Reactive Oxygen Species and Induction of Lignin Peroxidase in Phanerochaete chrysosporium  

PubMed Central

We studied oxidative stress in lignin peroxidase (LIP)-producing cultures (cultures flushed with pure O2) of Phanerochaete chrysosporium by comparing levels of reactive oxygen species (ROS), cumulative oxidative damage, and antioxidant enzymes with those found in non-LIP-producing cultures (cultures grown with free exchange of atmospheric air [control cultures]). A significant increase in the intracellular peroxide concentration and the degree of oxidative damage to macromolecules, e.g., DNA, lipids, and proteins, was observed when the fungus was exposed to pure O2 gas. The specific activities of manganese superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase and the consumption of glutathione were all higher in cultures exposed to pure O2 (oxygenated cultures) than in cultures grown with atmospheric air. Significantly higher gene expression of the LIP-H2 isozyme occurred in the oxygenated cultures. A hydroxyl radical scavenger, dimethyl sulfoxide (50 mM), added to the culture every 12 h, completely abolished LIP expression at the mRNA and protein levels. This effect was confirmed by in situ generation of hydroxyl radicals via the Fenton reaction, which significantly enhanced LIP expression. The level of intracellular cyclic AMP (cAMP) was correlated with the starvation conditions regardless of the oxygenation regimen applied, and similar cAMP levels were obtained at high O2 concentrations and in cultures grown with atmospheric air. These results suggest that even though cAMP is a prerequisite for LIP expression, high levels of ROS, preferentially hydroxyl radicals, are required to trigger LIP synthesis. Thus, the induction of LIP expression by O2 is at least partially mediated by the intracellular ROS.

Belinky, Paula A.; Flikshtein, Nufar; Lechenko, Sergey; Gepstein, Shimon; Dosoretz, Carlos G.

2003-01-01

323

Impact of oxygen addition during enological fermentation on sterol contents in yeast lees and their reactivity towards oxygen  

Microsoft Academic Search

During enological fermentations, superfluous oxygen consumption by yeast cells is observed. The superfluous oxygen consumed by the yeast cells is mainly related to the operation of non-respiratory oxygen consumption pathways resulting in an overall decrease in the total sterol fraction in yeast. On the other hand, yeast lees remaining at the end of alcoholic fermentations exhibit specific oxygen utilization rates

Caroline Fornairon-Bonnefond; Evelyne Aguera; Christelle Deytieux; Jean-Marie Sablayrolles; Jean-Michel Salmon

2003-01-01

324

Cobalt Protoporphyrin Induces HO-1 Expression Mediated Partially by FOXO1 and Reduces Mitochondria-Derived Reactive Oxygen Species Production  

PubMed Central

Background Reactive oxygen species arise in the mitochondria as byproducts of respiration and oxidase activity and have important roles in many physiological and pathophysiological conditions. The level of reactive oxygen species is regulated by a number of enzymes and physiological antioxidants, including HO-1, Sod2, catalase and COX-2, etc. And HO-1 against oxidative stress requires an increase in stress-responsive genes, such as Sod2 and catalase. Especially for the activity of HO-1, cobalt protoporphyrin is known to be a potent and effective inducer in many tissues. The transcription factor, FOXO1 is resistant to oxidative stress through downregulating reactive oxygen species production. Previous study showed that FOXO1 induces HO-1 expression by binding to HO-1 promoter. The question whether cobalt protoporphyrin induces HO-1 expression mediated by FOXO1 and subsequently lessens reactive oxygen species production remains to be elucidated. Results Cobalt protoporphyrin enhances the expression of FOXO1 and facilitates FOXO1 binding to HO-1 promoter and increasing its transcriptional activity without influencing the FOXO1 protein stability. CoPP induces HO-1 and other oxidative stress-responsive genes expression, such as catalase, cytochrome c, Sod2, and COX-2, and decreases mitochondria-derived reactive oxygen species production, which are mediated partially by FOXO1. Conclusions Cobalt protoporphyrin induces HO-1 and other oxidative stress-responsive genes expression mediated partially by FOXO1, and has an important role in reducing cellular reactive oxygen species level. Cobalt protoporphyrin may be a more promising therapeutic agent to upregulate some antioxidantive genes.

Li, Meixia; Xu, Haifeng; Zuo, Jin; Fang, Fude; Chang, Yongsheng

2013-01-01

325

Chemical kinetics and reactive species in atmospheric pressure helium-oxygen plasmas with humid-air impurities  

NASA Astrophysics Data System (ADS)

In most applications helium-based plasma jets operate in an open-air environment. The presence of humid air in the plasma jet will influence the plasma chemistry and can lead to the production of a broader range of reactive species. We explore the influence of humid air on the reactive species in radio frequency (rf)-driven atmospheric-pressure helium-oxygen mixture plasmas (He-O2, helium with 5000 ppm admixture of oxygen) for wide air impurity levels of 0-500 ppm with relative humidities of from 0% to 100% using a zero-dimensional, time-dependent global model. Comparisons are made with experimental measurements in an rf-driven micro-scale atmospheric pressure plasma jet and with one-dimensional semi-kinetic simulations of the same plasma jet. These suggest that the plausible air impurity level is not more than hundreds of ppm in such systems. The evolution of species concentration is described for reactive oxygen species, metastable species, radical species and positively and negatively charged ions (and their clusters). Effects of the air impurity containing water humidity on electronegativity and overall plasma reactivity are clarified with particular emphasis on reactive oxygen species.

Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

2013-02-01

326

Reactive oxygen production against malaria--a potential cancer risk factor.  

PubMed

In response to malaria infection, phagocytes, such as macro-phages and neutrophils, produce superoxide and thence the other reactive oxygen species (ROS) with which to kill the parasites. Excess ROS is normally eliminated by the body's natural scavenger molecules; however, in the event of a vast excess of ROS, as may be the case in acute as well as chronic malaria patients, the natural scavengers may be overwhelmed. We hypothesize that unscavenged ROS in malaria patients causes DNA damage in normal host cells which, if unrepaired or incorrectly repaired, could result in oncogene activation and eventually lead to cancer. An epidemiologic study may be warranted in malaria-endemic regions to investigate the possible relationship between malaria infection and cancer risk. PMID:2377089

Eze, M O; Hunting, D J; Ogan, A U

1990-06-01

327

Dopamine Induces Ca2+ Signaling in Astrocytes through Reactive Oxygen Species Generated by Monoamine Oxidase  

PubMed Central

Dopamine is a neurotransmitter that plays a major role in a variety of brain functions, as well as in disorders such as Parkinson disease and schizophrenia. In cultured astrocytes, we have found that dopamine induces sporadic cytoplasmic calcium ([Ca2+]c) signals. Importantly, we show that the dopamine-induced calcium signaling is receptor-independent in midbrain, cortical, and hippocampal astrocytes. We demonstrate that the calcium signal is initiated by the metabolism of dopamine by monoamine oxidase, which produces reactive oxygen species and induces lipid peroxidation. This stimulates the activation of phospholipase C and subsequent release of calcium from the endoplasmic reticulum via the inositol 1,4,5-trisphosphate receptor mechanism. These findings have major implications on the function of astrocytes that are exposed to dopamine and may contribute to understanding the physiological role of dopamine.

Vaarmann, Annika; Gandhi, Sonia; Abramov, Andrey Y.

2010-01-01

328

Effects of Hepatitis C core protein on mitochondrial electron transport and production of reactive oxygen species  

PubMed Central

Viral infections frequently alter mitochondrial function with suppression or induction of apoptosis and enhanced generation of reactive oxygen species. The mechanisms of these effects are varied and mitochondria are affected by both direct interactions with viral proteins as well as by secondary effects of viral activated signaling cascades. This chapter describes methods used in our laboratory to assess the effects of the Hepatitis C virus core protein on mitochondrial ROS production, electron transport and Ca2+ uptake. These include measurements of the effects of in vitro incubation of liver mitochondria with purified core protein as well as assessment of the function of mitochondria in cells and tissues expressing core and other viral proteins. These methods are generally applicable to the study of viral-mitochondrial interactions.

Campbell, Roosevelt V.; Yang, Yuanzheng; Wang, Ting; Rachamallu, Aparna; Li, Yanchun; Watowich, Stanley J.; Weinman, Steven A.

2014-01-01

329

Effects of Surface Chemistry on the Generation of Reactive Oxygen Species by Copper Nanoparticles  

PubMed Central

Mercaptocarboxylic acids with different carbon chain lengths were used for stabilizing uniform 15 nm copper nanoparticles. The effects of surface chemistry such as ligand type and surface oxidation on the reactive oxygen species (ROS) generated by the copper nanoparticles were examined. Transmission electron microscopy (TEM), Powder X-ray diffraction (PXRD), UV-vis spectroscopy, and an acellular ROS assay show that ROS generation is closely related to the surface oxidation of copper nanoparticles. It was found that the copper nanoparticles with longer chain ligands had surfaces that were better protected from oxidation and a corresponding lower ROS generating capacity than did particles with shorter chain ligands. Conversely, the copper nanoparticles with greater surface oxidation also had higher ROS generating capacity.

Shi, Miao; Kwon, Hyun Soo; Peng, Zhenmeng; Elder, Alison; Yang, Hong

2012-01-01

330

Sunscreen enhancement of UV-induced reactive oxygen species in the skin.  

PubMed

The number of UV-induced (20 mJ cm(-2)) reactive oxygen species (ROS) generated in nucleated epidermis is dependent upon the length of time the UV filter octocrylene, octylmethoxycinnamate, or benzophenone-3 remains on the skin surface. Two-photon fluorescence images acquired immediately after application of each formulation (2 mg cm(-2)) to the skin surface show that the number of ROS produced is dramatically reduced relative to the skin-UV filter control. After each UV filter remains on the skin surface for t=20 min, the number of ROS generated increases, although it remains below the number generated in the control. By t=60 min, the filters generate ROS above the control. The data show that when all three of the UV filters penetrate into the nucleated layers, the level of ROS increases above that produced naturally by epidermal chromophores under UV illumination. PMID:17015167

Hanson, Kerry M; Gratton, Enrico; Bardeen, Christopher J

2006-10-15

331

Polyglutamine expansion inhibits respiration by increasing reactive oxygen species in isolated mitochondria  

SciTech Connect

Huntington's disease results from expansion of the polyglutamine (PolyQ) domain in the huntingtin protein. Although the cellular mechanism by which pathologic-length PolyQ protein causes neurodegeneration is unclear, mitochondria appear central in pathogenesis. We demonstrate in isolated mitochondria that pathologic-length PolyQ protein directly inhibits ADP-dependent (state 3) mitochondrial respiration. Inhibition of mitochondrial respiration by PolyQ protein is not due to reduction in the activities of electron transport chain complexes, mitochondrial ATP synthase, or the adenine nucleotide translocase. We show that pathologic-length PolyQ protein increases the production of reactive oxygen species in isolated mitochondria. Impairment of state 3 mitochondrial respiration by PolyQ protein is reversed by addition of the antioxidants N-acetyl-L-cysteine or cytochrome c. We propose a model in which pathologic-length PolyQ protein directly inhibits mitochondrial function by inducing oxidative stress.

Puranam, Kasturi L. [Deane Laboratory, Department of Medicine, Division of Neurology, Duke University Medical Center, Durham, NC 27710 (United States); Wu, Guanghong [Deane Laboratory, Department of Medicine, Division of Neurology, Duke University Medical Center, Durham, NC 27710 (United States); Strittmatter, Warren J. [Deane Laboratory, Department of Medicine, Division of Neurology, Duke University Medical Center, Durham, NC 27710 (United States); Burke, James R. [Deane Laboratory, Department of Medicine, Division of Neurology, Duke University Medical Center, Durham, NC 27710 (United States)]. E-mail: james.burke@duke.edu

2006-03-10

332

Reactive Oxygen Species Modulate the Differentiation of Neurons in Clonal Cortical Cultures.  

PubMed Central

Reactive oxygen species (ROS) are important regulators of intracellular signaling. We examined the expression of ROS during rat brain development and explored their role in differentiation using cortical cultures. High levels of ROS were found in newborn neurons. Neurons produced ROS, not connected with cell death, throughout embryogenesis and postnatal stages. By P20, ROS-producing cells were found only in neurogenic regions. Cells with low levels of ROS, isolated from E15 brains by FACS, differentiated into neurons, oligodendrocytes, and astrocytes in clonal cultures. Neurons produced high ROS early in culture and later differentiated into two types: large pyramidal-like neurons that fired no or only a single action potential and smaller neurons that expressed nuclear calretinin and fired repeated action potentials. Antioxidant treatment did not alter neuron number but increased the ratio of small to large neurons. These findings suggest that modulation of ROS levels influences multiple aspects of neuronal differentiation.

Tsatmali, Marina; Walcott, Elisabeth C.; Makarenkova, Helen; Crossin, Kathryn L.

2007-01-01

333

Reactive oxygen species involved in regulating fruit senescence and fungal pathogenicity.  

PubMed

Senescence is a vital aspect of fruit life cycles, and directly affects fruit quality and resistance to pathogens. Reactive oxygen species (ROS), as the primary mediators of oxidative damage in plants, are involved in senescence. Mitochondria are the main ROS and free radical source. Oxidative damage to mitochondrial proteins caused by ROS is implicated in the process of senescence, and a number of senescence-related disorders in a variety of organisms. However, the specific sites of ROS generation in mitochondria remain largely unknown. Recent discoveries have ascertained that fruit senescence is greatly related to ROS and incidental oxidative damage of mitochondrial protein. Special mitochondrial proteins involved in fruit senescence have been identified as the targets of ROS. We focus in discussion on our recent advances in exploring the mechanisms of how ROS regulate fruit senescence and fungal pathogenicity. PMID:23515879

Tian, Shiping; Qin, Guozheng; Li, Boqiang

2013-08-01

334

Mitochondrial reactive oxygen species regulate the strength of inhibitory GABA-mediated synaptic transmission  

NASA Astrophysics Data System (ADS)

Neuronal communication imposes a heavy metabolic burden in maintaining ionic gradients essential for action potential firing and synaptic signalling. Although cellular metabolism is known to regulate excitatory neurotransmission, it is still unclear whether the brain’s energy supply affects inhibitory signalling. Here we show that mitochondrial-derived reactive oxygen species (mROS) regulate the strength of postsynaptic GABAA receptors at inhibitory synapses of cerebellar stellate cells. Inhibition is strengthened through a mechanism that selectively recruits ?3-containing GABAA receptors into synapses with no discernible effect on resident ?1-containing receptors. Since mROS promotes the emergence of postsynaptic events with unique kinetic properties, we conclude that newly recruited ?3-containing GABAA receptors are activated by neurotransmitter released onto discrete postsynaptic sites. Although traditionally associated with oxidative stress in neurodegenerative disease, our data identify mROS as a putative homeostatic signalling molecule coupling cellular metabolism to the strength of inhibitory transmission.

Accardi, Michael V.; Daniels, Bryan A.; Brown, Patricia M. G. E.; Fritschy, Jean-Marc; Tyagarajan, Shiva K.; Bowie, Derek

2014-01-01

335

Signaling Networks Involving Reactive Oxygen Species and Ca2+ in Plants  

NASA Astrophysics Data System (ADS)

Although plants never evolved central information processing organs such as brains, plants have evolved distributed information processing systems and are able to sense various environmental changes and reorganize their body plan coordinately without moving. Recent molecular biological studies revealed molecular bases for elementary processes of signal transduction in plants. Though reactive oxygen species (ROS) are highly toxic substances produced through aerobic respiration and photosynthesis, plants possess ROS-producing enzymes whose activity is highly regulated by binding of Ca2+. In turn, Ca2+- permeable channel proteins activated by ROS are shown to be localized to the cell membrane. These two components are proposed to constitute a positive feedback loop to amplify cellular signals. Such molecular physiological studies should be important steps to understand information processing systems in plants and future application for technology related to environmental, energy and food sciences.

Kuchitsu, Kazuyuki

2013-01-01

336

Reactive oxygen species as transducers of sphinganine-mediated cell death pathway  

PubMed Central

Long chain bases or sphingoid bases are building blocks of complex sphingolipids that display a signaling role in programmed cell death in plants. So far, the type of programmed cell death in which these signaling lipids have been demonstrated to participate is the cell death that occurs in plant immunity, known as the hypersensitive response. The few links that have been described in this pathway are: MPK6 activation, increased calcium concentrations and reactive oxygen species (ROS) generation. The latter constitute one of the more elusive loops because of the chemical nature of ROS, the multiple possible cell sites where they can be formed and the ways in which they influence cell structure and function.

Saucedo-Garcia, Mariana; Gonzalez-Solis, Ariadna; Rodriguez-Mejia, Priscila; de Jesus Olivera-Flores, Teresa; Vazquez-Santana, Sonia; Cahoon, Edgar B

2011-01-01

337

Genkwadaphnin induces reactive oxygen species (ROS)-mediated apoptosis of squamous cell carcinoma (SCC) cells.  

PubMed

Genkwadaphnin is a daphnane diterpene ester molecule isolated from the flower buds of Daphne genkwa. In the present study, we investigated the apoptosis-inducing effect of genkwadaphnin in squamous cell carcinoma (SCC) cells. Apoptosis was triggered in SCC12 cells following genkwadaphnin treatment in a time- and concentration-dependent manner. Genkwadaphnin treatment increased phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Knockdown of JNK and p38 MAPK by recombinant adenovirus expressing microRNA (miR) resulted in significant inhibition of genkwadaphnin-induced apoptosis in SCC12 cells. Finally, pretreatment with the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC) markedly reduced SCC12 cell apoptosis, concomitant with significant inhibition of MAPK activation. These results indicate that genkwadaphnin has the potential to induce apoptosis in SCC cells, providing information on which to base further research with the aim of developing a cure for SCC. PMID:24996181

Li, Zheng Jun; Li, Xue Mei; Piao, Yong Jun; Choi, Dae-Kyoung; Kim, Sue Jeong; Kim, Jae Wha; Sohn, Kyung-Cheol; Kim, Chang Deok; Lee, Jeung-Hoon

2014-07-25

338

Angiotensin-II-derived reactive oxygen species on baroreflex sensitivity during hypertension: new perspectives  

PubMed Central

Hypertension is a multifactorial disorder, which has been associated with the reduction in baroreflex sensitivity (BRS) and autonomic dysfunction. Several studies have revealed that increased reactive oxygen species (ROS) generated by nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase, following activation of type 1 receptor (AT1R) by Angiotensin-(Ang) II, the main peptide of the Renin–Angiotensin–Aldosterone System (RAAS), is the central mechanism involved in Ang-II-derived hypertension. In the present review, we will discuss the role of Ang II and oxidative stress in hypertension, the relationship between the BRS and the genesis of hypertension and how the oxidative stress triggers baroreflex dysfunction in several models of hypertension. Finally, we will describe some novel therapeutic drugs for improving the BRS during hypertension.

de Queiroz, Thyago M.; Monteiro, Matheus M. O.; Braga, Valdir A.

2013-01-01

339

BRCA1 Down-Regulates Cellular Levels of Reactive Oxygen Species  

PubMed Central

Previous studies have shown that the breast cancer suppressor BRCA1 stimulates antioxidant gene expression and protects cells against oxidative stress. To further examine this important function, we tested whether BRCA1 could modulate intracellular levels of reactive oxygen species (ROS). Wild-type BRCA1 (but not a cancer-associated mutant) significantly reduced ROS levels, determined by DCF fluorescence assays by flow cytometry and confocal microscopy. The BRCA1 and REF1 pathways for reduction of ROS levels appear to exhibit cross-talk. BRCA1 also reduced the levels of protein nitration and H2O2-induced oxidative damage to DNA. Thus, BRCA1 may protect cellular macromolecules by reducing intracellular ROS levels.

Saha, Tapas; Rih, Jeong Keun; Rosen, Eliot M.

2009-01-01

340

Pharmacology of Free Radicals and the Impact of Reactive Oxygen Species on the Testis  

PubMed Central

The role of free radicals in normal cellular functions and different pathological conditions has been a focus of pharmacological studies in the recent past. Reactive oxygen species (ROS) and free radicals in general are essential for cell signaling and other vital physiological functions; however, excessive amounts can cause alteration in cellular reduction-oxidation (redox) balance, and disrupt normal biological functions. When there is an imbalance between activities of ROS and antioxidant/scavenging defense systems, oxidative stress (OS) occurs. A good number of studies have shown OS is involved in the development of several disease conditions, including male infertility. In the present article, generation of free radicals and their effects, as well as the mechanisms of antioxidant/scavenging defense systems are discussed, with particular focus on the testis. The review also discusses the contribution of OS on testicular dysfunction and briefly focuses on some OS-induced conditions that will alter testicular function.

Aprioku, Jonah Sydney

2013-01-01

341

PGC-1? and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function  

PubMed Central

Summary Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1?, which is normally induced during development of cardiomyocytes, decreased mitochondrial content and activity and decreased the capacity for coping with energetic stress. Yet, concurrently, reactive oxygen species (ROS) levels were lowered, and the amplitude of the action potential and the maximum amplitude of the calcium transient were in fact increased. Importantly, in control cardiomyocytes, lowering ROS levels emulated this beneficial effect of PGC-1? knockdown and similarly increased the calcium transient amplitude. Our results suggest that controlling ROS levels may be of key physiological importance for recapitulating mature cardiomyocyte phenotypes, and the combination of bioassays used in this study may have broad application in the analysis of cardiac physiology pertaining to disease.

Birket, Matthew J.; Casini, Simona; Kosmidis, Georgios; Elliott, David A.; Gerencser, Akos A.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G.; Elefanty, Andrew G.; Stanley, Ed G.; Mummery, Christine L.

2013-01-01

342

The Requirement of Reactive Oxygen Intermediates for Lymphocytic Choriomeningitis Virus Binding and Growth1  

PubMed Central

Multiple viruses induce reactive oxygen intermediate (ROI) generation during infection that plays an important role in growth. We have examined the importance of ROI during lymphocytic choriomeningitis virus (LCMV) infection of immortalized BHK-21 cells and murine peritoneal macrophages. Within 15 minutes of virus addition, intracellular ROI levels increased. To examine the contribution of ROI to LCMV infection, cells were pretreated with antioxidant prior to virus addition. Antioxidant treatment inhibited low and high MOI growth of virus. The requirement for ROI was greatest during the initial phase of infection, as antioxidant treatment after six hours post infection had a weaker inhibitory effect. Furthermore, antioxidant treatment of cells inhibited virus binding, while treatment of virus stocks with N-ethyl malemide, which blocks free thiols, eliminated infectious virus. This illustrates that ROI are critical to the regulation of virus binding and growth and has important implications for understanding the infectivity of related viruses.

Michalek, Ryan D.; Pellom, S. Troy; Holbrook, Beth C.; Grayson, Jason M.

2008-01-01

343

Inactivation of Pyruvate Dehydrogenase Kinase 2 by Mitochondrial Reactive Oxygen Species*  

PubMed Central

Reactive oxygen species are byproducts of mitochondrial respiration and thus potential regulators of mitochondrial function. Pyruvate dehydrogenase kinase 2 (PDHK2) inhibits the pyruvate dehydrogenase complex, thereby regulating entry of carbohydrates into the tricarboxylic acid (TCA) cycle. Here we show that PDHK2 activity is inhibited by low levels of hydrogen peroxide (H2O2) generated by the respiratory chain. This occurs via reversible oxidation of cysteine residues 45 and 392 on PDHK2 and results in increased pyruvate dehydrogenase complex activity. H2O2 derives from superoxide (O2??), and we show that conditions that inhibit PDHK2 also inactivate the TCA cycle enzyme, aconitase. These findings suggest that under conditions of high mitochondrial O2?? production, such as may occur under nutrient excess and low ATP demand, the increase in O2?? and H2O2 may provide feedback signals to modulate mitochondrial metabolism.

Hurd, Thomas R.; Collins, Yvonne; Abakumova, Irina; Chouchani, Edward T.; Baranowski, Bartlomiej; Fearnley, Ian M.; Prime, Tracy A.; Murphy, Michael P.; James, Andrew M.

2012-01-01

344

INTERACTIONS BETWEEN CALCIUM AND REACTIVE OXYGEN SPECIES IN PULMONARY ARTERIAL SMOOTH MUSCLE RESPONSES TO HYPOXIA  

PubMed Central

In contrast to the systemic vasculature, where hypoxia causes vasodilation, pulmonary arteries constrict in response to hypoxia. The mechanisms underlying this unique response have been the subject of investigation for over 50 years, and still remain a topic of great debate. Over the last 20 years, there has emerged a general consensus that both increases in intracellular calcium concentration and changes in reactive oxygen species (ROS) generation play key roles in the pulmonary vascular response to hypoxia. Controversy exists, however, regarding whether ROS increase or decrease during hypoxia, the source of ROS, and the mechanisms by which changes in ROS might impact intracellular calcium, and vice versa. This review will discuss the mechanisms regulating [Ca2+]i and ROS in PASMCs, and the interaction between ROS and Ca2+ signaling during exposure to acute hypoxia.

Shimoda, Larissa A.; Undem, Clark

2010-01-01

345

The roles of reactive oxygen metabolism in drought: not so cut and dried.  

PubMed

Drought is considered to cause oxidative stress, but the roles of oxidant-induced modifications in plant responses to water deficit remain obscure. Key unknowns are the roles of reactive oxygen species (ROS) produced at specific intracellular or apoplastic sites and the interactions between the complex, networking antioxidative systems in restricting ROS accumulation or in redox signal transmission. This Update discusses the physiological aspects of ROS production during drought, and analyzes the relationship between oxidative stress and drought from different but complementary perspectives. We ask to what extent redox changes are involved in plant drought responses and discuss the roles that different ROS-generating processes may play. Our discussion emphasizes the complexity and the specificity of antioxidant systems, and the likely importance of thiol systems in drought-induced redox signaling. We identify candidate drought-responsive redox-associated genes and analyze the potential importance of different metabolic pathways in drought-associated oxidative stress signaling. PMID:24715539

Noctor, Graham; Mhamdi, Amna; Foyer, Christine H

2014-04-01

346

Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells  

PubMed Central

Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 ?g/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 ?g/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 ?g/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure.

Lee, Jong Gwan; Noh, Won Jun; Kim, Hwa

2011-01-01

347

Zinc oxide nanoparticles selectively induce apoptosis in human cancer cells through reactive oxygen species  

PubMed Central

Background Zinc oxide nanoparticles (ZnO NPs) have received much attention for their implications in cancer therapy. It has been reported that ZnO NPs induce selective killing of cancer cells. However, the underlying molecular mechanisms behind the anticancer response of ZnO NPs remain unclear. Methods and results We investigated the cytotoxicity of ZnO NPs against three types of cancer cells (human hepatocellular carcinoma HepG2, human lung adenocarcinoma A549, and human bronchial epithelial BEAS-2B) and two primary rat cells (astrocytes and hepatocytes). Results showed that ZnO NPs exert distinct effects on mammalian cell viability via killing of all three types of cancer cells while posing no impact on normal rat astrocytes and hepatocytes. The toxicity mechanisms of ZnO NPs were further investigated using human liver cancer HepG2 cells. Both the mRNA and protein levels of tumor suppressor gene p53 and apoptotic gene bax were upregulated while the antiapoptotic gene bcl-2 was downregulated in ZnO NP-treated HepG2 cells. ZnO NPs were also found to induce activity of caspase-3 enzyme, DNA fragmentation, reactive oxygen species generation, and oxidative stress in HepG2 cells. Conclusion Overall, our data demonstrated that ZnO NPs selectively induce apoptosis in cancer cells, which is likely to be mediated by reactive oxygen species via p53 pathway, through which most of the anticancer drugs trigger apoptosis. This study provides preliminary guidance for the development of liver cancer therapy using ZnO NPs.

Akhtar, Mohd Javed; Ahamed, Maqusood; Kumar, Sudhir; Khan, MA Majeed; Ahmad, Javed; Alrokayan, Salman A

2012-01-01

348

Exendin-4 Protects Mitochondria from Reactive Oxygen Species Induced Apoptosis in Pancreatic Beta Cells  

PubMed Central

Objective Mitochondrial oxidative stress is the basis for pancreatic ?-cell apoptosis and a common pathway for numerous types of damage, including glucotoxicity and lipotoxicity. We cultivated mice pancreatic ?-cell tumor Min6 cell lines in vitro and observed pancreatic ?-cell apoptosis and changes in mitochondrial function before and after the addition of Exendin-4. Based on these observations, we discuss the protective role of Exendin-4 against mitochondrial oxidative damage and its relationship with Ca2+-independent phospholipase A2. Methods We established a pancreatic ?-cell oxidative stress damage model using Min6 cell lines cultured in vitro with tert-buty1 hydroperoxide and hydrogen peroxide. We then added Exendin-4 to observe changes in the rate of cell apoptosis (Annexin-V-FITC-PI staining flow cytometry and DNA ladder). We detected the activity of the caspase 3 and 8 apoptotic factors, measured the mitochondrial membrane potential losses and reactive oxygen species production levels, and detected the expression of cytochrome c and Smac/DLAMO in the cytosol and mitochondria, mitochondrial Ca2-independent phospholipase A2 and Ca2+-independent phospholipase A2 mRNA. Results The time-concentration curve showed that different percentages of apoptosis occurred at different time-concentrations in tert-buty1 hydroperoxide- and hydrogen peroxide-induced Min6 cells. Incubation with 100 µmol/l of Exendin-4 for 48 hours reduced the Min6 cell apoptosis rate (p<0.05). The mitochondrial membrane potential loss and total reactive oxygen species levels decreased (p<0.05), and the release of cytochrome c and Smac/DLAMO from the mitochondria was reduced. The study also showed that Ca2+-independent phospholipase A2 activity was positively related to Exendin-4 activity. Conclusion Exendin-4 reduces Min6 cell oxidative damage and the cell apoptosis rate, which may be related to Ca2-independent phospholipase A2.

Li, Zhen; Zhou, Zhiguang; Huang, Gan; Hu, Fang; Xiang, Yufei; He, Lining

2013-01-01

349

Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution.  

PubMed

In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru(4+) to unstable Ru(n>4+). This ordered(Ru(4+))-to-disordered(Ru(n>4+)) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects. PMID:24939393

Chang, Seo Hyoung; Danilovic, Nemanja; Chang, Kee-Chul; Subbaraman, Ram; Paulikas, Arvydas P; Fong, Dillon D; Highland, Matthew J; Baldo, Peter M; Stamenkovic, Vojislav R; Freeland, John W; Eastman, Jeffrey A; Markovic, Nenad M

2014-01-01

350

The multifunctional histone-like protein Lsr2 protects mycobacteria against reactive oxygen intermediates  

PubMed Central

Mycobacterium tuberculosis has evolved a number of strategies to survive within the hostile environment of host phagocytes. Reactive nitrogen and oxygen intermediates (RNI and ROI) are among the most effective antimycobacterial molecules generated by the host during infection. Lsr2 is a M. tuberculosis protein with histone-like features, including the ability to regulate a variety of transcriptional responses in mycobacteria. Here we demonstrate that Lsr2 protects mycobacteria against ROI in vitro and during macrophage infection. Furthermore, using macrophages derived from NOS?/? and Phox?/? mice, we demonstrate that Lsr2 is important in protecting against ROI but not RNI. The protection provided by Lsr2 protein is not the result of its ability to either bind iron or scavenge hydroxyl radicals. Instead, electron microscopy and DNA-binding studies suggest that Lsr2 shields DNA from reactive intermediates by binding bacterial DNA and physically protecting it. Thus, Lsr2 appears to be a unique protein with both histone-like properties and protective features that may be central to M. tuberculosis pathogenesis. In addition, evidence indicates that lsr2 is an essential gene in M. tuberculosis. Because of its essentiality, Lsr2 may represent an excellent candidate as a drug target.

Colangeli, R.; Haq, A.; Arcus, V. L.; Summers, E.; Magliozzo, R. S.; McBride, A.; Mitra, A. K.; Radjainia, M.; Khajo, A.; Jacobs, W. R.; Salgame, P.; Alland, D.

2009-01-01

351

Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species  

PubMed Central

Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia–reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia–reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed.

Webster, Keith A

2013-01-01

352

Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease.  

PubMed

Among age-related neurodegenerative diseases, Parkinson's disease (PD) represents the best example for which oxidative stress has been strongly implicated. The etiology of PD remains unknown, yet recent epidemiological studies have linked exposure to environmental agents, including pesticides, with an increased risk of developing the disease. As a result, the environmental hypothesis of PD has developed, which speculates that chemical agents in the environment are capable of producing selective dopaminergic cell death, thus contributing to disease development. The use of environmental agents such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, rotenone, paraquat, dieldrin, and maneb in toxicant-based models of PD has become increasingly popular and provided valuable insight into the neurodegenerative process. Understanding the unique and shared mechanisms by which these environmental agents act as selective dopaminergic toxicants is critical in identifying pathways involved in PD pathogenesis. In this review, we discuss the neurotoxic properties of these compounds with specific focus on the induction of oxidative stress. We highlight landmark studies along with recent advances that support the role of reactive oxygen and reactive nitrogen species from a variety of cellular sources as potent contributors to the neurotoxicity of these environmental agents. Finally, human risk and the implications of these studies in our understanding of PD-related neurodegeneration are discussed. PMID:18342017

Drechsel, Derek A; Patel, Manisha

2008-06-01

353

Reactive oxygen species and the bacteriostatic and bactericidal effects of isoconazole nitrate.  

PubMed

Bacterial superinfections often occur in dermatomycoses, resulting in greatly inflamed or eczematous skin. The objective of this study was to evaluate the antibacterial efficacy of isoconazole nitrate (ISN), a broad-spectrum antimicrobial imidazole, commonly used to treat dermatomycoses. Several gram-positive bacteria minimal inhibitory concentrations (MICs) for ISN (ISN solution or ISN-containing creams: Travogen or corticosteroid-containing Travocort) and ampicillin were obtained using the broth-dilution method. Speed of onset of the bactericidal effect was determined with bacterial killing curves. Reactive oxygen species (ROS) were visualised by staining cells with singlet oxygen detector stain. Compared with ampicillin MICs, ISN MICs for Bacillus cereus, Staphylococcus haemolyticus and Staphylococcus hominis were lower and ISN MICs for Corynebacterium tuberculostearicum and Streptococcus salivarius were similar. Incubation with ISN led to a 50% kill rate for Staphylococcus aureus and methicillin-resistant strains (MRSA). Post-ISN incubation, 36% (30 min) and 90% (60 min) of S. aureus cells were positive for ROS. Isoconazole nitrate has a broad bacteriostatic and bactericidal action, also against a MRSA strain that was not reduced by the corticosteroid in the Travocort cream. Data suggest that the antibacterial effect of ISN may be ROS dependent. An antifungal agent with robust antibacterial activity can provide a therapeutic advantage in treating dermatomycoses with suspected bacterial superinfections. PMID:23574020

Czaika, Viktor A; Siebenbrock, Jan; Czekalla, Frank; Zuberbier, Torsten; Sieber, Martin A

2013-05-01

354

SENSORY PLASTICITY OF THE CAROTID BODY: ROLE OF REACTIVE OXYGEN SPECIES AND PHYSIOLOGICAL SIGNIFICANCE  

PubMed Central

Recent studies have shown that acute intermittent hypoxia (IH) induces sensory plasticity of the carotid body manifested as sensory long-term facilitation (LTF), which requires prior conditioning with chronic IH and is mediated by reactive oxygen species (ROS). The purpose of this article is to provide a brief review of chronic IH-induced sensory LTF of the carotid body, sources of ROS, mechanisms underlying sensory LTF and its functional significance. Development of sensory LTF requires conditioning with several days of chronic IH. It is completely reversible following re-oxygenation, does not depend on the severity of hypoxia used for IH conditioning, not species specific and is selectively evoked by acute repetitive hypoxia but not by repetitive hypercapnia. Sensory LTF is not associated morphological changes in the carotid body and is expressed in chronic IH treated adult but not in neonatal rat carotid bodies. Chronic IH increases ROS levels in the carotid body involving 5-HT mediated activation of NADPH oxidase-2 (NOX2) and subsequent inhibition of the mitochondrial complex I. Sensory LTF can be prevented by inhibitors of 5-HT receptors, NOX inhibitors as well as by anti-oxidants. The signaling pathways mediating the sensory LTF are summarized in figure 2. It is suggested that sensory LTF contributes to the persistent sympathetic excitation under chronic IH.

Prabhakar, Nanduri R.

2011-01-01

355

Effects of Autoregulation and CO2 Reactivity on Cerebral Oxygen Transport  

PubMed Central

Both autoregulation and CO2 reactivity are known to have significant effects on cerebral blood flow and thus on the transport of oxygen through the vasculature. In this paper, a previous model of the autoregulation of blood flow in the cerebral vasculature is expanded to include the dynamic behavior of oxygen transport through binding with hemoglobin. The model is used to predict the transfer functions for both oxyhemoglobin and deoxyhemoglobin in response to fluctuations in arterial blood pressure and arterial CO2 concentration. It is shown that only six additional nondimensional groups are required in addition to the five that were previously found to characterize the cerebral blood flow response. A resonant frequency in the pressure-oxyhemoglobin transfer function is found to occur in the region of 0.1 Hz, which is a frequency of considerable physiological interest. The model predictions are compared with results from the published literature of phase angle at this frequency, showing that the effects of changes in breathing rate can significantly alter the inferred phase dynamics between blood pressure and hemoglobin. The question of whether dynamic cerebral autoregulation is affected under conditions of stenosis or stroke is then examined.

Payne, S. J.; Selb, J.; Boas, D. A.

2009-01-01

356

Circadian Clock Control of Nox4 and Reactive Oxygen Species in the Vasculature  

PubMed Central

Recent studies have shown that circadian clock disruption is associated with pathological remodeling in the arterial structure and vascular stiffness. Moreover, chronic circadian disruption is associated with dysfunction in endothelial responses and signaling. Reactive oxygen species have emerged as key regulators in vascular pathology. Previously, we have demonstrated that circadian clock dysfunction exacerbates superoxide production through eNOS uncoupling. To date, the impact of circadian clock mutation on vascular NADPH oxidase expression and function is not known. The goal in the current study was to determine if the circadian clock controls vascular Nox4 expression and hydrogen peroxide formation in arteries, particularly in endothelial and vascular smooth muscle cells. In aorta, there was an increase in hydrogen peroxide and Nox4 expression in mice with a dysfunctional circadian rhythm (Bmal1-KO mice). In addition, the Nox4 gene promoter is activated by the core circadian transcription factors. Lastly, in synchronized cultured human endothelial cells, Nox4 gene expression exhibited rhythmic oscillations. These data reveal that the circadian clock plays an important role in the control of Nox4 and disruption of the clock leads to subsequent production of reaction oxygen species.

Chen, Feng; Ali, M. Irfan; Hart, C. Michael M.; Stepp, David W.; Kovalenkov, Yevgeniy O.; Merloiu, Ana-Maria; Pati, Paramita; Fulton, David; Rudic, R. Daniel

2013-01-01

357

Reactive Oxygen Species in the Regulation of Synaptic Plasticity and Memory  

PubMed Central

Abstract The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function. Antioxid. Redox Signal. 14, 2013–2054.

Klann, Eric

2011-01-01

358

Ultraviolet Irradiation-Dependent Fluorescence Enhancement of Hemoglobin Catalyzed by Reactive Oxygen Species  

PubMed Central

Ultraviolet (UV) light has a potent effect on biological organisms. Hemoglobin, an oxygen-transport protein, plays an irreplaceable role in sustaining life of all vertebrates. In this study we scrutinize the effects of ultraviolet irradiation (UVI) as well as visible irradiation on the fluorescence characteristics of bovine hemoglobin (BHb) in vitro. Data show that UVI results in fluorescence enhancement of BHb in a dose-dependant manner. Furthermore, UVI-induced fluorescence enhancement is significantly increased when BHb is pretreated with hydrogen peroxide (H2O2), a type of reactive oxygen species (ROS). Meanwhile, The water-soluble antioxidant vitamin C suppresses this UVI-induced fluorescence enhancement. In contrast, green light irradiation does not lead to fluorescence enhancement of BHb no matter whether H2O2 is acting on the BHb solution or not. Taken together, these results indicate that catalysis of ROS and UVI-dependent irradiation play two key roles in the process of UVI-induced fluorescence enhancement of BHb.

Pan, Leiting; Wang, Xiaoxu; Yang, Shuying; Wu, Xian; Lee, Imshik; Zhang, Xinzheng; Rupp, Romano A.; Xu, Jingjun

2012-01-01

359

Environmentally persistent free radicals (EPFRs). 1. Generation of reactive oxygen species in aqueous solutions.  

PubMed

Reactive oxygen species (ROS) generated by environmentally persistent free radicals (EPFRs) of 2-monochlorophenol, associated with CuO/silica particles, were detected using the chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with electron paramagnetic resonance (EPR) spectroscopy. Yields of hydroxyl radical ((•)OH), superoxide anion radical (O(2)(•-)), and hydrogen peroxide (H(2)O(2)) generated by EPFR-particle systems were reported. Failure to trap superoxide radicals in aqueous solvent, formed from reaction of EPFRs with molecular oxygen, results from fast transformation of the superoxide to hydrogen peroxide. However, formation of superoxide as an intermediate product in hydroxyl radical formation in aprotic solutions of dimethyl sulfoxide (DMSO) and acetonitrile (AcN) was observed. Experiments with superoxide dismutase (SOD) and catalase (CAT) confirmed formation of superoxide and hydrogen peroxide, respectively, in the presence of EPFRs. The large number of hydroxyl radicals formed per EPFR and monotonic increase of the DMPO-OH spin adduct concentration with incubation time suggest a catalytic cycle of ROS formation. PMID:21823585

Khachatryan, Lavrent; Vejerano, Eric; Lomnicki, Slawo; Dellinger, Barry

2011-10-01

360

Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance.  

PubMed

Recent studies have shown that acute intermittent hypoxia (IH) induces sensory plasticity of the carotid body manifested as sensory long-term facilitation (LTF), which requires prior conditioning with chronic IH and is mediated by reactive oxygen species (ROS). The purpose of this article is to provide a brief review of chronic IH-induced sensory LTF of the carotid body, sources of ROS, mechanisms underlying sensory LTF and its functional significance. Development of sensory LTF requires conditioning with several days of chronic IH. It is completely reversible following re-oxygenation, does not depend on the severity of hypoxia used for IH conditioning, not species specific and is selectively evoked by acute repetitive hypoxia but not by repetitive hypercapnia. Sensory LTF is not associated morphological changes in the carotid body and is expressed in chronic IH treated adult but not in neonatal rat carotid bodies. Chronic IH increases ROS levels in the carotid body involving 5-HT mediated activation of NADPH oxidase-2 (NOX2) and subsequent inhibition of the mitochondrial complex I. Sensory LTF can be prevented by inhibitors of 5-HT receptors, NOX inhibitors as well as by anti-oxidants. The signaling pathways mediating the sensory LTF are summarized in the second figure. It is suggested that sensory LTF contributes to the persistent sympathetic excitation under chronic IH. PMID:21621009

Prabhakar, Nanduri R

2011-09-30

361

Action of reactive oxygen species in the antifungal mechanism of gemini-pyridinium salts against yeast.  

PubMed

We previously found that the gemini quaternary salt (gemini-QUAT) containing two pyridinium residues per molecule, 3,3'- (2,7-dioxaoctane) bis (1-decylpyridinium bromide) (3DOBP-4,10) , exerted fungicidal activity against Saccharomyces cerevisiae and caused respiration inhibition and the cytoplasmic leakage of ATP, magnesium, and potassium ions. Here, we investigated how the gemini-QUAT, 3DOBP-4,10, exerts more powerful antimicrobial activity than the mono-QUAT N-cetylpyridinium chloride (CPC) and examined the association between reactive oxygen species (ROS) and the antimicrobial mechanism. Antifungal assays showed that the activity of 3DOBP-4,10 against two yeasts, S. cerevisiae and Candida albicans, was significantly elevated under aerobic conditions, and largely reduced under anaerobic conditions (nitrogen atmosphere) . Adding radical scavengers such as superoxide dismutase, catalase and potassium iodide (KI) also decreased the fungicidal activity of 3DOBP-4,10 but negligibly affected that of CPC. We measured survival under static conditions and found that the rapid fungicidal profile of 3DOBP-4,10 was lost, whereas that of CPC was slightly affected in the presence of KI. Our results suggest that 3DOBP-4,10 exerts powerful antimicrobial activity by penetrating the cell wall and membrane, which then allows oxygen to enter the cells, where it participates in the generation of intracellular ROS. The activity could thus be attributable to a synergic antimicrobial combination of the disruption of organelle membranes by the QUAT and oxidative stress imposed by ROS. PMID:22790843

Shirai, Akihiro; Ueta, Shouko; Maseda, Hideaki; Kourai, Hiroki; Omasa, Takeshi

2012-06-01

362

The Role of Metals in Production and Scavenging of Reactive Oxygen Species in Photosystem II.  

PubMed

Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. PMID:24771559

Pospíšil, Pavel

2014-07-01

363

Ultraviolet irradiation-dependent fluorescence enhancement of hemoglobin catalyzed by reactive oxygen species.  

PubMed

Ultraviolet (UV) light has a potent effect on biological organisms. Hemoglobin, an oxygen-transport protein, plays an irreplaceable role in sustaining life of all vertebrates. In this study we scrutinize the effects of ultraviolet irradiation (UVI) as well as visible irradiation on the fluorescence characteristics of bovine hemoglobin (BHb) in vitro. Data show that UVI results in fluorescence enhancement of BHb in a dose-dependent manner. Furthermore, UVI-induced fluorescence enhancement is significantly increased when BHb is pretreated with hydrogen peroxide (H(2)O(2)), a type of reactive oxygen species (ROS). Meanwhile, The water-soluble antioxidant vitamin C suppresses this UVI-induced fluorescence enhancement. In contrast, green light irradiation does not lead to fluorescence enhancement of BHb no matter whether H(2)O(2) is acting on the BHb solution or not. Taken together, these results indicate that catalysis of ROS and UVI-dependent irradiation play two key roles in the process of UVI-induced fluorescence enhancement of BHb. PMID:22952902

Pan, Leiting; Wang, Xiaoxu; Yang, Shuying; Wu, Xian; Lee, Imshik; Zhang, Xinzheng; Rupp, Romano A; Xu, Jingjun

2012-01-01

364

Environmentally Persistent Free Radicals (EPFRs). 1. Generation of Reactive Oxygen Species in Aqueous Solutions  

PubMed Central

Reactive oxygen species (ROS) generated by environmentally persistent free radicals (EPFRs) of 2-monochlorophenol, associated with CuO/silica particles, were detected using the chemical spin trap, 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), in conjunction with Electron Paramagnetic Resonance (EPR) spectroscopy. Yields of hydroxyl radical (.OH), superoxide anion radical (O2.?), and hydrogen peroxide (H2O2) generated by EPFR-particle systems are reported. Failure to trap superoxide radicals in aqueous solvent, formed from the reaction of EPFRs with molecular oxygen, results from the fast transformation of the superoxide to hydrogen peroxide. However, formation of superoxide as an intermediate product in hydroxyl radical formation in aprotic solutions of dimethyl sulfoxide (DMSO) and acetonitrile (AcN) was observed. Experiments with superoxide dismutase (SOD) and catalase (CAT) confirmed the formation of superoxide and hydrogen peroxide, respectively, in the presence of EPFRs. The large number of hydroxyl radicals formed per EPFR and monotonic increase of the DMPO-OH spin adduct concentration with the incubation time suggest a catalytic cycle of ROS formation.

Khachatryan, Lavrent; Vejerano, Eric; Lomnicki, Slawo; Dellinger, Barry

2011-01-01

365

Nitric Oxide and Reactive Oxygen Species Production Causes Progressive Damage in Rats after Cessation of Silica Inhalation  

Microsoft Academic Search

Our laboratory has previously reported results from a rat silica inhalation study which determined that, even after silica exposure ended, pulmonary inflammation and damage progressed with subsequent fibrosis development. In the present study, the re- lationship between silica exposure, nitric oxide (NO) and reactive oxygen species (ROS) production, and the resultant pulmonary damage is investigated in this model. Rats were

D. W. Porter; L. L. Millecchia; P. Willard; V. A. Robinson; D. Ramsey; J. McLaurin; A. Khan; K. Brumbaugh; C. M. Beighley; A. Teass; V. Castranova

2005-01-01

366

Mitochondrial membrane potential and reactive oxygen species content of endothelial and smooth muscle cells cultured on poly( ?-caprolactone) films  

Microsoft Academic Search

A transitory but significant stimulation of mitochondrial activity, increase of reactive oxygen species (ROS) and oxidative stress were previously observed in L929 fibroblasts cultured on poly(?-caprolactone) (PCL) films. ROS, mainly formed in mitochondria, play a physiological role but an excessive production can promote endothelial dysfunction, cause oxidative injury to vascular cells, oxidize lipoproteins and accelerate atherothrombogenesis. On the other hand,

M. Concepción Serrano; Raffaella Pagani; Miguel Manzano; Juan V. Comas; M. Teresa Portolés

2006-01-01

367

In vitro and in vivo generation of reactive oxygen species, DNA damage and lactate dehydrogenase leakage by selected pesticides  

Microsoft Academic Search

Reactive oxygen species may be involved in the toxicity of various pesticides and we have, therefore, examined the in vivo effects of structurally dissimilar polyhalogenated cyclic hydrocarbons (PCH), such as endrin and chlordane, chlorinated acetamide herbicides (CAH), such as alachlor, and organophosphate pesticides (OPS), such as chlorpyrifos and fenthion, on the production of hepatic and brain lipid peroxidation and DNA-single

D. Bagchi; M. Bagchi; E. A. Hassoun; S. J. Stohs

1995-01-01

368

Dermal Toxicity and Environmental Contamination: Electron Transfer, Reactive Oxygen Species, Oxidative Stress, Cell Signaling, and Protection by Antioxidants  

Microsoft Academic Search

\\u000a Many papers have addressed the role of electron transfer (ET) (electron movement from one site to another), reactive oxygen\\u000a species (ROS), and oxidative stress (OS) in producing cellular insults and, thereby, toxicity in major organs. The present\\u000a review provides evidence for the same mechanistic theme as it applies to skin toxicants.

Peter Kovacic; Ratnasamy Somanathan

369

Hepatocyte Growth Factor Suppresses Production of Reactive Oxygen Species and Release of Eosinophil-Derived Neurotoxin from Human Eosinophils  

Microsoft Academic Search

Background:Reactive oxygen species (ROS) and eosinophilic granule proteins such as eosinophil-derived neurotoxin (EDN) are known to damage bronchial tissue and cause airway hyperresponsiveness (AHR) in asthma. Hepatocyte growth factor (HGF) regulates various biological activities and is known to be a multifunctional factor. In our previous study, we found that HGF suppressed allergic airway inflammation and AHR in a murine model

Wataru Ito; Masahide Takeda; Miyoshi Fujita; Yumiko Kamada; Hikari Kato; Takahito Chiba; Kazutoshi Yamaguchi; Shigeharu Ueki; Hiroyuki Kayaba; Arihiko Kanehiro; Junichi Chihara

2008-01-01

370

Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry  

Microsoft Academic Search

Reactive oxygen species (ROS) are continuously produced in the cell as a consequence of aerobic metabolism, and are controlled by several antioxidant mechanisms. An accurate measurement of ROS is essential to evaluate the redox status of the cell, or the effects of molecules with the pro-oxidant or antioxidant activity. Here we report a cytofluorimetric technique for measuring simultaneously, at the

Roberta Ferraresi; Leonarda Troiano; Erika Roat; Lara Gibellini; Linda Bertoncelli; Milena Nasi; Marcello Pinti; Andrea Cossarizza

2009-01-01

371

Reactive Oxygen Species Facilitate Translocation of Hormone Sensitive Lipase to the Lipid Droplet During Lipolysis in Human Differentiated Adipocytes  

Microsoft Academic Search

In obesity, there is an increase in reactive oxygen species (ROS) within adipose tissue caused by increases in inflammation and overnutrition. Hormone sensitive lipase (HSL) is part of the canonical lipolytic pathway and critical for complete lipolysis. This study hypothesizes that ROS is a signal that integrates regulation of lipolysis by targeting HSL. Experiments were performed with human differentiated adipocytes

Sarah A. Krawczyk; Jorge F. Haller; Tom Ferrante; Raphael A. Zoeller; Barbara E. Corkey

2012-01-01

372

Decreased production of reactive oxygen intermediates is an early event during in vitro apoptosis of rat thymocytes  

Microsoft Academic Search

Thymocyte apoptosis is one of the best characterized experimental models of apoptosis that can be induced by a variety of stimuli such as glucocorticoids, ionizing radiation, antibodies, and toxins. Recently, it has been suggested that oxidative stress is a common mediator of apoptosis. However, little is known about the production and possible function of reactive oxygen intermediates (ROI) in thymocytes.

Ji-Feng Wang; Thomas R. Jerrells; John J. Spitzer

1996-01-01

373

Study of Gene Regulation by NF-?B and AP1 in Response to Reactive Oxygen Intermediates  

Microsoft Academic Search

Reactive oxygen intermediates (ROIs), such as hydrogen peroxide or superoxide, are an evolutionarily ancient threat to all organisms. Exposure of bacteria to ROIs initiates a genetic program that coordinates the production of novel proteins with protective functions. This genetic response is mediated by regulatory proteins that have the potential to initiate transcription of genes when the levels of the ROIs

Judith M. Müller; Rudolf A. Rupec; Patrick A. Baeuerle

1997-01-01

374

Curcumin potentiates doxorubicin-induced apoptosis in H9c2 cardiac muscle cells through generation of reactive oxygen species  

Microsoft Academic Search

Doxorubicin (DOX) is a widely used chemotherapy agent. The major adverse effect of DOX treatment in cancer patients is the onset of cardiomyopathy and heart failure. Reactive oxygen species (ROS) are proposed to be responsible for DOX cardiotoxicity. Curcumin, a natural compound extracted from Curcuma Longa L., is known for its anti-oxidant properties. It has been identified as increased apoptosis

Leila Hosseinzadeh; Javad Behravan; Fatemeh Mosaffa; Gholamreza Bahrami; Ahmadreza Bahrami; Gholamreza Karimi

2011-01-01

375

Coordinated Behavior of Mitochondria in Both Space and Time: A Reactive Oxygen Species-Activated Wave of Mitochondrial Depolarization  

Microsoft Academic Search

Reactive oxygen species (ROS) can trigger a transient burst of mitochondrial ROS production via ROS activation of the mitochondrial permeability transition pore (MPTP), a phenomenon termed ROS-induced ROS release (RIRR). The goal of this study was to investigate if the generation of ROS in a discrete region of a cardiomyocyte could serve to propagate RIRR-mediated mitochondrial depolarizations throughout a cell.

Nathan R. Brady; Steven P. Elmore; Johannes J. H. G. M. van Beek; Klaas Krab; Pierre J. Courtoy; Louis Hue; Hans V. Westerhoff

2004-01-01

376

Glucose 6Phosphate Dehydrogenase Is Required for Salmonella typhimurium Virulence and Resistance to Reactive Oxygen and Nitrogen Intermediates  

Microsoft Academic Search

Salmonella typhimurium zwf mutants lacking glucose 6-phosphate dehydrogenase (G6PD) activity have increased susceptibility to reactive oxygen and nitrogen intermediates as well as attenuated virulence in mice. Abrogation of the phagocyte respiratory burst oxidase during experimental infection with zwf mutant Salmo- nella causes a prompt restoration of virulence, while inhibition of inducible nitric oxide synthase results in delayed lethality. These observations

BRITA E. LUNDBERG; RICHARD E. WOLF; MARY C. DINAUER; YISHENG XU; FERRIC C. FANG

1999-01-01

377

Role of mast cells in the pathogenesis of postburn inflammatory response: reactive oxygen species as mast cell stimulators  

Microsoft Academic Search

Thermal trauma has a direct effect on mast cells, triggering the secretion of histamine. This secretion leads to an enhanced xanthine oxidase activity and an increased production of reactive oxygen species (ROS), the latter being produced after burns through differing mechanisms. As ROS have been shown to have deleterious effects on cellular membranes, a lesion of the mast cell membrane

F. X Santos; C Arroyo; I Garc??a; R Blasco; J. M Obispo; C Hamann; L Espejo

2000-01-01

378

Effects of dietary carbohydrate on delayed onset muscle soreness and reactive oxygen species after contraction induced muscle damage  

Microsoft Academic Search

Background: Delayed onset muscle soreness (DOMS) occurs after unaccustomed exercise and has been suggested to be attributable to reactive oxygen species (ROS). Previous studies have shown increased ROS after lengthening contractions, attributable to invading phagocytes. Plasma glucose is a vital fuel for phagocytes, therefore carbohydrate (CHO) status before exercise may influence ROS production and DOMSObjective: To examine the effect of

G L Close; T Ashton; T Cable; D Doran; C Noyes; F McArdle; D P M MacLaren

2005-01-01

379

Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Inducible Factor-Dependent Extension of the Replicative Life Span during Hypoxia  

Microsoft Academic Search

Physiological hypoxia extends the replicative life span of human cells in culture. Here, we report that hypoxic extension of replicative life span is associated with an increase in mitochondrial reactive oxygen species (ROS) in primary human lung fibroblasts. The generation of mitochondrial ROS is necessary for hypoxic activation of the transcription factor hypoxia-inducible factor (HIF). The hypoxic extension of replicative

Eric L. Bell; Tatyana A. Klimova; James Eisenbart; Paul T. Schumacker; Navdeep S. Chandel

2007-01-01

380

Role of mitochondrial reactive oxygen species in hypoxia-dependent increase in intracellular calcium in pulmonary artery myocytes  

Microsoft Academic Search

Previous studies examining the role of mitochondria-derived reactive oxygen species (ROS) in hypoxic responses have been mainly conducted in isolated lungs and cultured pulmonary artery smooth muscle cells (PASMCs) using mitochondrial inhibitors, and yielded largely conflicting results. Here we report that in freshly isolated mouse PASMCs, which are devoid of the mixed responses from multi-types of cells in lungs and

Qing-Song Wang; Yun-Min Zheng; Ling Dong; Ye-Shih Ho; Zhongmao Guo; Yong-Xiao Wang

2007-01-01

381

Nox1Based NADPH Oxidase Is the Major Source of UVA-Induced Reactive Oxygen Species in Human Keratinocytes  

Microsoft Academic Search

UVA radiation is a major environmental stress on skin, causing acute and chronic photodamage. These responses are mediated by reactive oxygen species (ROS), although the cellular source of these ROS is unknown. We tested the hypotheses that UVA-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is required for ROS generation in human keratinocytes (HK) and that these ROS initiate

Antonio Valencia; Irene E Kochevar

2008-01-01

382

Phagocyte-Derived Reactive Oxygen Species Do Not Influence the Progression of Murine Blood-Stage Malaria Infections  

Microsoft Academic Search

functional NADPH oxidase and thus the ability to produce phagocyte-derived reactive oxygen species. We found that the absence of functional NADPH oxidase in the gene knockout mice had no effect on the parasitemia or total parasite burden in mice infected with either resolving (Plasmodium yoelii and Plasmodium chabaudi K562) or fatal (Plasmodium berghei ANKA, Plasmodium berghei K173 and Plasmodium vinckei

S. M. Potter; A. J. Mitchell; W. B. Cowden; L. A. Sanni; M. Dinauer; J. B. de Haan; N. H. Hunt

2005-01-01

383

REACTIVE OXYGEN SPECIES IN WHOLE BLOOD, BLOOD PLASMA AND BREAST MILK: VALIDATION OF A POTENTIAL MARKER OF EXPOSURE AND EFFECT  

EPA Science Inventory

Reactive oxygen species (ROS) are recognized to contribute to the pathobiology of many diseases. We have applied a simple chemiluminescent (CL) probe to detect ROS in various biological fluids (plasma, whole blood, urine and breast milk) in an environmental arsenic drinking wate...

384

Antibacterial activity of CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) generating reactive oxygen species.  

PubMed

CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) is an antifungal and chemosensitizing agent that induces oxidative stress in yeast and filamentous fungi and enhances the cytotoxic activity of 5-fluorocytosine and azole antimycotics. This study reports the effect of CTBT on bacterial cells. CTBT inhibited the growth of both Gram-positive and Gram-negative bacterial species. The action of CTBT was bactericidal. In Escherichia coli, CTBT induced an increased formation of reactive oxygen species (ROS), as determined with a ROS specific probe 2',7'-dichlorodihydrofluorescein diacetate. In zone inhibition assays, bacterial cells were more sensitive to CTBT compared with paraquat, menadione and hydrogen peroxide. The deletion of oxidative stress related genes resulted in increased susceptibility of E. coli mutant strains to CTBT treatment. Exogenous antioxidants such as ascorbic acid, cysteine and glutathione exhibited a protective effect against the growth inhibition induced by CTBT. CTBT may be a useful tool in the studies of ROS generation, oxidant sensing and oxidative stress response in different bacterial species. PMID:23176778

Culakova, Hana; Dzugasova, Vladimira; Gbelska, Yvetta; Subik, Julius

2013-03-30

385

The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination.  

PubMed

The physiological dormancy of sunflower (Helianthus annuus) embryos can be overcome during dry storage (after-ripening) or by applying exogenous ethylene or hydrogen cyanide (HCN) during imbibition. The aim of this work was to provide a comprehensive model, based on oxidative signaling by reactive oxygen species (ROS), for explaining the cellular mode of action of HCN in dormancy alleviation. Beneficial HCN effect on germination of dormant embryos is associated with a marked increase in hydrogen peroxide and superoxide anion generation in the embryonic axes. It is mimicked by the ROS-generating compounds methylviologen and menadione but suppressed by ROS scavengers. This increase results from an inhibition of catalase and superoxide dismutase activities and also involves activation of NADPH oxidase. However, it is not related to lipid reserve degradation or gluconeogenesis and not associated with marked changes in the cellular redox status controlled by the glutathione/glutathione disulfide couple. The expression of genes related to ROS production (NADPHox, POX, AO1, and AO2) and signaling (MAPK6, Ser/ThrPK, CaM, and PTP) is differentially affected by dormancy alleviation either during after-ripening or by HCN treatment, and the effect of cyanide on gene expression is likely to be mediated by ROS. It is also demonstrated that HCN and ROS both activate similarly ERF1, a component of the ethylene signaling pathway. We propose that ROS play a key role in the control of sunflower seed germination and are second messengers of cyanide in seed dormancy release. PMID:19329562

Oracz, Krystyna; El-Maarouf-Bouteau, Hayat; Kranner, Ilse; Bogatek, Renata; Corbineau, Françoise; Bailly, Christophe

2009-05-01

386

Surface reactivity and oxygen migration in amorphous indium-gallium-zinc oxide films annealed in humid atmosphere  

NASA Astrophysics Data System (ADS)

An isotope tracer study, i.e., 18O/16O exchange using 18O2 and H218O, was performed to determine how post-deposition annealing (PDA) affected surface reactivity and oxygen diffusivity of amorphous indium-gallium-zinc oxide (a-IGZO) films. The oxygen tracer diffusivity was very high in the bulk even at low temperatures, e.g., 200 °C, regardless of PDA and exchange conditions. In contrast, the isotope exchange rate, dominated by surface reactivity, was much lower for 18O2 than for H218O. PDA in a humid atmosphere at 400 °C further suppressed the reactivity of O2 at the a-IGZO film surface, which is attributable to -OH-terminated surface formation.

Watanabe, Ken; Lee, Dong-Hee; Sakaguchi, Isao; Nomura, Kenji; Kamiya, Toshio; Haneda, Hajime; Hosono, Hideo; Ohashi, Naoki

2013-11-01

387

Studies on the inhibitory effects of curcumin and eugenol on the formation of reactive oxygen species and the oxidation of ferrous iron  

Microsoft Academic Search

The spice principles curcumin (from turmeric) and eugenol (from cloves) are good inhibitors of lipid peroxidation. Lipid peroxidation is known to be initiated by reactive oxygen species. The effect of curcumin and eugenol on the generation of reactive oxygen species in model systems were investigated. Both curcumin and eugenol inhibited superoxide anion generation in xanthine-xanthine oxidase system to an extent

A. Ch. Pulla Reddy; Belur R. Lokesh

1994-01-01

388

The Suppressive Effect of Dietary Restriction and Weight Loss in the Obese on the Generation of Reactive Oxygen Species by Leukocytes, Lipid Peroxidation, and Protein Carbonylation  

Microsoft Academic Search

Increased reactive oxygen species generation by the leukocytes of the obese may be responsible for increased oxidative injury to lipids and proteins and, hence, atherosclerosis. We have investigated whether reactive oxygen species generation by leukocytes and other indexes of oxidative damage in the body fall with short-term dietary restriction and weight loss. Nine nondiabetic obese subjects (body mass index, 32.5-

PARESH DANDONA; PRIYA MOHANTY; HUSAM GHANIM; AHMAD ALJADA; RICHARD BROWNE; WAEL HAMOUDA; ANU PRABHALA; AQEELA AFZAL; RAJESH GARG

2010-01-01

389

Comparative study of the antioxidant and reactive oxygen species scavenging properties in the extracts of the fruits of Terminalia chebula, Terminalia belerica and Emblica officinalis  

Microsoft Academic Search

BACKGROUND: Cellular damage caused by reactive oxygen species (ROS) has been implicated in several diseases, and hence natural antioxidants have significant importance in human health. The present study was carried out to evaluate the in vitro antioxidant and reactive oxygen species scavenging activities of Terminalia chebula, Terminalia belerica and Emblica officinalis fruit extracts. METHODS: The 70% methanol extracts were studied

Bibhabasu Hazra; Rhitajit Sarkar; Santanu Biswas; Nripendranath Mandal

2010-01-01

390

Glucocorticoids increase the accumulation of reactive oxygen species and enhance adriamycin-induced toxicity in neuronal culture.  

PubMed

Glucocorticoids (GCs), the adrenal steroids secreted during stress, are known to affect diverse processes involving reactive oxygen species, from exacerbation of ischemic damage to alteration of antioxidant enzyme activities. To determine whether GCs have a direct effect on oxidative processes, we constructed a dose-response curve using adriamycin, an oxygen radical generator, in primary neuronal cultures. In cultures derived from the hippocampus, which has the greatest concentration of corticosteroid receptors in the brain, higher levels of GCs significantly increased adriamycin toxicity, while not being toxic themselves. In cortical cultures, which contain lesser amounts of corticosteroid receptors, GCs had no effect on the adriamycin dose-response. Surprisingly, when tested with dichlorofluorescein for levels of reactive oxygen species (ROS), GCs increased ROS by approximately 10% basally and at all adriamycin doses in both hippocampal and cortical cultures. Thus, greater generation of ROS does not account for the increased susceptibility of the hippocampus to oxidative damage. PMID:8812153

McIntosh, L J; Sapolsky, R M

1996-10-01

391

Reactive oxygen species in spermatozoa: methods for monitoring and significance for the origins of genetic disease and infertility  

PubMed Central

Human spermatozoa generate low levels of reactive oxygen species in order to stimulate key events, such as tyrosine phosphorylation, associated with sperm capacitation. However, if the generation of these potentially pernicious oxygen metabolites becomes elevated for any reason, spermatozoa possess a limited capacity to protect themselves from oxidative stress. As a consequence, exposure of human spermatozoa to intrinsically- or extrinsically- generated reactive oxygen intermediates can result in a state of oxidative stress characterized by peroxidative damage to the sperm plasma membrane and DNA damage to the mitochondrial and nuclear genomes. Oxidative stress in the male germ line is associated with poor fertilization rates, impaired embryonic development, high levels of abortion and increased morbidity in the offspring, including childhood cancer. In this review, we consider the possible origins of oxidative damage to human spermatozoa and reflect on the important contribution such stress might make to the origins of genetic disease in our species.

Baker, Mark A; Aitken, R John

2005-01-01

392

Benzene's metabolites alter c-MYB activity via reactive oxygen species in HD3 cells  

SciTech Connect

Benzene is a known leukemogen that is metabolized to form reactive intermediates and reactive oxygen species (ROS). The c-Myb oncoprotein is a transcription factor that has a critical role in hematopoiesis. c-Myb transcript and protein have been overexpressed in a number of leukemias and cancers. Given c-Myb's role in hematopoiesis and leukemias, it is hypothesized that benzene interferes with the c-Myb signaling pathway and that this involves ROS. To investigate our hypothesis, we evaluated whether benzene, 1,4-benzoquinone, hydroquinone, phenol, and catechol generated ROS in chicken erythroblast HD3 cells, as measured by 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (DCFDA) and dihydrorhodamine-123 (DHR-123), and whether the addition of 100 U/ml of the antioxidating enzyme superoxide dismutase (SOD) could prevent ROS generation. Reduced to oxidized glutathione ratios (GSH:GSSG) were also assessed as well as hydroquinone and benzoquinone's effects on c-Myb protein levels and activation of a transiently transfected reporter construct. Finally we attempted to abrogate benzene metabolite mediated increases in c-Myb activity with the use of SOD. We found that benzoquinone, hydroquinone, and catechol increased DCFDA fluorescence, increased DHR-123 fluorescence, decreased GSH:GSSG ratios, and increased reporter construct expression after 24 h of exposure. SOD was able to prevent DCFDA fluorescence and c-Myb activity caused by benzoquinone and hydroquinone only. These results are consistent with other studies, which suggest metabolite differences in benzene-mediated toxicity. More importantly, this study supports the hypothesis that benzene may mediate its toxicity through ROS-mediated alterations in the c-Myb signaling pathway.

Wan, Joanne [Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario (Canada); Winn, Louise M. [Department of Pharmacology and Toxicology, Queen's University, Kingston, Ontario (Canada) and School of Environmental Studies, Queen's University, Kingston, Ontario (Canada)]. E-mail: winnl@queensu.ca

2007-07-15

393

The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis  

PubMed Central

Type 1 diabetes (T1D) is a T cell–mediated autoimmune disease characterized by the destruction of insulin-secreting pancreatic ? cells. In humans with T1D and in nonobese diabetic (NOD) mice (a murine model for human T1D), autoreactive T cells cause ?-cell destruction, as transfer or deletion of these cells induces or prevents disease, respectively. CD4+ and CD8+ T cells use distinct effector mechanisms and act at different stages throughout T1D to fuel pancreatic ?-cell destruction and disease pathogenesis. While these adaptive immune cells employ distinct mechanisms for ?-cell destruction, one central means for enhancing their autoreactivity is by the secretion of proinflammatory cytokines, such as IFN-?, TNF-?, and IL-1. In addition to their production by diabetogenic T cells, proinflammatory cytokines are induced by reactive oxygen species (ROS) via redox-dependent signaling pathways. Highly reactive molecules, proinflammatory cytokines are produced upon lymphocyte infiltration into pancreatic islets and induce disease pathogenicity by directly killing ? cells, which characteristically possess low levels of antioxidant defense enzymes. In addition to ?-cell destruction, proinflammatory cytokines are necessary for efficient adaptive immune maturation, and in the context of T1D they exacerbate autoimmunity by intensifying adaptive immune responses. The first half of this review discusses the mechanisms by which autoreactive T cells induce T1D pathogenesis and the importance of ROS for efficient adaptive immune activation, which, in the context of T1D, exacerbates autoimmunity. The second half provides a comprehensive and detailed analysis of (1) the mechanisms by which cytokines such as IL-1 and IFN-? influence islet insulin secretion and apoptosis and (2) the key free radicals and transcription factors that control these processes.

Padgett, Lindsey E; Broniowska, Katarzyna A; Hansen, Polly A; Corbett, John A; Tse, Hubert M

2013-01-01

394

Measurement of Reactive Oxygen Species in the Culture Media Using Acridan Lumigen PS-3 Assay  

PubMed Central

Reactive oxygen species (ROS) are generated continuously during aerobic metabolism. ROS are highly reactive molecules and in excessive amounts, can lead to protein and DNA oxidation, protein cross-linking, and cell death. Cell-culture models provide a valuable tool in understanding the mechanisms that lead to cell death. Accumulation of ROS within cells and/or their release into the culture media are highly cell type-specific. The ability to estimate ROS levels in the culture media is an important step in understanding the mechanisms contributing to disease processes. In this paper, we describe the optimization of a simple method to estimate ROS levels in the culture media using the Acridan Lumigen PS-3 reagent provided in the Amersham ECL Plus kit (GE Healthcare, UK). We have shown that the Acridan Lumigen PS-3 assay generates ROS-specific chemiluminescence in fresh as well as media stored at ?20°C, in as little as 10–20 ?l of samples. The method was able to detect the dose (of stimulants)- and time (acute and chronic)-dependent changes in ROS levels in media collected from various cell types. Our results suggest that the kit reagents, PBS buffer, and various media did not contribute significantly to the overall chemiluminescence generated in the assay; however, we suggest that the unused medium specific for each cell type should be used as blanks and final readings of test samples normalized against these readings. As this method uses commonly available laboratory equipment and commercially available reagents, we believe this assay is convenient, economical, and specific in estimating ROS released extracellularly into the culture media.

Uy, Benedict; McGlashan, Susan R.; Shaikh, Shamim B.

2011-01-01

395

Accelerated endothelial dysfunction in mild prediabetic insulin resistance: the early role of reactive oxygen species.  

PubMed

Insulin resistance is well established as an independent risk factor for the development of type 2 diabetes and cardiovascular atherosclerosis. Most studies have examined atherogenesis in models of severe insulin resistance or diabetes. However, by the time of diagnosis, individuals with type 2 diabetes already demonstrate a significant atheroma burden. Furthermore, recent studies suggest that, even in adolescence, insulin resistance is a progressive disorder that increases cardiovascular risk. In the present report, we studied early mechanisms of reduction in the bioavailability of the antiatheroscerotic molecule nitric oxide (NO) in very mild insulin resistance. Mice with haploinsufficiency for the insulin receptor (IRKO) are a model of mild insulin resistance with preserved glycemic control. We previously demonstrated that 2-mo-old (Young) IRKO mice have preserved vasorelaxation responses to ACh. This remained the case at 4 mo of age. However, by 6 mo, despite no significant deterioration in glucose homeostasis (Adult), IRKO mice had marked blunting of ACh-mediated vasorelaxation [IRKO maximum contraction response (E(max)) 66 +/- 5% vs. wild type 87 +/- 4%, P < 0.01]. Despite the endothelial dysfunction demonstrated, aortic endothelial nitric oxide synthase (eNOS) mRNA levels were similar in Adult IRKO and wild-type mice, and, interestingly, aortic eNOS protein levels were increased, suggesting a compensatory upregulation in the IRKO. We then examined the potential role of reactive oxygen species in mediating early endothelial dysfunction. The superoxide dismutase mimetic Mn(III)tetrakis(1-methyl-4-pyridyl) porphyrin pentachloride (MnTMPyP) restored ACh relaxation responses in the Adult IRKO (E(max) to ACh with MnTMPyP 85 +/- 5%). Dihydroethidium fluorescence of aortas and isolated coronary microvascular endothelial cells confirmed a substantial increase in endothelium-derived reactive oxygen species in IRKO mice. These data demonstrate that mild insulin resistance is a potent substrate for accelerated endothelial dysfunction and support a role for endothelial cell superoxide production as a mechanism underlying the early reduction in NO bioavailability. PMID:17711985

Duncan, Edward R; Walker, Simon J; Ezzat, Vivienne A; Wheatcroft, Stephen B; Li, Jian-Mei; Shah, Ajay M; Kearney, Mark T

2007-11-01

396

Pyrite-driven reactive oxygen species formation in simulated lung fluid: implications for coal workers' pneumoconiosis.  

PubMed

The origin of coal worker's pneumoconiosis (CWP) has been long debated. A recent epidemiological study shows a correlation between what is essentially the concentration of pyrite within coal and the prevalence of CWP in miners. Hydrogen peroxide and hydroxyl radical, both reactive oxygen species (ROS), form as byproducts of pyrite oxidative dissolution in air-saturated water. Motivated by the possible importance of ROS in the pathogenesis of CWP, we conducted an experimental study to evaluate if ROS form as byproducts in the oxidative dissolution of pyrite in simulated lung fluid (SLF) under biologically applicable conditions and to determine the persistence of pyrite in SLF. While the rate of pyrite oxidative dissolution in SLF is suppressed by 51% when compared to that in air-saturated water, the initial amount of hydrogen peroxide formed as a byproduct in SLF is nearly doubled. Hydroxyl radical is also formed in the experiments with SLF, but at lower concentrations than in the experiments with water. The formation of these ROS indicates that the reaction mechanism for pyrite oxidative dissolution in SLF is no different from that in water. The elevated hydrogen peroxide concentration in SLF suggests that the decomposition, via the Fenton mechanism to hydroxyl radical or with Fe(III) to form water and molecular oxygen, is initially inhibited by the presence of SLF components. On the basis of the oxidative dissolution rate of pyrite measured in this paper, it is calculated that a respirable two micron pyrite particle will take over 3 years to dissolve completely. PMID:21989857

Harrington, Andrea D; Hylton, Shavonne; Schoonen, Martin A A

2012-08-01

397

Oxygen diffusion and reactivity at low temperature on bare amorphous olivine-type silicate.  

PubMed

The mobility of O atoms at very low temperatures is not generally taken into account, despite O diffusion would add to a series of processes leading to the observed rich molecular diversity in space. We present a study of the mobility and reactivity of O atoms on an amorphous silicate surface. Our results are in the form of reflection absorption infrared spectroscopy and temperature-programmed desorption spectra of O2 and O3 produced via two pathways: O + O and O2 + O, investigated in a submonolayer regime and in the range of temperature between 6.5 and 30 K. All the experiments show that ozone is formed efficiently on silicate at any surface temperature between 6.5 and 30 K. The derived upper limit for the activation barriers of O + O and O2 + O reactions is ?150 K/kb. Ozone formation at low temperatures indicates that fast diffusion of O atoms is at play even at 6.5 K. Through a series of rate equations included in our model, we also address the reaction mechanisms and show that neither the Eley-Rideal nor the hot atom mechanisms alone can explain the experimental values. The rate of diffusion of O atoms, based on modeling results, is much higher than the one generally expected, and the diffusive process proceeds via the Langmuir-Hinshelwood mechanism enhanced by tunnelling. In fact, quantum effects turn out to be a key factor that cannot be neglected in our simulations. Astrophysically, efficient O3 formation on interstellar dust grains would imply the presence of huge reservoirs of oxygen atoms. Since O3 is a reservoir of elementary oxygen, and also of OH via its hydrogenation, it could explain the observed concomitance of CO2 and H2O in the ices. PMID:24559358

Minissale, M; Congiu, E; Dulieu, F

2014-02-21

398

Reactive Oxygen Species Prevent Imiquimod-Induced Psoriatic Dermatitis through Enhancing Regulatory T Cell Function  

PubMed Central

Psoriasis is a chronic inflammatory skin disease resulting from immune dysregulation. Regulatory T cells (Tregs) are important in the prevention of psoriasis. Traditionally, reactive oxygen species (ROS) are known to be implicated in the progression of inflammatory diseases, including psoriasis, but many recent studies suggested the protective role of ROS in immune-mediated diseases. In particular, severe cases of psoriasis vulgaris have been reported to be successfully treated by hyperbaric oxygen therapy (HBOT), which raises tissue level of ROS. Also it was reported that Treg function was closely associated with ROS level. However, it has been only investigated in lowered levels of ROS so far. Thus, in this study, to clarify the relationship between ROS level and Treg function, as well as their role in the pathogenesis of psoriasis, we investigated imiquimod-induced psoriatic dermatitis (PD) in association with Treg function both in elevated and lowered levels of ROS by using knockout mice, such as glutathione peroxidase-1?/? and neutrophil cytosolic factor-1?/? mice, as well as by using HBOT or chemicals, such as 2,3-dimethoxy-1,4-naphthoquinone and N-acetylcysteine. The results consistently showed Tregs were hyperfunctional in elevated levels of ROS, whereas hypofunctional in lowered levels of ROS. In addition, imiquimod-induced PD was attenuated in elevated levels of ROS, whereas aggravated in lowered levels of ROS. For the molecular mechanism that may link ROS level and Treg function, we investigated the expression of an immunoregulatory enzyme, indoleamine 2,3-dioxygenase (IDO) which is induced by ROS, in PD lesions. Taken together, it was implied that appropriately elevated levels of ROS might prevent psoriasis through enhancing IDO expression and Treg function.

Choi, Eun-Jeong; Hong, Min-Pyo; Kie, Jeong-Hae; Lim, Woosung; Lee, Hyeon Kook; Moon, Byung-In; Seoh, Ju-Young

2014-01-01

399

Reactive oxygen species are involved in nickel inhibition of dna repair  

SciTech Connect

Nickel has been shown to inhibit DNA repair in a way that may play a role in its toxicity. Since nickel treatment increases cellular reactive oxygen species (ROS), we have investigated the involvement of ROS in nickel inhibition of DNA repair. Inhibition of glutathione synthesis or catalase activity increased the enhancing effect of nickel on the cytotoxicity of ultraviolet (UV) light. Inhibition of catalase and glutathione peroxidase activities also enhanced the retardation effect of nickel on the rejoining of DNA strand breaks accumulated by hydroxyurea plus cytosine-{beta}-D-arabinofuranoside in UV-irradiated cells. Since DNA polymerization and ligation are involved in the DNA-break rejoining, we have investigated the effect of ROS on these two steps in an extract of Chinese hamster ovary cells. Nickel inhibition of the incorporation of ({sup 3}H)dTTP into the DNase l-activated calf thymus DNA was stronger than the ligation of poly(dA){center_dot}oligo(dT), whereas H{sub 2}O{sub 2} was more potent in inhibiting DNA ligation than DNA polymerization. Nickel, in the presence of H{sub 2}O{sub 2}, exhibited a synergistic inhibition on both DNA polymerization and ligation and caused protein fragmentation. In addition, glutathione could completely recover the inhibition by nickel or H{sub 2}O{sub 2} alone but only partially recover the inhibition by nickel plus H{sub 2}O{sub 2}. Therefore, nickel may bind to DNA-repair enzymes and generate oxygen-free radicals to cause protein degradation in situ. This irreversible damage to the proteins involved in DNA repair, replication, recombination, and transcription could be important for the toxic effects of nickel. 60 refs., 6 figs., 4 tabs.

Lynn, S.; Yew, F.H.; Chen, K.S.; Jan, K.Y.

1997-06-01

400

Influence of particle size and reactive oxygen species on cobalt chrome nanoparticle-mediated genotoxicity.  

PubMed

Patients with cobalt chrome (CoCr) metal-on-metal (MOM) implants may be exposed to a wide size range of metallic nanoparticles as a result of wear. In this study we have characterised the biological responses of human fibroblasts to two types of synthetically derived CoCr particles [(a) from a tribometer (30 nm) and (b) thermal plasma technology (20, 35, and 80 nm)] in vitro, testing their dependence on nanoparticle size or the generation of oxygen free radicals, or both. Metal ions were released from the surface of nanoparticles, particularly from larger (80 nm) particles generated by thermal plasma technology. Exposure of fibroblasts to these nanoparticles triggered rapid (2 h) generation of reactive oxygen species (ROS) that could be eliminated by inhibition of NADPH oxidase, suggesting that it was mediated by phagocytosis of the particles. The exposure also caused a more prolonged, MitoQ sensitive production of ROS (24 h), suggesting involvement of mitochondria. Consequently, we recorded elevated levels of aneuploidy, chromosome clumping, fragmentation of mitochondria and damage to the cytoskeleton particularly to the microtubule network. Exposure to the nanoparticles resulted in misshapen nuclei, disruption of mature lamin B1 and increased nucleoplasmic bridges, which could be prevented by MitoQ. In addition, increased numbers of micronuclei were observed and these were only partly prevented by MitoQ, and the incidence of micronuclei and ion release from the nanoparticles were positively correlated with nanoparticle size, although the cytogenetic changes, modifications in nuclear shape and the amount of ROS were not. These results suggest that cells exhibit diverse mitochondrial ROS-dependent and independent responses to CoCr particles, and that nanoparticle size and the amount of metal ion released are influential. PMID:23433773

Raghunathan, Vijay Krishna; Devey, Michael; Hawkins, Sue; Hails, Lauren; Davis, Sean A; Mann, Stephen; Chang, Isaac T; Ingham, Eileen; Malhas, Ashraf; Vaux, David J; Lane, Jon D; Case, Charles P

2013-05-01

401

Reactive Oxygen Species Production by Forward and Reverse Electron Fluxes in the Mitochondrial Respiratory Chain  

PubMed Central

Reactive oxygen species (ROS) produced in the mitochondrial respiratory chain (RC) are primary signals that modulate cellular adaptation to environment, and are also destructive factors that damage cells under the conditions of hypoxia/reoxygenation relevant for various systemic diseases or transplantation. The important role of ROS in cell survival requires detailed investigation of mechanism and determinants of ROS production. To perform such an investigation we extended our rule-based model of complex III in order to account for electron transport in the whole RC coupled to proton translocation, transmembrane electrochemical potential generation, TCA cycle reactions, and substrate transport to mitochondria. It fits respiratory electron fluxes measured in rat brain mitochondria fueled by succinate or pyruvate and malate, and the dynamics of NAD+ reduction by reverse electron transport from succinate through complex I. The fitting of measured characteristics gave an insight into the mechanism of underlying processes governing the formation of free radicals that can transfer an unpaired electron to oxygen-producing superoxide and thus can initiate the generation of ROS. Our analysis revealed an association of ROS production with levels of specific radicals of individual electron transporters and their combinations in species of complexes I and III. It was found that the phenomenon of bistability, revealed previously as a property of complex III, remains valid for the whole RC. The conditions for switching to a state with a high content of free radicals in complex III were predicted based on theoretical analysis and were confirmed experimentally. These findings provide a new insight into the mechanisms of ROS production in RC.

Selivanov, Vitaly A.; Votyakova, Tatyana V.; Pivtoraiko, Violetta N.; Zeak, Jennifer; Sukhomlin, Tatiana; Trucco, Massimo; Roca, Josep; Cascante, Marta

2011-01-01

402

Antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species.  

PubMed

Cross-talk between Rho GTPase family members (Rho, Rac, and Cdc42) plays important roles in modulating and coordinating downstream cellular responses resulting from Rho GTPase signaling. The NADPH oxidase of phagocytes and nonphagocytic cells is a Rac GTPase-regulated system that generates reactive oxygen species (ROS) for the purposes of innate immunity and intracellular signaling. We recently demonstrated that NADPH oxidase activation involves sequential interactions between Rac and the flavocytochrome b(558) and p67(phox) oxidase components to regulate electron transfer from NADPH to molecular oxygen. Here we identify an antagonistic interaction between Rac and the closely related GTPase Cdc42 at the level of flavocytochrome b(558) that regulates the formation of ROS. Cdc42 is unable to stimulate ROS formation by NADPH oxidase, but Cdc42, like Rac1 and Rac2, was able to specifically bind to flavocytochrome b(558) in vitro. Cdc42 acted as a competitive inhibitor of Rac1- and Rac2-mediated ROS formation in a recombinant cell-free oxidase system. Inhibition was dependent on the Cdc42 insert domain but not the Switch I region. Transient expression of Cdc42Q61L inhibited ROS formation induced by constitutively active Rac1 in an NADPH oxidase-expressing Cos7 cell line. Inhibition of Cdc42 activity by transduction of the Cdc42-binding domain of Wiscott-Aldrich syndrome protein into human neutrophils resulted in an enhanced fMetLeuPhe-induced oxidative response, consistent with inhibitory cross-talk between Rac and Cdc42 in activated neutrophils. We propose here a novel antagonism between Rac and Cdc42 GTPases at the level of the Nox proteins that modulates the generation of ROS used for host defense, cell signaling, and transformation. PMID:15123662

Diebold, Becky A; Fowler, Bruce; Lu, Justine; Dinauer, Mary C; Bokoch, Gary M

2004-07-01

403

Phospholipase D signaling mediates reactive oxygen species-induced lung endothelial barrier dysfunction  

PubMed Central

Reactive oxygen species (ROS) have emerged as critical players in the pathophysiology of pulmonary disorders and diseases. Earlier, we have demonstrated that ROS stimulate lung endothelial cell (EC) phospholipase D (PLD) that generates phosphatidic acid (PA), a second messenger involved in signal transduction. In the current study, we investigated the role of PLD signaling in the ROS-induced lung vascular EC barrier dysfunction. Our results demonstrated that hydrogen peroxide (H2O2), a typical physiological ROS, induced PLD activation and altered the barrier function in bovine pulmonary artery ECs (BPAECs). 1-Butanol, the quencher of PLD, generated PA leading to the formation of physiologically inactive phosphatidyl butanol but not its biologically inactive analog, 2-butanol, blocked the H2O2-mediated barrier dysfunction. Furthermore, cell permeable C2 ceramide, an inhibitor of PLD but not the C2 dihydroceramide, attenuated the H2O2-induced PLD activation and enhancement of paracellular permeability of Evans blue conjugated albumin across the BPAEC monolayers. In addition, transfection of BPAECs with adenoviral constructs of hPLD1 and mPLD2 mutants attenuated the H2O2-induced barrier dysfunction, cytoskeletal reorganization and distribution of focal adhesion proteins. For the first time, this study demonstrated that the PLD-generated intracellular bioactive lipid signal mediator, PA, played a critical role in the ROS-induced barrier dysfunction in lung vascular ECs. This study also underscores the importance of PLD signaling in vascular leak and associated tissue injury in the etiology of lung diseases among critically ill patients encountering oxygen toxicity and excess ROS production during ventilator-assisted breathing.

Usatyuk, Peter V.; Kotha, Sainath R.; Parinandi, Narasimham L.; Natarajan, Viswanathan

2013-01-01

404

Green Tea Polyphenols Precondition against Cell Death Induced by Oxygen-Glucose Deprivation via Stimulation of Laminin Receptor, Generation of Reactive Oxygen Species, and Activation of Protein Kinase C?  

PubMed Central

As the development of synthetic drugs for the prevention of stroke has proven challenging, utilization of natural products capable of preconditioning neuronal cells against ischemia-induced cell death would be a highly useful complementary approach. In this study using an oxygen-glucose deprivation and reoxygenation (OGD/R) model in PC12 cells, we show that 2-day pretreatment with green tea polyphenols (GTPP) and their active ingredient, epigallocatechin-3-gallate (EGCG), protects cells from subsequent OGD/R-induced cell death. A synergistic interaction was observed between GTPP constituents, with unfractionated GTPP more potently preconditioning cells than EGCG. GTPP-induced preconditioning required the 67-kDa laminin receptor (67LR), to which EGCG binds with high affinity. 67LR also mediated the generation of reactive oxygen species (ROS) via activation of NADPH oxidase. An exogenous ROS-generating system bypassed 67LR to induce preconditioning, suggesting that sublethal levels of ROS are indeed an important mediator in GTPP-induced preconditioning. This role for ROS was further supported by the fact that antioxidants blocked GTPP-induced preconditioning. Additionally, ROS induced an activation and translocation of protein kinase C (PKC), particularly PKC? from the cytosol to the membrane/mitochondria, which was also blocked by antioxidants. The crucial role of PKC in GTPP-induced preconditioning was supported by use of its specific inhibitors. Preconditioning was increased by conditional overexpression of PKC? and decreased by its knock-out with siRNA. Collectively, these results suggest that GTPP stimulates 67LR and thereby induces NADPH oxidase-dependent generation of ROS, which in turn induces activation of PKC, particularly prosurvival isoenzyme PKC?, resulting in preconditioning against cell death induced by OGD/R.

Gundimeda, Usha; McNeill, Thomas H.; Elhiani, Albert A.; Schiffman, Jason E.; Hinton, David R.; Gopalakrishna, Rayudu

2012-01-01

405

Paclitaxel induces vascular endothelial growth factor expression through reactive oxygen species production.  

PubMed

The antineoplastic drug paclitaxel is known to block cells in the G2/M phase of the cell cycle through stabilization of microtubules. The development of paclitaxel resistance in tumors is one of the most significant obstacles to successful therapy. Vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1 (HIF-1) are important regulators of neovascularization. HIF-1 regulates VEGF expression at the transcriptional level. Here, we investigated whether paclitaxel treatment affects VEGF expression for the development of paclitaxel resistance. Paclitaxel treatment induced dose-dependent cell death and increased VEGF expression. Paclitaxel also induced nuclear factor-kappaB activation and stabilized HIF-1alpha, which stimulated luciferase activity of HIF-1alpha response element on VEGF gene. As paclitaxel treatment produced reactive oxygen species (ROS), VEGF expression was increased by H2O2 treatment and reduced by various ROS scavengers such as N-acetyl-L-cysteine, pyrrolidine dithiocarbamate and diphenylene iodonium. Paclitaxel-induced cell death was aggravated by incubation with those ROS scavengers. Collectively, this suggests that paclitaxel-induced VEGF expression could be mediated by paclitaxel-induced ROS production through nuclear factor-kappaB activation and HIF-1alpha stabilization, which could affect resistance induction to antitumor therapeutics during cancer treatment. PMID:18322419

Kim, Hyun Sun; Oh, Jin Mi; Jin, Dong Hoon; Yang, Kyu-Hwan; Moon, Eun-Yi

2008-01-01

406

Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species.  

PubMed

Chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic. The combination of cisplatin with other agents has been recognized as a promising strategy to overcome cisplatin resistance. Previous studies have shown that wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, sensitizes cancer cells to chemotheraputics such as etoposide, adriamycin, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TNF. However, the effect of wogonin on cisplatin-induced cytotoxicity has not been previously reported. In this study, the non-small cell lung cancer cell line A549 and the cervical cancer cell line HeLa were treated with wogonin or cisplatin individually or in combination. It was found for the first time that wogonin is able to sensitize cisplatin-induced apoptosis in both A549 cells and HeLa cells as indicated by the potentiation of activation of caspase-3, and cleavage of the caspase-3 substrate PARP in wogonin and cisplatin co-treated cells. Importantly, wogonin robustly induced H2O2 accumulation in these cells, which substantially contributes to the sensitization of cisplatin cytotoxicity by wogonin, as two reactive oxygen species scavengers, butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC), significantly suppressed the potentiated cytotoxicity caused by wogonin and cisplatin co-treatment. The results from this study provide important new evidence supporting the potential use of wogonin as a cisplatin sensitizer for cancer therapy. PMID:22665077

He, Fan; Wang, Qiong; Zheng, Xue-Lian; Yan, Jia-Qi; Yang, Lan; Sun, Hong; Hu, Li-Na; Lin, Yong; Wang, Xia

2012-08-01

407

Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials  

PubMed Central

We have investigated the cytotoxicity and reactive oxygen species (ROS) generation for indoor and outdoor soots: candle, wood, diesel, tire, and natural gas burner soots – along with surrogate black carbon, various multiwall carbon nanotube aggregate materials, TiO2 (anatase) and chrysotile asbestos as reference materials. All soots were observed utilizing TEM and FESEM to be composed of aggregated, primary spherules (20–80 nm diameter) forming complex, branched fractal structures. These spherules were composed of intercalated, turbostratic arrangements of curved graphene fragments with varying concentrations of polycyclic aromatic hydrocarbon (PAH) isomers. In vitro cultures with an immortalized human lung epithelial carcinoma cell line (A549) treated with these materials showed decreased cell viability and variations in ROS production, with no correlations to PAH content. The data demonstrate that soots are cytotoxic and that cytotoxicity is not related to PAH content but is related to ROS generation, suggesting that soot induces cellular oxidative stress and that cell viability assays can be indicators of ROS production.